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Abstract

In the development process of pharmaceuticals, a frequent step is that a therapy is admin-
istered to all patients within a study; which is known as a single-arm study. A particular
feature of single-arm studies is that they provide no direct estimate of treatment effects owing
to the lack of a comparator arm. Therefore, estimation of treatment effects from single-arm
studies involves reference to an external comparator (unanchored indirect treatment compar-
ison). Even though single-arm studies can be completed faster than randomised control trials
(RCTs), they add complexity to indirect comparisons as both prognostic and effect-modifier
variables need to be balanced to obtain a valid relative treatment effect estimate.

In health technology assessment (HTA), when companies analyse their intervention treat-
ment from a single-arm study with comparator/comparators, access to individual patient
data (IPD) in all studies of interest is a rare situation as sharing of clinical data is often lim-
ited. A middle-ground situation is more realistic where the company has access to IPD for
its own study and aggregate data (AgD) for the comparator studies. Moreover, the compa-
nies often have to estimate relative treatment effects of a single-arm study treatment against
multiple comparator treatments in a larger disconnected network of evidence. Therefore,
the fundamental objective of this thesis was to assess whether the population-adjustment
method matching adjusted indirect comparison (MAIC) is suitable to implement for a larger
disconnected network of evidence or not.

This thesis starts with a review on National Institute for Health and Care Excellence (NICE)
single technology appraisal (STA)s to evaluate the methods with the single-arm study. Unan-
chored MAIC and simulated treatment comparison (STC) were found to be frequently used
methods to estimate relative treatment effects with single-arm studies. It was found that
unanchored MAIC was applied multiple times to estimate the relative treatment effect of a
single-arm study intervention in a larger disconnected network of evidence. The relative effect
estimates from this multiple MAICs were described as if the MAIC estimates made a set of
coherent relative effect estimates ignoring the fact that these estimates were from different
target populations. Additionally, using the IPD several times for conducting multiple MAICs
breaks the independence of the unit of analysis assumption. In order to assess the impact of
this, a simulation study was designed with multiple MAIC estimates in a fixed and a random
effects network meta-analysis (NMA).

The major impact of performing an MAIC-adjusted NMA was seen in the coverage of the
NMA estimates where the coverage dropped below nominal level (95%). The violation
of the independence assumption together with the sandwich estimator had a repercussion
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on the NMA estimate coverage. The deviation from the nominal level of coverage was
more pronounced for the larger compared to a smaller disconnected network of evidence.
Double-bootstrapping with MAIC was found to solve the problem of undercoverage both for
fixed and random effects NMA. However, the biases were found to be comparatively high
with low-overlap scenarios and a smaller sample size. The proposed double-bootstrapping
method was also applied in a case study with asthma. The case study illustrates how to
make multiple comparisons simultaneously using double-bootstrapped MAIC-adjusted NMA
where a correct level of coverage for the NMA estimates can be preserved with the use of
double-bootstrapping. Therefore, this thesis recommends MAIC-adjusted NMA with double-
bootstrapping approach when there exists a sufficient level of overlap between studies together
with a satisfactory sample size.
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Chapter 1

Introduction

The efficacy of pharmaceuticals is usually evaluated through randomised control trials (RCTs)
for marketing authorisation. In general, RCTs guarantee a high-level unbiased assessment of
efficacy and safety of treatments with such reliability that no other methodology can com-
pete with that. It gives RCTs the highest standard for the evaluation of new treatments. In
general, RCTs possess some important characteristics to generate an unbiased comparison
between treatments which can be summarised as: random allocation of patients to treatment
groups to minimise potential confounders, double blinding of patients and clinicians about
treatment allocation to avoid biased assessment of outcomes, analysing patients within the
group with which they were allocated to preserves the benefits of randomisation, and the
aim of estimating the size of the difference in predefined outcomes. At the start of a study,
when participants are assigned to different treatments, if systematic differences exist, it can
distort the treatment effect. Randomisation aims to alleviate both measured and unmeasured
confounders (NICE, 2013).

In the development process of pharmaceuticals, a single-arm study is conducted by assign-
ing a treatment to all patients within a study. By design, single-arm studies do not have a
comparator arm which prevents them from providing a direct relative estimate like an RCT,
therefore, indirect comparison is the only option with single-arm studies. There can be var-
ious reasons for implementing a single-arm study. It may be conducted when unprompted
improvement in patients is not expected, placebo effects are minimal, and assigning patients
to a placebo arm is ethically not justified. Single-arm studies are commonly executed in on-
cology, such as rare cancers where the target patient group is often very small (Evans, 2010).
They are commonly used for outcomes like tumor response rate in order to assess earlier effi-
cacy. A product can be submitted to regulatory agencies for licensing with a single-arm study
despite the fact that it may not be a preferred approach due to the absence of a concurrent
comparator arm. Even though in some cases they can be completed faster than an RCT,
they add complexity to relative treatment effect estimation due to the inability to provide
head-to-head treatment comparisons (Agrawal et al., 2023).

European union member states, Canada, UK, Japan, and Australia, which cover most of the
drug markets worldwide, have health-care systems where the cost of a prescribed medicine
is almost totally covered by social security agencies or third-party public payers such as the
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National Health Service (NHS) (Eichler et al., 2010). Gaining regulatory consent is important
for a drug to get market access, however, gaining positive reimbursement or coverage decisions
from payers is also necessary for drugs to be available to patients. Health technology assess-
ment (HTA), refers to a collaborative system where the economic, social, organizational, and
ethical issues associated with a health technology are evaluated. The main objective of HTA
is to perform an assessment that can help in policy decision-making (WHO, 2020).

HTA bodies, such as National Institute for Health and Care Excellence (NICE) which pro-
duce recommendations on public funding of health care technologies in England and Wales,
need to find out the treatment with the highest efficacy of all available options to reimburse
given that the availability of resources is limited. In doing this, often a new treatment from
a single-arm study needs to be compared with one or multiple relevant comparators. As no
direct comparison can be made with single-arm studies, indirect treatment comparison (ITC)
is a standard approach companies rely on for their HTA reimbursement submissions. ITCs
are a valid approach as long as they are not biased due to differences in patient characteristics
(Signorovitch et al., 2010). Hence, adjustments need to be considered when making indirect
comparisons to ensure the validity of the results. An indirect treatment comparison is usually
performed in a connected network of evidence. A network of evidence can be in a connected
form when pair-wise comparisons link each treatment to every other treatment, that is, for
each treatment, there is a chain of pair-wise comparisons (Sutton et al., 2008). The situation
becomes more complex when no connected network of evidence is present which makes the
comparison between treatments more challenging.

This chapter begins with a discussion of indirect comparison in Section 1.1 which continues
with a description of biases in indirect comparison in Section 1.2. Comparative effectiveness
with single-arm studies is discussed in Section 1.3 more elaborately. The existence of single-
arm studies in the evolution of new medication is thoroughly discussed in Section 1.4. In
addition, in many HTA processes, it happens recurrently that individual patient data (IPD)
is available for a company’s own study and aggregate data (AgD) is available for comparator
studies. This is discussed in more detail in Section 1.5. Section 1.6 sheds light on statistical
methodology with single-arm studies. At the conclusion of this chapter, the research questions
that will be addressed in this thesis have been discussed in Section 1.7.

1.1 Indirect comparisons

Figure 1.1 illustrates a number of network diagrams corresponding to different evidence struc-
tures of indirect comparisons. The nodes with capital letters indicate treatments and the solid
lines mean treatments in head-to-head clinical studies have been compared directly. A broken
line between nodes means no direct comparison exists between treatments.

Suppose the outcomes of the studies are binary and odds ratios (ORs) have been used to
estimate relative effectiveness between studies. In Figure 1(a), two treatments A and C can
be directly compared to B, which is the common comparator. No direct comparison exists
between A and C. An indirect comparison between A and C, i.e. dAC can be achieved by
ORAB/ORBC = ORAC where ORAB is the odds ratio of A versus B, ORBC is the odds
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ratio B versus C and dAC is the relative effect between the treatments. This is termed as
“standard adjusted indirect comparison” as it takes into account the randomisation of the
corresponding study (Phillippo et al., 2016). The comparative effect of dAC will be called
“unadjusted indirect comparison” if it is estimated by simply comparing the A arm of the AB
study with the C arm of the BC study as ORAC . An unadjusted or naive indirect comparison
has been discouraged as it assumes results of particular arms from different studies assuming
that within-study randomisation is preserved like an RCT study (Sutton et al., 2008). Usu-
ally, the common comparator treatment is a standard treatment or a placebo. Diagram (a)
depicts the simplest form of indirect comparison, but with the addition of treatments and
studies, the network can become complex and evidence about relative effects can come from
multiple sources such as diagrams (b) and (c).

Figure 1.1: Different forms of a network in indirect comparison

Diagrams (a),(b) and (c) in Figure 1.1 can be termed as a larger connected network of
evidence that can be comprised of multiple treatments or multiple studies per treatment
comparison or both. In a larger connected network of evidence, a path or edge exists that
connects every treatment directly or indirectly to all other treatments. This is not the case
for a disconnected network of evidence. In diagram (d) a larger disconnected network of
evidence is depicted where there is no direct or indirect path to connect treatments E and
F with treatments A, B, C, and D. In diagram (d), the disconnected network of evidence is
comprised of two connected networks (network A, B, C, D and network E, F), however, the
network can also include single/multiple single-arm studies. A larger disconnected network
of evidence is not suitable for making comparisons between all possible treatments.

Connected networks are exhibited in diagrams (a), (b), and (c), and data from such net-
works could be analysed using indirect comparison and mixed treatment comparison (MTC).
In practice, MTC is also known as network meta-analysis (NMA). A MTC or NMA is an
expansion of a standard pairwise meta-analysis, which is capable of comparing multiple treat-
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ments altogether in studies sharing at least one treatment in common. In MTC, both direct
and indirect comparisons are used. In diagram (b), treatments A and B can be compared
using both direct and indirect evidence. Direct evidence comes from the AB study whereas
indirect evidence comes from the BC and AC studies. Hence, relative effectiveness for A
versus B is a mixture of direct and indirect evidence. This is a simple example of the MTC
network. The MTC model allows the inclusion of all the evidence which in turn decreases
the uncertainty in the pooled estimate. In addition, including both direct and indirect com-
parisons provides a chance to judge the consistency of the network of evidence (Sutton et al.,
2008). An indirect treatment comparison is used to describe a comparison that does not
contain any loops as in diagrams (a) and (c), whereas a mixed treatment comparison is used
to describe a comparison that does contain loops as in diagrams (b)(Shim et al., 2017; Fleet-
wood, 2020).

The validity of MTC or NMA depends on three vital assumptions known as similarity, tran-
sitivity, and consistency (Jansen et al., 2008; Donegan et al., 2013; Shim et al., 2017). Under
the assumption of similarity, the studies included for analysis need to be similar with respect
to the methodology used in the studies. That means the population, intervention, compar-
ison, and outcome among the studies need to be similar. The assumption requires that the
studies should be homogeneous with respect to any criteria that may impact the treatment
effect. While similarity explains the methodological equivalence between studies, transitivity
is needed to ensure the validity of inference. For instance, suppose in a particular health con-
dition there exist three treatments named Trt 1, Trt 2, and Trt 3 that have been investigated
in a head-to-head setting, and it was found that Trt 1 is more efficacious than Trt 2, and Trt
2 is more efficacious than Trt 3, then logically Trt 1 should be more efficacious than Trt 3.
Transitivity needs to be held for all cases in an NMA. Consistency measures the transitivity
objectively. It refers to the equivalence of direct and indirect evidence. Consistency is also
known as coherence.

Relative effects that are estimated indirectly with a common comparator are also known as
“anchored comparison”. In Figure 1.1, diagram (a), (b), (c) can be taken as an anchored
form of comparison where treatment B is the common comparator. Since the requirement
of MTC is a connected network, discontinuity in the network makes the application of MTC
infeasible. In Figure 1.1, diagrams (d) and (e) both illustrate disconnected networks. In dia-
gram (d), there is no study that connects treatments E and F to the rest of the network and
in diagram (e), treatments A and B come from two single-arm studies, so no head-to-head
comparison is possible. An indirect comparison that can be made between treatment A and
E in diagram (d) or treatment A and B in diagram (e) can also be termed as an “unanchored”
form as no common comparator exists between them.

These disconnected networks depicted in diagrams (d) and (e) are the most difficult ones to
be inferred on. Disconnected networks may occur due to various reasons such as the debat-
able use of a placebo, a major shift in the treatment paradigm, designating a product as an
orphan, or when there are many accepted standards of care. Estimating the relative effec-
tiveness as well as safety of new drugs against alternatives in disconnected networks becomes
a challenge to analysts (Goring et al., 2016).
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Adjusted indirect comparisons implement direct comparisons with a treatment arm that
is common to the network for the sake of overcoming criticism against naive comparison.
Whereas standard indirect comparison relies on connected evidence networks, different sit-
uations can arise if treatments are not linked via connected networks. When there is no
connected evidence, an “unanchored” indirect comparison needs to take place which is illus-
trated in diagrams (d) and (e).

1.2 Different forms of biases in indirect comparison

Estimation of treatment effects relies on four core assumptions. These assumptions have been
summarised by Phillippo et al. (2016) and have been discussed by several authors (Stuart
et al., 2011; Hartman et al., 2015). These assumptions are true for any method of indirect
comparison. These are:

i. Whether or not an individual is assigned to a study, outcomes are the same on treatment
and control. This is called the homogeneity of outcomes.

ii. Stable unit treatment value. The outcomes of a participant are not dependent on any
other participants.

iii. Strongly ignorable treatment assignment. The distribution of prognostic variable
or effect-modifier variable will be balanced if treatment allocation is random and does not
depend on sample selection from the target population given the observed covariates.

iv. Strongly ignorable sample assignment. Both sample selection and outcome do not
relate to any unmeasured variables and given observed covariates, each participant in the
target population has a substantial probability of being selected into the study sample.

Although these assumptions are needed for making indirect comparisons, bias can hamper
the validity of comparisons whether the comparison is performed directly or indirectly. When
the relative effect of treatments is estimated in different populations or settings, if there are
any differences in the collection, interpretation, analysis, and publication phase that can di-
lute the true response of treatment, then it is called bias. Biases can be categorised as being
internal or external (Turner et al., 2012).

Figure 1.2 summarises different forms of biases that can hamper the validity of a study. A
component of biases is termed as “selection bias” which means at baseline, treatment, and
control groups are not similar with respect to patient characteristics. “Performance bias”
arises as a consequence of the absence of blinding of participants or caregivers whereas “at-
trition bias” emerges from an imbalance in exclusion and drop-outs. Biases related to the
assessment of the outcome are called “outcome bias”. Again externally different kinds of
biases can challenge study validity. “Population bias” arises when the idealised study pop-
ulation and target population differ substantially. Difference between the study and target
interventions causes “intervention bias” and “control bias” stems from differences between
the study and target control strategies. “Publication bias” arises when authors, editors of
journals, or reviewers grow a tendency only to publish studies with significant/favourable re-
sults. The focus of this thesis is to explore the methods that are capable of handling selection
bias as other forms of biases are not adjustable with the existing methods.
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Figure 1.2: Different forms of biases in indirect comparison

1.3 Indirect comparisons in disconnected networks with single-
arm study

Although a MTC or NMA is capable of comparing multiple treatments simultaneously, when
a disconnected network of studies arises, which means studies have different comparator arms
or lack a control arm completely (single-arm study), it becomes more difficult to provide rel-
ative treatment efficacy. Single-arm studies, which are designed without a comparator arm,
are unable to provide a direct relative treatment effect estimate. Although the use of single-
arm study has been discouraged in all cases, it is still being used due to various reasons.
RCTs are not always possible due to realistic or moral issues. In life-threatening diseases,
randomising patients to a placebo arm that is assumed to be inefficacious is unethical, or
in the case of rare diseases, it can be problematic to find a sufficient amount of patients for
the two arms of an RCT to get a significant difference. Moreover, for some advanced dis-
eases, such as some advanced cancer, it can be that no established comparator treatment is
available. In these situations, single-arm studies can be the only way to get available evidence.

In Figure 1.3, different forms of disconnected networks with single-arm study have been il-
lustrated where the nodes indicate treatments, solid lines connecting nodes indicate direct
comparison and a dashed line indicates an indirect comparison. In diagram (a), both treat-
ments A and B come from a single-arm study and an unanchored comparison needs to be
made between them whereas in diagram (b), treatment A comes from a single-arm study
and B comes from an RCT. In diagram (c), a single-arm study treatment A needs to be
compared with a network of evidence where the network is composed of both RCTs and
single-arm study (treatment G). In diagram (c), although only two single-arm studies are
included (treatment A, G), however, the network can consist of several single-arm studies
also. Additionally, diagrams (b) and (c) can be termed as a larger disconnected network of
evidence as they consist of a large number of treatments (more than two) that need to be
compared simultaneously, and the network is disconnected due to the presence of single-arm
studies which obstructs the connection of each treatment to every other treatment in the
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network.

Figure 1.3: Different forms of disconnected network with single-arm study

Standard indirect comparisons and NMAs use a connected network of evidence with the con-
stancy of relative effects. This assumption requires that the effect-modifying variables are
distributed similarly across studies so that relative effects are constant. The only source of
error is sampling error which occurs as a consequence of variation in study sizes. For the
case of single-arm studies, a crude “unadjusted” comparison with comparator treatments can
be partitioned into two components, such as sampling error and systematic error (Phillippo
et al., 2016). The sources of systematic error in single-arm studies come from disparity in
both prognostic and effect-modifier variables. Therefore, when estimating relative treatment
effects with single-arm studies, it should be ensured that estimates are not biased due to differ-
ences in prognostic and effect-modifier variables using an adjusted comparison. Over the last
decade, “population-adjusted indirect comparisons” have become a commonly used approach
for submissions to reimbursement agencies which can address the problem of unanchored in-
direct comparison (Phillippo et al., 2018). To calculate the relative effect in unanchored form,
population-adjusted indirect comparisons made the assumption of “conditional constancy of
absolute effects” where it is assumed that all effect-modifiers and prognostic variables are
known and at any given level of the variables, the absolute treatment effects are constant.
In practice, this assumption is difficult to meet due to the presence of unobserved prognostic
and effect-modifier variables that causes unanchored comparisons affected by an unknown
amount of residual bias (Phillippo et al., 2019a).
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1.4 Presence of single-arm study in drug development

Generally, single-arm studies are desirable when the availability of patients is limited which
restricts randomisation to a control arm. Such designs may be considered when spontaneous
improvement in participants is not expected, placebo effects are not large, and randomisation
to placebo may not be ethical (Evans, 2010).

The European Medical Agency (EMA) and US Food and Drug Administration (FDA), both
acknowledge that there can be situations when RCT is infeasible in terms of operationally
and ethically (Goring et al., 2019). An in-depth study was made by Hatswell et al. (2016)
on the approval of new pharmaceuticals from 1 January 1999 to 8 May 2014. This study
investigated that over the past 15 years, to what extent uncontrolled clinical studies were
used for drug approvals by the EMA and the FDA. A factor that was common in these un-
controlled studies was that they lacked a control arm. It showed that without undergoing
an RCT, a huge number of treatments got licensed. Seventy-six unique indications were
accepted without RCT results of which 44 were granted by the EMA and 60 by the FDA.
Primarily, oncology was the disease area where most of the uncontrolled studies took place,
with 66% being either solid tumour or haematological oncology. The most common was for
haematological malignancies (34), following oncology (15) and metabolic conditions (15).

Another review was made by Goring et al. (2019) to update the review by Hatswell et al.
(2016). A systematic search was conducted on EMA and FDA regulatory submissions which
summarises the characteristics of non-randomised studies. The review was conducted span-
ning the years 2005–2017. Non-randomised evidence was used for 43 indication-specific prod-
ucts that were submitted to the FDA (n=41) or the EMA (n=34). The indications were
haematological cancer, conditions associated with stem cell transplantation, other haemato-
logical conditions or rare metabolic disease. Of the 96 unique studies for the 43 indication-
specific products, the most common was single-arm studies which covers 67% of the studies.
Of the indication-specific products, 37% provided evidence from external control: 28% used
aggregate-level controls, and the rest of the products (9%) involved IPD for external controls
that have similar patient characteristics in the intervention studies. External control groups
were not mentioned for the remaining 63% indications. The most common endpoint was the
objective response rate (ORR). Out of the 43 indication-specific products, only 5% reported
a hazard ratio (HR) to compare overall survival (OS). This study concluded that there is
an increase in acceptance processes based on non-RCT evidence, specifically for the broader
context of oncology indications.

A systematic review on anticancer drugs approved by FDA from 1973 through 2006 showed
that out of 68 oncology drugs, 31 drugs which do not include hormone therapy and supportive
care, were granted without an RCT. Except for ORR, which was the most common endpoint,
other endpoints, such as disease-free survival, were also used; the median response rate was
33% (range, 11% to 90%) (Tsimberidou et al., 2009).

Griffiths et al. (2017) performed a review including NICE, the Canadian Agency for Drugs
and Technologies in Health (CADTH), and the German Institute for Quality and Efficiency
in Health Care (IQWiG) in order to evaluate the importance of non-randomised evidence
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in HTA decision-making. The time frame for the review was January 2010 to December
2015. Single-arm studies were not the only ones that were considered non-randomised but
also dose-ranging studies, registry studies 1, compassionate use programs 2, and uncontrolled
extension studies3 were considered. The main bulk of the non-randomised evidence was
single-arm studies. Among the total 549 submissions during this time, 38% (45 of 118) of
NICE submissions, 13% (34 of 262) of CADTH submissions and 12% (20 of 169) of IQWiG
submissions were from non-comparative studies that were used as supporting evidence and
only 4% (5 of 118) of NICE appraisals, 6% (16 of 262) of CADTH appraisals, and 4% (6 of
169) of IQWiG appraisals were solely on non-comparative evidence. The disease area that was
most prevalent was cancer or infection (specifically hepatitis C) followed by an orphan disease.

Djulbegovic et al. (2018) conducted a study from 1995 to 2015 to evaluate how frequently
non-randomized studies have been approved to authorise drugs by EMA. They concluded
that of the 723 newly invented drugs that obtained market access, 92.94% (672 drugs) were
granted based on RCTs, and 7% (51/723) were granted based on non-randomized data. Out
of the 71 drug-indication pairs that were granted based on non-randomized data, 58% (41/71)
were for treating leukemias and lymphomas, rare diseases covered 27% (19/71), followed by
chronic diseases (8%; 6/71) and other health problems (7%; 5/71). Sixty-one percent (43/71)
of the studies used predefined response criteria such as overall response, cytogenetic response,
and objective response as the primary outcome. Six percent (4/71) of the studies used sur-
vival as the primary endpoint. Seventy-six percent (54/71) were single-arm studies without
mentioning control; 7% (5/71) were single-arm studies that involved external controls; and
17% (12/71) used non-comparative studies.

A review by Phillippo et al. (2019a) focuses on population-adjustment methods in submis-
sions to NICE from 1st January 2010 and 20th April 2018. Eighteen TAs were found to have
used population-adjustment methods, 16 of them (89%) used unanchored comparisons, and
83% were in oncology. Thirteen (72%) of this TAs have used survival outcomes (for instance
progression free survival (PFS), overall survival (OS)). Other than oncology, 16.7% were in
hepatology, and 3.6% percent appraisals were in rheumatology. A recent review by Agrawal
et al. (2023) has assessed the impact of single-arm studies for FDA in oncology that covers
between January 1, 2002, and December 31, 2021. During this duration, 176 hematology and
oncology indications were found in single-arm studies. Out of these 176 single-arm studies,
98% (173 of 176) used response rate as an outcome to support approval in these single-arm
studies.

From the previous discussion, it is evident that over the past few years, a huge escalation
has been seen in the use of single-arm studies, specifically in oncology and haemato-oncology

1A registry study is a structured way to collect clinical and other data using observational methods to
assess specified outcomes for a population characterised by a condition.

2Compassionate use programs permits the use of an unapproved medicine to groups of patients who have
a health condition with no satisfactory approved medicine and are unable to enter clinical studies.

3Extension phase of a comparative study consist with only active treatment arm. All patients from the
control group in the parent RCT are moved to the active treatment in a long-term extension. Moreover, uncon-
trolled extensions study allow patients the opportunity to move from placebo to the active treatment group,
and early access to a promising new medication for an extended period. However, uncontrolled extensions
face difficulty in estimating causal inferences about efficacy and safety.
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(Phillippo et al., 2016; Cucherat et al., 2020; Agrawal et al., 2023). In oncology, in addition to
PFS and OS, one of the key outcomes for establishing clinical effectiveness is often a binary
outcome (such as overall response rate (ORR) and complete response rate (CRR)). Therefore,
concentration is specially made on application to binary outcomes in single-arm studies in
this thesis. Furthermore, despite the fact that most of the applications of single-arm studies
have been seen in oncology, the presence of single-arm studies in other disease areas is not
completely rare, such as in asthma (Pilette et al., 2019; Buhl et al., 2020; Lugogo et al., 2022).
Therefore, this thesis also includes a case study of single-arm study with asthma.

1.5 Single-arm study with limited access to IPD

Consider the diagram (a) in Figure 1.3, where treatments A and B come from two single-
arm studies. In diagram (a), the nodes indicate treatments, and the dashed line indicates
that there exists no direct comparison between them. Suppose, the relative efficacy of treat-
ments needs to be assessed with binary outcomes. An ORs can be estimated to calculate
the relative treatment effect between treatment A and B. However, this does not address
the whole problem of making comparisons in the case of a single-arm study. The problem
of relative comparison with single-arm study has several aspects. Although comparative evi-
dence in diagram (a) can be calculated as ORs, there can be an imbalance in prognostic and
effect-modifying variables between the studies. In this case, adjustment needs to be made
for both studies and the relative treatment effects can be estimated in the form of an ORs.
This particular setting of single-arm study where an unanchored comparison in disconnected
networks needs to be addressed is very difficult to handle.

The issue of indirect comparison with single-arm studies that has been described in Section
1.3 becomes denser with the additional complexity of partial availability of IPD. The presence
of partial IPD is prevalent which can be seen from the review by Goring et al. (2019). The
review was on non-randomised studies where they classified their analysis into three cate-
gories. The first category was IPD-based external controls where studies used IPD to adjust
intervention and external control groups. Second, aggregate-level external controls, which
include studies that did not make any adjustment to correct for the imbalance between inter-
vention and control groups, and in the third category, studies where control groups were not
mentioned explicitly. The findings of this review reveal that the existence of aggregate-level
data on external controls is frequent.

In the presence of full IPD from all studies in a network, the “IPD network meta-regression”
is capable of adjusting all effect-modifiers and considered to be the gold-standard (Lambert
et al., 2002; Riley et al., 2010; Dias et al., 2011b). However, the availability of full IPD is rare.
On the contrary, partial availability of IPD is a common scenario in a technical appraisal (TA)
context when a pharmaceutical manufacturer prepares for a submission to a reimbursement
agency using a single-arm study with single or multiple comparator treatments. A manu-
facturer usually has access to IPD on their own study/studies, but only published aggregate
data on their comparator study/studies. As no head-to-head comparison is possible with a
single-arm study, the assessment of comparative efficacy is done indirectly. However, tech-
niques like propensity score matching (PSM) or propensity score weighting (PSW) are not
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possible as they require access to IPD for all studies. There can be various reasons for this
partial availability of IPD, such as sharing IPD can be hampered by confidentiality issues, it
can be owned by a comparator company or the data can be unavailable due to the passage
of time (Hatswell et al., 2020).

Due to the restricted access to IPD, when relative treatment effect has to be made with
single-arm study, usually IPD from AgD studies need to be reconstructed, particularly for
time-to-event data to estimate hazard ratio (HR). For binary outcomes, AgD will usually be
a published estimate of the proportion of patients with an event. An ORs can be estimated
to calculate the relative treatment effect between intervention and comparator study. To
calculate the ORs, 0/1 values for the outcome variable need to be reconstructed using the
proportion reported in AgD studies. For time-to-event data, IPD needs to be reconstructed
for AgD studies that require a simulation of individual outcomes. However, the simulation
cannot provide covariate information for AgD studies. Therefore, reconstructing 0/1 values
(binary outcomes) or IPD (time-to-event outcomes) from a comparator study is not the same
as having access to full information of the AgD studies.

1.6 Statistical methods with single-arm study

The amount of guidance provided by HTA bodies on the use of single-arm studies is very lim-
ited. The IQWiG says it can consider ITC to evaluate cost-benefit relations after taking into
account the lower reliability of results. It accepts solely the adjusted indirect comparisons
and rejects the use of unadjusted indirect comparisons (i.e. the naive use of a single-arm
study). It accepts non-randomised studies only for justified exceptional cases, such as if an
RCT is unachievable or when non-randomised studies produce results with adequate relia-
bility (IQWiG, 2016). According to NICE, when inference needs to be made from non-RCT
evidence about relative treatment effect, then one must be more prudent, and biases with
non-RCT evidence should be identified and adjusted (NICE, 2022). CADTH claims if an
indirect comparison is requisite then proofs to support this indirect comparison should be
provided as much as possible. Resubmission must be based on efficacy data from an RCT. In
the absence of RCT, case-control or cohort studies can be counted on if the new information
is related to better safety (CADTH, 2014).

Single-arm studies suffer from biases because of various reasons such as confounding, lack of
blinding, and incomplete follow-up. Identifying biases with single-arm studies and adjust-
ing them is recommended by NICE (2009), but there is no guidance on what could be the
eligible methods to estimate relative treatment effect with single-arm studies. The use of
unsuitable methods to estimate relative treatment effectiveness with single-arm study may
have detrimental consequences both on the clinical and cost-effectiveness decision on health
technologies. Faria et al. (2015) have summarised commonly implemented methods to es-
timate treatment effect using comparative IPD from non-RCTs to inform NICE TAs and
have proposed guidance to enhance the quality for future assessments. The document gives
guidance on single-arm studies when IPD is available both on intervention and comparator
studies but mentions that IPD on the intervention and AgD on comparator study is out of
the scope of the document.
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Phillippo et al. (2016) explore methods on population-adjusted ITC, in which differences in
patient characteristics are adjusted using IPD in one or more studies. This technical support
document (TSD) summarises recently proposed methods on population-adjustment, looks at
the theory behind them, makes a review of published applications, and describes alterna-
tive methods briefly. Unanchored methods such as matching adjusted indirect comparison
(MAIC) and simulated treatment comparison (STC) with the single-arm study were consid-
ered problematic and their use was discouraged if anchored methods could be applied. After
the publication of the TSD, several systematic reviews have been done where methods with
limited IPD have been discussed but no review has come to a conclusion on the validity and
preference of these methods (Phillippo et al., 2016; Stevens et al., 2018; Phillippo et al., 2018).
Subsequently, a number of simulation studies have been done for the anchored case to explore
the appropriateness of the population-adjustment methods (Ishak et al., 2015b; Belger et al.,
2015a; Kühnast et al., 2017; Leahy and Walsh, 2019; Hatswell et al., 2020; Phillippo et al.,
2020b; Remiro-Azócar et al., 2020). MAIC was found to be most favoured methodology both
in its application and in the simulation studies when it satisfies all the assumptions (Remiro-
Azócar et al., 2020; Hatswell et al., 2020; Jiang and Ni, 2020; Wang, 2021). Modification on
both MAIC and STC have also been discussed (Remiro-Azócar, 2022b; Remiro-Azócar et al.,
2022). Still, there are uncertainty in these methods when they deviate from their assump-
tions. Therefore, it is crucial to explore in addition to MAIC and STC, what other methods
are available in the literature with single-arm studies and also explore the suitability of these
methods for different situations.

1.7 Research questions

The use of single-arm studies in drug development seems to be prevalent and non-trivial
despite methodological limitations. Methods for example unanchored MAIC and STC are
frequently used for estimating treatment effects with single-arm studies which are believed
to satisfy the conditional constancy of absolute effects. In the case of non-compliance with
the assumptions, these methods can suffer from residual bias. When a single-arm study is
compared to a comparator treatment, the network of evidence needs to be taken into account
also. Therefore, in addition to these methods, it is necessary to evaluate the validity and
reliability of other methods in the literature that can give relative treatment effects with
single-arm studies.

This PhD aims to address the following research questions:

1. What approaches have been used for conducting unanchored indirect treatment com-
parisons to any outcome with single-arm studies in STAs submitted to NICE?

2. Reviewing the literature:

• What methods currently exist in the literature for conducting unanchored indirect
treatment comparisons with single-arm studies?

• Which methods are suitable in particular situations?
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3. Is the population-adjustment method MAIC suitable to implement for a larger discon-
nected network of evidence?

4. What recommendations should be provided for unanchored MAIC with single-arm
study when a larger disconnected network of evidence exists?

Chapter two of this thesis describes a review that was done to explore the approaches/methods
that have been used for conducting unanchored indirect treatment comparisons to any out-
come with single-arm studies in NICE. The timeline of the review was 2018-2021 which
includes the most recent STAs. Chapter three also describes a review that focuses on what
methods are available in the literature for unanchored comparisons with single-arm studies
and discusses the appropriateness of the methods. After conducting both reviews, a simu-
lation study was designed based on the findings of the reviews. The simulation study and
its results are described in Chapters four and five. The aim of the simulation study was to
investigate the suitability of unanchored MAIC for a larger disconnected network of evidence
both for fixed and random effects NMA. MAIC was chosen for the simulation study due to
its widespread applicability that was found in NICE STA review (Chapter 2). Chapter six
proposes a novel method called “double-boootstrapping” for MAIC with single-arm studies
in a disconnected network of evidence to overcome problems found in the simulation study.
Chapter seven discusses the application and practical problems of MAIC-adjusted NMA for
a real-world case study with asthma and the concluding chapter discusses the findings from
previous chapters, limitations, and finishes with future recommendations.

NICE is one of the three HTA bodies in the UK that provide recommendations and sugges-
tions on how public health and welfare workers can support people by meticulous, independent
assessment of complex evidence. In addition to being highly respected, NICE recommenda-
tions have made a significant impact on public policy (Scullard et al., 2011). It is important
to understand how and what methods have been implemented in NICE to assess clinical effec-
tiveness with single-arm studies. The next chapter will describe the findings of a systematic
review on NICE to understand the methods with single-arm studies and also inquire about
the legitimacy of these methods under different situations.



Chapter 2

Review of Methods used to
Estimate Treatment Effects against
Relevant Comparators using
Evidence from Single-Arm Studies
in NICE Single Technology
Appraisals

2.1 Introduction

In HTA, the process of making a decision on the use of a new intervention in the absence
of concurrent comparators is not always straightforward. In reality, information on relevant
treatments is available from multiple studies, and direct comparison is often nonexistent.
Besides, studies that need to be compared can also differ on various aspects like populations,
designs, protocols, different doses or timings of delivery of drugs, and so on. HTA is highly
reliant on ITCs, which are considered to be in the second highest rank in the hierarchy of
evidence for decision making on reimbursement when RCT is not possible (Dias et al., 2013).

An indirect comparison is in anchored form when the comparison is conducted via com-
mon comparators which are depicted in diagrams (a) and (b) in Figure 1.1. An unanchored
indirect comparison takes place when treatments are compared across studies without con-
sidering randomisation within studies. This happens when a common comparator does not
exist across studies as depicted in diagrams (d) and (e) in Figure 1.1. In diagram (d), the
disconnected network of evidence is comprised of two connected networks, therefore, any pair
of treatments taken one from each of these networks will be called an unanchored indirect
comparison.

The assessment of the efficacy and safety of a drug is determined by a regulatory body
that permits marketing approval to pharmaceutical companies. In HTA, when companies
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analyse their intervention treatment that comes from a single-arm study with compara-
tor/comparators, access to IPD in all studies of interest is a rare situation as sharing of
clinical data is often limited. A middle-ground situation is more realistic where the phar-
maceutical company has access to IPD for its own study and AgD for the comparator studies.

Single-arm studies involve a group of patients who are given the same treatment and it uses
unanchored ITC to estimate the relative treatment effect. A particular feature of single-arm
studies is that they provide no direct estimate of treatment effects owing to the lack of a
comparator arm. Therefore, the use of single-arm studies involves reference to an external
comparator. Using an external comparator to estimate a treatment effect can induce several
limitations. First, the selection of the comparator is often post-hoc, so the probability that
it was intentionally selected to favor the new treatment is non-trivial; second, the use of
an external comparator can suffer from biases as no assurance can be given that compared
groups are comparable in terms of patients characteristics (Cucherat et al., 2020).

NICE, which assembles guidance based on evidence and suggestions for health, public health
and social care practitioners, is a non-departmental public body of the Department of Health
and Social Care in England. A single technology appraisal (STA) that relates to a single
technology for a single indication facilitates recommendations on making use of existing and
newly invented treatments within the NHS (NICE, 2009). As a part of this process, a com-
pany is expected to make a comparison, direct or indirect, between its treatment and standard
of care or other relevant comparators. It does so using evidence about the benefits, harms,
and resources associated with its treatment and comparator by applying statistical methods
that it considers appropriate.

An appraisal comprises several documents, including committee papers, appraisal consulta-
tion document (ACD), final appraisal document (FAD). Committee papers include company
submission (CS), external assessment group (EAG) reports. The ACD is a document that
includes the appraisal committee’s provisional recommendations to NICE and the FAD pro-
duces the appraisal committee’s final recommendations to NICE whether the technology
is recommended or not. The committee papers discuss the clinical effectiveness and cost-
effectiveness of a treatment. The clinical effectiveness section discusses the clinical evidence
based on the studies that have been conducted. The cost-effectiveness section discusses the
value of the new intervention based on an estimate of the incremental cost per quality-adjusted
life year (QALY) gained. Hence, an estimate of the incremental clinical benefit of the new
treatment compared to relevant comparators is required.

The aim of this review of NICE STAs was to determine how comparisons against relevant
comparators have been performed using evidence about new treatments obtained from single-
arm studies when IPD is available partially. Additionally, the appropriateness of the methods
that were identified in the review was also appraised. NICE has been selected to conduct this
review as it is currently considered to be one of the most pivotal HTA agencies in the world
(Sealey et al., 2014). Their decisions on HTA are influential and the analyses are considered
valuable.
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A systematic review conducted by Phillippo et al. (2019a) characterised the use of population-
adjustment methods in TAs submitted to NICE from 2010 to 2018. They focused on how
these methods were implemented for any outcome in both anchored and unanchored situ-
ations without restricting their search for single-arm studies. Moreover, in the review, 7%
(18/268) of the TAs were found to have used population-adjustment methods. Though the
search was not restricted to unanchored cases, most of the population-adjustment methods
were found for unanchored comparison (89%, 16/18). Eighty-three percent (15/18) of the
identified applications were in oncology where 89% (16/18) used MAIC and 17% (3/18) used
STC. The criteria that were used for the inclusion of covariates in the adjustment were effec-
tive sample size (ESS), expert opinion, availability, cross-validation, or statistical significance.
Fifty-six percent (10/18) of the comparisons were conducted for a larger network of evidence
where comparisons were made for multiple comparators and/or multiple aggregate study
populations.

The current review has focused only on unanchored comparisons with single-arm studies.
The time frame of this review was 2018 to 2021. This time frame has been chosen to include
more recent STAs information. In addition to the information extracted by Phillippo et al.
(2019a), this review has extracted information on additional issues including how prognos-
tic and effect-modifier variables have been identified and how survival extrapolations have
been conducted. From the review of Phillippo et al. (2019a), it was evident that most of
the application was in oncology with survival outcomes, therefore, information on survival
extrapolation was also extracted to assess whether or not proper adjustments had been made.
Section 2.2 of this chapter narrates how the review was conducted and Section 2.3 describes
the results. The chapter concludes with a discussion of the results in Section 2.4.

2.2 Methods

2.2.1 Inclusion criteria

STAs based on single-arm study and published on the NICE website from 1st January 2018
to 31st December 2021 have been included in this review.

2.2.2 Data extraction

All STAs listed on the NICE website (https://www.nice.org.uk/guidance/published) from
2018 to 2021 were screened one by one to identify relevant STAs involving single-arm studies.
The appraisals that had access to IPD from all included studies were discarded from the
review and appraisals with partial access to IPD were included. Relevant documents such as
committee papers, ACD and FAD have been used to extract information. Committee papers
were the main document that has been used for data extraction. If committee papers were
not available then ACD and FAD have been used for screening purposes.

A data extraction spreadsheet was created using Microsoft Excel (available in the Appendix
A with Table A.1, A.2, A.3, A.4, A.5, A.6, A.7) which was used to collect relevant information
about the methods that have been used to make an indirect comparison between different
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comparators using single-arm studies. Information has been extracted on the following ques-
tions:

1. Name/TA number.

2. Publication date of the appraisal.

3. Protocol number and/or name of the pivotal study.

4. Therapeutic area.

5. What types of outcome measures were indirectly compared?

6. What type of network is being considered?

7. What methodology was used to conduct unanchored indirect comparison?

8. How were covariates included in the model?

9. How many variables were included in the model?

10. Were all identified prognostic and effect-modifier variables included in the model?

11. If not, what was the reason for excluding variables?

12. Other than prognostic and effect-modifier variables, were other variables also included?

13. Were second-order terms included?

14. What were the original sample sizes?

15. What was the subsequent effective sample size?

16. If NMA was conducted, was any attempt made to check if any inconsistencies were
found in the connected part of the network?

17. Was heterogeneity among studies assessed?

18. If yes, what was the amount of heterogeneity identified?

19. Were at least two studies available on each contrast for the heterogeneity parameter?

20. Along with the chosen method, were other methods also discussed?

21. Was any justification given for the chosen method?

22. How many events were available for the time-to-event outcome?

23. What approach was used for the extrapolation of time-to-event data?

24. What adjustment was made for time-to-event data?

25. Is overlapping between weighted and reconstructed K-M been checked/ commented on?

26. If not, what procedure was taken to ensure overlapping between weighted IPD and
reconstructed IPD?

27. Was the population for the extrapolation clearly defined?

28. Treatment effects were estimated for which population?

29. Had any justification given for transportable treatment effects if they are estimated for
IPD population?

30. If PH assumption was made, was it tested for both unadjusted and adjusted compari-
son?

31. What procedure has been taken to measure uncertainty?

32. What attempt was made to quantify residual bias?
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2.3 Results

A total of 260 TAs have been found which have been published between January 2018 to
December 2021. Of these identified TAs, 27 appraisals were identified where the pivotal
study/studies were single-arm studies. Of these 27 identified TAs, 7 of these had access
to IPD from all included studies, so they were excluded and 20 TAs were identified with
only partial IPD. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) diagram in Figure 2.1 demonstrates the selection process.

Figure 2.1: PRISMA diagram for inclusion of relevant NICE STAs with single-
arm studies

2.3.1 Clinical area and outcomes of the published TAs

All the TAs included in this review were found to be in oncology (20 out of 20, 100%). Of
these TAs, 16 (80%) have used population-adjustment methods and four TAs did not make
any kind of adjustment. As all the TAs were on oncology, most of the outcomes that were
indirectly compared were time-to-event outcomes. Only TA 756 (TA756, 2021) used binary
outcomes spleen volume reduction (SVR) and total symptom score (TSS). PFS and OS were
found to be the most common outcome types used in population-adjusted analyses in the
included TAs.

2.3.2 Application of population-adjustment methods

MAIC was the most widely used population-adjustment method (13 out of 20, 65%). STC
was also used as a population-adjustment method, but the frequency of using STC was lower
than MAIC. STC was used in 5 out of 20 appraisals (25%). Two appraisals used both MAIC
and STC (TA592, 2019; TA756, 2021). The application of different methods has been sum-
marised in Table 2.1.
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Table 2.1: Application of different methods for comparison

Applied method/methods Number of appraisals

Only MAIC 11

Only STC 3

Both MAIC and STC 2

No adjustment 4

Total 20

Of these 13 TAs which have used MAIC, only 5 (TA510, 2018; TA571, 2019; TA592, 2019;
TA604, 2019; TA756, 2021)(38.45%) of them have reported their ESS. Of these, the median
ESS was 67.1 (range: 3.8 to 84), with a median reduction in ESS from the original sample size
of 50.3% (range: 43.24% to 94.73%). A huge decrease in ESS suggested a scarcity of over-
lap between the IPD and AgD studies. It means the resulting comparisons were conducted
on a restricted number of participants in the IPD study and may be erratic. Estimates
become unstable in the sense that, over repeated sampling, the resulting estimates could
exhibit high variance as the estimates are placing high weights on a few observations that
vary over different samples. The estimates are less reliable as they are effectively based on
a few observations. If there exists inadequate overlap between study populations, it can be
difficult to obtain reliable estimates of the weights. Moreover, a detailed description of the
propensity score model was missing for all the TAs. None of the TAs mentioned whether
the propensity score model for MAIC only includes first-order terms or second-order terms
were also included. In the propensity score model, the first and second-order terms refer to
whether the model was built with only linear or with squaring terms respectively.

Of the identified TAs, 4 did not attempt an indirect comparison (TA529, 2018; TA567, 2019;
TA630, 2020; TA644, 2020). In TA529 (TA529, 2018), instead of using evidence from a
single-arm study, two RCTs were used to make relative treatment effect estimates as the
company claimed that the treatments from the RCTs were similar to the intervention from
the single-arm study. In TA567 (TA567, 2019), the company considered it reasonable to
assume the study populations homogeneous for making comparisons of outcomes without
adjustment which was strongly discarded by EAG as important differences were found in
prognostic factors. In TA630 (TA630, 2020), no published data were available for making an
indirect comparison as there was no comparator treatment available for the disease. There-
fore, the company considers a population for comparison as the comparator arm that is in
line with the existing standard of care. In TA644 (TA644, 2020), the intervention study was a
basket study where investigators and manufacturers categorised cancer patients with respect
to their common genomic alterations by conducting tumour-agnostic studies across multiple
solid tumours. Owing to the notable diversity between patient and disease characteristics,
tumour types, and potential comparator therapies, a conventional indirect treatment com-
parison was regarded as infeasible.

Of the thirteen appraisals that have applied population-adjustment with MAIC, more than
half of them (10 out of 13, 77%) mentioned that the weighted Cox proportional hazard model
has been used to estimate relative effectiveness (TA510, 2018; TA540, 2018; TA554, 2018;
TA571, 2019; TA592, 2019; TA628, 2020; TA643, 2020; TA704, 2021; TA722, 2021; TA742,
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2021). Despite the fact that Cox proportional models do not specify the baseline hazard, still
it is widely used. This unspecified baseline hazard makes the Cox model a semiparametric
model. Although the Cox model is popular because of its non-reliance on the distributional
assumptions for the outcome variable, in a parametric model, the outcome (survival time) fol-
lows a known distribution. When survival estimates are derived from parametric models, the
survival plots conform more with a theoretical survival curve in contrast with a Cox-adjusted
survival curve where the survival plot is estimated using nondistributional methods. A para-
metric model allows a complete specification of the survival and hazard functions which in
turn give more precise estimates compared to the Cox model.

Other than the weighted Cox model, the application of other measures has also been seen.
In TA604 (TA604, 2019), a weighted K-M survival function was used for estimating relative
effectiveness. In TA716 (TA716, 2021), mean survival was estimated both for the intervention
study and each comparator study independently. This was done by extrapolation of the K-M
function using parametric survival curves and calculation of the area under the curve. Mean
survival has been estimated as the proportional hazard (PH) assumption was very unlikely
to hold for comparisons of the intervention and the comparator’s treatment. Other than
the weighted Cox proportional hazard model, weighted risk difference has also been used for
treatment comparison (TA756, 2021). In TA 756, a weighted binomial model with a logit link
was used to combine data from the intervention and comparator study. For the comparator
study, IPD was simulated using the published number of events and non-events. The bino-
mial model assigned MAIC weights to the intervention study patients and unit weights to
the comparator study patients. Subsequently, the proportion of comparator and intervention
study events was predicted from the fitted model, and the difference of these proportions was
used as a weighted risk difference.

Three TAs (TA522, 2018; TA525, 2018; TA530, 2018) have used STC with fractional poly-
nomial network meta-analysis (FP NMA). In order to do the analysis, first, the company
conducted a STC by incorporating bootstrapping to produce estimates of variability. A
bootstrap sample is a random sample with replacement generated from the IPD in the in-
tervention study. Several competing models were estimated with each bootstrap sample and
the parameters of each model were estimated. The company states that on average about
1/3 of the patients were not included in each bootstrap sample and called these patients
out-of-bag (OOB). The OOB patients were used for cross-validation. Cross-validation was
done by comparing the outcomes of the OOB patients with the outcomes predicted from the
estimated models. The Cox proportional hazards model was used to develop the regression
model informed by baseline covariates. The company simulated a large number of hypo-
thetical individuals based on the reported marginal distribution of the covariates of interest
and the correlation from the intervention study. The company also generated the predicted
log hazards. The mean of the predicted log hazard and the variance of the log hazard from
bootstrap samples were used in the FP NMA model to produce time-varying hazard ratios
for each comparator. The different kinds of effect measures using MAIC and STC have been
summarised in Table 2.2.

All the appraisals of this review include unanchored comparisons without any common treat-
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ment, so the comparisons made were dependent on unexplored amounts of residual bias.
Out of 16 TAs that have attempted unanchored comparison, only TA530 (TA530, 2018) has
attempted to quantify residual bias by using “out sample ” method which was one of the
recommended methods by Phillippo et al. (2016).

Table 2.2: Application of different effect measures

Effect measure for
relative comparison

Number of appraisals

Weighted Cox proportional
model (using MAIC weights)

10

Weighted risk difference
(using MAIC weights)

1

Weighted K-M survival
function (using MAIC weights)

1

Mean survival from parametric
model (using MAIC weights)

1

Adjusted time varying HR
from FP NMA (using STC)

3

2.3.3 Presence of larger networks

Of these 20 appraisals, 11 of them (55%) have a larger disconnected network of evidence, i.e.
either an intervention treatment has been compared to more than one comparator treatment
where the comparator treatments have come from different studies or an intervention treat-
ment has been compared to one comparator treatment but from multiple studies.

Of these 11 studies that have larger networks (TA522, 2018; TA525, 2018; TA530, 2018;
TA510, 2018; TA554, 2018; TA529, 2018; TA571, 2019; TA643, 2020; TA644, 2020; TA704,
2021; TA716, 2021), six of them have used multiple MAICs. Despite having a larger network,
TA644 (TA644, 2020) did an unadjusted indirect comparison as it claimed that no adjustment
is needed due to the similarity between studies. The TA’s that have used multiple MAICs to
estimate relative treatment effect with multiple comparators, most of them used the MAIC
estimates as stand-alone estimates. TA571 (2019) did a standard pairwise meta-analysis us-
ing the MAIC estimates to estimate an overall, pooled estimate.

Three appraisals (TA522, 2018; TA525, 2018; TA530, 2018) used STC to construct a pre-
dicted treatment arm for each single-arm study. This predicted arm forms a newly-connected
network and then analyses were made with FP NMA. This approach gives the opportunity
to make a coherent set of relative effect estimates, but, it adds another additional assump-
tion that no difference exists in prognostic and effect-modifiers among the single-arm studies
included in the NMA.

The number of comparator treatments for these larger networks ranges from 1 to 6. Apart
from the single-arm study of the intervention treatment, no connected network of evidence
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was found for the comparator treatments. The reasons for not getting a connected network
were either that most of the comparator studies were also single-arm studies or that no
common comparator was found from the RCTs.

2.3.4 Uncertainty estimates in the population-adjustment methods

The TAs included in this review either have conducted unanchored MAIC or STC for
population-adjustment. Most of the TAs did not mention what methods were used to take
into account uncertainty. Five TAs that have used MAIC, either mentioned sandwich es-
timator (TA510 (2018)) or bootstrap (TA592 (2019); TA628 (2020); TA704 (2021); TA722
(2021)) to capture uncertainty. Three TAs that have used STC (TA525 (2018); TA522 (2018);
TA592 (2019)), mentioned bootstrap as their method to capture uncertainty. Both methods
estimate uncertainty from the data and discard the robust assumption about the weights by
not treating the weights as fixed and known. However, in bootstrapping, the main challenge
is it is computationally very intensive.

2.3.5 Preference of other methods over the chosen method

Of the included TAs, three of them have discussed other methods apart from the method
that has been applied. In TA522 (TA522, 2018), STC was applied with FP NMA. MAIC
was discussed as an alternative to STC but it was not implemented. The rationale for not
conducting MAIC was that the MAIC method requires access to relatively large and complete
data sets; often this level of data granularity is not reported within published articles. The
company states that one approach is not necessarily favoured over the other between STC
and MAIC; STC with bootstrap has the benefit of allowing cross-validation and assessment
of the model performance. In TA592 (TA592, 2019), both MAIC and STC were performed as
scenario analysis for a single comparison, and for the base case, a naive indirect comparison
was applied. The company states that the naive or unadjusted comparison was deemed
reasonable for the base case analysis considering the uncertainties associated with both of
the indirect comparisons. In TA716 (TA716, 2021), MAIC was chosen over STC because
though STC can be applied to a large number of comparators, for multiple outcomes, an
outcome equation needs to be determined for each comparison which is often problematic,
especially for time-to-event data. As there was a single comparator but many outcomes to
be compared, MAIC was a better option as after estimating the weights once, they could be
used for multiple outcomes.

2.3.6 Adjustment made in survival extrapolation

For survival extrapolation, 12 TAs (TA525 (2018); TA530 (2018); TA522 (2018); TA510
(2018); TA628 (2020); TA643 (2020); TA554 (2018); TA571 (2019); TA704 (2021); TA716
(2021); TA722 (2021); TA756 (2021)) estimated the absolute survival effects directly based on
the unadjusted K-M functions of the intervention study. The absolute effects for comparator
treatments were estimated in the cost-effectiveness model by applying the adjusted HR to
the intervention K-M function. For STC, time-varying HRs which were estimated from the
FP NMA model were applied to the K-M function of the intervention study. In all these TAs,
the target population of extrapolation was not clearly defined. Only one TA (TA604 (2019))
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applied a two-stage method, where, in the first stage, adjusted K-M survival function was
digitised and pseudo IPD were reconstructed for intervention study and in the second stage,
parametric models were fitted separately for intervention and comparator study.

2.3.7 Identification and inclusion of covariates

All the adjustment methods in this review were in unanchored form, so all prognostic and
effect-modifier variables need to be included in the propensity score model or regression model
for MAIC and STC respectively. Out of the 20, for 10 TAs, the strategy for identification of
variables was either a literature search or a clinical expert opinion or a combination of both
(TA530, 2018; TA510, 2018; TA567, 2019; TA571, 2019; TA522, 2018; TA592, 2019; TA704,
2021; TA716, 2021; TA742, 2021; TA756, 2021). The availability of baseline characteristics
reported in both studies was also one of the common approaches for variable selection (TA604,
2019; TA540, 2018; TA716, 2021). Most of the appraisals did not discuss whether the iden-
tified variables were prognostic or effect-modifiers. Four TAs (TA643, 2020; TA554, 2018;
TA529, 2018; TA722, 2021) did not mention how they identified the important covariates.

In TA571 (2019), the company gathered feedback from five clinicians through interviews and
questionnaires where clinicians were asked to point out and rank the variables that they be-
lieved to be important in survival outcomes. In TA628 (2020) and TA756 (2021), variables
were identified using both clinical feedback and Cox regression for univariate and multivari-
ate settings. Three TAs that used STC for unanchored comparison, used different statistical
techniques to choose covariates. Out of several competing models with different combina-
tions of covariates and their interaction terms, the final model was chosen based on the best
predictive performance or by the stepwise model selection algorithm or based on the OOB
predictive performance.

Except for two appraisals (TA522, 2018; TA525, 2018), the included TAs did not include all
the identified prognostic and effect-modifier variables in the final model. The reason for not
including all the variables was almost always a lack of availability issue. However, without
including all prognostic and effect-modifying variables in the adjustment, the estimates will
remain biased. Other than the availability issue, non-convergence of the estimated model
was also mentioned as a reason for not including all variables (TA592, 2019).

2.4 Discussion

The objective of the review in this chapter was to identify the methods that have been used
in NICE STAs to estimate relative treatment effects with single-arm studies. It is important
to assess the appropriateness of the adjustment techniques used by the identified methods.
Recent reviews identified that the implementation and reporting of population-adjustment
methods in HTA awfully diverse and substandard (Serret-Larmande et al., 2023; Truong
et al., 2023).

MAIC was found to be the most preferred and used population-adjustment method for es-
timating relative treatment effect with single-arm studies. Other than MAIC, STC was
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also found to be frequently used with single-arm studies. A larger disconnected network of
evidence was found to be a common scenario in HTA which occurs when the intervention
treatment from a single-arm study needs to be compared with multiple comparator treat-
ments or the intervention treatment needs to be compared with a single comparator from
multiple studies. In both of these cases, the intervention treatment needs to be compared
multiple times for which MAIC or STC were implemented several times. Ignoring the fact
that both of those methods were developed to infer on the relative treatment effect for a pair
of studies, they were used several times. Moreover, few TAs mentioned a robust sandwich
estimator and bootstrap to estimate the uncertainty of estimates, however, it was not clear
for most of the TAs, how the uncertainty was estimated.

Although MAIC was found to be the most applied population-adjustment method, a consid-
erable reduction was seen in ESS. Adjusting for all imbalanced baseline variables was often
discarded in order to avoid a substantial loss in sample size. The issue of small ESS depends
on the original sample size. If the original sample size is big, then a reduction of effective
sample size may still be enough to conduct a MAIC. However, there is no clear guideline
on how much reduction can be termed as “unacceptable”. Very small ESS indicates that
there was a serious non-overlapping between the IPD and AgD populations which makes the
MAIC results unreliable. When there is a lack of overlap, weighting methods like MAIC are
not able to extrapolate beyond those observed in the IPD, and may produce an estimate
that remains biased. Moreover, the propensity score model in MAIC needs to be correctly
specified in order to balance the covariate distributions between intervention and comparator
study. Correct specification of propensity score should be done by including all relevant main
effects and higher-order terms (Remiro-Azócar, 2022b). None of the MAICs found in this
review mention whether the propensity score model includes second-order terms or not.

The uncertainty estimates of the MAIC method also remain unclear as most of the TAs
did not provide information on this. Robust sandwich estimator and bootstrapping were
mentioned as uncertainty estimators with MAIC for a few TAs. Though both methods are
used to estimate uncertainty, bootstrapping is computationally more time-consuming than
a robust sandwich estimator. In MAIC without the sandwich estimator or bootstrapping,
weights are typically considered case weights. Case weights reflect the number of underlying
subjects represented by a data point and are considered fixed and known. This may induce
several problems. First, some software packages may round these to whole numbers. The
variance would be sensitive to the scale of the weights, i.e., multiplying all the case weights
by a constant would (falsely) decrease the variance of the estimator because the calculations
would interpret this as representing more subjects in the dataset. As a result, variance will be
incorrectly calculated. The use of bootstrapping or sandwich estimator takes the uncertainty
into account by assuming that weights are estimated rather than known and fixed.

When STC is applied for any link function other than the identity link, the treatment effect
is non-collapsible which means the marginal and conditional effects do not coincide even if
there is no confounding and the distribution of covariates is balanced. As a result, STC
will produce a systematic bias (Remiro-Azócar et al., 2020). TA525 (2018) that have used
STC and FP NMA to deal with a larger network of evidence, a further issue was identified
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which relates to the choice of comparator studies. The level of heterogeneity was found to be
moderate to high in this appraisal based on I-squared value.

It was found that population-adjustment methods (MAIC and STC) were not always used
as the company’s base-case analysis when the relative treatment effect was estimated us-
ing a single-arm study. They were included sometimes as supportive evidence. Some TAs
conducted naive indirect comparisons despite important differences among the prognostic
factors. In most of the TAs, the EAG expressed their concern about the fact that important
baseline characteristics were not adjusted because of poor reporting by the studies. All iden-
tified prognostic and effect-modifiers were not included in the final model either due to their
lack of availability in the included studies or convergence issues. This may cause residual
confounding, which indicates that the populations being compared may still be considerably
imbalanced and the impact of these imbalances on the survival estimates induces substantial
uncertainty.

Several TAs found in this review deal with multiple comparator studies with AgD, which
means multiple comparisons were required. Current MAIC and STC originally target a sin-
gle comparison and if a larger network needs to be dealt with, an additional assumption called
“shared effect modifier” needs to be satisfied which means an evidence network consisting of
a set of treatments will be affected by the effect-modifiers in the same way (Phillippo et al.,
2016). TAs that have used MAIC for larger disconnected networks of evidence, conducted
multiple MAICs for comparing several comparator treatments. One TA did a standard pair-
wise meta-analysis using the MAIC estimates to get an overall, pooled estimate. When
multiple MAICs are done, each of these comparisons is valid for different target populations
and none of the TAs had tried to justify a coherent analysis with a shared effect modi-
fier assumption. Most importantly, during the multiple MAICs, IPD from the intervention
study was used multiple times which created additional complexity as independence between
the studies was broken. Repeated use of IPD created a correlation between the estimates
of treatment effects which remain unaddressed. TAs that used STC and then NMA, have
tried to make a coherent synthesis which requires further assumptions in the process, that
is, prognostic, as well as effect-modifiers, are balanced across the studies. This assumption
was questionable when moderate to high heterogeneity was found (TA525, 2018). The is-
sues found with a considerable reduction of MAIC ESS and dealing with a larger network
of evidence are similar to the findings by Phillippo et al. (2019b). Although Phillippo et al.
(2016) have identified that current MAIC and STC are unable to be implemented for larger
networks without making the additional shared effect modifier assumption, some TAs are
still using them for a larger network of evidence.

All the MAIC and STC included in this review were in an unanchored form which assumes
that there are no unmeasured prognostic and effect-modifier factors. This assumption is
very hard to justify and therefore some suggestions by Phillippo et al. (2016) were given
for quantifying residual bias due to unmeasured confounding. Except for TA 530, no other
TAs had tried to follow these suggestions. TA 530 has used the “out-sample” method to
quantify the residual bias. Moreover, a question was included in the data extraction sheet to
highlight whether included studies had “immature data” or not, to assess the appropriate-
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ness of extrapolation and the ability to adjust for covariates. No data were available from
the included TAs but in most of the TAs, EAG has expressed concern about data immaturity.

The most common strategy of extrapolation found in this review was to fit a parametric
model with the unadjusted IPD of the intervention study. The fitted model will give survival
probabilities of the intervention treatment in the population of the intervention study. The
survival extrapolation for comparator studies was estimated in the cost-effectiveness model
by applying MAIC/STC adjusted HR to these survival probabilities. It provides the survival
probabilities for the comparator treatment in the population of the intervention study. When
extrapolation is done directly to the unadjusted K-M function of the intervention study and
comparator treatment extrapolation is obtained by applying HR, the population of extrap-
olation is the IPD population. This can only be done if treatment effects are transportable.
None of the TAs included in this review has given any justification for the transportable
treatment effect. Using this extrapolation approach, a PH/AFT assumption is made which
assumes a constant treatment effect. It is very important to consider whether this is likely
to hold over the entire time horizon. None of the TAs have made any attempt to justify
this assumption. As this is unlikely to be true, therefore this approach is not appreciated
generally. Only one TA (TA604 (2019)) had applied a two-stage extrapolation approach
where MAIC adjusted K-M survival function for intervention study was digitised and IPD
data were reconstructed and in the second stage, parametric models were fitted separately
for intervention and comparator study.

Many of the findings of this review have similarities as well as dissimilarities with the review
by Phillippo et al. (2019a). Similar to this review, most of the applications of population-
adjustment in Phillipo’s review were also found to be in oncology where survival outcomes
(e.g. PFS, OS) were found to be the most common outcome type. MAIC and STC were
found to be mostly used methods in both reviews. A substantial decrease in ESS has been
found in both of the reviews which in turn made the comparisons dependent on very few
numbers of individuals in the IPD study. Similar to Phillipo’s review, the application of
population-adjustment methods was found to be very prevalent for a larger network of ev-
idence for this review. Furthermore, the range for covariate adjustment is also found to be
similar. The number of covariates adjusted for are 2 to 14 and 1 to 13 for this and Phillipo’s
review respectively.

Whilst the review by Phillippo et al. (2019a) found that the most common approach to iden-
tifying prognostic and effect-modifier variables was their availability in the included studies,
this review found that the majority of the TAs have used literature review and clinical ex-
pert opinion to identify variables. This shows that TAs are trying to follow guidance on
variable selection by Phillippo et al. (2016). In Phillipo’s review, no TAs were found that
had attempted to adjust the residual bias but in this review, one TA was found which has
attempted “out sample” method. No information was extracted for survival extrapolation in
Phillipo’s review, therefore, all the issues identified with survival extrapolation were found in
addition to Phillipo’s review.

In NICE TAs, adjustment methods like unanchored MAIC and STC are commonly used as
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a result of increasing acceptance of single-arm studies for granting marketing authorisations.
These methods assume no unmeasured effect-modifiers and prognostic factors which is diffi-
cult to satisfy in reality and in turn can produce residual bias. In addition, these methods
target the comparator population which is often not the population of interest. Moreover,
these methods were frequently used for larger disconnected networks of evidence despite the
fact that they were not developed to handle multiple comparator treatments simultaneously.
These methods have tried to make a consistent synthesis using the meta-analysis technique
without making shared effect modifier assumptions. Therefore, it is important to identify if
other methods also exist in the literature that can estimate relative treatment effects using
single-arm studies which are also able to address all the issues identified in this review. For
this, a second review has been done to find all methods in the literature to estimate relative
treatment effects using single-arm studies. The description and findings of the review will be
discussed in the next chapter.



Chapter 3

A Systematic Literature Review of
Methods for Unanchored Indirect
Comparisons with Single-Arm
Study

3.1 Introduction

In this chapter, a review has been undertaken to identify methods in the scientific litera-
ture for conducting unanchored indirect treatment comparisons with single-arm studies to
estimate a relative treatment effect. The interest lies in understanding how and under what
situations the methods can be used. As the target of this review is to identify all the relevant
methods, a systematic literature review (SLR) has been done which aims to locate and assess
all relevant literature on a topic for answering specific questions (Dewey and Drahota, 2016).

Single-arm studies only contain intervention treatment arm, so to estimate relative treatment
effect with a comparator, it needs to rely on external studies for the comparator treatment.
As no head-to-head comparison is feasible with a single-arm study, an indirect comparison is
the only option. Estimating treatment effects poses the danger of bias since the population
of interest can be different between single-arm and comparator studies. When relative treat-
ment effects are estimated with a single-arm study, it needs a statistical approach with strong
modelling assumptions of conditional constancy of absolute effect. This assumption is very
hard to meet as it assumes that being in the intervention study or in the comparator study
does not carry over any information about the absolute effect, once conditioning is done on
the prognostic variable and effect-modifiers.

In HTA, there exists a data restriction when the relative treatment effect needs to be de-
termined. A pharmaceutical company has access to its own study with IPD but only AgD
measures are available for comparator study/studies. Therefore, methods that need access
to IPD for all studies are not feasible options. For this reason, the interest lies in methods
that can deal with a mixture of IPD and AgD or only AgD when estimating the treatment
effect.

28
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When a drug manufacturer company uses a single-arm study to assess the effectiveness of
its treatment, the target population is the population of the single-arm study. Additionally,
the target is to estimate the marginal treatment effect, which is the average effect at the
population level. Conditional treatment effects which are the average effect at the patient
level can be estimated also. It may be important in some contexts as they can identify the
benefits of treatment for a particular patient with a specific covariate value. The benefits or
harms of treatment can be overestimated if conditional estimates are used. As a consequence,
justified use of limited resources becomes questionable.

In the previous chapter a review on NICE STAs was done where unanchored MAIC and STC
were found to be used in estimating relative treatment effect with single-arm studies. In
addition to these two methods, there might exist other methods that can be used for single-
arm studies. The objective of this chapter is to identify those methods with a systematic
literature search. Section 3.2 of this chapter describes how the review was conducted and
Section 3.3 describes the results. Section 3.4 gives details of the methods that could be used
for unanchored comparison with a single-arm study. The chapter concludes with a discussion
of the methods in Section 3.5.

3.2 Systematic literature review (SLR) methods

3.2.1 Inclusion criteria

Statistical methods that could be used with single-arm studies to estimate relative treatment
effects have been included in this review.

3.2.2 Search strategy

In order to identify methods to estimate relative treatment effects using single-arm studies,
a 2-stranded approach was implemented. In the first approach, a keyword search was con-
ducted on MEDLINE via OvidSP (1946-present including MEDLINE In-Process) on April
5, 2021. In the second approach citation searching (pearl growing based) was conducted on
key journal articles. The aim of the literature search was to identify methods that can deal
with single-arm studies in estimating relative treatment effects. In order to make the search
broad, instead of restricting to any particular kind of outcome, the search was conducted for
any outcome within a single-arm study.

The main consideration when implementing the keyword search was to find out methods that
will estimate treatment effect with single-arm study from disconnected networks. Specific
phrases including single-arm study, treatment effect, observational study, indirect comparison
were used in combination with disconnected networks, no head-to-head, historical control, and
network meta-analysis. The description is provided in Figure B.1 of Appendix B about the
search strategy.
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3.3 Systematic literature review (SLR) results

3.3.1 Keyword searching

During the keyword searching, 682 references were retrieved. After limiting the search to
the English language, 677 references remained. When duplicates were removed, 674 refer-
ences remained. To identify relevant articles, the titles of the articles were examined and
the abstract of each article was examined if the titles were relevant. After removing all the
irrelevant articles, 11 articles remained. Of these 11 articles, one was identified as a key
paper which was a review article that describes how disconnected networks of evidence were
handled in estimating relative treatment effectiveness (Stevens et al., 2018). A pearl-growing
literature search was conducted with these 11 articles and eventually, 13 articles were identi-
fied as relevant (Béliveau et al., 2017; Caro and Ishak, 2010; Cucherat et al., 2020; Collignon
et al., 2020; Goring et al., 2016; Hatswell et al., 2020; Jiang and Ni, 2020; Leahy et al., 2019;
Schmitz et al., 2018; Remiro-Azócar et al., 2020; Schmitz et al., 2013; Signorovitch et al.,
2010; Thom et al., 2015).

Of these 13 articles, 4 methods were identified that could be used with single-arm study
to estimate the relative treatment effect. Random baseline NMA method was discussed in
Thom et al. (2015); Goring et al. (2016) and Béliveau et al. (2017) and NMA with matching
was identified in Leahy et al. (2019). Matching adjusted indirect comparison (MAIC) was
identified from several articles including Signorovitch et al. (2010); Cucherat et al. (2020);
Jiang and Ni (2020); Remiro-Azócar et al. (2020). Simulated treatment comparison (STC)
was identified from Caro and Ishak (2010); Remiro-Azócar et al. (2020). One method was
identified by Collignon et al. (2020) but it was discarded as IPD was needed for all included
studies for this method.

3.3.2 Citation searching

In order to avoid missing any relevant articles, a citation search was conducted on the 11
articles redeemed during a keyword search with Google Scholar. One hundred and three
cited references were retrieved and one of them was found to be relevant which is a journal
article by Phillippo et al. (2020a). Eventually, the method found by citation searching was
discarded as the method in Phillippo et al. (2020a) only considered anchored comparison.
The PRISMA flowchart is depicted in Figure 3.1 which demonstrates the selection process
both with “keyword” and “citation” searching.
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Figure 3.1: PRISMA flowchart of “keyword” and “citation” searching for single-
arm study

3.4 Methods for conducting ITCs using single-arm studies

In this section, methods are described which were identified with a systematic search to es-
timate relative treatment effects with single-arm study. Throughout this chapter, methods
were described for single-arm studies with binary outcomes but they can be used for other
outcomes also. The availability of methods in the literature for different kinds of outcomes
has been summarised in Table 3.1. These methods also differ depending on the availability of
IPD and AgD. Throughout this thesis, single-arm study/intervention study and comparator
study/AgD study will be used interchangeably.

Table 3.1: Availability of methods for different outcomes

MAIC STC
Random
baseline
NMA

NMA
with
matching

Binary Data x x x x

Continuous data x x x

Time-to-event
data

x x
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3.4.1 Unanchored matching adjusted indirect comparison (MAIC)

Matching adjusted indirect comparison (MAIC) is a method to balance differences in base-
line covariates between an intervention (with IPD) and comparator study (with AgD) (Sig-
norovitch et al., 2010; Cucherat et al., 2020; Jiang and Ni, 2020; Remiro-Azócar et al., 2020).
In this section, unanchored MAIC has been described based on Jiang and Ni (2020). The
difference is Jiang and Ni (2020) described MAIC for time-to-event data, whereas, here it
has been described for binary data. An unanchored MAIC can be applied when there is no
treatment arm that is common to connect an intervention to other treatments. The compara-
tor can come from another single-arm study or from one arm of an RCT. MAIC is basically
developed to work in a pairwise study setting where the intervention study has IPD and the
comparator study has AgD. To apply MAIC, IPD from the single-arm study is re-weighted
so that it matches the mean baseline patients characteristics of the comparator study.

The first step in applying MAIC is to calculate MAIC weights, Signorovitch et al. (2010)

wi = Pr(Xi=0|Zi)
Pr(Xi=1|Zi)

,

where wi represents the odds that patient i gets the comparator treatment versus the in-
tervention treatment. Z is a vector of baseline patient characteristics, and X specifies the
treatment received (X = 1 for intervention study and X = 0 for comparator study). A lo-
gistic propensity score model is used to estimate the weights taking into account all known
effect-modifiers and prognostic variables. That is,

log(wi) = β0 + β1Zi,

where β0 and β1 are the regression coefficients. In calculating weights, patients who are more
likely to have received the comparator treatment versus intervention treatment will be up-
weighted to overcome their under-representation in the intervention study; similarly, patients
who are less likely to have received the comparator treatment versus intervention treatment
will be down-weighted to overcome for their over-representation in the intervention study.
The consequence of this weighting is that the covariate distribution of the intervention study
will more closely resemble those of the comparator study.

In order to estimate the weight, the maximum likelihood approach needs IPD from both
studies. However, when IPD is not available for comparator study (i.e. Xi = 0), the likelihood
approach is not applicable to estimate the parameters of this model. Method of Moment
(MoM) (Signorovitch et al., 2010) or Entropy Balancing (EB) can be used to estimate MAIC
weights. MoM optimises an objective function where the covariates in the intervention study
are centered on the mean value of the comparator study. The objective function that is
minimised is as follows:

Q(β1) =

n∑
i=1

exp(Ziβ1),

where Q(β1) is a convex function that can be minimised using any conventional algorithm
which will give a unique finite solution. Here, n is the number of participants in the inter-
vention study. After optimising the objective function, the weights are estimated as:
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ŵi = exp(ziβ̂1).

Other than MoM, EB is also plausible to estimate weights. In estimating weights, EB adds
additional constraints so that the estimated weights should be close to unit weights as well as
penalise for calculating extreme weight (Hainmueller, 2012). Though EB is another option
to estimate weights, it has been proven that estimating weights via either of the methods is
mathematically equivalent (Phillippo et al., 2020c).

Eventually, the mean outcome of the intervention treatment in the comparator study is
estimated as a weighted average,

Ŷi =

∑n
i=1 Yiŵi∑n
i=1 ŵi

,

where Yi is the outcome for ith patient in the single-arm study. In unanchored cases, the
focus is to calculate the absolute outcome for the single-arm treatment. After estimating the
weights, pseudo-patient data from the comparator study is needed. This pseudo-patient data
need to be simulated and this step is not required for the estimation of weight. Comparator
studies usually report the percentage of patients with events that can be used to simulate bi-
nary outcome 0/1 to fit a logistic regression model. After simulating the outcomes, a relative
treatment effect can be estimated by fitting a weighted logistic model where the weights for
the intervention treatment are estimated with MoM/EB and for the comparator treatment
the weight is assigned as 1.

A robust sandwich estimator can be used to estimate standard error (SE) for MAIC esti-
mates. The robust sandwich estimator takes into account the fact that weights are not known
during the estimation of the uncertainty for weights. Frequentist bootstrapping is a possible
alternative that also takes into account all kinds of uncertainty in MAIC weights but it is
computationally highly intensive.

In MAIC, ESS can be estimated which represents how many independent individuals are
required to provide an estimate with the same accuracy as the weighted sample estimate. In
MAIC, the ESS is approximated by (Signorovitch et al., 2010),

ESS =
(
∑n

i=1 ŵi)
2∑n

i=1 ŵ
2
i

.

It is likely that this approximation underestimates the true ESS as the weights are correlated
with outcome and also they are not known (Phillippo et al., 2016). However, if ESS is small,
with respect to the actual sample size, it is an indication that the weights may fluctuate
greatly which may cause the estimate to be unstable. Though it is necessary to include all
prognostic and effect-modifying variables in the propensity model, the inclusion of too many
covariates can result in extreme weights which can cause a reduction in ESS.

To implement the propensity method, there should be an overlap between the adjusted vari-
ables in AgD and IPD study. Lack of overlap restricts MAIC to extrapolating beyond the
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IPD study which may result in failure to produce an estimate. MAIC assumes that for the
AgD study, sufficient information is available for joint covariate distribution which is often
unlikely in practice as only marginal covariate distributions are published. The joint covariate
distribution can provide information on covariate correlations which then can be balanced by
including them in the weighting model. However, in the absence of joint distribution infor-
mation, they are considered to be identical to the correlations observed amongst covariates
in the IPD study which can be wrong. MAIC implicitly specifies an outcome model, so if
there is any interaction between treatment and effect-modifiers (one-way or multi-way), mis-
specifying the correlation between covariates will give a biased indirect comparison (Phillippo
et al., 2016).

3.4.2 Unanchored simulated treatment comparison (STC)

Simulated treatment comparison (STC) is a technique that is based on regression adjustment
(Caro and Ishak, 2010; Remiro-Azócar et al., 2020). As in MAIC, STC is also applicable to
a pair of studies with IPD and AgD. The regression model in STC could be of any kind such
as it could be linear, logistic, or any time-to-event regression model if the outcome is contin-
uous, binary, and time-to-event respectively. In the single-arm study, where IPD is available,
a regression model of outcomes is fitted as a function of baseline covariates. All prognostic
and effect-modifiers need to be incorporated into the model as covariates. Though there are
different kinds of formulation of STCs (Caro and Ishak, 2010; Phillippo et al., 2016, 2018),
in this section, STC has been described following Phillippo et al. (2016) for binary outcomes.

Suppose, an intervention needs to be compared in a single-arm study with IPD to a com-
parator treatment with AgD for a binary outcome. A logistic model can be fitted for the
single-arm study as follows:

g (η∗i ) = β0 +
(
Zi −Zagd

)
β1 +

(
Z

(EM)
i −Z(EM)

agd

)
β2,

where g(·) is a logit link function for binary outcomes with η∗i as the expected outcome on the
natural outcome scale, β0 is the intercept, β1 and β2 are a vector of K regression coefficients
for the prognostic and effect-modifying variables respectively. The covariates are centered at
the published mean values from the comparator study. The fitted model can give predicted
log odds for intervention treatment in the comparator study. A log odds ratio then can be
estimated to get the relative treatment effect. The conventional formula of the variance of a
log odds ratio can be used to estimate the variance of the estimate. Detailed information on
variance calculation for STC is not available either in the NICE guidance or by the authors
(Caro and Ishak, 2010) of STC. However, recent articles of STC show that bootstrapping is
being used for variance calculation (Ishak et al., 2015a,b; Remiro-Azócar et al., 2022).

STC needs a good fit of the outcome model similar to any regression adjustment method.
In an unanchored STC, all the prognostic and effect-modifier variables need to be included
and including or omitting both of these variables incorrectly can produce biased estimates.
Furthermore, specifying the true relationship between outcome and covariates is also crucial.
However, by assessing the justified relationship between the outcome and included variables,
unlike MAIC, STC can extrapolate beyond the observed values of the intervention study.
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This conventional STC estimates a conditional treatment effect on linear predictor scale be-
cause the regression models the conditional outcome mean on the baseline covariates included
as predictors whereas HTA are mainly interested in the marginal effects of treatments. In an
unanchored STC, when the predicted log odds from the intervention treatment are estimated
using an outcome model, it represents a conditional estimate. However, the log odds from the
comparator study is often a marginal estimate and therefore when they are compared with a
log odds ratio, the estimate is systematically biased whenever g(·) is not the identity function.

Recently a modification on STC has been proposed known as “parametric G-computation”
which simulates the individuals from the comparator study to estimate the treatment effect
(Remiro-Azócar et al., 2022). This method predicts the conditional probabilities (i.e., the po-
tential outcomes on the natural scale) for each simulated subject, averages to get a marginal
probability prediction, and back-transform to the linear predictor scale (log-odds ratio scale)
to perform a comparison with the comparator treatment in that scale.

In this approach, for the purpose of characterising the AgD population, the joint distribution
of AgD covariates is approximated under certain parametric assumptions. If the covariate
in the comparator study is continuous, a multivariate normal distribution can be used to
simulate the values using the mean value from the comparator study and the correlation
structure that was found in the intervention study. Correlation needs to be taken from the
intervention study because this information is usually not available from published data. A
regression model is then fitted to the IPD data without centering the covariates and the co-
efficients from this fitted model are used to make the absolute prediction of the probabilities
of the comparator study patients. These probabilities would have been observed if the inter-
vention treatment was implemented in the comparator study population. These probabilities
are estimated in the natural outcome scale and then they are back-transformed to the linear
predictor scale by calculating the log odds for the intervention treatment. After calculating
the log odds for the intervention treatment, an odds ratio can be estimated which will give
the relative treatment effect between the single-arm and comparator study.

3.4.3 Network meta-analysis with random baseline

Network meta-analysis (NMA) is a generalisation of pairwise meta-analysis where the bene-
fits and safety of multiple treatments are compared by combining results of multiple studies
(Lu and Ades, 2004; Dias et al., 2011b; O’Connor et al., 2013). An NMA is intended to
give more accurate estimates of the treatment effects as opposed to a single direct or indi-
rect estimate (Cooper et al., 2011; Caldwell et al., 2015). NMA is usually performed using
a contrast-based approach where one or more treatments are evaluated with respect to a
study-specific baseline (Dias et al., 2013). In an NMA, the effect of a treatment is expressed
in a model where the relative effect is added to the baseline treatment effect in that study.
The baseline treatment effect is regarded as a fixed and nuisance parameter to estimate.

An NMA can either be a fixed or random effects analysis. A fixed effect NMA assumes
every study is calculating an estimate of the same parameter whereas a random effects NMA
assumes that each study calculates an estimate of a study-specific treatment effect. In the
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random effects model, an exchangeability assumption is made which assumes that the study-
specific treatment effect is not equal across studies but they are similar and come from a
common distribution. In this section, first, a standard NMA will be described following the
random baseline NMA and then a recent modification of the random baseline NMA known
as the “reference prediction” will be discussed as well.

3.4.3.1 Standard NMA

First, let us discuss a conventional Bayesian random effects NMA for binomial data. In a
standard NMA, the effect of a treatment can be modelled as follows:

rjk ∼ Bin (pjk, njk)

logit (pjk) =

{
µk if j = 1

µk + δjk otherwise

δjk ∼ N
(
dt1ktjk , σ

2
)
,

where rjk and njk are the number of events and patients in the jth treatment arm of the
kth study respectively and pjk is the probability of an event. The quantity µk represents the
log odds for the baseline treatment in study k, and δjk is the log odds ratio for treatment
j relative to the baseline treatment. δjk is modelled under a random study effect where σ2

expresses heterogeneity of treatment effects across studies.

dt1ktjk is modelled by relating them to basic parameters as follows:

dt1ktjk = d1tjk − d1t1k .

This equation is also known as the consistency equation. In order for the consistency equation
to work, a connected network of RCT evidence is needed and the transitivity assumption
needs to be satisfied. Treatment 1 is considered as the reference treatment here, relative
to which the basic log odds ratios for all treatments are defined. Normally, the reference
treatment is assumed to be the most common treatment across the network of evidence. The
baseline effects µk are considered to be nuisance parameters that are eventually canceled out
so that information on the relative treatment effects is only coming within studies. Thus
using an independent baseline maintains randomisation within studies. In the Bayesian
approach, vague prior distributions are assumed for basic parameters for each treatment
and for the between-study variance. Non-informative or weakly informative priors can be
assumed for baseline (Dias et al., 2011b). Priors are updated using the data to give the
posterior distribution of the parameters.

3.4.3.2 Random baseline NMA

Random baseline NMA is a technique that can be applied to compare an intervention in a
disconnected RCT or from a single-arm study with multiple comparators (Thom et al., 2015;
Goring et al., 2016; Béliveau et al., 2017). When the response to treatment in a single-arm
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study is compared to multiple comparators, its inclusion in an NMA creates a disconnected
network as a single-arm study does not have a comparator arm that can connect it with
the rest of the network. Random baseline NMAs can include a single-arm study by using a
reference treatment as a baseline treatment in all the studies included in the network. This
allows the contrast between disconnected treatments to estimate the posterior distribution
which will be able to update itself from the prior distribution. Random baseline NMA will
be described here from a Bayesian approach combining IPD and AgD although it can be
conducted with a frequentist approach also.

Statistical model for the data The model has been described in two connected parts: the
modelling of the IPD has been described in part I and modelling of the AgD in part II.

Part I: Modelling the IPD
IPD is available from the single-arm study which could be modelled as:

yijk ∼ Bernoulli (pijk) ,

where yijk is the ith patient in the jth treatment arm of the kth study and pijk is the indi-
vidual probability of an event.

Part II: Modelling the AgD
The AgD which is available for the rest of the network could be modelled as:

rjk ∼ Bin (pjk, njk) ,

where rjk and njk are the number of events and patients in the jth treatment arm of the kth

study respectively and pjk is probability of an event. In random baseline NMA, a random
effect is placed on the reference/baseline treatment, such that any arm of a connected RCT,
disconnected RCT, or single-arm study can be connected to the reference treatment.

For binary outcomes, the log odds of event on the reference treatment is modelled as

logit(pjk) = µ1k + δjk

µ1k ∼ N(µ, σ2µ),

where µ1k is the overall reference treatment 1 rather than study-specific baseline treatment
and δjk is the treatment effect in jth treatment arm in kth study. It is not necessary to make
treatment 1 the baseline treatment, it could be any treatment that is common to the network
of evidence. As a prior, uniform distribution can be defined for σ2 and normal distribution
can be assumed for both dt1ktjk and µ. This method is built on considering the exchangeabil-
ity of reference log odds across studies that contradict the independent baseline model.

Across study covariate adjustment on baseline effect
The model described above can be extended to account for between-study heterogeneity by
including adjustment of covariates for baseline which can result in an improved assessment
of the baseline effect for the single-arm study.
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logit(pjk) = µ1k + ζz̄jk + δjk

µ1k ∼ N(µ, σ2µ)

δjk ∼ N
(
dt1ktjk , σ

2
)
,

where ζ is the effect of the mean covariate value z̄jk that takes into account between study
diferences. Prior distributions for the parameters µ, σ2µ and dt1ktjk can be assigned as de-
scribed before while a vague normal distribution can be assigned as a prior for the coefficient
ζ.

Across study and within study covariate adjustment on treatment effects
Covariate adjustment on treatment effect or including treatment covariate interaction enables
adjustment for effect-modifier variables. Such models allow for estimating the efficacy of
treatment in patient subgroups. For AgD studies, the model can be defined as follows:

logit(pijk) = µ1k + ζz̄jk + δjk

µ1k ∼ N(µ, σ2µ)

δjk ∼ N
(
dt1ktjk + φz̄jk, σ

2
)
,

where φ is the effect of a continuous covariate zjk on treatment. zjk is a study-level covariate
that enters the model through random effects and is able to estimate the extent to which it
can account for the variability of the treatment effect.

For the single-arm study for which IPD is available, the covariate adjustment for treatment
effects can be done within the study level as follows:

logit(pjk) = µ1k + ζz̄jk + ψ(zijk − z̄jk) + δjk

µ1k ∼ N(µ, σ2µ)

δjk ∼ N
(
dt1ktjk + ξ(zijk − z̄jk), σ2

)
,

where ξ is the effect of the covariate zjk on treatment within the study level for which a vague
normal distribution can be assigned as prior.

Although the use of random baseline NMA can be a way to connect a single-arm interven-
tion with a set of comparator treatments to estimate the relative treatment effect, its main
drawback is the assumption of exchangeability that assumes similarity of the reference arm
throughout the network which can interfere with randomisation. The mean of the random
baseline is drawn towards a common mean which can generate a biased estimate of the rela-
tive treatment effects (Dias and Ades, 2016).

In the random baseline model, the absolute effect of reference treatment is modelled which
can be utilized to evaluate absolute effects for any treatment in the network. Information
on the baseline is utilized onto the relative effect parameters. When the absolute effects
are misspecified, it can make the relative effect estimates misleading. As entry of less severe
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patients is permitted in recent studies, it will make the outcome of the control arm look better
but it can be that the relative effect has stayed constant. When both baseline and relative
effects are estimated simultaneously by placing two random effects on them, the baseline
effects in previous studies will be shrunk upwards, which will underestimate relative effects.
The baseline effects in recent studies will be shrunk downwards which will overestimate
relative effects in recent studies (López-López et al., 2017).

3.4.3.3 Reference prediction model

Reference prediction, introduced by Thom et al. (2022) is a modifications of random effects on
baseline model. This method will be described in the Bayesian framework. In this reference
prediction model, studies are categorised into different groups. RCTs that are connected to
the reference treatment make one group (k = 1, 2, ..., ns), RCTs that are not connected to
reference treatment make another group (k

′
= 1, 2, ..., n

′
s) and single-arm studies are formed

into another group (k
′′

= 1, 2, ..., n
′′
s ). RCTs that are connected to the reference treatment

are modelled using standard contrast-based NMA with independent baselines as follows:

logit(pjk) = µk + δjk.

RCTs that are connected to the reference treatment have a second use where arms on the
reference treatment are used in a meta-analysis for prediction of the reference arm.

rref1k ∼ Bin(pref1k , n
ref
1k )

logit(pref1k ) = µrefk

µrefk ∼ N(µ, σ2µ).

With this modelling approach, the connected network is prevented from being biased. The
prediction for reference treatment from this model is then used as baseline treatment for
single-arm and disconnected RCTs.

logit(pjk′′ ) = µ1k′′ + δjk′′ , for single-arm study

logit(pjk′ ) = µ1k′ + δjk′ , for disconnected RCTs.

If a random effects model is used for treatment effects, the impact of the single-arm studies or
disconnected RCTs is avoided on the estimation of heterogeneity parameter σ2 in connected
RCTs. This modification was done in order to prevent biased estimates in connected RCTs by
estimating separate estimates of σ2 for connected RCTs, single-arm studies and disconnected
RCTs. It also uses the σ from connected RCTs as an informative prior in estimating σ for
disconnected RCTs and single-arm studies. This prior is a normal centered on σ, truncated
below at 0 and standard deviation equal to that of the Markov Chain Monte Carlo (MCMC)
samples of σ from the independent baselines NMA.
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Inclusion of covariates in reference prediction model
An additional modification was also included by Thom et al. (2022) in reference prediction
which is the inclusion of covariates in predicting the reference log odds as follows:

rref1k ∼ Bin(pref1k , n
ref
1k )

logit(pref1k ) = µrefk

µrefk ∼ N(a1 + βzrefi , σµ).

For single-arm studies, this could be defined as:

µ1,k′′ ∼ N
(
a1 + βz′′k′′ , σµ

)
logit (pk′′) = µ1,k′′ + δk′′ .

For disconnected RCT studies, this could be defined as:

µ1,k ∼ N
(
a1 + βz′

jk′
, σµ

)
logit

(
pj,k′

)
= µ1,k′ + δj,k′ for all ti′k,

where zik, z
′′
i′′ , z

′
i′k are covariates from connected RCTs, single-arm studies and disconnected

RCTs, respectively and β is a vector of regression coefficients each with vague priors βl ∼
N(0, 102).

3.4.4 Network meta-analysis by matching

In order to estimate the relative treatment effect of an intervention in a single-arm study
with multiple comparator treatments, an NMA can be performed with connected evidence
where the single-arm study can be included in the NMA by matching. In order to include the
single-arm study, it can be matched to any arm of the connected network with similar patient
characteristics including both effect-modifier and prognostic variables. When a matched arm
is identified, then the single-arm and matched arm are treated as if they came from the same
study (Schmitz et al., 2018; Leahy et al., 2019). In this section, first, NMA with matching
will be described and then a recent modification of the method known as the “aggregate level
matching” (ALM) will be discussed as well.

Let an intervention in a single-arm study which needs to be compared with a set of compara-
tors. The network of comparators can include both RCTs and single-arm studies and this
method currently uses AgD data from all the studies. In order to implement the method,
the model that has been described in Leahy et al. (2019) is as follows:

rjk ∼ Bin (pjk, njk)

logit (pjk) =

{
µk if j = 1

µk + δjk otherwise

δjk ∼ N
(
dt1ktjk , σ

2
)
,
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where rjk and njk are the number of events and patients in the jth treatment arm of the
kth study respectively and pjk is the probability of an event and treatment 1 is considered as
the reference treatment. The quantity µk represents the log-odds for the baseline treatment
in study k and δjk is the log odds ratio for treatment j relative to the baseline treatment.
δjk is modelled under a random study effect where σ2 expresses heterogeneity of treatment
effects across trials. Instead of selecting vague priors for the parameters such as N

(
0, 1002

)
,

the priors can be chosen as µi ∼ N
(
0, 1.832

)
, dk ∼ N

(
0, 1.832

)
, and σ ∼ Unif (0, 2) for two

arm studies (Leahy et al., 2019). The reason for discarding the vague prior is that the vague
priors are actually not vague on the inverse logit scale, as most of the distribution is close to
either 0 or 1 and the chosen one will have an approximate uniform distribution on the log
odds ratio (Leahy et al., 2019).

When selecting the matched arm for the single-arm study, it is important that the patients
for the chosen comparator arm should be as similar as the single-arm study otherwise it
could introduce bias in estimating relative effect. The matching arm for the single-arm study
can be any arm from the network but the treatment should not match with the treatment
in the single-arm study. Let M be the number of prognostic and effect-modifier variables
that were considered for matching, let zml

be the patient proportion (for binary covariate) or
mean value (for continuous covariate) related with the covariate in the single-arm study with
treatment l, and let zmjk

be the patient proportion or mean value related with the covariate

in arm j of study k. The difference can be estimated as, ∆jk,l =
∑M

m=1

∣∣zmjk
− zml

∣∣. The
arm with which this difference is minimum can be selected as the matched arm.

The approaches that can be used for the inclusion of a single-arm study in this NMA are:

Pooled model: This is the simplest approach where the single-arm study and its matched
arm are included in the NMA as if they form a RCT evidence. No distinction is made between
different forms of evidence i.e. the model cannot tell which evidence is single-arm and which
evidence is RCT. Using the notation from Leahy et al. (2019), the matched part can be
written as,

logit (pl) = µChosenRCT[k] + δl.

ChosenRCT[k] indicates the chosen study to match to single-arm study l.

Hierarchical model: In this case, in addition to considering the single-arm study and its
matched arm as an RCT, a hierarchy is placed on the treatment effects. Let d indicate the
overall effect of treatment relative to the reference treatment.
The extra level can be modelled as,

dRCT[t] ∼ N
(
d[t], σ

2
design

)
dMATCHED[t] ∼ N

(
d[t], σ

2
design

)
,

where dRCT[t] and dMATCHED[t] are the actual effect of treatment t with respect to the ref-
erence treatment for RCT and matched studies, σdesign indicates the variability between the
RCT and matched studies. The idea is to estimate the treatment effect at various levels and
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then estimate a pooled effect of the overall treatment effect. In a hierarchical model, it is also
possible to down-weight specific evidence type and when σdesign is set to 0 then it becomes a
naive pooling model. The previous prior distributions are also applicable here. In a hierar-
chical model, inflating the variance with a multiplicative factor can control overprecision for
the matched arm.

Plug-in estimator model: For the plug-in estimator model, it is assumed that for the
single-arm study and its matched arm, the log odds of the reference treatment is equal.
Unlike the hierarchical model, this model also assumes no difference between the different
designs of study. For the RCT part, the model can be written as

logit (pjk) = µk + δjk,

and the matched part is written as

logit (pl) = µChosenRCT[k] + δl.

The pooling method fails to take into account uncertainty by assuming no difference be-
tween study designs. The hierarchical modelling approach acknowledges this uncertainty and
model difference between study designs by random effects. For this reason, the hierarchical
modelling approach is better than naive pooling. The arm that has the minimum difference
with the single-arm study with respect to baseline characteristics needs to be chosen as the
matched arm but it can be that all arms do not have information on selected characteristics.
In that case, an appropriate match may not be found. Recently, a modification has been
made to this method which will be discussed in the next section.

3.4.4.1 Aggregate level matching (ALM)

A modification has been done on NMA by matching method by Thom et al. (2022). In
this modified method, the reference arm for the single-arm study is chosen from an RCT
which is the closest to the single-arm study with respect to patient characteristics as before
but Euclidian distance has been used to assess the similarity between the intervention and
comparator arm. In addition, the heterogeneity parameter has been disconnected from the
connected part and the estimate of the heterogeneity parameter from the connected part is
used as an informative prior for the disconnected part. This ensures that the connected part
of the network is not affected by the disconnected part and randomisation is kept intact in
the connected part. Furthermore, as the matched reference arm for a single-arm study is
conducted at the modelling level, unlike reference prediction, data from the connected part
is not used multiple times (Thom et al., 2022).

3.4.5 Comparison among methods

3.4.5.1 Assumptions

Each of the methods described in this chapter makes different kinds of assumptions which
are depicted in Table 3.2. The idea of constructing this table was taken from (Phillippo
et al., 2016). All of the methods make the assumption of conditional constancy of absolute
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effects. This assumption is not testable and it is difficult to satisfy in practice. The ex-
clusion of unmeasured prognostic and effect-modifiers can introduce residual bias. Random
baseline NMA and NMA with matching both make additional assumptions of transitivity
and consistency among studies which assume that prognostic and effect-modifiers are evenly
distributed across studies. In addition to conditional constancy of absolute effects, random
baseline NMA also makes exchangeability of placebo effect which relies on expert opinion
and is not testable statistically (Thom et al., 2015). NMA with matching has to satisfy the
assumption of exchangeability between matched arms which means discrepancies between
single-arm and other study/studies should be small. The accuracy and precision of the esti-
mates are affected when the difference between studies increases.

Table 3.2: Assumptions required by different methods

Methods

Assumptions MAIC STC
Random baseline

NMA
NMA

with matching

Conditional constancy
of absolute effects

x x x x

Transitivity x x

Consistency x x

Exchangeability of
placebo effect

x

3.4.5.2 Differences in estimands

When a method is applied with a single-arm study to estimate the relative treatment effect,
the objective is always to mimic what would have happened if the comparator treatment was
compared with the single-arm treatment in a head-to-head study. After trying to imitate an
RCT, the next question is what kind of estimand should be estimated. In an RCT, both
marginal and conditional estimand can be estimated. A marginal treatment effect is the
average effect of treatment on the population whereas a conditional treatment effect is the
average effect of treatment on the individual level (Austin, 2011). The difference between
the mean outcome of the randomised groups in an RCT is assumed to be a marginal effect
as it is believed that the difference in the estimate is the result of moving all the patients
from one treatment to another. On the contrary, conditional effect describes how the mean
outcome of a treatment changes across patients who have the same patient characteristics.

It is often the case that marginal and conditional estimates are thought to be synonymous
with unadjusted and adjusted estimates respectively, which is not always true. A marginal
effect can also be a covariate-adjusted outcome model (Remiro-Azócar, 2021). Conditional
treatment effects may be important in some contexts as they can identify the benefits of
treatment for a particular patient with a specific covariate value, but HTA is mainly inter-
ested in the marginal effects of treatments. In addition to the variation in estimands, the
collapsibility of the effect measure is another issue that needs to be emphasized. An effect
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measure is collapsible when the population effect measure can be estimated as a weighted
average of the subgroup-specific measures in the absence of confounding bias (Miguel et al.,
2023). Collapsibility is mainly related to the linearity issue, which is why the risk ratio and
the risk difference are collapsible effect measures but this is not the case for the binary out-
come or time-to-event outcome as both of them need to use link function to assume linearity
(Greenland, 1987; Austin, 2014, 2011).

MAIC and STC both are covariate-adjusted indirect comparisons but MAIC uses a weighted
regression of outcome whereas STC uses a multivariable regression. In an unanchored MAIC,
a covariate-adjusted marginal estimate is typically compared with an unadjusted marginal
estimate of the comparator study. The version of STC that is described in Phillippo et al.
(2016), targets a conditional treatment effect and will be a biased estimate for the marginal
treatment effect due to the non-collapsibility issue. The version of STC that uses parametric
G-computation or model-based standardisation can produce a marginal effect estimate which
is covariate-adjusted Remiro-Azócar (2021).

When multiple studies are synthesised in an NMA, it is quite possible that there exists
variability between the study-specific estimands. There could be variability in outcome defi-
nition and treatment implementations, for example, in the formulation of dosing, mechanism
of delivery, co-treatment regimens, and so on. There may be variability in collecting patient
characteristics between studies as well as published reports can be very vague in explaining
their target estimand. Due to these inconsistencies, it is difficult to come up with a conclusion
for estimand in an NMA (Remiro-Azócar, 2022a; Russek-Cohen, 2022).

3.4.5.3 Target population

Population-adjustments methods like MAIC and STC are formulated in such a way that they
target a particular population which is the comparator population. This may create problems
as often the target population is the intervention study population which may differ from the
comparator population. These methods want to predict what would have happened if the
intervention treatment had been applied to the comparator study population. This nature of
MAIC and STC can often lead to contradictory results. Suppose there are two pharmaceutical
companies who want to get a relative treatment effect of their drug with the other company.
Both companies have access to IPD for their own study but AgD from the other comparator
study. It is possible that they conduct a MAIC or STC where the target study is the other
company’s study and they can get a completely opposite result (Phillippo et al., 2016). In
standard NMA, studies are included for a joint synthesis where relevant studies are identified
using the PICO criteria in a systematic literature search. Therefore, in standard NMA, the
target population is the sample of participants who were enrolled in the included studies and
the estimates from an NMA are not interpretable outside the NMA studies (Dahabreh et al.,
2019).

3.4.5.4 Adjustment of prognostic and effect-modifier variables

Identification and adjustment of all prognostic and effect-modifier variables is an important
assumption for the methods used to undertake ITCs with single-arm studies. Adjustment of
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all prognostic and effect-modifier variables is not always easy to meet as difficulty can arise
in specifying effect-modifier status with new treatments for which clinical knowledge and
empirical evidence may not be sufficient. In MAIC/STC all prognostic and effect-modifier
variables are adjusted using the propensity/regression model, otherwise, residual bias will
affect relative treatment comparison.

In the random baseline NMA, prognostic and effect-modifier variables can be adjusted by
conducting a within-study and between-study covariate adjustment on treatment but it is
often the case that an adequate number of studies are not available for each treatment
effect for conducting the between-study covariate adjustment. Between-study covariate ad-
justment/interaction effect is harder to detect than within-study interaction as the former
needs to differentiate the interaction effect from the random noise whereas the latter only
needs to differentiate the interaction effect from sampling error (Dias et al., 2011a). Also,
between-study covariate adjustment or meta-regression can suffer from ecological bias where
the coefficient of linear regression from patient-level data and study-level data can be very dif-
ferent and sometimes can be completely opposite (Hoaglin et al., 2011). Additionally, though
meta-regression allows investigating the effect of both continuous and categorical factors on
effect measure, the evidence quality from meta-regression is equivalent to non-randomised
studies (Dias et al., 2011a).

In NMA by matching, this adjustment is done by finding an arm that matches with the
single-arm study for both effect-modifiers and prognostic variables. However, this matching
can be difficult if information on prognostic and effect-modifier variables is not present across
the network. In addition, the reference prediction model and ALM model cannot adjust for
treatment effect-modifiers, they can only take into account prognostic variables.

3.4.5.5 Appropriateness of methods in different situations

3.4.5.5.1 Two competing treatments
MAIC and STC target in comparing one intervention with a comparator treatment. Both the
intervention and comparator can come from a single-arm study or the intervention treatment
could be from a single-arm and the comparator treatment from one arm of an RCT. When
two competing treatments need to be evaluated, MAIC is a commonly used method that
needs sufficient overlap of the input space. STC is a regression adjustment method, therefore
it can extrapolate beyond the observed covariate values observed in the IPD population using
the linearity assumption or other appropriate assumptions about the input space.

3.4.5.5.2 Multiple competing treatments
Random baseline NMA and NMA with matching can compare an intervention with a single-
arm study to a larger network of multiple comparators. The larger network can include
both RCT and single-arm studies. NMA-based methods (random baseline NMA and NMA
with matching) can deal with larger networks of evidence, given those covariates among
studies are balanced. They include non-randomised evidence in the network, but intact the
randomisation of the available RCTs. MAIC/STC was originally designed to compare two
competing treatments. They are not appropriate for larger networks of evidence as they focus
on a different target population in every single comparison, which is the population of the
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comparator study. However, they can be extended for a larger network of evidence by making
an additional assumption called “shared effect modifier”. This assumes that the competing
treatments belong to the same class with similar clinical properties and they share the same
set of treatment effect-modifiers which allows relative treatment effects to be interpreted into
any population. This assumption is hard to meet in practice and is untestable.

3.4.5.6 Situations for the suitability of the methods

In the review of the NICE STA (Chapter 2), it was found that a common scenario in HTA sub-
missions is a larger disconnected network of evidence. The advantage of NMA-based methods
is that they are able to handle a larger network of evidence with multiple comparator treat-
ments. Random baseline NMA and NMA with matching can both estimate treatment effects
using single-arm studies. A recent study by Thom (2020) found that random baseline NMA
may be ‘safer’ with single-arm studies as it is more conservative. However, the validity of
NMA-based methods depends on various issues. Though random baseline NMA is found to
be better than NMA with matching, its main criticism lies in the exchangeability assumption
which could generate a biased estimate. Additionally, if there exist only a few studies with
small sample sizes for each treatment in the network, then random baseline NMA can pro-
duce inconclusive results with a wide confidence interval (Thom et al., 2015). Furthermore,
in NMA with matching, an appropriate match may not be found for the intervention of a
single-arm study if all other arms in the network do not have information on prognostic and
effect-modifier variables. Moreover, in terms of matching, the arm with a minimum differ-
ence is considered to be a good match, but there are not sufficient guidelines on how much
similarity can be considered a good match.

NMA-based methods require that the larger disconnected network of evidence should consist
of a connected and a disconnected part with multiple studies per comparison for both parts.
In HTA with single-arm studies, this requirement is not easy to meet. The performance of
ALM greatly depends on the matched study whereas that of reference prediction greatly on
the similarity of the connected and disconnected evidence. However, despite the similarity
between studies, reference prediction can still give non-informative and highly variable treat-
ment effect estimates (Thom et al., 2022). Furthermore, random baseline NMA is able to
use IPD and AgD but reference prediction is still not available for IPD and AgD. Both Ref-
erence prediction and NMA with matching can only use aggregate data from all the studies.
In addition to assuming transitivity and consistency assumptions, the NMA-based methods
also assume that each effect-modifier modifies the relative treatment effect in the exact same
way across all treatments which is often not practical and untestable (Harari et al., 2022).

When an NMA is conducted, the heterogeneity variance needs to be estimated which repre-
sents the extent of variation between study-level relative effects on each comparison. With
NMA-based methods, an estimate of the between-study heterogeneity parameter is only rea-
sonable when several external studies of each comparator treatment are available. When
the number of external studies is very few, estimates of between-study variability need to be
justified by using an informative prior.

When a relative treatment effect needs to be estimated between a pair of studies, MAIC
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and STC are the preferred approaches. MAIC and STC cannot handle a larger network of
evidence unless the added assumption shared effect modifier is made. If this assumption can
be justified, both methods can be used for a larger network of evidence. The main problem in
implementing MAIC is that as it is a reweighting method, therefore, it is unable to extrapolate
when there is an absence of overlap. MAIC produces biased estimates unless the IPD study
contains the AgD study completely within it. This is often not the case in practice, so MAIC
performs poorly (Phillippo et al., 2020a). Therefore, ensuring good overlap between studies
is an essential pre-requisite for MAIC. Although STC can work well with extrapolation as
it is a regression adjustment method, any outcome other than continuous, STC produces
a systematic bias due to the non-collapsibility issue. However, the modification of STC is
able to overcome this issue by simulating covariates from the comparator study and making
predictions on outcome scale (Remiro-Azócar et al., 2022). Another issue with MAIC/STC
is that these methods estimate comparative evidence for the AgD study population which is
often not the target population in HTA.

3.5 Discussion

The aim of this chapter was to identify methods from the literature that could be imple-
mented with single-arm studies to estimate relative effectiveness with one or multiple com-
parator treatments. From the literature, four methods were identified which could be used
along with their advantages and disadvantages. No single method turned out to be appropri-
ate for making comparisons in all situations as every method is suitable for different scenarios.

Unanchored MAIC and STC are useful for estimating treatment effects in a pair of studies but
they are not suitable for a larger network of evidence without making additional assumptions.
The validity of MAIC strongly depends on the extent of overlap between studies. MAIC is
unable to extrapolate when low overlap between study variables exists which can result in
complete failure to produce any weights to compare treatments. The main requirement of
STC is to fit a regression model correctly with appropriate estimands. Moreover, failure to
adjust for all effect-modifier and prognostic variables can result in residual bias. Therefore,
if a comparison needs to be made between an intervention and a single comparator, MAIC
and STC are preferred methods when low overlap, the non-collapsibility issue, and inclusion
of all prognostic as well as effect-modifying variables can be addressed properly. They can
be extended to a larger network of evidence if the shared effect modifier assumption can be
considered practical.

Two methods were found that could be used with a larger disconnected network of evidence
with single-arm studies but those methods are not ideal in every situation. NMA-based
methods need to satisfy a lot of assumptions called transitivity, consistency along with the
stronger assumption of conditional constancy of absolute effects. Although random baseline
NMA was found to be safer than NMA with matching, its exchangeability assumption of
the reference treatment is often not practical. Information on prognostic and effect-modifier
variables for all arms in a network is essential for NMA with matching/ALM. Failure to do
so can produce biased results. Additionally, for NMA with matching/ALM, there is no clear
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consensus on the threshold of similarity between variables.

From the literature it was found that the performance of NMA-based methods in a larger
disconnected network of evidence greatly depends on the presence of a connected and a dis-
connected part along with the size of the network. In both the NMA-based methods, the
prerequisite for the inclusion of single-arm studies in a larger disconnected network of ev-
idence was that the network should contain a larger connected and disconnected evidence
part with multiple studies per comparison in both parts. In NMA-based methods, the in-
clusion of single-arm studies is acceptable as information on relative treatment effects from
the connected network of evidence flows through the whole network which helps to estimate
relative treatment effects with single-arm study treatment. This is a crucial condition that
the NMA-based methods need to satisfy. However, in the NICE review, it was found that
the relative treatment effects of a single-arm study intervention need to be compared in a
larger disconnected network of evidence where several single-arm studies mostly formed the
larger disconnected network of evidence. Therefore, the presence of a connected part with a
sufficient number of studies per comparison was found to be very rare.

In Chapter 2 of NICE STA review, no application of NMA-based methods was found perhaps
due to the strict conditions with NMA-based methods. In NICE review chapter, population-
adjustment methods MAIC and STC were found to be applied multiple times to obtain rel-
ative treatment effects and then used in an NMA to generate combined effects of treatments
simultaneously in a larger disconnected network of evidence. Between MAIC and STC, the
use of MAIC was found more frequent than STC where MAIC has been used multiple times
with multiple comparators or with a single comparator from multiple studies in a larger dis-
connected network of evidence. The relative effect estimates from these multiple MAICs have
been used in a meta-analysis and were described as if the MAIC estimates made a set of co-
herent relative effect estimates without assuming transitivity of these estimates from different
target populations. Additionally, using the IPD several times for conducting multiple MAICs
should be taken into account as it breaks the independence of the unit of analysis assumption.

Various reviews can be found in the literature which has assessed the rationality of population-
adjustment methods, however, no clear consensus can be seen on the superiority of a single
method (Phillippo et al., 2018; Stevens et al., 2018). As a result, a number of simulation
studies have been published where MAIC has been appraised against standard ITC in a
connected network of evidence. However, it has been found that MAIC is greatly affected by
varying covariate overlap between studies, small sample size, and effect-modifier levels (Belger
et al., 2015b; Kühnast et al., 2017; Phillippo et al., 2019a; Petto et al., 2019; Hatswell et al.,
2020). Due to the frequent use of MAIC in HTA to estimate the relative treatment effect
of a single-arm study with multiple comparators or with a single comparator from multiple
studies, a simulation study has been designed to assess the appropriateness of MAIC in a
larger disconnected network of evidence. Additionally, the simulation study has assessed the
impact of varying covariate overlap between studies, sample sizes, and effect-modifier levels
mentioned earlier in addition to varying prognostic variables and correlation in covariates in
an NMA setting with MAIC. The results of the simulation study will be discussed in the next
two subsequent chapters.



Chapter 4

Simulation Study with a
MAIC-Adjusted Fixed Effect NMA

4.1 Introduction

In the review of NICE STA (Chapter 2), it was found that methods like MAIC and STC
are used to estimate treatment effects for a larger network of evidence from disconnected
studies. The review shows that in more than half of the appraisals (55%), the intervention
treatment from the single-arm IPD study has been used to make multiple comparisons. In
some appraisals, multiple MAICs have been done to estimate the treatment effect of the new
intervention with multiple comparators where the comparator treatments have come from
different studies. In other appraisals, the new intervention has been compared to a single
comparator but the comparator treatment was from different studies which required multiple
MAICs to be done. Unanchored MAIC or STC was the only option to estimate relative
treatment effects for a disconnected network of evidence due to the fact that the intervention
treatment came from a single-arm study and only aggregate form of data were available from
the comparator studies.

In some of these TAs after performing multiple MAIC or STC, the next step was to perform
an NMA to get overall treatment effects. The company with the IPD study tried to make a
coherent synthesis with the MAIC or STC estimates in an NMA. Although MAIC or STC
are capable of adjusting prognostic as well as effect-modifier variables in a single comparison,
there is no certainty that the balance of these variables can be maintained across the studies
especially when moderate to high heterogeneity can be present. Furthermore, the repeated
use of the IPD from the single-arm study also violates the independence among the stud-
ies. In order to understand the consequence of performing a population-adjusted ITC in an
NMA setting, a simulation study was designed for binary outcomes. MAIC was chosen as the
population-adjusted ITC for the simulation study. MAIC was found to be the frequently used
method in the review of NICE STAs (13 out of 20 TAs, 65%). It was observed that companies
were using unanchored MAIC with single-arm studies very often. They were using the esti-
mates from MAIC to explain the treatment effect of an intervention with single or multiple
comparators. With multiple comparators, MAIC estimates are frequently used as stand-alone
estimates, or sometimes a meta-analysis was performed to get a coherent synthesis. Without
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making the shared effect modifier assumption which assumes that all the effect-modifiers are
similar across studies, it is not advisable to use MAIC for multiple comparisons as the target
population differs for each MAIC. This simulation study aims to explore the situation using
MAIC when this shared effect modifier assumption is met. In this chapter, the simulation
study is presented following the ADEMP (Aims, Data-generating mechanisms, Estimands,
Methods, Performance measures) structure as described by Morris et al. (2019).

The setting of the simulation in this chapter was done by assuming that there is a common
treatment effect for each comparison. Conventionally, an NMA can be performed either as-
suming a fixed effect or a random effects model. In a fixed effect model, the true treatment
effect is assumed to be fixed but shared by all the included studies. All studies are presumed
to estimate the same effect size. The only reason that the effect size can vary between studies
is because of sampling error. The true treatment effect is calculated as a weighted average of
the individual studies where more weight is given to large studies. The combined effect that
is estimated after performing an NMA is considered to be the estimate of the true treatment
effect. This assumption of a fixed effect NMA is simpler in nature compared to a random
effects NMA. The main reason to choose a fixed effect NMA is for analytic simplicity. Never-
theless, this simulation study will be conducted for a random effects NMA in the next chapter.

Section 4.2 of this chapter describes the aim of the simulation study. Section 4.3 to Section
4.6 describe how the simulation was designed and conducted and Section 4.7 describes the
findings from the simulation study. The chapter concludes with a discussion of the simulation
results in Section 4.8.

4.2 Aims

The goal of the simulation study was to assess the appropriateness of MAIC estimates, one
of the widely used population-adjustment methods in NICE TAs, in a fixed effect NMA.

4.3 Data generating mechanism (DGM)

In this simulation study, data were generated for four settings that differ according to the
connection of the network and according to the amount of evidence informing the network
(network size). With respect to connection, two settings were termed as connected and dis-
connected. A connected network of evidence means a collection of RCTs where data were
generated with respect to a common treatment, on the other hand, a disconnected network
of evidence refers to a collection of studies without any common treatment. Two network
sizes were simulated termed as smaller and larger networks of evidence. A smaller network of
evidence refers to a network of studies where there is only one study per comparison whereas
a larger network of evidence refers to multiple studies per comparison. Therefore, according
to the network connection and size, the simulated data were termed as “connected smaller
network”, “connected larger network”, “disconnected smaller network”, and “disconnected
larger network”.
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The objective of performing the simulation both for a smaller and larger disconnected network
of evidence was to assess the impact of MAIC-adjusted NMA when the number of studies
varies per treatment comparison. The objective for the inclusion of the connected smaller
and larger network of evidence was to assess how much MAIC-adjusted NMA estimates
differ in comparison to the connected NMA estimates. Figure 4.1 describes the process of
data generation where first data were generated for a smaller and for a larger connected
network of evidence. NMA estimates were calculated from both of this connected network of
evidence. The target was to convert both the smaller and larger connected network of evidence
into a smaller and a larger disconnected network of evidence by dropping treatment arms
from each RCT and then apply MAIC to this disconnected network of evidence to estimate
treatment effects. The estimates were then used to perform an NMA. This NMA from the
MAIC estimates is termed as “MAIC-adjusted NMA”. The discrepancy between estimates
from connected NMA and MAIC-adjusted NMA will provide insight into the validity of using
MAIC both in a smaller and larger disconnected network of evidence.

Figure 4.1: Subsequent steps of data generation

4.3.1 DGM for a smaller connected and a smaller disconnected network

The first step of the simulation study was to generate data for a smaller connected network of
3 RCTs with 3 treatments for binary data. From the introduction chapter, it is evident that
though time-to-event outcomes act as one of the most common outcomes for efficacy assess-
ments of medical interventions, binary outcomes also were used to assess efficacy. Therefore,
to start the simulation study with a simpler setting, binary outcomes were chosen. The
simulation was conducted by setting the following data properties: the number of nodes in
the network, the sample size per study, network density, and the nature of prognostic and
effect-modification in the network.

In the simulation settings, the number of nodes means the number of treatments in the net-
work which was kept at 3, network density refers to the number of studies per comparison.
All studies consisted of two arms RCTs of equal sizes. A sparse network i.e. a triangular
network was built with no closed loops which is depicted in Figure 4.2. The network of
evidence consists of 3 studies where 2 studies with treatments 2 and 1 and one study with
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treatments 3 and 1. Treatment 1 was considered the new intervention/common treatment
in each study. Data was generated with two continuous covariates for each study where one
of them was considered prognostic and the other one was an effect-modifying variable. In
previous simulation studies it was observed that with MAIC, overlap between studies with
continuous covariates is crucial compared to binary covariates and low-overlap can occur with
continuous covariates in much less extreme situations (Phillippo et al., 2020b). The R code
for data generation process is given in C.1 of Appendix C.

Figure 4.2: Network diagram for a smaller network of evidence

The underlying model to generate data for each study in the network of evidence is,

yijk ∼ Bernoulli(Pijk)

logit(Pijk) =

{
µ+ β1x1ijk + β1x2ijk if tk = 1

µ+ β1x1ijk + β1x2ijk + δjk + β2x1ijk 1(t 6= 1) if tk 6= 1.

In the above equation, each outcome yijk comes from individual i, in study j with treatment
k from a Bernoulli distribution. Pijk is the probability of the event which is modelled on the
logit scale. µ is the study intercept which was kept at 0.85 for each study. The intercept value
was chosen arbitrarily and it is the log odds of having the outcome when all the covariates are
zero. x1ijk is the effect-modifying variable and x2ijk is the prognostic variable with coefficient
β1. The coefficient (β1) was kept identical for both the covariates to keep simplicity in the
model. δjk is the treatment effect in study j and treatment k. The relative effect or log odds
ratio of treatments 2 and 3 with treatment 1 was 0.40 and -1.77 respectively. These values
were opposite in direction and they were chosen to make the effects as different as possible.
β2 is the coefficient for the effect-modifying variable. The two continuous covariates in each
study were generated from a multivariate normal distribution where the standard deviation
(SD) was kept at 0.4. This value of SD was chosen arbitrarily. In the network of studies,
the mean value of covariates in the first study was kept to 0.60 and 0.50 and the values
of the covariate mean for the rest of the studies were varied in such a way that a certain
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amount of covariate overlap can be maintained between the first and the rest of the network.
Moreover, to emulate a real NMA scenario where mean covariate values from different studies
differ, the mean of each covariate in each study was drawn from a normal distribution with a
pre-specified value and SD 0.05 except for study 1. Extracting the covariate in this way will
maintain a slight difference between covariates in the network.

After generating data for a smaller connected network of evidence, a connected NMA was
performed. The next step was to transform this connected network of evidence into a dis-
connected network of evidence. To do this, the first study in the network was considered
as the IPD study and the rest of the network as AgD studies. Therefore, after generating
IPD for all the studies in the network, all the studies were converted to AgD except study
1. The objective was to replicate a common scenario in HTA, where the company has IPD
on outcome and covariates for their own study and only AgD values for comparator studies.
The connected network of evidence was transformed into single-arm studies by dropping one
arm from each study. New intervention treatment or treatment arm 1 was kept from the first
study and for the rest of the studies, all arms were dropped except arms 2 and 3. Figure 4.3
illustrates the process where each oval shape node represents the study arm with treatment
number and an RCT is depicted by joining two nodes with a solid line. Figure 4.3 shows
that IPD was generated for 3 connected RCTs and then one arm was dropped from each
study to convert them into single-arm studies. The treatment arm that was dropped from
each study is depicted by striking through the treatment number. IPD was kept only for the
first study and all other studies were converted into AgD studies by estimating mean and
variances for covariates and proportion of events for the outcome variable. Then two MAICs
were conducted using the IPD from the first study which has been depicted by an arrow
line in Figure 4.3. These MAIC estimates gave relative effects of intervention treatments
with treatments 2 and 3. An NMA was performed with the MAIC estimates to assess the
difference between connected NMA estimates and MAIC-adjusted NMA estimates.

Figure 4.3: Making of a disconnected network of evidence from a smaller con-
nected network of evidence
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4.3.2 DGM for a larger connected and a larger disconnected network

The next step of the simulation study was to generate a connected network of evidence for
10 RCTs with 3 treatments for binary data. The DGM was identical to Section 4.3.1 except
for the fact that now the data has been generated for a larger network. Figure 4.4 shows the
network of evidence for 10 studies where 6 studies compared treatments 2 and 1 and 4 studies
compared treatments 3 and 1. Figure 4.5 illustrates the process which shows that IPD was
generated for the 10 connected RCTs and then one arm was dropped from each study to
convert each study into a single-arm study. Individual patient data (IPD) was kept only for
the first study and all other studies were converted into AgD studies. Then 9 unanchored
MAICs were computed using the IPD from the first study which has been depicted by the
nine arrow lines. These MAIC estimates gave relative effects of treatment 1 compared to
treatments 2 and 3. A connected NMA as well as a NMA with the MAIC estimates was
performed to evaluate the difference between connected NMA estimates and MAIC-adjusted
NMA estimates.

Figure 4.4: Network diagram for a larger network of evidence

The simulation study evaluates the change in five factors in a full factorial design. Taking
two values from each factor results in a 2x2x2x2x2=32 scenarios. The values of the different
levels of factors are depicted in Table 4.1. Table 4.1 shows different combinations of all the
factors except sample size. When these 16 scenarios are again combined with sample sizes
150 and 500 per arm, it results in 32 scenarios. The choice of the factors as well as their
values were inspired by previous simulations (Phillippo et al., 2020b; Remiro-Azócar et al.,
2020). The values of the factors were chosen to observe their effect with two extreme ends.
The values are as follows:

• The overall sample size was varied with values of 150 and 500 with a 1:1 randomization
for intervention and comparator treatment within each study.

• The correlation coefficient between covariates of each study was varied by either 0.2
(weak correlation) or 0.8 (strong correlation).
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• The strength of effect-modification was tested by varying their values to either
{-log(0.78)=0.25 or -log(0.40)=0.92} which were considered as weak and strong effect-
modifications respectively.

• Varying the strength of prognostic variable relationship with outcome by either
{-log(0.67)=0.40 or -log(0.33)=1.11} which were considered as weak and strong prog-
nostic effects respectively.

• Varying the between study overlap. In order to maintain the covariate overlap between
the first and the rest of the studies, the mean values of the two covariates in the first
study were kept fixed at 0.60 and 0.50 i.e xi11 ∼ N(0.60, 0.42) and xi12 ∼ N(0.50, 0.42)
for individual i from study 1 with covariate 1 and 2 respectively. The mean values
for the rest of the study covariates were varied by {(0.45,0.48),(0.15,0.20)} with SD
0.05. The scenario where the mean covariates was (0.45,0.48), gave a much bigger
overlap between the first study with the rest of the network of evidence compared to
the scenario (0.15,0.20). Cohen’s d was used to measure the amount of overlap between
studies. It is a widely used standardized effect size to measure the difference between
the control and treatment groups (Cohen, 2013). It can be characterized as a signal-to-
noise ratio where the difference between the two groups is divided by their pooled SD.
A large value of the d indicates the difference between the two groups is large i.e. the
signal is greater than the noise which in turn means that the amount of overlap is less
between the groups. The first pair of values with (0.45,0.48) corresponds to Cohen’s
d= {0.375, 0.30} which means 85.3% and 88.1% overlap exist between covariate values.
The second pair of values with (0.15,0.20) corresponds to Cohen’s d= {1.12, 1.0} which
means 57.5% and 61.7% overlap exist between covariate values.

Covariate overlap is a crucial issue which is also found in the previous chapter of the NICE
review. In the review, it was found that of 13 TAs which have used MAIC, only 5 (35.71%)of
them have reported their ESS. The median ESS was 67.1 (range: 3.8 to 84), with a median
reduction in ESS from the original sample size of 50.3% (range: 43.24% to 94.73%). A large
amount of reduction in ESS indicates a lack of overlap between the IPD and AgD studies
which may affect the MAIC estimates by making them unstable and unreliable.

In addition to simulating both a smaller and larger connected network of evidence, a con-
nected network of evidence was also simulated with a big sample size (1 million). This was
done to perform an NMA that will produce the true relative treatment effect estimates of
treatments 2 and 3 with the common treatment 1 for the connected network of evidence. The
treatment effect estimates generated from this big sample size were then used to estimate
performance measures both for the connected NMA and MAIC-adjusted NMA.

4.4 Estimands

In this simulation study, first, an NMA was performed after generating data from a smaller
and larger connected network of evidence. These connected networks were then transformed
into disconnected networks by dropping one arm from each of the RCT. These disconnected
networks of evidence were again made into connected networks by applying multiple MAICs.
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Figure 4.5: Making of a disconnected network of evidence from a larger connected
network of evidence

A second NMA was performed using these MAIC-adjusted treatment effects. The estimands
of interest in the simulation study were the overall treatment effect estimates from the con-
nected NMA and the overall treatment effect estimates from the MAIC-adjusted NMA for
treatment 2 and 3.

The design of the simulation study was done in such a way that it satisfied the shared effect
modifier assumption as during the data generation process, all the treatments in a network
of evidence had the same effect-modifier coefficient β2. This was done as this assumption is
needed to apply the MAIC estimates in an NMA to make a coherent synthesis of evidence.

4.5 Methods

The following methods were applied to the data generated during the simulation exercise:

• A fixed effect NMA was applied to the simulated data of a smaller and a larger connected
networks of evidence. The estimation of the NMA was done using the Bayesian ap-
proach and using R package multinma (Phillippo, 2021). Though R package multinma

is specially developed to apply the multi level network meta-regression (ML-NMR)
method in an NMA setting, this package can also be used to run conventional NMA us-
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ing Stan software 1 which is a relatively new program for conducting Bayesian network
meta-analyses. For the prior distributions of the treatment effects and study-specific
intercepts, a normal distribution was used with N(0, 1002).

• MAIC was applied to match discrepancy between individuals from different studies with
respect to patient demographics or covariate values (Signorovitch et al., 2010). MAIC
uses weights which are calculated by the MoM/EB that gives more importance/weight
to individuals in the IPD study who are more alike to the AgD study and less importance
if they differ between studies. A logistic regression was used to assign the weights which
in turn make the study individuals as similar as possible. As the MAICs were applied
in unanchored form, all effect-modifiers and prognostic variables need to be included
in the model. MAICs were applied upto the second moment i.e. balancing of covariate
was done both for mean and standard deviation. After applying MAIC in a smaller
and larger disconnected network of evidence, a MAIC-adjusted fixed effect NMA was
performed and robust SE was estimated for the NMA estimates. The R package MAIC

was used to perform the MAIC (https://rdrr.io/github/Roche/MAIC/).

Table 4.1: Parameter values for different simulation scenarios

Simulation
scenarios

Correlation
coefficient

Strength
of effect
modification

Strength of
prognostic
variable

Mean of
first
covariate

Mean of
second
covariate

1 0.2 0.25 0.40 0.45 0.48

2 0.8 0.25 0.40 0.45 0.48

3 0.2 0.92 0.40 0.45 0.48

4 0.8 0.92 0.40 0.45 0.48

5 0.2 0.25 1.11 0.45 0.48

6 0.8 0.25 1.11 0.45 0.48

7 0.2 0.92 1.11 0.45 0.48

8 0.8 0.92 1.11 0.45 0.48

9 0.2 0.25 0.40 0.15 0.20

10 0.8 0.25 0.40 0.15 0.20

11 0.2 0.92 0.40 0.15 0.20

12 0.8 0.92 0.40 0.15 0.20

13 0.2 0.25 1.11 0.15 0.20

14 0.8 0.25 1.11 0.15 0.20

15 0.2 0.92 1.11 0.15 0.20

16 0.8 0.92 1.11 0.15 0.20

1Using the NUTS sampler (Hoffman and Gelman 2012), Stan provides posterior simulations for user-
specified models and data using Bayesian inference.

https://rdrr.io/github/Roche/MAIC/
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4.6 Performance Measures

In order to compare the performance of MAIC both in a smaller and larger disconnected
network of evidence, performance measures bias, model SE, empirical SE, and coverage prob-
ability were used.

• Bias: Statistical bias in simulation study gives an estimate of the systematic discrepancy
between the true parameter and expected values of the results obtained from each
simulated dataset. It can be defined as: Bias = E[θ̂] − θ. In this simulation study,
a connected NMA was estimated with a big sample size (1 million), and the relative
treatment effect estimates from this NMA were used as the true parameter value θ.
In the bias formula, E[θ̂] was calculated by taking the mean of an estimate from all
the MCMC samples. The bias can be considered questionable when its absolute size is
bigger than one-half of the estimate’s SE (Schafer and Graham, 2002).

• Empirical SE: Empirical SE is the dispersion measure of the estimator in a simulation
study. It represents the precision of an estimator as well as its true variability. An
estimator is expected to have low variance when it is applied to multiple datasets. It

can be defined as: EmpSE =

√
V ar(θ̂)

• Model SE: In a simulation study, when a method is applied to multiple datasets, the
measure of the average of the SE reported by the method is known as model SE. It can

be defined as: ModelSE =

√
E[ŝe(θ̂)2]. It is desired that the empirical SE is small

which shows that the estimator is precise and the model SE is equal to empirical SE.

• Coverage probability: In a simulation study, coverage probability refers to the statis-
tical technique where a percentage/proportion is calculated which shows how many
confidence intervals include the true parameter value which is expected to be at
(100×(1-α))% nominal level. It is common to fix the value of α at 0.05 i.e. at 95%.

The simulation study simulated 3000 repetitions/ datasets of each simulation scenario.

4.7 Results

The result section describes the findings from both the connected and disconnected network
of evidence. The results for both smaller and larger connected networks of evidence are
described in subsections 4.7.1.1 to 4.7.2.8. Subsections 4.7.3.1 to 4.7.4.8 describe results for
the disconnected network of evidence.

4.7.1 Results of simulation scenarios for the smaller connected network of
evidence

Data were generated for the smaller connected network of evidence as described in Section
4.3.1 and in Figure 4.2 where at first 3 RCTs were generated and then a fixed effect NMA
was performed.
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4.7.1.1 Bias by overlap

Figure 4.6 and 4.7 show the amount of bias for each DGM for treatment 2 and 3 respectively.
The amount of bias was not found to be related to the amount of overlap. In Figure 4.6
(a), large biases can be seen for high overlap scenarios and the opposite can be found for
4.6 (b). In Figure 4.7 (a),(b), the biases seem to be similar both for high and low overlap
scenarios. Overall, higher biases were found for scenarios 3, 4, 7, 8, 11, 12, 15, and in scenario
16 for treatment 3. One reason could be that the effect-modifier variable was high in these
scenarios.

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.6: Bias of treatment 2 for different sample sizes (connected smaller
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.7: Bias of treatment 3 for different sample sizes (connected smaller
network of evidence)
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4.7.1.2 Bias by overlap with effect-modifiers

Figure 4.8 and 4.9 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. Biases do not reduce with high overlap scenarios, but
within each level of overlap, low biases were found with low effect-modifier levels.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.8: Bias by overlap with EM levels for treatment 2 (connected smaller
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.9: Bias by overlap with EM levels for treatment 3 (connected smaller
network of evidence)

4.7.1.3 Bias by overlap with prognostic variable

Figure 4.10 and 4.11 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. Biases do not reduce with high overlap but
within the level of overlap, prognostic variables seem to be related to bias. In Figure 4.10
(a),(b), within each level of overlap, bias reduces with low prognostic variable level but the
opposite can be seen for treatment 3 in Figure 4.11 (a),(b).
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.10: Bias by overlap with PV levels for treatment 2 (connected smaller
network of evidence)

(a) bias by PV for sample size 150 (b) bias byPV for sample size 500

Figure 4.11: Bias by overlap with PV levels for treatment 3 (connected smaller
network of evidence)

4.7.1.4 Empirical SE and model SE for the simulation scenarios

The simulation results of performance measures for the smaller connected network of evidence
are summarised in Table 4.3 and Table 4.4 for sample sizes 150 and 500 respectively. Table
4.3 and Table 4.4 show the relative estimates of treatments 2 and 3 with treatment 1 from
connected NMA for both sample sizes. The overall relative estimates of treatment 2 with
the new intervention treatment 1 is termed as d1 and that of treatment 3 with treatment
1 is termed as d2. The empirical SE and model SE are similar or close to each other for
each DGM. A quantity was estimated that calculates the difference between the empirical
SE and model SE. The highest value of this difference was found to be 0.009 for the smaller
connected network of evidence.

Tables 4.3 and 4.4 are colour-coded to understand when the coverage was low and the mag-
nitude of biases. Three colour-coding was used for showing bias and two colour-coding for
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coverage. If the coverage was at the nominal level, it was coloured blue otherwise red. For
bias three colour-coding were used which are described in the following table:

Table 4.2: colour-coding for bias

Amount of
bias

0-0.03 0.03-0.05 0.05-onwards

colour Blue Yellow Red

The blue, yellow and red indicate low, moderate, and high biases respectively. From the
colour-coding it is evident that none of the coverage deviates from the nominal level. However,
the biases were high for those scenarios where the effect-modifying variable was high.
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4.7.1.5 Coverage for the simulation scenarios

The coverage of d1 and d2 from the connected NMA is at the nominal level for both sample
sizes. Figure 4.12 (a),(b) shows the confidence intervals of the coverage estimates for varying
levels of sample sizes for treatments 2 and 3 respectively. Red-coloured figures represent con-
fidence intervals for the high overlap scenarios and blue-coloured figures represent confidence
intervals for the low overlap scenarios. In the figures, the black horizontal line represents the
nominal level of coverage. From the figures, it can be seen that the confidence intervals touch
the nominal level for all 16 scenarios irrespective of sample sizes and overlap.

(a) coverage by overlap for treatment 2

(b) coverage by overlap for treatment 3

Figure 4.12: Coverage of treatments 2 and 3 for different sample sizes and over-
lap
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4.7.1.6 Coverage by correlation with overlap

Figure 4.13 and Figure 4.14 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. From the figures, it can be seen that the coverage is not
found to be affected by different levels of correlation and overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.13: Coverage by correlation of treatment 2 for different sample sizes
(connected smaller network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.14: Coverage by correlation of treatment 3 for different sample sizes
(connected smaller network of evidence)

4.7.1.7 Coverage by overlap with effect-modifiers

Figure 4.15 and 4.16 show the coverage by different levels of overlap and effect-modifier for
treatments 2 and 3 respectively. For both sample sizes and treatments, the coverage was
similar with varying levels of overlap and effect-modifier variable.
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(a) coverage by EM for sample size 150 (b) coverage by EM for sample size 500

Figure 4.15: Coverage by overlap with EM levels for treatment 2 (connected
smaller network of evidence)

(a) coverage by EM for sample size 150 (b) coverage by EM for sample size 500

Figure 4.16: Coverage by overlap with EM levels for treatment 3 (connected
smaller network of evidence)

4.7.1.8 Coverage by overlap with prognostic variable

Figure 4.17 and 4.18 show the amount of coverage by different levels of overlap and prognostic
variables for treatment 2 and 3 respectively. For both sample sizes and treatments, the
coverage was found to be similar with varying levels of overlap and prognostic variables.
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(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.17: Coverage by overlap with PV levels for treatment 2 (connected
smaller network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.18: Coverage by overlap with PV levels for treatment 3 (connected
smaller network of evidence)

4.7.2 Results of simulation scenarios for the larger connected network of
evidence

Data were generated for the larger connected network of evidence as described in Section
4.3.2 and in Figure 4.4 where at first 10 RCTs were generated and then a fixed effect NMA
was performed.

4.7.2.1 Bias by overlap

Figure 4.19 and 4.20 show the amount of bias for each DGM for treatment 2 and 3 respectively.
Bias and overlap were not found to be related. In Figure 4.19 (a), large biases can be seen
for high overlap but the opposite can be seen in Figure 4.19 (b). In Figure 4.20 (a),(b), a
similar amount of bias can be seen for both levels of overlap. Although the finding is similar
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to the finding from the small connected network of evidence, the magnitude of biases for the
larger connected network of evidence is small compared to the smaller network of evidence.

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.19: Bias of treatment 2 for different sample sizes (connected larger
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.20: Bias of treatment 3 for different sample sizes (connected larger
network of evidence)

4.7.2.2 Bias by overlap with effect-modifiers

Figure 4.21 and 4.22 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. Biases were found to be low for low overlap level for
treatment 2 in Figure 4.21 but the opposite can be seen for treatment 3 in Figure 4.22. In
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Figure 4.21, for treatment 2, bias was low with low effect-modifier levels whereas the opposite
can be seen for treatment 3 in Figure 4.22.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.21: Bias by overlap with EM levels for treatment 2 (connected larger
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.22: Bias by overlap with EM levels for treatment 3 (connected larger
network of evidence)

4.7.2.3 Bias by overlap with prognostic variable

Figure 4.23 and 4.24 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. In Figure 4.23 (a),(b), biases were found to be
low with low overlap and high prognostic variable level. Biases were high in high overlap level
but within high overlap level, lower biases were seen with low prognostic level. In Figure 4.24
(a),(b), bias seems to be slightly low with a high overlap level, and within levels of overlap,
biases were comparatively low with a low prognostic level.
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.23: Bias by overlap with PV levels for treatment 2 (connected larger
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.24: Bias by overlap with PV levels for treatment 3 (connected larger
network of evidence)

4.7.2.4 Empirical SE and model SE for the simulation scenarios

The simulation results of performance measures for the larger connected network of evidence
are summarised in Table 4.5 and Table 4.6 for sample sizes 150 and 500 respectively. Table
4.5 and Table 4.6 show the relative estimates of treatments 2 and 3 with treatment 1 from
connected NMA for both sample sizes. The empirical SE and model SE are similar or close
to each other for each DGM. The highest value of the difference between the empirical SE
and model SE was found to be 0.008 for the larger connected network of evidence. From
the color-coding, it can be seen that all were blue which means none of the scenarios shows
undercoverage and the amount of biases were below 0.03.
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4.7.2.5 Coverage for the simulation scenarios

The coverage of d1 and d2 from the connected NMA is at the nominal level for both sample
sizes. Figure 4.25 (a),(b) shows the coverage for treatments 2 and 3 for varying levels of
sample size and overlap. From the figures, it can be seen that the coverage was at the
nominal level for the larger connected network of evidence for all 16 scenarios irrespective of
sample sizes and overlap.

(a) coverage by overlap for treatment 2

(b) coverage by overlap for treatment 3

Figure 4.25: Coverage of treatments 2 and 3 for different sample sizes and over-
lap

4.7.2.6 Coverage by correlation with overlap

Figure 4.26 and Figure 4.27 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. From the figures, it can be seen that the coverage is not
found to be affected by different levels of correlation and overlap.
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(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.26: Coverage by correlation of treatment 2 for different sample sizes
(connected larger network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.27: Coverage by correlation of treatment 3 for different sample sizes
(connected larger network of evidence)

4.7.2.7 Coverage by overlap with effect-modifiers

Figure 4.28 and 4.29 show the coverage by different levels of overlap and effect-modifier for
treatments 2 and 3 respectively. For both sample sizes, the coverage was found to be similar
with varying levels of overlap and effect-modifier variables.
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(a) coverage by EM for sample size 150 (b) coverage by EM for sample size 500

Figure 4.28: Coverage by overlap with EM levels for treatment 2 (connected
larger network of evidence)

(a) coverage by EM for sample size 150 (b) coverage by EM for sample size 500

Figure 4.29: Coverage by overlap with EM levels for treatment 3 (connected
larger network of evidence)

4.7.2.8 Coverage by overlap with prognostic variable

Figure 4.30 and 4.31 show the amount of coverage by different levels of overlap and prognostic
variables for treatment 2 and 3 respectively. For both sample sizes, the coverage was similar
with varying levels of overlap and prognostic variables.
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(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.30: Coverage by overlap with PV levels for treatment 2 (connected larger
network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.31: Coverage by overlap with PV levels for treatment 3 (connected larger
network of evidence)

4.7.3 Results of simulation scenarios for the smaller disconnected network
of evidence

Data were generated for the smaller disconnected network of evidence as described in Section
4.3.1 and in Figure 4.3 where at first 3 RCTs were generated and then they were made
disconnected artificially to perform MAIC. The MAIC estimates were then used to perform a
NMA. The following sections describe the simulation results from the MAIC-adjusted NMA
for the smaller network.

4.7.3.1 Bias by overlap

Figure 4.32 and 4.33 show the amount of bias for each DGM for treatment 2 and 3 respectively.
Bias was found to be related to overlap. The biases were low for high-overlap scenarios and
high for low-overlap scenarios and it was found true for both sample sizes. Figure 4.32 (a),(b)
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show the biases for treatment 2 for sample sizes 150 and 500. For both sample sizes, with
high overlap, the amount of biases was high for scenarios 3, 4, 7, 8, and that was high for
scenarios 11, 12, 15, 16 for low overlap. The effect-modifier variable level was high in these
scenarios. Figure 4.33 (a),(b) show the biases for treatment 3 for sample sizes 150 and 500.
For treatment 3 the bias was high for scenarios 3, 4, 7, 8, 11, 12 for both sample sizes. Similar
to treatment 2, the effect-modifier variable level was also high in these scenarios.

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.32: Bias of treatment 2 for different sample sizes (disconnected smaller
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.33: Bias of treatment 3 for different sample sizes ( disconnected smaller
network of evidence)
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4.7.3.2 Bias by overlap with effect-modifiers

Figure 4.34 and 4.35 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. In Figure 4.34 (a),(b), the bias reduces with high overlap
level, and the reduction seems to depend on effect-modifier levels also. For treatment 2, the
bias is low with the low level of effect-modifier and this reduction is more prominent for the
sample size of 500. In Figure 4.35 (a),(b), for treatment 3, a lower bias was found with a
lower effect-modifier level.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.34: Bias by overlap with EM levels for treatment 2 (disconnected smaller
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.35: Bias by overlap with EM levels for treatment 3 (disconnected smaller
network of evidence)

4.7.3.3 Bias by overlap with prognostic variable

Figure 4.36 and 4.37 show the amount of bias by overlap for different levels of prognostic
variables for treatment 2 and 3 respectively. In Figure 4.36 (a),(b), the bias reduces with high
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overlap but within the levels of overlap, biases increase with the low level of the prognostic
variable. In Figure 4.37 (a),(b) for treatment 3, for both levels of overlap, a bigger bias was
found for the lower level of the prognostic variable.

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.36: Bias by overlap with PV levels for treatment 2 (disconnected smaller
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.37: Bias by overlap with PV levels for treatment 3 (disconnected smaller
network of evidence)

4.7.3.4 Empirical SE and model SE by simulation scenarios

The simulation results of performance measures for the smaller disconnected network of evi-
dence were summarised in Table 4.7 and Table 4.8. Table 4.7 and Table 4.8 show the relative
estimates of treatments 2 and 3 with treatment 1 from the disconnected NMA for both sample
sizes. The empirical SE and model SE are similar or close to each other for the high overlap
scenarios where the coverage is at a nominal level. The difference between the empirical SE
and model SE starts to increase for the low-overlap scenarios. The empirical SE was bigger
than the model SE for low-overlap scenarios. The highest value of the difference between the
empirical SE and model SE was found to be 0.09 for the smaller disconnected network of
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evidence.

From Table 4.7 and Table 4.8 it can be seen that the coverage starts to decrease from the
low-overlap scenario which starts from scenario 9. Most of the higher biases were seen for
those low-overlap scenarios also. Additionally, the presence of moderate biases was seen for
some scenarios. Most of the time, the presence of moderate or higher biases was seen for
higher level of effect-modifying variable.
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4.7.3.5 Coverage by simulation scenarios

The coverage of d1 and d2 from the disconnected NMA is at the nominal level for the high
overlap scenarios. Figure 4.38 and Figure 4.39 illustrate the impact of MAIC-adjusted NMA
on coverage for treatments 2 and 3 respectively. The confidence intervals for the high-overlap
scenarios are represented in red colour and that for the low-overlap scenarios in blue colour.
Figure 4.38 and 4.39 show that when the overlap between studies was high, the coverage
was at the nominal level for both sample sizes 150 and 500. When the overlap was low, the
coverage for some scenarios started to decrease slightly. For treatment 2, the lowest coverage
was 90% and 89% for sample sizes 150 and 500 respectively. For treatment 3, the lowest
coverage was 92% for both sample sizes. Within low overlap, for the scenarios where the
correlation was high, a slight increase was seen for the coverage and this was true for both
sample sizes.

Figure 4.38: Coverage by overlap for treatment 2
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Figure 4.39: Coverage by overlap for treatment 3

4.7.3.6 Coverage by correlation with overlap

Figure 4.40 and Figure 4.41 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. In Figure 4.40 (b) and Figure 4.41 (b), for sample size
500, the coverage is similar with different levels of overlap and correlation for both treatments.
However, with sample size 150 and with a low correlation value, the coverage is slightly higher
with high overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.40: Coverage by correlation of treatment 2 for different sample sizes
(disconnected smaller network of evidence)
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(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.41: Coverage by correlation of treatment 3 for different sample sizes
(disconnected smaller network of evidence)

4.7.3.7 Coverage by overlap with effect-modifiers

Figure 4.42 and 4.43 show the coverage by different levels of overlap and effect-modifiers for
treatments 2 and 3 respectively. In Figure 4.42 (a) and 4.43 (a), for both treatments 2 and 3,
with sample size 150, the coverage decreases slightly from the nominal level with low overlap,
but effect-modifiers show no impact on coverage irrespective of sample size and treatments.

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 4.42: Coverage by overlap with EM levels for treatment 2 (disconnected
smaller network of evidence)
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(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 4.43: Coverage by overlap with EM levels for treatment 3 (disconnected
smaller network of evidence)

4.7.3.8 Coverage by overlap with prognostic variable

Figure 4.44 and 4.45 show the amount of coverage by different levels of overlap and prognostic
variables for treatment 2 and 3 respectively. For both sample sizes, the coverage was similar
with varying levels of overlap and prognostic variables.

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.44: Coverage by overlap with PV levels for treatment 2 for different
sample sizes (disconnected smaller network of evidence)
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(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.45: Coverage by overlap with PV levels of treatment 3 for different
sample sizes (disconnected smaller network of evidence)

4.7.4 Results of simulation scenarios for the larger disconnected network
of evidence

Data were generated for the larger disconnected network of evidence as described in Section
4.3.2 and in Figure 4.5 where at first 10 RCTs were generated and then these RCTs were made
disconnected artificially to implement MAIC. The MAIC estimates were then used to perform
NMA again. The following sections describe the simulation results from the MAIC-adjusted
NMA.

4.7.4.1 Bias by overlap

Figure 4.46 and 4.47 show the amount of bias for each DGM. The amount of bias was found to
decrease with the amount of overlap. The biases were low for high-overlap scenarios and high
for low-overlap scenarios and it was found true for both sample sizes. Overall, the scenarios
where the bias was found to be high were 11, 12, 13, 15, 16. Effect-modifier variables were
high in these scenarios except scenario 13. In scenario 13, the coefficient of the effect-modifier
was low but the level of the prognostic variable was high and the level of the correlation was
low.
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(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.46: Bias of treatment 2 for different sample sizes (disconnected larger
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 4.47: Bias of treatment 3 for different sample sizes (disconnected larger
network of evidence)

4.7.4.2 Bias by overlap with effect-modifiers

Figure 4.48 and 4.49 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. In Figure 4.48 (a),(b), the bias reduces with high overlap,
and the reduction seems to depend on effect-modifier levels also. For treatment 2 in Figure
4.48 (a),(b) the bias is low with the low level of effect-modifier and this reduction is more
prominent for sample size 500. In Figure 4.49 (a), for treatment 3, the bias reduces with high
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overlap but within levels of overlap, more bias is found with a low level of effect-modifier for
sample size 150. However, 4.49 (b) with a sample size of 500, an increase in bias was found
for low overlap and low effect-modifier level.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.48: Bias by overlap with EM levels for treatment 2 (disconnected larger
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 4.49: Bias by overlap with EM levels for treatment 3 (disconnected larger
network of evidence)

4.7.4.3 Bias by overlap with prognostic variable

Figure 4.50 and 4.51 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. In Figure 4.50 (a), the bias reduces with high
overlap but increases with the high level of prognostic variable coefficient. The opposite
trend was seen for treatment 2 in sample size 500 in Figure 4.50 (b). In Figure 4.51 (a) for
treatment 3, with sample size of 150, a higher bias is seen for low overlap and high level of
the prognostic variable whereas in Figure 4.51 (b) with the sample size of 500, a higher bias
was seen for low overlap and low level of the prognostic variable.
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.50: Bias by overlap with PV levels for treatment 2 (disconnected larger
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 4.51: Bias by overlap with PV levels for treatment 3 (disconnected larger
network of evidence)

4.7.4.4 Empirical SE and model SE by simulation scenarios

The simulation results of performance measures for the larger disconnected network of ev-
idence were summarised in Table 4.9 and Table 4.10. The empirical SE is always bigger
than the model SE which shows undercoverage for all the scenarios. The highest value of
the difference between the empirical SE and model SE was found to be 0.28 for the larger
disconnected network of evidence. Additionally, all the simulation scenarios show deviation
from the nominal level of coverage which is depicted by the red color. For sample size 150,
moderate level of biases were seen mainly for low-overlap scenarios, however, overall the
magnitude of biases was small for the bigger sample size.
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4.7.4.5 Coverage by simulation scenarios

Figure 4.52 and 4.53 illustrate the impact of MAIC-adjusted NMA on treatments 2 and 3
respectively. The confidence intervals for the high-overlap scenarios are represented in red
colour. Figure 4.52 and 4.53 show that when the overlap between studies was high, the
highest coverage was 78% for both sample sizes 150 and 500. For the 8 scenarios where the
coverage was high, the trend was similar. When the overlap was low, the coverage for each
of the 8 scenarios decreased more. For sample size 150, in low overlap level, the highest
coverage was 67% and the lowest was 65% and those for sample size 500 were 71% and 65%
respectively. Within low overlap, for the scenarios where the correlation was high, a slight
increase was seen for the coverage and this was true for both sample sizes.

Figure 4.52: Coverage by overlap for treatment 2

Figure 4.53: Coverage by overlap for treatment 3
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4.7.4.6 Coverage by correlation with overlap

Figure 4.54 and Figure 4.55 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. Figure 4.54 and 4.55 show that the coverage decreases
slightly with a decrease in the overlap. However, the decrease in coverage was more for the
small sample size compared to the big sample size. Additionally, when the overlap was low,
the coverage was slightly higher for high correlation.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.54: Coverage by correlation of treatment 2 for different sample sizes
(disconnected larger network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 4.55: Coverage by correlation of treatment 3 for different sample sizes
(disconnected larger network of evidence)

4.7.4.7 Coverage by overlap with effect-modifiers

Figure 4.56 and 4.57 show the coverage by overlap with effect-modifiers for treatments 2 and
3 respectively. The coverage is low with low overlap, but effect-modifiers show no impact on
coverage irrespective of sample size and treatments.
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(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 4.56: Coverage by overlap with EM levels for treatment 2 (disconnected
larger network of evidence)

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 4.57: Coverage by overlap with EM levels for treatment 3 (disconnected
larger network of evidence)

4.7.4.8 Coverage by overlap with prognostic variable

Figure 4.58 and 4.59 show the amount of coverage by different levels of overlap with respect
to prognostic variables for treatments 2 and 3 respectively. For both sample sizes and treat-
ments, the coverage was low with low overlap but the prognostic variable seems to have no
effect on this.

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.58: Coverage by overlap with PV levels of treatment 2 (disconnected
larger network of evidence)
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(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 4.59: Coverage by overlap with PV levels of treatment 3 (disconnected
larger network of evidence)

4.7.5 Coverage by connected NMA and MAIC-adjusted NMA for the
smaller network of evidence

Figure 4.60 and Figure 4.61 show the coverage for NMA estimates from the connected net-
work of evidence and estimates from MAIC-adjusted NMA for the smaller network of ev-
idence with sample sizes 150. Figure 4.62 and 4.63 show the coverage for NMA estimates
from the connected network of evidence and estimates from MAIC-adjusted NMA for the
smaller network of evidence with sample sizes 500. For each DGM, the coverage for the
connected and MAIC-adjusted NMA was at a nominal level except for the DGM 9,10,12,13
in MAIC-adjusted NMA. In these DGMs, the overlap was slightly low and this was true for
both treatments. For sample size 500 and for both treatments, a slight reduction in coverage
of MAIC-adjusted NMA was seen for DGM 11 and 12.

Figure 4.60: Coverage by overlapping with treatment 2 for sample size 150
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Figure 4.61: Coverage by overlapping with treatment 3 for sample size 150

Figure 4.62: Coverage by overlapping with treatment 2 for sample size 500
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Figure 4.63: Coverage by overlapping with treatment 3 for sample size 500

4.7.6 Coverage by connected NMA and MAIC-adjusted NMA for the
larger network of evidence

Figure 4.64 and Figure 4.65 show the coverage for NMA estimates from the connected network
of evidence and estimates from MAIC-adjusted NMA for the larger network of evidence.
Figure 4.64 and Figure 4.65 show the coverage for these two NMAs for sample sizes 150 and
500 respectively. For each DGM, the coverage for the connected NMA was at a nominal level
whereas the coverage for the MAIC-adjusted NMA was below the nominal level. This was
true irrespective of overlap and sample sizes.
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(a) coverage by overlapping with treatment 2

(b) coverage by overlapping with treatment 3

Figure 4.64: Coverage by different NMA methods with sample size 150 (larger
network of evidence)
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(a) coverage by overlapping with treatment 2

(b) coverage by overlapping with treatment 3

Figure 4.65: Coverage by different NMA methods with sample size 500 (larger
network of evidence)
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4.8 Discussion

In this simulation study, data were generated in four settings termed as connected smaller
network, connected larger network, disconnected smaller network, and disconnected larger
network. In connected networks, smaller and larger imply the number of studies simulated
for each comparison. In the smaller network of evidence, 3 studies were generated whereas for
the larger network of evidence, 10 studies were generated. Connected networks were formed
by generating data with two arm RCTs. Fixed effect NMA were then estimated with both
networks. Both the connected networks of evidence were then made into disconnected net-
works by dropping one arm from each study. Multiple unanchored MAICs were applied in
the disconnected networks so that a connected network could be built to perform an NMA.
Eventually, fixed effect NMA was applied with the MAIC estimates.

The first objective of conducting the connected NMAs was to demonstrate that the R code
were correct and working well. The second objective was to assess where the results of the
NMAs from disconnected networks deviate from the connected NMAs. In four data settings
of the simulation study, the absolute size of biases appeared to be below one-half of the
estimates SE, therefore, none of them can be termed as problematic following Schafer and
Graham (2002). For both the smaller and larger connected networks of evidence, biases were
found to be unrelated to overlap. Bigger biases can be seen with high overlap scenarios and
vice-versa. However, the magnitude of biases was smaller for the larger network of evidence.
The general trend in biases for the connected network of evidence was found to be higher
biases associated with high effect-modifier levels for most of the cases. With prognostic vari-
ables, the trend was similar where most of the time, low biases were found with low prognostic
variable levels. The coverage for both the smaller and larger connected network of evidence
was at the nominal (95%) level as expected. The coverage seems to have no relationship with
correlation as coverage was similar for different levels of correlation. Coverage was found to
be unaffected with different levels of effect-modifier and prognostic variable levels for both
connected networks of evidence.

For the smaller disconnected network of evidence, bias was found to be related to over-
lap. Lower biases were found with high overlap levels and vice-versa. This was expected as
when MAIC is conducted to estimate relative treatment effect in a disconnected network, the
estimate would be better with high overlap between studies and the bias will reduce. Addi-
tionally, bias was found to be high with high effect-modifier levels and low prognostic variable
levels. However, when the MAIC-adjusted NMA was conducted for a smaller network of ev-
idence with only 3 studies, the low coverage issue was not that severe in comparison to a
larger disconnected network of evidence with 10 studies. In a smaller disconnected network
of 3 studies, 1 MAIC-adjusted estimate was available per comparison whereas for a larger
disconnected network of 10 studies, the number of MAIC-adjusted estimates was 5 and 4 for
treatment 2 and 3 respectively. With the smaller disconnected network of evidence, in high
overlap scenarios, the coverage was at the nominal (95%) level. Coverage starts to decrease
slightly with low overlap scenarios. The coverage seems to be unaffected by correlation with
high overlap level but with low overlap level, coverage slightly increases with high correlation.
Similar to the smaller and larger connected network of evidence, coverage was found to be
unaffected with different levels of effect-modifier and prognostic variable levels.
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Analogous to the smaller disconnected network of evidence, in the larger disconnected net-
work of evidence, biases were found to be related to overlap. Lower biases were found with
high overlap levels and vice-versa. The general trend was found to be higher bias with high
effect-modifier levels and higher prognostic variable levels. For the larger disconnected net-
work of evidence, undercoverage was seen for all DGMs irrespective of overlap. When the
overlap between study covariates was low, the reduction in coverage was higher than that of
high overlap. Within the low overlap scenarios, coverage was found to be better with high
correlation. The difference in coverage with the two levels of overlap did not change drasti-
cally: this is because though two levels of overlap were included, none of the overlaps were
really low. Additionally, though coverage was affected mainly due to overlap between study
covariates, prognostic and effect-modifying variables seem to have no effect on the coverage.

Prognostic and effect-modifying variables were found to have no effect on the undercoverage
issue. However, they are related to the bias. The general trend was low bias with low effect-
modifying variables and low prognostic variable level. Moreover, the magnitude of biases
in the two MAIC-adjusted NMA was found to be lower for the larger disconnected network
of evidence. Bias and overlap were found to be inversely related for both the smaller and
larger disconnected networks of evidence. Throughout the simulation for the four networks
of evidence, the highest biases were seen both for the connected and disconnected smaller
network of evidence.

The major impact of performing an MAIC-adjusted NMA was seen in the coverage for each
DGM. When the IPD from one study was used several times to conduct multiple MAICs, an
unaccounted correlation emerged between studies. The independence between studies was
violated which had a repercussion on the coverage. The deviation from the nominal (95%)
level of coverage was more pronounced for the larger disconnected network of evidence. This
was because during the estimation of disconnected NMA, the more times the IPD was used
to get a relative effect estimate for an NMA, the more the assumption of between study in-
dependence was violated and the violation of this assumption becomes more visible through
the reduction of coverage. Correlation between study covariates was found to be more crucial
for the larger disconnected network of studies. The bigger in size of a disconnected network
of evidence, the more coverage can be found with high correlation.

Low coverage/undercoverage issue for all DGM was found to be the major consequence of
performing a fixed effect NMA with MAIC estimates for the larger disconnect network of
evidence. The impact of MAIC estimates needs to be addressed for random effects NMA
also as in a fixed effect NMA the true treatment effect is assumed to be fixed but shared by
all the included studies. In reality, this is often not the case, and heterogeneity of treatment
effect is expected. The next chapter will discuss the simulation of random effects NMA with
MAIC estimates and its findings.



Chapter 5

Simulation Study with a
MAIC-Adjusted Random Effects
NMA

5.1 Introduction

In the previous chapter, a simulation study was performed in order to evaluate the conse-
quences of conducting MAIC-adjusted NMA for a smaller and larger disconnected network of
evidence for binary outcomes. This was done by simulating a smaller and a larger connected
network of evidence based on the fixed effect of treatments. The network of evidence was then
made disconnected by dropping arms from each study to turn each study into a single-arm
study. Relative treatment estimates were then estimated by conducting multiple unanchored
MAIC. Fixed effect NMA was then performed with the MAIC estimates. The focus of the
current chapter is to explore the consequence of conducting MAIC-adjusted NMA for a dis-
connected network of evidence with a random effects model.

In a fixed effect NMA, the true treatment effect is assumed to be shared among the included
studies, i.e. every study in the network of evidence aims to estimate the same parameter
value. The studies in a fixed effect NMA are only subject to sampling error. On the con-
trary, in a random effects NMA, the true treatment effect is not bound to be fixed due to
the heterogeneity among studies. Unlike the fixed effect NMA, the variance estimation in
a random effects NMA comes from two sources: variance within each study and variance
that comes from between studies. The assumption in a random effects NMA is that the true
treatment effect can differ between studies and every study is evaluating a non-identical ef-
fect size. This non-identical effect size is exchangeable which means the true treatment effect
comprises a distribution and the aim is to estimate the mean and dispersion parameters of
this distribution. Usually, this distribution is considered to be a normal distribution. The
fixed effect NMA model is considered to be a special case of a random effects NMA model
where the variance parameter is considered to be zero. The assumption of a random effects
NMA is more realistic as in practice, studies included in an NMA often differ on various
aspects, therefore, fitting a random effects NMA is usually more pragmatic.

104
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Section 5.2 of this chapter describes the aim of the simulation study whereas Section 5.3
gives details of how the simulation was designed to generate data to conduct a random
effects NMA both for a smaller and larger network of evidence. Sections 5.4 to 5.6 describe
what were the estimands of the study, and what methods and performance measures were
evaluated respectively. Section 5.7 describes the findings from the simulation study. The
chapter concludes with a discussion of the simulation results in Section 5.8.

5.2 Aims

Similar to the previous chapter, the goal of the simulation study in this chapter was to assess
the appropriateness of MAIC estimates in a NMA setting, however, assuming random effects
rather than fixed effects.

5.3 Data generating mechanism (DGM)

Similar to the previous chapter, data were generated in four settings termed as “connected
smaller network of evidence”, “connected larger network of evidence”, “disconnected smaller
network of evidence”, and “disconnected larger network of evidence” with binary outcomes.
The DGM for these networks of evidence in order to perform a random effects NMA was the
same as that described in the previous chapter in Section 4.3. The main difference between
fixed and random effects data generation is that, for the random effects model, a heterogeneity
parameter tau (τ) was added during the data generation. The value of the τ parameter was
fixed at 0.3 which indicates a moderate heterogeneity of treatment effect between studies was
considered (Ren et al., 2018). The R code for data generation are given in D.1 of Appendix
D.

5.4 Estimands

Analogous to the previous chapter, first a random effects NMA was performed after generating
data from a connected network of evidence. The network of evidence was then disconnected
by dropping one arm from each of the included studies. This makes the connected network of
evidence into a disconnected network of evidence for single-arm studies as described in Fig-
ure 4.5 in the previous chapter. The relative treatment effect estimates were then estimated
using multiple unanchored MAICs. The unanchored MAICs turn the disconnected network
of evidence into a connected network of evidence again. A second random effects NMA was
then performed using these MAIC-adjusted treatment effects. The estimands of interest were
the overall treatment effect estimates from the connected NMA and the treatment effect es-
timates from the MAIC-adjusted NMA.

The simulation study was designed in such a way that it satisfies the shared effect modifier
assumption as during the data generation process, all the treatments in a network of evidence
had the same effect-modifier coefficient β2.
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5.5 Methods

Akin to the previous chapter, the following methods were applied to the data generated
during the simulation exercise:

• A random effects NMA was applied to the simulated data of a connected network
of evidence. The computation of the NMA was done using the Bayesian approach
and using R package multinma. For the prior distributions of the treatment effects
and study-specific intercepts, a normal distribution was used with N(0, 1002). An
informative prior was used for the heterogeneity parameter τ which was Turner’s prior
as log-Normal (-2.56, 0.33). In a Bayesian analysis with a limited number of studies,
the posterior distribution of between-study SD can be very broad or indefinite when
a vague or weakly informative prior distribution is used. Turner et al. (2015) have
developed a distribution on the log odds ratio scale for binary outcomes that can be
used as prior distributions for heterogeneity parameter τ . Therefore, as Turner’s prior
can estimate more precise estimates for a log odds ratio, it was used as an informative
prior here.

• Random effects MAIC-adjusted NMA: After generating data for a connected network
of evidence (both smaller and larger), the next step was to transform this connected
network of evidence into a disconnected network of evidence. To do this, the first study
in the connected network was considered as the IPD study and the rest of the network
as AgD studies. Therefore, after generating IPD for all the studies in the network, all
the studies were converted to AgD except study 1. The connected network of evidence
was transformed into single-arm studies by dropping one arm from each study. Treat-
ment arm 1 was kept from the first study and for the rest of the studies, all arms were
dropped except arms 2 and 3 (Figure 4.3 and Figure 4.5). Then multiple MAICs were
conducted ( depicted by an arrow line in Figure 4.3 and Figure 4.5) using the IPD from
the first study. These MAIC estimates gave relative effects of intervention treatment
(treatment 1) with treatments 2 and 3. Moreover, these multiple MAICs transform the
disconnected network into a connected network to perform an NMA.

MAIC uses weights calculated by the MoM/EB which gives more importance/weight to
individuals in the IPD study who are more alike to the AgD study and less importance
if they differ between studies. A logistic regression was used to assign the weights which
in turn make the study individuals as similar as possible. As the MAICs was applied
in unanchored form, all effect-modifiers and prognostic variables need to be included
in the model. MAICs were applied upto the second moment i.e. balancing of covariate
was done both for mean and standard deviation. After applying MAIC in a smaller
and larger disconnected network of evidence, a MAIC-adjusted random effects NMA
was performed and robust SE were estimated for the NMA estimates. The R package
MAIC was used to perform the MAIC.
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5.6 Performance Measures

In order to compare the performance of MAIC in a disconnected network of evidence, per-
formance measures bias, model SE, empirical SE, and coverage probability were used.

• Bias: Statistical bias in simulation study gives an estimate of the systematic discrepancy
between the true parameter and expected values of the results obtained from each
simulated dataset. It can be defined as: Bias = E[θ̂] − θ. The true parameter value
was estimated by performing an NMA with a big sample size (1 million) and then using
the estimates from this NMA as the true parameter value.

• Empirical SE: Empirical SE is the dispersion measure of the estimator in a simulation
study. It represents the precision of an estimator as well as its true variability. An
estimator is expected to be with low variance when it is applied to multiple datasets.

It can be defined as: EmpSE =

√
V ar(θ̂).

• Model SE: In a simulation study, when a method is applied to multiple datasets, the
measure of the average of the SE reported by the method is known as model SE. It can

be defined as: ModelSE =

√
E[ŝe(θ̂)2]. It is desired that the empirical SE is small

which shows that the estimator is precise and the model SE is equal to empirical SE.

• Coverage probability: In a simulation study, coverage probability refers to the statistical
technique where a percentage/proportion is calculated which shows how many confi-
dence intervals include the true parameter value which is expected to be at (100×(1-
α))% nominal level. It is common to fix the value of α at 0.05 i.e. at 95%.

The simulation study simulated 3000 repetitions/ datasets of each simulation scenario.

5.7 Results

The results section describes the findings from both the connected and disconnected network
of evidence. The results for both smaller and larger connected networks of evidence are
described in subsections 5.7.1.1 to 5.7.2.8. Subsections 5.7.3.1 to 5.7.4.8 describe results for
the disconnected network of evidence.

5.7.1 Results of simulation scenarios for the smaller connected network of
evidence

Data were generated for the smaller connected network of evidence as described in Section
4.3.1 and in Figure 4.2 in the previous chapter where at first 3 RCTs were generated and
then a random effects NMA was performed.

5.7.1.1 Bias by overlap

Figure 5.1 and 5.2 show the amount of bias for each DGM for treatment 2 and 3 respectively.
The amount of bias was not found to be related to the amount of overlap. Overall, higher
biases were found for scenarios 3, 4, 7, 8, 11, 12, 15, and in scenario 16 for treatment 3. One
reason could be that the effect-modifier variable was high in these scenarios.
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(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.1: Bias of treatment 2 for different sample sizes (connected smaller
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.2: Bias of treatment 3 for different sample sizes (connected smaller
network of evidence)

5.7.1.2 Bias by overlap with effect-modifiers

Figure 5.3 and 5.4 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. Biases do not reduce with high overlap scenarios, but
within each level of overlap, low biases were found with low effect-modifier levels.
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(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.3: Bias by overlap with EM levels for treatment 2 (connected smaller
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.4: Bias by overlap with EM levels for treatment 3 (connected smaller
network of evidence)

5.7.1.3 Bias by overlap with prognostic variable

Figure 5.5 and 5.6 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. Biases do not reduce with high overlap but
within the level of overlap, prognostic variables seem to be related to bias. In Figure 5.5
(a),(b), within each level of overlap, bias reduces with low prognostic variable level but the
opposite can be seen for treatment 3 in Figure 5.6 (a),(b).
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.5: Bias by overlap with PV levels for treatment 2 (connected smaller
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.6: Bias by overlap with PV levels for treatment 3 (connected smaller
network of evidence)

5.7.1.4 Empirical SE and model SE for the simulation scenarios

The simulation results of performance measures for the smaller connected network of evidence
are summarised in Table 5.1 and Table 5.2 for sample sizes 150 and 500 respectively. Table
5.1 and Table 5.2 show the relative estimates of treatments 2 and 3 with treatment 1 from
connected NMA for both sample sizes. The overall relative estimates of treatment 2 with
the new intervention treatment 1 is termed as d1 and that of treatment 3 with treatment 1
is termed as d2. The empirical SE and model SE are similar or close to each other for each
DGM. A quantity was estimated that calculates the difference between the empirical SE and
model SE. The highest value of this difference was found to be 0.03 for the smaller connected
network of evidence. Similar to the previous chapter, Tables are colour-coded to understand
low-coverage and different magnitudes of biases. From the colour-coding it is evident that
none of the coverage deviates from the nominal level. However, the biases were high for those
scenarios where the effect-modifying variable was high.
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5.7.1.5 Coverage by the simulation scenarios

The coverage of d1 and d2 from the connected NMA is at the nominal (95%) level for both
sample sizes. Figure 5.7 (a),(b) shows the confidence intervals of the coverage estimates for
varying levels of sample sizes for treatments 2 and 3 respectively. Red-coloured figures rep-
resent confidence intervals for the high overlap scenarios and blue-coloured figures represent
confidence intervals for the low overlap scenarios. In the figures, the black horizontal line
represents the nominal level of coverage. From the figures, it can be seen that the confidence
intervals touch the nominal level for all 16 scenarios irrespective of sample sizes and overlap.

(a) coverage by overlap for treatment 2

(b) coverage by overlap for treatment 3

Figure 5.7: Coverage of treatments 2 and 3 for different sample sizes and overlap
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5.7.1.6 Coverage by correlation with overlap

Figure 5.8 and Figure 5.9 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. From the figures, it can be seen that the coverage was
not found to be affected by different levels of correlation and overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.8: Coverage of treatment 2 for different sample sizes (connected smaller
network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.9: Coverage of treatment 3 for different sample sizes (connected smaller
network of evidence)

5.7.1.7 Coverage by overlap with effect-modifiers

Figure 5.10 and 5.11 show the coverage by different levels of overlap and effect-modifier for
treatments 2 and 3 respectively. For both sample sizes and treatments, the coverage was
similar with varying levels of overlap and effect-modifier variable.
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(a) coverage by EM sample size 150 (b) coverage by EM sample size 500

Figure 5.10: Coverage by overlap with EM levels for treatment 2 (connected
smaller network of evidence)

(a) coverage by EM sample size 150 (b) coverage by EM sample size 500

Figure 5.11: Coverage by overlap with EM levels for treatment 3 (connected
smaller network of evidence)

5.7.1.8 Coverage by overlap with prognostic variable

Figure 5.12 and 5.13 show the amount of coverage by different levels of overlap and prognostic
variables for treatment 2 and 3 respectively. For both sample sizes and treatments, the
coverage was found to be similar with varying levels of overlap and prognostic variables.
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(a) coverage by PV sample size 150 (b) coverage by PV sample size 500

Figure 5.12: Coverage by overlap with PV levels for treatment 2 (connected
smaller network of evidence)

(a) coverage by PV sample size 150 (b) coverage by PV sample size 500

Figure 5.13: Coverage by overlap with PV levels for treatment 3 (connected
smaller network of evidence)

5.7.2 Results of simulation scenarios for the larger connected network of
evidence

Data were generated for the larger connected network of evidence as described in Section
4.3.2 and in Figure 4.4 in the previous chapter where at first 10 RCTs were generated and
then a random effects NMA was performed.

5.7.2.1 Bias by overlap

Figure 5.14 and 5.15 show the amount of bias for each DGM for treatment 2 and 3 respectively.
Bias and overlap were not found to be related. In Figure 5.14 (a),(b), large biases can be
seen for low overlap but the opposite can be seen in Figure 5.15. Although the findings are
similar to the findings from the smaller connected network of evidence, the magnitude of
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biases for the larger connected network of evidence is small compared to the smaller network
of evidence.

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.14: Bias of treatment 2 for different sample sizes (connected larger
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.15: Bias of treatment 3 for different sample sizes (connected larger
network of evidence)
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5.7.2.2 Bias by overlap with effect-modifiers

Figure 5.16 and 5.17 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. Though biases were found to be unrelated with overlap,
overall, lower biases were found with low effect-modifier levels.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.16: Bias by overlap with EM levels for treatment 2 (connected larger
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.17: Bias by overlap with EM levels for treatment 3 (connected larger
network of evidence)

5.7.2.3 Bias by overlap with prognostic variable

Figure 5.18 and 5.19 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. Overall, biases were found to be higher with
high prognostic variable levels.
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.18: Bias by overlap with PV levels for treatment 2 (connected larger
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.19: Bias by overlap with PV levels for treatment 3 (connected larger
network of evidence)

5.7.2.4 Empirical SE and model SE for the simulation scenarios

The simulation results of performance measures for the larger connected network of evidence
are summarised in Table 5.3 and Table 5.4 for sample sizes 150 and 500 respectively. Table
5.3 and Table 5.4 show the relative estimates of treatments 2 and 3 with treatment 1 from
connected NMA for both sample sizes. The empirical SE and model SE are similar or close
to each other for each DGM. The highest value of the difference between the empirical SE
and model SE was found to be 0.02 for the larger connected network of evidence. From the
colour-coding, it can be seen that all were blue which means none of the scenarios shows
undercoverage and the amount of biases was below 0.03.
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5.7.2.5 Coverage by the simulation scenarios

Figure 5.20 and 5.21 illustrates the coverage of the relative treatment effects d1 and d2 from
the connected random effects NMA for varying levels of sample size and overlap. Figure 5.20
and 5.21 show the coverage for treatments 2 and 3 respectively. From the figure, it can be
seen that the confidence interval of coverage for all the DGM was at the nominal level for
both sample sizes.

Figure 5.20: Coverage by overlap for treatment 2

Figure 5.21: Coverage by overlap for treatment 3
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5.7.2.6 Coverage by correlation with overlap

Figure 5.22 and Figure 5.23 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. From the figures, it can be seen that the coverage is
found to be unaffected by different levels of correlation and overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.22: Coverage of treatment 2 for different sample sizes (connected larger
network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.23: Coverage of treatment 3 for different sample sizes (connected larger
network of evidence)

5.7.2.7 Coverage by overlap with effect-modifiers

Figure 5.24 and 5.25 show the coverage by different levels of overlap and effect-modifier for
treatments 2 and 3 respectively. For both sample sizes, the coverage was found to be similar
with varying levels of overlap and effect-modifier variables.
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(a) coverage by EM sample size 150 (b) coverage by EM sample size 500

Figure 5.24: Coverage by overlap with EM levels for treatment 2 (connected
larger network of evidence)

(a) coverage by EM sample size 150 (b) coverage by EM sample size 500

Figure 5.25: Coverage by overlap with EM levels for treatment 3 (connected
larger network of evidence)

5.7.2.8 Coverage by overlap with prognostic variable

Figure 5.26 and 5.27 show the amount of coverage by different levels of overlap and prognostic
variables for treatment 2 and 3 respectively. For both sample sizes, the coverage was similar
with varying levels of overlap and prognostic variables.



CHAPTER 5. SIMULATION WITH A MAIC-ADJUSTED RANDOM EFFECTS NMA 125

(a) coverage by PV sample size 150 (b) coverage by PV sample size 500

Figure 5.26: Coverage by overlap with PV levels for treatment 2 (connected larger
network of evidence)

(a) coverage by PV sample size 150 (b) coverage by PV sample size 500

Figure 5.27: Coverage by overlap with PV levels for treatment 3 (connected larger
network of evidence)

5.7.3 Results of simulation scenarios for the smaller disconnected network
of evidence

Data were generated as described in the previous chapter in Section 4.3.1 and Figure 4.3
where first 3 RCTs were generated and then a random effects NMA was performed. These
RCTs were then made disconnected artificially to implement MAIC. The MAIC estimates
are then used to perform a NMA. Data were generated for 16 scenarios described in Table
4.1 from the previous chapter. The following sections describe the simulation results from
the MAIC-adjusted random effects NMA.
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5.7.3.1 Bias by overlap

Figure 5.28 and 5.29 show the amount of bias for each DGM for treatment 2 and 3 respectively.
The amount of bias decreases with the amount of overlap. The biases were low for high-
overlap scenarios and high for low-overlap scenarios and it was found true for both sample
sizes. Overall, for treatments 2 and 3, for both sample sizes, with high overlap, the amount
of biases were high for scenarios 3, 4, 7, 8, and that was high for scenarios 11, 12, 15, 16 with
low overlap. The effect-modifier level was high in these scenarios.

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.28: Bias of treatment 2 for different sample sizes (disconnected smaller
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.29: Bias of treatment 3 for different sample sizes (disconnected smaller
network of evidence)
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5.7.3.2 Bias by overlap with effect-modifiers

Figure 5.30 and 5.31 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. In Figure 5.30 (a),(b), the bias reduces with high overlap
level, and the reduction seems to depend on effect-modifier levels also. For treatment 2,
the bias is low with the low level of effect-modifier. In Figure 5.31 (a),(b), for treatment 3,
the bias reduces with high overlap, and within levels of overlap, biases were high with high
effect-modifier level.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.30: Bias by overlap with EM levels for treatment 2 ( disconnected
smaller network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.31: Bias by overlap with EM levels for treatment 3 ( disconnected
smaller network of evidence)

5.7.3.3 Bias by overlap with prognostic variable

Figure 5.32 and 5.33 show the amount of bias by overlap for different levels of prognostic
variables for treatment 2 and 3 respectively. In Figure 5.32 (a),(b), the bias reduces with high
overlap but within the levels of overlap, biases increase with the low level of the prognostic
variable. In Figure 5.33 (a),(b) for treatment 3, for low levels of overlap, a bigger bias was
found for higher levels of the prognostic variable, and the opposite was seen for high overlap
level.
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.32: Bias by overlap with PV levels for treatment 2 ( disconnected smaller
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.33: Bias by overlap with PV levels for treatment 3 ( disconnected smaller
network of evidence)

5.7.3.4 Empirical SE and model SE for the simulation scenarios

The simulation results of performance measures for the smaller disconnected network of
evidence are summarised in Table 5.5 and Table 5.6 for sample sizes 150 and 500 respectively.
Table 5.5 and Table 5.5 show the relative estimates of treatments 2 and 3 with treatment 1
from disconnected NMA for both sample sizes. The empirical SE and model SE are similar or
close to each other for each DGM. The highest value of the difference between the empirical
SE and model SE was found to be 0.05 for the smaller disconnected network of evidence. From
colour-coding it can be seen that for high-overlap scenarios, coverage was at the nominal level,
however, for low-overlap scenarios coverage dropped slightly for some scenarios. Overall,
higher biases were seen for some scenarios where the effect-modifier level was high.
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5.7.3.5 Coverage by simulation scenarios

Figure 5.34 and 5.35 illustrate the impact of MAIC adjusted random effects NMA on relative
treatment effects for treatments 2 and 3 respectively. Figure 5.34, 5.35 show that when the
overlap between studies was high, the coverage of treatment effects was at the nominal level
for both sample sizes 150 and 500. When the overlap was low, the coverage started to decrease
slightly, which was more visible for sample size 150. For treatment 2, the lowest coverage was
90% and 92% for sample sizes 150 and 500 respectively. For treatment 3, the lowest coverage
was 93% for sample size 150 and for sample size 500, the rest of the coverages were at the
nominal level.

Figure 5.34: Coverage by overlap for treatment 2

Figure 5.35: Coverage by overlap for treatment 3
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5.7.3.6 Coverage by correlation with overlap

Figure 5.36 and Figure 5.37 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. In Figure 5.36 (b) and Figure 5.37 (b), for sample size
500, the coverage is similar with different levels of overlap and correlation for both treatments.
However, with the sample size of 150 for both treatments, within the low level of correlation,
the coverage was slightly higher with high overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.36: Coverage by correlation of treatment 2 for different sample sizes
(disconnected smaller network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 1000

Figure 5.37: Coverage by correlation of treatment 3 for different sample sizes
(disconnected smaller network of evidence)

5.7.3.7 Coverage by overlap with effect-modifiers

Figure 5.38 and 5.39 show the coverage by different levels of overlap and effect-modifiers for
treatments 2 and 3 respectively. In Figure 5.38 (a) and 5.39 (a), for both treatments 2 and
3, with sample size 150, the coverage decreases slightly with low overlap, but effect-modifiers
show no impact on coverage irrespective of sample size and treatments.
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(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 5.38: Coverage by overlap with EM levels for treatment 2 (disconnected
smaller network of evidence)

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 5.39: Coverage by overlap with EM levels for treatment 3 (disconnected
smaller network of evidence)

5.7.3.8 Coverage by overlap with prognostic variable

Figure 5.40 and 5.41 show the amount of coverage by different levels of overlap and prognostic
variables for treatment 2 and 3 respectively. For both sample sizes, the coverage was similar
with varying levels of overlap and prognostic variables.
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(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 5.40: Coverage by overlap with PV levels of treatment 2 (disconnected
smaller network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 5.41: Coverage by overlap with PV levels of treatment 3 (disconnected
smaller network of evidence)

5.7.4 Results of simulation scenarios for the larger disconnected network
of evidence

Data were generated as described in Section 4.3.2 and in Figure 4.5 in the previous chapter
where at first 10 RCTs were generated and then an NMA was performed. These RCTs were
then made disconnected artificially to implement MAIC. The MAIC estimates were then used
to perform a NMA again. Data were generated for 16 scenarios as described in Table 4.1 in
Section 4.3.2. The following sections describe the simulation results from the MAIC-adjusted
NMA.

5.7.4.1 Bias by overlap

Figure 5.42 and 5.43 show the amount of bias for each DGM. The amount of bias seems to
decrease with the amount of overlap. The biases were low for high-overlap scenarios and high
for low-overlap scenarios and it was found true for both sample sizes. Scenarios 11, 12, 13,
15, 16 show more biases throughout different sample sizes and treatments. One reason could
be that the coefficient of the effect-modifier was high in those scenarios.
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(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.42: Bias of treatment 2 for different sample sizes (disconnected larger
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 5.43: Bias of treatment 3 for different sample sizes (disconnected larger
network of evidence)

5.7.4.2 Bias by overlap with effect-modifiers

Figure 5.44 and 5.45 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. In Figure 5.44 (a),(b), the bias reduces with high overlap,
and the reduction seems to depend on effect-modifier levels also. For treatment 2, the bias
is low with the low level of effect-modifier and this reduction is more prominent for sample
size 500. In Figure 5.45 (a), for treatment 3, the bias reduces with high overlap but within
levels of overlap, more bias is found with a low level of effect-modifier. However, in Figure
5.45 (b), within the levels of overlap, a similar amount of bias was seen for varying levels of
effect-modifier.
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(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.44: Bias by overlap with EM levels for treatment 2 ( disconnected larger
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 5.45: Bias by overlap with EM levels for treatment 3 ( disconnected larger
network of evidence)

5.7.4.3 Bias by overlap with prognostic variable

Figure 5.46 and 5.47 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. In Figure 5.46 (a), the bias reduces with high
overlap but increases with the high level of prognostic variable coefficient. However, the op-
posite is seen for sample size 500 in Figure 5.46 (b). In Figure 5.46 (b), more bias is found
for the low level of the prognostic variable. In Figure 5.47 (a),(b) for treatment 3, a bigger
bias is seen for low overlap and high level of the prognostic variable.



CHAPTER 5. SIMULATION WITH A MAIC-ADJUSTED RANDOM EFFECTS NMA 137

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.46: Bias by overlap with PV levels for treatment 2 ( disconnected larger
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 5.47: Bias by overlap with PV levels for treatment 3 ( disconnected larger
network of evidence)

5.7.4.4 Empirical SE and model SE for the simulation scenarios

The simulation results of performance measures for the larger disconnected network of evi-
dence are summarised in Table 5.7 and Table 5.8 for sample sizes 150 and 500 respectively.
Table 5.7 and Table 5.8 show the relative estimates of treatments 2 and 3 with treatment
1 from disconnected NMA for both sample sizes. The empirical SE was bigger than the
model SE for each DGM which represents undercoverage. The highest value of the difference
between the empirical SE and model SE was found to be 0.27 for the larger disconnected net-
work of evidence. Additionally, all the simulation scenarios show deviation from the nominal
level of coverage which is depicted by the red colour. Both moderate and higher magnitudes
of biases were seen with low overlap scenarios.
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5.7.4.5 Coverage by simulation scenarios

Figure 5.48 and 5.49 illustrates the impact of MAIC-adjusted random effects NMA on treat-
ments 2 and 3 respectively. Similar to the fixed effect NMA, the coverage is again not at
a nominal (95%) level but the coverage of the random effects NMA model is greater than
the fixed effect model. Figure 5.48 shows the coverage for treatment 2 for both sample sizes.
When overlap between studies was high, the highest coverage was 84% for both sample sizes.
For the 8 scenarios where the coverage was low, the highest coverage was 74% for sample
size 150 and 81% for sample size 500. Figure 5.49 shows the coverage for treatment 3 for
sample sizes 150 and 500 respectively. The highest coverage is 83% and 90% for sample sizes
150 and 500 respectively. When the overlap was low, the coverage for each of the 8 scenarios
decreased more. For sample size 150, the highest coverage was 78% and the lowest was 72%
and those for sample size 500 were 85% and 81% respectively. Within low overlap, for the
scenarios where the correlation was high, a slight increase was seen for the coverage and this
was true for both treatments.

Figure 5.48: Coverage by overlap for treatment 2
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Figure 5.49: Coverage by overlap for treatment 3

5.7.4.6 Coverage by correlation with overlap

Figure 5.50 and Figure 5.51 show the coverage for different levels of correlation and overlap
for treatments 2 and 3 respectively. Figure 5.50 and Figure 5.51 show that within each level
of overlap, the coverage decreases slightly with a decrease in the correlation.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.50: Coverage by correlation of treatment 2 for different sample sizes
(disconnected larger network of evidence)
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(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 5.51: Coverage by correlation of treatment 3 for different sample sizes
(disconnected larger network of evidence)

5.7.4.7 Coverage by overlap with effect-modifiers

Figure 5.52 and 5.53 show the coverage by overlap with effect-modifiers for treatments 2 and
3 respectively. The coverage is low with low overlap, but effect-modifiers show no impact on
coverage irrespective of sample size and treatments.

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 5.52: Coverage by overlap with EM levels for treatment 2 (disconnected
larger network of evidence)

5.7.4.8 Coverage by overlap with prognostic variable

Figure 5.54 and 5.55 show the amount of coverage by overlap with respect to prognostic
variables for treatments 2 and 3 respectively. For both sample sizes, the coverage was low
with low overlapping but the prognostic variable seems to have no effect on this. Whether
the overlap was high or low, the coverage seemed to be similar with different levels of the
prognostic variable.
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(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 5.53: Coverage by overlap with EM levels for treatment 3 (disconnected
larger network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 5.54: Coverage by overlap with PV levels of treatment 2 for different
sample sizes (disconnected larger network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 5.55: Coverage by overlap with PV levels of treatment 3 for different
sample sizes (disconnected larger network of evidence)
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5.7.5 Coverage by connected NMA and MAIC-adjusted NMA methods
for the smaller network of evidence

Figure 5.56 and Figure 5.57 show the coverage for connected and disconnected NMA methods
for the smaller network of evidence. Connected NMA refers to the NMA estimates from the
connected network of evidence and disconnected NMA refers to the estimates from MAIC-
adjusted NMA. Figure 5.56 and Figure 5.57 show the coverage for these two NMAs for sample
sizes 150 and 500 respectively. In Figure 5.56, for each DGM, the coverage for the connected
and disconnected NMA was at a nominal level except for the DGM 9,10,11,12,15 in MAIC-
adjusted NMA. In those DGM, the coverage was slightly low and all these DGM were from
low overlap. For sample size 500 and only for treatment 2, a slight reduction in coverage for
MAIC-adjusted NMA was seen for DGM 11 and 12.

(a) coverage by overlap with treatment 2

(b) coverage by overlap with treatment 3

Figure 5.56: Coverage by different NMA methods with sample size 150 (smaller
network of evidence)
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(a) coverage by overlap with treatment 2

(b) coverage by overlap with treatment 3

Figure 5.57: Coverage by different NMA methods with sample size 500 (smaller
network of evidence)
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5.7.6 Coverage by connected NMA and MAIC-adjusted NMA for the
larger network of evidence

Figure 5.58 and Figure 5.59 show the coverage for connected NMA and MAIC-adjusted NMA
for sample sizes 150 and 500 respectively. For each DGM, the coverage for the connected
NMA was at a nominal level whereas the coverage for the disconnected NMA was below the
nominal level. This was true irrespective of the overlap and sample sizes.

(a) coverage by overlap with treatment 2

(b) coverage by overlap with treatment 3

Figure 5.58: Coverage by different NMA methods with sample size 150 (larger
network of evidence)
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(a) coverage by overlap with treatment 2

(b) coverage by overlap with treatment 3

Figure 5.59: Coverage by different NMA methods with sample size 500 (larger
network of evidence)
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5.8 Discussion

Biases were found to be independent of the two levels of overlap for both the smaller and
larger connected network of evidence. Bigger biases can be seen with high overlap scenarios
and vice-versa. In the connected network of evidence, in the scenarios where the biases were
comparatively higher, the coefficient of the effect-modifying variable was also higher. This
could be the reason for these big biases as the NMA method is not able to adjust for these
variables. However, the magnitude of biases was smaller for the larger network of evidence
in comparison to the smaller network of evidence. The general trend in biases for the two
connected networks was found to be higher biases associated with high effect-modifier levels
for most of the cases. With prognostic variables, the trend was similar where most of the
time, bias was higher with high prognostic variable levels. The coverage for both the smaller
and larger connected network of evidence was at the nominal level (95%) as expected. The
coverage was found to be unassociated with correlation as well as different levels of effect-
modifier and prognostic variable levels.

For the smaller disconnected network of evidence, bias was found to be inversely associated
with overlap. Lower biases were found with high overlap levels and vice-versa. This was
expected as when MAIC is conducted to estimate relative treatment effect in a disconnected
network of evidence, the estimate would be better with high overlap between studies and the
bias will reduce (Remiro-Azócar et al., 2021). Additionally, bias was found to be high with
high effect-modifier levels and high prognostic variable levels. However, the undercoverage
issue with the MAIC-adjusted NMA was less severe with the smaller network of evidence
compared to the larger network of evidence. In high overlap scenarios, the coverage was at
the nominal level in smaller disconnected network of evidence. Coverage starts to decrease
slightly with low overlap scenarios and with a small sample size. The coverage seems to be
unaffected by correlation with the high overlap level but with a low overlap level, coverage
slightly increases with a high correlation. Similar to the smaller and larger connected network
of evidence, coverage was found to be unaffected with different levels of effect-modifier and
prognostic variable levels.

In the larger disconnected network of evidence, biases were again found to be inversely re-
lated to overlap which was similar to the smaller disconnected network of evidence. Lower
biases were found with high overlap levels and vice-versa. The general trend was found to
be higher bias with high effect-modifier levels and higher prognostic variable levels. For the
larger disconnected network of evidence, undercoverage was found for all DGM irrespective
of overlap. When the overlap between study covariates was low, the reduction in coverage
was higher than that of high overlap. However, though undercoverage can be seen for all the
DGM irrespective of overlap and sample sizes, the coverage was slightly better with the big
sample size. Within the two levels of overlap, coverage was found to be slightly better with
the high correlation level. Additionally, though coverage was affected mainly due to overlap
between study covariates, prognostic and effect-modifying variables seem to have no effect
on the coverage.

Overall, the findings from the random effects NMA model were similar to the fixed effect
NMA model. In four data settings of the simulation study, the absolute size of biases ap-
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peared to be below one-half of the estimates SE, therefore, none of them can be considered
as problematic following Schafer and Graham (2002). As expected, similar to the previous
chapter, throughout the simulation for the four networks of evidence, the highest biases were
seen for the connected and disconnected smaller network of evidence. Similar to the previous
chapter, undercoverage was also detected for the random effects NMA with MAIC estimates.
This undercoverage of NMA estimates were more visible for the larger network of evidence.
The difference between the coverage of fixed and random effects NMA was that the coverage
was slightly better (closer to 95%) for the random effects NMA model compared to the fixed
effect model. This was due to the fact the heterogeneity parameter τ added some extra level
of randomness which inflates the SE. The SE is slightly bigger than the fixed effect model
which causes more coverage for the random effects NMA model.

In both fixed effect and random effects NMA simulation chapters, data were generated for
two disconnected networks of evidence termed as smaller and larger disconnected networks
of evidence. The idea behind conducting the simulation for the two disconnected networks of
evidence was to observe the impact of repeated use of the IPD in a MAIC-adjusted NMA for a
smaller and a larger network of evidence. It was found that, for both fixed and random effects
NMA, for a smaller network of evidence, undercoverage was not as severe as compared to the
larger network of evidence. Nevertheless, for a smaller network of evidence, undercoverage
was only observed for the low-overlap scenarios and coverage was at the nominal level for the
high-overlap scenarios. With the larger disconnected network of evidence, for both fixed and
random effects NMA, undercoverage was seen for all the DGM. This is due to the increased
use of IPD. The more the IPD was used, the more ramification can be seen in the coverage.
In spite of the fact that undercoverage was frequent in both fixed and random effects NMA
model, the coverage of the random effects NMA model was better than the fixed effect model.
Moreover, the undercoverage issue was found to be slightly better with the bigger sample size
for the random effects NMA model which was not found in the fixed effect NMA.

The undercoverage issue was found to be more severe in a larger MAIC-adjusted NMA
model for both fixed and random effects models. The MAIC-adjusted NMA when applied to
a smaller network of evidence, the undercoverage issue was found to be increased with the
decrease of overlap of covariates between studies. In a larger MAIC-adjusted NMA model,
undercoverage was associated with both overlap and correlation between study covariates.
Undercoverage was found to be better with a high overlap between study covariates and a
high correlation of within-study covariates. In addition, the sample size was found to be
related to undercoverage for the random effects model where the coverage was found to be
slightly better with a bigger sample size.

It is expected that the empirical coverage probability conforms to 0.95% which is essential to
get a proper type I error rate. An appropriate type I error rate ensures valid testing of a “no
effect” null hypothesis. It is essential to get a correct SE in order to achieve the nominal level
of coverage. The robust sandwich SE was estimated both for the fixed and random effects
MAIC-adjusted NMA estimates, however, it was not able to reach the nominal level of cover-
age. A previous simulation study shows that MAIC can underestimate the empirical SE with
small sample sizes and low overlap (Remiro-Azócar et al., 2021). However, the simulation



CHAPTER 5. SIMULATION WITH A MAIC-ADJUSTED RANDOM EFFECTS NMA 150

study in this thesis did not compute coverage for individual MAICs. The simulation study
found that in addition to the sandwich estimator, repeated use of IPD has an impact on the
coverage probability of the NMA estimates. This study shows that the more IPD from the
same study was used for multiple unanchored MAICs, the more departure in the coverage
probability can be seen.

Use of the same IPD for multiple MAICs breaks the independence of unit of analysis assump-
tion. The violation of this assumption creates a correlation between studies which aggravates
the poor coverage issue with the sandwich estimator. A previous simulation study by Belger
et al. (2015b) suggests that when MAIC need to be conducted in a connected network of
evidence with multiple IPD and AgD study, then the IPD can be matched against a) just one
AgD study, b) the average patient characteristics from the AgD studies, c) the average mean
and variances from the AgD studies or d) the distribution of patient characteristics using
MCMC from the AgD studies. The study by Belger et al. (2015b) shows the importance of
preserving the independence of the unit of analysis assumption. The correlation that emerges
due to repeated use of IPD needs to be taken into account when estimating the uncertainty
of estimates. In general, bootstrapping is a another option to capture uncertainty correctly.
Therefore, in the next chapter, a new bootstrapping approach is developed and proposed to
overcome this undercoverage issue for NMA estimates.



Chapter 6

Double-Bootstrapping: A Novel
Method to Estimate Confidence
Intervals

6.1 Introduction

In the previous two chapters, a simulation study has been conducted for a fixed effect and a
random effects NMA. The motivation for the simulation study came from the NICE STA re-
view chapter. In the review, for the appraisals carried out between 2018 to 2021 on single-arm
studies, it was found that more than half of the appraisals (55%) had a larger disconnected
network of evidence to estimate relative treatment estimates of a new intervention to com-
parators. In addition to that, it was found that a larger disconnected network of evidence was
built either by comparing the new intervention with multiple comparators from various stud-
ies or by comparing the new intervention with a single comparator that comes from multiple
studies. The reason for the network being disconnected was that no connected network of
evidence can be found for the comparator treatments because either most of the comparator
studies were also single-arm studies or no common comparator was found from the RCTs.
For the purpose of estimating relative treatment estimates between the single-arm study with
relevant comparators, either unanchored MAICs or STCs were implemented.

The aim of the simulation study was to assess the consequences of applying several unan-
chored MAICs for binary data using IPD from the same study to get a consistent synthesis
of evidence in an NMA using a sandwich estimator ignoring the fact that MAIC is designed
to evaluate relative treatment effects for a pair of studies. Moreover, when IPD from a single
study was used repeatedly, the assumption of independence between studies was compro-
mised. The simulation was designed to assess the MAIC-adjusted NMA with 3 treatments
both for a smaller and a larger disconnected network of evidence. In the simulation, a smaller
disconnected network evaluated 3 treatments consisting of 3 studies whereas a larger discon-
nected network was made of 10 studies with 3 treatments without any common treatment
arm. The size of the network is a crucial issue as it is often the case that the number of
studies per comparison is very small in a HTA submission. Therefore, one of the objectives
of the simulation study was to evaluate MAIC-adjusted NMA when the number of studies

151
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per comparison varies. The MAIC-adjusted NMA methods were assessed both for a fixed
and a random effects NMA.

The significant findings from the simulation for both fixed and random effects NMA were
similar. When MAIC was applied with a smaller and a larger disconnected network of evi-
dence, a deviation from the nominal (95%) level of coverage was found for each of the relative
treatment effect estimates. With a smaller disconnected network of evidence, coverage was
found to be at a nominal level when the overlap between study covariates was high. The
coverage starts to decrease with low-overlap scenarios. The undercoverage issue was found
to be more problematic with a larger disconnected network of evidence where it can be seen
for each DGM irrespective of overlap level. Prognostic and effect-modifying variables were
found to have no effect on the undercoverage issue, however, they were found to have an effect
on the bias. Though undercoverage was found for both the larger disconnected network of
evidence in a fixed and random effects NMA, the magnitude of undercoverage was higher for
the fixed effect NMA. Coverage was comparatively better for the random effects NMA due to
the heterogeneity parameter τ which takes into account variation between included studies.
The τ parameter inflates the SE which results in a higher coverage for the random effects
NMA.

Coverage of an estimate to nominal level is a crucial issue as the confidence interval (CI) is a
measure of accuracy for the estimates as well as a measure of unreliability. In order to make
inferences with respect to a population and its parameters, the CI is used as an important
instrument. A conventional CI uses the sample data to calculate a likely range of estimates
for an unknown parameter that helps to make judgments about the population. The width of
a CI determines how precise or imprecise the estimate is, therefore, a CI with a larger width
expresses more uncertainty about the estimate. Though a CI can be estimated with different
levels of confidence, e.g. 90%, 99%, estimating it with a confidence level of 95% is the most
common approach. The percentage in a CI describes the confidence that the interval includes
the true population parameter. A bootstrap CI is an advancement in the estimation of CI
that helps to estimate a CI without following assumptions which are often unrealistic.

Section 6.2 of this chapter describes the bootstrap methods that can be used to get an accurate
CI. Section 6.3 describes the simulation study that was conducted to overcome the problem of
undercoverage and reports the results of the double-bootstrapping for the fixed and random
effects NMA. The chapter concludes with a discussion of the double-bootstrapping results in
Section 6.4.

6.2 Methods

6.2.1 Bootstrapping for estimating confidence intervals (CI)

In a frequentist/conventional way, the construction of a CI mainly depends on the normality
of the sampling distribution and its SD. The idea of a sampling distribution is a collection
of all sample estimates when the population is resampled repeatedly. In reality, only a single
sample is available to make an inference on the sampling distribution, therefore, certain as-
sumptions need to be made. The “central limit theorem” allows that for a large sample size,
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the sampling distribution will approach a normal distribution, and the SE of the population
can be approximated by the SD of the sampling distribution. A problem arises if the sample
size is not fairly large to implement the central limit theorem, which in turn makes it unrea-
sonable to assume that the sampling distribution is normal.

The bootstrap CI has gained popularity over the conventional CI technique due to its sim-
plistic approach. In a bootstrap approach, a representative sample of the population is
resampled with replacement multiple times to calculate the quantity of interest on each of
these resamples. The resamples then can be used to determine the sampling distribution of
the quantity of interest. The SD of the sampling distribution can be used to construct a CI.
Unlike the conventional CI, a bootstrap CI can be constructed without making assumptions
about the underlying distribution of the data. A bootstrap CI can work well even when the
sampling distribution for the quantity of interest is asymmetric. Bootstrap does not need
to depend on normality assumption as the sampling distribution can simply be observed by
iterating the original sample multiple times. It is straightforward to estimate the SE and
CI using bootstrapping as bootstrapping is asymptotically consistent and precise than the
conventional CI (Cline, 2019).

A bootstrap CI can be classified as parametric and non-parametric on the basis of how the
samples have been extracted. In the case of parametric bootstrapping, each bootstrap sample
of a specific size is extracted from a parametric distribution, whereas, a non-parametric
bootstrap sample is extracted from the original sample with replacement without specifying
any distributional form. In a non-parametric bootstrap, the sample observations that are
included in a bootstrap sample, need to be generated with a uniform probability of being
chosen from the original sample and also with the assumption of independence. There are
various kinds of bootstrap CI namely percentile, percentile-t, and bias-corrected percentile
intervals (Tibshirani and Efron, 1993).

6.2.2 Double-bootstrapping for estimating confidence intervals

Improvement in the coverage accuracy and bias correction are the two main sources of prob-
lems where the double-bootstrap is mainly used (Chang and Hall, 2015). A double-bootstrap
CI is an extension of a single bootstrap CI where after extracting the first bootstrap sam-
ple, it is again used to get the second bootstrap sample. Therefore, the bootstrapping in a
double-bootstrap can be described as a two-step process, where, the original sample is used
to generate bootstrap samples at the first step, and then the bootstrap samples that are gen-
erated at the first step are bootstrapped again to generate bootstrap samples for the second
step. The usage of the double-bootstrapping technique regularly appears in literature (Mar-
tin, 1990; Shi, 1992; Booth and Hall, 1994; Vinod, 1995; Booth and Presnell, 1998; Letson
and McCullough, 1998; McCullough and Vinod, 1998; Lee and Young, 1999; Balcombe et al.,
2008; Arasan and Adam, 2014; Chronopoulos et al., 2015; Chang and Hall, 2015; Ishwaran
and Lu, 2019). Double-bootstrapping in the construction of a CI can reduce the discrepancy
between nominal and empirical coverage probability and is capable of more accurate coverage
than single bootstrapped CI (Arasan and Adam, 2014; Shang, 2021).

When a bootstrap sample is generated from a given sample, a dependency is developed be-
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tween the probability distribution of the bootstrapped sample and the process that generates
the data. In a double-bootstrap procedure, reiterating the bootstrap sample again can bring
down this dependence (Chang and Hall, 2015; Shang, 2021). Bootstrapping can be used to
approximate the unknown distribution of a statistic. During the bootstrap procedure, the
original sample is resampled with replacement repeatedly which in turn creates an empirical
distribution of the unknown distribution. The confidence level of this empirical distribution
converges to 1-α (α=0.05) when the sample size n is big (Beran, 1987). Nevertheless, there
is a discrepancy in confidence level error when the sample is finite. It has been proved that,
for a one-sided CI, the double-bootstrap can eliminate coverage error by a factor O(n−1/2)
whereas for a two-sided CI, the quantity is O(n−1) (Chang and Hall, 2015).

A measure of distance that serves the part of error correction for coverage can be calculated
for a statistic using a single bootstrap and a double-bootstrap sample (Shang, 2021). Let t be
a statistic whose distribution is unknown. When t is estimated from a single bootstrap, the

empirical coverage probability of t can be calculated as L(t̂∗,t̂)>L(t̂,t)
B1

, where L(t̂, t) estimates

the distance between the sample and population level of a statistic, L(t̂∗, t̂) estimates the
distance between the real sample and the single bootstrap sample, and B1 denotes the total
number of samples that are drawn at the single-bootstrap level. In opposition to this, for t, the

empirical coverage probability for the double-bootstrap can be estimated as L( ˆt∗∗,t̂∗)>L(t̂,t)
B1∗B2

,

where L( ˆt∗∗, t̂∗) estimates the distance between the single bootstrap sample and double-
bootstrap sample and B2 denotes the total number of samples that are drawn at the second
level of a double-bootstrap. Chang and Hall (2015) showed that instead of taking a large no
of samples at the second level in double-bootstrap, B2 can be 1 which benefits in lowering
the computation time as well as confidence level error.

6.3 A simulation study of double-bootstrapping in fixed and
random effects NMA

In the previous two chapters, a MAIC-adjusted NMA was estimated both for a fixed and a
random effects model. A robust sandwich estimator was used to estimate the SE for NMA
estimates. Undercoverage was found to be one of the major consequences in MAIC-adjusted
NMA estimates. Undercoverage of the NMA estimates was detected as more problematic
for the larger disconnected network of evidence compared to a smaller disconnected network
of evidence. The repeated use of the same IPD in multiple MAICs creates a dependency
between studies. To fix these issues, during the estimation of MAIC-adjusted NMA, double-
bootstrapping was used to estimate the coverage probability to take into account both the
uncertainty and dependence between studies.

6.3.1 DGM for a larger connected and a larger disconnected network

In order to implement the double-bootstrapping, a simulation study was designed. During
the simulation process, first, binary data were generated for a larger connected network of 10
RCTs with 3 treatments to conduct a fixed and a random effects NMA. Six studies compared
treatments 2 and 1 and four studies compared treatments 3 and 1. Data was generated with
two continuous covariates for each RCT where one of them was prognostic and the other one
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was effect-modifying variable. The simulation was conducted by setting the following data
properties: the number of nodes in the network, the sample size per study, network density,
and the nature of prognostic and effect-modification in the network. Each of the RCT was
equal in size. A sparse network i.e. a triangular network was built with no closed loops as
described in Chapter 4 in Figure 4.4.

After generating data for a larger connected network of evidence, the next step was to trans-
form this connected network of evidence into a disconnected network of evidence so that
MAIC-adjusted NMA can be conducted. The first study in the network was considered as
the study with IPD and the rest of the network as studies with AgD. Therefore, after gen-
erating IPD for all the studies in the network, they were converted to AgD except for study
one. The connected network of evidence was transformed into single-arm studies by drop-
ping one arm from each study. Figure 4.5 in Chapter 4 illustrates the process where each
oval shape node represents the study arm with treatment number and an RCT was depicted
by joining two nodes with a solid line. The treatment arm that was dropped from each
study was depicted by striking through the treatment number. Treatment arm 1 was kept
from the first study and for the rest of the studies, all arms were dropped except arms 2 and 3.

After the transformation, the disconnected network of evidence consisted of 1 IPD and 9 AgD
studies. The next step was to apply 9 MAICs to generate relative treatment effect estimates
for a NMA. The double-bootstrapping was used in this stage which is described in Figure 6.1.
During this step, when the IPD was used for each MAIC, instead of taking the original IPD,
double-bootstrapping was applied. In this process, first, a bootstrap sample was extracted
from the original simulated IPD, and the bootstrapped sample was bootstrapped again. The
second bootstrapped sample was then used for the computation of MAIC weights. The pro-
cess of double-bootstrapping was repeated for the 9 MAICs, and then an NMA was estimated
with the MAIC estimates. Additionally, this whole process was bootstrapped multiple times
to get the bootstrapped NMA estimates. The mean of bootstrapped estimates was then taken
as the overall treatment effect estimate and the SD of the bootstrapped estimates was used
for the estimation of coverage probability. All the performance measures were also calculated
as described in the previous chapters (Chapters 4 & 5).

The simulation study evaluates the change in five factors in a full factorial design. Taking
two values from each factor results in a 2x2x2x2x2=32 scenario. The factors were sample
size, the correlation coefficient between covariates, the strength of effect-modification, the
strength of the prognostic factor, and the overlap of covariates between studies. The values
of the different levels of factors are depicted in Chapter 4 in Table 4.1. Table 4.1 shows
different combinations of all the factors except sample size. When these 16 scenarios are
again combined with sample sizes 150 and 500 per arm, it results in 32 scenarios. The R
codes for the double-bootstrapping are given in E.1 and E.2 of Appendix E.

6.3.2 Estimands

The estimands of interest in this study were the overall treatment effect estimates of double-
bootstrapped MAIC-adjusted fixed and random effects NMA for treatments 2 and 3.
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Figure 6.1: Double-bootstrapping in the estimation of MAIC-adjusted NMA

6.3.3 Methods

The following methods were applied to the data generated during the simulation exercise:

• A double-bootstrapped MAIC-adjusted fixed effect NMA was performed and double-
bootstrapped SE were estimated for the NMA estimates. The calculation of the NMA
was done using the Bayesian approach and using R package multinma. The R package
MAIC was used to perform the MAIC. For the prior distributions of the treatment effects
and study-specific intercepts, a normal distribution was used with N(0, 1002). MAIC
was applied to match discrepancy between individuals from different studies with re-
spect to patient demographics or covariate values (Signorovitch et al., 2010). MAIC
uses weights which are calculated by the MoM/EB that gives more importance/weight
to individuals in the IPD study who are more alike to the AgD study and less impor-
tance if they differ between studies. MAICs were applied upto the second moment i.e.
balancing of covariate was done both for mean and standard deviation.

• A double-bootstrapped MAIC-adjusted random effects NMA was performed and double-
bootstrapped standard errors were estimated for the NMA estimates. For the prior
distributions of the treatment effects and study-specific intercepts, a normal distribu-
tion was used with N(0, 1002). An informative prior was used for the heterogeneity
parameter τ which was Turner’s prior as log-Normal(-2.56, 0.33).

6.3.4 Performance Measures

In order to compare the performance of double-bootstrapped MAIC adjusted fixed and ran-
dom effects NMA in a larger disconnected network of evidence, performance measures bias,
model SE, empirical SE, and coverage probability were used.
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• Bias: Statistical bias in simulation study gives an estimate of the systematic discrepancy
between the true parameter and expected values of the results obtained from each
simulated dataset. It can be defined as: Bias = E[θ̂] − θ. The true parameter value
was estimated by performing an NMA with a big sample size (1 million) and then using
the estimates from this NMA as the true parameter value.

• Empirical SE: Empirical SE is the dispersion measure of the estimator in a simulation
study. It represents the precision of an estimator as well as its true variability. An
estimator is expected to be with low variance when it is applied to multiple datasets.

It can be defined as: EmpSE =

√
V ar(θ̂).

• Model SE: In a simulation study, when a method is applied to multiple datasets, the
measure of the average of the SE reported by the method is known as model SE. It can

be defined as: ModelSE =

√
E[ŝe(θ̂)2]. It is desired that the empirical SE is small

which shows that the estimator is precise and the model SE is equal to empirical SE.

• Coverage probability: In a simulation study, coverage probability refers to the statistical
technique where a percentage/proportion is calculated which shows how many confi-
dence intervals include the true parameter value which is expected to be at (100×(1-
α))% nominal level. It is common to fix the value of α at 0.05 i.e. at 95%.

6.3.5 Results for the simulation study of fixed effect NMA with double-
bootstrapping

The simulation study simulated 1000 MCMC samples for each DGM. In each MCMC sample,
double-bootstrapping was implemented to calculate MAIC estimates which were then used
to perform a fixed effect NMA. This whole process was again bootstrapped 300 times to get
bootstrapped NMA estimates.

6.3.5.1 Bias by overlap

Figure 6.2 and 6.3 show the amount of bias in each DGM for treatments 2 and 3 respectively.
The amount of bias was found to be related to the amount of overlap. In Figure 6.2, 6.3,
large biases can be seen for low overlap scenarios and vice-versa. The magnitude of biases
was higher for the sample size of 150. Overall, higher biases were found for scenarios 9, 11, 13
and 15. Other than the common fact that overlap was low in these scenarios, the correlation
coefficient for study covariates was also low.
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(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 6.2: Bias of treatment 2 for different sample sizes (disconnected larger
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 6.3: Bias of treatment 3 for different sample sizes (disconnected larger
network of evidence)

6.3.5.2 Bias by overlap with effect-modifiers

Figure 6.4 and 6.5 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. Biases were found low with high overlap scenarios, but
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within each level of overlap, there seems to be no effect of the effect-modifier. In Figure 6.4
(a) and 6.5 (a), for the sample size 150, bias was found to be unaffected by effect-modifier
for both treatments 2 and 3. However, for the sample size of 500, most of the time, bias was
found to be higher with a low effect-modifier level.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 6.4: Bias by overlap with EM levels for treatment 2 (disconnected larger
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 6.5: Bias by overlap with EM levels for treatment 3 (disconnected larger
network of evidence)

6.3.5.3 Bias by overlap with prognostic variable

Figure 6.6 and 6.7 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. Mostly, bias was found to be higher with a high
prognostic variable level.
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(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 6.6: Bias by overlap with PV levels for treatment 2 (disconnected larger
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 6.7: Bias by overlap with PV levels for treatment 3 (disconnected larger
network of evidence)

6.3.5.4 Empirical SE and model SE by simulation scenarios

The simulation results of performance measures for the larger disconnected network of evi-
dence are summarised in Table 6.1 and Table 6.2 for sample sizes 150 and 500 respectively.
Table 6.1 and Table 6.2 show the relative estimates of treatments 2 and 3 with treatment
1 from MAIC-adjusted NMA with double-bootstrapping. The overall relative estimates of
treatment 2 with the new intervention treatment 1 is termed as d1 and that of treatment 3
with treatment 1 is termed as d2. The empirical SE and model SE were similar or close to
each other for each DGM. A quantity was estimated that calculates the difference between
the empirical SE and model SE. The highest value of this difference was found to be 0.16
for the sample size of 150. From the colour-coding, it is evident that none of the coverage
deviates from the nominal level. However, the moderate and higher biases were seen mainly
for low-overlap scenarios.
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6.3.5.5 Coverage by simulation scenarios

Figure 6.8 and 6.9 show the CIs of the coverage estimates for varying levels of overlap and
sample sizes for treatments 2 and 3 respectively. The coverage of d1 and d2 from the double-
bootstrapped MAIC-adjusted NMA was at the nominal level for both sample sizes. Red-
coloured figures represent CIs for the high overlap scenarios and blue-coloured figures repre-
sent CIs for the low overlap scenarios. In the figures, the black horizontal line represents the
nominal level of coverage. From the figure, it can be seen that the CIs touch the nominal
level for all 16 scenarios irrespective of sample sizes and overlap.

Figure 6.8: Coverage by overlap for treatment 2

Figure 6.9: Coverage by overlap for treatment 3
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6.3.5.6 Coverage by correlation with overlap

Figure 6.10 and Figure 6.11 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. From the figures, it can be seen that the coverage is not
found to be affected by different levels of correlation and overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 6.10: Coverage by correlation of treatment 2 for different sample sizes
(disconnected larger network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 6.11: Coverage by correlation of treatment 3 for different sample sizes
(disconnected larger network of evidence)

6.3.5.7 Coverage by overlap with effect-modifiers

Figure 6.12 and 6.13 show the coverage by different levels of overlap and effect-modifier for
treatments 2 and 3 respectively. For both sample sizes and treatments, the coverage was
similar with varying levels of overlap and effect-modifier variable.
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(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 6.12: Coverage by overlap with EM levels for treatment 2 (disconnected
larger network of evidence)

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 6.13: Coverage by overlap with EM levels for treatment 3 (disconnected
larger network of evidence)

6.3.5.8 Coverage by overlap with prognostic variable

Figure 6.14 and 6.15 show the amount of coverage by different levels of overlap and prognostic
variables for treatments 2 and 3 respectively. For both sample sizes and treatments, the
coverage was found to be similar with varying levels of overlap and prognostic variables.
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(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 6.14: Coverage by overlap with PV levels of treatment 2 (disconnected
larger network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 6.15: Coverage by overlap with PV levels of treatment 3 (disconnected
larger network of evidence)

6.3.6 Results for the simulation study of random effects NMA with double-
bootstrapping

The simulation study simulated 1000 MCMC samples for each DGM. In each MCMC sample,
double-bootstrapping was implemented to calculate MAIC estimates. The MAIC estimates
were then used to perform random effects NMA. This whole process was again bootstrapped
1000 times to get bootstrapped NMA estimates. The number of bootstraps for the whole
process was bigger for random effects NMA (1000) compared to the fixed effect (300) as
in fixed effect NMA, the estimates quickly stabilise to nominal level with fewer number of
bootstraps.

6.3.6.1 Bias by overlap

Figure 6.16 and 6.17 show the amount of bias in each DGM for treatments 2 and 3 respectively.
Scenarios 1 to 8 are from the high-overlap scenarios whereas scenarios 9 to 15 are from low-
overlap. The amount of bias was found to be related to the amount of overlap. In Figure
6.16, 6.17, large biases can be seen for low overlap scenarios and vice-versa. Though bias was



CHAPTER 6. DOUBLE-BOOTSTRAPPING 167

low with high overlap, a bigger bias was found for scenario 8 in sample size 150. Overall,
higher biases were found for scenarios 8, 12 and 15. In all these scenarios, the effect-modifier
coefficient for study covariates was high. However, the magnitude of biases was low for the
sample size of 500.

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 6.16: Bias of treatment 2 for different sample sizes (disconnected larger
network of evidence)

(a) bias by overlap for sample size 150 (b) bias by overlap for sample size 500

Figure 6.17: Bias of treatment 3 for different sample sizes (disconnected larger
network of evidence)



CHAPTER 6. DOUBLE-BOOTSTRAPPING 168

6.3.6.2 Bias by overlap with effect-modifiers

Figure 6.18 and 6.19 show the amount of bias by overlap for different levels of effect-modifier
for treatments 2 and 3 respectively. Overall, low biases were mainly found to be associated
with high-overlap scenarios. However, for low overlap scenarios, biases were low with a low
effect-modifier level only for the sample size of 500. In Figure 6.18 and 6.19, with high overlap
scenarios biases were comparatively low with low effect-modifier level.

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 6.18: Bias by overlap with EM levels for treatment 2 (disconnected larger
network of evidence)

(a) bias by EM for sample size 150 (b) bias by EM for sample size 500

Figure 6.19: Bias by overlap with EM levels for treatment 3 (disconnected larger
network of evidence)
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6.3.6.3 Bias by overlap with prognostic variable

Figure 6.20 and 6.21 show the amount of bias by overlap for different levels of prognostic
variables for treatments 2 and 3 respectively. Mostly, bias was found to be higher with a high
prognostic variable level.

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 6.20: Bias by overlap with PV levels for treatment 2 (disconnected larger
network of evidence)

(a) bias by PV for sample size 150 (b) bias by PV for sample size 500

Figure 6.21: Bias by overlap with PV levels for treatment 3 (disconnected larger
network of evidence)
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6.3.6.4 Empirical SE and model SE by simulation scenarios

The simulation results of performance measures for the larger disconnected network of evi-
dence are summarised in Table 6.3 and Table 6.4 for sample sizes 150 and 500 respectively.
Both the tables show the relative estimates of treatments 2 and 3 with treatment 1 from
MAIC-adjusted NMA with double-bootstrapping. From the tables, it can be seen that the
coverage of d1 and d2 from the double-bootstrapped MAIC-adjusted NMA was at the nomi-
nal level. The empirical SE and model SE were similar or close to each other for each DGM.
Similar to fixed effect model, in the random effect model, none of the coverage deviates from
the nominal level. However, moderate and large biases were seen mainly for the sample size
159 (small sample). The magnitude of biases was low for the sample size of 500.



CHAPTER 6. DOUBLE-BOOTSTRAPPING 171

T
a
b

le
6
.3

:
P

er
fo

rm
a
n

ce
m

ea
su

re
es

ti
m

a
te

s
o
f

a
la

rg
er

d
is

co
n

n
ec

te
d

n
et

w
o
rk

o
f

ev
id

en
ce

w
it

h
d
o
u

bl
e-

bo
o
ts

tr
a
p
p
in

g
fo

r
sa

m
p
le

si
ze

1
5
0

(r
a
n

d
o
m

eff
ec

ts
)

D
G

M
C

O
V

E
R

A
G

E

d
1

B
IA

S

d
1

E
M

P
S

E

d
1

M
O

D
E

L
S

E

d
1

D
IF

F
E

R
E

N
C

E

d
1

C
O

V
E

R
A

G
E

d
2

B
IA

S

d
2

E
M

P
S

E

d
2

M
O

D
E

L
S

E

d
2

D
IF

F
E

R
E

N
C

d
2

S
ce

n
ar

io
1

0.
95

04
3

-0
.0

55
32

0.
27

74
79

0.
27

71
87

0.
03

02
92

0.
95

25
27

-0
.0

30
7

0.
28

77
18

0.
28

36
61

0.
00

40
57

S
ce

n
ar

io
2

0.
95

41
41

-0
.0

66
2

0.
29

82
44

0.
27

20
99

0.
02

61
45

0.
95

92
93

-0
.0

46
87

0.
30

58
33

0.
29

06
14

0.
01

52
19

S
ce

n
ar

io
3

0.
95

07
14

-0
.0

65
31

0.
28

02
03

0.
28

78
22

0.
03

23
81

0.
95

26
19

-0
.0

36
68

0.
28

52
73

0.
28

40
6

0.
00

12
13

S
ce

n
ar

io
4

0.
95

08
33

-0
.0

73
36

0.
29

58
96

0.
27

21
19

0.
02

37
81

0.
95

17
92

-0
.0

43
9

0.
30

36
24

0.
28

05
28

0.
02

30
95

S
ce

n
ar

io
5

0.
95

35
35

-0
.0

81
03

0.
32

52
66

0.
31

05
85

0.
01

46
81

0.
95

15
76

-0
.0

57
32

0.
32

37
38

0.
31

83
48

0.
00

53
9

S
ce

n
ar

io
6

0.
94

5
-0

.0
93

53
0.

34
55

91
0.

32
80

3
0.

01
75

61
0.

95
3

-0
.0

73
01

0.
34

53
45

0.
33

82
9

0.
00

70
56

S
ce

n
ar

io
7

0.
95

20
83

-0
.0

84
86

0.
32

74
92

0.
31

23
92

0.
01

51
0.

95
62

5
-0

.0
55

94
0.

32
34

45
0.

31
97

66
0.

00
36

79

S
ce

n
ar

io
8

0.
95

8
-0

.3
87

36
0.

69
47

98
0.

70
11

4
-0

.0
06

34
0.

95
66

34
-0

.3
39

37
0.

68
45

58
0.

70
23

1
-0

.0
17

75

S
ce

n
ar

io
9

0.
95

54
51

-0
.2

63
9

0.
59

87
86

0.
69

29
65

-0
.0

94
18

0.
95

25
49

-0
.2

41
56

0.
59

65
17

0.
59

82
11

-0
.0

01
69

S
ce

n
ar

io
10

0.
95

58
82

-0
.2

00
71

0.
50

42
54

0.
56

81
01

-0
.0

63
85

0.
94

90
2

-0
.1

83
41

0.
51

92
82

0.
59

31
1

-0
.0

73
83

S
ce

n
ar

io
11

0.
95

33
33

-0
.2

84
84

0.
59

95
52

0.
58

70
45

0.
01

25
07

0.
95

22
22

-0
.2

32
41

0.
59

53
99

0.
58

91
38

0.
00

62
61

S
ce

n
ar

io
12

0.
95

05
16

-0
.2

13
44

0.
50

49
69

0.
51

36
26

-0
.0

58
66

0.
95

25
77

-0
.1

74
82

0.
52

25
96

0.
58

90
71

-0
.0

66
48

S
ce

n
ar

io
13

0.
95

37
37

-0
.3

67
02

0.
69

72
48

0.
70

09
98

-0
.0

03
75

0.
95

17
17

-0
.3

56
11

0.
69

38
65

0.
70

08
92

-0
.0

07
03

S
ce

n
ar

io
14

0.
95

04
17

-0
.2

39
68

0.
55

74
97

0.
55

72
0.

00
02

97
0.

95
25

-0
.2

27
36

0.
56

03
09

0.
58

62
97

-0
.0

25
99

S
ce

n
ar

io
15

0.
95

-0
.3

72
86

0.
69

74
89

0.
70

32
4

-0
.0

05
75

0.
95

1
-0

.3
49

14
0.

68
28

08
0.

72
31

1
-0

.0
40

3

S
ce

n
ar

io
16

0.
95

37
92

-0
.2

48
0.

56
86

49
0.

57
05

51
-0

.0
01

9
0.

95
27

5
-0

.2
29

31
0.

57
18

99
0.

58
11

7
-0

.0
09

27



CHAPTER 6. DOUBLE-BOOTSTRAPPING 172

T
a
b

le
6
.4

:
P

er
fo

rm
a
n

ce
m

ea
su

re
es

ti
m

a
te

s
o
f

a
la

rg
er

d
is

co
n

n
ec

te
d

n
et

w
o
rk

o
f

ev
id

en
ce

w
it

h
d
o
u

bl
e-

bo
o
ts

tr
a
p
p
in

g
fo

r
sa

m
p
le

si
ze

5
0
0

(r
a
n

d
o
m

eff
ec

ts
)

D
G

M
C

O
V

E
R

A
G

E

d
1

B
IA

S

d
1

E
M

P
S

E

d
1

M
O

D
E

L
S

E

d
1

D
IF

F
E

R
E

N
C

E

d
1

C
O

V
E

R
A

G
E

d
2

B
IA

S

d
2

E
M

P
S

E

d
2

M
O

D
E

L
S

E

d
2

D
IF

F
E

R
E

N
C

d
2

S
ce

n
ar

io
1

0.
95

03
33

-0
.0

20
09

0.
18

02
59

0.
18

92
34

-0
.0

08
98

0.
94

8
-0

.0
06

96
0.

18
28

14
0.

18
18

94
0.

00
09

2

S
ce

n
ar

io
2

0.
94

16
67

-0
.0

22
82

0.
18

90
98

0.
18

09
37

0.
00

81
62

0.
94

16
67

-0
.0

08
42

0.
19

14
22

0.
19

41
3

-0
.0

02
71

S
ce

n
ar

io
3

0.
95

36
67

-0
.0

27
56

0.
17

94
36

0.
17

93
71

6.
50

E
-0

5
0.

94
83

33
-0

.0
07

68
0.

18
11

25
0.

18
20

66
-0

.0
00

94

S
ce

n
ar

io
4

0.
94

96
67

-0
.0

26
38

0.
18

47
33

0.
18

12
26

0.
00

35
07

0.
95

26
67

-0
.0

05
45

0.
18

94
09

0.
18

45
85

0.
00

48
24

S
ce

n
ar

io
5

0.
95

2
-0

.0
23

1
0.

19
60

22
0.

19
52

19
0.

00
08

03
0.

94
4

-0
.0

15
93

0.
19

32
58

0.
19

85
95

-0
.0

05
34

S
ce

n
ar

io
6

0.
95

6
-0

.0
20

92
0.

20
29

38
0.

20
24

34
0.

00
05

04
0.

95
53

33
-0

.0
15

39
0.

20
32

27
0.

20
63

36
-0

.0
03

11

S
ce

n
ar

io
7

0.
95

44
44

-0
.0

26
22

0.
20

15
38

0.
20

17
14

-0
.0

00
18

0.
95

33
33

-0
.0

21
0.

19
64

3
0.

19
48

3
0.

00
16

S
ce

n
ar

io
8

0.
95

46
67

-0
.0

23
09

0.
19

97
38

0.
19

25
16

0.
00

72
22

0.
96

13
33

-0
.0

14
24

0.
19

70
32

0.
19

62
54

0.
00

07
78

S
ce

n
ar

io
9

0.
95

33
33

-0
.0

51
77

0.
26

87
48

0.
26

83
98

0.
00

03
5

0.
95

13
33

-0
.0

36
97

0.
27

22
29

0.
27

28
03

-0
.0

00
57

S
ce

n
ar

io
10

0.
95

43
33

-0
.0

48
89

0.
24

34
01

0.
24

58
53

-0
.0

02
45

0.
95

63
33

-0
.0

32
96

0.
25

19
59

0.
25

07
14

0.
00

12
44

S
ce

n
ar

io
11

0.
95

18
89

-0
.0

79
08

0.
25

91
8

0.
24

61
88

0.
01

29
93

0.
95

55
56

-0
.0

33
49

0.
25

88
12

0.
25

07
79

0.
00

80
33

S
ce

n
ar

io
12

0.
95

-0
.0

70
36

0.
24

06
56

0.
24

63
79

-0
.0

05
72

0.
95

13
33

-0
.0

24
37

0.
24

54
95

0.
23

12
39

0.
01

42
56

S
ce

n
ar

io
13

0.
95

57
14

-0
.0

64
64

0.
27

72
09

0.
27

49
99

0.
00

22
09

0.
95

16
67

-0
.0

50
99

0.
28

02
69

0.
28

02
73

-4
.4

0E
-0

6

S
ce

n
ar

io
14

0.
95

95
4

-0
.0

36
24

0.
26

01
38

0.
26

22
26

-0
.0

02
09

0.
95

72
41

-0
.0

27
6

0.
26

29
32

0.
26

76
1

-0
.0

04
68

S
ce

n
ar

io
15

0.
95

44
44

-0
.0

72
51

0.
27

76
05

0.
27

45
01

0.
00

31
04

0.
95

63
33

-0
.0

46
45

0.
27

95
23

0.
27

96
41

-0
.0

00
12

S
ce

n
ar

io
16

0.
95

55
56

-0
.0

44
32

0.
25

82
97

0.
24

30
28

0.
01

52
69

0.
95

53
6

-0
.0

23
33

0.
25

85
34

0.
24

85
23

0.
01

00
12



CHAPTER 6. DOUBLE-BOOTSTRAPPING 173

6.3.6.5 Coverage by simulation scenarios

Figure 6.22 and 6.23 show the CI of the coverage estimates for varying levels of overlap and
sample sizes for treatments 2 and 3 respectively. The coverage of d1 and d2 from the double-
bootstrapped MAIC-adjusted random effects NMA was at the nominal level for both sample
sizes. Red-coloured figures represent CIs for the high overlap scenarios and blue-coloured
figures represent CIs for the low overlap scenarios. The black horizontal line represents the
nominal level of coverage. From the figure, it can be seen that the CI touches the nominal
level for all DGM irrespective of sample sizes and overlap.

Figure 6.22: Coverage by overlap for treatment 2

Figure 6.23: Coverage by overlap for treatment 3
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6.3.6.6 Coverage by correlation with overlap

Figure 6.24 and Figure 6.25 show the coverage with different levels of overlap and correlation
for treatments 2 and 3 respectively. From the figures, it can be seen that the coverage was
not found to be affected by different levels of correlation and overlap.

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 6.24: Coverage by correlation of treatment 2 for different sample sizes
(disconnected larger network of evidence)

(a) coverage by correlation for sample size 150 (b) coverage by correlation for sample size 500

Figure 6.25: Coverage by correlation of treatment 3 for different sample sizes
(disconnected larger network of evidence)
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6.3.6.7 Coverage by overlap with effect-modifiers

Figure 6.26 and 6.27 show the coverage by different levels of overlap and effect-modifier for
treatments 2 and 3 respectively. For both sample sizes and treatments, the coverage was
similar with varying levels of overlap and effect-modifier variable.

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 6.26: Coverage by overlap with EM levels for treatment 2 (disconnected
larger network of evidence)

(a) coverage with EM for sample size 150 (b) coverage with EM for sample size 500

Figure 6.27: Coverage by overlap with EM levels for treatment 3 (disconnected
larger network of evidence)
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6.3.6.8 Coverage by overlap with prognostic variable

Figure 6.28 and 6.29 show the amount of coverage by different levels of overlap and prognostic
variables for treatments 2 and 3 respectively. For both sample sizes and treatments, the
coverage was found to be similar with varying levels of overlap and prognostic variables.

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 6.28: Coverage by overlap with PV levels of treatment 2 (disconnected
larger network of evidence)

(a) coverage by PV for sample size 150 (b) coverage by PV for sample size 500

Figure 6.29: Coverage by overlap with PV levels of treatment 3 (disconnected
larger network of evidence)
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6.4 Discussion

Previous simulation chapters showed that when MAIC was implemented in a larger discon-
nected network of evidence to conduct a NMA, the most significant effect was seen in the
coverage probability. Undercoverage issue was found for each DGM with a larger network of
evidence. The repeated use of the same IPD in an NMA along with the sandwich estimator
was causing this low coverage. In order to overcome this issue, instead of using the sandwich
estimator, double-bootstrapping was used for the estimation of uncertainty in a fixed and
random effects NMA.

Both for the double-bootstrapped MAIC-adjusted fixed and random effects NMA of the larger
disconnected network of evidence, bias was found to be inversely related to overlap. Lower
biases were found with high overlap levels and vice-versa. The general trend was higher
bias with higher prognostic and effect-modifying variable levels. Moreover, the magnitude
of biases was found to be lower for the sample size of 500 compared to the sample size 150.
Double-bootstrapping was found to increase the coverage to the nominal (95%) level both for
fixed and random effects NMA. Additionally, though bias was affected mainly due to overlap
between study covariates as well as prognostic and effect-modifying variables, coverage was
found to be unaffected by these factors.

The highest biases were found specifically for the sample size 150 with low overlap scenarios
both for the fixed and random effects NMA. Nevertheless, the magnitude of bias with small
sample size and low overlap was found to be higher for the random effects NMA model in
comparison to the fixed effect NMA. Therefore, for a bigger sample size, low biases can be
found with double-bootstrapping but with a smaller sample size and low overlap, biases can
increase significantly.

Double-bootstrapping was found to solve the problem of undercoverage. However, for the
disconnected network of fixed and random effects NMA, the biases were found to be compar-
atively high with low-overlap scenarios with a smaller sample size. In MAIC, the adjustment
of covariates is made for the AgD study population which means the covariate distribution
in the AgD study needs to be covered by the IPD study. When overlap is poor between IPD
and AgD study, MAIC will generate large weights and may fail to produce a valid estimate.
Therefore, in the double-bootstrap, the amount of bias increases with low overlap scenarios.
For the random effects NMA, biases were found to be high in comparison to the fixed effect
NMA. Moreover, though double-bootstrapping solves the undercoverage issue, the main dif-
ficulty found to be computational issue. Double-bootstrapping was very resource-intensive
as well as time-consuming.

Despite the fact that the population-adjustment method MAIC is able to mitigate the dif-
ference between studies when prognostic and effect-modifier variables are imbalanced, it is
not generalisable to larger networks of treatments without additional assumptions. More-
over, in MAIC, the adjustment is made for the AgD study population which is often not the
population of interest. Additionally, in practice the correlation information of the covariates
in the AgD study is unavailable, therefore, MAIC assumes that the joint covariate distribu-
tion in the AgD study is the product of the published marginal distributions. Furthermore,
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the propensity score model that is used to estimate weights, is also sensitive to model mis-
specification bias even though the propensity score model does not make reference to the
outcome. A newly developed method called ML-NMR is a recent addition to the population-
adjustment method that is able to handle a larger network of evidence. ML-NMR is an
extension of the standard NMA framework to combine IPD with AgD. It fits a regression
model using the studies that have IPD available and then integrates the regression model
over the AgD studies. ML-NMR is able to overcome the aggregation bias which is typically
found in conventional NMA as well as can produce treatment estimates in any target popu-
lation. Although ML-NMR adjusts for differences in the covariates between populations in
estimating the relative treatment effects of multiple treatments simultaneously, at present,
this method is suitable for a connected network of evidence. Currently, ML-NMR is not able
to include single-arm studies with a larger disconnected network of evidence.

In the next chapter, a dataset from a case study will be used in order to show the practical
application of MAIC-adjusted NMA with and without double-bootstrapping.



Chapter 7

Double-Bootstrapping with a Case
Study

7.1 Introduction

In the simulation chapters (Chapters 4 and 5), it was found that undercoverage of the rela-
tive treatment effect estimates was one of the substantial consequences of a MAIC-adjusted
NMA. The problem of undercoverage gets more serious for the larger disconnected network
of evidence compared to a smaller disconnected network of evidence as undercoverage was
seen for all DGM. Moreover, the magnitude of undercoverage was also found to be higher
for the larger disconnected network of evidence. The reason for this lies in the repeated use
of IPD. In a larger disconnected network of evidence, to apply a MAIC-adjusted NMA, IPD
from the single-arm study was used more times compared to a smaller disconnected network
of evidence. The assumption of independence between studies was ignored which results in
an unappraised correlation between studies.

A double-bootstrapped approach was suggested in the previous chapter to amend this un-
dercoverage issue. A double-bootstrapped approach which is an augmentation of a single
bootstrap CI was used to increase the coverage probability of NMA estimates to the nominal
level. The use of double-bootstrapping breaks the dependency between the studies. For the
fixed effect model, though the coverage reach the nominal level (95%) for all DGM, however,
there was an increase in bias found for the low overlap scenarios with the sample size 150.
Nevertheless, with the sample size of 500, the bias was considerably lower compared to the
sample size of 150.

In this chapter, double-bootstrapping has been implemented with a case study. The data for
the case study comes from Dose Ranging Efficacy And Safety with Mepolizumab (DREAM)
study on severe eosinophilic asthma exacerbation that is an RCT conducted by GlaxoSmithK-
line (GSK) Pharmaceuticals (Pavord et al., 2012). The objective of this chapter is to show
how double-bootstrapping can be executed in a real-data setting. For this, first, a connected
NMA was conducted with all the available biologics for severe asthma, and then the connected
network of evidence was made disconnected artificially so that the unanchored MAICs could
be carried out. The IPD from the DREAM study was used to implement multiple MAICs.

179
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A MAIC-adjusted NMA as well as a double-bootstrapped MAIC-adjusted NMA were then
performed.

Sections 7.2 and 7.3 of this chapter describe the case study and aim of the current study
respectively. Section 7.4 illustrates the methods that were implemented and Section 7.5 sum-
marize the results. Section 7.6 compares the results whereas Section 7.7 makes a discussion
of the results. The chapter concludes by stating the strengths and limitations of the study
in Section 7.8.

7.2 Description of the case study

7.2.1 Population (severe eosinophilic asthma)

Asthma is a common, non-communicable chronic disorder. It differs from other chronic dis-
eases as it causes a health condition that needs prolonged treatment. An asthma patient
suffers from sensitive airways that contract and become narrow when they got irritated. The
irritated airways then cause coughing or wheezing (Henriksen et al., 2020). Asthma is a non-
curable but manageable disease with the help of precaution and proper treatment. Although
there have been huge advances in controlling chronic childhood asthma, acute exacerbations
remain a common occurrence during viral seasons. Even though acute asthma has a low mor-
tality rate, the condition causes a large healthcare burden because of its frequency. Among
asthma patients, around 5%-10% suffer from severe asthma which can require both high doses
of inhaled corticosteroids and oral corticosteroids (Charles et al., 2022).

A severe asthma patient is defined as someone who requires treatment with high-dose inhaled
corticosteroids (ICS) plus a second controller and/or systemic corticosteroids to preclude un-
controlled asthma (Chung et al., 2014). Severe asthma patients suffer from frequent exac-
erbations even with proper medication. Additionally, frequent exacerbations with treatment
side effects cause asthma patients diminishing quality of life. Eosinophilic asthma is a type
of asthma that is severe in nature and usually comes on in adults. Eosinophilic asthma is
caused by eosinophils which are a type of white blood cell. One of the roles of eosinophils is
to fight disease by swelling but in eosinophilic asthma, these cells cause severe inflammation
in the respiratory airways system by overreacting and causing asthma. People with severe
asthma are found to have a 50% prevalence of eosinophilic asthma (Cohort, 2021).

7.2.2 DREAM study

The data used in this study was from an RCT called DREAM study. The DREAM clinical
study compared the efficacy of three doses of mepolizumab for severe eosinophilic asthma
patients. Mepolizumab is a humanized monoclonal antibody, that works against interleukin-
5, works on both sputum and blood eosinophil counts by reducing them, and helps in the
need for treatment with systemic glucocorticoids. Interleukin-5 releases eosinophils in the
bone marrow, however, too much eosinophil causes airway inflammation. Mepolizumab helps
to relieve asthma symptoms by controlling inflammation in the airways of the lungs. The
DREAM study was a multicentre, double-blind, placebo-controlled study undertaken at 81
centers in 13 countries (Pavord et al., 2012). The criteria of patients eligibility in the study
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were aged 12–74 years who had signs of eosinophilic inflammation with a history of recur-
rent severe asthma exacerbations. Present smokers, past history of more than 10 packs of
smoking, significant comorbidity, pregnancy, and inferior record on treatment adherence were
considered as the exclusion criteria.

Patients in the DREAM study were randomly assigned (in a 1:1:1:1 ratio) to receive one of
three doses of intravenous mepolizumab (75 mg, 250 mg, or 750 mg) or matched placebo.
The hypothesis that had been tested in DREAM study was that mepolizumab reduces the
frequency of asthma exacerbations. As secondary objectives, the study assessed blood and
sputum levels of eosinophils, asthma control, asthma-related quality of life, and forced expi-
ratory volume in one second (FEV1). FEV1 is the maximum amount of air one can forcefully
exhale in one second which describes the degree of airway obstruction caused by asthma. The
treatment mepolizumab was found to be effective and well tolerated in patients with severe
eosinophilic asthma. Demographic information, spirometry measurements, blood eosinophil
counts, and scores on the asthma control questionnaire (ACQ) were obtained every 4 weeks
for 52 weeks. The primary outcome was the rate of clinically significant asthma exacerba-
tions. The baseline covariates which were also considered predictive of the outcome are given
in Table 7.1. No variable in the study was identified as effect-modifying variable.

Table 7.1: Prognostic covariates in DREAM study

Prognostic
covariates

Region Sex Age Weight

Number of
exacerbations
in the year
before the
study

Prognostic
covariates

Use of
maintenance
oral
corticosteroids

Percentage
of predicted
FEV1

Airway
reversibility

Blood eosinophil
count

IgE
concentration

7.3 Aim of the study

The aim of the study in this chapter was to demonstrate the use of double-bootstrapping
in a MAIC-adjusted NMA for estimating relative treatment effects using a real dataset.
The outcome measure of the study was the rate of exacerbations. First, a connected NMA
was performed for severe eosinophilic asthma. Then the connected network of evidence
was made disconnected by transforming each of the RCTs into a single-arm study. The
objective of making the network disconnected was to imitate a situation that is often found
in NICE STAs where an intervention from a single-arm study needs to be compared in a
larger disconnected network of evidence. The IPD from the DREAM study was used to
perform multiple unanchored MAICs. Performing several unanchored MAIC converts the
disconnected network into a connected network. With the estimates from the unanchored
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MAICs, an MAIC-adjusted NMA was then conducted. Eventually, the MAIC-adjusted NMA
was then re-estimated using double-bootstrapping.

7.4 Methods

In this section, three methods are illustrated: a standard NMA for a connected network of
evidence on eosinophilic asthma, a MAIC-adjusted NMA and a double-bootstrapped MAIC-
adjusted NMA for the disconnected network of evidence.

7.4.1 A connected NMA for severe eosinophilic asthma

A connected NMA was conducted so that its estimates can be compared with MAIC-adjusted
NMA (with and without double-bootstrapping). As in the DREAM study, no variable was
identified as an effect-modifier, therefore, a standard connected NMA was performed that is
capable of giving relative treatment effect estimates by adjusting prognostic variables.

7.4.1.1 Data contributing to the NMA

To perform a properly connected NMA, the first and foremost step is to conduct a system-
atic literature review (SLR) in multiple databases to identify the relevant studies. A proper
SLR was not carried out for this study as the aim was to explain the steps that are required
for executing double-bootstrapping using a case study, not estimating an updated relative
treatment effect of mepolizumab compared to existing biologics. Therefore, in order to con-
duct a connected NMA, a connected network of evidence was formed using the available
biologics for severe eosinophilic asthma. To find out the connected network of evidence for
eosinophilic asthma, an existing systematic review for severe eosinophilic asthma was used
(Agache et al., 2020). Agache et al. (2020) have identified five biologics that are used for
severe eosinophilic asthma: these are benralizumab, dupilumab, mepolizumab, omalizumab
and reslizumab. Among these, omalizumab was the first approved antibody for severe allergic
asthma. Although all of the drugs are used for eosinophilic asthma, their application differs
according to asthma phenotype and endotype (Agache, 2019). Phenotype involves grouping
individuals with similar observable characteristics while endotype focuses on groupings based
on underlying molecular mechanisms or treatment responses (Lin et al., 2013). Table 7.2
shows the studies that were included in the standard connected NMA.

Table 7.2: Studies included in the connected NMA

Biologics

Mepolizumab Benralizumab Dupilumab Omalizumab

Study 1
Pavord et al.,

2012
Bleecker et al.,

2016
Wenzel et al.,

2016
Hanania et al.,

2013

Study 2
Bel et al.,

2014
FitzGerald et al.,

2016
Castro et al.,

2018
Busse et al.,

2013

Study 3
Nair et al.,

2017
Rabe et al.,

2018
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Though Agache et al. (2020) have identified all the available drugs for eosinophilic asthma
treatment, no NMA can be found that have taken into account all the existing drugs due
to the unavailability of a common placebo/standard of care (SOC). The review by Agache
et al. (2020) has compared each aforementioned asthma drug to a particular SOC. One study
was found that compared mepolizumab and omalizumab in an indirect comparison where
mepolizumab was found to be better in reducing exacerbations, however, the study empha-
sized that there was a discrepancy in the study populations in terms of severity, and also
the results from the study were clinically not relevant due to heterogeneous pathways and
population for the drugs (NICE, 2020). A study was found with observational data that
uses target trial emulation (TTE) for assessing the comparative effectiveness between oma-
lizumab, mepolizumab, and dupilumab in severe asthma where dupilumab was found to be
most efficacious followed by omalizumab and then mepolizumab (Akenroye et al., 2023).

7.4.1.2 Statistical methods for the NMA

In order to perform a NMA with a connected network of evidence, the assumptions of tran-
sitivity and consistency need to be satisfied that assume that among studies prognostic and
effect-modifiers are evenly distributed. In this study, the difference between the identified
studies was ignored and the placebo/ SOC arm was assumed to be the same for each study.
Moreover, reslizumab was excluded from the NMA as no published articles can be accessed
for the drug. Figure 7.1 illustrates the process where 10 studies were included for the con-
nected NMA. Each oval-shaped node represents a study arm with a treatment name and an
RCT is depicted by joining two nodes with a solid line. Treatment SOC was used as the
reference treatment. In the connected NMA, 10 studies were included where 2 studies were
of mepolizumab, 3 studies of benralizumab, 3 of dupilumab, and 2 of omalizumab.

The NMA was undertaken using the rate of exacerbation as the outcome. Therefore the
NMA analyses arm-level rate data using the number of exacerbations and the person-years
at risk in each arm using Poisson likelihood and a log link function. For the NMA estimation
R package multinma was used that estimates an NMA in a Bayesian framework using Stan.
Both fixed effects and random effects models were estimated. For the fixed and random effects
NMA, N(0, 1002) was used as prior distributions for the treatment effects and study-specific
intercepts. Additionally, for the random effects NMA, half -Normal(0.15) prior was used for
the heterogeneity parameter τ .

7.4.2 A MAIC-adjusted NMA for severe eosinophilic asthma

After conducting a connected NMA, a MAIC-adjusted NMA was performed using multiple
unanchored MAICs.

7.4.2.1 Data contributing to the NMA

After getting a connected network of evidence with severe eosinophilic asthma, the next step
was to convert the connected network of evidence into a disconnected network of evidence.
The mepolizumab arm with 250 mg from DREAM study was considered as a single-arm
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Figure 7.1: Making of a connected network of evidence for severe eosinophilic
asthma

study with a sample size of 152 patients. The IPD from this arm was used to perform mul-
tiple unanchored MAICs. Figure 7.2 illustrates the process where the first node is the 250
mg mepolizumab arm from the DREAM study. The connected network of evidence that was
formed earlier was made disconnected by dropping one arm from each study which has been
depicted by striking through the treatment name, and each MAIC has been depicted by an
arrow line. Other than the mepolizumab arm of the DREAM study, all other arms only had
AgD in the form of number of exacerbations and the person-years at risk. Performing mul-
tiple MAICs and estimating relative treatment effects again made the disconnected network
of evidence into a connected network of evidence where treatment mepolizumab was used as
the reference treatment.

7.4.2.2 Statistical methods for the MAIC-adjusted NMA

As the MAICs were applied in unanchored form, all effect-modifiers and prognostic variables
need to be included in the MAIC logistic regression model for the weight calculation. Due to
the data availability issue from the AgD studies, only four covariates sex, age, baseline periph-
eral blood eosinophil count, and exacerbation frequency in the previous year were considered
for adjustment between the single-arm and each AgD study. All of these variables were de-
fined as prognostic variables, and none of the variables were identified as effect-modifiers in
the DREAM study.
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Figure 7.2: Making of a disconnected network of evidence for severe eosinophilic
asthma

At the beginning of the analysis, 9 unanchored MAIC were performed. In each of these
MAICs, the IPD from the DREAM study was reweighted adjusting for 4 covariates to match
the baseline covariates in AgD study. Three out of the 9 MAICs, could not produce any
weights due to overlap issues of covariates sex and age between studies. In these studies,
the sex was either only male or female. The overlap between age variables was quite small
which causes the non-convergence issue. Therefore, in the final analysis, only the covariates
baseline peripheral blood eosinophil count and exacerbation frequency in the previous year
were included. Additionally, only these two covariates were found to be associated with the
efficacy of mepolizumab in reducing asthma exacerbation in DREAM study. MAICs were
applied up to the first moment i.e. balancing of covariates was done only for the mean as
the logistic model was not able to produce meaningful weights when the second moment was
included in the model.

In order to perform an NMA with rate data, three quantities are required which are the
number of events, number of participants, and total number of exposure time. For MAIC-
adjusted NMA, these quantities need to be estimated involving MAIC weights. Therefore, in
the MAIC-adjusted NMA, the weighted number of events, weighted number of participants,
and weighted total number of exposure time were estimated as follows:

The R codes for MAIC-adjusted NMA are given in F.2 in Appendix F.
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Quantity Estimation procedure

Weighted number of events
∑

(individual patient weight*event indicator for each patient)

Weighted exposure time
∑

(individual patient weight*exposure time for each patient)

Weighted number of participants
∑

(individual weights)

7.4.3 A double-bootstrapped MAIC-adjusted NMA for severe eosinophilic
asthma

The process for a double-bootstrapped MAIC-adjusted NMA can be described with the
following steps that was implemented with each unanchored MAIC:

Step 1: Let X denote the original IPD from DREAM study. Instead of using the original
data X directly for the calculation of MAIC weights, X was bootstrapped once which is
denoted by X ∗.

Step 2: At the second step the bootstrap sample generated earlier as X ∗ was again
bootstrapped which can be denoted by X ∗∗. Therefore, the original IPD from DREAM study
was bootstrapped twice, and the bootstrapped sample X ∗∗ was included for the estimation
of MAIC weights. Using the MAIC weights, a weighted number of events, weighted exposure
time, and a weighted number of participants were estimated in each MAIC.

Step 3: The weighted quantities that were estimated in step 2 from each MAIC, were
then used as input in an NMA setting and a MAIC-adjusted NMA was performed with the
MAIC estimates. The whole process was again bootstrapped 2000 times which produced
2000 NMA estimates. The mean and SD of these bootstrapped estimates were considered
to be the final estimate of relative treatment effects and SE respectively. The R codes for
double-bootstrapped MAIC-adjusted NMA are given in F.3 in Appendix F.

7.5 Results

In this section, results from the connected NMA, MAIC-adjusted NMA, and double-bootstrapped
MAIC-adjusted NMA have been presented.

7.5.1 Results from connected NMA for severe eosinophilic asthma

Figure 7.3 shows the network diagram for the connected network of evidence. In the net-
work, SOC was the common treatment that was connected with mepolizumab, benralizumab,
dupilumab, and omalizumab. Table 7.3 shows the results from the connected NMA for severe
eosinophilic asthma. The connected NMA was fitted for both fixed and random effects NMA.

The log rate ratio (LRR) together with 95% CrI of SOC, benralizumab, dupilumab, and
omalizumab compared to mepolizumab in the fixed effect model was 0.24 (0.006, 0.48), -0.29
(-0.55, -0.03), -0.43 (-0.72, -0.14) and 0.15 (-0.13, 0.44)) respectively. The LRR in the random
effects model was 0.27 (0.038, 0.57), -0.29 (-0.67, -0.08), -0.45 (-0.86, -0.04) and 0.16 (-0.27,
0.59) respectively. The LRR for the treatments benralizumab and dupilumab were negative
which indicates a lower rate of exacerbation in comparison to mepolizumab, however, the
LRR for the treatments SOC and omalizumab was positive that indicates in comparison to
mepolizumab, these treatments were not able to reduce the rate of exacerbations. The CrI
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for omalizumab includes 0, therefore, the result was statistically not significant.

Figure 7.3: Network diagram for the connected network of evidence

Table 7.3: Parameter estimates from the connected NMA for fixed and random
effects model

Fixed effect model Random effect model

MEAN SE CrI MEAN SE CrI
(LRR) (LRR)

d1 (SOC vs Mepo) 0.24 0.12 (0.006, 0.48) 0.27 0.16 (0.038, 0.57)

d3 (Ben vs Mepo) -0.29 0.13 (-0.55, -0.03) -0.29 0.19 (-0.67, -0.08)

d4 (Dup vs Mepo) -0.43 0.14 (-0.72, -0.14) -0.45 0.21 (-0.86, -0.04)

d5 (Oma vs Mepo) 0.15 0.15 (-0.13, 0.44) 0.16 0.22 (-0.27, 0.59)

tau 0.12 (0.005, 0.33)

DIC 31.4 32.2

Residual
deviance

18.7 19.7

pD 13.1 15.3

a Mepo=Mepolizumab, Ben=Benralizumab, Dup=Dupilumab, Oma=Omalizumab
b LRR=log rate ratio

The residual deviance was close to 20 data points for both models which shows that both
models fit well. Moreover, Deviance Information Criterion (DIC) and pD were also close for
both models. The DIC is used to compare models with the same likelihood and data such as
between fixed and random effects models. It also penalises for model complexity, the more
complex a model is, the more penalties will be implemented. Lower values of the DIC suggest
a more parsimonious model. pD indicates the effective number of parameters and a lower
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value of pD is desired.

Figure 7.4 shows the forest plot both for the fixed and random effects connected NMA. As
in the estimation of NMA, mepolizumab was used as reference treatment, therefore, in the
forest plot comparisons have been made to mepolizumab. The forest plot was built using
the table of parameter estimates (Table 7.3). In the forest plot, the x-axis follows a log-
arithmic scale, therefore, all argument values for the plot i.e. mean estimates and upper
and lower confidence values from the table were transformed into exponential form. The
forest plots show that dupilumab and benralizumab were more effective than mepolizumab
and the results were statistically significant; omalizumab and SOC were less effective than
mepolizumab, which was statistically significant for SOC. However, omalizumab touches the
line of null effect which means it shows statistically insignificant results when compared with
mepolizumab.

(a) forest plot for fixed effect connected NMA (b) forest plot for random effects connected NMA

Figure 7.4: Forest plot for fixed and random effects connected NMA model

Figure 7.5 and Figure 7.6 show the ranking of the treatments for fixed and random effects
models respectively. Dupilumab shows the highest efficacy in reducing asthma exacerbation
with respect to mepolizumab followed by benralizumab. Mepolizumab was found to be third
in ranking in reducing asthma exacerbations followed by omalizumab and SOC. Furthermore,
the heterogeneity parameter τ was found to be 0.12 in the random effects model which indi-
cated a moderate level of heterogeneity existed between studies.
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Figure 7.5: Ranks of the treatments in a FE connected NMA

Figure 7.6: Ranks of the treatments in a RE connected NMA

7.5.2 Results from MAIC-adjusted NMA for severe eosinophilic asthma

Table 7.4 shows the mean estimates of the baseline covariates in MAICs before and after
weighting the intervention and the comparator studies. From the table, it can be seen that
the MoM that was used to estimate MAIC weights, matches the mean baseline patients char-
acteristics of the comparator study to the weighted intervention study. Figures of the weight
distribution for 9 MAICs are given in Figures F.1, F.2, F.3, F.4, F.5, F.6, F.7, F.8, F.9 in
Appendix F. In the figures, weights are shown both in their original scale and after rescaling
them which makes it easier to examine. A rescaled weight > 1 corresponds to a person with
a higher weight in the reweighted population than the original data and a rescaled weight <
1 corresponds to a person with a lower weight in the reweighted population than the original
data. In Table 7.4, the smallest ESS was found for MAIC 8 which can also be seen in Figure
F.8 where most of the patients were found to have weights of 0.

Figure 7.7 shows the connected network of evidence for the MAIC-adjusted NMA. In the net-
work, mepolizumab was the common treatment that was connected with SOC, benralizumab,
dupilumab, and omalizumab. Table 7.5 shows the results from the MAIC-adjusted fixed and
random effects NMA for severe eosinophilic asthma. Similar to the connected NMA, both
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Table 7.4: Baseline variables before and after weighting

Mepolizumab
vs

Benralizumab
ESS/N

Blood
eosinophil

count

Exacerbation
frequency

in the previous
year

MAIC 1
Before MAIC 152 1.78 389.80
After MAIC 47.44 2.90 390
Comparator study 400 2.90 390

MAIC 2
Before MAIC 152 1.78 389.80
After MAIC 149.80 1.70 349
Comparator study 425 1.70 349

MAIC 3
Before MAIC 152 1.78 389.80
After MAIC 56.63 2.80 462
Comparator study 73 2.80 462

Mepolizumab
vs

Dupilumab
ESS/N

Blood
eosinophil

count

Exacerbation
frequency

in the previous
year

MAIC 4
Before MAIC 152 1.78 389.80
After MAIC 120.87 2.17 347.40
Comparator study 154 2.17 347.40

MAIC 5
Before MAIC 152 1.78 389.80
After MAIC 132.40 2.07 348.98
Comparator study 631 2.07 349

MAIC 6
Before MAIC 152 1.78 389.80
After MAIC 139.97 2.01 370
Comparator study 103 2.01 370

Mepolizumab
vs

Omalizumab
ESS/N

Blood
eosinophil

count

Exacerbation
frequency

in the previous
year

MAIC 7
Before MAIC 152 1.78 389.80
After MAIC 129.19 2.0 535.01
Comparator study 427 2.0 535.01

MAIC 8
Before MAIC 152 1.78 389.80
After MAIC 14.47 1.0 50.96
Comparator study 157 1.0 51

Mepolizumab
vs

SOC
ESS/N

Blood
eosinophil

count

Exacerbation
frequency

in the previous
year

MAIC 9
Before MAIC 152 1.78 389.80
After MAIC 36.88 2.90 230
Comparator study 66 2.90 230
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fixed and random effects models were fitted.

Figure 7.7: Network diagram for the MAIC-adjusted network of evidence

The LRR together with 95% CrI of SOC, benralizumab, dupilumab, and omalizumab com-
pared to mepolizumab in the fixed effect model was 1.06 (0.62, 1.52), 0.06 (-0.11, 0.25), -0.23
(-0.44, -0.019) and 0.19 (-0.06, 0.45) respectively. The LRR in the random effects model was
1.06 (0.54, 1.59), 0.07 (-0.16, 0.34), -0.21 (-0.49, -0.07), and 0.23 (-0.11, 0.64) respectively.
The LRR for all the treatments was positive except treatment 4, which was dupilumab.
Therefore, in comparison to mepolizumab, only dupilumab showed a lower rate of exacerba-
tion. Mepolizumab scored second in reducing asthma exacerbation followed by benralizumab,
omalizumab and then SOC. The results for benralizumab and omalizumab were statistically
not significant as the CrI includes 0.

The residual deviance was close to 18 data points for both models. Moreover, DIC and pD
were also close for both models. The τ parameter was close to the connected random effects
NMA model which indicates a moderate level of heterogeneity between studies. Although,
MAIC can adjust for treatment effect-modifiers, however, the variables that were adjusted
in the analysis were prognostic variables only. Moreover, due to data availability issues, only
two variables were adjusted in the unanchored MAICs. These could be the reasons that the
τ parameter was similar to the connected NMA.
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Table 7.5: Parameter estimates from the MAIC-adjusted NMA for fixed and
random effects model

Fixed effect model Random effects model

MEAN SE CrI MEAN SE CrI
(LRR) (LRR)

d1 (SOC vs Mepo) 1.06 0.18 (0.62,1.52) 1.06 0.17 (0.54, 1.59)

d3 (Ben vs Mepo) 0.06 0.09 (-0.11,0.25) 0.07 0.10 (-0.16,0.34)

d4 (Dup vs Mepo) -0.23 0.09 (-0.44,-0.019) -0.21 0.09 (-0.49, -0.07)

d5 (Oma vs Mepo) 0.19 0.11 (-0.06,0.45) 0.23 0.12 (-0.11,0.64)

tau 0.118 (0.003, 0.27)

DIC 30.9 30.6

Residual
deviance

17.3 16.6

pD 13.2 14.1

a Mepo=Mepolizumab, Ben=Benralizumab, Dup=Dupilumab, Oma=Omalizumab
b LRR=log rate ratio

Figure 7.8 shows the forest plot both for fixed and random effects MAIC-adjusted NMA
model. Similar to connected NMA, the forest plot of MAIC-adjusted NMA showed that
dupilumab was more effective than mepolizumab and the results were statistically signifi-
cant. Omalizumab, benralizumab and SOC were found to be less effective than mepolizumab.
However, both omalizumab and benralizumab touch the line of null effect which indicates
statistically insignificant results.

(a) forest plot for fixed effect maic-adjusted NMA (b) forest plot for random effects maic-adjusted NMA

Figure 7.8: Forest plot for fixed and random effects maic-adjusted NMA model

Figure 7.9 and Figure 7.10 show the ranking of the treatments for fixed and random effects
models respectively. Similar to the connected NMA, dupilumab shows the highest efficacy in
reducing asthma exacerbation followed by mepolizumab. After dupilumab, benralizumab was
found to be third in efficacy followed by omalizumab and then SOC. Though in the connected
NMA, benralizumab was found to be more efficacious than mepolizumab, the opposite was
seen here.
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Figure 7.9: Ranks of the treatments in a MAIC-adjusted FE NMA

Figure 7.10: Ranks of the treatments in a MAIC-adjusted RE NMA

7.5.3 Results from double-bootstrapped MAIC-adjusted NMA for severe
eosinophilic asthma

Table 7.6 shows the parameter estimates of a double-bootstrapped MAIC-adjusted NMA for
a fixed and random effects model. In the double-bootstrapped MAIC-adjusted NMA, the
original IPD from DREAM study was bootstrapped 2000 times. During each iteration, an
MAIC-adjusted NMA was estimated where instead of using the original IPD in the estima-
tion of each MAIC, a double-bootstrapped sample of the original IPD was used. After the
bootstrapped iterations, 2000 MAIC-adjusted NMA results were estimated. The mean and
SD of the 2000 estimates were taken as the final estimates. The relative treatment effect
estimates were similar to MAIC-adjusted NMA from the previous section.

Figure 7.11 shows the forest plot both for fixed and random effects double-bootstrapped
MAIC-adjusted NMA model. Similar to MAIC-adjusted NMA, the forest plot of double-
bootstrapped MAIC-adjusted NMA showed that dupilumab was more effective than mepolizumab
and the results were statistically significant. Omalizumab, benralizumab and SOC were found
to be less effective than mepolizumab. However, both omalizumab and benralizumab touch
the line of null effect which indicates statistically insignificant results.
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Table 7.6: Parameter estimates from the double-bootstrapped MAIC adjusted fixed
and random effects model

Fixed effect model Random effects model

Mean
(LRR)

SE CrI
Mean
(LRR)

SE CrI

d1 (SOC vs Mepo) 1.07 0.23 (0.66,1.52) 1.08 0.26 (0.59,1.52)

d3 (Ben vs Mepo) 0.05 0.10 (-0.13,0.25) 0.06 0.12 (-0.15,0.29)

d4 (Dup vs Mepo) -0.24 0.11 (-0.45,-0.02) -0.22 0.14 (-0.49,0.00)

d5 (Oma vs Mepo) 0.07 0.12 (-0.15,0.30) 0.05 0.16 (-0.26,0.34)

tau 0.121 (0.005, 0.30)

DIC 36.63 36.61

Residual deviance 23.22 21.94

pD 13.11 14.20

a Mepo=Mepolizumab, Ben=Benralizumab, Dup=Dupilumab, Oma=Omalizumab
b LRR=log rate ratio

(a) forest plot for fixed effect DB maic-adjusted NMA
(b) forest plot for random effects DB maic-adjusted
NMA

Figure 7.11: Forest plot for fixed and random effects DB maic-adjusted NMA
model

7.6 Result comparison

Figure 7.12, and 7.13 show the posterior rank probability for the connected and MAIC-
adjusted NMA. For a specific outcome, ranking probability evaluates the probable ranking of
a treatment with respect to several comparator treatments. In Figure 7.12, it can be seen that
the highest ranking was achieved by treatment 4 (dupilumab) followed by 3 (benralizumab), 2
(mepolizumab), 5 (omalizumab) and 1(SOC). For the MAIC-adjusted NMA (with or without
double-bootstrapping), the most efficacious treatment was again treatment 4 (dupilumab),
followed by treatment 2 (mepolizumab). The second and third position was swapped in the
MAIC-adjusted NMA in comparison to the connected NMA, the second position was taken
by treatment 2 (mepolizumab) and then treatment 3 (benralizumab). Omalizumab and SOC
scored fourth and fifth rank respectively in all the models.

A negative value in the point estimate means the corresponding treatment is capable of
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reducing asthma exacerbations compared to the reference. The point estimate of SOC in
the standard connected and MAIC-adjusted NMA were positive which means SOC failed
to reduce asthma exacerbation in comparison to mepolizumab. However, the magnitude
of point estimate for SOC was more further from 0 in MAIC-adjusted NMA which means
SOC was proved to be much less efficacious in MAIC-adjusted NMA compared to connected
NMA. The point estimate of benralizumab showed opposite results. It was found to be more
efficacious than mepolizumab in connected NMA but less efficacious in the MAIC-adjusted
NMA. However, the CrI in the MAIC-adjusted NMA includes 0 which means the results
were statistically not significant. Moreover, the point estimate of dupilumab showed similar
results in both NMAs, nonetheless, the magnitude of the estimate of dupilumab was found
more efficacious in the connected NMA. Furthermore, the point estimate of omalizumab
was similar, even so, the CrI included 0 in both NMAs which makes the results statistically
insignificant. In addition to the point estimates, the width of most of the CrI in MAIC-
adjusted NMA was narrower than the connected NMA.

(a) posterior rank probability for fixed effect (b) posterior rank probability for random effects

Figure 7.12: Posterior rank probability for connected fixed and random effects
NMA model

(a) posterior rank probability for fixed effect (b) posterior rank probability for random effects

Figure 7.13: Posterior rank probability for both fixed and random effects MAIC-
adjusted NMA model

Table 7.7 shows the consensus between different models on the ranking of the treatments.
A clear consensus was found on the ranking for SOC, omalizumab, and dupilumab where
dupilumab scored the highest rank, omalizumab in fourth rank, and SOC scored the lowest
rank. Benralizumab scored second in connected NMA which was replaced by mepolizumab
in MAIC-adjusted NMA.
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Table 7.7: Ranking comparison between different NMA models (both in FE and
RE model)

Connected
NMA

MAIC
adjusted

NMA

MAIC
adjusted

NMA
(DB)

SOC 5 5 5

Mepolizumab 3 2 2

Benralizumab 2 3 3

Dupilumab 1 1 1

Omalizumab 4 4 4

a DB=Double-bootstrapped

7.7 Discussion

The aim of this chapter was to demonstrate the implementation of the double-bootstrapped
MAIC-adjusted NMA approach. First, a connected NMA was carried out to estimate the rel-
ative treatment effect for severe eosinophilic asthma. The connected network of evidence was
then made disconnected artificially by dropping one arm from each RCT which makes each
RCT into a single-arm study with AgD. The 250 mg mepolizumab arm from the DREAM
study was considered as a single-arm study with IPD. Then multiple unanchored MAICs were
estimated by repeatedly using the IPD from the DREAM study. A MAIC-adjusted NMA as
well as a double-bootstrapped MAIC-adjusted NMA was then estimated.

The standard connected NMA was performed to estimate relative treatment effects instead of
a ML-NMR. ML-NMR introduced by Phillippo et al. (2020a) is a recent developement which
incorporates both IPD and AgD in an NMA setting to estimate relative treatment effects.
It is multi-level as it embeds a probabilistic approach to population adjustment by allowing
both aggregate data and individual data into a single probabilistic model and as it uses a
linear model using available IPD, hence it is termed as network meta-regression. Similar to
STC, this method uses a linear model using IPD to perform meta-regression, however, ML-
NMR differs from STC as ML-NMR is capable of generalising population-adjustment to a
larger network of evidence where the relative effects can be estimated in any specified target
population. ML-NMR aims to make an unbiased comparison of the outcome variable by tak-
ing into account imbalance in effect-modifiers. In the DREAM study all the variables were
prognostic and no variables were identified as effect-modifiers, therefore, it was not necessary
to balance out these variables with the use of ML-NMR. A standard NMA was considered to
be enough for estimating relative treatment effects assuming that effect-modifier variables are
evenly distributed. For the connected NMA, the estimands were unadjusted relative effects
of treatments, however, for MAIC-adjusted NMA, the estimands were adjusted population-
average relative effects for the AgD study.

The results from the connected NMA show that dupilumab has the highest efficacy in com-
parison to mepolizumab followed by benralizumab, omalizumab and then SOC. The results
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from the MAIC-adjusted NMA and double-bootstrapped MAIC-adjusted NMA was similar
where dupilumab showed the highest efficacy with respect to mepolizumab, followed by ben-
ralizumab, and omalizumab. The results from the standard NMA and MAIC-adjusted NMA
were similar except the ranking for benralizumab which was scored third in MAIC-adjusted
NMAs but second in standard NMA. One reason could be that MAIC-adjusted NMA was
able to adjust for only two variables due to availability and convergence issues. In both the
standard and MAIC-adjusted NMA, mepolizumab was found to be better than omalizumab.
However, few studies have evaluated mepolizumab with omalizumab; hence no consensus can
be found on the efficacy of these drugs. The results from those studies were in opposite
directions in terms of the efficacy of mepolizumab with omalizumab.

Between the fixed and random effects double-bootstrapped MAIC-adjusted NMA, the DIC
and residual deviance both were lower for the random effects NMA compared to the fixed
effect. Even so, the difference in DIC between the fixed and random effects models was less
than 3 points, which means both models were similar. Moreover, the point estimates and CrI
for MAIC-adjusted NMA and double-bootstrapped MAIC-adjusted NMA were similar. The
SE of the double-bootstrapped MAIC-adjusted NMA was higher than MAIC-adjusted NMA
due to the use of double-bootstrapping. Nevertheless, the results that are presented in Table
7.6 are only for one run with the IPD. The whole process needs to run a sufficient number of
times (such as 1000) to get the bootstrapped SE. The SE for the standard NMA and MAIC-
adjusted NMA(with or without double-bootstrap) was not comparable. This was because
the results in 7.3 were presented for the mepolizumab arm instead of the reference arm SOC.
The relative treatment effects with mepolizumab were estimated via the consistency equa-
tion from the connected NMA. As there were only two studies available with mepolizumab,
therefore the SE of the estimates increased. Consequently, the SE from the standard and
MAIC-adjusted NMA should not be compared.

In all models, the heterogeneity parameter τ was similar which showed moderate heterogene-
ity between studies. Due to a limited number of studies per comparison a weakly informative
prior for τ was used for all the analysis. This could be the reason for the stationary τ in all
models.

7.8 Strength and limitations of the study

In the absence of head-to-head comparison between multiple comparator treatments of a
particular health condition, this study illustrates how to make multiple comparisons simul-
taneously using double-bootstrapped MAIC-adjusted NMA where a correct level of coverage
for the NMA estimates can be preserved with the use of double-bootstrapping.

The main limitation of the study was that the unanchored MAICs were not able to adjust
for all the prognostic and effect-modifying variables. This was because, in the DREAM
study although the prognostic variables were defined, there was no information on whether
any variables were effect-modifiers or not. Additionally, during the estimation of MAICs,
all prognostic variables were not included due to availability and convergence issues which
could have retained residual bias between studies. The inability to adjust for all prognostic
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variables could be the reason that the ranking of treatments 2 and 3 was swapped between
standard and MAIC-adjusted NMA. Moreover, as no effect-modifying variables were identi-
fied in DREAM study, it was assumed that ML-NMR was not imperative which is developed
to adjust effect-modifier variables in a connected NMA setting. The standard NMA was
considered to be capable of adjusting all prognostic variables and there was no imbalance
between studies due to effect-modifiers. Additionally, during the estimation of the standard
NMA all the placebo/SOC arm were considered similar which may not be true. Furthermore,
all the models showed a moderate level of heterogeneity between studies which indicates the
possibility of the presence of unobserved effect-modifiers which none of the models were able
to adjust for.

The results of the NMAs from this case study chapter should be interpreted with caution.
This is because in order to conduct NMA with the real dataset of asthma, the formation of
a connected network was required. For this, to find out the connected network of evidence
for eosinophilic asthma, an existing systematic review for severe eosinophilic asthma was
used. Although the review identified all the available treatments for eosinophilic asthma, no
NMA could be conducted with the treatments as there was no common placebo/standard of
care (SOC) exists. Additionally, the assumptions of transitivity and consistency need to be
satisfied for estimating a credible NMA. In this case study chapter, the difference between the
identified studies was completely ignored to satisfy the assumptions, and the placebo/ SOC
arm was assumed to be the same for each study to perform a standard, MAIC-adjusted and
double-bootstrapped MAIC-adjusted NMA. The target of this chapter was to demonstrate
how double-bootstrapping can be executed with a real dataset as well as to identify practical
challenges for the application of double-bootstrapping, not to make a valid comparison among
comparator treatments.



Chapter 8

Discussion and Conclusion

A single-arm study is exceptional in its design where all the patients receive the same treat-
ment and there is no control arm to estimate the relative treatment effect. This characteristic
of the single-arm study does not allow a direct estimate of treatment effects like an RCT.
Therefore, undertaking treatment comparisons using the single-arm study has to be done
in an indirect way. An indirect comparison can either be in anchored or in unanchored
form where an anchored indirect comparison refers to the relative treatment comparison via
a common comparator which takes into account randomisation within studies. Therefore,
in anchored comparison it is not necessary to adjust for prognostic variables; only effect-
modifying variables are adjusted for. An unanchored indirect comparison needs to be done
when common comparators do not exist between studies, therefore, it does not consider ran-
domisation within studies. An unanchored indirect comparison is more problematic as it
relies on the conditional constancy of absolute effects assumption. The assumption presumes
that all prognostic and effect-modifiers have been adjusted which is demanding to meet in
practice. With a single-arm study, the comparison is always in an unanchored form where
the relative treatment estimate needs to be made with an external comparator. Therefore,
these variables need to be adjusted to obtain a valid comparison.

In HTA, estimating relative treatment effects comparison with a single-arm study is not only
difficult as the external control/comparator arm needs to be balanced with respect to prog-
nostic and effect-modifying variables but also access to IPD is often restricted. In HTA, when
a pharmaceutical company wants to estimate the relative treatment effect with a single-arm
study by adjusting prognostic and effect-modifying covariates, most of the time the IPD is
available for their own study but not for the comparator study. Due to this limited avail-
ability of IPD, conventional adjustment methods like propensity score matching or regression
adjustment are not possible, and population-adjustment methods that can adjust study arms
using both IPD and AgD need to be applied.

This thesis provides an exploration of indirect comparisons with population adjustment meth-
ods using single-arm studies in HTA. The thesis, as a whole, can be described in five key
points. First, in the NICE STA review chapter, it was noticed that unanchored MAIC and
STC were used with single-arm studies in a larger disconnected network of evidence despite
the fact that they were not being developed for multiple comparisons simultaneously. Second,

199



CHAPTER 8. DISCUSSION AND CONCLUSION 200

in the review of methods chapter, two NMA-based methods namely random baseline NMA
and NMA with matching were identified that could be used to estimate relative treatment
effects in a larger disconnected network of evidence using single-arm study, however, they
were found to be difficult to implement as they must satisfy a lot of assumptions in order to
get reliable estimates. Third, the subsequent two chapters (Chapters 4 & 5) design a simula-
tion study to explore the consequence of applying MAIC in a larger disconnected network of
evidence with repeated use of IPD from a single-arm study, both for a fixed effect and random
effects NMA. Undercoverage of MAIC-adjusted NMA estimates was found to be the prime
concern in the simulation study. Fourth, in Chapter 6, a double-bootstrapping approach was
developed to overcome the problem of undercoverage issue that was found during the simula-
tion study with the NMA estimates. Finally, in Chapter 7, to illustrate the practical use of the
double-bootstrapping approach, it was applied to a real dataset that was collected in an RCT.

The objective of this chapter is to provide a discussion of the thesis in a structured and
systematic way. Sections 8.1 to 8.5 narrate the main finding of the thesis in a coherent way.
Section 8.6 explains the strengths and limitations of the research whereas Section 8.7 proposes
ideas for future investigation. Section 8.8 sums up the thesis with a conclusion.

8.1 Review of methods using single-arm studies in NICE sin-
gle technology appraisals

Estimating relative treatment effects with single-arm studies comes with additional difficul-
ties as single-arm studies lack a comparator arm which turns the relative comparison into
an unanchored form. In Chapter 2, a review was done to assess how comparisons against
relevant comparators were obtained from single-arm studies in NICE STAs when IPD was
partially available . The focus of the review was NICE because worldwide it is appraised as
one of the most influential HTA bodies.

Earlier a review was done by Phillippo et al. (2019a) on NICE STAs where the objective
was to explore how the population-adjustment methods were used for any outcome. The
timeframe of Phillipo’s review was 2010 to 2018 and it was done for both anchored and
unanchored cases. However, the review on NICE STAs in this thesis was restricted only to
single-arm studies for unanchored comparison with a time frame from 2018 to 2021. This
time frame was chosen to include more recent STAs information. In Phillipo’s review, 83%
of the identified applications were found to be in oncology which shows the frequent use of
population-adjustment methods in this field.

Out of 260 TAs that were identified in the NICE STA review (Chapter 2), 20 TAs were found
to be eligible for inclusion as the pivotal study was a single-arm study with partial availability
of IPD (Section 2.3). Of the 20 included TAs, 80% used population-adjustment methods,
and all the TAs were found to be in oncology. Unanchored MAIC was found to be the most
applied population-adjustment method, followed by unanchored STC (Section 2.3.2). MAIC
(Signorovitch et al., 2010; Ishak et al., 2015b) was developed based on a reweighting technique
whereas STC (Caro and Ishak, 2010; Ishak et al., 2015b) depends on regression adjustment.
Both methods were developed to adjust the baseline covariates for a pair of study populations
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and cannot be extended for multiple studies i.e. for a larger network of evidence.

It was found that more than half of the TAs in the review (55%) have to make treatment
comparisons for a larger disconnected network of evidence which includes not just multiple
comparisons but multiple sources of evidence per comparison as well (Section 2.3.3). The
larger disconnected network of evidence was found to be formed when a treatment from the
single-arm study needs to be compared to more than one comparator treatment from differ-
ent studies or the single-arm study treatment needs to be compared to a single comparator
but from multiple studies. Multiple MAICs were applied in order to deal with multiple
comparators. Additionally, when MAIC was used in a disconnected network of evidence for
estimating relative treatment effect, the IPD from the single-arm study was used several
times which breaks the independence between the studies. Some TAs have used STC to
construct a predicted treatment arm for each single-arm study. This predicted arm forms a
newly-connected network and then analyses were made with FP NMA. Although MAIC and
STC are not developed to make multiple comparisons, they can still be used if an additional
assumption called shared effect modifier can be assumed. None of the STAs have tried to
justify this assumption.

Although in the review the use of both MAIC and STC were found, the frequency of us-
ing MAIC (65%) was more than STC. Reduction in ESS was found to be one of the major
problems in applying MAIC. In order to overcome the problem of small ESS, some compa-
nies often discarded adjusting all unbalanced baseline covariates. Very small ESS is quite
alarming as it suggests that there is a serious paucity of overlap between study covariates.
When there exists a scarcity of overlap, weighting methods like MAIC cannot extrapolate
beyond the data observed in the IPD, in which case MAIC estimates become biased. Most
of the TAs did not adjust all the identified prognostic and effect-modifier variables due to
availability issues. Therefore, unmeasured prognostic and effect-modifier variables increase
the possibility of residual bias.

Description of the uncertainty estimates of the MAIC method was also very vague for most
of the TAs included in the review. For MAIC, robust sandwich estimator and bootstrapping
were mentioned for a few TAs. In STC, bootstrapping was used as the method to capture
uncertainty. In MAIC, bootstrapping and sandwich estimators both estimate uncertainty
from the data and discard overly strong assumptions about the weights by not treating the
weights as fixed and known. However, compared to the sandwich estimator, bootstrapping
is computationally very challenging.

The review of NICE STAs have both similarities, as well as dissimilarities with the review
by Phillippo et al. (2019a). Similar to Phillipo’s review, the applications of population-
adjustment methods also turned out to be in oncology where survival outcomes were found
to be the most common outcome type. A substantial decrease in ESS has been found in both
of the reviews which in turn made the comparisons dependent on very few numbers of indi-
viduals in the IPD study. Additionally, the application of population-adjustment methods
turned out to be very prevalent for a larger network of evidence in Phillipo’s review which
was found to be true for the review in this thesis also. On the contrary, in Phillipo’s review,



CHAPTER 8. DISCUSSION AND CONCLUSION 202

no TAs were proved to be attempted to adjust residual bias whereas in this review, one TA
was found that had used “out sample” method to quantify residual bias.

The main contribution of the NICE review chapter was that it pointed out two important
facts that need to be considered. First, Chapter 2 sheds light on the issue that there is a lack
of appropriate population-adjustment methods when there are multiple comparators. When
an intervention from the single-arm study needs to be compared in a larger disconnected
network of evidence where the network includes not just multiple comparisons but multiple
sources of evidence per comparison, population-adjustment methods were used recurrently
using the same IPD from the single-arm study. Moreover, in some TAs, the population-
adjustment methods were used multiple times to use the estimates in a NMA setting so that
relevant comparators can be compared simultaneously ignoring the fact that these methods
are not capable of doing so. Second, this chapter also draws attention that it was crucial to
investigate what methods are available in the literature that can estimate relative treatment
effects with single-arm studies and also if the methods are able to handle multiple comparisons
with multiple sources of evidence per comparison simultaneously. All these issues set the scene
to conduct a second review to identify methods for unanchored indirect comparisons with
single-arm studies.

8.2 A systematic review of methods for unanchored indirect
comparisons with single-arm study

After conducting the review on NICE STAs, the next objective was to explore all the avail-
able methods in the literature that could be used to estimate relative treatment effects with
single-arm studies. In order to do so, a second review was carried out (Chapter 3). The
review aimed to understand how and under what situations the methods can be used. At
the beginning of the review, 682 references were identified which comes down to 13 articles
after screening (Section 3.3). Of these 13 articles, 4 methods were identified which could
be used with single-arm study to estimate the relative treatment effect. Random baseline
NMA method was discussed by Thom et al. (2015); Goring et al. (2016) and Béliveau et al.
(2017) and NMA with matching was identified in Leahy et al. (2019). MAIC was identified
from several articles including Signorovitch et al. (2010); Cucherat et al. (2020); Jiang and
Ni (2020); Remiro-Azócar et al. (2020). STC was identified from Caro and Ishak (2010);
Remiro-Azócar et al. (2020).

All four methods identified in the review of methods chapter were different from each other in
various aspects (Section 3.4.5). The methods can be classified under two categories. Methods
that can estimate a relative treatment effect from a single-arm study with only one comparator
treatment or those that can estimate relative treatment effects with multiple comparators
with multiple sources of evidence per comparison simultaneously.

8.2.1 Comparison of a treatment with a single comparator

Both matching adjusted indirect comparison (MAIC) and simulated treatment comparison
(STC) are suitable for estimating the relative treatment effect of an intervention treatment
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with a single comparator. When a treatment from a single-arm study needs to be compared
with a comparator treatment after balancing out the baseline covariates, an unanchored
MAIC/STC can be applied where the comparator treatment can come from another single-
arm study or from one arm of an RCT for which only AgD information is available (Section
3.4.1 & 3.4.2).

MAIC uses the reweighting method in a propensity score logistic regression model whereas
STC uses regression adjustment (linear, logistic, or any time-to-event regression model) to
balance out all known effect-modifiers and prognostic variables between the IPD study with
respect to the AgD study. An overlap between AgD and IPD study variables is needed
to apply the logistic model in MAIC, in the absence of which MAIC cannot extrapolate
beyond the observed data. However, unlike MAIC, STC is capable of extrapolating beyond
the observed values. Nonetheless, MAIC targets a marginal treatment effect whereas the
version of STC (anchored) that is described in Phillippo et al. (2016), targets a conditional
treatment effect due to the non-collapsibility issue. The version of STC that uses parametric
G-computation or model-based standardisation can produce a covariate-adjusted marginal
effect estimate (Remiro-Azócar, 2021). Misspecifying the relationship between covariates in
the MAIC propensity score regression model or the outcome and covariates in STC regression
model can produce biased estimates.

8.2.2 Comparison of a treatment with multiple comparators from multiple
sources of evidence per comparison

Random baseline NMA and NMA with matching are suitable for estimating the relative
treatment effects of a treatment from a single-arm study to multiple comparators with mul-
tiple sources of evidence per comparison (Section 3.4.3 & 3.4.4).

Random baseline NMA uses the assumption of exchangeability that assumes the similarity
of a reference arm throughout a disconnected network of evidence and makes the inclusion of
single-arm study treatment possible. In NMA with matching, a single-arm study treatment
is matched to any arm of a connected network based on the similarity of patient character-
istics including both effect-modifier and prognostic variables. The main criticism of random
baseline NMA is the assumption of exchangeability that can interfere with randomisation.
To address this interference, recently, a reformation has been done on random baseline NMA
known as “reference prediction”, introduced by Thom et al. (2022) where studies in the NMA
are separated into groups by putting RCTs connected to the reference treatment into one
group, and single-arm studies into another group. In NMA with matching, any arm of the
connected network can be taken for a match as long as the comparator arm covariates are
similar to the single-arm study. A reformation has been done on it known as ALM by Thom
et al. (2022) where Euclidian distance has been used to assess the closeness of the single-arm
study treatment with another arm of the network concerning patient characteristics.

8.2.3 Suitability of methods in different situations

Adjustment and identification of all prognostic and effect-modifier variables is a vital require-
ment for methods with single-arm studies. MAIC and STC compare an intervention with
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a comparator treatment. Although MAIC and STC are not suitable for a larger network
of evidence, they are capable of adjusting all known prognostic and effect-modifier variables
using the propensity/regression model (Section 3.4.5.4). When this cannot be done, i.e. if
unmeasured prognostic and effect-modifier variables exist, residual bias will affect relative
treatment effects. MAIC/STC are not appropriate for larger networks as they focus on a
different target population in every single comparison, which is the population of the com-
parator study. They can be extended for a larger network of evidence by including the shared
effect modifier assumption. This assumes that the competing treatments belong to the same
class with similar clinical properties and they share the same set of treatment effect-modifiers
which allows relative treatment effects to be interpreted into any population. This assump-
tion is hard to meet in practice and is untestable.

Random baseline NMA and NMA with matching can compare an intervention with a single-
arm study to a larger network of multiple comparators with multiple sources of evidence per
comparison (Section 3.4.5.5.2). The larger network can include both RCTs and single-arm
studies. NMA-based methods can handle a larger network of evidence, however, to get a valid
estimate, they need to satisfy a lot of assumptions such as transitivity, consistency along with
the robust assumption of conditional constancy of absolute effects. Failure to satisfy these
assumptions makes the methods invalid. Although random baseline NMA was found to be
“safer” than NMA with matching as it is more conservative, its main criticism lies in the
exchangeability assumption which is often impractical and generates a biased estimate. In
the random baseline NMA, covariates can be adjusted by conducting a within-study and
between-study covariate adjustment on treatment but it is often the case that an adequate
number of studies are not available for each treatment effect for conducting the between-study
covariate adjustment. Between-study covariate adjustment/interaction effect is harder to de-
tect than within-study interaction as the former needs to differentiate the interaction effect
from the random noise (Dias et al., 2011a). In NMA by matching and in ALM, adjustment
of variables is done by finding an arm that matches with the single-arm study. However, this
matching can be difficult if the information on important covariates is not present across the
network. Additionally, there is no clear guideline on how much similarity can be considered
sufficient for a valid comparison. Moreover, the reference prediction and ALM model can-
not adjust for treatment effect-modifiers, they can only take into account prognostic variables.

A major issue with NMA-based methods is that though they can be used in a larger discon-
nected network of evidence, however, to get a trustworthy estimate, the disconnected network
of evidence needs to consist of a sufficiently large connected and a disconnected part where
several studies should be available per comparison for both parts. A larger disconnected net-
work is common in HTA, however, the network usually consists of several single-arm studies.
Therefore, a connected part with several studies per comparison is very rare in NICE STAs
with single-arm studies. Furthermore, random baseline NMA is able to use both IPD and
AgD but reference prediction and ALM are still not available for that. They can only be
used with AgD.

None of the methods found in Chapter 3 can be declared as ideal for every situation as every
method functions well when it satisfies certain conditions. The rarity of a connected part
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with multiple studies per comparison in a larger disconnected network of evidence makes the
NMA-based methods difficult to carry out. Moreover, reference prediction and ALM are not
able to adjust for effect-modifier variables which is a key concern. As adjustment of variables
is a vital issue with single-arm study, therefore, these NMA-based methods were not further
considered. MAIC and STC are useful for estimating treatment effects in a pair of studies
by adjusting imbalanced variables but they are not suitable for a larger network without
making additional assumptions. However, both MAIC and STC were found to be used in
a meta-analysis setting to handle a larger disconnected network of evidence in NICE STA
review (Chapter 2) with the recurrent use of the IPD from the single-arm study. All these
motivated the design of a simulation study to observe the consequences of the identified issues.

The main contribution of Chapter 3 is that it identifies methods other than MAIC and STC
that could be used in estimating relative treatment effects with single-arm studies and discuss
the conditions under which the methods are justifiable. This chapter provides a thorough
discussion of the identified methods with their pros and cons and discusses the rationale of
not using the identified NMA methods for the simulation study.

8.3 Simulation Study with a fixed and a random effects NMA

In Chapter 2 it was noticed that to get a coherent synthesis of overall treatment effect es-
timates in a larger disconnected network of evidence with a single-arm study, unanchored
MAIC or STC were applied in an NMA setting without justifying the shared effect modifier
assumption. Additionally, in this process, the IPD from the single-arm study was used multi-
ple times which violates the independence among the studies. To understand the consequence
of performing a population-adjusted NMA, a simulation study was designed for binary out-
comes (Chapters 4 & 5). The rationale for using binary outcome comes from the discussion
of single-arm study in drug development (Section 1.4).

It was perceived that oncology and haemato-oncology are the specific areas where the use
of single-arm studies was very prevalent and where time-to-event outcomes are most preva-
lent for establishing clinical effectiveness followed by binary outcomes. Binary outcomes like
overall response rate (ORR) and complete response rate (CRR) are frequently used for es-
tablishing clinical effectiveness. In comparison to binary data, simulation with time-to-event
event data is quite complex. Therefore, to start with a simple setting, the simulation study in
this thesis was done with binary data. However, it is surely possible to extend the simulation
study for time-to-event data. A simulation study by Remiro-Azócar et al. (2021) with time-
to-event data found that population adjustment method MAIC shows undercoverage where
model standard errors underestimated the empirical standard errors with small sample size
and low overlap scenarios. Although the simulation study by Remiro-Azócar et al. (2021)
was done for a pair of studies with a common treatment, the undercoverage issue matches
the results of the simulation in this thesis. This indicates the simulation of single-arm studies
with binary data seems extendable for time-to-event data where undercoverage issues are also
expected to be found.

To evaluate the population-adjustment method MAIC is of paramount importance as the fre-
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quency of using MAIC in HTA submissions turned out to be much higher than STC (Chapter
2), therefore, MAIC was chosen for the simulation study. It was essential to understand the
impact of performing MAIC-adjusted NMAs and formally evaluate the performance of this
approach.

The goal of the data generation setting in the simulation study was to replicate a common
scenario in HTA, where the treatment from a single-arm study needs to make relative treat-
ment comparisons with multiple comparator treatments with multiple sources of evidence per
comparison and the single-arm study has IPD on outcome and covariates but only AgD val-
ues for comparator treatments. Data generation was done for four settings with 3 treatments
using binary outcomes (Section 4.3). The four settings were “connected smaller network
of evidence”, “connected larger network of evidence”, “disconnected smaller network of evi-
dence”, and “disconnected larger network of evidence”.

A connected network means a collection of RCTs with respect to a common treatment whereas
a disconnected network of evidence refers to a collection of studies without any common treat-
ment. Smaller and larger network refers to how many studies were available per comparison.
After generating data for a connected network of evidence, it was transformed into a discon-
nected network of evidence by dropping one arm from each RCT. Both the connected and
disconnected networks were generated as smaller (3 studies) and larger (10 studies) where
a smaller network of evidence refers to one study per comparison whereas a larger network
refers to multiple studies per comparison. To evaluate the MAIC-adjusted NMA with respect
to the size of the network was an essential issue as in HTA submission the number of studies
per comparison is often very limited.

The simulation study evaluates the change in five factors in a full factorial design (Section
4.3.2). The five factors were the overall sample size (150 and 500), the correlation coefficient
between covariates (weak and strong), the strength of effect-modification and prognostic
variable (weak and strong), and between study overlap (weak and strong). The estimands
of interest were the overall treatment effect estimates from the MAIC-adjusted NMA. The
simulation satisfies the shared effect modifier assumption as it was needed to apply the MAIC
estimates in an NMA. For a smaller and larger disconnected network of evidence, MAIC was
applied multiple times and then a MAIC-adjusted fixed and random effects NMA was per-
formed. Robust SE were used for estimating the uncertainty of the NMA estimates.

All the coding was done using R programming language and I am claiming myself as the
sole contributor for all the R codes. Developing all the R codes and running them to get
simulation results were quite challenging. Before starting the R coding, it needed a clear
understanding and perfectness of R syntax e.g. looping. Moreover, all the R codes were run
using high performance computer (HPC). Running codes in HPC is not straightforward as
one needs to learn the Linux operating system and also getting all the results can be quite
time-consuming as one needs to wait in a queuing process to get his/her HPC results. It took
me a solid month to learn how to use HPC and how I can adjust my R codes to run in HPC
using R codes on parallelism.
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Overall, the findings from the random effects MAIC-adjusted NMA were similar to the fixed
effect NMA. The major impact of performing an MAIC-adjusted NMA was seen in the cov-
erage of NMA estimates for each DGM. Deviation from nominal (95%) coverage was seen as
a consequence of repeated use of IPD from the single-arm study. Additionally, the robust
SE was not able to capture the true variability of the NMA estimates which resulted in low
coverage. The undercoverage issue with the MAIC-adjusted NMA was less severe with the
smaller network of evidence compared to the larger network of evidence. This was because
the assumption of independence of the unit of analysis was broken more in a larger network
of evidence which resulted in a more severe undercoverage issue with the larger network.
Moreover, bias was found to be inversely associated with overlap between studies and higher
biases were found with high effect-modifier and prognostic variable levels.

The difference between the undercoverage of fixed and random effects NMA was that the
undercoverage issue was slightly better (close to 95%) for the random effects MAIC-adjusted
NMA model compared to the fixed effect model. As the heterogeneity parameter τ added
some extra level of randomness, it inflates the SE of the NMA estimates which in turn causes
an improvement in coverage. Undercoverage issue was found to be better with a high overlap
between study covariates and a high correlation of within-study covariates. Moreover, for
the random effects MAIC-adjusted NMA model, the coverage was found to be slightly better
with a bigger sample size.

Overall, the simulation study shows that when no prognostic and effect-modifiers variables
were missing (conditional constancy of absolute effects), the shared effect-modifier assump-
tions were satisfied, and a high level of overlap exists between studies, a MAIC-adjusted NMA
was able to estimate the true relative treatment effect of treatments. Although the MAIC-
adjusted NMA was not free of biases, however, the magnitude of biases was not tremendously
unacceptable following Schafer and Graham (2002). The main concern lies in the undercov-
erage issue which makes the NMA estimates unreliable. Therefore, it was of vital importance
to find a solution to this issue. The main contribution of the simulation study is that it at-
tempts to assess the consequence of repeated use of IPD in an NMA setting using estimates
from a population-adjustment method with a robust sandwich estimator. Even so, the sim-
ulation study is not completely flawless as the study did not explore the consequences when
MAIC-adjusted NMA is applied violating the aforementioned assumptions and the overlap
issue.

8.3.1 Comparison of the simulation study with existing studies in litera-
ture

Since the release of TSD 18 by Phillippo et al. (2016), several simulation studies have been
done to explore the appropriateness of the population-adjustment methods (Ishak et al.,
2015b; Belger et al., 2015b; Kühnast et al., 2017; Leahy and Walsh, 2019; Hatswell et al.,
2020; Phillippo et al., 2020b; Remiro-Azócar et al., 2020). In this section, first a discussion
will be conducted on existing simulation studies in literature and then a comparison will be
made with the simulation in this thesis.

In the simulation study by Jiang and Ni (2020), the bias and efficiency of unanchored MAIC
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was assessed with two single-arm studies for time-to-event outcomes. Unanchored MAIC was
found to have the potential to generate unbiased estimates if all effect-modifier as well as
prognostic variables were balanced. In the absence of effect-modification, biases were still
found due to the non-balancing of prognostic variables. Hatswell et al. (2020) assess the per-
formance of unanchored MAIC where an intervention was compared to a control by matching
on first or higher moments using a variety of conditions for time-to-event outcomes. A va-
riety of scenarios were then tested by varying several factors including the survival model,
type of variables for matching (binary as opposed to continuous), the relative importance of
covariates, efficacy of treatment, matching also on nuisance parameters, degree of overlap,
effects of the unobserved variables and so on. Under suitable conditions of higher overlap and
matching on important variables, MAIC appeared as a competent method to address biases.
However, with a small sample size, omission of imbalanced important variables, poor overlap
or matching on variables with limited impact on the outcome causes biased estimates. When
MAIC showed poor performance, it worsened if matching was also performed on higher mo-
ments.

A simulation study by Remiro-Azócar et al. (2020) compared standard unadjusted indirect
comparisons (Bucher method), anchored MAIC and STC under a variety of scenarios for
time-to-event outcomes with continuous covariates. MAIC was found to be the least biased
method followed by conventional STC and the Bucher method. Standard errors and coverage
rates are often valid in MAIC but with small sample sizes and poor covariate overlap, model
SE underestimate the empirical SE due to the use of a robust sandwich estimator for esti-
mating SE that results in empirical coverage rates significantly below the nominal coverage.

Phillippo et al. (2020b) have done an extensive simulation study to compare ML-NMR, an-
chored MAIC and STC for binary outcomes in a range of scenarios under various failures of
assumptions. The factors that were varied were sample size, missing effect-modifiers, effect-
modification strength, varying between-study overlap, validity of the shared effect modifier
assumption, validity of extrapolation, different correlations and covariate distributions. ML-
NMR and STC outperformed MAIC by eliminating bias when the requisite assumptions were
met. Unlike other studies, the validity of MAIC was seriously questioned as it performed
poorly in all simulation scenarios. In a few scenarios with low overlap and small sample
size, MAIC even showed larger bias in comparison to standard indirect comparison i.e. to
Bucher method. As a weighting method the inability of MAIC to extrapolate when the AgD
study is not contained sufficiently within the population of the IPD study causes this poor
performance. Justifications were also mentioned as to why other studies failed to discover
this drawback of MAIC. Either in other studies, a good amount of overlap exists between
studies with continuous covariates or they were focused on binary covariates, where issues
only arise when covariate proportions are close to zero or one in the IPD study. Phillippo
et al. (2020b) found that though MAIC SE was estimated using bootstrapping, however,
deviation from nominal coverage was again found for some scenarios. Bias was found to be
associated with deviation from the nominal coverage level. Bias and coverage were found to
be inversely related. However, the opposite was seen for coverage and overlap. With high
overlap between studies, MAIC was able to reduce more bias that results in higher coverage.
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Leahy and Walsh (2019) did a simulation study to assess the impact of using anchored MAIC
prior to running a Bayesian network meta-analysis with time-to-event outcomes for a con-
nected network of evidence. In total 4 studies were simulated where 3 studies have IPD and
1 study has AgD. When the distribution of covariates in the IPD studies was very different
from the AgD studies, i.e. with low overlap between studies the standard NMA model in
general gives worse estimates (high MAE) in comparison to the estimates when covariates
are similar between the studies. Posterior SD was used to measure uncertainty. With low
overlap between IPD and AgD studies, the MAIC gives a posterior SD that was similar to
the standard NMA model for both the direct and the indirect estimates of treatments. This
means uncertainty in the estimates increases by running a MAIC. However, the MAE of
the indirect estimate was quite similar for the standard NMA model and the MAIC model.
Both fixed effect and random effects NMA models were fitted where the coverage of the
random effects model was closer to the nominal 95% CrI than the fixed effect model. The
posterior SD was much smaller for the fixed effect models compared with the random effects
models, which explains the lower coverage. The coverage was found to be decrease when the
covariate-treatment interaction increased. When the IPD studies had a relatively low overlap
with the AgD study, the MAIC model generated a larger measure of heterogeneity in com-
parison to the standard NMA models. The large amount of reweighting probably caused this.

Most of the simulation studies that exist in the literature are for anchored cases with sur-
vival outcomes. Although studies by Jiang and Ni (2020) and Hatswell et al. (2020) were
on unanchored MAIC, those were conducted for a pair of studies. Two studies were iden-
tified that have included MAIC in a NMA setting (Leahy and Walsh (2019); Belger et al.
(2015b)), however, these were also for a connected network of evidence using anchored MAIC.
The study by Belger et al. (2015b) was not available as a full article, therefore it was not
discussed. No study has been found that has applied unanchored MAIC in a NMA set-
ting. Therefore, it may be reasonable to claim that the simulation study carried out in this
thesis is the first attempt to observe the consequence of unanchored MAIC in a NMA setting.

As in the study by Hatswell et al. (2020), small sample size and poor overlap were also found
to be associated with biases in the simulation study in this thesis. Undercoverage was also
found in the study by Remiro-Azócar et al. (2020) where it was claimed that the use of
robust SE was the cause of the undercoverage of MAIC estimates. Undercoverage was also
seen in the study by Phillippo et al. (2020b) where bootstrapping was used for estimating
SE. Phillippo et al. (2020b) explains the deviation from nominal coverage rates as a result
of both the bias and the SE whereas, Remiro-Azócar et al. (2020) suggests that for MAIC,
the sandwich estimator is the sole cause for low coverage. The simulation study in this thesis
also used a sandwich estimator for estimating uncertainty for MAIC weights. However, the
simulation in this thesis did not test undercoverage within each MAIC. The undercoverage
issue was found for each MAIC-adjusted NMA estimates. Higher biases were found with low
overlap scenarios where the undercoverage issue was found to get more severe. However, the
highest biases were seen for the smaller disconnected network of evidence where the undercov-
erage issue was mainly found in low-overlap cases. On the contrary, undercoverage worsened
when the same IPD was used multiple times in a larger disconnected network of evidence
compared to a smaller network of evidence. Therefore, the simulation study shows that the
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use of the sandwich estimator along with the repeated use of IPD affected the coverage of
NMA estimates.

Issues identified in the study by Leahy and Walsh (2019) between standard NMA and MAIC
NMA cannot be compared with the simulation study in this thesis. Along with the shared
effect modifier assumption in the simulation study, the factors were also not varied as they
were in the study by Leahy and Walsh (2019). In this thesis, the objective of the inclusion of
the standard NMA was to make sure that the R codes are working correctly and also to check
whether the coverage of the standard NMA at the nominal level or not. Leahy and Walsh
(2019) also found the undercoverage issue. Moreover, parallel to Leahy and Walsh (2019),
the simulation study also found that the random effects model was closer to the nominal
95% CrI in comparison to the fixed effect model. When running an NMA model with MAIC,
Leahy and Walsh (2019) preserve the independence assumption of the unit of analysis by
either weighting covariates for separate IPD studies or pooling all IPD studies to conduct a
MAIC. This was not the case for the simulation in this thesis as one of the objectives was to
assess the impact of using the same IPD repeatedly for conducting multiple MAICs.

8.4 Development of double-bootstrapping with MAIC

For the purpose of overcoming the undercoverage problem, a new and novel method called
“double-bootstrapping with MAIC” was proposed and applied to increase the coverage to
nominal level (95%) (Chapter 6). To evaluate the MAIC with double-bootstrapping, a simu-
lation study was designed. In the simulation study, data were generated for a larger connected
and disconnected network of evidence to apply double-bootstrapping both for fixed and ran-
dom effects MAIC-adjusted NMA. The data generation for the connected and disconnected
network of evidence was the same as it was described in Chapters 4 and 5 (Section 4.3 &
5.3). To execute double-bootstrapping in a MAIC-adjusted NMA, when the IPD from the
single-arm study needs to be used in MAIC, instead of taking the original IPD, double-
bootstrapping should be applied. In this process, for each individual MAIC, a bootstrap
sample should be extracted from the original IPD, and then the bootstrapped sample needs
to be bootstrapped again. The second bootstrapped sample is then required to be used for
the computation of MAIC weights.

The simulation study evaluated the change in five factors as described in Section 8.3. The es-
timands of interest were the overall treatment effect estimates from the double-bootstrapped
MAIC-adjusted NMA. The simulation satisfied the shared effect modifier assumption as it
was needed to apply the MAIC estimates in an NMA setting.

Both for the fixed and random effects MAIC-adjusted NMA, double-bootstrapping was found
to increase the coverage of NMA estimates to the nominal (95%) level. Overlap between
study covariates, prognostic, and effect-modifying variables was found to have no effect on
the coverage. However, biases were found to be lower with high overlap, and low prognostic
and effect-modifying variable levels. The highest biases were found for the combination of
a small (150) sample size with low overlap scenarios. Therefore, low biases can be achieved
with double-bootstrapping for a bigger sample size, but with a smaller sample size and low
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overlap, biases can increase substantially.

Though double-bootstrapping was found to solve the problem of undercoverage, it was not
completely flawless. The main difficulty of the execution of the double-bootstrapping was
that it was computationally very intensive and time-consuming. The simulation study simu-
lated 1000 MCMC samples for each DGM. In each MCMC sample, double-bootstrapping was
implemented to calculate MAIC estimates. The MAIC estimates were then used to perform
fixed/random effects NMA. This whole process was again bootstrapped 300 (for fixed ef-
fect NMA)/1000 (for random effects NMA) times to get bootstrapped NMA estimates. The
R codes were run using HPC with R parallelism where each MCMC sample with double-
bootstrapping was assigned to one computer processor or core to make the calculation faster.
It would take approximately 2 days to get results for 1000 MCMC samples.

The usage of double-bootstrapping is quite frequent in the statistical literature. A double-
bootstrap equation was derived by Shi (1992) for confidence limit estimation and double-
bootstrapping was found to be better than the percentile method and equally good as a
single bootstrap method such as accelerated bias-correction (BCa). Vinod (1995) applied the
double-bootstrap approach in a ridge regression to achieve accurate CIs when the classical
methods or the single bootstrap were unable to obtain it. Letson and McCullough (1998)
proved with an example that CI with double-bootstrapping converges more quickly than
a single-bootstrap. McCullough and Vinod (1998) showed with examples that the double-
bootstrap has better convergence properties for consistent CI. Arasan and Adam (2014)
states that with large sample sizes and low censoring, Wald can still be employed, however,
when the sample size is small as well as it is censored and truncated, double-bootstrapped
CI should be employed. The coverage probability can significantly deviate from the nomi-
nal level when Wald is applied to smaller data sets that are censored or truncated. Chang
and Hall (2015) applied double-bootstrapping for bias corrections and CI. They showed that
double-bootstrapping is insensitive to the number of resamples used in the second bootstrap
stage, where a single second bootstrap sample can be enough for bias correction. In the paper
by Chronopoulos et al. (2015) a double bootstrap algorithm was developed which proved to
improve coverage probabilities for obtaining confidence intervals.

In the NICE STA review (Chapter 2) it was found that other than the sandwich estima-
tor, bootstrapping was also used as a measure of uncertainty for MAIC weights. However,
both methods are subject to undercoverage issues (Phillippo et al., 2020b; Remiro-Azócar
et al., 2020). Chapter 6 adds value to the fact that for uncertainty estimates in a MAIC-
adjusted NMA estimates, double-bootstrapping could be an alternate approach instead of
a sandwich estimator or single bootstrapping. Additionally, several application were found
in the literature on double-bootstrapped CI, however, none of them were applied for esti-
mating the coverage of NMA estimates. Therefore, the application of double-bootstrapping
with MAIC can be considered as a first attempt with a population-adjustment method in an
NMA setting. Moreover, simulation with double-bootstrapping also sheds light on the fact
that though double-bootstrapping is capable of giving the nominal level of coverage, however,
caution should be made with the combination of low-overlap with a small sample size as the
magnitude of biases can increase substantially.
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8.5 Double-bootstrapping with a case study

The aim of Chapter 7 was to demonstrate how to implement double-bootstrapping with a
case study and also to find practical problems associated with implementing the method. For
this, a real dataset from the DREAM study was used (Pavord et al., 2012). In the DREAM
study, data was collected on severe eosinophilic asthma exacerbation where the outcome mea-
sure was the rate of exacerbations. Prior to performing the double-bootstrapping with the
DREAM study, first, a standard connected NMA was performed with 5 available biologics
for asthma (Section 7.4.1). The rate of exacerbation was used as the outcome measure. Both
fixed and random effects NMA models were estimated in a Bayesian framework with Pois-
son likelihood and a log link function. After performing the connected NMA with severe
eosinophilic asthma, a MAIC-adjusted NMA (with and without double-bootstrapping) was
performed (Section 7.4.2 and 7.4.3). For this, the connected network of evidence was con-
verted into single-arm studies. The DREAM study arm 250 mg of mepolizumab was consid-
ered to be the single-arm study with IPD and all the RCTs were transformed into single-arm
by dropping one arm from each study (Section 7.4.2.1). Multiple unanchored MAICs were
performed using IPD from the DREAM study and then with the MAIC estimates a MAIC-
adjusted NMA and a double-bootstrapped MAIC-adjusted NMA were performed.

The first problem that occurred during the estimation process of double-bootstrapping was
that in the IPD (DREAM study) study no clear information was available on effect-modifying
variables, only variables were mentioned which were predictive of the outcome. A data avail-
ability issue was found which restricted the adjustment in MAIC only for 4 variables. Even-
tually, in addition to availability issues, due to non-convergence issues, the MAIC model
was able to adjust for only 2 variables. This may have caused residual bias to be present
in unanchored MAICs. The next issue that was encountered was the difficulty of the es-
timation procedure. Double-bootstrapping is computationally very challenging as well as
time-consuming. The results of the double-bootstrapping that were presented in Chapter 7
were only for one iteration where the number of bootstraps was 2000 (R=2000). This was
run on a personal computer with 4GB RAM and it took almost 2 hours (fixed effect model)
and 6 hours (random effects model) to run the codes for one iteration. This procedure needs
to be repeated a moderately large number of times (for example 2000) where each time the
bootstrapping should be done sufficiently with a big number (for example 2000). Moreover,
the individual MAICs in a MAIC-adjusted NMA is capable of adjusting for covariates that
are imbalanced between studies, it does not guarantee that when the estimates are included
in an NMA setting, the distribution of effect-modifiers will still be same across the network.
Therefore, in implementing the double-bootstrapping in a NMA setting, the shared effect
modifier assumption was made which may not be true in practice. As a consequence, the
estimates can show biased results. Furthermore, in MAIC, low-overlap between studies is a
crucial issue as MAIC cannot extrapolate in low-overlap cases. In Chapter 6 it was found
that double-bootstrapping shows high bias with a small sample size and low overlap.

The contribution of this chapter is that it shows the steps and identifies practical problems
in the implementation of the double-bootstrapping approach with a real dataset.
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8.6 Strengths and limitations of the research

The strengths of the thesis can be described with some key aspects. Firstly, the simulation
study that has been undertaken in the thesis allows for exploring the consequences of re-
current use of IPD with a single-arm study by implementing population-adjustment method
MAIC in a NMA for a disconnected network of evidence. Moreover, the simulation study
also examines the impact of varying the size of the network of evidence which is an essential
issue as in HTA a limited number of studies per treatment comparison is quite prevalent. Un-
dercoverage of the NMA estimates was identified to be the main concern in MAIC-adjusted
NMA. In addition, the thesis attempts to solve the undercoverage issue of NMA estimates
by developing a novel method called “double-bootstrapping with MAIC”. Furthermore, the
practical issues that could be encountered in the execution of double-bootstrapping have been
illustrated with an example using data from an RCT.

In addition to the strengths of the thesis, the limitations need to be considered also. It is
worth noting that, the simulation study in this thesis has been done for binary outcomes.
However, survival outcomes are the most prevalent outcome types in single-arm studies which
is evident from Chapter 1. Further simulation studies are required with time-to-event out-
comes. Furthermore, the simulation study includes only one prognostic and effect modifier
variable. In practice, it is not uncommon to find more than 10 covariates being balanced
during the adjustment process (Phillippo et al., 2019a). Moreover, during the simulation
process, both a smaller and larger connected network of evidence was simulated where a
network was defined as smaller or larger according to how many studies were available per
comparison. A smaller network of evidence refers to a network of studies where there is only
one study per comparison whereas a larger network of evidence refers to multiple studies per
comparison. Nevertheless, in HTA, smaller and larger networks are commonly built according
to how many treatments are evaluated in the network. The simulation study in this thesis
did not evaluate the effect of MAIC-adjusted NMA for this particular setting.

By design the simulation study upholds all the assumptions that are required for indirect
treatment comparisons and valid population adjustments. It does not tell us the conse-
quences in case of failures in assumptions. During the data generation for the simulation
study, a shared effect-modifier assumption was met which kept the effect-modifier variables
balanced across the disconnected network of evidence. In practice, this can rarely be seen.
Additionally, in the simulation study, the data-generating mechanism was known, therefore,
prognostic and effect modifiers were also known. The simulation study satisfied no unmea-
sured effect-modifiers and prognostic variables assumption when conducting the unanchored
MAICs which is again not very common in practice. Typically, one cannot make this de-
termination in practice because full information on covariate data may not be measured or
reported. Moreover, determining the effect modifier status of variables can be challenging,
especially for novel treatments with minimal expertise in the clinical sector and earlier em-
pirical data. The logistic regression model for estimating the MAIC weights was correct in
the simulation study because all the covariates have been included in the model and the bal-
ancing property holds for the weights. The misspecification of the logistic regression model
by the incorrect omission of covariates was not assessed in the simulation study.
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The MAIC approach was predicated on the internal validity of included studies, which calls
for suitable designs, the absence of non-compliance, and suitable sample sizes. This indi-
cates that cross-trial changes that are perfectly confounded with treatment nature cannot be
accounted for by MAIC. Moreover, overlap between study covariates is a major issue with
MAIC as it can not function well in the case of low overlap between studies. Therefore, in
the simulation study, the amount of overlap was kept sufficiently high. In practice, this is
often not the case. In MAIC, the covariate correlations of the AgD study need to be in-
cluded in the weighting model. The correlations are taken to be equal to the correlations
between covariates in the pseudo population created by weighting the AgD population since
it is common that no covariate correlation information from the AgD population can be ob-
tained. Therefore, it cannot be balanced by the inclusion in the weighting model. Bias will
arise from this assumption if higher-order interactions involving two or more factors are not
present or omitted. the simulation study did not evaluate the consequence of violating this
assumption. The simulation study with the double-bootstrapping approach also enlightens
that caution should be made when double-bootstrapping is applied with small sample sizes
and low overlap of covariates between studies as the magnitude of biases can turn out to be
troublesome.

8.7 Scope for further research

The findings from the simulation study show the repercussions of implementing unanchored
MAIC in a larger disconnected network of evidence satisfying the shared effect-modifier and
conditional consistency of absolute effects i.e. no missing prognostic and effect-modifier as-
sumptions. Future study needs to be done to explore the consequences when these assump-
tions are not met. Additionally, the simulation was done for binary outcomes, future studies
should evaluate MAIC-adjusted NMA for continuous and time-to-event outcomes also. In
the simulation study of this thesis, the larger disconnected network of evidence was designed
with 10 studies (6 studies with treatment 2 and 4 studies with treatment 3) and double-
bootstrapping was used for this larger disconnected network of evidence. Future studies
should evaluate the effect of double-bootstrapping for a network of evidence larger than 10
studies. Other simulation studies need to be done where the smaller and larger networks are
built according to the number of treatments instead of the number of studies per treatment
comparison. Furthermore, two levels of covariate overlap were used in the simulation study
termed as low (61%) and high (88%), however, none of the overlap was really low. Further
studies should evaluate the consequences of MAIC-adjusted NMA with a further reduction
of overlap. Moreover, the simulation was designed for unanchored MAIC. Other simulation
studies should be designed to investigate the consequences of implementing unanchored STC
in a larger disconnected network of evidence.

8.8 Conclusion

The main contribution of this thesis is that it has developed a method called “double-
bootstrapping with MAIC” to estimate the SE of MAIC-adjusted NMA estimates. MAIC
with double-bootstrapping can be used in the case when a treatment from a single-arm study
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needs to be compared with multiple comparators with multiple sources of evidence per com-
parator with binary outcome. Double-bootstrapping breaks the correlation that emerged
due to the use of same IPD in a MAIC-adjusted NMA. Instead of using the original IPD in
conducting multiple MAICs, the IPD was bootstrapped twice for each MAIC, and then the
final bootstrapped IPD was used in calculating MAIC estimates for a NMA. Both for the
fixed and random effects NMA of a larger disconnected network of evidence, with double-
bootstrapping, bias was found to be inversely related to overlap. Lower biases were found
with high overlap levels and vice-versa. The general trend was higher bias with higher prog-
nostic and effect-modifying variable levels. Moreover, the magnitude of biases was found to
be lower for the sample size of 500 compared to the sample size of 150. Double-bootstrapping
was found to increase the coverage to the nominal (95%) level both for fixed and random
effects NMA. Additionally, though bias was affected mainly due to overlap between study
covariates as well as prognostic and effect-modifying variables, coverage was found to be un-
affected by these factors. The main challenge found with double-bootstrapping was that it
is computationally very challenging and resource intensive.

The use of MAIC and STC are discouraged in a larger network of evidence (both connected
and disconnected) due to the fact that they are developed to balance covariates between
a pair of treatments. The anchored and unanchored population-adjusted methods satisfy
conditional constancy of the relative effects and conditional constancy of the absolute effects
respectively which are less strong assumptions than the constancy of relative effects made
for standard NMA with only AgD. MAIC and STC make a comparison where the target
population is the population of the AgD study which often does not match the population
for the decision. A newly developed method called ML-NMR that is an extended version
of meta-regression NMA, is a population-adjustment method that combines IPD and AgD
from multiple studies on treatments of interest. In ML-NMR, the IPD is used to define an
individual-level regression model like STC, and aggregate data are fitted by integrating over
the covariate distribution to form the likelihood. ML-NMR differs from STC as the linear
model in ML-NMR is embedded inside a probabilistic model. ML-NMR make use of all
available information and is generalisable to treatment networks of any size in any target
population. It avoids aggregation bias by design, unlike other meta-regression approaches.
Despite all these advantages, the application of this approach still does not include single-arm
studies as the method is currently only applicable for a connected network of evidence.

The biases of MAIC-adjusted NMA estimates (with robust SE or with double-bootstrapping)
were found to be higher for low overlap between studies along with high prognostic and effect-
modifier variables levels. This was found to be true both for the fixed and random effects
NMA. This is because the validity of unanchored MAIC-adjusted NMA depends on how
correctly the individual MAICs are able to adjust the imbalanced variables between stud-
ies. With MAIC, the logistic model starts to produce insensible weights when the overlap
starts to decrease significantly. With low-overlap, large weights are assigned to few obser-
vations which makes the MAIC estimates unstable with larger SE. In the case of complete
non-overlap between studies, MAIC is not able to produce any weight in which case it fails
to produce any estimate. In earlier simulation studies it was found that unable to adjust for
all effect-modifiers as well as prognostic variables, low overlap between studies, small sample
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size, inclusion of variables with limited impact on the outcome, variables that are not linked
to the outcome, and variables that are already well-matched between studies causes MAIC
to give biases estimates with reduced precision (Ishak et al., 2015b; Belger et al., 2015b;
Kühnast et al., 2017; Leahy and Walsh, 2019; Hatswell et al., 2020; Phillippo et al., 2020b;
Remiro-Azócar et al., 2020).

This thesis mainly explores the practical consequences of applying unanchored MAICs in a
NMA setting to estimate the relative treatment effect of a single-arm study treatment with
multiple comparators. The simulation study in this thesis found that breaking the indepen-
dence of the unit of analysis by using the same IPD multiple times along with robust SE
contributes to the presence of undercoverage for NMA estimates. Double-bootstrapping is
advised with MAIC-adjusted NMA as a solution to this problem. However, caution should
be taken when low overlap exists between studies with a small sample size as the simula-
tion showed that biases were comparatively high with a smaller sample size along with low
overlap. Despite the fact that undercoverage was found to be a less serious problem for the
smaller disconnected network of evidence, still double-bootstrapping will be advised to be on
the safer side.
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Remiro-Azócar, A. (2021). Target estimands for population-adjusted indirect comparisons.
arXiv preprint arXiv:2112.08023.
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Appendix A

Data extraction for NICE STA
review

A.1 Tables1

Table A.1: NICE STA data extraction table

TA number TA 525 TA 604 TA 510

Name of
the pivotal
study

IMvigor210 study 101-09 MMY2002

Publication
date of the
appraisal

13/06/2018 02/10/2019 14/03/2018

Therapeutic
Area

oncology oncology oncology

What types
of outcome
measures
were indirectly
compared?

Time-to-event Time-to-event Time-to-event

Which
time-to-event
was indirectly
compared

OS OS+PFS OS+PFS

What
type of network
is being considered?

Multiple
comparison
(larger network)

Single
comparison

Multiple
comparison
(larger network)

Continued on next page
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Table A.1 – continued from previous page

TA number TA 525 TA 604 TA 510

What
methodology
used for making
unanchored
indirect comparison

NMA by STC MAIC MAIC

How
covariates
were identified

predictive
performance

availability
of both study

literature review
+clinical expert

How many
variables were
included in
the model

4 not mentioned
MAIC 1= 11,
MAIC 2= 5

Were all
identified
prognostic and
effect modifier
variables included
in the model

yes no no

If no what
was the reason

not mentioned
lack of
availability

lack of
availability

Other than
prognostic and
effect modifier
variables, were
other variables
also included

no no no

Did the
model only
include main
effects

yes not mentioned not mentioned

Did the
model include
second order
terms

no not mentioned not mentioned

MAIC
effective sample
size(%)

not applicable 3.8(5.27%)
MAIC 1= 84(56.75%)
MAIC 2=80(64%)

Continued on next page
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Table A.1 – continued from previous page

TA number TA 525 TA 604 TA 510

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

no not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

yes not applicable not applicable

If yes, what
was the amount
of heterogeneity
identified?

moderate not applicable not applicable

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

not mentioned not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

yes no no

Was any
justification
given for the
chosen method?

yes not applicable not applicable

How many
events were
available for
time to event
outcome(%)

not applicable not available not available

Continued on next page
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Table A.1 – continued from previous page

TA number TA 525 TA 604 TA 510

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

parametric
model with
unadjusted
survival
function

two stage

parametric
model with
unadjusted
survival
function

In clinical
effectiveness,
what adjustment
was made for
time to event data

adjusted
time varying
HR from
NMA

weighted
KM survival
function

weighted
Cox proportional
hazard model

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not applicable yes not applicable

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not applicable
sample
inflation
appraoach

not applicable

Was the population
for the extrapolation
clearly defined?

no yes no

Treatment effects
are estimated
for which population?

IPD AgD IPD

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

no not applicable no

If PH assumption
was made,
was it tested?

not applicable not applicable for unadjusted

What procedure
has been taken
to measure
uncertainty

bootstrap not mentioned sandwich estimator

Continued on next page
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Table A.1 – continued from previous page

TA number TA 525 TA 604 TA 510

Any attempt
made to
estimate
residual bias?

no no no

Table A.2: NICE STA data extraction table

TA number TA 530 TA 628 TA 643

Name of
the pivotal
study

CheckMate 275
and CheckMate 032

Study 1001
ALKA,
STARTRK-1
and STARTRK-2

Publication
date of the
appraisal

04/07/2018 13/05/2020 12/08/2020

Therapeutic
Area

oncology oncology oncology

What types
of outcome
measures
were indirectly
compared?

Time-to-event Time-to-event Time-to-event

Which
time-to-event
was indirectly
compared

OS+PFS OS+PFS OS+PFS

What
type of network
is being considered?

Multiple
comparison
(larger network)

Single comparison
Multiple
comparison
(larger network)

What
methodology
used for making
unanchored
indirect comparison

NMA by STC MAIC MAIC

How
covariates
were identified

literature review+
clinical expert

clinical feedback+
Cox regression
(univariate and multivariate)

not mentioned

How many
variables were
included in
the model

4 out of 11 4
MAIC 1=6 ,
MAIC 2=6

Continued on next page
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Table A.2 – continued from previous page

TA number TA 530 TA 628 TA 643

Were all
identified
prognostic and
effect modifier
variables included
in the model

no no no

If no what
was the reason

lack of
availability

lack of
availability

lack of
availability

Other than
prognostic and
effect modifier
variables, were
other variables
also included

no no no

Did the
model only
include main
effects

not mentioned not mentioned not mentioned

Did the
model include
second order
terms

not mentioned not mentioned not mentioned

MAIC
effective sample
size(%)

not applicable not mentioned not mentioned

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

no not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

no not applicable not applicable

If yes, what
was the amount
of heterogeneity
identified?

not mentioned not applicable not applicable

Continued on next page
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Table A.2 – continued from previous page

TA number TA 530 TA 628 TA 643

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

no not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

no yes no

Was any
justification
given for the
chosen method?

no no no

How many
events were
available for
time to event
outcome(%)

not available not available not available

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

parametric model
with unadjusted
survival function

parametric model
with unadjusted
survival function

parametric model
with unadjusted
survival function

In clinical
effectiveness,
what adjustment
was made for
time to event data

adjusted time
varying HR
from NMA

weighted Cox
proportional
hazard model

weighted Cox
proportional
hazard model

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not applicable no no

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not applicable no no

Continued on next page
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Table A.2 – continued from previous page

TA number TA 530 TA 628 TA 643

Was the population
for the extrapolation
clearly defined?

no no no

Treatment effects
are estimated
for which population?

IPD IPD IPD

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

no no no

If PH assumption
was made,
was it tested?

not applicable not mentioned not mentioned

What procedure
has been taken
to measure
uncertainty

not mentioned bootstrap not mentioned

Any attempt
made to
estimate
residual bias?

out sample no not mentioned

Table A.3: NICE STA data extraction table

TA number TA 554 TA 567 TA 571

Name of
the pivotal
study

ENSIGN,
ELIANA and
B2101J

JULIET trial
ALTA and
Study 101

Publication
date of the
appraisal

21/12/2018 13/03/2019 20/03/2019

Therapeutic
Area

oncology oncology oncology

Continued on next page
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Table A.3 – continued from previous page

TA number TA 554 TA 567 TA 571

What types
of outcome
measures
were indirectly
compared?

Time-to-event Time-to-event Time-to-event

Which
time-to-event
was indirectly
compared

EFS+OS OS+PFS OS+PFS

What
type of network
is being considered?

Multiple
comparison
(larger network)

Single comparison
Multiple
comparison
(larger network)

What
methodology
used for making
unanchored
indirect comparison

MAIC
Unadjusted
indirect
comparison

MAIC

How
covariates
were identified

not
mentioned

expert
opinion

expert
opinion

How many
variables were
included in
the model

not mentioned 8 not mentioned

Were all
identified
prognostic and
effect modifier
variables included
in the model

no no no

If no what
was the reason

lack of
availability

lack of availability+
variation amongst
clinician’s responses

lack of
availability

Other than
prognostic and
effect modifier
variables, were
other variables
also included

not mentioned not mentioned no

Continued on next page
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Table A.3 – continued from previous page

TA number TA 554 TA 567 TA 571

Did the
model only
include main
effects

not mentioned not applicable not mentioned

Did the
model include
second order
terms

not mentioned not applicable not mentioned

MAIC
effective sample
size(%)

not mentioned not applicable

MAIC 1= 67.1
(49.70%)
and MAIC 2 =76.5
(56.66%).

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

not applicable not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

not applicable not applicable not applicable

If yes, what
was the amount
of heterogeneity
identified?

not applicable not applicable not applicable

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

not applicable not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

no no no

Continued on next page
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Table A.3 – continued from previous page

TA number TA 554 TA 567 TA 571

Was any
justification
given for the
chosen method?

not applicable not applicable not applicable

How many
events were
available for
time to event
outcome(%)

not available not available not available

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

Independent
parametric
model with unadjusted
survival function

Independent
parametric
model with unadjusted
survival function

parametric
model with
unadjusted

survival
function

In clinical
effectiveness,
what adjustment
was made for
time to event data

weighted cox
proportional
hazard model

not applicable
weighted

Cox proportional
hazard model

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not applicable not applicable not applicable

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not applicable not applicable not applicable

Was the population
for the extrapolation
clearly defined?

no not applicable no

Treatment effects
are estimated
for which population?

IPD not mentioned IPD

Continued on next page
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Table A.3 – continued from previous page

TA number TA 554 TA 567 TA 571

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

not mentioned no not mentioned

If PH assumption
was made,
was it tested?

not mentioned not applicable

For
adjusted

comparisons
only

What procedure
has been taken
to measure
uncertainty

not mentioned not applicable not mentioned

Any attempt
made to
estimate
residual bias?

not mentioned not applicable not mentioned

Table A.4: NICE STA data extraction table

TA number TA 522 TA 529 TA 540

Name of
the pivotal
study

KEYNOTE-052
PROFILE 1001,
PROFILE 1014,
PROFILE 1007

KEYNOTE-087

Publication
date of the
appraisal

13/06/2018 04/07/2018 03/09/2018

Therapeutic
Area

oncology oncology oncology

What types
of outcome
measures
were indirectly
compared?

Time-to-event Time-to-event Time-to-event

Continued on next page
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Table A.4 – continued from previous page

TA number TA 522 TA 529 TA 540

which
time-to-event
was indirectly
compared

EFS+OS OS+PFS PFS

What
type of network
is being considered?

Multiple
comparison
(larger network)

Multiple
comparison
(larger network)

Single
comparison

What
methodology
used for making
unanchored
indirect comparison

NMA by STC
No
indirect
comparison

MAIC

How
covariates
were identified

model
predictive
performance+
literature
review+
expert
opinion

not applicable availability

How many
variables were
included in
the model

5 not applicable not mentioned

Were all
identified
prognostic and
effect modifier
variables included
in the model

yes not applicable no

If no what
was the reason

not applicable not applicable
lack of
availability

Other than
prognostic and
effect modifier
variables, were
other variables
also included

no not applicable not mentioned

Did the
model only
include main
effects

yes not applicable not mentioned

Continued on next page
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Table A.4 – continued from previous page

TA number TA 522 TA 529 TA 540

Did the
model include
second order
terms

no not applicable not mentioned

MAIC
effective sample
size(%)

not applicable not applicable not mentioned

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

not mentioned not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

not mentioned not applicable not applicable

If yes, what
was the amount
of heterogeneity
identified?

heterogeneity was
explored graphically
, the digitised survival
curves for each
trial were overlaid
and presented
on a single set
of axes. The curves
were parallel.

not applicable not applicable

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

yes not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

yes no no

Continued on next page
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Table A.4 – continued from previous page

TA number TA 522 TA 529 TA 540

Was any
justification
given for the
chosen method?

yes not applicable not applicable

How many
events were
available for
time to event
outcome(%)

not available not available not available

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

parametric
model with
unadjusted
survival function

not applicable

parametric
model with
unadjusted

survival
function

In clinical
effectiveness,
what adjustment
was made for
time to event data

adjusted
time varying
HR from
NMA

not applicable

weighted
Cox
proportional
hazard model

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not applicable not applicable not applicable

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not applicable not applicable not applicable

Was the population
for the extrapolation
clearly defined?

no not applicable no

Treatment effects
are estimated
for which population?

not mentioned not mentioned not mentioned

Continued on next page
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Table A.4 – continued from previous page

TA number TA 522 TA 529 TA 540

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

not mentioned not mentioned not mentioned

If PH assumption
was made,
was it tested?

not applicable not applicable Not mentioned

What procedure
has been taken
to measure
uncertainty

not mentioned not applicable not mentioned

Any attempt
made to
estimate
residual bias?

not mentioned not applicable not mentioned

Table A.5: NICE STA data extraction table

TA number TA 630 TA 644 TA 592

Name of
the pivotal
study

LOXO-TRK-14001,
NAVIGATE
(LOXO-TRK-15002)
and SCOUT
(LOXO-TRK-15003)

(ALKA,
STARTRK-1,
STARTRK-2,
and
STARTRK-NG)

EMPOWER-
CSCC 1

Publication
date of the
appraisal

27/05/2020 12/08/2020 07/08/2019

Therapeutic
Area

oncology oncology oncology

What types
of outcome
measures
were indirectly
compared?

Time-to-event Time-to-event Time-to-event

Continued on next page



APPENDIX A. DATA EXTRACTION FOR NICE STA REVIEW 245

Table A.5 – continued from previous page

TA number TA 630 TA 644 TA 592

Which
time-to-event
was indirectly
compared

EFS+OS OS+PFS PFS

What
type of network
is being considered?

Multiple
comparison
(larger network)

Multiple
comparison
(larger network)

Single
comparison

What
methodology
used for making
unanchored
indirect comparison

unadjusted
comparison

unadjusted
comparison

MAIC+STC

How
covariates
were identified

not applicable not applicable

literature
review+
clinical
expert

How many
variables were
included in
the model

not applicable not applicable 2 out of 12

Were all
identified
prognostic and
effect modifier
variables included
in the model

not applicable not applicable no

If no what
was the reason

not applicable not applicable not mentioned

Other than
prognostic and
effect modifier
variables, were
other variables
also included

not applicable not applicable no

Did the
model only
include main
effects

not applicable not applicable not mentioned

Did the
model include
second order
terms

not applicable not applicable not mentioned

Continued on next page
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Table A.5 – continued from previous page

TA number TA 630 TA 644 TA 592

MAIC
effective sample
size(%)

not applicable not applicable 37(34.3%)

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

not applicable not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

not applicable not applicable not applicable

If yes, what
was the amount
of heterogeneity
identified?

not applicable not applicable not applicable

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

not applicable not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

no no yes

Was any
justification
given for the
chosen method?

no no yes

How many
events were
available for
time to event
outcome(%)

not available not available not available

Continued on next page
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Table A.5 – continued from previous page

TA number TA 630 TA 644 TA 592

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

parametric
model with
unadjusted
survival function

parametric
model with
unadjusted
survival function

one stage

In clinical
effectiveness,
what adjustment
was made for
time to event data

adjusted
time varying
HR from
NMA

not applicable

weighted
Cox
proportional
hazard model

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not applicable not applicable not applicable

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not applicable not applicable not applicable

Was the population
for the extrapolation
clearly defined?

not applicable not applicable yes

Treatment effects
are estimated
for which population?

not mentioned not mentioned AgD

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

not applicable not applicable not mentioned

If PH assumption
was made,
was it tested?

not mentioned not mentioned Not mentioned

What procedure
has been taken
to measure
uncertainty

not mentioned not mentioned bootstrap

Continued on next page
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Table A.5 – continued from previous page

TA number TA 630 TA 644 TA 592

Any attempt
made to
estimate
residual bias?

not mentioned not mentioned no

Table A.6: NICE STA data extraction table

TA number TA 704 TA 704 TA 722

Name of
the pivotal
study

DESTINY-
Breast01

CheckMate 142 FIGHT-202

Publication
date of the
appraisal

27/02/2021 28/07/2021 25/08/2021

Therapeutic
Area

oncology oncology oncology

What types
of outcome
measures
were indirectly
compared?

Time-to-event Time-to-event Time-to-event

Which
time-to-event
was indirectly
compared

PFS+OS OS+PFS PFS

What
type of network
is being considered?

Multiple
comparison
(larger network)

Multiple
comparison
(larger network)

Single
comparison

What
methodology
used for making
unanchored
indirect comparison

MAIC MAIC MAIC

How
covariates
were identified

literature
review+
clinical
expert

availability+
clinical
expert

no
justification

Continued on next page
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Table A.6 – continued from previous page

TA number TA 704 TA 716 TA 722

How many
variables were
included in
the model

8 14 4

Were all
identified
prognostic and
effect modifier
variables included
in the model

no no applicable no

If no what
was the reason

lack of
availability

lack of
availability

not mentioned

Other than
prognostic and
effect modifier
variables, were
other variables
also included

no no no

Did the
model only
include main
effects

not mentioned not mentioned not mentioned

Did the
model include
second order
terms

not mentioned not mentioned not mentioned

MAIC
effective sample
size(%)

not available not available not available

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

not applicable not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

not applicable not applicable not applicable

Continued on next page
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Table A.6 – continued from previous page

TA number TA 704 TA 716 TA 722

If yes, what
was the amount
of heterogeneity
identified?

not applicable not applicable not applicable

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

not applicable not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

no yes no

Was any
justification
given for the
chosen method?

not applicable yes no

How many
events were
available for
time to event
outcome(%)

not available not available not available

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

Independent
parametric
model with
unadjusted
survival
function

Independent
parametric
model with
unadjusted
survival
function

Independent
parametric
model with
unadjusted
survival
function

In clinical
effectiveness,
what adjustment
was made for
time to event data

weighted
Cox proportional
hazard model

mean
survival
from
parametric
model

weighted
Cox
proportional
hazard model

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not mentioned not applicable not applicable

Continued on next page
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Table A.6 – continued from previous page

TA number TA 704 TA 716 TA 722

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not mentioned not mentioned not applicable

Was the population
for the extrapolation
clearly defined?

no yes no

Treatment effects
are estimated
for which population?

IPD IPD IPD

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

not mentioned no no

If PH assumption
was made,
was it tested?

for
unadjusted
comparison

not applicable
for
adjusted
comparison

What procedure
has been taken
to measure
uncertainty

bootstrap not mentioned bootstrap

Any attempt
made to
estimate
residual bias?

not mentioned yes not mentioned

Table A.7: NICE STA data extraction table

TA number TA 742 TA 756

Name of
the pivotal
study

LIBRETTO-001 142

Publication
date of the
appraisal

03/11/2021 16/12/2021

Continued on next page
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Table A.7 – continued from previous page

TA number TA 742 TA 756

Therapeutic
Area

oncology oncology

What types
of outcome
measures
were indirectly
compared?

Time-to-event Binary

Which
time-to-event
was indirectly
compared

PFS+OS SVR+TSS

What
type of network
is being considered?

single
comparison

single
comparison

What
methodology
used for making
unanchored
indirect comparison

MAIC MAIC+STC

How
covariates
were identified

literature
review+
clinical
expert

clinical expert
and univariable
+ multivariable
analysis

How many
variables were
included in
the model

6 3

Were all
identified
prognostic and
effect modifier
variables included
in the model

no no

If no what
was the reason

lack of
availability

lack of
availability

Other than
prognostic and
effect modifier
variables, were
other variables
also included

not mentioned not mentioned

Continued on next page
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Table A.7 – continued from previous page

TA number TA 742 TA 756

Did the
model only
include main
effects

not mentioned not mentioned

Did the
model include
second order
terms

not mentioned not mentioned

MAIC
effective sample
size(%)

not available 34.4(35.5%)

If NMA
was conducted,
any attempt made
to check if any
inconsistencies are
found in the
connected part
of the network?

not applicable not applicable

If NMA
was conducted,
was heterogeneity
among studies
was assesses?

not applicable not applicable

If yes, what
was the amount
of heterogeneity
identified?

not applicable not applicable

Was at least
two studies were
available on
each contrast
for the heterogeneity
parameter

not applicable not applicable

Along with
the chosen
method, were
other methods
also discussed?

no yes

Continued on next page
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Table A.7 – continued from previous page

TA number TA 742 TA 756

Was any
justification
given for the
chosen method?

no yes

How many
events were
available for
time to event
outcome(%)

not available not available

In cost effectiveness
, what approach was
used for
extrapolation
of time to event
data

one
stage

parametric
model with
unadjusted
survival
function

In clinical
effectiveness,
what adjustment
was made for
time to event data

weighted
Cox proportional
hazard model

weighted
risk
difference

Is overlaping
between weighed
IPD and reconstructed
IPD has been
checked/ commented on

not mentioned not applicable

If no, what procedure
was taken to ensure
overlapping
between weighed
IPD and reconstructed IPD

not applicable not applicable

Was the population
for the extrapolation
clearly defined?

no no

Treatment effects
are estimated
for which population?

AgD IPD

Continued on next page
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Table A.7 – continued from previous page

TA number TA 742 TA 756

Had any
justification
given for
transportable
treatment effects
if they are
estimated for
IPD population?

not mentioned not mentioned

If PH assumption
was made,
was it tested?

for
adjusted
comparison

no

What procedure
has been taken
to measure
uncertainty

not mentioned not mentioned

Any attempt
made to
estimate
residual bias?

not mentioned yes
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Appendix C

R codes for MAIC-adjusted fixed
effect NMA

C.1 MAIC-adjusted fixed effect NMA

###########################################################

## R codes for data generation to conduct a connected NMA

## and a MAIC adjusted fixed effect NMA

############################################################

library(multinma)

library(dplyr)

library (margins)

library(devtools)

library(MAIC)

library(sandwich)

library(lmtest)

library(boot)

library(parallel)

library(lme4)

################ data generation

rm(list=ls())

set.seed(1128)

### making object for parameter combination

corx<-c(0.20,0.80) ##correlation between covariates in a study

b_X1_trt<-c(-log(0.78),-log(0.40)) ## 0.25 and 0.916 (interaction coefficient)

b_X1<-c(-log(0.67),-log(0.33)) ## 0.40 and 1.10 (covariate coefficient)

meanx1<-c(0.45,0.15) ## mean of covariates

param.combinations <- expand.grid(corx=corx, b_X1_trt=b_X1_trt,

b_X1=b_X1, meanx1=meanx1)

pc <- param.combinations
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pc<-round(pc, 2) ## rounding the values

pc$meanx2<-c(0.48,0.48,0.48,0.48,0.48,0.48,0.48,

0.48,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20) ## adding another column in pc

scenerios<-nrow(pc) ### no of scenarios created ## 16scenarios

######## creating a function to generate data for a connected NMA

### Here 10 studies will be genrated which will consist of 40 columns

## Each study is with two arms where

### 150 data will be generated for each arm

### Each study will have two continuous covariates

### in total every study consists of 4 columns in the dataset

### all studies have the same common treatment(trt 1)

### but 6 studies have treatment 2 and four studies have

### treatment 3

#######################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

ns =10 ## no of studies

np = matrix(150, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

gen.data<-function(sdx,corx, meanx1,meanx2, b_X1, b_X1_trt){

count = 0

count2=2

datacel<-matrix(NA, nrow=150, ncol=40)

for(i in 1:ns){

n <- 150

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(corx, nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){

mean <- c(X1 =0.60, X2 =0.50)

}

if(i == 2){
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mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 3){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 4){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 5){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 6){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 7){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 8){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 9){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 10){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 =d[t[i,2]] - d[t[i,1]]

mu = 0.85 ## intercept value in each study
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prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))

ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### outcome for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### outcome for trt arm

datacel[ ,1+count]<-ytemp1

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

return(datacel)

}

### now generating and saving multiple no of data for scenario 1 using replicate

### generating 3000 datasets using the object pc

### this will store the datasets as list

ipd<-replicate(n=3000,expr=gen.data(corx=pc$corx[1], b_X1_trt=pc$b_X1_trt[1],

b_X1=pc$b_X1[1],meanx1=pc$meanx1[1], meanx2= pc$meanx2[1]),simplify =FALSE)

####################################################

##### First estimating true d1 and d2 (parameter values) so

### that the estimates can be used in the calculation of

### coverage in the simulation

### to get the true d1, d2, running the same data

### generation as before but now the sample size is quite

### large (1 million)

####################################################

##########################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

ns =10 ## no of studies

np = matrix(1000000, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm
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count = 0

count2=2

datacel<-matrix(NA, nrow=1000000, ncol=40)

for(i in 1:ns){

n <- 1000000

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(pc[1,1], nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){

mean <- c(X1 =0.60, X2 =0.50)

}

if(i == 2){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 3){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 4){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 5){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 6){
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mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 7){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 8){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 9){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 10){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 = d[t[i,2]] - d[t[i,1]]

mu = 0.85

b_X1 <- pc[1,3] # conditional effect of variable 1 and 2

b_X1_trt <- pc[1,2] # conditional interaction effect of effect modifier

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))

ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### for trt arm

datacel[ ,1+count]<-ytemp1

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1

datacel[ ,2+count2]<-cov$X2



APPENDIX C. SIMULATION WITH A MAIC-ADJUSTED FIXED EFFECT NMA 263

count = count + 4

count2= count2+ 4

}

datacel<-data.frame(datacel)

###############################

## running NMA with the big data

##############################

### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

## vector indicates treatment number

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

## no of events in each arm

r <- c(sum(datacel$X1==1),sum(datacel$X2==1),sum(datacel$X5==1),sum(datacel$X6==1),

sum(datacel$X9==1),sum(datacel$X10==1),sum(datacel$X13==1),sum(datacel$X14==1),

sum(datacel$X17==1),sum(datacel$X18==1),sum(datacel$X21==1),sum(datacel$X22==1),

sum(datacel$X25==1),sum(datacel$X26==1),sum(datacel$X29==1),sum(datacel$X30==1),

sum(datacel$X33==1),sum(datacel$X34==1),sum(datacel$X37==1),sum(datacel$X38==1))

n <- rep(1000000, 20) ## no of patients in each arm

datacel <- data.frame(cbind(studyn,trtn,r,n))

colSums(select_if(datacel, is.numeric))

### following code will set up the network (arm based)

true.network.fe<-set_agd_arm(

datacel,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )

##The model is fitted using the nma() function. nma function will generate

### the value of true d1, d2
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arm_fit_FE_true <- nma(true.network.fe,

trt_effects = "fixed",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10))

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_true<-as.data.frame(arm_fit_FE_true,pars=c("d"))

### now taking the mean of d1 and d2 values which will be

## used as the estimate of d1 and d2

stan.object.nma.true.mean.d1<-mean(model_true$‘d[2]‘)

stan.object.nma.true.mean.d2<-mean(model_true$‘d[3]‘)

###############################################################################

###############################################################################

### now starting the loop which will be implemented on every

###data of a particular scenario

#############################################################################

#############################################################################

out<-matrix(NA,3000,12) ## matrix to store results

colnames(out) <- c("nma.connected.d1", "nma.connected.d2",

"nma.disconnected.d1", "nma.disconnected.d2",

"d1.sd.disconnect", "d2.sd.disconnect",

"est1", "est2", "nma.connected.sd.d1", "nma.connected.sd.d2",

"est3", "est4")

### in this loop for every data first a connected NMA will be conducted and the mean

## for each d1 and d2 will be stored in the matrix out.

## then the data will be converted to single-arm studies

## MAIC will be performed to estimate the treatment contrast

## an NMA will be performed with the estimates from the MAIC

## and mean and S.E for each d1 and d2 will be stored in the matrix out.

## the coverage, bias, empSE, model SE will be calculated from the matrix out

for(i in 1:length(ipd)){

datacel<-data.frame(ipd[[i]])

###############################

## connected NMA codes

##############################
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### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

## vector indicates treatment number

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

## no of events in each arm

r <- c(sum(datacel$X1==1),sum(datacel$X2==1),sum(datacel$X5==1),sum(datacel$X6==1),

sum(datacel$X9==1),sum(datacel$X10==1),sum(datacel$X13==1),sum(datacel$X14==1),

sum(datacel$X17==1),sum(datacel$X18==1),sum(datacel$X21==1),sum(datacel$X22==1),

sum(datacel$X25==1),sum(datacel$X26==1),sum(datacel$X29==1),sum(datacel$X30==1),

sum(datacel$X33==1),sum(datacel$X34==1),sum(datacel$X37==1),sum(datacel$X38==1))

n <- rep(150, 20) ## no of patients in each arm

colSums(select_if(datacel, is.numeric))

datacel2 <- data.frame(cbind(studyn,trtn,r,n))

### following code will set up the network (arm based)

connected.network.fe<-set_agd_arm(

datacel2,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )

##The model is fitted using the nma() function. nma function will generate

### the value of true d1, d2

arm_fit_FE_connected <- nma(connected.network.fe,

trt_effects = "fixed",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10))

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_connected<-as.data.frame(arm_fit_FE_connected,pars=c("d"))

### now taking the mean of d1 and d2 values which will be

## used as the estimate of d1 and d2

stan.object.nma.connect.mean.d1<-mean(model_connected$‘d[2]‘)

stan.object.nma.connect.mean.d2<-mean(model_connected$‘d[3]‘)
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stan.object.nma.connect.sd.d1<-sd(model_connected$‘d[2]‘)

stan.object.nma.connect.sd.d2<-sd(model_connected$‘d[3]‘)

############################################

#### renaming datacel to delete arms

### and make the studies into single-arm

###########################################

datacel= rename(datacel, std1.ref = "X1", std1.trt = "X2",

std1.cov1= "X3", std1.cov2= "X4",

std2.ref = "X5", std2.trt = "X6",

std2.cov1= "X7", std2.cov2= "X8",

std3.ref = "X9", std3.trt = "X10",

std3.cov1= "X11", std3.cov2= "X12",

std4.ref = "X13", std4.trt = "X14",

std4.cov1= "X15", std4.cov2= "X16",

std5.ref = "X17", std5.trt = "X18",

std5.cov1= "X19", std5.cov2= "X20",

std6.ref = "X21", std6.trt = "X22",

std6.cov1= "X23", std6.cov2= "X24",

std7.ref = "X25", std7.trt = "X26",

std7.cov1= "X27", std7.cov2= "X28",

std8.ref = "X29", std8.trt = "X30",

std8.cov1= "X31", std8.cov2= "X32",

std9.ref = "X33", std9.trt = "X34",

std9.cov1= "X35", std9.cov2= "X36",

std10.ref = "X37", std10.trt = "X38",

std10.cov1= "X39", std10.cov2= "X40")

### deleting multiple columns and making studies into a single-arm study

datacel.update<-dplyr::select( datacel, -c(’std1.trt’,

’std2.ref’, ’std3.ref’,
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’std4.ref’,’std5.ref’, ’std6.ref’,

’std7.ref’, ’std8.ref’, ’std9.ref’,

’std10.ref’))

############ making agd dataset

data.agd<-data.frame( mean.std2.trt=mean(datacel.update$std2.trt),

mean.std2.cov1=mean(datacel.update$std2.cov1),

mean.std2.cov2=mean(datacel.update$std2.cov2),

sd.std2.cov1=sd(datacel.update$std2.cov1),

sd.std2.cov2=sd(datacel.update$std2.cov2),

mean.std3.trt=mean(datacel.update$std3.trt),

mean.std3.cov1=mean(datacel.update$std3.cov1),

mean.std3.cov2=mean(datacel.update$std3.cov2),

sd.std3.cov1=sd(datacel.update$std3.cov1),

sd.std3.cov2=sd(datacel.update$std3.cov2),

mean.std4.trt=mean(datacel.update$std4.trt),

mean.std4.cov1=mean(datacel.update$std4.cov1),

mean.std4.cov2=mean(datacel.update$std4.cov2),

sd.std4.cov1=sd(datacel.update$std4.cov1),

sd.std4.cov2=sd(datacel.update$std4.cov2),

mean.std5.trt=mean(datacel.update$std5.trt),

mean.std5.cov1=mean(datacel.update$std5.cov1),

mean.std5.cov2=mean(datacel.update$std5.cov2),

sd.std5.cov1=sd(datacel.update$std5.cov1),

sd.std5.cov2=sd(datacel.update$std5.cov2),

mean.std6.trt=mean(datacel.update$std6.trt),

mean.std6.cov1=mean(datacel.update$std6.cov1),

mean.std6.cov2=mean(datacel.update$std6.cov2),

sd.std6.cov1=sd(datacel.update$std6.cov1),

sd.std6.cov2=sd(datacel.update$std6.cov2),

mean.std7.trt=mean(datacel.update$std7.trt),

mean.std7.cov1=mean(datacel.update$std7.cov1),

mean.std7.cov2=mean(datacel.update$std7.cov2),

sd.std7.cov1=sd(datacel.update$std7.cov1),

sd.std7.cov2=sd(datacel.update$std7.cov2),
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mean.std8.trt=mean(datacel.update$std8.trt),

mean.std8.cov1=mean(datacel.update$std8.cov1),

mean.std8.cov2=mean(datacel.update$std8.cov2),

sd.std8.cov1=sd(datacel.update$std8.cov1),

sd.std8.cov2=sd(datacel.update$std8.cov2),

mean.std9.trt=mean(datacel.update$std9.trt),

mean.std9.cov1=mean(datacel.update$std9.cov1),

mean.std9.cov2=mean(datacel.update$std9.cov2),

sd.std9.cov1=sd(datacel.update$std9.cov1),

sd.std9.cov2=sd(datacel.update$std9.cov2),

mean.std10.trt=mean(datacel.update$std10.trt),

mean.std10.cov1=mean(datacel.update$std10.cov1),

mean.std10.cov2=mean(datacel.update$std10.cov2),

sd.std10.cov1=sd(datacel.update$std10.cov1),

sd.std10.cov2=sd(datacel.update$std10.cov2)

)

############ making ipd dataset

data.ipd<-dplyr::select(datacel.update, -c(4:30))

## the covariates need to be the same name in ipd and agd study

data.ipd<-rename(data.ipd, cov1 = std1.cov1,cov2 = std1.cov2)

##########################################################

################ MAIC 1 ##################################

################ study 1(ipd) study 2(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std2.cov1, cov2 = mean.std2.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics
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# matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std2.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std2.cov1^2 +

data.agd$sd.std2.cov1^2),

cov2_centered = cov2- data.agd$mean.std2.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std2.cov2^2 +

data.agd$sd.std2.cov2^2)

)

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

####################

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std2.trt # proportion of responders

# Calculate the number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)
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combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic1.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic1.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

################ MAIC 2 ##################################

################ study 1(ipd) study 3(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std3.cov1, cov2 = mean.std3.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std3.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std3.cov1^2 +

data.agd$sd.std3.cov1^2),

cov2_centered = cov2- data.agd$mean.std3.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std3.cov2^2 +

data.agd$sd.std3.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)
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# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std3.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Join comparator data with the intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic2.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic2.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 3 ##################################

################ study 1(ipd) study 4(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std4.cov1, cov2 = mean.std4.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%
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mutate(cov1_centered = cov1- data.agd$mean.std4.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std4.cov1^2 +

data.agd$sd.std4.cov1^2),

cov2_centered = cov2- data.agd$mean.std4.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std4.cov2^2 +

data.agd$sd.std4.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std4.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))



APPENDIX C. SIMULATION WITH A MAIC-ADJUSTED FIXED EFFECT NMA 273

maic3.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic3.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 4 ##################################

################ study 1(ipd) study 5(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std5.cov1, cov2 = mean.std5.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std5.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std5.cov1^2 +

data.agd$sd.std5.cov1^2),

cov2_centered = cov2- data.agd$mean.std5.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std5.cov2^2 +

data.agd$sd.std5.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std5.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))
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comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic4.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic4.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 5 ##################################

################ study 1(ipd) study 6(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std6.cov1, cov2 = mean.std6.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std6.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std6.cov1^2 +

data.agd$sd.std6.cov1^2),

cov2_centered = cov2- data.agd$mean.std6.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std6.cov2^2 +

data.agd$sd.std6.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)
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#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std6.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic5.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic5.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 6 ##################################

################ study 1(ipd) study 8(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std8.cov1, cov2 = mean.std8.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics
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#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std8.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std8.cov1^2 +

data.agd$sd.std8.cov1^2),

cov2_centered = cov2- data.agd$mean.std8.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std8.cov2^2 +

data.agd$sd.std8.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std8.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,
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family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic6.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic6.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 7 ##################################

################ study 1(ipd) study 9(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std9.cov1, cov2 = mean.std9.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std9.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std9.cov1^2 +

data.agd$sd.std9.cov1^2),

cov2_centered = cov2- data.agd$mean.std9.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std9.cov2^2 +

data.agd$sd.std9.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std9.trt # proportion of responders

# Calculate number with event
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n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic7.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic7.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 8 ##################################

################ study 1(ipd) study 10(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std10.cov1, cov2 = mean.std10.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std10.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std10.cov1^2 +

data.agd$sd.std10.cov1^2),

cov2_centered = cov2- data.agd$mean.std10.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std10.cov2^2 +

data.agd$sd.std10.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)
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#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std10.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic8.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic8.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 9 ##################################

################ study 1(ipd) study 7(agd) #######################

data.agd_update<-rename(data.agd, cov1 = mean.std7.cov1, cov2 = mean.std7.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics
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#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std7.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std7.cov1^2 +

data.agd$sd.std7.cov1^2),

cov2_centered = cov2- data.agd$mean.std7.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std7.cov2^2 +

data.agd$sd.std7.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std7.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic9.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic9.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]
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####conducting an NMA with the estimates from the MAIC

### creating a data frame which will be used in the nma

studyn <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

n <- c(150,150,150,150,150,150,150,150,150,150,150,150,150,150,150,150,150,150)

diff<-c(NA,maic1.est,

NA,maic2.est,NA,maic3.est,

NA,maic4.est,NA,maic5.est,

NA,maic9.est,NA,maic6.est,

NA,maic7.est,NA,maic8.est)

se_diff<-c(NA,maic1.se,

NA,maic2.se,NA,maic3.se,

NA,maic4.se,NA,maic5.se,

NA,maic9.se,NA,maic6.se,

NA,maic7.se,NA,maic8.se)

datacel3 <- data.frame(cbind(studyn,trtn,diff,se_diff,n))

### following code will set up the network (arm based)

model.fe.disconect<-set_agd_contrast(

datacel3,

study=studyn,

trt=trtn,

y=diff,

se=se_diff,

sample_size=n)

##The model is fitted using the nma() function.

maic_fit_FE <- nma(model.fe.disconect,

trt_effects = "fixed",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10))

maic_data_frame<-as.data.frame(maic_fit_FE,pars=c("d"))

stan.object.nma.discnt.mean.d1<-mean(maic_data_frame$‘d[2]‘)

stan.object.nma.discnt.mean.d2<-mean(maic_data_frame$‘d[3]‘)
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stan.object.nma.discontd.sd.d1<-sd(maic_data_frame$‘d[2]‘)

stan.object.nma.discontd.sd.d2<-sd(maic_data_frame$‘d[3]‘)

#### calculation of coverage probability

B1=stan.object.nma.discontd.sd.d1

A1=stan.object.nma.discnt.mean.d1

z.alpha1 <- 1.96

theta.hat.low1=A1-z.alpha1*B1

theta.hat.upp1=A1+z.alpha1*B1

theta1= stan.object.nma.true.mean.d1

est1 <-ifelse(theta1>=theta.hat.low1 & theta1<=theta.hat.upp1,1,0)

B2=stan.object.nma.discontd.sd.d2

A2=stan.object.nma.discnt.mean.d2

z.alpha2 <- 1.96

theta.hat.low2=A2-z.alpha2*B2

theta.hat.upp2=A2+z.alpha2*B2

theta2= stan.object.nma.true.mean.d2

est2 <-ifelse(theta2>=theta.hat.low2 & theta2<=theta.hat.upp2,1,0)

B3=stan.object.nma.connect.sd.d1

A3=stan.object.nma.connect.mean.d1

z.alpha3 <- 1.96

theta.hat.low3=A3-z.alpha3*B3

theta.hat.upp3=A3+z.alpha3*B3

theta3= stan.object.nma.true.mean.d1

est3 <-ifelse(theta3>=theta.hat.low3 & theta3<=theta.hat.upp3,1,0)

B4=stan.object.nma.connect.sd.d2

A4=stan.object.nma.connect.mean.d2

z.alpha4 <- 1.96

theta.hat.low4=A4-z.alpha4*B4

theta.hat.upp4=A4+z.alpha4*B4

theta4= stan.object.nma.true.mean.d2

est4 <-ifelse(theta4>=theta.hat.low4 & theta4<=theta.hat.upp4,1,0)

out[i, 1]<-stan.object.nma.connect.mean.d1

out[i, 2]<-stan.object.nma.connect.mean.d2

out[i, 3]<-stan.object.nma.discnt.mean.d1

out[i, 4]<-stan.object.nma.discnt.mean.d2

out[i, 5]<-stan.object.nma.discontd.sd.d1

out[i, 6]<-stan.object.nma.discontd.sd.d2



APPENDIX C. SIMULATION WITH A MAIC-ADJUSTED FIXED EFFECT NMA 283

out[i, 7]<-est1

out[i, 8]<-est2

out[i, 9]<-stan.object.nma.connect.sd.d1

out[i, 10]<-stan.object.nma.connect.sd.d2

out[i, 11]<- est3

out[i, 12]<- est4

}

out<-data.frame(out)



Appendix D

R codes for MAIC-adjusted
random effects NMA

D.1 MAIC-adjusted random effects NMA

######################################

## R codes to conduct a connected NMA

## and a MAIC adjusted random effect NMA

################ data generation

rm(list=ls())

set.seed(1128)

### making object for parameter combination

corx<-c(0.20,0.80) ##correlation between covariates in a study

b_X1_trt<-c(-log(0.78),-log(0.40)) ## 0.25 and 0.916 (interaction coefficient)

b_X1<-c(-log(0.67),-log(0.33)) ## 0.40 and 1.10 (covariate coefficient)

meanx1<-c(0.45,0.15) ## mean of covariates

param.combinations <- expand.grid(corx=corx, b_X1_trt=b_X1_trt,

b_X1=b_X1, meanx1=meanx1)

pc <- param.combinations

pc<-round(pc, 2) ## rounding the values

pc$meanx2<-c(0.48,0.48,0.48,0.48,0.48,0.48,0.48,

0.48,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20) ## adding another column in pc

scenerios<-nrow(pc) ### no of scenarios created ## 16scenarios

################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

tau = 0.3 ## hetrogeneity parameter

ns =10 ## no of studies

np = matrix(150, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

284
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gen.data<-function(sdx,corx, meanx1,meanx2, b_X1, b_X1_trt){

count = 0

count2=2

datacel<-matrix(NA, nrow=150, ncol=40)

for(i in 1:ns){

n <- 150

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(corx, nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){

mean <- c(X1 =0.60, X2 =0.50)

}

if(i == 2){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 3){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 4){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 5){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 6){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 7){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 8){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))
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}

if(i == 9){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

if(i == 10){

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 =rnorm(1, d[t[i,2]] - d[t[i,1]], tau) ## treatment effect for trt arm

#in each study

mu = 0.85 ## intercept value in each study

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))

ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### outcome for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### outcome for trt arm

datacel[ ,1+count]<-ytemp1

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

return(datacel)

}

### now generating and saving multiple no of data for each scenario

ipd<-replicate(n=3000,expr=gen.data(corx=pc$corx[1], b_X1_trt=pc$b_X1_trt[1],

b_X1=pc$b_X1[1], meanx1=pc$meanx1[1], meanx2= pc$meanx2[1]),simplify =FALSE )
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####################################################

##### First estimating true d1 and d2 (parameter values) so

### that the estimates can be used in the calculation of

### coverage in the simulation

### to get the true d1, d2, running the same data

### generation as before but now the sample size is quite

### large (1 million)

####################################################

##########################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

tau= 0.3 ## heterogeneity parameter

ns =10 ## no of studies

np = matrix(1000000, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

count = 0

count2=2

datacel<-matrix(NA, nrow=1000000, ncol=40)

for(i in 1:ns){

n <- 1000000

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(pc[1,1], nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){

mean <- c(X1 =0.60, X2 =0.50)

}

if(i == 2){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 3){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))
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}

if(i == 4){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 5){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 6){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 7){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 8){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 9){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

if(i == 10){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 =rnorm(1, d[t[i,2]] - d[t[i,1]], tau)

mu = 0.85

b_X1 <- pc[1,3] # conditional effect of variable 1 and 2

b_X1_trt <- pc[1,2] # conditional interaction effect of effect modifier

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))
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ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### for trt arm

datacel[ ,1+count]<-ytemp1 ## response in every (1,2),(5,6),(9,10)th column

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1 ## cov value in every (3,4),(7,8),(11,12)th column

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

datacel<-data.frame(datacel)

###########################################

## running NMA with a sample size 1 million

###########################################

### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3) ## vector indicates treatment number

## no of events in each arm

r <- c(sum(datacel$X1==1),sum(datacel$X2==1),sum(datacel$X5==1),sum(datacel$X6==1),

sum(datacel$X9==1),sum(datacel$X10==1),sum(datacel$X13==1),sum(datacel$X14==1),

sum(datacel$X17==1),sum(datacel$X18==1),sum(datacel$X21==1),sum(datacel$X22==1),

sum(datacel$X25==1),sum(datacel$X26==1),sum(datacel$X29==1),sum(datacel$X30==1),

sum(datacel$X33==1),sum(datacel$X34==1),sum(datacel$X37==1),sum(datacel$X38==1))

n <- rep(1000000, 20) ## no of patients in each arm

datacel <- data.frame(cbind(studyn,trtn,r,n))

colSums(select_if(datacel, is.numeric))

### following code will set up the network (arm based)

true.network.re<-set_agd_arm(

datacel,

study=studyn,

trt=trtn,

r = r,
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n = n,

trt_ref = 1 )

##The model is fitted using the nma() function.

arm_fit_RE_true <- nma(true.network.re,

trt_effects = "random",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10),

prior_het = log_normal(-2.56, 0.33),

prior_het_type = "var")

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_true<-as.data.frame(arm_fit_RE_true,pars=c("d","tau"))

### now taking the mean of d1 and d2 values which will be

## used as the estimate of d1 and d2

stan.object.nma.true.mean.d1<-mean(model_true$‘d[2]‘)

stan.object.nma.true.mean.d2<-mean(model_true$‘d[3]‘)

stan.object.nma.true.median.tau<-median(model_true$tau)

###############################################################################

### now starting the loop which will be implemented on every data of a particular

## scenario

#############################################################################

out<-matrix(NA,3000,18) ## matrix to store results

colnames(out) <- c("nma.connected.d1", "nma.connected.d2",

"connected.tau", "connected.sd.tau",

"nma.disconnected.d1", "nma.disconnected.d2",

"disconnect.sd.d1", "disconnect.sd.d2",

"est1", "est2", "disconnected.tau",

"disconnected.sd.tau", "est3", "est4", "connect.sd.d1",

"connect.sd.d2", "est5", "est6")

### in this loop for every data first a connected NMA will be conducted

## then the data will be converted to single-arm studies

## MAIC will be performed to estimate the treatment contrast

## an NMA will be performed with the estimates from the MAIC

## and mean and S.E for each d1 and d2 will be stored in the matrix out.



APPENDIX D. SIMULATION WITH A MAIC-ADJUSTED RANDOM EFFECTS NMA 291

## the coverage, bias, empSE, model SE will be calculated from the matrix out

for(i in 1:length(ipd)){

datacel<-data.frame(ipd[[i]])

###############################

## connected NMA codes

##############################

### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

## vector indicates treatment number

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

## no of events in each arm

r <- c(sum(datacel$X1==1),sum(datacel$X2==1),sum(datacel$X5==1),sum(datacel$X6==1),

sum(datacel$X9==1),sum(datacel$X10==1),sum(datacel$X13==1),sum(datacel$X14==1),

sum(datacel$X17==1),sum(datacel$X18==1),sum(datacel$X21==1),sum(datacel$X22==1),

sum(datacel$X25==1),sum(datacel$X26==1),sum(datacel$X29==1),sum(datacel$X30==1),

sum(datacel$X33==1),sum(datacel$X34==1),sum(datacel$X37==1),sum(datacel$X38==1))

n <- rep(150, 20) ## no of patients in each arm

datacel2 <- data.frame(cbind(studyn,trtn,r,n))

colSums(select_if(datacel, is.numeric))

### following code will set up the network (arm based)

connected.network.re<-set_agd_arm(

datacel2,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )

##The model is fitted using the nma() function. nma function will generate

### the value of true d1, d2

arm_fit_RE_connected <- nma(connected.network.re,

trt_effects = "random",

prior_intercept = normal(scale = 100),
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prior_trt = normal(scale = 10),

prior_het = log_normal(-2.56, 0.33),

prior_het_type = "var")

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_connected<-as.data.frame(arm_fit_RE_connected,pars=c("d","tau"))

### now taking the mean of d1 and d2 values which will be

## used as the estimate of d1 and d2

stan.object.nma.connect.mean.d1<-mean(model_connected$‘d[2]‘)

stan.object.nma.connect.mean.d2<-mean(model_connected$‘d[3]‘)

stan.object.nma.connect.median.tau<-median(model_connected$tau)

stan.object.nma.connect.sd.d1<-sd(model_connected$‘d[2]‘)

stan.object.nma.connect.sd.d2<-sd(model_connected$‘d[3]‘)

stan.object.nma.connect.sd.tau<-sd(model_connected$tau)

########################################################

#### renaming datacel to

### make the studies into single-arm

###########################################

datacel= rename(datacel, std1.ref = "X1", std1.trt = "X2",

std1.cov1= "X3", std1.cov2= "X4",

std2.ref = "X5", std2.trt = "X6",

std2.cov1= "X7", std2.cov2= "X8",

std3.ref = "X9", std3.trt = "X10",

std3.cov1= "X11", std3.cov2= "X12",

std4.ref = "X13", std4.trt = "X14",

std4.cov1= "X15", std4.cov2= "X16",

std5.ref = "X17", std5.trt = "X18",

std5.cov1= "X19", std5.cov2= "X20",

std6.ref = "X21", std6.trt = "X22",

std6.cov1= "X23", std6.cov2= "X24",

std7.ref = "X25", std7.trt = "X26",
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std7.cov1= "X27", std7.cov2= "X28",

std8.ref = "X29", std8.trt = "X30",

std8.cov1= "X31", std8.cov2= "X32",

std9.ref = "X33", std9.trt = "X34",

std9.cov1= "X35", std9.cov2= "X36",

std10.ref = "X37", std10.trt = "X38",

std10.cov1= "X39", std10.cov2= "X40")

### deleting multiple columns and making studies into single arm

datacel.update<-dplyr::select( datacel, -c(’std1.trt’, ’std2.ref’, ’std3.ref’,

’std4.ref’,’std5.ref’, ’std6.ref’,

’std7.ref’, ’std8.ref’, ’std9.ref’,

’std10.ref’))

############ making agd dataset

data.agd<-data.frame( mean.std2.trt=mean(datacel.update$std2.trt),

mean.std2.cov1=mean(datacel.update$std2.cov1),

mean.std2.cov2=mean(datacel.update$std2.cov2),

sd.std2.cov1=sd(datacel.update$std2.cov1),

sd.std2.cov2=sd(datacel.update$std2.cov2),

mean.std3.trt=mean(datacel.update$std3.trt),

mean.std3.cov1=mean(datacel.update$std3.cov1),

mean.std3.cov2=mean(datacel.update$std3.cov2),

sd.std3.cov1=sd(datacel.update$std3.cov1),

sd.std3.cov2=sd(datacel.update$std3.cov2),

mean.std4.trt=mean(datacel.update$std4.trt),

mean.std4.cov1=mean(datacel.update$std4.cov1),

mean.std4.cov2=mean(datacel.update$std4.cov2),

sd.std4.cov1=sd(datacel.update$std4.cov1),

sd.std4.cov2=sd(datacel.update$std4.cov2),

mean.std5.trt=mean(datacel.update$std5.trt),

mean.std5.cov1=mean(datacel.update$std5.cov1),

mean.std5.cov2=mean(datacel.update$std5.cov2),

sd.std5.cov1=sd(datacel.update$std5.cov1),

sd.std5.cov2=sd(datacel.update$std5.cov2),
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mean.std6.trt=mean(datacel.update$std6.trt),

mean.std6.cov1=mean(datacel.update$std6.cov1),

mean.std6.cov2=mean(datacel.update$std6.cov2),

sd.std6.cov1=sd(datacel.update$std6.cov1),

sd.std6.cov2=sd(datacel.update$std6.cov2),

mean.std7.trt=mean(datacel.update$std7.trt),

mean.std7.cov1=mean(datacel.update$std7.cov1),

mean.std7.cov2=mean(datacel.update$std7.cov2),

sd.std7.cov1=sd(datacel.update$std7.cov1),

sd.std7.cov2=sd(datacel.update$std7.cov2),

mean.std8.trt=mean(datacel.update$std8.trt),

mean.std8.cov1=mean(datacel.update$std8.cov1),

mean.std8.cov2=mean(datacel.update$std8.cov2),

sd.std8.cov1=sd(datacel.update$std8.cov1),

sd.std8.cov2=sd(datacel.update$std8.cov2),

mean.std9.trt=mean(datacel.update$std9.trt),

mean.std9.cov1=mean(datacel.update$std9.cov1),

mean.std9.cov2=mean(datacel.update$std9.cov2),

sd.std9.cov1=sd(datacel.update$std9.cov1),

sd.std9.cov2=sd(datacel.update$std9.cov2),

mean.std10.trt=mean(datacel.update$std10.trt),

mean.std10.cov1=mean(datacel.update$std10.cov1),

mean.std10.cov2=mean(datacel.update$std10.cov2),

sd.std10.cov1=sd(datacel.update$std10.cov1),

sd.std10.cov2=sd(datacel.update$std10.cov2)

)

############ making ipd dataset

data.ipd<-dplyr::select(datacel.update, -c(4:30))

## the covariates need to be the same name in ipd and agd study

data.ipd<-rename(data.ipd, cov1 = std1.cov1,cov2 = std1.cov2)

##########################################################

################ MAIC 1 ##################################

################ study 1(ipd) study 2(agd) #######################

### renaming variables in agd study
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data.agd_update<-rename(data.agd, cov1 = mean.std2.cov1, cov2 = mean.std2.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std2.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std2.cov1^2 +

data.agd$sd.std2.cov1^2),

cov2_centered = cov2- data.agd$mean.std2.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std2.cov2^2 +

data.agd$sd.std2.cov2^2)

)

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

####################

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std2.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1
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# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic1.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic1.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

################ MAIC 2 ##################################

################ study 1(ipd) study 3(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std3.cov1, cov2 = mean.std3.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std3.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std3.cov1^2 +

data.agd$sd.std3.cov1^2),

cov2_centered = cov2- data.agd$mean.std3.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std3.cov2^2 +

data.agd$sd.std3.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights
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est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std3.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic2.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic2.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 3 ##################################

################ study 1(ipd) study 4(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std4.cov1, cov2 = mean.std4.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics
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#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std4.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std4.cov1^2 +

data.agd$sd.std4.cov1^2),

cov2_centered = cov2- data.agd$mean.std4.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std4.cov2^2 +

data.agd$sd.std4.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std4.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")
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# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic3.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic3.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 4 ##################################

################ study 1(ipd) study 5(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std5.cov1, cov2 = mean.std5.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std5.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std5.cov1^2 +

data.agd$sd.std5.cov1^2),

cov2_centered = cov2- data.agd$mean.std5.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std5.cov2^2 +

data.agd$sd.std5.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights
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est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std5.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic4.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic4.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 5 ##################################

################ study 1(ipd) study 6(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std6.cov1, cov2 = mean.std6.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics
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#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std6.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std6.cov1^2 +

data.agd$sd.std6.cov1^2),

cov2_centered = cov2- data.agd$mean.std6.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std6.cov2^2 +

data.agd$sd.std6.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std6.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)
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combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic5.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic5.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 6 ##################################

################ study 1(ipd) study 8(agd) #######################

### renaming variables in agd and

data.agd_update<-rename(data.agd, cov1 = mean.std8.cov1, cov2 = mean.std8.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std8.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std8.cov1^2 +

data.agd$sd.std8.cov1^2),

cov2_centered = cov2- data.agd$mean.std8.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std8.cov2^2 +

data.agd$sd.std8.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,
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matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std8.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic6.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic6.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 7 ##################################

################ study 1(ipd) study 9(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std9.cov1, cov2 = mean.std9.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics
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#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std9.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std9.cov1^2 +

data.agd$sd.std9.cov1^2),

cov2_centered = cov2- data.agd$mean.std9.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std9.cov2^2 +

data.agd$sd.std9.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std9.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")
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# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic7.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic7.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 8 ##################################

################ study 1(ipd) study 10(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std10.cov1, cov2 = mean.std10.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std10.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std10.cov1^2 +

data.agd$sd.std10.cov1^2),

cov2_centered = cov2- data.agd$mean.std10.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std10.cov2^2 +

data.agd$sd.std10.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)
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# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std10.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic8.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic8.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####################################################################

################ MAIC 9 ##################################

################ study 1(ipd) study 7(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std7.cov1, cov2 = mean.std7.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation
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data.ipd_update <- data.ipd %>%

mutate(cov1_centered = cov1- data.agd$mean.std7.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std7.cov1^2 +

data.agd$sd.std7.cov1^2),

cov2_centered = cov2- data.agd$mean.std7.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std7.cov2^2 +

data.agd$sd.std7.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std7.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,
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weight = wt))

maic9.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic9.se<-coeftest(weighted_OR,vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

####conducting an NMA with the estimates from the MAIC

### creating a data frame which will be used in the nma

studyn <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

n <- rep(150,18)

diff<-c(NA,maic1.est,

NA,maic2.est,NA,maic3.est,

NA,maic4.est,NA,maic5.est,

NA,maic9.est,NA,maic6.est,

NA,maic7.est,NA,maic8.est)

se_diff<-c(NA,maic1.se,

NA,maic2.se,NA,maic3.se,

NA,maic4.se,NA,maic5.se,

NA,maic9.se,NA,maic6.se,

NA,maic7.se,NA,maic8.se)

datacel3 <- data.frame(cbind(studyn,trtn,diff,se_diff,n))

### following code will set up the network (arm based)

model.re.disconect<-set_agd_contrast(

datacel3,

study=studyn,

trt=trtn,

y=diff,

se=se_diff,

sample_size=n)

##The model is fitted using the nma() function.

maic_fit_RE <- nma(model.re.disconect,

trt_effects = "random",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10),

prior_het = log_normal(-2.56, 0.33),
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prior_het_type = "var")

maic_data_frame<-as.data.frame(maic_fit_RE,pars=c("d","tau"))

stan.object.nma.discnt.mean.d1<-mean(maic_data_frame$‘d[2]‘)

stan.object.nma.discnt.mean.d2<-mean(maic_data_frame$‘d[3]‘)

stan.object.nma.discnt.median.tau<-median(maic_data_frame$tau)

stan.object.nma.discontd.sd.d1<-sd(maic_data_frame$‘d[2]‘)

stan.object.nma.discontd.sd.d2<-sd(maic_data_frame$‘d[3]‘)

stan.object.nma.discontd.sd.tau<-sd(maic_data_frame$tau)

#### calculation of coverage probability

B1=stan.object.nma.discontd.sd.d1

A1=stan.object.nma.discnt.mean.d1

z.alpha1 <- 1.96

theta.hat.low1=A1-z.alpha1*B1

theta.hat.upp1=A1+z.alpha1*B1

theta1= stan.object.nma.true.mean.d1

est1 <-ifelse(theta1>=theta.hat.low1 & theta1<=theta.hat.upp1,1,0)

B2=stan.object.nma.discontd.sd.d2

A2=stan.object.nma.discnt.mean.d2

z.alpha2 <- 1.96

theta.hat.low2=A2-z.alpha2*B2

theta.hat.upp2=A2+z.alpha2*B2

theta2= stan.object.nma.true.mean.d2

est2 <-ifelse(theta2>=theta.hat.low2 & theta2<=theta.hat.upp2,1,0)

B3=stan.object.nma.connect.sd.d1

A3=stan.object.nma.connect.mean.d1

z.alpha3 <- 1.96

theta.hat.low3=A3-z.alpha3*B3

theta.hat.upp3=A3+z.alpha3*B3

theta3= stan.object.nma.true.mean.d1

est3 <-ifelse(theta3>=theta.hat.low3 & theta3<=theta.hat.upp3,1,0)

B4=stan.object.nma.connect.sd.d2

A4=stan.object.nma.connect.mean.d2

z.alpha4 <- 1.96

theta.hat.low4=A4-z.alpha4*B4

theta.hat.upp4=A4+z.alpha4*B4

theta4= stan.object.nma.true.mean.d2

est4 <-ifelse(theta4>=theta.hat.low4 & theta4<=theta.hat.upp4,1,0)
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B5=stan.object.nma.connect.sd.tau

A5=stan.object.nma.connect.median.tau

z.alpha5 <- 1.96

theta.hat.low5=A5-z.alpha5*B5

theta.hat.upp5=A5+z.alpha5*B5

theta5= stan.object.nma.true.median.tau

est5 <-ifelse(theta5>=theta.hat.low5 & theta5<=theta.hat.upp5,1,0)

B6=stan.object.nma.discontd.sd.tau

A6=stan.object.nma.discnt.median.tau

z.alpha6 <- 1.96

theta.hat.low6=A6-z.alpha6*B6

theta.hat.upp6=A6+z.alpha6*B6

theta6= stan.object.nma.true.median.tau

est6 <-ifelse(theta6>=theta.hat.low6 & theta6<=theta.hat.upp6,1,0)

out[i, 1]<-stan.object.nma.connect.mean.d1

out[i, 2]<-stan.object.nma.connect.mean.d2

out[i, 3]<-stan.object.nma.connect.median.tau

out[i, 4]<-stan.object.nma.connect.sd.tau

out[i, 5]<-stan.object.nma.discnt.mean.d1

out[i, 6]<-stan.object.nma.discnt.mean.d2

out[i, 7]<-stan.object.nma.discontd.sd.d1

out[i, 8]<-stan.object.nma.discontd.sd.d2

out[i, 9]<-est1

out[i, 10]<-est2

out[i, 11]<-stan.object.nma.discnt.median.tau

out[i, 12]<-stan.object.nma.discontd.sd.tau

out[i, 13]<- est3

out[i, 14]<- est4

out[i, 15]<-stan.object.nma.connect.sd.d1

out[i, 16]<-stan.object.nma.connect.sd.d2

out[i, 17]<-est5

out[i, 18]<-est6

}

out<-data.frame(out)
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R codes for double-bootstrapping

E.1 R codes for double-bootstrapping (fixed effect)

################################################

# R codes for double bootstrapping (fixed effect)

################################################

library(multinma)

library(dplyr)

library (margins)

library(devtools)

library(MAIC)

library(sandwich)

library(lmtest)

library(boot)

library(foreach)

library(parallel)

library(lme4)

rm(list=ls())

set.seed(1128)

### making R object pc for parameter combination

### which will generate different datasets for

### different parameter combination

corx<-c(0.20,0.80) ##correlation between covariates in a study

b_X1_trt<-c(-log(0.78),-log(0.40)) ## 0.25 and 0.916 (interaction coefficient)

b_X1<-c(-log(0.67),-log(0.33)) ## 0.40 and 1.10 (covariate coefficient)

meanx1<-c(0.45,0.15) ## mean of covariates

param.combinations <- expand.grid(corx=corx, b_X1_trt=b_X1_trt,

b_X1=b_X1, meanx1=meanx1)

311
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pc <- param.combinations

pc<-round(pc, 2) ## rounding the values

pc$meanx2<-c(0.48,0.48,0.48,0.48,0.48,0.48,0.48,

0.48,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20) ## adding another column in pc

scenerios<-nrow(pc) ### no of scenarios created ## 16scenarios

######## Creating a function to generate data

### Generating 10 studies which will consist of 40 columns

## each study is with two arms where

### 150 data will be generated for each arm

### each study will have two continuous covariates

### in total every study consists of 4 columns in the dataset

### all studies have the same common treatment(trt 1)

### but 6 studies have treatment 2 and four studies have

### treatment 3

#######################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

ns =10 ## no of studies

np = matrix(150, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

gen.data<-function(sdx,corx, meanx1,meanx2, b_X1, b_X1_trt){

count = 0

count2=2

datacel<-matrix(NA, nrow=150, ncol=40)

for(i in 1:ns){

n <- 150

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(corx, nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){ ## study 1

mean <- c(X1 =0.60, X2 =0.50)

}

if(i >= 2){ ## study 2 to 10

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))
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}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 =d[t[i,2]] - d[t[i,1]]

mu = 0.85 ## intercept value in each study

### generating outcome variable for control arm

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

### generating outcome variable for treatment arm

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))

ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### outcome for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### outcome for trt arm

datacel[ ,1+count]<-ytemp1

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

return(datacel)

}

### now generating and saving multiple no of data for each scenario using replicate

### here for scenario 1

ipd<-replicate(n=1000,expr=gen.data(corx=pc$corx[1], b_X1_trt=pc$b_X1_trt[1],

b_X1=pc$b_X1[1],meanx1=pc$meanx1[1], meanx2= pc$meanx2[1]),simplify =FALSE )

####################################################

##### First estimating true d1 and d2 (parameter values) so

### that the estimates can be used in the calculation of

### coverage in the simulation

### to get the true d1, d2, running the same data

### generation as before but now the sample size is quite

### large (1 million)

####################################################
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##########################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

ns =10 ## no of studies

np = matrix(1000000, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

### Starting loop to generate data

count = 0

count2=2

datacel<-matrix(NA, nrow=1000000, ncol=40)

for(i in 1:ns){

n <- 1000000

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(pc[1,1], nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){

mean <- c(X1 =0.60, X2 =0.50)

}

if(i >= 2){

mean <- c(X1 =rnorm(1,pc[1,4], 0.05), X2 =rnorm(1,pc[1,5], 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 = d[t[i,2]] - d[t[i,1]]

mu = 0.85

b_X1 <- pc[1,3] # conditional effect of variable 1

b_X1_trt <- pc[1,2] # conditional interaction effect of effect modifier

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))
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ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### for trt arm

datacel[ ,1+count]<-ytemp1

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

datacel<-data.frame(datacel)

### After generating data, a network meta-analysis

### will be conducted to get the true value of d1, d2

### creating a data frame which will be used in the nma

## study no

studyn <- rep(1:10,each=2)

## vector indicates treatment number

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

## no of events in each arm

r <- c(sum(datacel$X1==1),sum(datacel$X2==1),sum(datacel$X5==1),sum(datacel$X6==1),

sum(datacel$X9==1),sum(datacel$X10==1),sum(datacel$X13==1),sum(datacel$X14==1),

sum(datacel$X17==1),sum(datacel$X18==1),sum(datacel$X21==1),sum(datacel$X22==1),

sum(datacel$X25==1),sum(datacel$X26==1),sum(datacel$X29==1),sum(datacel$X30==1),

sum(datacel$X33==1),sum(datacel$X34==1),sum(datacel$X37==1),sum(datacel$X38==1))

n <- rep(1000000, 20) ## no of patients in each arm

datacel <- data.frame(cbind(studyn,trtn,r,n))

colSums(select_if(datacel, is.numeric))

### following code will set up the network (arm based)

true.network.fe<-set_agd_arm(

datacel,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )
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arm_fit_FE_true <- nma(true.network.fe,

trt_effects = "fixed",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 100))

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_true<-as.data.frame(arm_fit_FE_true,pars=c("d"))

### now taking the mean of d1 and d2 values which will be

## used ad the estimate of d1 and d2

stan.object.nma.true.mean.d1<-mean(model_true$‘d[2]‘)

stan.object.nma.true.mean.d2<-mean(model_true$‘d[3]‘)

### now starting the loop which will be implemented on every data

#############################################################################

#############################################################################

out<-matrix(NA,1000,10)

colnames(out) <- c("mean.d1", "mean.d2","sd.d1", "sd.d2","est1", "est2",

"connect.d1", "connect.d2", "connect.sd.d1", "connect.sd.d2" )

########################################

#######################################

##########################################

##########################################

###########################################

bootstrap <- function(ipd_data) {

## datasets are stored as list, converting it to dataframe

data.main <- data.frame(ipd_data)

###############################

## connected NMA codes

##############################

### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

## vector indicates treatment number

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

r <- c(sum(data.main $X1==1),sum(data.main$X2==1),sum(data.main$X5==1),sum(data.main$X6==1), ## no of events in each arm
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sum(data.main$X9==1),sum(data.main$X10==1),sum(data.main$X13==1),sum(data.main$X14==1),

sum(data.main$X17==1),sum(data.main$X18==1),sum(data.main$X21==1),sum(data.main$X22==1),

sum(data.main$X25==1),sum(data.main$X26==1),sum(data.main$X29==1),sum(data.main$X30==1),

sum(data.main$X33==1),sum(data.main$X34==1),sum(data.main$X37==1),sum(data.main$X38==1))

n <- rep(150, 20) ## no of patients in each arm

colSums(select_if(datacel, is.numeric))

datacel2 <- data.frame(cbind(studyn,trtn,r,n))

### following code will set up the network (arm based)

connected.network.fe<-set_agd_arm(

datacel2,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )

arm_fit_FE_connected <- nma(connected.network.fe,

trt_effects = "fixed",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 100))

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_connected<-as.data.frame(arm_fit_FE_connected,pars=c("d"))

### now taking the mean of d1 and d2 values which will be

## used ad the estimate of d1 and d2

stan.object.nma.connect.mean.d1<-mean(model_connected$‘d[2]‘)

stan.object.nma.connect.mean.d2<-mean(model_connected$‘d[3]‘)

stan.object.nma.connect.sd.d1<-sd(model_connected$‘d[2]‘)

stan.object.nma.connect.sd.d2<-sd(model_connected$‘d[3]‘)

datacel= rename(data.main, ### renaming the column names

std1.ref = "X1", std1.trt = "X2",

std1.cov1= "X3", std1.cov2= "X4",

std2.ref = "X5", std2.trt = "X6",

std2.cov1= "X7", std2.cov2= "X8",
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std3.ref = "X9", std3.trt = "X10",

std3.cov1= "X11", std3.cov2= "X12",

std4.ref = "X13", std4.trt = "X14",

std4.cov1= "X15", std4.cov2= "X16",

std5.ref = "X17", std5.trt = "X18",

std5.cov1= "X19", std5.cov2= "X20",

std6.ref = "X21", std6.trt = "X22",

std6.cov1= "X23", std6.cov2= "X24",

std7.ref = "X25", std7.trt = "X26",

std7.cov1= "X27", std7.cov2= "X28",

std8.ref = "X29", std8.trt = "X30",

std8.cov1= "X31", std8.cov2= "X32",

std9.ref = "X33", std9.trt = "X34",

std9.cov1= "X35", std9.cov2= "X36",

std10.ref = "X37", std10.trt = "X38",

std10.cov1= "X39", std10.cov2= "X40")

### deleting multiple columns and making studies into single arm

datacel.update<-dplyr::select( datacel, -c( ’std1.trt’,’std2.ref’, ’std3.ref’,

’std4.ref’,’std5.ref’, ’std6.ref’,

’std7.ref’, ’std8.ref’, ’std9.ref’,

’std10.ref’))

############ making agd dataset

data.agd<-data.frame( mean.std2.trt=mean(datacel.update$std2.trt),

mean.std2.cov1=mean(datacel.update$std2.cov1),

mean.std2.cov2=mean(datacel.update$std2.cov2),

sd.std2.cov1=sd(datacel.update$std2.cov1),

sd.std2.cov2=sd(datacel.update$std2.cov2),

mean.std3.trt=mean(datacel.update$std3.trt),

mean.std3.cov1=mean(datacel.update$std3.cov1),
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mean.std3.cov2=mean(datacel.update$std3.cov2),

sd.std3.cov1=sd(datacel.update$std3.cov1),

sd.std3.cov2=sd(datacel.update$std3.cov2),

mean.std4.trt=mean(datacel.update$std4.trt),

mean.std4.cov1=mean(datacel.update$std4.cov1),

mean.std4.cov2=mean(datacel.update$std4.cov2),

sd.std4.cov1=sd(datacel.update$std4.cov1),

sd.std4.cov2=sd(datacel.update$std4.cov2),

mean.std5.trt=mean(datacel.update$std5.trt),

mean.std5.cov1=mean(datacel.update$std5.cov1),

mean.std5.cov2=mean(datacel.update$std5.cov2),

sd.std5.cov1=sd(datacel.update$std5.cov1),

sd.std5.cov2=sd(datacel.update$std5.cov2),

mean.std6.trt=mean(datacel.update$std6.trt),

mean.std6.cov1=mean(datacel.update$std6.cov1),

mean.std6.cov2=mean(datacel.update$std6.cov2),

sd.std6.cov1=sd(datacel.update$std6.cov1),

sd.std6.cov2=sd(datacel.update$std6.cov2),

mean.std7.trt=mean(datacel.update$std7.trt),

mean.std7.cov1=mean(datacel.update$std7.cov1),

mean.std7.cov2=mean(datacel.update$std7.cov2),

sd.std7.cov1=sd(datacel.update$std7.cov1),

sd.std7.cov2=sd(datacel.update$std7.cov2),

mean.std8.trt=mean(datacel.update$std8.trt),

mean.std8.cov1=mean(datacel.update$std8.cov1),

mean.std8.cov2=mean(datacel.update$std8.cov2),

sd.std8.cov1=sd(datacel.update$std8.cov1),

sd.std8.cov2=sd(datacel.update$std8.cov2),

mean.std9.trt=mean(datacel.update$std9.trt),

mean.std9.cov1=mean(datacel.update$std9.cov1),

mean.std9.cov2=mean(datacel.update$std9.cov2),

sd.std9.cov1=sd(datacel.update$std9.cov1),

sd.std9.cov2=sd(datacel.update$std9.cov2),

mean.std10.trt=mean(datacel.update$std10.trt),

mean.std10.cov1=mean(datacel.update$std10.cov1),
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mean.std10.cov2=mean(datacel.update$std10.cov2),

sd.std10.cov1=sd(datacel.update$std10.cov1),

sd.std10.cov2=sd(datacel.update$std10.cov2)

)

############ making ipd dataset by deleting unnecessary columns

data.ipd<-dplyr::select(datacel.update, -c(4:30))

#### starting the function for double-bootstrapping

boot.maic<-function(d,i){

data.whole.maic <- d[i,] ## allows boot to select sample

### Applying 9 unanchored MAICs

#########################################################

################ MAIC 1 ##################################

################ study 1(ipd) study 2(agd) #######################

boot.std.1.2 <- function(d, i) {

data.maic1 <- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic1<-rename(data.maic1, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std2.cov1, cov2 = mean.std2.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic1 %>%

mutate(cov1_centered = cov1- data.agd$mean.std2.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std2.cov1^2 +

data.agd$sd.std2.cov1^2),
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cov2_centered = cov2- data.agd$mean.std2.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std2.cov2^2 +

data.agd$sd.std2.cov2^2)

)

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std2.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,
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weight = wt))

maic1.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic1.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic1.est,maic1.se))

}

results.boot.std.1.2 <- boot(data=data.whole.maic, statistic=boot.std.1.2, R=1)

boot.std.1.3 <- function(d, i) {

data.maic2 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic2<-rename(data.maic2, cov1 = std1.cov1,cov2 = std1.cov2)

################ MAIC 2 ##################################

################ study 1(ipd) study 3(agd) #######################

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std3.cov1, cov2 = mean.std3.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic2 %>%

mutate(cov1_centered = cov1- data.agd$mean.std3.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std3.cov1^2 +

data.agd$sd.std3.cov1^2),

cov2_centered = cov2- data.agd$mean.std3.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std3.cov2^2 +

data.agd$sd.std3.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)
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#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std3.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic2.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic2.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic2.est,maic2.se))

}

results.boot.std.1.3 <- boot(data=data.whole.maic, statistic=boot.std.1.3, R=1)

boot.std.1.4 <- function(d, i) {

data.maic3 <- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic3<-rename(data.maic3, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 3 ##################################

################ study 1(ipd) study 4(agd) #######################
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### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std4.cov1, cov2 = mean.std4.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic3 %>%

mutate(cov1_centered = cov1- data.agd$mean.std4.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std4.cov1^2 +

data.agd$sd.std4.cov1^2),

cov2_centered = cov2- data.agd$mean.std4.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std4.cov2^2 +

data.agd$sd.std4.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std4.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%
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mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic3.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic3.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic3.est,maic3.se))

}

results.boot.std.1.4 <- boot(data=data.whole.maic, statistic=boot.std.1.4, R=1)

boot.std.1.5 <- function(d, i) {

data.maic4 <- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic4<-rename(data.maic4, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 4 ##################################

################ study 1(ipd) study 5(agd) #######################

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std5.cov1, cov2 = mean.std5.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic4 %>%

mutate(cov1_centered = cov1- data.agd$mean.std5.cov1,



APPENDIX E. SIMULATION WITH DOUBLE-BOOTSTRAPPED MAIC-ADJUSTED NMA 326

cov1_squared_centered = (cov1^2) - (data.agd$mean.std5.cov1^2 +

data.agd$sd.std5.cov1^2),

cov2_centered = cov2- data.agd$mean.std5.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std5.cov2^2 +

data.agd$sd.std5.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std5.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic4.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic4.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic4.est,maic4.se))

}

results.boot.std.1.5 <- boot(data=data.whole.maic, statistic=boot.std.1.5, R=1)
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boot.std.1.6 <- function(d, i) {

data.maic5 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic5<-rename(data.maic5, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 5 ##################################

################ study 1(ipd) study 6(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std6.cov1, cov2 = mean.std6.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic5 %>%

mutate(cov1_centered = cov1- data.agd$mean.std6.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std6.cov1^2 +

data.agd$sd.std6.cov1^2),

cov2_centered = cov2- data.agd$mean.std6.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std6.cov2^2 +

data.agd$sd.std6.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std6.trt # proportion of responders
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# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic5.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic5.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic5.est,maic5.se))

}

results.boot.std.1.6 <- boot(data=data.whole.maic, statistic=boot.std.1.6, R=1)

boot.std.1.7 <- function(d, i) {

data.maic6<- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic6<-rename(data.maic6, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 6 ##################################

################ study 1(ipd) study 7(agd) #######################

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std7.cov1, cov2 = mean.std7.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics
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#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic6 %>%

mutate(cov1_centered = cov1- data.agd$mean.std7.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std7.cov1^2 +

data.agd$sd.std7.cov1^2),

cov2_centered = cov2- data.agd$mean.std7.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std7.cov2^2 +

data.agd$sd.std7.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std7.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,
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weight = wt))

maic6.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic6.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic6.est,maic6.se))

}

results.boot.std.1.7 <- boot(data=data.whole.maic, statistic=boot.std.1.7, R=1)

boot.std.1.8 <- function(d, i) {

data.maic7 <- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic7<-rename(data.maic7, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 7 ##################################

################ study 1(ipd) study 8(agd) #######################

### renaming variables in agd and

data.agd_update<-rename(data.agd, cov1 = mean.std8.cov1, cov2 = mean.std8.cov2)

# List out matching covariates

match_cov <- c("cov1","cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic7 %>%

mutate(cov1_centered = cov1- data.agd$mean.std8.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std8.cov1^2 +

data.agd$sd.std8.cov1^2),

cov2_centered = cov2- data.agd$mean.std8.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std8.cov2^2 +

data.agd$sd.std8.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)
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#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std8.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic7.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic7.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic7.est,maic7.se))

}

results.boot.std.1.8 <- boot(data=data.whole.maic, statistic=boot.std.1.8, R=1)

boot.std.1.9 <- function(d, i) {

data.maic8<- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic8<-rename(data.maic8, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 8 ##################################
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################ study 1(ipd) study 9(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std9.cov1, cov2 = mean.std9.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic8%>%

mutate(cov1_centered = cov1- data.agd$mean.std9.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std9.cov1^2 +

data.agd$sd.std9.cov1^2),

cov2_centered = cov2- data.agd$mean.std9.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std9.cov2^2 +

data.agd$sd.std9.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std9.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))
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comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic8.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic8.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic8.est,maic8.se))

}

results.boot.std.1.9 <- boot(data=data.whole.maic, statistic=boot.std.1.9, R=1)

boot.std.1.10 <- function(d, i) {

data.maic9<- d[i,]

## The covariates need to be the same name in ipd and agd study

data.maic9<-rename(data.maic9, cov1 = std1.cov1,cov2 = std1.cov2)

####################################################################

################ MAIC 9 ##################################

################ study 1(ipd) study 10(agd) #######################

### renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std10.cov1, cov2 = mean.std10.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic9 %>%

mutate(cov1_centered = cov1- data.agd$mean.std10.cov1,
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cov1_squared_centered = (cov1^2) - (data.agd$mean.std10.cov1^2 +

data.agd$sd.std10.cov1^2),

cov2_centered = cov2- data.agd$mean.std10.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std10.cov2^2 +

data.agd$sd.std10.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std10.trt # proportion of responders

# Calculate number with event

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic9.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]
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maic9.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic9.est,maic9.se))

}

results.boot.std.1.10 <- boot(data=data.whole.maic, statistic=boot.std.1.10, R=1)

####conducting an NMA with the estimates from the MAIC

### creating a data frame which will be used in the nma

studyn <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

n <- c(150,150,150,150,150,150,150,150,150,150,150,150,150,150,150,150,150,150)

diff<-c(NA,results.boot.std.1.2$t[1],

NA,results.boot.std.1.3$t[1],NA,results.boot.std.1.4$t[1],

NA,results.boot.std.1.5$t[1],NA,results.boot.std.1.6$t[1],

NA,results.boot.std.1.7$t[1],NA,results.boot.std.1.8$t[1],

NA,results.boot.std.1.9$t[1],NA,results.boot.std.1.10$t[1])

se_diff<-c(NA,results.boot.std.1.2$t[2],

NA,results.boot.std.1.3$t[2],NA,results.boot.std.1.4$t[2],

NA,results.boot.std.1.5$t[2],NA,results.boot.std.1.6$t[2],

NA,results.boot.std.1.7$t[2],NA,results.boot.std.1.8$t[2],

NA,results.boot.std.1.9$t[2],NA,results.boot.std.1.10$t[2])

datacel2 <- data.frame(cbind(studyn,trtn,diff,se_diff,n))

### following code will set up the network (arm based)

model.fe<-set_agd_contrast(

datacel2,

study=studyn,

trt=trtn,

y=diff,

se=se_diff,

sample_size=n)

##The model is fitted using the nma() function.

maic_fit_FE <- nma(model.fe,

trt_effects = "fixed",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10))
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### extracting the values of d1 and d2 and then calculating the mean

maic_data_frame<-as.data.frame(maic_fit_FE,pars=c("d"))

stan.object.nma.discnt.mean.d1<-mean(maic_data_frame$‘d[2]‘)

stan.object.nma.discnt.mean.d2<-mean(maic_data_frame$‘d[3]‘)

return(c(stan.object.nma.discnt.mean.d1,

stan.object.nma.discnt.mean.d2))

}

results <- boot(data=data.ipd, statistic=boot.maic, R=300)

mean.d1<-mean(results$t[, 1]) ### mean of first column will give estimate of d1

mean.d2<-mean(results$t[, 2]) ### ### mean of second column will give estimate of d2

sd.d1<-sd(results$t[, 1]) ###sd of first column will give sd of d1

sd.d2<-sd(results$t[, 2]) ###sd of second column will give sd of d2

#### calculation of coverage probability

B1=sd.d1

A1=mean.d1

z.alpha1 <- 1.96

theta.hat.low1=A1-z.alpha1*B1

theta.hat.upp1=A1+z.alpha1*B1

theta1=stan.object.nma.true.mean.d1

est1 <-ifelse(theta1>=theta.hat.low1 & theta1<=theta.hat.upp1,1,0)

B2=sd.d2

A2=mean.d2

z.alpha2 <- 1.96

theta.hat.low2=A2-z.alpha2*B2

theta.hat.upp2=A2+z.alpha2*B2

theta2= stan.object.nma.true.mean.d2

est2 <-ifelse(theta2>=theta.hat.low2 & theta2<=theta.hat.upp2,1,0)

out[i, 1]<-mean.d1

out[i, 2]<-mean.d2

out[i, 3]<-sd.d1

out[i, 4]<-sd.d2

out[i, 5]<-est1
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out[i, 6]<-est2

out[i, 7]<-stan.object.nma.connect.mean.d1

out[i, 8]<-stan.object.nma.connect.mean.d2

out[i, 9]<-stan.object.nma.connect.sd.d1

out[i, 10]<-stan.object.nma.connect.sd.d2

out<-data.frame(out)

}

### run in parallel..........

save <- mclapply(ipd, bootstrap)

## saving the output in HPC as a dataframe

saveRDS(save, file="actual.innovtn.scn1.FE.rds")

E.2 R codes for double-bootstrapping (random effects)

################################################

# R codes for double bootstrapping (random effects)

################################################

rm(list=ls())

set.seed(1128)

### making R object pc for parameter combination which will

###generate different datasets for

### different parameter combination

corx<-c(0.20,0.80) ## correlation between covariates in a study

b_X1_trt<-c(-log(0.78),-log(0.40)) ## 0.25 and 0.916 (interaction coefficient)

b_X1<-c(-log(0.67),-log(0.33)) ## 0.40 and 1.10 (covariate coefficient)

meanx1<-c(0.45,0.15) ## mean of covariates

param.combinations <- expand.grid(corx=corx, b_X1_trt=b_X1_trt,

b_X1=b_X1, meanx1=meanx1)

pc <- param.combinations

pc<-round(pc, 2) ## rounding the values

pc$meanx2<-c(0.48,0.48,0.48,0.48,0.48,0.48,0.48,

0.48,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20) ## adding another column in pc

scenerios<-nrow(pc) ### no of scenarios created ## 16scenarios

######## creating a function to generate data
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### here generating 10 studies which will consist of 40 columns

## each study is with two arm where

### 150 data will be generated for each arm

### each study will have two continuous covariates

### in total every study is consist of 4 columns in the dataset

### all studies have the same control treatment(trt 1)

### 6 studies have treatment 2 and four studies have

### treatment 3

#######################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

tau = 0.3 ## hetrogeneity parameter

ns =10 ## no of studies

np = matrix(150, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

gen.data<-function(sdx,corx, meanx1,meanx2, b_X1, b_X1_trt){

count = 0

count2=2

datacel<-matrix(NA, nrow=150, ncol=40)

for(i in 1:ns){

n <- 150

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(corx, nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){ ## study 1

mean <- c(X1 =0.60, X2 =0.50)

}

if(i >= 2){ ## study 2 to 10

mean <- c(X1 =rnorm(1,meanx1, 0.05), X2 =rnorm(1,meanx2, 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

## treatment effect for trt arm in each study
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delta2 =rnorm(1, d[t[i,2]] - d[t[i,1]], tau)

mu = 0.85 ## intercept value in each study

### generating outcome variable for control arm

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

### generating outcome variable for treatment arm

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))

ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### outcome for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### outcome for trt arm

datacel[ ,1+count]<-ytemp1

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

return(datacel)

}

### now generating and saving multiple no of data for each scenario using replicate

### scenario 2

ipd<-replicate(n=1000,expr=gen.data(corx=pc$corx[2], b_X1_trt=pc$b_X1_trt[2], b_X1=pc$b_X1[2],meanx1=pc$meanx1[2], meanx2= pc$meanx2[2]),simplify =FALSE )

## first 30 datasets

ipd<-ipd[c(1:30)]

####################################################

##### first estimating true d1 and d2 (parameter values) so

### that the estimates can be used in the calculation of

### coverage in the simulation

### to get the true d1, d2, running the same data

### generation as before but now the sample size is quite

### large (1 million)

####################################################

##########################################################

d = c(log(1),log(1.5),log(.17)) ## log odds ratio (0, 0.40, -1.77)

tau= 0.3
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ns =10 ## no of studies

np = matrix(1000000, ns, 2) ## no of patient in each study

t = matrix(c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3), ns, 2) ## trt in each arm

count = 0

count2=2

datacel<-matrix(NA, nrow=1000000, ncol=40)

for(i in 1:ns){

n <- 1000000

sdX <- 0.4 # standard deviation of each covariate

rho <- matrix(pc[2,1], nrow=2, ncol=2) # set correlation matrix

diag(rho) <- rep(1, 2)

sd.vec <-rep(sdX, 2)

cor2cov <- function(R, S) {

sweep(sweep(R, 1, S, "*"),2,S,"*")

}

R <- cor2cov(rho, sd.vec) # covariance matrix

if(i == 1){

mean <- c(X1 =0.60, X2 =0.50)

}

if(i == 2){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 3){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 4){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 5){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 6){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 7){
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mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 8){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 9){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

if(i == 10){

mean <- c(X1 =rnorm(1,pc[2,4], 0.05), X2 =rnorm(1,pc[2,5], 0.05))

}

cov<-data.frame(MASS::mvrnorm(n, mu = mean, Sigma = R))

delta2 =rnorm(1, d[t[i,2]] - d[t[i,1]], tau)

mu = 0.85

b_X1 <- pc[2,3] # conditional effect of variable 1 and 2

b_X1_trt <- pc[2,2] # conditional interaction effect of effect modifier

prob1=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) )))

prob2=1 / (1 + exp(-( mu + b_X1 * (cov$X2)

+ b_X1 * (cov$X1) + delta2

+ b_X1_trt * (cov$X1 ))))

ytemp1 = rbinom(np[i,1], size=1,prob=prob1) ### for reference arm

ytemp2 = rbinom(np[i,2], size=1, prob=prob2) ### for trt arm

datacel[ ,1+count]<-ytemp1 ## response in every (1,2),(5,6),(9,10)th column

datacel[ ,2+count]<-ytemp2

datacel[ ,1+count2]<-cov$X1 ## cov value in every (3,4),(7,8),(11,12)th column

datacel[ ,2+count2]<-cov$X2

count = count + 4

count2= count2+ 4

}

datacel<-data.frame(datacel)
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###############################

## running NMA with the big data

##############################

### after generating data, now will conduct a network meta analysis

### with the data to extract the value of true

### d1, d2 which will be used in calculating the confidence interval

### and coverage

### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

## vector indicates treatment number

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

## no of events in each arm

r <- c(sum(datacel$X1==1),sum(datacel$X2==1),sum(datacel$X5==1),sum(datacel$X6==1),

sum(datacel$X9==1),sum(datacel$X10==1),sum(datacel$X13==1),sum(datacel$X14==1),

sum(datacel$X17==1),sum(datacel$X18==1),sum(datacel$X21==1),sum(datacel$X22==1),

sum(datacel$X25==1),sum(datacel$X26==1),sum(datacel$X29==1),sum(datacel$X30==1),

sum(datacel$X33==1),sum(datacel$X34==1),sum(datacel$X37==1),sum(datacel$X38==1))

n <- rep(1000000, 20) ## no of patients in each arm

colSums(select_if(datacel, is.numeric))

datacel <- data.frame(cbind(studyn,trtn,r,n))

### following code will set up the network (arm based)

true.network.re<-set_agd_arm(

datacel,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )

##The model is fitted using the nma() function. nma function will generate

### the value of true d1, d2

arm_fit_RE_true <- nma(true.network.re,

trt_effects = "random",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10),

prior_het = log_normal(-2.56, 0.33),

prior_het_type = "var")

)
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#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_true<-as.data.frame(arm_fit_RE_true,pars=c("d","tau"))

### now taking the mean of d1 and d2 values which will be

## used as the estimate of d1 and d2

stan.object.nma.true.mean.d1<-mean(model_true$‘d[2]‘)

stan.object.nma.true.mean.d2<-mean(model_true$‘d[3]‘)

stan.object.nma.true.median.tau<-median(model_true$tau)

### now starting the loop which will be implemented on every data

#############################################################################

#############################################################################

## before running the loop, making a matrix to store results.

## this matrix will store result for the previously

## generated datsets

out<-matrix(NA,30,10)

colnames(out) <- c("mean.d1", "mean.d2","sd.d1", "sd.d2","est1", "est2",

"connect.d1", "connect.d2", "connect.sd.d1", "connect.sd.d2" )

########################################

#######################################

##########################################

bootstrap <- function(ipd_data) {

## datasets are stored as list, converting it to dataframe

data.main <- data.frame(ipd_data)

##############################

## connected NMA codes

##############################

### creating a data frame which will be used in the nma

studyn <- rep(1:10,each=2)

trtn <- c(1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3) ## vector indicates treatment number

## no of events in each arm
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r <- c(sum(data.main $X1==1),sum(data.main$X2==1),sum(data.main$X5==1),

sum(data.main$X6==1), sum(data.main$X9==1),sum(data.main$X10==1),

sum(data.main$X13==1), sum(data.main$X14==1), sum(data.main$X17==1),

sum(data.main$X18==1), sum(data.main$X21==1), sum(data.main$X22==1),

sum(data.main$X25==1), sum(data.main$X26==1),sum(data.main$X29==1),

sum(data.main$X30==1), sum(data.main$X33==1),sum(data.main$X34==1),

sum(data.main$X37==1), sum(data.main$X38==1))

n <- rep(150, 20) ## no of patients in each arm

datacel2 <- data.frame(cbind(studyn,trtn,r,n))

### following code will set up the network (arm based)

connected.network.re<-set_agd_arm(

datacel2,

study=studyn,

trt=trtn,

r = r,

n = n,

trt_ref = 1 )

arm_fit_RE_connected <- nma(connected.network.re,

trt_effects = "random",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10),

prior_het = log_normal(-2.56, 0.33),

prior_het_type = "var")

#### extracting all the values of d1 and d2

### and storing them in a dataframe

model_connected<-as.data.frame(arm_fit_RE_connected,pars=c("d"))

### now taking the mean of d1 and d2 values which will be

## used as the estimate of d1 and d2

stan.object.nma.connect.mean.d1<-mean(model_connected$‘d[2]‘)

stan.object.nma.connect.mean.d2<-mean(model_connected$‘d[3]‘)

stan.object.nma.connect.sd.d1<-sd(model_connected$‘d[2]‘)

stan.object.nma.connect.sd.d2<-sd(model_connected$‘d[3]‘)

datacel= rename(data.main, ### renaming the column names

std1.ref = "X1", std1.trt = "X2",



APPENDIX E. SIMULATION WITH DOUBLE-BOOTSTRAPPED MAIC-ADJUSTED NMA 345

std1.cov1= "X3", std1.cov2= "X4",

std2.ref = "X5", std2.trt = "X6",

std2.cov1= "X7", std2.cov2= "X8",

std3.ref = "X9", std3.trt = "X10",

std3.cov1= "X11", std3.cov2= "X12",

std4.ref = "X13", std4.trt = "X14",

std4.cov1= "X15", std4.cov2= "X16",

std5.ref = "X17", std5.trt = "X18",

std5.cov1= "X19", std5.cov2= "X20",

std6.ref = "X21", std6.trt = "X22",

std6.cov1= "X23", std6.cov2= "X24",

std7.ref = "X25", std7.trt = "X26",

std7.cov1= "X27", std7.cov2= "X28",

std8.ref = "X29", std8.trt = "X30",

std8.cov1= "X31", std8.cov2= "X32",

std9.ref = "X33", std9.trt = "X34",

std9.cov1= "X35", std9.cov2= "X36",

std10.ref = "X37", std10.trt = "X38",

std10.cov1= "X39", std10.cov2= "X40")

### deleting multiple columns and making studies into single arm

datacel.update<-dplyr::select( datacel, -c( ’std1.trt’,’std2.ref’, ’std3.ref’,

’std4.ref’,’std5.ref’, ’std6.ref’,

’std7.ref’, ’std8.ref’, ’std9.ref’,

’std10.ref’))

## now only keeping study 1 IPD and will make other study into

## agd data

############ making agd dataset

data.agd<-data.frame( mean.std2.trt=mean(datacel.update$std2.trt),

mean.std2.cov1=mean(datacel.update$std2.cov1),
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mean.std2.cov2=mean(datacel.update$std2.cov2),

sd.std2.cov1=sd(datacel.update$std2.cov1),

sd.std2.cov2=sd(datacel.update$std2.cov2),

mean.std3.trt=mean(datacel.update$std3.trt),

mean.std3.cov1=mean(datacel.update$std3.cov1),

mean.std3.cov2=mean(datacel.update$std3.cov2),

sd.std3.cov1=sd(datacel.update$std3.cov1),

sd.std3.cov2=sd(datacel.update$std3.cov2),

mean.std4.trt=mean(datacel.update$std4.trt),

mean.std4.cov1=mean(datacel.update$std4.cov1),

mean.std4.cov2=mean(datacel.update$std4.cov2),

sd.std4.cov1=sd(datacel.update$std4.cov1),

sd.std4.cov2=sd(datacel.update$std4.cov2),

mean.std5.trt=mean(datacel.update$std5.trt),

mean.std5.cov1=mean(datacel.update$std5.cov1),

mean.std5.cov2=mean(datacel.update$std5.cov2),

sd.std5.cov1=sd(datacel.update$std5.cov1),

sd.std5.cov2=sd(datacel.update$std5.cov2),

mean.std6.trt=mean(datacel.update$std6.trt),

mean.std6.cov1=mean(datacel.update$std6.cov1),

mean.std6.cov2=mean(datacel.update$std6.cov2),

sd.std6.cov1=sd(datacel.update$std6.cov1),

sd.std6.cov2=sd(datacel.update$std6.cov2),

mean.std7.trt=mean(datacel.update$std7.trt),

mean.std7.cov1=mean(datacel.update$std7.cov1),

mean.std7.cov2=mean(datacel.update$std7.cov2),

sd.std7.cov1=sd(datacel.update$std7.cov1),

sd.std7.cov2=sd(datacel.update$std7.cov2),

mean.std8.trt=mean(datacel.update$std8.trt),

mean.std8.cov1=mean(datacel.update$std8.cov1),

mean.std8.cov2=mean(datacel.update$std8.cov2),

sd.std8.cov1=sd(datacel.update$std8.cov1),

sd.std8.cov2=sd(datacel.update$std8.cov2),

mean.std9.trt=mean(datacel.update$std9.trt),
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mean.std9.cov1=mean(datacel.update$std9.cov1),

mean.std9.cov2=mean(datacel.update$std9.cov2),

sd.std9.cov1=sd(datacel.update$std9.cov1),

sd.std9.cov2=sd(datacel.update$std9.cov2),

mean.std10.trt=mean(datacel.update$std10.trt),

mean.std10.cov1=mean(datacel.update$std10.cov1),

mean.std10.cov2=mean(datacel.update$std10.cov2),

sd.std10.cov1=sd(datacel.update$std10.cov1),

sd.std10.cov2=sd(datacel.update$std10.cov2)

)

############ making ipd dataset by deleting unnecessary columns

data.ipd<-dplyr::select(datacel.update, -c(4:30))

### upto now the ipd dataset and aggregate dataset is complete

### now will start a function for bootstraping of the data.ipd

#### starting the function for bootstrapping

boot.maic<-function(d,i){

data.whole.maic <- d[i,] ## allows boot to select sample

### Now 9 unanchored MAICs will be applied

##########################################################

################ MAIC 1 ##################################

################ study 1(ipd) study 2(agd) #######################

boot.std.1.2 <- function(d, i) {

data.maic1 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic1<-rename(data.maic1, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std2.cov1, cov2 = mean.std2.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")
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#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic1 %>%

mutate(cov1_centered = cov1- data.agd$mean.std2.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std2.cov1^2 +

data.agd$sd.std2.cov1^2),

cov2_centered = cov2- data.agd$mean.std2.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std2.cov2^2 +

data.agd$sd.std2.cov2^2)

)

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std2.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")
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# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic1.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic1.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic1.est,maic1.se))

}

results.boot.std.1.2 <- boot(data=data.whole.maic, statistic=boot.std.1.2, R=1)

################ MAIC 2 ##################################

################ study 1(ipd) study 3(agd) #######################

boot.std.1.3 <- function(d, i) {

data.maic2 <- d[i,]

## The covariates needs to be same name in ipd and agd study

data.maic2<-rename(data.maic2, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std3.cov1, cov2 = mean.std3.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic2 %>%

mutate(cov1_centered = cov1- data.agd$mean.std3.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std3.cov1^2 +

data.agd$sd.std3.cov1^2),

cov2_centered = cov2- data.agd$mean.std3.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std3.cov2^2 +

data.agd$sd.std3.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",
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"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std3.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic2.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic2.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic2.est,maic2.se))

}

results.boot.std.1.3 <- boot(data=data.whole.maic, statistic=boot.std.1.3, R=1)

####################################################################

################ MAIC 3 ##################################

################ study 1(ipd) study 4(agd) #######################

boot.std.1.4 <- function(d, i) {
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data.maic3 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic3<-rename(data.maic3, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std4.cov1, cov2 = mean.std4.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic3 %>%

mutate(cov1_centered = cov1- data.agd$mean.std4.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std4.cov1^2 +

data.agd$sd.std4.cov1^2),

cov2_centered = cov2- data.agd$mean.std4.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std4.cov2^2 +

data.agd$sd.std4.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std4.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))
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comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic3.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic3.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic3.est,maic3.se))

}

results.boot.std.1.4 <- boot(data=data.whole.maic, statistic=boot.std.1.4, R=1)

####################################################################

################ MAIC 4 ##################################

################ study 1(ipd) study 5(agd) #######################

boot.std.1.5 <- function(d, i) {

data.maic4 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic4<-rename(data.maic4, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std5.cov1, cov2 = mean.std5.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic4 %>%

mutate(cov1_centered = cov1- data.agd$mean.std5.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std5.cov1^2 +

data.agd$sd.std5.cov1^2),
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cov2_centered = cov2- data.agd$mean.std5.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std5.cov2^2 +

data.agd$sd.std5.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std5.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic4.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic4.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic4.est,maic4.se))

}

results.boot.std.1.5 <- boot(data=data.whole.maic, statistic=boot.std.1.5, R=1)

####################################################################
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################ MAIC 5 ##################################

################ study 1(ipd) study 6(agd) #######################

boot.std.1.6 <- function(d, i) {

data.maic5 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic5<-rename(data.maic5, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std6.cov1, cov2 = mean.std6.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic5 %>%

mutate(cov1_centered = cov1- data.agd$mean.std6.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std6.cov1^2 +

data.agd$sd.std6.cov1^2),

cov2_centered = cov2- data.agd$mean.std6.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std6.cov2^2 +

data.agd$sd.std6.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std6.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people
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n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic5.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic5.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic5.est,maic5.se))

}

results.boot.std.1.6 <- boot(data=data.whole.maic, statistic=boot.std.1.6, R=1)

####################################################################

################ MAIC 6 ##################################

################ study 1(ipd) study 7(agd) #######################

boot.std.1.7 <- function(d, i) {

data.maic6<- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic6<-rename(data.maic6, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std7.cov1, cov2 = mean.std7.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic6 %>%
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mutate(cov1_centered = cov1- data.agd$mean.std7.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std7.cov1^2 +

data.agd$sd.std7.cov1^2),

cov2_centered = cov2- data.agd$mean.std7.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std7.cov2^2 +

data.agd$sd.std7.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std7.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic6.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic6.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]
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return(c(maic6.est,maic6.se))

}

results.boot.std.1.7 <- boot(data=data.whole.maic, statistic=boot.std.1.7, R=1)

####################################################################

################ MAIC 7 ##################################

################ study 1(ipd) study 8(agd) #######################

boot.std.1.8 <- function(d, i) {

data.maic7 <- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic7<-rename(data.maic7, cov1 = std1.cov1,cov2 = std1.cov2)

### renaming variables in agd and

##

data.agd_update<-rename(data.agd, cov1 = mean.std8.cov1, cov2 = mean.std8.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic7 %>%

mutate(cov1_centered = cov1- data.agd$mean.std8.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std8.cov1^2 +

data.agd$sd.std8.cov1^2),

cov2_centered = cov2- data.agd$mean.std8.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std8.cov2^2 +

data.agd$sd.std8.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,
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matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std8.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic7.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic7.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic7.est,maic7.se))

}

results.boot.std.1.8 <- boot(data=data.whole.maic, statistic=boot.std.1.8, R=1)

####################################################################

################ MAIC 8 ##################################

################ study 1(ipd) study 9(agd) #######################

boot.std.1.9 <- function(d, i) {

data.maic8<- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic8<-rename(data.maic8, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study
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data.agd_update<-rename(data.agd, cov1 = mean.std9.cov1, cov2 = mean.std9.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic8%>%

mutate(cov1_centered = cov1- data.agd$mean.std9.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std9.cov1^2 +

data.agd$sd.std9.cov1^2),

cov2_centered = cov2- data.agd$mean.std9.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std9.cov2^2 +

data.agd$sd.std9.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",

"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std9.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")
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# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic8.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic8.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic8.est,maic8.se))

}

results.boot.std.1.9 <- boot(data=data.whole.maic, statistic=boot.std.1.9, R=1)

####################################################################

################ MAIC 9 ##################################

################ study 1(ipd) study 10(agd) #######################

boot.std.1.10 <- function(d, i) {

data.maic9<- d[i,]

## The covariates need to be same name in ipd and agd study

data.maic9<-rename(data.maic9, cov1 = std1.cov1,cov2 = std1.cov2)

### Renaming variables in agd study

data.agd_update<-rename(data.agd, cov1 = mean.std10.cov1, cov2 = mean.std10.cov2)

# List out matching covariates

match_cov <- c("cov1", "cov2")

#### center baseline characteristics

#matching continuous variables on both mean and standard deviation

data.ipd_update <- data.maic9 %>%

mutate(cov1_centered = cov1- data.agd$mean.std10.cov1,

cov1_squared_centered = (cov1^2) - (data.agd$mean.std10.cov1^2 +

data.agd$sd.std10.cov1^2),

cov2_centered = cov2- data.agd$mean.std10.cov2,

cov2_squared_centered = (cov2^2) - (data.agd$mean.std10.cov2^2 +

data.agd$sd.std10.cov2^2))

cent_match_cov <- c("cov1_centered",

"cov1_squared_centered",

"cov2_centered",
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"cov2_squared_centered"

)

#### estimating weights

est_weights <- estimate_weights(intervention_data = data.ipd_update ,

matching_vars = cent_match_cov)

# Based on the known proportion of respondents, simulate the response data

comparator_n <- 150 # total number of patients in the comparator data

comparator_prop_events <- data.agd$mean.std10.trt # proportion of responders

# Calculate number with event

# Use round() to ensure we end up with a whole number of people

n_with_event <- round(comparator_n*comparator_prop_events, digits = 0)

comparator_binary <- data.frame("std1.ref"= c(rep(1, n_with_event),

rep(0, comparator_n - n_with_event)))

comparator_input <- comparator_binary %>%

mutate(wt=1, wt_rs=1, ARM="Comparator") # All patients have weight= 1

# Merge comparator and intervention data

combined_data <- bind_rows(est_weights$analysis_data, comparator_input)

combined_data$ARM <- relevel(as.factor(combined_data$ARM), ref="Intervention")

# Estimate weighted OR by fitting a logistic regression model with weights

weighted_OR <- suppressWarnings(glm(formula =std1.ref~ARM,

family = binomial(link="logit"),

data = combined_data,

weight = wt))

maic9.est<-summary(weighted_OR)$coefficients["ARMComparator", "Estimate"]

maic9.se<-coeftest(weighted_OR, vcov=vcovHC(weighted_OR,type="HC3"))[2,2]

return(c(maic9.est,maic9.se))

}

results.boot.std.1.10 <- boot(data=data.whole.maic, statistic=boot.std.1.10, R=1)

####conducting an NMA with the estimates from the MAIC

### creating a data frame which will be used in the nma

studyn <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
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trtn <- c(1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3)

n <- rep(150,18)

diff<-c(NA,results.boot.std.1.2$t[1],

NA,results.boot.std.1.3$t[1],NA,results.boot.std.1.4$t[1],

NA,results.boot.std.1.5$t[1],NA,results.boot.std.1.6$t[1],

NA,results.boot.std.1.7$t[1],NA,results.boot.std.1.8$t[1],

NA,results.boot.std.1.9$t[1],NA,results.boot.std.1.10$t[1])

se_diff<-c(NA,results.boot.std.1.2$t[2],

NA,results.boot.std.1.3$t[2],NA,results.boot.std.1.4$t[2],

NA,results.boot.std.1.5$t[2],NA,results.boot.std.1.6$t[2],

NA,results.boot.std.1.7$t[2],NA,results.boot.std.1.8$t[2],

NA,results.boot.std.1.9$t[2],NA,results.boot.std.1.10$t[2])

datacel2 <- data.frame(cbind(studyn,trtn,diff,se_diff,n))

### following code will set up the network (arm based)

model.re<-set_agd_contrast(

datacel2,

study=studyn,

trt=trtn,

y=diff,

se=se_diff,

sample_size=n)

##The model is fitted using the nma() function.

maic_fit_RE <- nma(model.re,

trt_effects = "random",

prior_intercept = normal(scale = 100),

prior_trt = normal(scale = 10),

prior_het = log_normal(-2.56, 0.33),

prior_het_type = "var")

### extracting the values of d1 and d2 and then calculating the mean

maic_data_frame<-as.data.frame(maic_fit_RE,pars=c("d"))

stan.object.nma.discnt.mean.d1<-mean(maic_data_frame$‘d[2]‘)

stan.object.nma.discnt.mean.d2<-mean(maic_data_frame$‘d[3]‘)
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return(c(stan.object.nma.discnt.mean.d1,

stan.object.nma.discnt.mean.d2))

}

results <- boot(data=data.ipd, statistic=boot.maic, R=1000)

mean.d1<-mean(results$t[, 1]) ### mean of first column will give estimate of d1

mean.d2<-mean(results$t[, 2]) ### ### mean of second column will give estimate of d2

sd.d1<-sd(results$t[, 1]) ###sd of first column will give sd of d1

sd.d2<-sd(results$t[, 2]) ###sd of second column will give sd of d2

#### calculation of coverage probability

B1=sd.d1

A1=mean.d1

z.alpha1 <- 1.96

theta.hat.low1=A1-z.alpha1*B1

theta.hat.upp1=A1+z.alpha1*B1

theta1=stan.object.nma.true.mean.d1

est1 <-ifelse(theta1>=theta.hat.low1 & theta1<=theta.hat.upp1,1,0)

B2=sd.d2

A2=mean.d2

z.alpha2 <- 1.96

theta.hat.low2=A2-z.alpha2*B2

theta.hat.upp2=A2+z.alpha2*B2

theta2= stan.object.nma.true.mean.d2

est2 <-ifelse(theta2>=theta.hat.low2 & theta2<=theta.hat.upp2,1,0)

out[i, 1]<-mean.d1

out[i, 2]<-mean.d2

out[i, 3]<-sd.d1

out[i, 4]<-sd.d2

out[i, 5]<-est1

out[i, 6]<-est2

out[i, 7]<-stan.object.nma.connect.mean.d1

out[i, 8]<-stan.object.nma.connect.mean.d2

out[i, 9]<-stan.object.nma.connect.sd.d1

out[i, 10]<-stan.object.nma.connect.sd.d2

out<-data.frame(out)
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}

### run in parallel..........

library(parallel)

library(lme4)

save <- mclapply(ipd, bootstrap)

saveRDS(save , file="inovatn.0.3.RE.scn2.1.rds")
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Graphs and R codes for asthma
data

F.1 Graphs of weight distribution for multiple MAICs

Figure F.1: Weight distribution for MAIC 1

365
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Figure F.2: Weight distribution for MAIC 2

Figure F.3: Weight distribution for MAIC 3
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Figure F.4: Weight distribution for MAIC 4

Figure F.5: Weight distribution for MAIC 5
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Figure F.6: Weight distribution for MAIC 6

Figure F.7: Weight distribution for MAIC 7
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Figure F.8: Weight distribution for MAIC 8

Figure F.9: Weight distribution for MAIC 9
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F.2 MAIC-adjusted NMA for asthma data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

library(haven)

library(dplyr)

library(devtools)

library(MAIC)

library(tidyverse)

library(multinma)

library(gtsummary)

data<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_exacanal.sas7bdat")

##subsetting with only two groups

data2<-data %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

##reading eisonifil data

bleos<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_bleos.sas7bdat")

## subsetting for two grp

bleos<-bleos %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

##taking only baseline eisonofil

bleos<-bleos %>% filter (VISIT=="Baseline")

## discarding percentage value

bleos<-bleos %>% filter (LBTEST=="Eosinophils")

exacag<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_exacag.sas7bdat")

## subsetting for two group

exacag<-exacag %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

exacag2<-exacag %>% group_by(SUBJID) %>% mutate(max_value=max(STATUS))

exacag2<-exacag2 %>% distinct (SUBJID, .keep_all = T)

################# merging the two datasets

join_with_bleos<-left_join(data2,bleos, by="SUBJID")

join_with_bleos<-left_join(join_with_bleos,exacag2, by="SUBJID")

### Converting eisonofil column into another unit
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join_with_bleos<-join_with_bleos %>% mutate(eisonofil=LBSTRESN*1000)

## Taking only mepolizumab arm

join_with_bleos<-join_with_bleos %>% filter(TRTGRP=="Mepolizumab 250mg")

#######################################

####################### MAIC 1 with matching only mean

agd<-read.csv("V:\\112997\\Dataset\\test.csv")

agd.update<-rename(agd, cov1=PRENEXCD.std1, cov2=eisonofil.std1)

join_with_bleos <- rename( join_with_bleos, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic<- join_with_bleos %>%

mutate(cov1_cen=cov1-agd$PRENEXCD.std1,cov2_cen=cov2-agd$eisonofil.std1,)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if opotimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])
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## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column for exposure time

join_with_bleos<-join_with_bleos %>%

add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time))

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 2 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std2,

cov2_cen=cov2-agd$eisonofil.std2,

)

agd.update<-rename(agd, cov1=PRENEXCD.std2, cov2=eisonofil.std2)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if potimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))
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baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column for exposure time

join_with_bleos<-join_with_bleos

%>% add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time))

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 3 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std3,
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cov2_cen=cov2-agd$eisonofil.std3,

)

agd.update<-rename(agd, cov1=PRENEXCD.std3, cov2=eisonofil.std3)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if potimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column for exposure time

join_with_bleos<-join_with_bleos

%>% add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)
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## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time))

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 4 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std4,

cov2_cen=cov2-agd$eisonofil.std4,

)

agd.update<-rename(agd, cov1=PRENEXCD.std4, cov2=eisonofil.std4)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if potimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)
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trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column for exposure time

join_with_bleos<-join_with_bleos %>% mutate (exposure.time=TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 5 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std5,

cov2_cen=cov2-agd$eisonofil.std5,

)

agd.update<-rename(agd, cov1=PRENEXCD.std5, cov2=eisonofil.std5)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,
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matching_vars =cent_match_cov )

## chacking if potimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column for exposure time

join_with_bleos<-join_with_bleos

%>% add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time))

## making a new variable called weighted event
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join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 6 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std6,

cov2_cen=cov2-agd$eisonofil.std6,

)

agd.update<-rename(agd, cov1=PRENEXCD.std6, cov2=eisonofil.std6)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if potimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset
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join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column for exposure time

join_with_bleos<-join_with_bleos %>% add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time))

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 7 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std7,

cov2_cen=cov2-agd$eisonofil.std7,

)

agd.update<-rename(agd, cov1=PRENEXCD.std7, cov2=eisonofil.std7)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if potimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%



APPENDIX F. GRAPHS AND R CODES FOR ASTHMA DATA 380

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column exposure time

join_with_bleos<-join_with_bleos

%>% add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)

print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

####################### MAIC 8 with matching only mean

data.maic<- join_with_bleos %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std8,

cov2_cen=cov2-agd$eisonofil.std8,

)

agd.update<-rename(agd, cov1=PRENEXCD.std8, cov2=eisonofil.std8)

cent_match_cov<-c("cov1_cen","cov2_cen")
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est_weights<-estimate_weights(intervention_data = data.maic,

matching_vars =cent_match_cov )

## chacking if opotimization working

baseline_summary<-list(’intervention’=NA,

’intervention_weighted’=NA,

’comparator’=NA)

baseline_summary$intervention_weighted<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~weighted.mean(.,wt)))

baseline_summary$intervention<-est_weights$analysis_data%>%

transmute(cov1,cov2,wt) %>% summarise_at(match_cov,list(~mean(.)))

baseline_summary$comparator <- transmute(agd.update, cov1, cov2)

trt<-names(baseline_summary)

baseline_summary<-bind_rows(baseline_summary)

%>% transmute_all(sprintf, fmt="%.2f")

%>% transmute(ARM=as.character(trt),cov1,cov2)

baseline_summary

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

join_with_bleos<-cbind(join_with_bleos,analysis_data$wt)

join_with_bleos<-rename(join_with_bleos, wt=‘analysis_data$wt‘)

## adding a new column exposure time

join_with_bleos<-join_with_bleos

%>% add_column (exposure.time=join_with_bleos$TOTDAYS/365.25)

## making a new variable called weighted exposure time

join_with_bleos<-join_with_bleos %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(join_with_bleos$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

join_with_bleos<-join_with_bleos %>% mutate(wetd.event=wt*max_value)
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print(sum(join_with_bleos$wetd.event))

sum(join_with_bleos$wt)

############################## NMA Fixed effect

asthma<-read.csv("V:\\112997\\Dataset\\2nd version\\agd_data_disconnected.csv")

asthma_net<-set_agd_arm(asthma ,

study=study.no ,

trt= trt.no,

r=r,

E=E,

sample_size=n,

trt_ref = "2")

asthma_net

plot(asthma_net)

asthma_net_FE<-nma(asthma_net,

trt_effects = "fixed",

prior_intercept = normal(scale=100),

prior_trt = normal(scale=100))

asthma_net_FE

rank<-posterior_ranks(asthma_net_FE)

plot(rank)

rank2<-posterior_rank_probs(asthma_net_FE)

plot(rank2)

############################## NMA random effect

asthma_net_RE<-nma(asthma_net,

trt_effects = "random",

prior_intercept = normal(scale=100),

prior_trt = normal(scale=100),

prior_het = half_normal(scale=0.15))

asthma_net_RE

rank3<-posterior_ranks(asthma_net_RE)

plot(rank3)

rank4<-posterior_rank_probs(asthma_net_RE)

rank4<-plot(rank4)
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F.3 Double-bootstrap with asthma data (fixed effect model)

library(haven)

library(boot)

library(dplyr)

library(devtools)

library(MAIC)

library(tidyverse)

library(multinma)

data<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_exacanal.sas7bdat")

##subsetting with only two groups

data2<-data %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

data2<-select(data2,-c("STUDYID" ,"INVID", "CENTREID", "USUBJID" , "RACECD", "RACE",

"TRTCD", "ATRTCD", "ATRTGRP", "LTOTAL" , "CS_TIME", "HED_NUM", "HED_RATE", "HED_TIME" ,

"ALL_NUM","ALL_RATE", "ALL_TIME", "HOS_NUM", "HOS_RATE" ,"HOS_TIME" ,"STRATCD" ,"REGIONCD", "REGION" , "PRENEX"))

##reading eisonifil data

bleos<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_bleos.sas7bdat")

## subsetting for two grp

bleos<-bleos %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

##taking only baseline eisonofil

bleos<-bleos %>% filter (VISIT=="Baseline") ## discarding percentage value

bleos<-bleos %>% filter (LBTEST=="Eosinophils")

## deleting extra columns

bleos<-select(bleos,-c("CENTREID", "USUBJID" ,"AGE", "SEX", "RACECD", "RACE",

"TRTCD","TRTGRP", "ATRTCD", "ATRTGRP", "VISITNUM", "AVISNUM", "AVISIT", "PTMNUM",

"PTM", "LBACTDY","LBDT","LBACTTM", "LBTESTCD","LBTEST", "LBSTUNIT", "LBSTNRLO", "LBSTNRHI",

"LBORRES", "LBORRESN", "LBORUNIT", "LBORNRLO", "LBORNRHI", "LBNRCD", "LBNRIND", "LBSTCCLO",

"LBSTCCHI", "LBCCCD", "LBCCIND", "LBSTDBL", "STDCHGBL", "ILBRES", "ILBBL", "ILBCHBL",

"_ILBRES", "_ILBBL", "_ILBCHBL", "LBIDCD","LBAGE" ,"LBID" , "LBCAT" , "LBACSNUM", "LBFAST",

"LBTSTCOM", "LBUDIFCD", "EVALFLAG","STUDYID", "INVID" ))

### reading data to create binary variable

exacag<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_exacag.sas7bdat")

## subsetting for two grp

exacag<-exacag %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )
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exacag2<-exacag %>% group_by(SUBJID) %>% mutate(max_value=max(STATUS))

exacag2<-exacag2 %>% distinct (SUBJID, .keep_all = T)

exacag2<-select(exacag2,-c("STUDYID", "INVID","CENTREID", "USUBJID","AGE",

"SEX", "RACECD", "RACE", "TRTCD", "TRTGRP" , "ATRTCD", "ATRTGRP", "ESTART", "ESTOP",

"STATUS", "STRATCD","STRATUM", "REGIONCD", "REGION" ,"PRENEXCD", "PRENEX", "BPRBDVAL"

))

################# merging the two datasets

join_with_bleos<-left_join(data2,bleos, by="SUBJID")

join_with_bleos<-left_join(join_with_bleos,exacag2, by="SUBJID")

### converting to eisonofil column into another unit

join_with_bleos<-join_with_bleos %>% mutate(eisonofil=LBSTRESN*1000)

## taking only mepolizumab arm

join_with_bleos<-join_with_bleos %>% filter(TRTGRP=="Mepolizumab 250mg")

####################### MAIC 1 with matching only mean

agd<-read.csv("V:\\112997\\Dataset\\2nd version\\agd_data_maic.csv")

boot.maic<-function(d,i){

data.whole.maic<-d[i,]

####maic 1

boot.std.1.2<-function(d,i){

data.maic1<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std1, cov2=eisonofil.std1)

data.maic1 <- rename( data.maic1, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic1<- data.maic1 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std1,

cov2_cen=cov2-agd$eisonofil.std1)
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cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic1,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic1<-cbind(data.maic1,analysis_data$wt)

data.maic1<-rename(data.maic1, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic1<-data.maic1 %>% add_column (exposure.time=data.maic1$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic1<-data.maic1 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic1$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic1<-data.maic1 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic1$wetd.event))

print(sum(data.maic1$wt))

return(c(sum(data.maic1$wetd.exposr.time),sum(data.maic1$wetd.event),sum(data.maic1$wt)))

}

results.boot.std.1.2<-boot(data=data.whole.maic, statistic=boot.std.1.2,R=1)

##### MAIC 2

boot.std.1.3<-function(d,i){

data.maic2<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std2, cov2=eisonofil.std2)

data.maic2 <- rename(data.maic2, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic2<- data.maic2 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std2,

cov2_cen=cov2-agd$eisonofil.std2)
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cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic2,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic2<-cbind(data.maic2,analysis_data$wt)

data.maic2<-rename(data.maic2, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic2<-data.maic2 %>% add_column (exposure.time=data.maic2$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic2<-data.maic2 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic2$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic2<-data.maic2%>% mutate(wetd.event=wt*max_value)

print(sum(data.maic2$wetd.event))

print(sum(data.maic2$wt))

return(c(sum(data.maic2$wetd.exposr.time),sum(data.maic2$wetd.event),sum(data.maic2$wt)))

}

results.boot.std.1.3<-boot(data=data.whole.maic, statistic=boot.std.1.3,R=1)

##### MAIC 3

boot.std.1.4<-function(d,i){

data.maic3<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std3, cov2=eisonofil.std3)

data.maic3 <- rename( data.maic3, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic3<- data.maic3 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std3,

cov2_cen=cov2-agd$eisonofil.std3)
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cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic3,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic3<-cbind(data.maic3,analysis_data$wt)

data.maic3<-rename(data.maic3, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic3<-data.maic3 %>% add_column (exposure.time=data.maic3$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic3<-data.maic3 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic3$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic3<-data.maic3 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic3$wetd.event))

print(sum(data.maic3$wt))

return(c(sum(data.maic3$wetd.exposr.time),sum(data.maic3$wetd.event),sum(data.maic3$wt)))

}

results.boot.std.1.4<-boot(data=data.whole.maic, statistic=boot.std.1.4,R=1)

##### MAIC 4

boot.std.1.5<-function(d,i){

data.maic4<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std4, cov2=eisonofil.std4)

data.maic4 <- rename( data.maic4, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic4<- data.maic4 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std4,

cov2_cen=cov2-agd$eisonofil.std4)

cent_match_cov<-c("cov1_cen","cov2_cen")
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est_weights<-estimate_weights(intervention_data = data.maic4,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic4<-cbind(data.maic4,analysis_data$wt)

data.maic4<-rename(data.maic4, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic4<-data.maic4 %>% add_column (exposure.time=data.maic4$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic4<-data.maic4 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic4$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic4<-data.maic4 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic4$wetd.event))

print(sum(data.maic4$wt))

return(c(sum(data.maic4$wetd.exposr.time),sum(data.maic4$wetd.event),sum(data.maic4$wt)))

}

results.boot.std.1.5<-boot(data=data.whole.maic, statistic=boot.std.1.5,R=1)

##### MAIC 5

boot.std.1.6<-function(d,i){

data.maic5<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std5, cov2=eisonofil.std5)

data.maic5 <- rename(data.maic5, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic5<- data.maic5 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std5,

cov2_cen=cov2-agd$eisonofil.std5)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic5,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])
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## attaching the weight column to ipd dataset

data.maic5<-cbind(data.maic5,analysis_data$wt)

data.maic5<-rename(data.maic5, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic5<-data.maic5 %>% add_column (exposure.time=data.maic5$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic5<-data.maic5%>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic5$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic5<-data.maic5 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic5$wetd.event))

print(sum(data.maic5$wt))

return(c(sum(data.maic5$wetd.exposr.time),sum(data.maic5$wetd.event),sum(data.maic5$wt)))

}

results.boot.std.1.6<-boot(data=data.whole.maic, statistic=boot.std.1.6,R=1)

##### MAIC 6

boot.std.1.7<-function(d,i){

data.maic6<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std6, cov2=eisonofil.std6)

data.maic6 <- rename( data.maic6, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic6<- data.maic6 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std6,

cov2_cen=cov2-agd$eisonofil.std6)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic6,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic6<-cbind(data.maic6,analysis_data$wt)

data.maic6<-rename(data.maic6, wt=‘analysis_data$wt‘)
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## adding a new column by giving exposure time 1 to all the ipd patient

data.maic6<-data.maic6 %>% add_column (exposure.time=data.maic6$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic6<-data.maic6 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic6$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic6<-data.maic6 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic6$wetd.event))

print(sum(data.maic6$wt))

return(c(sum(data.maic6$wetd.exposr.time),sum(data.maic6$wetd.event),sum(data.maic6$wt)))

}

results.boot.std.1.7<-boot(data=data.whole.maic, statistic=boot.std.1.7,R=1)

##### MAIC 7

boot.std.1.8<-function(d,i){

data.maic7<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std7, cov2=eisonofil.std7)

data.maic7 <- rename( data.maic7, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic7<- data.maic7 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std7,

cov2_cen=cov2-agd$eisonofil.std7)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic7,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic7<-cbind(data.maic7,analysis_data$wt)

data.maic7<-rename(data.maic7, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic7<-data.maic7 %>% add_column (exposure.time=data.maic7$TOTDAYS/365.25)
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## making a new variable called weighted exposure time

data.maic7<-data.maic7 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic7$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic7<-data.maic7 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic7$wetd.event))

print(sum(data.maic7$wt))

return(c(sum(data.maic7$wetd.exposr.time),sum(data.maic7$wetd.event),sum(data.maic7$wt)))

}

results.boot.std.1.8<-boot(data=data.whole.maic, statistic=boot.std.1.8,R=1)

##### MAIC 8

boot.std.1.9<-function(d,i){

data.maic8<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std8, cov2=eisonofil.std8)

data.maic8 <- rename( data.maic8, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic8<- data.maic8 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std8,

cov2_cen=cov2-agd$eisonofil.std8)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic8,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic8<-cbind(data.maic8,analysis_data$wt)

data.maic8<-rename(data.maic8, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic8<-data.maic8 %>% add_column (exposure.time=data.maic8$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic8<-data.maic8 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic8$wetd.exposr.time)) ##weighted person year
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## making a new variable called weighted event

jdata.maic8<-data.maic8%>% mutate(wetd.event=wt*max_value)

print(sum(data.maic8$wetd.event))

print(sum(data.maic8$wt))

return(c(sum(data.maic8$wetd.exposr.time),sum(data.maic8$wetd.event),sum(data.maic8$wt)))

}

results.boot.std.1.9<-boot(data=data.whole.maic, statistic=boot.std.1.9,R=1)

##### MAIC 9

boot.std.1.10<-function(d,i){

data.maic9<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std9, cov2=eisonofil.std9)

data.maic9 <- rename( data.maic9, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic9<- data.maic9 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std9,

cov2_cen=cov2-agd$eisonofil.std9)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic9,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic9<-cbind(data.maic9,analysis_data$wt)

data.maic9<-rename(data.maic9, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic9<-data.maic9 %>% add_column (exposure.time=data.maic9$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic9<-data.maic9%>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic9$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic9<-data.maic9 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic9$wetd.event))
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print(sum(data.maic9$wt))

return(c(sum(data.maic9$wetd.exposr.time),sum(data.maic9$wetd.event),sum(data.maic9$wt)))

}

results.boot.std.1.10<-boot(data=data.whole.maic, statistic=boot.std.1.10,R=1)

study.no<-c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)

trt.no<-c(1,2,2,3,2,3,2,3,2,4,2,4,2,4,2,5,2,5)

E<-c(25.3836,results.boot.std.1.10$t[1],

results.boot.std.1.2$t[1],400,

results.boot.std.1.3$t[1],454.75 ,

results.boot.std.1.4$t[1],39.1937 ,

results.boot.std.1.5$t[1], 11.8118 ,

results.boot.std.1.6$t[1],631 ,

results.boot.std.1.7$t[1],47.408222 ,

results.boot.std.1.8$t[1],393.073996 ,

results.boot.std.1.9$t[1],72.263018

)

r<-c(54,results.boot.std.1.10$t[2],

results.boot.std.1.2$t[2],292,

results.boot.std.1.3$t[2],273,

results.boot.std.1.4$t[2],33,

results.boot.std.1.5$t[2], 5,

results.boot.std.1.6$t[2],290,

results.boot.std.1.7$t[2],31,

results.boot.std.1.8$t[2], 259,

results.boot.std.1.9$t[2],15

)

r<-as.integer(r)

n<-c(66,results.boot.std.1.10$t[3],

results.boot.std.1.2$t[3], 400,

results.boot.std.1.3$t[3],425,

results.boot.std.1.4$t[3],73,

results.boot.std.1.5$t[3], 154,

results.boot.std.1.6$t[3],631,

results.boot.std.1.7$t[3],103,

results.boot.std.1.8$t[3], 427,

results.boot.std.1.9$t[3],157

)
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n<-as.integer(n)

datacel<-data.frame(cbind(study.no,trt.no, E,r,n ))

asthma_net<-set_agd_arm(datacel ,

study=study.no ,

trt= trt.no,

r=r,

E=E,

sample_size=n,

trt_ref = "2")

asthma_net_FE<-nma(asthma_net,

trt_effects = "fixed",

prior_intercept = normal(scale=100),

prior_trt = normal(scale=100))

as<-as.data.frame(asthma_net_FE, pars=c("d"))

d1<-mean(as$‘d[1]‘)

d2<-mean(as$‘d[3]‘)

d3<-mean(as$‘d[4]‘)

d4<-mean(as$‘d[5]‘)

ci<-as.data.frame(summary(asthma_net_FE,pars,include,stat="pointinterval"))

lowerci.d1<-mean(ci[10,4])

upperci.d1<-mean(ci[10,8])

lowerci.d2<-mean(ci[11,4])

upperci.d2<-mean(ci[11,8])

lowerci.d3<-mean(ci[12,4])

upperci.d3<-mean(ci[12,8])

lowerci.d4<-mean(ci[13,4])

upperci.d4<-mean(ci[13,8])

dic_FE<-dic(asthma_net_FE)

return(c(d1,d2,d3,d4,lowerci.d1,upperci.d1,

lowerci.d2,upperci.d2,

lowerci.d3,upperci.d3,

lowerci.d4,upperci.d4,

dic_FE$dic,dic_FE$pd,dic_FE$resdev))

}

results<-boot(data=join_with_bleos, statistic=boot.maic, R=2000)
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(mean.d1<-mean(results$t[,1]))

(mean.d2<-mean(results$t[,2]))

(mean.d3<-mean(results$t[,3]))

(mean.d4<-mean(results$t[,4]))

(sd.d1<-sd(results$t[,1]))

(sd.d2<-sd(results$t[,2]))

(sd.d3<-sd(results$t[,3]))

(sd.d4<-sd(results$t[,4]))

(lowerci.d1<-mean(results$t[,5]))

(upperci.d1<-mean(results$t[,6]))

(lowerci.d2<-mean(results$t[,7]))

(upperci.d2<-mean(results$t[,8]))

(lowerci.d3<-mean(results$t[,9]))

(upperci.d3<-mean(results$t[,10]))

(lowerci.d4<-mean(results$t[,11]))

(upperci.d4<-mean(results$t[,12]))

(dic<-mean(results$t[,13]))

(pd<-mean(results$t[,14]))

(resdev<-mean(results$t[,15]))

F.4 Double-bootstrap with asthma data (random effects model)

data<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_exacanal.sas7bdat")

##subsetting with only two groups

data2<-data %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

data2<-select(data2,-c("STUDYID" ,"INVID", "CENTREID", "USUBJID" , "RACECD", "RACE",

"TRTCD", "ATRTCD", "ATRTGRP", "LTOTAL" , "CS_TIME", "HED_NUM", "HED_RATE", "HED_TIME" ,

"ALL_NUM","ALL_RATE", "ALL_TIME", "HOS_NUM", "HOS_RATE" ,"HOS_TIME" ,"STRATCD" ,"REGIONCD", "REGION" , "PRENEX"))

##reading eisonifil data

bleos<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_bleos.sas7bdat")

## subsetting for two grp

bleos<-bleos %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

##taking only baseline eisonofil

bleos<-bleos %>% filter (VISIT=="Baseline") ## discarding percentage value

bleos<-bleos %>% filter (LBTEST=="Eosinophils")

## deleting extra columns
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bleos<-select(bleos,-c("CENTREID", "USUBJID" ,"AGE", "SEX", "RACECD", "RACE",

"TRTCD","TRTGRP", "ATRTCD", "ATRTGRP", "VISITNUM", "AVISNUM", "AVISIT", "PTMNUM",

"PTM", "LBACTDY","LBDT","LBACTTM", "LBTESTCD","LBTEST", "LBSTUNIT", "LBSTNRLO", "LBSTNRHI",

"LBORRES", "LBORRESN", "LBORUNIT", "LBORNRLO", "LBORNRHI", "LBNRCD", "LBNRIND", "LBSTCCLO",

"LBSTCCHI", "LBCCCD", "LBCCIND", "LBSTDBL", "STDCHGBL", "ILBRES", "ILBBL", "ILBCHBL",

"_ILBRES", "_ILBBL", "_ILBCHBL", "LBIDCD","LBAGE" ,"LBID" , "LBCAT" , "LBACSNUM", "LBFAST",

"LBTSTCOM", "LBUDIFCD", "EVALFLAG","STUDYID", "INVID" ))

### reading data to create binary variable

exacag<-read_sas("V:\\112997\\Dataset\\AR_UNKNOWN_-99\\gsk_112997_exacag.sas7bdat")

## subsetting for two grp

exacag<-exacag %>% filter (TRTGRP=="Placebo"| TRTGRP=="Mepolizumab 250mg" )

exacag2<-exacag %>% group_by(SUBJID) %>% mutate(max_value=max(STATUS))

exacag2<-exacag2 %>% distinct (SUBJID, .keep_all = T)

exacag2<-select(exacag2,-c("STUDYID", "INVID","CENTREID", "USUBJID","AGE",

"SEX", "RACECD", "RACE", "TRTCD", "TRTGRP" , "ATRTCD", "ATRTGRP", "ESTART", "ESTOP",

"STATUS", "STRATCD","STRATUM", "REGIONCD", "REGION" ,"PRENEXCD", "PRENEX", "BPRBDVAL"

))

################# merging the two datasets

join_with_bleos<-left_join(data2,bleos, by="SUBJID")

join_with_bleos<-left_join(join_with_bleos,exacag2, by="SUBJID")

### converting eisonofil column into another unit

join_with_bleos<-join_with_bleos %>% mutate(eisonofil=LBSTRESN*1000)

join_with_bleos<-join_with_bleos %>% filter(TRTGRP=="Mepolizumab 250mg")

####################### MAIC 1 with matching only mean

agd<-read.csv("V:\\112997\\Dataset\\2nd version\\agd_data_maic.csv")

boot.maic<-function(d,i){

data.whole.maic<-d[i,]

####MAIC 1
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boot.std.1.2<-function(d,i){

data.maic1<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std1, cov2=eisonofil.std1)

data.maic1 <- rename( data.maic1, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic1<- data.maic1 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std1,

cov2_cen=cov2-agd$eisonofil.std1)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic1,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic1<-cbind(data.maic1,analysis_data$wt)

data.maic1<-rename(data.maic1, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic1<-data.maic1 %>% add_column (exposure.time=data.maic1$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic1<-data.maic1 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic1$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic1<-data.maic1 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic1$wetd.event))

print(sum(data.maic1$wt))

return(c(sum(data.maic1$wetd.exposr.time),sum(data.maic1$wetd.event),sum(data.maic1$wt)))

}

results.boot.std.1.2<-boot(data=data.whole.maic, statistic=boot.std.1.2,R=1)

##### MAIC 2
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boot.std.1.3<-function(d,i){

data.maic2<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std2, cov2=eisonofil.std2)

data.maic2 <- rename(data.maic2, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic2<- data.maic2 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std2,

cov2_cen=cov2-agd$eisonofil.std2)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic2,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic2<-cbind(data.maic2,analysis_data$wt)

data.maic2<-rename(data.maic2, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic2<-data.maic2 %>% add_column (exposure.time=data.maic2$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic2<-data.maic2 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic2$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic2<-data.maic2%>% mutate(wetd.event=wt*max_value)

print(sum(data.maic2$wetd.event))

print(sum(data.maic2$wt))

return(c(sum(data.maic2$wetd.exposr.time),sum(data.maic2$wetd.event),sum(data.maic2$wt)))

}

results.boot.std.1.3<-boot(data=data.whole.maic, statistic=boot.std.1.3,R=1)
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##### MAIC 3

boot.std.1.4<-function(d,i){

data.maic3<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std3, cov2=eisonofil.std3)

data.maic3 <- rename( data.maic3, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic3<- data.maic3 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std3,

cov2_cen=cov2-agd$eisonofil.std3)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic3,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic3<-cbind(data.maic3,analysis_data$wt)

data.maic3<-rename(data.maic3, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic3<-data.maic3 %>% add_column (exposure.time=data.maic3$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic3<-data.maic3 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic3$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic3<-data.maic3 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic3$wetd.event))

print(sum(data.maic3$wt))

return(c(sum(data.maic3$wetd.exposr.time),sum(data.maic3$wetd.event),sum(data.maic3$wt)))

}

results.boot.std.1.4<-boot(data=data.whole.maic, statistic=boot.std.1.4,R=1)

##### MAIC 4



APPENDIX F. GRAPHS AND R CODES FOR ASTHMA DATA 400

boot.std.1.5<-function(d,i){

data.maic4<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std4, cov2=eisonofil.std4)

data.maic4 <- rename( data.maic4, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic4<- data.maic4 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std4,

cov2_cen=cov2-agd$eisonofil.std4)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic4,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic4<-cbind(data.maic4,analysis_data$wt)

data.maic4<-rename(data.maic4, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic4<-data.maic4 %>% add_column (exposure.time=data.maic4$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic4<-data.maic4 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic4$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic4<-data.maic4 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic4$wetd.event))

print(sum(data.maic4$wt))

return(c(sum(data.maic4$wetd.exposr.time),sum(data.maic4$wetd.event),sum(data.maic4$wt)))

}

results.boot.std.1.5<-boot(data=data.whole.maic, statistic=boot.std.1.5,R=1)

##### MAIC 5

boot.std.1.6<-function(d,i){

data.maic5<- d[i,]
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agd.update<-rename(agd, cov1=PRENEXCD.std5, cov2=eisonofil.std5)

data.maic5 <- rename(data.maic5, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic5<- data.maic5 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std5,

cov2_cen=cov2-agd$eisonofil.std5)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic5,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic5<-cbind(data.maic5,analysis_data$wt)

data.maic5<-rename(data.maic5, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic5<-data.maic5 %>% add_column (exposure.time=data.maic5$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic5<-data.maic5%>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic5$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic5<-data.maic5 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic5$wetd.event))

print(sum(data.maic5$wt))

return(c(sum(data.maic5$wetd.exposr.time),sum(data.maic5$wetd.event),sum(data.maic5$wt)))

}

results.boot.std.1.6<-boot(data=data.whole.maic, statistic=boot.std.1.6,R=1)

##### MAIC 6

boot.std.1.7<-function(d,i){

data.maic6<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std6, cov2=eisonofil.std6)

data.maic6 <- rename( data.maic6, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")
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data.maic6<- data.maic6 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std6,

cov2_cen=cov2-agd$eisonofil.std6)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic6,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic6<-cbind(data.maic6,analysis_data$wt)

data.maic6<-rename(data.maic6, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic6<-data.maic6 %>% add_column (exposure.time=data.maic6$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic6<-data.maic6 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic6$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic6<-data.maic6 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic6$wetd.event))

print(sum(data.maic6$wt))

return(c(sum(data.maic6$wetd.exposr.time),sum(data.maic6$wetd.event),sum(data.maic6$wt)))

}

results.boot.std.1.7<-boot(data=data.whole.maic, statistic=boot.std.1.7,R=1)

##### MAIC 7

boot.std.1.8<-function(d,i){

data.maic7<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std7, cov2=eisonofil.std7)

data.maic7 <- rename( data.maic7, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic7<- data.maic7 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std7,

cov2_cen=cov2-agd$eisonofil.std7)
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cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic7,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic7<-cbind(data.maic7,analysis_data$wt)

data.maic7<-rename(data.maic7, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic7<-data.maic7 %>% add_column (exposure.time=data.maic7$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic7<-data.maic7 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic7$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic7<-data.maic7 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic7$wetd.event))

print(sum(data.maic7$wt))

return(c(sum(data.maic7$wetd.exposr.time),sum(data.maic7$wetd.event),sum(data.maic7$wt)))

}

results.boot.std.1.8<-boot(data=data.whole.maic, statistic=boot.std.1.8,R=1)

##### MAIC 8

boot.std.1.9<-function(d,i){

data.maic8<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std8, cov2=eisonofil.std8)

data.maic8 <- rename( data.maic8, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic8<- data.maic8 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std8,

cov2_cen=cov2-agd$eisonofil.std8)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic8,
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matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])

## attaching the weight column to ipd dataset

data.maic8<-cbind(data.maic8,analysis_data$wt)

data.maic8<-rename(data.maic8, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic8<-data.maic8 %>% add_column (exposure.time=data.maic8$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic8<-data.maic8 %>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic8$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

jdata.maic8<-data.maic8%>% mutate(wetd.event=wt*max_value)

print(sum(data.maic8$wetd.event))

print(sum(data.maic8$wt))

return(c(sum(data.maic8$wetd.exposr.time),sum(data.maic8$wetd.event),sum(data.maic8$wt)))

}

results.boot.std.1.9<-boot(data=data.whole.maic, statistic=boot.std.1.9,R=1)

##### MAIC 9

boot.std.1.10<-function(d,i){

data.maic9<- d[i,]

agd.update<-rename(agd, cov1=PRENEXCD.std9, cov2=eisonofil.std9)

data.maic9 <- rename( data.maic9, cov1=PRENEXCD, cov2=eisonofil)

match_cov<-c("cov1", "cov2")

data.maic9<- data.maic9 %>% mutate(cov1_cen=cov1-agd$PRENEXCD.std9,

cov2_cen=cov2-agd$eisonofil.std9)

cent_match_cov<-c("cov1_cen","cov2_cen")

est_weights<-estimate_weights(intervention_data = data.maic9,

matching_vars =cent_match_cov )

analysis_data<-data.frame(est_weights[[2]])
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## attaching the weight column to ipd dataset

data.maic9<-cbind(data.maic9,analysis_data$wt)

data.maic9<-rename(data.maic9, wt=‘analysis_data$wt‘)

## adding a new column by giving exposure time 1 to all the ipd patient

data.maic9<-data.maic9 %>% add_column (exposure.time=data.maic9$TOTDAYS/365.25)

## making a new variable called weighted exposure time

data.maic9<-data.maic9%>% mutate(wetd.exposr.time=wt*exposure.time)

print(sum(data.maic9$wetd.exposr.time)) ##weighted person year

## making a new variable called weighted event

data.maic9<-data.maic9 %>% mutate(wetd.event=wt*max_value)

print(sum(data.maic9$wetd.event))

print(sum(data.maic9$wt))

return(c(sum(data.maic9$wetd.exposr.time),sum(data.maic9$wetd.event),sum(data.maic9$wt)))

}

results.boot.std.1.10<-boot(data=data.whole.maic, statistic=boot.std.1.10,R=1)

study.no<-c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)

trt.no<-c(1,2,2,3,2,3,2,3,2,4,2,4,2,4,2,5,2,5)

E<-c(25.3836,results.boot.std.1.10$t[1],

results.boot.std.1.2$t[1],400,

results.boot.std.1.3$t[1],454.75 ,

results.boot.std.1.4$t[1],39.1937 ,

results.boot.std.1.5$t[1], 11.8118 ,

results.boot.std.1.6$t[1],631 ,

results.boot.std.1.7$t[1],47.408222 ,

results.boot.std.1.8$t[1],393.073996 ,

results.boot.std.1.9$t[1],72.263018

)

r<-c(54,results.boot.std.1.10$t[2],

results.boot.std.1.2$t[2],292,

results.boot.std.1.3$t[2],273,

results.boot.std.1.4$t[2],33,

results.boot.std.1.5$t[2], 5,

results.boot.std.1.6$t[2],290,

results.boot.std.1.7$t[2],31,

results.boot.std.1.8$t[2], 259,

results.boot.std.1.9$t[2],15
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)

r<-as.integer(r)

n<-c(66,results.boot.std.1.10$t[3],

results.boot.std.1.2$t[3], 400,

results.boot.std.1.3$t[3],425,

results.boot.std.1.4$t[3],73,

results.boot.std.1.5$t[3], 154,

results.boot.std.1.6$t[3],631,

results.boot.std.1.7$t[3],103,

results.boot.std.1.8$t[3], 427,

results.boot.std.1.9$t[3],157

)

n<-as.integer(n)

datacel<-data.frame(cbind(study.no,trt.no, E,r,n ))

asthma_net<-set_agd_arm(datacel ,

study=study.no ,

trt= trt.no,

r=r,

E=E,

sample_size=n,

trt_ref = "2")

asthma_net_RE<-nma(asthma_net,

trt_effects = "random",

prior_intercept = normal(scale=100),

prior_trt = normal(scale=100),

prior_het = half_normal(scale=0.15),iter=3000,thin=5)

as<-as.data.frame(asthma_net_RE, pars=c("d","tau"))

d1<-mean(as$‘d[1]‘)

d2<-mean(as$‘d[3]‘)

d3<-mean(as$‘d[4]‘)

d4<-mean(as$‘d[5]‘)

tau<-mean(as$tau)

ci<-as.data.frame(summary(asthma_net_RE,pars,include,stat="pointinterval"))

lowerci.d1<-mean(ci[10,4])

upperci.d1<-mean(ci[10,8])

lowerci.d2<-mean(ci[11,4])

upperci.d2<-mean(ci[11,8])
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lowerci.d3<-mean(ci[12,4])

upperci.d3<-mean(ci[12,8])

lowerci.d4<-mean(ci[13,4])

upperci.d4<-mean(ci[13,8])

dic_RE<-dic(asthma_net_RE)

return(c(d1,d2,d3,d4,lowerci.d1,upperci.d1,

lowerci.d2,upperci.d2,

lowerci.d3,upperci.d3,

lowerci.d4,upperci.d4,

dic_RE$dic,dic_RE$pd,dic_RE$resdev,tau))

}

results<-boot(data=join_with_bleos, statistic=boot.maic, R=2000)

(mean.d1<-mean(results$t[,1]))

(mean.d2<-mean(results$t[,2]))

(mean.d3<-mean(results$t[,3]))

(mean.d4<-mean(results$t[,4]))

(sd.d1<-sd(results$t[,1]))

(sd.d2<-sd(results$t[,2]))

(sd.d3<-sd(results$t[,3]))

(sd.d4<-sd(results$t[,4]))

(lowerci.d1<-mean(results$t[,5]))

(upperci.d1<-mean(results$t[,6]))

(lowerci.d2<-mean(results$t[,7]))

(upperci.d2<-mean(results$t[,8]))

(lowerci.d3<-mean(results$t[,9]))

(upperci.d3<-mean(results$t[,10]))

(lowerci.d4<-mean(results$t[,11]))

(upperci.d4<-mean(results$t[,12]))

(dic<-mean(results$t[,13]))

(pd<-mean(results$t[,14]))

(resdev<-mean(results$t[,15]))

(tau<-mean(results$t[,16]))



Glossary

bias When the outcome of a study systematically differs from the ’true’ outcome. 5

blinding In a study, the information on which intervention have been assigned to which
patient is concealed from patients, caregivers, researchers and outcome assessors. 1

clinical effectiveness A measure to estimate the overall health advantage of an intervention
considering both benefit and adverse effects. Not the same as efficacy . 13

collapsibility After a modification that doesn’t alter a value, the value becomes collapsible
or invariant post-modification. Conversely, when a modification does alter a value, the
value is considered non-collapsible. . 43

conditional treatment effect Moving a subject from untreated to treated produces a con-
ditional effect, at the subject level. The estimate of a conditional or adjusted effect
comes from the regression coefficient of a treatment assignment indicator variable in a
multivariable regression model. . 43

confounders Variables that are related to the intervention or outcome in such a way that
it misinterprets the effect of the intervention on the outcome . 1

consistency consistency is the ability to compare effects in a consistent manner, whether
direct or indirect. . 4

control In a study, a control is a comparator treatment that is used to estimate the effect
of an intervention . 8

effect-modifier covariates that alter the effect of treatment on outcomes, so that the treat-
ment is more or less effective in different subgroups formed by levels of the effect-
modifier. 5, 28

efficacy When an intervention is examined under controlled research conditions to discover
its effectiveness . 1

endpoint In a research study, a measurable event or outcome that makes up one of the
study’s objectives. 8

extrapolation Forecasting the value of a parameter beyond the range of observed values .
16
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fixed effect In the fixed-effect model, we seek to calculate the mean of a single population,
with the standard error reflecting the precision of this calculation. . 50

fractional polynomial network meta-analysis (FP NMA) The proportional hazard as-
sumption has been increasingly challenged when conducting network meta-analyses
(NMAs) of survival data. This issue has been addressed by the fractional polynomial
NMA model which has been used in HTA submissions. It’s a flexible parametric mod-
eling approach for analyzing time-to-event data. In FP, the log hazard of an event can
be fitted as a function of time using parametric models . 20

heterogeneity A term frequently used in meta-analyses and systematic reviews. It describes
to what extent the treatment effect estimates from different studies differ (e.g. some
studies may indicate beneficial treatment effects and others suggest negative effects).
Result discrepancies may be the result of differences in study quality, populations,
interventions, or outcomes measured in the included studies. 17

indirect comparison A investigation of competing interventions when they have not been
compared in a head-to-head randomised study. 1

MAIC As opposed to conventional meta-analytic methods, Matching-Adjusted Indirect
Comparison (MAIC) provides a robust comparison by re-weighting Individual Patient
Data (IPD) from one study to baseline summary statistics from another, which provides
a greater adjustment for observed study differences. . 12

marginal treatment effect The average effect of moving an entire population from un-
treated to treated, at the population level, is known as a marginal effect. . 43

meta-analysis A statistical analysis that includes several studies and analyses the results
from the studies that are dealing with the same question and narrating the same out-
comes. It is capable of producing a more precise estimate of the effect on a given
outcome. 3

NMA Using a network of studies, network meta-analyses combine direct and indirect evi-
dence to evaluate three or more interventions simultaneously. . 3

outcomes This is the measure of the possible results of a preventive or therapeutic inter-
vention. It can be described either as an intermediary or as a terminal endpoints.
5

prognostic variable Covariates that affect (or is prognostic of) outcome . 5, 28

propensity score In the context of an individual’s covariate values, this is the conditional
probability of their participation in a trial. They are usually estimated through logistic
regression. 32

proportional hazard (PH) In proportional hazards, variables are multiplicatively related
to hazards . 20
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quality-adjusted life year (QALY) In healthcare, Quality-Adjusted Life Years (QALYs)
represent the value and benefit of health outcomes. Policy makers use it to guide their
policy decisions and health economists use it as a health economic outcome measure .
15

random effects In the random-effects model, we are determining the mean across various
populations, and the standard error denotes the precision of this calculation. . 50

randomisation When participants in a study are assigned to two or more alternative groups
by implementing a random procedure, e.g. computer-generated random numbers. Ran-
domisation tries to ensure a balance distribution of participants with distinct attributes
between groups in order to reduces bias and confounding . 1

relative treatment effect What a treatment accomplishes relative to another treatment
or control, for example, relative risk (RR). 10

sandwich estimator A variance estimator that is derived empirically from the data. It
does not rely upon strong assumptions about the data (or in the case of MAIC, the
weights). “Sandwich” refers to how the estimator is constructed, with the empirical
approximation “sandwiched” between other matrices. 22

similarity In a network meta-analysis, any characteristics that may modify the treatment
effect should be similar across all studies in the network. . 4

STC An analysis of STC involves estimating a linear regression model of population char-
acteristics and outcomes in a trial that has individual patient data and then using that
model to estimate outcomes in other studies. . 12

systematic review With a predefined protocol, when evidence on a clearly formulated ques-
tion is summarised. In a systematic review, systematic methods are used to identify,
select and appraise relevant studies as well as to extract and report their findings.
Statistical meta-analysis may or may not be used . 8

transitivity The validity of logical inference is covered by transitivity, whereas the method-
ological feasibility of comparison is covered by similarity. For instance, if A is more
effective than B, and B is more effective than C in treating the same illness, then A
likely will be more effective than C, even if they were never directly compared. The
transitivity requirement must be met in every case in an NMA. . 4



Acronyms

ACD appraisal consultation document. 15, 16

AFT accelerated failure time. 26

AgD aggregate data. ii, 2, 11, 15, 19, 24, 25, 28, 31, 32, 33, 34, 35, 37, 38, 40, 44, 46, 47,
53, 54, 55, 57, 106, 150, 155, 156, 177, 178, 184, 185, 196, 199, 203, 204, 206, 208, 209,
214, 215

ALM Aggregate level matching. 45, 46, 47, 203, 204, 205

CADTH Canadian Agency for Drugs and Technologies in Health. 8, 9, 11

CI confidence interval. 152, 153, 154, 163, 173, 179, 211

CrI credible interval. 186, 191, 195, 197, 209, 210

CS company submission. 15

DGM Data generating machanism. 54, 59, 61, 68, 71, 77, 88, 97, 99, 103, 105, 107, 110,
116, 119, 122, 126, 128, 134, 137, 144, 146, 148, 149, 152, 157, 160, 166, 170, 173, 177,
179, 207, 211

DREAM Dose Ranging Efficacy And Safety with Mepolizumab. 179, 180, 181, 182, 183,
184, 185, 186, 193, 196, 197, 198, 212

EAG external assessment group. 15, 19, 25, 26

EB Entropy Balancing. 32, 33, 57, 106, 156

EM Effect modifier. xi, xii, xiii, xiv, xv, xvi, xvii, 60, 67, 70, 76, 79, 86, 87, 90, 96, 109, 115,
118, 124, 127, 133, 136, 142, 143, 159, 165, 168, 175

EMA European Medical Agency. 8, 9

ESS effective sample size. 16, 19, 24, 25, 26, 33, 55, 189, 201

FAD final appraisal document. 15, 16

FDA Food and Drug Administration. 8, 9
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FP fractional polynomial. 20, 21, 22, 24, 201

HPC high performance computer. 206, 211

HR hazard ratio. 8, 11, 22, 26

HTA Health technology assessment. 2, 9, 11, 13, 14, 15, 23, 24, 28, 35, 43, 46, 47, 48, 53,
151, 199, 200, 204, 206, 213

IPD individual patient data. ii, 2, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 28, 30,
31, 32, 33, 34, 35, 37, 38, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 103, 106, 149, 150, 151,
154, 155, 156, 177, 178, 179, 181, 184, 185, 186, 193, 196, 197, 199, 200, 201, 202, 203,
204, 205, 206, 207, 208, 209, 210, 212, 213, 215, 216

IQWiG German Institute for Quality and Efficiency in Health Care. 8, 9, 11

ITC indirect treatment comparison. 2, 11, 12, 14, 15, 44, 48, 49

K-M Kaplan-Meier. 17, 20, 22, 23, 26

MAIC matching adjusted indirect comparison. ii, iii, xvi, xvii, xx, 12, 13, 16, 18, 19, 20,
21, 22, 23, 24, 25, 26, 32, 33, 34, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
77, 84, 88, 94, 97, 99, 102, 103, 104, 105, 106, 107, 125, 131, 134, 140, 144, 146, 148,
149, 150, 151, 152, 154, 155, 156, 157, 160, 163, 166, 170, 173, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202,
203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216

MCMC Markov Chain Monte Carlo. 39, 58, 150, 157, 166, 211

ML-NMR multi level network meta-regression. 56, 178, 196, 198, 208, 215

MoM Method of Moment. 32, 33, 57, 106, 156, 189

MTC mixed treatment comparison. 3, 4, 6

NHS National Health Service. 2, 15

NICE National Institute for Health and Care Excellence. ii, 2, 8, 9, 11, 12, 13, 15, 23, 26,
34, 46, 48, 49, 151, 181, 199, 200, 201, 202, 204, 205, 211

NMA network meta-analysis. ii, iii, xvi, xvii, xx, 3, 4, 6, 7, 13, 17, 20, 21, 22, 24, 25, 35,
36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 61, 65, 71,
74, 77, 80, 84, 88, 94, 97, 99, 102, 103, 104, 105, 106, 107, 110, 113, 116, 119, 122, 125,
128, 131, 134, 137, 140, 144, 146, 148, 149, 150, 151, 152, 154, 155, 156, 157, 160, 163,
166, 170, 173, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 191, 192, 193,
194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213,
214, 215, 216

ORR objective response rate. 8
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ORs odds ratios. 2, 10, 11

OS overall survival. 8, 9, 10, 18, 26

PFS progression free survival. 9, 10, 18, 26

PH proportional hazard. 17, 26

PICO participants, intervention, comparator, and outcome framework. 44

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 18, 30

PV Prognostic variable. xi, xii, xiii, xiv, xv, xvi, xvii, 61, 68, 71, 77, 80, 87, 88, 91, 96, 97,
110, 116, 119, 125, 128, 134, 137, 143, 160, 166, 169, 176

RCT Randomised Control Trial. 1, 3, 6, 8, 9, 11, 14, 19, 22, 32, 36, 37, 39, 40, 41, 42, 43,
45, 51, 53, 55, 58, 68, 102, 116, 154, 155, 179, 180, 181, 196, 199, 200, 203, 204, 206,
212, 213

RCTs randomised control trials. ii, 1, 50, 51, 53, 54, 77, 88, 125, 134, 151, 206

SD standard deviation. 52, 53, 55, 106, 152, 153, 155, 186, 209

SE standard error. 33, 57, 58, 61, 71, 80, 91, 106, 107, 110, 119, 128, 137, 149, 152, 153,
154, 156, 157, 160, 170, 186, 197, 206, 207, 208, 209

SLR systematic literature review. 28, 182

SOC standard of care. 183, 186, 188, 191, 192, 194, 195, 196, 197, 198

STA single technology appraisal. ii, xi, 12, 13, 15, 16, 18, 23, 46, 48, 49, 151, 181, 199, 200,
201, 202, 204, 205

STC simulated treatment comparison. ii, 12, 16, 18, 20, 21, 22, 23, 24, 25, 26, 34, 35, 44,
45, 47, 48, 49, 151, 196, 199, 200, 201, 202, 203, 204, 205, 206, 208, 214, 215

SVR spleen volume reduction. 18

TA technical appraisal. 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 49, 50, 55, 200,
201, 202

TSD technical support document. 12, 207

TSS total symptom score. 18
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