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ABSTRACT

Brain-Computer Interface (BCI) is a technology that enables direct
communication between the brain and external devices. BCI systems
often use Electroencephalography (EEG) to measure the electrical

fields produced by brain activities, serving as a prominent brain mapping
and neuroimaging technique utilized extensively within and beyond clinical
settings. Motor imagery (MI), a prevalent BCI paradigm, enables individu-
als, particularly those with disabilities, to regulate brain signals voluntarily,
bypassing the need for external stimuli. By decoding MI-EEG signals, the
gap between motor intention and sensory feedback in motor movements
disrupted by brain disorders is bridged, thereby facilitating swift motor func-
tional recovery. However, the non-linear and nonstationary nature of MI-EEG
signals poses a challenge to MI intention recognition, leaving room for poten-
tial classification enhancement. Moreover, factors such as subject variability,
experimental conditions, and EEG recording devices impact the adaptabil-
ity and robustness of models, consequently constraining the practicality of
MI-EEG applications. The primary objective of this thesis is to investigate
efficient deep learning models for decoding EEG signals and classifying MI
tasks. The specific contributions of the thesis are outlined as follows:

1) A multi-view convolutional neural network (CNN) encoding approach
for MI-EEG signals is proposed in Chapter 3. First, multiple frequency
sub-band MI-EEG signals are created as the CNN model inputs through
bandpass filters based on brain rhythms. Then, temporal and spatial features
are captured based on the whole frequency band and the filtered sub-band
signals, respectively. Further, utilizing two dense blocks with multi-CNN
layers enhances model learning capabilities and strengthens information
propagation. The proposed method achieves an average accuracy of 75.16%
on the public Korea University EEG dataset which consists of 54 healthy
subjects for the two-class motor imagery tasks.

2) Chapter 4 introduces a local and global convolutional transformer-based
MI-EEG classification model. To make up for the shortcomings of the CNN
model, a local transformer encoder is employed to dynamically extract tempo-
ral features. The global transformer encoder and densely connected network
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are combined to improve the information flow and reuse. The spatial features
from all channels and the difference in hemispheres are obtained to improve
the robustness of the model. In the experiment, three scenarios including
within-session, cross-session, and two-session are designed. Results show
that the proposed model achieves up to 1.46%, 7.49%, and 7.46% accuracy im-
provement respectively in the three scenarios for the public Korean dataset
compared with Tensor-CSPNet. For the BCI-IV-2a dataset, the proposed
model also achieves a 2.12% and 2.21% improvement for the cross-session
and two-session scenarios respectively.

3) Chapter 5 presents a cross-subject MI-EEG decoding method with domain
generalization. In this study, the domain-invariant features from source
subjects are extracted. The knowledge distillation framework is adopted to
obtain the internally invariant representations based on spectral features fu-
sion. Then the correlation alignment approach aligns the mutually invariant
representations between each pair of sub-source domains. In addition, we use
distance regularization on two kinds of invariant features to enhance general-
izable information. The results demonstrate that the proposed model achieves
8.93% and 4.4% accuracy improvements on the public Korean dataset and
BCI-IV-2a dataset respectively compared with the ConvNet and Dyanmic
EEGInception model.

4) Chapter 6 proposes a graph convolutional network (GCN) based on trans-
fer learning for cross-device MI-EEG decoding. Leveraging multi-channel
information, the GCN module is employed to aggregate topological features.
The pre-trained model is guided with few-channel signals as inputs through
a knowledge distillation framework and adapted to the few-channel dataset
using a transfer learning strategy with minimal data training. Experimental
results show that the proposed model achieved an accuracy of 71.19% based
on across-dataset, 7.04% higher than filter bank common spatial pattern
(FBCSP) and EEG-ARNN model, demonstrating the effectiveness of our ap-
proach in cross-dataset MI-EEG decoding and enhancing the practicality of
MI-BCI applications.

In summary, this study endeavors to decode MI-EEG signals using deep learn-
ing methods, improve the accuracy of motor intention recognition, and en-
hance the practicality of MI-based systems by enhancing model performance
and robustness on cross-session, cross-subject, and cross-dataset scenarios.
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NOMENCLATURE

Chapter 1. Abbreviations

BCI Brain-computer interface

CNN Convolutional neural network

EEG Electroencephalography

GCN Graph convolutional network

Chapter 2. Abbreviations

AMT Active Motor Training

AR Autoregressive

BN Bayesian network

CSP Common spatial pattern

CSSP Common spatiospectral pattern

CSSSP Common sparse spectral-spatial pattern

CWT Continuous Wavelet Transform

DFBCSP Discriminative filter bank Common spatial pattern

DFFS Dynamic frequency feature selection

DL Deep learning

EMD Empirical mode decomposition

ERD Event-related desynchronization

ERPs Event-related potentials

ERS Event-related synchronization

FBCSP Filter bank common spatial pattern

FFT Fast fourier transform

HHT Hilbert-Huang transform

ICA Independent component analysis
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IMF Intrinsic mode functions

K Key

LDA linear discriminant analysis

LSTM Long short-term memory

NN Neural networks

PCA Principal component analysis

PSD Power Spectral Density

Q Query

RBF Radial Basis Function

RF random forest

RLDA Regularized linear discriminant analysis

RNN Recurrent neural network

SPD Symmetric positive definite

SSVEP Steady-state visually evoked potentials

STFT Short-time Fourier transform

SVM Support vector machine

V Value

VL Variance layer

VMD Variational mode decomposition

WT Wavelet decomposition

WT Wavelet transform

Chapter 3. Abbreviations

BCIC-IV-2a BCI Competition IV 2a

CV Cross-validation

DenseNet densely connected network

ELU Exponential linear unit

KU Korean University

RBF Radial bias function

Chapter 3. Parameters and Variables

C Channels
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E EEG signal

Fl (·) Non-linear transformation

l The index of a layer

T Time Samples

X i The i− th EEG trial

xl The output of each layer

Yi The matching EEG label

yp The prediction values

yt The true labels

Chapter 4. Abbreviations

CV Computer Vision

NLP Natural Language Processing

PE Positional Encoding

SA Self-Attention

SBCSP Sub-band Common Spatial Pattern

SD Standard deviation

T-Densenet Block Transformer-based densenet block

t-SNE t-distributed Stochastic Neighbor Embedding

TSM tangent space mapping

w/oD i f f −hemi Without the hemisphere difference

w/oT −dense Without T-dense units

w/oT rans Without transform encoders

Chapter 4. Parameters and Variables

µ The mean value

σ The standard deviation

d The dimension

dk The dimension of keys

dmodel The dimension of the outputs

hdv The dimension of the values

pos The Position
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x The raw data of each channel

Chapter 5. Abbreviations

CORAL Correlation alignment

DA Domain adaptation

DG Domain generalization

DICA Domain-invariant component analysis

GRL gradient reversal layer

KL Knowledge-leverage

MMD Maximum mean discrepancy

SCA Scatter component analysis

SMM Support matrix machine

TCA Transfer component analysis

TL Transfer learning

Chapter 5. Parameters and Variables

λ1,λ2,λ3 The hyperparameters to limit the loss function

Ldiv The divergence

Lmse The Mean Squared Error

Lcls The cross-entropy loss

θc
S The parameters of feature classifier in the student network

θ
f
S The parameters of feature extractor in the student network

θc
T The parameters of feature classifier in the teacher network

θ
f
T The parameters of feature extractor in the teacher network

C Channels

Ci The covariance matrix

d (.) The L2 distance

E The expectation

Gc
S The feature classifier in the student network

G f
S The feature extractor in the student network

Gc
T The feature classifier in the teacher network
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G f
T The feature extractor in the teacher network

h(n) The 3-order Butterworth filter

ks,kt The kernel size

N The number of subdommains

Nb The nubmer of sub-band

P tr) The data distribution in the source domain

PXY The joint distribution

Stest The test domain

Strain The source domain

T Timepoints

X The input space of EEG signals

XMB The fused multi-band EEG data

Y The output space of EEG signals

z1 The internally-invariant features

z2 The mutually-invariant features

Chapter 6. Abbreviations

GCN Graph convolutional network

GNNs Graph neural networks

SENet Squeeze and Excitation Networks

Chapter 6. Parameters and Variables

D̃ The degree matrix

A initial The initialized adjacency matrix

Atrainable The mask matrix

E The edges

fs The sampling rate

G The graph

ki The kernel size

N The number of channels

PIJ The Pearson’s correlation coefficient

V The nodes
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W The adjacency matrix

xstudent The feature maps of the student network

xteacher The feature maps of the teacher network
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1
INTRODUCTION

1.1 Background

Electroencephalography (EEG) is a non-invasive technique used to record the brain’s

electrical activity. Detected by placing electrodes on the scalp, EEG signals are shown

to reflect the macroscopic activity of the brain surface underlying various cognitive and

motor functions [1], which makes it widely applicable across neuroscience and clinical

medicine. In neuroscience, EEG is used to study brain function and dysfunction, including

sleep patterns [2], seizures [3], and cognitive processes [4][5]. In clinical medicine, EEG

is a valuable tool for diagnosing and monitoring neurological disorders such as stroke [6]

and traumatic brain injury [7]. Additionally, EEG is increasingly used in brain-computer

interface (BCI) systems.

The brain-computer interface (BCI) establishes a direct, and bidirectional, commu-

nication link between the brain and external devices without the need for muscular

stimulation [8]. The EEG signals reflect patterns of brain activity, which are transmitted

to external devices through BCI systems. By decoding EEG signals associated with

specific mental tasks, such as imagining moving or focusing attention on a particular

stimulus, people can control computer cursors, robotic arms, or other assistive devices
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[9]. Motor imagery (MI), as one of the most important mental tasks in EEG experimental

paradigms, refers to the mental simulation of body movements [10]. When a person

is imagining or executing motor behavior, the related motor cortex on the brain scalp

generates the corresponding MI responses with massive neuron activities [11]. Such a

mechanism represents conscious access to the content of a movement, which is func-

tionally analogous to unconscious motor planning. The framework of a MI-BCI system

is shown in Fig 1.1. First, subjects will be guided to image motor movements. Huge

amounts of MI-EEG signals are generated during the MI paradigm and collected for

further analysis. Then, the MI-BCI system modeling for decoding MI-EEG signals and

classifying MI-task by feature extraction and classification algorithms. The recognized

task labels are then transferred to commands to control external devices, such as robotic

arms and virtual reality (VR) equipment, which subsequently provide feedback to the

subjects.

Figure 1.1: The framework of a MI-BCI system.

MI-BCI have a broad range of applications across various fields. In rehabilitation,

MI-BCIs can help patients regain motor functions by enabling them to control external

devices through mental imagery alone [12]. Beyond rehabilitation, MI-BCIs are also used

in areas like gaming, where they allow players to interact with the game environment

using their thoughts, creating more immersive experiences [13]. In the field of education,

MI-BCIs offer potential for developing new learning tools that adapt to the mental
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states of students, enhancing focus and engagement [14]. Additionally, MI-BCIs are

being explored for their potential in communication for individuals with severe motor

impairments, providing them with alternative means of expression [15]. These diverse

applications highlight the versatility and potential of MI-BCI technology in improving

lives and expanding human-computer interaction.

1.2 Challenges

MI-BCI has been proven to be a potential tool for rehabilitation, but its effectiveness and

performance are limited by the capability of decoding EEG signals. The non-stationary,

noisy, and non-linear nature of the MI-EEG signals makes informative feature extraction

and classification highly difficult [16]. The specific challenges are as follows:

Low Classification Accuracy - The mainstream research content in MI-BCI involves

binary classification tasks such as distinguishing between left and right-hand imagery

movements, or multi-class classification tasks such as distinguishing between hands,

feet, and tongue imagery movements. Achieving classification accuracy above 75% is

often challenging in both binary and multi-class classification tasks. Additionally, the

generalization performance of models is typically poor, influenced by factors such as

individual variability, dataset characteristics, and preprocessing methods.

High Training and Calibration Cost - Significant individual differences often need

to collect substantial data from each subject to build personalized models that achieve

optimal classification performance. However, in real-world scenarios, it is challenging to

gather large datasets, and there is limited data to train new models. Therefore, there is

a growing need for plug-and-play functionality or the ability to train new models with

minimal new data or without the need for extensive experiments. This poses a significant

challenge to the generalization ability of the models, aiming to reduce the training and

calibration cost.
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Poor Generalization Ability and Practicality - The generalization ability and

practicality of classification models are not only limited by individual differences among

subjects but also significantly affected by the quality of data collected using different

devices. The characteristics of MI-EEG signals are highly dependent on various individ-

ual differences. Even for the same individual and the same event, the MI-EEG may be

different at different times [17]. Particularly in the experiments, no methodology has

been employed to assess a subject’s mental state, such as emotions and cognition. For

instance, when an experiment lasts too long, the subject usually becomes less focused

on the tasks because of fatigue. Signals collected during this period can be corrupted

with more noise. Consequently, experiments conducted by the same individual at varying

times may exhibit markedly disparate data quality. Moreover, the factors contributing

to superior motor imagery performance in some subjects over others remain unclear.

Variations among patients can be magnified by individual pathology. These challenges

pose hurdles when applying the pre-trained model to new tasks or subjects. Different

EEG-collected devices also need to be considered. For example, in laboratory settings,

EEG data is often collected using wet electrodes with a resistance of about 10 kΩ, which

requires extensive preparation time but results in better data quality. In practical ap-

plications, to reduce preparation time, semi-dry or dry electrodes are often used, but

the high impedance of these electrodes can lead to poor data quality. Additionally, the

varying number of electrodes across different devices also limits the feasibility of dataset

transfer learning.

1.3 Research Motivations and Objectives

The decoding algorithm in MI-BCI rehabilitation strategies plays a crucial role. The

accuracy and generalization ability of the model directly impacts the effectiveness and

practicality of rehabilitation. Targeting the challenges raised in the last section, the

following objectives will be addressed in this thesis:

• To improve the MI-EEG classification accuracy, feature extraction approaches need
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to extract discriminative features from signals. Since the temporal, spatial, and

spectral features are proven to be informative, effective and highly efficient model

structures and processes need to be developed.

• To reduce the high training and calibration costs, the pre-trained model based

on the existing historic dataset needs to be developed. Huge amounts of data in

the existing dataset can help the model learn more feature representations. The

techniques of domain generalization will be investigated to reduce the need for

new data collection and new model training. To improve the model generalization

ability, besides enhancing the training dataset, exploring invariant features across

subjects that represent the common information and essence in MI-EEG signals

should be considered.

• To enhance the model’s practicality, it is important to develop models that can

handle various scenarios, including cross-subject, cross-session, and cross-device

challenges. Cross-subject scenarios involve using a model trained on one subject

to recognize another subject’s intentions. Cross-session scenarios address vari-

ations within the same subject across different experiment times. Cross-device

scenarios deal with situations where practical devices may collect data of lower

quality and with fewer electrodes, requiring the model to effectively utilize in-

formation transferred from high-quality, lab-collected data with more electrodes.

These scenario-based MI-BCI systems face practical challenges, such as individual

differences between subjects and variations in channels and data quality, which

can lead to discrepancies in data distribution and impact the model’s classification

performance. Developing suitable models for different applications and ensuring

high classification accuracy are key measures of the model’s practical effectiveness.

1.4 Main Contributions

The thesis focuses on using deep learning methods to decode MI-EEG signals. To achieve

the objectives above, different model structures are designed and validated on different
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datasets and scenarios. The specific contents are outlined as follows:

• A Multi-View convolutional neural network (CNN) encoding approach for MI-EEG

signals is proposed. First, multiple frequency sub-band MI-EEG signals are created

as the CNN model inputs through bandpass filters based on brain rhythms. Then,

temporal and spatial features are captured based on the whole frequency band

and the filtered sub-band signals, respectively. Further, utilizing two dense blocks

with multi-CNN layers enhances model learning capabilities and strengthens

information propagation. The proposed method achieves an average accuracy of

75.16% on the public Korea University EEG dataset which consists of 54 healthy

subjects for the two-class motor imagery tasks.

• A local and global convolutional Transformer-based MI-EEG classification model

is proposed. To make up for the shortcomings of the CNN model, a local trans-

former encoder is employed to dynamically extract temporal features. The global

transformer encoder and Densely Connected Network are combined to improve

the information flow and reuse. The spatial features from all channels and the

difference in hemispheres are obtained to improve the robustness of the model.

In the experiment, three scenarios including within-session, cross-session, and

two-session are designed. Results show that the proposed model achieves up to

1.46%, 7.49%, and 7.46% accuracy improvement respectively in the three scenar-

ios for the public Korean dataset compared with current state-of-the-art models.

For the BCI-IV-2a dataset, the proposed model also achieves a 2.12% and 2.21%

improvement for the cross-session and two-session scenarios respectively.

• A cross-subject MI-EEG decoding method with domain generalization is proposed.

In this study, the domain-invariant features from source subjects are extracted.

The knowledge distillation framework is adopted to obtain the internally invariant

representations based on spectral features fusion. Then the correlation alignment

approach aligns the mutually invariant representations between each pair of

sub-source domains. In addition, we use distance regularization on two kinds of
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invariant features to enhance generalizable information. The results demonstrate

that the proposed model achieves 8.93% and 4.4% accuracy improvements on the

public Korean dataset and BCI-IV-2a dataset respectively compared with current

state-of-the-art models.

• A graph convolutional network (GCN) based on transfer learning for cross-device

MI-EEG Decoding. Leveraging multi-channel information, the GCN module is

employed to aggregate topological features. The pre-trained model is guided with

few-channel signals as inputs through a knowledge distillation framework and

adapted to the few-channel dataset using a transfer learning strategy with mini-

mal data training. Experimental results show up to 7.04% accuracy improvement

compared to state-of-the-art models, demonstrating the effectiveness of our ap-

proach in cross-dataset MI-EEG decoding and enhancing the practicality of MI-BCI

applications.

1.5 Thesis Structure

The thesis is organised in seven chapters and the relationship between each chapter is

shown in Figure 1.2.

• Chapter 1 introduces the background of the MI-BCI and EEG signals. The main

research purpose of this thesis is to use deep learning methods to decode MI-EEG

signals for better rehabilitation.

• Chapter 2 reviews the literature related to MI-BCI for rehabilitation and the

current classification methods for MI-EEG decoding. The following chapters include

four main contributions of the study to address the issues mentioned in Chapter 1.

• Chapters 3 and 4 target the within-subject modelling based on deep learning

methods. Chapter 3 divides MI-EEG signals into multi-subbands based on different

brain rhythms. The CNN structure combines with the DenseNet Block to enhance

the information flow which improves the classification accuracy. On this basis,
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Chapter 4 adopts the Transformer structure with global and local schemes to

make up the defects of CNN layers. Three practical scenario experiments including

within-session, cross-session and two-session are conducted to validate the model’s

robustness and performance.

• Chapter 5 focuses on the cross-subject modelling. To realize the plug-and-play

function, the model is trained to explore the invariant features across different

subjects. Without retraining on new data, a pre-trained model can achieve excellent

classification performance.

• Chapter 6 concentrates on the cross-device modelling. EEG signals collected in

practical applications may have poor data quality with fewer electrodes due to the

high impedance of the EEG-collected device. To harness the dataset in the lab with

higher quality and more electrodes, a novel deep learning model is proposed to

transfer useful MI information across different datasets or devices.

• Chapter 7 concludes the thesis. The main findings and contributions of the research

conducted in the previous chapters are summarised. Reflections and suggestions

for future work are given.

Figure 1.2: Thesis structure.
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2
LITERATURE REVIEW

2.1 An Overview of Motor Imagery Brain-Computer

Interface

The MI-BCI system is gradually emerging as an effective tool and applied in multiple

fields, particularly in rehabilitation. For instance, stroke is the third leading cause of

adult disability worldwide [18]. Recovery of the motor function after a stroke is crucial to

performing activities of daily living, but this recovery is often variable and incomplete

[19]. Traditional rehabilitation strategies mainly include non-invasive stimulation and

robotics assistance. Non-invasive procedures are elegant and powerful neuromodulatory

techniques that create electric currents in the brain to change cortical excitability [20].

However, there is currently conflicting evidence regarding the efficacy due to unclear

stimulation site, frequency, and intensity. Robotics provide intensity by increasing the

number of repetitions that a therapist could impose. However, it is less effective for

acute stroke patients due to passive mode and is limited since physical movements of

stroke patients are often impossible [21]. In comparison, MI-BCI can potentially engage

the same neural circuitry as actual movement, highlighting the prospects of BCI for
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rehabilitation. Neurofeedback training and operant conditioning in MI-BCI get patients

involved in the experiment which actively restores the nerves between the brain and the

muscles [6].

In the medical application field, MI-BCI is intended for the replacement or restoration

of central nervous system (CNS) functionality [22]. Elstob et al [23] propose a low-cost

BCI prosthetic arm based on MI, which has 5 degrees of freedom of movement. An

accuracy of between 56% and 100% depending on the movements were carried out,

demonstrating that MI-based systems might be preferable to steady-state visually evoked

potentials (SSVEP) systems because they are more intuitive and eliminate the fatigue

caused by viewing flickering stimuli. Müller-Putz et al [24] also developed an MI-based

robotic arm system utilizing a novel 64-electrode sleeve that can be worn by the user.

This sleeve provides feedback on the movements performed through electrical pulses in

a process called functional electrical stimulation (FES), which can offer feedback and

assist in restoring certain aspects of CNS functionality in some patients.

Besides these biomedical applications, neurogames have also become increasingly

more advanced by incorporating MI-BCI systems with other devices such as Virtual

Reality (VR) and Augmented Reality (AR) environments [13]. Regular exposure to video

games has improved their visual and spatial attention, memory, and mental rotation

abilities over time [25] and sensorimotor learning, leading to better performance in tasks

with consistent and predictable structures. Li et al [26] conducted the experiment based

on a MI-BCI system in a 3D Tetris and an analogous 2D game-playing environment

to enhance the player’s BCI control ability. Certain contemporary technologies rely on

evoked potentials, exemplified by the basic SSVEP-based implementation described in

[27] and a system in [28] that integrates SSVEP and MI data to control a version of

Tetris.

To sum up, MI-BCI plays an important role in various fields. For the entire BCI

system, effective decoding of EEG signals is a crucial step, as it not only improves

the accuracy of MI task classification but also advances the application of MI-BCI in

real-world scenarios.
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2.1.1 The Principle of EEG Decoding Algorithms

Event-related potentials (ERPs) are brain electrical activities recorded by EEG following

specific stimuli or events, reflecting the neural activity response of the brain to particular

stimuli or events [29]. ERPs arise from synchronous neuronal firing following specific

events, and they manifest as distinct waveforms observable in EEG recordings. The

event-related phenomena reflect frequency-specific alterations in ongoing EEG activity,

generally characterized by decreases or increases in power within specific frequency

bands. These changes are attributed to either a decrease or an increase in synchrony

among underlying neuronal populations, respectively [30]. The former is termed event-

related desynchronization (ERD), while the latter is known as event-related synchro-

nization (ERS). The paradigm in MI-BCI is a classical event-related task. Taking the

example of motor imagery tasks involving left and right-hand movements, ERD/ERS

phenomena can be observed based on EEG decoding. Specifically, during the execution of

the task, an increase in EEG energy is observed in the motor cortex corresponding to the

same side as the limb involved in the task, while a decrease in EEG energy is observed

in the motor cortex corresponding to the opposite side limb [31].

EEG signals contain information about various brain neural activities, which are

typically divided into five frequency bands: δ (1-4Hz), θ (4-7Hz), α (8-13Hz), β (14-30Hz),

and γ (31-45Hz). The δ band appears during deep sleep, extreme fatigue [32], drowsiness

[33], or anesthesia [34]; the θ band is associated with hypnosis [35], and correlates with

personality traits, anxiety, and working memory; the α band is present during eyes-

closed resting states and represents normal physiological signals, remaining constant

in the absence of external stimuli and disappearing momentarily upon exposure to

external stimuli such as light; the β band appears during focused attention, tension,

or excitement [36]; and the γ band is associated with cognitive processes [37]. As MI

represents a normal physiological signal of the brain, it is typically decoded using the α

and β bands in research [38]. With the advancement of EEG decoding techniques, the

entire frequency spectrum of EEG signals is increasingly utilized in decoding.
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2.1.2 The Preprocessing Approaches of EEG signals

Overall, the preprocessing methods for EEG signals can be categorized into three steps:

channel selection, band-pass filtering, and artifact removal [39]. The choice of channels is

closely related to the brain regions of interest and the conditions of the EEG acquisition

equipment. For MI tasks, feature extraction primarily focuses on the channels related

to motor areas or utilizes all brain channels to ensure sufficient spatial information is

captured. Some studies also employ machine learning and deep learning approaches to

refine channel selection. For instance, Tong et al [40] incorporated an efficient channel

attention module into a neural network, allowing it to evaluate and assign weights to

each channel based on their relative importance to BCI classification accuracy. Gaur et

al [41] computed the correlation between EEG signals and selected highly correlated

EEG channels for a specific subject without including classification accuracy by using the

Pearson correlation coefficient. Jin et al [42] used the sum of logarithmic amplitudes and

the first-order spectral moment features captured from bispectrum analysis to choose

suitable EEG channels. In conclusion, the number of EEG channels can be reduced

without significantly affecting accuracy, decreasing computational time and memory

requirements.

In the step of signal frequency filtering, previous studies have explored the impact of

different frequency bands on Mi classification results [43–45]. Avilov et al [44] analyzed

the performance of deep learning models for MI classification using (4–38 Hz) and (0–38

Hz) frequency bands. In [45], the inclusion of the delta band (0–4 Hz) was proven to

give better performance. According to [46] showed that the accuracy of MI classification

using the neural network was higher using a wide frequency band (1–100 Hz) compared

to 8–30 Hz. [43] showed that all three bands (0.5–4 Hz, 0.5–38 Hz, and 0.5–100 Hz

gave better performance than the commonly used frequency range (4–38 Hz), and the

best performance was achieved using the raw full-band without frequency filtering. In

summary, for MI, the alpha and beta EEG rhythms have been proven effective, but

there is no universally accepted standard for selecting other rhythms or frequency

bands. Additionally, the optimal brain rhythms vary from person to person, sometimes

12



2.2. MACHINE LEARNING-BASED DECODING ALGORITHMS FOR MI-EEG

significantly impacting the final classification results.

Artifact removal approaches are also mainstream to preprocess the EEG signals.

Among them, independent component analysis (ICA) [47] and common average reference

(CAR) [48] are most common methods. ICA is a computational method that separates a

multivariate signal into additive, independent components. When applied to EEG data,

ICA can isolate and remove artifacts such as eye blinks, muscle activity, and electrical

noise, thus enhancing the clarity of the neural signals [49, 50]. CAR, on the other hand, is

a referencing technique that improves the signal-to-noise ratio by averaging the signals

from all EEG electrodes and subtracting this average from each electrode’s signal. This

approach reduces common noise shared across channels, such as electrical interference,

and highlights the differences between individual channels [51, 52]. However, the noise

removal process is not always necessary, according to [39], the automatic and manual

removal only occupied 24% among previous studies while 40% studies do not have any

removal process.

2.2 Machine Learning-Based Decoding Algorithms

for MI-EEG

2.2.1 Feature Extraction Approaches

Traditional machine learning-based processes for MI-EEG decoding can be divided

into two steps: feature extraction and feature classification. In the initial research

on EEG decoding, frequency-domain features, and temporal-domain features are two

common types [53]. Band power features can be computed using diverse methods and

are widely employed in BCIs that leverage oscillatory activity. Fast Fourier transform

(FFT) is a classical frequency-domain method used to analyze EEG signals facilitating

the transformation of signals from the time domain to the frequency domain for spectral

analysis [54]. With FFT, features are extracted by utilizing mathematical tools to compute

the Power Spectral Density (PSD) which converts the amplitude of EEG signal over time
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into the spectrum of EEG signal power, thus visually observing the distribution and

changes of EEG rhythm [55]. The spectral features of EEG signals can be captured by

various methods such as Welch’s periodogram [56], though its main contribution lies

in visualization and interpretability. Besides FFT, other similar methods such as the

Fourier decomposition method [57], the variational mode decomposition (VMD) method

[58], and the Hilbert-Huang transform (HHT) method [59] have been developed for

analyzing EEG signals.

Among the temporal-domain analysis approaches, independent component analysis

(ICA) [60], principal component analysis (PCA) [61] and autoregressive (AR) [62] models

are usually employed. ICA is a computational technique used to separate a multivariate

signal into additive, statistically independent components. It assumes that the observed

data is a linear combination of underlying independent components, each of which has a

distinct statistical distribution. The goal of ICA is to find a set of basis vectors, known

as independent components, such that the observed data can be represented as a linear

combination of these components with maximally independent coefficients. PCA has

a similar core idea used for dimensionality reduction and data compression. Both of

them are more suitable for noise removal from EEG signals. AR assumes that real EEG

signals can be predicted with the order and parameters of the approximation model.

However, the effectiveness of analyzing nonlinear and non-stationary EEG signals based

on AR models is not satisfactory, and they often require huge computational costs [63].

Besides that, combining time-domain and frequency-domain analysis is also one of the

mainstream approaches. For instance, wavelet transform (WT) analyzes the features of

EEG signals in the frequency domain while maintaining precise localization in the time

domain [64]. This approach demonstrates strong performance in analyzing irregular and

nonstationary signals across various window sizes [65]. The key advantages of the WT is

its ability to offer precise frequency and time information for low and high frequencies,

respectively.

Spatial features are also highly discriminative features within EEG signals. Common

spatial pattern (CSP), as one of the most successful algorithms, can be used to extract
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common spatial patterns underlying the EEGs from two MI tasks [66]. These spatial

patterns explain the maximum variance in EEGs from one class and the minimum

variance in the other, making them optimal for quantitatively discriminating between

individual EEGs in the two tasks. [66]. The covariance of the mixed space can be

expressed as:

Cc = Cl +Cr C = EET

trace(EET)
(2.1)

where Cl and Cr represent normalized covariance matrix from two kinds of signals. In

MI signals, it usually represents the signal from two tasks (imagine moving right/left

hand)

Cc =UcΛcUT
c (2.2)

Uc represents eigenvector matrix and Λc represents eigenvalue diagonal matrix. Then

whitening:

P =Λ− 1
2

c UT
c (2.3)

Sl = PClPT Sr = PCrPT (2.4)

Sl = BlΛlBl
T Sr = BrΛrBr

T (2.5)

The sum of the eigenvalues of the two kinds of matrices is always one. The maximum

eigenvalue of Sl corresponds to the minimum eigenvalue of Sr. The eigenvectors of the

two matrices Bl and Br are equivalent. The eigenvector corresponding to the maximum

eigenvalue of Sl causes Sr to have the minimum eigenvalue and vice versa. The eigen-

values in Λl are arranged in descending order, then the corresponding eigenvalues in Λr

are arranged in ascending order. m eigenvalues are selected for each of the maximum

and minimum eigenvalues inΛr, and the corresponding eigenvectors are integrated as B.

The space filter can be represented as:

W = (BTP)T (2.6)

Multiply the raw EEG data En∗d with the space filter, d represents the number of data

and n represents the number of channels:

Zn∗d =Wn∗nEn∗d (2.7)
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the eigenvector fp is computed as:

fp = log

(
var

(
Zp

)∑2m
i=1 var (Zi)

)
p = 1 : 2m (2.8)

Many studies also developed other variants based on CSP. In [67], the common spatio-

spectral pattern (CSSP) is proposed which adopts the technology of delay embedding to

extend the CSP algorithm to the state space. Dornhege et al proposed a new approach

namely the common sparse spectral-spatial pattern (CSSSP) that optimizes both the

spatial filter and the spectral filter together to enhance the difference between multi-

channel EEG signals [68]. In 2007, Novi et al decomposed the EEG signals into sub-bands

using a filter bank and got a score from each sub-band after using CSP [69]. The final

decision is based on the scores based on different sub-bands. Based on the fusion of

different sub-band scores, Ang et al [70] proposed a method namely filter bank common

spatial pattern (FBCSP) to choose the optimal features based on CSP by several band-

pass filters with different band ranges. Higashi et al proposed a discriminative filter

bank CSP (DFBCSP) that considers the combination of finite impulse response filters

and spatial weights. This method optimized the corresponding weights by a function

which can be regarded as another variation of the CSP algorithm. [71].

2.2.2 Feature Classification Approaches

Conventional machine learning methods like random forest (RF), linear discriminant

analysis (LDA) [72], support vector machine (SVM) [73], and neural networks (NN) [74]

are adopted as various classifiers for the MI-EEG decoding tasks.

RF is a versatile ensemble learning method widely used for classification tasks

in machine learning. It operates by constructing a multitude of decision trees during

training and outputting the mode of the classes of the individual trees. Each decision tree

is trained on a random subset of the training data and a random subset of the features,

ensuring diversity among the trees. During prediction, the output of multiple trees is

aggregated to provide a more robust and accurate prediction compared to individual

trees. In 2014, Bentlemsan et al used RF to combine bagging for bootstrap aggregation

16



2.2. MACHINE LEARNING-BASED DECODING ALGORITHMS FOR MI-EEG

and features that are selected randomly [75]. In research [76], Luo et al proposed a

feature-selected approach namely the dynamic frequency feature selection (DFFS) with

an RF classifier to decode MI-EEG signals. Nonetheless, the performance of Random

Forest models is impacted by overfitting and instability, especially when dealing with

trees of varying sizes.

LDA is a supervised learning algorithm utilized for dimensionality reduction and

classification tasks. By maximizing the separation between classes while minimizing

the variation within each class, LDA constructs linear combinations of features that

effectively discriminate between classes. The calculation cost of the LDA classifier is low

which is beneficial for use in BCI applications based on MI-EEG [77]. Chen et al used

LDA to obtain the classification results using multiple frequency band signals and vote

through probability summation [78]. Fu et al adopted regularized linear discriminant

analysis (RLDA) to enhance the dimension of the diagonal elements of the scatter

matrices to improve classification accuracy [79]. However, the noisy and non-linear

nature of EEG signals makes it difficult for the LDA classifier to get excellent results.

SVM is another common classifier in the BCI field. It works by finding the hyperplane

that best separates the classes in the input space. This hyperplane is chosen to maximize

the margin, which is the distance between the hyperplane and the nearest data points

from each class, known as support vectors. Islam et al used SVM on features with

reduced dimensions obtained by adopting multi-band PCA for four-class classification

problems [80]. Although SVM produces better classification results, it cannot deal with

the multiclass problem and decode complex EEG signals effectively [77].

The NN has been extensively used in the BCI field for providing a reasonable balance

between accuracy and training speed. Sagee et al used a Bayesian network (BN) for

maximum probable channel selection and NN for feature classification [81]. Hamedi et

al employed Radial Basis Function (RBF) neural networks to reduce training time while

ensuring high accuracy [82].
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2.3 Deep Learning-Based Decoding Algorithms for

MI-EEG

Deep learning (DL) has emerged as a prevalent methodology in machine learning in

recent years, leading to significant breakthroughs in computer vision and speech recog-

nition [83]. The learning capacity of deep neural networks stems in part from their

ability to discover intricate feature representations from raw data. This has inspired

a growing interest among neuro-engineering researchers to apply deep learning to the

development of BCI systems because it largely alleviates the need for manual feature

extraction as seen in conventional BCI, which requires domain-specific expertise in the

signal [84]. Deep learning is an end-to-end process, researchers can focus on the input

formulation, structure, and parameter optimization factors. However, there are no clear

advantages or disadvantages to the influence of these factors. Despite more and more

examples have shown impressive progress based on deep learning, there is still room

for considerable improvement with respect to several important aspects of information

extraction from the EEG, including its accuracy, interpretability, and usability for offline

or online applications [85].

2.3.1 Input Formulation

EEG signals inherently exhibit noise and are susceptible to channel crosstalk. In conven-

tional scalp EEG recording setups, each electrode captures signals from its surrounding

area, resulting in coarse spatial resolution (typically several centimeters) [86]. The de-

composition of these signals is complex due to the conduction properties of human brain

tissues, skull, scalp, and hair. Consequently, a prominent challenge in EEG data analysis

lies in formulating suitable inputs. As outlined in the survey by Craik et al. [86], many

neural networks, particularly CNNs, utilize various inputs such as images generated

from EEG data, raw signals, and computed features.
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2.3.1.1 Images Input

The CNN’s unprecedented ability to learn images encouraged researchers to transform

raw EEG signals into images as input to the classifier. Among them, PSD, wavelet

decomposition (WD), and short-time Fourier transform (STFT) are the three most com-

mon methods used in the reviewed studies. For instance, Xu et al used WT to convert

multichannel EEG signals into two-dimensional time-frequency images, to obtain its

comprehensive information, including both the time-frequency features and the relative

position of the electrodes [51]. Li et al used Continuous Wavelet Transform (CWT) to

map MI-EEG signals into two-dimensional image signals and extract the mu and beta

rhythms from these image signals [87]. The expression of the continuous WT is given

Ws (α,τ)= 1p
α

∫
s (t)φ∗

(
t−τ
α

)
dt (2.9)

where s(t) is the input signal, α is the scale of WT, φ is the wavelet basis function, andτis

the time shift. The wavelet function is the Morlet wavelet. Its expression is as follows:

φ (t)=
(

2
πT2

) 1
4

exp
(
− t2

T2 + jwct
)

(2.10)

The expression of frequency is:

Φ (w)=
(

T2

2π

) 1
4

exp
(
− (w−wc)2

4T2

)
(2.11)

where φ(t) is the time domain expression after CWT and Φ(t) is the frequency domain

expression after CWT. Kant et al used a similar method to deal with EEG signals [88].

In the experiment, the wavelet used for CWT is the analytic Morse wavelet as it has

better time-frequency localization. For Morse wavelet symmetry parameter (gamma) and

time-bandwidth product were kept at 3 and 60 respectively. Data from electrodes C3 and

C4 are stacked together, C4 after C3 to represent all the data into a single representation

of one event (Left or Right) hand imagery.

Besides using WT or the variant from WT, STFT is also an easy way to get time-

frequency images. Dai et al extracts EEG signals with a length of 2s from each MI

EEG recording [89]. The STFT was conducted with time lapses = 14 and window size
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= 64. Among all 500 samples, the STFT was computed for 32 windows on the first

498 samples. Therefore, a 257 × 32 image is produced, where the numbers 32 and 257

represent the samples on the axes of time and frequency. Subsequently, the beta and mu

frequency bands were extracted from the spectrum of the output. Frequency bands of 6

∼ 13 and 17 ∼ 30 are taken as the mu and beta bands, respectively. Fig 2.1 shows the

transformed images using different mother wavelets. Table 2.1 shows the classification

results using different channels and mother wavelets [51]. Besides directly using images

Figure 2.1: Transformed images using mother wavelet: db4(a), sym(b), cmor3-3(c) and
haar(d).

transferred from WT or CWT, some studies also combine several images as one input.

Piyush et al [88] used the analytic Morse wavelet as the wavelet for CWT to have better

time-frequency localization. For Morse wavelet symmetry parameter (gamma) and time-

bandwidth product were kept at 3 and 60 respectively. Voices per octave were kept at

10. Data from electrodes C3 and C4 are stacked together, C4 after C3 to represent all
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Table 2.1: Classification results using different channels and mother wavelets.

Wavelet
name

Accuracy(%)
2 channels 3 channels

Worst Best Mean Worst Best Mean
db4 77.63 81.25 79.25 71.43 80.6 75.6

sym4 80.14 85.5 81.398 71.43 82.14 73.21
cmor3-3 87.5 92.75 89.56 78.25 83.5 82.37

haar 68.25 72.5 70.31 64.3 69.6 67.13

the data into a single representation of one event (Left or Right) hand imagery as shown

in Fig 2.2 (a) and (b) [88]. Processed data is further used to train the model using deep

neural networks. STFT is suitable for processing linear nonstationary signals, while

WT and CWT can process nonlinear nonstationary signals in theory, but they can only

process linear nonstationary signals in the actual algorithm implementation. Therefore,

Huang et al used Hilbert–Huang transform (HHT) to transform EEG signals into time-

frequency representation [90]. Fig 2.3 shows the decomposed EEG signals. HHT [91]

is an adaptive signal processing method that is suitable for processing nonlinear and

nonstationary signals. It mainly consists of two parts: The first part is empirical mode

decomposition (EMD); the second is Hilbert transform (HT). In the first part, EMD

adaptively decomposes any complex signal into a series of intrinsic mode functions

(IMFs) according to the signal characteristics. This satisfies the two following conditions:

(1) the average value of the mean value tends to be 0, and (2) the difference between

the number of extreme points of the original signal (including the number of maximum

points + the number of minimum points) and the number of intersections of the original

signal cannot be greater than 1 (less than or equal to 1). For the original signal x(t) EMD

can be used to decompose it into

x (t)=
K∑

i=1
IMF(i) (t)+ rK (t) (2.12)

where x(t) is the original signal, and IMF(i) is K intrinsic mode functions r(K) is the

negligible residue of the signal, which is the remainder of the subtraction of the original

signal and IMF(i). The decomposition process of EMD is divided into four steps. Step 1:

calculate the mean value m(t) according to the envelope line of the original signal x(t).
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Figure 2.2: Scalogram representation for both hand motor imagery.

Meanwhile, h(t) can be obtained:

h (t)= x (t)−m (t) (2.13)

Step 2: Judge whether the h(t) meets the two conditions of the IMF. If not, take h(t) as

the input signal and go back to step 1. If the conditions are met, get an IMF and go to

the next step. Step 3: set the kth IMF as hk(t), assign it to ck(t), obtained as follows:

ck (t)= hk (t) (2.14)
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ck(t) is separated from the original sequence and a new residual term is obtained:

rk (t)= xk (t)− ck (t) (2.15)

Step 4: judge whether the new remaining item meets the end condition of EMD, if not,

bring the remaining item back to step 1; if it meets, end the EMD. After decomposition,

the original signal can be expressed in the form of (nIMF+1 residual item):

x (t)=
n∑

i=1
ci + rn (2.16)

Finally, HT is used to calculate the instantaneous frequency and amplitude to transform

signals into Hilbert spectrum as inputs sent into deep learning structure.

Figure 2.3: Schematic diagram of processed EEG signal, (a) is the original signal of EEG,
and then (b) ∼ (h) is IMF.

2.3.1.2 Signal Values Input

Signal values are also used directly as inputs to the neural networks. In contrast to

two-dimensional static images, the EEG signal is a dynamic time series from electrode

measurements obtained on the three-dimensional scalp surface. Also, the EEG signal
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has a comparatively low signal-to-noise ratio, that is, sources that have no task-relevant

information often affect the EEG signal more strongly than the task-relevant sources.

These properties could make learning features in an end-to-end fashion fundamentally

more difficult for EEG signals than for images. Thus, the existing structures from the

field of computer vision need to be adapted for EEG input and the resulting decoding

accuracies rigorously evaluated against more traditional feature extraction methods. For

that purpose, in 2017, Robin et al created three ConvNets with different structures, with

the number of convolutional layers ranging from 2 layers in a “shallow” ConvNet over

a 5-layer deep ConvNet up to a 31-layer residual network (ResNet) [85]. Among them,

the “Shallow” and “Deep” ConvNet structures have a great influence on the following

new models. The most two important steps proposed by the team are that one dimension

filter is first used to get the time feature from each channel and then uses depthwise

convolution to get the space feature from signals. The detail is shown in Fig 2.4. These

Figure 2.4: The first block structure in “Shallow” and “Deep” ConvNet.

two models are tested in the BCI Competition IV 2a&2b datasets. The accuracy of the

four categories can reach around 70%, surpassing the champion method filter bank

common spatial patterns (FBCSP) [70] by 2%−5%. This is a huge improvement based

on deep learning and the team also uses visualization to add more interpretability to

deep learning.

However, the number of trainable parameters per model is around 152219 which is

time-consuming to compute. To reduce parameters, Lawhern in 2018 proposed a new

24



2.3. DEEP LEARNING-BASED DECODING ALGORITHMS FOR MI-EEG

structure called “EEGnet” [92]. Fig 2.5 shows the details of its structure. The network

Figure 2.5: The structure of EEGNet.

starts with a temporal convolution to learn frequency filters and then uses a depthwise

convolution, connected to each feature map individually, to learn frequency-specific

spatial filters. The separable convolution is a combination of a depthwise convolution,

which learns a temporal summary for each feature map individually, followed by a

pointwise convolution, which learns how to optimally mix the feature maps. The number

of parameters in the EEGnet is only 796, less than the one used in Deep ConvNet. Table

2.2 is the result of parameters used in different deep learning models and datasets.

Meanwhile, Deep ConvNet uses the cropping method to generate more data but EEGnet

does not use any data augmentation methods. It reduces much time to train and test

while only sacrificing a small accuracy rate. Fig 2.6 shows the accuracy result compared

with deep and shallow ConvNet. The team also tried the model on other BCI paradigms

such as P300 besides MI and got success.

Besides these three classical models’ structures, researchers have made other changes

to these models. For instance, Syed Umar Amin [92] proposed a multi-layer CNNs

method for fusing CNNs with different characteristics and structures to improve EEG

MI classification accuracy. There are four CNN structures with different depths, and then
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Figure 2.6: 4-fold within-subject classification performance for the SMR dataset for each
model, averaged over all folds and all subjects.

Table 2.2: Number of trainable parameters per model and per dataset for all CNN-based
models.

Trial Length(sec) DeepConvNet ShallowConvNet EEGNet-4,2 EEGNet-8,2
P300 1 174,127 1,004,002 1,006 2,258
ERN 1.25 169,927 91,602 1,082 2,290

MRCP 1.5 175,725 104,722 1,098 2,322
SMR 2 152,219 40,644 796 1,716

a connected layer combines the outputs of each CNN structure. More parameters need to

be trained, but the accuracy rises from 72% to 75.7% in dataset BCI Competition IV 2a.

In 2020, Mane proposed the FBCnet [93] which uses a Variance layer (VL) that computes

the temporal variance of the individual time series. Following the VL features from all

parallel branches are concatenated and fed to a FC layer with linear activation. The

output of the FC is then passed through the softmax layer to get the output probabilities

of each class. The binary classification accuracy on Korean Dataset [94] can reach 74%,
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9% higher than EEGnet and Shallow CovNet. Furthermore, many studies show the

advantages of using raw signals as input.

Figure 2.7: The structure of FBCNet.

2.3.1.3 Calculated Features Input

Compared with the other two types of input, using calculated features as input based

on deep learning is not popular. The main reason is that deep learning is an end-to-end

process. As a black box, researchers do not know if the traditional features can be learned

or given useful information to a deep learning model. Therefore, more studies prefer

to let the DL models learn everything by themselves. However, some studies still use

traditional artificial features and have achieved good results. For instance, Ce et al [95]

used covariance matrices of EEG signals as symmetric positive definite (SPD) matrices

and sent them into the DL models. SPD is compatible with calculations in Riemannian

space which can better handle high-dimensional data and capture the nonlinear struc-

tures and complex features. Ma et al [52] calculated the Pearson correlation coefficient

and captured coherence frequency band features. Calculated features often contain prior

knowledge, which can enhance the interpretability of the model and reveal potential

neural mechanisms.
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2.3.2 Model Structure

A crucial choice in the DL-based EEG processing pipeline is the neural network archi-

tecture. In the systematic review [96], until the end of 2014, DBNs and FC networks

comprised the majority of the studies. However, since 2015, CNNs have been the ar-

chitecture type of choice in most studies. This can be attributed to its capabilities of

end-to-end learning and of exploiting hierarchical structure on the data, as well as their

success and subsequent popularity on computer vision tasks, such as the ILSVRC 2012

challenge [97]. The proportion of studies using CNNs and combinations of recurrent and

convolutional layers has been growing steadily.

2.3.2.1 Convolutional Neural Networks

In deep learning, a CNN is a class of artificial neural networks, most commonly applied

to analyze visual imagery. CNNs are regularized versions of multilayer perceptrons.

Multilayer perceptron usually means fully connected networks, that is, each neuron in

one layer is connected to all neurons in the next layer. The "full connectivity" of these

networks makes them prone to overfitting data. CNNs take a different approach towards

regularization: they take advantage of the hierarchical pattern in data and assemble

patterns of increasing complexity using smaller and simpler patterns embossed in their

filters.

A CNN consists of an input layer, hidden layers, and an output layer. In a feed-

forward neural network, the middle layers are called hidden because their inputs and

outputs are masked by the activation function and final convolution. The hidden layers

include layers that perform convolutions. As the convolution kernel slides along the

input matrix for the layer, the convolution operation generates a feature map, which

in turn contributes to the input of the next layer. This is followed by other layers such

as pooling layers, fully connected layers, and normalization layers. Fig 2.8 shows the

process of the feed-forward in CNN structure.

Compared to other deep learning models, CNN is more flexible, especially in dealing

with EEG signals [86]. When the EEG signals are transformed into images, researchers
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Figure 2.8: Process of the feed-forward in CNN structure.

analyze them as traditional image processing. When the input type is a raw signal,

the CNN can also extract different kinds of features. 1D convolution layer creates

a convolution kernel that is convolved with the layer input over a single spatial (or

temporal) dimension to produce a tensor of outputs. Because EEG signals are dynamic

series, a 1D CNN layer can be used to get temporal information from each channel.

Depthwise 2D convolution is a type of convolution in which a single convolutional filter

is applied to each input channel. It is implemented via the following steps: 1) Split the

input into individual channels; 2) Convolve each input with the layer’s kernel (called a

Depthwise kernel); 3) Stack the convolved outputs together (along the channels axis).

Unlike a regular 2D convolution, depthwise convolution does not mix information across
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different input channels. Fig 2.9 is the process of using depthwise convolution to get

the feature map from each channel from the input. After using a 1D convolution layer

to get each channel’s temporal feature, depthwise convolution is usually used to learn

information from all channels. For instance, there are 20 channels used in the EEG

Figure 2.9: Process of the feed-forward in CNN structure.

signals. Each instant time point has 20 feature samples. Then each instant timepoint

map is regarded as a channel. If there are 500 time points, it will be 500 channels and

each channel has 20 feature samples. The depthwise convolution can get the information

from these 20 feature samples which are regarded as the spatial feature. Therefore, 1D

convolution and depthwise convolution are always used to learn temporal and spatial

features from EEG signals in a CNN model. The flexibility of the CNN layer brings

different styles to different kinds of features.

There are three classical variants of CNN models namely Inception (GoogLeNet) [98],

VGGNet, and ResNet. GoogLeNet is notable for its "Inception modules," which allow the

network to perform convolutions with multiple filter sizes in parallel. This design (shown

in fig 2.10) enables the network to capture features at various scales, making it highly

efficient in terms of both computation and memory usage. Riyad et al [45] developed

a ConvNet based on Inception and Xception modules to extract temporal and spatial

features. Amin et al [99] combine the attention mechanism with the inception module

to capture features based on importance from MI data. Zhang et al [100] adopted an

inception-time network to analyze EEG signals, which showed to be highly efficient and

accurate for time-series classification.
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Figure 2.10: Inception modules where each 5 × 5 convolution is replaced by two 3 × 3
convolution.

VGGNet is characterized by its use of very small (3x3) convolutional filters and a

deep architecture, with networks typically having 16 or 19 layers (shown in fig 2.11).

Despite its simplicity, VGGNet is highly effective and has been widely used in image

classification tasks [101]. Owing to its deeper architecture, the variants of VGGNet are

frequently employed in the construction of pre-trained models using extensive historical

data. Through the application of transfer learning strategies, specific parameters are

fine-tuned, thereby extending the model’s generalization capabilities. For instance, Li

et al [102] adopted pre-trained VGG-16 CNN model for MI classification and fin-tuned

parameters based on the target domain data. Xu et al [103] introduced a framework

that utilizes a VGG-16 CNN model pre-trained on ImageNet, paired with a target CNN

model that mirrors the VGG-16 architecture, except for the softmax output layer. The

parameters from the pre-trained VGG-16 model are directly transferred to the target

CNN model, which is then employed for the classification of MI EEG signals.

ResNet is also is known for its deep architecture, which can go hundreds of layers

deep. The key innovation is the introduction of "residual blocks," where the input to a

layer is added directly to the output of a few layers ahead (shown in fig 2.12), helping

to address the vanishing gradient problem and allowing for the training of very deep

networks [104].This module is highly flexible, allowing it to be used in combination
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Figure 2.11: The framework of the VGGNet.

with many other modules. For example, Khademi et al [105] utilized pre-trained CNN

networks, specifically ResNet-50 and Inception-v3, within a hybrid network to help

address the challenge of limited MI-EEG dataset size. Jia et al [106] employed ResNet

in the graph convolutional neural network to address the degradation problem led by

deeper networks.

Figure 2.12: The framework of the residual block.

2.3.2.2 Long Short-Term Memory

Besides CNN, recurrent neural network (RNN) is also a popular model in the field of

BCI. 1D convolution layer is used to get temporal features. In theory, RNN is better
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for learning temporal features. Long short-term memory (LSTM) is an artificial RNN

architecture [107] used in the field of deep learning. Unlike standard feedforward neural

networks, LSTM has feedback connections. It can process not only single data points

(such as images) but also entire sequences of data (such as speech or video). For example,

LSTM applies to tasks such as unsegmented, connected handwriting recognition[108],

speech recognition [109], and anomaly detection in network traffic. A common LSTM unit

is composed of a cell, an input gate, an output gate, and a forget gate. The cell remembers

values over arbitrary time intervals and the three gates regulate the flow of information

into and out of the cell. LSTM networks are well-suited to classifying, processing, and

making predictions based on time series data since there can be lags of unknown

duration between important events in a time series. LSTMs were developed to deal with

the vanishing gradient problem that can be encountered when training traditional RNNs.

Relative insensitivity to gap length is an advantage of LSTM over RNNs, hidden Markov

models, and other sequence learning methods in numerous applications. The forget gate

is used for discarding useless information of the prior LSTM cell, Considering the EEG

signal is a dynamic time series from electrode measurements, LSTM may get temporal

features from the EEG signal better than CNN. However, Tayeb et al compared the

classification accuracies achieved using the developed neural classifiers (RCNN, LSTM,

pCNN) and two other models dCNN and sCNN proposed by Schirrmeister et al [110].

The LSTM-based raw EEG data approach did not outperform any of the other developed

models and the results remained slightly inferior to those obtained by state-of-the-art

methods. There may be several reasons. Firstly, the EEG signals have low SNR which

causes the LSTM model not to gain useful temporal features. Secondly, the relationship

between different electrodes and brain regions or other space features is hard to learn

through LSTM. LSTM is not as flexible as CNN. Therefore, more studies prefer using

CNN. To sum up, the CNN model is widely used in EEG signal processing. Although

RNN and LSTM do not perform as well as CNN, it still deserves to study the hybrid of

CNN with other types of models such as LSTM, VAE et al.
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Figure 2.13: The framework of LSTM cell, ‘S’ denotes sigmoid activation function, ‘tanh’
denotes hyperbolic tangent activation function, ‘+’ is plus, and ‘×’ is multiplication. The
’Ct’ represents the state of the LSTM cell at the current moment. The ’Ct−1’ represents

the state of the LSTM cell at the last moment. The ’hl t’ represents the output of the
LSTM cell at the current moment. The ’hl t−1’ represents the output of the LSTM cell at

the last moment.

2.3.2.3 Transformer

The Transformer model is a deep learning architecture that has gained popularity for

its effectiveness in various tasks. Unlike traditional RNNs or CNNs, the Transformer

architecture relies entirely on self-attention mechanisms to weigh the importance of

different input tokens when generating output tokens [111]. This self-attention mecha-

nism allows the model to capture long-range dependencies in sequences more effectively,

making it particularly suitable for tasks involving sequential data. The Transformer

model consists of an encoder-decoder structure, where the encoder processes the input

sequence and generates a representation that can be sent to the classifiers or decoders

(shown in Fig 2.14).

The multi-head attention mechanism in the Transformer model enables the model

to focus on different parts of the input sequence simultaneously. It achieves this by

projecting the input embeddings into multiple subspaces namely Query (Q), Key (K), and

Value (V) (shown in Fig 2.15), and computing attention scores independently for each
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Figure 2.14: The Transformer model architecture.

subspace. These attention scores are then combined across all heads, allowing the model

to attend to different aspects of the input sequence in parallel. This parallelization (Fig

2.16) enhances the model’s ability to capture diverse relationships and dependencies

within the input sequence, leading to more effective representation learning. Additionally,

the use of multiple attention heads provides the model with the flexibility to attend to

different parts of the input sequence with varying levels of granularity, enabling it to

capture both local and global dependencies effectively.
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Figure 2.15: Scaled Dot-Product Attention framework.

Figure 2.16: Multi-Head Attention framework.

In the BCI field, the transformer is also adapted to handle signals in the applications

such as person identification [112], emotion recognition [113], visual stimulus classifi-

cation [114] and signal denoising [115]. For MI-EEG decoding, Ma et al [116] proposed

a hybrid CNN-Transformer model to weigh spatial features and frequency signals by

employing the attention mechanism. Song et al [117] proposed a hybrid model with

six transformer encoders after extracting features from MI-EEG by CNN layers. Tao

et al[118] employed the gating mechanism on the transformer to improve the model

performance. Xie [119] designed five hybrid models with different layers in the CNN and

transformer. Although research on using transformers for EEG decoding is still limited

overall, transformers remain a promising tool for exploring long-time-series data like
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EEG signals.

2.4 Transfer Learning-Based Decoding Algorithms

for MI-EEG

Transfer learning solves insufficient data problems by adjusting the model via prior

knowledge to make it adaptable to new tasks. The transfer learning model keeps learning

ability without a large amount of data based on prior knowledge learned in related tasks.

Unlike traditional machine learning, the focus of transfer learning is on the target task

with one or multiple source tasks which are trained to provide priori knowledge for the

target task [120]. Transfer learning is mainly used for data augmentation and saving

time for building a new model by transfer parameters. Santana et al. proposed a cross-

subject classifier to predict the stimulus presented to a subject from the analysis of the

brain activity [121]. In the previous study, there are three transfer learning approaches

based on EEG [122]:

• Feature representation transfer: Encode the transferred information into a new

feature representation, which enables later classification models to generalize

well on the target test set. Discriminative information across subjects or sessions

may be transferred to reduce calibration time, and stationary information may be

transferred to avoid repeated calibrations before each use of BCIs. So far, many

transfer learning methods in this setting have learned a new feature representation

by spatial filtering with data collected and organized in matrixes.

• Instance-transfer: Transfer information by reusing certain parts of data from the

source domains. Different from the feature-representation-transfer approach, the

instance-transfer approach transfers discriminative information by weighting data

from source domains instead of changing their feature representations. Approaches

in this case weight data from source domains to reuse certain parts of data. How-
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ever, few instance transfer approaches have been proposed to transfer stationary

information across domains.

• Classifier-transfer: Reuse classifiers learned from other domains to aid the target

task. Domain adaption of classifiers and ensemble learning of classifiers are two

major techniques. This case can be further organized into two rough subcategories:

domain adaption of classifiers and ensemble learning of classifiers. Domain adap-

tion of classifier is a common method, which reuses learned classifiers from source

domains and adjusts classifier parameters according to the target domain. This

type of approach generally requires that there are enough parallels between source

domains and target domains. Therefore, a common scenario using domain adaption

of the classifier is to transfer the discriminative and stationary information from

session to session. Different from the former, ensemble learning of classifiers is

a promising method to combine base classifiers learned from multiple domains

into a single one. Generally, diversity among the base models is deemed to be a

primary cause for the final classifier to obtain an accurate performance and a good

generalization ability.

2.5 Summary

This section has performed a comprehensive review of MI-BCI background and corre-

sponding EEG decoding algorithms. In Section 2.1, the principles of MI-BCI systems are

introduced and prove the effectiveness for rehabilitation. By decoding EEG signals, the

recognized motor intentions can be employed as commands to control external devices or

bring neuro-feedbacks which help patients get involved in the rehabilitation training

for a better recovery effect. The ERS/ERD phenomenons generated by the correlated

brain area based on MI stimulations provide theoretical foundations for classification

algorithms. In Section 2.2, conventional machine learning approaches including fea-

ture extraction and classification are presented. Although previous studies have gained

progress on MI-EEG decoding, the mismatch between feature extraction and classifi-
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cation may limit the capability of machine learning models. Deep learning has been

proven a potential tool for analyzing signals in diverse fields and Section 2.3 shows two

important factors namely input formulation and model structure in DL methods. The

main types of input include images, signal values, and calculated features while the

mainstream structures involve CNNs, LSTM, and transformers. Selecting appropriate

input signals and designing efficient model structures will be discussed in the next

four chapters. Section 2.4 investigates the transfer learning strategy for improving DL

models’ performance and practicability which will be used in Chapter 6.
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3
A MULTI-VIEW CNN DECODING FOR MI-EEG SIGNALS

Since CNN has gained lots of attention in decoding MI-EEG for improving stroke reha-

bilitation strategies, the extremely non-linear, nonstationary nature of the EEG signals

and diversity among individual subjects results in the overfitting of a CNN model and

limits its learning ability. In this chapter, a densely connected convolutional network

with multi-view inputs is proposed. First, different data subsets from the original EEG

signals are created as the CNN model inputs through bandpass filters applied to the

EEG signals to generate multiple frequency sub-band signals based on brain rhythms.

Then, temporal and spatial features are captured based on the whole frequency band and

the filtered sub-band signals, respectively. Further, two dense blocks with multi-CNN

layers, which connect each layer to every other layer in the feed-forward path, are used

to enhance the model learning capabilities and strengthen information propagation.

Finally, a concatenation fusion method is used to integrate the extracted features and a

fully connected layer for finalizing the classification. The proposed method achieves an

average accuracy of 75.16% on the public Korea University EEG dataset which consists

of the EEG signals of 54 healthy subjects for the two-class MI tasks, demonstrating

that the proposed method effectively extracts much richer MI information from the EEG

signals and improves classification accuracy.
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3.1 Introduction

The DL-based algorithms have been demonstrated to be effective in decoding MI-EEG

signals. However, few models considered the influence of frequency band range which

varies from subject to subject, and the reuse of features in a deep learning structure.

There exist two key challenges in frequency band selection in the data preprocessing

step. The first is the difficulty to determine brain rhythms as they vary with time and

with different subjects, the other is the diversity among different subjects. The brain

rhythms reflect the functional states of different neuronal cortical networks. The most

common frequency band used in the MI-EEG field is α rhythm [123] which is about 10

Hz and β rhythm which is around 20 Hz [38]. In the research [67], 7 - 30 Hz was selected

as the α and β rhythm. In another study [12], it is shown that 26 Hz is the upper limit

of the β rhythm. Besides that, θ rhythm (4-7 Hz) was also proved useful in decoding

MI-EEG signals [124, 125]. It is clear that, the frequency band range for special brain

rhythms is found to be different in these studies. Meanwhile, Novi et al [69] proved that

the variation among different subjects is enormous. That is also the reason that FBCSP

and other later methods focused on selecting the appropriate operational frequency band

for extracting discrimination. In DL methods, if no band selection is performed before

building the classifier model, redundant information and noise will lead to the overfitting

problem and make it difficult to learn useful features. However, on the other hand, if the

band selection is performed, the differences among different subjects may have a great

impact on the final classification result. All these have to be taken into account.

The other challenge is the lack of reusable feature maps in the deep learning model.

In the computer vision field, many works have demonstrated that the CNN model with

shorter connections between layers close to the input and the ones close to the output

can be trained more efficiently and accurately, and these shorter connections can help

reuse features in the previous layers [126]. ResNets [104] redesigned the layers that

learn residual functions concerning the layer inputs and side signals from one layer to

the next through connections. Larsson et al [127] proposed FractalNets that combine

several parallel layer sequences with different numbers of CNN and maintain many
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short connections in the network. The densely connected network (DenseNet) [126] uses

direct connections between any two layers with the same feature-map size. Short paths

lead to feature map reuse which can ensure efficient information flow between layers

in the network and improve model learning capabilities. Liu et al [128] connected the

DenseNet with 3D CNN to decode MI-EEG. However, the 22 input channels were forced

to be the size of 7×7 by padding with the mean of all the EEG signals which introduced

lots of redundant information. Yu et al [129] proposed a model combining the attention

mechanism with DenseNet. However, the model only used three channels (C3, C4, Cz)

to generate the input images by Continuous Wavelet Transform (CWT), which ignored

massive spatial information provided by the other channels in the cortex.

To address the two outstanding issues in deep learning for EEG signal decoding in

BCI systems, this chapter proposes a novel end-to-end CNN architecture with multi-

views of EEG signals based on the densely connected convolutional network. First, the

MI-EEG signals are fed to a 3-order Butterworth filter with different frequency bands

(1-5 Hz, 4-8 Hz, 8-13Hz, and 13-32 Hz) according to the brain rhythms. Then each of

the four EEG sub-band signals and the raw data covering the whole frequency band is

fed into a CNN model respectively. Then two CNN layers are used to capture temporal

and spatial features. Next, these features pass two dense blocks with multi-CNN layers,

which helps to connect each layer to every other in a feed-forward mode. In the dense

block, the feature maps extracted by the preceding layers are used as inputs, and their

feature maps are fed into the succeeding layers, which help reuse feature maps and

reduce overfitting on tasks. The final extracted features from each kind of input signal

are fused in a fully-connected layer and end with the softmax classifier.

The remainder of the chapter is organized as follows. The details of the proposed

method including data description, preprocessing steps, the detailed structure and

parametrization of the proposed CNN model are given in Section 3.2. Experimental

results and discussions are presented in Section 3.3 and Section 3.4 respectively. Finally,

Section 3.5 concludes Chapter 3.
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3.2 Methods

This chapter first introduces the public dataset used in the experiment. Then the prepro-

cessing steps and the proposed method are given in detail. The structure and parameters

are shown at the end.

3.2.1 Data Description

1) The public Korean University (KU) dataset [94] which includes fifty-four healthy

subjects (ages 24-35; 25 females) is the largest binary dataset so far available in the

public domain. Every subject had 200 trials of data (100 trials for imaging the left hand

and right hand respectively). The EEG signals were collected with 62 electrodes based

on the standard international 10–20 system placement. The sampling rate was 1,000 Hz.

To ensure a fair comparison with other methods, the raw signals was downsampled to

250 Hz. 20 electrodes from the region related to motor function were selected (shown in

Fig 3.1). The channel selection is based on the previous model [93, 130] which performed

well on this dataset. The black fixation cross on the center of the monitor lasted for 3

seconds for subjects to prepare for the MI task. Next, the subject was asked to image

the MI task for 4s according to the left or right arrow that appeared on the monitor

and relaxed after a blank screen. We only intercept 4 s data for the MI tasks for the

subsequent processing. The 10-fold cross-validation (CV) method was adopted to check

the performance and robustness of our proposed model. 8 folds are used for training, 1

fold for testing, and the remainder for validation. Hence, for each subject’s model, a total

of 160 training trials and 20 validation and testing trials were administered.

2) BCI Competition IV 2a (BCIC-IV-2a) dataset [131] consists of recordings from 9

healthy subjects performing 4 different MI tasks: left-hand, right-hand, both-foot, and

tongue. The signals were acquired using 22 EEG electrodes with a sampling frequency of

250 Hz and were bandpass filtered between 0.5 Hz and 100 Hz, as well as notch filtered

at 50 Hz. Two sessions were recorded on different days for each subject, with each session

comprising 288 trials. So there is an inherent drift in the statistical distributions between
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Figure 3.1: EEG electrodes position (KU dataset). The EEG electrodes shown in gray
were used in the proposed model.

the two sessions. We used the first session for training and the second session for testing

to validate the performance of the proposed model. Each trial lasts 4 seconds for the MI

task, and we used the entire length of the data for decoding.

3.2.2 Preprocessing

We use a 3-order Butterworth filter to obtain multi-views of EEG signals based on

different brain rhythms. Compared with the Chebyshev filted used in the [93], Butter-

worth filter provides a flat passband without ripples, making it ideal for applications

requiring consistent signal quality. It also has a more linear phase response, reducing

phase distortion and preserving signal integrity. We select four sub-bands with 1 Hz

overlap, which are δ rhythm (1-5 Hz), θ rhythm (4-8 Hz), α rhythm (7-13 Hz) and β

rhythm (12-32 Hz). As aforementioned, earlier work has already shown that the signals

from these sub-bands can better decode MI-EEG signals and identify the intentions of

the subjects. However, suitable boundaries of sub-bands for MI-EEG signals vary from

person to person. To ensure that the feature diversity of each individual is properly

learned, raw signals with the overall band covering the full frequency spectrum are also

fed into the proposed model. Therefore, altogether five types of EEG signals are used as
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Figure 3.2: The overview of the proposed model structure. The structure is divided into
three blocks: (a) Temporal-Spatial Block; (b) Dense Block; (c) Fusion Block. In the Dense
Block, 7@1×64 means each CNN layer in the dense block has 7 filters with the size of

(1×64). C means the concatenation procedure.

inputs including specific information related to the MI and the diversity among subjects.

3.2.3 The Proposed Model

The schematic of the proposed model is shown in Fig 3.2. Each view of specific MI-EEG

signals is processed using the same deep-learning structure. Therefore, the final fully

connected layer receives the same size of features through these five parallel structures.

3.2.3.1 Definitions

Define the raw EEG signals as E = (X i,Yi)|i = 1,2, ..., N, where X i ∈ RC×T represents

i− th EEG trial with C channels and T samples. N is the total number of EEG signal

trials. In our experiment, C equals 20 and T is 1000 because each trial has 4 s data with

a 250 Hz sampling rate. Yi is the matching label of X i, which comes from the label set

M = {m1 : right,m2 : le f t}.
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3.2.3.2 Temporal and spatial block

As a time series, EEG signals contain abundant temporal features. Meanwhile, the

different electrode positions on the scalp allow for spatial characterization of brain

activities. Therefore, we use two CNN layers to extract temporal and spatial features

which are the most important and commonly used in decoding MI-EEG tasks. First,

a CNN layer with the kernel size of 1× k is adopted on each channel to perform a

convolution over time. According to the experience of previous studies [132, 133] and

ablation experiments on the kernel size selection, we allow k = 64 in the proposed model.

Then, a depthwise CNN layer is applied across all channels. The number of the filter is

set to one so that signals from all channels at each time instant were compressed into one

feature map. This approach facilitates a reduction in the number of trainable parameters

and enables the efficient extraction of features [132]. No activation function intervenes

between the two layers [85]. Then, the exponential linear unit (ELU) [134] and batch

normalization [135] techniques are employed to mitigate the overfitting problem.

3.2.3.3 Dense block

Assume that the network has L layers, each of which implements a non-linear trans-

formation Fl (·) where l is the index of the layer and the output of each layer is xl .

Traditional transition with a single connection between each CNN layer is:

xl = Fl(xl−1). (3.1)

As the network becomes deeper with more layers, some useful features may also be

filtered. Meanwhile, more parameters need to be optimized which leads to overfitting,

especially for MI-EEG signals with a limited number of subjects. To address this problem,

we refer to [126] and build direct connections from any layer to all subsequent layers.

The detailed structure is shown in Fig 3.2. In a dense block, the lth layer receives the

feature maps of all preceding layers, and the activation function is:

xl = Fl([x0, x1, ..., xl−1]). (3.2)
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where [x0, x1, ..., xl−1] are the feature maps from the preceding CNN layers [l0, l1, ..., l−1].

Each CNN layer adopts ELU as activation, followed by batch normalization and dropout

techniques. If a CNN layer produces k new feature maps, the lth layer has k0+k× (l−1)

inputs, where k0 is the number of feature maps from the input. The k is called the

growth rate of the network which reflects how much new information a CNN learned and

contributed to the proceeding layer. The short paths from preceding layers to proceeding

layers are greatly increased to L(L+1)
2 whereas traditional architecture only has L ones in

a L layers network. Through the dense block, each layer has access to all the preceding

feature maps which enhances the flow of information and feature reuse.

In summary, in the proposed model, the dense block receives an input consisting of

40 feature maps. To mitigate the risk of overfitting, we set k=7, and use 4 CNN layers in

each block. Following the first CNN layer, we concatenated the 7 extracted feature maps

combined with the original 40 feature maps to form a new input that is then fed into

the subsequent CNN layer to learn 7 additional feature maps. This process is repeated

before the third CNN layer, thereby allowing for the extraction of more informative

and discriminative features. Each subsequent layer of CNN is not only connected to the

previous layer but also has connections to the outputs of all previous layers, enabling the

establishment of shorter paths that help the flow of the information.

3.2.3.4 Fusion block

As mentioned earlier, in addition to the complete raw EEG data, four different inputs

represent different views of the MI-EEG signals. These sub-band datasets are based on

brain rhythms related to MI tasks. While the raw signals without filtering reflect the

diversity of features that varies from person to person. After further learning by two

dense blocks, the extracted features are sent into a 1×1 CNN layer to reduce the size of

feature maps before fusion. Fewer maps help to improve computational efficiency and

reduce fluctuations in the loss function trajectory along the training. Finally, features

obtained through all parallel branches are fed to a fully connected layer with a softmax

classifier.

48



3.2. METHODS

Using the single-band input can reduce a number of computational parameters, as

demonstrated in classical models such as ConvNet [85] and EEGNet [132]. However, this

approach often ignores the impact of differences across different frequency bands. When

using multi-branch input that divides EEG into different frequency bands, the learned

features need to be integrated before being fed into the classifier. The previous models

such as HS-CNN [133] used a simple fully connected layer to fuse the information. In

contrast, our model has multiple layers for each branch, leading to numerous calculated

feature maps. As a result, we need to reduce the dimensionality through one-dimensional

CNN and pooling procedures to prevent overfitting and reduce the model complexity.

3.2.3.5 Training

The cross-entropy function is selected as a loss function which calculates the distance

between the probability distribution of the neural network prediction values yp and the

true labels yt [136]:

L
(
yp, yt

)=−∑
m

yp,m log yt,m. (3.3)

where m is the index of y. The optimizer is Adam [137] and learning rate lr = 0.0001. The

training takes 1000 epochs for each fold in the CV with 16 batches per epoch. The early

stopping technology was used to save the best weights during each fold. The training

step ended after checking if the validation loss value decreased for the last 150 epochs.

After reaching the threshold, the model with the best weights produces the classification

results of the test fold.

3.2.3.6 Baseline models

We use two traditional machine learning methods (CSP [138] and FBCSP [70]) and

three state-of-the-art deep learning architectures (Shallow ConvNet [85], Deep ConvNet

[85], and EEGNet 8-2 [132]) as baseline models to demonstrate the effectiveness of our

proposed method. Since the baseline models use different datasets in the initial research,

we have used the best parameters of these models and ensure a fair comparison. The

details of the baseline models are described as follows:
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1. CSP: The basic principle of the CSP algorithm is to find the optimal set of spatial

filters for mapping data by using the diagonalization of the matrix. In this way,

the difference between the variance values of the two tasks is maximized, thus

gaining a feature vector with high discrimination. The methods CSSP, CSSSP, and

DFBCSP mentioned earlier all use CSP as the kernel algorithm.

2. FBCSP: FBCSP is also a successful algorithm commonly used in the BCI field.

After extracting the features through CSP, FBCSP used a feature selection method

to automatically select discriminative pairs of frequency bands. According to [70],

we decompose EEG signals into nine frequency bands with a bandwidth of 4 Hz

from 4 to 40 Hz through a Chebyshev filter. The classifier is the SVM with the

default kernel radial bias function (RBF).

3. ConvNet: ConvNet included the shallow and deep two structures. Shallow ConvNet

is a DL model with only two CNN layers and an average pooling layer, which

achieved a better performance than FBCSP on the public dataset BCI competition

IV 2a [139] and high-gamma dataset [85]. Deep ConvNet includes a temporal and

spatial filter which are similar to the head of the Shallow ConvNet. Then the

layer was followed by several convolution-max-pooling blocks and a fully-connected

layer with a softmax classifier. It extended the choice of learning parameters and

optimization plans and has achieved excellent results [140].

4. EEGNet 8-2: Based on the Shallow ConvNet, this model adopted a separable CNN

layer after extracting temporal-spatial features, which ensured the quality of the

classification results with reduced calculation cost.

5. FBCNet: FBCNet divides the raw EEG signals into several frequency bands. Then

the depthwise CNN layer was used to extract spatial features. After that, the

model employed a variance layer to compute the temporal variance of the time

series. Finally, the features are fused in a fully-connected layer and ended with

the softmax. The model referred to the principle of FBCSP and achieved the best

classification result on the Korean public MI dataset[93]
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3.3 Results

The computer used in this experiment had 8 Intel cores Intel processors and 16 GB

RAM. GTX 2080 GPU with 8 GB memory was used for training and testing EEG data.

Keras was used for building the proposed model and the baseline models. The results

and statistical analysis of the proposed model are reported in this section, including the

performance comparison with other baseline models.

3.3.1 Overall Performance

The averaged classification accuracy of different methods is shown in table 3.1. The

results from different methods are 64.69% (±15.25), 63.50% (±19.09), 67.81% (±17.55),

61.83% (±16.89), 68.96% (±17.17), 73.44% (±13.28), 75.16% (±14.01) for CSP, FBCSP,

EEGNet 8-2, Deep ConvNet, Shallow ConvNet, FBCNet and our proposed method in KU

dataset, respectively. The proposed method achieves 1.72% higher than the best result

among the baseline models. To better validate the results, we use statistical significance

tests including an Analysis of Variance (ANOVA) test for the multiple comparison tests

and paired t-tests between each baseline method and the proposed method. In an ANOVA

test, the proposed method significantly exceeds the others [F = 5.054, p < 0.001]. The

results of paired t-test are CSP [t(53) = −6.074, p < 0.001], FBCSP [t(53) = −6.220, p <
0.001], EEGNet 8-2 [t(53) =−5.931, p <0.001], Deep ConvNet [t(53) =−8.226, p < 0.001],

Shallow ConvNet [t(53) =−5.788, p < 0.001] and FBCNet [t(53) =−1.875, p < 0.01]. The

performance comparison for individual subjects based on the scatter plots is presented

in Fig 3.3. There is a significant improvement in classification accuracy for most of the

subjects. The proportions of subjects who had classification accuracy over 80% were in

the proposed model than in the baseline models are 81.4% (44 of 54), 85.2% (46 of 54),

79.6% (43 of 54), 87.03% (47 of 54), 77.8% (42 of 54), and 55.5% (30 of 54) for CSP, FBCSP,

EEGNet 8-2, Deep ConvNet, Shallow ConvNet and FBCNet, respectively. In the BCI IV

2a dataset, while FBCNet exhibited 0.26% higher than the proposed model, our model

demonstrated notable classification performance when compared with other baseline
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Table 3.1: Comparison of average classification accuracy (%) with standard deviation
(SD) for different methods.

KU Dataset BCI IV 2a Dataset
CSP [138] 64.69 (15.25) 54.01 (12.77)
FBCSP [70] 63.50 (19.09) 65.79 (14.21)
EEGnet 8-2 [132] 67.81 (17.55) 67.81 (17.55)
Deep ConvNet [85] 61.83 (16.89) 65.34 (13.54)
Shallow ConvNet [85] 68.96 (17.17) 68.96 (14.28)
FBCNet [93] 73.44 (13.28) 72.71 (14.67)
Proposed model 75.16 (15.03) 72.45 (14.10)

Figure 3.3: Scatter plot of individual classification performance. The horizontal axis
represents the classification accuracy from baseline methods (CSP, FBCSP, EEGNet 8-2,

Deep ConvNet, Shallow ConvNet, and FBCNet), and the vertical axis represents the
classification accuracy from our proposed method.

models.

3.3.2 Model Performance on Different Sub-bands

Features extracted from different sub-bands have different impacts on the final classi-

fication accuracy. We tested different methods based on both the four commonly used

sub-bands related to brain rhythms in MI-EEG decoding tasks and the raw data covering

52



3.3. RESULTS

Table 3.2: COMPARISON OF AVERAGE CLASSIFICATION ACCURACY(%) FOR
METHODS BASED ON DIFFERENT RHYTHMS.

Algorithm δ θ α β Overall
CSP[138] 52.93 53.81 64.50 63.29 54.39
EEGNet 8-2[132] 55.71 54.09 66.63 67.34 69.69
Deep ConvNet[85] 54.19 51.07 62.56 61.32 65.68
Shallow ConvNet[85] 53.68 52.53 64.38 68.57 64.16
Proposed method 57.43 54.07 66.52 67.47 73.52

the whole frequency spectrum. Our proposed model fuses extracted features through

five paralleled structures with the same parameters. Therefore, to validate the effect of

different sub-bands on the proposed model, only one paralleled structure without the

fusion step is used in this experiment. The comparison results based on the KU dataset

are shown in Table 3.2. On the θ and α sub-bands, EEGNet 8-2 achieved 54.09% and

66.63% respectively which are the best results. The Shallow ConvNet method performed

well on the β sub-band. The proposed methods also produced good classification results

based on different sub-bands, especially having much higher accuracy in decoding the

raw MI-EEG signals over all frequency bands.

Fig 3.4 shows the accuracy of the proposed method based on different brain rhythms

for each subject. The classification results based on α and β rhythms are higher than

other cases for most subjects, which further confirms the findings reported in the previous

research [123][38]. θ and δ rhythms also contain useful MI information which can

significantly improve the accuracy of some subjects. Furthermore, the proposed model

extracts the most comprehensive information from the raw MI-EEG data covering the

whole frequency spectrum without applying any filtering and has achieved the best

classification results for 33 out of 54 subjects.

3.3.3 Effect of Hyper-parameters

The kernel structure of the proposed model is the dense block. To improve the model

learning capacity, we test the effect of different numbers of feature maps on the classifi-

cation performance based on all subjects in the KU dataset. The results are shown in
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Figure 3.4: The average accuracy of the proposed method using a 10-fold CV based on
different brain rhythms.

Fig 3.5(a). The highest accuracy is achieved when the CNN filter in a dense block learns

7 feature maps each time. Fewer feature maps limit the information learned while too

many ones lead to the overfitting problem. Besides that, the number of feature maps

in the final 1×1 CNN layer also plays an important role. The influence on the model is

shown in Fig 3.5(b). When the dimension of feature maps is compressed to 20, the model

has the best performance. From the results, we can find that the difference between

different numbers of feature maps is not huge. However, if there are no 1×1 CNN layer in

the fusion block, the classification rate only reaches about 68% which is similar to other

excellent methods. One possible reason is that there are many extracted features from

each sub-band signal and the raw data comprising all bands. Without decreasing feature

maps by 1×1 CNN layer, a large number of parameters with redundant information

will be calculated in the fully connected layer and in the final softmax layer which will

have a negative impact on the final classification results. Besides that, we also test the

influence of different activation functions (Fig 3.6). The ELU function performs best with

the highest accuracy and runs fast.
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(a) (b)

Figure 3.5: The effect of numbers of feature maps of the proposed model. (a) The feature
maps come from the CNN filters in the dense block. (b) The feature maps come from the

1×1 CNN filters in the fusion block.

Figure 3.6: The effect of activation functions on example subject
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3.3.4 Effect of Fusion of Sub-bands and The Overall Band

The classification results for methods based on different rhythms are shown in Table 3.2.

Although the accuracy of the proposed model on the raw EEG signals covering the full

frequency spectrum (overall band) is good enough, the combination with subset signals

of specific brain rhythms can achieve better performance. As shown in Fig 3.7, without

combining with the features from the raw data covering the full spectrum (whole bands),

the results of the combination of only sub-bands covering brain rhythms δ, θ, α and

β are no more than 68%. When we introduced the features from the overall band, the

accuracy significantly improved. The proposed model with all sub-bands and the overall

band together achieves 75.16% while the combination of the overall band with (α, β) and

(θ, α, β) reaches 74.42% and 74.94% respectively.

3.4 Discussions

3.4.1 Comparison of Different Methods

Traditional machine learning methods included feature extraction and classification

steps. Inappropriate combination of the feature extraction methods and classifiers leads

to poor classification results. Deep learning, which has an end-to-end projection, shows

great performance in decoding MI-EEG tasks [86]. Our proposed model uses different

MI-EEG representations based on various sub-bands and raw data covering the overall

band as inputs. The proposed CNN structure improves the model performance through

feature reuse and fusion technology. In Fig 3.3, we show the comparison results with

other methods on each subject. For most subjects, the classification accuracy has been

significantly improved based on our proposed method, even more than 50% than some

benchmark models. The number of subjects whose accuracy is over 80% is 11 for CSP,

15 for FBCSP, 16 for EEGNet 8-2, 12 for Deep ConvNet, 17 for Shallow ConvNet, 16 for

FBCNet and 22 for our model, which further verifies the superiority and robustness of

the proposed method. Additionally, we utilize the t-SNE [141] to achieve full visualization
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Figure 3.7: The classification rate of different combinations of sub-bands and the overall
band based on the proposed model.

of the learned features from different methods. The t-SNE algorithm was used on the

last fully connected layer. All inputs of the t-SNE are reshaped to trials × features

to show the feature distribution in a two-dimension space. For a fair comparison, the

extracted features of all methods are taken from the same subject (Fig 3.8). Compared

with the other three baseline CNN models, our proposed model was able to extract

more discriminative features through the dense blocks after learning temporal-spatial

information from MI-EEG signals.

3.4.2 Analysis of Fusion of Features from Sub-bands

To learn useful information related to MI, the signals will pass a filter whose frequency

bands are associated with the brain rhythms (commonly use α and β rhythm). The

Previous study has shown the significant impact of frequency selection on the final

classification results [67]. However, unclear EEG rhythm boundaries and differences

in optimal frequency bands for each individual make it difficult to build an effective
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Figure 3.8: The feature map of the sixth subject obtained by various methods in 2-D
embedding based on t-SNE. Part (a) is the distribution of the raw EEG data. Parts (b),
(c), (d) and (e) show the distribution of extracted features in trained EEGNet 8-2, Deep
ConvNet, Shallow ConvNet and the proposed method. The proposed method achieved

89.5% classification results, whereas EEGNet 8-2, Deep ConvNet and Shallow ConvNet
resulted in 67.5%, 53.5% and 65.0% respectively.

model. In Table 3.2, the same method gives completely different results in decoding

MI-EEG signals on different rhythms. These methods tend to give about 10% higher

classification results on the α and β rhythm than on the θ and δ rhythm. Our proposed

method does not show better performance than other baseline methods on these four

commonly used rhythms. However, our method produces much better results on the

overall frequency band which reaches 73.52%. Although using signals covering the whole

frequency spectrum may introduce more redundant information and noise, it ensures

that all MI information and individual diversity among different subjects. The baseline

models such as the EEGNet 8-2 and Deep ConvNet also proved that the classification

accuracy on the overall bands is higher than on the α or β rhythm. We again use t-SNE

before the final fully connected layer to show the distribution of the extracted features
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Figure 3.9: The feature map of the sixth subject with various inputs in 2-D embedding
based on t-SNE. Part (a) is the distribution of the raw EEG data. Parts (b), (c), (d), (e)

and (f) show the distribution of extracted features from δ rhythm, θ rhythm, α rhythm,
β rhythm and the overall bands. The proposed method achieved 89.5% classification on

this subject.

from different inputs (shown in Fig 3.9). Except for the features extracted from δ rhythm,

other ones can be distinguished clearly through the t-SNE visualization on the sixth

subject.

3.4.3 Analysis of Dense Block

Compared with EEGNet 8-2, Deep and Shallow ConvNet, our proposed model has the

same structure in the first and second CNN layers to extract temporal-spatial features

from EEG signals. The difference is that we have further introduced two dense blocks

to make the whole structure deeper. The deeper CNN layers can usually learn more

abstract and high-level features which help to improve the model performance. However,

a complex model also leads to the overfitting problem, especially on limited data such as

MI-EEG signals. Further, the non-linear and nonstationary characteristics of EEG may
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let deeper CNN layers learn more noise and redundant information rather than useful

information embedded in the signals. Therefore, previous studies in the literature usually

adopted a structure with only one or two CNN layers [86]. From the results listed in

Table 3.1, EEGNet 8-2 and Shallow ConvNet with fewer CNN layers than Deep ConvNet

perform much better. However, fewer CNN layers may limit the learning capability of a

deep learning model. In [85], Schirrmeister et al combined ResNet structure to decode

MI-EEG tasks, but the performance was worse than traditional methods like FBCSP.

One possible reason is that ResNet evaluates the difference between the output of one

layer and the input in the preceding layer. However such information is not suitable to be

fed into the following layers because simple addition and subtraction can lose useful EEG

information, since the EEG signals are nonstationary and include a mass of noise signals.

Our proposed model learns all features in the preceding layers instead of the difference

between the inputs and outputs. In the dense blocks, the features learned by any of the

CNN layers are connected by all subsequent layers which encourage information flow

and feature reuse over the whole model. In the softmax classifier, the outputs are not

only influenced by the features fed from the latest layer which may include redundant

information due to the overfitting problem but also affected by the feature maps fed

from all other preceding layers, which avoid unnecessary information loss as signals

pass across through different layers. From table 3.2, it is evident our proposed model

can extract more valuable features from the overall frequency bands, while reducing

the effects of noise, achieving a better trade-off between model complexity and model

learning capability.

3.5 Conclusions

In this chapter, a novel DL architecture based on the densely connected CNN is proposed

for the recognition of MI tasks. The model employs both filtered MI-EEG signals based

on four commonly used brain rhythms and the overall frequency band as inputs. The

network first extracts temporal and spatial features using the first two CNN layers.
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Then, two dense blocks connect each CNN layer to all the rest layers in a feed-forward

mode to further learn discriminative MI-EEG information. The dense block encourages

feature reuse and strengthens information propagation. Next, average pooling layers and

1×1 CNN layer help to reduce computation and avoid the overfitting problem. Finally,

the fully connected layer fuses the extracted feature from different inputs and ends

with a classifier. The fused features include special MI information based on different

brain rhythms and also consider individual diversity among subjects without finding

the optimal sub-bands. Both the classification accuracy and the distribution of extracted

feature maps have demonstrated the superiority of the proposed method in the decoding

MI-EEG tasks when compared with benchmark models, achieving an average accuracy of

75.16% on the public Korea University EEG datasets, higher than other state-of-the-art

deep learning methods.
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4
LOCAL AND GLOBAL CONVOLUTIONAL

TRANSFORMER-BASED MI-EEG CLASSIFICATION

Transformer, a deep learning model with the self-attention mechanism, combined with

the CNN has been successfully applied for decoding EEG signals in MI-BCI. In this

chapter, a local and global convolutional transformer-based approach for MI-EEG classi-

fication is proposed. The local transformer encoder is combined to dynamically extract

temporal features and make up for the shortcomings of the CNN model. The spatial

features from all channels and the difference in hemispheres are obtained to improve the

robustness of the model. To acquire adequate temporal-spatial feature representations,

the global transformer encoder and Densely Connected Network are combined to improve

the information flow and reuse. To validate the performance of the proposed model, three

scenarios including within-session, cross-session, and two-session are designed. In the

experiments, the proposed method achieves up to 1.46%, 7.49%, and 7.46% accuracy

improvement respectively in the three scenarios for the public Korean dataset compared

with current state-of-the-art models. For the BCI competition IV 2a dataset, the pro-

posed model also achieves a 2.12% and 2.21% improvement for the cross-session and

two-session scenarios respectively. The results confirm that the proposed approach can
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effectively extract a much richer set of MI features from the EEG signals and improve

the performance in the BCI applications.

4.1 Introduction

In the BCI field, the transformer based on a self-attention mechanism is adopted for MI-

EEG decoding. For instance, Ma et al [116] proposed a hybrid CNN-Transformer model

to weigh spatial features and frequency signals by employing the attention mechanism.

However, the model uses the CSP features as inputs which loses the advantage of the

end-to-end process in the DL model. Song et al [117] also proposed a hybrid model with

six transformer encoders after extracting features from MI-EEG by CNN layers. The

model performs well in the hold-out tests, but the huge computational costs caused by

encoders limit the actual use. Tao et al [118] employed the gating mechanism on the

transformer to improve the model performance but missed the extraction of EEG spatial

information. Xie [119] designed five hybrid models with different layers in the CNN

and transformer. This study adapted the model in the cross-subject scenario with much

more training data than small data scenarios like within-subject and within-session

applications, limiting the model’s robustness. Besides that, the shortfall of these studies

is that they only extract the spatial features from the fusion of all channels, neglecting

the possible information learned from the differences between the hemispheres.

To address the above issues, a novel approach with the local and global transformer

combined with CNNs for MI-EEG classification is proposed in this study. First, the

local transformer and 1-dimension CNN filter with the same kernel size is adopted to

extract temporal features from each channel. Although the respective fields from the

local transformer and CNN are the same in the beginning, the different mechanisms

allow the model to learn a comprehensive set of useful and subtle features from multi-

views. The local transformer also avoids the overfitting problem compared with the

global transformer which extracts more subtle features from raw EEG signals in the

first layer. Then, two parallel branches use different depthwise CNNs to extract and
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fuse different spatial information. One branch focuses on all channels in the motor

cortex and the other one extracts the features of channels from the left and right motor

regions respectively. Next, for better mining the temporal-spatial features, the Densely

Connected CNN (DenseNet) [126] is used on both CNN and global transformer layers

by connecting each layer to every other in a feed-forward way. The short path helps the

information reuse and flow which improves the model’s adaptability and robustness.

Finally, the proposed model is validated and compared with other baseline models in

different scenarios including within-session and cross-session to verify its performance.

The remainder of the chapter is organized as follows. In Section 4.2, the materials and

methods including dataset, preprocessing, scenario descriptions, and detailed model are

developed. Section 4.3 shows the results of experiments and visualization. Section 4.4 is

discussion and Section 4.5 concludes this chapter.

4.2 Materials and Methods

In this chapter, the dataset and preprocessing approach used in the experiment are

briefly introduced. The different scenarios are given in detail. Then, the proposed model

including the mechanism, structure, and hyper-parameters is presented.

4.2.1 Dataset and Preprocessing

We used the Korea University dataset [94] and the BCI Competition IV 2a [131] dataset

to evaluate the proposed model performance on the two-class and four-class MI tasks

classification.

1) Korea University (KU) Dataset: We used the Korea University Dataset containing

54 subjects with binary MI tasks of the left hand and right hand. Two sessions were

conducted on different days in the dataset, each with 200 trials for every subject. The

MI-EEG signals were collected by 62 Ag/AgCl electrodes with impedances of less than

10 kΩ. To better decode MI information, 20 electrodes in the motor cortex region were
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selected (C-z/1/2/3/4/5/6, CP-z/1/2/3/4/5/6, FC-1/2/3/4/5/6) according to previous studies

[93, 95, 130]. The sampling rate was 1,000 Hz and we downsampled to 250 Hz.

2) BCI Competition IV 2a (BCIC-IV-2a) Dataset: The BCIC-IV-2a consists of record-

ings from 9 healthy subjects performing 4 different motor imagery tasks: left-hand,

right-hand, both-foot, and tongue. The signals were acquired using 22 EEG electrodes

with a sampling frequency of 250 Hz and were bandpass filtered between 0.5 Hz and 100

Hz, as well as notch filtered at 50 Hz. Two sessions were recorded on different days for

each subject, with each session comprising 288 trials. The dataset only has 22 channels

so we feed all channel signals into the proposed model.

The most common frequency band used in the MI-EEG field is α rhythm [123] which

is about 10 Hz and β rhythm which is around 20 Hz [38]. The filter bands that include

useful spectral MI information vary from person to person [69]. Therefore, some studies

[93, 116, 130] divided the raw MI signals into several bands with a 4 Hz length ranging

from 4 to 40 Hz by spectral filters. Considering the extra calculations caused by multi-

inputs, we only feed three inputs including the raw signals and two filtered bands based

on α (7-12 Hz) and β (13-32 Hz) rhythms. Each trial has 4 seconds with 1000 samples in

total. We employed the Z-score normalization to handle the signals, as shown:

Z = x−µ
σ

(4.1)

where x was the raw data of each channel. µ was the mean value of x and σ represents

the standard deviation.

4.2.2 Scenarios Description

We design three scenarios of the within-subject analysis using data from the same subject

for training, validation, and testing (Fig 4.1). Different scenarios help verify the models’

adaptability and robustness for actual applications. The details of different scenarios are

described as follows:

1) Within-Session Scenario: This scenario only uses one session with 200 trials for

10-fold cross-validation (CV). Although the training data is limited, within-session
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(a)

(b)

(c)

(d)

Figure 4.1: Descriptions of different scenarios (KU dataset). (a) Within-Session Scenario.
(b) Cross-Session Scenario Case 1. (c) Cross-Session Scenario Case 2. (d) Two-Session

Scenario.

ensures the stability of the data distribution as far as possible.

2) Cross-Session Scenario: The first session is used for training and the second one

for testing. Two cases are presented in this scenario considering the different

applications in reality. The first namely the hold-out scenario uses the part of the

data in session two for validation and the rest for the test. The other case only

uses the whole data in session two for the test, ensuring no data participates in

validation at the modeling stage. In either case, the data from session two will

not be used in training. Due to the circumstance that two sessions were conducted
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on different days, the drift of statistical distributions brings the challenge for

classification.

3) Two-Session Scenario: Two sessions of one subject are grouped for a 10-fold CV to

show the performance of the models in big data.

In the BCIC-IV-2a dataset, each phase contains 144 trials because there are 288 trials

for each session while one phase in the KU dataset has only 100 trials.

4.2.3 The Proposed Model

4.2.3.1 Architecture

The proposed model has three branches which were fed from filtered data and concen-

trated by a fully connected layer for fusing features from multi-bands. Each branch has

the same structure consisting of the temporal block, spatial block, and transformer-based

densenet block (T-Densenet Block) (Fig 4.2).

4.2.3.2 Temporal block

Considering that the MI-EEG signals are time series, the previous studies [85, 93, 132]

preferred using a 1-D CNN filter to extract the temporal feature which is one of the most

distinguished MI information. CNN filter has a strong inductive bias of weight sharing

[142]. Such a characteristic reduces a huge amount of computation and makes a model

more parameter-efficient, but it ignores the dynamic relationship among the input data

in a kernel with the filter sliding because the weights learned by the CNN are fixed after

training.

Self-attention The self-attention mechanism focuses more on the correlation between

each value in the kernel and all other values. First, the transformer encoder divides the

input into three representations namely Queries (Q), Keys (K), and Values (V) by the

linear dense layers. Then the specific attention "Scaled Dot-Product Attention" (shown

in Fig 4.3(d))) computed the dot products of the queries with all keys. The results were
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Figure 4.2: The proposed model structure

divided by
√

dk and ended with a softmax function to obtain the weights on the values.

The formula is:

Attention (Q,K ,V )= sof tmax

 QKT√
dk

V (4.2)

where dk was the dimension of keys. To better jointly learn the information from different

representation subspaces at different positions [111], the scaled dot-product attention
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Figure 4.3: The proposed model structure. (a) Temporal Block; (b) Spatial Block; (c)
T-DenseNet Block; (d) Transformer Encoder; (e) T-Dense Unit.

was embedded in the structure of the "Multi-head Self Attention" (Fig 4.3(d)):

MultiHead (Q,K ,V )= Concat (head1, ...,headh)WO

headi = Attention (Q,K ,V ) (4.3)

where WO ∈ Rhdv×dmodel , hdv resprents the dimension of values and dmodel is the dimen-

sion of the outputs. We employ h = 2 parallel attention layers in the proposed model.

From equations (2) and (3), the calculation of the output is determined by a weighted

total of the values, and the weight for each value is determined by a function that

assesses the compatibility between the query and its corresponding key. Therefore, the

weights are dynamic rather than fixed like CNN filters.

Local transformer encoder In this work, to take full advantage of the characteristics

of the modes of CNN and transformer, we add the outputs from the local transformer

encoder and those from the CNN filter together as the final temporal features (Fig 4.3(a)).

Compared with the global transformer that obtains the attention score of a query based

on all keys (Fig 4.4(b)), the local transformer encoder reduces the number of keys to

ensure that the queries are multiplied by the limited keys every time (Fig 4.4(a)). Such
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(a) (b)

Figure 4.4: Attention patterns in the transformer. The blue squares represent
corresponding attention scores are calculated and the blank ones mean the attention

score is discarded. (a) Local pattern. (b) Global pattern.

a mode improves the temporal feature decoding by increasing the locality. Although

the local mode cannot learn the global features, it selects local subtle features that

otherwise are largely ignored in the global mode. It can further overcome the overfitting

and underfitting problems for long raw EEG signals.

Positional encoding Considering that the MI-EEG signals are the sequence that has

the order, the position information is injected by the sum of the Positional Encoding (PE)

value and the raw signals. According to the successful PE application in the MI-EEG

field [119], we used sine and cosine functions to represent the position as follows:

PE(pos,2i) = sin
(

pos
100002i/d

)
(4.4)

PE(pos,2i+1) = cos
(

pos
100002i/d

)
(4.5)
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where pos means the position and i is the dimension. d represents the dimension of the

inputs.

4.2.3.3 Spatial block

Previous research has already demonstrated the feasibility of using the brain hemi-

sphere to control both the left and right hands, but the degree of control for each hand

differs due to lateralization [143, 144]. Therefore, the spatial feature differences between

the two hemispheres may potentially be useful for motor imagery classification. After

concatenating the temporal features learned from the CNN and the local transformer

encoder, the depthwise CNNs are used to extract spatial information from the EEG

channels. The proposed model sends the input into three parallel paths (Fig 4.3(b)). The

first CNN filters extract the spatial features from all C channels in the motor region.

The rest two CNN filters extract features from C−1
2 channels in the left hemisphere and

the right hemisphere respectively. The extra channel Cz was deleted because it was set

in the central position. Then the difference was obtained by subtracting the features of

the two hemispheres. Finally, the spatial features based on the channels from the motor

region and the difference caused by hemispheres are fed into the next block.

4.2.3.4 T-Dense block

This block comprises one T-Dense Unit and a 1-D CNN filter, as shown in Fig 4.3(c).

The T-Dense Unit (Fig 4.3(e)) has two branches with the CNN filters and the global

transformers (Fig 4.4(b)) respectively. Both branches in the T-dense unit has the similar

structure and processing steps as shown in Fig 4.3(e). For instance, in the CNN filter

branch, the features of the first CNN filter are concatenated with the ones from the

second filter to feed into the third CNN filter. Each subsequent layer of CNN is not

only connected to the immediate preceding layer, but also to all other preceding layers,

enabling the establishment of shorter paths to help the flow and reuse of the information

[126]. Meanwhile, batch normalization and dropout techniques are applied to address

the overfitting issue. In the T-dense unit, the global mode is applied to the transformer

72



4.3. RESULTS

to retain its original advantages of extracting the global information using all neurons

based on the SA mechanism while CNN filters work differently, as they learn the global

information by sliding and pooling layers steps given the limited size of a filter. The

branches in the T-Dense Unit are combined to learn a comprehensive set of features that

otherwise can not be achieved using a single feature extraction mechanism. After the

T-Dense Unit, the 1-D CNN layer is used to reduce the dimension thus reducing the

calculation burden for the subsequent output neurons after three parallel branches.

4.2.3.5 Training Setup

The cross-entropy function is employed as a loss function which evaluates the distance

between the probability distribution of the model prediction values yp and the true labels

yt:

L
(
yp, yt

)=−∑
m

yp,m log yt,m. (4.6)

where m is the index of y. The optimizer is Adam [137] and the learning rate is set to

0.0001. The training takes 800 epochs with 32 batches per epoch. The early stopping

technology was used to save the best weights. The training step ended after checking if

the validation loss value decreased for the last 100 epochs. After reaching the threshold,

the model with the best weights produces the classification results of the test fold.

The computer used in this experiment had 15 Intel processors and 80 GB RAM. GTX

3090 GPU with 24 GB memory was used for training and testing MI-EEG signals. Keras

based on TensorFlow was used for constructing the proposed model.

4.3 Results

4.3.1 Performance Comparison

We evaluate the proposed model and other models in the different scenarios. The average

classification accuracies of all subjects of the KU dataset and BCIC-IV-2a with standard

deviation (SD) are shown in Table 4.1 and Table 4.2 respectively.
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In the KU dataset, our proposed model achieved the best performance in all scenarios,

especially on the cross-session and two-session ones. Constrained by the limited data

size of each subject, which only comprises 200 trials per session, achieving even slight

improvements can be a challenge. In the within-session scenario, the proposed model

achieved an accuracy of 75.94% and 77.38% in session 1 and session 2 respectively.

which are 0.99% and 1.46% higher than the best public model namely tensor-CSPNet.

When utilizing twice the amount of data in the two-session scenario, the proposed model

achieved a classification rate exceeding 80%, 7.46% higher than the Shallow ConvNet.

In two cases of cross-session scenarios, as Fig 4.1(b) and Fig 4.1(c) presented, both of

them used the data from session 2 as the test and did not allow them to present in the

training step. The difference was that case 1 used half of the data from session 2 to

validate while case 2 did not use it. Considering the drift of data distributions caused by

the different sessions conducted on different days, the results of cross-session are lower

than the ones of within-session. The performances of most compared methods decrease

including the proposed model. The existing high-performing models such as FBCNet

and Tensor-CSPNet exhibited reduced performance to less than 70% while the proposed

model only lost an average of 0.24% accuracy and still produced the best accuracy of

77.14% in case1. Given the BCI application that people often only used the data collected

in one day to build the model without training or updating the following day to save

patients’ time, case 2 is more suitable in practical applications. The proposed model

achieved 74.51%, a much higher accuracy than the benchmarks, which confirms the

superiority of our proposed model on adaptability and robustness. The statistical test

was also conducted to compare the performances of different models. We observed that

the proposed model outperformed most baseline models (p < 0.001), FBCNet(p < 0.05),

and Tensor-CSPNet (p < 0.05) in different scenarios.

In the BCIC-IV-2a dataset, FBCNet performed best in two within-session scenarios

while the proposed model showed an accuracy decrease of 3.07% and 0.33% respectively in

session 1 and session 2. However, in the two cross-session scenarios, our proposed model

improved significantly reaching 75.84% in case1, 1.24% higher than the Shallow ConvNet,
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and 75.08% in case2, 2.12% higher than the Tensor-CSPNet. The result in the two-

session scenario also reached 81.04% which improved the accuracy by 2% compared to

the Shallow ConvNet. The statistical test showed that the proposed model outperformed

all baseline models (p < 0.05) in both the cross-session and two-session scenarios.

We also checked the statistical significance of each scenario. The t-test result of within-

session 1 with within-session 2 was [correlation = 0.781, p < 0.001; t(53) =−1.062, p =
0.293] and [correlation = 0.88, p < 0.01; t(53) =−1.024, p = 0.336] in KU and BCIC-IV-2a

dataset separately, which shows that there is consistency between different sessions for

each subject, but the difference between two sessions is not statistically significant. In

the KU dataset, the t-tests of within-session1 with case 1 and case 2 in the cross-session

scenario were [t(53) =−0.838, p = 0.406] and [t(53) = 1.182, p = 0.242]. The t-tests in BCIC-

IV-2a were [t(53) =−0.627, p = 0.548] and [t(53) =−0.475, p = 0.648]. Both results of the

t-test did not have statistically significant differences. Hence, the data quality of an

individual varies on different days. Building a model for each day is time-consuming and

impractical, but employing a cross-session model may result in a decrease in classification

accuracy, making it a challenging task. The t-tests results of within-session 1 with

two-session and within-session 2 with two-session are [correlation = 0.882, p < 0.001;

t(53) = −4.514, p < 0.001] and [correlation = 0.901, p < 0.001; t(53) = −3.102, p < 0.01]

separately. Evidently, an increase in the volume of data contributes to the enhancement

of model performance even though the sessions were collected on different days.

In summary, for the KU dataset, the proposed model outperforms other models,

achieving up to 0.99% and 1.46% for the session 1 and 2 respectively in the within-

session scenario, up to 7.49% and 8.19% for cases 1 and 2 in the cross-session scenario

and up to 7.46% for the two-session scenario. When testing on the BCIC-IV-2a dataset,

the model can also improve the classification accuracy by 1.24% and 2.12% for cases 1

and 2 in the cross-session scenario and 2.21% for the two-session scenario, confirming

the superiority of the proposed model in decoding MI-EEG information.
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Table 4.1: Comparison of average classification accuracy (%) and standard deviation (SD)
for different methods (KU dataset).

Within-session Cross-session Two-session
Session1 (SD) Session2 (SD) Case1 (SD) Case2 (SD) Session 1&2 (SD)

CSP [138] 56.53(13.10) 58.38(14.63) 61.70(16.14) 60.43(13.98) 55.80(11.07)
FBCSP [70] 64.41(16.28) 66.47(16.53) 59.67(14.32) 61.57(14.73) 65.62(14.75)
MDM [145] 50.47(8.63) 51.93(9.79) 52.33(6.74) - -
TSM [145] 54.59(8.94) 54.97(9.93) 51.65(6.11) - -

SPDNet [146] 57.88(8.68) 58.88(8.68) 60.41(12.13) - -
Shallow ConvNet [85] 67.73(17.58) 68.47(17.65) 67.79(19.16) 66.32(16.18) 72.74(15.82)

Deep ConvNet [85] 56.19(13.71) 57.38(15.27) 56.59(15.29) 56.75(13.03) 62.91(17.64)
EEGNet [132] 63.37(17.06) 64.73(17.97) 65.26(19.31) 63.28(15.69) 69.73(17.05)
FBCNet [93] 74.16(12.60) 73.81(13.99) 67.83(14.34) - -

Tensor-CSPNet [95] 74.95(15.27) 75.92(13.99) 69.65(14.97) - -
Proposed model 75.94(14.71) 77.38(15.29) 77.14(14.76) 74.51(13.93) 80.20(13.01)

Table 4.2: Comparison of average classification accuracy (%) and standard deviation (SD)
for different methods (BCIC-IV-2a dataset).

Within-session Cross-session Two-session
Session1 (SD) Session2 (SD) Case1 (SD) Case2 (SD) Session 1&2 (SD)

CSP [138] 57.75(13.71) 60.60(14.29) 54.01(12.77) 54.07(12.13) 57.15(12.26)
FBCSP [70] 73.57(16.28) 72.46(16.53) 65.59(17.51) 65.79(14.21) 75.01(12.97)
MDM [145] 62.96(14.01) 59.49(16.63) - 50.74(13.80) -
TSM [145] 68.71(14.32) 63.32(12.68) - 49.72(12.39) -

SPDNet [146] 65.91(10.31) 61.16(10.50) - 55.67(9.54) -
Shallow ConvNet [85] 71.83(15.63) 72.64(19.62) 74.61(12.36) 68.96(14.28) 78.83(12.32)

EEGNet [132] 69.26(11.59) 66.93(11.31) 61.65(14.20) 60.31(10.52) 70.67(17.27)
FBCNet [93] 77.26(14.82) 76.58(13.09) - 72.71(14.67) -

Tensor-CSPNet [95] 75.98(14.26) 74.92(14.63) - 72.96(14.98) -
Proposed model 74.19(10.60) 76.25(12.67) 75.85(14.11) 75.08(12.66) 81.04(8.54)

4.3.2 Ablation Study

The purpose of an ablation study is to assess the impact of specific components on the

overall performance of a model by removing them and analyzing their contribution. We

conducted the ablation tests to evaluate the effectiveness of the transformer encoders, the

hemisphere difference in the spatial block, and the T-Dense units in different scenarios. 1)

The proposed model without transform encoders (w/o_Trans) removes both the local and

global transformer encoders; 2) The proposed model without the hemisphere difference

in the spatial block (w/o_Diff-hemi) removes the structures in Fig 4.3(b) which extract

the spatial features from each hemisphere and calculate the difference. The previous

models proposed in the literature were shown to achieve good classification results

in the KU EEG dataset such as EEGNet [132], Shallow ConvNet [85] and FBCNet
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Table 4.3: Ablation study of the proposed method on the different modules.

KU dataset
Within-session Cross-session Two-session

Session1(SD) Session2(SD) Case1(SD) Case2(SD) Session 1&2(SD)
w/o_trans 75.81(14.22) 68.01(13..31) 75.02(14.89) 66.42(11.01) 72.88(12.63)

w/o_diff-hemi 75.20(14.92) 75.98(15.59) 73.89(16.01) 73.20(13.98) 78.89(13.60)
w/o_T-dense 67.88(12.36) 68.53(13.12) 68.54(12.88) 66.74(11.39) 73.61(12.81)

Proposed model 75.94(14.71) 77.38(15.29) 77.14(14.76) 74.51(13.93) 80.20(13.01)
BCIC-IV-2a dataset

w/o_trans 74.64(11.21) 76.07(12.58) 73.14(13.64) 73.64(11.54) 84.01(8.60)
w/o_diff-hemi 72.56(11.09) 73.95(14.59) 70.67(15.15) 73.72(11.82) 78.91(10.08)
w/o_T-dense 63.31(8.43) 65.74(10.11) 68.82(13.73) 63.12(6.47) 77.21(8.66)

Proposed model 74.19(10.60) 76.25(12.67) 75.85(14.11) 75.08(12.66) 81.04(8.54)

[93] focus on the spatial features from all channels in the motor region and ignore the

available information that might be learned from the hemispheric differences. 3) The

proposed model without T-dense units (w/o_T-dense) replaces the two T-dense units

with common CNN layers. The results of the ablation study in different scenarios

are shown in Table 4.3. In the KU dataset, the T-test results indicated that there is

no statistical significance (p > 0.05) to show the w/o_trans brings a negative impact

on the classification accuracy in session 1 of the within-session scenario. Apart from

this, the absence of any specific components will make the accuracy drop(p < 0.05).

Especially for session 2 in the within-session scenario, without the transformer encoders,

the classification result decreased by 9.37%. In the BCIC-IV-2a dataset, although in

within-session1 and two-session scenarios, the model without transformer encoders

performed better, other cases still show the importance of the different modules. The

statistical analysis showed that w/o_trans decreased the classification accuracy in the

cross-session scenario (p < 0.05). The w/o_Diff-hemi had significance in within-session

and cross-session scenarios (p < 0.05) while the T-test result in the two-session scenario

was p = 0.127. The w/o_T-dense had statistical significance in all scenarios ((p < 0.01)).

The T-dense has significant contributions to the classification accuracy improvement, as

it produces a comprehensive set of temporal-spatial features. Without this module, using

a simple temporal block and spatial block is unable to capture sufficient and subtle useful

features embedded in the highly corrupted and diffused EEG raw data. We also tested

the selection of the activation functions on cross-session case 1 from the KU dataset (Fig
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Figure 4.5: The effect of activation functions of all subjects in KU dataset

4.5). The ELU function performed best with the highest accuracy.

4.3.3 Complexity

Table 4.4 shows the model complexity based on the number of trainable parameters. The

results show that there is no decisive relationship between the complexity of a model and

its performance. Deep ConvNet has the most parameters because of more CNN layers

used in the structure. However, regardless of the scenarios, the Deep ConvNet performs

badly even worse than the traditional approach FBCSP. Among these compared models,

the EEGNet only has no more than 2k trainable parameters because the depthwise

separable convolution layer is employed to reduce the dimensions. However, EEGNet

performs much better than the Deep ConNet in each scenario. The Tensor-CSPNet

divides the raw signals into several frequency bands to learn subtle features within

different frequency bands, thus encompassing the spectral differences among different

subjects. This approach adds additional computational parameters but the model perfor-

mance is the best as demonstrated in the previous studies. The proposed model includes

12K of trainable parameters that are only half of the Tensor-CSPNet but have better

classification results, which demonstrates its efficacy and effectiveness.
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Table 4.4: Model complexity based on the number of trainable parameters.

Models Parameters
Shallow ConvNet 42884
Deep ConvNet 282004
EEGNet 1876
Tensor-CSPNet 232360
Proposed Model 118337

Figure 4.6: The feature map obtained by the proposed model in 2-D embedding based on
t-SNE. Part (a) (e) is the distribution of the extracted features of the third subject from
the BCIC-IV-2a dataset. Parts (f) (j) show the distribution of extracted features of the

third subject from the KU dataset.

4.3.4 Feature Visualization

The t-distributed Stochastic Neighbor Embedding (t-SNE) approach was employed to

visualize the feature distribution after the last fully connected layer of the proposed

model. Fig 4.6 shows the comparison of the visualization based on the different scenarios.

We used the data from subject 3 in the two datasets respectively. Fig 4.6 (a) (e) belongs

to the BCIC-IV-2a while Fig 4.6 (f) (j) belongs to the KU dataset. Each color represents

one label of MI-EEG tasks. According to the t-SNE result, the proposed model showed

a great ability to classify EEG signals. In comparison to within-session, the feature

distribution in cross-session and two-session scenarios appears to be more dispersed.

However, there are still clear distinctions that can be observed, further showing the

superior performance of the proposed model.
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4.4 Discussions

In this chapter, we have proposed a local and global convolutional transformer-based

model for MI-EEG classification. The transformer encoder with the self-attention mecha-

nism is widely applied to the computer version and natural language processing. Com-

pared with the CNN limited by the size of its filter, the transformer can capture all

samples simultaneously, which is suitable for extracting global features. Meanwhile, the

calculation step of the self-attention mechanism focuses on finding the relationship of

different features while CNN extracts common mode from features. Once the CNN-based

model is trained, the weights in the filters are fixed. However, in a transformer encoder,

the weights depend on the inputs, so they are dynamically changed according to the

data. Previous studies have shown that the EEG, as an intricate time series, varies

from subject to subject which makes the transformer a suitable approach for processing

EEG signals. Due to the distinct characteristics of CNN and transformer, combining and

complementing each other makes for exploring more useful features of EEG signals and

ensuring the robustness of the model.

In the proposed model, we employed two strategies for the transformer, specifically

the local and the global modes. When extracting temporal features from raw EEG

signals, such a long time series will significantly increase the cost of model computation

and lead to severe overfitting problems. Using the local transformer encoder can limit

the size of the filter like the learning mode of a CNN layer. Although this will cause

the transformer to lose the chance of obtaining global features of long sequences at

once, it can still leverage the advantage of dynamically extracting learning feature

relationships, complementing the CNN. When the features are sent into the T-Dense

block, the transformer encoder employs the global mode because the time series has

been processed with the pooling layers. Meanwhile, the feed-forward fashion connecting

each layer to every other layer in the CNN and transformer branch encourages feature

reuse and information flow which improve the model performance. In the spatial block,

compared with previous models the proposed model used the depthwise CNN layer to

extract spatial features not only from all channels like ConvNet [85], EEGNet [132] and
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FBCNet [93] which performed well in the KU and BCIC-IV-2a dataset but also from the

difference of two hemispheres. The result of the ablation study has shown the efficiency

of this module. After extracting features from the hemisphere differences, the proposed

model got higher classification results in all scenarios, especially in the cross-session

cases.

To better validate the superiority of the proposed model, we designed three scenarios

including within-session, cross-session, and two-session in two famous public datasets.

From Table 4.1 and Table 4.2, the results show that our proposed model achieved the

highest classification result in the different scenarios. Compared with the other two

scenarios, the cross-session scenario is closer to the real application which limits the

model performance because of the number of data and the drift of statistical distribu-

tions. However, our proposed model still performed well and was less than only 3%

than within-session results which further shows the good robustness and adaptability.

Previous models based on the transformer for MI classification use the CNN layers

[116, 117, 119] to extract temporal features while the transformer is used to refine

features. While the proposed model adopted the local mode of the transformer to comple-

ment the functionality of CNN in time-series data analysis, rather than simply placing

the transformer behind the CNN layer. Meanwhile, during the feature refinement stage,

the proposed model not only employed the attention mechanism in the transformer but

also combined with the DenseNet to improve the flow and reuse of information. Further,

the spatial features learned from the differences in the hemispheres were also taken into

consideration.

4.5 Conclusions

In this chapter, a novel and effective approach for MI-EEG classification using a local and

global convolutional transformer-based model has been developed. The proposed model

has been validated on the three scenarios and two public datasets. The combination of

CNN filters and transformer encoders with local and global structures has the advantage
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of extracting a comprehensive set of useful features from EEG signals. In the spatial

module, we also consider the possible information from the differences between the

hemispheres which helps improve the robustness of the model. Our results showed that

the proposed model outperformed the state-of-the-art methods for MI-EEG classification

on the KU dataset, achieving up to 0.99% and 1.46% for the session 1 and 2 respectively

in the within-session scenario, up to 7.49% and 8.19% for the case 1 and 2 respectively in

the cross-session scenario and up to 7.46% for the two-session scenario. For the BCIC-IV-

2a dataset, the model can also improve the classification accuracy by 1.24% and 2.12%

for cases 1 and 2 in the cross-session scenario and 2.21% for the two-session scenario.

Chapters 3 and 4 have explored the superior ability of deep learning in MI-EEG

decoding. However, deep learning models require a large amount of data for training,

which limits the practicality of BCI and cannot meet the demand for plug-and-play.

Therefore, the next Chapter will discuss how to improve the generalization performance

of models, so that the models can achieve excellent classification performance without

the need of training on new data.
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CROSS-SUBJECT MI-EEG DECODING WITH DOMAIN

GENERALIZATION

Decoding motor imagery (MI) electroencephalogram (EEG) signals in brain-computer

interface (BCI) can assist patients in accelerating motor function recovery. To realize

the implementation of plug-and-play functionality for MI-BCI applications, cross-subject

models are employed to alleviate the time-consuming calibration and avoid additional

model training for target subjects by utilizing the EEG data from source subjects. How-

ever, the diversity in data distribution among subjects limits the model robustness. In

this study, we investigate a cross-subject MI-EEG decoding model with domain gener-

alization based on a deep learning neural network that extracts the domain-invariant

features from source subjects. Firstly, the knowledge distillation framework is adopted

to obtain the internally invariant representations based on spectral features fusion.

Then the correlation alignment approach aligns the mutually invariant representations

between each pair of sub-source domains. In addition, we use distance regularization

on two kinds of invariant features to enhance generalizable information. To assess the

effectiveness of our approach, experiments are conducted on the BCI Competition IV 2a

and the Korean University dataset. The results demonstrate that the proposed model
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achieves 8.93% and 7.18% accuracy improvements on two datasets respectively compared

with current state-of-the-art models. The results confirmed that the proposed approach

can effectively extract invariant features from source subjects and generalize to the

unseen target distribution, hence paving the way for effective implementation of the

plug-and-play functionality in MI-BCI applications.

5.1 Introduction

DL-based models have shown excellent performance on MI-EEG decoding. However, DL

applications are usually limited by the long training time, high resource consumption,

and a heavy reliance on the number of labeled data [96]. In practical BCI applications, it

is a challenge to collect sufficient data with good quality to build individualized models for

each person. Meanwhile, achieving the goal of immediate usability with DL approaches

is hard for patients because the models require a significant amount of time for training

to achieve a high classification accuracy. Therefore, there is a strong desire to recognize

patients’ MI intentions without additional experimental data collection and modeling.

Domain generalization (DG) approaches only consider the data from the source

domains and develop models that can generalize to unfamiliar distributions. Given the

limited real training data, a simple way to enhance the generalization capability is to

create more manual data. For instance, Tobin et al [147] added domain randomization for

generalization in the real environment by changing the number, shape, texture and other

characteristics of the objects. Zhang et al [148] proposed a data generation-based DG

method namely Mixup to generate new training samples by linearly blending the features

and labels of different data. Another group of methods is representation learning which

adopts kernels, adversarial training or feature alignments to learn domain invariant

representations [149]. Grubinger et al [150] employed transfer component analysis

(TCA) [151] to learn a common subspace by reducing the disparities among domains.

The approaches like domain-invariant component analysis (DICA) [152] and scatter

component analysis (SCA) [153] are also classical kernel-based methods similar to the
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idea of TCA. Li et al [154] extract the domain-invariant features through adversarial

losses that consider the source-domain label information. In the BCI field, conventional

data augmentation-based DG techniques including sliding windows [85], adding noise,

over-sampling [155] and geometric transformation [156] have shown improvement in

the classification accuracy. However, the inter and intra-subject variability constrain the

models’ generalization capacity so that previous studies primarily focused on constructing

within-subject models and not fully harnessing cross-subject data within the source

domain [157]. Therefore, DG-based models remain largely unexplored and have not

yet reached the capability to provide a calibration-free BCI solution for real-world

applications. Wang et al [158] utilized knowledge distillation to extract the invariant

features from pictures in the computer vision field. Inspired by its framework, we apply

knowledge distillation in our work to extract the cross-domain representations in MI-

EEG signals.

In this chapter, we propose a cross-subject model with a DG approach. The dataset is

divided into a source domain consisting of several subdomains and a target domain. The

data in the target domain with the unseen distributions will not be involved in the model’s

training and validation. The proposed model improves the domain generalization ability

by extracting the internally and mutually invariant features among different subjects. A

knowledge distillation framework is employed to capture the spectral information of EEG

signals as the internally invariant representations. For mutually invariant features, the

correlation alignment (CORAL) [159] method is used to align the feature distributions

between any two subdomains from the source data. To reduce the possible redundancy

between the internal and mutual features, the proposed model utilizes a regularization

technique to enhance their dissimilarity. In the model training phase, the early stopping

(ES) technology and the two-stage training strategy are used to prevent model overfitting

and fully utilize all source domain data. We conduct comprehensive experiments on two

MI-EEG datasets to prove the excellent generalization capability of the proposed model.

The remainder of the chapter is outlined as follows. The data description, preprocess-

ing steps and detailed model structure are presented in Section 5.2. The experiments
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and results are detailed in Section 5.3. Then, the discussion is presented in Section 5.4.

Finally, Section 5.5 concludes the chapter.

5.2 Methods

5.2.1 Definitions

In the domain generalization, X denotes an input space of EEG signals and Y is an

output space. The domain is defined as S = {(xi, yi)}n
i=1 ∼ PXY , where PXY denotes the

joint distribution and x ∈ X , y ∈Y . The source domain with labeled data is divided into

multiple training subdomains, namely Strain = {
S i |i = 1, ..., N

}
, where N is the number of

subdomains and the S i =
{(

xi
j, yi

j

)ni

j=1

}
represents the ith subdomain. In the real scenario

of MI-EEG classification, the internal and external diversities among subjects make the

joint distributions between each pair of sub-source domains different: P i
XY ̸= P j

XY ,1⩽

i ̸= j ⩽ M. According to [149], the domain generalization aims to acquire a resilient and

broadly applicable predictive function f : X −→Y from the N subdomains to minimize

errors when applied to an unseen test domain Stest(i.e.,P test
XY ̸= P i

XY f or i ∈ {1, ..., N}) :

min
f

E(x,y)∈Stest [loss ( f (x) , y)] (5.1)

where E is the expectation and loss is the loss function. Differing from domain adaptation

methods, data from Stest will not be involved in the training and validation processes.

5.2.2 Framework

The EEG dataset consists of the source domain and the target domain. The source

domain is divided into multiple subdomains sent into the proposed model as shown in

Fig 5.1. Then the internally and mutually invariant representations are captured through

a feature extractor. To differentiate these two kinds of information, a regularization

technique is adopted by maximizing the divergence. In the end, the invariant features

are concatenated together for classification.
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Figure 5.1: The framework of the proposed model.

5.2.3 Internally-invariant Features

Previous studies[123][38] have revealed that the most frequently utilized frequency

bands in MI-EEG research are the α rhythm, typically around 10 Hz, and the β rhythm,

typically around 20 Hz. In the study [124][125], the θ rhythm with a range of 4 to 7 Hz

was incorporated and demonstrated its utility in decoding MI-EEG signals. Although the

appropriate operational frequency bands vary from person to person [69], the informa-

tion utilized for conducting the imagination classification task is primarily concentrated

within these sub-bands. Hence, the spectral features based on multi-band EEG signals

are employed as the internally-invariant representations in the source domain. Knowl-

edge distillation is a straightforward framework for promoting specific characteristics

within different networks [158]. The distillation framework consists of the teacher and

the student network (Fig 5.2). The teacher network fuses the spectral information for MI

classification and guides the student network to learn the invariant information. The

structure of the teacher network, composed of three components is shown in Fig 5.3.

5.2.3.1 Spectral feature fusion

We select three sub-bands, which are θ (4-7 Hz), α (7-13 Hz), β (13-32 Hz) and the overall

band as the inputs sent into the teacher model. The study [160] proved the robustness

of spectral representation for MI tasks can be enhanced by adopting cross-frequency
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Figure 5.2: The framework of distillation to learn internally-invariant features.

Figure 5.3: The model structure of the teacher network.

interactions. Therefore we concatenated the filtered data in the feature dimension to

associate multiple frequency neural oscillations. The i th single-trial EEG sample is

defined as X i ∈ RC×T , where C represents channels and T represents timepoints. The

fused multi-band EEG data XMB:

XMB = X ×h (n) ∈ RNb×C×T (5.2)

where h (n) denotes the 3-order Butterworth filter corresponding to the nth frequency

sub-band and Nb is the number of sub-band. The pointwise CNN, subsequently utilized,

performs convolution on each time point and channel of the EEG data. The output

dimension is set to one so that the complementary information available in each fre-

quency band is fused. Additionally, it assigns an adaptive weight to each frequency band,

reducing noise in redundant frequency bands while enhancing valuable information in

other frequency bands.
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5.2.3.2 Feature extractor

Following the fusion of spectral features, we utilize two convolution layers to learn

discriminative temporal-spatial information [85, 93, 132]. The first CNN layer using a

1×kt kernel is employed for the EEG channel to extract temporal features. The value

of kt is equal to a fourth of the data sampling rate, enabling the capture of frequency

information at 4Hz and beyond [132]. Then, we use a ks ×1 depthwise CNN to extract

spatial features across all selected EEG channels. The kernel size ks is configured to

match the number of channels, allowing the compression of data collected at each time

step into a single feature map. This strategy leads to a decrease in model parameters

and enhances efficiency.

To further extract useful information from the temporal-spatial features, two dense

units consisting of several CNN and pooling layers are applied subsequently (Fig 5.3).

Suppose that the network comprises a total of L layers, with each layer utilizing a

non-linear function Fl(·), where l represents the layer index, and the output of each

layer is denoted as xl . A common transformation involving a single path between each

operation layer is:

xl = Fl(xl−1) (5.3)

As the network becomes deeper and wider, parts of useful features are filtered. Addi-

tionally, an abundance of training parameters can result in significant overfitting issues,

particularly when dealing with MI-EEG signals that contain a considerable amount of

noise and redundant information. To tackle this issue, we establish short connections

from any given layer to all subsequent ones. For instance, the lth layer obtains the

feature maps from all preceding layers:

xl = Fl([x0, x1, ..., xl−1]) (5.4)

where [x0, x1, ..., xl−1] are the feature maps from the preceding CNN layers [l0, l1, ..., l−1].

In the case where a CNN layer updates k feature matrices, the l-th layer encompasses a

total of k0+k× (l−1) inputs. k0 represents the raw dimension in the input layer, while k

signifies the growth rate, indicating the extent to which further knowledge is acquired
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and transmitted to the subsequent layer. As a result, the connections from preceding

layers substantially increase to L(L+1)
2 , in contrast to the traditional transition with only

L connections in a network comprising L layers. Every layer obtains access to all the

feature maps from preceding layers, facilitating improved information propagation and

utilization of features. The ELU function is adopted as activation to reduce gradient

explosion and increase model robustness. The following Batch normalization and dropout

techniques help to reduce overfitting risks.

5.2.3.3 Classifier

The classifier includes a 1-D CNN, a fully connected layer and a dense layer with the

softmax function for classifying MI tasks. The fused multi-band EEG signals x̃ ∈ XMB

and the corresponding label y are sent to the teacher network for training:

min
θ

f
T ,θc

T

E(x̃,y)∼P trLcls

(
Gc

T

(
G f

T (x̃)
)
, y

)
(5.5)

where θ f
T and θc

T are the parameters of feature extractor G f
T and the classifier Gc

T in

the teacher network. E is the expectation while P tr represents the data distribution in

the source domain. The loss function Lcls is the cross-entropy loss, which quantifies the

difference between the probability distribution of the model predictions represented as

yp and the real labels denoted as yt:

Lcls
(
yp, yt

)=−∑
m

yp,m log yt,m. (5.6)

where m is the index of y. After training and optimizing the teacher network, we use the

obtained features from the teacher network to guide the student network to learn the

spectral invariant representations:

min
θ

f
S ,θc

S

E(x̃,y)∼P trLcls

(
Gc

S

(
G f

S (x)
)
, y

)

+λ1Lmse

(
G f

S (x) ,G f
T (x̃)

) (5.7)

where θ f
S and θc

S are the parameters of feature extractor G f
S and the classifier Gc

S in the

student network. λ1 is an adjustable hyperparameter to limit the Mean Squared Error
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Table 5.1: The detailed architecture of the teacher network.
Block Layer # filters size Output Activation Options

Spectral features fusion Input (1, C, T)
Concatenate (filtered) (N, C, T)

Pointwise Conv2D 1 (1, 1) (1, C, T) Linear
Feature extractor Conv2D F1 (1, C1) (F1, C, T) Linear padding = same

Batch Normalization
Depthwise Conv2D D * F1 (C, 1) (F1, 1, T) ELU padding = same, depth = D

Batch Normalization
(Dense Unit 1) Conv2D F2 (1, C2) (F1 + F2, 1, T) ELU padding = same

Batch Normalization
Dropout p = 0.5
Conv2D F2 (1, C2) (F1 + 2 * F2 , 1, T) ELU padding = same

Batch Normalization
Dropout p = 0.5
Conv2D F2 (1, C2) (F1 + 3 * F2, 1, T) ELU padding = same

Batch Normalization
Dropout p = 0.5

Average Pooling (1, 5) (F1 + 3 * F2, 1, T // 5)
(Dense Unit 2) F2 (1, C3) (F1 + 6 * F2, 1, T // 25)

Classifier Conv 1D F3 (1, 1) (F3, 1, T // 25) ELU
Flatten
Dense N*(F3 * T // 25) N Softmax max norm = 0.25

(MSE) Lmse which brings the features of the student network into proximity with those

of the teacher network:

Lmse = 1
n

n∑
i=1

( ŷi − yi)2 (5.8)

where n is the index of y. Full details of the network structure are presented in Table 5.1.

The parameters used in the Dense unit 1 are the same with the unit 2, hence specific

details are not displayed. The difference between the student and teacher networks lies

in the absence of spectral features fusion in the student network. Additionally, in the

classifier block, the parameter F3 is twice the size of the one in the teacher network, in

order to encompass two types of invariant features simultaneously.

5.2.4 Mutually-invariant Features

The student network learns the invariant spectral features from the teacher network

by the knowledge distillation framework to classify MI tasks. However, it disregards

the discrepancies in data distribution among subdomains, which means that internally

invariant features alone are insufficient to guarantee excellent generalization capability.

To learn the invariant representations from the source domain, the correlation alignment

approach is employed to align the second-order statistics of the features from any two
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domains:

Lalign = 2
N × (N −1)

N∑
i ̸= j

∥∥Ci −C j
∥∥2

F (5.9)

Ci = 1
ni −1

(
X i

T X i − 1
ni

(
1T X i

)T (
1T X i

))
(5.10)

where Ci represents the covariance matrix. The internally-invariant features primarily

highlight spectral information for MI task classification, while the mutually-invariant

features center on cross-domain representations. To better represent these two kinds of

features, the outputs of the 1-D CNN layer in the student network are divided into the

internally-invariant features z1 and mutually-invariant features z2. Before feeding to

the final classification layer, we expect to reduce the redundant information and make it

more diversified between z1 and z2. Thus, we use the regularization tool to maximize

their divergence:

Ldiv (z1, z2)=−d (z1, z2) (5.11)

where d (.) denotes the L2 distance: Ldiv = −∥∥ z1 − z2∥2
2 . In summary, the aim of the

student network is established as:

min
θ

f
S ,θc

S

E(x̃,y)∼P trLcls

(
Gc

S

(
G f

S (x)
)
, y

)

+λ1Lmse

(
z1,G f

T (x̃)
)

+λ2Lalign +λ3Ldiv (z1, z2)

(5.12)

where λ1, λ2 and λ3 are hyperparameters to limit the contribution of each loss function,

which were manually tuned and finalized based on a series of experiments.

5.3 Results

5.3.1 Datasets

5.3.1.1 Dataset I

The BCI Competition IV 2a (BCIC-IV-2a) dataset, as described in [131], consists of 9

healthy subjects with 4 distinct MI tasks: left-hand, right-hand, both-foot, and tongue
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Figure 5.4: The experimental settings of the "leaving one subject out" strategy.

movements. The EEG data was captured using 22 EEG electrodes at a sampling rate

of 250 Hz. Then signals underwent bandpass filtering within the range of 0.5 Hz to

100 Hz, along with notch filtering at 50 Hz. Each subject participated in two separate

recording sessions on different days, and each session consisted of 288 trials. All sessions

are categorized within either the source domain or the target domain.

5.3.1.2 Dataset II

The Korean University (KU) dataset [94] is one of the largest MI datasets, comprising

EEG signals from fifty-four healthy subjects. Every subject engaged in 200 trials, with

100 trials dedicated to the left-hand MI task and another 100 to the right-hand MI task.

EEG signals were captured from 62 EEG electrodes and initially sampled at a rate of

1,000 Hz. To facilitate equitable comparisons with other techniques, we resampled the

raw signals to 250 Hz. Subsequently, 20 channels are chosen from the region associated

with motor function based on the previous study [93].

5.3.2 Training Procedure

The "leaving one subject out" (LOSO) strategy (Fig 5.4) is used in our experiment. One

subject is selected as the test set in the target domain. The remaining subjects are sent
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into the source domain. The subjects in the source domain are divided into k groups,

with each group serving as a sub-source domain. To take full advantage of all the data in

the source domain, we employ a two-stage training strategy according to [93] and the

early-stopping (ES) technique. First, all data will be divided into two parts, with 80%

designated for training and 20% for validation. The 5-fold cross-validation is employed in

the first training stage. The ES technique regards the validation loss as the criterion and

monitors every epoch. Training is terminated when the loss of the validation set does

not decrease within a specified number of ES epochs or the number of training epochs

exceeds the predefined threshold value. Once the model with the highest validation

accuracy is built, the corresponding validation loss is also recorded. Then, to involve

all the source domain data in the training process, the model built in the first stage is

trained again using both the training and validation set. The validation loss is monitored

by the ES. If it falls below the previously recorded loss in stage one, the training will stop.

In order to ensure the model’s convergence, a maximum limit of 1000 training epochs

is imposed for stage one, and 400 for stage two. The Adam optimizer is adopted. In the

first stage, the learning rate is configured as 0.001. In the second stage, if the number of

epochs is less than 150, the learning rate remains at 0.001. However, if the number of

epochs exceeds 150, the learning rate is adapted to 1×10−4.

The computer system utilized in this experiment was equipped with 22 AMD proces-

sors and 90 GB of RAM. For training and testing EEG data, a GTX 4090 GPU with 24

GB of memory was employed. The proposed model and baseline models were constructed

using PyTorch based on Python 3.8.

5.3.3 Baseline Models

The proposed model is compared with the following benchmarks: traditional machine

learning approaches (CSP [138] and FBCSP [70]), the CNNs-based approaches (Shallow

ConvNet [132], EEGNet [132] and FBCNet [93])
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Table 5.2: Comparison of average classification accuracy (%) and standard deviation
(Std) on BCIC-IV-2a dataset.

Subject CSP FBCSP Shallow ConvNet EEGNet FBCNet Proposed Model
1 32.36 42.5 70.78 54.83 49.55 74.65
2 25.8 26.27 37.73 30.94 31.02 44.96
3 35.82 51.49 64.65 60.38 58.68 64.06
4 33.23 31.88 47.97 38.87 41.41 51.73
5 24.91 26.51 29.25 28.8 28.3 52.95
6 26.15 27.01 33.82 26.64 32.17 44.44
7 28.96 23.65 44.58 32.03 28.58 69.27
8 49.53 51.37 70.78 63.29 51.25 74.3
9 32.03 38.35 60.68 54.96 50.49 64.23

Avg 32.09∗∗ 35.45∗∗ 51.14∗ 43.42∗∗ 41.27∗∗ 60.07
Std 7.55 10.93 16.04 14.78 11.58 11.86

The ∗ and ∗∗ denote the statistically significance between the classification results of the proposed
model and the baseline models with ∗ : p < 0.05 and ∗∗ : p < 0.01

Table 5.3: Comparison of average classification accuracy (%) and standard deviation
(Std) on KU dataset.

CSP FBCSP Shallow
ConvNet EEGNet FBCNet Proposed Model

Avg 56.08∗∗ 65.19∗∗ 74.62∗∗ 72.23∗∗ 71.54∗∗ 81.80
Std 6.82 13.04 12.15 13.93 14.07 10.70

The ∗ and ∗∗ denote the statistical significance between the classification results of the proposed
model and the baseline models with ∗ : p < 0.05 and ∗∗ : p < 0.01

5.3.3.1 Machine learning approaches

CSP and FBCSP are the most commonly used benchmark models in the traditional

machine learning domain. CSP determines the optimal spatial filters by diagonalizing

a matrix for data mapping. Building upon the effective extraction of spatial features,

FBCSP can mitigate the influence of subject-specific variations in frequency bands

by identifying discriminative pairs of them. As described in [70], EEG signals are

decomposed into nine frequency bands, each spanning a 4 Hz range from 4 to 40 Hz,

utilizing Chebyshev filters in the FBCSP model. For classification, the support vector

machine (SVM) with the default radial bias function (RBF) kernel is employed.
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5.3.3.2 CNNs-based approaches

Shallow ConvNet first used the CNN layers to extract the temporal-spatial features

from the EEG signals. The log, square and pooling operations are adopted to deal with

features. Based on this shallow structure, EEGNet utilizes a separable CNN layer to

refine temporal-spatial features, making it suitable for classification tasks across various

EEG data while ensuring the quality of the classification. FBCNet referred to the core

idea of the FBCSP, dividing the EEG signals into nine sub-frequency bands ranging from

4 to 40 Hz. Each subband is fed into the model to capture spatial features. A variance

layer is employed with a fully connected layer following to unite features. All three

models exhibit excellent performance and robustness on within-subject and cross-subject

scenarios of primary MI-EEG datasets.

5.3.4 Experimental Results

The averaged classification accuracy of different methods is shown in Table 5.2 and Table

5.3. The statistical significance tests between benchmarks and the proposed method

were conducted. For BCIC-IV-2a dataset, the results obtained by various methods are

as follows: 35.09% (p < 0.01) for CSP, 35.45% (p < 0.01) for FBCSP, 51.14% (p < 0.05)

for Shallow ConvNet, 43.42% (p < 0.01) for EEGNet, 41.27% (p < 0.01) for FBCNet, and

60.07% for our proposed model. The proposed method surpasses the best benchmark

result by 8.93%. In the KU dataset, the results achieved by different methods are as

follows: 56.08% (p < 0.01) for CSP, 65.19% (p < 0.01) for FBCSP, 74.62% (p < 0.01) for

Shallow ConvNet, 72.23% (p < 0.01) for EEGNet, 71.54% (p < 0.01) for FBCNet, and

81.80% (p < 0.01) for our proposed model. The proposed method outperforms the best

benchmark result by 7.18%. The results tested on two datasets demonstrate our proposed

model effectively decodes EEG signals and extracts useful cross-domain information

from source data. The trained model successfully achieved excellent classification results

in the unseen target domain.
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Table 5.4: Ablation study of the proposed model. Comparison of average classification
accuracy (%) and standard deviation (SD) of BCIC-IV-2a and KU dataset.

BCIC-IV-2a (SD) KU (SD)
w./o Inter 54.61 (10.31) 81.00 (11.12)

w./o Mutual 57.50 (12.28) 80.52 (11.09)
w./o Div 56.19 (12.61) 75.85 (9.34)

w./o General 55.12 (12.00) 79.32 (10.56)
Proposed model 60.07 (11.86) 81.80 (10.70)

5.3.5 Ablation Study

The proposed model used the knowledge distillation framework and feature alignment

method to capture the internally and mutually variant representations. A regularization

technique was adopted to separate two kinds of features. To validate the contributions of

each component, the ablation experiment was conducted by controlling the losses Lmse,

Lalign, and Ldiv in equation (12). The classification results based on the proposed model

without internally-invariant features (w./o Inter), without mutually-invariant features

(w./o Mutual), without the divergence maximum between two invariant features (w./o

Div) and without the whole generalization improvement part (w./o General) are shown

in Table 5.4. Any missing component will indeed lead to a decrease in the accuracy of the

proposed model. Among them, the performance of w./o Div drops more significantly than

other cases in both datasets, indicating the necessity to maximize the divergence of two

invariant features.

5.3.6 Parameter Sensitivity

The number of subdomains is an alterable hyperparameter. We randomly divided all

subjects from the source domain into several groups, ensuring that the number of subjects

within each group was similar. Each group serves as a separate subdomain. The BCIC-

IV-2a only has 9 subjects hence we divided the source domain including 8 subjects into 8

subdomains. The source domain of the KU dataset has 53 subjects so we split them into

k groups and tested the influence of the number of the subdomains. As shown in Fig 5.5,

the averaged accuracies of the proposed model remain stable with different numbers of
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Figure 5.5: Parameter sensitivity of the number of subdomains (KU dataset).

subdomains. We chose k = 20 in the KU dataset to get the best performance.

5.3.7 Visualization

To better show the classification performance of the proposed model, we utilized the

t-distributed Stochastic Neighbor Embedding (t-SNE) tool to visualize the feature dis-

tribution of different parts in the student network of the proposed model. We used the

data from subject 8 in the BCIC-IV-2a as the target subject while the other 8 subjects

were the source subjects. Fig 5.6 demonstrates the excellent generalization capability

in decoding cross-subject MI-EEG signals, without requiring access to unseen target

data during the training process. Because the proposed model utilized the feature align-

ment method to acquire cross-domain knowledge, we also assessed the model’s feature

aggregation performance in Fig 5.7. The t-SNE visualization in Fig 5.7(a) shows that

different subdomains have different data distributions. Fig 5.7(b) is obtained before the

fully connected layer in the classifier part of the student network, clearly demonstrating

that the proposed model captures the invariant features of cross-domains and reduces
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the differences between cross-subjects. Black dashed lines divided the feature maps

into four parts corresponding to four MI tasks in the BCIC-IV-2a dataset. In each part,

features from different subdomains of the same label are effectively aggregated together

which further shows the superior classification and generalization ability of the proposed

model.

5.4 Discussions

In this work, we have proposed a cross-subject model with domain generalization for

MI-EEG classification. To get excellent decoding performance for each subject, the within-

subject model is built with adequate samples from the same subject. However, the high

time-consuming calibration and data collection in the within-subject model training pro-

cedure limits the implementation of plug-and-play functionality for MI-BCI applications.

Therefore, it is necessary to construct a cross-subject model using previously collected

data namely source domain data for classifying the target subject MI tasks without

the need to collect target data. However, the variability in data distributions among

different subjects within the source domain can lead to a decrease in the classification

accuracy of cross-subject models. Previous studies [161–163] adopted the approach of

collecting a small portion of data exclusively from the target subjects and using adaptive

methods based on models trained on the source domain to improve the performance

of cross-subject models. However, this DA-based approach still necessitates conducting

additional experiments to acquire electroencephalogram (EEG) data from the target

subjects, essentially leading to the creation of a new model for each new subject. DG-

based approaches train a generalized model through training on multiple datasets in the

source domain, enabling it to exhibit strong performance on an unseen domain.

In the proposed model, we employed a domain-invariant feature learning strategy to

learn representations that maintain invariance across domains. The invariant features

consist of two sides namely internally and mutually sides. The internally invariant

features allow the model to focus on the spectral features corresponding to the MI tasks.
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Figure 5.6: The feature maps obtained by t-SNE. Different colors denote different MI
classification tasks. Part (a) - (c) is the data distribution of the different parts in the

student network of the proposed model. Source domain I includes 8 subdomains namely
subjects 1 - 7 and 9 while the target domain comes from the 7th subject from the

BCIC-IV-2a dataset.
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(a)

(b)

Figure 5.7: The feature maps obtained by t-SNE. Different colors denote 8 different
subdomains namely subjects 1 - 7 and 9 which are included in the source domain (a) The
data distribution of the raw EEG signals. (b) The feature maps were extracted before the

fully connected layer in the proposed model.
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We utilized a knowledge distillation framework and trained the teacher and student

networks, respectively. The teacher network comprises the spectral features fusion

block, feature extractor, and classifier, whereas the student network consists solely of

the feature extractor and the classifier. We used the pointwise convolution to adopt

cross-frequency interactions corresponding to the MI information, which proves useful

for enhancing the robustness of spectral representation. Then in the feature extractor,

temporal-spatial convolution is employed to capture the discriminative features in MI

EEG. The inclusion of two dense units, creating short connections within the CNN

layers, facilitated feature refinement and the extraction of more abstract characteristics.

To transfer the internally invariant spectral features from the teacher network to the

student network, we employed MSE loss to encourage the student network’s features

to closely align with those of the teacher network. For mutually invariant features that

are exploited from different subdomains, we used the correlation alignment method

to align the data distribution and learn the cross-domain transferable knowledge. To

eliminate the redundancy and the repeated information among two kinds of features,

we use distance regularization to maximize their differences. To better validate the

superiority of the proposed model, we conducted the experiments on two public datasets.

Based on the data presented in Table 5.2 and Table 5.3, it is evident that our proposed

model outperformed the state-of-the-art methods, attaining the highest classification

performance. The ablation study in Table 5.4 also demonstrates the usage of two kinds

of invariant features and the effect of distance regularization. The visualization results

based on t-SNE in Fig 5.6 present the MI-EEG decoding performance of the proposed

model. The feature maps obtained in the classifier based on source subjects exhibit very

distinct clusters, effectively showing the feature distribution of different labels. Even

though the target subject is the unseen domain, the proposed model can effectively

classify MI tasks by utilizing acquired generalized information and applying it in a

plug-and-play BCI system.
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5.5 Conclusions

In this Chapter, the domain generalization technology is applied on the cross-subject MI-

EEG decoding model to realize the plug-and-play functionality in BCI applications. The

proposed model learns the internally and mutually invariant features from the source

domain with no involvement in the target data. For internally invariant features, a

knowledge distillation framework is used to fuse the spectral information corresponding

to MI tasks and guide the proposed model to capture the invariant representations.

For mutually invariant features, the correlation alignment is employed to extract the

cross-domain representations. A distance regularization is also adopted to maximize two

kinds of invariant features to enhance generalized expression. The proposed method

outperforms benchmark models in cross-subject MI-EEG decoding, as evidenced by the

classification accuracy and the feature distributions. The results proved that the proposed

model achieves an accuracy improvement of 8.93% and 7.18% on the BCIC-IV-2a dataset

and KU dataset respectively compared with other advanced deep learning methods.

The proposed model is validated in the same dataset. However, real MI-BCI appli-

cations usually have different types of EEG-collected devices which may lead to a huge

disparity among data distributions. Meanwhile, the different number of electrodes brings

the challenge for transfer learning and limits the usage of DG models. To address this

issue, Chapter 6 will introduce a new structure based on the GCN.
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CROSS-DATASET MI DECODING - A TRANSFER

LEARNING ASSISTED GRAPH CONVOLUTIONAL

NETWORK APPROACH

The proliferation of portable EEG recording devices has made it practically feasible to

develop MI-BCI. However, the low signal-to-noise ratio of EEG signals for abstract MI

tasks, limited data, limited EEG channels, and strong inter- and intra-subject variability

pose significant challenges for MI-task recognition. This chapter proposes a transfer

learning assisted graph convolutional network (GCN) modeling approach for cross-

dataset MI decoding, one of the most challenging issues in this field. In the experiments,

a multi-channel dataset with 62 electrodes and a few-channel dataset with 8 electrodes

are utilized for cross-dataset modeling. To harness multi-channel information, we utilize

the GCN module to aggregate topological features. The pre-trained model is guided with

few-channel signals as inputs through a knowledge distillation framework. Subsequently,

the pre-trained model is adapted to the few-channel dataset using a transfer learning

strategy with minimal data training. Experiment results show that the proposed model

achieves up to 7.04% accuracy improvement compared with state-of-the-art models,

demonstrating the effectiveness of the proposed approach in cross-dataset MI-EEG
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decoding, thus enabling more effective MI-BCI applications.

6.1 Introduction

In the practical application of BCI systems, achieving good classification accuracy and

robustness across different subjects with minimal or no retraining on new data poses a

significant challenge. Transfer learning (TL) methods such as domain adaptation (DA)

and domain generalization (DG) are gradually beginning to be employed to address this

issue. However, previous studies only used single datasets for validation, which are often

collected using numerous wet electrodes, ensuring higher data quality. In contemporary

EEG applications, there is an increasing prevalence of portable EEG acquisition devices

[164]. To save experimental time, these devices typically have fewer channels and employ

dry electrodes, resulting in lower data quality [165], bringing a significant challenge

for decoding MI-EEG signals. Additionally, due to variations in the number of channels,

high-quality datasets cannot be directly utilized for transfer learning without channel

selection. Research on MI-based cross-dataset studies remains limited. Zaremba and

Atyabi [166] used three different datasets and filtered data with the same 11 channels

existing across these datasets. However, this method merely consolidated subjects from

different datasets for the cross-subject training, following a leave-one-out experiment,

and did not address the differences between various datasets. Xu [167] and Xie [168]

only choose three channels (C3, CZ, C4) across different datasets. The former method

employed Riemannian Procrustes Analysis (RPA) [169] to align the Riemannian center

among subjects within different datasets and train the DL-based model. The latter

approach adopted fine-tuning technology when applying models to new MI paradigms.

However, these methods do not consider the channel differences caused by various

datasets or devices, as well as the potential transfer from a multi-channel dataset to one

with fewer channels.

To remedy these limitations, we propose a GCN network based on the Knowledge Dis-

tillation [170] and fine-tuning methods, extracting the temporal-spatial-spectral features
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in the multi-channel public dataset with high data quality, aggregating specific channels

information and transferring to the dataset with much fewer channels for decoding MI

tasks. In the experiment, the public dataset [94] collected by 62 wet electrodes is regarded

as the source domain while the few-channel dataset collected by only 8 dry electrodes is

regarded as the target domain. First, we train the proposed model as the teacher network

with 62-channel inputs. To reduce the 62-channel data to the same specific 8 channels

in the target domain, GCN layers are adopted to aggregate spatial information. Then

the student network with these 8-channel inputs in the source domain is guided by the

teacher network to learn the aggregated information and effectively harness all the data

in the source domain. Finally, the pre-trained student model is validated on the target

domain by fine-tuning technology with minimal data of re-training, aiming to transfer

the parameters learned from the source domain model. From the experiment results,

the proposed model is shown to achieve the highest accuracies among the compared

benchmarks. Furthermore, ablation studies and visualization experiments are conducted

to understand the effectiveness of GCN layers and transfer learning strategies.

The remainder of the chapter is organized as follows. 6.1 gives two dataset descrip-

tions and the detailed structure of the proposed model. 6.3 details the results including

the ablation studies and visualization experiments. Discussions are presented in 6.4 and

we conclude them in 6.5.

6.2 Methods

In this chapter, datasets collected from two different EEG devices are introduced. Subse-

quently, we present the preprocessing steps, the specific details of the proposed model,

and the experimental procedure.

6.2.1 Data Description

1) Korean University dataset [94] (KU dataset): The EEG signals were collected using

a device with 62 wet electrodes whose impedances were maintained below 10 kΩ. The
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EEG channel configuration (Fig 6.1(a)) conformed to the International 10-20 system.

This dataset comprised 54 healthy individuals performing left and right-hand motor

imagery tasks. Each subject participated in two experimental sessions, with each session

consisting of 200 trials. Consequently, each individual contributed a total of 400 trial

data. In this experiment, we downsampled the sampling rate from 1000 Hz to 250 Hz.

2) Few-channel dataset (8-channel dataset): The EEG signals were collected using

a device with only 8 dry electrodes (Fig 6.1(b)) whose impedances were about 300 kΩ.

This device is portable and features a plug-and-play functionality, eliminating the need

for bridging the gap between electrode pin and scalp with conductive electrolyte gel and

significantly reducing experimental preparation time. However, its impedance is much

higher compared to wet electrodes, leading to a decrease in data quality. This dataset

included 22 healthy subjects performing left and right-hand motor imagery tasks. Each

subject had 80 trials with a sampling rate of 250 Hz.

(a) (b)

Figure 6.1: The channel configuration of the International 10-20 system: (a) KU dataset
with 62 channels. (b) Few-channel dataset with 8 channels.
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6.2.2 Framework

The residence of the portable device with 8 dry electrodes is much higher than the device

with 62 wet electrodes used in the KU dataset. Moreover, the limited amount of data

in the 8-channel dataset is insufficient for achieving robust classification results when

utilized for within-subject modeling, particularly for deep learning models. In practical

BCI applications, there is a greater need for models that can be used immediately or

with minimal data calibration. Therefore, transferring model information from the KU

dataset with high data quality and abundant data to the 8-channel dataset with fewer

channels holds meaningful and valuable implications. However, the two datasets utilized

devices with a different number of channels. While it is feasible to only use the 8 channels

common to both devices like previous studies [166][167][168], this approach does not

fully exploit the additional channel information present in the KU dataset. To address

this problem, we divide the whole experiment framework into two parts. The first part

employed data distillation, enabling the model to learn a compact representation that

captures the task-specific feature representation when using all 62 channels, even though

the model was trained with only 8 channels as input. The second step involves fine-tuning

of the pre-trained model using a minimal amount of data in the target domain data for

training, followed by validation of the remaining target domain data.

6.2.3 Model Structure

The proposed model primarily consists of four components: Temporal Block, Dense Block,

Graph Block, and Feature Extraction (shown in Fig 6.2).

6.2.3.1 Temporal Block

The EEG signals are denoted as E = (X i,Yi)|i = 1,2, ..., N, where X i ∈ RC×T represents

i−th EEG trial with C channels and T samples. N is the total number of EEG signal trials.

First, the EEG signals are sent into three parallel CNN layers with multi-scale temporal

kernels. [133] demonstrated that the optimal kernel size differs among subjects and may
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Figure 6.2: The detailed structure of the proposed model.

vary over time for the same subject. Simultaneously conducting convolution at multiple

scales and then aggregating allow for the extraction of features at different scales,

resulting in richer temporal features and implying more accurate classification judgments

during the final decision-making process. Define the ratio as α= {
αi | i = 1,2,3

}
, where i

represents three parallel CNN layers. Hence, the kernel size is denoted as:

ki =
(
1,αi · fs

)
, i = 1,2,3 (6.1)

where fs is the sampling rate of the EEG signals. Then, three outputs with different scale

temporal representations are concatenated and fed into the Dense Block for association

and fusion.

6.2.3.2 Dense Block

The Dense Block consists of four CNN layers and two average pooling layers, fusing

the concatenated temporal features and further refining useful features. To enhance

information flow among the CNN layers, the outputs of each CNN filter were propagated

to all subsequent layers, which generated the final output incorporating the extracted

features from all preceding layers [126]. The connection between two common CNN

layers is:

xl = Fl(xl−1) (6.2)

where xl−1 and xl are the input and output of the layer l. In the dense block, the lth

layer receives the feature maps from all preceding layers:

xl = Fl([x0, x1, ..., xl−1]) (6.3)
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where [x0, x1, ..., xl−1] are the feature maps before the layer l. In the experiment, we

used two CNN layers and one pooling layer as one combination. Therefore, the output

averaged feature maps from two preceding CNN layers:

xl = FAverage (Fl−1 (xl−1)+Fl−2 (xl−2)) (6.4)

Such connections create short paths which enhance the flow of information and feature

reuse. Meanwhile, each CNN layer utilizes ELU as the activation function, followed by

batch normalization and dropout techniques to suppress the overfitting problem. One

CNN layer generates k feature maps contributing to the subsequent layer. Here we set

k = 10 so that each combination produces 20 feature maps.

6.2.3.3 Graph Block

An undirected and weighted graph can be described as G = (V ,E) where V represents

the nodes and E denotes the edges among the nodes. In the proposed model, each EEG

channel is regarded as a node of the graph while edges are the relationship between

channels. The adjacency matrix W ∈ RN×N is built to describe the connection relationship

between different nodes, where N is the number of channels. Nevertheless, the intricate

nature of the activation states in the human brain during MI tasks poses a challenge in

constructing an artificial matrix based on prior knowledge. Ma et al [171] learned the

channel similarity based on semi-supervised learning and then manually selected 11

channels as inputs. EEG-GENet [172] set the edge between neighboring channels to 1 and

those not neighboring to 0. Delvigne et al [173] used the distance as prior knowledge to

create an adjacency matrix. To better adapt to the characteristics of end-to-end learning

procedure in a DL model, the channel connections based on the temporal features learned

for each channel are dynamically learned, ensuring a trainable adjacency matrix.

First, Pearson’s correlation matrix (PCM) is adopted to initialize the matrix. PCM is

an effective tool to capture the topological information among EEG channels [174][172].

If one trial EEG data is defined as X ∈ RC×T with C channels and T temporal features,
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the Pearson’s correlation coefficient can be obtained by:

Pi j =
cov

(
X i, X j

)√
var (X i)var

(
X j

) (6.5)

where i and j denotes the ith and jth channel of the EEG signals. Therefore, the initial-

ized adjacency matrix is:

A initial =


P1,1 · · · P1,C

... . . . ...

PC,1 · · · PC,C

 (6.6)

To make the adjacency matrix trainable and dynamically analyze the similarity among

channels, a mask matrix of the same size consisting of trainable parameters is adopted:

Atrainable =


W1,1 · · · W1,C

... . . . ...

WC,1 · · · WC,C

 (6.7)

where w is the weight initialized based on xavier uniform [175]. To make the symmetric

trainable matrix, Atrainable and its transposed are multiplied and applied to A initial :

A =Φrelu

(
AInitial ⊙

(
Atrainable · AT

trainable

))
+ I (6.8)

where Relu activation is employed to ensure the matrix is non-negative. The degree

matrix is D̃ =∑
j A i j, i ̸= j. The normalized adjacency matrix can be calculated as:

Ã = D̃− 1
2 AD̃− 1

2 (6.9)

Once the matrix Ã is obtained, a GCN layer with weights and bias vector is applied on

the input feature maps:

Xoutput =Φelu
(
ÃXW +bias

)
(6.10)

After the graph block operation, each EEG channel includes the information aggregated

from other channels.
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Figure 6.3: The framework of the Knowledge Distillation.

6.2.3.4 Channel Selection and Feature Extraction

If the input EEG data has 62 channels, a channel selection step is required; otherwise,

it is not necessary. The channel selection procedure chooses the specific 8 channels

(FC6, C4, Fz, C3, FC5, CP6, Cz and CP5)(Fig 6.1(b)) same in the target domain data.

Subsequently, both the branch with the graph block and the branch without the graph

block undergo further feature extraction. The depthwise CNN layer helps the model to

extract global spatial features while reducing computational complexity compared with

common CNN layers. Then two average pooling layers and CNN layers follow to fuse the

feature maps and decrease dimensionality. The one with graph block aggregates other

channels’ features and topological information while the other one focuses on mining

temporal-spatial features. The different views of feature representations brought by two

parallel branches help enhance the model’s robustness and classification performance.

6.2.4 Training Procedure

The training procedure was initially conducted on the source domain dataset, employing

Knowledge Distillation and a two-stage training strategy [176] to build a pre-trained

model. Then this model was validated on the target domain with fine-tuning technology.

In the source domain, the data consists of 62 channels, while the target domain has

only 8 channels available. To leverage the extensive data in the source domain and

transfer model parameters to the target domain, our proposed model is designed to
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learn feature representations and distributions by aggregating information from all

62 channels. However, the model is currently configured to accept 62-channel inputs,

making it unsuitable for direct use in the target domain with only 8 channels. Training

the model with the limited 8-channel data in the source domain would result in the loss

of channel aggregation information. To address this, we employ a Knowledge Distillation

framework, constructing both a teacher network and a student network with different

numbers of channels as input (Fig 6.3). First, all subject data in the source domain are

divided into training data and validation data based on 5-fold cross-validation (CV). In

the first stage, the teacher network was trained with 62-channel data from the training

set in the source domain as inputs and incorporated the channel selection step during

training. The early-stopping tool monitored the validation set accuracy and stopped

the training if there was no increase in the next 150 epochs. Then the best validation

accuracy and the corresponding validation data are saved for the next stage. In the second

stage, the student network was trained with 8-channel data from all data (training set

+ validation set) in the source domain. During this procedure, the student network did

not need the channel selection step but guidance from the teacher network to align the

feature distributions between the two networks. A Mean Squared error loss was used to

calculate the distance among the feature maps after the graph block:

Lmse = 1
n

n∑
i−1

(xteacher − xstudent)2 (6.11)

where n is the number of trials and x are the feature maps.xteacher had the channel aggre-

gation knowledge based on 62-channel while xstudent had no other channels information.

By minimizing Lmse, the student network learned the feature representations with ag-

gregation knowledge and abundant topological information extracted by the graph block

in the teacher network. When it was fine-tuned in the target domain, useful pre-trained

parameters were transferred effectively. The second stage used the saved validation set

and stopped when the validation accuracy was higher than the one recorded in stage one.

Even if the final accuracy can not reach the same value, the model will stop with the

early stopping criteria to prevent the occurrence of infinite training.
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(a)

(b)

Figure 6.4: Two scenario descriptions. (a) Scenario 1 with 5-fold CV, (b) Scenario 2 with
fixed validation and test set

Subsequently, the student network was used as a pre-trained model being validated in

the target domain. Despite the model learning to classify MI tasks using only 8 channels

in the source domain, calibration based on limited target data was still necessary due

to the utilization of two datasets from entirely different devices. The source domain

dataset employs wet electrodes with good data quality, while the target domain dataset

uses dry electrodes with an impedance reaching 300 kΩ, resulting in poor data quality.

Directly using the pre-trained model without verification yields poor classification model

accuracy. Hence, fine-tuning is applied, retraining the parameters of the model based on

little target domain data. We designed two scenarios in the target domain validation: 1)

A 5-fold CV was employed with 3 folds for training, 1 fold for validation, and the rest

for testing (Fig 6.4a). 2) The dataset is split in half, with one part designated as a fixed

validation and test set, and the other part used as the training set. In the training set,

not all the data is used at once; instead, experiments are conducted by incrementally

adding 10% of the data each time, and results are recorded until the training set reaches

half of the total dataset size (Fig 6.4b).
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Figure 6.5: The schemes of the fine-tuning framework.

Since each model contains several operation layers, whether the parameters were

frozen based on the functionality of each block. 5 schemes for fine-tuning strategy were

conducted in the experiment (Figure 6.5). Different schemes froze different blocks in the

pre-trained model while the rest blocks were adaptive and re-trained based on limited

data in the target domain. Scheme 1 froze all layers namely no data in the target domain

involved in training. This Scheme no longer required any new data, greatly reducing

validation time. However, it resulted in a decrease in classification accuracy due to

significant data distribution differences caused by different EEG acquisition devices.

Scheme 5 made all layers adaptive namely all parameters in the model were updated to

match the target data.

6.2.5 Training Setup

The cross-entropy function was adopted to evaluate the distance between the probability

distribution of the model prediction values yp and the true labels yt:

L
(
yp, yt

)=−∑
m

yp,m log yt,m. (6.12)

where m is the index of y. Adam optimizer was used with 0.001 as the learning rate. The

computer used in this experiment had 22 Intel processors and 80 GB RAM. GTX 4090

GPU with 24 GB memory was used for training and testing MI-EEG signals. Pytorch

1.10.0 was used for building the proposed model.

116



6.3. RESULTS

6.3 Results

We use two traditional machine learning methods (CSP [138] and FBCSP [70]), three

CNN-based models (Shallow ConvNet [85], Deep ConvNet [85], and EEGNet [132]) and

two GCN-based models (EEG-GENet [172] and EEG-ARNN [177])as benchmarks to

demonstrate the effectiveness of our proposed method. All the baseline methods used the

parameters and structures suggested by their authors for a fair comparison. The details

of the baseline models are described as follows:

1. Machine learning methods: CSP and FBCSP are two classic machine learning

algorithms. The core idea is to find a set of optimal spatial filters that can separate

features after projection. FBCSP goes a step further by dividing the data into

multiple sub-bands and identifying informative and discriminative pairs of sub-

bands. Both models are lightweight, easily modifiable, and widely applied. In the

experiment, the Support Vector Machine (SVM) was employed as the classifier.

2. CNN-based models: Shallow ConvNet, Deep ConvNet, and EEGNet have excellent

performance on MI-EEG classification and robustness. They utilize a 1-D CNN

and a deepwise CNN layer to extract temporal-spatial features. Then, the Deep

ConvNet model combines several common CNN layers and pooling layers before

the classifier while the Shallow ConvNet only adopts a squaring layer with the log

operation. EEGNet uses the pointwise CNN layer to reduce amounts of calculation

resources while ensuring informative learned features.

3. GCN-based models: The EEG-GENet model is built based on the structure of

EEGNet. After extracting the temporal features by a CNN layer, a GCN layer

is followed to capture the topology information according to the EEG electrodes.

EEG-ARNN combines one CNN layer and one average pooling layer as a module.

The GCN layers are added after each module with a trainable adjacency matrix

which is initialized with one. Both of them perform well on the public BCICIV-2a

dataset [131].

117



CHAPTER 6. CROSS-DATASET MI DECODING - A TRANSFER LEARNING
ASSISTED GRAPH CONVOLUTIONAL NETWORK APPROACH

Table 6.1: Comparison of classification accuracy (%) and standard deviation (Std) on the
8-channel dataset.

Subject CSP FBCSP Shallow ConvNet Deep ConvNet EEGNet EEG-GENet EEG-ARNN Proposed model
1 65.00 75.00 72.50 45.00 47.50 77.50 57.50 78.75
2 56.25 81.25 67.50 58.75 66.25 72.50 68.75 86.25
3 58.75 70.00 61.25 65.00 55.00 67.50 47.50 65.00
4 86.25 93.75 82.50 65.00 76.25 57.50 78.75 83.75
5 56.25 42.50 53.75 63.75 72.50 61.25 72.50 72.50
6 45.00 61.25 51.25 73.75 82.50 43.75 81.25 86.25
7 45.00 56.25 43.75 47.50 50.00 47.50 45.00 48.75
8 50.00 57.50 52.50 50.00 55.00 51.25 58.75 58.75
9 50.00 55.00 47.50 48.75 42.50 55.00 53.75 61.25

10 56.25 55.00 58.75 60.00 76.25 51.25 70.00 80.00
11 51.25 70.00 71.25 53.75 55.00 63.75 63.75 73.75
12 47.50 53.75 61.25 55.00 63.75 58.75 52.50 62.50
13 67.50 90.00 86.25 50.00 58.75 80.00 60.00 82.50
14 56.25 66.25 52.50 81.25 91.25 60.00 88.75 88.75
15 55.00 70.00 73.75 71.25 70.00 58.75 80.00 75.00
16 45.00 43.75 45.00 56.25 53.75 58.75 55.00 66.25
17 47.50 51.25 50.00 55.00 58.75 56.25 52.50 58.75
18 57.50 51.25 53.75 45.00 48.75 57.50 51.25 60.00
19 60.00 60.00 77.88 62.50 82.50 58.75 66.25 80.00
20 60.00 52.50 46.25 50.00 55.00 53.75 51.25 52.50
21 80.00 95.00 82.50 72.50 86.25 85.00 83.75 93.75
22 51.25 60.00 51.25 56.25 42.50 41.25 48.75 51.25

Avg 56.70∗∗ 64.15∗∗ 61.04∗∗ 58.47∗∗ 63.18∗∗ 59.89∗∗ 63.07∗∗ 71.19
Std 10.60 15.11 13.47 9.98 14.52 11.09 13.13 13.30

Acc≥ 75 2 5 4 1 6 3 5 10
The improvement of the proposed model over the baseline methods with ∗ : p < 0.05 and

∗∗ : p < 0.01

6.3.1 Overall performance

We conducted the experiments based on the 5-fold CV on the 8-channel dataset. The

statistical significance tests including an Analysis of Variance (ANOVA) test and paired

t-tests between each baseline model and the proposed model. The result (shown in Table

6.1) demonstrated that the proposed model achieved the highest accuracy of 70.23%,

which was 14.49% (p < 0.001), 7.04% (p < 0.001), 10.15% (p < 0.001), 12.72% (p < 0.001),

8.01% (p < 0.001), 11.30% (p < 0.001), and 8.12% (p < 0.001) higher than the CSP, FBCSP,

Shallow ConvNet, Deep ConvNet, EEGNet, EEG-GENet and EEG-ARNN respectively.

In the traditional machine learning methods, FBCSP performed best, surpassing even

other DL models. The possible reason is that the 8-channel dataset is more sensitive

to frequency band filtering. FBCSP was the only method among these baseline models

that divided the original data into multiple sub-bands and performed band selection.

In the DL models, EEGNet and EEG-ARNN performed better and got an accuracy

of approximately 63%. However, regardless of the model used, there is a significant
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Table 6.2: Comparison of classification accuracy (%) and standard deviation (Std) based
on the proposed model with two cases.

With Fine-tuning W/O Fine-tuning
Avg 71.19 66.36
Std 13.30 14.89

variation in the classification results for each individual, further emphasizing that the

model’s performance varies from subject to subject. The proportion of subjects who had

accuracy over 75% was 9.1% (2 of 22), 13.63% (3 of 22), 18.18% (4 of 22), 4.54% (1 of 22),

27.27% (6 of 22), 13.63% (3 of 22), 22.72% (5 of 22), 45.45% (10 of 22) for CSP, FBCSP,

Shallow ConvNet, Deep ConvNet, EEGNet, EEG-GENet, EEG-ARNN and proposed

model respectively, demonstrating notable classification performance of the proposed

model.

6.3.2 Analysis of Different Schemes

Figure 6.6: Different schemes of the fine-tuning framework.

We first compared the results (Table 6.2) of the proposed model using fine-tuning

method and modeling solely using the target domain data (w/o fine-tuning). Even with-
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out learning knowledge from the source domain data and pre-training the model, the

proposed model structure still achieved a classification performance in the target domain

that is at least 2% higher than benchmarks. To further validate the influence of different

blocks in the model during the fine-tuning process, we conducted experiments based on

different schemes (Fig 6.5). The box plot (Fig 6.6) illustrated that the more parameters

involved in adaptive tuning, the better the model’s performance. Scheme 1 froze all layers

so that no weights could be updated to adapt to the target domain, leading to the worst

classification accuracy. The data distribution divergence across datasets and devices

limited the model’s performance and robustness. Although updating all parameters

increases the computational load, achieving a 71% accuracy in a limited dataset collected

from only 8 dry electrodes is worthwhile and makes it effectively applicable to portable

devices.

6.3.3 Analysis of Training Proportion

In practical applications of BCI, obtaining a large amount of data has always been

challenging. Therefore, calibrating the model with little or no data is necessary. In the

8-channel dataset, only 80 trials were collected for each individual, significantly less than

the data in public datasets. Following Scenario 2, we divided the entire 8-channel dataset

into two halves, fixing the validation and test data set. The training set was used to

adapt the parameters of the pre-trained model based on fine-tuning method. The training

data started from 0% and increased by 10% of the total data volume in each experiment,

up to 50%, for a total of 6 experiments. The result (shown in Fig 6.7) indicated that with

more training data used for adaptation, the model’s classification performance improved.

If no data in the 8-channel dataset were used to adapt, the model only reached 51.7%

which could not discriminate any MI tasks. Even with 10% of the data namely 9 trials

used for adaptation, the model’s classification accuracy can improve by 7.39%. When

the training data volume reached 40% of the whole dataset, the classification accuracy

was 67.77% which was higher than the results of baseline models based on 5-fold CV.

Therefore, with the assistance of fine-tuning techniques, the proposed model can achieve
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Figure 6.7: The results using different training data volumes.

Table 6.3: The classification accuracy (%) of the ablation study.

W/O D_Block W/O G_Blcok Proposed model
Avg 65.79 70.11 71.19
Std 13.18 13.20 13.30

performance surpassing the use of within-subject models in the target domain, even

with the adaptation and calibration using a small amount of target domain data, further

demonstrating the practicality of the proposed model.

6.3.4 Ablation Study

To validate the contribution of the Dense Block and Graph Block which were important

components in the proposed model, an ablation study was conducted: 1) Without Dense

Block (W/O D_Block): Dense blocks were utilized to capture information from the fused

feature maps extracted by the Temporal Block. The Dense Block included 4 CNN layers

and 2 average pooling layers. All of them were abandoned in the ablation experiment. 1)

Without Graph Block (W/O G_Block): Graph Block was adopted to learn the topological

information based on electrodes and transfer the knowledge from data with 62 channels
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to data with 8 channels. In the ablation experiment, we prohibited the transmission

of topological information learned by the graph block in the knowledge distillation

framework. The results in Table 6.3 showed that the proposed model had an accuracy

of 5.4% (p = 0.02) and 1.08% (p = 0.03) higher than the W/O D_Block model and W/O

G_Block, respectively. The Dense Block contributed more because it refined the temporal

block and involved more parameters while only one GCN layer existed in the Graph

Block.

6.3.5 Influence of Aggregated Channels

The source domain has 62 channels while the target domain only has 8 channels. To

transmit the topological information learned from 62-channel data, the features from

the rest of the k channels were aggregated in the GCN layer. To validate the influence of

K-aggregated channels, we adjusted the adjacency matrix. First, Cs defined as one of

the 8 specific channels was selected. Then we sorted the other channels that were not

included in these 8 channels in descending order based on the weights obtained by the

trainable adjacency matrix. The m channels with the smallest weights, specifically those

least correlated with these 8 specific channels, were set to 0 in the adjacency matrix, en-

suring that the GCN layer did not consider their information when aggregating channel

features. We conducted 7 experiments from using all 62 channels to only 9 channels. The

result in Fig 6.8 indicated that when the number of fused channels decreased and the

limited information was captured, the overall classification performance of the model

also decreased accordingly.

6.3.6 Visualization

1) Adjacency matrix visualization: We recorded the weights of the trainable adjacency

matrix to validate the channel relationships learned by the proposed model. Fig 6.9 shows

the heatmaps of the adjacency matrix in the teacher network model which was trained

based on the source domain. In Fig 6.9(a), These 8 channels were only connected to

themselves because the initialization matrix included a self-loop step. Following training
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Figure 6.8: The accuracy of the proposed model with different numbers of aggregated
channels.

and validation based on early stopping criteria, the channels established relationships

with each other and aggregated based on the trained adjacency matrix, contributing to

the final classification of MI tasks (Fig 6.9(b)). FC6, FC5, C3, C4, and Cz have stronger

connections with their neighboring electrodes. For instance, connections between 1) FC6

and (FC4 and FC2), 2) FC5 and F9, 3) C3 and (C1 and FC1), 4) Cz and (CP2 and C2), and

5) C4 and (FC2 and C2). CP5, CP6, and Fz have more relations with channels P7, P3,

PO3, and PO4 which belong to the parietal and parieto-occipital lobes. It can be observed

that many channels strongly correlated with these specific 8 channels are not part of

the same set. Without aggregating by the GCN layer, the information associated with

these correlated channels will be missing, leading to a decrease in model classification

accuracy.

During the knowledge distillation procedure, the student network was guided by

the teach network and better extracted the features based on the 8-channel inputs

in the source domain. Compared with the trained adjacency matrix (Fig 6.10(b)) and

untrained matrix (Fig 6.10(a)), some connections were strengthened like C3 and Cz.

Fig 6.10(c) is the fine-tuned model of the 21st subject which reached an accuracy of
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(a)

(b)

Figure 6.9: The heatmaps of the adjacency matrix in the teacher network model: (a)
Untrained model, (b) Trained model.

(a) (b) (c)

Figure 6.10: The heatmaps of the adjacency matrix: (a) Untrained model (Student
network), (b) Trained model (Student network), (c) Fine-tuned model (the 21st subject in

the 8-channel dataset).

93.75% in the 8-channel dataset. Compared with the pre-trained model (Fig 6.10(b)),

the fine-tuning method allowed the adjacency matrix to further adapt to the 8-channel

dataset and reconstruct the whole relations among channels. The channels Cz and C3

still maintained a strong connection while the relationships between CP6 and FC5, CP6

and C3 decreased. Some connections were activated like Cz and Fz, CP5 and CP6, and C4

and FC5. Due to the fine-tuning method applied to each subject in the pre-trained model,

the reconstructed relationships among channels varied. However, further research is
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needed to explore the relationship between the activated channels and the classification

performance of each within-subject model.

2) Feature Visualization: The t-distributed Stochastic Neighbor Embedding (t-SNE)

method was utilized to visualize the feature maps of the fully connected layer before

the final classifier of the proposed model. Fig 6.11(a) and Fig 6.11(b) are the teacher

network and student network trained in the source domain. Fig 6.11(c) is the feature

map of the fine-tuned model based on the 21st subject in the target domain. Each subject

in the target domain only has 80 trials so the limited points are shown in Fig 6.11(c).

Based on the t-SNE analysis, the proposed model demonstrated strong capabilities in

EEG signal classification. The classification boundaries of the teacher network’s feature

map appear more distinguishable than those of the student network. One reason for

this is that the teacher network took the data with 62 channels as input, incorporating

more information, while the student network only had 8 channels as input. Although the

student network learned topological features from the teacher network, there was still a

slight loss in classification performance.

(a) (b) (c)

Figure 6.11: The feature map of the proposed model: (a) Teacher network, (b) Student
network, (c) Fine-tuned model.

6.4 Discussions

With the proliferation of portable devices, the research and application of BCI has gained

much more momentum. In real-life applications, it is challenging to collect large amounts

of high-quality data, and there is a strong demand for reducing experimental preparation
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time. Therefore, it is crucial to ensure excellent accuracy in MI-task classification while

reducing calibration time and the amount of required training data. DL models have

shown promising results in decoding EEG signals, and transfer learning has been

effectively applied to shorten verification times. However, few models can be generalized

across datasets, especially when the datasets are collected using different devices with

different channels. The target data in our experiment were collected using dry electrode

devices, which have limited quantity, lower quality, and a very restricted number of

channels, making it challenging to directly use the models trained with past public

datasets. Therefore, we first utilized GCN to learn the topological knowledge of EEG

channels on a public dataset with 62 channels. Subsequently, through a knowledge

distillation framework, the feature distribution obtained from classifying MI tasks based

on 62-channel data in the source domain was adopted to guide the proposed model with

8-channel inputs. Finally, the pre-trained model employed fine-tuning for adapting target

domain data.

In our experiments, the proposed model achieved the highest classification accuracy

compared with machine learning methods, CNN-based and other GCN-based models.

To better validate the practicability of the model, scenario 2 with fixed validation and

test data was conducted to examine how the model performed in the case of training

with a small amount of data. By altering the training data volume, we found that the

model achieved a classification accuracy of 67.77% when the training data constituted

40% of the entire dataset, which was higher than the results of baseline models using a

5-fold CV, where 60% of the entire dataset was employed for training. The model with

fine-tuning technology built based on the source domain has a classification accuracy

4.83% higher than the model built only based on the target domain, demonstrating the

effectiveness of the transfer learning. The different schemes of fine-tuning also influenced

the model performance. The more parameters involved in the adaptation, the better

the model performed. Besides that, we also validated how the number of aggregated

channels affects the model performance. When the teacher network captures features

from more channels and guides the student network, the final fine-tuned model will
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achieve higher classification accuracy.

6.5 Conclusions

This chapter has proposed GCN based transfer learning method for cross-dataset MI

EEG decoding. The proposed model combines both the CNN and GCN layers, aggregating

topological information from 62 channels into only 8 specific channels and guiding a

pre-trained model by knowledge distillation. Fine-tuning technology has been used to

adapt the target dataset. The results show that the proposed model achieved an accuracy

of 71.19% based on across-dataset, 7.04% higher than the state-of-the-art approaches.

The feature visualization and heatmaps indicate excellent performance of the proposed

model on EEG decoding and channel relation reconstruction, demonstrating its potential

to enhance the effectiveness of the BCI applications with portable devices.
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This thesis has developed new deep learning methods to decode MI-EEG for re-

habilitation. Decoding MI signals aids in identifying patients’ motor intentions.

The classification results can be utilized for controlling external devices or as

neural feedback to encourage active participation in rehabilitation training. Moreover,

previous research has indicated that higher classification accuracy correlates with better

rehabilitation outcomes. Therefore, achieving high accuracy in MI task classification

is crucial. This study has primarily focused on enhancing model performance through

deep learning and enabling the model to be effective in various real-world application

scenarios.

7.1 Conclusions

The thesis has addressed several key issues such as poor accuracy, limited generalization,

and inadequate practicality in EEG decoding. Corresponding models and frameworks

have been proposed to tackle these challenges. Experimental results have confirmed

that the proposed methods enhance the performance of EEG decoding models which

are validated across different datasets or application scenarios, further improving the
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practicality of MI-BCI in real-world applications and providing more effective assistance

for patient rehabilitation. The summary of the work is presented in the following aspects:

In Chapter 2, the principles of MI-BCI and EEG decoding algorithms are introduced

which aim at the importance of MI task recognition for rehabilitation. The key is to

design a model with high classification performance, excellent generalization ability, and

practicality such as less calibration time or training costs. Then, a comprehensive review

of the traditional machine learning methods and deep learning methods is presented.

In Chapter 3, a novel approach for encoding MI-EEG signals using a multi-view CNN

architecture is presented. Initially, multiple frequency sub-band MI-EEG signals are

generated by employing bandpass filters that target specific brain rhythms, serving as

inputs for our CNN model. Subsequently, temporal and spatial features are extracted

from both the entire frequency band and the filtered sub-band signals. Moreover, lever-

aging two dense blocks with multi-CNN layers enhances the learning capabilities of the

model and promotes efficient information propagation. The proposed method achieves

an average accuracy of 75.16% on the publicly available Korea University EEG dataset,

which comprises data from 54 healthy subjects performing two-class motor imagery

tasks.

Chapter 4 is a continual work in building the within-subject model for MI classi-

fication. Compared with the research in Chapter 3, the new model harnesses a local

and global Transformer decoders to make up for the shortcomings of the CNN model.

The integration of a global transformer encoder with a Densely Connected Network is

proposed to enhance information flow and reuse within the model. Spatial features from

all channels, as well as differences between hemispheres, are incorporated to bolster the

model’s robustness. Three experimental scenarios, namely within-session, cross-session,

and two-session, are designed. Results have demonstrated that compared to current

state-of-the-art models, the proposed approach yields accuracy improvements of up to

1.46%, 7.49%, and 7.46% in the respective scenarios using the public Korean dataset.

Additionally, for the BCI-IV-2a dataset, the proposed model achieves improvements of

2.12% and 2.21% in the cross-session and two-session scenarios, respectively.
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Chapter 5 focuses on cross-subject modeling to achieve plug-and-play functionality

in the MI-BCI system. In this research, domain-invariant features from source subjects

are extracted and a knowledge distillation framework is employed to acquire internally

invariant representations by fusing spectral features. Subsequently, a correlation align-

ment approach is utilized to align mutually invariant representations across each pair

of sub-source domains. Additionally, distance regularization is applied to two types of

invariant features to enhance generalizable information. Experimental results show that

compared to current state-of-the-art models, our proposed approach achieves accuracy

improvements of 8.93% and 4.4% on the public Korean dataset and BCI-IV-2a dataset,

respectively.

Chapter 6 focuses on cross-dataset modeling to achieve good classification results

with a model on the device with high impedance, poor collected data quality, and limited

electrode channels. In this research, a GCN for cross-device MI-EEG decoding is proposed,

utilizing transfer learning techniques. By leveraging multi-channel information, the GCN

module aggregates topological features. A knowledge distillation framework is adopted to

guide the pre-trained model with few-channel signals as inputs. Subsequently, we adapt

the model to the few-channel dataset using a transfer learning strategy with dynamically

inputting different amounts of data for training. When using only 40% of the training

data, the proposed model achieved an accuracy of 67.77%, surpassing the baseline model’s

64.15% accuracy obtained with 60% of the data for training. Experimental results indicate

a significant improvement in accuracy, up to 7.04%, compared to state-of-the-art models.

These findings underscore the effectiveness of our approach in cross-dataset MI-EEG

decoding, thereby enhancing the practicality of MI-BCI applications.

Overall, this thesis have proposed several deep learning models for improving MI

task classification accuracy, model generalization ability, and practicality.
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7.2 Future Work

Although the proposed models have been proven useful for MI-EEG decoding and vali-

dated on different datasets and scenarios, there are still several challenges that require

further investigation.

The model in Chapter 3 incorporates five sets of inputs, extracting features individu-

ally from each set of input signals. Despite utilizing average pooling layers and 1×1 CNN

to reduce computed feature maps, training the complex model remains time-consuming.

Enhancing model compactness entails identifying the most relevant rhythms during

training and pruning redundant layers and neurons. Therefore, future endeavors will

focus on identifying the most suitable sub-bands and implementing neuron pruning

methods to reduce model size. Meanwhile, the proposed model leverages both temporal

and spatial features of MI-EEG signals, with channel selection primarily informed by

previous studies and experience. Nonetheless, disparate subjects may exhibit variance

in motor imagery areas. Hence, future efforts will introduce automatic channel selection

methods to enhance the model’s adaptability.

The proposed model in Chapter 4 solely incorporates the transformer encoder for

processing time-series data, overlooking potential spatial features extracted through

the self-attention mechanism. This omission is deliberate due to the extensive length

of the sequence after extracting temporal features. Utilizing a transformer to learn

correlations between features of each channel and replacing deepwise convolutions could

lead to severe overfitting issues. Additionally, while the complexity of our model based

on trainable parameters is not high, computational time remains significant due to the

time-consuming nature of the local transformer sliding to process inputs similar to CNNs.

Moreover, in contrast to other transformer-based models, the proposed model does not

consider the selection of position encoding methods. Hence, future work will explore

more efficient model structures.

In Chapter 5, real-world problems entail not only variations across subjects but also

practical demands across diverse scenarios and devices. Models should not solely learn

domain-invariant features at a high-level abstraction but also engage in optimization and
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weight redistribution learning across channels or time periods. Moreover, the proposed

model only involves testing model performance and visualizing feature distribution. In

the future, interpretable techniques can be utilized in deep learning models to eluci-

date invariant features and propose their specific physical meanings, thereby mutually

corroborating them with relevant neural mechanisms.

In Chapter 6, while the adjacency matrix was trainable to dynamically capture

topological information, the initialization of the graph solely relied on the Pearson corre-

lation coefficient, lacking prior knowledge such as the relationship between the motor

brain area and other brain areas, as well as individual channel connectivity. Despite

employing knowledge distillation, the transfer of knowledge from graph convolutions

to temporal-spatial features remains insufficient. Further investigation is necessary to

enhance the integration of multi-channel information into a reduced number of channels.

Moreover, the model attains an accuracy of over 67% with minimal data from the target

domain during training, but it has not fully achieved zero-shot learning. Improvements

are required to enhance the model’s generalization ability and robustness without the

need for additional data.
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