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Preface

Moduli spaces of sheaves on K3 surfaces give some of the most important examples
of hyperkähler manifolds. We study their geometry using Hodge theory and derived
categories. We are especially interested in Beauville–Mukai systems. This thesis is
mostly based on [MS24; MM24].

We first investigate when a given moduli space of sheaves is fine, using a certain
Brauer class called the obstruction class. These were defined and computed by
Căldăraru in the case that the moduli space is itself a K3 surface. We extend his
results to higher-dimensional moduli spaces using similar methods. An interesting
new ingredient is the Căldăraru class. Căldăraru classes were used by Mukai [Muk87]
and Căldăraru [Căl00], but were named in [MS24].

We apply Căldăraru classes to the study of derived equivalence for K3 surfaces.
More precisely, we answer the question of whether every Fourier–Mukai partner of an
elliptic K3 surface X is isomorphic to a Jacobian of X. This question was asked by
Hassett and Tschinkel in [HT17]. The answer to the question is negative in general.
The main ingredients for the proof are Căldăraru classes, Ogg–Shafarevich theory,
and the Derived Torelli Theorem.

We use our explicit description of the obstruction class for a higher-dimensional
moduli space to study birational and derived equivalence for Beauville–Mukai systems,
and to generalise Ogg–Shafarevich theory to this setting.

For moduli spaces of sheaves on elliptic K3 surfaces, we provide a complete
description of birational equivalence in terms of Căldăraru classes. We also use the
results of Beckmann [Bec23] to show there exist moduli spaces M , M ′ such that
there exists a Hodge isometry T (M) ≃ T (M ′), but such that M and M ′ are not
derived equivalent.
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Chapter 1

Introduction

In this thesis, we study the interplay between derived categories, Hodge theory, and
birational geometry of hyperkähler manifolds, with emphasis on K3 surfaces and
moduli spaces of sheaves on K3 surfaces.

The main characters

A K3 surface over C is a smooth, projective variety S of dimension 2 over C, satisfying
ωS ≃ OS, and H1(S,OS) = 0. The second integral cohomology group H2(S,Z) is
a torsion-free abelian group of rank 22 carrying a natural symmetric bilinear form
given by the cup-product, turning H2(S,Z) into a lattice. Moreover, H2(S,Z) carries
a natural Hodge structure of weight 2. One of the most fundamental results about
K3 surfaces is the so-called Torelli Theorem for K3 surfaces, which asserts that
two K3 surfaces S and S ′ are isomorphic if and only if there exists an isometry
H2(S,Z) ≃ H2(S ′,Z) which is also an isomorphism of Hodge structures [PS71]. Such
an isometry is called a Hodge isometry. This wonderful theorem allows us to study
the geometry of K3 surfaces using lattice theory and Hodge theory.

The full cohomology group

H∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z)

also carries lattice structure and a Hodge structure, in which the integral (1, 1)-part
is the extended Néron–Severi lattice

N(S) := H0(S,Z)⊕ NS(S)⊕H4(S,Z).

Given a (well-chosen) vector v ∈ N(S), we can form the moduli space M(v) of
(semi-stable) sheaves F ∈ Coh(S) whose Mukai vector

v(F) := ch(F)
√
tdX ∈ N(S)

is equal to v [GH96; OGr97; Huy06; BM14a; BM14b]. Such moduli spaces are
examples of hyperkähler manifolds, which should be thought of as higher-dimensional
generalisations of K3 surfaces. More precisely, the dimension of M(v) is v2 + 2 (we
usually assume v2 ≥ 0). The geometry of M(v) is a subject of great interest and
importance. In this thesis, we study the derived categories and birational geometry
of moduli spaces of sheaves on K3 surfaces, using lattice theory and Hodge theory as
our main tools.
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Let H ⊂ S be a smooth and irreducible curve of genus g. It follows from the
genus formula that H2 = 2g − 2. Let ω ∈ H4(S,Z) be the fundamental cocycle.
Then, for any d ∈ Z the vector

vd := H + (d+ 1− g)ω ∈ N(S)

gives rise to a 2g-dimensional moduli space

Pic
d
:=M(vd).

It admits a Lagrangian fibration

Pic
d → |H| ≃ Pg,

given by sending a sheaf to its support. Over a smooth, irreducible curve C ∈ |H|,
the fibre of Picd → |H| is isomorphic to the Picard variety PicdC , which explains the
notation Pic

d [Muk84; Bea91; Mar14; ADM16; HM23].
If H ⊂ S is an elliptic curve, then we have an elliptic fibration S → |H|. The

dimension of Picd is then 2, and Pic
d is a K3 surface. In this case, we call Picd the

d-th Jacobian of S, and denote it by Jd(S) := Pic
d.

Research question

For a smooth, projective variety X over a field k, we consider the abelian category
Coh(X) of coherent sheaves on X. The associated bounded derived category

Db(X) := Db(Coh(X))

is called the derived category of X. If Y is another smooth, projective variety over k
for which there exists an equivalence Db(X) ≃ Db(Y ), then we say that X and Y
are derived equivalent and that X and Y are Fourier–Mukai partners.

Question (Main Research Question). Given a K3 surface S with a smooth, irreducible
curve H ⊂ S of genus g ≥ 1 and an integer d ∈ Z, what are the Fourier–Mukai
partners of Picd?

In this thesis, we discuss the answer to this question. The cases g = 1 and
g > 1 are considered separately. The reason for this is that derived equivalence
for K3 surfaces is a much more highly-developed topic than derived equivalence for
higher-dimensional hyperkähler manifolds.

Elliptic K3 surfaces: the case when g = 1

In Chapter 3, we study derived equivalence for elliptic K3 surfaces. The most
fundamental result in this field is the so-called Derived Torelli Theorem, which
asserts that two K3 surfaces X, Y are derived equivalent if and only if there is a
Hodge isometry between the transcendental lattices T (X) and T (Y ) [Muk87; Orl03].
The transcendental lattice is the orthogonal complement of the Néron–Severi lattice:
T (X) = NS(X)⊥ ⊂ H2(X,Z).
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Let X → P1 be an elliptic K3 surface. Since there is an isomorphism X ≃ J1(X),
the Main Research Question in this case is equivalent to asking what the Fourier–
Mukai partners of X itself are. It turns out that X admits no non-trivial Fourier–
Mukai partners as soon as the elliptic fibration X → P1 admits a section. Therefore,
we usually assume that the elliptic fibration X → P1 has no sections. In this case,
the lowest possible degree of a multisection is called the multisection index of the
elliptic fibration, which we denote by t. Then Jk(X) is a Fourier–Mukai partner of X
for any k ∈ Z such that gcd(k, t) = 1 [Bri98, Theorem 1.2], [Căl00, Theorem 4.5.2].
These are called the coprime Jacobians of X. In Chapter 3, we answer the following
question, which was asked by Hassett and Tschinkel in [HT17, Question 20]:

Question. Let X → P1 be an elliptic K3 surface, and let Y be a Fourier–Mukai
partner of X. Does there exist an elliptic fibration Y → P1 and an integer k ∈ Z
such that Y is isomorphic to Jk(X) as an elliptic surface?

We answer this question negatively for elliptic K3 surfaces of Picard rank 2. If X
is an elliptic K3 surface of Picard rank 2, there exist integers d ≥ 0, t ≥ 1 and an
isometry NS(X) ≃ Λd,t, where Λd,t is the rank two lattice with matrix(

2d t

t 0

)
.

In this case, X admits a polarisation of degree 2d, and the number t is the multisection
index of any elliptic fibration X → P1 [Ste04; SZ20]. The main result of Chapter 3
is the following theorem, which is also the main result of [MS24].

Theorem (See Theorem 3.1.2). [MS24, Theorem 1.2] Let X be an elliptic K3 surface
of Picard rank 2. Let t be the multisection index of X and let 2d be the degree of a
polarisation on X. Denote m = gcd(d, t).

(i) If m = 1, then every Fourier–Mukai partner of X is isomorphic to a coprime
Jacobian of a fixed elliptic fibration on X;

(ii) If m = pk, for a prime p, then every Fourier–Mukai partner of X is isomorphic
to a coprime Jacobian of one of the two elliptic fibrations on X;

(iii) If m is not a power of a prime, and X is very general with these properties, then
X admits Fourier–Mukai partners which are not isomorphic to any Jacobian
of any elliptic fibration on X.

The proof of this theorem relies on Ogg–Shafarevich Theory. This is the ob-
servation that, for an elliptic K3 surface with a section S → P1, there exists an
isomorphism Br(S) ≃Ш(S) [Căl00], [Huy16, Corollary 11.5.5]. The group Br(S) is
the Brauer group of S, which is isomorphic to Hom(T (S),Q/Z). The group Ш(S) is
the Tate–Shafarevich group of S, which parametrises torsors of S → P1. A torsor of
S → P1 is a pair (X → P1, θ), consisting of an elliptic K3 surface X → P1, together
with an isomorphism θ : J0(X) ≃ S over P1 which preserves the distinguished sections
of S and J0(X).

Another ingredient of the proof is that of a derived elliptic structure of X. This
is a pair (Y, g), where Y is a K3 surface which is derived equivalent to X and
g : Y → P1 is an elliptic fibration. We consider the set of isomorphism classes of
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derived elliptic structures, denoted DE(X), and relate it to Hodge-theoretical data
using Ogg–Shafarevich theory.

More precisely, the Hodge-theoretical data is a Căldăraru class. Căldăraru classes
are certain elements of a finite group associated to N(X). They were first studied by
Căldăraru during his PhD, but they were given their name much later, in [MS24].
Căldăraru classes arise in the study of obstructions to the existence of universal
sheaves.

Obstruction classes

Let S be a K3 surface with well-chosen Mukai vector v ∈ N(S). We consider the
moduli space of sheaves M(v). It is important to note that M(v) is not necessarily
a fine moduli space. This means that there is not always a universal sheaf U on
S×M(v). However, a twisted universal sheaf always exists [Căl00, Proposition 3.3.2].
This is a (1⊠ α)-twisted sheaf U on S ×M(v) with the property that U|S×[F ] ≃ F
for all C-points [F ] ∈M(v). Here, α is a Brauer class on M(v). Twisted universal
sheaves are not unique, but the Brauer class α is uniquely determined by M(v), i.e.
α is the only Brauer class on M(v) for which a (1⊠ α)-twisted universal sheaf exists.
This is called the obstruction to the existence of a universal sheaf on S ×M(v), or
simply the obstruction class.

Căldăraru computed the obstruction class for a two-dimensional moduli space
M(v) explicitly in terms of cohomological data [Căl00]. His description uses what
we now call Căldăraru classes. The order of the obstruction class is easy to compute
using Căldăraru’s results. To be precise, the order of the obstruction class of M(v) is
equal to the divisibility of v in N(S), denoted div(v). The divisibility of v is defined
to be the smallest positive integer t such that there exists an element w ∈ N(S) with
v · w = t.

As a consequence, we obtain that a two-dimensional moduli space M(v) is fine if
and only if div(v) = 1. This also follows from the Derived Torelli Theorem.

Beauville–Mukai systems: the case when g > 1

The three main tools used in Chapter 3 to study our Main Research Question for
elliptic K3 surfaces are the Derived Torelli Theorem, Ogg–Shafarevich Theory, and
Căldăraru’s explicit computation of the obstruction class. All three of these tools
are currently not fully understood in the higher-dimensional setting. In Chapter 2
and Chapter 4, we discuss recent progress on these three topics. We give a complete
description of obstruction classes of higher-dimensional moduli spaces of sheaves in
Chapter 2, and we give counterexamples to a higher-dimensional Derived Torelli
statement and prove a higher-dimensional generalisation of Ogg–Shafarevich Theory
in Chapter 4.

For the obstruction classes, we prove the following theorem in Chapter 2.

Theorem (See Theorem 2.4.15). [MM24, Theorem 4.5] Let S be a K3 surface, and
let v ∈ N(S) be a primitive Mukai vector. There is a short exact sequence

0→ ⟨α⟩ → Br(M(v))→ Br(S)→ 0,

where α ∈ Br(M(v)) is the obstruction to the existence of a universal sheaf on
S ×M(v).
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The order of the obstruction class can be easily computed, and this gives a
useful method to check whether a given moduli space is fine. Similarly to the
case of a two-dimensional moduli space, Căldăraru classes appear in the higher-
dimensional generalisation as well, and again the order of the obstruction class equals
the divisibility of v in N(S).

As an application of the explicit computation of the obstruction class, we obtain
the following result, which is an application of a theorem by Beckmann [Bec23,
Proposition 9.9].

Theorem (See Corollary 4.4.6). [MM24, Corollary 1.4] Let S be an elliptic K3
surface which admits a section. If M is a fine moduli space of sheaves on S, and
M ′ is a non-fine moduli space on S, then M and M ′ are not derived equivalent, but
there is a Hodge isometry T (M) ≃ T (M ′).

To prove a higher-dimensional generalisation of Ogg–Shafarevich Theory we rely
on the new construction of the Tate–Shafarevich group of a pair (S,H) of [HM23]. In
[HM23], the Tate–Shafarevich group Ш(S,H) is defined to be a certain subquotient
of the so-called special Brauer group SBr(S) of S. Instead, in this thesis we give
an alternative definition of Ш(S,H) in which an element of Ш(S,H) is given by a
Pic

0-torsor rather than by a special Brauer class on S. We prove that our definition
of Ш(S,H) is equivalent to the one given in [HM23].

Theorem (See Proposition 4.3.14). [MM24, Proposition 5.6] Let S be a K3 surface,
and let H ⊂ S be a smooth, irreducible curve of genus g > 1 whose class in NS(S) is
primitive. For all d ∈ Z, there is a short exact sequence

0→ Z/n(d)Z→Ш(S,H)→ Br(Pic
d
)→ 0,

where
n(d) =

div(H)

gcd(div(H), d+ 1− g)
.

This theorem generalises Ogg–Shafarevich theory to higher-dimensional moduli
spaces of sheaves on K3 surfaces. This leaves the Derived Torelli Theorem as the last
of the three main tools to be generalised to the higher-dimensional case. I expect
that the Main Research Question can be resolved fully once all three of the main
tools are extended to the setting of Beauville–Mukai systems.

Conventions and Notation

i) Unless stated otherwise, we work with varieties over the complex numbers.
This is essential because many of our results rely on Hodge theory.

ii) In Chapter 3, we denote an elliptic K3 surface which does not admit a section
by X, and an elliptic K3 surface which admits a section by S. In the other
chapters, K3 surfaces are usually denoted by S.

iii) For a smooth, projective, complex variety X, and a cohomology class x ∈
H∗(X,Z), we denote by [x]i the component of x that is contained in H i(X,Z).



Chapter 2

Brauer Groups and Hyperkähler
Manifolds

2.1 Introduction
For a K3 surface S with primitive Mukai vector v and polarisation H, one can
construct the moduli space MH(v) of H-Gieseker semistable sheaves with Mukai
vector v. It is a hyperkähler manifold of dimension v2 + 2, which is deformation
equivalent to a Hilbert scheme of points on a K3 surface, provided H is generic
[GH96; OGr97; Huy06; BM14a; BM14b]. These moduli spaces provide some of the
most important examples of hyperkähler manifolds, and their geometry is a subject
of great interest.

The moduli space MH(v) is generally a coarse moduli space. That is, there is not
always a universal sheaf U on S×MH(v) for which U|S×[F ] ≃ F for all [F ] ∈MH(v).
The obstruction to the existence of a universal sheaf is a Brauer class on MH(v).
More precisely, there is a unique Brauer class α ∈ Br(MH(v)) for which there exists
a (1 ⊠ α)-twisted universal sheaf on S ×MH(v). This Brauer class is called the
obstruction class of MH(v). If we assume v2 = 0, then MH(v) is a K3 surface, and
in this setting, the obstruction class was computed explicitly in terms of cohomology
by Căldăraru in his PhD thesis [Căl00]. His results showed that there exists a short
exact sequence

0→ ⟨α⟩ → Br(MH(v))→ Br(S)→ 0, (2.1.1)

and his very precise description of α also tells us the order of α in Br(MH(v)). The
order of α equals the so-called divisibility of the Mukai vector v, which is a number
that is easy to compute in practice.

Before we explain the main result of this chapter, let us briefly note some of the
applications of Căldăraru’s work. Firstly, MH(v) is a fine moduli space if and only if
a universal sheaf on S ×MH(v) exists. This is equivalent to the obstruction class
α being trivial. Therefore, Căldăraru’s work shows that MH(v) is fine if and only
if the divisibility of v is 1. This is important partially because of its implications
for the derived categories of S and MH(v). Short exact sequence (2.1.1) is obtained
from the well-known short exact sequence [Muk87, Proposition 6.4]

0→ T (S)→ T (MH(v))→ Z/ div(v)Z→ 0, (2.1.2)

which shows that T (S) is Hodge isometric to T (MH(v)) if and only if MH(v) is a
fine moduli space. Recall the Derived Torelli Theorem for K3 surfaces:

6



7 Chapter 2. Brauer Groups and Hyperkähler Manifolds

Theorem 2.1.1 (Derived Torelli Theorem). [Muk87; Orl03] Let X and Y be two
K3 surfaces. The following are equivalent:

i) There is an equivalence Db(X) ≃ Db(Y );

ii) There is a Hodge isometry T (X) ≃ T (Y );

iii) The K3 surface Y is isomorphic to a fine moduli space of sheaves on X.
The main goal of this chapter is to extend Căldăraru’s results about Brauer groups

to higher-dimensional moduli spaces of sheaves. Our main result is the following
theorem. For a K3 surface S, we denote by N(S) := H0(S,Z)⊕ NS(S)⊕H4(S,Z)
the extended Néron–Severi lattice.
Theorem 2.1.2 (See Theorem 2.4.15). Let S be a K3 surface, and let v ∈ N(S) be
a Mukai vector of square v2 > 0. Let H ∈ NS(S) be a generic polarisation on S, and
write M :=MH(v). Then there is a short exact sequence

0→ ⟨α⟩ → Br(M)→ Br(S)→ 0,

where α is the obstruction class for M to be a fine moduli space of sheaves on S.
Moreover, the order of α in Br(M) is equal to the divisibility of v in N(S).

Theorem 2.1.2 should be compared to [KK24, Proposition 6.6], where the ob-
struction class is computed for four-dimensional moduli spaces of twisted sheaves
using a different method which only applies in dimension four.

Theorem 2.1.2 is completely analogous to (2.1.1). In particular, it also allows us
to easily determine whether a given moduli space is fine or not.

Let us say a few words on the proof of Theorem 2.1.2. The proof is very closely
related to Căldăraru’s proof in the case v2 = 0. Some modifications are needed in
the higher-dimensional setting. Most notably, short exact sequence (2.1.2) has no
analogue in the higher-dimensional setting, as in this case there is always a Hodge
isometry T (S) ≃ T (M). The way to derive (2.1.1) from (2.1.2) is by using the fact
that Br(S) ≃ Hom(T (S),Q/Z) ≃ T (S)∗ ⊗ Q/Z for a K3 surface S. However, this
is not the case for higher-dimensional moduli spaces of sheaves on S. In this case,
there is a certain subgroup T ′(M) ⊂ T (S)∗, introduced in [HM23], for which there
exists an isomorphism Br(M) ≃ T ′(M)⊗Q/Z. The quotient T (S)∗/T ′(M) is cyclic
of order div(v), thus there is a short exact sequence

0→ T ′(M)→ T (S)∗ → Z/ div(v)Z→ 0,

which gives rise to the short exact sequence of Theorem 2.1.2.
The proof that the kernel of the short exact sequence of Theorem 2.1.2 is generated

by the obstruction class goes via a deformation argument very similar to Căldăraru’s
argument in the two-dimensional case. However, there are differences between our
approach and his in the deformation argument as well. If M is a fine two-dimensional
moduli space of sheaves on S, then Mukai’s and Orlov’s work shows that the Fourier–
Mukai equivalence associated to the universal sheaf on S ×M is a Hodge isometry
H̃(S,Z) ≃ H̃(M,Z), where H̃(S,Z) denotes the Mukai lattice. If, on the other hand,
M has dimension dimM > 2, then such a statement does not hold. Nevertheless,
we could achieve the same result using the Mukai pairing on H∗(M,Q), which was
introduced by Căldăraru in [Căl03], which was later superseded by Căldăraru and
Willerton in [CW10].

Theorem 2.1.2 has many applications. We discuss some of these applications in
Chapter 4.
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The structure of this chapter

In this chapter, we introduce many of the notions needed in the other chapters of
this thesis.

In Section 2.2, we revise the necessary theory on lattices, hyperkähler manifolds,
derived categories, and Hodge structures.

In Section 2.3, we discuss the relevant theory on moduli spaces. We study moduli
spaces of sheaves on K3 surfaces, as well as moduli spaces of lattice polarised K3
surfaces. We prove a certain density lemma in Section 2.3.3, which was already noted
in [Muk87; Căl00]. We prove that any (non-fine) moduli space of sheaves M on a
K3 surface S can be deformed to a fine moduli space (for the exact statement, see
Proposition 2.3.20).

In Section 2.4, we discuss obstruction classes of moduli spaces. Unlike in Section
2.2 and Section 2.3, many of the results and definitions in Section 2.4 are original.
The most important definition in Section 2.4 is the definition of a Căldăraru class of
a Mukai vector. The Căldăraru class is a certain element of the discriminant lattice
of the extended Néron–Severi lattice, and this element appears in many of the main
results of this thesis. Finally, we conclude this chapter with Theorem 2.4.15, which
computes the obstruction to the existence of a universal sheaf for a moduli space of
sheaves on a K3 surface.

The definition of the Căldăraru class comes from [MS24], and the rest of Section
2.3 and Section 2.4 is based on [MM24].

2.2 Preliminary Results

2.2.1 Lattices

Our main reference for lattice theory is [Nik80]. A lattice is a finitely generated free
abelian group L together with a symmetric non-degenerate bilinear form b : L×L→ Z.
We consider the quadratic form q(x) = b(x, x) and we write x · y for b(x, y) and
x2 for q(x). A (metric) morphism of lattices between (L, b) and (L′, b′) is a group
homomorphism f : L → L′ which respects the bilinear forms, meaning b(x, y) =
b′(f(x), f(y)) for all x, y ∈ L. An isomorphism of lattices is called an isometry. We
write O(L) for the group of isometries of L. The lattice L is called even if x2 is even
for all x ∈ L. All the lattices we consider will be assumed to be even.

Note that any metric morphism between non-degenerate lattices is injective. A
metric morphism of lattices N ↪→ L is called a primitive embedding if the quotient
L/N is torsion-free. A vector v ∈ L is primitive if the morphism ⟨v⟩ ↪→ L is a
primitive embedding. The divisibility of a vector v ∈ L is the positive integer

div(v) := gcd
u∈L

(u · v) .

The dual of a lattice L is defined as L∗ := Hom(L,Z). It comes equipped with a
natural bilinear form taking values in Q. The bilinear form gives rise to a natural map
L→ L∗ which is injective because we assume b to be non-degenerate; furthermore
we have a canonical isomorphism

L∗ ≃ {x ∈ L⊗Q | ∀y ∈ L : x · y ∈ Z} ⊆ L⊗Q. (2.2.1)



9 Chapter 2. Brauer Groups and Hyperkähler Manifolds

The quotient L∗/L = AL is called the discriminant group of L. If the discriminant
group is trivial, we call L unimodular. The discriminant group comes equipped with
a quadratic form q : AL → Q/2Z.

Any isometry f : L ≃ L induces an isometry f : AL ≃ AL. This defines a group
homomorphism

O(L)→ O(AL).

Note that there is a natural embedding

iL : AL ↪→ L⊗Q/Z,

induced by (2.2.1). If we denote by fQ/Z : L ⊗ Q/Z ≃ L ⊗ Q/Z the isomorphism
induced by f , then

iL ◦ f = fQ/Z ◦ iL.

For any primitive sublattice N ↪→ L, we denote

iN,L : AN ↪→ N ⊗Q/Z ↪→ L⊗Q/Z.

Lemma 2.2.1. Let L be a unimodular lattice, and let N ↪→ L be a primitive sublattice.
Write T := N⊥ ⊂ L for the orthogonal complement. Then, in L⊗Q/Z, we have

(T ⊗Q/Z) ∩ (N ⊗Q/Z) = iT,L(AT ) = iN,L(AN).

Proof. Suppose x ∈ (T ⊗ Q/Z) ∩ (N ⊗ Q/Z). Then there exist λ ∈ T ⊗ Q and
v ∈ N ⊗ Q such that x ≡ λ (mod L) and x ≡ v (mod L). In particular, we have
λ− v ≡ 0 (mod L). For any integral vector ζ ∈ T , we have λ · ζ = (λ− v) · ζ ∈ Z,
so that λ ∈ T ∗. This means that x ∈ iT,L(AT ). By a similar argument, we have
x ∈ iN,L(AN). This shows that (T ⊗Q/Z)∩ (N ⊗Q/Z) is contained in iT,L(AT ) and
iN,L(AN).

The other two inclusions follow from a standard argument, c.f. [Muk87, Proposi-
tion 6.4]. We include it here for completeness. Let λ ∈ iT,L(AT ). Since it is clear
that λ ∈ T ⊗Q/Z, we must show that λ ∈ N ⊗Q/Z. By slight abuse of notation,
we also denote by λ any lift to T ∗. Since T is a primitive sublattice of L and L is
unimodular, there is a surjective map L→ T ∗. That is, there exists a vector x ∈ L
such that x · ζ = λ · ζ for every ζ ∈ T . In particular, x− λ is orthogonal to T , and
thus v := x−λ ∈ N ⊗Q. Therefore we have λ+ v ∈ L, hence λ ≡ −v (mod L), and
we obtain λ ∈ N ⊗Q/Z. The final remaining inclusion is completely analogous.

Remark 2.2.2. Lemma 2.2.1 induces an isomorphism of groups AT ≃ iT,L(AT ) =
iN,L(AN) ≃ AN , which is an isomorphism of quadratic forms AT (−1) ≃ AN [Nik80,
Proposition 1.6.1].

Lemma 2.2.3. [Nik80, Proposition 1.6.1] Let L be a unimodular lattice, let N ↪→ L
be a primitive sublattice and write T := N⊥ ⊂ L. Suppose g ∈ O(N) and h ∈ O(T ).
Then g and h induce the same isometry on iN,L(AN) = iT,L(AT ) if and only if there
is an isometry f : L ≃ L preserving N and T , that satisfies f |N = g and f |T = h.

A primitive embedding of a lattice N into a unimodular lattice L determines a
pair (T, ϕ) consisting of the orthogonal complement T = N⊥ ⊂ L, and an isometry
ϕ : AT ≃ AN(−1). An isomorphism of two such pairs (T1, ϕ1) and (T2, ϕ2) is an
isometry g : T1 ≃ T2 such that ϕ1 = ϕ2 ◦ g. Two primitive embeddings i1 : N ↪→ L,
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i2 : N ↪→ L are in the same O(L)-orbit if there exists an isometry f : L ≃ L such
that i1 = f ◦ i2. In this case, the pairs (T1, ϕ1), (T2, ϕ2) determined by i1 and i2,
respectively, are isomorphic. Indeed, the isomorphism (T1, ϕ1) ≃ (T2, ϕ2) is given by
f |T1 : T1 ≃ T2. Conversely, if two primitive embeddings determine isomorphic pairs,
then the embeddings are in the same O(L)-orbit. This is an important part of the
following result by Nikulin.

Proposition 2.2.4. [Nik80, Proposition 1.6.1] Let N be a lattice with signature
(n1, n2), and let L be a unimodular lattice of signature (l1, l2). There is a bijection
between O(L)-orbits of primitive embeddings N ↪→ L and isomorphism classes of pairs
(T, ϕ), where T is a lattice with sign(T ) = (l1 − n1, l2 − n2) and ϕ : AT ≃ AN(−1) is
an isometry.

Proposition 2.2.5. Let N be a lattice of signature (n1, n2), and let L be a unimodular
lattice of signature (l1, l2) such that l1 ≥ n1 and l2 ≥ n2. The number of O(L)-orbits
of primitive embeddings N ↪→ L is equal to∑

T

|O(AT )/O(T )|,

where the sum runs over all lattices T of signature (l1−n1, l2−n2) which satisfy AT ≃
AN(−1). Moreover, for a fixed lattice T , the order of the quotient |O(AT )/O(T )| is
equal to the number of O(L)-orbits of primitive embeddings N ↪→ L with orthogonal
complement N⊥ ≃ T .

Proof. For a fixed lattice T of signature (l1−n1, l2−n2) which satisfies AT ≃ AN(−1),
the set of isometries ϕ : AT ≃ AN(−1), is a torsor under O(AT ). Two such isometries
ϕ : AT ≃ AN(−1) and ψ : AT ≃ AN(−1) give rise to isomorphic pairs (T, ϕ), (T, ψ)
if and only if there is an isometry f : T ≃ T such that ϕ = ψ ◦ f , that is, if and
only if ϕ and ψ are in the same O(T )-orbit. Therefore, the number of isomorphism
classes of pairs (T, ϕ) equals |O(AT )/O(T )|, and the result follows from Proposition
2.2.4.

We now use Proposition 2.2.5 to compute the number of primitive embeddings in
the case rk(L) = rk(N) + 1. In this case, the orthogonal complement of N in L has
rank 1.

Definition 2.2.6. We denote by ⟨2n⟩ the lattice of rank 1 generated by an element
x satisfying x2 = 2n.

Corollary 2.2.7. Let N be a lattice of signature (n1, n2) whose discriminant group
AN is cyclic of order 2n with n > 1. Suppose L is a unimodular lattice with
sign(L) = (n1, n2 + 1). Then the number of O(L)-orbits of primitive embeddings of
N in L is 2ω(n)−1, where ω(n) is the number of distinct primes dividing n. If n = 1,
the number of O(L)-orbits of primitive embeddings is 1.

Proof. The negative-definite lattice T of rank 1 with discriminant group AT ≃
Z/(2n)Z is unique; it is the lattice ⟨−2n⟩.

Suppose first that n > 1. Then it is not hard to see that O(A⟨−2n⟩) ≃ 2ω(n), see
for example [Ste04, Corollary 2.2(i)]. Moreover, we clearly have O(⟨−2n⟩) = {± id} ,
which acts non-trivially on O(A⟨−2n⟩), so that |O(AT )/O(T )| = 2ω(n)−1, as required.

On the other hand, if n = 1, then the group O(A⟨−2n⟩) is trivial, so that the
number of O(L)-orbits of primitive embeddings is 1 by Proposition 2.2.5.
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A particularly important example of a lattice is the so-called hyperbolic plane,
which is the lattice U of rank 2 whose quadratic form is given by the matrix(

0 1

1 0

)
.

The hyperbolic plane is important because it is the unique unimodular (even,
non-degenerate) lattice of the lowest possible rank. This makes it very versatile, as
the following two lemmas show.

Lemma 2.2.8. [Nik80, Proposition 1.14.1] Let L be a unimodular lattice, and let
N ↪→ L be a primitive embedding. If there exists an embedding U ⊂ N⊥, then for
any g ∈ O(N), there exists an isometry f : L ≃ L such that f |N = g.

Proof. Write T = N⊥. By assumption, there is an orthogonal decomposition T =
U⊕T ′ for some lattice T ′. We have AT ≃ AU⊕AT ′ ≃ AT ′ , since U is unimodular. In
particular, rk(T ) = rk(T ′)+ 2 ≥ ℓ(AT ′)+ 2. Combined with [Nik80, Theorem 1.14.2],
this implies that the homomorphism O(T )→ O(AT ) is surjective. Choose h ∈ O(T )
such that h induces the same isomorphism on iT,L(AT ) as g, then by Lemma 2.2.3
there exists an isometry L ≃ L which restricts to g on N .

Lemma 2.2.9. [GHS09, Proposition 3.3] Let L = U ⊕U ⊕L′ be a lattice containing
two copies of the hyperbolic plane. Let u, v ∈ L be two primitive vectors such that

i) u
div(u)

= v
div(v)

∈ AL,

ii) u2 = v2.

Then there is an isometry f : L ≃ L such that f = idAL
and such that f(u) = v.

There is an orthogonal direct sum decomposition

AL =
⊕
p

A
(p)
L (2.2.2)

where A(p)
L consists of elements annihilated by a power of a prime p. The group A(p)

L

coincides with the discriminant group of the p-adic lattice L⊗ Zp.

Definition 2.2.10. Two lattices L,L′ are said to be in the same genus if they have
the same signature and have isometric discriminant groups.

Lemma 2.2.11. [Nik80, Corollary 1.13.4] Let L and L′ be two lattices. Then L and
L′ are in the same genus if and only L⊕ U ≃ L′ ⊕ U .

Lemma 2.2.12. Let L, L′ and T be lattices, and let H be a unimodular lattice.
Suppose there are two primitive embeddings i1 : T ↪→ H, i2 : T ↪→ H such that
i1(T )

⊥ ≃ L and i2(T )⊥ ≃ L′. Then L and L′ are in the same genus.

Proof. It is easy to see that the signatures of L and L′ are equal. Moreover, we have
AL ≃ AT (−1) ≃ AL′ by Remark 2.2.2, hence L and L′ are in the same genus.
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An overlattice of a lattice T is a lattice L together with an embedding of lattices
T ↪→ L of finite index. We say that two overlattices T ↪→ L and T ′ ↪→ L′ are
isomorphic if there exists a commutative diagram

T //

f
��

L

f̃
��

T ′ // L′

where f and f̃ are isometries.
For any overlattice T ↪→ L, there is a natural embedding of the cokernel HL :=

L/T in the discriminant group of T via the chain of embeddings

T ↪→ L ↪→ L∗ ↪→ T ∗.

The subgroup HL is isotropic for the quadratic form on AT , and conversely any
isotropic subgroup of AT gives rise to an overlattice of T . The following result gives
a complete classification of all overlattices of a given lattice T , up to isomorphism.

Lemma 2.2.13 ([Nik80, Proposition 1.4.2]). Let T be a lattice, and let T ↪→ L and
T ↪→ M be two overlattices of T . An isometry f ∈ O(T ) fits into a commutative
diagram of the form

T //

f

��

L

≃
��

T //M

(2.2.3)

if and only if the induced isometry f ∈ O(AT ) satisfies f(HL) = HM . Moreover, the
assignment (T ↪→ L) 7→ HL is a bijection between the set of isomorphism classes of
overlattices of T and the set of O(T )-orbits of isotropic subgroups of AT .

Note that (2.2.3) can be completed as follows:

T //

f

��

L

≃
��

// // HL
� � //

f |HL
��

AT

f
��

T //M // // HM
� � // AT

It will occasionally be useful to deal with quadratic spaces over Q. These are
much easier to work with, as explained by the following two results, both of which
fail for lattices over Z. We refer to [Ser73, §IV.1.5] for details on these results.

To avoid confusion with their integral counterparts, we refer to isometries of
rational quadratic spaces as rational isometries.

Theorem 2.2.14 (Witt’s Extension Theorem). Let V and W be quadratic spaces
over Q. If V ′ ⊂ V and W ′ ⊂ W are subspaces and f : V ′ ≃ W ′ is a rational isometry,
then there is a rational isometry f̃ : V ≃ W such that f̃ |V ′ = f .

Theorem 2.2.15 (Witt’s Cancellation Theorem). Let V1, V2 and V be quadratic
spaces over Q. If there is a rational isometry V1 ⊕ V ≃ V2 ⊕ V , then there is a
rational isometry V1 ≃ V2.

An immediate consequence of the Witt Cancellation Theorem is the following
well-known result, see for example [HT17, Proof of Proposition 16]. We say that a
lattice L represents zero if there is a non-zero element v ∈ L such that v2 = 0.
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Lemma 2.2.16. Let L and L′ be two lattices in the same genus. Then L represents
zero if and only if L′ does.

Proof. By Lemma 2.2.11, there is an isometry L ⊕ U ≃ L′ ⊕ U . This induces a
rational isometry LQ ⊕ UQ ≃ L′

Q ⊕ UQ. By the Witt Cancellation Theorem, this
means that there is a rational isometry f : LQ ≃ L′

Q. Now suppose L represents
zero, and let v ∈ L be a non-zero element with v2 = 0. Then f(v) ∈ L′

Q satisfies
f(v)2 = 0, and f(v) ̸= 0. Let n ∈ Z be an integer such that nf(v) ∈ L′ is an integral
vector. Then we have (nf(v))2 = n2f(v)2 = 0, so L′ represents zero. The result
follows from the symmetry of the situation.

2.2.2 Hyperkähler Manifolds

In this section, we study the lattices that arise from hyperkähler manifolds as
cohomology groups. Let us first recall the definition of a hyperkähler manifold.
We work over the complex numbers, unless explicitly stated otherwise. Our main
references for hyperkähler manifolds are [Huy03; Huy99].

Definition 2.2.17. A hyperkähler manifold is a simply connected, compact Kähler
manifold X which admits an everywhere non-degenerate holomorphic 2-form σ that
generates H0(X,Ω2

X).

Note that the existence of a non-degenerate 2-form implies that X has even
dimension 2n. Moreover, σ induces an everywhere non-vanishing section of the
canonical line bundle ωX =

∧2nΩX , so that ωX ≃ OX . The fact that X is simply
connected implies that H1(X,Z) = 0, and therefore, by Hodge theory, we have
H1(X,OX) = 0.

Definition 2.2.18. A K3 surface is a compact, smooth surface X with ωX ≃ OX
and H1(X,OX) = 0.

It follows immediately from the discussion above that every hyperkähler manifold
of dimension 2 is a K3 surface. The converse also holds, because every K3 surface is
simply connected [Huy16, Corollary 1.1.4] and Kähler [Siu83; Tod80].

Lattices of K3 Surfaces

We first treat the 2-dimensional hyperkähler manifolds, that is, K3 surfaces. Our
basic reference for K3 surfaces is [Huy16] and our basic references for Hodge theory
are [Voi07a; Voi07b].

The Hodge diamond of a K3 surface S looks as follows:

1

0 0

1 20 1

0 0

1

The singular cohomology group H2(S,Z) is a free abelian group of rank 22. Moreover,
the cup-product is an integral symmetric bilinear form

H2(S,Z)×H2(S,Z)→ H4(S,Z) ≃ Z.
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This bilinear form is even and non-degenerate, hence it turns H2(S,Z) into a lattice.
As an abstract lattice, H2(S,Z) is isometric to the K3 lattice

ΛK3 = U⊕3 ⊕ E8(−1)⊕2.

Here U is the hyperbolic plane and E8 is the unique even, unimodular, positive-
definite lattice of rank 8 (see [BPV12, §VIII.1] for details). It is important to note
that H2(S,Z) is a unimodular lattice.

The cohomology group H2(S,Z) carries a natural Hodge structure of weight 2
given by

H2(S,C) ≃ H2(S,OS)⊕H1(S,ΩS)⊕H0(S, ωS).

Since ωS ≃ OS, we have H2,0(S) ≃ H0(S, ωS) = C · σ, where σ is a non-vanishing
section of ωS.

Definition 2.2.19. We say that a Hodge structure of weight 2 on a free, finitely
generated abelian group H is of K3-type if H2,0 ≃ C, and Hp,q = 0 whenever p < 0
or q < 0.

The Néron–Severi lattice NS(S) is a sublattice of H2(S,Z), defined as the image of
the first Chern class c1 : Pic(S) ↪→ H2(S,Z). Equivalently, the Néron–Severi lattice
is the sublattice of H2(S,Z) consisting of all integral (1, 1)-classes, i.e. NS(S) =
H1,1(S) ∩ H2(S,Z). We have Pic(S) ≃ NS(S). The rank ρ of the Néron–Severi
lattice is called the Picard rank of S.

The orthogonal complement T (S) = NS(S)⊥ ⊆ H2(S,Z) is called the tran-
scendental lattice of S. Since NS(S) is orthogonal to σ, it follows that we have
H2,0(S) ⊂ T (S)⊗ C. In fact, T (S) is the smallest primitive sublattice of H2(S,Z)
such that T (S)⊗ C contains H2,0(S), and

NS(S) = H2,0(S)⊥ ∩H2(S,Z), (2.2.4)

see [Huy16, Remark 15.1.2]. The transcendental lattice inherits a Hodge structure of
K3-type from H2(S,Z) whose (2, 0)-part is generated by σ.

The full integral cohomology group H∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z),
admits a lattice structure given by

(r, l, s) · (r′, l′, s′) = l · l′ − rs′ − sr′. (2.2.5)

This quadratic form is called the Mukai pairing. With this lattice structure, H∗(S,Z)
is isometric to the extended K3 lattice

Λ̃K3 := U⊕3 ⊕ E⊕2
8 ≃ ΛK3 ⊕ U. (2.2.6)

It also inherits a Hodge structure of K3-type whose (2, 0)-part is generated by the
non-vanishing 2-form σ. We call the resulting Hodge structure the Mukai lattice and
denote it by H̃(S,Z). More precisely, the Hodge structure of H̃(S,Z) is given by:

H̃0,2 = H0,2(S)

H̃1,1 = H0(S,C)⊕H1,1(S)⊕H4(S,C)
H̃2,0 = H2,0(S).
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We define the extended Néron–Severi lattice of S as the (1, 1)-part of H̃(S,Z):

N(S) := H̃1,1(S,Z) = H0(S,Z)⊕ NS(S)⊕H4(S,Z).

As a lattice, we have N(S) ≃ NS(S)⊕ U. The extended Néron–Severi lattice is also
sometimes called the numerical Grothendieck group of S.

Definition 2.2.20. A lattice with a Hodge structure is called a Hodge lattice. Given
two Hodge lattices H1 and H2, a group homomorphism f : H1 → H2 is called a
Hodge metric morphism if it has the following two properties:

i) It is a metric morphism, i.e. h2 = f(h)2 for all h ∈ H1,

ii) It is a morphism of Hodge structures.

If f is additionally an isomorphism of groups, then we call f a Hodge isometry.

Example 2.2.21. Given a K3 surface S, the groups T (S), H2(S,Z) and H̃(S,Z)
are all Hodge lattices. The two inclusions

T (S) ↪→ H2(S,Z) ↪→ H̃(S,Z)

are both Hodge metric morphisms.

Definition 2.2.22. For a Hodge lattice H of K3-type, the smallest primitive sublat-
tice T ⊂ H for which T ⊗ C contains H2,0 is called the transcendental sublattice of
H.

For a K3 surface X, the transcendental sublattice of H2(X,Z) is by definition
the transcendental lattice T (X).

A marked K3 surface is a pair (S, ϕ), consisting of a K3 surface S and an isometry
ϕ : H2(S,Z) ≃ ΛK3, called a marking of S. The point [ϕC(σ)] ∈ P(ΛK3 ⊗C) is called
the period of (S, ϕ). Since σ2 = 0 and σ · σ > 0, any period of S lies in the open
subset

D :=
{
ℓ ∈ P(ΛK3 ⊗ C) | ℓ2 = 0 and ℓ · ℓ > 0

}
.

The following two results are among the most fundamental results about K3 surfaces.

Theorem 2.2.23 (Surjectivity of the Period Map). [Tod80] Any point in D is the
period of a marked K3 surface, i.e. for any ℓ ∈ D, there is a K3 surface S with an
isometry H2(S,Z)→ ΛK3 such that H2(S,C)→ ΛK3 ⊗ C maps H2,0(S) to ℓ.

Theorem 2.2.24 (Torelli Theorem for K3 Surfaces). [PS71] (see [Huy16, Theorem
5.5.3]) Let X and Y be K3 surfaces. Then X and Y are isomorphic if and only
if there exists a Hodge isometry H2(X,Z) ≃ H2(Y,Z). Moreover, for any Hodge
isometry ψ : H2(X,Z) ≃ H2(Y,Z) which preserves the ample cone, there is a unique
isomorphism f : X ≃ Y such that ψ = f∗.

Note that the first part of Theorem 2.2.24 can be rephrased as follows: Two K3
surfaces X and Y are isomorphic if and only if there exist markings ϕ : H2(X,Z) ≃
ΛK3, ψ : H2(Y,Z) ≃ ΛK3 such that

[ϕC(σX)] = [ψC(σY )],

where σX and σY are non-vanishing 2-forms on X and Y , respectively. Indeed, in
this case, the isometry ψ−1 ◦ ϕ : H2(X,Z) ≃ H2(Y,Z) is a Hodge isometry.
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Lattices of hyperkähler manifolds

Let X be a hyperkähler manifold of dimension 2n > 2. Similarly to K3 surfaces, the
second cohomology group H2(X,Z) carries a Hodge structure of K3-type. Indeed,
the (2, 0)-part is H2,0(X) ≃ H0(X,Ω2

X), which is 1-dimensional by assumption.
Recall that H2(X,Z) is a Hodge lattice when X is a K3 surface, with the bilinear

form given by the cup-product. The cup-product in the higher-dimensional case is
not an integral bilinear form, meaning that it does not take values in Z, and therefore
it looks like H2(X,Z) does not carry the structure of a Hodge lattice. However, one
can define a quadratic form on H2(X,Z), called the Beauville–Bogomolov–Fujiki
(BBF ) form q [Bea83; Bog96; Fuj87]. The BBF form has the property that, for all
x ∈ H2(X,Z), we have ∫

X

x2n = λ · q(x)n,

where λ ∈ Q is some fixed positive number that only depends on X.
The BBF form is non-degenerate, hence H2(X,Z) is a Hodge lattice, although it

is not known whether H2(X,Z) is always even. It is important to note that, unlike
in the case for K3 surfaces, H2(X,Z) is generally not unimodular if dim(X) > 2
[Rap06].

Similar to the case of K3 surfaces, the Néron–Severi lattice NS(X) of X is the
integral (1, 1)-part of H2(X,Z), which is the image of c1 : Pic(X)→ H2(X,Z). The
orthogonal complement T (X) := NS(X)⊥ is called the transcendental lattice, and it
inherits a Hodge structure of K3-type from H2(X,Z).

We now restrict our attention to hyperkähler manifolds of K3[n]-type, that is,
hyperkähler manifolds that are deformation equivalent to the Hilbert scheme of n
points on a K3 surface. We assume n ≥ 2. Examples of hyperkähler manifolds of
K3[n]-type are smooth moduli spaces of (twisted) sheaves on a K3 surface, which are
discussed in Section 2.3.1 below. For a hyperkähler manifold X of K3[n]-type, there
exists an isometry of abstract lattices

H2(X,Z) ≃ U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2n− 2⟩.

Note that H2(X,Z) is not unimodular in this case, as the discriminant group is
isomorphic to Z/(2n− 2)Z.

The Hodge lattice H2(X,Z) is a birational invariant of X. In other words, if
X and Y are birational hyperkähler manifolds of K3[n]-type, then there is a Hodge
isometry H2(X,Z) ≃ H2(Y,Z) [OGr97, Proposition I.6.2]. It turns out that the
converse does not hold, i.e. there exist non-birational hyperkähler manifolds of
K3[n]-type whose second cohomology groups are Hodge isometric [Yos01]. Despite
this, Markman proved a wonderful theorem which is now known as the Birational
Torelli Theorem for hyperkähler manifolds of K3[n]-type.

For any hyperkähler manifold X of K3[n]-type, there is a natural O(Λ̃K3)-orbit
iX of primitive embeddings H2(X,Z) ↪→ Λ̃K3, where Λ̃K3 is the extended K3 lattice
(2.2.6).

Theorem 2.2.25 (Birational Torelli Theorem). [Mar11] Suppose X and Y are
hyperkähler manifolds of K3[n]-type. The following are equivalent:

i) X and Y are birational.
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ii) There is a Hodge isometry H2(X,Z) ≃ H2(Y,Z) making the following diagram
commute:

H2(X,Z) ≃ //

��

H2(Y,Z)

��

Λ̃K3
≃ // Λ̃K3

(2.2.7)

where the vertical arrows are embeddings contained in the orbits iX and iY ,
respectively, and the isometry Λ̃K3 ≃ Λ̃K3 is arbitrary.

Note that, in general, there exist multiple O(Λ̃K3)-orbits of primitive embeddings
H2(X,Z) ↪→ Λ̃K3.

Lemma 2.2.26. Let X be a hyperkähler manifold of K3[n]-type, where n > 2. The
number of O(Λ̃K3)-orbits of primitive embeddings H2(X,Z) ↪→ Λ̃K3 is 2ω(n−1)−1,
where ω(n − 1) is the number of distinct primes dividing n − 1. If n = 2, there is
exactly 1 orbit.

Proof. This is a direct application of Corollary 2.2.7.

A consequence of Theorem 2.2.25 and Lemma 2.2.26 is the following.

Corollary 2.2.27. [Mar11] Let n ≥ 2 such that n− 1 is a power of a prime. If X
and Y are hyperkähler manifolds of K3[n]-type, then X and Y are birational if and
only if there is a Hodge isometry H2(X,Z) ≃ H2(Y,Z).

Proof. By Lemma 2.2.26, there is only one O(Λ̃K3)-orbit of primitive embeddings
H2(X,Z) ↪→ Λ̃K3. Therefore, for any Hodge isometry H2(X,Z) ≃ H2(Y,Z) there
exists an isometry of Λ̃K3 making (2.2.7) commute. In this case, X and Y are
birational by the Birational Torelli Theorem 2.2.25. Conversely, if X and Y are
birational, it follows from the Birational Torelli Theorem 2.2.25 that there is a Hodge
isometry H2(X,Z) ≃ H2(Y,Z).

2.2.3 Derived Categories

We recall some basic facts about derived categories of smooth, projective varieties,
specifically K3 surfaces. We refer to [Huy06] for details. For a variety X over a field
k, we denote by

Db(X) := Db(Coh(X))

the bounded derived category of coherent sheaves on X. Two varieties X and Y
are called derived equivalent if there is a linear, exact equivalence Db(X) ≃ Db(Y ).
In this case, we say that X and Y are Fourier–Mukai partners. It is a well-known
fact that for any linear, exact equivalence F : Db(X) ≃ Db(Y ), there exists an object
F• ∈ Db(X × Y ) such that F is isomorphic to the functor

ΦF•
: Db(X) ≃ Db(Y )

E 7→ p∗ (q
∗(E)⊗F•) .

Here, q : X × Y → X and p : X × Y → Y are the natural projections. We call
functors of this form Fourier–Mukai transforms, and F• is called the kernel of ΦF• .
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Now, we let X and Y be smooth, projective varieties over C. For an object
E• ∈ Db(X), we define its Mukai vector to be

v(E•) := ch(E•)
√

tdX ∈ H∗(X,Q).

Here, tdX denotes the Todd class of X. Recall that the full cohomology group
H∗(X,Q) has a ring structure. The class

√
tdX denotes a cohomology class whose

square equals tdX . For example, for a K3 surface S, the Todd class of S is tdS =
(1, 0, 2) ∈ N(S), hence √

tdS = (1, 0, 1) ∈ N(S).

Therefore, the Mukai vector of an object E• ∈ Coh(S) is

v(E•) = (rk(E•), c1(E•), rk(E•) +
1

2
c1(E•)2 − c2(E•)).

Given a cohomology class ζ ∈ H∗(X × Y,Q), the cohomological Fourier–Mukai
transform with kernel ζ is the group homomorphism

Φζ
H : H∗(X,Q) → H∗(Y,Q)

x 7→ p∗(q
∗(x) ∧ ζ).

We sometimes denote Φζ
H by φζ . By the Grothendieck–Riemann–Roch Theorem, for

any object E• ∈ Db(X × Y ) and any x ∈ H∗(X,Q), we have

Φ
v(E•)
H (x) = v

(
ΦE•

(x)
)
.

Moreover, if ΦE• is an equivalence, then Φ
v(E•)
H is a group isomorphism.

If X is a K3 surface, and the Fourier–Mukai transform ΦE•
: Db(X) ≃ Db(Y ) is

an equivalence, then Y is a K3 surface and Φ
v(E•)
H restricts to a Hodge isometry

H̃(X,Z) ≃ H̃(Y,Z),

where H̃(X,Z) denotes the Mukai lattice as in Section 2.2.2 [Muk87; Orl03]. There-
fore, it also restricts to a Hodge isometry between the transcendental lattices
T (X) ≃ T (Y ). This observation is part of the Derived Torelli Theorem, due
to Mukai and Orlov, see Section 2.3.2.

Now we let X and Y be arbitrary smooth, projective varieties. Let F• and
G• be objects of Db(X). Then for any equivalence F : Db(X) ≃ Db(Y ), we have
Exti(F•,G•) = Exti(F (F•), F (G•)), hence

χ(E•,G•) :=
∑
i

dim
(
Exti(F•,G•)

)
= χ((F (E•), F (G•)). (2.2.8)

If X is a K3 surface, then the Hirzebruch–Riemann–Roch Theorem implies that
we have

χ(F•, E•) = −v(F•) · v(E•).
With this in mind, (2.2.8) implies that cohomological Fourier–Mukai equivalences
between K3 surfaces restrict to isometries on the image of the Mukai vector. However,
by the Derived Torelli Theorem, they even preserve the quadratic form on all of
H̃(X,Q). It turns out that cohomological Fourier–Mukai equivalences always preserve
a certain quadratic form on H∗(X,Q). In other words, K3 surfaces are not special
with this property. Căldăraru was the first to realise this fact [Căl03].
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Definition 2.2.28. Let X be any complex, smooth, projective variety. For x ∈
H∗(X,C), we denote x∨ :=

∑
i

√
−1i[x]i, where [x]i is the component of x contained

in H i(X,C). We define the Mukai pairing on H∗(X,C) by

(x, y) :=

∫
X

exp(c1(X)/2)x∨ ∧ y.

Up to a sign, it coincides with our original definition of the Mukai pairing for
the Mukai lattice of a K3 surface in (2.2.5). Indeed, for a K3 surface X, we have
c1(X) = 0, so that for (r, l, s), (r′, l′, s′) ∈ H∗(X,Z), we have

((r, l, s), (r′, l′, s′)) =

∫
X

(r, l, s)∨ ∧ (r′, l′, s′) = − (l · l′ − rs′ − r′s) ,

which, up to a sign, equals (2.2.5).

Proposition 2.2.29. [Căl03] (see also [Huy06, Proposition 5.44]) Let X and Y
be complex, smooth, projective varieties. For any Fourier–Mukai equivalence ΦE•

:
Db(X) ≃ Db(Y ), the corresponding cohomological Fourier–Mukai transform ΦE•

H :
H∗(X,Q) ≃ H∗(Y,Q) is an isometry with respect to the Mukai pairing.

Proposition 2.2.29 is an immediate consequence of the following, more general
statement.

Theorem 2.2.30. [Căl03] Let X and Y be complex, smooth, projective varieties. Let
Φ : Db(X) → Db(Y ) be a functor which admits a left-adjoint Ψ : Db(Y ) → Db(X).
Then, for all x ∈ H∗(X,Q) and y ∈ H∗(Y,Q), we have

(Ψ(y), x) = (y,Φ(x)).

Now we let X and Y be complex, smooth, projective varieties, and let dim(Y ) = n.
If Φ = ΦE•

: Db(X)→ Db(Y ) is a Fourier–Mukai transform, then its left-adjoint is
the Fourier–Mukai transform Ψ = ΦE•

L : Db(Y )→ Db(X) with kernel

E•L := (E•)∨ ⊗ p∗ωY [n].

In this case, Theorem 2.2.30 follows from the computation in the proof of [Huy06,
Proposition 5.44]. In that result, Φ is assumed to be an equivalence, but the
computation does not rely on this assumption.

2.2.4 Brauer Groups and Twisted K3 Surfaces

We refer to [CS21] for basic facts on Brauer groups.

Definition 2.2.31. An Azumaya algebra A on a scheme X is a sheaf of OX-algebras,
which is étale locally isomorphic to the sheaf of matrix algebras Mn×n(OX).

We say that two Azumaya algebras A, B are Br-equivalent if there exist locally
free sheaves E , F on X such that

A⊗ End(E) ≃ B ⊗ End(F). (2.2.9)
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We say that A and B are SBr-equivalent if there exist locally free sheaves E , F which,
in addition to (2.2.9), satisfy

det(E) ≃ det(F) ≃ OX .

The set of isomorphism classes of Azumaya algebras carries a natural group
structure given by the tensor product, and both Br-equivalence and SBr-equivalence
are compatible with this group structure [Gro68a].

Definition 2.2.32. The Brauer group Br(X) of X is the group of Br-equivalence
classes of Azumaya algebras of X. The special Brauer group SBr(X) is the group of
SBr-equivalence classes of Azumaya algebras of X.

Now, let X be a complex smooth projective variety.

Definition 2.2.33. The cohomological Brauer Group of X is the group H2
ét(X,Gm),

or, equivalently, H2(X,O×
X)tors.

The fact that H2
ét(X,Gm) and H2(X,O×

X)tors are isomorphic is a consequence of
the fact that H2(X,Gm) is torsion, see [Huy16, Remark 18.1.4(ii)], combined with
the Kummer sequence, see [Huy16, Remark 11.5.13].

It is a result by De Jong and Gabber that the Brauer group is naturally isomorphic
to the cohomological Brauer group, see [CS21, §4.2], and we will frequently switch
between the two viewpoints.

Under the additional assumption that H3(X,Z) = 0, we now derive a third
version of the Brauer group from the exponential sequence

0→ Z→ OX
exp→ O×

X → 0.

The corresponding long exact sequence includes the following:

H1(X,O×
X)→ H2(X,Z)→ H2(X,OX)→ H2(X,O×

X)→ H3(X,Z).

Since H1(X,O×
X) ≃ Pic(X), and the map H1(X,O×

X)→ H2(X,Z) is simply the first
Chern class, we may rewrite the long exact sequence to:

0→ NS(X)→ H2(X,Z)→ H2(X,OX)→ H2(X,O×
X)→ H3(X,Z).

Assuming H3(X,Z) = 0, we obtain the short exact sequence

0→ H2(X,Z)
NS(X)

→ H2(X,OX)→ H2(X,O×
X)→ 0.

The long exact sequence obtained by taking the tensor product with Q/Z includes
the following:

H2(X,OX)tors → Br(X)→ H2(X,Z)
NS(X)

⊗Q/Z→ H2(X,OX)⊗Q/Z. (2.2.10)

Since H2(X,OX) ≃ C, the first and last terms of (2.2.10) vanish, and therefore we
obtain an isomorphism

Br(X) ≃ H2(X,Z)
NS(X)

⊗Q/Z. (2.2.11)
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For this reason, as in [HM23], we write

T ′(X) :=
H2(X,Z)
NS(X)

. (2.2.12)

There is a well-defined injective group homomorphism T ′(X)→ T (X)∗ given by

[ξ] 7→ (ξ · −)|T (X). (2.2.13)

Since T (X) ⊂ H2(X,Z) is a primitive sublattice, the restriction map H2(X,Z)∗ →
T (X)∗ is surjective. This means that if H2(X,Z) is unimodular, i.e. if H2(X,Z) ≃
H2(X,Z)∗, then for any element f ∈ T (X)∗, there exists a vector ξ ∈ H2(X,Z)
such that f(t) = ξ · t for all t ∈ T (X). In this case, the morphism (2.2.13) is
an isomorphism. Recall that H2(X,Z) is unimodular if X is a K3 surface, hence
the above discussion proves the following well-known lemma, see [Huy16, §18] and
[Gee05].

Lemma 2.2.34. Let X be a K3 surface. Then there is an isomorphism

Br(X) ≃ T (X)∗ ⊗Q/Z ≃ Hom(T (X),Q/Z).

In particular, Br(X) is an infinite torsion group and for all integers t ≥ 1 we have

Br(X)t−tors ≃ Hom(T (X),Z/tZ) ≃ (Z/tZ)22−ρ, (2.2.14)

where ρ is the Picard number of X.

To summarise, for a K3 surface X, there are natural isomorphisms

Br(X) ≃ H2
ét(X,Gm) ≃ H2(X,O×

X)tors ≃ T ′(X)⊗Q/Z ≃ Hom(T (X),Q/Z),
(2.2.15)

and we refer to each of these groups as the Brauer group of X.
On the other hand, if X is a higher-dimensional hyperkähler manifold of any of

the currently known deformation types, then H2(X,Z) has a non-trivial discriminant
[Rap06]. Thus, for a hyperkähler manifold, we generally have a strict inclusion
T ′(X) ⊂ T (X)∗.

Let us now consider the case when X is a higher-dimensional hyperkähler manifold
of K3[n]-type. We note that the additional assumption that H3(X,Z) = 0 is satisfied
in this situation. This follows from [Göt02, Equation (2.1)] and [Mar07, Theorem 1].
Now only the first four groups that appear in (2.2.15) are naturally isomorphic. We
refer to each of the first four groups as the Brauer group of X.

Note that for any scheme X, there is a natural surjective group homomorphism
SBr(X)→ Br(X). It is a result by Grothendieck [Gro68b] that there is a short exact
sequence

0→ NS(X)⊗Q/Z→ SBr(X)→ Br(X)→ 0, (2.2.16)

which, combined with (2.2.11), implies that we have

SBr(X) ≃ H2(X,Z)⊗Q/Z,

whenever X is a K3 surface or, more generally, a hyperkähler manifold of K3[n]-type.
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Definition 2.2.35. A twisted K3 surface is a pair (X,α) consisting of a K3 surface
X and a Brauer class α ∈ Br(X) (or a special Brauer class α ∈ SBr(X)).

For now, the notion of a twisted K3 surface may look rather pointless. However,
we will soon be able to view them as geometric objects by defining twisted coherent
sheaves, twisted derived categories, and twisted Hodge structures. In this sense,
the tools used to study K3 surfaces can also be used to study twisted K3 surfaces.
Moreover, twisted K3 surfaces naturally arise when one studies non-fine moduli
spaces of sheaves on K3 surfaces. They arise via obstruction classes, which will be
defined in Section 2.4.

Classically, the constructions of twisted sheaves, twisted derived categories, and
twisted Hodge structures rely on extra choices. For the former two, this choice is a
representative Čech cocycle for α or an Azumaya algebra representing α, and for the
latter, it is the choice of a B-field lift. The equivalence classes of the twisted categories
and the isomorphism classes of the twisted Hodge structures are independent of these
choices, but the equivalences and Hodge isometries are not canonically defined, as
we will see shortly. Recently, Huybrechts and Mattei reformulated these concepts
in terms of special Brauer groups [HM23]. In their language, the ambiguity of
choosing an equivalence or isometry disappears. We will now discuss both the
classical constructions and the modern replacements. Twisted Hodge structures are
discussed in the next section.

Let (X,α) be a twisted K3 surface. Choose an étale cover (Ui)i of X and a
Čech cocycle {αijk} representing α ∈ H2

ét(X,Gm). A coherent {αijk}-twisted sheaf
F is defined as an étale-local collection of coherent sheaves Fi ∈ Coh(Ui) with
identifications φij : Fi|Uij

≃ Fj|Uij
, satisfying the non-trivial cocycle condition

φij ◦ φjk ◦ φki = αijk · id .

We denote by Coh(X, {αijk}) the abelian category of {αijk}-twisted sheaves. Note
that this category depends on the choice of a cocycle representing α. However, for
a different choice

{
α′
ijk

}
, the resulting category Coh(X,

{
α′
ijk

}
) is non-canonically

equivalent to Coh(X, {αijk}) by [Căl00, Lemma 1.2.8]. Because of this, we usually
denote the category Coh(X, {αijk}) simply by Coh(X,α).

A different, but equivalent, way to define the category Coh(X,α) is via Azumaya
algebras. Let A be an Azumaya algebra representing a Brauer class α ∈ Br(X). We
denote by Coh(X,A) the abelian category of coherent right A-modules. Once again,
choosing a different representative A′ for α leads to a different category Coh(X,A′).
However, if we have A′ ≃ A ⊗ End(E) for some locally free sheaf E , there is an
equivalence

Coh(X,A) ≃ Coh(X,A′)

F 7→ F ⊗ E .
(2.2.17)

This implies that Coh(X,A) ≃ Coh(X,A′) for any two Br-equivalent A and A′,
since the Br-equivalence relation is generated by the relations of the form A ∼
A⊗End(E). The equivalence (2.2.17) depends on the choice of E , which is not unique
since End(E) ≃ End(E ⊗ L) for any line bundle L.

Now, consider the special Brauer class α ∈ SBr(X) represented by A. If A′ is
another Azumaya algebra with the property that A′ ≃ A⊗ End(E) for some locally
free sheaf E with det(E) ≃ OX , then the difference with the classical case is that the
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sheaf E is uniquely determined. Indeed, suppose E and E ′ are locally free sheaves
with det(E) ≃ det(E ′) ≃ OX and such that A ⊗ End(E) ≃ A ⊗ End(E ′). We claim
that there exists a line bundle L such that E ≃ E ′ ⊗ L. To see this, note that we
have an injective group homomorphism Br(X) ↪→ Br(k), where k = k(X) is the
function field of X. The group homomorphism is given by taking the stalk over
the generic fibre. Since Ak ⊗k End(E)k ≃ Ak ⊗k End(E ′)k, we have an isomorphism
End(E)k ≃ End(E ′)k by [CS21, Theorem 1.2.4]. We can lift this to an isomorphism
End(E) ≃ End(E ′) by the injectivity of the map Br(X) ↪→ Br(k). Therefore, there
exists a line bundle L such that E ≃ E ′ ⊗ L. Then

OX ≃ det(E ′) ≃ det(E ⊗ L) ≃ det(E)⊗ L⊗n,

where n = rk E . Therefore, L is a torsion element in Pic(X). Since X is a K3
surface, Pic(X) is torsion-free, hence L ≃ OX . This shows that E is unique up to
isomorphism. Therefore, for any two Azumaya algebras A, A′ representing the same
special Brauer class, there is a distinguished equivalence Coh(X,A) ≃ Coh(X,A′).
In the case A′ ≃ A ⊗ End(E) for some locally free sheaf E with det(E) ≃ OX , the
equivalence is given by (2.2.17).

For a Brauer class α ∈ Br(X), we now have the two associated categories
Coh(X, {αijk}) and Coh(X,A), where {αijk} is a cocycle representing α, and A is
an Azumaya algebra representing α. These two categories are equivalent by [Căl00,
Theorem 1.3.7]. The idea of the proof is that for any Azumaya algebra A representing
α, there exists a locally free {αijk}-twisted sheaf E such that A is isomorphic to the
sheaf End(E), and the equivalence is defined by

Coh (X, {αijk}) → Coh (X,A)
F 7→ F ⊗ E∨.

For a (special) Brauer class α on X, we denote by

Db(X,α) := Db(Coh(X,α))

the bounded derived category of the abelian category Coh(X,α). If A is an Azumaya
algebra representing α, we sometimes denote Db(X,α) by Db(X,A). We may view
elements of Db(X,α) as complexes of A-modules, or as complexes of α-twisted
sheaves.

For K3 surfaces X and Y , Brauer classes α, α′ ∈ Br(X), and a morphism
f : Y → X, the usual derived functors

RHom: Db(X,α)×Db(X,α′) → Db(X,α−1α′)

⊗L : Db(X,α)×Db(X,α′) → Db(X,αα′)

Lf ∗ : Db(X,α) → Db(Y, f ∗α)

Rf∗ : Db(Y, f ∗α) → Db(X,α)

are all well-defined, as was worked out in detail by Căldăraru [Căl00].
An important advantage of working with a special Brauer class is that there is a

well-defined Chern character:

chα : Db(X,α)→ H̃(X,Q).
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Explicitly, fix an Azumaya algebra A representing α ∈ SBr(X). For an A-module F ,
we define

chA(F) := ch(F)
√

ch(A)
−1
.

Proposition 2.2.36. [HM23, Definition-Proposition 2.8] Let A and A′ be two
Azumaya algebras representing the same special Brauer class α ∈ SBr(X). Then the
diagram

Db(X,A) ≃ //

chA
''

Db(X,A′)

chA′ww

H̃(X,Q)

(2.2.18)

commutes, where the horizontal map is the canonical equivalence induced by (2.2.17).

Proof. Suppose first that A′ ≃ A ⊗ End(E) for some locally free sheaf E with
det(E) ≃ OX . For any A-module F , we have

vA′ (F ⊗ E) = ch(F ⊗ E)
√

ch(A⊗ End(E))−1

= ch(F) ch(E)
√
ch(A)−1√

ch(E ⊗ E∨)−1

= ch(F) ch(E)
√
ch(A)−1√

ch(E)2−1

= ch(F)
√
ch(A)−1

= vA(F),

as required. The general case follows from the fact that the SBr-equivalence relation
is generated by the relations of the form A ∼ A⊗ End(E) for E a locally free sheaf
with trivial determinant.

Remark 2.2.37. Note that, if E is a locally free sheaf, it is not always the case that
ch(E ⊗ E∨) = ch(E)2. For this equation to hold, we need both the assumption that
X is a surface (or curve), and the assumption that det(E) ≃ OX . Indeed, writing
ch(E) = (rk(E), c1, c2), we have

ch(E ⊗ E∨) = (rk(E)2, 0, 2 rk(E)c2 − c21),

which only equals ch(E)2 if c1 = 0. In particular, if A and A′ represent the same
(non-special) Brauer class, the diagram (2.2.18) does not necessarily commute.

2.2.5 Twisted Hodge Structures

We now move on to twisted Hodge structures. Our main references for twisted
Hodge structures are [Huy05; HS05b; HS06]. The main goal of this section is to
study twisted Hodge structures of twisted K3 surfaces. However, in Section 4.3.1,
where we study derived equivalence for hyperkähler manifolds, it will be important
to study twisted Hodge structures on non-unimodular Hodge lattices of K3-type.
Therefore, we first study a slightly more general situation. Let H be a Hodge lattice
of K3-type, with transcendental sublattice T ⊂ H, see Definition 2.2.22. We denote
the integral (1, 1)-part of H by NS := T⊥ ⊂ H. We write H̃ := H ⊕ U(−1), and
denote N := T⊥ ⊂ H̃. We consider H̃ with the Hodge structure of K3-type that
it inherits from H, i.e. N = H̃1,1

Z . Similar to the Mukai lattice of a K3 surface,
if e, f ∈ U(−1) are the standard basis, we denote the element re + ℓ + sf ∈ H̃
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by (r, ℓ, s). In this set-up, H̃ carries a natural commutative ring structure with
multiplication, denoted ∧, given by:

(r, ℓ, s) ∧ (r′, ℓ′, s′) = (rr′, rℓ′ + r′ℓ, ℓ · ℓ′ + rs′ + r′s).

Note that the multiplicative identity element of H̃ is (1, 0, 0).

Remark 2.2.38. In the following, the reader should keep in mind that we will apply
the lemmas below in the setting where H = H2(X,Z) for some hyperkähler manifold
X of K3[n]-type. If X is a K3 surface, H̃ is the Mukai lattice of X. In this case,
NS is the Néron–Severi lattice of X, T is the transcendental lattice, and N is the
extended Néron–Severi lattice. This is the reason for our suggestive notation.

There is an isometry U ≃ U(−1), so that H̃ is Hodge isometric to H ⊕ U .
However, we write U(−1) to make it clear that (1, 0, 0) · (0, 0, 1) = −1. We do this
so that the bilinear form on H̃ exactly matches that of the Mukai lattice of a K3
surface.

The following lemma will be used in Section 4.3.1, specifically in the proof of
Proposition 4.3.7.

Lemma 2.2.39. An isometry f : H̃ ≃ H̃ with the property that f(x) = x for all
x ∈ U(−1) ⊂ H̃ is a ring isomorphism.

Proof. Since f is an isometry, it suffices to show that it is compatible with the
multiplication. Firstly, we have f(1, 0, 0) = (1, 0, 0) by assumption. Moreover, since
f preserves U(−1), it also preserves U(−1)⊥ = H. For (r, ℓ, s), (r′, ℓ′, s′) ∈ H̃, we
have

f ((r, ℓ, s) ∧ (r′, ℓ′, s′)) = f (rr′, rℓ′ + r′ℓ, ℓ · ℓ′ + rs′ + r′s)

= (rr′, f(rℓ′ + r′ℓ), ℓ · ℓ′ + rs′ + r′s)

= (rr′, rf(ℓ′) + r′f(ℓ), ℓ · ℓ′ + rs′ + r′s)

= f (r, ℓ, s)) ∧ f (r′, ℓ′, s′) .

Given a rational element B ∈ H ⊗Q, we define

exp(B) :=

(
1, B,

B2

2

)
and we obtain an isometry

exp(B) : H̃ ⊗Q −→ H̃ ⊗Q
(r, ℓ, s) 7−→ exp(B) ∧ (r, ℓ, s).

(2.2.19)

The following result follows from a straightforward computation.

Lemma 2.2.40. For B,B′ ∈ H ⊗ Q, we have exp(B) ◦ exp(B′) = exp(B + B′).
Moreover, if B ∈ H, then exp(B) restricts to an isometry exp(B) : H̃ ≃ H̃ with
inverse exp(−B).
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Definition 2.2.41. Given a rational element B ∈ H ⊗Q, we define the B-twisted
Hodge lattice H̃(B) to be the Hodge lattice of K3-type whose underlying lattice is
H̃ and whose (2, 0)-part is generated by

exp(B) ∧ σ = σ +B ∧ σ, (2.2.20)

where σ ∈ H̃C is a generator of H2,0. We denote the integral (1, 1)-part of H̃(B) by
N(B), and its orthogonal complement by T (B) := N(B)⊥.

We now list a series of technical lemmas to help us study the twisted Hodge
structure H̃(B). This theory was set up in [Huy05].

Lemma 2.2.42. The isometry (2.2.19) induces a Hodge isometry

exp(B) : H̃Q ≃ H̃(B)Q.

Proof. Since exp(B) is an isometry, it suffices to check that it preserves the Hodge
structures. This follows immediately from (2.2.20).

Lemma 2.2.43. Consider the subgroup exp(B) ∧ H̃ ⊂ H̃Q. The bilinear form on
H̃Q restricts to an integral bilinear form on it, and it inherits a Hodge structure of
K3-type from H̃Q. With this Hodge lattice structure, there is a Hodge isometry

exp(B) ∧ H̃ ≃ H̃(−B).

Proof. This follows immediately from the following commutative diagram of Hodge
metric morphisms:

H̃Q
exp(−B)

// H̃(−B)Q

exp(B) ∧ H̃ ≃ //
?�

OO

H̃(−B).
?�

OO

Lemma 2.2.44. Let B,B′ ∈ HQ. If B′ −B is integral, then exp(B′ −B) restricts
to a Hodge isometry H̃(B) ≃ H̃(B′).

Proof. Since B′−B is integral, the Hodge isometry exp(B′−B) : H̃Q ≃ H̃Q preserves
H̃. Moreover, since exp(B′ −B) ∧ exp(B) ∧ σ = exp(B′) ∧ σ, exp(B′ −B) restricts
to a Hodge isometry H̃(B) ≃ H̃(B′).

Lemma 2.2.45. Let r ∈ Z be the smallest positive integer for which rB ∈ H. Then
the element

(r, rB, 0) ∈ H̃(B)

is contained in N(B). Moreover, we have NS ⊂ N(B), and (0, 0, 1) ∈ N(B).

Proof. Let ℓ ∈ NS, and let σ ∈ HC be a generator of H2,0. We have the following
equalities:

(0, ℓ, 0) · (0, σ, B · σ) = 0

(r, rB, 0) · (0, σ, B · σ) = 0

(0, 0, 1) · (0, σ, B · σ) = 0.

The claim follows from (2.2.4).
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We now consider the map

(B · −) : T −→ Q/Z
x 7−→ B · x,

and we denote the kernel of this map by ker(B). In particular, ker(B) is a finite
index sublattice of T which inherits a Hodge structure of K3-type from it.

Proposition 2.2.46. The Hodge isometry exp(B) : H̃Q ≃ H̃(B)Q from (2.2.19)
restricts to a Hodge isometry

ker(B) ≃ T (B).

Proof. Since exp(B) is a Hodge isometry, we have exp(B)(ker(B)) ⊂ T (B)Q. More-
over, for any element x ∈ ker(B), the image exp(B)(x) = (0, x, B · x) is an integral
vector by our assumption on x. This shows that we have

exp(B)(ker(B)) ⊂ T (B).

Conversely, suppose x = (r, ℓ, s) ∈ T (B). Since (0, 0, 1) ∈ N(B) by Lemma 2.2.45,
we have r = 0 since x is orthogonal to N(B). Moreover, since x · (r, rB, 0) = 0, again
by Lemma 2.2.45, we have rB · ℓ = rs, hence x = (0, ℓ, B · ℓ) = exp(B) ∧ ℓ. This
shows that

T (B) ⊂ exp(B)(ker(B)),

hence exp(B) induces a Hodge isometry ker(B) ≃ T (B).

Since ker(B) is a finite-index sublattice of T , we immediately obtain the following
corollary.

Corollary 2.2.47. There are rational Hodge isometries

TQ ≃ T (B)Q, H̃Q ≃ H̃(B)Q

and rational isometries

NQ ≃ N(B)Q, NSQ ≃ NS(B)Q.

Proof. The existence of a rational Hodge isometry TQ ≃ T (B)Q follows immediately
from Proposition 2.2.46. The other isometries are obtained from it using the Witt
Extension Theorem 2.2.14 and the Witt Cancellation Theorem 2.2.15.

Twisted Hodge lattices for K3 surfaces

For the rest of this section, we specialise to K3 surfaces. Let S be a K3 surface with
Brauer class α ∈ Br(S).

Firstly, note that there is a natural surjection H2(S,Q)→ Br(S) ≃ T (S)∗⊗Q/Z.
For a Brauer class α ∈ Br(S), we call an element B ∈ H2(S,Q) whose image in
Br(S) is α a B-field lift of α. For a B-field lift B of α, we define the twisted Hodge
structure

H̃(S,B,Z)
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to be the Hodge structure of K3-type whose underlying group structure is H̃(S,Z),
and whose (2, 0)-part is generated by

exp(B) ∧ σ = σ + σ ∧B.

In the notation of Definition 2.2.41, this means that we have

H̃(S,B,Z) := H̃(S,Z)(B).

Similarly, we define
T (S,B) := T (S)(B),

and
N(S,B) := N(S)(B).

Note that, if B and B′ are two distinct B-field lifts of α, then B − B′ maps to
zero in

Br(S) ≃ H2(S,Z)
NS(S)

⊗Q/Z,

hence there is a rational vector v ∈ NS(S)Q such that B −B′ + v ∈ H2(S,Z) is an
integral vector. Now the map

exp(B −B′ + v) : H̃(S,B,Z) ≃ H̃(S,B′,Z)

is a Hodge isometry. Note that the Hodge isometry depends on the choice of v ∈
NS(S)Q, which is not unique. Therefore, the two twisted Hodge structures H̃(S,B,Z)
and H̃(S,B′,Z) are non-canonically Hodge isometric, and we usually denote them
by H̃(S, α,Z). We denote by N(S, α) the integral (1, 1)-part of H̃(S, α,Z), which
also depends on the choice of a B-field lift, up to a non-canonical isometry. The
twisted transcendental lattice T (S, α) is defined to be the orthogonal complement
T (S, α) = N(S, α)⊥ ⊂ H̃(S, α,Z).

For a special Brauer class α ∈ SBr(S) ≃ H2(S,Z)⊗Q/Z, we define the twisted
Hodge structure H̃(S, α,Z) completely analogously to the classical case; we choose a
B-field lift B ∈ H2(S,Q) of α, and we define H̃(S,B,Z) to be the Hodge lattice of K3-
type with underlying lattice H̃(S,Z) and whose (2, 0)-part is generated by σ+σ∧B.
If B and B′ are two B-field lifts of the same special Brauer class α ∈ SBr(S), then
B −B′ ∈ H2(S,Z) is an integral vector, hence there is a canonical Hodge isometry

exp(B −B′) : H̃(S,B′,Z) ≃ H̃(S,B,Z)

by Lemma 2.2.44. If α ∈ Br(S) is the Brauer class induced by α via (2.2.16) we have
a Hodge isometry

H̃(S, α,Z) ≃ H̃(S, α,Z).
In other words, the Hodge isometry class H̃(S, α,Z) only depends on the image of α
in Br(S).

2.3 Moduli Spaces

2.3.1 Moduli Spaces of Twisted Sheaves

We recall some facts about moduli spaces of (twisted) sheaves on K3 surfaces. For a
K3 surface S, a Brauer class α ∈ Br(S) and a Mukai vector v ∈ N(S, α), the moduli
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space M(v;α) that we define in Theorem 2.3.2 depends on the choice of an Azumaya
algebra, a cocycle, or a B-field. Different choices lead to different moduli spaces
that need not even be birational as we discuss in Chapter 4, see Remark 4.2.15 for
examples. For this reason, the moduli space M(v;α) is usually denoted by M(v;A)
or M(v;B) in the literature, where A is an Azumaya algebra representing α and B is
a B-field lift of α. Instead of this, we use the new theory of Huybrechts and Mattei
[HM23], and take a special Brauer class α ∈ SBr(S). In this case, the moduli space
M(v;α) does not depend on any more choices, which is partially due to Proposition
2.2.36.

For the general theory, we refer to [HL10] for the untwisted case, to [HS05a]
for the twisted case, and to [BM14a] for the generalisation to Bridgeland stability
conditions.

Definition 2.3.1. Let S be a K3 surface, α ∈ SBr(S). For E• ∈ Db(S, α), we call

vα(E•) := chα(E•)
√

tdS ∈ N(S, α) := H̃1,1(S, α,Z)

the Mukai vector of E•, where chα(E•) is the twisted Chern character of Proposition
2.2.36. A vector v = (r, ℓ, s) ∈ N(S, α) is called a positive Mukai vector if v has one
of the following properties:

i) r > 0,

ii) r = 0 and ℓ is effective,

iii) r = 0, ℓ = 0, s > 0.

The following theorem, based on the pioneering work of Mukai [Muk87], is well
known and due to many authors [GH96; Huy06; OGr97; BM14b; BM14a].

Theorem 2.3.2. Let S be a K3 surface and let α ∈ SBr(S) be a special Brauer class.
Suppose v ∈ H̃(S, α,Z) is a primitive Mukai vector. For H a generic polarisation,
there exists a (possibly empty) coarse moduli space MH(v;α) of H-Gieseker stable
coherent α-twisted sheaves E with vα(E) = v. Moreover:

i) MH(v;α) is empty if v2 < −2,

ii) Provided v is positive, MH(v;α) is a projective hyperkähler manifold of K3[n]-
type, where 2n = v2 + 2.

Example 2.3.3. i) The easiest example of a moduli space of sheaves on S is S
itself. More precisely, the Mukai vector v = (0, 0, 1) satisfies MH(v) ≃ S.

ii) If α = 0 and v = (1, 0, 1−n) for some n > 1, then MH(v) is the Hilbert scheme
S[n].

iii) If H ⊂ S is a smooth, irreducible curve of genus g whose class in NS(S) is
primitive, then the moduli space corresponding to the Mukai vector vd :=
(0, H, d+ 1− g) and special Brauer class α ∈ SBr(S) is a (twisted) Beauville–
Mukai system denoted Pic

d

α. It has a Lagrangian fibration Pic
d

α → |H| given by
sending a sheaf to its Fitting support, and for a smooth curve C ∈ |H|, there
is an isomorphism (Pic

d

α)C ≃ Picdα(C), where Picdα(C) is the twisted Picard
variety of C. We refer to [Muk84; Bea91; HM23] for more details. We study
Beauville–Mukai systems in Chapter 4.
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iv) As a special case of iii), consider an elliptic curve F ⊂ S. Then S admits an
elliptic fibration S → |F |, and the moduli space Jk(S) :=M(0, F, k) is called
the k-th Jacobian of S. It comes equipped with an elliptic fibration Jk(S)→ P1.
See [Huy16, §11] for details. We study Jacobians in Chapter 3.

2.3.2 Universal Sheaves

Let S be a K3 surface and fix a primitive Mukai vector v ∈ N(S). For a v-generic
polarisation H, we write M =MH(v). Recall that M is a priori only a coarse moduli
space, meaning that there is not necessarily a universal sheaf on S ×M . However,
twisted universal sheaves and quasi-universal sheaves always exist, and we recall
some basic facts about them now. Our basic reference for twisted sheaves is [Căl00].

Definition 2.3.4. Let αM ∈ Br(M) be a Brauer class. A (1⊠αM)-twisted universal
sheaf is a (1⊠ αM)-twisted sheaf U on S ×M such that U|S×[E] ≃ E for all [E ] ∈M .
If αM is trivial, we simply call U a universal sheaf on S ×M . If a (1⊠ αM)-twisted
universal sheaf exists, we call αM the obstruction to the existence of a universal sheaf
or simply the obstruction class of M .

We will see in Definition/Proposition 2.3.6 that, unlike universal sheaves, twisted
universal sheaves always exist. Moreover, the Brauer class αM is unique. We state
this result in the relative setting, as we will need to be able to deal with families of
moduli spaces in the next sections.

Proposition 2.3.5. [HL10] Let f : S → T be a projective morphism of schemes
of finite type over C with connected fibres. Let OS(1) be a relatively ample line
bundle on S. Then for any polynomial P there exists a coarse relative moduli space
M :=MS/T (P )→ T for the functor

M : (Sch/T)◦ → Sets

which associates to a T -scheme X → T the set of isomorphism classes of T -flat
families of stable sheaves on the fibres of S ×T X → X with Hilbert polynomial P .
In particular, for any t ∈ T , we have

Mt ≃MSt(P ).

Definition/Proposition 2.3.6. [Căl00, Proposition 3.3.2] Keeping the notation of
Proposition 2.3.5, there exists a unique Brauer class αM ∈ Br(M) such that there
is a (1 ⊠ αM)-twisted universal sheaf on S ×T M. This Brauer class is called the
obstruction to the existence of a universal sheaf on S ×T M. For any point t ∈ T ,
this twisted universal sheaf restricts to a (1⊠ αt)-twisted universal sheaf on St ×Mt,
hence αt is the obstruction to the existence of a universal sheaf on St ×Mt.

The main result of this chapter computes the obstruction Brauer class of a moduli
space of sheaves on a K3 surface. The first result in this direction is the following.

Proposition 2.3.7. [HL10, Theorem 4.6.5] Let S be a K3 surface with primitive
Mukai vector v ∈ N(S) and v-generic polarisation H. If div(v) = 1, then MH(v) is
a fine moduli space.
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The main result of this chapter implies the converse of Proposition 2.3.7, c.f.
Corollary 2.4.16.

Now, we fix S, v,H such that M :=MH(v) is non-empty and smooth. Moreover,
we assume v2 ≥ 2 so that the dimension of M is at least 4. We denote by p and q
the natural projections

S ×M
p

%%

q

zz
S M.

Let αM be the obstruction to the existence of a universal sheaf on S ×M , and let
E be a (1 ⊠ αM)-twisted universal sheaf. There exists an α−1

M -twisted locally free
sheaf F of finite rank ρ on M by [Căl00, Theorem 1.3.5]. Now U := E ⊗ p∗F is
a quasi-universal sheaf of similitude ρ on S ×M . This means that E ⊗ p∗F is an
M -flat untwisted sheaf on S ×M with the property that for any [F ] ∈M , we have
U|S×[F ] ≃ F⊕ρ. We consider the Fourier–Mukai transform

ΦU∨
: Db(S) −→ Db(M)

F 7−→ Rp∗(q
∗F ⊗ U∨).

This Fourier–Mukai transform depends on the choices of E and F , which determine
U . However, if U and V are two quasi-universal sheaves on S ×M , then there exist
vector bundles E and F on M such that U ⊗ p∗E ≃ V ⊗ p∗F by [Muk87, Appendix
2].

Definition 2.3.8. Let S be a K3 surface with primitive Mukai vector v ∈ N(S) for
which v2 ≥ 0. Let H be a v-generic polarisation, and write M :=MH(v). Let U be
a quasi-universal sheaf on S ×M of similitude ρ. The normalised cohomological
Fourier–Mukai transform

φ := 1
ρ
φv(U

∨) : H∗(S,Q) −→ H∗(M,Q)

x 7−→ 1
ρ
p∗ (q

∗x⊗ v(U∨)) ,

is called the Mukai morphism.

Note that the Mukai morphism is also dependent on the choice of the quasi-
universal sheaf U . More precisely, let F be a vector bundle on M and write U ′ =
U ⊗ p∗F . Let φ′ be the Mukai morphism corresponding to U ′, then

φ′(x) =
ch(F )

rk(F )
φ(x).

In particular, if we only consider the degree-2 part, we find

[φ′(x)]2 = [φ(x)]2 +
c1(F )

rk(F )
[φ(x)]0. (2.3.1)

Lemma 2.3.9. [Muk87, Proof of Theorem 1.5], [OGr97] For any x ∈ H∗(S,Q), we
have

[φ(x)]0 = −x · v. (2.3.2)

In particular, whenever x ∈ v⊥ ⊂ H∗(S,Q), [φ(x)]2 is independent of the choice of
quasi-universal sheaf.
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Proof. Let ω ∈ H2n(M,Z) be the fundamental cocycle. Let ΦU∨
: Db(S)→ Db(M)

be the Fourier–Mukai transform with kernel U∨, and let

φv(U
∨) : H∗(S,Q)→ H∗(M,Q)

be the corresponding cohomological Fourier–Mukai transform, i.e. φv(U∨) = ρ · φ.
Recall the Mukai pairing on H∗(M,Q) from Definition 2.2.28. We have

[φv(U
∨)(x)]0 = (φv(U

∨)(x), ω) = (x, φ
v(U∨)
L (ω)),

where φ
v(U∨)
L = φv(U) is the left-adjoint of φv(U∨). On the other hand, we have

φ
v(U∨)
L (ω) = v(ΦU(Ot)) = ρv for any t ∈M . Hence we obtain

[φ(x)]0 =
1

ρ
[φv(U

∨)(x)]0 =
1

ρ
(x, ρv) = −x · v,

as required. The final claim follows from (2.3.1) combined with (2.3.2).

Mukai studied the Mukai morphism for an isotropic Mukai vector in his seminal
paper [Muk87].

Theorem 2.3.10. [Muk87, Theorem 1.5] Let S be a K3 surface, and let v ∈ N(S)
be a primitive Mukai vector with v2 = 0. Let H be a v-generic polarisation, and
denote M := MH(v).Then the Mukai morphism from Definition 2.3.8 induces a
Hodge isometry

v⊥
/
Zv ≃ H2(M,Z).

Here, v⊥ denotes the orthogonal complement of v in H̃(S,Z).

Theorem 2.3.10 was later generalised to the higher-dimensional case by O’Grady
and Yoshioka.

Theorem 2.3.11. [OGr97; Yos01] Let S be a K3 surface, and let v ∈ N(S) be a
primitive Mukai vector with v2 > 0. Let H be a v-generic polarisation, and denote
M :=MH(v). Let φ : H∗(S,Q)→ H∗(M,Q) be the Mukai morphism from Definition
2.3.8. Then φ induces a Hodge isometry

H̃(S,Z) ⊃ v⊥
∼−→ H2(M,Z)

x 7−→ [φ(x)]2.

Here, [φ(x)]2 denotes the degree 2 part of φ(x). Moreover, this Hodge isometry is
independent of the choice of a quasi-universal sheaf on S ×M .

We are usually only interested in MH(v) up to birational equivalence. Since K3
surfaces are minimal, non-isomorphic K3 surfaces are never birational.

Assuming v2 > 0, recall that the birational geometry of MH(v) is controlled by
an O(Λ̃K3)-orbit of lattice embedding H2(MH(v),Z) ↪→ Λ̃K3 by the Birational Torelli
Theorem 2.2.25. The orbit of embeddings is given by

H2(MH(v),Z) ≃ v⊥ ↪→ H̃(S,Z) ≃ Λ̃K3,

where the first Hodge isometry is the inverse of the Mukai morphism from Theorem
2.3.11, and the second isometry is arbitrary, as the O(Λ̃K3)-orbit of the embedding is
independent of the choice of isometry H̃(S,Z) ≃ Λ̃K3 [Mar11, §9.1].
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In particular, the birational equivalence class of MH(v) is independent of the
choice of H, and we sometimes suppress it from the notation for this reason.

We now turn to the most fundamental result about derived equivalence for K3
surfaces: the Derived Torelli Theorem.

Theorem 2.3.12 (The Derived Torelli Theorem). [Muk87; Orl03] Let X and Y be
K3 surfaces. The following are equivalent:

i) There is an equivalence Db(X) ≃ Db(Y );

ii) There is a Hodge isometry H̃(X,Z) ≃ H̃(Y,Z);

iii) The K3 surface Y is isomorphic to a fine moduli space of sheaves on X. That
is, there is a Mukai vector v ∈ N(X) and a v-generic polarisation H on X
such that div(v) = 1, and Y ≃MH(v).

Proof sketch. We already saw in Section 2.2.3 that i) =⇒ ii).
ii) =⇒ iii). Assume there is a Hodge isometry f : H̃(X,Z) ≃ H̃(Y,Z). Let

v ∈ H̃(X,Z) be the vector such that f(v) = (0, 0, 1). The Hodge isometry f induces
a Hodge isometry between the lattices

v⊥/Zv ≃ (0, 0, 1)⊥/Z(0, 0, 1) ≃ H2(Y,Z).

By Theorem 2.3.10 and the Torelli Theorem, c.f. Theorem 2.2.24, this means
Y ≃ MH(v) for a v-generic polarisation H. Moreover, since f is an isometry, we
have div(v) = div(f(v)) = div(0, 0, 1) = 1, as required.

iii) =⇒ i). If Y is a fine moduli space of sheaves on X, then the Fourier–Mukai
transform associated to universal family U onX×Y is an equivalence Db(X) ≃ Db(Y )
by [Orl03, Theorem 3.11].

Recall that for any K3 surface X, there is a chain of embeddings of Hodge lattices

T (X) ⊂ H2(X,Z) ⊂ H̃(X,Z).

There is a wonderful interplay between the Torelli Theorem, the Derived Torelli
Theorem, and this chain of embeddings.

Firstly, note that item ii) of Theorem 2.3.12 is equivalent to the existence of a
Hodge isometry T (X) ≃ T (Y ). Indeed, every Hodge isometry H̃(X,Z) ≃ H̃(Y,Z)
sends the transcendental lattice of X isometrically to the transcendental lattice
of Y , and since there is a primitive embedding U ⊂ N(X), every Hodge isometry
T (X) ≃ T (Y ) extends to a Hodge isometry H̃(X,Z) ≃ H̃(Y,Z) by Lemma 2.2.8.

Secondly, recall that the (non-derived) Torelli Theorem asserts that there is
a Hodge isometry H2(X,Z) ≃ H2(Y,Z) if and only if there is an isomorphism
X ≃ Y . Since any Hodge isometry H2(X,Z) ≃ H2(Y,Z) restricts to a Hodge
isometry T (X) ≃ T (Y ) and extends to a Hodge isometry H̃(X,Z) ≃ H̃(Y,Z) (again
due to Lemma 2.2.8), we obtain the obvious result that isomorphic K3 surfaces are
derived equivalent. This should be seen as nothing more than a sanity check.

However, the existence of a Hodge isometry H2(X,Z) ≃ H2(Y,Z) is generally not
equivalent to the existence of a Hodge isometry T (X) ≃ T (Y ), since NS(X) = T (X)⊥

does not necessarily contain a copy of the hyperbolic plane. In fact, there is an
embedding U ⊂ NS(X) if and only if X admits an elliptic fibration with a section,
as we will see in Chapter 3.
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Unfortunately, it is currently not known whether a theorem such as Theorem
2.3.12 holds for hyperkähler manifolds of K3[n]-type, as we discuss in Section 4.3.1.
Note, however, that the Derived Torelli Theorem 2.3.12 implies that if X and Y are
K3 surfaces with T (X) ≃ T (Y ), then Y is isomorphic to a moduli space of sheaves
on X. This part, at least, also carries over to the higher-dimensional setting.

If M =MH(v) is a moduli space of sheaves of dimension 2n > 2 on a K3 surface
S, then we have T (M) ≃ T (S). Indeed, this can be seen from the Hodge isometry
v⊥ ≃ H2(M,Z) induced by the Mukai morphism, see Theorem 2.3.11, since the
transcendental sublattice of v⊥ is T (S).

Proposition 2.3.13. [Mar10] (see also [Add16, Proposition 4]) Let X be a hy-
perkähler manifold of K3[n]-type. Suppose there exists a K3 surface S and a Hodge
isometry T (X) ≃ T (S). Then X is birational to a moduli space of sheaves on S.

Proof. Let iX : H2(X,Z) ↪→ Λ̃K3 be an embedding in the natural O(Λ̃K3)-orbit (see
Theorem 2.2.25). Fix any Hodge isometry ψ : T (X) ≃ T (S). By Lemma 2.2.8, there
exists an isometry ψ̃ : Λ̃K3 ≃ H̃(S,Z) which makes the following diagram commute:

T (X)
ψ

//

iX
��

T (S)

��

Λ̃K3
ψ̃
// H̃(S,Z).

(2.3.3)

It follows that ψ̃ is a Hodge isometry. Since ψ̃(H2(X,Z)) ⊂ H̃(S,Z) is a sublattice
of rank 23, its orthogonal complement is a primitive sublattice of rank 1. By [Add16,
Proof of Proposition 4], we may choose ψ̃ such that the orthogonal complement
ψ̃(H2(X,Z)) is a positive Mukai vector (see Definition 2.3.1). Then we have a
commutative diagram of Hodge metric morphisms:

H2(X,Z) ∼ //

iX
��

v⊥

��

Λ̃K3
∼ // H̃(S,Z).

(2.3.4)

Therefore, X is birational to M(v) by the Birational Torelli Theorem 2.2.25.

In Appendix 4.A, we discuss a twisted version of Proposition 2.3.13.

2.3.3 Moduli Spaces of Lattice Polarised K3 Surfaces

In this section, we collect some basic facts about moduli spaces of lattice polarised
K3 surfaces. Our main reference is [Dol95]. An important technical result in this
section is Lemma 2.3.19, which is used to prove the main result of this chapter,
namely Theorem 2.4.15.

Definition 2.3.14. For a lattice T of signature (2, n), we define the period domain
ΩT of T to be one of the two connected components of{

σ ∈ P(T ⊗ C) | σ2 = 0 and σ · σ > 0
}
. (2.3.5)
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The orthogonal group O(T ) acts naturally on the set (2.3.5), and we write

O+(T ) := {σ ∈ O(T ) | σ(ΩT ) = ΩT}

for the subgroup of O(T ) consisting of isometries that preserve the connected com-
ponent ΩT . The index of O+(T ) ⊂ O(T ) is two.

Let N be an even lattice of signature (1, ρ − 1) for some 1 ≤ ρ ≤ 20. Suppose
that there exists precisely one O(ΛK3)-orbit of primitive embeddings N ↪→ ΛK3. This
is the case for example when ρ ≤ 10 by [Nik80]. An N-marked K3 surface is a pair
(S, j) consisting of a K3 surface S and a primitive embedding j : N ↪→ NS(S). An
isomorphism of N -marked K3 surfaces (X, i), (Y, j) is an isomorphism f : X ≃ Y
such that i = f ∗ ◦ j.

Recall that a marked K3 surface is a pair (S, ϕ) consisting of a K3 surface S and
an isometry ϕ : H2(S,Z) ≃ ΛK3. Fix an embedding N ⊂ ΛK3. If (S, ϕ) is a marked
K3 surface such that N ⊂ ϕ(NS(S)), then (S, ϕ−1|N) is an N -marked K3 surface.

Let T = N⊥ ⊂ ΛK3 be the orthogonal complement. We write

Õ+(T ) := ker
(
O+(T )→ O(AT )

)
.

If (S, j) is an N -marked K3 surface, then there exists a marking ϕ : H2(S,Z) ≃ ΛK3

such that the period of the marked K3 surface (S, ϕ), i.e. [ϕ(H2,0(S,C))], lies in ΩT .
Moreover, two isomorphic N -marked K3 surfaces give rise to periods which lie in the
same Õ+(T )-orbit.

Definition 2.3.15. We denote

FT := Õ+(T ) \ ΩT .

Theorem 2.3.16. [Dol95, §3] The quotient FT is the coarse moduli space of N-
marked K3 surfaces. The moduli space FT is an equidimensional quasi-projective
variety of dimension 20− ρ.

Let S be a K3 surface, and let v ∈ N(S) be a primitive Mukai vector. Write
v = (r, E, s) for some r, s ∈ Z and E ∈ NS(S). Let H ∈ NS(S) be an ample divisor.
Let M be the saturation of ⟨H,E⟩ in NS(S). That is, M = (⟨H,E⟩ ⊗Q)∩NS(S) is
the smallest primitive sublattice of NS(S) which contains ⟨H,E⟩. Fix any marking
ϕ : H2(S,Z) ≃ ΛK3. Write L := ϕ(M) ⊂ ΛK3 and e = ϕ(E), h = ϕ(H). A point
in the moduli space FL⊥ corresponds to an L-marked K3 surface (X, i) for which
the vector (r, i(e), s) ∈ N(X) is a Mukai vector, which we denote by i(v). We wish
to show that the locus in FL⊥ of L-marked K3 surfaces (X, i) for which the Mukai
vector i(v) has divisibility 1 is dense.

From the definition of the period domain, it follows that we have

ΩT ′ = ΩT ∩ P(T ′ ⊗ C),

for any primitive sublattice T ′ ⊂ T . By a slight abuse of notation, we write
FT ′ ⊂ FT for the image of ΩT ′ along the natural projection ΩT ↠ FT . If we have
rk(T ′) + 1 = rk(T ), then FT ′ is a divisor in FT .

Remark 2.3.17. Fix a primitive sublattice N ⊂ ΛK3 of signature (1, ρ − 1) and
write T ′ = N⊥. For a point [ℓ] ∈ ΩT ′ , we denote by NSℓ the integral (1, 1)-part of
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the Hodge lattice of K3-type whose underlying lattice is ΛK3 and whose (2, 0)-part
is ℓ. It is a well-known fact that, for a very general point [ℓ], we have NSℓ = N .
To see this, suppose that [ℓ] ∈ ΩN satisfies N ̸⊂ NSℓ . Then it follows from the
definitions that [ℓ] ∈ ΩNS⊥ℓ

⊂ ΩT ′ . Recall that we have dim(ΩNS⊥ℓ
) = rk(NS⊥

ℓ )− 2 <

dim(ΩT ′) = rk(T ′)−2. Since there are countably many chains of primitive embeddings
N ↪→ L ↪→ ΛK3, it follows that the points of ΩT ′ for which N is a proper sublattice
of NSℓ form a union of countably many lower-dimensional subvarieties of ΩT ′ . Thus,
the very general point of ΩT ′ satisfies N = NSℓ, as required.

Suppose now that we have another primitive sublattice L ⊂ ΛK3 of signature
(1, ρ− 1) which is not equal to N as a sublattice of ΛK3, and write T = L⊥. By the
above discussion, a very general point of ΩT has NSℓ = L. In particular, we have
ΩT ̸= ΩT ′ . To rephrase this, if N and L are two primitive sublattices of ΛK3, then
we have ΩN⊥ = ΩL⊥ if and only if L = N .

Proposition 2.3.18. Let L ⊂ ΛK3 be a sublattice of signature (1, ρ− 1). Assume
that ρ ≤ 9. Suppose that {Ln}n∈N is a set of pairwise non-isometric lattices of rank
(1, ρ), and for each n ∈ N, we have a chain of primitive embeddings L ↪→ Ln ↪→ ΛK3.
Then the set ⋃

n∈N

FL⊥
n

is dense in FL⊥.

Proof. We first show that we have FL⊥
n
̸= FL⊥

m
whenever m ̸= n. We prove this by

contradiction. Suppose that we have FL⊥
m
= FL⊥

n
for some m,n ∈ N with m ̸= n.

Then we have ⋃
g∈Õ+(L⊥)

g(ΩL⊥
n
) ∩ ΩL⊥

m
= ΩL⊥

m
.

Note that for any g ∈ Õ+(L⊥), the subspace g(ΩL⊥
n
) ∩ ΩL⊥

m
has codimension 1

or 0 in ΩL⊥
m
. Since Õ+(L⊥) is countable, this means that there is a g ∈ Õ+(L⊥)

such that g(ΩL⊥
n
) ∩ ΩL⊥

m
has codimension 0, i.e. for which we have g(ΩL⊥

n
) = ΩL⊥

m
.

Since g(ΩL⊥
n
) = Ωg(L⊥

n ), it follows from Remark 2.3.17 that we have g(L⊥
n ) = L⊥

m.
Since we have g ∈ Õ+(L⊥), we may extend g to an isometry f : ΛK3 ≃ ΛK3 with
f |L = idL. Moreover, since g(L⊥

n ) = L⊥
m, we have f(Ln) = Lm, i.e. f restricts to an

isometry Ln ≃ Lm, which is a contradiction with the assumption that Ln and Lm
are non-isometric.

To conclude, we use [MP23, Theorem 3.8 (and Remark 3.5)]: The Euclidian
closure of the union ⋃

n

FL⊥
n

is contained in a Shimura subvariety of FL⊥ . Since all subspaces FL⊥
n

have codimen-
sion 1, this Shimura subvariety has to be all of FL⊥ .

Lemma 2.3.19. Let (S, ϕ) be a marked K3 surface. Let v = (r, E, s) ∈ N(S) be a
primitive Mukai vector, and let H ∈ NS(S) be an ample divisor. Write h = ϕ(H)
and e = ϕ(E). Let L ⊂ ΛK3 be the saturation of the sublattice ⟨h, e⟩. We consider
the L-marked K3 surface (S, ϕ−1|L) as an element of the moduli space FL⊥. Then
the set of points [(X, i)] ∈ FL⊥ for which

divN(X)(i(v)) = 1,
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where i(v) := (r, i(e), s), is dense in FL⊥.

Proof. Let e = me0 with e0 primitive (in particular, gcd(r,m, s) = 1 since v is
primitive). We claim that there exists a vector u ∈ ΛK3 such that u · e0 = 1 and
the lattice ⟨h, e, u⟩ has signature (1, 2). Indeed, let N = U ⊕ E8. Fix any primitive
embedding L ↪→ N , which is possible by [Nik80, Corollary 1.12.3]. Since rk(L) ≤ 10,
the primitive embedding L ↪→ ΛK3 is unique up to the action of O(ΛK3). Therefore,
we may assume that L is a sublattice of N ⊂ ΛK3. Since N is unimodular and
e0 is primitive, there exists a vector u ∈ N such that e0 · u = 1. Now, for any
d ∈ E8 ⊂ N⊥ ⊂ ΛK3, write ud = u+ d, and let Ld = ⟨L, ud⟩ ⊂ ΛK3. If d is primitive,
then Ld ⊂ ΛK3 is a primitive sublattice. Moreover, by computing the discriminant of
Ld, we see that Ld is not isometric to Ld′ whenever d2 ̸= (d′)2. Now, for any n ∈ N,
let dn ∈ E8 be a primitive vector with d2n = 2n. Then {Ln}n∈N is a set of pairwise
non-isometric lattices satisfying the assumptions of Proposition 2.3.18, and therefore
∪nFL⊥

n
is dense in FL⊥ . Note that for any n ∈ N and any point [(X, i)] ∈ FL⊥

n
, we

have divN(X)(i(v)) = 1, as required.

We now provide a proof for the following proposition, previously noted by Mukai
[Muk87] and Căldăraru [Căl00].

Proposition 2.3.20. Let S be a K3 surface, let v = (r, E, s) ∈ N(S) be a primitive
Mukai vector and let H be a v-generic polarisation. Then there exists a proper,
smooth morphism S → T of analytic spaces, such that for all i ∈ Z, and all t ∈ T ,
we have an identification

H i(St,Z) ≃ H i(S,Z). (2.3.6)

and such that:

i) There exists a point 0 ∈ T such that S0 ≃ S.

ii) The vector vt ∈ H̃(St,Z) corresponding to v along (2.3.6) is contained in N(St)
for all t ∈ T .

iii) For all t ∈ T , Ht ∈ H2(St,Z) is a v-generic polarisation.

iv) There exists a point 1 ∈ T such that divN(S1)(v) = 1.

Moreover, there is a smooth, proper family M→ T with the following properties:

v) For all t ∈ T , there exists an isomorphism Mt ≃MHt(vt).

vi) There is a Brauer class α ∈ Br(M) and a (1⊠ α)-twisted sheaf E on S ×T M
which restricts to a twisted universal sheaf on each fibre St ×Mt.

Proof. Choose any marking ϕ : H2(S,Z) ≃ ΛK3 and let h = ϕ(H), e = ϕ(E),
and let L be the saturation of ⟨h, e⟩ in ΛK3. Then (S, ϕ−1|L) is an L-marked K3
surface, hence it represents a point 0 ∈ FL⊥ . Let 0 ∈ T ⊂ FL⊥ be a small open
neighbourhood, and let S → T be a tautological family of K3 surfaces, which exists
because the moduli space of L-marked K3 surfaces is a DM stack [Huy16, §5.4]. By
shrinking T , for example until it is contractible, we may assume that we have the
identifications (2.3.6). Moreover, by shrinking T further, we may assume that Ht

is ample, and that Ht is vt-generic for all t ∈ T [HL10, Appendix 4.C]. Note that
Ht and vt are automatically algebraic, since we have T ⊂ FL⊥ . The existence of the
relative moduli spaceM→ T and the relative twisted universal sheaf follows from
[Căl00, Proposition 3.3.2]. Part iv) follows from Lemma 2.3.19.
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2.4 Obstruction Classes

Recall from Section 2.3.2 that for a non-fine moduli space M of sheaves on a K3
surface S the obstruction to the existence of a universal sheaf on S ×M is a certain
Brauer class αM ∈ Br(M). The main goal of this section is to prove Theorem 2.4.15,
which computes the obstruction class αM explicitly in cohomological terms. We
discuss applications of this theorem in Chapter 4.

2.4.1 Căldăraru Classes

In Căldăraru’s PhD thesis, he computed the obstruction class for a non-fine two-
dimensional moduli space of sheaves on a K3 surface in purely cohomological terms.
We will give a summary of this result in the next section. In this section, we discuss
Căldăraru classes, which play a key role in Căldăraru’s computation. Căldăraru
classes were given their name in [MS24], on which Chapter 3 is based.

Definition 2.4.1. Let S be a K3 surface, and let v ∈ N(S) be a vector. We usually
assume v is primitive, and that v2 ≥ 0. The Căldăraru class of v is the element

av := −
v

div(v)
∈ ANS(S).

The element ωv ∈ AT (S) corresponding to av via the natural isomorphism AN(S) ≃
AT (S)(−1) is called the transcendental Căldăraru class of v.

Remark 2.4.2. One should not pay too much attention to the sign that appears
in the definition of the Căldăraru class. For all our applications of the Căldăraru
class we only care about the orbit of the transcendental Căldăraru class under the
natural action of the group of Hodge isometries of T (S). Since − idT (S) ∈ O(T (S))
is a Hodge isometry, the transcendental Căldăraru class ωv is always in the same
orbit as −ωv, so that the sign in front of − v

div(v)
can safely be ignored. The reason

we include the sign will become apparent in the next section, see Remark 2.4.9.

For any lattice L and for any vector v ∈ L, the divisibility div(v) is the greatest
integer m for which

v

m
∈ L∗.

Indeed, if m > div(v), and u ∈ L is a vector with u · v < m, then we have v
m
· u /∈ Z.

Moreover, if v is a primitive vector, then by definition, we have v
m
/∈ L for all m > 1.

On the level of AL, this means that the order of av is equal to div(v). This proves
the following lemma.

Lemma 2.4.3. Let v ∈ N(S) be a primitive Mukai vector. Then the order of the
Căldăraru class av ∈ AN(S) is div(v).

As a trivial consequence of Lemma 2.4.3, we obtain the following.

Lemma 2.4.4. For any primitive vector v ∈ N(S), the divisibility of v divides the
order of AN(S).
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Căldăraru classes will appear in Section 2.4.4 in our explicit computation of the
obstruction class of a moduli space of sheaves on a K3 surface. They also appear in
Chapter 3, where we study derived equivalence for elliptic K3 surfaces. Moreover,
they make a final appearance in this dissertation in Chapter 4, where we use them
to study birational equivalence for moduli spaces of sheaves on elliptic K3 surfaces.

The first time Căldăraru classes were important in the study of moduli spaces of
sheaves on K3 surfaces was in Mukai’s work [Muk87], namely in the following way. Let
S be a K3 surface, and let v ∈ N(S) be a primitive Mukai vector with v2 = 0. Then
for a v-generic polarisation H, the moduli space M :=MH(v) is a K3 surface. Recall
from Theorem 2.3.10 that there is a Hodge isometry H2(M,Z) ≃ v⊥

/
Zv. Since v

is contained in N(S) ⊂ H̃(S,Z), and T (S) = N(S)⊥, we have T (S) ⊂ v⊥ ⊂ H̃(S,Z).
This induces a Hodge metric morphism T (S) ↪→ v⊥/Zv ≃ H2(M,Z). The image
of T (S) in H2(M,Q) is contained in T (M). This inclusion exhibits T (M) as an
overlattice T (S). Recall from Lemma 2.2.13 that overlattices of T (S) correspond to
isotropic subgroups of AT (S). The isotropic subgroup corresponding to the overlattice
T (S) ↪→ T (M) is precisely the subgroup ⟨ωv⟩ ⊂ AT (S), see [Muk87, Proposition 6.4].

While the Căldăraru class is an easy-to-understand element, its transcendental
counterpart may seem a little more mysterious. Fortunately, there is an easy way to
characterise the transcendental Căldăraru class in a way that makes it look more
like the Căldăraru class itself.

Lemma 2.4.5. Let v ∈ N(S) be a primitive Mukai vector of divisibility div(v) = t.
Then there exists a vector x ∈ T (S) with the property that

v + x

t
∈ H̃(S,Z).

Then
ωv =

x

t
∈ AT (S).

Proof. Since N(S) is a primitive sublattice of H̃(S,Z), the natural map

H̃(S,Z) ≃ H̃(S,Z)∗ → N(S)∗

is surjective. Let ζ ∈ H̃(S,Z) be a preimage of v
t
∈ N(S)∗. This means that for all

w ∈ N(S), we have
ζ · w =

v

t
· w.

This means that x := tζ − v is an integral vector of H̃(S,Z) contained in the
orthogonal complement of N(S), which is T (S). We have v + x = tζ, hence

v + x

t
∈ H̃(S,Z).

Along the natural isometry AN(S) ≃ AT (S)(−1) of Lemma 2.2.1, the class av = −v
t
∈

AN(S) corresponds to x
t
∈ AT (S), hence ωv = x

t
.

Since N(S) ≃ NS(S)⊕ U , there is a natural isomorphism AN(S) ≃ ANS(S) ⊕ AU ,
hence by unimodularity of U , we have

AN(S) ≃ ANS(S). (2.4.1)

The element of ANS(S) corresponding to av via (2.4.1) is also called the Căldăraru
class of v, with a slight abuse of language.
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Lemma 2.4.6. Let S be a K3 surface and let v = (r,D, s) ∈ N(S) be a primitive
Mukai vector of divisibility t = div(v). The Căldăraru class of v in ANS(S) is

−1

t
D.

Proof. Note that t = div(v) = gcd(r, s, div(D)) divides both r and s. Therefore, we
have

av = −
(r,D, s)

t
= −1

t
(r, 0, s)− 1

t
D = −1

t
D,

since 1
t
(r, 0, s) is integral.

2.4.2 The Obstruction Class of a Two-Dimensional Moduli
Space

In this subsection, let S be a K3 surface with Mukai vector v ∈ N(S). Moreover,
we assume that v2 = 0. In this case, the moduli space M := MH(v) is a K3
surface, where H is a v-generic polarisation. In this setting, Căldăraru computed the
obstruction class αM explicitly as a class in Hom(T (M),Q/Z) ≃ Br(M). We now
give a brief summary of his results.

Remark 2.4.7. Note that, for any positive integer t > 0, the t-torsion subgroup
of Hom(T (S),Q/Z) is isomorphic to Hom(T (S),Z/tZ), via the natural embedding
Z/tZ ↪→ Q/Z given by

1 7→ 1

t
(mod Z).

With this in mind, we may consider a group homomorphism T (S) → Z/tZ as a
Brauer class on S.

Recall that the Mukai morphism is a Hodge isometry v⊥/Zv ≃ H2(M,Z). Since
we have T (S) ⊂ v⊥ ⊂ H̃(S,Z), and v /∈ T (S), the Mukai morphism induces an
embedding of Hodge lattices T (S) ↪→ T (M). Moreover, the quotient T (M)/T (S) is
finite and cyclic. Recall that there is a natural embedding T (M)/T (S) ⊂ AT (S). Via
this embedding, T (M)/T (S) is generated by the transcendental Căldăraru class of v,
denoted ωv by [Muk87, Proposition 6.4] (see Definition 2.4.1). This defines a Brauer
class αM on M as the composition

αM : T (M)→ T (M)/T (S) ≃ Z/ div(v)Z, (2.4.2)

where the isomorphism T (M)/T (S) ≃ Z/ div(v)Z is the one that maps ωv to 1 ∈
Z/ div(v)Z, and div(v) denotes the divisibility of v in N(S).

Theorem 2.4.8. [Căl00, Theorem 5.4.3] The Brauer class αM of equation (2.4.2) is
the obstruction to the existence of a universal sheaf on S ×M .

Remark 2.4.9. Theorem 2.4.8 is the reason for the choice of a sign in the definition
of the Căldăraru class. The sign is there to ensure that αM from (2.4.2) is the
obstruction class, as opposed to −αM .
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The description of the obstruction Brauer class αM of Theorem 2.4.8 is useful
because it is very explicit. For example, it is essential in Chapter 3 to study Fourier–
Mukai partners of elliptic K3 surfaces. Unfortunately, the description uses the fact
that Br(M) ≃ Hom(T (M),Q/Z), which is only the case when M is a K3 surface,
see (2.2.11). Another, equivalent, way to view αM is as follows.

Consider the short exact sequence

0→ T (S)→ T (M)→ ⟨ωv⟩ → 0, (2.4.3)

which induces the following short exact sequence by taking duals:

0→ T (M)∗ → T (S)∗ → Z/ div(v)Z→ 0. (2.4.4)

Since v ∈ H̃(S,Z) is primitive, and H̃(S,Z) is unimodular, it follows that the
divisibility of v in H̃(S,Z) is 1. That is, there exists a vector u ∈ H̃(S,Z) with the
property that u · v = 1. We claim that

(u · −)|T (S) ∈ T (S)∗,

which is the image of u under the natural surjection H̃(S,Z) → T (S)∗, induces
a generator of T (S)∗/T (M)∗. This is proven in Lemma 2.4.11 below in a more
general setting. We abuse notation slightly and write u for (u · −)|T (S). Let us write
w ∈ T (M)∗ for the element which maps to div(v) · u ∈ T (S)∗.

Note that taking the tensor product of (2.4.4) with Q/Z yields the exact sequence:

TorZ1 (T (S)
∗,Q/Z)→ TorZ1 (Z/ div(v)Z,Q/Z)→ T (M)∗⊗Q/Z→ T (S)∗⊗Q/Z→ 0.

Since T (S)∗ is torsion-free, this is exactly the sequence:

0→ Z/ div(v)Z→ Br(M)→ Br(S)→ 0. (2.4.5)

The kernel of (2.4.5) is generated by

w

div(v)
∈ Br(M),

and this is precisely the obstruction class αM of Theorem 2.4.8, see [Căl00, Theorem
5.3.1].

Note that the order of αM in Br(M) is equal to the divisibility div(v) of v in N(S).
We can see this from short exact sequence (2.4.5), since the kernel is generated by
the obstruction class. We can also use (2.4.2) to find the order of αM , since (2.4.2)
exhibits αM as a surjective group homomorphism αM : T (M) → Z/ div(v)Z. This
proves the following result, which also follows from the Derived Torelli Theorem
2.3.12.

Corollary 2.4.10. [Căl00] Let S be a K3 surface with primitive Mukai vector
v ∈ N(S) and v-generic polarisation H. The moduli space MH(v) is fine if and only
if div(v) = 1.

In the remainder of this chapter, we show how to generalise Theorem 2.4.8 to
higher-dimensional moduli spaces of sheaves. One of the main points of interest is
that we compute the order of the obstruction class precisely.
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2.4.3 Brauer Groups of Moduli Spaces

Let S be a K3 surface with primitive Mukai vector v ∈ N(S). Assume v2 > 0.
Let H ∈ NS(S) be a v-generic polarisation, and write M := MH(v). Then M is a
hyperkähler manifold of K3[n]-type, where 2n = v2 + 2 by Theorem 2.3.2. The main
goal of this subsection is to show that there is an exact sequence resembling (2.4.5) in
this setting. Recall from Theorem 2.3.11 that the Mukai morphism induces a Hodge
isometry v⊥ ≃ H2(M,Z). Therefore, we have a Hodge isometry T (S) ≃ T (M), hence
there is no short exact sequence of the form (2.4.3), which was necessary to derive
(2.4.5). Instead, the correct first step is to recreate short exact sequence (2.4.4) using
the group

T ′(M) :=
H2(M,Z)
NS(M)

from (2.2.12).

Lemma 2.4.11. Let S, v, H, and M be as above. Then there is a short exact
sequence

0→ T ′(M)→ T (S)∗ → Z/ div(v)Z→ 0.

Let u ∈ H̃(S,Z) such that u · v ≡ 1 (mod div(v)), then the image of u under the
projection H̃(S,Z)→ T (S)∗ → T (S)∗/T ′(M) is a generator for the cokernel.

Proof. The Mukai morphism is a Hodge isometry H2(M,Z) ≃ v⊥ ⊂ H̃(S,Z) by
Theorem 2.3.11. This induces an embedding of Hodge structures

T ′(M) ≃ v⊥

(v⊥)1,1
↪→ H̃(S,Z)

N(S)
≃ T (S)∗.

It follows from a straightforward computation that the cokernel of this embedding is
generated by u: for any class x ∈ H̃(S,Z) such that x ·v = λ, we have (x−λu) ·v ≡ 0
(mod div(v)). Therefore, there exists an algebraic class y ∈ N(S) such that y · v =
(x− λu) · v. Therefore, we have x− λu− y ∈ v⊥, hence x and λu induce the same
element in T (S)∗/T ′(M). Since div(v)u−z ∈ v⊥ for any z ∈ N(S) with v ·z = div(v),
we obtain that u has order div(v) in T (S)∗/T ′(M).

Let w ∈ T ′(M) be the vector which maps to div(v) ·u ∈ T (S)∗. Using the descrip-
tion of Br(M) as Br(M) ≃ T ′(M)⊗Q/Z from (2.2.11), Lemma 2.4.11 immediately
implies the following.

Proposition 2.4.12. There is a short exact sequence

0→
〈

w

div(v)

〉
→ Br(M)→ Br(S)→ 0.

Proposition 2.4.12 is derived from Lemma 2.4.11 in the same way that one derives
(2.4.5) from (2.4.4).

We will see in the next section that w
div(v)

is precisely the Brauer class of M that
obstructs the existence of a universal sheaf on S ×M , see Theorem 2.4.15.

The following lemma gives us another way to view the obstruction class in terms
of the Mukai morphism.



43 Chapter 2. Brauer Groups and Hyperkähler Manifolds

Lemma 2.4.13. [Căl00, Proof of Theorem 5.3.1] Let φ : H̃(S,Q)→ H∗(M,Q) be
the Mukai morphism from Definition 2.3.8. Consider the vector [φ(u)]2 ∈ H2(M,Q),
where u ∈ H̃(S,Z) is as in Lemma 2.4.11. Then the Brauer class on M induced by
[φ(u)]2 along the composition

H2(M,Q)→ T ′(M)⊗Q→ T ′(M)⊗Q/Z ≃ Br(M)

is precisely w
div(v)

. Moreover, this is independent of the choice of a quasi-universal
sheaf on S ×M and the choice of u.

Proof. The fact that [φ(u)]2 induces the Brauer class w
div(v)

is a straightforward chase
through the identifications, see for example [Căl00, Theorem 5.3.1]. We check that
the Brauer class [φ(u)]2 is independent of our choice of quasi-universal sheaf U .
Recall that if U ′ is any other quasi-universal sheaf on S ×M , then there exist vector
bundles E and F on M such that U ⊗ p∗E ≃ U ′ ⊗ p∗F by [Muk87, Appendix 2]. For
F ∈ Coh(M) we have

[φU∨⊗p∗F(u)]2 = [φU∨
(u)]2 + [φU∨

(u)]0 ·
c1(F)
rkF

.

Since
c1(F)
rkF

∈ NS(M)⊗Q,

this shows that the class of [φ(u)]2 in Br(M) ≃ T ′(M)⊗Q/Z does not depend on
the choice of U .

Now we check that [φ(u)]2 is independent of the choice of u. Suppose that
u′ ∈ H̃(S,Z) is another element such that u′ · v ≡ 1 (mod div(v)). Then (u −
u′) · v ≡ 0 (mod div(v)). Therefore, there is an algebraic class x ∈ H̃(S,Z) such
that x · v = (u − u′) · v. This means that u − u′ − x ∈ v⊥. This implies that
[φ(u−u′−x)]2 ∈ H2(M,Z) is integral, so in particular it vanishes in Br(M). Since φ is
a morphism of Hodge structures, φ(x) is algebraic, and we obtain [φ(u)]2− [φ(u′)]2 =
−[φ(x)]2 = 0 ∈ Br(M).

2.4.4 The Obstruction Class of a Higher-Dimensional Moduli
Space

We now prove Theorem 2.4.15, which computes the obstruction Brauer class explicitly
when M is a higher-dimensional moduli space of sheaves. Our strategy is very similar
to the proof of [Căl02, Theorem 1.1], but some modifications need to be made to the
proof in our setting.

The main idea behind the proof is to deform M to a fine moduli space and then
use the following result by Căldăraru.

Theorem 2.4.14. [Căl02, Theorem 4.1] Let f : X → T be a proper, smooth
morphism of analytic spaces. Let E be a locally free α-twisted sheaf on X. Assume
that α|X0 is trivial, so that E0 := E|X0 can be glued to an untwisted sheaf on X0.
Assume that for all t ∈ T , we have H i(X,Z) ≃ H i(Xt,Z). Then

α = − c1(E0)
rk(E0)

∈ H
2(X,Z)
NS(X)

⊗Q/Z.
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Theorem 2.4.15. Keeping the notation as in Lemma 2.4.11 and Proposition 2.4.12,
the Brauer class

w

div(v)
∈ Br(M)

is the obstruction to the existence of a universal sheaf on S × M from Defini-
tion/Proposition 2.3.6.

Proof. We write v = (r, E, s) ∈ N(S). Let S → T and M→ T be the families of
K3 surfaces and moduli spaces of Proposition 2.3.20, and let α ∈ Br(M) be the
Brauer class, and E the (1⊠ α)-twisted universal sheaf on S ×T M from the same
proposition. We identify S0 ≃ S andM0 ≃M .

Pick a locally free α−1-twisted sheaf F onM of rank ρ. Fix U := E ⊗ p∗F , which
is a relative quasi-universal sheaf on S ×TM of similitude ρ. For t ∈ T , we consider
the induced Fourier–Mukai transforms

Φt := ΦU∨
t : Db(St)→ Db(Mt)

and morphisms of Hodge structures:

φt := φ(1/ρ)v(U∨
t ) : H∗(St,Q) → H∗(Mt,Q)

x 7→ 1
ρ
· p∗ (v(U∨

t ) · q∗(x)) .

satisfying v (Φt(−)) = ρφt (v(−)). By shrinking T , we may assume that φt is a
constant map on t.

Let u ∈ H̃(S,Z) be a vector such that u · v = 1 (mod div(v)). Note that the
class [φ0(u)]2 ∈ H2(M,Q) induces a Brauer class on M via the natural surjection

H2(M,Q)→ T ′(M)⊗Q→ T ′(M)⊗Q/Z ≃ Br(M).

By a slight abuse of notation, we also denote this Brauer class by [φ0(u)]2. By Lemma
2.4.13, we wish to prove that

α|M = [φ0(u)]2 ∈ Br(M).

On the fibre over 1 ∈ T , the Brauer class α1 vanishes by Proposition 2.3.7, so
that E1 is a universal sheaf. In particular, Φ′ := ΦE∨

1 and φ′ := φv(E
∨
1 ) are well-defined.

For any G ∈ Db(S) and x ∈ H̃(S,Q), we have Φ1(G) = Φ′(G)⊗F∨
1 and

φ1(x) = φ′(x)
ch(F∨

1 )

ρ
,

due to the projection formula. In particular, we have

[φ1(u)]2 = [φ′(u)]2 + [φ′(u)]0 ·
−c1(F1)

ρ
.

Since this equation is purely topological, it also holds on the fibre at 0. We know by
Theorem 2.4.14 that

α|M =
c1(F1)

ρ

(recall that F is α−1-twisted).
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Firstly, note that we have [φ′(u)]0 = −1 as a consequence of Lemma 2.3.9, since
we are assuming that u · v = 1.

Secondly, we show that [φ′(u)]2 is integral. For this, we first show that we can
find a line bundle L on S1 and choose u = v(L).

Indeed, since the divisibility of v in N(S1) is 1, we can find a divisor D ∈ NS(S1)
such that gcd(r,D · E, s) = 1. Let L = OS1(D). Then v(L) = (1, D, D

2

2
− 1), and

we have v(L) · v = −r · (1
2
D2 − 1) − s +D · E. Note that r and s are divisible by

divN(S)(v), hence by replacing D by mD for some m ∈ Z we obtain v(L) · v ≡ 1
(mod divN(S)(v)).

We now show that, by replacing L with L(k) := L ⊗OS1(k) for k ≫ 0, we may
assume that G := Φ′(L) is locally free. It suffices to show that Rjp∗(q

∗L(k)⊗E∨1 ) = 0
for all j > 0 and k ≫ 0. For any point [K] ∈M1, we have natural maps

Rjp∗(q
∗L(k)⊗ E∨1 )[K] → Hj(S1,K ⊗ L(k)).

By boundedness of M1, all these cohomology groups vanish for all [K] ∈M1, j > 0
and k ≫ 0, which in turn implies that the Rjp∗(q

∗L(k)⊗ E∨1 )[K] vanish as well.
Note that this completes the proof, since we have

[φ′(u)]2 = [v(G)]2 = [c1(G)] ∈ H2(M1,Z).

Corollary 2.4.16. Let S be a K3 surface and let v ∈ N(S) be a Mukai vector with
v2 > 0. Let H be a v-generic polarisation of S. Then the moduli space MH(v) is fine
if and only if div(v) = 1.

For isotropic Mukai vectors, the conclusion of Corollary 2.4.16 follows immediately
from the work of Căldăraru [Căl00], as well as from the Derived Torelli Theorem 2.3.12.
In the higher-dimensional case, the fact that MH(v) is fine whenever div(v) = 1 was
already known, c.f. Proposition 2.3.7. The new part of Corollary 2.4.16 is that the
divisibility of the Mukai vector is 1 for higher-dimensional fine moduli spaces.



Chapter 3

Elliptic K3 Surfaces

3.1 Introduction

Study of derived equivalence for complex K3 surfaces goes back to the work of Mukai.
By the Derived Torelli Theorem [Muk87; Orl03], derived equivalence translates to
a Hodge-theoretic concept. Building on the Derived Torelli theorem, and Nikulin’s
work on lattices [Nik80], one can deduce a formula for the number of Fourier–Mukai
partners for a complex K3 surface [Ogu02; Hos+02].

Derived equivalences of elliptic K3 surfaces have been studied in [Ste04; Gee05].
One way to produce Fourier–Mukai partners of an elliptic surface f : X → P1, is to
take Jacobians Jk(X), which are moduli spaces parametrising stable torsion sheaves
supported on a fibre of f and having degree k ∈ Z. If k is coprime to the multisection
index of f , then Jk(X) is derived equivalent to X and we refer to Jk(X) as a coprime
Jacobian of X. This raises the question of whether the converse is also true:

Question 3.1.1. Is every Fourier–Mukai partner of an elliptic surface X a coprime
Jacobian of X?

Question 3.1.1 was asked in 2014 by Hassett and Tschinkel in the case X is a K3
surface [HT17, Question 20]. In fact, since elliptic K3 surfaces can have several non-
isomorphic elliptic fibrations, one can interpret this question differently depending
on whether we fix a fibration on X in advance or not.

For elliptic surfaces of non-zero Kodaira dimension, as well as for bielliptic and
Enriques surfaces, [BM01; BM19], Question 3.1.1 has an affirmative answer. We do
not know the answer in the abelian case.

One of our main results is the following answer to Question 3.1.1 for K3 surfaces:

Theorem 3.1.2 (See Corollaries 3.5.14 and 3.5.15). Let X be an elliptic K3 surface
of Picard rank 2. Let t be the multisection index of X and let 2d be the degree of a
polarisation on X. Denote m = gcd(d, t).

(i) If m = 1, then every Fourier–Mukai partner of X is isomorphic to a coprime
Jacobian of a fixed elliptic fibration on X;

(ii) If m = pk, for a prime p, then every Fourier–Mukai partner of X is isomorphic
to a coprime Jacobian of one of the two elliptic fibrations on X;

46
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(iii) If m is not a power of a prime, and X is very general with these properties, then
X admits Fourier–Mukai partners which are not isomorphic to any Jacobian
of any elliptic fibration on X.

Our method of proof of Theorem 3.1.2 relies on the Ogg–Shafarevich theory for
elliptic surfaces, the Derived Torelli Theorem and lattice theory. In addition we
introduce a new ingredient: a derived elliptic structure. The notion of the derived
elliptic structure goes into the direction of describing an elliptic structure on X
and its Fourier–Mukai partner in terms of the derived category Db(X). We define a
derived elliptic structure on a K3 surface X as a choice of an elliptic fibration on a
Fourier–Mukai partner of X. Using this language, Question 3.1.1 translates to the
question whether every derived elliptic structure on X is isomorphic to a coprime
Jacobian of an actual elliptic structure on X.

We proceed to completely classify derived elliptic structures, for an elliptic K3
surface X of Picard rank two, in terms of certain Lagrangian subgroups of the
discriminant lattice ANS(X) of the Neron-Severi lattice of X. The final answer, at
least when X is very general, is that the number of derived elliptic structures on X,
up to coprime Jacobians, equals 2ω(m) where m is as in Theorem 3.1.2 and ω(m) is
the number of distinct prime factors of m, that is ω(1) = 0, ω(pk) = 1 and ω(m) > 1
otherwise. This explains the condition on m appearing in Theorem 3.1.2.

Let us explain some difficulties that we encounter along the way. First of all,
elliptic K3 surfaces of Picard rank two can have one or two elliptic fibrations, and
in the latter case these elliptic fibrations are sometimes isomorphic. Thus, a direct
comparison between the number of coprime Jacobians and Fourier–Mukai partners
is complicated.

Secondly, many results that we state for arbitrary elliptic K3 surfaces X of Picard
rank two simplify considerably when X is very general. Indeed in this case, the
group GX of Hodge isometries of the transcendental lattice T (X) is trivial, that
is GX = {± id}. In general this is a finite cyclic group of even order |GX | ≤ 66.
This group appears in various bijections, similarly to how it appears in the counting
formula of Fourier–Mukai partners [Hos+02]. The set of isomorphism classes of
derived elliptic structures on X is in natural bijection with the set

L̃(AT (X))/GX ,

see Theorem 3.5.11. Here AT (X) is the discriminant lattice of the transcendental
lattice T (X), and L̃(AT (X)) denotes the set of Lagrangian elements (Definition 3.3.14).
Taking a coprime Jacobian Jk of an elliptic structure translates into multiplying the
corresponding Lagrangian element by k and changing elliptic fibrations on a given
surface corresponds to an involution which can be described intrinsically in terms
of AT (X). For very general X, GX = {± id}, and this group acts by multiplying
Lagrangian elements by − id. On the other hand, special X will have fewer Fourier–
Mukai partners and fewer coprime Jacobians, however they will still match perfectly
in cases (i) and (ii) of Theorem 3.1.2. See Example 3.4.24 for the most special (in
terms of the size of GX and Aut(X)) elliptic K3 surface.

Similarly, when considering very general elliptic K3 surfaces, every isomorphism
preserving the fibre class is necessarily an isomorphism over the base. This is
false in general, and this is important, because the Ogg–Shafarevich theory works
with elliptic surfaces over the base, whereas the natural equivalence relation is that



3.1. Introduction 48

of preserving the elliptic pencil. We provide a careful analysis of the difference
between isomorphism over P1 and isomorphism as elliptic surfaces, which can be
of independent interest. In particular, we are able to state which of the coprime
Jacobians Jk(X) of an elliptic K3 surface X are isomorphic as elliptic surfaces (resp.
over P1). Indeed, very general elliptic K3 surfaces with multisection index t have at
most ϕ(t)

2
coprime Jacobians, and the explicit number can be computed in all cases

as follows:

Proposition 3.1.3. (see Proposition 3.4.18) Let X be a complex elliptic K3 surface.
There exist explicitly defined cyclic subgroups BX ⊂ B̃X of (Z/tZ)∗, such that the
number of isomorphism classes of coprime Jacobians Jk(X) considered up to iso-
morphism over the base (resp. preserving the elliptic pencil) equals ϕ(t)/|BX | (resp.
ϕ(t)/|B̃X |).

The group BX can only be non-trivial if X is isotrivial with j-invariant 0 or 1728.
We give examples when BX and B̃X are non-trivial, and when they are different.

Applications

We deduce from Theorem 3.1.2 that zeroth Jacobians of derived equivalent elliptic
K3 surfaces are non-isomorphic in general (Corollary 3.5.17), that is passing to the
Jacobian can not be defined solely in terms of the derived category (Remark 3.5.18).

Furthermore, Theorem 3.1.2 is relevant every time potential consequences of
derived equivalence between K3 surfaces are considered. Let us explain two non-trivial
situations when the explicit or geometric form of derived equivalence is desirable.
The first is rational points over non-closed fields and the second is L-equivalence.

The motivation of Hassett–Tschinkel [HT17] was the question of existence of
rational points on derived equivalent elliptic K3 surfaces over non-closed fields.
Namely, since X and any of its coprime Jacobians Jk(X) are isogenous, it follows
that X has a rational point if and only if Jk(X) has a rational point by the Lang-
Nishimura theorem. Using Galois descent, as we know automorphism groups of
elliptic K3 surfaces quite explicitly, we can partially extend Theorem 3.1.2 to subfields
k ⊂ C, and deduce the implication about rational points of Fourier–Mukai partners
(see Corollary 3.5.22). We note that the question about the simultaneous existence
of rational points on derived equivalent K3 surfaces still seems to be open.

Another application for Theorem 3.1.2 is to the question of L-equivalence of
derived equivalent K3 surfaces X, Y [KS18]. For elliptic K3 surfaces the natural
strategy is to prove L-equivalence for the generic fibres, which are genus one curves
over the function field of the base, and then spread-out the L-equivalence over the
total space. This strategy has been realised in [SZ20] for elliptic K3 surfaces of
multisection index five. It follows from Theorem 3.1.2 that the same approach can
work when the multisection index t is a power of a prime (and d is arbitrary).

Structure of this chapter

In Section 3.2, we discuss the basic theory of elliptic K3 surfaces and derived
equivalence for K3 surfaces.

In Section 3.3, we study Néron–Severi lattices of elliptic K3 surfaces. We pay
special attention to elliptic K3 surfaces of Picard rank 2, and study their Néron–Severi
lattices in detail.
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In Section 3.4, we revise Ogg–Shafarevich theory for elliptic K3 surfaces. We
study functoriality of Ogg–Shafarevich theory and use this to study isomorphisms
of Jacobians. Such isomorphisms are governed by the automorphisms of the zeroth
Jacobian, and we describe this automorphism group. Finally, we study isotrivial
elliptic K3 surfaces.

In Section 3.5, we study derived equivalence for elliptic K3 surfaces. The results
of all the previous sections are combined to answer Question 3.1.1 for elliptic K3
surfaces of Picard rank 2. We also apply our results to study isomorphisms of zeroth
Jacobians, and partially extend our results to non-closed fields of characteristic 0.

In the Appendix to this chapter, we show how to count Fourier–Mukai partners
using the Counting Formula of [Hos+02], and we also give a relatively short proof
of the Counting Formula. We then study maps between moduli spaces of lattice-
polarised K3 surfaces. Finally, we study twisted derived equivalence for elliptic K3
surfaces.

This chapter is based on [MS24].

3.2 Preliminary Results

3.2.1 Derived Equivalence of K3 Surfaces

Our main references for derived equivalence for K3 surfaces are [Muk87; Orl03;
Huy06].

The most fundamental result about derived equivalence for K3 surfaces is the
Derived Torelli Theorem, which we already encountered in Section 2.3.2:

Theorem 3.2.1 (The Derived Torelli Theorem). [Muk87; Orl03] Let X and Y be
K3 surfaces. The following are equivalent:

i) There is an equivalence Db(X) ≃ Db(Y );

ii) There is a Hodge isometry H̃(X,Z) ≃ H̃(Y,Z);

iii) The K3 surface Y is isomorphic to a fine moduli space of sheaves on X. That
is, there is a Mukai vector v ∈ N(X) and a v-generic polarisation H on X
such that div(v) = 1, and Y ≃MH(v).

If Db(X) ≃ Db(Y ), we say that X and Y are derived equivalent and that Y is a
Fourier–Mukai partner of X.

Theorem 3.2.1 implies that in this case X and Y must have equal Picard numbers.
Moreover, recall from Lemma 2.2.1 that there is an isomorphism ANS(X) ≃ AT (X)(−1).
This shows that ANS(X) ≃ ANS(Y ), and since NS(X) and NS(Y ) have equal ranks
and signatures, it follows that they are in the same genus, see Definition 2.2.10 and
Lemma 2.2.12.

Definition 3.2.2. For a K3 surface X we write GX ⊂ O(T (X)) for the group of
Hodge isometries of T (X).

We have GX ≃ Z/2gZ for some integer g ≥ 1 satisfying ϕ(2g) | rkT (X) [Hos+02,
Appendix B].

From the Derived Torelli Theorem one can deduce:
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Theorem 3.2.3 (Counting Formula). [Hos+02] Let X be a K3 surface, and write
FM(X) for the set of isomorphism classes of Fourier–Mukai partners of X. Then

|FM(X)| =
∑
Λ

|O(Λ) \O(AΛ)/GX |

where the sum runs over isomorphism classes of lattices Λ which are in the same
genus as the Néron-Severi lattice NS(X). Furthermore, each summand computes the
number of isomorphism classes of Fourier–Mukai partners Y of X with NS(Y ) ≃ Λ.

In Appendix 3.A, we use the Counting Formula to count Fourier–Mukai partners
of certain elliptic K3 surfaces.

Definition 3.2.4. We say that a K3 surface X is T -general if GX = {± id} . A K3
surface that is not T -general is called T -special.

When X is T -general, the Counting Formula shows that the number of Fourier–
Mukai partners is maximal (for a fixed NS(X)) and only depends on NS(X). A
similar effect holds for the invariants we study, see Theorem 3.5.11. Thus it is
important to have explicit criteria for T -generality. If the Picard number ρ of X is
odd, then ϕ(2g) must be odd, so |GX | = 2 and X is T -general. Furthermore, we
have the following result going back to Oguiso [Ogu02]:

Lemma 3.2.5 ([SZ20, Lemma 3.9]). If X is a very general K3 surface in any
moduli space of lattice polarised K3 surfaces, with Picard number ρ < 20, then X is
T-general.

See Example 3.4.24 for an explicit T -special K3 surface.

3.2.2 Elliptic K3 Surfaces

Recall that an elliptic surface is a surface X which admits a surjective morphism
f : X → C where C is a smooth curve, such that the fibres of f are connected and
the genus of the generic fibre is 1 [IS96, §10]. Our elliptic surfaces will be assumed to
be relatively minimal, i.e. contain no (−1)-curves in the fibres of f ; this is automatic
for K3 surfaces. We say that an elliptic surface is isotrivial if all smooth fibres are
isomorphic.

For an elliptic K3 surface we have the base C ≃ P1. There are two natural
concepts of an isomorphism between elliptic K3 surfaces f : X → P1 and g : Y → P1.

Definition 3.2.6. (1) The surfaces X, Y are isomorphic as elliptic surfaces if there
exists an isomorphism X ≃ Y preserving the fibre classes, or equivalently there is a
commutative diagram

X
β

∼ //

f
��

Y

g
��

P1

β

∼ // P1.

In this case we say that the isomorphism X ≃ Y twists the base by β.
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(2) The surfaces X and Y are isomorphic over P1 if there is an isomorphism X ≃ Y
twisting the base by the identity, or equivalently if there exists a commutative
diagram

X
∼ //

f !!

Y

g
~~

P1.

Being isomorphic over P1 is more restrictive than being isomorphic as elliptic
surfaces. For example, for every β ∈ Aut(P1), f : X → P1 and βf : X → P1 are
isomorphic as elliptic surfaces, but usually not over P1.

Let S → P1 be an elliptic K3 surface with a fixed section. We denote by AutP1(S)
(resp. Aut(S, F )) the group of automorphisms of S over P1 (resp. automorphisms of
S preserving the fibre class). We have AutP1(S) ⊂ Aut(S, F ). We denote by AP1(S)
(resp. A(S, F )) the group of automorphisms of S over P1 (resp. preserving the fibre
class) which also preserve the zero-section. Such automorphisms will be called group
automorphisms (see e.g. [DM22]).

Remark 3.2.7. The category of relatively minimal elliptic surfaces and their iso-
morphisms over P1 is equivalent to the category of genus one curves over C(t) and
their isomorphisms. The functor is given by taking the generic fibre. This functor is
an equivalence e.g. by [IS96, Theorem 7.3.3] or [DM22, Theorem 3.3].

3.3 Lattices of Elliptic K3 Surfaces

3.3.1 Isotropic Vectors

We collect some basic facts about lattices of elliptic K3 surfaces. Let f : X → P1 be
an elliptic fibration of a K3 surface X. Let F ∈ NS(X) be the class of a fibre. By
the genus formula, we have F 2 = 0. Moreover, F is nef, and primitive, see [PS71].

Conversely, any primitive, nef, isotropic divisor D ∈ NS(X) is linearly equivalent
to a smooth, irreducible genus 1 curve [Huy16, Proposition 2.3.10]. Therefore, we
have |D| ≃ P1 and, the morphism X → |D| ≃ P1 is an elliptic fibration.

Definition 3.3.1. Let L be a lattice. An isotropic vector of L is a non-zero vector
v ∈ L with v2 = 0. An isotropic element of the discriminant group AL is a non-zero
element a ∈ AL such that a2 = 0.

The following is a well-known result, see for example [Huy16, §2.3] and [PS71].

Lemma 3.3.2. Let X be a K3 surface. The following is a one-to-one correspondence{
Aut(X)-orbits of non-zero, primitive,

nef, isotropic vectors in NS(X)

}
←→

{
Isomorphism classes of
elliptic fibrations of X

}
F 7−→ (X → |F |)

Proposition 3.3.3. [Huy16, Proposition 11.1.3(i)] Let X be a K3 surface. Then X
admits an elliptic fibration if and only if there is a non-zero class D ∈ NS(X) with
D2 = 0.



3.3. Lattices of Elliptic K3 Surfaces 52

Proposition 3.3.3 implies that a projective elliptic K3 surface has Picard rank
ρ ≥ 2. Namely, in this case, NS(X) contains a non-zero isotropic class F and an
ample divisor H. These cannot be proportional because H2 > 0 and F 2 = 0.

Definition 3.3.4. Let f : X → P1 be an elliptic fibration of a K3 surface X, and let
F ∈ NS(X) be the class of a fibre of f . A multisection of f is a smooth, irreducible
curve C ⊂ X such that C · F > 0, and the number C · F is called the degree of the
multisection C. The multisection index of f is the minimal degree of a multisection.
We usually denote the multisection index by t.

The following lemma is a well-known result about the multisection index, c.f.
[Huy16, §11.4], [Keu00].

Lemma 3.3.5. Let f : X → P1 be an elliptic fibration of a K3 surface X with
multisection index t and fibre class F ∈ NS(X). We have

t = div(F ) = gcd
D∈NS(X)

(D · F ) .

Proof. It suffices to show that for any divisor D ∈ NS(X) for which D ·F is positive,
there exists an effective divisor E which satisfies E · F = D · F . Let D ∈ NS(X) be
any divisor such that D · F > 0. If C ∈ NS(X) is a component of a singular fibre,
then C · F = 0. Therefore, we may assume that C is not contained in the support of
D. Then for n≫ 0,

(D + nF )2 = D2 + 2nD · F > 0,

and for any (−2)-curve C ∈ NS(X),

(D + nF ) · C = D · C + nC · F. (3.3.1)

If C is contained in a fibre, then D · C ≥ 0, since D is not supported on C,
and C · F = 0, hence (3.3.1) is non-negative for all n ∈ N. On the other hand,
if C is not contained in a fibre, then C · F > 0, so that (3.3.1) is positive for
n ≫ 0. This shows that D + nF is ample for n ≫ 0. Therefore h0(D + nF ) > 0
for n ≫ 0, so that D + nF is linearly equivalent to an effective divisor E with
E · F = (D + nF ) · F = D · F + nF 2 = D · F, as required.

Corollary 3.3.6. Let X be a K3 surface. Then X admits an elliptic fibration with
a section if and only if there is an embedding U ↪→ NS(X).

Proof. By Lemma 3.3.2 and Lemma 3.3.5, X admits an elliptic fibration with a
section if and only if there exists a primitive, nef, isotropic vector F ∈ NS(X) of
divisibility 1. Let D ∈ NS(X) be a divisor such that D · F = 1. In this case,
the sublattice ⟨D,F ⟩ ⊂ NS(X) is isometric to the hyperbolic plane U . Indeed, let
2m = D2, then ⟨D,F ⟩ = ⟨D − mF,F ⟩ and we have (D − mF )2 = 0 = F 2 and
(D −mF )F = 1.

Conversely, suppose that there is an embedding U ⊂ NS(X). Let F ∈ U be a
primitive, isotropic vector with div(F ) = 1, and choose D ∈ U such that D · F = 1.
By [Huy16, Remark 3.2.13], there exists an isometry σ ∈ O(NS(X)) such that
σ(F ) is nef. Since σ is an isometry, σ(F ) is primitive and we have σ(F )2 = 0 and
σ(F ) · σ(D) = 1. Therefore, σ(F ) is the fibre class of an elliptic fibration with a
section by Lemma 3.3.2 and Lemma 3.3.5.
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Note that U is unimodular, so that any embedding U ↪→ NS(X) is primitive and
induces an orthogonal decomposition NS(X) ≃ U ⊕ U⊥. The following result is a
consequence of the Counting Formula, but we present a more straightforward proof.

Proposition 3.3.7. [Hos+02, Proposition 2.7(3)] Let S → P1 be an elliptic K3
surface which admits a section. Then S has no non-trivial Fourier–Mukai partners.

Proof. Let S ′ be a Fourier–Mukai partner of S. We wish to prove that there is
an isomorphism S ≃ S ′. By the Derived Torelli Theorem 3.2.1, there exists a
Hodge isometry ψ̃ : H̃(S,Z) ≃ H̃(S ′,Z). Then ψ̃ restricts to a Hodge isometry
ψ : T (S) ≃ T (S ′). Since there exists an embedding U ↪→ NS(S) by Corollary 3.3.6,
the Hodge isometry ψ can be extended to a Hodge isometry H2(S,Z) ≃ H2(S ′,Z)
by Lemma 2.2.8. By the Torelli Theorem 2.2.24, there is an isomorphism S ≃ S ′, as
required.

3.3.2 Néron-Severi Lattices of Rank Two

We restrict our attention to elliptic K3 surfaces of Picard rank 2 following [Gee05;
Ste04].

Proposition 3.3.8. [Gee05, Remark 4.2], [SZ20, Lemma 3.3] Let X be an elliptic
K3 surface of Picard rank 2, and let F ∈ NS(X) be the class of a fibre of an elliptic
fibration of X of multisection index t. Then there exists a polarisation H on X such
that H,F form a basis of NS(X) and H · F = t. In particular, the Néron-Severi
lattice of X is given by a matrix of the form(

2d t

t 0

)
. (3.3.2)

We write Λd,t for the lattice of rank 2 with matrix (3.3.2) with respect to some
basis H,F . It is easy to see that the lattice Λd,t has exactly two isotropic primitive
vectors up to sign: one is F , and the other is

F ′ =
1

gcd(d, t)
(tH − dF ).

The following lemma describes when the class F ′ gives rise to another elliptic
fibration on X.

Lemma 3.3.9. [Gee05, §4.7] A K3 surface X with NS(X) ≃ Λd,t has two elliptic
fibrations if and only if d ̸≡ −1 (mod t). If d ≡ −1 (mod t), X admits one elliptic
fibration. If X is T -general, t > 2 and d ̸≡ −1 (mod t), then the two fibrations are
isomorphic (as elliptic surfaces) if and only if d ≡ 1 (mod t).

Corollary 3.3.10. Let X be a K3 surface with NS(X) ≃ Λd,t. Then every elliptic
fibration of X has the same multisection index t.

Proof. By Proposition 3.3.8, Lemma 3.3.9, and Lemma 3.3.2, X has either 1 or 2
elliptic fibrations up to isomorphism, with fibre classes given by F , and F ′ if F ′ is
nef. Let D = aH + bF ∈ NS(X) for some a, b ∈ Z. Then

D · F ′ =
1

gcd(d, t)

(
adt+ bt2

)
= t ·

(
a · d

gcd(d, t)
+ b · t

gcd(d, t)

)
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which is a multiple of t. Moreover, if we choose a and b so that ad+ bt = gcd(d, t),
we obtain D ·F ′ = t. Therefore, we have div(F ′) = t = div(F ), and the result follows
from Lemma 3.3.5.

Remark 3.3.11. We note that Corollary 3.3.10 no longer holds if we drop the
assumption that ρ = 2. For example, if X is a K3 surface with NS(X) = Λd,t ⊕
⟨−2(d+ t)⟩, with 1 < gcd(d, t) < t, the vector F +H +D is primitive and isotropic,
where D is a generator for ⟨−2(d + t)⟩ ⊂ NS(X). Moreover, it is not hard to see
that gcd(d, t) > 1 implies that NS(X) contains no (−2)-curves, so that F +H +D
and F are nef. However, the elliptic fibrations corresponding to F +H +D and F
via Lemma 3.3.2 have multisection indices

div(F +H +D) = gcd(d, t) < t = div(F ).

The existence of a K3 surface with NS(X) ≃ Λd,t ⊕ ⟨−2(d + t)⟩ is guaranteed by
the Surjectivity of the Period Map. Indeed, there exists a primitive embedding
Λd,t ⊕ ⟨−2(d+ t)⟩ ↪→ ΛK3 by [Nik80, Theorem 1.12.4].

More generally, whenever NS(X) contains two primitive, isotropic classes whose
divisibilities are not equal, X admits two elliptic fibrations with different multisection
indices. Indeed let F1 and F2 be two such classes, then there are isometries σ1, σ2 ∈
O(NS(X)) such that σi(Fi) is nef for i = 1, 2 (c.f. [Huy16, Remark 3.2.13]), hence
σ1(F1) and σ2(F2) correspond to elliptic fibrations with different multisection indices
via Lemma 3.3.2.

We denote by Ad,t the discriminant lattice of Λd,t and we have

|Ad,t| = t2.

It is easy to compute (see e.g. [Ste04, Proof of Lemma 3.2]) that the dual lattice
Λ∗
d,t is generated by

F ∗ =
−2d
t2

F +
1

t
H, H∗ =

1

t
F (3.3.3)

so that the images of (3.3.3) generate Ad,t.
The idea behind (3.3.3) is that F ∗ is the map F ∗ : NS(X) → Z satisfying

F ∗(H) = 0 and F ∗(F ) = 1, and H∗ satisfies similar equations.
Furthermore for a, b ∈ Z we have

q(aF ∗ + bH∗) =
2a(bt− ad)

t2
.

Lemma 3.3.12. The discriminant group Ad,t is isomorphic to Z/aZ⊕ Z/bZ with
a = gcd(2d, t) and b = t2/a. In particular, Ad,t is cyclic if and only if gcd(2d, t) = 1.

Furthermore, if Λ is a lattice in the same genus as Λd,t then Λ ≃ Λe,t with
gcd(2e, t) = gcd(2d, t).

Proof. The first claim follows by putting Λd,t into Smith normal form.
Let Λ be a lattice in the same genus as Λd,t. Following the proof of [HT17,

Proposition 16], Λ contains a primitive isotropic vector v. Hence, Λ ≃ Λe,s for some
e, s ∈ Z, s > 0. Comparing discriminant groups of Λd,t and Λe,s we obtain t = s and
gcd(2d, t) = gcd(2e, s).
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Example 3.3.13. Let d = 0, then by Lemma 3.3.12, A0,t ≃ Z/tZ⊕Z/tZ. Explicitly,
generators (3.3.3) of the dual lattice Λ∗

0,t are F ∗ = 1
t
H and H∗ = 1

t
F and their

images in A0,t are the two order t generators which are isotropic elements in A0,t.

We introduce some properties of the discriminant groups which we will need to
count Fourier–Mukai partners.

Definition 3.3.14. We call an isotropic element (see Definition 3.3.1) of order t
in Ad,t a Lagrangian element. We call a cyclic subgroup H ⊆ Ad,t of order t a
Lagrangian subgroup if every non-zero element of H is isotropic.

Definition 3.3.15. We denote by L̃(Ad,t) (resp. L(Ad,t)) the set of Lagrangian
elements (resp. Lagrangian subgroups) of Ad,t.

The main reason we are interested in studying Lagrangians of Ad,t is their
correspondence with Fourier–Mukai partners which we establish in Section 3.5.

Proposition 3.3.16. Let d, t be integers and let m = gcd(d, t). Then we have

| L̃(Ad,t)| = ϕ(t) · 2ω(m), |L(Ad,t)| = 2ω(m). (3.3.4)

Even though gcd(2d, t) is responsible for the structure of Ad,t, it is gcd(d, t) that
appears in Proposition 3.3.16. For instance, if d and t are coprime and t is even, the
discriminant group Ad,t is not cyclic, but |L(Ad,t)| = 1.

Proof. Any cyclic subgroupH ⊂ Ad,t of order t has ϕ(t) generators. H is a Lagrangian
subgroup if and only if its generator is a Lagrangian element. Thus the two formulas
in (3.3.4) are equivalent, and it suffices to prove the second one.

Let t =
∏

p p
kp be the prime factorisation of t. For any prime p, we have an

isomorphism of p-adic lattices Λd,t ⊗ Zp ≃ Λd,pkp ⊗ Zp (the isometry is given by
H 7→ H and F 7→ αF , where α is the unit in Zp given by αpkp = t). By [Nik80,
Proposition 1.7.1], Ad,t is isometric to the orthogonal direct sum of Ad,pkp over all
primes p. Therefore we have

|L(Ad,t)| =
∏
p

|L(Ad,pkp )|.

Therefore we need to prove that |L(Ad,pk)| = 1 if d is coprime to p and |L(Ad,pk)| = 2
otherwise. The result follows from Lemma 3.3.17 and Lemma 3.3.18 below.

Lemma 3.3.17. The elements

v =
1

t
F, v′ =

1

t
F ′ (3.3.5)

are primitive isotropic vectors in Λ∗
d,t and their images v and v′ in Ad,t generate

Lagrangian subgroups in Ad,t. We have ⟨v⟩ = ⟨v′⟩ if and only if m := gcd(d, t) = 1,
in which case

v′ = −d · v. (3.3.6)

Proof. The first part is a simple computation. The corresponding Lagrangian sub-
groups are equal if and only if v′ = 1

tm
(tH − dF ) = 1

m
H − d

tm
F is a multiple of

v = 1
t
F modulo Λd,t. This is only the case when m = 1.
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Lemma 3.3.18. Let t = pk with p a prime number and k ≥ 1. Then the subgroups
⟨v⟩, ⟨v′⟩ are the only Lagrangian subgroups of Ad,t.

Proof. Write d = ℓ · pn for some ℓ ∈ Z coprime to p and some n ≥ 0. Note that
whenever n ≥ k, we have d ≡ 0 (mod pk), so that Λd,pk ≃ Λ0,pk and we can assume
that d = 0. In this case we have v′ = F ∗ and it is easy to see that ⟨H∗⟩ and ⟨F ∗⟩
are the only Lagrangian subgroups of A0,pk (see Example 3.3.13). Therefore we may
assume 0 ≤ n < k.

In terms of generators (3.3.3) the quadratic form is given by

q(aF ∗ + bH∗) =
2a

p2k−n
(
bpk−n − aℓ

)
.

To find all Lagrangian subgroups, we start by describing the subgroup of elements
in Ad,t having order dividing t = pk. We consider the vectors (3.3.5) which in our
case are given by

v =
F

pk
, v′ =

H

pn
− ℓF

pk
.

Furthermore, the orders of v and v′ are equal to pk, and these elements satisfy a
relation

pn(ℓv + v′) = 0. (3.3.7)

There are two cases to consider now. If p > 2, then

(Ad,t)pk−tors =

〈
F

pk
,
H

pn

〉
= ⟨v, v′⟩.

The vectors v and v′ are isotropic and the discriminant form in terms of these
elements equals

q(av + bv′) =
2ab

pn
.

Hence an element av + bv′ is isotropic if and only pn divides ab. On the other hand,
if av + bv′ has order precisely pk, then at least one of a or b is coprime to p. Hence
isotropic elements of Ad,t of order pk are given by

av + bpn+jv′, apn+jv + bv′,

with both a and b coprime to p and j ≥ 0. Using (3.3.7) we can rewrite these types
of elements as

a′v, b′v′,

with a′ and b′ coprime to p. This finishes the proof in the p > 2 case.
If p = 2, then

1

2n+1
H · F =

2k

2n+1
and

1

2n+1
H2 = 2ℓ · 2n

2n+1

are both integers. This means that 1
2n+1H is an element of Ad,2k by (2.2.1), and we

have
(Ad,t)2k−tors =

〈
F

2k
,
H

2n+1

〉
⊋ ⟨v, v′⟩ =

〈
F

2k
,
H

2n

〉
.

However, a simple computation shows that all isotropic vectors are actually
contained in ⟨v, v′⟩ and the proof works in the same way as in the p > 2 case.



57 Chapter 3. Elliptic K3 Surfaces

Lemma 3.3.18 allows us to define a canonical involution on the set of Lagrangian
subgroups of Ad,t as follows. For H ⊂ Ad,t a Lagrangian, we take its primary
decomposition with respect to (2.2.2)

H =
⊕
p

Hp, Hp ⊂ A
(p)
d,t

with each Hp a Lagrangian in A
(p)
d,t . We set ιp(Hp) to denote the other Lagrangian

subgroup as determined by Lemma 3.3.18; in the case p does not divide d, ιp(Hp) = Hp.
We set

ι(H) :=
⊕
p

ιp(Hp) ⊂ Ad,t. (3.3.8)

The geometric significance of this involution is explained in Theorem 3.5.11. For now
we note that

ι(⟨v⟩) = ⟨v′⟩ (3.3.9)

for v, v′ defined in Lemma 3.3.17.

3.4 Tate–Shafarevich Twists and Jacobians

Given an elliptic K3 surface f : X → P1 and k ∈ Z we can define an elliptic K3
surface Jk(f) : Jk(X)→ P1, called the k-th Jacobian of X, as the moduli space of
sheaves supported at the fibres of f and having degree k [Huy16, Chapter 11].

More precisely, let F ∈ NS(X) be the class of the fibre of the elliptic fibration f .
Then F 2 = 0, and we define the k-th Jacobian of X to be the moduli space

Jk(X) :=M(0, F, k).

Here, we suppress the choice of a generic polarisation in the notation, since Jk(X) does
not depend on this choice. Since F 2 = 0, we have (0, F, k)2 = 0, and therefore Jk(X)
is a K3 surface. Moreover, Jk(X) admits a natural elliptic fibration Jk(X) → |F |
defined by sending a sheaf to its support. This is a two-dimensional example of
a Beauville–Mukai system. We discuss Beauville–Mukai systems in more detail in
Chapter 4.

The degree-0 Jacobian is the most important one, and we usually denote it by
S := J0(X). The reason J0(X) is so important is that the natural elliptic fibration
on J0(X) comes equipped with a distinguished section. This means that the generic
fibre J0(X)η is an elliptic curve over Spec(C(η)), whereas the generic fibre of X → P1

may not have a rational point over C(η). The generic fibre Xη is a so-called torsor
of Sη. The set of isomorphism classes of Sη-torsors carries a natural group structure,
and this group is called the Weil–Châtelet group of Sη, denoted WC(Sη). For any
k ∈ Z, Jk(X)η is an Sη-torsor. Moreover, there exist infinitely many other elliptic
K3 surfaces Y → P1 for which Yη is an Sη-torsor, and there exist infinitely many
Sη-torsors that do not arise as the generic fibre of an elliptic K3 surface. Those
that do, form a subgroup of WC(Sη) called the Tate–Shafarevich group of S. In this
section, we study the Tate–Shafarevich group of an elliptic K3 surface with a section
and compare it to its Brauer group.
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3.4.1 Ogg–Shafarevich Theory for K3 Surfaces

Ogg–Shafarevich theory relates elements in the Brauer group Br(S) of an elliptic K3
surface S with a section, to S-torsors. For our purposes, the following definition of a
torsor is convenient. Our main references for Tate–Shafarevich groups are [DG94;
Fri98; Căl00; DP08; Huy16].

Definition 3.4.1. Let f : S → P1 be an elliptic K3 surface with a section. An
f-torsor is a pair (g : X → P1, θ) where g : X → P1 is an elliptic K3 surface and
θ : J0(X)→ S is an isomorphism over P1 preserving the zero-sections, i.e. a group
isomorphism over P1.

An isomorphism of f -torsors (g : X → P1, θ) and (h : Y → P1, η) is an isomor-
phism γ : X → Y over P1 such that

J0(X)
J0(γ)

//

θ
""

J0(Y )

η
||

S

commutes.

Example 3.4.2. If X is an elliptic K3 surface, then X has a natural structure
(X, idJ0(X)) of a torsor over J0(X). Since J0(Jk(X)) = J0(X) (this can be checked e.g.
using Remark 3.2.7), all Jacobians Jk(X) also have a natural J0(X)-torsor structure.

The set of isomorphism classes of torsors of f : S → P1 is in bijection with
the Tate–Shafarevich group of f : S → P1 [Huy16, 11.5.5(ii)], and we denote it
Ш(f : S → P1) or just Ш(S) if it can not lead to confusion.

A different, but equivalent, way to view the Tate–Shafarevich group is as follows.
Let X → P1 be an elliptic K3 surface with S := J0(X). For any point t ∈ P1, there
is an isomorphism of fibres Xt ≃ St. Moreover, there is an étale cover {Ui}i of P1,
together with isomorphisms SUi

≃ XUi
, hence X is obtained as a "regluing" of S.

The details of this construction are given in for example [Căl00, §4.2] and [DP08,
Chapter 2], and similar constructions for higher-dimensional fibrations can be found
in [Mar14] and [AR23]. The upshot is that there is a natural isomorphism

Ш(S) ≃ H1
ét(P1,X ),

where X is the sheaf of étale local sections of S → P1 [Huy16, Proof of Proposition
5.6].

We now discuss a third way to view the Tate–Shafarevich group. Let X → P1

be an elliptic K3 surface. If we write S = J0(X), then the natural elliptic fibration
S → P1 has a section, turning the generic fibre J0(S)η into an elliptic curve over the
function field C(η). Moreover, Xη is naturally a torsor over the abelian variety Sη.
Recall that the group of torsors of a group scheme G is called the Weil-Châtelet group
of G, denoted WC(G). By the discussion above, there is a group homomorphism

Ш(S)→WC(Sη) (3.4.1)

defined by sending an S-torsor X → P1 to its generic fibre Xη. Moreover, this
morphism is injective. Indeed, suppose X → P1 is an S-torsor such that Xη is the
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trivial Sη-torsor. Then Xη has a C(η)-rational point whose closure is a section of
X → P1, hence X → P1 is the trivial S-torsor by Lemma 3.4.5.

However, the group homomorphism (3.4.1) is not surjective. More precisely, there
exist Sη-torsors whose unique relatively minimal models are not K3 surfaces. This is
the content of the following proposition, see also [Huy16, Proposition 11.5.4, Corollary
11.5.5]1, [Fri98; DG94]. For a variety T over a field k, and t ∈ T a (not necessarily
closed) point, we denote by k(t) the fraction field of the strict Henselisation of the
stalk OT,t. Recall that the strict Henselisation of OT,t is the stalk of OT at t in the
étale topology. For a T -scheme X → T , we denote Xt := X ×Spec(k(η)) Spec(k(t)),
where k(η) is the fraction field of the generic point η ∈ T .

Proposition 3.4.3. Let S → P1 be an elliptic K3 surface with a section. Then there
is an exact sequence

0→Ш(S)→WC(Sη)→
⊕
t∈P1

WC(St)→ 0.

Another consequence of Proposition 3.4.3 is that the relatively minimal model
X → P1 of an Sη-torsor is a K3 surface if and only if for every point t ∈ P1, there
is an étale open neighbourhood t ∈ U ⊂ P1 such that XU has a k(U)-point. That
is, if and only if étale locally, X → P1 admits sections. This occurs precisely when
X → P1 has no multiple fibres. By multiple fibres, we mean fibres whose irreducible
components are all non-reduced.

The following theorem is known as Ogg–Shafarevich theory for elliptic K3 surfaces,
see [Huy16, Corollary 11.5.5].

Theorem 3.4.4 (Ogg–Shafarevich Theory). If S → P1 is an elliptic K3 surface with
a section, then there is an isomorphism

Br(S) ≃Ш(S). (3.4.2)

The isomorphism (3.4.2) can be constructed in the following way. Consider an
S-torsor (X → P1, θ) ∈ Ш(S). The isomorphism θ : J0(X) ≃ S exhibits S as a
moduli space of sheaves on X. In particular, the obstruction to the existence of
a universal sheaf on X × S is a Brauer class αX ∈ Br(S), c.f. Section 2.3.2. The
isomorphism (3.4.2) is the one that sends (X → P1, θ) to αX (see for example [Căl00,
Theorem 4.4.1]). One of the main goals of this section is to understand how αX
changes when we change θ, so it would be more precise to include θ in the notation.
However, to keep the notation light, we do not do that.

Recall that there is an isomorphism Br(S) ≃ Hom(T (S),Q/Z) (see Lemma
2.2.34), so that we may consider αX as a group homomorphism αX : T (S)→ Q/Z.

Lemma 3.4.5. Let (X, θ) be an S-torsor. Let t be the order of αX ∈ Br(S).

i) X has a section if and only if αX = 0, in which case X is isomorphic to S as
an S-torsor.

ii) For all k ∈ Z we have αJk(X) = k · αX .

1See the erratum to [Huy16, Corollary 11.5.5] that was posted on https://www.math.uni-
bonn.de/people/huybrech/ErratumK3.html
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iii) The multisection index of X equals t.

iv) We have a Hodge isometry T (X) ≃ Ker(αX : T (S)→ Z/tZ).

Proof. (i) It follows by construction that all S-torsor structures on S are isomorphic,
and correspond to 0 ∈ Br(S) under (3.4.2). Thus, if αX = 0, then X is isomorphic
as S-torsor to S, in particular X and S are isomorphic as elliptic surfaces, hence X
has a section. Conversely, if X has a section, then we have S ≃ J0(X) ≃ X hence
X is isomorphic as a torsor to some torsor structure on S, so that αX = 0 by the
argument above.

Part (ii) is [Căl00, Theorem 4.5.2] and part (iv) is [Căl00, Theorem 5.4.3].
(iii) For a K3 surface X with a chosen elliptic fibration let us write ind(X) for

the multisection index of the fibration. Since Jind(X)(X) admits a section, we have
Jind(X)(X) ≃ S as torsors by (i). It follows using (ii) that 0 = αJind(X)(X) = ind(X)αX
hence ord(αX) divides ind(X). To prove their equality we use [Huy06, Ch. 4, (4.5),
(4.6)] to deduce that for all k ∈ Z

ind(Jk(X)) =
ind(X)

gcd(ind(X), k)
.

In particular,

1 = ind(Jord(αX)(X)) =
ind(X)

gcd(ind(X), ord(αX))
=

ind(X)

ord(αX)

so that ind(X) = ord(αX), which proves part (ii).

3.4.2 Functoriality of Ogg–Shafarevich Theory

In what follows, we sometimes write C, C ′ for bases of elliptic fibrations when they
are not canonically isomorphic.

Lemma 3.4.6. Let X → C and X ′ → C ′ be elliptic K3 surfaces with zeroth
Jacobians S → C and S ′ → C ′, respectively. Then an isomorphism of elliptic
surfaces γ : X ≃ X ′ which twists the base by β : C → C ′ (see Definition 3.2.6),
induces a group isomorphism J0(γ) : S ≃ S ′ twisting the base by β.

Proof. When β is the identity, this is a standard result which follows immediately
from Remark 3.2.7. For the general case, see [DM22, §3, (3.3)].

Let S → P1 be an elliptic K3 surface with a section. Recall that we denote
by AP1(S) (resp. A(P1, F )) the group of group automorphisms of S over P1 (resp.
group automorphisms of S preserving the fibre class F ∈ NS(S)). We have AP1(S) ⊂
A(S, F ), and we are interested in the orbits of these two groups acting on the Brauer
group Br(S). We do this more generally, by explaining functoriality of Ш(S) and
Br(S) with respect to S.

Let f : S → C and f ′ : S ′ → C ′ be elliptic K3 surfaces with fixed sections.
Assume that there exists a group isomorphism β : S ≃ S ′ twisting the base by
β : C ≃ C ′. We define a map β∗ : Ш(f : S → C)→Ш(f ′ : S ′ → C ′) as follows:

β∗(g : X → C, θ) = (β ◦ g : X → C ′, β ◦ θ).
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Note that the element on the right-hand side belongs to Ш(f ′) by Lemma 3.4.6.
Furthermore, in the same setting, we define

β∗ : Hom(T (S),Q/Z)→ Hom(T (S ′),Q/Z)

by β∗(α) = α ◦ β∗, where β∗ : T (S ′) → T (S) is the Hodge isometry induced by β.
It is important for applications that these two pushforwards are compatible with
(3.4.2):

Lemma 3.4.7. Let f : S → C and f ′ : S ′ → C ′ be elliptic K3 surfaces with fixed
sections, and let β : S ≃ S ′ be a group isomorphism twisting the base by β. Then
there is a commutative square of isomorphisms

Ш(f : S → C)
β∗

//

��

Ш(f ′ : S ′ → C ′)

��

Hom(T (S),Q/Z) β∗
// Hom(T (S ′),Q/Z),

(3.4.3)

where the vertical arrows are induced by Lemma 2.2.34 and (3.4.2).

Proof. The vertical arrows in (3.4.3) are the compositions of the vertical maps
in the following diagram, with cohomology groups in étale and analytic topology
respectively:

Ш(f : S → C)
β∗

//

��

Ш(f ′ : S ′ → C ′)

��

H1(C,X0)
(1)

//

��

H1(C ′,X ′
0)

��

H2(S,Gm)
(2)

//

��

H2(S ′,Gm)

��

H2
an(S,O∗

S)tors
(3)

//

(4)

��

H2
an(S

′,O∗
S′)tors

(4)

��

Hom(T (S),Q/Z) β∗
// Hom(T (S ′),Q/Z),

(3.4.4)

c.f. [Huy16, Corollary 11.5.6]. Here X0 and X ′
0 are the sheaves of étale local sections of

f and f ′, respectively. The horizontal arrows (1), (2), (3) are induced by β∗X0 ≃ X ′
0

and β∗Gm ≃ Gm. Arrows (4) are induced by the exponential sequence. One can
check commutativity for each square in (3.4.4), and this gives the desired result.

Proposition 3.4.8. Let f : S → C, f ′ : S ′ → C ′ be elliptic K3 surfaces with sections.
Let (g : X → C, θ), (g′ : X ′ → C ′, θ′) be torsors for f and f ′ respectively. Then
there is a group isomorphism β : S ≃ S ′, twisting the base by β : C ≃ C ′ and such
that β∗(g, θ) ≃ (g′, θ′) if and only if there is an elliptic surface isomorphism X ≃ X ′

twisting the base by β.

Proof. Suppose there is a group isomorphism β : S ≃ S ′ twisting the base by β and
such that β∗(g, θ) = (g′, θ′). Then it follows from the definition of β∗ that there is
an elliptic surface isomorphism X ≃ X ′ twisting the base by β. Conversely, suppose
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there is an elliptic surface isomorphism γ : X ≃ X ′ twisting the base by β. Consider
the isomorphism β := θ′◦J0(γ)◦θ−1 : S → S ′. We can compute β∗(g, θ), decomposing
β∗ as a composition of isomorphisms

Ш(S)
θ−1
∗→ Ш(J0(X))

J0(γ)∗−−−→Ш(J0(X ′))
θ′∗→Ш(S ′)

to see that β∗(g, θ) = (g′, θ′).

Remark 3.4.9. The proof of Proposition 3.4.8 in fact shows that given (g, θ), (g′, θ′)
as in the statement, the set of isomorphisms between elliptic fibrations g and g′

twisting the base by β (and ignoring the choice of θ, θ′) is in natural bijection with
the set of group isomorphisms β between S and S ′ twisting the base by β together
with a chosen isomorphism γ between β∗(g, θ) and (g′, θ′).

It will be more convenient for us to work with the Brauer group instead of the
Tate–Shafarevich group:

Proposition 3.4.10. Using the same notation as in Proposition 3.4.8, there is
a group isomorphism β : S ≃ S ′, twisting the base by β : C ≃ C ′ and such that
β∗αX = αX′ if and only if there is an elliptic surface isomorphism X ≃ X ′ twisting
the base by β.

Proof. This follows immediately from Proposition 3.4.8 and Lemma 3.4.7.

Corollary 3.4.11. Let g : X → C, g′ : X ′ → C ′ be elliptic K3 surfaces which are
isomorphic via an isomorphism which twists the base by β : C → C ′. Then for all
k ∈ Z, there exists an elliptic surface isomorphism Jk(X) ≃ Jk(X ′) twisting the base
by β.

Proof. Let S → C and S ′ → C ′ be the zeroth Jacobians of X → C and X ′ → C ′,
respectively. By Proposition 3.4.10, there is a group isomorphism β : S → S ′ such
that β∗αX = αX′ . This means that β∗(k · αX) = k · β∗αX = k · αX′ for all k ∈ Z.
Since the Brauer classes of Jk(X)→ C and Jk(X ′)→ C ′ are k · αX and k · αX′ , the
result follows from Proposition 3.4.10.

Corollary 3.4.12. Let S → C be an elliptic K3 surface with a section. The
set of A(S, F )-orbits (resp. AC(S)-orbits) of Br(S) parametrises S-torsors up to
isomorphism as elliptic surfaces (resp. up to isomorphism over C).

Proof. We put S = S ′ in Proposition 3.4.10, consider S-torsors (X, θ) and (X ′, θ′)
and write αX , αX′ ∈ Br(S) for the corresponding Brauer classes. By Proposition
3.4.10 there is an isomorphism between elliptic surfaces X, X ′ twisting the base (resp.
over the base) if and only if there exists β ∈ A(S, F ) (resp. β ∈ AC(S)) such that
β∗(αX) = αX′ . Thus the resulting sets of orbits are as stated in the Corollary.

Example 3.4.13. The automorphism β = −1 ∈ AC(S) acts on Br(S) as multiplica-
tion by −1. This way we always have (at least) two torsor structures on every elliptic
K3 surface X. If X has no sections, these two torsor structures are isomorphic if
and only if αX ∈ Br(X) has order two, which by Lemma 3.4.5 is equivalent to X
having multisection index two.
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We write EllK3 for the set of isomorphism classes of elliptic K3 surfaces (iso-
morphisms are allowed to twist the base). We can express Ogg–Shafarevich theory
as a natural bijection between EllK3 and the set of isomorphism classes of twisted
Jacobian K3 surfaces.

Definition 3.4.14. A twisted Jacobian K3 surface is a triple (S, f, α) where S is a
K3 surface with elliptic fibration f together with a fixed section, and α is a Brauer
class on S.

An isomorphism of two twisted Jacobian K3 surfaces (S, f : S → C, α) and
(S ′, f ′ : S ′ → C ′, α′) is a group isomorphism β : S ≃ S ′ such that β∗α = α′. We write
BrK3 for the set of isomorphism classes of twisted Jacobian K3 surfaces. The above
results show the following.

Theorem 3.4.15. The map EllK3→ BrK3 given by (X, g) 7→ (J0(X), J0(g), αX) is
a bijection.

Proof. From Proposition 3.4.10, it follows that the map EllK3 → BrK3 is well-
defined and injective. For surjectivity, let (S, f, α) ∈ BrK3. Using the isomorphism
(3.4.2), we obtain an S-torsor (g : X → P1, θ : J0(X) ≃ S) ∈Ш(f) corresponding
to α. In particular, the map EllK3→ BrK3 assigns (X, g) 7→ (J0(X), J0(g), θ−1

∗ α) ≃
(S, f, α).

3.4.3 Isomorphisms of Jacobians

Lemma 3.4.16. [Căl00, Theorem 4.5.2] Let X be an elliptic K3 surface, and let
k, ℓ ∈ Z. Then we have Jk(Jℓ(X)) ≃ Jkℓ(X) as torsors over J0(X).

Proof. By Lemma 3.4.5, we have [Jk(Jℓ(X))] = k · [Jℓ(X)] = kℓ · [X] = [Jkℓ(X)] in
the Tate–Shafarevich group of J0(X). In particular, we have Jk(Jℓ(X)) ≃ Jkℓ(X) as
torsors over J0(X).

Let t be the multisection index of X. We are especially interested in those
Jacobians for which gcd(k, t) = 1.

Definition 3.4.17. Let X → P1 be an elliptic K3 surface with multisection index t.
Let k ∈ Z be an integer such that gcd(k, t) = 1. Then the Jacobian Jk(X) is called
a coprime Jacobian of X.

By Theorem 3.5.1 below, every coprime Jacobian is a Fourier–Mukai partner of
X. For all k ∈ Z, we have well-known isomorphisms over P1:

Jk+t(X) ≃ Jk(X), J−k(X) ≃ Jk(X). (3.4.5)

Here the first isomorphism follows by adding the multisection on the generic fibre,
and then spreading out as in Remark 3.2.7, and the second isomorphism can be
obtained, by the same token, from the dualisation of line bundles, or alternatively
deduced from Proposition 3.4.10 with β acting by −1 on the fibres (see Example
3.4.13).

We see that there are at most ϕ(t)/2 isomorphism classes of coprime Jacobians
of X. The goal of the next result is to be able to compute this number precisely, see
(3.4.11) for what this count will look like. Recall that a K3 surface X is T -general if
GX =

{
± idT (X)

}
, where GX is the group of Hodge isometries of T (X).
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Proposition 3.4.18. Let X → P1 be an elliptic K3 surface with multisection
index t > 2. Then Jk(X) ≃ Jℓ(X) as J0(X)-torsors if and only if k ≡ ℓ (mod t).
Furthermore there exist subgroups BX ⊂ B̃X ⊂ (Z/tZ)∗, such that for k, ℓ ∈ (Z/tZ)∗
we have

Jk(X) ≃ Jℓ(X) over P1 ⇐⇒ kℓ−1 ∈ BX ,

and
Jk(X) ≃ Jℓ(X) as elliptic surfaces ⇐⇒ kℓ−1 ∈ B̃X .

Furthermore, BX is a cyclic group of order 2, 4 or 6, containing {±1} and the case
BX ≃ Z/4Z (resp. the case BX ≃ Z/6Z) can occur only if X is an isotrivial elliptic
fibration with j-invariant j = 1728 (resp. j = 0).

Finally, if X is T -general, then BX = B̃X = {±1}, that is in this case Jk(X) and
Jℓ(X) are isomorphic over P1 if and only if they are isomorphic as elliptic surfaces
if and only if k ≡ ±ℓ (mod t).

In the statement we excluded the trivial cases t = 1, 2 because such elliptic K3
surfaces do not admit non-trivial coprime Jacobians.

Before we give the proof of the proposition, we need to set up some notation.
Let S be an elliptic K3 with a section. For any subgroup H ⊂ A(S, F ) and any
class α ∈ Br(S) let Hα be the subgroup of H consisting of elements β ∈ H with
the property β∗(⟨α⟩) ⊂ ⟨α⟩. Considering the action of Hα on ⟨α⟩ = Z/tZ we get a
natural homomorphism Hα → (Z/tZ)∗ and we define

H
α
:= Im(Hα → (Z/tZ)∗).

Proof of Proposition 3.4.18. Write S = J0(X). We consider the following subgroups
of (Z/tZ)∗:

BX := AP1(S)
αX (3.4.6)

B̃X := A(S, F )
αX
. (3.4.7)

We have BX ⊂ B̃X , and −1 ∈ AP1(S) induces −1 ∈ (Z/tZ)∗, in particular {±1} ⊂
BX . Note that we are assuming t > 2, hence −1 ̸≡ 1 (mod t).

By Corollary 3.4.11, Jk(X) and Jℓ(X) are isomorphic over P1 if and only if
Jℓ

−1

(Jk(X)) and Jℓ
−1

(Jℓ(X)) are isomorphic over P1. Here ℓ−1 is any integer such
that ℓℓ−1 ≡ 1 (mod t). By Lemma 3.4.16, we have Jℓ

−1

(Jk(X)) ≃ Jkℓ
−1

(X) and
Jℓ

−1

(Jℓ(X)) ≃ Jℓℓ
−1

(X) ≃ J1(X) over P1, where the last isomorphism follows from
(3.4.5). By Corollary 3.4.12, this occurs if and only if kℓ−1 ∈ BX . By the same
argument, Jk(X) and Jℓ(X) are isomorphic as elliptic surfaces if and only if Jkℓ

−1

(X)

and X are isomorphic as elliptic surfaces if and only if kℓ−1 ∈ B̃X . The group BX is a
quotient of a subgroup of A(S, F ). The latter group, by Remark 3.2.7, is isomorphic
to the group of elliptic curve automorphisms of the generic fibre of S. Thus, A(S, F )
(and hence B) is isomorphic to Z/2Z, unless the j-invariant equals 1728 or 0 in which
case A(S, F ) (and hence BX) can be Z/4Z or Z/6Z respectively.

It remains to prove that BX = B̃X = {±1} if X is T -general. By Proposition
3.4.10, an isomorphism X ≃ Jk(X) as elliptic surfaces would induce a group auto-
morphism β of S = J0(X) satisfying β∗αX = k · αX . This means that T (S) admits a
Hodge isometry σ, which maps T (X) = Ker(αX) to itself. By T -generality, we get
σ = ± id so that β∗ = ±1 and hence k ≡ ±1 (mod t).
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Corollary 3.4.19. If A(J0(X), F ) = AP1(J0(X)) then isomorphism classes of co-
prime Jacobians over P1 are the same as isomorphism classes of coprime Jacobians
as elliptic surfaces.

Proof. This follows from Proposition 3.4.18 as in this case BX = B̃X by construction.

Corollary 3.4.19 applies when singular fibres of X → P1 lie over a non-symmetric
set of points Z ⊂ P1, that is when β ∈ Aut(P1) satisfies β(Z) = Z only for β = id.
On the other hand, if Z is symmetric, and this symmetry can be lifted to an
automorphism of J0(X), we typically have BX ⊊ B̃X . For an explicit such surface,
see Example 3.4.28.

3.4.4 Automorphisms and Hodge Isometries

Let S → P1 be an elliptic K3 surface with a section. We saw in the previous section
that the group A(S, F ), of automorphisms of S which preserve the elliptic fibration
and the section, controls the isomorphisms of S-torsors. In this section, we investigate
the group A(S, F ) in the case S has Picard rank 2. We also give a full description of
the automorphism group Aut(S) in terms of the group of Hodge isometries of T (S),
denoted GS (see Definition 3.2.2).

Lemma 3.4.20. If X is a K3 surface of Picard rank 2, then GX is a cyclic group
of one of the following orders:

2, 4, 6, 8, 10, 12, 22, 44, 50, 66.

Proof. The fact that GX is a finite cyclic group of even order 2g where ϕ(2g)| rkT (X)
is proved in [Hos+02, Appendix B]. We solve the equation ϕ(2g) | 20. Possible
primes that can appear in the prime factorisation of 2g are 2, 3, 5, 11. Maximal
powers of these primes such that ϕ(pk) | 20 are 23, 3, 52, 11 and the result follows by
combining these or smaller prime powers.

Proposition 3.4.21. Let X be an elliptic K3 surface of Picard rank 2. Then we
have a canonical isomorphism

Aut(X) ≃ Ker
(
GX → O

(
AT (X)

)
/O+

(
NS(X)

))
,

where O+(NS(X)) is the group of isometries of NS(X) that preserve the ample cone.
In particular, Aut(X) is a finite cyclic group and |Aut(X)| ≤ 66. Moreover, for any
elliptic fibration X → P1, the isomorphism above induces an isomorphism

Aut(X,F ) ≃ Ker
(
GX → O(AT (X))

)
, (3.4.8)

where Aut(X,F ) is the group of automorphisms which fix the fibre class F of the
elliptic fibration.

Proof. By the Torelli Theorem 2.2.24, there is a bijection between automorphisms of
X and Hodge isometries of H2(X,Z) which preserve the ample cone. Using [Nik80,
Corollary 1.5.2], we can write

Aut(X) ≃
{
(σ, τ) ∈ GX ×O+(NS(X)) | σ = τ ∈ O(AT (X))

}
. (3.4.9)
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This isomorphism induces a surjective map (σ, τ) 7→ σ

Aut(X)→ Ker
(
GX → O(AT (X))/O

+(NS(X))
)
. (3.4.10)

The kernel of this map consists of the pairs (idT (X), τ) ∈ GX ×O+(NS(X)) such that
τ = idAT (X)

.
We claim that the homomorphism O+(NS(X)) → O(AT (X)) is injective. Since

NS(X) contains four isotropic vectors±F,±F ′, and− id ∈ O(NS(X)) never preserves
the ample cone, we note that O+(NS(X)) must be either trivial, or isomorphic to
Z/2Z with non-trivial element swapping F with F ′. The latter case is only possible
when F ′ represents a class of an elliptic fibration on X, which by Lemma 3.3.9
corresponds to the case d ̸≡ −1 (mod t). Then 1

t
F and 1

t
F ′ represent distinct classes

in AT (X) (see (3.3.6)) and the element of O+(NS(X)) swapping F and F ′ has a
non-trivial image in O(AT (X)). Thus, since O+(NS(X))→ O(AT (X)) is injective, the
map (3.4.10) is a bijection. The claim about isomorphism type of |Aut(X)| follows
from Lemma 3.4.20. For the last statement, note that the only element of O+(NS(X))
which fixes F is the identity. Therefore, (3.4.8) also follows from (3.4.9).

Example 3.4.22. LetX be an elliptic K3 surface with NS(X) ≃ Λd,t and assume that
gcd(2d, t) = 1. In this case Ad,t is cyclic of order t2 by Lemma 3.3.12. An isometry
σ ∈ O(Ad,t) is given by multiplication by a unit α ∈ Z/t2Z with α2 ≡ 1 (mod t), so
that the group O(Ad,t) is 2-torsion. Thus by Proposition 3.4.21, Aut(X) ⊂ GX is a
cyclic subgroup of index one or two.

Lemma 3.4.23. Let S and S ′ be K3 surfaces of Picard rank 2 which admit elliptic
fibrations with a section. Then every Hodge isometry between T (S) and T (S ′) lifts
to a unique isomorphism between S and S ′. In particular, we have Aut(S) ≃ GS.
Finally, S admits a unique elliptic fibration with a unique section, hence every
automorphism of S is a group automorphism.

Proof. By Proposition 3.3.8 we have NS(S) ≃ Λd,1, which is isomorphic to the
hyperbolic lattice U , in particular NS(S) is unimodular and ANS(S) = 0. If there is a
Hodge isometry between T (S) and T (S ′), extending it to a Hodge isometry between
H2(S,Z) and H2(S ′,Z) preserving the ample cones, we obtain S ≃ S ′, by the Torelli
Theorem, as in the proof of Proposition 3.4.21. Thus we may assume that S = S ′ in
which case the result follows Proposition 3.4.21.

By Lemma 3.3.9, S admits a unique elliptic fibration. Since NS(S) = U , there is a
unique (−2)-curve which intersects the fibres of the elliptic fibration with multiplicity
1, i.e. a unique section.

Example 3.4.24. Let S → P1 be the elliptic K3 surface with a section given by the
Weierstrass equation y2 = x3 + t12 − t. This surface is isotrivial with j-invariant 0.
It was studied in [Keu16] and [Kon92]. We have rkNS(S) = 2, and S is T -special.
In fact, the group GS is cyclic of order 66, and S is unique with this property.
Furthermore, Aut(S) ≃ Z/66Z by Lemma 3.4.23. The action of the subgroup
Z/6Z ⊂ Aut(S) commutes with projection to P1 and rescales x and y coordinates,
and the subgroup Z/11Z ⊂ Aut(S) preserves the fibre class F ∈ NS(S) and induces
an order 11 automorphism t 7→ ζ11t on P1.

Corollary 3.4.25. Let X be a T-general elliptic K3 surface of Picard rank 2 and
multisection index t > 2, then Aut(X,F ) = {id} .
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Proof. By Proposition 3.4.21, there is an isomorphism Aut(X,F ) ≃ Ker(GX →
O(AT (X))). We have GX = {± id} by assumption. Since t > 2, and AT (X) has order
t2, we see that − id acts non-trivially on AT (X). Thus Ker(GX → O(AT (X))) is
trivial.

3.4.5 Special Isotrivial Elliptic K3 Surfaces

By a j-special isotrivial elliptic K3 surface we mean an elliptic K3 surface with
smooth fibres all having j-invariant 0 or 1728.

Remark 3.4.26. There exist Picard rank 2 isotrivial K3 surfaces with j = 0 (see
Example 3.4.24), however for j = 1728 the minimal rank is 10 for the following
reason. Let X be an isotrivial elliptic K3 surface X with j = 1728. The zeroth
Jacobian S of X will have a Weierstrass equation y2 = x3+F (t)x with F (t) a degree
8 polynomial in t. We have ρ(S) = ρ(X). By semicontinuity of the Picard rank we
may assume that F (t) has distinct roots. In this case S has eight singular fibres, and
the Weierstrass equation has ordinary double points at the singularities of the fibre,
so S is the result of blowing up the Weierstrass model at these 8 points. Thus, in
addition to the fibre class and the section class, S has 8 reducible fibres, so ρ(S) ≥ 10.
Isotrivial K3 surfaces with j ≠ 0, 1728 are all Kummer and hence have Picard rank
at least 17 [Saw14, Corollary 2].

We do not claim a direct relationship between the concepts of j-special and
T -special, however both of these concepts require extra automorphisms.

Let X → P1 be an elliptic K3 surface of multisection index t > 2, and let S → P1

be its zeroth Jacobian. Let H = AP1(S); this group is Z/2Z unless S is j-special, in
which case it can be equal to Z/4Z (resp. Z/6Z) when j = 1728 (resp. j = 0). By
Proposition 3.4.18 the number of coprime Jacobians of X up to isomorphism over P1

equals ϕ(t)/|BX |, which is
ϕ(t)/2 if X → P1 is not isotrivial with j = 0 or j = 1728;
ϕ(t)/4 for some isotrivial X with j = 1728, and H = Z/4Z;
ϕ(t)/6 for some isotrivial X with j = 0 and H = Z/6Z.

(3.4.11)

We now show that the last two cases are indeed possible. For simplicity we
assume that t = p, an odd prime.

Proposition 3.4.27. Let S → P1 be an elliptic K3 surface with a section. Assume
S is isotrivial with j = 1728 (resp. j = 0) and H = Z/4Z (resp. H = Z/6Z). Let
p > 2 be a prime. Then S admits a torsor X → P1 of multisection index p with
exactly ϕ(p)

4
(resp. ϕ(p)

6
) coprime Jacobians up to isomorphism over P1 if and only if

p ≡ 1 (mod 4) (resp. p ≡ 1 (mod 3)).

Proof. Existence of such a torsor X implies the required numerical condition on p
since 4 (resp. 6) divides ϕ(p) = p− 1.

Conversely, assume that p satisfies the numerical condition. For every non-trivial
element β ∈ H, the fixed subspace (T (S)⊗C)⟨β⟩ is zero; this is because S/⟨β⟩ admits
a birational P1-fibration over P1, hence must be a rational surface. Thus T (S)⊗ C,
considered as a representation of a cyclic group H is a direct sum of one-dimensional
representations corresponding to primitive roots of unity of order |H|.
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This allows to describe T (S) ⊗ Q as an H-representation, because irreducible
Q-representations of H are direct sums of Galois conjugate one-dimensional repre-
sentations. Thus in both cases T (S)⊗Q = V ⊕( 22−ρ

2 ), where V is the 2-dimensional
representation Q[i] = Q[x]/(x2 + 1) and Q[ω] = Q[x]/(x2 + x+ 1) respectively. At
this point it follows that under our assumptions the Picard number ρ = ρ(X) is even.

On the other hand, decomposition of the H-representation T (S)⊗Q is induced
from decomposition of T (S)⊗ Z[1/|H|], hence since |H| is coprime to p, it induces

a decomposition T (X) ⊗ Fp ≃ V
⊕( 22−ρ

2 )
p with Vp defined by Fp[x]/(x2 + 1) and

Fp[x]/(x2+x+1) respectively. Under the numerical condition on p, the corresponding
polynomial has roots and the representation Vp is a direct sum of two one-dimensional
representations Vp = χ⊕ χ′.

It follows that the dual representation Br(S)p−tors induced by (2.2.14) splits into
1-dimensional representations χ, χ′ as well. Take a generator α ∈ Br(S)p−tors for
one of these representations, and let X be the corresponding torsor. The explicit
description (3.4.6) shows that BX = H.

For explicit examples of surfaces satisfying conditions of Proposition 3.4.27, see
Example 3.4.24 and Remark 3.4.26. Finally we illustrate the difference between
isomorphism over P1 and isomorphism as elliptic surfaces.

Example 3.4.28. Consider the j = 0 isotrivial elliptic K3 surface S → P1 of
Example 3.4.24 above, and let β ∈ A(S, F ) be an automorphism of order 11. Note
that β ̸∈ AP1(S) so we may have BX ⊊ B̃X in Proposition 3.4.18. By Lemma 3.4.23,
β acts nontrivially on T (S). As in the proof of Proposition 3.4.27, we deduce that for
every prime p ≡ 1 (mod 11), the number of coprime Jacobians up to isomorphism
as elliptic surfaces for an eigenvector torsor will be 11 times less than when they are
considered up to isomorphism over P1.

3.5 Derived Equivalent K3 Surfaces and Jacobians
The following well-known result goes back to Mukai, see also [Căl00, Remark 5.4.6].
We provide the proof for completeness as it follows easily from what we have explained
so far.

Theorem 3.5.1. Let S → P1 be an elliptic K3 surface with a section, and let X → P1

be a torsor over S → P1. Let t ∈ Z be the multisection index of X → P1. Then
Jk(X) is a Fourier–Mukai partner of X if and only if gcd(k, t) = 1.

Proof. Let αX ∈ Br(S) be the Brauer class of X → P1. From Lemma 3.4.5 it is easy
to deduce that

det(T (X)) = t2 · det(T (S)) (3.5.1)

(cf [HS05b, Remark 3.1]).
Recall that t = ord(αX) by Lemma 3.4.5. We know T (Jk(X)) is Hodge isometric

to the kernel of k · αX : T (S)→ Z/tZ, again by Lemma 3.4.5. If gcd(k, t) = 1, then
αX and kαX have the same kernel so that

T (Jk(X)) ≃ ker(k · αX) = ker(αX) ≃ T (X),

so Jk(X) is a Fourier–Mukai partner of X by the Derived Torelli Theorem.
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Let us prove the converse implication. From (3.5.1), we get that for any k ∈ Z,
we have

det(T (X))

det(T (Jk(X)))
=

(
ord(α)

ord(kα)

)2

= gcd(k, ord(α))2.

Thus if X and Jk(X) are derived equivalent, then the left-hand side equals one by
the Derived Torelli Theorem, hence k is coprime to t = ord(α).

The above proof nicely illustrates the methods we have discussed so far. However,
there is an easier (but less conceptual) proof:

Alternative proof of Theorem 3.5.1. For k ∈ Z, consider the Mukai vector vk =
(0, F, k) ∈ N(X), where F ∈ NS(X) is the fibre class of the elliptic fibration. This is
the Mukai vector with the property that M(vk) ≃ Jk(X). Recall from Lemma 3.3.5
that the divisibility of F ∈ NS(X) equals the multisection index t of X → P1. On
the other hand, we have div(vk) = gcd(k, div(F )) = gcd(k, t), hence

div(vk) = 1 ⇐⇒ gcd(k, t) = 1.

The result now follows from the Derived Torelli Theorem 3.2.1.

3.5.1 Derived Elliptic Structures

In this subsection, we set up the theory of derived elliptic structures and Hodge
elliptic structures.

Definition 3.5.2. Let X be a K3 surface. A derived elliptic structure on X is a
pair (Y, ϕ), where Y is a K3 surface such that Y is derived equivalent to X and
ϕ : Y → P1 is an elliptic fibration.

Definition 3.5.3. We say that two derived elliptic structures are isomorphic if they
are isomorphic as elliptic surfaces. We denote by DE(X) (resp. DEt(X)) the set
of isomorphism classes of derived elliptic structures on X (resp. derived elliptic
structures on X of multisection index t).

Lemma 3.5.4. Let X be a K3 surface. Then we have:

(i) DE(X) is a finite set;

(ii) DE(X) is nonempty if and only if X is elliptic;

(iii) DEt(X) can be nonempty only for t such that t2 divides the order of the
discriminant group AT (X);

(iv) If X is elliptic with ρ(X) = 2 and multisection index t, then every elliptic
structure on every Fourier–Mukai partner of X also has multisection index t,
that is DE(X) = DEt(X).

Proof. (i) The set of isomorphism classes of Fourier–Mukai partners of X is finite
[BM01, Proposition 5.3], [Hos+02], and each of them has only finitely many elliptic
structures up to isomorphism [Ste85]. It follows that DE(X) is a finite set.

(ii) If X elliptic, then X with its elliptic structure is an element of DE(X), hence
it is nonempty. Conversely, if DE(X) is nonempty, then X admits a Fourier–Mukai
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partner which is an elliptic K3 surface. Then by the Derived Torelli Theorem NS(X)
and NS(Y ) are in the same genus, and since Y is elliptic, the intersection form NS(Y )
represents zero by Lemma 2.2.16, hence a standard lattice theoretic argument shows
that NS(X) also represents zero, and X is elliptic.

(iii) If (Y, ϕ) is a derived elliptic structure on X of multisection index t, then we
have

|AT (X)| = |AT (Y )| = t2 · |AT (J0(Y ))|
where the first equality follows from the Derived Torelli Theorem and the second
one can be deduced from (3.5.1) (cf [HS05b, Remark 3.1]). In particular, DEt(X) is
empty whenever t2 does not divide the order of AT (X).

(iv) Every Fourier–Mukai partner Y of X also has Picard number ρ(Y ) = 2. By
Proposition 3.3.8, the multisection index of every elliptic fibration on Y equals the
square root of |AT (Y )| = |AT (X)| = t2.

We can take coprime Jacobians of a derived elliptic structure (Y, ϕ), which we
denote by Jk(Y, ϕ). By Lemma 3.4.16 and Theorem 3.5.1 this defines a group action
of (Z/tZ)∗ on DEt(X). The set of (Z/tZ)∗-orbits on DEt(X) parametrises derived
elliptic structures up to taking coprime Jacobians, and it is sometimes a more natural
set to work with.

We now explain Hodge-theoretic analogues of derived elliptic structures. The
following definition is motivated by the Derived Torelli Theorem.

Definition 3.5.5. Let X be a K3 surface. A Hodge elliptic structure on X is a
twisted Jacobian K3 surface (S, f, α) (see Definition 3.4.14) such that there exists a
Hodge isometry Ker(α) ≃ T (X).

The index of a Hodge elliptic structure is defined to be the order of its Brauer
class α. An isomorphism of Hodge elliptic structures (S, f, α), (S ′, f ′, α′) is an
isomorphism γ : S → S ′ of elliptic surfaces such that γ∗(α) = α′. We denote by
HE(X) the set of isomorphism classes of Hodge elliptic structures on X. We write
HEt(X) for the set of isomorphism classes of Hodge elliptic structures of index t.
The operation k ∗ (S, f, α) = (S, f, kα) defines a group action of (Z/tZ)∗ on HEt(X).

Example 3.5.6. Let X be an elliptic K3 surface of Picard rank 2 and multisection
index t. Let (S, f, α) be a Hodge elliptic structure on X. Since the discriminant of
X equals t2, from the sequence

0→ T (X)→ T (S)→ Z/tZ→ 0,

we deduce that T (S) is unimodular. Thus S is an elliptic K3 surface of Picard rank
two, and it has a unique elliptic fibration, which has a unique section (see Lemma
3.3.9). We see that in the Picard rank two case f can be excluded from the data of
a Hodge elliptic structure and we have a bijection

HEt(X) = {(S, α)}/ ≃, (3.5.2)

with isomorphisms understood as isomorphisms between K3 surfaces respecting the
Brauer classes.

Proposition 3.5.7. Let X be a K3 surface and let t be a positive integer. Then the
bijection EllK3 ≃ BrK3 of Theorem 3.4.15 induces a (Z/tZ)∗-equivariant bijection
DEt(X) ≃ HEt(X).
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Proof. First of all note that by definition DEt(X) is a subset of EllK3 consisting of
isomorphism classes (Y, ϕ) with Y derived equivalent toX and ϕ having a multisection
index t. Similarly, HEt(X) is a subset of BrK3 consisting of (S, f, α) such that
ord(α) = t and Ker(α) ≃ T (X). If (Y, ϕ) ∈ EllK3, then by Lemma 3.4.5, (Y, ϕ)
belongs to DEt(X) if and only if the corresponding triple (J0(Y ), J0(ϕ), αY ) ∈ BrK3
belongs to HEt(X).

The (Z/tZ)∗-equivariance of the map is a direct consequence of the fact that
kαY = αJk(Y ), which holds again by Lemma 3.4.5.

Definition 3.5.8. Let T be a lattice. For t ∈ Z, we write It(AT ) for the set of cyclic,
isotropic subgroups of order t in AT , and we write Ĩt(AT ) for the set of isotropic
vectors of order t in AT .

For a K3 surface X, there is a natural action of GX , on It(AT (X)) and Ĩt(AT (X)).
Let (S, f, α) be a Hodge elliptic structure on X of index t. There is a unique
isomorphism rα : Z/tZ ≃ T (S)/Ker(α) such that the diagram

T (S)

&&

α

}}

Z/tZ rα

∼ // T (S)/Ker(α)

(3.5.3)

commutes. Hence the Brauer class α singles out a generator rα(1) of T (S)/Ker(α).
Fix any Hodge isometry T (X) ≃ Ker(α). The natural inclusion T (S)/T (X) ⊂ AT (X)

allows us to view rα(1) as an element of AT (X), which we denote by wα. We denote
the subgroup of AT (X) generated by wα by Hα. Note that wα, and hence Hα, is only
well-defined up to the GX action on AT (X), since its construction depends on the
original choice of Hodge isometry T (X) ≃ Ker(α). On the other hand isomorphic
Hodge elliptic structures on X give rise to isotropic vectors in the same GX-orbit by
Lemma 2.2.13. We define the map

w : HEt(X)→ Ĩt(AT (X))/GX , w(S, f, α) = wα. (3.5.4)

The operation k ∗ w = k−1w, where k−1 is an inverse to k modulo t, defines a
group action of (Z/tZ)∗ on Ĩt(AT )/GX .

Lemma 3.5.9. The map (3.5.4) is (Z/tZ)∗-equivariant.

Proof. Recall from Lemma 3.4.5(ii) that αJk(Y ) = k · αY in Br(J0(Y )) for all k ∈ Z.
It follows from (3.5.3) that we have rkα = k−1rα. Thus from the definitions we get

wkα = rkα(1) = k−1rα(1) = k−1wα = k ∗ wα,

which means that the map w is equivariant.

Proposition 3.5.7 and Lemma 3.5.9 give rise to the following commutative diagram
with the vertical arrows being quotients by the corresponding (Z/tZ)∗-actions:

DEt(X) ∼ //

��

HEt(X)

��

w // Ĩt(AT (X))/GX

��

DEt(X)/(Z/tZ)∗ ∼ // HEt(X)/(Z/tZ)∗ // It(AT (X))/GX

(3.5.5)
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For (Y, ϕ) a derived elliptic structure of X, we consider wϕ := wαY
, the image

of (Y, ϕ) under the composition of maps in the top row of (3.5.5). In particular, if
f : X → P1 is an elliptic fibration with fibre class F ∈ NS(X), then by construction,
wf is the Căldăraru class of the moduli space J0(X) of sheaves with Mukai vector
(0, F, 0) on X, thus by Lemma 2.4.6 wf corresponds to

1

t
F ∈ It(ANS(X))/GX (3.5.6)

(we can get rid of the minus sign in the formula at this point, as − id ∈ GX , see
Remark 2.4.2).

3.5.2 Fourier–Mukai Partners in Rank 2

In this subsection, we work with an elliptic K3 surface of Picard rank 2, so that by
Proposition 3.3.8 we have NS(X) ≃ Λd,t given by (3.3.2). The following result is one
of the reasons why it is natural to concentrate on Picard rank two elliptic surfaces.

Lemma 3.5.10. For an elliptic K3 surface X with NS(X) ≃ Λd,t, all derived elliptic
structures and all Hodge elliptic structures on X have the same index t.

Proof. This follows from Lemma 3.5.4 and Proposition 3.5.7.

For X as in Lemma 3.5.10, we have DE(X) = DEt(X). In particular, there
is an action of (Z/tZ)∗ on DE(X) by taking coprime Jacobians. Recall that for a
K3 surface X with NS(X) ≃ Λd,t, we have AT (X) ≃ ANS(X)(−1) ≃ Ad,t(−1), and
it has order t2 by Lemma 3.3.12. In this setting, isotropic elements (resp. cyclic
isotropic subgroups) of order t are precisely Lagrangian elements (resp. Lagrangian
subgroups), see Definition 3.3.14:

It(AT (X)) = L(AT (X)), Ĩt(AT (X)) = L̃(AT (X)).

The following result is related to [Ma10, Proposition 3.3].

Theorem 3.5.11. Let X be an elliptic K3 surface of Picard rank 2 and multisection
index t. Then the map w (3.5.4) is a bijection. Furthermore, we have a bijection

DE(X)/(Z/tZ)∗ ≃ L(AT (X))/GX . (3.5.7)

Moreover, action (3.3.8) induces a Z/2Z-action on L(AT (X))/GX which under bijec-
tion (3.5.7) corresponds to the action on DE(X) swapping the two elliptic fibrations
on Fourier–Mukai partners of X.

Proof. We first show that w is bijective. We start with bijection (3.5.2). For the
injectivity of w, take (S, α) and (S ′, α′) with T (X) ≃ Ker(α) ≃ Ker(α′). Assume
that there exists a Hodge isometry σ ∈ GX with the property σ(wα) = wα′ . Then
Lemma 2.2.13 implies that σ can be extended to a Hodge isometry T (S)→ T (S ′).
Since S and S ′ have Picard rank 2, Lemma 3.4.23 implies that this Hodge isometry
is induced by a group isomorphism β : S ≃ S ′. From σ(wα) = wα′ , it follows that
(S, α) and (S ′, α′) are isomorphic.

For the surjectivity of w, let u ∈ AT (X) be an isotropic vector of order t and
H = ⟨u⟩. Via Lemma 2.2.13, H corresponds to an overlattice i : T (X) ↪→ T which
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inherits a Hodge structure from T (X), i.e. i : T (X) ↪→ T is a Hodge overlattice.
Note that T is unimodular, since the index of T (X) ⊂ T is t and AT (X) has order
t2. Hence T ⊕ U is an even, unimodular lattice of rank 22 and signature (3, 19).
This means that it is isomorphic to the K3-lattice ΛK3. By the surjectivity of
the period map (Theorem 2.2.23), we obtain a K3 surface S with T (S) ≃ T and
NS(S) ≃ U . Therefore the overlattice i : T (X) ↪→ T (S) is a Hodge overlattice
with T (S)/T (X) = H. We define the Brauer class α : T (S) → H ≃ Z/tZ where
the second map is given by u 7→ 1. Thus we have constructed a pair (S, α) with
Căldăraru class u and Ker(α) ≃ T (X).

Since w is bijective, the diagram (3.5.5) immediately implies (3.5.7). The action
(3.3.8) induces the action on L(AT (X))/GX because ι commutes with GX . Indeed
this can be checked on each primary part (2.2.2), where there are at most two
Lagrangian subgroups (see Lemma 3.3.18), hence the action of GX factors through
the action generated by ιp. To show that ι corresponds to swapping the elliptic
fibrations on Fourier–Mukai partners Y , we can use the identification L(AT (X))/GX =
L(AT (Y ))/GY , and assume Y = X. The result follows from (3.3.9) because Lagrangian
subgroups generated by v and v′ correspond to the two elliptic fibrations on X via
(3.5.7) by (3.5.6).

Recall from Lemma 3.3.9 that a K3 surface X with NS(X) ≃ Λd,t admits two
elliptic fibrations, except when d ≡ −1 (mod t), in which case X admits only one
elliptic fibration. Using Theorem 3.5.11 we can easily compare the coprime Jacobians
of these two fibrations.

Example 3.5.12. Let X be an elliptic K3 surface of Picard rank two with NS(X) ≃
Λd,t such that gcd(d, t) = 1 and d ̸≡ −1 (mod t). Let (X, f) and (X, g) be two
elliptic fibrations on X (see Lemma 3.3.9), and let wf and wg be their Căldăraru
classes, which are Lagrangian elements in Ad,t. By Lemma 3.3.18, Ad,t admits a
unique Lagrangian subgroup, thus we have ⟨wf⟩ = ⟨wg⟩. By Theorem 3.5.11 this
implies that f and g are coprime Jacobians of each other. We can make this more
precise as follows. Recall that by (3.5.6), wf and wg correspond to classes v, v′ (3.3.5)
respectively. Using (3.3.6), we compute

wg = v′ = −dv = −dwf = −d−1 ∗ wf .

Here d−1 is the inverse to d modulo t. Thus we have an isomorphism of elliptic
surfaces

(X, g) ≃ J−d
−1

(X, f) ≃ Jd
−1

(X, f)

and (X, f) ≃ Jd(X, g).

Corollary 3.5.13. Let X be an elliptic K3 surface of Picard rank two. The set of
Fourier–Mukai partners of X considered up to isomorphism as surfaces, and up to
coprime Jacobians (on every derived elliptic structure of X) is in natural bijection
with the double quotient

⟨ι⟩\L(AT (X))/GX .

Proof. This is the consequence of the action of ι on L(AT (X))/GX by swapping the
two elliptic fibrations as explained in Theorem 3.5.11.

Corollary 3.5.14. Let X be an elliptic K3 surface of Picard rank 2. Let d, t ∈ Z
such that NS(X) ≃ Λd,t, and write m = gcd(d, t).
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(i) If m = 1, then DE(X) is a single (Z/tZ)∗-orbit. Explicitly, every Fourier–
Mukai partner of X will be found among the coprime Jacobians of a fixed
elliptic fibration (X, f).

(ii) If m = pk, for a prime p and k ≥ 1, then DE(X) consists of at most two
(Z/tZ)∗-orbits, permuted by the involution ι. Explicitly every Fourier–Mukai
partner of X will be found among the coprime Jacobians of one of the two
elliptic fibrations on X.

(iii) If m has at least 7 distinct prime factors then DE(X) has at least three (Z/tZ)∗-
orbits. In particular, there exist Fourier–Mukai partners of X which are not
isomorphic, as surfaces, to any of the Jacobians of elliptic structures on X.

Proof. In each case we use Theorem 3.5.11 combined with the count of Lagrangians
given in Proposition 3.3.16.

(i) Fix an elliptic fibration f : X → P1 and let Hf ⊆ AT (X) be the corresponding
Lagrangian subgroup. Since m = 1, Proposition 3.3.16 implies that Hf ⊆ AT (X) is
the only Lagrangian subgroup. Therefore all derived elliptic structures are of the
form Jk(X)→ P1 for k ∈ Z coprime to t by Theorem 3.5.11.

(ii) By Proposition 3.3.16, AT (X) contains precisely two Lagrangian subgroups.
The condition m = pk implies in particular that d ̸≡ −1 (mod t), hence the surface
X admits two elliptic fibrations f : X → P1 and g : X → P1. By Lemma 3.3.17,
arguing like in Example 3.5.12, we see that the subgroups of AT (X) induced by the
two elliptic fibrations are not equal. Hence Hf and Hg are the only two Lagrangians
of AT (X), so every derived elliptic structure on X is either a coprime Jacobian of f
or of g by Theorem 3.5.11.

(iii) Assume ω(m) ≥ 7. Since − id ∈ GX acts trivially on L(AT (X)) and |GX | ≤ 66,
by Proposition 3.3.16, the set L(AT (X))/GX has cardinality at least 2ω(m)/33 ≥
128/33, that is there are at least three elements. The final statement follows from
Corollary 3.5.13.

Corollary 3.5.15. Assume that X is a T -general elliptic K3 surface with NS(X) =
Λd,t with t > 2, and let m = gcd(d, t). Then

|DE(X)| = 2ω(m)−1 · ϕ(t), |DE(X)/(Z/tZ)∗| = 2ω(m). (3.5.8)

In particular, if m is not a power of a prime, then X has Fourier–Mukai partners
not isomorphic, as surfaces, to any Jacobian of an elliptic structure on X.

Proof. The second formula in (3.5.8) is an immediate consequence of Theorem 3.5.11,
the fact that GX = {± id} acts trivially on L̃(AT (X)) and the Lagrangian count
(3.3.4).

By Proposition 3.4.18, coprime Jacobians of a T -general elliptic K3 surface form
ϕ(t)/2 isomorphism classes. In other words, the orbits of the (Z/tZ)∗-action on
DE(X) are all of size ϕ(t)/2 and the first formula in (3.5.8) follows from the second
one.

The final statement follows from Corollary 3.5.13 because if m is not a power of
a prime, DE(X)/(Z/tZ)∗ has at least four elements by (3.5.8) which thus can not
form a single ι-orbit.
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3.5.3 The Zeroth Jacobian

In this subsection, we apply the results of Section 3.5.2 to investigate whether derived
equivalent elliptic K3 surfaces have isomorphic zeroth Jacobians. A priori, this is a
weaker question than Question 3.1.1. However, we now show that the two questions
are equivalent in the very general case. In particular, the answer is negative.

Proposition 3.5.16. Let f : X → P1 be an elliptic K3 surface of Picard rank 2, and
write S := J0(X). Assume that T (X) has no non-trivial rational Hodge isometries,
that is

OHodge(T (X)Q) ≃ Z/2Z. (3.5.9)

Let (Y, ϕ) be a derived elliptic structure on X such that S ′ := J0(Y ) ≃ S. Then (Y, ϕ)
is isomorphic to a coprime Jacobian of (X, f).

Proof. Fixing any Hodge isometry T (X) ≃ T (Y ) we view T (X) ≃ T (Y ) ↪→ T (S ′) as
an overlattice of T (X). By assumption there exists a Hodge isometry β∗ : T (S ′) ≃
T (S) induced by an isomorphism β : S ≃ S ′. Now β∗ induces the rational Hodge
isometry

T (X)Q ≃ T (S ′)Q
β∗
Q≃ T (S)Q ≃ T (X)Q

which by assumption equals ± id, hence β∗ preserves T (X) as a sublattice of T (S)
and T (S ′). In particular, β∗αX = kαY for some k ∈ Z, hence Y is a coprime Jacobian
of X.

It is well-known that if X is a very general Λd,t-polarised elliptic K3 surface then
(3.5.9) is satisfied, see e.g. the argument of [SZ20, Lemma 3.9]. Thus, if X is a very
general elliptic K3 surface of Picard rank two with two elliptic fibrations, Proposition
3.5.16 allows us to compare the corresponding zeroth Jacobians, which generalises
[Gee05, Proposition 4.8].

Corollary 3.5.17. Let X be an elliptic K3 surface of Picard rank two with NS(X) ≃
Λd,t and suppose d ̸≡ ±1 mod t, so that X admits two non-isomorphic elliptic
fibrations by Lemma 3.3.9. Assume (3.5.9) holds for X. Then the zeroth Jacobians
of the two elliptic fibrations on X are isomorphic if and only if gcd(d, t) = 1.

Proof. If gcd(d, t) = 1, the two fibrations on X are coprime Jacobians of each other
by Corollary 3.5.14, hence the zeroth Jacobians are isomorphic. If gcd(d, t) ̸= 1,
then by T -generality of X, the Căldăraru classes of the two fibrations on X are not
proportional in AT (X), hence the two fibrations are not coprime Jacobians of each
other and the result follows from Proposition 3.5.16.

Remark 3.5.18. In the setting of Corollary 3.5.17, if zeroth Jacobians are not
isomorphic, then they are also not derived equivalent. Indeed, elliptic K3 surfaces
with a section do not admit nontrivial Fourier–Mukai partners [Hos+02, Proposition
2.7(3)].

3.5.4 Generalisation to Other Fields

In this subsection, we will use the theory of twisted forms to extend our results to a
subfield k ⊂ C. Let f : X → P1 be a complex elliptic K3 surface with NS(X) ≃ Λd,t.
Recall that we denote by Aut(X,F ) the group of automorphisms of X which fix
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the class of the fibre in NS(X). By Corollary 3.4.25, the group Aut(X,F ) is trivial
whenever t > 2 and X is T -general.

Let k ⊂ L be a field extension. An L-twisted form of an elliptic K3 surface
(Y, ϕ : Y → C) over k is any elliptic K3 surface (Y ′, ϕ′ : Y ′ → C ′) over k such that
(YL, ϕL) is isomorphic to (Y ′

L, ϕ
′
L) as elliptic surfaces.

Lemma 3.5.19. Let (Y, ϕ) be an elliptic K3 surface over k such that Aut(YC, F ) =
{id} . Then every C-twisted form of (Y, ϕ) is isomorphic to Y as a surface.

Proof. Any C-twisted form (Y ′, ϕ′) of (Y, ϕ) is also a k-twisted form of (Y, ϕ) [Mil08,
Lemma 16.27]. Thus it suffices to show that for any Galois extension L/k all L-
twisted forms of (Y, ϕ) are isomorphic to Y . Let (Y ′, ϕ′) be an L-twisted form of
(Y, ϕ), and let g : YL ≃ Y ′

L be an isomorphism of elliptic surfaces, possibly twisting
the base by an automorphism. Then for any σ ∈ Gal(L/k), the map h := g ◦ (σg)−1

is an automorphism of YL as an elliptic surface.
Using injectivity of the map Aut(YL) → Aut(YC), c.f. [Stacks, Lemma 02VX],

and the assumption about automorphisms of YC, we see that h is the identity, that is
g commutes with the Galois action. Therefore g descends to an isomorphism Y ≃ Y ′

[Mil08, Proposition 16.9].

Lemma 3.5.20. If (X, f) is an elliptic K3 surface over k such that ρ(XC) = 2, then
all elliptic fibrations of XC are induced by elliptic fibrations of X.

Proof. By Lemma 3.3.9 XC has one or two elliptic fibrations. If there is only fibration,
it must come from the given elliptic fibration f . If there are two elliptic fibrations
on XC, they are defined over some Galois extension L/k. Let F and F ′ be the
corresponding divisor classes on XL. These classes can not be permuted by the
Galois group, because one of them corresponds to f , hence is fixed by the Galois
group. Thus the other class is also fixed by the Galois group and the corresponding
morphism X → C is defined over k, see e.g. [Lie17, Proposition 2.7, Theorem
3.4(2)].

Proposition 3.5.21. Let X be an elliptic K3 surface over k with NS(XC) ≃ Λd,t.
Assume Aut(XC, F ) = {id} . If d and t are coprime or have only one prime factor
in common, then every Fourier–Mukai partner of X is isomorphic, as a surface, to a
coprime Jacobian of one of the elliptic fibrations on X.

Proof. Let Y be a Fourier–Mukai partner of X, and let ϕ : Y → C be an elliptic
fibration of Y , which exists by [HT17, Proposition 16]. By Corollary 3.5.14(i, ii),
ϕC : YC → CC is isomorphic to a coprime Jacobian Jk(XC, fC) as elliptic surfaces,
for some elliptic fibration fC on XC. By Lemma 3.5.20, fC comes from an elliptic
fibration f on X, hence (Y, ϕ) is a C-twisted form of Jk(X, f).

From the description of the automorphism groups given in Proposition 3.4.21 we
deduce that

Aut(Jk(XC), F ) ≃ Aut(XC, F )

and by assumption this group is trivial. It follows from Lemma 3.5.19 that Y is
isomorphic to Jk(X) as a surface.

Proposition 3.5.21 implies the following:

Corollary 3.5.22. Let X be as in Proposition 3.5.21. Let Y be any Fourier–Mukai
partner of X. Then X has a k-rational point if and only if Y has a k-rational point.
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Proof. From Proposition 3.5.21, it follows that there is an elliptic fibration f : X → C ′

and an integer ℓ ∈ Z such that Y ≃ Jℓ(X, f) as surfaces. There is a rational
map X 99K Jℓ(X) ≃ Y given by P 7→ ℓ · P . By the Lang-Nishimura Theorem
[Lan54], [Nis55], it follows that X(k) ̸= ∅ implies Y (k) ̸= ∅. Conversely, since X
is also a coprime Jacobian of Y , the same argument shows that Y (k) ̸= ∅ implies
X(k) ̸= ∅.



Appendix to Chapter 3

3.A Counting Elliptic Fourier–Mukai Partners
From the Derived Torelli Theorem 3.2.1, one can derive the following Counting
Formula for Fourier–Mukai partners of K3 surfaces:

Theorem 3.A.1 (Counting Formula). [Hos+02] Let X be a K3 surface, and write
FM(X) for the set of isomorphism classes of Fourier–Mukai partners of X. Then

|FM(X)| =
∑
Λ

|O(Λ) \O(AΛ)/GX |,

where the sum runs over isomorphism classes of lattices Λ which are in the same
genus as the Néron-Severi lattice NS(X). Furthermore, each summand computes the
number of isomorphism classes of Fourier–Mukai partners Y of X with NS(Y ) ≃ Λ.

We now give a relatively quick proof of the Counting Formula.

Proof of Theorem 3.A.1. To keep the notation light, we denote T := T (X), we write
Emb(T ) for the set of O(ΛK3)-orbits of embeddings T ↪→ ΛK3, and we denote the
set of isomorphism classes of Fourier–Mukai partners of X by FM(X). Note that
the Hodge isometries group GX acts naturally on Emb(T ).

Let Y ∈ FM(X) be a Fourier–Mukai partner. By the Derived Torelli Theo-
rem 3.2.1, we may fix a Hodge isometry f : T (Y ) ≃ T . We also fix an isometry
g : H2(Y,Z) ≃ ΛK3. This determines the following primitive embedding:

iY : T
f
≃ T (Y ) ↪→ H2(Y,Z)

g
≃ ΛK3,

and the element this defines in Emb(T )/GX is independent of f and g. With this
construction, we obtain a map

FM(X) −→ Emb(T )/GX

Y 7−→ iY .
(3.A.1)

We now show that (3.A.1) is a bijection. Note that the surjectivity of (3.A.1) follows
immediately from the surjectivity of the period map, see Theorem 2.2.23.

For injectivity, suppose Y, Y ′ ∈ FM(X) have the same image in Emb(T )/GX .
By construction of Emb(T )/GX and iY , there are a Hodge isometry T ≃ T , and an
isometry ΛK3 ≃ ΛK3 such that the following diagram commutes:

T (Y ) ≃ //
� _

��

T ≃ //� _

iY
��

T� _

iY ′

��

T (Y ′)≃oo
� _

��

H2(Y,Z) ≃ // ΛK3
≃ // ΛK3 H2(Y ′,Z).≃oo

(3.A.2)

78
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Since the top horizontal isometries of (3.A.2) are all Hodge isometries, the composition
of the bottom horizontal isometries of (3.A.2) is a Hodge isometry H2(Y,Z) ≃
H2(Y ′,Z). By the Torelli Theorem 2.2.24, this means that there is an isomorphism
Y ≃ Y ′. Therefore, (3.A.1) is injective, hence it is a bijection.

To conclude, recall from Proposition 2.2.5 that we have

|Emb(T )| =
∑

Λ∈G(NS(X))

|O(Λ) \O(AΛ)|,

where for each Λ ∈ G(NS(X)) the number |O(Λ) \ O(AΛ)| equals the number of
O(ΛK3)-orbits of primitive embeddings T ↪→ ΛK3 for which T⊥ ≃ Λ. From this, it
follows that we have

|Emb(T )/GX | =
∑

Λ∈G(NS(X))

|O(Λ) \O(AΛ)/GX |,

as required.

When we started the project that led to [MS24], which this chapter is based on,
the original strategy for answering Question 3.1.1 was to use the Counting Formula
to count Fourier–Mukai partners and to then compare that to the number of coprime
Jacobians.

Eventually, with the use of Ogg–Shafarevich Theory, we arrived at the definition
of a Hodge elliptic structure, and found a method to count those efficiently. Recall
from Corollary 3.5.15 that we were able to count derived elliptic structures for
T -general elliptic K3 surfaces of Picard rank 2. Using Corollary 3.5.15, we can also
compute the number of Fourier–Mukai partners. This means that we computed the
outcome of the Counting Formula, without actually computing the terms within the
Counting Formula itself.

However, the first part of my PhD was spent computing the terms in the Counting
Formula. At first, I computed the terms of the Counting Formula for Λd,t with d
and t coprime. The outcome was that every Fourier–Mukai partner was a Jacobian
in this case. Of course, we would later use Hodge elliptic structures to show that
the coprime case is rather unique with this property. In this section, I share my
computations in the coprime case.

We now fix coprime integers d ≥ 0 and t > 2, and consider the lattice Λd,t. Recall
the following result by Van Geemen:

Proposition 3.A.2 ([Gee05, Remark 4.7]). Let X be a K3 surface with NS(X) = Λd,t.
Then X admits two elliptic fibrations up to isomorphism if d ̸≡ ±1 mod t. On the
other hand, if d ≡ ±1 mod t, X admits one fibration up to isomorphism.

We combine Proposition 3.A.2 with the Counting Formula to count the number
derived elliptic structures of X.

Corollary 3.A.3. Let X → P1 be an elliptic K3 surface of Picard rank 2. Then

|DE(X)| =
∑

Λ∈G(Y )

FΛ · |O(Λ) \O(AΛ)/GX |,

where FΛ is the number of elliptic fibrations on a K3 surface Y with NS(Y ) ≃ Λ
(this number depends only on Λ by Proposition 3.A.2).
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Lemma 3.A.4. [Gee05, Remark 4.7] We have

FΛd,t
=

{
1 if d ≡ ±1 (mod t)

2 if d ̸≡ ±1 (mod t).

To compute the sizes of the double quotients in the Counting Formula, we need
to investigate the group of isometries of the discriminant lattices of Λd,t.

Lemma 3.A.5. [Ste04] Let H,F denote the standard basis for the lattice Λd,t. Then
the discriminant lattice Ad,t of Λd,t is cyclic of order t2, and is generated by the
element

x =
tH − 2dF

t2
∈ Ad,t,

which satisfies

x2 =
−2d
t2
∈ Q/Z.

Lemma 3.A.6. We have O(Ad,t) ∼= (Z/2Z)ω(t), where ω(t) is the number of distinct
primes dividing t.

Proof. Since Ad,t is cyclic of order t2, an isometry f : Ad,t ≃ Ad,t is given by
multiplication with some integer r ∈ Z coprime to t2. The fact that f is an isometry
implies that

x2 = f(x)2 = r2x2 (mod Z),

hence r2 ≡ 1 (mod t2). Modulo t2, there are exactly 2ω(t) choices for r, and f has
order 2 in O(Ad,t), hence O(Ad,t) ≃ (Z/2Z)ω(t).

Remark 3.A.7. Since Λd,t contains at most two primitive isotropic vectors up to
sign, it follows that it admits at most four isometries. Suppose d2 ≡ 1 (mod t).
Then the matrix

M :=

(
−d −t
d2−1
t

d

)
defines an isometry of Λd,t.

Lemma 3.A.8. [Gee05, Lemma 4.6] For d ∈ Z, t > 2 coprime integers, we have

O(Λd,t) =

{
{± id} if d2 ̸≡ 1 (mod t)

{± id,±M} if d2 ≡ 1 (mod t).

Lemma 3.A.9. We have

Ker (O(Λd,t)→ O(Ad,t)) =

{
0 if d ̸≡ ±1 mod t

Z/2Z if d ≡ ±1 mod t.

Proof. By assumption, we have t > 2. This implies that − idAT (S)
̸= idAT (S)

, hence
we have − idT (S) /∈ Ker (O(Λd,t)→ O(Ad,t)) . Recall that Ad,t is cyclic, and generated
by

x =
tH − 2dF

t2
.
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We note that
(M − I)(x) = d− 1

t
H +

(d− 1)2

t2
F,

which is contained in Λd,t if and only if d ≡ 1 (mod t). This shows that M maps to
the identity on Ad,t if and only if d ≡ 1 (mod t). Similarly, −M maps to the identity
if and only if d ≡ −1 (mod t).

Proposition 3.A.10. We have

|O(Λd,t) \O(Ad,t)/GX | =

{
2ω(t)−1 if d2 ̸≡ 1 mod t or d ≡ ±1 mod t

2ω(t)−2 if d2 ≡ 1 mod t and d ̸≡ ±1 mod t.

Moreover, we have

FΛd,t
· |O(Λd,t) \O(Ad,t)/GX | =

{
2ω(t)−1 if d2 ≡ 1 (mod t)

2ω(t) if d2 ̸≡ 1 (mod t).

Proof. By T -generality of X, we have GX = {± id} . From Lemma 3.A.9, it follows
that the image of O(Λd,t) is isomorphic to Z/2Z if e2 ̸≡ 1 mod t or e ≡ ±1 mod t,
and otherwise the image is (Z/2Z)2. Combining this with Lemma 3.A.6 and Lemma
3.A.4 gives the desired result.

Lemma 3.A.11. [Ste04, Lemma 3.2] If Λ is a lattice in the same genus as Λd,t,
then there is a k ∈ Z coprime to t such that Λ ≃ Λdk2,t. Moreover, for any d, e ∈ Z,
there is an isometry Λd,t ≃ Λe,t if and only if d ≡ e±1 (mod t).

Theorem 3.A.12. Let X be a T -general K3 surface with NS(X) ≃ Λd,t, where d, t
are coprime integers, and t > 2. Then

|DE(X)| = ϕ(t)

2
.

Proof. We denote

G ′ :=
{
Λe,t ∈ G(Λd,t) | e2 ≡ 1 (mod t)

}
⊂ G(Λd,t).

Let N be the number of elements e ∈ (Z/tZ)× such that Λe,t ∈ G ′. Since we have
e ≡ e−1 (mod t) for such elements, we have |G ′| = N . We do not need to know the
exact value of N for our computations, but it will appear in the formulas.

Note that
|
{
dk2 | k ∈ (Z/tZ)×

}
| = ϕ(t)

2ω(t)
.

Therefore, the number of elements e ∈ (Z/tZ)× such that Λe,t ∈ G(Λd,t) \ G ′ equals
ϕ(t)

2ω(t) −N . However, since e ̸≡ e−1 (mod t) for these elements, we have

|G(Λd,t) \ G ′| =
1

2
·
(
ϕ(t)

2ω(t)
−N

)
We now combine Corollary 3.A.3, Proposition 3.A.10, and Lemma 3.A.11 to compute:

|DE(X)| = |G(Λd,t) \ G ′| · 2ω(t) + |G ′| · 2ω(t)−1

= 1
2
·
(
ϕ(t)

2ω(t) −N
)
· 2ω(t) +N · 2ω(t)−1 = ϕ(t)

2
.
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Note that Theorem 3.A.12 gives the same number as Corollary 3.5.15. In
particular, by computing the number of Jacobian derived elliptic structures of X
as in Section 3.4, Theorem 3.A.12 also allows us to conclude that a K3 surface X
satisfying the assumptions of Theorem 3.A.12 only has Jacobian derived elliptic
structures.

There are a few drawbacks to this method of proving the result, though. Firstly,
the computations get even more complicated when d and t are not coprime. moreover,
this strategy is not capable of dealing with T -special K3 surfaces, whereas the action
of GX is nicely incorporated in the proof of Corollary 3.5.13. Lastly, this strategy is
not sufficient to say anything about the zeroth Jacobian of X, which is something
that we could accomplish in Section 3.5.3.

3.B Jacobian Moduli Maps

We set up the theory of Jacobian moduli maps. These are maps between moduli
spaces of lattice polarised K3 surfaces that associate to an elliptic K3 surface its
Jacobian. Recall that we call a K3 surface T -general if the only Hodge isometries of
the transcendental lattice are ± id, see Definition 3.2.4. If X → P1 is an elliptic K3
surface, and S := J0(X)→ P1 is its zeroth Jacobian, it is a natural question to ask
whether T -generality of X implies T -generality of S. We use the theory of Jacobian
moduli maps to show that for a very general choice of X, S will be T -general. It is
currently unclear whether there exist T -general elliptic K3 surfaces for which the
zeroth Jacobian is T -special.

Before we discuss Jacobian moduli maps, we consider a Hodge theoretic approach
to the above question. Write GX and GS for the groups of Hodge isometries of T (X)
and T (S), respectively. We consider the subgroup HX ⊂ GX of Hodge isometries
f : T (X) ≃ T (X) whose action on AT (X) preserves the subgroup T (S)/T (X) ⊂ AT (X).
Note that we have ± id ∈ HX . We also define HS ⊂ GS to be the group of Hodge
isometries g : T (S) ≃ T (S) satisfying g(T (X)) = T (X). Again, we have ± id ∈ HS.

Lemma 3.B.1. We have an isomorphism

HS
∼−→ HX

g 7−→ g|T (X).
(3.B.1)

Proof. Note that (3.B.1) is well-defined, by Lemma 2.2.13. We first prove surjectivity.
Suppose f ∈ HX . By assumption, f preserves T (S)/T (X) ⊂ AT (X), therefore there
exists a Hodge isometry f̃ : T (S) ≃ T (S) such that f̃ |T (X) = f by Lemma 2.2.13.
This means that f̃ is a preimage of f along (3.B.1). To prove the injectivity of
(3.B.1), suppose g ∈ HS satisfies g|T (X) = idT (X). Then gQ : T (S)Q ≃ T (S)Q is the
identity, hence g is the identity.

Lemma 3.B.1 is not enough to prove that T -generality for X is equivalent to T -
generality for S, since HX and HS may be proper subgroups of GX and GS. However,
it does give us a criterion for when T -specialness for X implies T -specialness for S.
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3.B.1 Maps between Moduli Spaces of K3 Surfaces

We begin by recalling the constructions of moduli spaces of lattice-polarised K3
surfaces.

Let ΛK3 = U3 ⊕ E8(−1)2 denote the K3 lattice. We fix an even, non-degenerate,
primitive sublattice Λ ⊂ ΛK3 of signature (1, ρ − 1), and denote its orthogonal
complement by T := Λ⊥. For simplicity, we assume that there is a unique O(ΛK3)-
orbit of primitive embeddings Λ ↪→ ΛK3. This is true, for example, when ρ ≤ 10
[Nik80, Theorem 1.14.4].

Definition 3.B.2. A Λ-marked K3 surface is a pair (X,ϕ) where X is a K3 surface
and ϕ : H2(X,Z) ∼→ ΛK3 is an isometry such that ϕ−1(Λ) ⊂ NS(X). We call (X,ϕ)
an ample Λ-marked K3 surface if ϕ−1(Λ) = NS(X).

We write ΩT for one of the two connected components of{
σ ∈ P(T ⊗ C) | σ2 = 0, σ · σ > 0

}
. (3.B.2)

This is an open subset of a quadric in P(T ⊗ C). We consider the subgroup O+(T )
of isometries f : T ≃ T which preserve the connected components of (3.B.2).

We denote
ΓT := Õ+(T ) = Ker

(
O+(T )→ O(AT )

)
,

where AT is the discriminant lattice of T . The quotient

FT := ΩT/ΓT

is a quasi-projective variety. It is the coarse moduli space of Λ-marked K3 surfaces,
that is, the moduli space of pairs (X,ϕ) where X is a K3 surface and ϕ : Λ ↪→ NS(X)
is a primitive embedding.

We denote Λ̃K3 = U ⊕ΛK3. We fix a primitive, isotropic vector v ∈ Λ⊕U . Write
v = (r, ℓ, s) for some r, s ∈ Z and ℓ ∈ Λ. The vector e = (0, 0, 1) is primitive and
isotropic. We fix an isometry f : Λ̃K3 → Λ̃K3 which maps v to e. Such an isometry
exists by Lemma 2.2.9. Then f induces an isometry

f : v⊥/Zv → e⊥/Z · e ∼= ΛK3.

We denote
Λ′ :=

(
v⊥ ∩ (Λ⊕ U)

)
/Zv

and consider it as a sublattice of ΛK3 via f . We write T ′ := Λ′⊥ ⊂ ΛK3.

Our goal is to construct a holomorphic map FT → FT ′ using the vector v. Maps
such as these have been studied already in [Ste08], and [Kon93].

Let (X,ϕ) be a Λ-marked K3 surface. This means that we have a commutative
diagram:

H2(X,Z) ϕ
// ΛK3

NS(X)
?�

OO

Λ
?�

OO

ϕ−1
oo

(3.B.3)
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Diagram (3.B.3) induces the diagram:

H̃(X,Z) ϕ̃
// Λ̃K3

N(X)
?�

OO

Λ⊕ U,
?�

OO

ϕ̃−1

oo

(3.B.4)

where N(X) = NS(X)⊕U is the extended Néron-Severi lattice of X. The horizontal
isometry ϕ̃ of Diagram (3.B.4) is obtained by extending ϕ by the identity on U .
Denote by w ∈ H̃(X,Z) the vector which is mapped to v by ϕ̃. Diagram (3.B.4)
induces the diagram

w⊥/Z · w ϕ
// v⊥/Zv f

// ΛK3

w⊥
N(X)/Z · w

?�

OO

Λ′.
?�

OO

ϕ
−1

oo

(3.B.5)

If we assume that v satisfies the conditions in [Muk87, Proposition 6.2], it follows that
the moduli space M(w) is again a K3 surface. Moreover, M(w) comes equipped with
a Hodge isometry H2(M(w),Z)→ w⊥/Z · w. In particular, Diagram (3.B.5) turns
M(w) into a marked ample Λ′-marked K3 surface. Explicitly, the marking on M(w)
is given by f ◦ ϕ. It follows that the point in ΩT ′ corresponding to (M(w), f ◦ ϕ) is
fC(ω), where ω is the point of ΩT corresponding to (X,ϕ).

In light of the above discussion, we define the map Mv : ΩT → ΩT ′ by

Mv(σ) = fC(σ).

Of course, Mv depends on the chosen isometry f . We need to check that Mv descends
to a map M v : FT → FT ′ . To check this, we construct a group homomorphism
ΓT → ΓT ′ , similarly to the strategy in [Kon93].

Recall that we may view T ′ as an overlattice of T via the isometry v⊥/Zv ≃ ΛK3.
Now any isometry γ ∈ ΓT acts trivially on AT . Therefore, γ preserves the subgroup
T ′/T ⊂ AT , and can be extended to an isometry γ̃ : T ′ ≃ T ′. Moreover, γ̃ is the
unique extension of γ to T ′ by an argument similar to the proof of injectivity of
(3.B.1).

It is not hard to see that γ̃ acts as the identity on T ′. To be more precise,
write H := T ′/T ⊂ AT , then there is an isometry H⊥/H ≃ AT ′ . Since γ̃ acts as
the identity on AT , it also acts as the identity on H⊥ ⊂ AT , and therefore also on
H⊥/H ≃ AT ′ . This shows that there is a group homomorphism ΓT → ΓT ′ .

The final step in the construction of the map M v is to show that the holomorphic
map Mv : ΩT → ΩT ′ is equivariant with respect to our group homomorphism
ΓT → ΓT ′ . That is, we check that for any σ ∈ ΩT and γ ∈ ΓT , we have

Mv(γ(σ)) = γ(Mv(σ)).

This follows from:
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Mv(γ(σ)) = fC(γ(σ))

= γ(fC(σ))

= γ(Mv(σ)).

The above discussion proves:
Proposition 3.B.3. Let Λ, Λ′ and v be as above. Then the map M v : FT → FT ′ is
well-defined and holomorphic.

3.B.2 Jacobian Moduli Maps

We now apply the ideas of Section 3.B.1 to a specific choice for the Mukai vector v.
We will obtain a holomorphic map which assigns to an elliptic K3 surface its zeroth
Jacobian.

Let Λd,t be the rank 2 lattice ZH ⊕ ZF with quadratic form(
2d t

t 0

)
.

We fix an inclusion Λd,t ⊂ ΛK3, and write Td,t := Λ⊥
d,t. We denote by Fd,t = FTd,t the

coarse moduli space of Λd,t-marked K3 surfaces. Let (X,ϕ) be an ample Λd,t-marked
K3 surface. This means that X comes equipped with an isometry ϕ−1 : NS(X) ≃ Λd,t,
and hence with a primitive isotropic vector ϕ(F ). The class ϕ−1(F ) determines an
elliptic fibration f : X → P1. The multisection index of f is equal to t. The
associated relative Jacobian fibration J0(X)→ P1 has a section. Therefore we have
NS(J0(X)) ∼= Λ0,1 = U . Moreover, we have J0(X) ∼= Mv(X) where

v = (0, F, 0) ∈ Λ̃K3.

More generally, for any k ∈ Z we have Jk(X) ∼= Mvk(X), where vk = (0, F, k) ∈
H̃(X,Z).

It follows from Proposition 3.B.3 that there is a holomorphic map J0 : Fd,t → F0,1

which maps X to its Jacobian J0(X).
Proposition 3.B.4. The map J0 : Fd,t → F0,1 constructed above is dominant and
has finite fibres.
Proof. The fact that the map is dominant may be checked on the level of period
domains. It is clear from the construction of Mv that it is dominant for any choice
of v. Now fix any ample U -marked K3 surface (S, ϕ). There are only finitely many
elliptic K3 surfaces X → P1 for which NS(X) ≃ Λd,t and for which J0(X) ≃ S.
Indeed any such elliptic K3 surface induces an element of Ш(S) of order t, and since
Ш(S) ≃ Br(S) ≃ (Q/Z)20, there are only finitely many such X → P1. For any
such X → P1, there are only finitely many ample Λd,t-markings Λd,t ≃ NS(X), since
O(Λd,t) is finite.

As a result of Proposition 3.B.4, we obtain the following corollary.
Corollary 3.B.5. Let f : X → P1 be a very general elliptic K3 surface with
NS(X) ∼= Λd,t. Then J0(X) is T -general.
Proof. The very general elliptic K3 surface of Picard rank 2 with a section, i.e. a
very general point of F0,1 is T -general. The result now follows from Proposition
3.B.4.
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3.C Twisted Elliptic K3 Surfaces
Recall from Section 2.2.4 that for a twisted K3 surface (X,α), we can define the
derived category of α-twisted coherent sheaves Db(X,α) := Db(Coh(X,α).

Definition 3.C.1. We say that two K3 surfaces X, Y are twisted derived equivalent if
there exist Brauer classes α ∈ Br(X), β ∈ Br(Y ) such that there exists an equivalence
Db(X,α) ≃ Db(Y, β).

In this chapter, we saw that two derived equivalent elliptic K3 surfaces are not
necessarily coprime Jacobians of one another. However, the following question is still
open:

Question 3.C.2. Suppose X and Y are twisted derived equivalent K3 surfaces.
Suppose X admits an elliptic fibration. Are there derived elliptic structures (X ′, f) ∈
DE(X) and (Y ′, g) ∈ DE(Y ) such that Je(Y ′, g) ≃ Jd(X ′, f) for some d, e ∈ Z?

We will see in Example 3.C.4 that the answer to this question is negative, but
before we discuss this question let us note that it is a sensible one. Firstly, note
that our negative answer to Question 3.1.1 is not enough to answer Question 3.C.2
negatively. Indeed, if X and Y are (non-twisted) derived equivalent, but Y is not
isomorphic to a coprime Jacobian of X, then we may still choose Y ′ = X and X ′ = X.
In particular, if we remove the word twisted in Question 3.C.2, then the answer to
the question is positive.

We now prove that the property of admitting an elliptic fibration is invariant
under twisted derived equivalences.

Proposition 3.C.3. Suppose X and Y are twisted derived equivalent K3 surfaces.
Then X admits an elliptic fibration if and only if Y admits an elliptic fibration.

Proof. Let α ∈ Br(X) and β ∈ Br(Y ) be Brauer classes for which there exists an
equivalence Db(X,α) ≃ Db(Y, α). Then, by [HS05b, Proposition 4.3], there is a
Hodge isometry T (X,α) ≃ T (Y, β). By Proposition 2.2.46, this means that there is
a rational Hodge isometry T (X)Q ≃ T (Y )Q. By the Witt Extension Theorem 2.2.14,
there exists a rational isometry NS(X)Q ≃ NS(Y )Q, hence NS(X) represents zero if
and only if NS(Y ) represents zero. The result follows from Proposition 3.3.3.

Example 3.C.4. Let X be a K3 surface with NS(X) ≃ Λ9,27. Since gcd(9, 27) = 9,
A9,27 has 2 Lagrangian subgroups. They are generated by the Lagrangian elements

v =
1

27
F, v′ =

1

9
H − 1

27
F,

respectively. The vector 1
3
H ∈ A9,27 is isotropic, but not contained in either of the

two Lagrangian subgroups. Denote by T the overlattice of T (X) corresponding to
1
3
H. There is a K3 surface Y for which there exists a Hodge isometry T (Y ) ≃ T

by Lemma 3.C.5 below. However, since 1
3
H is not contained in any Lagrangian

subgroup, it follows that Y is not isomorphic to a Jacobian of a derived elliptic
structure on X.

Example 3.C.4 gives a counterexample to Question 3.C.2, as we explain now.
Firstly, note that since the index of the overlattice T (X) ↪→ T (Y ) is 3, the discrimi-
nant lattice AT (Y ) has order 9 = 32. Therefore, the multisection index of any elliptic
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fibration of Y is 3 by Corollary 3.3.10. Therefore Y does not have any non-trivial
Fourier–Mukai partners. This follows from Corollary 3.5.15, as we now explain.

Note that NS(Y ) ≃ Λd,3, where d = 0 or d = 1. If d = 0, then |DE(Y )| = ϕ(3) =
2, but Y admits two non-isomorphic elliptic fibrations, hence Y has no Fourier–Mukai
partners (if Y is T -special, it is possible that |DE(Y )| = 1 and Y admits 1 elliptic
fibration up to isomorphism). On the other hand, if d = 1, then |DE(Y )| = 1, so
that Y also has no Fourier–Mukai partners in this case.

Note that Je(Y, g) ≃ (Y, g) for all elliptic fibrations g : Y → P1 and all e ∈ Z not
divisible by 3, since the multisection index of g is 3. Since (Y, g) is not a Jacobian of
any Fourier–Mukai partner of X, this means that we have found a counterexample
to Question 3.C.2.

Lemma 3.C.5. [Ma10, Proof of Proposition 3.3] Let X be a K3 surface, and let
T (X) ↪→ T be an overlattice. Then there exists a K3 surface Y for which there is a
Hodge isometry T (Y ) ≃ T .

Proof. The isotropic subgroup T/T (X) ⊂ AT (X) ≃ ANS(X)(−1) induces an overlattice
NS(S) ↪→ N . It is not hard to check that there is an isometry AN ≃ AT (−1), and
this induces an embedding T ⊕N ↪→ ΛK3. The result follows from the surjectivity of
the period map, see Theorem 2.2.23.



Chapter 4

Beauville–Mukai Systems

4.1 Introduction

We discuss applications of our computation of the obstruction class for a moduli space
of sheaves on a K3 surface from Chapter 2. We mostly consider Beauville–Mukai
systems, which are higher-dimensional analogues of elliptic K3 surfaces. We explore
how some of the concepts from Chapter 3 translate to this higher-dimensional setting.

In our study of Fourier–Mukai partners of elliptic K3 surfaces in Chapter 3, the
three main tools used in our strategy were:

i) The Derived Torelli Theorem for K3 surfaces (see Theorem 3.2.1).

ii) Căldăraru’s computation of the obstruction class of a two-dimensional moduli
space (see Theorem 2.4.8).

iii) Ogg–Shafarevich Theory (see Theorem 3.4.4).

To study Fourier–Mukai partners of Beauville–Mukai systems, it is important to
generalise each of i), ii) and iii) to the higher-dimensional setting. In Chapter 2, we
computed the obstruction class of a higher-dimensional moduli space of sheaves on a
K3 surface. This dealt with ii). In this chapter, we make progress on i) and iii).

First we consider Ogg–Shafarevich theory for elliptic K3 surfaces. For an elliptic
K3 surface with a section S → P1, one can consider the Tate–Shafarevich group
Ш(S) consisting of elliptic K3 surfaces X → P1 with a fixed isomorphism between
the Jacobian fibration J0(X)→ P1 and S → P1. Such elliptic K3 surfaces are called
torsors of S → P1. The Tate–Shafarevich group of an elliptic K3 surface with a
section is naturally isomorphic to its Brauer group, with the isomorphism being
given by sending a torsor X → P1 to the obstruction to the existence of a universal
sheaf on the product X × S by [Căl00, Theorem 4.4.1]. This description of the
isomorphism

Ш(S) ≃ Br(S) (4.1.1)

was important in Chapter 3 in our study of Fourier–Mukai partners of elliptic K3
surfaces.

Tate–Shafarevich groups were recently generalised to the higher-dimensional
case [Mar14; AR23; HM23]. For our applications, we rely on the new theory of
Tate–Shafarevich groups introduced in [HM23].

88
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For S a K3 surface, and C → |H| a complete, generically smooth linear system
with H2 = 2g − 2 ≥ 0, we may consider the relative Picard varieties Pic

d
(C/|H|) :=

ML(0, H, d+ 1− g), where d ∈ Z, and L ∈ NS(S) is a generic polarisation. These
relative Picard varieties are called Beauville–Mukai systems, and we usually denote
them by Pic

d to keep notation light. For d = 0, the generic fibre Pic
0

η is an abelian
variety, and the Tate–Shafarevich group Ш(S,H), introduced in [HM23], parametrises
those torsors of Pic0η which compactify to moduli spaces of (twisted) sheaves on S.

We give a different definition of the Tate–Shafarevich group than the one found
in [HM23], and then show that it is equivalent to the definition given in [HM23].
The advantage of our definition is that it defines an element of the Tate–Shafarevich
group to be a torsor of the generic fibre Pic

0

η satisfying some conditions, which is
more in line with the original construction of a Tate–Shafarevich group of an elliptic
curve or an elliptic surface.

We prove that for any d ∈ Z there is a short exact sequence

0→ Z/nZ→Ш(S,H)→ Br(Pic
d
)→ 0,

where

n =
div(H)

gcd(div(H), d+ 1− g)
.

Somewhat surprisingly, the morphism Ш(S,H) → Br(Pic
0
) is generally not an

isomorphism, but instead has a cyclic kernel of order 2 if the Picard rank of S is 1.
This is surprising because it contrasts with the isomorphism (4.1.1) for elliptic K3
surfaces. On the other hand, we have an isomorphism Ш(S,H) ≃ Br(Pic

g−1
). This

isomorphism may be seen as a higher-dimensional analogue of (4.1.1). Indeed, for an
elliptic K3 surface S → P1 with fibre class F ∈ NS(S), we have Ш(S, F ) ≃Ш(S) by
[HM23, §5.1]. In this case, we have F 2 = 2g − 2 = 0, hence g − 1 = 0. This means
that we have an equality Pic

g−1
= Pic

0, and Pic
0
= J0(S) by definition. Moreover,

since S is an elliptic K3 surface with a section, we have J0(S) ≃ S, see [MS24, §4]
for details. Thus the isomorphism Ш(S, F ) ≃ Br(Pic

g−1
) is another incarnation of

(4.1.1).
Moreover, using our explicit computation of the obstruction class of Theorem

2.1.2, we show that for any d ∈ Z, the morphism Ш(S,H) → Br(Pic
d
) maps the

class [Pic
1
] to the obstruction αd ∈ Br(Pic

d
) to the existence of a universal sheaf

on S × Pic
d. Using this fact, we explain that a result by Addington, Donovan and

Meachan [ADM16] should be seen as an analogue to a result by Donagi and Pantev
[DP08], see Theorem 4.3.12 and Theorem 4.3.13, respectively.

Lastly, we study birational equivalence of moduli spaces of sheaves on elliptic K3
surfaces. One of the main points of interest in this topic is the progress we make in
item i) above. From Beckmann’s work on derived equivalence for such moduli spaces
[Bec23], we derive the following theorem.

Theorem 4.1.1 (See Theorem 4.4.5). Let S be an elliptic K3 surface with a section,
and let M be a moduli space of sheaves on S of dimension 2n. Then the following
are equivalent:

i) M is a fine moduli space.



4.1. Introduction 90

ii) M is birational to the Hilbert scheme S[n].

iii) M is derived equivalent to the Hilbert scheme S[n].

In particular, if M is a non-fine moduli space of sheaves on S, then M is not derived
equivalent to S[n].

The equivalence ii) ⇐⇒ iii) was already noted by Beckmann in [Bec23, §9].
The inclusion of item i) is an application of Theorem 2.1.2. Theorem 4.1.1 rules out
the possibility of generalising the Derived Torelli Theorem to higher-dimensional
hyperkähler manifolds of K3[n]-type using the transcendental lattice. More precisely,
we obtain the following corollary, which gives counterexamples to a question raised
in [KK24, Problem 1.1] and in [PR23, Question 2].

Corollary 4.1.2. There exist moduli spaces of sheaves M and M ′ on the same
K3 surface for which there is a Hodge isometry T (M) ≃ T (M ′), but which are not
derived equivalent.

We also apply our results on birational equivalence for moduli spaces of sheaves to
Beauville–Mukai systems. Our main result in this direction is the following theorem,
which fully describes birational equivalences of Beauville–Mukai systems in this
setting.

Theorem 4.1.3 (See Theorem 4.4.8). Let S be an elliptic K3 surface with a section.
Let C → |H| be a generically smooth complete linear system on S, and let H2 =
2g − 2 > 0. The following are equivalent:

i) Pic
d is birational to Pic

e.

ii) The obstruction classes of Picd and Pic
e have the same order.

iii) The Mukai vectors of Picd and Pic
e have the same divisibility. More precisely,

we have gcd(div(H), d+ 1− g) = gcd(div(H), e+ 1− g).

The implication i) =⇒ ii) is a general fact about birational moduli spaces
[Bec23, Proof of Lemma 9.10]. The equivalence ii) ⇐⇒ iii) is an easy consequence
of Theorem 2.1.2, and the implication ii) =⇒ i) uses our explicit computation of
the obstruction class.

The structure of this chapter

In Section 4.2, we recall the new construction of the Tate–Shafarevich group of a
Beauville–Mukai system introduced in [HM23]. The main point of difference is that
we define an element of the Tate–Shafarevich group to be a torsor of Pic0η. In [HM23],
the Tate–Shafarevich group is defined to be a certain subquotient of the special
Brauer group of the underlying K3 surface. We show that our definition is equivalent
to the definition given in [HM23].

In Section 4.3, we study derived equivalence for hyperkähler manifolds, paying
special attention to Beauville–Mukai systems. In Section 4.3.1, we show that the
K3[n]-lattice defined by Beckmann in [Bec23] is a birational invariant. In Section
4.3.2, we show how a theorem by Addington, Donovan and Meachan [ADM16] can
be seen as a higher-dimensional generalisation of a theorem by Donagi and Pantev
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in [DP08]. To show this, we need our computation of the obstruction class from
Chapter 2. We also prove that admitting a rational Lagrangian fibration is a derived
invariant. That is, if X is a hyperkähler manifold of K3[n]-type which admits a
rational Lagrangian fibration, we prove that all Fourier–Mukai partners of X also
admit a rational Lagrangian fibration.

In Section 4.4, we study moduli spaces of sheaves on elliptic K3 surfaces. More
precisely, we study birational equivalence for these moduli spaces. A particularly
interesting result is that the natural generalisation of the Derived Torelli Theorem to
higher-dimensional hyperkähler manifolds of K3[n]-type is false. Moreover, we fully
classify birational equivalence classes of moduli spaces of sheaves over elliptic K3
surfaces in terms of Căldăraru classes.

This chapter is based mostly on [MM24]. The parts that are not based on [MM24]
are Section 4.3.1, Section 4.3.3, and Section 4.A.

4.2 Twisted Beauville–Mukai Systems

4.2.1 Lagrangian Fibrations

Definition 4.2.1. [Mat99; Mat05] Let X be a compact hyperkähler manifold.
A Lagrangian fibration of X is a proper morphism f : X → B which satisfies
f∗OX ≃ OB, where B is a normal variety with 0 < dim(B) < dim(X).

Theorem 4.2.2. [Mat15] Let f : X → B be a Lagrangian fibration of a hyperkähler
manifold of dimension dim(X) = 2n. Then we have dim(B) = n, and every smooth
fibre Xb is an abelian subvariety of X.

Example 4.2.3. The simplest example of a Lagrangian fibration is an elliptic
fibration of a K3 surface S → P1. Moreover, for any n ∈ N, the induced morphism

S[n] → Symn P1 ≃ Pn

is a Lagrangian fibration.

In this section, we study (twisted) Beauville–Mukai systems, which are Lagrangian
fibrations on moduli spaces of (twisted) sheaves on K3 surfaces. We recall the basic
theory here. Our main references are [Muk84; Bea91].

Let S be a K3 surface, and let H ⊂ S be a smooth, irreducible curve of genus
g > 0 whose class in NS(S) is primitive. Let C → |H| be the universal curve over the
linear system |H|. This means that, for any [C] = x ∈ |H|, there is an isomorphism
Cx ≃ C. For d ∈ Z, consider the Mukai vector

vd := (0, H, d+ 1− g). (4.2.1)

For a vd-generic polarisation H ′ ∈ NS(X), we write Md =MH′(vd). Note that a line
bundle L of degree d on a smooth, irreducible curve C ∈ |H| satisfies

v(i∗L) = (0, H, d+ 1− g),

where i : C ↪→ S is the inclusion. Therefore, we have an inclusion

Picd(Csm/|H|sm) ↪→Md,
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where Csm → |H|sm is the restriction of the universal curve to the locus of smooth
curves in |H|. For this reason, we usually denote

Pic
d
(C/|H|) :=Md,

and we denote

Picd(C/|H|) := Picd(Csm/|H|sm) ⊂ Pic
d
(C/|H|).

Moreover, to keep the notation light, we often omit C/|H| from the notation if this
cannot lead to confusion. By Theorem 2.3.2, Picd is a smooth hyperkähler manifold
of K3[g]-type.

Note that there is a natural morphism

f : Pic
d −→ |H|

[F ] 7−→ Supp(F),

which is a Lagrangian fibration by Theorem 4.2.2. Moreover, for a smooth curve
C ∈ |H|, the fibre of f over C is isomorphic to Picd(C).

Remark 4.2.4. For L a line bundle on S with L ·H = div(H), we obtain standard
birational maps between Beauville–Mukai systems by taking the tensor product with
L :

Pic
d ∼
99K Pic

d+div(H)
.

We will see soon which Beauville–Mukai systems are isomorphic as Pic
0

η-torsors
(Remark 4.2.16), and we will also see which ones are birational if S is an elliptic K3
surface (Theorem 4.4.8).

Now, fix a special Brauer class α ∈ SBr(X) represented by an Azumaya algebra
A. Recall from Section 2.2.4 the definition of the twisted Mukai vector

vA(−) : Coh(X,A) −→ H∗(X,Q)

F 7−→ ch(F)
√
ch(A)−1

.

For d ∈ 1
d(A)
· Z, we consider the Mukai vector

vd = (0, H, d+ 1− g) ∈ H∗(X,Q).

Then the discussion above also holds for the moduli space of stable A-modules

Pic
d

α :=ML(vd;α).

More precisely, Picdα is a hyperkähler manifold of K3[g]-type, which admits a La-
grangian fibration f : Pic

d

α → |H|, defined by sending an α-twisted sheaf [F ] ∈ Pic
d

α

to its support. In this case, the fibre of f over a smooth curve C ∈ |H| is isomorphic
to the moduli space of locally free A|C-modules of rank d(A) and degree d · d(A),
denoted

Picdα|C .

Note that we consider α|C as a special Brauer class on C. In this case, if Picdα|C is
non-empty, then α|C is the trivial Brauer class, by [HM23, Remark 3.3(ii)]. Just as
in the untwisted case, we denote by Picdα := Picdα(Csm/|H|sm) ⊂ Pic

d

α the open part
of Picdα living over the smooth curves in |H|.
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Definition 4.2.5. A Lagrangian fibration of the form f : Pic
d → |H| is called a

Beauville–Mukai system, and a Lagrangian fibration of the form f : Pic
d

α → |H| is
called a twisted Beauville–Mukai system.

Note that elliptic fibrations of K3 surfaces are Beauville–Mukai systems. The
following theorem by Markman is a generalisation of this observation.

Theorem 4.2.6. [Mar14, Theorem 7.13], [HM23, Theorem 1.2] Let X → Pn be a
non-special Lagrangian fibration of a hyperkähler manifold X of K3[n]-type. Then
there exists a K3 surface S with a generically smooth linear system |H| and a special
Brauer class α ∈ SBr(S) such that there exists a birational map X

∼
99K Pic

d

α making
the following diagram commute:

X ∼ //

  

Pic
d

α

}}

Pn.

Remark 4.2.7. A hyperkähler manifold of K3[n]-type X is non-special if there are
no integral vectors in H2,0(X)⊕H0,2(X) ⊂ H2(X,C) [Mar14]. If S is a K3 surface,
α ∈ SBr(S) is a special Brauer class, and v ∈ N(S, α) is a primitive Mukai vector,
then S is non-special if and only if M(v;α) is non-special. This follows from the
fact that there is a rational Hodge isometry T (S)Q ≃ T (M(v;α))Q, see Proposition
2.2.46, Corollary 2.2.47, and Theorem 2.3.11.

4.2.2 Tate–Shafarevich Groups

With this example in mind, we now turn our attention to Lagrangian fibrations of
higher dimensions.

Definition 4.2.8. [HM23] For a K3 surface S with generically smooth linear system
|H|, with H2 = 2g − 2 ≥ 0, we denote by

Ш(S,H)

the set of isomorphism classes of pairs (X → Pg, ϕ), where X → Pg is a Lagrangian
fibration of a hyperkähler manifold X which is birational to Pic

d

α for some α ∈ SBr(S)

and some d ∈ Z, and ϕ : Xη×Pic
0

Cη → Xη is a group action that turns Xη into a torsor
over Pic0Cη . Here, an isomorphism between such pairs (X → Pg, ϕ), (Y → Pg, ψ) is a
birational map X

∼
99K Y over Pg which induces an isomorphism of torsors Xη ≃ Yη.

We call Ш(S,H) the Tate–Shafarevich group of the pair (S,H), and refer to elements
of Ш(S,H) as Pic

0
(C/|H|)-torsors.

Remark 4.2.9. Before we compute Ш(S,H), let us briefly motivate why we call
the set Ш(S,H) the Tate–Shafarevich group of (S,H). The main motivation is that
Ш(S,H) parametrises the hyperkähler twists of Pic0 (at least when S is non-special).
This is completely analogous to how the Tate–Shafarevich group of an elliptic K3
surface with a section parametrises those torsors of the generic fibre that compactify
to elliptic K3 surfaces (see Section 3.4.1).
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We now compare Ш(S,H) to the Tate–Shafarevich group Ш0 defined by Markman
in [Mar14]. We assume that the Picard rank of S is ρ = 1 and that H is an ample
generator for NS(S). Then the group Ш0 is defined as

Ш0 := H1(|H|,A0),

where A0 is defined via the short exact sequence

0→ A0 → R1p∗O×
C

deg→ R1p∗Z→ 0,

where p : C → |H| is the projection, and the map deg is obtained through the
exponential sequence. An element s ∈Ш0 can be used to reglue Pic

0 to obtain a
new hyperkähler manifold Pic

0

s [Mar14, §7.2]. This regluing process is similar to how
one reglues an elliptic K3 surface with a section to obtain Tate–Shafarevich twists,
see [Căl00, §4.2] and [DP08, Chapter 2], which partially explains why Markman
chose the notation Ш0. The twist Picds is projective if and only if s ∈Ш0 is a torsion
element, as was proved in [AR23, Theorem 5.19]. Under our assumptions, there is
an isomorphism [HM23, §4.4]

T (S)⊗Q/Z ≃Ш0
tors,

and if α ∈ T (S)⊗Q/Z ⊂ SBr(S) is the special Brauer class corresponding to s along
this isomorphism, then there is a birational equivalence Pic

0

α

∼
99K Pic

0

s [HM23, Proof
of Theorem 1.2]. This fact, combined with Theorem 4.2.13 below, shows that there
is a surjective group homomorphism Ш0 ↠ Ш(S,H), and two elements s, s′ ∈Ш0

have the same image in Ш(S,H) if and only if the generic fibres of Pic0s and Pic
0

s′

are isomorphic as Pic
0

η-torsors.

Remark 4.2.9 explains why Ш(S,H) bears its name, but it does not yet explain
how it is a group. Note that there is a natural injective map Ш(S,H) ↪→WC(Pic

0

η),
where WC(Pic

0

η) denotes the Weil-Châtelet group of the abelian variety Pic
0

η (see
Section 3.4.1). Therefore, to define a group structure on Ш(S,H), it suffices to show
that the image of Ш(S,H) in WC(Pic

0

η) is closed under the group action.

Lemma 4.2.10. [HM23, Remark 4.11] Let S be a K3 surface, and let H ∈ NS(S)

be a smooth, irreducible curve. Let α, β ∈ SBr(S) such that Pic
0

α and Pic
0

β are
non-empty. Then, in WC(Pic

0

η), we have

[(Pic
0

α)η] · [(Pic
0

β)η] = [(Pic
0

αβ)η)].

In particular, Ш(S,H) is naturally a subgroup of WC(Pic
0

η).

Proof. For any α ∈ SBr(S), we have [(Pic
0

α)η] = [Pic
0

α|Cη ] in WC(Pic
0

η). Therefore,
the result follows from [HM23, Remark 4.11].

Recall that, for an elliptic K3 surface with a section S → P1, there are isomor-
phisms

Ш(S) ≃ Br(S) ≃ Hom(T (S),Q/Z).
The rest of this section is devoted to proving Theorem 4.2.13 below, which is a similar
structure result for the Tate–Shafarevich group of a pair (S,H) due to Huybrechts
and Mattei [HM23].



95 Chapter 4. Beauville–Mukai Systems

Lemma 4.2.11. [HM23, Proposition 4.13] Let α ∈ SBr(S) be a special Brauer
class such that Pic

d

α is non-empty. Then there exists a special Brauer class α0 ∈
T (S)⊗Q/Z ⊂ SBr(S) with the property that

[Pic
d

α] = [Pic
0

α0
]

in Ш(S,H). Moreover Pic
d

α is non-empty for any α ∈ T (S)⊗Q/Z.

Combining Lemma 4.2.10 and Lemma 4.2.11, we immediately obtain the following
proposition:

Proposition 4.2.12. The map

T (S)⊗Q/Z −→ Ш(S,H)

α 7−→ [Pic
0

α]

is a well-defined and surjective group homomorphism.

Recall that we have a short exact sequence

0→ T (S)→ T (S)∗ → AT (S) → 0,

where AT (S) is the discriminant lattice of T (S). Taking the tensor product of this
short exact sequence by Q/Z, we obtain

0→ AT (S) → T (S)⊗Q/Z→ T (S)∗ ⊗Q/Z→ 0, (4.2.2)

and we view AT (S) as a subgroup of T (S)⊗Q/Z using this identification.
For a class H ∈ NS(S), we have

H

div(H)
∈ ANS(S).

Recall from Lemma 2.2.1 that there is a natural identification AT (S) ≃ ANS(S)(−1),
so that H

div(H)
corresponds to a unique element λ ∈ AT (S). In this notation, we write

ζH : AT (S) −→ Q/Z
x 7−→ x · λ.

Theorem 4.2.13. [HM23, Proposition 4.9] The natural morphism T (S)⊗Q/Z→
Ш(S,H) induces an isomorphism

T (S)⊗Q/Z
ker(ζH)

≃Ш(S,H).

For any d ∈ Z, the Beauville–Mukai system Pic
d → |H| defines an element of

Ш(S,H). For details, we refer to [HM23, Example 4.14].
The element of (T (S) ⊗ Q/Z)/ ker(ζH) corresponding to [Pic

d
] is the element

induced by
−d

div(D)
·D ∈ ANS(S) ⊂ T (S)⊗Q/Z, (4.2.3)
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where D ∈ NS(S) is a divisor with div(D) = D ·H. Such a divisor exists and can be
constructed as follows. Let u ∈ H2(S,Z) be a class that satisfies u ·H = 1. This
class exists since H is primitive and H2(S,Z) is unimodular. Also by unimodularity,
there exists a divisor D ∈ NS(S), and an integer m ∈ Z such that u · E = D

m
· E for

all E ∈ NS(S). Moreover, we have D
m
∈ NS(S)∗, since u is an integral vector, hence

m ≤ div(D). On the other hand, from D
m
·H = 1, it follows that we have m = D ·H,

hence m ≥ div(D), and we find m = div(D).

Remark 4.2.14. Let us briefly explain our choice of D above. For simplicity, assume
d = 1. In the notation of [HM23], for any vector bundle E on S of rank r and
determinant L, there exists a birational map

Pic
1 ∼

99K Pic
d′

End(E)

F 7−→ F ⊗ E

where d′ = 1 + L ·H/r. Moreover, the class [End(E)] ∈ SBr(S) corresponds to the
class (1/r) · L ∈ NS(S)⊗Q/Z. Therefore, for any divisor D ∈ NS(S), one can pick
L = −D and r = D ·H to get an isomorphism Picd ≃ Pic0End(E). However, End(E)
only defines a class in Ш(S,H) if [End(E)] lies in the image of ANS(S) ⊂ NS(S)⊗Q/Z,
i.e. if (−1/D ·H) ∈ Z[1/ div(D)], equivalently D ·H = div(D).

Remark 4.2.15. The element (4.2.3) can be seen as a special Brauer class via the
inclusion T (S)⊗Q/Z ↪→ H2(S,Z)⊗Q/Z ≃ SBr(S). The birational map

Pic
d ∼
99K Pic

0

End(E)

shows that Pic
d is birational to Pic

0

αd
, where αd ∈ SBr(S) is a special Brauer class

contained in ANS(S) ⊂ SBr(S). In particular, the image of αd under the natural
surjective map

SBr(S) ≃ H2(S,Z)⊗Q/Z→ T (S)∗ ⊗Q/Z ≃ Br(S)

vanishes. Now suppose we have d, e ∈ Z such that Pic
d is not birational to Pic

e.
Such integers exist for well-chosen S and H, see for example Theorem 4.4.8. Write
v0 = (0, H, 1− g) ∈ N(S). Then the twisted moduli spaces M(v0, αd) and M(v0, αe)
are not birational, while αd and αe induce the same element of Br(S).

For now, let us note that [Pic1] corresponds to the image of u ∈ H2(S,Z) along
the composition

H2(S,Z)→ T (S)∗ → T (S)⊗Q/Z.

Remark 4.2.16. The element (4.2.3), corresponding to [Pic
d
] ∈Ш(S,H), is trivial

if and only if d is a multiple of div(H). Indeed, since div(D) = D ·H = k div(H) for
some k, we have

ζH

(
−dD
div(D)

)
=
−d div(D)

div(D)
= −d ∈ Z/ div(H)Z.

This means that Pic
d

η and Pic
e

η are isomorphic Pic
0

η-torsors if and only if d− e ≡ 0

(mod div(H)). Notice that, in particular, [Pic1] = [−D/ div(D)] has order div(H).
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4.3 Derived Equivalence for Beauville–Mukai Sys-
tems

4.3.1 Derived Equivalence for Hyperkähler Manifolds

Derived equivalence for K3 surfaces is a well-established subject. This is in no
small part due to the Derived Torelli Theorem 2.3.12, which classifies Fourier–Mukai
partners of K3 surfaces. If we turn our attention to derived equivalences of more
general hyperkähler manifolds, the situation is much less clear. Even if we restrict
our attention to hyperkähler manifolds of K3[n]-type, no analogue of the Derived
Torelli Theorem has been proved at the time of writing. This is not to say that there
has been no progress in this subject at all. On the contrary, derived equivalence of
hyperkähler manifolds is a very active area of research. In this section, we provide a
summary of recent progress. We are especially interested in hyperkähler manifolds of
K3[n]-type, and even more so in moduli spaces of (twisted) sheaves on K3 surfaces.

Theorem 4.3.1. [Hal21] Let S be a K3 surface, let α ∈ SBr(S) be a special Brauer
class, let v ∈ N(S, α) be a primitive Mukai vector, H ∈ NS(S) a v-generic polarisation,
and write M = MH(v;α). If X is a complex, K-trivial, smooth, projective variety
that is birational to M , then X is derived equivalent to M .

As we mentioned above, there is currently no analogue for the Derived Torelli
Theorem for hyperkähler manifolds of K3[n]-type. Such a result would associate to
any hyperkähler manifold X of K3[n]-type a Hodge lattice LX , such that the following
conjecture holds:

Conjecture 4.3.2. Two hyperkähler manifolds of K3[n]-type X, Y are derived equiv-
alent if and only if there is a Hodge isometry LX ≃ LY .

There are two main contenders for a Hodge lattice that could play the role of
LX ; they are the transcendental lattice T (X) and the so-called K3[n]-lattice ΛX
introduced by Taelman and Beckmann, [Tae23; Bec23]. We discuss the K3[n]-lattice
below. In Section 4.4, where we study birational equivalence for moduli spaces of
sheaves on elliptic K3 surfaces, we prove that Conjecture 4.3.2 is false when we take
LX = T (X). The question of whether Conjecture 4.3.2 holds for LX = ΛX is still
open.

If X and M are as in Theorem 4.3.1, then a birational map X
∼
99K M induces

a Hodge isometry H2(X,Z) ≃ H2(M,Z) by the Birational Torelli Theorem 2.2.25,
hence we have a Hodge isometry T (X) ≃ T (M). Similarly, in Proposition 4.3.7 below,
we prove that a birational equivalence between X and M also gives rise to a Hodge
isometry ΛX ≃ ΛM . This means that Theorem 4.3.1 is a requirement for Conjecture
4.3.2 to hold with LX = ΛX . Moreover, if such a Derived Torelli statement were true,
Theorem 4.3.1 would have to hold for all hyperkähler manifolds of K3[n]-type, not only
for moduli spaces of sheaves. The question of whether birational equivalence implies
derived equivalence for K-trivial varieties is part of an important conjecture by
Bondal, Orlov, and Kawamata, called the D-equivalence Conjecture [BO02; Kaw02].

Corollary 4.3.3. If Conjecture 4.3.2 holds with LX = ΛX , then the D-equivalence
conjecture holds for hyperkähler manifolds of K3[n]-type.

Proof. This follows immediately from Proposition 4.3.7 below.



4.3. Derived Equivalence for Beauville–Mukai Systems 98

We now turn our attention to the K3[n]-lattice ΛX .

Definition 4.3.4. [Bec23] Let X be a hyperkähler manifold of K3[n]-type. Then the
Mukai lattice of X is the Hodge lattice of K3-type:

H̃(X,Z) := U ⊕H2(X,Z),

whose (2, 0)-part is H2,0(X). If e, f ∈ U form the standard basis of U , the vector
re+ x+ sf ∈ H̃(X,Z), where r, s ∈ Z and x ∈ H2(X,Z), is denoted (r, x, s). Recall
from Section 2.2.5 that H̃(X,Z) admits a natural ring structure.

Recall that, if X and Y are K3 surfaces, then every Fourier–Mukai equivalence
Db(X) ≃ Db(Y ) induces a Hodge isometry H̃(X,Z) ≃ H̃(Y,Z). This result holds
because for any object E• ∈ Db(X × Y ), the Mukai vector v(E•) ∈ H2(X × Y,Q) is
integral. This is not the case when X and Y are higher-dimensional moduli spaces
of sheaves on K3 surfaces, and therefore cohomological Fourier–Mukai transforms do
not necessarily induce Hodge isometries between the Mukai lattices.

As we discussed in Section 2.2.5, any rational element B ∈ H2(X,Z) induces
a rational isometry exp(B) : H̃(X,Q) ≃ H̃(X,Q). We will see in Theorem 4.3.9
that any Fourier–Mukai equivalence preserves exp(B) ∧ H̃(X,Z) for a well-chosen
B ∈ H2(X,Q). We now explain what the correct choice for B is.

Definition 4.3.5. [Tae23; Bec23] Let X be a hyperkähler manifold of K3[n]-type.
The K3[n]-lattice of X is the Hodge lattice

ΛX := exp

(
δ

2

)
· H̃(X,Z) ⊂ H̃(X,Q).

Here, δ ∈ H̃(X,Z) is any primitive vector with δ2 = 2− 2n and div(δ) = 2n− 2. The
Hodge structure on ΛX is the one inherited from H̃(X,Q), that is, Λ2,0

X = H2,0(X).

Remark 4.3.6. If δ and δ′ are two primitive vectors in H̃(X,Q) with δ2 = (δ′)2 =
2 − 2n and div(δ) = div(δ′) = 2n − 2, then we have 1

2
(δ′ − δ) ∈ H̃(X,Z). Indeed,

the discriminant lattice A = H2(X,Z)∗/H2(X,Z) is cyclic of order 2n− 2, and both
1
2
δ and 1

2
δ′ are vectors of order 2 in A. Since A only contains one such vector, we

have 1
2
(δ′ − δ) = 0 ∈ A, hence 1

2
(δ′ − δ) ∈ H2(X,Z). Recall from Lemma 2.2.40 that

exp(1
2
(δ′− δ)) is an isometry which preserves H̃(X,Z). This means that we have the

following equalities of subsets of H̃(X,Q) :

exp

(
δ

2

)
· H̃(X,Z) = exp

(
δ

2

)
· exp

(
δ′ − δ
2

)
· H̃(X,Z) = exp

(
δ′

2

)
· H̃(X,Z).

This shows that ΛX is independent of the choice of δ.

Proposition 4.3.7. Let X and Y be hyperkähler manifolds of K3[n]-type. If X and
Y are birational, then ΛX is Hodge isometric to ΛY .

Proof. By [Huy03, Lemma 2.6], there exists a Hodge isometry

ψ : H2(X,Z) ≃ H2(Y,Z).

We obtain a Hodge isometry ψ̃ : H̃(X,Z) ≃ H̃(Y,Z), extending by the identity on
U . Lemma 2.2.39 shows that ψ̃ is a ring homomorphism. By taking the tensor
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product with Q, we get a Hodge isometry ψ̃Q : H̃(X,Q) ≃ H̃(Y,Q) which restricts
to ψ̃ on H̃(X,Z). Let δ ∈ H̃(X,Z) be a primitive vector with δ2 = 2 − 2n and
div(δ) = 2n − 2. Then ψ̃(δ) ∈ H̃(Y,Z) has the same square and divisibility as δ,
because ψ̃ is an isometry. Using the fact that ψ̃Q is a ring homomorphism, it follows
that it restricts to a Hodge isometry

ΛX = exp

(
δ

2

)
· H̃(X,Z) ≃ exp

(
ψ̃(δ)

2

)
· H̃(Y,Z) = ΛY ,

where the final equality follows from Remark 4.3.6.

Proposition 4.3.8. [Bec23] For a hyperkähler manifold X of K3[n]-type, where
n ≥ 2, there is a Hodge isometry

ΛX ≃ H̃(X,
δ

2
,Z). (4.3.1)

Moreover, we have
T (ΛX) ≃ T (X), (4.3.2)

where T (ΛX) is the transcendental sublattice of ΛX , see Definition 2.2.22.

Proof. It follows immediately from Lemma 2.2.43 that there is a Hodge isometry
ΛX ≃ H̃(X,− δ

2
,Z). Since −δ has the same square and divisibility as δ, (4.3.1) follows

from Remark 4.3.6. For (4.3.2), we recall Proposition 2.2.46: we have a map(
δ
2
· −
)
: T (X) −→ Q/Z

x 7−→ δ
2
· x,

and there is a Hodge isometry

T (ΛX) ≃ ker

(
δ

2
· −
)
.

However, since δ has divisibility 2n− 2 in H̃(X,Z), we have

ker

(
δ

2
· −
)

= T (X),

and the result follows.

The following theorem, due to Taelman in the case n = 2, and Beckmann in the
general case, provides one half of a Derived Torelli statement.

Theorem 4.3.9. [Bec23; Tae23] Let X and Y be hyperkähler manifolds of K3[n]-type.
Then any derived equivalence Db(X) ≃ Db(Y ) induces a Hodge isometry ΛX ≃ ΛY .

Corollary 4.3.10. [Bec23, Corollary 9.3] Let X and Y be derived equivalent hy-
perkähler manifolds of K3[n]-type. Then there exists a Hodge isometry T (X) ≃ T (Y ).

Proof. The transcendental sublattice of the Hodge lattice ΛX is T (X), by Proposition
4.3.8. Now the result follows from the fact that any Hodge isometry ΛX ≃ ΛY restricts
to a Hodge isometry T (ΛX) ≃ T (ΛY ) combined with Theorem 4.3.9.
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Theorem 4.3.11. [Bec23, Corollary 9.6] Let S be a K3 surface, let v ∈ N(S) be
a primitive Mukai vector, and let H ∈ NS(S) be a v-generic polarisation. Write
M :=MH(v). If X is a hyperkähler manifold of K3[n]-type which is a Fourier–Mukai
partner of M , then X is birational to a moduli space of sheaves on S.

Proof. By Corollary 4.3.10, there is a Hodge isometry T (X) ≃ T (M). By Theorem
2.3.11, the Mukai morphism induces a Hodge isometry T (S) ≃ T (M), hence the
Hodge lattices T (X) and T (S) are Hodge isometric. Therefore, X is birational to a
moduli space of sheaves on S by Proposition 2.3.13.

4.3.2 Ogg–Shafarevich Theory

Recall the following result by Addington, Donovan, and Meachan:

Theorem 4.3.12. [ADM16] Let S be a K3 surface with NS(S) = ⟨H⟩, where H is
ample. Then for any d, e ∈ Z, there is an equivalence

Db(Picd, αed) ≃ Db(Pic
e
, α−d

e ).

The main goal of this subsection is to exhibit this result as a higher-dimensional
generalisation of a result by Donagi and Pantev of [DP08]. This is done by Corollary
4.3.17 below. The statement and proof of Corollary 4.3.17 heavily relies on our
explicit computation of the obstruction class in Theorem 2.4.15.

Twisted derived equivalences of elliptic K3 surfaces

First, we briefly recall the results of Donagi and Pantev. Their results hold more
generally for elliptic surfaces S → P1 whose fibres have at worst I1-singularities, but
we restrict our attention to elliptic K3 surfaces for now. Let S → P1 be an elliptic
K3 surface which admits a section. Recall that the Tate–Shafarevich group Ш(S)
of S parametrises pairs (X → P1, ϕ), where X → P1 is an elliptic K3 surface, and
ϕ : J0(X) ≃ S is an isomorphism over P1 which preserves the chosen sections, see
[Huy16, §11.5] for details. Elements of Ш(S) are called S-torsors. Moreover, there is
a canonical isomorphism

Ш(S) ≃ Br(S). (4.3.3)

This isomorphism can be understood as follows. Suppose (X → P1, ϕ) is an S-torsor.
Then ϕ exhibits S as a coarse moduli space of sheaves on X, hence there is a unique
Brauer class αX ∈ Br(S) which is the obstruction to the existence of a universal
sheaf on X × S by Definition/Proposition 2.3.6. The isomorphism (4.3.3) is given by

Ш(S) −→ Br(S)

(X → P1, ϕ) 7−→ αX
.

Moreover, short exact sequence (2.4.5) takes the following form in this setting:

0→ ⟨αX⟩ → Br(S)→ Br(X)→ 0,

and via (4.3.3), this sequence may be interpreted as the sequence

0→ ⟨[(X → P1, ϕ)]⟩ →Ш(S)→ Br(X)→ 0.
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Let (Y → P1, ψ) ∈Ш(S) be another S-torsor, and denote by αY ∈ Br(X) the
image of [(Y → P1, ψ)] ∈ Br(S) in Br(X). Similarly, we denote by αX ∈ Br(Y ) the
image of αX .

Theorem 4.3.13. [DP08] Keeping the notation as above, there is an equivalence

Db(X,αY ) ≃ Db(Y, αX−1).

Tate–Shafarevich groups of Beauville–Mukai systems

We now turn our attention back to Beauville–Mukai systems. Let S be a K3 surface.
For M a smooth moduli space of sheaves on S, recall that there is a natural chain of
inclusions T (S) ↪→ T ′(M) ↪→ T (S)∗. Here,

T ′(M) :=
H2(M,Z)
NS(M)

satisfies Br(M) ≃ T ′(M)⊗Q/Z, see Equation (2.2.12). We denote A := T ′(M)/T (S),
and consider it as a subgroup of AT (S) ≃ T (S)∗/T (S). Using this, we obtain the
short exact sequence

0→ A→ T (S)⊗Q/Z→ T ′(M)⊗Q/Z→ 0, (4.3.4)

where A is embedded in T (S)⊗Q/Z using the inclusion A ⊂ AT (S) ↪→ T (S)⊗Q/Z.

Proposition 4.3.14. Let S be a K3 surface, and let H ⊂ S be a smooth, irreducible
curve whose class in NS(S) is primitive, and such that H2 = 2g − 2 ≥ 2. If we take
M = Pic

d in short exact sequence (4.3.4), we obtain the short exact sequence:

0→ A

ker(ζH)
→Ш(S,H)→ Br(Pic

d
)→ 0. (4.3.5)

Moreover, the kernel is cyclic of order

div(H)

div(vd)
=

div(H)

gcd(div(H), d+ 1− g)
.

Here, vd is the Mukai vector of Picd, see (4.2.1).

Proof. Recall from the previous section that we have

Im(T ′(Pic
d
) ↪→ T (S)∗) = {a ∈ T (S)∗ | a · vd ∈ div(vd)Z} .

This implies that ker(ζH) ⊂ A, hence short exact sequence (4.3.5) is obtained from
(4.3.4) by taking the quotient with ker(ζH) and using the third isomorphism theorem.
Choose any a ∈ A such that a · vd = div(vd). We claim that a generates A/ ker(ζH).
Let b ∈ A be any other element, then we can write b · H = div(vd) · R for some
R ∈ Z. Since Ra − b ∈ A satisfies (Ra − b)(H) = 0, it follows that Ra = b in
A/ ker(ζH). This shows that a generates A/ ker(ζH). Moreover, the order of a is
precisely div(H)/ div(vd).

Corollary 4.3.15. In the notation of Proposition 4.3.14, we have an isomorphism

Ш(S,H) ≃ Br(Pic
g−1

).
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Proof. Since vg−1 = (0, H, 0) it follows that div(vg−1) = div(H), and now the
statement follows from Proposition 4.3.14.

Corollary 4.3.15 is slightly surprising. One might have expected an isomorphism
between Ш(S,H) and Br(Pic

0
), as is the case when H2 = 0. Instead, if the Picard

rank of S is 1, we have a short exact sequence

0→ Z/2Z→Ш(S,H)→ Br(Pic
0
)→ 0

by Proposition 4.3.14. Note, however, that if H2 = 0, we have g = 1, so that
Pic

0
= Pic

g−1. Therefore, Corollary 4.3.15 is a generalisation of the well-known
isomorphism Ш(S) ≃ Br(S) for an elliptic K3 surface S with a section.

Since we have, for any d ∈ Z, a surjective group homomorphism Ш(S,H) →
Br(Pic

d
), it is an important question what the preimages of the obstruction class

are. We answer this question in the following proposition, using Theorem 2.4.15.

Proposition 4.3.16. For any d ∈ Z, the homomorphism Ш(S,H)→ Br(Pic
d
) of

Proposition 4.3.14 satisfies
[Pic

1
] 7→ αd,

where αd ∈ Br(Pic
d
) is the obstruction to the existence of a universal sheaf on

S × Pic
d.

Proof. Recall that the element [Pic
1
] ∈Ш(S,H) is the image of the element

u ∈ T (S)⊗Q/Z,

where u ∈ H2(S,Z) is a class with u · H = 1. We show that the image of u in
Br(Pic

d
) is precisely the obstruction class. Consider the chain of surjections

T (S)⊗Q/Z ↠ T ′(Pic
d
)⊗Q/Z ↠ T (S)∗ ⊗Q/Z.

≃ Br(Pic
d
) ≃ Br(S)

Since u ∈ T (S)∗, it follows that the image of u in Br(Pic
d
) is in the kernel of the

map Br(Pic
d
)→ Br(S), which is generated by αd. From u · vd = 1, it follows that u

maps to αd by Theorem 2.4.15.

We can now see how Theorem 4.3.12 resembles Theorem 4.3.13.

Corollary 4.3.17. Let S be a K3 surface of Picard rank 1. Let H ∈ NS(S) be an
ample generator, and let d, e ∈ Z. Denote by αd ∈ Br(Pic

e
), resp. αe ∈ Br(Pic

d
)

the images of [Pic
d
], resp. [Pic

e
] in Br(Pic

e
), resp. Br(Pic

d
). Then there is an

equivalence
Db(Picd, αe) ≃ Db(Pic

e
, αd

−1).

Proof. By Proposition 4.3.16, we have αd = αde ∈ Br(Pic
e
), and αe = αed ∈ Br(Pic

d
).

Combining this with Theorem 4.3.12 proves the result.

It is an interesting open question whether Corollary 4.3.17 holds more generally.
For example, when we consider the twisted Picard varieties of [HM23], or when we
drop the assumption that ρ = 1.



103 Chapter 4. Beauville–Mukai Systems

4.3.3 Lagrangian Fibrations are a Derived Invariant

In this section, we discuss the following question.

Question 4.3.18. Let X and Y be derived equivalent hyperkähler manifolds. If
X admits a rational Lagrangian fibration, does Y also admit a rational Lagrangian
fibration?

If X and Y are K3 surfaces, the answer to Question 4.3.18 is affirmative by
Lemma 2.2.16 and Lemma 3.3.2. Before we discuss the higher-dimensional analogue,
let us define what a rational Lagrangian fibration is.

Definition 4.3.19. Let X be a hyperkähler manifold. A rational Lagrangian fibration
on X is a composition

X
∼
99K Y

f−→ B,

where Y is another hyperkähler manifold, and f is a Lagrangian fibration.

We note that the answer to Question 4.3.18 is negative if we drop the word
rational, see for example [BM14a, §11]. We prove in this section that the answer
to Question 4.3.18 is affirmative when X and Y are of any of the currently known
deformation types. The currently known deformation types are: K3[n], generalised
Kummer, OG6, and OG10. Our strategy relies on the SYZ conjecture for hyperkähler
manifolds:

Conjecture 4.3.20 (SYZ conjecture for hyperkähler manifolds). [Saw03] Let X be
a hyperkähler manifold. Then X admits a rational Lagrangian fibration if and only
if there is a non-zero isotropic class in NS(X).

For all the currently known deformation types, Conjecture 4.3.20 has already been
established [BM14a; Mar14; Yos16; MR21; MO22], but a general proof is unknown.

Lemma 4.3.21. Let X and Y be derived equivalent hyperkähler manifolds of di-
mension 2n. If either n is odd or b2(X) is odd, then there is a rational isometry
NS(X)Q ≃ NS(Y )Q.

Proof. We denote by H̃(X,Q) the Hodge lattice of K3-type whose underlying lattice
structure is U ⊕H2(X,Z) and whose Hodge structure is inherited from H2(X,Z).
By our assumptions on n and b2(X), we may apply [Tae23, Theorem C]: There is
a rational Hodge isometry f : H̃(X,Q) ≃ H̃(Y,Q). Since f is a Hodge isometry, it
restricts to a rational Hodge isometry T (X)Q ≃ T (Y )Q. Therefore, f also restricts
to a rational isometry N(X)Q ≃ N(Y )Q.

From the decompositions N(X)Q = NS(X)Q⊕UQ and N(Y )Q = NS(Y )Q⊕UQ, it
follows from the Witt Cancellation Theorem 2.2.15 that there is a rational isometry
NS(X)Q ≃ NS(Y )Q, as required.

Remark 4.3.22. The assumptions on n and b2(X) are satisfied for all the currently
known deformation types. Namely, b2(X) is odd if X is of K3[n]-type (n ≥ 2) or
of generalised Kummer type, and n is odd if X is a K3 surface, or of OG6-type or
OG10-type.

Proposition 4.3.23. Let X be a hyperkähler manifold of any of the currently known
deformation types. Let Y be a hyperkähler manifold which is derived equivalent to X.
Then X admits a rational Lagrangian fibration if and only if Y does.
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Proof. By Lemma 4.3.21, there is a rational isometry NS(X)Q ≃ NS(Y )Q. Therefore,
NS(X) represents zero if and only if NS(Y ) does. The result follows from the proof
of the SYZ conjecture for hyperkähler manifolds the currently known deformation
types [BM14a; Mar14; Yos16; MR21; MO22].

4.4 Birational Equivalence for Moduli Spaces
In this section, we study birational equivalence for moduli spaces of sheaves on elliptic
K3 surfaces with a section. More specifically, we study the birational geometry of
Beauville–Mukai systems on such K3 surfaces. Theorem 4.4.8 below fully classi-
fies which Beauville–Mukai systems over elliptic K3 surfaces are birational. This
classification uses our explicit computation of the obstruction class.

It is a well-known fact that a K3 surface S admits an elliptic fibration with a
section if and only if there is an isotropic class F ∈ NS(S) of divisibility 1, see for
example [Huy16, Remark 3.2.13 and §11.4] and Lemma 3.3.5. This is equivalent to
the existence of an embedding U ⊂ NS(S). In this case, the lattice N(S) ≃ NS(S)⊕U
admits an embedding U⊕2 ⊂ N(S), so that we may apply Lemma 2.2.9 to N(S).

Recall that the main result about the birational geometry of MH(v) is Markman’s
Birational Torelli Theorem, c.f. Theorem 2.2.25. The Birational Torelli Theorem
asserts that any hyperkähler manifold of K3[n]-type X comes equipped with a natural
O(Λ̃K3)-orbit of embeddings H2(X,Z) ↪→ Λ̃K3. Here Λ̃K3 = ΛK3 ⊕ U = U⊕4 ⊕ E⊕2

8

is the extended K3 lattice. Moreover, two hyperkähler manifolds of K3[n]-type are
birational if and only if there exists a commutative square of Hodge metric morphisms:

H2(X,Z) //

��

H2(Y,Z)

��

Λ̃K3
// Λ̃K3.

If M =MH(v) is a moduli space of sheaves on a K3 surface S, then the orbit of
embeddings H2(M,Z) ↪→ Λ̃K3 is the one containing the following embedding:

H2(M,Z) ≃ v⊥ ↪→ H̃(S,Z) ≃ Λ̃K3. (4.4.1)

Here, the first isometry is the Mukai morphism of Theorem 2.3.11, and the isometry
H̃(S,Z) ≃ Λ̃K3 is arbitrary. Note that the O(Λ̃K3)-orbit of the embedding (4.4.1) is
independent of the choice of isometry H̃(S,Z) ≃ Λ̃K3.

Let S be a K3 surface. Recall from Definition 2.4.1 that for a vector v ∈ N(S),
we call the element

av := −
v

div(v)
∈ AN(S)

the Căldăraru class of v, and that the element ωv ∈ AT (S) corresponding to av via the
natural isomorphism AN(S) ≃ AT (S)(−1) of Remark 2.2.2 is called the transcendental
Căldăraru class of v.

Proposition 4.4.1. Let S be a K3 surface for which there exists an embedding
U ⊂ NS(S). Let u, v ∈ N(S) be primitive Mukai vectors with u2 = v2 = 2n − 2,
n > 1. Then the moduli spaces M(u) and M(v) are birational if and only if there is
a Hodge isometry ψ : T (S) ≃ T (S) such that ψ(ωv) = ωu.
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Proof. Suppose M(u) and M(v) are birational. Then by the Birational Torelli
Theorem, there is a commutative diagram of Hodge isometries:

v⊥

��

≃ // u⊥

��

H̃(S,Z) ≃
Φ
// H̃(S,Z).

Denote ϕ := Φ|N(S) : N(S) ≃ N(S) and ψ := Φ|T (S) : T (S) ≃ T (S), and note that ψ
is a Hodge isometry. Then ϕ(v) = ±u. Possibly replacing Φ by −Φ, we may assume
ϕ(v) = u. We have ϕ(av) = au, hence ψ(ωv) = ωu by Lemma 2.2.3.

Conversely, suppose ψ : T (S) → T (S) is a Hodge isometry which satisfies
ψ(ωv) = ωu. Since T (S)⊥ = N(S), we may apply Lemma 2.2.8, and extend ψ to a
Hodge isometry Ψ : H̃(S,Z)→ H̃(S,Z). Denote ϕ := Ψ|N(S) : N(S) ≃ N(S). Since
ψ(ωv) = ωu, we have aϕ(v) = ϕ(av) = au. By Lemma 2.2.9, there is an isometry
ι : N(S) ≃ N(S) which maps ϕ(v) to u and which acts trivially on AN(S). In particular,
we can extend ι, by the identity on T (S), to a Hodge isometry Γ : H̃(S,Z) ≃ H̃(S,Z).
Now Γ ◦Ψ is a Hodge isometry of H̃(S,Z) which maps v to u, and this implies by
the Birational Torelli Theorem that M(v) and M(u) are birational.

Remark 4.4.2. Since − idT (S) is a Hodge isometry of T (S), the transcendental
Căldăraru class ωv is always in the same orbit as −ωv. For this reason, we may drop
the choice of a sign in front of the definition of the Căldăraru class, and we will also
refer to the element

−av =
v

div(v)
∈ AN(S)

as the Căldăraru class of v.

Proposition 4.4.3. Let S be a K3 surface for which there exists an embedding
U ⊂ NS(S). If M is a fine(!) 2n-dimensional moduli space of sheaves with Mukai
vector v ∈ N(S), then M is birational to S[n].

Proof. If n = 1, then M is a Fourier–Mukai partner of S by the Derived Torelli
Theorem [Muk87; Orl03]. However, since U ⊂ NS(S), S does not have any non-trivial
Fourier–Mukai partners by [Hos+02, Corollary 2.7(3)]. Therefore, we have M ≃ S,
as required.

Now assume n ≥ 2. By Theorem 2.4.15, we have div(v) = 1. In particular, the
Căldăraru class of v is

v

div(v)
= v = 0 ∈ AN(S).

If u ∈ N(S) is any other Mukai vector with u2 = 2n− 2 and div(u) = 1, then au = 0
as well, hence M is birational to M(u) by Proposition 4.4.1. If we let u = (1, 0, 1−n),
then M(u) ≃ S[n], hence M is birational to S[n].

Corollary 4.4.4. Let S be as in Proposition 4.4.3. Suppose moreover that NS(S)
is unimodular. Then any moduli 2n-dimensional space M(v) of sheaves on S is
birational to the Hilbert scheme S[n].

Proof. Since NS(S) is unimodular, N(S) is also unimodular. Therefore, any primitive
Mukai vector v ∈ N(S) has divisibility 1, hence the moduli space M(v) is birational
to a Hilbert scheme of points on S by Proposition 4.4.3.
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Combining Proposition 4.4.3 with [Bec23, Corollary 9.9] yields the following
interesting result, which provides examples of hyperkähler manifolds of K3[n]-type
with Hodge isometric transcendental lattices, but which are not derived equivalent.
These are counterexamples to a question raised in [KK24, Problem 1.1], and a similar
question raised in [PR23, Question 2].

Theorem 4.4.5. [Bec23] Let S be a K3 surface for which there exists an embedding
U ⊂ NS(S). Let M =MH(v) be a moduli space of sheaves on S of dimension 2n > 2.
Then the following are equivalent.

i) M is a fine moduli space.

ii) M is birational to the Hilbert scheme S[n].

iii) M is derived equivalent to the Hilbert scheme S[n].

In particular, if M is a non-fine moduli space of sheaves, then M is not derived
equivalent to S[n].

The equivalence ii) ⇐⇒ iii) in Theorem 4.4.5 was already noted by Beckmann
in [Bec23]. The addition of item i) is a straightforward application of Theorem 2.4.15,
combined with Proposition 4.4.3.

Proof. The implication i) =⇒ ii) is Proposition 4.4.3. We now prove that ii) =⇒
i). Suppose M is birational to S[n]. Let u = (1, 0, 1−n) ∈ N(S), so that S[n] ≃M(u).
Then the divisibility of v in N(S) is equal to the divisibility of u = (1, 0, 1− n) in
N(S) by Proposition 4.4.1, hence M is a fine moduli space by Corollary 2.4.16. The
equality of the divisibilities of v and u is also an easy consequence of the Birational
Torelli Theorem, and does not depend on the existence of a primitive embedding
U ⊂ NS(S). Indeed, by Theorem 2.2.25, if M and S[n] are birational, there is a
Hodge isometry ϕ : H̃(S,Z) ≃ H̃(S,Z) which satisfies ϕ(u) = ±v. Since ϕ is an
isometry, the divisibilities of u and v are equal.

The implication iii) =⇒ ii) is [Bec23, Proposition 9.9]. The converse, ii) =⇒
iii), is [Hal21].

As an immediate consequence of Theorem 4.4.5, we obtain the following corollary.

Corollary 4.4.6. There exist moduli spaces of sheaves M and M ′, on the same
K3 surface, for which there is a Hodge isometry T (M) ≃ T (M ′), but which are not
derived equivalent.

We now apply Proposition 4.4.1 to Beauville–Mukai systems. For d ∈ Z, let
vd = (0, H, d+1−g), where H ⊂ S is a smooth, irreducible curve on a (not necessarily
elliptic) K3 surface S, and assume H is primitive in NS(S), and H2 = 2g − 2 ≥ 2.
We write

ad :=
vd

div(vd)

for the Căldăraru class of vd, see Definition 2.4.1 and Remark 4.4.2.

Lemma 4.4.7. We have
ad =

H

div(vd)
∈ AN(S).

In particular, for e ∈ Z, we have ad = ae if and only if div(vd) = div(ve).
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Proof. By definition,

ad =
1

div(vd)
(0, H, d+ 1− g) = H

div(vd)
+ (0, 0,

d+ 1− g
div(vd)

).

The result follows from the fact that div(vd) divides d+ 1− g.

Theorem 4.4.8. Let S be a K3 surface for which there exists an embedding U ⊂
NS(S). Let H ⊂ S be a smooth irreducible curve with H2 = 2g−2 and with primitive
class in NS(S). Let d, e ∈ Z. Then the following are equivalent:

i) Pic
d is birational to Pic

e.

ii) The obstruction classes of Picd and Pic
e have the same order.

iii) The Mukai vectors of Picd and Pic
e have the same divisibility. More precisely,

we have gcd(div(H), d+ 1− g) = gcd(div(H), e+ 1− g).

Proof. Note that gcd(div(H), d + 1 − g) = div(vd) for all d ∈ Z. The equivalence
ii) ⇐⇒ iii) follows from the fact that the order of αd is equal to div(vd) for all
d ∈ Z by Theorem 2.4.15.

By Proposition 4.4.1, Picd and Pic
e are birational if and only if there exists a

Hodge isometry ψ : T (S) ≃ T (S) such that ψ(ωd) = ωe. In this case, the orders of
ωd and ωe in AT (S) are equal. Since the order of ωd equals the order of ad, which is
div(vd), this means that div(vd) = div(ve).

Conversely, if div(vd) = div(ve), then ad = ae by Lemma 4.4.7, and Pic
d and Pic

e

are birational by Proposition 4.4.1.

To conclude, we note that Theorem 4.4.8 provides many examples of birational
Beauville–Mukai systems Pic

d and Pic
e whose generic fibres are not isomorphic as

Pic
0

η-torsors. Let S and H be as in Theorem 4.4.8. Recall from Remark 4.2.16 that
the generic fibres of Pice and Pic

d are isomorphic Pic
0

η-torsors if and only if d ≡ e
(mod div(H)). Therefore, if div(H) is big enough, we may find d, e ∈ Z such that
e ̸≡ d (mod div(H)), but gcd(div(H), d+ 1− g) = gcd(div(H), e+ 1− g). In this
case, Pice and Pic

d are birational, but their generic fibres do not give isomorphic
torsors.

It remains to be shown that such a smooth, irreducible curve H exists. Note that
for ρ = 2, NS(S) ≃ U is unimodular. Then every primitive element of NS(S) has
divisibility 1 (see Lemma 2.4.4), so Theorem 4.4.8 is trivial for ρ = 2. On the other
hand, for ρ > 2, we can always find a smooth, irreducible curve H ⊂ S whose class
in NS(S) has higher divisibility. We now show how to construct these curves. Let
D ⊂ NS(S) be a primitive divisor with div(D) > 1, and let L ∈ NS(S) be any ample
divisor. Let m be a large multiple of div(D). We claim that the general member
H of the complete linear system |mL+D| is a smooth and irreducible curve, and
div(H) = k div(D) for some k ≥ 1.

Firstly, note that for any divisor D′ ∈ NS(S), we have (mL+D) ·D′ = mL ·D′ +
D ·D′, which is divisible by div(D), and therefore div(H) = div(mL+D) = k ·div(D)
for some k ≥ 1.

To check that the general member of |mL +D| is smooth and irreducible, we
show that the linear system is base-point free. Firstly, note that mL+D is big and
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nef (see [Huy16, §2.3]), which follows from the openness of the ample cone. We may
apply [Huy16, Corollary 2.3.15(ii)]: any big and nef complete linear system with a
base locus is of the form |nE + C|, where E ⊂ S is an elliptic curve, and C ⊂ S is a
rational curve with C · E = 1. Note that the divisor nE + C has divisibility 1, since
E · (nE+C) = nE2 +E ·C = 1. Since the divisibility of mL+D is k div(D) > 1 for
some k ≥ 1, the complete linear system mL+D has an empty base locus. It follows
from [Huy16, Remark 2.3.7(ii)] that |mL +D| contains an irreducible curve, and
therefore by [Huy16, Corollary 2.3.6], the general member of |mL+D| is a smooth,
irreducible curve.

Suppose that H is not primitive. Then there is a primitive H ′ ∈ NS(S) and a
k′ > 1 such that H = k′H ′. Write ℓ = gcd(k′, div(D)). We have

D

ℓ
=
mL

ℓ
+
H

ℓ
. (4.4.2)

Since ℓ divides m, the vector on the right-hand-side of (4.4.2) is integral. However,
since we chose D primitive, this means ℓ = 1. Since k′ divides div(H) = k · div(D),
it follows that k′ divides k, and

div(H ′) =
k

k′
div(D) ≥ div(D).

Since H ′ is still big and nef, the discussion above also applies to H ′, i.e. the general
member of |H ′| is a smooth, irreducible curve in S, and this time it is also primitive
in NS(S).

For any d, e ∈ Z such that gcd(div(H ′), d + 1 − g) = gcd(div(H ′), e + 1 − g),
but such that d ̸≡ e (mod div(H ′)), the Beauville–Mukai systems Pic

d and Pic
e are

birational by Theorem 4.4.8, but their generic fibres are not isomorphic Pic
0

η-torsors
by Remark 4.2.16.



Appendix to Chapter 4

4.A Transcendental Lattices of Moduli Spaces of
Twisted Sheaves

The main inspiration for this section is the following result by Addington. We include
a sketch of the proof for completeness.

Recall from the Birational Torelli Theorem 2.2.25 that for any hyperkähler
manifold X of K3[n]-type, there is a natural orbit of embeddings H2(X,Z) ↪→ Λ̃K3,
where Λ̃K3 = U⊕4⊕E8(−1)⊕2 is the extended K3 lattice. Such an embedding induces
a Hodge structure of K3 type on Λ̃K3. In Proposition 4.A.1 below, Λ̃1,1

K3 denotes the
integral (1, 1)-part of Λ̃K3 with respect to this Hodge structure.

Proposition 4.A.1. [Add16, Proposition 4] Let X be a hyperkähler manifold of
K3[n]-type. The following are equivalent.

i) There is a Hodge isometry T (X) ≃ T (S) for some K3 surface S.

ii) X is birational to a moduli space of sheaves on some K3 surface S.

iii) There is a hyperbolic lattice U ⊂ Λ̃1,1
K3.

Moreover, in this case, we can take the same K3 surface in i) and ii).

Sketch of the proof. i) =⇒ ii): Fix any Hodge isometry T (X) ≃ T (S). Then there
are two embeddings T (S) ↪→ H̃(S,Z) and T (S) ≃ T (X) ↪→ H2(X,Z) ↪→ Λ̃K3. Note
that H̃(S,Z) is isometric to Λ̃K3 as abstract lattices. Moreover, the embedding
T (S) ↪→ H̃(S,Z) has U ⊂ N(S) = T (S)⊥, hence the two embeddings are isometric
by Lemma 2.2.8. That is, there is an isometry H̃(S,Z) ≃ Λ̃K3 which fixes T (S).
Such an isometry is automatically a Hodge isometry. Moreover, it exhibits H2(X,Z)
as a corank 1 sublattice of H̃(S,Z). Therefore we have H2(X,Z)⊥ = ⟨v⟩ for some
primitive v ∈ N(S). By setting up our isometries correctly, one may assume v is a
Mukai vector so that M(v) is a hyperkähler manifold of K3[n]-type (for a generic
choice of polarisation). By the Birational Torelli Theorem 2.2.25, X and M(v) are
birational.

ii) =⇒ iii): In this case there is a Hodge isometry Λ̃K3 ≃ H̃(S,Z), where Λ̃K3

is endowed with the Hodge structure induced by X, hence we have an isometry
Λ̃1,1

K3 = N(S), which contains a hyperbolic lattice.
iii) =⇒ i): Decompose Λ̃K3 = Λ′ ⊕U, with U ⊂ Λ̃1,1

K3. Now Λ′ is isometric to the
K3 lattice, and it carries a natural Hodge structure of K3 type induced by Λ̃K3. By
the surjectivity of the period map, there is a K3 surface S with H2(S,Z) ≃ Λ′. By
construction, we have a Hodge isometry T (S) ≃ T (X).
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There is a twisted version of Proposition 4.A.1, proved by Huybrechts in [Huy17,
Lemma 2.6]. For a non-zero integer k ∈ Z, we write U(k) for the even lattice of rank
2 corresponding to the following matrix:(

0 k

k 0

)
.

Lemma 4.A.2. Let X be a hyperkähler manifold of K3[n]-type. The following are
equivalent.

i) X is birational to a moduli space of twisted sheaves on a K3 surface.

ii) There is an embedding U(k) ⊂ Λ̃1,1
K3 for some k ≥ 1.

Lemma 4.A.2, while applicable in a more general setting than Proposition 4.A.1,
has a slightly less precise conclusion. This leads to the question of whether a
hyperkähler manifold X for which there exists a Hodge isometry T (X) ≃ T (S, α) for
some twisted K3 surface (S, α), with α ∈ SBr(S), is birational to a moduli space of
α-twisted sheaves on S. We now show that the answer to this question is negative.

Remark 4.A.3. Note that for an even non-degenerate lattice L, the existence of an
integer k for which there is an embedding U(k) ⊂ L is equivalent to the existence of
a non-zero isotropic vector v ∈ L. Indeed, U(k) certainly contains non-zero isotropic
vectors. Conversely, let v be a non-zero isotropic vector. Let w ∈ L be any vector
such that v · w ̸= 0. Such a vector exists since L is non-degenerate. Write w2 = 2d
and v ·w = k for some d, k ∈ Z. Then kw−dv is isotropic and v and kw−dv generate
a lattice isometric to U(m) for some k ∈ Z (more precisely, we have m = kv · w).

Proposition 4.A.4. Let X be a hyperkähler manifold of K3[n]-type. The following
are equivalent.

i) There is a Hodge isometry T (X) ≃ T (S, α) for some twisted K3 surface (S, α),
where α ∈ SBr(S).

ii) X is birational to a moduli space of twisted sheaves on some twisted K3 surface
(S ′, α′), where α′ ∈ SBr(S ′).

iii) There is a (not necessarily primitive) embedding U(k) ⊂ Λ̃1,1
K3 for some k ≥ 1.

However, in this case (S, α) is not necessarily isomorphic to (S ′, α′). In fact, (S, α)
is not even necessarily derived equivalent to (S ′, α′)

Proof. The equivalence ii) ⇐⇒ iii) is Lemma 4.A.2. The implication ii) =⇒ i) is
an easy consequence of the Birational Torelli Theorem 2.2.25. We now prove that
i) =⇒ iii). Since we have a rational isometry T (X)Q ≃ T (S, α)Q by Proposition
2.2.46, there is also a rational isometry Λ̃1,1

K3,Q ≃ N(S, α)Q. Since N(S, α) represents
zero, Λ̃1,1

K3 also represents zero, and the result follows from Remark 4.A.3.
For the final claim, choose any two twisted K3 surfaces (S, α), (S ′, α′) such

that there is a Hodge isometry T (S, α) ≃ T (S ′, α′), but for which there exists
no Hodge isometry H̃(S, α,Z) ≃ H̃(S ′, α′,Z). Such twisted K3 surfaces exist by
[HS05b, Example 4.11]. Now any moduli space M of α-twisted sheaves on S has
T (M) ≃ T (S, α) ≃ T (S ′, α′), but M is not birational to a moduli space of α′-twisted
sheaves on S ′ by the Birational Torelli Theorem.



Further Questions

The Derived Torelli Theorem

In my opinion, the most important question about derived equivalence for hyperkähler
manifolds of K3[n]-type is the following:

Question 1. Does Conjecture 4.3.2 hold for LX = ΛX?

As we discussed in Section 4.3.1, a positive answer to Question 1 would imply
the D-equivalence conjecture for hyperkähler manifolds of K3[n]-type.

However, as we saw in Section 4.4, there exist moduli spaces of sheaves M and
M ′ on a K3 surface S which are not derived equivalent (see Corollary 4.4.6). The
transcendental lattices T (M) and T (M ′) are Hodge isometric, but we do not know
whether the same holds for the K3[n]-lattices ΛM and ΛM ′ .

Question 2. Let M and M ′ be moduli spaces of sheaves on a K3 surface S. Is there
a Hodge isometry ΛM ≃ ΛM ′?

To answer Question 2, one needs to study the lattice Λ1,1
M = T (ΛM)⊥. The

most straightforward way to do this is by using the description ΛM ≃ H̃(M, δ
2
,Z),

combined with Lemma 2.2.45. Note that a positive answer to Question 2 implies a
negative answer to Question 1.

Twisted obstruction classes

Let (S, α) be a twisted K3 surface, with α ∈ SBr(S). Let v ∈ N(S, α) be a Mukai
vector and let H be a v-generic polarisation. Write M := MH(v;α). The Mukai
morphism is a Hodge isometry

H̃(S, α,Z) ⊃ v⊥ ≃ H2(M,Z),

hence we have a Hodge isometry T (S, α) ≃ T (M). Using the Mukai morphism, and
writing

Br(S, α) := Hom(T (S, α),Q/Z)

we obtain a short exact sequence

0→ Z/ div(v)Z→ Br(M)→ Br(S, α)→ 0,

completely analogously to how we derived the short exact sequence of Proposition
2.4.12.

Question 3. Is the kernel the above short exact sequence generated by the obstruction
class of M?
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One step towards answering Question 3 is generalising Proposition 2.3.5 to moduli
spaces of twisted sheaves.

Finally, it would be interesting to generalise Proposition 4.3.14 to the twisted case.
This would lead to the following question about twisted Beauville–Mukai systems.

Question 4. Are there twisted derived equivalences as in Corollary 4.3.17 for twisted
Beauville–Mukai systems Pic

d

α and Pic
e

α? In this case, what are the Brauer classes
αd and αe?
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