
Phase Mixed Alfvén Waves in
Partially Ionised Solar Plasmas

Max McMurdo
Supervisors:

Dr Istvan Ballai
Dr Gary Verth

Professor Viktor Fedun

University of Sheffield

School of Mathematics and Statistics

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

May 2024





Acknowledgements

I want to thank my mother, for being my sounding board over the past three
and a half years, I think you probably know as much as I do about phase
mixed Alfvén waves in partially ionised plasmas. I want to thank my father,
for showing me what hard work can achieve, thank you for your unwavering
support.

I would like to thank Istvan Ballai for his consistent support throughout my
time as a doctoral student at Sheffield, you showed me the standard I should
hold myself to. I will take this forward throughout my career. I want to thank
Viktor Fedun who was always in my corner, you gave me confidence in myself
and my abilities, you truly showed me how to enjoy the academic lifestyle. I
want to thank Gary Verth for never blowing smoke up my arse until I deserved
it, you have been my tutor ever since I came to Sheffield as an undergraduate
and encouraged me to pursue a career in academia.

Last but not least, I want to thank me. I want thank me for doing all this
hard work and never quitting.



Declaration of Authorship

I hereby declare that, except where clear reference is made to the
work of others, the contents of this dissertation are original and
have not, in whole or in part, been submitted to this or any other
university for consideration for any other degree or qualification.
This dissertation is my own work and contains nothing which is
the outcome of work done in collaboration with others, except as
specified in the text and Acknowledgements.

Max McMurdo
May 2024



List of Publications

• McMurdo, M., Ballai, I., Verth, G. & Fedun, V., “Phase Mix-
ing of Propagating Alfvén Waves in a Single-fluid Partially
Ionized Solar Plasma”, 2023, The Astrophysical Journal, 958,
81.

• Ballai, I., Forgács-Dajka, E., McMurdo, M., “Parametric res-
onance of Alfvén waves driven by ionization-recombination
waves in the weakly ionized solar atmosphere”, 2024, Philo-
sophical Transactions of the Royal Society A, 382, 2272.

• Aldhafeeri, A., Verth, G., Brevis, W., Jess, D., McMurdo,
M., Fedun, V., “Magnetohydrodynamic Wave Modes of Solar
Magnetic Flux Tubes with an Elliptical Cross Section”, The
Astrophysical Journal, 912, 50.





Contents

1 Introduction 1
1.1 Background and context . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Why waves? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Methodology and approach . . . . . . . . . . . . . . . . 16
1.3 Partially ionised solar plasmas . . . . . . . . . . . . . . . . . . . 17
1.4 Phase mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 The aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Significance of research . . . . . . . . . . . . . . . . . . . . . . . 26

2 Partially ionised solar plasmas and their quantitative descrip-
tion 28
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 General considerations . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Governing equations in partially ionised

plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Mass conservation equation . . . . . . . . . . . . . . . . 32
2.3.2 Momentum conservation equation . . . . . . . . . . . . . 33
2.3.3 Energy equation and equation of state . . . . . . . . . . 36
2.3.4 Ohm’s law and the induction equation . . . . . . . . . . 38

2.4 Dissipative processes in partially ionised plasmas . . . . . . . . . 43
2.4.1 Viscosity in partially ionised plasmas . . . . . . . . . . . 44
2.4.2 Ambipolar diffusion . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Ohmic diffusion . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Linearised MHD equations . . . . . . . . . . . . . . . . . . . . . 50
2.6 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.1 Single-fluid approximation . . . . . . . . . . . . . . . . . 53
2.6.2 Two-fluid approximation . . . . . . . . . . . . . . . . . . 54

i



3 Numerical modelling 57
3.1 Numerical techniques . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Euler’s method . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2 Runge-Kutta fourth-order method (RK4) . . . . . . . . 59
3.1.3 Finite difference approximations . . . . . . . . . . . . . . 60
3.1.4 Rewriting the governing equation in a single-fluid ap-

proximation . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.5 Matrix method . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.6 Sparse matrices . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Courant–Friedrichs–Lewy condition . . . . . . . . . . . . . . . . 71
3.5 Validation and testing . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Numerical solution of the damped wave equation . . . . 73
3.5.2 Validation by reproducing known results . . . . . . . . . 73

3.6 Numerical background for the problem of Alfvén wave phase
mixing in a two-fluid approximation . . . . . . . . . . . . . . . . 77

4 Phase mixing of Alfvén waves in single-fluid plasmas 81
4.1 Phase mixing in a fully ionised plasma . . . . . . . . . . . . . . 83
4.2 Phase-mixed Alfvén waves propagating in a partially ionised

plasma: Weak solution . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Phase-mixed Alfvén waves propagating in a partially ionised

plasma: Strong solution . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 Sinusoidal wave driver . . . . . . . . . . . . . . . . . . . 96
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Phase mixing of Alfvén waves in a single-fluid partially ionised
plasma: the effect of various drivers 105
5.1 Various wave generation mechanisms . . . . . . . . . . . . . . . 106

5.1.1 Continuously driven waves . . . . . . . . . . . . . . . . . 106
5.1.2 Finite lifetime drivers . . . . . . . . . . . . . . . . . . . . 107

5.2 Multi-frequency driver . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Finite lifetime drivers . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.1 Numerical limitations . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ii



5.3.3 Variation in damping due to Alfvén speed profile . . . . 119
5.3.4 Variation in damping due to frequency . . . . . . . . . . 121
5.3.5 Heating rates . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Phase mixing of Alfvén waves in a two-fluid partially ionised
plasma 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Importance of ion-neutral collisions . . . . . . . . . . . . 133
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Conclusions and future research prospects 138
7.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 144

A Derivation of Equation 2.55 163

B Derivation of Equation 2.59 165

iii



List of Figures

1.1 Image of Betelgeuse, a red supergiant star approximately 650

million light years away from Earth, taken by the ALMA tele-
scope. Image courtesy of O’Gorman et al. (2017). . . . . . . . . 2

1.2 Full solar disk obtained by the Solar Orbiter space telescope
in extreme ultraviolet wavelengths (EUV). Many small scale
structures are clearly visible such as coronal loops and spicules
on the disk edge, as well as bright active regions. Image courtesy
of ESA & NASA/Solar Orbiter/EUI team; Data processing: E.
Kraaikamp (ROB). . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Image taken during a total solar eclipse of July 31, 1981, in
Bratsk (Russia). The image was taken through a green narrow-
band filter 530.3 nm (0.2 nm half-width) on Fomapan N30 film
and later processed using Corona software in 2007. Image cour-
tesy of Július Sýkora and Miloslav Drukmüller. . . . . . . . . . . 6

1.4 The variation of the electron (ne), neutral (nn), total (nT ) num-
ber densities and temperature for altitudes corresponding to
the lower solar atmosphere are presented based on the data ex-
tracted from the AL C7 model (Avrett and Loeser, 2008). . . . . 7

2.1 The ionisation degree and plasma temperature are plotted with
height according to the AL C7 model (Avrett and Loeser, 2008)
for heights above the solar surface up to 3000 km. . . . . . . . . 31

2.2 The ion-neutral, electron-neutral and electron-ion collisional fre-
quencies are plotted as functions of height above the solar sur-
face based on the AL C7 solar atmospheric model (Avrett and
Loeser, 2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



2.3 The variation of the coefficients that describe the magnitude of
the Ohmic diffusion term, Hall term and the ambipolar diffusion
term as a function of height above the solar surface, based on
the VAL C solar atmospheric model Vernazza et al. (1981). This
plot has been adapted from Khomenko et al. (2014). . . . . . . . 42

2.4 The variation of the neutral and ion shear viscosity coefficients
with height assuming a constant magnetic field of 100 G. The
plasma parameters are taken from the AL C7 atmospheric model
(Avrett and Loeser, 2008). . . . . . . . . . . . . . . . . . . . . . 46

2.5 The ambipolar diffusion coefficient, Ohmic diffusion coefficient
and total shear viscosity coefficient are plotted as functions of
height above the solar surface for a constant magnetic field of
100 G. The calculations were carried out considering an AL C7
standard atmospheric model (Avrett and Loeser, 2008). . . . . . 48

2.6 Figure 4 from Soler et al. (2013). Results for propagating waves.
(a) kz,RcA/ω and (b) kz,IcA/ω as functions of νni/ω, where cA

represents the Alfvén speed. Solid lines correspond to the nu-
merical results, while symbols correspond to the analytic ap-
proximations (their Equations (37) and (38)). χ = 2 has been
used, note that their use of χ differs from the present thesis. . . 55

3.1 Matrix A with dimensions 2(n + 1)2 × 2(n + 1)2 consisting of
the smaller matrices (denoted by top-left, top-right, bottom-left
and bottom-right) populated by sub-matrix blocks with dimen-
sions (n+1)× (n+1). The blue-coloured blocks consist entirely
of zeros, while the other coloured blocks are populated by the
coefficients of finite difference approximations. Note that here
we used periodic boundary conditions in the x direction exem-
plified by the matrix blocks in the top right and bottom left of
the bottom-left and bottom-right matrices. . . . . . . . . . . . . 64

3.2 Two profiles of phase mixed Alfvén waves excited under identical
plasma configurations are plotted employing either periodic or
fixed boundary conditions at the base of the numerical domain. 70

3.3 Evolution of a phase-mixed pulse at simulation time steps t = 0,
t = 1000, and t = 2000. Each profile is represented by a distinct
color line, illustrating the attenuation of the pulse over time. . . 75

v



3.4 Evolution of a phase-mixed bipolar pulse at simulation time
steps t = 0, t = 1000, and t = 2000. Each profile is represented
by a distinct color line, illustrating the attenuation of the pulse
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Matrix A with dimensions 3(n + 1)2 × 3(n + 1)2 consisting of
nine large matrices (denoted by top-left, top-middle, top-right,
middle-left, middle-middle, middle-right bottom-left, bottom-
middle and bottom-right) populated by small matrix blocks
with dimensions (n + 1) × (n + 1). The blue-coloured blocks
consist entirely of zeros, while the other coloured blocks are
populated by the coefficients of finite difference approximations.
Note that here we use periodic boundary conditions in x, exem-
plified by the matrix blocks in the top right and bottom left of
the bottom row of the larger matrices. . . . . . . . . . . . . . . 79

4.1 The variation of the ionisation degree with height (black line)
together with the variation of the Ohmic diffusion (green line),
Ambipolar diffusion (red line) and shear viscosity (blue line).
These transport coefficients were calculated taking into account
the values of the physical parameters given by the AL C7 model
(Avrett and Loeser, 2008). . . . . . . . . . . . . . . . . . . . . . 82

4.2 The different profiles of the Alfvén speeds used in the analysis
of phase mixed Alfvén waves in a fully ionised plasma are shown
by curves of different colors. Speeds and lengths are given in
dimensionless units. The two tanh profiles are symmetric about
the midpoint of the inhomogeneity in order to apply periodic
boundary conditions to our numerical solver. . . . . . . . . . . . 86

4.3 The different profiles of the Alfvén speeds used in the analysis
are shown by curves of different colors. The constant Alfvén
speed profile (shown here by the blue horizontal line) will serve
as a comparison basis. Speeds and lengths are given in dimen-
sionless units. The two tanh profiles are symmetric about the
midpoint of the inhomogeneity in order to apply periodic bound-
ary conditions to our numerical solver. . . . . . . . . . . . . . . 90

4.4 The variation of the damping length of phase-mixed Alfvén
waves in a partially ionised plasma, LP

d , in terms of the wave-
length of the Alfvén waves. Here different ionisation degrees are
shown by different colors. . . . . . . . . . . . . . . . . . . . . . . 91

vi



4.5 The number of wavelengths required for a wave to propagate
before the wave is deemed t be damped. This is simply calcu-
lated by dividing the damping length of each simulation by the
wavelength used to calculate the damping length. The curves
obtained for different ionisation degrees are shown by different
colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 The ratio of the damping length of phase mixed Alfvén waves
in fully ionised, LF

d , and partially ionised, LP
d , plasmas with

respect to the wavelength of waves. The curves obtained for
different ionisation degrees are shown by different colors. . . . . 93

4.7 The variation of the damping length with height above the solar
surface ranging from 1000 − 2500 km in the case of the four
Alfvén speed profiles (P1 − P4) given by Equation (4.16). The
particular wavelength used here corresponds to λ∥ = 400 km.
The overplotted red line shows the ionisation degree based on
the AL C7 model (Avrett and Loeser, 2008). . . . . . . . . . . . 95

4.8 An envelope is fitted to the normalised maxima of Alfvén waves
in the case of the four Alfvén speed profiles. The particular
wavelength used in this figure corresponds to λ∥ ≈ 400 km and
the ionisation degree is set to µ = 0.7852. . . . . . . . . . . . . . 99

4.9 The percentage reduction in the wave amplitude after a propa-
gating length of 1 Mm is plotted for various ionisation degrees,
the Alfvén speed profiles are labeled in the legend. The steepest
of the four profiles gives rise to the most effective wave damp-
ing, while all waves are damped effectively for ionisation degrees
close to µ = 0.6, where the values of viscosity, Ohmic diffusion,
and ambipolar diffusion are at their effective combined maxi-
mum. For this figure we study waves with wavelength λ∥ ≈ 400

km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.10 The variation of the heating rate with the ionisation degree

of the plasma for the phase-mixed Alfvén waves with a wave-
length of 400 km described by the P4 profile. Heating rates
associated with particular dissipative coefficients are shown in
different colours. The horizontal black line shows the value of
the heating rate of the quiet Sun equal to the average radiative
losses of the chromosphere. . . . . . . . . . . . . . . . . . . . . . 101

vii



4.11 A composite figure showing the formation height and temper-
ature of various continua and spectral lines taken from Ver-
nazza et al. (1981) over which we plot the height and tempera-
ture range (shaded box) for which the heating rate produced by
phase mixing of Alfvén waves is larger than the radiative loses
in the quiet chromosphere. . . . . . . . . . . . . . . . . . . . . . 102

5.1 The variation of the dimensionless amplitude of magnetic field
perturbation with coordinate z in the case of the four profiles of
Alfvén waves (P1 − P4) defined in Chapter 4. Waves are driven
by a two-frequency driver. Here we plot the results correspond-
ing to an ionisation degree of µ = 0.6628. Each simulation was
terminated the moment the perturbation reached the end of the
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 The evolution of the dimensionless magnetic field perturbation
with distance generated by a dual-frequency driver for the P4

Alfvén speed profile. Each subplot corresponds to a different
ionisation degree, as indicated in the legend. The color gradient
within the plot loosely represents a temperature profile, where
blue signifies a cooler, weakly ionised plasma, while red indicates
a hotter, strongly ionised plasma. . . . . . . . . . . . . . . . . . 111

5.3 The time series of sinusoidally excited Alfvén waves at two dif-
ferent heights. The initial profile (depicted in blue) corresponds
to the time series of the perturbation at the base of the domain,
where the wave originates. The second profile (shown in red)
represents the time series of the perturbation at a distance of
2.5 Mm from the base of the domain. Beneath each wave profile
is the signal presented in frequency space, with colors match-
ing the respective profiles described above. The discrepancy in
magnitudes among the frequencies arises from the various dissi-
pation mechanisms present in the chromosphere. The decrease
in the magnitude of the high-frequency component of the sig-
nal demonstrates the chromosphere’s effectiveness at dissipating
high-frequency waves. . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



5.4 The profile of an Alfvén pulse excited using a finite lifetime si-
nusoidal driver. The initial perturbation is coloured in blue,
while the high-frequency numerical back reaction is shown in
red. The pulse was excited to a maximum dimensionless value
of 1 and allowed to propagate until the end of the numerical
domain. This simulation was performed for an ionisation de-
gree µ = 0.7645, Alfvén speed profile given by P3 and a driver
producing an initial wavelength of 300 km. . . . . . . . . . . . . 116

5.5 The evolution of a sinusoidally excited Alfvén pulse at three
simulation time steps. The initial profile corresponds to the mo-
ment the driver terminates and represents a pulse with a wave-
length of 300 km. Subsequent time steps reveal the evolution
in the wave profile. Additionally, the envelope of the continu-
ously excited Alfvén wave, generated under identical conditions,
is superimposed for comparison (black line). Differences arise
solely from the finite lifetime nature of the pulse, which lacks a
continual energy injection at the domain’s base. Here the two
columns correspond to the P1 and P4 profiles. . . . . . . . . . . 118

5.6 The variation in the displacement of each of the Alfvén pulses
with propagation for the four different Alfvén speed profiles
given by P1 − P4 profiles (shown by different colours), for six
different ionisation degrees and an initial wavelength of 300 km. 120

5.7 The variation in the displacement of finitely excited Alfvén waves
with distance propagated for each of the four different Alfvén
speed profiles considering a single ionisation degree given by
µ = 0.6161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 The variation in the displacement of finitely excited Alfvén waves
with distance for the five different wavelengths for six different
ionisation degrees in the case of the Alfvén speed profile given
by P4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



5.9 The profile of the heating rate obtained from the continuously
excited sinusoidal wave driver (solid lines) is plotted with the
tracked maximum heating rate of the finitely driven wave (dots)
over the propagated distance. The discrepancy between the
results shown in the two columns arises from the existence of an
inhomogeneous Alfvén speed profile, depicted in the right-hand
column. Each row corresponds to a distinct ionisation degree,
consistent with the ionisation degrees used in Figure 5.5. . . . . 125

6.1 The spatial evolution of sinusoidally excited Alfvén waves in
a two-fluid plasma. The variations shown within each sub-
plot stem exclusively from the inclusion of a gradient in the
Alfvén speed profile. Distinctions across panels are determined
by transverse derivatives of the collisional frequency, along with
ionisation-dependent factors, namely the ion-neutral collisional
frequency term and the shear viscosity coefficients. . . . . . . . 134

6.2 The evolution of Alfvén waves under varying ion-neutral colli-
sional frequencies across four different cases propagating in the
presence of the Alfvén speed profile given by P4. Each subplot
represents a different collisional frequency. As the collisional
frequency increases, the damping of the Alfvén waves becomes
more pronounced, illustrating the sensitivity of wave propaga-
tion to collisional effects. The effective wavelength and damping
lengths decrease with higher collisional frequencies, highlighting
the impact of collisions on wave dynamics in partially ionised
plasmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

x



List of Tables

1.1 The chemical composition of the photosphere and chromosphere
derived from spectroscopic analysis (Lodders, 2003). . . . . . . 5

xi



xii



CHAPTER 1

Introduction

1.1 Background and context

Solar physics encompasses the investigation of the Sun’s evolution, dynamics,
and behaviors within the framework of the Sun-Earth relation, using a wide
range of techniques. Although the last few decades has seen an exponentially
increasing wealth of observations at high resolution and high cadence, we are
still very far from fully understanding important aspects of how our star works,
and how it influences life on Earth. Observations provide key results that can
drive theoretical (analytical and numerical) studies, but also serve as valida-
tions of previous theoretical results. Observations have changed the theoretical
field in so many ways by imposing constraints on modelling.

Numerical simulations, often referred to as synthetic observations, can pro-
vide insight into what is not yet observationally verifiable. They are not bound
by the resolution limits of solar telescopes, which struggle to resolve coherent
structures smaller than a few hundred kilometers. Numerical models are able
to resolve far smaller intricacies, since the resolution is often a user defined
quantity. With the advancements of solar telescopes, perhaps one day we may
be able to forego numerical simulations, as it could be possible to resolve even
the smallest features of the Sun with a high powered quantum telescope. How-
ever, for now, there are two distant parties sitting across the same table, one
arguing about what we can model and the other about what we can see, both
working to meet in the middle.

Plasma is the most common form of matter, it is present in hot stars
and near other celestial bodies. Plasma is often defined as the collection of
charged and neutral particles that show a collective behaviour. Due to the
existence of charges, plasmas are permeated by electric and magnetic fields
that control the dynamical and thermodynamical state as well as the stability
of the plasma. Our Sun is the only feasible star that we can study that contains
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plasma under extreme conditions, its study can lead to profound insights into
the evolution of other astronomical objects and their enduring influence on
the universe surrounding us. To understand why we take such an interest in
the Sun rather than any other star, we can compare the observational results
obtained in the case of a near star and our Sun. Figure 1.1 displays the highest
resolution image of a relatively near star to Earth taken by the Atacama Large
Millimeter/submillimeter Array (ALMA), the most powerful radio telescope in
the world. In this figure, one pixel equates to approximately 2× 105 km.

Figure 1.1: Image of Betelgeuse, a red supergiant star approximately 650 mil-
lion light years away from Earth, taken by the ALMA telescope. Image cour-
tesy of O’Gorman et al. (2017).

In contrast, the image shown in Fig. 1.2 displays the entire disk of the Sun
as seen by Solar Orbiter in extreme ultraviolet light from a distance of about
75 million kilometers with a resolution of approximately 50 − 100 km/pixel.
The differences speak for themselves, but it is clear we can use images such as
the one shown in Figure 1.2 to far greater effect to study coherent structures
using the framework of plasma physics. The Daniel K. Inouye Solar Telescope
(DKIST), which became operational in the last year can provide observations
with unprecedented resolution of the order of 8 km/pixel, which will revolu-
tionise our understanding in many ways. Comparing this value with the ap-
proximate resolution of the image taken by the ALMA telescope means we can
resolve features approximately 104 times smaller on the Sun than Betelgeuse.

2



Figure 1.2: Full solar disk obtained by the Solar Orbiter space telescope in
extreme ultraviolet wavelengths (EUV). Many small scale structures are clearly
visible such as coronal loops and spicules on the disk edge, as well as bright
active regions. Image courtesy of ESA & NASA/Solar Orbiter/EUI team;
Data processing: E. Kraaikamp (ROB).
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Solar spectroscopy is a technique that separates light from the Sun into
constituent spectra and looks for the presence or absence of particular lines that
give hints regarding the chemical composition of the plasma and its ionisation
degree. Spectroscopic studies during solar eclipses can examine the atmosphere
of the Sun in great detail and are able to provide better understanding of the
composition of the solar atmosphere. In 1869, Harkness and Young discovered
a prominent spectral line during the total solar eclipse of August 7 (Lockyer,
1869). The result shown by Figure 1.3 was taken through a green narrow-
band filter on the wavelength of the most intense coronal spectral line. For 70
years scientists were left puzzled as to identify the element responsible for the
line and through a combination of optimism and despair named the element
Coronium. The problem was solved by Grotrian (1939) and independently by
Edlén (1945), who observed spectral lines emitted by iron (as well as calcium
and nickel) in high stages of ionisation. Specifically, today we know that the
result observed by Harkness and Young is, in fact, caused by the spectroscopic
light corresponding to an iron atom that was stripped of 13 electrons (Fe XIV).
In order to have an atom in this state, one needs temperatures of the order of
a few million degrees Kelvin.

The Sun is made up of a large range of elements in various stages of ionisa-
tion, with each element contributing towards a certain percentage of the total
composition of the Sun. The relative populations of each element present in
the Sun are given in Table 1.1. It is believed that the chemical composition
presented in this table is representative for the entire Sun with the exception of
the solar core due to the substantial mixing of the Sun’s interior and extremely
high pressure. In total, 67 elements have been detected in the solar spectrum,
those not listed here are present in even smaller quantities.

The high temperature of the solar atmosphere (required to produce Fe XIV)
was a result that puzzled solar scientists even more, as this result was against
every model of a star. This finding was the very first step into what today is
known as probably the most mysterious aspect of the Sun, the famous coronal
heating problem or even better, the atmospheric heating problem, whose expla-
nation still eludes us. Studies were carried out to estimate the temperature
of the solar surface. Stefan, in 1879, formulated that the luminosity of an
object is proportional to the fourth power of surface temperature, predicting
a value of the temperature at the surface of the Sun of 5700 K. While initially
Stefan’s law was not generally accepted, Langley wrote in Hoskin et al. (1900)
that it is probable from all experiments made to date, that the solar effective
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Element % number of atoms % total mass

Hydrogen 91.2 71.0

Helium 8.7 27.1

Oxygen 0.078 0.97

Carbon 0.043 0.40

Nitrogen 0.0088 0.096

Silicon 0.0045 0.099

Magnesium 0.0038 0.076

Neon 0.0035 0.058

Iron 0.0030 0.14

Sulfur 0.0015 0.040

Table 1.1: The chemical composition of the photosphere and chromosphere
derived from spectroscopic analysis (Lodders, 2003).

temperature is not less than 3, 000 nor more than 30, 000 degrees of the centi-
grade thermometer. Further estimates were deduced from black body radiation
curves in the late 20th century and the accepted modern value for the solar
surface is considered to be approximately 6, 000 K. This result added another
twist in the problem of solar atmospheric heating and the question translated
into asking what mechanism(s) are acting in the atmosphere of the Sun that
can produce the increase in temperature by many orders of magnitude. The
need to have heating mechanisms acting in the solar atmosphere can be sub-
stantiated through very simple reasoning. Idealistically one can expect that
the temperature from a source decays with distance according to an inverse
square law, i.e., it decays as 1/r2, where r denotes the distance from the source.
Assuming a solar surface temperature of 6,000 degrees K, an observer would
measure the average temperature at the Earth’s magnetosphere (the boundary
where the Earth’s magnetic field influences solar wind particles) should drop
to approximately 0.1 K. Direct measurements have found this area to be in
the region of tens of thousands of K. This significant discrepancy indicates
that additional heating mechanisms must be at work beyond the simple in-
verse square law, requiring us to explore more complex processes to explain
the observed high temperatures in the solar atmosphere.

To better understand how the temperature of the solar atmosphere varies
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Figure 1.3: Image taken during a total solar eclipse of July 31, 1981, in Bratsk
(Russia). The image was taken through a green narrow-band filter 530.3 nm
(0.2 nm half-width) on Fomapan N30 film and later processed using Corona
software in 2007. Image courtesy of Július Sýkora and Miloslav Drukmüller.

with height one can use one of the standard solar atmospheric models (e.g., the
VAL, AL, FAL, models) that return the values of the temperature, pressure
and number density of particles with height above the solar surface. These
values were obtained by averaging the results drawn from several spectroscopic
lines that are emitted in various locations in the solar atmosphere. A typical
variation of the temperature and total number density of particles with height
is given by Figure 1.4. Given the significantly lower abundance of all other
elements compared with hydrogen (as shown in Table 1.1), we omit additional
elements from our investigation. This assumption allows us to consider a
quasi-neutral plasma, so, we equate the number density of ions with that of
electrons.

The formation conditions of many spectral lines observed by various instru-
ments show that the temperature in the solar atmosphere undergoes a gradual
increase from the temperature minimum in the photosphere (first layer of the
atmosphere) through the chromosphere (second layer of the atmosphere), to a
very steep increase in the narrow transition region and reaches values of sev-
eral million degrees in the solar corona (outer atmosphere). The energy in the
upper part of the solar atmosphere is lost due to, e.g., radiation and this needs
to be compensated by mechanisms that can balance the loss.
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Figure 1.4: The variation of the electron (ne), neutral (nn), total (nT ) num-
ber densities and temperature for altitudes corresponding to the lower solar
atmosphere are presented based on the data extracted from the AL C7 model
(Avrett and Loeser, 2008).

The fundamental scenario of heating implies the generation of heat some-
where in the solar atmosphere, however, this aspect (and taking into account
the realistic parameters of the Sun) means that in reality, we have a conversion
of various energies into heat. When we discuss the problem of heating, we have
to understand that a general heating process is a multi-faceted problem, i.e.,
the heating model of the solar atmosphere should be able to explain aspects
such as the source of the energy, how this energy is transported into the loca-
tion where heating is needed and how it is dissipated into heat. Nowadays it
is widely accepted that the reservoir of energy resides in the granular buffeting
of magnetic field lines in the solar photosphere (see, e.g., Roberts, 1979; Evans
and Roberts, 1990; Ballai et al., 2006; Vigeesh et al., 2012; Mumford et al.,
2015; Stangalini et al., 2017). As a result, the generated energy can appear
as kinetic energy (waves, flows) or magnetic energy in the form of magnetic
stresses deposited in magnetic field lines.

Waves are ideal tools to transport energy, however, the way they dissipate
this energy is problematic. In a non-ideal, dissipative plasma, waves undergo
damping resulting in a transfer of their kinetic energy into heat, however, given
the realistic values of transport coefficients, this damping is not very efficient,
as damping lengths can often be of the order of several solar radii (Cranmer
and van Ballegooijen, 2005). Theoretical results of the last few decades con-
firmed that waves can damp their energy and contribute to the heating of

7



the solar atmospheric plasma only when this heating occurs over very short
length scales (see, e.g., Klimchuk, 2006; van Ballegooijen et al., 2011). While
for mechanisms such as turbulence, the creation of small scales is a natural
aspect, in the case of waves the situation is far from obvious. Although effects
such as dispersion create naturally small scales, these were not shown to be suf-
ficient for effective damping to take place (Ballai et al., 2019). Currently, two
proposed mechanisms are able to satisfy the requirements: resonant absorption
and phase mixing.

Resonant absorption, first proposed by Ionson (1978) as a heating mecha-
nism for coronal loops is based on the fact that in a plasma with transversal
inhomogeneity, the spectrum of waves becomes continuous. An effective wave
energy transfer occurs between incident waves and the plasma if the frequency
of the wave lies in the frequency continuum of the plasma. In this situation, the
energy of the wave is transferred to the local perturbations in the inhomoge-
neous regions of the magnetic structure, leading to a growth in the amplitude
(Davila, 1987; Sakurai et al., 1991a,b; Goossens et al., 1995; Goossens and Ru-
derman, 1995; Erdélyi et al., 1999; Cally and Andries, 2010). The growth of
the amplitude leads to nonlinear behaviour of waves near the resonant point
that can be balanced by dissipative processes that do not need to be excessively
large for resonant absorption to work effectively and dissipate the energy of
the wave to heat the surrounding plasma. The theory of resonant absorption
predicts a damping time of kink waves that is proportional to the period of
waves and was proposed by Ruderman and Roberts (2002) to explain the rapid
damping of kink oscillations of coronal loops. For a review of the theory of
resonant absorption of kink waves see, e.g., Goossens et al. (2011).

The other proposed model to address the deposition of waves’ energy into
the plasma is through the so-called phase mixing of waves, which constitutes
the subject of the present thesis. Broadly speaking, the theory of phase mix-
ing states that waves, propagating along neighbouring field lines in a plasma
(which is permeated by a magnetic field) that exhibits transversal inhomogene-
ity in the background magnetic field, density, or both, will quickly oscillate out
of phase with one another. As this mixing progresses the transversal gradients
between the magnetic surfaces with which the waves are propagating becomes
larger, enhancing the dissipative mechanisms which act to damp the waves
more effectively. Although, very often, phase mixing requires very small-scale
inhomogeneities (sometimes below the spatial resolution of the current obser-
vational facilities), observations of waves in inhomogeneous plasma (such as in
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spicules, prominences and fibrils) are nowadays ubiquitous (see, e.g., He et al.,
2009; Okamoto and De Pontieu, 2011; Hillier et al., 2013; Gafeira et al., 2017;
Jafarzadeh et al., 2017; Bate et al., 2022). Magnetoconvection codes have also
shown to produce such transversal density enhancements in fibrils and spicules
due to magnetic forces (see, e.g., Leenaarts et al., 2015, 2012; Martínez-Sykora
et al., 2011; Martínez-Sykora et al., 2017).

The magnetic field in the solar plasma is not diffuse, rather, it tends to
accumulate into larger or smaller structures that exhibit inhomogeneity (see,
e.g., Rezaei et al., 2012; Sobotka et al., 2013; Schlichenmaier et al., 2016; Bellot
Rubio and Orozco Suárez, 2019; Jafarzadeh et al., 2019). Sunspots occur
in regions of an intense magnetic field that emerges from the Sun’s surface.
This provides an ideal pathway for wave propagation while also exhibiting
significant transverse inhomogeneity, as evidenced by intensity observations by
Stangalini et al. (2022). Sunspots form active regions that are often associated
with solar flares (Aschwanden et al., 1999a). They appear as dark and cold
spots (the umbra) surrounded by a more striated and structured penumbra.
Sunspots vary in size (typically 10 - 100 Mm in diameter) and shape, and are
transient, appearing and disappearing over days to weeks. Magnetic pores are
somewhat comparable to a small-scale sunspot since they also appear as cold,
dark regions of plasma associated with heightened solar activity, albeit with
weaker magnetic fields compared to sunspots. Unlike sunspots, they are much
smaller in size (typically 1-10 Mm in diameter) and lack a penumbra. Morton
et al. (2011) observed MHD sausage modes in magnetic pores with periods
between 30 - 450 s, while Albidah et al. (2022) evidenced higher order fluting
modes for the first time, additional studies by Albidah et al. (2021, 2023a,b)
demonstrate a wealth of evidence for oscillating modes present in sunspots. In
addition to sunspots and pores, the solar magnetic field forms other structures,
such as bright plages and faculae observed, for instance, using the balloon-
borne SUNRISE solar observatory (Solanki et al., 2010). Plages, best observed
in Hα (a spectral line of hydrogen that lies within the visible spectrum), are
large more diffuse bright regions typically observed in the chromosphere and
are often found near sunspots where often spicules are observed to carry Alfvén
waves with significant amplitudes of the order 20 kms−1 (de Pontieu et al.,
2007). Faculae, on the other hand, are smaller bright regions usually observed
in the photosphere, particularly in the vicinity of sunspots (Keller et al., 2004).
Like plages, they are associated with strong magnetic fields, but they are
best observed near the solar limb in white light. While both features are
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manifestations of strong magnetic activity, their distinction lies in their size
and location within the solar atmosphere.

Over the past decades, a large number of studies have addressed the prob-
lem of coronal heating, with a variety of mechanisms being proposed to explain
the multi-million-degree solar corona (see, e.g., Osterbrock, 1961; Brueckner
and Bartoe, 1983; Heyvaerts and Priest, 1984; Hudson, 1991; Shimizu, 1995;
Matthaeus et al., 1999; Klimchuk, 2006; Tomczyk et al., 2007; Cranmer et al.,
2007; van Ballegooijen et al., 2011; van der Holst et al., 2014a). To a certain
extent, the corona is a simpler environment to model. With the exclusion of
coronal loops, the magnetic field is mostly vertical (especially in polar regions
and coronal holes), with flows being field-aligned, the plasma very tenuous
and optically thin, and temperatures that are high enough so that at least
the hydrogen (the most abundant element in the solar plasma) is fully ionised.
However, the problem of atmospheric heating is not necessarily connected only
to the solar corona. The height-dependence of the temperature suggests that
the heating of the corona is a process where the chromosphere also plays a key
role and here the description of heating processes requires much more sophis-
ticated modeling. In the solar chromosphere, the process of plasma heating
has to be strong enough to explain spectral diagnostics formed under optically
thick, non-local thermodynamic equilibrium (non-LTE) conditions, such as the
resonance lines of Mg II and Ca II, which require detailed three-dimensional
(3D) radiative transfer calculations including partial frequency redistribution
(see, e.g., de la Cruz Rodríguez and van Noort, 2017; Carlsson et al., 2019).
Energy losses are much greater in the chromosphere than in the corona. While
in the chromosphere the quiet and active regions require a heating rate that
can compensate for the average losses of 4 kW m−2 and 20 kW m−2, respec-
tively, the corresponding losses in the solar corona are 0.3 kW m−2 and about
10 kW m−2 (Withbroe and Noyes, 1977). The chromospheric radiative losses
per volume in 1D models are largest just above the temperature minimum,
implying that the largest energy deposition rate occurs there, too. The tem-
perature minimum itself is close to its radiative equilibrium value in models
like the VAL C model (Holweger and Mueller, 1974; Vernazza et al., 1981;
Carlsson and Stein, 1992; Leenaarts et al., 2018).

The problem of chromospheric heating has been recognised since it was
shown that the solar chromosphere is hotter than the photosphere. The very
first process, prior to phase mixing and resonant absorption, that was pro-
posed to explain this increase in temperature, was the dissipation of acoustic
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waves that are generated by turbulent motions in the convection zone (Bier-
mann, 1946; Schwarzschild, 1948). The power and spectrum of these waves
was determined from the theory of wave emission by Stein (1967, 1968), which
was adapted from the theory of wave emission in the Earth’s atmosphere as a
quadrupole spectrum by Lighthill (1952). A second mechanism might operate
in the lanes between granules, where acoustic monopole emission might pro-
vide the waves for chromospheric oscillations that are observed, for example,
in Ca II bright points (Lites et al., 1993). Nowadays it is accepted that the
heating of the non-magnetic chromosphere is acoustic, at least in the internet-
work chromosphere, and that the power of acoustic waves emitted from the
convection zone is sufficiently high to account for the radiative emission of the
chromosphere. For a detailed review on chromospheric heating by waves, see
the comprehensive study by Srivastava et al. (2021). However, much of the
motion of particles in the chromosphere (especially the upper chromosphere)
are governed by the magnetic field. It is here we expect phase mixing to be an
efficient contributor towards the solution of the atmospheric heating problem.

One key aspect that all chromospheric heating models need to take into
account is that the temperature of the plasma is not high enough to ensure a
fully ionised plasma, therefore this important layer of the solar atmosphere is
partially ionised. In these plasmas, the existence of neutral species is known
to introduce not only specific effects such as ambipolar diffusion, but also very
often impose conditions on the numerical modelling. A multi-fluid description
is required when considering waves in a frequency regime that is comparable
with the collisional frequencies between particles. A detailed introduction
of the consequences of partial ionisation on the numerical modelling of the
propagation of waves and the relevant transport mechanisms will be presented
in Chapters 2 and 3.

The research presented in this thesis involves merging various important
aspects relevant to the chromospheric plasma and the heating due to waves.
Understanding the role of neutrals in heating the plasma via wave damping
due to phase mixing will play an important role in understanding this unsolved
phenomenon.

1.2 Why waves?

Waves pervade the entire universe, touching every aspect of our daily exis-
tence. Whether it is in the form of sound waves that resonate through our
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ear bones, allowing for transmission of sound vibrations, undulating waves in
the ocean that beckons the adventurous thrill seekers to surf, or microwaves
that have revolutionised the modern student’s culinary skills, waves are not
an uncommon occurrence in our every day lives, and nor are they in the so-
lar environment. A wave is a natural manifestation of physical systems when
perturbations of an equilibrium state are opposed by various restoring forces
that act to bring back the system to equilibrium. Although a physical system
can be subject to various equilibria (e.g., dynamical equilibrium, thermal equi-
librium, chemical equilibrium), the general view of an equilibrium states the
systems are neither in the state of motion nor is its internal energy changing
with time. The condition of an equilibrium can be traced back to Newton’s
first law that states that a body is in equilibrium if it does not experience linear
acceleration or angular acceleration. Therefore, unless it is disturbed by an
outside force, the body will continue in that condition indefinitely. A particle
is considered to be in equilibrium if the sum of all forces acting upon it is zero.
A rigid body will be in equilibrium if, in addition to the states listed for the
particle above, the vectorial sum of all torques acting on the body equals zero
so that its state of rotational motion remains constant. An equilibrium is said
to be stable if small, external perturbations produce forces that oppose the
displacement and return the body or particle to its equilibrium state.

Restoring forces play an important role when considering the evolution
of physical systems. Gravitational forces oppose any displacement of fluids
in the direction of gravitational attraction, tension forces in a string tend
to work against any plucking, electrostatic forces acting between the core of
an atom and its electrons tend to redress the spatial distribution of electron
shells when the atom is subject to a collision with another atom; all these
simple examples show what an important role restoring forces play. The Sun,
a massive ball of plasma, held together by its own gravitational attraction
is an environment where all the above restoring forces are acting and their
effect can be observationally validated. The solar atmosphere is permeated by
a magnetic field that is generated by dynamo effects in the solar tachocline
situated at the boundary between the radiative and convective zone in the
solar interior and emerges to the solar surface either as unified structures such
as sunspots or pores, or diffusely at the edges of granules, and has the ability
to fill-up the whole corona. Extreme ultraviolet (EUV) and magnetogram
observations show that regions of high emissivity are co-spatial with regions
of enhanced magnetism (Wang et al., 2022), therefore the heating must be
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somehow connected to the magnetic field (see, e.g., Howard, 1959; Leighton,
1959; Parnell and De Moortel, 2012; Aschwanden and Nhalil, 2023; Judge et al.,
2024).

Magnetic fields exhibit behaviour akin to guitar strings (standing waves)
or as the result of shaking a hosepipe (propagating waves), in that the reac-
tion to a perturbation causes a wave to propagate. When working within the
linear framework, any perturbation affecting the magnetic field lines can be
balanced by magnetic tension resulting in a wave type that can appear only
in plasmas, the very famous Alfvén wave (Alfvén, 1942). Charged particles
(electrons, protons, ions) are attached to these magnetic field lines, providing
the inertia necessary for Alfvén waves and other MHD waves. In an ideal case,
the magnetic field and the plasma are to be tightly connected and hence the
behaviour of these waves is governed by the interplay of plasma with a mag-
netic field such that these disturbances trace out the magnetic forces. In the
absence of plasma, any perturbation in the magnetic field would propagate as
an electromagnetic wave travelling at the speed of light.

Alfvén waves, first proposed by Hannes Alfvén, who was later awarded a
Nobel Prize in Physics in 1970 for his work in MHD, are a fundamental con-
cept in MHD and provide critical insight into understanding the behaviour of
magnetised plasmas. Alfvén waves propagate through a magnetised plasma
without perturbing the density of the surrounding plasma, which places condi-
tions on the governing equations. The amplitude of this wave is dependent on
the injection of energy supplied by the perturbation, generally the larger the
amplitude, the greater the energy. In a non-ideal environment, Alfvén waves
can lose their energy to its surroundings due to diffusive or specific viscous
effects (see, e.g., De Pontieu et al., 2001; Ruderman and Petrukhin, 2018).

For a considerable period of time, Alfvén waves remained largely undetected
due to their inability to perturb density, rendering them “invisible” to EUV
instruments. Nevertheless, they have proven crucial in elucidating the heating
mechanisms of solar atmospheric plasma. Their incompressibility enables them
to traverse the layered solar atmosphere without significant reflection, except
at the transition region where partial reflection occurs, allowing them to reach
heights inaccessible to other waves.

Alfvén waves are generated as a response to a perturbation of magnetic
field lines, typically caused by photospheric motions, magnetic reconnection or
mode conversion, and have been observed in the solar atmosphere by Jess et al.
(2009a), who presented observational evidence of Alfvén waves in the lower
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solar atmosphere with sufficient amplitude (≈ 2.6 kms −1) and an associated
energy flux to heat the solar atmosphere. This constituted a massive step
forward for solar physicists. Furthermore, McIntosh et al. (2011) presented
observational evidence of coronal Alfvénic waves with sufficient amplitude (≈
25 km s−1) and, therefore, energy to power the quiet solar corona and drives
the fast solar wind. The amplitude of Alfvén waves increase with height due
to the stratification of the plasma density, so it is possible to have apparent
wave amplification associated with energy dissipation. However, an energy
flux sufficient to heat the solar atmosphere is one thing, proving the energy
in these waves damps fast enough is another. Alfvén (1947) studied coronal
heating by MHD waves, and gave an estimation that the damping of MHD
waves transmits of the order of one percent of the total energy radiated by the
Sun, however, this value is comparable to the total radiation of the corona.
Morton et al. (2014) present evidence of a flattening of the power spectra of
kink waves at higher frequencies in the quiescent chromosphere and a positive
correlation between frequency and power in the case of a magnetically active
region, quite the opposite to the power spectra in the photosphere. They
suggest that incompressible wave energy is more efficiently converted to heat
at higher frequencies, providing us with further evidence for high frequency
waves to be responsible for heating the solar atmosphere.

The plasma heating by waves was indirectly evidenced by several recent
studies that further imposed key conditions on how the process could work.
Verth et al. (2010) presented observational evidence of resonantly damped
propagating kink waves in the solar corona, suggesting heating occurs over
very short length scales, while Bate et al. (2022) found observational evidence
of a wave reducing in amplitude concurrent with signatures of heating. This
is very compelling evidence for plasma heating due to the damping of waves
and dissipation of magnetic energy associated with waves.

A comprehensive review of heating mechanisms in solar and stellar coro-
nae was conducted by Erdélyi and Ballai (2007). This study highlighted the
intricate interplay between various mechanisms and their dependence on local
conditions. Their findings suggest that the effectiveness of these mechanisms
varies significantly, making it challenging to isolate a single dominant heat-
ing process. They also state that the small scales that heating takes place
at (100s of meters), make it currently very difficult to observe mechanisms
such as resonant absorption or phase mixing. Another important result that
imposes restrictions on the efficiency of wave-based heating mechanisms is the
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realisation that in order to have effective heating, one needs high frequency
waves. Unfortunately, the observation of these waves is a challenge, since the
temporal cadence of the current observational facilities are not adequate for
this frequency regime. Nevertheless, there are a number of studies that ev-
idenced high frequency waves as observed by Jafarzadeh et al. (2017), who
found high-frequency oscillations in small magnetic elements observed with
Sunrise/SuFI.

Numerical models provide us with synthetic observations which play a cru-
cial role in validating theoretical frameworks. Notably, recent MHD simula-
tions conducted by Martínez-Sykora et al. (2011) and Martínez-Sykora et al.
(2017) used the Bifrost code (Gudiksen et al., 2011) to successfully capture
the process of spicule formation and the identification of Alfvénic waves in nu-
merical simulations. This provides evidence that our current theory of MHD
captures key features of the Sun’s behaviour, which instills confidence in the
capability of large MHD codes to accurately depict phenomena that may not
be directly observable. For example, observations allow for wavelengths of
approximately 1 Mm to be resolved quite clearly. However, the limitations
imposed by current ground and space-based instruments does not mean that
much higher frequency waves do not exist.

In the context of phase mixing studies, numerical investigations also use
some simplifications that lead to credible results, however, very often these are
not totally realistic. One aspect very often neglected is the back reaction of the
medium on the efficiency of phase mixing as shown by Cargill et al. (2016).
These authors found that wave damping due to phase mixing destroyed an
assumed transversal density profile. Since a larger force is required to produce
an inhomogeneity in the chromosphere, one could postulate that more heating
would be required to destroy this assumed structure. However, the effects of
a magnetic field may also work to homogenise the density structure. These
constitute possible extensions to the research presented in this thesis proposed
in Chapter 7.

The current investigations into phase mixing have overlooked the partially
ionised nature of the plasma in the lower solar atmosphere, solely focusing on
fully ionised plasmas when discussing the efficiency of damping Alfvén waves.
Addressing partial ionisation necessitates a fundamentally new perspective on
wave propagation, as the presence of neutrals often alters wave properties
(Soler et al., 2015). Moreover, accounting for partial ionisation entails a more
intricate system of equations and a novel physical approach involving plasma
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physics, atomic physics, and spectroscopy. Considering that waves in partially
ionised plasma operate at much higher frequencies than those in a fully ionised
plasma, they can significantly impact plasma heating processes. My research
consists of extensive investigations aiming to explore the influence of partial
ionisation on phase mixing which aims to initiate a movement towards more
comprehensive research within this field.

1.2.1 Methodology and approach

Assuming incompressible, linearly polarised transverse waves propagating strictly
along magnetic field lines offers a simple mathematical framework. Therefore,
Alfvén waves, whose propagation speed is determined by the ratio between
the background magnetic field and the square root of the plasma density, are
the most natural candidates for studying phase mixing. Of course, phase mix-
ing can occur for any kind of wave, however, the discussion of the properties
of these waves in the context of phase mixing is not yet available. Recently,
Stangalini et al. (2021) observed torsional oscillations within magnetic pores
and Chae et al. (2022) observed Alfvénic waves in the chromosphere around
a small sunspot presenting further evidence of the ubiquity of Alfvén waves
in the inhomogenous lower solar atmosphere. These observations, in conjunc-
tion with the investigations previously mentioned, highlight the importance of
further study of phase mixed Alfvén waves in the lower solar atmosphere.

The analysis presented in this thesis uses the framework of both a single-
fluid and two-fluid plasma. In the case of a single-fluid framework, the partial
ionisation effects appear only through specific transport mechanisms. We con-
sider linearly polarised Alfvén waves in a non-stratified plasma, with a plasma
inhomogeneity in the direction transverse to the direction of wave propagation
and its polarisation. When considering a two-fluid approach to wave prop-
agation, we isolate the ionised plasma from the neutral gas via two coupled
equations of motion. Partial ionisation also appears through the transport
mechanisms, whereby each fluid has its own characteristic viscosities. The
present study can be considered as a proof of concept analysis to emphasise
the importance of neutrals on the damping lengths of phase-mixed Alfvén
waves and the associated heating rates.

Analytically obtained governing equations will be solved using a number
of numerical techniques such as the finite difference approximations that ad-
dress spatial derivatives, a fourth-order Runge-Kutta time step to progress
simulations forward in time, and sparse matrices to represent the coefficients
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of the finite difference approximations, greatly enhancing the efficiency of the
calculations performed. Full details of the numerical approach employed by
the present thesis can be found in Chapter 3.

1.3 Partially ionised solar plasmas

Plasma is present throughout the entire Universe, existing at various scales.
In 1986 Hannes Alfvén introduced the term ‘plasma universe’ to stress the im-
portant role played by plasma across the universe. Plasma, a state of matter
distinct from solids, liquids, and gases, is often referred to as the fourth state
of matter, consisting of charged particles showing collective dynamics. Plasma
is formed by applying considerable amounts of thermal energy to atoms, large
enough to overcome the electrostatic force between protons and electrons, a
force that ensures the existence of neutral atoms. For decades, scientific investi-
gations operated under the assumption that the plasma in the solar atmosphere
exists in a fully ionised state. This assumption allowed for mathematical sim-
plifications, such as ignoring diffusive effects (or at least terms corresponding
to products of diffusive quantities), leading to a more manageable set of MHD
equations. However, recent advancements in observational technology and nu-
merical modelling has shifted the focus to studying solar structures such as
prominences, spicules, and the lower layers of the Sun’s atmosphere (photo-
sphere and chromosphere), which consist of partially ionised plasmas. In these
regions, the temperature is high enough to cause ionisation, but a significant
amount of neutral gas remains, as indicated by the presence of H-α emission.
This new focus aims to comprehend the nuanced interplay between ionised
and neutral components coexisting in solar structures and aims to refine our
understanding of their dynamic behavior.

Reliable atmospheric models predict that the electron-neutral number den-
sity ratio of the plasma in the lower solar atmosphere covers several orders of
magnitude. For example, the AL C7 atmospheric model (Avrett and Loeser,
2008) of the quiet Sun predicts the electron-neutral ratio to range between
9 × 10−5 and ∼ 106. In solar prominences Patsourakos and Vial (2002) pre-
dicted that the ratio between the electron density and neutral hydrogen density
ranges between 0.1 and 10. For analytical progress, often it is customary to
consider strongly or weakly ionised limits that simplify the mathematics. In
these cases the ratio of neutral to charged particle number densities (or its in-
verse) is considered to be a small parameter about which governing equations
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are expanded into series with respect to these small parameters (see, e.g., Al-
harbi et al., 2021). Naturally, these limits are idealisations and relevant to an
average quiet Sun scenario. If one wants to bring modelling closer to reality, a
whole spectrum of ionisation degrees must be considered and this would imply
a comprehensive numerical investigation and parameter study, see Chapter 4
for more details.

The last decade has seen an increased number of studies on the properties
of waves in partially ionised plasma. The modeling framework of a partially
ionised plasma depends very much on the frequency regime in which a certain
physical mechanism is described. When the frequency of waves is much smaller
than the collisional frequency of particles, a single-fluid description of MHD is
sufficient. In this framework, partial ionisation appears through the generalised
Ohm’s law and it describes diffusive damping (often called ambipolar diffusion)
of currents perpendicular to the ambient magnetic field as well as the viscosity
tensor in the equation of motion. The presence of neutrals enhances terms
associated with damping in the governing equations since the neutrals increase
dissipative coefficients such as Ohmic diffusion and viscosity.

Ambipolar diffusion occurs within a partially ionised plasma when the neu-
trals are not fully coupled to the charged component. While the charged fluid
is subject to the Lorentz force, the decoupled neutral particles undergo a Brow-
nian motion, while still being affected by the close-range collisions with ions.
These collisions result in frictional effects between the two components, pro-
viding a mechanism for magnetic and mechanical energy to be dissipated, and
hence creating a source of localised atmospheric heating (see, e.g., Khomenko
et al., 2018; Forteza et al., 2007; Shelyag et al., 2012). We should note here
that in a fully ionised plasma we can also have ambipolar diffusion, however, in
this case, the extra diffusive effects are due to different mean velocities of posi-
tive charges and negative charges. Due to this difference, an electric field (and
an electric current) is created that pulls along the heavier species with the aim
of restoring the plasma neutrality and prevent any further charge separation.
As a result of the “lagging” particles, the motion of those particles that move
ahead is impaired. The trailing particles also have a tendency to be pulled to
the front but to a lesser extent than the tendency for leading particles to be
held back. If the diffusion coefficient for the two species is very different, the
total diffusion coefficient will only be half as large as the largest individual co-
efficient. In this case, the ambipolar diffusion refers to the combined diffusion
of oppositely charged particles. For details see, e.g., Scudder (1996, 1997)
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The role of ambipolar diffusion in the partially ionised solar atmospheric
plasma has received recent special attention due to the specific way it oper-
ates and due to its magnitude compared to other dissipative coefficients. Sarp
Yalim et al. (2020) investigated the heating effects of the Cowling resistivity in
the weakly ionised limit and found the Joule heating profiles corresponding to
Cowling resistivity to be as much as six orders of magnitude higher than heat-
ing rates associated with Coulomb resistivity. Note that resistivity and diffu-
sivity are closely linked processes both involved in wave damping and heation,
but posses very different units. Melis et al. (2023) found the wave heating rate
achieved its maximum in the central part of the thread, where the plasma is
partially ionised and ambipolar diffusion is responsible for wave dissipation. In
the outermost coronal part, wave heating was negligible because of the irrele-
vance of Ohm’s diffusion for fully ionised coronal conditions. This highlights
the significance of partial ionisation for effective plasma heating and suggests
that the solution to the coronal heating problem may lie in the partially ionised
lower solar atmosphere. Khomenko and Collados (2012) investigated the heat-
ing of the solar chromosphere under the influence of a non-force-free magnetic
field. They discovered a direct relationship between the heating rate and the
intensity of the magnetic field, which correlates closely with the ambipolar
diffusion coefficient’s value. Recent studies by Khomenko et al. (2018) and
Popescu Braileanu and Keppens (2021) further explored the role of ambipolar
diffusion, revealing its substantial enhancement of wave damping in regions of
strong magnetic fields within the photosphere and chromosphere. Careful con-
sideration must be taken when calculating the ambipolar diffusion coefficient,
as demonstrated by Nóbrega-Siverio et al. (2020), who revealed the importance
of heavy proton donors such as sodium, silicon and potassium. Neutrals, as well
as having a strong influence on the dissipation rates of MHD waves, also have
the effect of stabilising instabilities (see, e.g., Mather et al., 2018; Ballai et al.,
2015, 2017). Khomenko et al. (2021) investigated the influence of ambipolar
diffusion on vorticity in three-dimensional simulations of magneto-convection,
and found that the ambipolar diffusion produces a strong reduction of vorticity
in the upper chromospheric layers and that it dissipates the vortical perturba-
tions converting them into thermal energy, again similar to having a stabilising
effect. These investigations collectively imply a strong association between the
presence of neutrals and the efficient damping of waves, potentially leading to
effective heating within the partially ionised solar atmosphere. The nonlinear
propagation of waves in a three-dimensional stratified solar flux tube in the
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presence of ambipolar diffusion was considered by Shelyag et al. (2016) and
showed that up to 80% of the Poynting flux associated with these waves can
be dissipated and converted into heat, providing an order of magnitude larger
energy supply to the chromosphere compared to the dissipation of stationary
currents modelled by Khomenko and Collados (2012). Using a 2.5 D radiative
MHD code, Martinez-Sykora et al. (2015) showed that the ambipolar diffusion
effectively dissipates magnetic energy and increases the temperature in the
chromosphere.

When the frequency of waves is comparable to the collisional frequency of
ions and neutrals, a single-fluid MHD description is no longer sufficient and
we must employ a multi-fluid framework of the problem, whereby one fluid
consisting of ions and electrons which are strongly bound together interacts
with a neutral gas through collisions. Ambipolar diffusion is modelled very
differently here since the two fluids have their own equation of motion, am-
bipolar diffusion does not appear directly in the governing equations but as a
consequence of the two fluids in relative motion. Zaqarashvili et al. (2011) and
Soler et al. (2013) discussed the solutions of the dispersion relation for Alfvén
waves in a two-fluid plasma and found that high-frequency waves (with fre-
quencies higher than the ion-neutral collisional frequency) have vastly different
damping rates than the single-fluid model’s approach. These studies showed
that the efficiency of damping increases for smaller wavelengths.

In order to complete the scientific aim of the present thesis, it is crucial
to accurately compute the values of dissipative coefficients within the par-
tially ionised solar atmosphere. While comprehensive formulae are provided in
Chapter 2, it is worth noting their dependency on various plasma parameters,
including the temperature and number density of ions, electrons, and neutrals.
To estimate these values accurately, we rely on the AL C7 atmospheric model
(Avrett and Loeser, 2008) which operates under the assumption of non-local
thermal equilibrium (NLTE). This assumption implies an imbalance in energy
exchange processes locally, where energy gained through collisions is not bal-
anced by energy lost through radiation. Lastly, the AL C7 model (Avrett and
Loeser, 2008), employed throughout this thesis, represents the most contem-
porary atmospheric model available, over those such as the VAL (Vernazza
et al., 1981) or FAL (Fontenla et al., 1993) models. This model is derived from
observations made by high-resolution spectroscopic instruments (e.g., SOHO/-
SUMER and HRTS instruments), marking a significant stride forward in our
comprehension of partially ionised plasmas.
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While Braginskii (1965) significantly advanced our understanding by ex-
ploring transport processes in both partially ionised and fully ionised plasmas,
subsequent developments have led to the availability of updated formulae.
These newer definitions offer refined predictions, shaping our contemporary
approach to research in this area. Vranjes and Krstic (2013) provide detailed
height-dependent collisional cross sections and collisional frequencies, Vran-
jes (2014) provide comprehensive formulae for viscosity in a partially ionised
plasma, demonstrating - for example - that the neutral shear viscosity in the
photosphere and chromosphere is approximately 5 orders of magnitude larger
than the ion viscosity.

1.4 Phase mixing

The proposition of phase mixing as a mechanism to heat the solar corona was
initially introduced by Heyvaerts and Priest (1983). However, the theoretical
foundation of phase mixing traces back at least as far as 1931, when Maria
Goeppert Mayer (Göppert-Mayer, 2009) explored this mechanism in the field of
nonlinear optics, a branch of optics describing the behavior of light in nonlinear
media. Due to the nature of Alfvén waves and the relative simplicity of their
associated governing equations, phase mixing was predominantly investigated
in connection to these waves, over any other kind.

The requirement for the phase mixing of Alfvén waves to develop in the
solar atmosphere aligns with the same inhomogeneity condition as investigated
by Göppert-Mayer (2009). Phase mixing occurs when Alfvén waves, propagat-
ing on magnetic surfaces, oscillate out of phase with waves on neighbouring
surfaces, resulting in the development of significant cross-field gradients. This
out-of-phase oscillatory behavior arises due to the presence of either an inho-
mogeneous background density or magnetic field profile, or both. Structures
with such properties are found in abundance in the solar atmosphere in mag-
netic bright points, spicules, sunspots, pores, filaments and coronal holes.

Due to magnetic field lines experiencing magnetic tension, waves are strongly
influenced by the behavior of other waves in their vicinity, the extent of the
distortion of each wave is dictated by the variation in the frequencies of nearby
waves as well as other plasma properties such as density and magnetic field
strength. Since the plasmas in which Alfvén waves in the lower solar atmo-
sphere propagate are inhomogeneous, phase mixing plays a fundamental role
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in the way in which an Alfvén wave damps and subsequently dissipates its
energy to heat the surrounding environment.

Observational evidence presented in the studies by Jess et al. (2009b) and
Jafarzadeh et al. (2017) highlighted the existence of Alfvén waves in the lower
solar atmosphere at the base of magnetic bright points, where the surrounding
plasma is partially ionised. One important feature of magnetic bright points,
similar to spicules (He et al., 2009), is there is a clear transversal inhomogeneity
in plasma parameters that influence the Alfvén speed, leading to phase mixing
in the presence of partially ionised plasma. Therefore, investigating phase
mixed Alfvén waves in partially ionised plasma is crucial for a comprehensive
understanding of the associated wave-based heating mechanisms surrounding
these plasma structures.

Heyvaerts and Priest (1983) investigated phase mixed Alfvén waves while
working in the linear regime, assuming an infinite sinusoidal wave driver and
found that the damping length, calculated to be the distance over which the
amplitude decays be e times, was proportional to the frequency of the wave,
the Ohmic diffusion, shear viscosity and local gradient in the Alfvén speed
(more on these dissipative mechanisms in Chapter 2). Increasing any of the
dissipative terms subsequently resulted in the damping length reducing. The
authors found that short period Alfvén waves contribute more significantly to
coronal heating. It is important to note the incomplete account of the transver-
sal gradient in obtaining their solution, by assuming the velocity perturbation
to be a rather regular function of x. These discrepancies were later investigated
by Ireland and Priest (1997), who found increased diffusion of sharp features
when proper numerical treatment (of the second-order spatial derivatives) was
considered. Wave damping theory proposes that the faster waves damp, the
more dramatic the localised heating. Although it is not well understood what
proportion of the waves energy is transferred into heating its surrounding en-
vironment, it is thought that a mechanism that reduces the damping length of
a wave naturally suggests more pronounced heating.

Hood et al. (1997) also investigated the heating of coronal loops by phase
mixing of a continuous sinusoidal driver and found that phase mixing can
maintain a hot coronal loop for a large Lundquist number given by S = LvA0/η,
where L is the typical length scale of the system, vA0 is the typical Alfvén
velocity and η is the Ohmic diffusion coefficient. The Lundquist number is
effectively the magnetic Reynolds number (a dimensionless quantity used in
MHD to characterise the relative importance of the magnetic effects to fluid

22



flow) where the typical velocity scale of the system is the Alfvén speed. They
found maximal Ohmic heating occurred after a few periods of the wave had
propagated, which corresponds to the development of phase mixing.

While assuming an infinite sinusoidal wave driver makes the mathematics
more manageable analytically, in reality, we more often observe periodic wave-
like structures consisting of only one to a few wave periods (Bate et al., 2022),
hence Hood et al. (2002) investigated the damping of propagating phase mixed
Alfvén pulses. These authors used cosine profiles to construct various pulses
with an effective wavelength of 400 km for a half period (pulse) and a whole
period (bipolar pulse). Their numerical investigation revealed that the decay
of these pulses followed an algebraic trend, in contrast to the exponential decay
observed by Heyvaerts and Priest (1983). This investigation gave the first true
insight into the effect phase mixing has on the profile of a pulse. However,
the Ohmic diffusion coefficient assumed was orders of magnitude larger than
classical formula predict.

The use of enhanced dissipative coefficients is frequently encountered in
phase mixing literature. Either authors find themselves invoking dissipative
coefficients large enough to demonstrate significant heating or they conclude
that unrealistic assumptions have to be made for certain plasma and wave
parameters in the model such as the period of the waves. For example, Mo-
canu et al. (2008) found that phase mixed Alfvén waves are far more likely
to energise the solar wind than heating coronal holes, essentially stating that
Alfvén waves will not be damped in the corona. Ruderman and Petrukhin
(2018) increased the value of the classically defined shear viscosity by 6 or-
ders of magnitude to obtain appreciable damping. This increase was made by
invoking the assumption that the plasma is turbulent. Heyvaerts and Priest
(1983) state that a major enhancement in the efficiency of the process [of phase
mixing] is found when the waves are for some reason trapped and phase-mix
in time without propagating away. Such standing waves are highly likely to be
found in coronal loops and are subject to Kelvin-Helmholtz instability (KHI)
(see, e.g., Karpen et al., 1994; Ofman et al., 1994; Karampelas et al., 2017;
Howson et al., 2017b; Guo et al., 2019; Hillier et al., 2024), a hydrodynamic
instability that occurs at the interface between two layers of fluid in relative
motion, characterised by the formation of rolling vortices, which could result
in strong velocity gradients due to consistent wave reflection at loop foot-
points. Browning and Priest (1984) found that the KHI plays an active role in
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expediting the transition of shear Alfvén waves to a turbulent state. This tran-
sition results in the formation of smaller length scales in both the velocity and
magnetic fields, significantly enhancing wave dissipation. The development of
transverse wave-induced Kelvin Helmholtz vortices has been confirmed by re-
cent numerical investigations, (see, e.g., Antolin et al., 2014; Magyar and Van
Doorsselaere, 2016; Howson et al., 2017a,c; Hillier et al., 2019), which leads
to the enhancement of viscosity and the Ohmic diffusion coefficient. More re-
cently, Díaz-Suárez and Soler (2024) investigated the role of phase mixing in
triggering the KHI, expediting the transition of the plasma in a prominence
thread to a turbulent state. While this mechanism was found to not be suf-
ficient to heat such structures, both the phase mixing and turbulent stages
could be seen in high-resolution H-α observations. Similar to Ruderman and
Petrukhin (2018), Pagano and De Moortel (2017) found that in the presence
of enhanced values of the Ohmic diffusion coefficient and very strong foot-
point drivers, sufficient heating to balance radiative losses can be produced
only locally in the area of heating, and for these reasons deemed it unlikely
that phase mixing can contribute on a global scale to the heating of the solar
corona. While working in the linear regime, Prokopyszyn and Hood (2019)
found that such unrealistically large dissipative coefficients were required due
to numerical constraints, and even so predicted damping rates approximately
three orders of magnitude too small to heat the corona. Cargill et al. (2016)
investigated the evolution of an assumed coronal density structure and found
that the assumed density profile is only initially valid as the heating produced
by the damping and dissipation of Alfvén waves caused the density profile
to smooth out, which would subsequently lead to lower levels of phase mix-
ing as time evolves. However, during numerical simulations of coronal loops,
Van Damme et al. (2020) found that chromospheric material evaporated very
slowly and while this evaporation causes a mass increase in the loop, the im-
pact on the density gradient was insignificant, hence the assumption of an
assumed density profile holds much stronger in the chromosphere. It must be
noted that Van Damme et al. (2020) assumed classical values of the various
transport mechanisms and concluded that the phase mixing of Alfvén waves
resulted in relatively mild heating in the shell regions of coronal loops. One
might assume that if the enhanced dissipative coefficients were employed, this
result may not hold. Khomenko et al. (2014) provides a fluid description of
multi-component solar partially ionised plasma, and showcases the important
effect of ambipolar diffusion on the electric current especially at the borders
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of intergranular lanes with strong gradients in plasma density and background
magnetic field, where phase mixing has the potential to be a dominant damping
mechanism. Ebadi and Hosseinpour (2013) investigated phase-mixed standing
Alfvén waves in spicules in the presence of shear flows and found that waves
dissipated within a few periods, confirming the prediction made by Heyvaerts
and Priest (1983) who stated that standing or trapped waves present better
candidates for coronal heating.

Of course, we do not dispute that turbulence is present in both the par-
tially ionised lower atmosphere (Oppenheim et al., 2020) as well as the corona
(Delaboudinière et al., 1995). While turbulence is not a topic included in this
thesis, we clearly have to draw attention to it, due to the implications as-
sumed by previous authors working in the field of phase mixing. Typically,
when studying Alfvén waves, turbulence can occur when Alfvén waves are
partially reflected due to the density gradient at the transition region, leading
to counter propagating waves. These counter propagating Alfvén waves then
interact non-linearly resulting in a turbulent cascade of energy to very small
spatial scales.

This effect has been studied observationally using the Coronal Multi-Channel
Polarimeter (CoMP) by Morton et al. (2015) who studied the Doppler velocity
fluctuations confirming the ubiquity of Alfvénic waves in the corona. Another
instability present in the solar atmosphere is the Rayleigh Taylor instability
(RTI), which occurs when a denser fluid is accelerated into a less dense fluid.
This situation is inherently unstable, that leads to the formation of complex
structures such as spicules and bubbles. RTI drives upflows and impulsive
downflows in Quiescent prominences, leading to turbulent motions. These tur-
bulent prominence motions have been investigated by Hillier et al. (2017) who
used observational data from Hinode Solar Optical Telescope (SOT) to show
that while the heat from the turbulent energy dissipation was inefficient at
heating prominence plasma, the mass diffusion achieved through turbulence
driven reconnection was of the order of the expected value of ambipolar dif-
fusion. Numerical investigations have confirmed that MHD theory predicts
these observations (see, e.g., van Ballegooijen et al., 2011; Hillier et al., 2011;
van der Holst et al., 2014b). More recently, Magyar et al. (2017) interpreted
a turbulent-like behaviour of unidirectionally propagating phase-mixed MHD
waves. Contrasting to the typical view that the generation of turbulence is
restricted to counter-propagating Alfvén waves in compressible MHD. The
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presence of turbulent motions will increase the efficacy of the various dissipa-
tive mechanisms present in the solar atmosphere, however, this is beyond the
scope of this present thesis. With that in mind, we do not consider the effects
of turbulence in our simulations.

1.5 The aim of the thesis

The present thesis aims to study the effects of partial ionisation and plasma
inhomogeneities on Alfvén wave damping, and consequently, the heating asso-
ciated with this damping. This is achieved by deriving and then solving the
governing equation which describes the evolution of propagating Alfvén waves
in a partially ionised plasma describing the conditions in the solar photosphere
and chromosphere (see Chapter 2 for the derivation of the governing equations
employed in the single-fluid and two-fluid approaches). In Chapter 3, we pro-
vide details of the numerical model constructed to solve the various governing
equations derived in Chapter 2. We solve the governing equation modelling a
single-fluid plasma where the effects of partial ionisation are cast in the var-
ious dissipative coefficients as well as the inclusion of Cowling diffusion and
present the results in Chapter 4. In Chapter 5, we investigate the effects of var-
ious wave drivers on the damping of phase mixed Alfvén waves, before finally
tackling the two-fluid approach to the problem of phase mixed Alfvén waves,
allowing for the study of much higher frequency waves than those permitted
in a single-fluid study. In a two-fluid plasma, the effects of partial ionisation
are evident in the relative density ratio between ions and neutrals, the ion and
neutral shear viscosity coefficients as well as the collisional frequency term, all
of which appear in the governing equation. Results of the two-fluid approach
are presented in Chapter 6. We conclude our results in Chapter 7 and propose
future research directions.

1.6 Significance of research

While solving the chromospheric and/or the coronal heating problem may
not have immediate direct consequences back on Earth, future advancements
in understanding the mechanisms that heat plasma could potentially allow
for efficient energy production on Earth. Also, furthering our fundamental
astrophysical knowledge will enhance our understanding of the behavior of
plasma in extreme conditions and help us potentially develop the theory of
MHD further. In addition, any work done to better understand the Sun is
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bound to benefit space weather predictions which is of great importance in
assuring the safety of astronauts and also the vast array of satellites ensuring
the smooth running of day-to-day life we have all grown so accustomed to back
on Earth.
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CHAPTER 2

Partially ionised solar plasmas and their quanti-
tative description

2.1 Introduction

Both space and laboratory plasmas are very often only partially ionised. The
ionisation degree, defined by the relative population of ions and neutrals, mea-
sures the extent of ionisation in a plasma and is usually a spatially dependant
function. For example, the Earth’s ionospheric plasma is a partially ionised
plasma in which the ion density changes over three orders of magnitude be-
tween the D and F layers. At the base of the photosphere (lowest part of
the solar atmosphere), the ratio of the neutral density to the ion density is
∼ 103; then increases with height to reach a maximum value of ∼ 104 at the
top of the photosphere (∼ 500 km) and then decreases to ∼ 1 at an altitude
of ∼ 2000 km, i.e., in the chromosphere (Priest, 2014), before asymptotically
approaching zero in the corona, where the plasma is often assumed to be fully
ionised.

In a partially ionised plasma, constituent particles can interact through
short-range (head-on collisions between neutral particles and between neutrals
and other charged species) and long-range (controlled by electrostatic forces
between the charged particles) collisions. The processes taking place at the
collisions can be categorised into two different regimes: elastic and inelastic
processes. The collisions are called elastic if the internal energies and identi-
ties of the colliding particles are unchanged after the collision. The particle
direction may be changed after the collision, but the total initial momentum
and kinetic energy of the particles are both conserved. In the case of inelastic
collisions the chemical composition of the plasma is not conserved, particles are
created and lost during the collisional processes (e.g., ionisation and recombi-
nation). Collisions are the defining characteristics of a dense partially ionised
plasma, such as the plasma found in the lower solar atmosphere. Having said
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that, it is obvious that a partially ionised plasma can never be classified as an
ideal plasma.

The present thesis deals with elastic collisions only, therefore the nature
and mass of the system are conserved. Strictly speaking, a partially ionised
plasma is an amalgam of six types of particles such as photons, electrons,
positive and negative ions, neutral particles in the ground state and neutral
particles in an excited state. Photons play a very important role in the pro-
cess of ionisation and recombination, however, they will not be considered.
Throughout the present thesis we will assume a uni-thermal plasma consisting
only of Hydrogen, meaning that the only ion that can appear in this system is
the positively charged proton. In a recent investigation, Alharbi et al. (2021)
has shown that in the presence of collisions, the solar partially ionised plasma
reaches a thermal equilibrium in a few collisional times, so it is natural to
consider that Te = Ti = Tn. That is, the temperature of any highly ener-
getic particles quickly homogenises within a few collisions, a small fraction
of a second when considering collisional frequencies typical of the lower solar
atmosphere. For simplicity, we will not consider excited hydrogen atoms, and
all neutral particles will be considered to be in the ground state.

The quantitative description of partially ionised plasmas often requires a
multi-fluid approach (as opposed to the description of the plasma as a collection
of particles in kinetic physics), where all particles of a given type (e.g., neutral
Hydrogen) can be considered as a separate fluid. Given the fluid approach of
the particle mixture, it is natural to expect that the dynamics of each species
will be governed by the mass, the momentum, and the energy conservation
laws under the action of various forces. A multi-fluid model enables us to
study the consequences of different plasma components often having, at the
same spatial point, different velocities, temperatures and pressures.

2.2 General considerations

The partially ionised plasma - considered as a fluid- is going to be characterised
by the thermodynamics and dynamical parameters Tα, pα, nα and vα repre-
senting the temperature, pressure, number density and velocity of the species
α (electrons α = e; ions α = i; neutrals α = n), respectively. In addition, the
mass density of particle type α is defined as ρα = nαmα, with mα being the
mass of the particle. We should note that since we are dealing with a hydro-
gen plasma, mi ≈ mn, me/mi ≈ 1/1837 and ne = ni. These thermodynamical
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quantities are connected via the equation of state of the form pα = nαkBTα,
where kB is the Boltzmann constant.

The total density and pressure of the system can be defined as

ρ =
∑
α

ρα ≈ ρi + ρn, p =
∑
α

pα ≈ 2pi + pn. (2.1)

The velocity of the centre of mass is defined as the sum of velocities
weighted by the importance of various particles in the system, i.e.

v =
1

ρ

∑
α

ραvα ≈ ξivi + ξnvn (2.2)

where we took into account ρe|ve| ≪ (ρi|vi|, ρn|vn|) (in virtue of the mass
difference).

The quantities ξi and ξn denote the relative densities of ions and neutrals
compared to the total density of the plasma and they are defined as

ξi =
ρi
ρ

≈ ni

ni + nn

, ξn =
ρn
ρ

≈ nn

ni + nn

, (2.3)

so that ξi + ξn = 1. With these quantities, we can define the ionisation degree
of the plasma as

µ =
1

1 + ξi
, (2.4)

which means that ξi = (1/µ)− 1 and ξn = 2− 1/µ. The quantity µ will play
an important role in our investigation when we discuss the efficiency of the
phase mixing in terms of the ionisation degree of the plasma. The parameter
µ varies between the values of 1/2 for a fully ionised plasma and 1 for a fully
neutral fluid.

The degree of ionisation of the solar atmospheric plasma can be derived
from standard solar atmospheric models. Here we employ the AL C7 model
(see Avrett and Loeser 2008, for more details) that provides values of neutral
hydrogen and electron number densities with height and temperature. The
variation of the ionisation degree, together with the variation of temperature
with height, is shown in Figure 2.1. This dependence of the ionisation degree
with height clearly shows that the photosphere is mostly neutral, the chromo-
sphere has a more balanced population of ions and neutrals, while beyond the
transition region, in the corona, the plasma is practically fully ionised.

Understanding the variation in the ionisation degree and how it relates
to the magnitudes of the various dissipative coefficients present in a partially
ionised plasma is essential when studying the efficiency of phase-mixing on
damping Alfvén waves. This is discussed later in this chapter.
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Figure 2.1: The ionisation degree and plasma temperature are plotted with
height according to the AL C7 model (Avrett and Loeser, 2008) for heights
above the solar surface up to 3000 km.

2.3 Governing equations in partially ionised
plasmas

By leveraging our Sun as a plasma laboratory, we can apply insights gained
from studying the behavior of partially ionised plasmas, informed by the MHD
equations, to investigate how plasmas behave in various environments such as
the chromosphere, photosphere, corona, solar wind and astrophysical phenom-
ena far beyond our solar system. Understanding these equations can not only
shed light on the inner workings of our Sun but also has the potential to elu-
cidate the dynamics of accretion disks around black holes and the processes
inherent in star and galaxy formation. The MHD equations provide insights
into the complex behaviour of waves, and understanding these processes is of
the utmost importance for numerical modelers aiming to understand atmo-
spheric heating.

When presenting and discussing the MHD equations, we should keep in
mind that the set of equations needed to describe the dynamics of plasma
depends on the range of frequencies of interest. Based on the strength of the
electrostatic coupling between ions and electrons, very often it is customary to
consider that the charged particles form a single fluid that interacts through
close-range collisions with neutrals. This framework is referred to as the two-
fluid approach and is applicable for dynamical changes whose frequencies are
close to the collisional frequency of neutrals with the charged particles. Given
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the mass difference between electrons and neutrals, the collisions between them
do not involve a large momentum exchange, therefore, these collisions are usu-
ally neglected when compared with the collisions of ions and neutrals. When
the frequencies of interest are much smaller than the collisional frequency be-
tween particles, one is able to describe the dynamics of the plasma with a
single-fluid description, where physical parameters can be seen as averages
of the values of these parameters for each species. The single and two-fluid
approaches will be used throughout the present thesis and the following sec-
tions will be dedicated to the introduction and discussion of the equations that
govern the spatial and temporal variations of the plasma parameters.

2.3.1 Mass conservation equation

As we stated earlier, various fluid equations (mass, momentum, energy conser-
vation) stay at the core of our governing equations. In the presence of elastic
collisions, the mass conservation law of each species suggests that for each
species we have

∂ρα
∂t

+∇(ραvα) = 0. (2.5)

In a two-fluid plasma, the addition of the densities of charged particles as in
Equation (2.1), and defining the velocity of the centre of mass as in Equation
(2.2), results in the two mass conservation laws

∂ρc
∂t

+∇(ρcvc) = 0 (2.6)

and
∂ρn
∂t

+∇(ρnvn) = 0, (2.7)

where the indices c and n stand for the charged and neutral fluids, respectively.
Due to the relative mass difference of ions to electrons, the subscript c, in
Equation (2.6), can be interchanged with subscript i without loss of generality.
Summing all densities and velocities as defined by Equations (2.1)–(2.2) results
in the mass conservation law of the plasma in a single-fluid approximation given
by

∂ρ

∂t
+∇(ρv) = 0. (2.8)

In this approach, the characteristics of each constituent species are neglected
and the ensemble of particles is treated as one single fluid. The law of conser-
vation of mass states that if a physical system is closed to all external transfers
of mass, this quantity must remain constant over time, as the system’s mass
cannot change.
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2.3.2 Momentum conservation equation

The momentum equations, often referred to as the Navier-Stokes equations,
describe the balance of forces acting on a magnetised plasma in the presence
of an electromagnetic field, taking into consideration the effects of pressure,
plasma velocity and the magnetic field.

For simplicity we assume that the characteristic length scales involved in
the problems we are going to discuss later are shorter than the gravitational
scale-height, meaning that the effect of the gravitational force will be neglected.
Similarly, we are going to neglect other non-inertial forces, such as the Coriolis
force. The forces that can act upon the system depend on the type of particle
we are dealing with. While charged particles are affected by electromagnetic
forces, the forces that act on neutral particles are similar to the standard forces
that can influence the dynamics of a fluid. Therefore, the momentum conser-
vation laws have to be written separately for charged and neutral particles. In
the most general form, the momentum conservation equation takes the form
(Khomenko et al., 2014)

mαnα
dαvα

dt
= −∇p̂α + nαZαe (E+ vα ×B) +

∑
α′

Rα′α (2.9)

where dα/dt = ∂/∂t + vα · ∇ is the convective derivative, p̂α is the pressure
tensor, Zα is the electric charge of particles (Ze = −1, Zi = 1, Zn = 0), e

is the elementary charge, E is the electric field and B is the magnetic field.
The term on the left-hand side of this equation is often labelled as the inertial
term, the terms on the right-hand side are the pressure force, the electric and
magnetic force (Lorentz force) acting upon charged particles, while the very
last term is the net frictional drag force due to collisions of species α′ with
species α (clearly, Rαα = 0 as a species cannot exert drag on itself). The
frictional terms take the form

Rα′α = να′αmα′nα′(vα′ − vα), (2.10)

so that in the frame of reference of particle α, the above expression denotes
the drag force on particles α′, which have momentum mα′nα′vα′ measured in
this frame of reference and is calculated by multiplying by the rate (ναα′) at
which this momentum is lost by collisions. Since the collisions are elastic,
Rαα′ +Rα′α = 0. This friction acts such that the faster species will be slowed
down by the slower species and there will be no friction between species if they
have the same velocity.
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Throughout the present thesis, we are going to consider only elastic colli-
sions. The expressions for the collisional frequencies between various particles
are given by (see, e.g., Braginskii, 1965; Vranjes, 2014)

νin = 4nnσin

(
kBT

πmi

) 1
2

, (2.11)

νen = nnσen

(
8kBT

πme

) 1
2

, (2.12)

νnn = 4nnσnn

(
kBT

πmn

)1/2

(2.13)

νei =
nee

4Λ

3m2
eϵ

2
0

(
me

2πkBT

)3/2

= νee = νii

(
mi

me

)1/2

, (2.14)

where the number densities of particle α are given by nα in m−3 and the
temperature is given in Kelvin (K). We have also used mi ≈ mn and assume
that the drift velocity is small compared to the thermal velocity. In the case
where this is not satisfied, the feedback of the drift velocity on the collision
frequency can result in a decrease in the diffusion of the magnetic field com-
pared with the standard ambipolar diffusion approximation, see Hillier (2024)
for more details. The quantities σα′α denotes the collisional cross-section of
particle α′ and α. The collisional cross-sections that appear in the above rela-
tions are (weakly) height-dependent due to the fact that these values depend
on the energy of colliding particles, i.e., their temperature (see, e.g., Vranjes
and Krstic, 2013). However, for the sake of the present analysis, we are going
to consider them as constant and here these take the values σin = 3.5× 10−19

m2, σen = 10−19 m2, σnn = 2.6 × 10−19 m2. In the above relations, ϵ0 is the
electric permittivity and

Λ = ln

[
8.48π

n
1/2
i

(
ϵ0kBT

e2

)3/2
]

(2.15)

is the Coulomb logarithm describing the cumulative effect of many small angle
deflective collisions. In the solar atmosphere, this quantity varies weakly, tak-
ing values between 10 and 22. It is interesting to note that while all collisional
frequencies involving neutrals (head-on collisions) have a T 1/2 dependence on
the temperature, while the collisions between charged species behave as T−3/2.
That means that, in the multi-million degree corona, the collisional frequency
of these particles becomes very small. Diffusivity due to collisions can be
thought of as the spreading out of energy often used to describe the rate at
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which particles, energy, or other quantities move from regions of higher con-
centration or intensity to regions of lower concentration or intensity.

The variation of the collisional frequencies with height is based on the AL
C7 atmospheric model (Avrett and Loeser, 2008) and are shown in Figure
2.2. It is clear that with the drop in neutral density with height, the col-
lisional frequencies of charged particles with neutrals tend toward zero, and
only the collisions between the charged particles remain a coupling mechanism
for higher heights. It is also clear that in the chromosphere (z > 750 km)
the coupling between ions and electrons is much stronger than than any other
coupling, which constitutes the basis of the two-fluid approximation, where
charged particles are treated as one single fluid.

Figure 2.2: The ion-neutral, electron-neutral and electron-ion collisional fre-
quencies are plotted as functions of height above the solar surface based on
the AL C7 solar atmospheric model (Avrett and Loeser, 2008).

Following closely the reduction of the momentum conservation equations
for the three species as described in detail by Khomenko et al. (2014), it can
be shown that when the charged fluids are strongly coupled, the two-fluid form
of the momentum conservation equation becomes

ρi
dvi

dt
= −∇pc +

1

µ0

(∇×B)×B+ ρiνin(vn − vi) +∇ · πc, (2.16)

ρn
dvn

dt
= −∇pn − ρiνin(vn − vi) +∇ · πn, (2.17)
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where πc and πn are the non-diagonal components of the pressure tensor de-
scribing the viscosity for the charged and neutral fluids, respectively, and µ0

is the magnetic permeability of free space. We have once again assumed any
contribution dependent on collisions with electrons to be small in comparison
with collisions between ions and neutrals, given the substantial mass difference
between electrons and other particles. The expression of the viscosity coeffi-
cients for these plasmas will be discussed later. Note we have used the formula
(Vranjes, 2014)

νab =
mbnb

mana

νba, (2.18)

to rearrange the neutral-ion collisional frequency for consistency of notation
in the above equations. Finally, after defining the total density and the centre
of the mass velocity as in Equations (2.1) and (2.2), the momentum conser-
vation equation for a single-fluid plasma becomes (Zaqarashvili et al., 2011;
Khomenko et al., 2014)

ρ0
dv

dt
= −∇p+

1

µ0

(∇×B)×B+∇ · π − ρ0∇ · (ξiξn(vc − vn)
2). (2.19)

The above equation does not contain information about the collisions taking
place between particles as the temporal scales involved in this approximation
are much longer than the typical collisional times between particles. The
off-diagonal terms of the pressure tensor, π, give rise to a viscous force that
is obtained after combining the viscous forces of the charged particles and
neutrals following the method described above. The last term in Equation
(2.19) is due to the inertia of various species and, under solar atmospheric
conditions, is very small. In the linear approximation (as used in the present
thesis), this term vanishes.

2.3.3 Energy equation and equation of state

The last equations that connect the thermodynamical parameters of the plasma
to the dynamic quantities are the energy conservation equation and equation
of state. These equations involve the plasma density, pressure and temperature
with the particle velocities.

The energy equation for each species α can be written as

∂pα
∂t

+ vα · ∇pα + γpα∇ · vα = (γ − 1)Qα, (2.20)
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where γ is the adiabatic index (taken to be 5/3 throughout the present thesis)
and Qα stands for the heat source associated with the species α and they are
defined as Qα =

∑
β Qαβ, with Qαβ being the heat generated in the fluid made

up of particles α as a consequence of collisions with particles of species β. Of
course, one could take several dissipative mechanisms that could give a general
expression of Qα as in the study by Khomenko et al. (2014), however, here we
are going to restrict ourselves to specific processes that will be discussed in the
present study.

Let us introduce the electric current defined as j = −ene(vi−ve) = −eneu

that appears due to the drift velocity of electrons with respect to positive ions,
here denoted by u. In addition we define the drift velocity, w between ions and
neutrals as w = vi−vn. When charged particles are strongly coupled, the two-
fluid energy equations in the most general form are defined as (Zaqarashvili
et al., 2011)

∂pc
∂t

+ vi · ∇pc + γpc∇ · vi = (γ − 1)
αei

e2n2
e

|j|2 + (γ − 1)αinw · vi+

+(γ − 1)αen(ve − vn) · ve +
(j · ∇)pe

ene

+ γpe∇
j

ene

, (2.21)

and the equivalent energy equation for the neutral fluid is given by

∂pn
∂t

+ vn · ∇pn + γpn∇ · vn = −(γ − 1)αinw · vn+

+(γ − 1)αen(vn − ve) · vn. (2.22)

where αab is the coefficient of friction between particle a and b and is given by

αab = namaν
′
ab, ν ′

ab =
mb

ma +mb

νab. (2.23)

These equations show that the heat source terms are all nonlinear and they
appear due to the collisions between particles.

When the coupling between particles is very strong and a single-fluid frame-
work is used to describe the evolution of the plasma, the energy conservation
law can be written as (Zaqarashvili et al., 2011)

∂p

∂t
+ (v · ∇)p+ γp∇ · v − ξi(w · ∇)p− γp · (ξiw) + (w · ∇)pc + γpc∇ ·w =

= (γ − 1)
αei + αen

e2n2
e

|j|2 + (γ − 1)αn|w|2 − (γ − 1)
2αen

ene

j ·w +
j · ∇pe
ene

+

+γpe∇ ·
(

j

ene

)
, (2.24)
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where αn is a weighted collisional term given by

αn = αin + αen (2.25)

and all the other quantities have been defined earlier. The first term on the
right-hand side of Equation (2.24) describes the Joule heating that appears
due to the resistance experienced by electrons when colliding with ions and
neutrals, the second term is the heating due to the loss of kinetic energy of
particles due to collisions, the third term is due to the misalignment between
the electric currents and the relative motion of ions, the fourth term appears
due to the gradients of electron pressure, and finally the last term is due to the
divergence of electric currents. In practice, under solar atmospheric conditions,
some of these terms are too small to be worth considering (for details see, e.g.,
Khomenko et al., 2014; Ballester et al., 2018).

The relationship that connects the thermodynamical quantities (density,
pressure and temperature) is the equation of state. For a thermalised plasma
(i.e., when the temperature of constituent species are equal) the equation of
state for each species becomes pα = nαkBT . We assume a quasi-neutral hydro-
gen plasma, such that ne = ni, therefore for a two-fluid plasma the equations
of state for a charged and neutral species become

pc = (ni + ne)kBT = 2nikBT, pn = nnkBT, (2.26)

where the quantity, p, denotes the pressure of the mixture and the subscript c
and n refer to the charged and neutral species, respectively. Finally, when the
coupling between all particles is high, a single-fluid approximation describes
the state and dynamics of the plasma. Then, the equation of state can be
written as

p = (2ni + ne)kBT. (2.27)

2.3.4 Ohm’s law and the induction equation

In addition to the fluid equations presented earlier, the plasma is also subject
to the Maxwell equations that connect the spatial and temporal evolution of
the electric and magnetic fields. In order to derive Ohm’s law for a two-fluid
plasma, we would need to go back to the equation of motion of electrons
(Equation 2.9, with α = e). Given their small mass, the electron inertia term
can be neglected, therefore the momentum equation for electrons can be re-
arranged as

E+ ve ×B = −∇pe
ene

+
1

ene

(αei(vi − ve) + αen(vn − ve)). (2.28)
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Next, we use the expression of electric current

j = −ene(ve − vi) (2.29)

to express the electron velocity in terms of the ion velocity. As a result, the
Ohm’s law becomes

E+ vi ×B+
1

ene

∇pe =
αe

e2n2
e

j− αen

ene

(vi − vn) +
1

ene

j×B. (2.30)

Using Faraday’s law of induction (one of Maxwell’s laws), ∂B/∂t = −∇× E,
Equation (2.30) can be written as

∂B

∂t
= ∇× (vi ×B) +∇×

(
∇pe
ene

)
−∇× (η∇×B)−

−∇×
(
j×B

ene

)
+∇×

(
αen(vi − vn)

ene

)
(2.31)

where η is the coefficient of Ohmic diffusion connected to electrons. As the
above relation shows, in a partially ionised plasma the electron resistivity is
due to the collisions of electrons with both ions and neutrals, more details are
given in Section 2.4.3.

In the above equation, the first term on the right-hand side describes the
effect of ions being coupled to the magnetic field (often called the advective
term), the second term is the Biermann battery term, which occurs due to the
electron pressure (in general this term is neglected due to its smallness), the
third term is the diffusive term, the next term is the Hall term that gives rise
to dispersion over ion inertial lengths, and finally, the last term describes the
induced magnetic field due to the relative motion of ions and neutrals.

In order to determine Ohm’s law in a single-fluid plasma (and the associ-
ated induction equation) when particles are strongly coupled via collisions, we
should keep in mind that the equations of motion for species should be written
in terms of the center of mass velocity. Following the derivation of Ohm’s law
in a single-fluid plasma as presented by Khomenko et al. (2014), we add the
electron and ion momentum equations multiplied by ξn with the momentum
equation for neutrals, multiplied by −ξi. As a result, the relative velocity of
ions compared to neutrals can be written as

w = −G

αn

+
ξn
αn

j×B+ ϵ
j

ene

, (2.32)
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where ϵ = αen/αn ≪ 1 and we considered that the electric currents are sta-
tionary, meaning that all inertial terms are neglected. The pressure function,
G in the above equation is defined as

G = ξn∇(pe + pi)− ξi∇pn.

The pressure of the species can be written in terms of the total pressure of the
mixture

pe = pi =
ξi

ξi + 1
p, pn =

ξn
ξi + 1

p.

As a result, the pressure function, G can be written as

G = 2ξn∇
(

ξip

ξi + 1

)
− ξi∇

(
ξnp

ξi + 1

)
(2.33)

Using the expression of electric current, the electron velocity can be expressed
in terms of the velocity of the centre of mass and the relative velocity of ions
with respect to neutrals as

ve = v + ξnw − j

ene

. (2.34)

As a result, Ohm’s law in a single-fluid partially ionised plasma can be written
as

E+ v ×B =
ϵG−∇pe

ene

+ jσ +
1− 2ϵξn

ene

j×B+

+
ξn
αn

[G×B− ξn(j×B)×B] ,

(2.35)

where the quantity σ is the conductivity of electrons and it is defined as

σ =
nee

2

meνe
, (2.36)

where νe is the collisional frequency of electrons. We can eliminate the electric
field from the above equation by means of Faraday’s law of induction which
leads to the induction equation in a single-fluid plasma

∂B

∂t
= ∇× (v×B)−∇×

(
ϵG−∇pe

ene

)
−∇× (η∇×B)−∇×

(
ξn
αn

G×B

)
−

−∇×
[
1− 2ϵξn
eneµ0

(∇×B)×B

]
+∇×

{
ξ2n

µ0αn

[(∇×B)×B]×B

}
. (2.37)

The terms that appear on the right-hand side of Equation (2.37) are the convec-
tive term, Biermann’s battery term, Ohm’s diffusion, the diamagnetic current
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term, Hall’s diffusion and ambipolar diffusion, respectively. Under solar atmo-
spheric conditions the battery term is less important (relevant in the presence
of large electron pressure), however, it provides a means for magnetic field
generation due to electron pressure. The Ohmic diffusion term is due to the
collision of electrons with ions and neutrals and describes the dissipation of
field-aligned currents. The ambipolar diffusion (that appears mainly due to the
collisions of ions with neutrals) describes the dissipation of currents that are
perpendicular to the ambient magnetic field. The Hall effect arises in a plasma
when, unlike ions, electrons are able to move together with the magnetic field.
The drift of electrons generates perpendicular currents (also known as Hall
currents), however, this term is responsible for the introduction of additional
length scales in the problem of the order of the ion inertial length. That is why,
the Hall term describes dispersion, rather than dissipation. Although the Hall
term can be, in principle, present even in fully ionised plasmas (at frequen-
cies between the electron and ion cyclotron frequencies), in a partially ionsed
plasma the collisions between ions and neutrals are capable of enhancing the
magnitude of this term as collisions with neutral particles decouple ions from
the magnetic field.

Under the single-fluid MHD approximation, and when disregarding inertial
and Hall terms, a cutoff wavenumber emerges for Alfvén waves travelling within
a partially ionised plasma (Zaqarashvili et al., 2012). This arises when the real
part of the Alfvén frequency reaches zero, resulting in a non-oscillatory mode.
However, this phenomenon is purely a methodological artefact stemming from
the necessary approximations to derive the conventional single-fluid description
from the more comprehensive three-fluid equations (Khomenko et al., 2014).
In contrast, a physical cutoff wavenumber exists for standing waves under the
two-fluid approach. This occurs when the density ratio of neutrals to ions
(ρn/ρi) surpasses a threshold of 8, indicating a plasma dominated by neutrals.
Notably, this condition manifests for ionisation degrees (µ > 0.9). Conversely,
when examining propagating waves using a two-fluid approximation, no cutoff
frequency is apparent. This absence is due to the presence of static evanescent
perturbations, a characteristic solely observed when the parallel wavenumber
(kz) is real and the wave frequency (ω) is purely imaginary—a scenario incom-
patible with propagating waves (Soler et al., 2013).

Finally, the diamagnetic current term (proportional to ∇pe × B) couples
the magnetic field evolution with pressure gradients and its effect is larger for
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intermediate values of the ionisation fraction since G vanishes when we con-
sider a fully ionised or fully neutral plasma. Focusing only on the leading order
terms in the induction equation (diffusion term, Hall term and the ambipolar
diffusion term), we present the variation of the coefficients that describe the
magnitude of these terms in the solar atmosphere in Figure 2.3. While in
the photosphere the Ohmic diffusion and Hall coefficient are much larger than
the ambipolar diffusion coefficient, in the solar chromosphere the ambipolar
diffusion coefficient becomes dominant, and this discrepancy in the values of
dissipative coefficients stays at the core of our investigation.

Figure 2.3: The variation of the coefficients that describe the magnitude of the
Ohmic diffusion term, Hall term and the ambipolar diffusion term as a function
of height above the solar surface, based on the VAL C solar atmospheric model
Vernazza et al. (1981). This plot has been adapted from Khomenko et al.
(2014).

Finally, the equations must be complemented by the solenoidal condition
(or Gauss’ law for magnetism) given by

∇ · B = 0, (2.38)

which requires that the magnetic field must consist of closed loops with no
sources or sinks, ensuring the conservation of magnetic flux. In other words,
this condition requires that any magnetic field line that enters a given volume
must exit that volume. This condition remains unchanged when working with
non-ideal (resistive) MHD.
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2.4 Dissipative processes in partially ionised plas-
mas

A realistic description of plasma contains terms that describe transport mecha-
nisms that owe their existence to, in the classical picture, collisions, small-scale
turbulences or wave-particle interactions. In the present thesis, we are going
to concentrate on collisional processes only. The problem of dissipation (also
known as transport) in partially ionised plasmas was discussed in detail in pio-
neering studies such as Braginskii (1965) and Vranjes (2014). Dissipative pro-
cesses (e.g., viscosity, diffusion, thermal conduction and collisional damping)
are mechanisms through which momentum is lost and leads to an attenuation
of the amplitudes of physical variables.

On a microscopic level, all dissipative processes considered by us can be
attributed to the collision of particles, resulting in the conversion of kinetic and
magnetic energy into thermal energy. That is why it is natural to expect that
all the dissipative coefficients we are going to consider depend on the collisional
frequency between particles. It is evident that the first requirement that needs
to be fulfilled in order to consider dissipative processes is that the mean free
path of particles (the average distance between two collisions) has to be smaller
than the spatial scales of the problem we are investigating and larger than the
cyclotron radius of the charged particles. As a consequence of this requirement,
particles are tied to magnetic field lines and travel long distances along them
between each collision. This leads to heat and momentum transport, which is
primarily directed along the local magnetic field direction. As a consequence
transport mechanisms become anisotropic, with different heat and momentum
transfer along and across the magnetic field. Secondly, we only consider cases
when the collisional frequency of particles is much less than the cyclotron
frequency of charged particles, ωcα = eB/mα. The transfer of momentum via
collisions between particles has been discussed at length in Section 2.3.2. In
this section, we are going to concentrate on the other dissipative mechanisms
that are relevant to our research, in particular viscosity, Ohmic diffusion and
Ambipolar diffusion. In the partially ionised chromosphere, the dissipative
mechanisms are greatly enhanced by the presence of neutrals.

In order to make the treatment of waves as simple as possible, it is com-
monly assumed that the role of dissipative mechanisms in solar plasmas, such
as diffusion and viscosity, are negligible which simplifies the governing equa-
tions. In the absence of dissipative processes, the MHD equations are referred
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to as the ideal MHD equations, which have been studied extensively. However,
the consideration of dissipation in the governing equation can introduce com-
pletely new physics and a new framework in which dynamical processes can be
described. Phenomena such as shock waves, dissipative instabilities, plasma
energisation and solar wind acceleration, cannot be described accurately in an
ideal plasma. As dissipation is an essential ingredient for our analysis, we are
going to introduce the details of each of these mechanisms separately.

2.4.1 Viscosity in partially ionised plasmas

As mentioned earlier in Section 2.3.2, viscous forces in the momentum equa-
tions of various species appear as a consequence of the divergence of the off-
diagonal terms of the pressure tensor. When the diagonal terms from this
tensor are removed, the remaining tensor is known as the viscosity tensor.
Assuming that flow speeds are comparable with the particles’ thermal speed,
viscosity can be understood as the flux of momentum and represents the various
frictional forces at play between two layers of adjacent fluids in relative motion,
i.e., the resistance of a fluid to motion or deformation. The anisotropic viscos-
ity in a partially ionised plasma was described in great detail in the pioneering
study by Braginskii (1965). In a plasma, where the direction of the magnetic
field defines a preferential direction, the viscosity tensor is more complicated,
as the transport of momentum occurs at different rates in different directions.
In the most general case, the viscosity tensor has five terms, among which the
first term is called the kinematic or compressional viscosity, and the second
and third terms represent the shear viscosity (for details see, e.g., Braginskii,
1965; Vranjes, 2014).

By their very nature, Alfvén waves do not experience compressional viscos-
ity. In a magnetically dominated plasma, such as the chromosphere, Alfvén
waves are affected by shear viscosity that originates from a random walk trans-
port of momentum with a step size equal to the Larmor radius. In a partially
ionised plasma, the viscosity of the fluid contains contributions from each
species. However, in uni-thermal plasmas, the electron shear viscosity can
be negligibly small (proportional to me/mi). Therefore the contribution to-
wards the shear viscosity (ζ) can be considered as the sum of the ion and the
neutral shear viscosity coefficients given by

ζi =
nikBTτi

2

∆γi
∆2 + (ωciτi)2

, (2.39)
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and
ζn =

nnkBTτn
2

∆γn + (ωciτi)
2

∆2 + (ωciτi)2
, (2.40)

where ωci = eB0/mi is the ion cyclotron frequency, B0 is the background
magnetic field intensity and τi and τn are the ion and neutral collision times,
respectively. The inverse of these quantities (i.e., the collisional frequencies)
are given by

τ−1
i = 0.3τ−1

ii + 0.4τ−1
in + δiτ

−1
ie (2.41)

and
τ−1
n = 0.3τ−1

nn + 0.4τ−1
ni + δnτ

−1
ne (2.42)

where δα = me/mα for particle α with α ̸= e, τab being the collisional times
between particles a and b that can be calculated using the expressions of the
collisional frequencies given by Equations (2.11)–(2.14). The collisional times
defined above contain contributions from the collisions between ions and neu-
trals with other species and also self-interaction. In addition, the quantities
∆, γi and γn are given in terms of the ionisation degree of the plasma and
ratios of various collisional frequencies as

∆ = 1− 1

(3νii/νin + 4)(3νnn/σdνin + 4)
(2.43)

where σd = (1−µ)/(2µ−1) = ξi/ξn is the relative number density of ions with
respect to the number density of neutrals and γi and γn are given as

γi = 1 +
σd

3νnn/νin + 4σd

, γn = 1 +
σd

3νii/νin + 4
. (2.44)

The quantities ζi and ζn are converted to the appropriate units by dividing by
the typical density associated with the ionisation degree used to calculate the
other quantities. Under chromospheric conditions the neutral shear viscosity
is many orders of magnitude larger than the corresponding value for ions (see
Figure 2.4), therefore, when considering the total shear viscosity in a single-
fluid plasma, the ion shear viscosity can also be neglected. Figure 2.4 displays
the variation of the neutral and shear viscosity coefficients as a function of
height above the solar surface, where the relative plasma parameters required
to calculate these coefficients are taken from the AL C7 atmospheric model
(Avrett and Loeser, 2008), assuming a constant magnetic field of 100 Gauss.
As a result, the shear viscosity coefficient used in the single-fluid study is given
by Equation (2.40).
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Figure 2.4: The variation of the neutral and ion shear viscosity coefficients with
height assuming a constant magnetic field of 100 G. The plasma parameters
are taken from the AL C7 atmospheric model (Avrett and Loeser, 2008).

2.4.2 Ambipolar diffusion

The ambipolar diffusion term arises in the induction equation when accounting
for the influence of neutrals in a single-fluid partially ionised plasma. Due to
their lack of interaction with magnetic forces, and therefore the Lorentz force,
neutrals undergo partial decoupling from the magnetic field, and hence, the
magnetic field diffuses through the neutral gas. The charged component of the
plasma, i.e., ions and electrons, gyrate around the magnetic field lines, while
neutrals, devoid of such gyroscopic motion, engage in random collisions with
charged particles, contributing to the dissipation of wave energy. Working
under the frequency regime of a single-fluid plasma, the effects of ambipo-
lar diffusion are cast in the generalised Ohms law. Equation (2.35) can be
rewritten in the form

E+ (v×B) =
1

σ

∇×B

µ0

− ξ2n
αn

[
((∇×B)×B)×B

µ0

]
=

1

σ
j+

ξ2nB
2
0

αn

j⊥, (2.45)

where σ is the conductivity due to electrons (defined earlier in Equation 2.36).
Equation (2.45) states that ambipolar diffusion corresponds to the diffusion

of currents perpendicular to the magnetic surfaces, while Ohmic diffusion is
connected to the diffusion of both parallel and perpendicular currents to the
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magnetic field. For a hydrogen plasma, the coefficient of ambipolar diffusion
is given by

ηA =
ξ2nv

2
A

νin + νen
. (2.46)

It is clear then, that for a fully ionised plasma, ηA = 0. Ambipolar diffusion
in a two-fluid plasma also refers to the process where ions and neutrals drift
relative to each other due to the influence of magnetic fields. However, this
effect is captured by the differences in fluid velocities rather than a coefficient.

2.4.3 Ohmic diffusion

The Ohmic diffusion coefficient, also known as magnetic diffusion, in a partially
ionised plasma is dependent on the collisional frequencies of electrons with ions
and neutrals. Its value is given by

η =
me(νei + νen)

e2neµ0

. (2.47)

Ohmic diffusion is a measure of how easily the magnetic field lines can
penetrate and propagate within the plasma, this can also be thought of as the
resistance to motion due to the magnetic field. The expression of this coefficient
clearly shows that in a partially ionised plasma, the diffusion is enhanced by
the presence of neutral particles since the magnetic diffusion is caused not
only by the collisions between electrons and ions but also by the collisions
between electrons and neutral particles. Under the typical conditions of the
quiet Sun, magnetic diffusion is determined mostly by the electron-neutral
collisions in the photosphere, and mostly by the electron-ion collisions in the
upper chromosphere. Typical values for each of the dissipative coefficients
discussed are presented below in Figure 2.5 considering a constant magnetic
field of 100 G assuming a standard AL C7 solar atmospheric model (Avrett and
Loeser, 2008). Clearly, in the photosphere (the first 500 km above the solar
surface) Ohmic diffusion is the dominant dissipative effect due to the high
concentration of neutrals. In the solar chromosphere the ambipolar diffusion
becomes dominant (by several orders of magnitude), due to the decrease in the
number of neutrals and relative increase in the number of charged particles.
For the physical problem discussed in the present thesis dissipation is a key
ingredient, as in the absence of these processes damping of waves cannot occur.

The focus of this thesis is on Alfvén waves, which propagate in an incom-
pressible plasma and do not perturb the plasma density, hence, we may neglect
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Figure 2.5: The ambipolar diffusion coefficient, Ohmic diffusion coefficient
and total shear viscosity coefficient are plotted as functions of height above
the solar surface for a constant magnetic field of 100 G. The calculations were
carried out considering an AL C7 standard atmospheric model (Avrett and
Loeser, 2008).
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the pressure gradient. Equally, we assume Alfvén waves do not perturb ther-
modynamical quantities, so, the equations of continuity and energy together
with the equation of state will be redundant. These facts will greatly simplify
the modelling challenge. As we specified earlier, for simplicity, we also neglect
the effects due to gravity, which plays a second-order role in the investigation
of damping phase mixed Alfvén waves in partially ionised plasmas. Note that
the gravitational scale height in the fully ionised coronal plasma is usually
orders of magnitude larger than the length scales of interest (tens of Mm for
T = 106 K) and hence plays a very minor role, however, in a chromospheric
plasma, this is not the case, since the gravitational scale height is much smaller
(a few hundred km for T = 104 K). Gravity stratification works to produce a
vertical density gradient in the plasma resulting in a growth in the amplitude
of Alfvén waves due to the reduced interaction of the wave with the medium,
meaning there are fewer particles to cause resistance to motion. The inclu-
sion of vertical stratification is beyond the scope of this present thesis and is
presented in Chapter 7 as a direction for future research.

As a result, the relevant equations that will be used to study the problem
of phase mixed Alfvén waves in partially ionised plasmas will be

ρ0

(
∂v

∂t
+ v · ∇v

)
= j×B+ ζ∇2v, (2.48)

and

∂B

∂t
= ∇× (v ×B) + η∇2B+∇×

{
ηA
|B|2

[(∇× B)× B]× B
}
, (2.49)

in a single-fluid plasma, while in a two-fluid framework, the governing equa-
tions will be written as

ρi

(
∂vi

∂t
+ vi · ∇vi

)
= j×B+ ρiνin(vn − vi) + ρiζi∇2vi, (2.50)

ρn

(
∂vn

∂t
+ vn · ∇vn

)
= −ρiνin(vn − vi) + ρnζn∇2vn, (2.51)

and
∂B

∂t
= ∇× (vi ×B), (2.52)

where ζi and ζn are the shear viscosity coefficients given by Equations (2.39)
and (2.40), respectively.
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2.5 Linearised MHD equations

The MHD equations presented in the previous section pose a great challenge
as these contain quadratic and cubic nonlinear terms, making their mathe-
matical handling rather difficult. One way to circumvent this difficulty is to
consider only small amplitude changes in the variables. The physical system
consists of two stages: (i) the equilibrium state where all forces are balanced,
and plasma elements can be static, stationary and homogeneous, and (ii) a
perturbed state, when all physical quantities are perturbed so that they can
be written as g = g0+g1 where g0 denotes an equilibrium value and g1 denotes
a small perturbation. Given the “smallness” of perturbations, any product of
perturbed quantities can be neglected. These considerations form the so-called
linearisation technique. Since the research summarised in the present thesis
deals with the study of waves, we will assume that perturbations are oscillatory
in space and time.

Throughout this thesis, we will assume a homogeneous magnetic field along
the z axis and we consider Alfvén waves that propagate along the magnetic
field and are linearly polarised along the y direction. Therefore, we write

v = 0 + v(x, z, t)ŷ

B = B0ẑ+ b(x, z, t)ŷ

in a single-fluid plasma and

vi = 0 + vi(x, z, t)ŷ,

vn = 0 + vn(x, z, t)ŷ,

and
B = B0ẑ+ b(x, z, t)ŷ,

in a two-fluid plasma. Here ŷ and ẑ are the unit vectors in the y and z

directions, respectively. In order to ensure non-linear effects are not important,
we require that the ratio of the velocity perturbation to the local Alfvén speed
does not considerably exceed ≈ 0.1 (Prokopyszyn et al., 2019).

Phase mixing will occur if either the equilibrium magnetic field or den-
sity (or both) are functions that depend on a transversal coordinate, e.g., x.
Throughout this thesis, an inhomogeneous density profile and a constant mag-
netic field is always chosen deliberately. We include comprehensive details for
deriving the governing equation to follow in Appendix A.
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With the inclusion of constant (height-independent) diffusion, viscosity,
and ambipolar diffusion, the linearised incompressible induction and momen-
tum equations in a single-fluid plasma reduce to

∂b

∂t
= B0

∂v

∂z
+ η

(
∂2b

∂x2
+

∂2b

∂z2

)
+ ηA

∂2b

∂z2
. (2.53)

and
∂v

∂t
=

B0

µ0ρ0(x)

∂b

∂z
+ ζ

(
∂2v

∂x2
+

∂2v

∂z2

)
, (2.54)

respectively. We can combine these two equations and eliminate the velocity
perturbation, v, to obtain a single governing equation describing the evolution
of a magnetic field perturbation given by

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+

[
(η + ζ)

∂2

∂x2
+ (ηC + ζ)

∂2

∂z2

]
∂b

∂t

− ζ

[
η
∂2

∂x2
+ ηC

∂2

∂z2

]
∇2b.

(2.55)

In a two-fluid plasma, the length scales involved in the problem are much
shorter than the length scales characteristic of a single-fluid plasma. In this
case, the dynamics of the plasma are mainly controlled by the collisions be-
tween particles. Due to the decrease in the number density of particles with
height, the frequency of collisions will also decrease (despite an increase in the
temperature). As a result of this, the magnetic field begins to dominate the dy-
namics of the plasma. In a partially ionised plasma, the neutral species do not
directly experience the magnetic field and hence undergo a partial decoupling
from the ionised plasma when the collisional timescales between the ionised
plasma and neutral gas become equal to or larger than the MHD timescales.
The classical MHD framework becomes inadequate when investigating pertur-
bations with frequencies higher (or of equal order) than those of the collisional
frequencies between particles. Current observational resolution does not reach
scales where ion-neutral effects can be detected directly in solar atmospheric
plasma. However, the presence of neutrals is proven by observations in various
wavelengths (e.g., Hα) and spectroscopic measurements.

Similar to the single-fluid treatment, our initial step involves defining the
equations that govern the magnetic field and velocity perturbations in a two-
component plasma. This enables us to derive a governing equation that we
look to solve in order to examine the impact of phase mixing on the damping
of Alfvén waves in a partially ionised plasma.

51



We begin by linearising the equations of motion for the two species and the
induction equation assuming a static equilibrium and constant background
magnetic field. We satisfy the condition for phase mixing by assuming an
inhomogeneous background density profile. The linearised equations of motion
are now given by

∂vi
∂t

=
B0

µ0ρi(x)

∂b

∂z
+ ν̃in(x) (vn − vi) + ζi∇2vi, (2.56)

and

∂vn
∂t

= − ρi(x)

ρn(x)
ν̃in(x) (vn − vi) + ζn∇2vn. (2.57)

Note that throughout this investigation, we assume that both charge and neu-
tral densities are functions of x in such a way that their ratio is constant.
This leads to ν̃in(x) also being required to be a function of x given the linear
dependence of density on the collisional frequency. For simplicity, the spa-
tial dependence of the viscosity is neglected. With these considerations, the
linearised induction equation is given by

∂b

∂t
= B0

∂vi
∂z

. (2.58)

We note that no vn term appears here since the neutral particles do not directly
experience the magnetic field, rather, their presence in the system is maintained
through collisions with ions. In order to solve this system of equations we
eliminate the dependence of the magnetic field perturbation and the neutral
velocity perturbation in favour of modelling the evolution of the charged fluid
velocity perturbation. As a result, the spatial and temporal evolution of the
velocity perturbation of the charged species is given by

∂3vi
∂t3

= v2A(x)
∂3vi
∂z2∂t

− ν̃in(x)
∂2vi
∂t2

(χ+ 1) + ν̃in(x)v
2
A(x)χ

∂2vi
∂z2

+

+ ν̃in(x)ζn∇2

(
1

ν̃in(x)

{
∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

+ ν̃in(x)
∂vi
∂t

})
+ ζi∇2∂

2vi
∂t2

+ ν̃in(x)ζiχ∇2∂vi
∂t

.

(2.59)

For full details of the derivation of Equation (2.59), please see Appendix B.
In the above equation, the constant density ratio between charges and neutrals
is denoted by χ.
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2.6 Dispersion relations

Dispersion relations describe how the phase velocity of waves depends on their
frequency and wavenumber and solutions to these relations can provide in-
sights into their propagation dynamics in physical environments. Given the
dispersion relation, one can calculate the frequency-dependent phase velocity
and group velocity of a wave in a medium such as a magnetised plasma as a
function of frequency. In the present thesis we discuss propagating waves only.
For this reason we assume a purely real frequency (ω) throughout, and solve
the dispersion relation to find a complex wavenumber, k.

2.6.1 Single-fluid approximation

In a single fluid plasma, we obtain our dispersion relation by assuming the
magnetic field perturbation, b ∝ exp{−i(ωt − kz)}, representing a forward
propagating wave. Inserting this into Equation (2.55) and assuming homo-
geneity, we obtain the following dispersion relation

ω2 + i(ηC + ζ)k2ω − v2Ak
2 − ηCζk

4 = 0, (2.60)

which can be written in terms of k as

ηCζk
4 + k2

(
v2A − iω(ηC + ζ)

)
− ω2 = 0. (2.61)

In the absence of viscosity, Equation (2.61) reduces to

k2
(
v2A − iω(ηC + ζ)

)
− ω2 = 0, (2.62)

which has solutions
k = ± ω√

v2A − iωηC
, (2.63)

where k can be separated into real (kR) and imaginary (kI) components that
take the form

kR = ± ω√√
v4A + ω2η2C

cos

arctan
(

−ωηC
v2A

)
2

 (2.64)

and

kI = ∓ ω√√
v4A + ω2η2C

sin

arctan
(

−ωηC
v2A

)
2

 , (2.65)
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such that k = kR + ikI , which states that with an increased Cowling diffusion,
wave frequency or reduced Alfvén speed, a larger (absolute) value of kI is
obtained resulting in more effective damping (since the damping length is
proportional to 1/kI). For the case where Cowling diffusion is neglected in
favour of viscosity, then Equations (2.64) and (2.65), take the same form,
replacing ηC with ζ. In the absence of both viscosity and Cowling diffusion, kI
tends to zero and kR tends to ±ω/vA, the typical dispersion relation for Alfvén
waves propagating in an ideal homogeneous plasma, without attenuation.

Equation (2.61) requires us to solve a quartic in k, which posses solutions
which are non trivial to interpret and this is left for future work.

2.6.2 Two-fluid approximation

In a two-fluid plasma, we obtain our dispersion relation by assuming our ion
velocity perturbation, vi ∝ exp{−i(ωt − kz)}. Inserting this into Equation
(2.59) and assuming homogeneity, we obtain the following dispersion relation

ω3 + ik2(ζi + ζn)ω
2 + iν̃in(χ+ 1)ω2 − k2ν̃in(ζn + χζi)ω−

− k4ζiζnω − k2v2Aω − ik2ν̃inχv
2
A − ik4v2Aζn = 0.

(2.66)

In the absence of viscosity, this relation matches Equation (14) from Soler
et al. (2013), who presented results for propagating and standing Alfvén waves
in partially ionised plasmas. Figure 2.6 represents the results of propagating
Alfvén waves adapted from their paper.

These results show that in the case of propagating Alfvén waves, the damp-
ing lengths (proportional to 1/kI) and wavelengths (proportional to 1/kR) are
dependent on the collisional frequency of neutrals with ions. Optimum damp-
ing is achieved when the ratio of the collisional frequency between neutrals
and ions and the frequency of the waves is close to unity, while an increased
collisional frequency between neutrals and ions results in an increased real
wavenumber suggesting that collisions reduce the phase speed (and subse-
quently reduce the wavelength) of the wave (this result is also observed in our
simulations in Chapter 6).

Assuming an ideal plasma, Equation (2.66) simplifies to

ω
(
ω2 − k2v2A

)
, (2.67)

which possesses solutions ω = ±kvA and ω = 0. The first two solutions
represent the standard Alfvén wave dispersion relation with no damping, while
the second represents a non-propagating (entropy) mode.
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Figure 2.6: Figure 4 from Soler et al. (2013). Results for propagating waves.
(a) kz,RcA/ω and (b) kz,IcA/ω as functions of νni/ω, where cA represents the
Alfvén speed. Solid lines correspond to the numerical results, while symbols
correspond to the analytic approximations (their Equations (37) and (38)).
χ = 2 has been used, note that their use of χ differs from the present thesis.
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Equation (2.66) can be rewritten as a quartic equation in k as

ζn
(
ζiω + v2A

)
k4 + ω

(
v2A + νin(ζn + χζi)

)
k2

+ i
(
νinv

2
Aχ− ω2(ζn + ζi)

)
k2 − ω3 − iνin(χ+ 1)ω2 = 0.

(2.68)

Equation (2.68) presents significant challenges both in solving and in inter-
preting its solutions, therefore, we do not provide solutions here and leave this
as a topic for future work. However, it is important to note, as highlighted by
Soler et al. (2013), that the damping length and wavelength of Alfvén waves
in partially ionised plasmas are highly sensitive to variations in the ion-neutral
collisional frequency. We anticipate that these two quantities will vary sub-
stantially with the ionisation degree, that influences not only the collisional
frequency but also the effects of shear viscosity.

While a comprehensive discussion on the numerical solutions to Equation
(2.59) is deferred to Chapter 6, certain characteristic behaviours deserve at-
tention. When exploring the impact of varying ionisation degrees, it becomes
evident that the collisional frequency, shear viscosityies, and the ratio between
charge and neutral densities also undergo variation. Several terms within
Equation (2.59) involve the (square of the) Alfvén speed multiplying these
ionisation degree-dependent quantities. Consequently, an alteration in the
ionisation degree will lead to variations in the propagation speed as the num-
ber density of charged particles attached to magnetic field lines changes. This
effect is analogous to that presented in Figure 2.6, where the collisional fre-
quency, an ionisation degree dependent quantity, affects the real part of the
complex wavenumber. Such variations are anticipated in the lower solar at-
mosphere, where the Alfvén speed is expected to undergo significant changes
over a height range of approximately 2.5 Mm above the solar surface. In a
single-fluid plasma, variation of the Alfvén speed with ionisation degree, and
therefore height, is seen typically when vertical stratification of the magnetic
field and/or density is assumed.

We now present the structure of the numerical programs designed to solve
Equations (2.55) and (2.59).
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CHAPTER 3

Numerical modelling

While analytical solutions, such as D’Alembert’s solution, are able to capture
the behaviour of Alfvén waves propagating in a homogeneous ideal plasma,
as we endeavor to simulate the propagation of waves within more realistic so-
lar structures characterised by unique density inhomogeneities, we find that
analytical methods become insufficient. That is why it becomes essential to
employ numerical models to find approximate solutions and forego the pur-
suit of analytical solutions. Under realistic solar conditions, it is normal to
expect that the Alfvén speed depends on longitudinal and transversal coordi-
nates, making the governing equation of Alfvén waves a differential equation
with inhomogeneous coefficients. While a dependence on the longitudinal co-
ordinate of the propagation speed can be relatively easily resolved by means
of the WKB approximation, a dependence on the transversal coordinate is
something that needs special attention. In this case, waves on neighbouring
magnetic field lines can oscillate out of phase. This behaviour cannot be accu-
rately captured by D’Alembert’s solutions or any other analytical equations,
hence to model waves in these inhomogeneous structures necessitates the use
of numerical methods to find approximate solutions.

The concept underlying numerical modelling uniquely contrasts with an-
alytical solutions. For an equation that has an analytical solution, we may
explicitly write down a formula to determine a solution’s value for any desired
input, i.e., for any value of the spatial or temporal variables. In contrast,
numerical modelling requires us to divide the domain of interest into discrete
points before solving the equation for these specific points. The numerical
domain we work in then allows us to describe the collective behaviour of the
plasma as a weighted average of a discrete domain consisting of individual
interacting field lines. Through this approach, we are able to solve far more
complex systems of equations with remarkable precision. After satisfying sim-
ulation tests to ensure a suitable resolution is obtained, we believe that our
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simulations are able to offer accurate insight into the problems we seek to
address.

The objective of this chapter is to provide a detailed account of my efforts
in constructing a numerical solver designed specifically to investigate the atten-
uation of phase-mixed Alfvén waves in a partially ionised plasma and estimate
the resultant heat generated. We will discuss the various numerical methods
employed by this numerical model, we discuss how we can reduce an equation
to a system of equations that can be represented in matrix form. We explore
initial conditions and boundary conditions, and how these are implemented.
We will also present some of the validation and testing steps carried out be-
fore using this model to solve Equation (2.55). We will also discuss a second
numerical model that we have constructed to study higher frequency Alfvén
waves (of the order of the collisional frequency of ions and neutrals), which
solves the governing equation of Alfvén waves (Equation 2.59) in a two-fluid
framework.

3.1 Numerical techniques

Numerical techniques allow us to forgo the constraints of analytical solutions,
opting for an approximate solution in place of an equation without a known
solution. Equation (2.55) is a partial differential equation meaning it has both
spatial and temporal derivatives. Using finite difference approximations allows
us to remove spatial derivatives from Equation (2.55) in favour of algebraic ex-
pressions, which allows us to use the Runge-Kutta fourth-order (RK4) method
to solve the time-dependent part of our equation. The Runge-Kutta method is
perhaps the most widely used time-stepping algorithms in modern numerical
codes (see, e.g., Stone et al., 2020; Mignone et al., 2007). It can be thought
of as an extension of Euler’s method, one of the earliest and most powerful
numerical methods developed in the 18th century (Euler, 1768). To understand
the concept behind these time-stepping algorithms and the decision to use the
RK4 method, let us start by introducing Euler’s method.

3.1.1 Euler’s method

Euler’s method is a simple algorithm that proceeds in small steps to approx-
imate the solution of an initial value problem for a first-order ordinary differ-
ential equation (ODE) of the form

dy

dt
= f(t, y), (3.1)
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where f(t, y) is a given function representing the rate of change of the function
y with respect to the variable t. Since we are dealing with a first-order ODE,
a particular solution can be found provided an initial condition is specified,
i.e., y(t0) = y0. Rather than working in continuous time or space domain, we
split up the domain we wish to work over into small steps of constant size h.
The smaller the step size, the more accurate the approximate solution will be,
albeit more time (or more computing resources) consuming. We then iterate
a calculating scheme over many time steps starting from our initial condition
y(t0) = y0.

The algorithm works using the following steps

• Step 1: Start with the initial condition (t0, y0)

• Step 2: At each step, i, compute the slope of the tangent line at the
current point (ti, yi) using the function f(ti, yi).

• Step 3: Approximate the next point (ti+1, yi+1) by moving a distance h

along the tangent line by ti+1 = ti + h and yi+1 = yi + hf(ti, yi)

• Step 4: Repeat this process until the desired endpoint or number of steps
is reached.

Euler’s method is a first-order method, meaning that the error in the ap-
proximation typically decreases linearly with the step size h, i.e., smaller step
sizes lead to more accurate solutions. While Euler’s method is straightforward
to implement, it may not always provide highly accurate results, especially for
stiff ODEs or when the step size is too large. Since phase mixing works by
creating large transversal gradients, Euler’s method is likely insufficient for our
study.

3.1.2 Runge-Kutta fourth-order method (RK4)

The RK4 method is a numerical technique employed when solving ODEs that
can be represented by Equation (3.1). Similar to Euler’s method, RK4 op-
erates by approximating the solution of an ODE at discrete time points only
now the solution is advanced in time through a weighted average of multiple
slope estimates at different points within the interval rather than one single
approximation. This allows RK4 to accommodate larger time steps compared
to Euler’s method, enhancing its efficiency in numerical approximation and
also dealing with steep gradients more accurately.
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For our purposes implementing the RK4 method involves initialising the
perturbation that can be done by establishing an unperturbed straight mag-
netic field line, achieved by setting the values of the initial condition to zero.
To introduce wave-like perturbations, a time-dependent driver can then be
utilised. Additionally, the initial gradient of the solution domain is required
by the RK4 method. This gradient can be determined using the ODE itself; for
instance, assigning an initial profile to the perturbation allows for the initial
gradient to be calculated constituting the second initial condition. For the case
of the magnetic field line initially unperturbed, the second initial condition is
also set to zero. The time-dependency of the driver then influences the mag-
netic field line at each point, i.e., as the wave is excited, the initial conditions
reflect the perturbed field line.

Given an equation of the form given by Equation (3.1), we may progress
forward in time by summing together the four Runge-Kutta coefficients as
follows

yt+1 = yt +
1

6
(k1 + 2k2 + 2k3 + k4), (3.2)

where t is denotes the current time step. The various ki values are calculated
at each point in our domain, and their expressions are given by

k1 = hf(tn, yn),

k2 = hf

(
tn +

h

2
, yn + h

k1
2

)
,

k3 = hf

(
tn +

h

2
, yn + h

k2
2

)
,

k4 = hf(tn + h, yn + hk3).

(3.3)

Before we can implement the RK4 method, we must find a way to elim-
inate the spatial derivatives from our governing equation. Finite difference
approximations provide us with a means to achieve this.

3.1.3 Finite difference approximations

Finite difference approximations are a class of numerical methods used to solve
differential equations. They work by subdividing the domain of the differential
equation into a grid of discrete points and approximating the derivatives using
the differences between values at these discrete points. The formulae for the
relevant finite difference approximations of spatial derivatives required to solve
Equation (2.55) are given as
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∂2b

∂z2
=

1

(∆z)2
(bi,j+1 − 2bi,j + bi,j−1), (3.4)

∂2b

∂x2
=

1

(∆x2)
(bi+1,j − 2bi,j + bi−1,j), (3.5)

∂4b

∂x4
=

1

(∆x)4
(bi+2,j − 4bi+1,j + 6bi,j − 4bi−1,j + bi−2,j), (3.6)

∂4b

∂z4
=

1

(∆z)4
(bi,j+2 − 4bi,j+1 + 6bi,j − 4bi,j−1 + bi,j−2), (3.7)

∂4b

∂x2∂z2
=

1

(∆x)2(∆z)2
(bi+1,j+1 − 2bi,j+1 + bi−1,j+1 − 2bi+1,j + 4bi,j

− 2bi−1,j + bi+1,j−1 + 2bi,j−1 + bi−1,j−1),

(3.8)

where i represents the x coordinate, j represents the z coordinate and ∆x and
∆z represents the spatial step size in the x and z directions, respectively, which
is the distance between adjacent points on the spatial grid. These approxima-
tions convert Equation (2.55) from second-order and Equation (2.59) from a
third-order PDE into a second-order and third-order ODE, respectively. In
order to employ the RK4 method, we need to further reduce these equations
to a system of coupled first-order equations.

3.1.4 Rewriting the governing equation in a single-fluid
approximation

Equation (2.55) can be reformulated as a system of two first-order PDEs by
introducing a new variable U . The system of equations can then be written as

∂b

∂t
= U, (3.9)

∂U

∂t
= v2A(x)

∂2b

∂z2
+

[
(η + ζ)

∂2

∂x2
+ (ηC + ζ)

∂2

∂z2

]
U − ζ

[
η
∂2

∂x2
+ ηC

∂2

∂z2

]
∇2b.

(3.10)
Reducing Equation (2.55) to a system of first-order equations removes di-

rect time derivatives from the right-hand side of Equation (2.55), in place of
our new variable U . The spatial derivatives remain unchanged and hence we
continue to use Equations (3.4)–(3.8), to approximate them.

In a partially ionised plasma, the dissipative coefficients, as presented in
Chapter 2, are often very large, too large for a numerical code to handle. For
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this reason, (among others such as the magnitude of the Alfvén speed), we
must first reduce Equation (2.55) to a non-dimensional form. Following Hood
et al. (2002), we write all quantities in dimensionless form by

x̄ =
x

L
, z̄ =

z

L
, v̄A =

vA
vA0

, t̄ =
tvA0

L
,

η̄ =
η

LvA0

, ζ̄ =
ζ

LvA0

, η̄C =
ηC
LvA0

, ρ̄ =
ρ

ρ0
,

(3.11)

where L is the length scale of the problem and vA0 = B0/
√
µ0ρ0 is the typical

Alfvén speed. Bars are subsequently dropped for convenience and the form of
Equation (2.55) remains unaltered by this process.

3.1.5 Matrix method

Having established the numerical methods necessary to transform a second
and third-order PDE into a solvable system of first-order ODEs, we now focus
on performing efficient calculations of the RK4 coefficients discussed in Section
3.1.2. The coefficients of the finite difference approximations can be organised
into a matrix structure. Calculating the coefficients of the RK4 method given
by Equation (3.3) is achieved by matrix-column vector calculations. However,
the presence of an inhomogeneous density profile, essential to modelling phase
mixing, implies varying behaviour of each magnetic field line in the domain.
This complexity cannot be adequately captured by considering the evolution
of an Alfvén wave along a single magnetic field line, as is feasible in a ho-
mogeneous plasma. Instead, we must address the MHD equations across all
field lines within our domain simultaneously. As a result, the domains of b

and U are not currently represented by single column vectors, but instead,
constitute two-dimensional matrices of points, where each column signifies a
magnetic field line. This can be seen by the need for a separate index for each
spatial coordinate in Equations (3.4)–(3.8). This complicates the calculations
required to take the next time step using matrix-vector multiplication at this
stage, given that our domain is also a matrix.

To address this, we collapse the dimensions of b and U from two-dimensional
domains, into a single dimension. Initially, we considered b and U to have
square domains of (n + 1) × (n + 1) points, where i and j vary from zero to
n in the finite difference approximations given by Equations (3.4)–(3.8). We
introduce a new variable, l, to index these points, where l = i(n + 1) + j,
such that now l varies between zero and (n+ 1)2 − 1, effectively stacking each
magnetic field line represented by the matrix of points in b on top of one other
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to form one large column vector. This alteration of dimensions was necessary
to capture the effects of phase mixing and include cross-field gradients as well
as longitudinal gradients. Taking into consideration the change of variable,
the finite difference formulae are now given by

∂2b

∂z2
=

1

(∆z)2
(bl+1 − 2bl + bl−1), (3.12)

∂2b

∂x2
=

1

(∆x2)
(bl+(n+1) − 2bl + bl−(n+1)), (3.13)

∂4b

∂x4
=

1

(∆x)4
(bl+2(n+1) − 4bl+(n+1) + 6bl − 4bl−(n+1) + bl−2(n+1)), (3.14)

∂4b

∂z4
=

1

(∆z)4
(bl+2 − 4bl+1 + 6bl − 4bl−1 + bl−2), (3.15)

∂4b

∂x2∂z2
=

1

(∆x)2(∆z)2
(bl+(n+1)+1 − 2bl+1 + bl−(n+1)+1 − 2bl+(n+1) + 4bl−

− 2bl−(n+1) + bl+(n+1)−1 + 2bl−1 + bl−(n+1)−1),

(3.16)

∂b

∂z
=

1

2∆z
(bl+1 − bl−1) , (3.17)

where n + 1 still represents the dimension of the domain. By transforming
the spatial derivatives in Equation (2.55) using the above finite difference ap-
proximations, we can represent Equations (3.9)–(3.10) in matrix-vector form
as

∂

∂t

 b

U

 = A

 b

U

 , (3.18)

where the matrix A contains the coefficients of the finite difference approxima-
tions and the vector containing b and U contains the values of the solution at
each grid point. Now we can use matrix algebra to update the solution. The
next time step is calculated by multiplying the matrix A by the column vector
according to Equation (3.3), before summing together the coefficients as given
by Equation (3.2).

We consider the matrix A to be made up of four sub-matrices each further
made up of many smaller block matrices of dimension (n+ 1)× (n+ 1). Each
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smaller block matrix multiplies an (n + 1) × 1 section of the larger column
vector representing either a single magnetic field line, b, or its time derivative,
U .

All z-derivatives can be contained within a single block matrix, as seen by
the new finite difference approximations. However, due to the definition of
l, the finite difference approximations that represent x-derivatives exceed the
dimensions of each smaller sub-matrix, hence, these coefficients are found in
fringe blocks off the main diagonal block structure, allowing for the variation
across the field. These calculations produce the effects caused by phase mixing
in our simulation.

Figure 3.1: Matrix A with dimensions 2(n + 1)2 × 2(n + 1)2 consisting of the
smaller matrices (denoted by top-left, top-right, bottom-left and bottom-right)
populated by sub-matrix blocks with dimensions (n+ 1)× (n+ 1). The blue-
coloured blocks consist entirely of zeros, while the other coloured blocks are
populated by the coefficients of finite difference approximations. Note that
here we used periodic boundary conditions in the x direction exemplified by
the matrix blocks in the top right and bottom left of the bottom-left and
bottom-right matrices.

In order to visualise the structure of matrix A more clearly, let us con-
sider Figure 3.1. Each small block of which there are 2(n + 1) × 2(n + 1),
represents an (n + 1) × (n + 1) matrix. The different colours correspond to
positions where the coefficients of different finite difference approximations are
located. For example, all terms representing z-derivatives are included in the
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red boxes. While terms containing second-order derivatives with respect to x

will be contained in the green fringe blocks as well as the main diagonal red
blocks. Fourth-order x-derivatives have entries in the fringe blocks (green and
orange) as well as the main diagonal red blocks. Note that the coefficients re-
lated to mixed derivatives are located in the fringe blocks as well as the main
diagonal blocks. Each light blue block matrix represents an empty matrix.
The entire top-left matrix is zero since ∂b/∂t has no dependence on b itself in
Equation (3.9).

3.1.6 Sparse matrices

The calculations performed when multiplying the matrix A by the column
vector consists of performing many trivial calculations, i.e., multiplying by
zero many times. Multiplying by zero is as trivial for human beings as it is for
computers. The time it takes to perform this calculation, however, is non-zero.
In the absence of an efficient method to handle multiplication by zero, we find
our simulation can spend an inordinate amount of time on trivial calculations.
For example, if we take 100 points in both the x and z directions, our large
matrix A contains 20000 × 20000 entries. We process by multiplying this
matrix by a column vector with 20000 entries. For each time step this matrix
multiplication occurs 4 times, a total of 4×200003 = 3.2×1013 calculations per
time step. When considering second-order finite difference approximations, the
approximate number of calculations involved in calculating a single time step
that is non-zero is 4×380000 = 1.52×106, meaning approximately 4.75×10−6

% of all calculations are non-trivial. Moreover, with increasing resolution, a
greater proportion of the elements in the matrix A become zero, leading to a
reduced percentage of all computations being non-trivial.

At this point, we can leverage the sparsity of matrix A to our advantage.
We adopt the inbuilt routine for constructing sparse matrices in Python which
represents non-zero entries in a coordinate system. Rather than assigning
every entry to a matrix including all zero entries, we assign only the non-zero
elements and their corresponding coordinates, i.e., its row and column position
within the matrix.

In order to construct a matrix corresponding to the term ∂2b/∂z2 we need
to employ the finite difference approximation given by Equation (3.12). It
is evident that the associated matrix corresponds to the red blocks of the
bottom-left sub-matrix in Figure 3.1. It prescribes a tridiagonal system where
every other entry is zero. The coefficients of this tridiagonal matrix will be
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1
(∆z)2

(1,−2, 1) assuming we move left to right within the matrix. A non-sparse
representation of this matrix using periodic boundary conditions in z looks like

1

(∆z)2



−2 1 0 0 . . . 1

1 −2 1 0 0 . . .

0 1 −2 1 0 . . .
... . . .

0 . . . 0 1 −2 1

1 . . . 0 0 1 −2


(3.19)

To build a sparse matrix we only have to specify the data at each point where
there is a non-zero entry. We can do this in the following way in Python

1 # Import relevant modules
2 import numpy as np
3 import scipy.sparse as sps
4 from scipy.sparse import csc_matrix
5

6 def dz(n,zmax):
7 # Set dz to be the spatial resolution in the z-direction
8 return zmax/(n+1)
9

10 def matrix_contructor_d2bdz2(n,zmax):
11 # Set the column and row coordinates for the diagonal

entries
12 col_Diag = np.linspace(0,n,n+1)
13 row_Diag = np.linspace(0,n,n+1)
14

15 # Set the data for these entries to correspond to the
coefficients used in the finite difference approximation

16 data_Diag =
17 -2*(1/dz(n,zmax)**2)*np.linspace (1,1,n+1)
18 matrix_inter_Diag =
19 csc_matrix ((data_Diag , (row_Diag , col_Diag)),
20 shape = (n+1, n+1))
21

22 # Set the column and row coordinates for the off -diagonal
entries to the left

23 col_Left = np.linspace(0,n,n+1)
24 row_Left = np.linspace(1,n+1,n+1)%(n+1) # To remove

periodic boundary conditions in z, replace ’np.linspace(1,n
+1,n+1)%(n+1)’ in favour of ’np.linspace(1,n,n)’ noting that
col_Left must change to reflect this also

25 data_Left = (1/dz(n,zmax)**2)*np.linspace (1,1,n+1)
26 matrix_inter_Left =
27 csc_matrix ((data_Left , (row_Left , col_Left)),
28 shape = (n+1, n+1))
29

30 # Set the column and row coordinates for the off diagonal
entries to the right

31 col_Right = np.linspace(1,n+1,n+1)%(n+1)
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32 row_Right = np.linspace(0,n,n+1)
33 data_Right = (1/dz(n,zmax)**2)*np.linspace (1,1,n+1)
34 matrix_inter_Right =
35 csc_matrix ((data_Right ,(row_Right ,col_Right)),
36 shape=(n+1,n+1))
37

38 # Sum these three matrices together to make the tridiagonal
matrix

39 matrix = matrix_inter_Diag + matrix_inter_Left
40 + matrix_inter_Right
41

42 return matrix

Listing 3.1: Example section of the code used to construct an individual sparse
matrix representing a second-order derivative with respect to z.

Calling this function returns a sparse tridiagonal matrix that uses periodic
boundary conditions in z. As far as the computer memory is concerned, the size
of the sparse matrix also remains the same no matter the dimension, whereas
the memory requirements scale with resolution for a non-sparse representation
of a matrix. For example for n = 100, a sparse matrix takes up 48 bytes of
memory while a non-sparse matrix takes up approximately 81728 bytes. To
calculate the total memory requirement of matrix A, we simply multiply the
memory by the dimensions of the matrix (since zeros require the same memory
as any other value). The total memory is 81728 × 200 × 200 = 3269120000

bytes or approximately 3 Gigabytes, whereas the total memory required for
matrix A constructed in sparse form is approximately 1800×48 = 86400 or 86.4
Kilobytes. All of these steps considered result in an enormous improvement in
performance.

It is difficult to compare the exact difference in efficiency of simulations
run using the sparse matrix representation versus the non-sparse representa-
tion. Large scale comparisons are not feasible due to the size of the non-sparse
matrix A. An enhanced resolution increases the ratio of the number of cal-
culations for sparse matrices compared to non-sparse matrices increases. This
leads to a notable underestimation of performance enhancement when evalu-
ating comparisons at low resolutions. However, one could estimate that it is
proportional to the reduction in the number of calculations which is over seven
orders of magnitude difference.

3.2 Initial conditions

To solve our system of differential equations, we need to establish a starting
point defined as a set of initial conditions. Initial conditions serve as the
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anchor from which the dynamical evolution of the system unfolds. We begin
our investigation by exciting Alfvén waves at the base of our domain in a
sinusoidal fashion. In this case, we consider an initially unperturbed system
of magnetic field lines. That is, we consider

b(x, z, 0) = 0,

U(x, z, 0) = 0.
(3.20)

We then excite Alfvén waves at the base of our domain through a boundary
condition at z = 0. In the case of Hood et al. (2002), the authors considered
a pulse driver, which was not time dependent. In their case they prescribed
the shape of the pulse as their initial condition, more details are provided in
Section 3.5.2.

3.3 Boundary conditions

The perturbations of our magnetic field lines generate sinusoidal Alfvén waves.
Mathematical details of the sinusoidal driver and the second boundary condi-
tion (based on D’Alembert’s solution) are shown below

b(x, 0, t) = Csin(ωt),

U(x, z, t) =
∂b

∂t
= −vA(x)

∂b

∂z
,

(3.21)

where C represents the amplitude of the driver. These conditions ensure that
the wave is driven at the base of the domain (at z = 0) and propagates at its
local Alfvén speed, varying from field line to field line for an inhomogeneous
plasma. Clearly, the perturbation given by b is invariant of x, meaning that
the frequency of the driver is constant in our simulation. The wavelength
varies due to the inhomogeneous Alfvén speed. The driver is also invariant of
z, since waves are excited only at z = 0. As the wave propagates along the
magnetic field line, the column vectors representing the solution of our problem
are updated and hence the perturbation varies in x and z for all t > 0, as the
simulation evolves. It is perfectly feasible to allow the frequency to vary as a
function of x, however, for the present study, this aspect is not considered.

In later chapters, we discuss the effects of a broadband driver. Numerically,
this is achieved by summing together multiple harmonic drivers of varying
frequencies. The boundary conditions in the case of N harmonic drivers appear
as
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b(x, 0, t) =
N∑
i=1

Aisin(ωit),

U(x, z, t) =
∂b

∂t
= −vA(x)

∂b

∂z
.

(3.22)

It is possible to vary the amplitude of the components of the broadband driver
as required by multiplying each b(x, 0, t) by some user-defined constant, Ai.

When perturbing an equilibrium, the wave equation inherently allows for
the existence of two waves propagating in opposite directions. For precise mod-
elling of the phase mixed Alfvén waves, particularly in an open field geome-
try, it is imperative to prevent interference between these counter-propagating
waves. This ensures that the solution remains consistent across different nu-
merical configurations, including domain size and variations in boundary con-
ditions.

Depending on the chosen driver, certain boundary conditions may become
more suitable or applicable. Consider the case of a finite lifetime driven pulse,
as considered by Hood et al. (2002). In a static background, one can employ
periodic boundary conditions in the z direction to allow for a larger effective
domain. The wave may propagate around the domain while allowing for higher
resolution numerically by having a smaller domain in z. In contrast, in the
case of the continuously excited wave driver, this is not applicable. As soon
as the perturbation reaches the end of the domain, it begins to interfere with
the base driver.

One also has to consider the interference of the two waves propagating
antiparallel to one another, naturally emitted by a second-order wave equa-
tion. When using periodic boundary conditions, this effectively halves the us-
able domain, since each wave propagates towards one another with a relative
speed of twice the Alfvén speed. Instead, adopting a fixed boundary condition
at the base of the domain, removes the backward propagating wave usually
permitted by the wave equation, resulting in all wave energy travelling unidi-
rectionally. In order to investigate whether this affects the behaviour of our
waves, we conducted simulations for both periodic boundary conditions and
fixed boundary conditions. We terminated the simulation before the counter-
propagating waves (in the case of periodic boundary conditions) interfered with
one another. We found that the initial perturbation (leading wavefront) differs
depending on the boundary condition, however, the wave propagating in its
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Figure 3.2: Two profiles of phase mixed Alfvén waves excited under identical
plasma configurations are plotted employing either periodic or fixed boundary
conditions at the base of the numerical domain.

wake displays consistent behaviour. This conclusion is displayed in Figure 3.2
considering a single simulation representative of our various tests.

We consider the behavior of the waves to be sufficiently invariant on the
boundary conditions once our simulations reach a steady state or when the
wave has propagated far enough for the initial perturbation effects to become
negligible. Hence, we adopt a fixed boundary condition at the base of the
domain to allow for a smaller domain resulting in higher relative resolution
and code efficiency. Simulations modelling continuously driven waves must
still be terminated before the perturbation reaches the end of the z-domain,
due to wave reflection occurring (for a fixed boundary) or interference at the
base of the domain (for a periodic boundary). This means that the boundary
conditions for a continuous driver at z = zmax, where zmax denotes the end of
the domain, do not matter, since the perturbation never achieves this distance.

We employ periodic boundary conditions in x. This was chosen to ensure
that magnetic field lines at either end of the domain were not undergoing sig-
nificantly different behaviour due to a numerical phase mixing effect occurring.
The only condition this imposes is on the density profile and is given by

ρ(x = xmin = 0) = ρ(x = xmax = 1). (3.23)
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Figure 3.1 represents the larger matrix structure when periodic boundary con-
ditions are considered in x. To implement periodic boundary conditions in
z, we must vary the way we construct the individual block matrices, hence
Figure 3.1 does not display the boundary conditions used for the z domain.
An example of a matrix with periodic boundary conditions in z can be seen
earlier in Equation (3.19), and the concept applies to other derivatives.

3.4 Courant–Friedrichs–Lewy condition

When employing the RK4 time-stepping algorithm, it is crucial to choose an
appropriate time step. A time step that is too large can lead to instabilities in
the solution, while a time step that is too small can result in excessively long
simulation times. The convergence condition, first proposed by Courant et al.
(1928), commonly known as the CFL condition, provides an upper limit for
the time step to ensure stable solutions. The CFL condition states that our
time step, denoted by h in Equation 3.3, must satisfy the following condition

h ≤ ∆z/max(vA). (3.24)

For time-dependent drivers, we define the period of the wave in terms of the
number of time steps it takes to produce one full period. We wish to conduct
a parameter study where we control the wavelength and since the speed of the
wave and time it takes for one complete period dictate the wavelength, it is
useful to pick this value to be a rounded decimal, such as 0.005 rather than
0.0052162..., and hence, we select a value close to, but below, this upper limit.
This approach allows for direct control over the wavelength of the generated
Alfvén waves.

For time-dependent drivers, we express the wave period in terms of the
number of time steps required to produce one full cycle. To conduct a param-
eter study where we control the wavelength, it is useful to choose a rounded
decimal value, such as 0.005, rather than a number like 0.0052162. This is be-
cause the combination of the wave speed and the period determine the wave-
length. Therefore selecting a rounded value close to, but below, the upper
limit ensures direct control over the wavelength of the generated Alfvén waves.

In addition, we take the largest value of our Alfvén speed (for the inho-
mogeneous cases, this is always 1.5, and this value is also chosen in the case
of the homogeneous simulations for consistency) so that our chosen time step

71



provides a stable solution across all field lines, irrespective of their relative
speed.

3.5 Validation and testing

Whenever a numerical code is constructed, the first question we must ask is
how can we validate our results? To gain insight into the efficacy of our code
it is instructive to numerically solve equations for which analytic solutions
are available. For that reason, we begin this process by solving the undamped
wave equation numerically, which can be compared with the analytical solution
given by D’Alembert. This is an important step in solving Equation (2.55) as it
allows us to define a suitable resolution that does not result in large numerical
dissipation which occurs as a result of compounding truncation errors arising
from the finite spacing between grid points and the finite time step size. As
the equation we are solving does not include any dissipation, D’Alembert’s
solution of the homogeneous wave equation tells us that the amplitude of a
wave should remain constant. The undamped wave equation is defined as

∂2b

∂t2
= v2A

∂2b

∂z2
, (3.25)

where vA is the speed of propagation, In this case, we choose this notation to
align with the Alfvén speed, however, it is common to see this value replaced
with c. In this case, chosen to be constant. Equation (3.25) has analytic
solutions f(z − vAt) + g(z + vAt), i.e., two waves traveling anti-parallel to one
another at a speed vA.

After carrying out multiple simulations of varying resolution, the observed
numerical dissipation led to a reduction in amplitude of much less than 1% of
the initial amplitude for a resolution of 100 points in the x and z directions.
We allowed for 10 periods of the wave to propagate before terminating the res-
olution tests. We anticipate that when modelling Alfvén waves in the presence
of the dissipative mechanisms discussed in Chapter 2, the amplitude will damp
by a factor of e times (approximately 70 %) over a distance comparable to the
height of the chromosphere, or approximately 6 wavelengths (for a wavelength
of 400 km), making this level of numerical dissipation entirely acceptable. The
challenge with numerical dissipation when addressing damped wave equations
is its resemblance to physical diffusion, it is impossible to reverse engineer
the solution to explain what proportion of dissipation occurs due to numerical
dissipation or physical dissipation. Therefore, it is crucial to introduce each
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dissipative term with care, as each new term inherently increases the numerical
diffusion.

3.5.1 Numerical solution of the damped wave equation

Introducing damping terms into Equation (3.25) allows, to some extent, a
comparison between the damping due to a physical dissipative process and the
numerical dissipation. A typical wave equation with a damping term takes the
form

∂2b

∂t2
= v2A

∂2b

∂z2
+ η

∂2

∂z2
∂b

∂t
, (3.26)

where all coefficients are constant. A direct comparison cannot be wholly
made, since introducing a new term, inherently introduces additional numer-
ical dissipation due to additional truncation errors involved in the damping
term. However, carrying out simulations, varying the value of η, enables quan-
tification of these errors.

Slowly increasing the value of η, allows us to calculate certain parameter
ranges in which dissipation due to the considered dissipation is dominant over
numerical dissipation. If the constant η is identified with the coefficients of
Ohmic diffusion, the lower bound of these ranges falls many orders of mag-
nitude lower than the typical values of the various diffusive quantities found
in the lower solar atmosphere, hence we can be sure that the dissipation ob-
served in our simulations occurs due to the physical properties of the simulated
plasma.

3.5.2 Validation by reproducing known results

We were also partially able to validate the part of our code that corresponds
to phase mixing by investigating solutions of Equation (3.27) given by

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+ η

∂2

∂x2

∂b

∂t
, (3.27)

the equation solved by Hood et al. (2002) in their investigation into phase
mixed Alfvén pulses. By reproducing the results obtained by Hood et al. (2002)
for the phase mixing of Alfvén waves generated by individual and bipolar
pulses, we were able to gain further confidence in our numerical model. The
resolutions of the two simulations may differ, leading to increased or reduced
numerical damping, however, we assume this effect to be negligible, based on
the previous test concerning the undamped wave equation. The study by Hood
et al. (2002) considers a dimensionless Ohmic diffusion coefficient of 5×10−4. In
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the context of coronal holes (the subject of investigation of Hood et al., 2002)
one might expect a typical Alfvén speed of 500 kms−1 and a typical length
scale of 100 Mm, implying a dimensional value of η = 2.5× 1010 m2s−1, which
is clearly many orders of magnitude larger than established formulae predict
(η ≈ 1 m2s−1). As previously mentioned, very often turbulence is invoked to
inflate the values of this dissipative coefficient. Turbulence could potentially
produce length scales small enough such that a dimensionless diffusion value
given by Hood et al. (2002) is achieved, however, it is not clear if this was
done here. It was rather unclear what values for L and vA0 were used in the
simulations in their paper, which is a requirement in order to convert back
to a dimensional result. However, irrespective of these values we were able
to produce similar behaviour, and were able to highlight the effects of phase
mixing on damping Alfvén pulses while validating our codes’ ability to solve
Equation (3.27). In order to solve this equation, we are required to prescribe
initial conditions, and these profiles take the form

b(x, z, t = 0) =

{
1 + cos (10π(z − 1

10
)), if 0 < z < 2

10
,

0, elsewhere,
(3.28)

with the second initial condition for U = ∂b/∂t given by

U(x, z, t = 0) =

{
10πvA(x) sin (10π(z − 1

10
)), if 0 < z < 2

10
,

0, elsewhere,
(3.29)

which is based on D’Alembert’s solution. The last user-defined input required
is an Alfvén speed profile, which is given by

vA(x) = 1 + 0.5 cos(2πx). (3.30)

To simulate the evolution of this pulse-generated Alfvén wave, subject to phase
mixing, we follow the steps detailed previously in this chapter. We begin
by non-dimensionalising each of the terms in Equation (3.27) using Equation
(3.11), omitting bars for convenience. The dimensionless form of Equation
(3.27) remains unchanged. Next, we rewrite the dimensionless governing equa-
tion as a system of two coupled first-order PDEs. Implementing the finite dif-
ference formulae given by Equations (3.12)–(3.13) to replace the spatial deriva-
tives, allows us to construct a large matrix whose entries are populated by the
coefficients of the finite difference approximations. We then construct the
column vectors consisting of the initial conditions given by Equations (3.28)–
(3.29). The coefficients for the RK4 time-stepping scheme are computed by
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matrix-vector multiplication, with subsequent summation and averaging yield-
ing the solution of the governing equation at the next time step. Iterative
computation of subsequent time steps proceeds for a predetermined duration,
allowing for the exploration of phase-mixed pulse behavior in time. An illus-
trative result from a simulation depicting an individual pulse at distinct time
intervals is presented in Figure 3.3. We consider the Alfvén pulse propagating
along the magnetic field line that corresponds to the location of the steepest
gradient in Alfvén speed. Notably, we refrain from imposing any specific phys-
ical length scale to avoid speculation regarding the chosen parameterisation
for η. This prohibits the conversion to dimensional form, however, this is not
strictly necessary for code validation.

Figure 3.3: Evolution of a phase-mixed pulse at simulation time steps t = 0,
t = 1000, and t = 2000. Each profile is represented by a distinct color line,
illustrating the attenuation of the pulse over time.

It is clear that phase mixing causes a longitudinal stretching of the pulses
profile due to the inhomogeneous Alfvén speed. For the wave propagating along
the magnetic field line presented above, neighbouring waves are propagating
both faster and slower than this wave. Due to the magnetic tension forces act-
ing between neighbouring field lines, this varying behaviour causes the leading
edge of the pulse to be pulled along and the trailing edge to be pulled back,
subsequently leading to this stretching behaviour of the profile with propa-
gation. Due to the nature of the initial condition given by Equation (3.29),
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not all of the pulse propagates in the positive z direction. A small component
proportional to the magnitude of the dissipative coefficient, η, propagates in
the negative z direction. This is evident in the small bump in the green line for
time step t = 1000. Due to the relative amplitudes of this counter-propagating
wave, we consider the effects of these additional interactions to be negligible
compared the the dissipation due to phase mixing. Note that periodic bound-
ary conditions have been used in the x and z directions, where the z domain
has been ’flattened out’ and presented in Figure 3.3 as if it were a domain that
ended at z = 4. This causes the position of the counter-propagating (small
amplitude) wave in the solution for t = 1000 to be closer to the base of the
domain than it should theoretically be, had we not used periodic boundary
conditions in z.

A second profile was also investigated by Hood et al. (2002), termed as the
bipolar pulse, whose form is given by

b(x, z, t = 0) =


1 + cos(10π(z − 1

10
)), if , 0 < z < 2

10

−1− cos(10π(z − 1
10
)), if 2

10
< z < 4

10
,

0, elsewhere,
(3.31)

with a required initial condition for U = ∂b/∂t given by

U(x, z, t = 0) =


10πvA(x) sin(10π(z − 1

10
)), if , 0 < z < 2

10

−10πvA(x) sin(10π(z − 1
10
)) if 2

10
< z < 4

10
,

0, elsewhere.
(3.32)

Simulations were carried out in a similar manner as the individual pulse and
Figure 3.4 presents a result obtained from a simulation modelling a bipolar
pulse at multiple simulation time steps, given the same Alfvén speed profile
and value for η as for the individual pulse and that of Hood et al. (2002).

Similar to the findings by Hood et al. (2002), we found that the amplitude
of the bipolar pulse is reduced more effectively, since the positive and neg-
ative components of the pulse profile propagate into one another, effectively
cancelling one another out, resulting in a greater reduction in amplitude ev-
ident at t = 2000. The amplitude of the backward propagating wave in the
case of Hood et al. (2002) is relatively small since the dimensionless dissipative
coefficient remained small. However, given typical length and velocity scales
relevant to the chromosphere, the dimensionless ambipolar diffusive coefficient
results in a backward propagating wave that is comparable to the amplitude
of the forward propagating perturbation, hence destroying any assumed initial
profile.
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Figure 3.4: Evolution of a phase-mixed bipolar pulse at simulation time steps
t = 0, t = 1000, and t = 2000. Each profile is represented by a distinct color
line, illustrating the attenuation of the pulse over time.

3.6 Numerical background for the problem of
Alfvén wave phase mixing in a two-fluid ap-
proximation

Many of the numerical methods previously described in this chapter are appli-
cable to a two-fluid approach. In this section, we discuss the various subtleties
and variations required in considering a two-fluid approach to investigate the
effects of phase mixing on the damping of Alfvén waves in partially ionised
plasmas.

When solving a second-order PDE, our numerical solver performed many
large matrix-vector multiplications. The matrix had a substructure of 2 × 2

large matrices consisting of many smaller sub-matrices each representing oper-
ations on a single magnetic field line or the change of this magnetic field line in
time, U . The off-diagonal block matrices captured the cross-field interactions
occurring due to phase mixing.

When solving a governing equation modelling propagating Alfvén waves
in a partially ionised two-fluid plasma, we are required to solve a third-order
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PDE. Once again, we write all quantities in dimensionless form as

x̄ =
x

L
, z̄ =

z

L
, v̄A =

vA
vA0

, t̄ =
tvA0

L
,

ζ̄i =
ζi

LvA0

, ζ̄n =
ζn

LvA0

, and ¯̃νin =
ν̃inL

vA0

.
(3.33)

where, as before, L is the length scale of the problem (significantly smaller
than that of the single-fluid model), vA0 = B0/

√
µ0ρ0i is the typical Alfvén

speed (with only ions being attached to the magnetic field lines), where ρi0

is the typical ion density. The form of the equation remains unchanged and
bars are subsequently dropped for convenience. We then reduce the governing
equation to a system of three first-order differential equations as

∂vi
∂t

= U, (3.34)

∂U

∂t
= W, (3.35)

∂W

∂t
= v2A(x)

∂2U

∂z2
− ν̃in(x)W (χ+ 1) + ν̃in(x)v

2
A(x)χ

∂2vi
∂z2

+ ν̃in(x)ζiχ∇2U+

ν̃in(x)ζn∇2

(
1

ν̃in(x)

{
W − v2A(x)

∂2vi
∂z2

− ζi∇2U + ν̃in(x)U

})
+ ζi∇2W.

(3.36)

Next, the spatial derivatives are rewritten using finite difference approxima-
tions, enabling our system of equations to be represented as a single matrix
multiplied by a column vector of the form

∂

∂t


vi

U

W

 = A


vi

U

W

 . (3.37)

As discussed earlier, the matrix representation is sparse. For this reason, sparse
matrices are once again employed where the general structure of the matrix
is shown in Figure 3.5, with all blue boxes representing a matrix consisting
entirely of zeros.

When considering a sinusoidal wave driver at the base of the domain, the
boundary conditions are given by
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Figure 3.5: Matrix A with dimensions 3(n+ 1)2 × 3(n+ 1)2 consisting of nine
large matrices (denoted by top-left, top-middle, top-right, middle-left, middle-
middle, middle-right bottom-left, bottom-middle and bottom-right) populated
by small matrix blocks with dimensions (n + 1)× (n + 1). The blue-coloured
blocks consist entirely of zeros, while the other coloured blocks are populated
by the coefficients of finite difference approximations. Note that here we use
periodic boundary conditions in x, exemplified by the matrix blocks in the top
right and bottom left of the bottom row of the larger matrices.
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vi(x, 0, t) = sin(ωt),

U(x, 0, t) = ωcos(ωt),

W (x, 0, t) = −ω2sin(ωt),

(3.38)

where the potential for a broadband driver is feasible in a manner akin to
the approach taken in Equation (3.22). We initially consider our field lines
to be unperturbed and hence the initial conditions for v, U and W are all set
to zero. While the physics we investigate by studying waves from a two-fluid
perspective differs considerably from the assumptions made when modelling
in the single-fluid MHD framework, numerically the primary distinction lies in
the length scales and wave frequency. The code’s utilisation of dimensionless
parameters accommodates these differences seamlessly. In the next chapters,
we present the results obtained from implementing the solvers detailed above.
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CHAPTER 4

Phase mixing of Alfvén waves in single-fluid plas-
mas

1The key distinction between phase mixing in a fully and partially ionised
plasma resides in the nature and magnitude of dissipative processes that are
involved in the description of wave damping. As presented in the previous
chapters, one particular dissipative process that is relevant to the mixture of
charged and neutral plasma is ambipolar diffusion which owes its existence to
the presence of neutrals and the collisions of charged particles with neutrals.
Secondly, the presence of neutrals modifies the magnitude of the "traditional"
dissipative effects, such as viscosity and Ohmic diffusion. Compared to the
case of a fully ionised plasma, these coefficients are enhanced by several orders
of magnitude thanks to the increased rate of collisions in a partially ionised
plasma. That is why, it is natural to expect that the efficiency of phase mix-
ing (although the physical process is the same) with regard to the damping
of waves will also be enhanced in a partially ionised plasma. The variation
of height of the dissipative coefficients that are relevant for partially ionised
plasma over the height of 3 Mm above the solar surface is shown in Figure
4.1, where now the magnetic field was taken to vary with height according to
B0 = 1000e−H/660, expressed in Gauss, where H represents the height above
the solar surface in kilometers (Vranjes and Krstic, 2013). The values of the
physical parameters (temperature, and number densities of species) needed to
calculate these coefficients were taken from the AL C7 solar atmospheric model
(Avrett and Loeser, 2008)

In this chapter we are going to review parts of the current state-of-the-art
in phase mixing in fully ionised plasma, discussing some of the simplifying as-
sumptions made by the original investigation by Heyvaerts and Priest (1983).
When applying the same simplifications to a partially ionised plasma, the

1The content of this chapter is based on the publication McMurdo et al. (2023).
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Figure 4.1: The variation of the ionisation degree with height (black line)
together with the variation of the Ohmic diffusion (green line), Ambipolar
diffusion (red line) and shear viscosity (blue line). These transport coefficients
were calculated taking into account the values of the physical parameters given
by the AL C7 model (Avrett and Loeser, 2008).
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obtained solutions will be classified as the "weak" solution, while the consid-
eration of all aspects related to the chromospheric partially ionised plasma
environment will constitute the "strong" solution.

Before we continue, there are certain assumptions needed to be satisfied in
order for the fluid to be appropriately defined as a fluid. In the single fluid
regime, all collisional frequencies of particles with one another and with them-
selves must be larger than the frequencies of the waves we choose to model.
That is, all collisional frequencies, νab for all a, b ∈ {e, i, n} with a and b al-
lowed to be equal, must exceed the frequency of the wave. Studying figure 2.2,
and calculating values for the ion-ion, electron-electron and neutral-neutral
collisional frequencies, we find that neutral-neutral collisions are the most in-
frequent, closely followed by ion-neutral collisions. For a quasi neutral plasma,
electron-electron collisions, electron-ion and ion-ion collisions differ only by a
constant factor coming from the definitions of each collisional frequency. The
neutral-neutral collisional frequency closely aligns with the ion-neutral colli-
sional frequency, differing only by the ratio between the collisional cross section
values. For the ionisation degrees we study, the collisional frequencies all far
exceed those of the simulated wave frequencies (taking a maximum value of
133 mHz), hence a single fluid regime is perfectly valid. Further details of
the implications of this result on the two-fluid simulations will be provided in
Chapter 6.

4.1 Phase mixing in a fully ionised plasma

Before we investigate the damping of Alfvén waves in a partially ionised plasma,
it is instructive to begin by setting a base marker to compare the damping
lengths of Alfvén waves due to phase mixing in a fully ionised plasma with
those of a partially ionised plasma. Although there are similarities in govern-
ing equations, upon close inspection, there are stark differences. Firstly, ηC is
now replaced with η since the Cowling diffusion coefficient is now set to zero.
Retaining all terms including products of dissipative coefficients the governing
equation for phase mixed Alfvén waves in a fully ionised plasma is given by

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+

[
(η + ζ)

∂2

∂x2
+ (η + ζ)

∂2

∂z2

]
∂b

∂t

− ζ

[
η
∂2

∂x2
+ η

∂2

∂z2

]
∇2b.

(4.1)
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Note that the form has been given to allow direct comparison between
Equation (2.55), factorisation of the derivatives would usually be used.

Since dissipative coefficients are very small in a fully ionised plasma, due
to the high temperature and high Reynolds number i.e., low density and hence
low collisional frequencies, the terms corresponding to products of dissipative
coefficients are typically neglected. Furthermore, due to the presence of an
inhomogeneous Alfvén speed, phase mixing creates large transversal gradients,
much larger than the longitudinal gradients corresponding to the wavelength
of the wave, so, it is assumed that ∂/∂x ≫ ∂/∂z. This can be represented as
the strong phase mixing limit given by

z

k∥

dk∥
dx

≫ 1, (4.2)

which assumes that the cross-field variation in wavelengths is large compared
to the ratio of wavelength over the longitudinal scale length of the problem.
This allows for steep gradients in the Alfvén speed to be taken when calculating
the damping lengths of phase mixed Alfvén waves.

Since the dissipative coefficients that multiply the x and z derivatives take
the same value for Equation (4.1), Equation (4.2) allows us to neglect the z

derivative in favour of the x derivative. Equation (4.1) therefore reduces to

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+ (η + ζ)

∂2

∂x2

∂b

∂t
, (4.3)

which resembles the typical form (seen in literature) of the governing equation
used to model phase mixed Alfvén waves in a fully ionised solar plasma. Fol-
lowing the methodology employed by Heyvaerts and Priest (1983), we assume
that b can be written as b(x, z, t) = b̂(x, z) exp{i(ωt − k∥(x)z)}, where b̂(x, z)

represents the amplitude of the wave and k∥ is the parallel wavenumber along
the magnetic field. This allows us to find an equation for b̂(x, z) given by

(ω2 − k2
∥(x)v

2
A(x))b̂ = v2A(x)

[
∂2b̂

∂z2
− 2ik∥(x)

∂b̂

∂z

]
+

+ iω(η + ζ)

[
∂2b̂

∂x2
− i

d2k∥
dx2

b̂− 2iz
dk∥
dx

∂b̂

∂x
− z2

(
dk∥
dx

)2

b̂

]
,

(4.4)

where k∥(x) = ω/vA(x), hence the left-hand side of the above equation van-
ishes. Equation (4.4) can be simplified further under the weak damping ap-
proximation and the strong phase mixing limit. The weak damping approxi-
mation is given by
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1

k∥

∂b̂

∂z
≪ 1, (4.5)

and it implies that the amplitude of the magnetic field perturbation varies
weakly with height compared to the wavelength, i.e., the wave takes at least a
few wavelengths to damp. This assumption is valid so long as the dissipative
coefficients ζ and η are small. Assuming that since b̂ is complex and hence a
rather regular function of x (we are unsure of the exact details of this assump-
tion made in the study by Heyvaerts and Priest (1983), but choose to follow
the same assumption in order to have a direct comparison between the fully
ionised case studied and the partially ionised case studied later), Equation
(4.4) reduces to

∂b̂

∂z
= −1

2

k∥(x)

ω
z2
(
dk∥
dx

)2

(η + ζ)b̂, (4.6)

which can be easily integrated with respect to z to give

b̂(x, z) = b̂(x, 0) exp

{
−
(

z

Λ1

)3
}
, (4.7)

where b̂(x, 0) is the amplitude of the perturbation at z = 0 and the quantity
Λ1 is the damping length of Alfvén waves, given by

Λ1 = k−1
∥

(
6ω

(η + ζ)
(
d log k∥/dx

)2
) 1

3

. (4.8)

This relation shows that the damping length for phase mixed Alfvén waves
varies with the R1/3, where R is the total (viscous and diffusive) Reynolds
number. This result also highlights the major implication of transversal gradi-
ents in the damping of Alfvén waves, as in a homogeneous plasma the damping
length of waves would be proportional to R.

In order to evidence the changes in the damping length of phase-mixed
Alfvén waves in a fully ionised plasma we perform a simple investigation. For
that purpose, we prescribe that the inhomogeneous Alfvén speed is given by
one of the following three profiles

P2 : vA(x) = vA1

(
1 +

1

2
cos

[
2π

linh
(x− 0.5linh)

])
,

P3 : vA(x) = vA1

(
1 +

1

2
tanh

[
x− 0.25linh

0.1linh

])
,

P4 : vA(x) = vA1

(
1 +

1

2
tanh

[
x− 0.25linh
0.03linh

])
,

(4.9)
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where linh is the length scale of the transversal inhomogeneity. Note that
the notation P1 has been reserved for later on in the investigation, used to
describe the homogeneous Alfvén speed profile, this choice has been made
for consistency of notation throughout this thesis. For illustration, we chose
vA1 = 500 km s−1, linh = 300 km, and the factor of one half in the above
Alfvén speed profiles is chosen in such a way that the Alfvén speed varies by a
factor of 3 across the inhomogeneity, ranging from 250−750 km s−1, typical of
the fully ionised corona (McIntosh et al., 2011). The last two tanh profiles are
reflected about the midpoint of the inhomogeneity to make them symmetric.
The choice of these profiles was made to model the effectiveness of an increased
local gradient in the Alfvén speed. The damping lengths are calculated by
considering the wave propagating along the field line that corresponds to the
location of the intersection of the three Alfvén speed profiles, which aligns with
the location of the maximum gradient in Alfvén speed. Figure 4.2 shows these
profiles in dimensionless form.

Figure 4.2: The different profiles of the Alfvén speeds used in the analysis of
phase mixed Alfvén waves in a fully ionised plasma are shown by curves of
different colors. Speeds and lengths are given in dimensionless units. The two
tanh profiles are symmetric about the midpoint of the inhomogeneity in order
to apply periodic boundary conditions to our numerical solver.

In order to gain an understanding of the damping lengths this model results
in, let us assign some realistic quantities for coronal plasma. For temperatures
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of the order of a million Kelvin, typical values for Ohmic diffusion and shear
viscosity are of the order of 1 m2s−1 (Ruderman and Petrukhin, 2018; Hood
et al., 2002). Assuming that waves are driven at a typical frequency of 3

mHz, a dominant observed frequency in the corona (Aschwanden et al., 1999b),
the calculations result in damping lengths that range from 2.4 × 104 − 7.2 ×
104 Mm (about 30% of the Sun-Earth distance), depending on the Alfvén
speed profile considered. The steeper the profile, the shorter the damping
length. This result clearly indicates the reason why earlier studies questioned
the efficiency of phase mixing in the solar corona. In order to achieve the
required heating in the solar corona, enhanced dissipative coefficients were
assumed, with many orders of magnitude larger than predicted. If we were to
enhance these dissipative coefficients by 7 orders of magnitude assumed in the
previously discussed literature, the damping lengths reduce to 110− 336 Mm
(for the same Alfvén speed profiles given by P4 − P2 respectively), of equal
order to the typical length of a coronal loop.

We should note that the gradient in the Alfvén speed is not properly re-
solved here, due to an assumption made by Heyvaerts and Priest (1983) on
the regularity of the amplitude of the wave. The damping rates are, therefore,
underestimated, as was shown by Ireland and Priest (1997), who found that
the energy initially at smaller length scales decays faster than the rate given
by Heyvaerts and Priest (1983). This occurs since the plasma is more strongly
dissipative at smaller length scales. The inclusion of the second-order deriva-
tive of the amplitude of the magnetic field perturbation also leads to smoother
Alfvén wavefronts.

4.2 Phase-mixed Alfvén waves propagating in a
partially ionised plasma: Weak solution

In order to define a proof of concept for the problem of phase-mixed Alfvén
waves in a partially ionised plasma and investigate how the damping lengths
are modified, we follow many of the same assumptions made in the study by
Heyvaerts and Priest (1983). To distinguish these results from the ones found
in the most general case (where these assumptions are neglected), we label
these results as the "weak" solutions. While some of our assumptions may
not be suitable for a partially ionised plasma, this will act as a rough guide
to whether a full numerical investigation is warranted. In that respect, we are
going to neglect products of dissipative coefficients, effectively assuming high
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temperatures and hence a high Reynolds number, allowing analytical progress.
Subsequently, Equation (2.55) reduces to

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+

[
(η + ζ)

∂2

∂x2
+ (ηC + ζ)

∂2

∂z2

]
∂b

∂t
. (4.10)

Let us now carry out Fourier analysis and assume that the magnetic field
perturbation, b, can be written in the form b(x, z, t) = b̂(x, z) exp{i(ωt −
k∥(x)z)}, where b̂(x, z) represents the amplitude of the wave and k∥ is the
parallel wavenumber along the magnetic field. This allows us to rewrite Equa-
tion (4.10) as

−ω2b̂ = v2A(x)

[
∂2b̂

∂z2
− 2ik∥(x)

∂b̂

∂z
− k2

∥(x)b̂

]
+

+ iω(η + ζ)

[
∂2b̂

∂x2
− 2iz

dk∥
dx

∂b̂

∂x
− iz

d2k∥
dx2

b̂− z2
(
dk∥
dx

)2

b̂

]
+

+ iω(ηC + ζ)

[
∂2b̂

∂z2
− 2ik∥(x)

∂b̂

∂z
− k2

∥(x)b̂

]
.

(4.11)

Investigating the damping effects of phase mixing, we focus exclusively on
solutions to the imaginary component of the Equation (4.11) given by

2
ω

k∥

∂b̂

∂z
= (η + ζ)

[
∂2b̂

∂x2
+ z2

(
dk∥
dx

)2

b̂

]
+ (ηC + ζ)

[
∂2b̂

∂z2
− k2

∥ b̂

]
. (4.12)

Following the method suggested by Heyvaerts and Priest (1983), we impose
the condition that b̂(x, z) is a regular function such that we may neglect the
second-order derivatives of b̂(x, z). We apply the weak damping approximation
and the strong phase mixing limit and, as a result, the equation takes the form

∂b̂

∂z
= −1

2

{
z2k∥
ω

(η + ζ)

(
dk∥
dx

)2

+
k2
∥

ω
(ηC + ζ)

}
b̂. (4.13)

After some straightforward calculations, it follows that the amplitude of the
magnetic field perturbation can be written as

b̂(x, z) = b̂(x, 0) exp

{
−
(

z

Λ1

)3

−
(

z

Λ2

)}
, (4.14)

where b̂(x, 0) is the amplitude of the perturbation at z = 0 and the quantities
Λ1 and Λ2 are related to the waves’ damping length. In the above expression
the first term in the exponent recovers the results obtained by Heyvaerts and
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Priest (1983), while the second term is attributed solely to the fact that the
plasma is partially ionised. The expression of Λ1 is given by Equation (4.8)
and Λ2 is given by

Λ2 =
2ω

k3
∥(ηC + ζ)

. (4.15)

Hence, Alfvén waves will damp due to phase mixing such that the damping
length is a superposition of the solution that has the same definition as the
expression for the fully ionised case given by Heyvaerts and Priest (1983) (Λ1),
and a term that is due to the ambipolar diffusion (Λ2). One very important
aspect of these quantities is that only Λ1 depends on the gradient of the Alfvén
speed and the ionisation degree, while Λ2 depends only on the ionisation degree,
which then dictates the value of ηC . This qualitatively different behavior is
due to the spatial derivatives associated with the dissipative coefficients. While
the shear viscosity and the Ohmic diffusion coefficent are associated with the
spatial derivative that are perpendicular to the direction of propagation, the
Cowling diffusion is associated with derivatives parallel to the propagation of
waves.

In order to evidence the changes in the damping length of phase-mixed
Alfvén waves in a partially ionised plasma, we perform a simple numerical
investigation. For that purpose, we prescribe the following four profiles for the
Alfvén speed

P1 : vA(x) = vA1,

P2 : vA(x) = vA1

(
1 +

1

2
cos

[
2π

linh
(x− 0.5linh)

])
,

P3 : vA(x) = vA1

(
1 +

1

2
tanh

[
x− 0.25linh

0.1linh

])
,

P4 : vA(x) = vA1

(
1 +

1

2
tanh

[
x− 0.25linh
0.03linh

])
,

(4.16)

where linh is the length scale of the inhomogeneity. For illustration, we chose
vA1 = 20 km s−1, linh = 300 km, and the factor of one half is chosen in such
a way that the Alfvén speed varies by a factor of 3 across the inhomogeneity,
ranging from 10 − 30 km s−1. These values were taken from previous stud-
ies involving propagating Alfvén waves in an inhomogeneous partially ionised
plasma in spicules and fibrils (see, e.g., He et al., 2009; Okamoto and De Pon-
tieu, 2011; Bate et al., 2022; Gafeira et al., 2017; Jafarzadeh et al., 2017).
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The choice of these profiles was made to model the effectiveness of an
increased local gradient in the Alfvén speed. These four profiles are converted
to dimensionless form before use in the numerical study in Section 4.3, where
the reasoning is further discussed relevant to the numerical modeling carried
out. Note that the profile P1 denotes the homogeneous case and it will be used
to evidence the effect of transversal inhomogeneity on the damping of waves.
This was not possible for the case of a fully ionised plasma due to the form of
Equation (4.8). Figure 4.3 shows these profiles in dimensionless form.

Figure 4.3: The different profiles of the Alfvén speeds used in the analysis are
shown by curves of different colors. The constant Alfvén speed profile (shown
here by the blue horizontal line) will serve as a comparison basis. Speeds and
lengths are given in dimensionless units. The two tanh profiles are symmetric
about the midpoint of the inhomogeneity in order to apply periodic boundary
conditions to our numerical solver.

Since Equation (4.14) is not a simple exponential function, we cannot define
a standard e-folding distance. However, we are still going to define the damping
length as the length over which the initial amplitude of the wave decays by
e-times, and this distance will be determined numerically. This is done by
solving the equation (

z

Λ1

)3

+
z

Λ2

= 1, (4.17)

and, this distance will be referred to as LP
d . Similarly, to calculate the damping
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length of Alfvén waves propagating in a fully ionised plasma, we solve the
equation (

z

Λ1

)3

= 1, (4.18)

which can be solved exactly by z = Λ1. This distance will be referred to as LF
d ,

and will serve as a comparison to measure the reduction in damping length
due to the presence of neutrals.

Figure 4.4: The variation of the damping length of phase-mixed Alfvén waves
in a partially ionised plasma, LP

d , in terms of the wavelength of the Alfvén
waves. Here different ionisation degrees are shown by different colors.

The dependence of the damping length of phase mixed Alfvén waves prop-
agating in a partially ionised plasma on the wavelength of Alfvén waves is
shown in Figure 4.4 for different ionisation degrees (shown by different colors)
for an Alfvén speed profile given by P2. The values of the ionisation degree
were chosen so that these cover the whole spectrum between a strongly ionised
and weakly ionised plasma. Our results show that considering either very
weakly ionised or very strongly ionised plasma results in weak damping and,
therefore large damping lengths, too large to contribute to heating the solar
chromosphere. This behavior can be attributed to the variation of the Cowling
diffusion coefficient with the ionisation degree. In both of these cases (weakly
and strongly ionised), the perpendicular currents are very small, thanks to the
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very small number of neutrals in the case of the strongly ionised plasma, and
a very small number of ions in the case of the almost neutral plasma.

Clearly, the damping lengths are shortest for shorter wavelengths across
all ionisation degrees, the most effective damping occurs at ionisation degrees
close to µ = 0.6, where the combined effects of diffusion, viscosity, and am-
bipolar diffusion reach their maximum. According to the AL C7 model, this
ionisation degree occurs at about 7,000 K and the ratio of ions to neutrals is
approximately 1.31. The size of the damping lengths obtained in the “weak”
limit highlights the efficiency of the phase mixing in partially ionised plasmas,
here damping lengths can be as small as a few hundred kilometers (as opposed
to the damping length of phase mixed Alfvén waves in a fully ionised plasma
that is several thousand Mm). Inspired by these results we have investigated
the number of wavelengths an Alfvén wave must propagate in order for its
amplitude to decay by e-times as shown by Figure 4.5.

Figure 4.5: The number of wavelengths required for a wave to propagate before
the wave is deemed t be damped. This is simply calculated by dividing the
damping length of each simulation by the wavelength used to calculate the
damping length. The curves obtained for different ionisation degrees are shown
by different colors.

The results show that for ionisation degrees away from our optimum value
of approximately 0.6, the number of wavelengths required to have propagated
before damping is achieved reduces with an increased wavelength, while for
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ionisation degrees close to 0.6 the ratio remains fairly constant, suggesting
that the relationship between the damping length and the wavelength is rather
linear.

Figure 4.6: The ratio of the damping length of phase mixed Alfvén waves
in fully ionised, LF

d , and partially ionised, LP
d , plasmas with respect to the

wavelength of waves. The curves obtained for different ionisation degrees are
shown by different colors.

The efficiency of phase-mixing on the damping of Alfvén waves in a par-
tially ionised plasma becomes visible when we investigate the role of neutrals
in this process. For this purpose we consider that by removing entirely the
neutral species from the plasma, we have a fully ionised plasma for which the
dissipative coefficients will be different and they are given by Heyvaerts and
Priest (1983), however, the remaining plasma parameters (primarily temper-
ature) remain relevant to the photosphere-chromosphere region. Figure 4.6
shows the ratio of the damping lengths obtained in fully ionised and partially
ionised plasmas in terms of the wavelength of waves. The different ionisa-
tion degrees are shown by different colors. Our results show that the ratio
in damping lengths is marginally larger for shorter wavelengths meaning the
neutrals play a much more important role in wave damping, approximately an
order of magnitude reduction in damping lengths when considering the effects
of neutrals for ionisation degrees close to µ = 0.6. This behavior is due to
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the Cowling diffusion found in Equations (4.14) and (4.15). For short wave-
lengths (large k∥), Λ2 is small and hence is the dominant damping mechanism.
For large wavelengths (small k∥), Λ2 plays a smaller role and hence for larger
wavelengths we find our solutions to tend to a saturated ratio, this is a result
of a superposition of solutions coming from the enhanced Ohmic diffusion and
shear viscosity coefficients in a partially ionised plasma versus the fully ionised
chromospheric plasma, i.e., the damping due to ambipolar diffusion plays a
negligible role for large wavelength Alfvén waves, at least in the weak solution.

The regime in which each dissipative mechanism is dominant can be studied
analytically by calculating the relative magnitudes of Λ1 and Λ2. After some
algebra, we can see that the dominant damping mechanism of Alfvén waves in
a partially ionised inhomogeneous plasma is dependent on the direction of the
inequality of the equation below. If

2π2

√
3η3C
η + ζ

≫ dvA
dx

λ2
∥ or 2π2

√
3η3C
η + ζ

≪ dvA
dx

λ2
∥, (4.19)

then the damping of the wave is predominantly due to the presence of neutrals
or phase mixing respectively. If the two terms are of equal magnitude, both
the presence of neutrals and phase mixing play equally important roles.

The damping length ratio pictured in Figure 4.6 corresponding to a nearly
fully ionised case (µ = 0.5001, shown by the black line) is independent of
the wavelength of waves. In this limit, the contribution towards the overall
damping length is due mainly to Λ1, and the fact that this ratio is not one
can be attributed to the 0.1% of neutrals still in the system. Furthermore, a
similar trend for the weakly ionised cases can be recovered (blue line), that
is due to the low values of the Cowling diffusion. These conclusions highlight
the need for a balanced population of neutrals and ions in the process of phase
mixing.

Before moving on to the full numerical study, we would like to evidence the
effects of varying the Alfvén speed profile on the damping lengths of phase-
mixed Alfvén waves in the case of the “weak” solution. We choose to showcase
a single wavelength chosen to be λ∥ = 400 km and we plot the damping length
against all heights associated with ionisation degrees in our range of study. The
effect of the multi-valued ionisation degree is displayed here in Figure 4.7. The
variation of the damping length in Figure 4.7 shows a clear trend of drastically
decreasing the damping lengths when the presence of an inhomogeneous Alfvén
speed is introduced, highlighting the efficiency of phase mixing as a mechanism
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Figure 4.7: The variation of the damping length with height above the solar
surface ranging from 1000 − 2500 km in the case of the four Alfvén speed
profiles (P1 − P4) given by Equation (4.16). The particular wavelength used
here corresponds to λ∥ = 400 km. The overplotted red line shows the ionisation
degree based on the AL C7 model (Avrett and Loeser, 2008).

to damp Alfvén waves effectively in the solar chromosphere. The shortest
damping lengths are attained for the steepest profile (P4) and for ionisation
degrees for which an equal population of neutrals and ions are present.

Clearly, the inclusion of neutrals in the investigation of phase mixing of
Alfvén waves results in significantly reduced damping lengths, in contrast to
the fully ionised conditions. Perhaps most notably, the enhancement of dissi-
pative coefficients via turbulence is unnecessary to achieve this damping effect.
While certain assumptions necessary for analytical progress may not strictly
apply to a partially ionised plasma, this outcome serves as a proof-of-concept,
warranting further exploration through numerical modeling that permits the
retention of all terms in the governing equation. The numerical solution de-
rived from this approach is herein referred to as the “strong” solution.

4.3 Phase-mixed Alfvén waves propagating in a
partially ionised plasma: Strong solution

The solution for propagating phase mixed Alfvén waves in an unbounded
plasma given by Equation (4.14) and (4.15) can be considered as a “weak”
solution, as it was obtained applying the same simplifications as in the study
by Heyvaerts and Priest (1983) and they are connected to the small values
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of dissipative coefficients (or very high Reynolds numbers). While these as-
sumptions are obvious in fully ionised coronal plasmas, in a partially ionised
chromospheric plasma, the transport coefficients are large and, therefore, terms
containing products of dissipative coefficients have the potential to be not only
important but dominant.

Under these circumstances, the governing equation describing the tempo-
ral and spatial evolution of the magnetic field perturbation in a single-fluid
partially ionised plasma reduces to Equation (2.55). In Equation (2.55), sim-
plifications were made regarding the order of magnitude difference between
characteristic scales in the transversal and longitudinal direction, the second
and third terms contain a derivative in the z direction because the Cowling
diffusion is much larger in the chromosphere than the Ohmic diffusion and/or
viscosity. Given the complexity of the above partial differential equation, the
solutions are determined using a numerical method analogous to that used
by Hood et al. (2002). We employ a 4th-order Runge-Kutta-based time step
and a 2nd-order centered difference approximation for the spatial derivatives.
In order to proceed with finding a numerical solution, we must first rewrite
Equation (2.55) as a system of first-order dimensionless equations given by
Equations (3.9)–(3.10).

Following Hood et al. (2002), we write all quantities in dimensionless form.
Using finite difference approximations for the spatial derivatives to tackle the
system of first-order Equations (3.9) and (3.10) inevitably leads to solving a
large system of linear algebraic equations, which can be written in the form
given by Equation (3.18) where A denotes a tridiagonal matrix with fringes,
the coefficients of which correspond to the finite difference approximations.
We then use a RK4 time-stepping algorithm to progress forward in time. The
evolution of waves is followed until they reach a steady state or the perturbation
reaches the end of the domain. The peaks of the damped wave are tracked
and an envelope is fitted. We then calculate the percentage reduction in the
amplitude after a given distance that the wave has propagated.

4.3.1 Sinusoidal wave driver

When studying the damping of an irregular signal such as a pulse it is in-
formative to study how its constituent components damp. All signals can
be approximated by a finite number of differently weighted sine waves repre-
sented by the Fourier decomposition of the signal. We could then construct
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various other drivers from a finite collection of sine waves, each with a defini-
tive damping length. In this study, we consider a continuous sinusoidal wave
driver situated at the base of our domain. Understanding what are the main
characteristics of waves and how they damp, we can generalise the idea to
any driver and quantitatively predict the damping length of waves. That is
why extending any of our work to more complicated drivers such as a pulse,
broadband or random driver is a feasible task without major modification of
our numerical program.

The damping of waves is followed for the four different Alfvén speed profiles
specified by Equation (4.16). A constant Alfvén speed profile is chosen as
a comparison basis to evidence the direct effects phase mixing has on the
damping lengths of the waves. The Alfvén speed profiles used in our analysis
are shown in Figure 4.3. Introducing an inhomogeneous Alfvén speed profile in
the transversal direction results in the presence of varying wavelengths in our
system. The range of the wavelengths present in our simulation is dictated by
the maximum and minimum values of the Alfvén speed profile. In our analysis,
we are going to follow approximately like-for-like wavelengths along the same
field line and isolate the effects of a steeper local gradient rather than the effects
of a broader range of wavelengths in the simulation. In order to concentrate
only on the effect of inhomogeneity we chose the three inhomogeneous profiles
such that their extreme values range between the same dimensionless values
of 0.5 and 1.5.

For simplicity, throughout our analysis, we will follow the modification of
the amplitude of Alfvén waves on the magnetic field line that corresponds
to the intersection of all four profiles displayed in Figure 4.3 occurring at
x = 0.25. This particular choice removes from the problem the discussion on
the effectiveness of damping in terms of the wavelength of waves, however, this
will be similar to the findings shown in the case of weak solutions. The profiles
shown in Figure 4.3 are chosen such that the maximum gradient of the Alfvén
speed profile occurs at the particular value of x.

4.3.2 Results

Our aim is to study the damping of phase-mixed Alfvén waves generated by a
sinusoidal wave driver for varying ionisation degrees that are given by Equation
(2.4). As the ionisation degree varies between the limits of fully ionised (µ =

0.5) and fully neutral (µ = 1) plasmas, an increase of the ionisation degree is
somewhat equivalent to the case of a plasma whose temperature is decreasing
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(assuming that the ionisation degree of the plasma is temperature-dependent
only, i.e., the effect of radiation is removed).

Figure 4.8 shows the normalised value of the envelope in the case of an
Alfvén wave generated by the four different Alfvén wave profiles considered
in the present study. The waves have identical periods and the solutions are
presented for the same ionisation degree (µ = 0.7852). The variation in the
envelope is caused by different levels of phase mixing due to the variation of the
Alfvén speed profiles. The envelope is plotted by fitting a curve to the peaks
of the generated Alfvén waves. The damping length is measured from the first
peak, rather than from z = 0 to avoid any extrapolation errors. The horizontal
red line marks the value of the normalised amplitude that corresponds to a e-
fold decrease of the original value and the vertical lines mark the points where
the envelopes of the waves intersect with the horizontal line. The damping
length can then be calculated to be the distance between the first peak and
the vertical line. The results show clearly that any inhomogeneous profile
results in a shorter damping length, i.e., phase mixing indeed reduces the
damping length of waves. Comparing these results with the profiles of the
Alfvén waves shown in Figure 4.3, it is evident that the wave that corresponds
to the steepest gradient undergoes the heaviest damping. The steep gradients
enhance the contribution of the viscosity and diffusion in the Navier-Stokes
and induction equation.

The percentage reduction in amplitude of Alfvén waves over the particular
distance of 1 Mm from their first peak is displayed in Figure 4.9. This value
was chosen to replace the damping length due to constraints on the size of the
domain used in our numerical solver. Specifically, when waves propagate within
a plasma of a certain ionisation degree, they may not reduce in amplitude by a
factor of e upon reaching the end of the domain, hence it becoming impossible
to accurately calculate the damping length. The percentage reduction of the
amplitude is a quantity that is defined as

P(%) =
A[0]− A[1]

A[0]
× 100, (4.20)

where A[0] is the initial amplitude of the Alfvén wave and A[1] is the amplitude
after the wave propagated a distance of 1 Mm. The results displayed in Figure
4.9 show the same trend as obtained in the case of weak damping, i.e., a plasma
with an ionisation degree in the region of µ = 0.6 produces the most effective
damping, where for all the considered Alfvén speed profiles nearly all of the
wave energy has been dissipated. For larger ionisation degrees (higher relative
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Figure 4.8: An envelope is fitted to the normalised maxima of Alfvén waves
in the case of the four Alfvén speed profiles. The particular wavelength used
in this figure corresponds to λ∥ ≈ 400 km and the ionisation degree is set to
µ = 0.7852.

neutral densities) we recover a similar result as shown in Figure 4.8, i.e., the
percentage change in the amplitude of the wave increases with the steepness
of the Alfvén wave profile.

Now that we have established that phase mixing in partially ionised solar
plasmas has the potential to damp waves very effectively within the chromo-
sphere, let us estimate the amount of heat produced by the damping of phase-
mixed Alfvén waves that are subject to damping due to Ohmic dissipation of
parallel and perpendicular currents, as well as the conversion of waves’ kinetic
energy into heat due to viscous damping. In this case, the heating rate, Q, is
calculated as the sum of the heating due to Ohmic heating, Qres and viscous
heating, Qζ (Priest, 2014; Melis et al., 2021)

Q = Qres +Qζ =
1

µ0

[
η

(
∂b

∂x

)2

+ ηC

(
∂b
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)2
]
+

ρζ

2

(
∂v

∂x

)2

, (4.21)

where we retained only the dominant term in the expression of viscous heating.
The variation of the heating rate with respect to the ionisation degree of the
plasma for a given wavelength of Alfvén waves (400 km) propagating along
the magnetic field line associated with the maximum gradient of the Alfvén
speed profile P4, shown by purple in Figure 4.3 is displayed in Figure 4.10. The
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Figure 4.9: The percentage reduction in the wave amplitude after a propagat-
ing length of 1 Mm is plotted for various ionisation degrees, the Alfvén speed
profiles are labeled in the legend. The steepest of the four profiles gives rise
to the most effective wave damping, while all waves are damped effectively
for ionisation degrees close to µ = 0.6, where the values of viscosity, Ohmic
diffusion, and ambipolar diffusion are at their effective combined maximum.
For this figure we study waves with wavelength λ∥ ≈ 400 km.
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amplitude of the velocity perturbation was taken to be 2.5 kms−1 (Grant et al.,
2018). For the sake of simplicity, we neglected the back reaction of the heating
process on the values of dissipative coefficients and also the ionisation degree
of the plasma. Given the particular dependence of dissipative coefficients, the
values we determine constitute an upper limit.

Figure 4.10: The variation of the heating rate with the ionisation degree of
the plasma for the phase-mixed Alfvén waves with a wavelength of 400 km
described by the P4 profile. Heating rates associated with particular dissipative
coefficients are shown in different colours. The horizontal black line shows the
value of the heating rate of the quiet Sun equal to the average radiative losses
of the chromosphere.

In order to estimate the efficiency of the phase-mixed Alfvén waves to heat
the plasma, we use, for comparison, the estimated average heating rate of
the quiet chromosphere. The radiative losses estimated from commonly used
semi-empirical models of the quiet-Sun chromosphere are 4.3 kWm−2, while in
active regions, this value reaches 20 kWm−2 (see, e.g., Withbroe and Noyes,
1977; Vernazza et al., 1981; Yadav et al., 2022). The required heating rate to
compensate for the radiative losses in the quiet chromosphere is shown by the
horizontal black line in Figure 4.10. Our analysis reveals that the maximum
heating rate produced by Alfvén waves varies considerably with the ionisa-
tion degree of the plasma, in the full spectrum of the ionisation the heating
rate varies by more than one order of magnitude and it attains its maximum
value for an ionisation degree of µ = 0.5761. The results show that waves
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propagating in a partially ionised plasma with ionisation degrees in the range
µ = 0.5181− 0.6570 provide sufficient heating rates to balance chromospheric
radiative losses. In the AL C7 atmospheric model, these values correspond to a
ratio of neutrals to ions, nn/ni = 0.0567−0.9171, respectively. These values of

Figure 4.11: A composite figure showing the formation height and temperature
of various continua and spectral lines taken from Vernazza et al. (1981) over
which we plot the height and temperature range (shaded box) for which the
heating rate produced by phase mixing of Alfvén waves is larger than the
radiative loses in the quiet chromosphere.

the ionisation degree in the AL C7 model occur at the heights of 1916 and 2150

km above the solar atmosphere. It is instructive to compare our findings with
the variation of the temperature with height in the VAL atmospheric model
(Vernazza et al., 1981, their Figure 1) together with the approximate depths
where various continua and spectral lines are formed (see Figure 4.11). The
heights in between which the heating rate obtained by us is larger than the
required heating rate are shown by vertical red lines, while the temperature
at which the specific ionisation degrees occur is shown by red horizontal seg-
ments. In this way, we can define a region in the height-temperature diagram
where phase-mixed Alfvén waves can provide the required heating. This do-
main corresponds to the region where the temperature increases dramatically
and it is the location where the Lymanα and the 3 mm continuum intensity
due mostly to free-free transitions of hydrogen is generated. These results show
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that the increases in the temperature at the transition region level could be
easily attributed to the phase mixing of Alfvén waves.

4.4 Conclusions

Ever since the seminal paper by Heyvaerts and Priest (1983), the damping of
phase-mixed Alfvén waves propagating along magnetic field lines was suggested
as a possible mechanism to explain the heating of upper solar atmospheric
layers. One key drawback of the theory of phase mixing of Alfvén waves, when
applied to the solar corona, was that the dissipative coefficients are very small,
leading to damping lengths that are often as large as the solar radius. This was
attributed to the very small value of transport coefficients in the solar corona.

Our study aimed to address this major shortcoming by investigating the
problem in the chromospheric plasma, where transport coefficients are far
larger, however, the plasma is partially ionised. Effective Alfvén wave damping
due to phase mixing was achieved by imposing a density profile that varied
in the transversal direction to the wave propagation. The main result of our
research is that using realistic dissipative coefficients for the partially ionised
chromospheric plasma results in an enormous reduction in the damping lengths
compared to those for the fully ionised coronal case given by Heyvaerts and
Priest (1983). Consequently, our estimations do not rely on turbulence to en-
hance transport mechanisms to bring the damping lengths to values that are
important for heating. Small-scale mixing of magnetic field lines will create
turbulence that can, even more, enhance transport coefficients (Magyar et al.,
2017; Oppenheim et al., 2020).

Our results show that short wavelength Alfvén waves damp much faster
than longer wavelength waves and the maximum attenuation of Alfvén waves
occurs for ionisation degrees close to µ = 0.6. For steep gradients and for
dissipative coefficients corresponding to our optimum ionisation degree (or
close to this), significant damping is seen for all wavelengths within 1 Mm of
propagation. This length scale of damping could well explain a large amount
of chromospheric heating with the rest of the energy left stored in the Alfvén
waves propagating higher into the corona.

For waves with a particular wavelength of 400 km propagating in the pres-
ence of our steepest profile in the Alfvén speed, sufficient heating was generated
due to the damping of phase-mixed Alfvén waves to balance radiative losses in
the upper chromosphere/transition region when the ionisation degrees of the
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plasma is in the range µ = 0.5181−0.6570. This means that the phase mixing
of Alfvén waves in partially ionised plasmas is indeed a viable mechanism for
plasma heating.

Finally, we should mention that our approach used several simplifications
that made the treatment of the problem of phase-mixing clearer. Key ingredi-
ents were neglected (e.g. height and time-dependence of dissipative coefficients
and gravitational stratification), however, these might play an important role.
As shown in Figure 2.5, the dissipative coefficients range by orders of magni-
tude over short distances. These coefficients dictate the heating rates of the
simulated Alfvén waves and are considered constant within each simulation.
In addition, the height range over which we found sufficient heating to balance
radiative losses is less than a single wavelength. While we expect the wave
damping to reduce when a vertically stratified plasma (at least in the context
of the assignment of dissipative coefficients), the heating rates will remain suf-
ficient within the range of values stated previously. Furthermore, as pointed
out by Ofman et al. (1998) and Cargill et al. (2016), an assumed equilibrium
density profile (at least in coronal plasmas) is not sustained due to the heating
produced by the damping of phase-mixed Alfvén waves. Whether the same
conclusion holds for chromospheric partially ionised plasma needs to be in-
vestigated by modifying our code to include a time-dependent Alfvén speed
profile. It is our intention to expand the investigation of this problem and take
into account the neglected processes in future analyses.
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CHAPTER 5

Phase mixing of Alfvén waves in a single-fluid par-
tially ionised plasma: the effect of various drivers

Understanding the dynamics of phase-mixed Alfvén waves propagating in par-
tially ionised plasmas is crucial for elucidating various phenomena in astrophys-
ical environments, such as spicules, fibrils or magnetic bright points. These
waves play a fundamental role in transporting energy and momentum across
vast regions of space, influencing the dynamics and contributing to the heating
of the surrounding plasma. In Chapter 4, we examined the effects of phase
mixing on Alfvén waves excited by a continuous single-frequency driver in a
partially ionised single-fluid plasma environment, i.e., for frequencies much
lower than the collisional frequency between particles. This investigation pro-
vided valuable insights into the evolution of wave energy and the associated
heating mechanisms. However, due to the physical reality of the complex wave
excitation mechanisms present in the solar atmosphere, the investigation of
more sophisticated drivers becomes necessary.

Observations often approximate transverse displacements using single fre-
quency sinusoidal wave profiles, however, it is highly unlikely that this dis-
placement can wholly be represented by a wave consisting of a single frequency
(Morton et al., 2016). The excitation of waves in the solar atmosphere is in-
herently complex, resulting from a superposition of various motions, including
photospheric motions, intergranular buffeting, magnetic reconnection events,
and interactions with existing magnetic field structures. These combined ef-
fects result in waves that are generated by a spectrum of frequencies. In this
case, a driver consisting of multiple frequencies may be employed to more
accurately model the observed disturbances in the solar atmosphere.

Additionally, observational evidence suggests that the observed displace-
ments often seen in the solar atmosphere should be approximated by a sinu-
soidal wave lasting at most one to a few periods (see, e.g., Bate et al., 2022) or
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interpreted as a pulse (see, e.g., Gosling et al., 2011). Hence, a more compre-
hensive understanding of the effect of various drivers on the efficiency of phase
mixing and energy transport processes can be obtained through the investi-
gation of wave propagation generated by a finite lifetime driver; more details
will follow.

5.1 Various wave generation mechanisms

To begin our discussion of how varying the wave driver, affects the efficiency
of the damping of phase mixed Alfvén waves in partially ionised solar plasmas,
we first discuss a few possible scenarios where a different wave generation
mechanism may be present, in doing so we give motivation to each of the new
wave drivers considered.

5.1.1 Continuously driven waves

Continuous wave drivers have been inferred from the observation of decayless
kink oscillations in coronal loops (see, e.g., Anfinogentov et al., 2013; Nisticò
et al., 2013). The footpoints of coronal loops are firmly rooted in the pho-
tosphere providing compelling evidence for the existence of wave drivers that
operate continuously within the lower solar atmosphere. While these distur-
bances will typically exhibit a dominant frequency, they are affected by convec-
tive photospheric motions and granular and intergranular motions, each influ-
encing the characteristics of the wave profile excited. This interaction results
in a broadband of frequencies that contribute to the behaviour of the resultant
waves generated. Broadband wave drivers have been utilised extensively in var-
ious numerical simulations. For instance, the study by Karampelas and Van
Doorsselaere (2024) replicated the effects of a broadband wave driver using a
power-law-like approach, while Soler et al. (2017) investigated the propagation
of torsional Alfvén waves from the photosphere to the corona, employing a
broadband driver to obtain a proper estimation of the wave heating efficiency.
Pascoe et al. (2015) characterised a broadband driver by approximating it as
the cumulative effect of numerous discrete single-frequency wave drivers.

To begin an investigation into the efficiency of phase mixing at damping
Alfvén waves generated by a broadband driver, we initially propose simula-
tions employing a dual-frequency driver consisting of two distinct frequencies;
one high-frequency (still lower than the ion-cyclotron and ion-neutral colli-
sional frequencies, allowing for use of the single-fluid approximation) and a
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low-frequency component. We refer the reader back to Chapter 3, where we
outline the necessary numerical framework adjustments to extend our code to
accommodate an arbitrary number of discrete frequencies. This approach is
similar to that of Pascoe et al. (2015) whereby their footpoint driver is com-
posed of several prescribed frequencies so that their sum is representative of a
broadband signal.

5.1.2 Finite lifetime drivers

Magnetic reconnection stands as a cornerstone process in solar physics, serv-
ing as a driving force behind a multitude of solar phenomena such as solar
flares, coronal mass ejections, and even the excitation of MHD waves. Mag-
netic reconnection occurs when magnetic field lines of opposite polarity break
and reconnect, releasing energy in the form of heat and radiation, triggering
various MHD waves. In the lower solar atmosphere, specifically in the photo-
sphere and chromosphere, magnetic reconnection is believed to be the source
of Ellerman bombs (EBs). EBs are intense brightenings seen in the extended
wings of the hydrogen Balmer-α line (H-α), typically observed in complex
bipolar active regions during periods of vigorous flux emergence (see, e.g.,
Watanabe et al., 2011; Vissers et al., 2013). Advanced numerical simulations
by Hansteen et al. (2017, 2019) and Danilovic (2017) support the interpre-
tation of EBs as markers of small-scale photospheric magnetic reconnection.
Investigations by Rouppe van der Voort et al. (2016) and Joshi et al. (2020)
identified ubiquitous EB-like brightenings in the quiet Sun, termed quiet Sun
EBs (QSEBs), occurring far from regions of strong magnetic activity. These
QSEBs present weaker enhancements of their H-α wings compared to those
observed in regions of high solar activity (Nelson et al., 2017). The transient
nature of EBs and QSEBs and their association with small-scale photospheric
magnetic reconnection naturally present themselves as a potential source of
pulse-like or finite lifetime driven Alfvén waves throughout the lower solar
atmosphere. For a comprehensive review of EB properties, their diagnostics
or their modelling (see, e.g., Rutten et al., 2013; Vissers et al., 2019; Fang
et al., 2006). The transient nature of EBs and QSEBs and their association
with small-scale photospheric magnetic reconnection naturally present them-
selves as a potential source of pulse-like or finite lifetime driven Alfvén waves
throughout the partially ionised lower solar atmosphere. Understanding the
behavior and propagation of these finite lifetime driven Alfvén waves in a par-
tially ionised plasma is crucial for understanding their role in energy transport
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and dissipation in the solar atmosphere, thereby motivating detailed modeling
and simulations of phase-mixed Alfvén waves under these conditions.

5.2 Multi-frequency driver

In this section, we extend our numerical model from Chapter 4 to explore the
impact of a multi-frequency driver on the behavior of Alfvén waves in par-
tially ionised plasmas. By comparing the results with those obtained from a
driver with a single-frequency, we can discern any unique signatures of multi-
frequency drivers on wave propagation and damping processes in inhomoge-
neous partially ionised plasmas. Through this investigation, we seek to en-
hance our understanding of the intricate dynamics of Alfvén waves in partially
ionised plasmas and their role in shaping astrophysical environments. The in-
sights gained from this study have implications for wave studies in the partially
ionised lower solar atmosphere.

Numerically, a multi-frequency wave driver can be implemented by sum-
ming together multiple harmonic drivers of varying frequencies and amplitudes.
These frequencies can be made arbitrarily close to one another in period/fre-
quency, resulting in a finite approximation of a continuous broadband driver.
The initial conditions in the case of n harmonic drivers appear as per Equation
(3.22). No further changes must be made to our code in order to simulate a
driver of n frequencies.

By investigating the propagation and attenuation of phase mixed Alfvén
waves with short lifetimes, we can further elucidate the intricate interplay be-
tween magnetic fields, plasma dynamics, and wave propagation in the partially
ionised inhomogeneous solar atmosphere. Consequently, we expand upon our
research presented in the previous chapter to encompass an exploration of
diverse wave drivers, whose aim is to capture the range of wave generation
mechanisms observed in the Sun. Our initial focus assesses the impact of
a multi-frequency wave driver, before investigating finite lifetime sinusoidal
drivers and pulse wave drivers.

5.2.1 Results

We retain the numerical setup discussed in previous chapters, including the
Alfvén speed profiles given by Figure 4.3. As shown in Chapter 4, the presence
of inhomogeneity is of key importance when calculating the damping lengths of
phase-mixed Alfvén waves. We consider that Alfvén waves are generated by a
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driver with two distinct frequencies of 13 and 67 mHz. Given the relationship
between frequency and wavelength, the wavelengths corresponding to these
frequencies vary with the Alfvén speed also. We continue, however, to select
the Alfvén wave propagating along the magnetic field line that corresponds to
the location of the maximum gradient in Alfvén speed (for profiles P2 − P4).
Each of the Alfvén speed profiles have been designed in such a way that this
maximum gradient also occurs for the dimensionless Alfvén speed equal to 1, or
in dimensional units vA0 = 20 kms−1. Hence these two frequencies correspond
to wavelengths of 300 and 1500 km along the magnetic field line of interest,
which is located at the maximum gradient of the Alfvén speed profile.

Here we present the solution obtained for each of the Alfvén speed profiles
P1 −P4 introduced in Chapter 4 to show the efficiency of phase mixing on the
damping of Alfvén waves in the partially ionised lower solar atmosphere.

Figure 5.1: The variation of the dimensionless amplitude of magnetic field
perturbation with coordinate z in the case of the four profiles of Alfvén waves
(P1 − P4) defined in Chapter 4. Waves are driven by a two-frequency driver.
Here we plot the results corresponding to an ionisation degree of µ = 0.6628.
Each simulation was terminated the moment the perturbation reached the end
of the domain.

Examining Figure 5.1, it is clear that following the propagation of the wave
across the 2−3 Mm range, the existence of even a modest gradient in the Alfvén
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speed (as represented by profile P2) significantly enhances the dissipation of
the high-frequency component compared to the homogeneous scenario.

At the base of the domain, where the wave driver is located, the behaviour
of the magnetic field perturbation is dominated by the high-frequency com-
ponent of the driver. However, the high-frequency component of the Alfvén
wave is killed off after propagating a distance comparable to the height of the
chromosphere (2 − 2.5 Mm) while the low-frequency component propagates
much further without full attenuation, suggesting that the energy stored in
high-frequency waves is much more likely to contribute to the heating of the
chromosphere since it dissipates over much smaller scales compared to the
low-frequency oscillations that persist far out into the corona. This finding
characterises the chromosphere as a filter for high-frequency waves, poten-
tially explaining why we do not see such high-frequency waves persisting into
the higher layers of the solar atmosphere, such as the corona and solar wind.

In order to evidence the effect of the ionisation degree on the damping of
phase-mixed Alfvén waves excited by a multi-frequency driver, we plot the vari-
ation of the dimensionless magnetic field perturbation for the steepest Alfvén
speed profile (P4) for a range of ionisation degrees which span from very weakly
ionised such that behaviour of the wave is dominated by neutrals, to strongly
ionised, where the behaviour of the plasma is predominantly dictated by ions
(see Figure 5.2).

Figure 5.2 re-confirms that ionisation degrees near µ = 0.6 exhibit the
most efficient damping of the phase-mixed Alfvén waves. This trend was con-
sistent across all wavelength ranges, as discussed in Chapter 4. While the
damping of Alfvén waves is evident in all considered ionisation degree cases,
the result corresponding to µ = 0.6161 shows that waves are overdamped, the
high-frequency component dissipates within a single wavelength of propaga-
tion, underscoring the chromosphere’s effectiveness in damping high-frequency
disturbances. A wave with a wavelength of approximately 300 km, propagat-
ing in the presence of a steep inhomogeneity in a plasma with approximately
equally neutral and ion populations will damp within about one wavelength,
making them excellent candidates for heating the lower solar atmosphere.

For Alfvén waves propagating in a plasma with ionisation degrees approach-
ing the limits of full ionisation (µ = 0.5) or full neutrality (µ = 1), the dissipa-
tive mechanisms, such as diffusion and shear viscosity, weaken correspondingly.
Consequently, the damping weakens for Alfvén waves propagating in plasma
that is either highly ionised or highly neutral, irrespective of the steepness
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Figure 5.2: The evolution of the dimensionless magnetic field perturbation with
distance generated by a dual-frequency driver for the P4 Alfvén speed profile.
Each subplot corresponds to a different ionisation degree, as indicated in the
legend. The color gradient within the plot loosely represents a temperature
profile, where blue signifies a cooler, weakly ionised plasma, while red indicates
a hotter, strongly ionised plasma.
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of the Alfvén speed gradient, as depicted in the top three and bottom two
panels of Figure 5.2. This demonstrates the importance of strong transport
coefficients in damping Alfvén waves.

In order to showcase the efficiency of the chromospheric plasma as a filter
for high-frequency waves, we present a time series of the perturbation at two
distinct locations in the domain, represented by the perturbation at the base
of the domain, where no attenuation has occurred and a secondary location at
a dimensional height comparable to the height of the chromosphere (2.5 Mm).
We then take a Fourier transform of the signal at these two locations and plot
the magnitude of the dominant frequencies.

In each simulation, the initial amplitude of the high-frequency component
was made four times greater, such that at larger heights remnants of this com-
ponent were more evident, while changes in the low-frequency component were
also visible. Figure 5.3 shows that while the high-frequency component domi-
nates the behaviour of the pulse at the base of the domain, the strength of this
component is greatly reduced by the time it has propagated to the secondary
location (2.5 Mm in height). This trend holds across all three ionisation de-
grees, with the high-frequency component experiencing complete attenuation
in the simulation where an ionisation degree of µ = 0.6161 is used.

Throughout the majority of simulations, a relatively small portion of the
low-frequency component has damped in comparison to the high-frequency
counterpart, with the remaining energy propagating to higher altitudes. The
only exception is the case where an ionisation degree of µ = 0.6161 and Alfvén
speed profile P4 is used. This effective damping occurs due to the combi-
nation of large dissipative coefficients and transversal gradients. The (near)
complete attenuation of the high-frequency component, throughout all simula-
tions, underscores the role of partially ionised chromospheric plasma as a filter
for high-frequency Alfvén waves, providing a reason for the lack of observa-
tions of high-frequency Alfvén waves in the lower solar atmosphere. The two
columns in Figure 5.3 correspond to the Alfvén speed profiles given by P1 (left)
and P4 (right), allowing for the isolation of the transversal inhomogeneity’s ef-
fect. Discrepancies between the left and right columns illustrate variations
in attenuation attributed to the presence of an inhomogeneous Alfvén speed
profile. Clearly, the inhomogeneous profile enhances attenuation across all
simulations for both the low and high-frequency component. Nonetheless, the
high-frequency component undergoes a relatively greater degree of attenuation.
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Figure 5.3: The time series of sinusoidally excited Alfvén waves at two different
heights. The initial profile (depicted in blue) corresponds to the time series of
the perturbation at the base of the domain, where the wave originates. The
second profile (shown in red) represents the time series of the perturbation at
a distance of 2.5 Mm from the base of the domain. Beneath each wave profile
is the signal presented in frequency space, with colors matching the respective
profiles described above. The discrepancy in magnitudes among the frequencies
arises from the various dissipation mechanisms present in the chromosphere.
The decrease in the magnitude of the high-frequency component of the signal
demonstrates the chromosphere’s effectiveness at dissipating high-frequency
waves.
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5.3 Finite lifetime drivers

Pulsating wave drivers have been employed extensively in numerical models
conducting wave propagation/heating studies (see, e.g., Kumar et al., 2024;
Chmielewski et al., 2014; Srivastava and Singh, 2023; Thurgood and McLaugh-
lin, 2013; Tsiklauri, 2016). The problem of phase mixing of Alfvén pulses in
fully ionised coronal holes has been investigated by Hood et al. (2002), who
found that the amplitude decay rate behaved algebraically rather than expo-
nentially, as was found earlier by Heyvaerts and Priest (1983). The authors as-
sumed an initial profile disregarding the effects of the transversal Alfvén speed
profile and the effects of diffusion during the excitation phase, eliminating the
requirement of a time-dependent initial condition (i.e., the wave driver at the
base of the domain). This reduces the computing expense greatly, examples of
simulation outputs with these considerations have been presented in Chapter
3. In addition to this, the dissipative coefficients assumed here were roughly
6-7 orders of magnitude larger than formula predicts, requiring the underlying
assumption of turbulence to explain this enhancement. In this investigation,
we seek to address these shortcomings by introducing a time-dependent finite
lifetime driver. This is accomplished by implementing the same methodology
as the continuous drivers discussed earlier, with the distinction that the driver
is turned off after a specified duration has elapsed, achieving the finite life-
time nature of this driver. A key distinction between this method and that
employed by Hood et al. (2002) is that in our simulations, the perturbation is
subject to phase mixing, diffusion and viscosity from the moment the magnetic
field line is perturbed, providing more realistic simulations.

One of the main aims of this investigation is to explore the variation in
damping of a finitely driven wave compared with a continuously excited wave.
While working in the region of the solar atmosphere that is partially ionised,
considering a wave driver with a lifetime any longer than a single period is
likely to yield results very similar to that of a continuously driven wave when
considering the attenuation of waves with wavelengths of at least a few hundred
kilometers over distances comparable to the height of the chromosphere. We
vary the frequency of the driver to achieve a varying initial wavelength along
the magnetic field line of interest (as always, this corresponds to the magnetic
field line at the location of the maximal gradient in Alfvén speed), allowing for
comparisons of the efficiency of damping with respect to the frequency of the
driver.
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5.3.1 Numerical limitations

For certain ionisation degrees, we found that once the driver has been switched
off, a high-frequency back reaction propagates in the wake of the pulse that
-based on simulations of varying resolutions - is a numerical artefact. Un-
like a numerical instability, this back reaction does not grow with time or
propagation. The various damping mechanisms we consider work to dissipate
this numerical solution. The amplitude of the back reaction is limited by the
presence of the various diffusive quantities present in the simulation. For sim-
ulations whose ionisation degrees result in small dissipative coefficients, the
amplitude of the back reaction can be comparable to the amplitude of the ini-
tial perturbation, however, for simulations where the chosen ionisation degree
resulted in large dissipative coefficients, this back reaction becomes negligible
or does not exist at all when we set an ionisation degree that is close to µ = 0.6,
the value which produced optimal damping and heating from the study con-
ducted by McMurdo et al. (2023) and presented in Chapter 4. While many
numerical codes include an artificial diffusive quantity to deal with instabili-
ties or anomalous numerical artefacts, we do not impose any such increased
anomalous diffusion. Since our investigation is focused on how the damping
of phase mixed Alfvén pulses is affected by the ionisation degree, we impose
only the physical diffusive quantities predicted by formulae for that specific
population of ions and neutrals. To give the reader a visual representation of
this effect, the back reaction can be seen in Figure 5.4, when considering an
ionisation degree of µ = 0.7645, Alfvén speed profile given by the P3 profile
and a driver producing an initial wavelength of 300 km.

It is highly likely that this effect occurs due to the various truncation errors
involved in the finite difference approximations and finite time step used in
the RK4 time-stepping routine and is a direct consequence of turning off the
driver. The changes in wave profile observed for the finite lifetime driver due
to the consideration of differing spatial and temporal resolutions were not seen
in the case of the continuous driver. In order to avoid the influence of this
back reaction on the damping of waves, here we consider ionisation degrees
where this back reaction is negligible. The focus of this investigation is to
study numerically the damping of phase mixed Alfvén pulses propagating in
the presence of a transversally inhomogeneous Alfvén speed and examine the
effects of the ionisation degree and wave driver frequency on this damping.
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Figure 5.4: The profile of an Alfvén pulse excited using a finite lifetime si-
nusoidal driver. The initial perturbation is coloured in blue, while the high-
frequency numerical back reaction is shown in red. The pulse was excited to a
maximum dimensionless value of 1 and allowed to propagate until the end of
the numerical domain. This simulation was performed for an ionisation degree
µ = 0.7645, Alfvén speed profile given by P3 and a driver producing an initial
wavelength of 300 km.

5.3.2 Results

For reasons explained in the previous section, we are going to consider a range
of ionisation degrees µ = 0.504− 0.663, which corresponds to the neutral pop-
ulation making up approximately 2% − 50% of the total plasma population
respectively. These ionisation degrees ensure a sufficiently small numerical
back reaction discussed earlier. In our results, we accept back reaction ampli-
tudes of the order of a few percent of the maximum amplitude of the wave.
Note that as the ionisation degree approaches µ = 0.6 this back reaction dis-
appears as in the case when considering a lower frequency driver and hence
larger wavelength, due to the reduction in the local longitudinal gradient of the
perturbation and subsequent smaller overshooting errors in the finite difference
formulae.

In order to demonstrate the variation in damping profiles obtained from
simulating a finitely driven wave, we present the finite lifetime driven wave at
various time steps, overplotted is the envelope of the continuously driven wave
under the same conditions (i.e., Alfvén speed profile, ionisation degree and
frequency of wave driver), normalised to align with the initial maximum and
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minimum of the profile of the finite lifetime pulse. At the start of the simula-
tion, the initial profile of the magnetic field line is unperturbed. Hence the first
time step we plot corresponds to the moment the pulse has been perturbed
for a single period. The profile of this pulse has already undergone some ini-
tial damping since phase mixing, and the various transport mechanisms begin
working immediately upon perturbation of the magnetic field line. However,
since the pulse perturbation is excited identically to the continuous driver, at
least until the driver is turned off, the initial behaviour of the finitely driven
and continuously driven waves are identical.

We begin by demonstrating the variation in behaviour indicative of all our
results through a range of examples, considering cases of strong phase mixing,
no phase mixing, and simulations for which the ionisation degree results in
both strong diffusive quantities as well as weaker values.

Figure 5.5 shows that the continuously driven wave exhibits more efficient
damping for all ionisation degrees considered. As the pulse profile expands, its
effective wavelength increases such that the damping due to longitudinal gra-
dients (predominantly Cowling diffusion) becomes less effective. In the case
of the continuous driver, the persistent energy injected into the base of the
domain works to preserve the wavelength of the Alfvén wave subject to phase
mixing. This effect is not seen in the case of the driver with a finite lifetime, as
there are no preceding waves. This result tells us that the dissipative mecha-
nisms associated with longitudinal gradients (i.e., Cowling diffusion) are more
important than the cross-field gradients (i.e., Ohmic diffusion and shear viscos-
ity) when damping phase mixed Alfvén pulses, showcasing the importance of
neutrals in dissipating Alfvén pulses in a partially ionised plasma. The widen-
ing effect we see in the case of the homogeneous Alfvén speed (left column)
is due to the truncation errors involved in the finite difference approximations
used throughout the numerical solver. In order to reduce this in future sim-
ulations, we could increase the order of the finite difference approximations
and/or increase the resolution of the simulations, both of which result in ad-
ditional computational expense. In order to ascertain the importance of the
Alfvén speed profile on the attenuation of these pulses, we carry out a compar-
ative study between the results of simulations adopting a homogeneous Alfvén
speed profile and those with an inhomogeneous profile.
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Figure 5.5: The evolution of a sinusoidally excited Alfvén pulse at three sim-
ulation time steps. The initial profile corresponds to the moment the driver
terminates and represents a pulse with a wavelength of 300 km. Subsequent
time steps reveal the evolution in the wave profile. Additionally, the envelope
of the continuously excited Alfvén wave, generated under identical conditions,
is superimposed for comparison (black line). Differences arise solely from the
finite lifetime nature of the pulse, which lacks a continual energy injection at
the domain’s base. Here the two columns correspond to the P1 and P4 profiles.
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5.3.3 Variation in damping due to Alfvén speed profile

Phase mixing works to enhance the dissipative mechanisms associated with
cross-field derivatives. Due to the finite nature of the considered driver, the
magnetic tension between field lines now causes an increase in the width of
the pulse, since there is no constant injection of energy at the base of the
domain working to regulate the wavelength throughout the simulation. Since
the pulse widens with propagation, it is insufficient to use the amplitude of
the wave as a proxy for the energy remaining within the disturbance, instead,
we measure the variation in the total displacement of the wave to provide a
more accurate representation. The displacement of a wave is defined as the
absolute value of the area between the wave’s profile and the z-axis along which
it propagates. We now investigate the rate of change of the total displacement
with propagation for a number of different cases. Here we study the variation
in displacement for ionisation degrees ranging from µ = 0.504− 0.663 (with a
dimensional frequency of 67 mHz, resulting in an initial effective wavelength
of 300 km along the magnetic field that aligns with the location of maximal
gradient in Alfvén speed), as can be seen in Figure 5.6, where all Alfvén speed
profiles are distinguished by colour.

Our results show that the waves propagating in the presence of a steep
Alfvén speed profile reduce in their total displacement far more effectively
than those in a more weakly inhomogeneous (P2 −P3) or homogeneous profile
(P1). This clearly shows that while remnants of the perturbation are expected
to protrude into the higher layers of the solar atmosphere, waves propagating
in the presence of a strongly inhomogeneous Alfvén speed still deposit the ma-
jority of their wave energy before propagating a distance comparable to the
height of the chromosphere. Clearly, throughout all simulations displayed in
Figure 5.6, there is a distinct difference between the homogeneous case (P1)
and the most weakly varying inhomogeneous case (P2). The effects seen in
Figure 5.5 of the pulse widening in the case of the homogeneous profile, are
understood to be small due to this distinct difference between the blue lines
(representing P1) and the black line (representing P2) in Figure 5.6. The re-
duction in damping that occurs between the top-left, top right and middle-left
panels in Figure 5.6, shows an initial decrease in ionisation degree, followed by
an increase. This effect occurs due to the multivalued nature of the ionisation
degree as plotted with height in Figure 2.1. The damping rates evident in
the homogeneous case are presented as an upper bound (due to the additional
dissipation occurring numerically). The true value is expected to reduce with
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Figure 5.6: The variation in the displacement of each of the Alfvén pulses with
propagation for the four different Alfvén speed profiles given by P1−P4 profiles
(shown by different colours), for six different ionisation degrees and an initial
wavelength of 300 km.
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Figure 5.7: The variation in the displacement of finitely excited Alfvén waves
with distance propagated for each of the four different Alfvén speed profiles
considering a single ionisation degree given by µ = 0.6161.

increased simulation resolution and an increased order of the finite difference
approximations employed in the numerical modelling.

5.3.4 Variation in damping due to frequency

In the present study, we investigated five different frequencies of wave driver,
with dimensional values varying from 133 - 27 mHz, which, prior to any stretch-
ing of the profiles of the waves (due to phase mixing), produce wavelengths of
150− 750 km, respectively. We choose again to present the variation in total
displacement of the wave rather than the amplitude, to distinguish between
the effects of phase mixing on widening the pulse. Retaining amplitude as our
dependent variable is likely to lead to an overestimation in the efficiency of
phase mixing at damping Alfvén waves excited for a finite lifetime.

The results of our simulations are shown in Figure 5.7 where we calculate
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the propagated distance by measuring the distance the middle peak has prop-
agated from the moment the driver is turned off. Simulations are terminated
once the perturbation reaches the boundary of our numerical domain, in order
to avoid effects corresponding to wave reflection. The centre peak was cho-
sen to avoid the influence of an elongated wave profile in the presence of steep
Alfvén speed gradients. The reason for the increased propagated distance with
reduced initial wavelength can be easily explained. The middle peak occurs
earlier in the domain for the shorter wavelengths allowing for the simulation to
persist longer. The displacement of pulses with larger effective wavelengths are
naturally larger than those with shorter wavelengths, hence, we normalise the
total displacement of each pulse such that the initial displacement is identical
between all simulations. Figure 5.7 clearly demonstrates that pulses with a
shorter initial wavelength reduce their total displacement far more effectively
than those with larger wavelengths; this result is analogous to the conclu-
sions drawn in Chapter 4. The pulses with the shortest wavelengths dissipate
their wave initially very quickly, with their decay rate dying off exponentially
with propagation. In the case of Alfvén waves propagating in the presence
of an inhomogeneous Alfvén speed, this initial rapid decay followed by a sub-
sequent tapering-off of the decay rate can be attributed to the widening of
the pulse, leading to shallower longitudinal gradients, resulting in dissipation
mechanisms associated with these gradients becoming less effective. Waves
with larger wavelengths decay at a much steadier rate. In the presence of the
homogeneous Alfvén speed, it is only the shortest of wavelengths that dissipate
their energy over the distance comparable to the height of the chromosphere,
while for the steepest Alfvén speed profile, all wavelengths dissipate over 80
% of their wave energy within the same distance, highlighting the efficiency of
phase mixing in damping Alfvén waves in partially ionised solar plasmas.

The oscillatory behaviour of the displacement evident in ionisation degrees
at the extremes of values considered in Figures 5.6 and 5.8, is a numerical phe-
nomenon, arising from deactivating the wave driver within a weakly diffusive
plasma. This effect is particularly noticeable in the case of a high-frequency
driver, due to the increased truncation errors relative to the wavelength. Ex-
amining the results, we do not expect this numerical effect to play a major
role in the qualitative conclusions we draw.
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Figure 5.8: The variation in the displacement of finitely excited Alfvén waves
with distance for the five different wavelengths for six different ionisation de-
grees in the case of the Alfvén speed profile given by P4.
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5.3.5 Heating rates

To truly investigate the efficiency of each considered driver at heating the
surrounding plasma, we conduct a comparison in the heating rates obtained
for the continuously driven and the finitely driven Alfvén waves, the results
are shown in Figure 5.9. The heating profile of the continuously driven wave
occurs at the point of the maximum amplitude of the wave and then decays
as the perturbation decays. This occurs due to the large value of Cowling
diffusion and its connection to the amplitude of the perturbation in Equation
(4.21). The component of heating related to cross-field derivative increases to
its maximum as phase mixing is allowed to progress, however, it serves only
as a minor contribution towards the total heating rate.

The maximum heating rates for the two differently driven waves are initially
identical, i.e., for time steps in the excitation phase of the finitely driven wave
and the continually driven wave. However, due to the variation in the damping
profiles of the two waves, we can focus on the evolution of the heating rates
with distance, rather than the maximal values obtained. Since we have already
shown that continuously drive phase mixed Alfvén waves can balance the ra-
diative losses of the quiet solar chromosphere given an amplitude of 2.5 km s−1

propagating in a plasma with ionisation degrees µ = 0.5181−0.6570, the same
conclusion can be drawn for pulses. Due to the variation in behaviour of each
wave, their heating rates will vary with propagated distance. The location of
maximal heating propagates concurrently with the pulse and can be tracked
and plotted against the heating profile obtained in the case of the continuously
driven wave, once a steady state has been achieved. The results of our analysis
shown in Figure 5.9 are displayed for a range of ionisation degrees and Alfvén
speed profiles shown in the legend of each panel. We choose not to present
the heating rates obtained from the viscous heating rate (Qζ in Equation 4.21)
since it is many orders of magnitude less than the Ohmic heating and plays
a secondary role. Note that the cases utilising a homogeneous Alfvén speed
profile, result in the absence of transversal gradients and hence the absence of
a heating component corresponding to Ohmic diffusion. Consequently, only
heating resulting from longitudinal gradients (Cowling diffusion) is observed.

Figure 5.9 illustrates the dimensionless heating rates derived from simula-
tions involving both continuously driven waves and those that are driven for
a finite lifetime. The highest combined heating rates occur at the base of the
domain, primarily due to the magnitude of the Cowling diffusion, which is
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Figure 5.9: The profile of the heating rate obtained from the continuously
excited sinusoidal wave driver (solid lines) is plotted with the tracked maximum
heating rate of the finitely driven wave (dots) over the propagated distance.
The discrepancy between the results shown in the two columns arises from the
existence of an inhomogeneous Alfvén speed profile, depicted in the right-hand
column. Each row corresponds to a distinct ionisation degree, consistent with
the ionisation degrees used in Figure 5.5.
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orders of magnitude larger than Ohmic diffusion. The Ohmic diffusion heat-
ing term grows with propagation to a point where it achieves its maximum
value, before reducing due to the reduction in amplitude of the perturbation.
The behaviour of the two waves studied here (continuous and finitely driven)
are initially identical at the base of the domain (due to the way in which the
finitely driven wave is excited). The slight discrepancies between the finitely
driven wave (dots) and the continuously driven wave (solid lines) at a prop-
agated distance close to zero, occur since we plot the heating profile of the
continuously driven wave once a steady state has been achieved, hence the
initial perturbation has propagated far away from the domain. This behaves
slightly differently to the preceding wave since this propagates into a perturbed
environment (rather than unperturbed in the case of the initial perturbation)
and hence the heating at the base of the domain presents some slight variation
in behaviour. Nevertheless, the purpose of this investigation is to study the
evolution of the heating profile with propagation, since we have already shown
these waves are capable of providing sufficient heating to counterbalance the
radiative losses of the quiet Sun’s chromosphere, see Chapter 4.

As depicted in Figure 5.5, instances arise where the amplitude of the pulses
surpasses that of continuously driven waves, illustrated by the envelope plot-
ted over the pulse profiles at various simulation time steps. The heating rate,
given by Equation (4.21), is proportional to the square of the amplitude of
the perturbation and the transversal and parallel gradients of the magnetic
field perturbation. One of the effects that phase mixing has on the finitely
driven waves, not evident in the case of the continuously driven waves, is the
widening of the pulse profile, causing the longitudinal gradients to reduce, sub-
sequently leading to a lower heating rate associated with the Cowling diffusion.
These two competing effects of the increased amplitude yet reduced longitu-
dinal gradients, result in the variation in heating profiles with propagation, as
evidenced in Figure 5.9. Moreover, while transverse gradients in continuously
driven waves can only grow to a certain extent before naturally realigning, an-
other limiting behavior restricts transverse gradients in finitely driven waves.
As the finitely driven waves propagate, magnetic tension between neighboring
field lines results in an elongation and flattening of the disturbances profile.
This occurs due to the lack of a continuous energy injection at the base of the
domain that preserves the wavelength of the disturbance with propagation,
and results in the magnetic tension not allowing these transversal gradients to
grow excessively large. This limitation constrains the component of the heating
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rate corresponding to Ohmic diffusion such that (for early times and distances
propagated ≲ 500 km) it does not exceed values observed in simulations of
continuously driven Alfvén waves, contrary to initial expectations. Only later
in the simulations did the heating rates corresponding to the finitely driven
wave significantly exceed those of the continually driven wave. This character-
istic primarily stems from the greater amplitude of these disturbances at larger
altitudes, leading to a rather paradoxical conclusion - does this really mean
pulses heat the plasma more effectively than the continuously driven waves?
To be able to answer this question, it is crucial to remember that although
waves with larger amplitudes usually result in higher heating rates, this factor
does not substantially address the atmospheric heating issue if waves do not
damp, since there can be no conversion of waves’ energy into heat occurring.
Therefore, while the heating rates obtained for waves generated with a finite
lifetime driver tend to exceed those excited by a continuous driver (at larger
distances at least), this is attributed to the reduced damping rather than any
particular efficiency in heating the solar atmosphere.

5.4 Conclusions

The investigation presented in Section 5.2, into wave propagation and damp-
ing in the solar atmosphere yields significant findings regarding waves that are
generated by a dual-frequency driver. Our results show that even small gra-
dients in the Alfvén speed, notably amplify the dissipation of high-frequency
components as depicted in Figure 5.1, especially evident in regions with ioni-
sation degrees near µ = 0.6, as seen in Figure 5.2. Conversely, plasma nearing
full ionisation or neutrality experiences weakened damping mechanisms, as il-
lustrated in the top three and bottom two panels of Figure 5.2, consistent with
findings presented in Chapter 4, underscoring the critical role of large trans-
port coefficients in wave damping. Moreover, our analysis, depicted in Figure
5.3, elucidates the chromosphere’s role as a filter for high-frequency Alfvén
waves, evidenced by the attenuation of the high-frequency component and the
persistence of the low-frequency counterpart. These observations contribute
to our understanding of why high-frequency Alfvén waves are rarely observed
in the solar atmosphere.

In addition, the investigation presented in Section 5.3 sheds light on the
intricate behavior of wave damping in two distinct scenarios: finitely driven
pulses and continuously driven waves. Our results, as depicted in Figure 5.5,
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highlight instances where the amplitude of pulses surpasses that of continu-
ously driven waves, leading to an impact on the evolution of the heating rate
with propagation. We find that the heating rate, which depends on the square
of the perturbation amplitude and the gradients of the magnetic field pertur-
bation, is influenced by the interaction between amplitude and the longitudinal
and transverse gradients. Phase mixing of finitely driven waves broadens the
pulse profile, reducing longitudinal gradients and thereby lowering the heating
rate associated with Cowling diffusion. This results in significant variations in
heating profiles during propagation, as shown in Figure 5.9. Furthermore, as
depicted in Figure 5.6, we observe a significant enhancement in the damping
of phase mixed pulses in the presence of inhomogeneous Alfvén speed pro-
files, particularly notable for the extremes of the ionisation degrees simulated.
Figures 5.7–5.8 illustrate the variation in damping rates attributed to the fre-
quency of the driver, aligning with conclusions drawn in Chapter 4, where
higher frequency waves demonstrate more effective damping.

While transverse gradients in the case of continuously driven waves exhibit
a natural limit, finitely driven waves display similar behavior, thus constraining
their growth. As waves propagate, magnetic tension between neighboring field
lines elongates and flattens disturbances’ profiles. This limitation on transverse
gradients curtails the component of the heating rate corresponding to Ohmic
diffusion. Interestingly, our simulations demonstrate that while heating rates
corresponding to finitely driven waves initially replicate those of continuously
driven waves, they can significantly exceed them at later stages, for certain
plasma configurations. This phenomenon primarily arises from the greater
amplitude of finitely driven disturbances at higher altitudes.

In conclusion, while waves with substantial amplitudes typically result in
significant heating rates, the effectiveness of wave damping remains crucial.
In general, we find the pulses to damp to a lesser extent than the continually
driven waves for the same propagated distance. Our findings underscore the
importance of understanding the complex interplay between the wave driver
used in modelling, damping mechanisms, and propagation dynamics in resolv-
ing the atmospheric heating problem.
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CHAPTER 6

Phase mixing of Alfvén waves in a two-fluid par-
tially ionised plasma

6.1 Introduction

The results presented in Chapter 4 were obtained by adopting a single-fluid ap-
proach to modelling Alfvén waves. We showed that waves with a wavelength of
the order of a few hundred kilometers are likely to damp within the lower solar
atmosphere due to the short damping lengths obtained through simulations.
They damp very effectively over distances comparable to the height of the
chromosphere. Using either amplitude (in the case of the continuous driver)
or total wave displacement (in the case of the finitely driven Alfvén pulses) as
a proxy for energy, these results suggest that most of the energy stored in these
waves is converted into other forms of energy, including heat. In addition to
this damping, we showed that the resultant heating rates were sufficient to bal-
ance the radiative losses in the quiet Sun’s chromosphere. Using a single-fluid
framework allowed for modelling waves with frequencies much lower than the
collisional frequency between particles. This approach is most suitable when
modelling waves comparable to those seen by observers (see, e.g., Chae et al.,
2022; Bate et al., 2022). However, that is not to say that higher frequency
waves do not exist in the solar atmosphere, direct observations are merely be-
yond the capabilities of current technology. It is potentially very informative to
investigate the effect phase mixing has on Alfvén waves in a frequency regime
that is of the same order as the collisional frequency between particles, so much
higher frequencies than employed in Chapters 4 and 5. In this limit we can use
a two-fluid framework, where the fluid of charged particles can interact through
collisions with the neutral fluid. Kraskiewicz et al. (2023) simulated monochro-
matic two-fluid Alfvén waves in the partially ionised solar chromosphere and
found that small amplitude Alfvén waves damped very weakly, however, they
did not include either transversal gradients, viscosity or diffusion. They did,
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however, find that non-linear Alfvén waves excited by a large-amplitude driver
could cause significant chromospheric heating and plasma outflows. Pelekhata
et al. (2023) found supporting conclusions to Kraskiewicz et al. (2023) using
the JOANNA code (Wójcik et al., 2017). Kuźma et al. (2020) found that
high-frequency Alfvén waves driven at the bottom of the photosphere experi-
ence strong damping and those with an amplitude greater than 0.1 kms−1 can
drive magnetoacoustic waves in higher atmospheric layers with corresponding
heating rates large enough to compensate for the corresponding radiative and
thermal-conduction energy losses. Martínez-Gómez et al. (2017) found that for
high-frequency waves, resistive quantities became important transport mech-
anisms for dissipating wave energy, some of which we include in Equation
(2.59), the subject of this present investigation. Russell and Fletcher (2013)
found that wave damping is highly sensitive to the period and that while waves
with frequencies > 1 Hz are damped effectively, waves with periods longer than
10 s pass through the chromosphere with relatively little damping. However, it
is worth mentioning that lower frequency waves can still damp very effectively
when considering large transversal gradients (see, e.g., McMurdo et al., 2023,
and the results presented in Chapter 4), which was not accounted for in the
study by Russell and Fletcher (2013). In this chapter, we focus on present-
ing the results derived from various simulations using the two-fluid numerical
model introduced in Chapter 3.

The governing equation describing the spatial and temporal evolution of the
velocity perturbation of charged particles was derived in Chapter 2, see Equa-
tion (2.59). Certain terms present in the two-fluid model do not directly appear
under the single-fluid approximation, such as terms proportional with the col-
lisional frequency between ions and neutrals, derivatives of the Alfvén speed,
and terms containing the ratio of the ion-neutral densities. Since the mass
of ions (assumed only to be hydrogen ions, essentially protons) and neutral
hydrogen atoms are nearly identical, the ratio of their density can be thought
of simply as the ratio of the number density ratio of ions and neutrals, both
of which vary across the field in order to fulfill the requirement of transversal
inhomogeneity. In order to simplify the problem, we are going to consider
their transverse dependence to be proportional to one another, resulting in a
coordinate-independent ratio. Expanding this investigation to encompass an
overall transverse function necessitates no numerical adjustments, however, we
defer this to future investigations. Nonetheless, it offers the potential to model
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more realistic plasma configurations, where large gradients could be produced
by misaligned neutral and ion density profiles.

A distinguishing feature absent in the single-fluid investigation, but appar-
ent in the outcomes of the two-fluid modeling, is the influence of ionisation
degree on wave propagation speed, as was eluded to in the conclusion of Chap-
ter 2. Several terms dependent on the ionisation degree are connected with
terms involving the (square of the) Alfvén speed, effectively causing a modi-
fication of the propagation speed as these terms vary with ionisation degree.
A similar effect was seen in the case of magnetoacoustic waves by Soler et al.
(2013), where the speed of propagation was influenced by the ionisation de-
gree considered. This feature manifests in simulation outputs as a wavelength
variation (for a given wave driver frequency). Consequently, complexities arise
when evaluating the efficiency of wave damping across varying ionisation de-
grees, as the increased damping rate for shorter wavelengths cannot be fully
addressed in the findings.

Hence, this alteration of wavelength due to ionisation degree might be
considered an additional damping effect. Although there is no transport of
momentum, this effect can be thought of as analogous to vertical stratifica-
tion, where changes in wavelength are caused by variations in the Alfvén speed
with increased height. In the solar atmosphere as the density decreases with
height meaning the speed of an Alfvén wave increases with height (so long as
the height dependence of the magnetic field is weaker than the square root of
the density), this means that Alfvén waves will naturally have a shorter wave-
length closer to the solar surface, where dissipative mechanisms associated
with longitudinal gradients have a stronger effect. While theoretically feasible
to calculate a frequency for each ionisation degree resulting in identical wave-
lengths across simulations, such an approach raises equally many challenges
concerning variation in damping due to the driver frequency. The dependency
of the damping rate on the ionisation degree may differ depending on whether
another investigation was to employ different reasoning. We do not impose
any definitive criteria in this present study and aim to draw conclusions irre-
spective of this phenomenon. In addition to this, the gradient of the collisional
frequency affects the speed of propagation, albeit to a far lesser extent. These
effects are presented and discussed further in the results section to follow.

Before we continue, however, we wish to draw the readers attention back
to some earlier comments made at the beginning of Chapter 4. In order for
the neutral fluid to be appropriately described as a fluid, one must consider
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waves with a lower frequency than the collisional frequency between neutral
particles. We found in the partially ionised solar atmosphere, that of all the
combinations of collisional frequencies between particles, the neutral-neutral
collisional frequency took the smallest values. However, it must be noted that
the ion-neutral collisional frequency only exceeds that of the neutral-neutral
collisional frequency by a factor of ≈ 1.3 (owing to the ratio of the collisional
cross sectional values chosen for ion-neutral and neutral-neutral collisions).
That is why, in the results to follow, we are able to model waves with fre-
quencies close to the collisional frequency between ions and neutrals but not
exceeding that. If higher frequency waves were to be studied, the neutral fluid
must not be described in terms of a separate fluid, but rather a collection of
particles interacting with a collisionally coupled ionised fluid. We omit further
details as this is beyond the scope of the present thesis.

6.2 Results

Here we present an initial set of results as a proof of concept of the addi-
tional effects phase mixing can have on the damping of high-frequency Alfvén
waves in partially ionised plasmas. We begin by presenting a set of examples
representative of the more general results to follow in future work. In each
panel below we present the wave profile of two Alfvén waves, each generated
by a sinusoidal wave driver with equal frequencies, each panel representing a
different ionisation degree. The variation in wave profiles is achieved by the
presence of a homogeneous (blue line) and an inhomogeneous (red line) Alfvén
speed profile given by P1 and P4, respectively. Figure 2.2 shows that the col-
lisional frequency varies by many orders of magnitude from the bottom of the
photosphere to the top of the chromosphere, however, we set the frequency
of waves to be studied in this chapter to be comparable with the collisional
frequency between ions and neutrals at the top of the chromosphere, to al-
low for direct comparisons across a range of ionisation degrees in the solar
atmosphere. Hence, we consider a wave driver with a dimensional frequency
of 8 Hz, with future directions of study presented in Chapter 7. We retain a
continuous sinusoidal wave driver for each simulation, and the resulting vari-
ation in wavelength from panel to panel is a result of the ionisation degree
dependent quantities multiplying terms corresponding to the (square of the)
Alfvén speed. The variation in wavelength within each panel (i.e., between
the red and blue line), while a much smaller effect (most visible in the bottom
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right panel representing µ = 0.6537), is as a result of the direct appearance of
transversal derivatives multiplying the (square of the) Alfvén speed depicted
in the governing equation, where a homogeneous plasma renders these terms
zero. The various parameters we chose in order to non-dimensionalise our
equation and begin this investigation are vA0 = 20 km s−1 and L = 10 km.

The panels that correspond to an ionisation degree of by µ = 0.6407 and
µ = 0.6537 (the bottom two panels) show an extraordinary increase in damping
in the presence of an inhomogeneous Alfvén speed profile. These disturbances
are wholly damped within two periods, contrasting with the homogeneous case
which undergoes a fairly steady attenuation. This stark reduction in damping
is a result of the various ionisation degree-dependent quantities in Equation
(2.59) related to the transversal derivatives, which become greatly enhanced in
the presence of an inhomogeneous Alfvén speed profile. This effect is attributed
to phase mixing, and these initial results are qualitatively analogous to those
presented in previous chapters.

As theory predicts, phase mixing emerges as an efficient damping mecha-
nism for Alfvén waves by enhancing the significance of dissipative coefficients
associated with cross-field gradients. It is important to note that exclud-
ing viscosity from our simulations, results in the homogeneous and inhomoge-
neous Alfvén speed profiles yielding identical wave propagation profiles since
all transversal gradients correspond to either ion or neutral shear viscosity co-
efficients. The collisional frequency does give rise to transversal gradients, but
its manifestation requires the presence of neutral viscosity, as evident from the
fourth term on the right-hand side of Equation (2.59).

Figure 6.1 also shows that the wavelength is ionisation degree-dependent.
This effect can be seen when studying Equation (2.59) since ionisation degree
dependent quantities multiply the (square of the) Alfvén speed, effectively
increasing/decreasing the speed of propagation as these coefficients are varied.
While it is hard to distinguish between the effects of the ionisation degree
on the efficiency of damping due to this variation in wavelength, we aim to
investigate the influence of varying the ion-neutral collisional frequency on the
behaviour of the wave and its damping, in order to gain deeper understanding
into the qualitative characteristics of various solutions to Equation (2.59).

6.2.1 Importance of ion-neutral collisions

Measuring the importance of ion-neutral collisions on the damping lengths
obtained for phase mixed Alfvén waves in a two-fluid plasma can achieved
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Figure 6.1: The spatial evolution of sinusoidally excited Alfvén waves in a two-
fluid plasma. The variations shown within each subplot stem exclusively from
the inclusion of a gradient in the Alfvén speed profile. Distinctions across pan-
els are determined by transverse derivatives of the collisional frequency, along
with ionisation-dependent factors, namely the ion-neutral collisional frequency
term and the shear viscosity coefficients.
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by varying the neutral density by various user defined factors. We impose no
changes on the viscosity as a result of this, in an attempt to isolate the effects of
increased ion-neutral collisions on the damping rates of the waves considered.
We present results representative of the partially ionised chromosphere below
in Figure 6.2 for a single ionisation degree of µ = 0.7351 for the steepest
inhomogeneous Alfvén speed profile given by P4.

Figure 6.2 illustrates the sensitivity of the solution to the ion-neutral col-
lisional frequency. As this frequency increases, the obtained damping lengths
significantly decrease. This reduction is primarily due to the enhanced damp-
ing effects typical of a more collisional plasma, naturally a wave will lose energy
over shorter timescales when we introduce a larger collisional frequency. Ad-
ditionally, a secondary damping effect arises from the reduced effective Alfvén
speed and the resulting shorter wavelength. Shorter wavelength Alfvén waves
inherently have reduced damping lengths due to the increased significance of
longitudinal damping effects such as viscosity and collisions. The reduction in
wavelength is due to the combined effect of the terms related to the increased
ion-neutral collisional frequency, which multiply the square of the Alfvén speed
in Equation (2.59). For a collisional frequency reduced by a factor of 5 (Figure
6.2, top left panel) resulted in a damping length of an order of magnitude larger
than that obtained for the case where the ion-neutral collisional frequency was
enhanced by a factor of 5 (Figure 6.2, bottom right panel).
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Figure 6.2: The evolution of Alfvén waves under varying ion-neutral collisional
frequencies across four different cases propagating in the presence of the Alfvén
speed profile given by P4. Each subplot represents a different collisional fre-
quency. As the collisional frequency increases, the damping of the Alfvén waves
becomes more pronounced, illustrating the sensitivity of wave propagation to
collisional effects. The effective wavelength and damping lengths decrease with
higher collisional frequencies, highlighting the impact of collisions on wave dy-
namics in partially ionised plasmas.
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6.3 Conclusions

In summary, our initial results provide a foundational understanding of the
additional effects of phase mixing on damping high-frequency Alfvén waves in
partially ionised plasmas, as depicted in Figure 6.1. In general, we found that
the presence of an inhomogeneous Alfvén speed profile considerably increased
damping rates across all ionisation degrees as shown in Figure 6.1. Notably,
Figure 6.1 demonstrates that the presence of an inhomogeneous Alfvén speed
profile leads to remarkable damping enhancements particularly for waves prop-
agating in a plasma with ionisation degrees close to µ = 0.6, attributed to
phase mixing enhancing the efficiency of the various damping mechanisms,
which achieve their maximum for ionisation degrees close to this value.

We demonstrate the sensitivity of the solutions obtained on the collisional
frequency between ions and neutrals. Increasing the ion-neutral collisional
frequency results in a reduction in wavelength and increases the damping rates
greatly.

Without taking into account the variation in wavelength seen in both Fig-
ure 6.1 and 6.2, one has to conclude that as we approach a more collisional
plasma, which is naturally dominated by neutrals (as per the numerous fig-
ures presenting the solar parameters based upon the AL C7 model, Avrett and
Loeser, 2008), we obtain shorter and shorter damping lengths. We propose this
initial set of results to demonstrate a proof of concept of the effects of phase
mixing in the two-fluid regime and wish to address the effect of a reduced
wavelength in more detail in future work. Furthermore, in a future work we
plan to address the heating produced by phase-mixed Alfvén waves subject to
viscosity and collisions between particles and compare these values with the
average radiative loss in the solar chromosphere.

Overall, we conclude that phase mixing can act as a dominant damping
mechanism for two-fluid Alfvén waves in partially ionised plasmas, with its
importance varying depending on the ionisation degree considered. We propose
that conducting a comprehensive parameter study in future research will offer
more insight as we delve deeper into the phenomenon of phase mixing under
the frequency regime of a two-fluid plasma. These findings serve as a proof
of concept for broader investigations, shedding light on the significant role
of ionisation degree-dependent quantities on the attenuation of Alfvén wave
profiles.
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CHAPTER 7

Conclusions and future research prospects

7.1 Thesis summary

The present thesis contains a detailed summary of my research investigating
the phase mixing of Alfvén waves in partially ionised solar plasmas. Such
inhomogeneous plasma environments are characteristic of solar atmospheric
regions (such as the solar photosphere and chromosphere) where the tempera-
ture is not high enough to ensure a completely ionised plasma. In this case, the
plasma is made up of negatively and positively charged particles (electrons and
protons in the case of a purely hydrogen plasma) and neutrals that interact
with each other through collisions. Partially ionised plasmas are known to host
a number of specific transport processes that receive a different connotation in
the light of the collisional processes that take place.

To answer the above scientific question, we have introduced some funda-
mental concepts and motivations for the research presented in Chapter 1. Here,
we reviewed some key results on the role of waves in the solar atmosphere, es-
sential concepts and results from the field of partially ionised plasmas, we
reviewed the current state-of-the-art in the field of phase mixing, highlighting
the shortcomings of the present modelling of this problem and we presented
the methodology that stays at the foundation of our research.

The mathematical framework for our analysis is presented in Chapter 2
where we derived the governing equations in a single-fluid and two-fluid ap-
proximation. As stated, the distinction between these working frameworks re-
sides in the frequency regime in which physical effects are investigated. While
in the case of a two-fluid plasma, the frequencies are comparable with the col-
lisional frequencies (but lower than the cyclotron frequency) of particles, the
single-fluid approximation assumes that the frequencies are much smaller than
the collisional frequency between all particles. For each case we have discussed
what sort of transport mechanisms operate.
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Chapter 3 introduces the numerical setup designed to simulate Alfvén waves
propagating in plasma environments with density inhomogeneities. It cap-
tures and resolves the intricate interplay between various ionisation degree-
dependent dissipative processes and phase mixing, and their impact on Alfvén
wave attenuation. Through these numerical models, we present the effects of
phase mixing in partially ionised environments. Continuously excited Alfvén
waves, characterised by frequencies much lower than ion-neutral collisional fre-
quencies, are modeled within a single-fluid framework. Remarkably, our sim-
ulations, presented in Chapter 4, reveal that Alfvén waves with a wavelength
of 400 km and an amplitude of 2.5 kms−1, propagating within a plasma with
an ionisation degree ranging between µ = 0.5181 and µ = 0.6570, possess the
capability to balance the radiative losses within the quiet Sun’s chromosphere.

In Chapter 5, we revisited the problem of phase mixing in a single fluid
approximation, however, we investigated the efficiency of this process depend-
ing upon the nature of the driver. In particular, we introduced two additional
wave drivers (a multi-frequency and a finite lifetime driver), offering insights
into the chromosphere’s efficacy as a filter for high-frequency (short wave-
length) Alfvén waves. Through Fourier analysis of the perturbations at two
locations, one at the domain’s base and a second at a distance comparable to
the height of the transition region (top of the chromosphere), we unveil the
chromosphere’s role in filtering high-frequency perturbations, preventing them
from reaching larger heights in the solar atmosphere. This important result
explains the lack of high-frequency wave observations in the lower solar atmo-
sphere and the effective damping of high-frequency waves (and consequently
plasma heating) in the solar chromosphere. In this chapter, we have explored
the unique behavior of phase-mixed Alfvén waves induced by a finite lifetime
pulse-like wave driver. Unlike continuously driven waves, pulse-driven waves
exhibit a widening of the wave profile with propagation, increasing the wave-
length of the resultant perturbation. This behaviour can be attributed to the
absence of a continuous injection of energy at the base of the domain and the
presence of an inhomogeneous Alfvén speed. This phenomenon subsequently
leads to variations in heating profiles, wherein heating rates at later times ex-
ceed those observed in continuously driven waves. We attribute this to the
reduced attenuation stemming from the increased pulse width and subsequent
reduction in longitudinal gradients. Notably, the reduction in wave damping
is not counterbalanced by the reduction in amplitude caused by the widening
of the pulse.
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We proposed a secondary numerical model in Chapter 6, suited to describ-
ing the phase mixing of Alfvén waves in partially ionised plasmas with fre-
quencies comparable to the ion-neutral collisional frequency, i.e., we employed
a two-fluid (charges and neutrals) framework. While the results presented in
this chapter are intended to be primarily a proof of concept on the effects
associated with phase mixing of Alfvén waves in this frequency regime, we
observed consistent findings with the single-fluid approximation and novel in-
sights unique to the two-fluid framework. Similar to the single-fluid approach,
steep gradients in Alfvén speed and the presence of substantial dissipative
coefficients (especially prevalent at ionisation degrees near µ = 0.6) led to di-
minished damping lengths compared to homogeneous scenarios or results from
simulations of ionisation degrees with correspondingly low dissipative coeffi-
cients. Notably, specific ionisation degree-dependent quantities in the two-fluid
governing equation affected the propagation speed of the Alfvén wave, a char-
acteristic typically discerned only in the single-fluid approximation through
consideration of vertical stratification.

The purpose of the present thesis has been to develop an area of new re-
search, combining partial ionisation and phase mixing, with the aim to present
quantitative and qualitative results emphasising the importance of partial ion-
isation, phase mixing and the complex interplay between the two on Alfvén
wave damping in the solar atmosphere. Throughout this study, it has been
essential to simplify the various governing equations to allow for progress to be
made. Nevertheless, we acknowledge the limitations inherent in these simplifi-
cations. In future endeavors, we aim to address these simplifications to better
understand the impacts of partial ionisation and phase mixing on Alfvén wave
damping and subsequent heating of the surrounding plasma.

7.2 Future work

We recognise that the results presented in this thesis deal with the problem of
phase mixing of Alfvén waves assuming several simplifications. However, one
of the main aims of the study summarised here was to carry out a proof of
concept investigation and to investigate the consequences of a partially ionised
plasma on the efficiency of phase mixing. That is why the research presented
here can be expanded in many ways. A summary of the possible pathways is
given below.
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One way our research can be expanded is by including the effect of plasma
stratification, as studied by De Moortel et al. (1999); Smith et al. (2007);
McLaughlin et al. (2011). In particular, we look to investigate the effectiveness
of phase-mixed Alfvén waves in a stratified solar atmosphere where dissipative
coefficients are given by a realistic solar atmospheric model (e.g., VAL, FAL,
AL) in a single-fluid limit, where the magnetic field is represented by a 2D
expanding magnetic configuration, similar to the method developed and stud-
ied by Ruderman et al. (1998); Ruderman and Petrukhin (2018). We wish to
extend the models of the previously mentioned authors to include a vertically
stratified partially ionised lower solar atmosphere (photosphere, chromosphere,
transition region and corona). We expect these additions to further increase the
heating rates associated with the damping of phase-mixed Alfvén waves, pro-
viding further evidence that the damping of Alfvén waves strongly contributes
to heating the solar chromosphere. Indeed, Ruderman et al. (1998) found that
expanding magnetic field lines tend to increase the efficiency of phase mixing
and lead to a more efficient damping of Alfvén waves. The length scales in-
volved in a single-fluid framework are of the order of observational resolution
of various instruments, meaning that many of the parameters, such as wave-
length and perturbation amplitudes, can be taken from observations, as was
the case for our presented results.

In addition, most MHD wave models (including our own) assume an envi-
ronment that remains static or evolves only slowly compared to the period of
the waves so that both timescales (the timescale on which the medium evolves
and the period of the wave) are clearly separated. However, at chromospheric
temperatures, cooling happens on a timescale of about 100 seconds. This
timescale is the order of the period and/or damping time of many waves and os-
cillations observed in the solar atmosphere. A modification in the local temper-
ature, and hence the local density structure, will alter the MHD wave behavior
and, for phase mixing, this process could either be a self-enhancing mechanism
(by continuously creating extra density structuring, leading to drifting of the
heating layer), be self-destructive (by eventually smoothing out the original
density inhomogeneity, e.g., see Cargill et al., 2016) or shifts the location of
heating (McLaughlin et al., 2011). Using an extended version of the code
we developed, one could determine the efficiency of MHD wave phase mix-
ing in maintaining hot chromospheric plasma by undertaking a comprehensive
parameter study to determine the range of parameters and dissipation coeffi-
cients for which rapid heating and cooling of the local plasma critically alters
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phase mixing. This approach requires a model where the plasma parameters
are time-dependent, which poses increased numerical complexities since the
matrix detailed in Chapter 3 now needs to be reconstructed at each time step
as each parameter changes in time. Perhaps a WKB approximation may be
appropriate here, allowing for a framework by which the background quantities
vary slowly compared to the oscillations of the magnetic field lines, allowing
for a simplification of the governing equation one must solve.

Our investigation on the problem of phase mixing of Alfvén waves in two
fluid plasmas can be considered as a very good starting point for a more de-
tailed analysis of this problem. The consideration of separate fluids for charges
and neutrals involves much richer physics, and the analysis of all possible ef-
fects that could play a role in the problem of wave damping due to phase
mixing can be carried out in the future. Many extensions can be applied to
the two-fluid code in order to study phase-mixed Alfvén waves at frequencies of
the order of the collisional frequency between particles (charged and neutral).
Since we found that the short wavelength phase-mixed Alfvén waves could bal-
ance radiative losses in the quiet chromosphere, it is only reasonable to expect
even shorter wavelength (i.e. higher frequency) waves will heat the plasma
more effectively. Now, the dominant dissipative mechanism is the momentum
transfer between various species, while other “classical” transport mechanisms
will be used to ensure the creation of transversal gradients. As Kraskiewicz
et al. (2023) and Pelekhata et al. (2023) found that high-frequency waves are
the most promising candidates for chromospheric heating, a full parametric
study could shed light on the efficiency of phase mixing on damping Alfvén
waves in a two-fluid plasma incorporating a large range of driver frequen-
cies. Vertical and longitudinal inhomogeneity can be included to accurately
model high-frequency waves propagating in the presence of small-scale plasma
density inhomogeneities. However, depending on the frequencies of the wave
driver, the longitudinal scale height may be much smaller than the density
scale heights in the chromosphere. Nevertheless, this model also allows us to
include non-equilibrium ionisation effects (i.e., the continuous change in the
ionisation degree of the plasma due to the increase in the temperature) that
will provide further insight into the way Alfvén waves are damped in partially
ionised plasmas.

Another important addition to the problem of Alfvén wave phase mix-
ing in a two-fluid approximation is the problem of ionisation non-equilibrium.
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As propagating Alfvén waves undergo damping and transfer their kinetic en-
ergy into heat, the chemical composition of the plasma is constantly changing,
meaning that source and sink terms in the mass conservation equations for
charges and fluids must be considered. In this situation, the species loses mo-
mentum due to the effects of recombination and ionisation that can modify the
efficiency of phase mixing. When calculating the energy balance produced by
phase-mixed Alfvén waves, non-LTE effects can be taken into account, which
will allow for the investigation of the full consequences of heating processes on
the formation of various optically thick chromospheric spectral lines (e.g., Mg,
Ca and Hα) and allows for forward modeling of plasma heating in partially
ionised solar plasmas to be carried out.
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APPENDIX A

Derivation of Equation 2.55

This appendix contains a more detailed derivation of Equation 2.55, with
detailed algebraic manipulations. We begin our derivation by incorporating
Ohmic diffusion and ambipolar diffusion into the momentum equation. With
regards to the induction equation, we assume that the impact of the pressure
gradient and gravitational effects can be considered negligible. That means
that the length scales over which we consider the phase mixing of Alfvén waves
to develop to be smaller than the length scales over which the density, pressure
and gravity vary. The non-ideal induction and moment equations are therefore
given by

∂B

∂t
= ∇× (v ×B) + η∇2B+∇×

{
ηA
|B|2

[(∇× B)× B]× B
}
, (A.1)

and
ρ0

(
∂v

∂t
+ v · ∇v

)
= j×B+ ρ0ζ

[
∇2v +

1

3
∇(∇ · v)

]
. (A.2)

In the present study we assume a density inhomogeneity across the field and
a homogeneous background magnetic field oriented in the z direction. The
unidirectional vertical magnetic field has to be constant, as any alteration
from this would result in a net Lorentz force in the equilibrium state that is
not balanced. For instance, assuming a magnetic field of the form B0(x)ẑ,
would result in a force (B0/µ0)(dB0/dx) oriented in the x direction that is not
opposed by any force, so the forces in equilibrium state are not balanced.

Clearly imposing an inhomogeneous background magnetic field does not
allow for accurate mathematical progress. Fortunately, we do not have to
assume anything about the profile of an inhomogeneous density profile and
hence we continue with this setup for all remaining calculations.

Assuming constant equilibrium background quantities, other than the den-
sity, and perturbing the system with amplitudes much smaller than the equilib-
rium quantities, we arrive at the linearised induction and momentum equations
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given by
∂b

∂t
= B0

∂v

∂z
+ η

(
∂2b

∂x2
+

∂2b

∂z2

)
+ ηA

∂2b

∂z2
. (A.3)

and
∂v

∂t
=

B0

µ0ρ0(x)

∂b

∂z
+ ζ

(
∂2v

∂x2
+

∂2v

∂z2

)
. (A.4)

In order to solve these coupled equations, we may eliminate either the velocity
perturbation or the magnetic field perturbation by differentiating Equation
(A.3) with respect to t and differentiating Equations (A.4) with respect to z

giving

∂2b

∂t2
= B0

∂2v

∂z∂t
+

(
η
∂2

∂x2
+ ηC

∂2

∂z2

)
∂b

∂t
. (A.5)

and
∂2v

∂z∂t
=

B0

µ0ρ0(x)

∂2b

∂z2
+ ζ

(
∂2

∂x2
+

∂2

∂z2

)
∂v

∂z
. (A.6)

Inserting Equation (A.6) into Equation (A.5) we arrive at

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+B0ζ

(
∂2

∂x2
+

∂2

∂z2

)
∂v

∂z
+

(
η
∂2

∂x2
+ ηC

∂2

∂z2

)
∂b

∂t
. (A.7)

To remove the dependence of the velocity perturbation, we rearrange Equation
(A.3) to give

∂v

∂z
=

1

B0

(
∂b

∂t
− η

∂2b

∂x2
− ηC

∂2b

∂z2

)
. (A.8)

We then substitute this into Equation (A.7) to give our governing equation for
Alfvén waves in partially ionised inhomogeneous plasmas

∂2b

∂t2
= v2A(x)

∂2b

∂z2
+

[
(η + ζ)

∂2

∂x2
+ (ηC + ζ)

∂2

∂z2

]
∂b

∂t

− ζ

[
η
∂2

∂x2
+ ηC

∂2

∂z2

]
∇2b.

(A.9)

One key feature present in the above equation (and often overlooked in applica-
tions to solar corona) is the terms proportional to the products of dissipative
coefficients. Since we are working in the partially ionised lower solar atmo-
sphere, these terms are large and hence their products have the potential to be
not only important but dominant. In our calculations we have also assumed
the dissipative coefficients are height independent.
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APPENDIX B

Derivation of Equation 2.59

The governing equation given by Equation (2.59) is derived by first linearising
the equations of motion for the ionised and neutral fluids given by

∂vi
∂t

=
B0

µ0ρi(x)

∂b

∂z
+ ν̃in(x) (vn − vi) + ζi∇2vi (B.1)

and

∂vn
∂t

= − ρi(x)

ρn(x)
ν̃in(x) (vn − vi) + ζn∇2vn. (B.2)

In the above equations the quantities vi and vn denote the ion and neutral ve-
locities, respectively, ρi(x) and ρn(x) denote the ion and neutral mass densities,
b is the magnetic field perturbation, while B0 denotes the constant background
magnetic field. ν̃in(x) denotes the ion-neutral collisional frequency noting that
since the neutral density, ρn(x), varies transversally this implies that the ion
neutral collisional frequency must also. ζi and ζn denote the ion and neutral
shear viscosity coefficients, whose values are given by Equations (2.39) and
(2.40), respectively. Note that here, we have assumed the contribution from
electrons to be negligible.

As only the charged particles are influenced by the presence of the magnetic
field, the linearised induction equation is given by

∂b

∂t
= B0

∂vi
∂z

. (B.3)

We begin by differentiating Equation (B.1) with respect to time twice

∂3vi
∂t3

=
B0

µ0ρi(x)

∂b

∂z∂t2
+ ν̃in(x)

(
∂2vn
∂t2

− ∂2vi
∂t2

)
+ ζi∇2∂

2vi
∂t2

. (B.4)

In order to solve this equation we need to eliminate two of the three per-
turbation quantities vi, vn or b. We chose to retain only the ion velocity per-
turbation. Hence, we differentiate Equation (B.3) with respect to z and time
giving
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∂3b

∂z∂t2
= B0

∂3vi
∂z2∂t

. (B.5)

We can then rewrite Equation (B.4) in terms of only the velocity perturbation
quantities as

∂3vi
∂t3

= vA(x)
2 ∂3vi
∂z2∂t

+ ν̃in(x)

(
∂2vn
∂t2

− ∂2vi
∂t2

)
+ ζi∇2∂

2vi
∂t2

. (B.6)

Clearly we need to evaluate the second derivative of vn with respect to time
in order to remove dependence of vn from our governing equation. The follow-
ing steps are those required to do so, details are provided at each equation.
The second order derivative of the neutral velocity perturbation, seen above,
is obtained by differentiating Equation (B.2) with respect to time and is given
by

∂2vn
∂t2

= − ρi(x)

ρn(x)
ν̃in(x)

(
∂vn
∂t

− ∂vi
∂t

)
+ ζn∇2∂vn

∂t
. (B.7)

We differentiate Equation (B.1) with respect to time, and obtain

∂2vi
∂t2

=
B0

µ0ρi(x)

∂2b

∂z∂t
+ ν̃in(x)

(
∂vn
∂t

− ∂vi
∂t

)
+ ζi∇2∂vi

∂t
. (B.8)

Next, we differentiate Equation (B.3) with respect to z, and obtain

∂2b

∂z∂t
= B0

∂2vi
∂z2

. (B.9)

After substituting Equation (B.9) into Equation (B.8), we obtain

∂2vi
∂t2

= v2A(x)
∂2vi
∂z2

+ ν̃in(x)

(
∂vn
∂t

− ∂vi
∂t

)
+ ζi∇2∂vi

∂t
. (B.10)

We subtract Equation (B.10) from Equation (B.7) and, after some simplifica-
tions, we obtain

(
∂2vn
∂t2

− ∂2vi
∂t2

)
= ν̃in(x)

(
∂vn
∂t

− ∂vi
∂t

)(
− ρi(x)

ρn(x)
− 1

)
+ ζn∇2∂vn

∂t
−

− ζi∇2∂vi
∂t

− v2A(x)
∂2vi
∂z2

.

(B.11)
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We substitute Equation (B.11) in to Equation (B.6), and obtain
∂3vi
∂t3

= v2A(x)
∂3vi
∂z2∂t

+ ν̃in(x)

[
ν̃in(x)

(
∂vn
∂t

− ∂vi
∂t

)(
− ρi(x)

ρn(x)
− 1

)]
+ ν̃in(x)ζn∇2∂vn

∂t
− ν̃in(x)ζi∇2∂vi

∂t
− ν̃in(x)v

2
A(x)

∂2vi
∂z2

+

+ ζi∇2∂
2vi
∂t2

.

(B.12)

We now rearrange Equation (B.10) to form

ν̃in(x)

(
∂vn
∂t

− ∂vi
∂t

)
=

∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

. (B.13)

We then substitute Equation (B.13) in to Equation (B.12) to give
∂3vi
∂t3

= v2A(x)
∂3vi
∂z2∂t

+ ν̃in(x)

[(
∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

)(
− ρi(x)

ρn(x)
− 1

)]
+

+ ν̃in(x)

[
ζn∇2∂vn

∂t
− ζi∇2∂vi

∂t
− v2A(x)

∂2vi
∂z2

]
+ ζi∇2∂

2vi
∂t2

.

(B.14)

We then rearrange Equation (B.10) in secondary way to form

∂vn
∂t

=
1

ν̃in(x)

(
∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

+ ν̃in(x)
∂vi
∂t

)
. (B.15)

We then substitute Equation (B.15) in Equation (B.14) to give an equation
that describes the temporal and spatial variation of the ion velocity perturba-
tion, vi, in the form

∂3vi
∂t3

= v2A(x)
∂3vi
∂z2∂t

+ ν̃in(x)

[(
∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

)(
− ρi(x)

ρn(x)
− 1

)]
+

+ ν̃in(x)

[
ζn∇2

(
1

ν̃in(x)

(
∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

+ ν̃in(x)
∂vi
∂t

))]
−

− ν̃in(x)

[
ζi∇2∂vi

∂t
+ v2A(x)

∂2vi
∂z2

]
+ ζi∇2∂

2vi
∂t2

.

(B.16)

After some algebra and introducing χ = ρi(x)/ρn(x) = constant, Equation
(B.16) reduces to

∂3vi
∂t3

= v2A(x)
∂3vi
∂z2∂t

− ν̃in(x)
∂2vi
∂t2

(χ+ 1) + ν̃in(x)v
2
A(x)χ

∂2vi
∂z2

+

+ ν̃in(x)ζn∇2

(
1

ν̃in(x)

{
∂2vi
∂t2

− v2A(x)
∂2vi
∂z2

− ζi∇2∂vi
∂t

+ ν̃in(x)
∂vi
∂t

})
+ ζi∇2∂

2vi
∂t2

+ ν̃in(x)ζiχ∇2∂vi
∂t

.

(B.17)
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This equation is solved using the numerical techniques described in Chapter 3
and the results are presented in Chapter 6.
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