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Abstract

The propagation of microwaves through magnetised plasmas in the presence of wavelength

scale density variation poses an interesting physics problem. Microwaves have many uses in

tokamaks, from diagnostics that help characterise the plasma to high-power beams used for

heating and current drive. It is therefore important to be able to accurately predict the path

that they will take in tokamak plasmas, even in the presence of fluctuations.

To this end, a full-wave cold-plasma code utilising the FDTD method (EMIT) has been

developed both in 2D and 3D. EMIT-2D minimises computational cost, allowing full simu-

lation of the beam from the antenna to the absorption region. A benchmark of the code was

carried out before it was applied to the problem of OX-mode conversion. In plasmas with

steep density gradients, mode conversion efficiency was found to decrease sharply due to the

converted X-mode tunnelling back out of the plasma.

EMIT-2D was also used in a study of ECRH beam broadening by turbulence on DIII-

D. Significant beam broadening was measured experimentally in three operating scenarios.

Diagnostic data was used to generate synthetic turbulent density profiles for simulations.

The simulations agreed with experiment, providing a direct comparison between simulation

and experimental measurements of beam broadening for the first time, but diagnostic uncer-

tainty led to significant uncertainty in the simulated results, motivating the need for future

turbulence diagnostics of better spatial resolution.

To further characterise how beam broadening by electrostatic turbulence depends on

plasma and beam parameters, a series of parameter scans were carried out covering tokamak

relevant parameter ranges. The parameter scans were conducted in pairwise combinations of

the parameters in order to determine the separability of the dependencies, and an empirical

formula was found for fusion-relevant scenarios allowing the prediction of beam-broadening

in microseconds instead of the hours required for full-wave simulations.
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Chapter 1

Introduction

1.1 Magnetically Confined Fusion

1.1.1 Motivation for Fusion

As demand for energy continues to increase, and climate change drives the need for alter-

natives to fossil fuels, nuclear fusion remains a promising alternative means of energy pro-

duction. There are numerous potential advantages to the use of nuclear fusion to generate

power. The reaction of interest

2
1D+3

1 T −→4
2 He +

1
0 n + 17.6MeV, (1.1)

does not produce any greenhouse gases so will not contribute to the growing climate crisis,

the fuel sources also aren’t at pressing risk of depletion, and no high-level radioactive waste

is produced [5]. There are other possible fusion reactions, but the one shown in Eq. 1.1 is

the most favourable one.

In order to generate electricity from fusion, the reactor needs to generate more energy

than it takes to run. One of the major hurdles to overcome is making the reaction self-

sustaining, such that all of the energy needed to maintain the required temperature comes

from the energetic 4
2He ions that remain within the plasma. Balancing this need against the

energy that will be lost via particles escaping confinement and radiative losses produces an

inequality known as the Lawson criterion [6]

nTτE > 3× 1021m−3keVs (1.2)
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which is used to define the ‘ignition point’ at which external heating is no longer required as

the plasma is self-sustaining. Here, n is the particle density in m−3, T is the temperature in

keV, and τE is the energy confinement time in s.

Two main approaches to achieve this are inertial confinement and magnetic confinement.

This thesis is focused on magnetic confinement fusion (MCF), where the Deuterium and

Tritium fuel is ionised to form a plasma, which is confined by magnetic fields. The aim is

then to hold the plasma in steady state for long enough, and at sufficiently high temperatures

and densities, that enough fusion reactions occur that there is net energy gain. The three

main types of device used for this purpose are tokamaks, spherical tokamaks, and stellarators.

Stellarators have a more complicated magnetic field so, while a lot of the fundamental physics

is unchanged, pose some different and unique issues when it comes to the study of microwave

propagation in stellarator plasmas. The focus from this point on will be on tokamaks and

spherical tokamaks which, while posing their own separate and unique issues, also have a

number of similarities.

1.1.2 The Tokamak

The tokamak is an MCF device that uses magnetic fields to confine the plasma in a torus

(or doughnut) shape. The Deuterium and Tritium fuel is ionised to form a plasma made

up of positive nuclei and negative electrons. These charged particles orbit and stream along

magnetic field lines so one might suppose that a simple closed loop of field lines (a purely

toroidal field) would effectively confine the plasma.

However, the gradient and curvature of the magnetic field introduce drifts in the particle

velocity known as grad-B drift and curvature drift. Grad-B drift arises as the radius of

a charged particle’s orbit around a field line is dependent on magnetic field strength. A

particle orbiting over a region where there’s a gradient in B therefore has a distorted orbit,

with a smaller gyro-radius in the region of higher field, and a larger gyro-radius in the

region of lower field. This leads to a net drift perpendicular to the magnetic field gradient.

Curvature drift arises as, in order for a particle to travel along a curved field line, it requires

a centripetal force perpendicular to that field line. As no such force exists in the plasma,

a drift velocity away from the field line arises. These drifts mean that a purely toroidal

field is not sufficient to confine the plasma effectively. Instead, an additional poloidal field is

required. This is achieved by driving a toroidal current in the plasma, which then generates
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Figure 1.1: Configuration of the magnetic field in a tokamak. Large D-shaped magnets
generate the toroidal field. A plasma current generates the poloidal field, aided by inner and
outer poloidal field coils. The resulting magnetic field follows a helical pattern around the
torus. Figure courtesy of Eurofusion [1].

a poloidal magnetic field. The resultant magnetic field configuration can be seen in Fig.

1.1 [1].

In existing tokamaks, the required plasma current is predominantly generated via ramp-

ing up the field in the central solenoid of the device. However, this will not be sufficient for

a steady-state device as the field cannot be ramped up indefinitely, limiting the length of

operation to the duration of the ramp up. Therefore, additional methods of plasma current

generation will be required to drive and maintain the current during steady-state opera-

tion. Potential current drive systems include neutral beam injection, and the use of radio

frequency waves, as will be discussed in more detail in Sec. 1.3.1.

1.1.3 The Spherical Tokamak

Spherical tokamaks are similar to conventional tokamaks in their overall rough shape but

have a smaller aspect ratio A = R/a, where R is major radius and a is minor radius of the

device. The result is a plasma configuration that looks less like the doughnut in a conventional

tokamak and more like a cored apple. The difference between the plasma shapes and volumes

of the two devices can be seen in Fig. 1.2.

These devices are significantly smaller than conventional tokamaks while still being ca-
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Figure 1.2: Different plasma shapes and volumes for a conventional and spherical tokamak.
Figure courtesy of UKAEA [2].

pable of producing the same fusion power output, so are potentially cheaper and easier to

build, making them a favourable avenue for commercial power generation. Due to the re-

duced plasma volume, in order to still have enough fusion reactions happening per second

to meet the Lawson criterion, a higher plasma density is needed. It is plasma density that is

targeted, rather than temperature as increasing temperature would move the plasma away

from the temperature that maximises the cross-section of the fusion reaction. Increasing

confinement time would also increase the triple product, energy confinement time has an

upper limit dependent on magnetic field strength [7].In addition, the compact design re-

sults in the magnetic field coils being closer to the plasma meaning that they require less

energy to produce the same field at the plasma location. This makes it easier to achieve a

higher plasma beta (ratio of plasma pressure to magnetic pressure), a common metric for

the efficiency of the device [8–10].

In order to maintain the tighter configuration of these devices, it is often necessary to

combine the inboard side of the toroidal field coils (the D-shaped coils in Fig. 1.1) into a

single central conducting column. This leaves little room for a central solenoid, making the

use of alternative current drive systems all the more important [8–10].

1.2 Turbulence in Fusion Plasmas

One of the enduring problems in achieving power generation from fusion in MCF devices

is the degradation of the confinement by turbulent effects increasing cross-field transport

[11,12]. In addition, turbulence in the plasma has the potential to interfere with diagnostics

and power injection systems. This has made the study of plasma turbulence crucial to the

success of fusion power.

Steep temperature and density gradients are one of the primary sources of this turbu-
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lence, driving a number of micro-instabilities. For example, temperature and magnetic field

gradients drive the electron temperature gradient (ETG) [13] and ion temperature gradi-

ent (ITG) [14] modes as well as macro-scale MHD modes. The magnetic field gradient is

perpendicular to the toroidal field (which dominates the magnetic field direction) resulting

in a grad-B (∇B × B) drift along the flux surfaces. As hotter particles closer to the core

of the device have a higher average velocity and lower collisionality, they drift faster than

cooler ones closer to the edge. This means that the radial temperature gradient causes local

temperature and density perturbations, generating local electric fields. These electric field

perturbations give rise to local E×B drifts which amplify the initial perturbations [13,14].

Due to the significantly smaller mass of electrons, the growth rate for the ETG is much

larger than the ITG, though both lead to significant thermal transport as the Larmor radius

scales with particle mass, meaning that the ion gyro-radius is significantly larger than the

electron gyro-radius.

Another example is drift waves driven by the radial density gradient at an angle to the

magnetic field. If there is a small seed perturbation in the ion density perpendicular to the

density gradient, this creates a region of high and low density near each other, establishing a

local electrostatic potential. The electrons respond to this faster than ions due to their lower

mass, streaming along the field lines, thus generating a local electric field. The resulting

E×B drift is then 90o out of phase with the initial density perturbation, resulting in a wave

propagating perpendicular to the density gradient and magnetic field with no net transport,

as the velocity and density perturbation are out of phase. However, if resistivity causes a

delay in the electron response to the electrostatic potential, there is a phase shift resulting

in the wave becoming unstable, generating rotating turbulent eddies that cause particle and

energy transport [15,16].

Larger scale magneto-hydrodynamic (MHD) instabilities also degrade the confinement

of the device, such as the neoclassical tearing mode (NTM). These form on surfaces where

the safety factor q = m/n is a ratio number. Here m and n are the poloidal and toroidal

mode numbers respectively. The safety factor is defined as the number of toroidal turns

a field line makes for each poloidal turn. NTMs require a seed ‘island’ in the magnetic

field. As particles stream along field lines, these islands flatten the pressure gradient across

them, leading to a hole in the bootstrap current — a spontaneously arising current driven by

collisions between particles trapped by the magnetic mirror force on the weak-field (outboard)
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side of the tokamak and particles which can complete full toroidal orbits as a result of the

radial pressure gradient. This perturbation to the bootstrap current, in the presence of a

magnetic shear and pressure gradient, leads to a destabilizing current which reinforces and

grows the seed magnetic island. NTMs induce eddy currents, degrade plasma and energy

confinement, cause disruption, and slow plasma rotation [17,18].

All of these effects, among others [11,12], make the achievement of break-even in a fusion

reactor significantly more challenging. The ability to investigate these instabilities and the

turbulence they produce with diagnostics of sufficient spatial and temporal resolution is

therefore of great importance, as is the ability to control or mitigate the instabilities. It is

worth noting that as well as having a negative impact on the stability and confinement of

MCF reactors, the turbulent fluctuations also scatter incident EM waves, particularly those

with wavelength comparable to the length scale of the turbulence. This has further negative

implications for the efficiency of the reactors if heating and current drive beams don’t deposit

their power where intended.

1.3 Microwaves in Fusion Plasmas

1.3.1 Heating and current drive

Microwaves have a frequencies in the same range as the electron cyclotron resonances (and

their harmonics) in fusion plasmas, making microwave systems an effective tool to inject

power into the plasma for the purposes of both global and local heating and current drive [19–

22] as well as for the purposes of non-inductive start-up [23,24]. Global heating and current

drive (where numerous deposition regions are targeted to generate the desired temperature

and current profile) are essential in order to reach the temperatures required for fusion to

occur and to generate the poloidal field required to confine the plasma. Local heating and

current drive can also be useful in stabilising instabilities such as the NTMs mentioned in

Sec. 1.2.

Microwave methods for power injection have numerous advantages over other common

approaches such as neutral beam injection (NBI). The antennas require little space on the

vessel walls, leaving more room for breeder blankets. The gyrotrons used to generate the

microwaves can be housed long distances from the reactor itself, outside of the bioshielding,

meaning that maintenance can more easily be carried out without having to shut down the
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reactor, and waveguides can be used to carry the microwaves to the reactor with very little

loss of power. Finally, as the injected microwaves are EM waves, they can be launched in

vacuum at the edge of the device before coupling efficiently with the plasma.

Two of the primary methods of power injection using microwaves are electron cyclotron

resonance heating (ECRH) and electron cyclotron current drive (ECCD). These methods

use EM waves in the frequency range of the electron cyclotron resonance ωce = eB/me or its

low-order harmonics. This is the frequency at which electrons gyrate around the magnetic

field lines in the plasma. This allows highly targeted and localised power deposition, due to

the dependence of ωce on magnetic field strength, B, and the way B varies across a poloidal

cross-section of the device [22].

However, in some over-dense plasmas where the cut-off density for a particular frequency

of wave is located closer to the plasma edge than the location of the cyclotron harmonic

(frequently occurring in spherical tokamaks), waves of the frequency used for ECCD and

ECRH cannot propagate to the desired deposition region due to the existence of a cut-off

density near the plasma edge. The exact nature of this cut-off density depends upon the

mode of wave used. More details of these can be found in Sec. 2.1. While higher harmonics

of the cyclotron resonance could be used, these tend to be less efficiently damped in the

desired deposition region.

In these cases, electron Bernstein waves (EBW) can be used instead as they can porpa-

gate past these cut-off densities and into the targeted deposition region. These are shorter

wavelength waves which only exist in hot magnetised plasmas. As they result from the co-

herent motion of electrons, they cannot be launched in or propagate through vacuum [25].

Instead, an EM wave must be launched which will mode convert to an EBW inside the

plasma — a process which is discussed in more detail in Sec. 2.1.2.1 and Sec. 2.2. The EBW

is then absorbed at a harmonic of the cyclotron resonance so can be used to heat the plasma

or drive current in a similar way to ECRH and ECCD [25,26].

In order for these methods of power injection to be effective and efficient, we must be able

to accurately predict the path of microwave beams through the plasma and the area over

which their power will be deposited. This is made more difficult by the turbulence present

in the plasma edge, where density fluctuates on length scales comparable to microwave

wavelength and the fluctuation level can reach 100% of the background density, scattering

incident microwaves. Simulations are therefore an incredibly important tool in understanding
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and optimising microwave heating and current drive systems [12,27–29].

1.3.2 Diagnostics

Microwave diagnostics have good spatial and temporal resolution and can be used to both

actively and passively probe fusion plasmas. Compared to diagnostics in the visible spectrum,

their focusing optics are robust to neutron bombardment due to their longer wavelength not

being affected by small-scale roughness.

One of the most common and important passive diagnostics is the measurement of elec-

tron cyclotron emission (ECE). Just like ECRH and ECCD, this utilises the electron cy-

clotron resonance. However, rather than using this for wave absorption, ECE detects the

emission of electrons gyrating around the magnetic field lines in the plasma. The radiation

they emit is at the electron cyclotron frequency ωce or a harmonic of it. The thermal motion

of the electrons broadens this peak in frequency space so that it is not just a single frequency

that is detected. When the plasma is optically thick enough (when optical depth τ >> 1),

the intensity of the observed ECE approaches that of a black body, meaning it can be used

to determine the electron temperature at the spatial location corresponding to a plasma

density that is close to a resonance. Similarly to how the dependence of ωce on the magnetic

field strength allows for targeted power deposition in the cases of ECRH and ECCD, for

ECE diagnostics, this allows for targeted probing of select regions within the plasma, giving

the diagnostic a spatial resolution of order 1 cm [30]. Typical ECE radiometers detect in a

number of frequency bands, each corresponding to a particular location in the plasma. This

allows for a time-resolved 1D line profile of the electron temperature to be determined. In

order to construct a 2D temperature profile, a 1D array of detectors can be used [31].

As with the power injection methods, when the plasma is overdense such that the plasma

frequency is greater than the cyclotron frequency, ECE can no longer be used as a passive

probing technique as the emitted waves cannot escape the plasma to be detected. In this case,

EBW emission (EBE) can be used instead. This is slightly more complex, as the EBE cannot

propagate through the vacuum at the plasma edge so must mode convert to an EM wave in

order to be detected. The efficiency of this process will affect the intensity of the detected

EBE spectrum, so accurate knowledge of this efficiency is required. To this end, ray tracing

calculation of the EBW path through the plasma to the mode conversion region are needed.

These can then be used to deduce the location of the emission and calculate predicted mode
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conversion efficiency in order to accurately deduce the electron temperature [25,31].

Reflectometry is an active probing technique where an EM wave is launched and propa-

gates into the plasma until it reaches its cut-off density, at which it is reflected back. The

time between emitting and receiving a signal can be measured and used to calculate the

path length of the wave and thus the location of the cut-off density. Repeating this mea-

surement many times at different frequencies then allows the construction of the electron

density profile and any fluctuations present [30, 31]. Doppler reflectometry measures the

Doppler shift of the reflected signal, caused by the rotation of the plasma. This provides a

measurement of the speed of the cut-off surface and can be used to find the rotation velocity

of the plasma [30,31].

With all microwave diagnostics, it is important to be able to accurately predict the beam

path so that we know exactly what region of the plasma we are probing. Furthermore, with

more complex diagnostics setups, comparison of diagnostic measurements to the output of

simulated versions of the diagnostics can give much greater insight into the plasma properties.

1.4 Thesis Outline

The goal of this project is to better understand the propagation of microwaves through

fusion plasmas, particularly in instances where plasma density is varying on length scales

comparable to microwave wavelength. The basic physics of microwaves in plasmas is covered

in Chapter 2. The numerical tools that can be used to investigate their propagation in fusion

plasmas are covered in Chapter 3. The full-wave cold plasma code that I have developed

and used for this project is described in Chapter 4. A thorough benchmark of the code is

then carried out in Chapter 5 along with a study of the OX mode conversion process with

varying density scale length. In Chapter 6 the full-wave cold plasma code EMIT-2D is used

to simulate the broadening of ECRH beams by plasma turbulence on the DIII-D tokamak in

order to compare the results of simulations to experimental measurements as an important

benchmark. The code is then used to carry out a wide-ranging parametric scan in order to

determine the dependence of microwave beam broadening by plasma turbulence on plasma

and beam parameters which is covered in Chapter 7. Finally, the main conclusions of all of

this work as well as suggestions for further work are covered in Chapter 8.
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Chapter 2

Waves in Plasmas

For analysis of waves in plasmas, it is useful to define two fundamental frequencies. First,

the plasma frequency,

ωp,s =

√
Zsne2

ϵ0ms
, (2.1)

is the frequency at which a species, s, in the plasma responds to a small displacement.

Charge separation generates an electric field resulting in a restoring force proportional to

the displacement, leading to an electrostatic simple harmonic oscillator. Here Zs is the species

atomic number, n is the number density, e the charge of an electron, ϵ0 the permittivity of

free space, and ms is the species mass.

Second, the cyclotron frequency,

ωc,s =
qsB

ms
, (2.2)

is the frequency at which particles orbit magnetic field lines in the plasma. B is the magnetic

field strength and qs is the species charge.

These frequencies provide a normalized plasma density,

X =

(
ωp,e

ω

)2

, (2.3)

and magnetic field strength,

Y =
ωc,e

ω
, (2.4)

where ω is the vacuum frequency of the wave travelling through the plasma. Here, we have
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used the electrons rather than the ions because, as will be discussed later in this Chapter, it

is the electrons that are most relevant for microwaves propagating through fusion plasmas.

This is due to the larger mass of the ions meaning they take much longer to respond to any

perturbing effect of the wave.

The derivations in this chapter draw on information covered in [16] and [32] throughout.

2.1 Waves in Cold Plasmas

In order to simplify the physics, for investigating microwave propagation in fusion plasmas,

it is common to utilise the cold plasma approximation. In doing so, we neglect the thermal

motion of the particles, assuming they all travel at the same velocity. This approximation

applies when the wave in question propagates significantly faster than the thermal velocity

in the plasma. This is the case the majority of the time for microwaves in fusion plasmas.

However, it cannot be used to model wave absorption as this depends on finite Larmor radius

affects.

In order to understand how waves propagate in cold plasmas, it is useful to derive a

dispersion relation to tell us how wave frequency will depend on wave vector and position

vector. In order to do this, we begin with Maxwell’s equations,

∇×E = −∂B
∂t
, (2.5)

∇×B = µ0J+
1

c2
∂E

∂t
, (2.6)

and substitute in plane wave solutions of the form ∼ exp[i(k · r−ωt)] for the perturbed part

of E, B, and J. This gives us that

k×E = ωB (2.7)

k×B = −iµ0J− ω

c2
E. (2.8)

We can then use Ohm’s law to express J in terms of E as

J = σ ·E, (2.9)
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where σ is the conductivity tensor, and substitute this into Eq. (2.8) to give

k×B = −iµ0σ ·E− ω

c2
E. (2.10)

This can be rewritten as

k×B = − ω

c2
ε ·E (2.11)

where

ε = I +
i

ε0ω
σ (2.12)

is the dielectric permittivity tensor.

From Eq. (2.7) we can see that B = 1
ωk× E which can be substitued into Eq. (2.11) to

get [
kk− k2I +

ω2

c2
ε

]
·E =M ·E = 0. (2.13)

This is a general dispersion relation, meaningful solutions for which can be found where

det(M) = 0.

However, in order to solve this equation, we need to know the form of σ and therefore

ε. To do this, we consider the relationship between J and E combined with the relationship

described in Eq. (2.9).

To find how current density depends on electric field strength, we start by considering

the Lorentz force on an individual particle

F = m
dv

dt
= q(E+ v ×B). (2.14)

If we take the cold plasma approximation and assume that all particles move at the same

velocity rather than having a thermal distribution of velocities, then the above equation also

describes the fluid velocity of the plasma. We can then use this to describe the current

density Js = nsqsvs such that

ms

nsqs

dJs

dt
= qsE+

1

ns
Js ×B. (2.15)

We will assume that the plasma is homogenous, quasi-neutral, and at rest apart from the

effect of the perturbing plane-wave fields. This means that we can state that the background
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electric field and current density are zero. We assume a solution of the form

E = E1 exp[i(k · r− ωt)] (2.16)

B = B0 +B1 exp[i(k · r− ωt)] (2.17)

J = J1 exp[i(k · r− ωt)]. (2.18)

If we substitute these fields into Eq. (2.15) and linearise in the wave-like perturbed quantities

then we get
ms

n0,sq2s

∂Js

∂t
= E+

B0

n0,sqs
Js × b̂0 (2.19)

where B0 is the background magnetic field strength and b̂0 is the unit vector pointing in the

direction of the background field, and n0 is the unperturbed number density of the particle

species. Terms that are 2nd order in perturbed quantities, including the convective part

of the total time derivative, have been discarded. This assumption is valid within the low

power limit, however, at high powers non-linear effects are observed. The threshold at which

these effects become important is the subject of some study [33,34].

We can then use the wave-like form of the fields to compute the time derivative such that

−iω ms

n0,sq2s
Js = E+

B0

n0,sqs
Js × b̂0. (2.20)

If we arbitrarily assign the background magnetic field to point along the z-direction, we can

break this down into the three vector components:

Jx,s =
i

ω

n0,sq
2
s

ms
Ex +

i

ω

B0qs
ms

Jy,s =
i

ω

(
n0,sq

2
s

ms
Ex + ωc,sJy,s

)
(2.21)

Jy,s =
i

ω

n0,sq
2
s

ms
Ey −

i

ω

B0qs
ms

Jx,s =
i

ω

(
n0,sq

2
s

ms
Ey − ωc,sJx,s

)
(2.22)

Jz,s =
i

ω

n0,sq
2
s

ms
Ez. (2.23)

We can then substitute Eq. (2.22) into Eq. (2.21) and vice versa to get

Jx,s =
i

ω

n0,sq
2
s

ms

(
Ex + i(ωc,s/ω)Ey

1− (ωc,s/ω)2

)
(2.24)
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Jy,s =
i

ω

n0,sq
2
s

ms

(
Ey − i(ωc,s/ω)Ex

1− (ωc,s/ω)2

)
. (2.25)

The total current will then be the sum of the contributions from the electrons and the ions.

J = Ji + Je (2.26)

From here we will assume that for a fusion plasma primarily made up of Deuterium and

Tritium Z = 1 so qi = e and qe = −e. From quasineutrality, we also know that n0,e = n0,i =

n0. Thus

Jx =
i

ω

[
n0e

2

mi

(
Ex + i(ωc,i/ω)Ey

1− (ωc,i/ω)2

)
+
n0e

2

me

(
Ex + i(ωc,e/ω)Ey

1− (ωc,e/ω)2

)]
(2.27)

which can be rearranged to

i

ε0ω
Jx = −

ω2
p,i

ω2

(
Ex + i(ωc,i/ω)Ey

1− (ωc,i/ω)2

)
−
ω2
p,e

ω2

(
Ex + i(ωc,e/ω)Ey

1− (ωc,e/ω)2

)
. (2.28)

Now we can use the fact that for the waves we are interested in ω >> ωc,i, ωp,i. This is due

to the large mass of the ions relative to the electrons. This then lets us drop terms in ωp,i/ω

and ωc,i/ω giving us

i

ε0ω
Jx = −

ω2
p,e

ω2

(
Ex + i(ωc,e/ω)Ey

1− (ωc,e/ω)2

)
= − X

1− Y 2
Ex −

iXY

1− Y 2
Ey. (2.29)

Doing the same for the other components, this then leaves us with

i

ε0ω
Jx = − X

1− Y 2
Ex −

iXY

1− Y 2
Ey (2.30)

i

ε0ω
Jy = − X

1− Y 2
Ey +

iXY

1− Y 2
Ex (2.31)

i

ε0ω
Jz = −XEz (2.32)

where X and Y have been defined above in Eqs. (2.3) and (2.4).
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Combining this with Eqs. (2.9) and (2.12) then gives us

ε =


1− X

1−Y 2 − iXY
1−Y 2 0

iXY
1−Y 2 1− X

1−Y 2 0

0 0 1−X

 . (2.33)

To simplify the expression, we can define right and left hand polarised EM waves

R = 1− X

1 + Y
(2.34)

L = 1− X

1− Y
(2.35)

and the electrostatic plasma oscillation

P = 1−X. (2.36)

We can then define terms based on the sum and difference of the R and L wave

S =
1

2
(R+ L) (2.37)

D =
1

2
(R− L). (2.38)

Substituting in these definitions to Eq. (2.33) gives us

ε =


S −iD 0

iD S 0

0 0 P

 . (2.39)

This can then be substituted into Eq. (2.13) to give

M =

[
kk− k2I +

ω2

c2
ε

]
=


k2x − k2 + ω2

c2
S kxky − iω

2

c2
D kxkz

kykx + iω
2

c2
D k2y − k2 + ω2

c2
S kykz

kzkx kzky k2z − k2 + ω2

c2
P

 . (2.40)

Using the fact that we have assigned B0 = B0ẑ, we can set k = (kx, ky, kx) = (k⊥, 0, k∥)

without loss of generality. We can also multiply M by c2

ω2 without altering solutions to the
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dispersion equation and then use the refractive index

N =
ck

ω
= (Nx, Ny, Nz) = (N sin θ, 0, N cos θ) (2.41)

where θ is the angle between the k and B0.

This then gives us

M ·E =


S −N2 cos2 θ −iD N2 sin θ cos θ

iD S −N2 0

N2 sin θ cos θ 0 P −N2 sin2 θ

 ·E = 0. (2.42)

This has meaningful solutions where det(M) = 0 which yields

tan2 θ = − P (N2 −R)(N2 − L)

(SN2 −RL)(N2 − P )
. (2.43)

There are numerous potential solutions to this equation which represent distinct modes of

wave. Each of these modes has its own distinct properties such as phase velocity, resonances

(where N → ∞ and the wave would be absorbed), and cut-offs (where N → 0 and the

wave enters a region of evanescence it can’t propagate through). It is worth noting that the

formalism we have gone through for the cold plasma model does not accurately capture the

wave behaviour at resonances, but it can be used to predict some of their locations. This is

covered in more detail in Sec. 2.2.

In the following sections, we will examine the specific cases of propagation perpendicular

or parallel to the magnetic field.

2.1.1 Propagation Parallel to Magnetic Field

For propagation parallel to the magnetic field, θ = 0 so our dispersion relation becomes

P (N2
∥ −R)(N2

∥ − L)

(SN2
∥ −RL)(N2

∥ − P )
= 0. (2.44)

This then yields three solutions

N2
∥ = R = 1− X

1 + Y
(2.45)
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N2
∥ = L = 1− X

1− Y
(2.46)

P = 1−X = 0 (2.47)

Further information can be gained by considering the eigenvectors for each mode which can

be obtained by substituting the solutions back into the matrix equation in Eq. (2.42).

Eq (2.45) corresponds to the right-hand circularly polarised electromagnetic wave with

eigenvector (Ex, iEx, 0), sometimes referred to as the R-wave. Eq (2.46) corresponds to the

left-hand circularly polarised electromagnetic wave with eigenvector (Ex,−iEx, 0), sometimes

referred to as the L-wave.

Eq. (2.47) corresponds to an electrostatic oscillation with eigenvector (0, 0, Ez).

For the two electromagnetic modes, we can see that their cut-offs (where N → 0 and the

wave enters a region of evanescence it can’t propagate through) occur when

X = 1± Y (2.48)

where the ‘+’ corresponds to the R-wave and the ‘−’ corresponds to the L-wave. Returning to

expressing things directly in terms of frequencies and rearranging results in cut-off frequencies

of

ωR =
1

2

(√
4ω2

p,e + ω2
c,e + ωc,e

)
(2.49)

ωL =
1

2

(√
4ω2

p,e + ω2
c,e − ωc,e

)
(2.50)

where we take the positive root in each case.

When considering resonances of the waves, it is important to remember that we defined

ωc,e such that it is always negative for electrons, and therefore Y = ωc,e/ω is also negative.

Recalling that a resonance occurs when N → ∞ we can therefore see that the R-wave has a

resonance at

Y = −1 → ω = −ωc,e (2.51)

which is the electron cyclotron resonance. This means that the electric field of the wave is

oscillating at the same frequency as the frequency at which electrons gyrate around magnetic

field lines. Crucially, the electric field is also oscillating in the same direction as the electrons.

This leads to strong absorption, though the mechanics of this are not captured in the cold

plasma model.
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No such resonance can be seen in the L-wave as the electric field oscillates in the opposite

direction to the electrons. If we had not neglected the contributions of ions due to their large

masses and slow response times, we would see a resonance at ω = ωc,i, the ion cyclotron

frequency. However, this is a much lower frequency and is outside the range we are interested

in.

2.1.2 Propagation Perpendicular to Magnetic Field

For propagation perpendicular to the magnetic field, θ = π/2 so tan2 θ → ∞ such that our

cold plasma dispersion relation becomes

P (N2
⊥ −R)(N2

⊥ − L)

(SN2
⊥ −RL)(N2

⊥ − P )
→ ∞. (2.52)

This has two possible solutions

N2
⊥ = P = 1−X (2.53)

N2
⊥ =

RL

S
=

(1−X − Y )(1−X + Y )

1−X − Y 2
. (2.54)

The solution in Eq. (2.53) corresponds to the ordinary mode (O-mode), so named because

of its simpler dispersion relation, similar to a wave propagating in vacuum adjusted by a term

to account for the plasma density. It has eigenvector (0, 0, Ez). The O-mode is a transverse,

electromagnetic wave which is linearly polarised with its electric field pointing parallel to

B0.

The solution in Eq. (2.54) corresponds to the extraordinary mode (X-mode), so named

because of the more complicated dispersion relation compared to the O-mode in that the

propagation depends on magnetic field strength as well as plasma density. It has eigenvector

(Ex,−i SDEx, 0). The X-mode is an electromagnetic wave with longitudinal and transverse

components resulting in an elliptical polarisation of the electric field perpendicular to B0.

Just as for parallel propagation, these two distinct modes have distinct properties such

as phase and group velocities, resonances, and cut-offs.

From the O-mode dispersion relation in equation (2.53), it can be seen that there is a

cut-off where N⊥ → 0 at

X = 1 → ω = ωp,e. (2.55)

Hence, O-mode waves cannot propagate through a plasma where the density is such that the
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plasma frequency equals the wave frequency. Throughout the rest of the thesis, the density

at which this occurs is referred to as ncrit.

No resonance conditions for the O-mode exist in the cold plasma approximation. This is

not the case in the real world, which will be discussed further in Sec. 2.2.

From the X-mode dispersion relation in equation (2.54), it can be seen that there are

two cut-offs corresponding to R = 0 and L = 0. These are the same cut-off conditions that

we found for R-mode and L-mode propagation parallel to the magnetic field, meaning that

the X-mode has cut offs at

ω = ωR (2.56)

and

ω = ωL (2.57)

as defined in Eqs. (2.49) and (2.50). These cut-offs are independent of angle of propagation,

hence they arise for waves that propagate both parallel and perpendicular to the field.

From equation (2.54) we also find a resonance (where N⊥ → ∞) at S = 0 or at 1−X −

Y 2 = 0. This corresponds to a resonant frequency at

ωUH =
√
ω2
p,e + ω2

c,e. (2.58)

This resonance contains both plasma and cyclotron frequencies and is hence known as the

upper hybrid frequency as it is greater than both the plasma frequency and electron fre-

quency. Though we have neglected the contributions of ions due to their larger masses, the

inclusion of ions would yield a second resonance at the lower hybrid frequency which lies

between the ion and electron cyclotron frequencies. However, this is below the frequency

range of interest for us.

The X-mode dispersion relation has two distinct branches corresponding to the slow

X-mode (SX) and the fast X-mode (FX), so labelled due to the magnitude of their phase

velocities. The FX-mode exists in the plasma at lower densities, below the R cut-off. The

SX-mode exists in the plasma at higher densities, between the upper hybrid resonance (UHR)

and the L cut-off.
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2.1.2.1 OX Mode Conversion

For the more generalised case of propagation at an angle θ to the background magnetic field,

we can rewrite Eq. (2.43) in terms of perpendicular and parallel components of the refractive

index, such that

N2 = N2
⊥ +N2

∥ = 1− 2X(1−X)

2(1−X)− Y 2 sin2 θ ± Γ
(2.59)

where

Γ = (Y 4 sin4 θ + 4(1−X)2Y 2 cos2 θ)1/2 (2.60)

and the ‘+’ and ‘−’ signs correspond to the O-mode and X-mode respectively. This is known

as the Appleton-Hartree equation [16, 35, 36]. From this, we can see that when X = 1 (or

writing things explicitly in terms of frequencies, when ω = ωp,e) and θ = 0, we get that

Γ = 0, making the O-mode and X-mode degenerate. This allows for conversion from one

mode to the other.

If we consider the conversion from O-mode to X-mode, the refractive index corresponding

to the maximum conversion can then be calculated by substituting these values back into

Eq. (2.59). If we first assume that θ = 0 then we find that

N2
∥ =

1−X ± Y

1± Y
. (2.61)

Assuming that our refractive index must be positive allows us to discard the ‘−’ in the ±.

Then, as the wave propagates into the plasma and approaches the cut-off density at X = 1

we find

N2
∥,opt =

Y

1 + Y
. (2.62)

At this optimum, there is complete conversion between the two modes. Even when these

conditions aren’t exactly met, mode conversion can still occur via tunnelling through an

evanescent region, reducing the mode conversion efficiency. However, if the angular deviation

from this optimum is too large, the wave can’t tunnel through the evanescent region so no

mode conversion occurs. This results in an elliptical mode conversion window around the

optimum angle of propagation.

This process is sometimes utilised to launch Electron Bernstein Waves in over dense

plasmas via the OXB mode conversion.

This is the process by which an O-mode wave is launched in vacuum on the low-field side
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of the tokamak. It propagates in until it reaches the O-mode cut-off density as described by

Eq. (2.55). At this point, the O-mode and the SX-mode are degenerate and mode conversion

between the two can take place. The SX-mode then propagates further into the plasma but

turns around before it reaches the L cut-off as described in Eq. (2.50) before propagating

back to the UHR as described in Eq. (2.58). At the UHR it smoothly and continuously

converts to an EBW, turning back around and propagating into the plasma core where it

will eventually be absorbed at a harmonic of the cyclotron resonance.

2.2 Limitations of the Cold Model

In the cold plasma model, it is assumed that electrons have zero thermal velocity resulting

in the Larmor radius of their gyro-orbits of magnetic field lines being zero. Whilst this is

a remarkably good approximation for microwaves propagating through fusion plasmas in a

range of scenarios, there are some areas where it cannot be used.

For example, in the O-X-B mode conversion scheme discussed in Sec. 1.3.1 and Sec.

2.1.2.1, the cold plasma formalism cannot describe the EBWs, as these are plasma waves

resulting from the collective coherent gyro-motion of electrons. Therefore, their description

requires a warm plasma model.

Another limitation of the cold model is in the description of microwave absorption by the

plasma. In Sec. 1.3.1, the use of microwaves for heating and current drive was discussed,

utilising the electron cyclotron resonance. However, when considering the dispersion relations

for the O-mode and X-mode given by Eqs. (2.53) and (2.54), there is no resonance at the

cyclotron frequency or its harmonics. The finite Larmor radius effects introduced in the warm

model allow for the absorption of the O-mode and X-mode at resonances of the cyclotron

harmonic.

However, these finite temperature effects are outside the scope of this thesis. This work

focuses on the propagation of the O-mode and X-mode through fusion plasmas. Their

absorption is not considered and EBWs are not modelled, they are merely motivating factors

in carrying out this work.
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Numerical Methods

3.1 Summary of Approaches

There are many different approaches to simulating the propagation of microwaves through

fusion plasmas. The choice of method depends on the physics that you want to capture,

weighed up against computational expense.

3.1.1 Ray Tracing

Ray tracing methods use geometrical optics to find the path of a single ray through the

plasma. In order to do this, one must assume that the refractive index of the plasma varies

slowly in time (compared to the wave period) and in space (compared to the wavelength).

This means the Wentzel–Kramers–Brillouin (WKB) approximation can be applied, resulting

in an eikonal equation to the lowest order. This eikonal is then used to construct a set of

ODEs which can be solved for the ray trajectory, and rather than solving the full Maxwell

equations (as is done in a full-wave code), one can instead solve the simpler ray equations

[32,37]
dr

dt
= −∂M/∂k

∂M/∂ω
;

dk

dt
=
∂M/∂r

∂M/∂ω
;

dω

dt
=

∂M/∂t

∂M/∂ω
(3.1)

where M = det(M) is the determinant of the plasma dispersion relation matrix. This matrix

could come from the cold plasma dispersion relation as shown in Eq. (2.42), the effect of

temperature could be included by using a warm plasma dispersion relation, or relativistic

effects could be included by using either a weakly relativistic or fully relativistic dispersion

relation. One advantage of this approach is the simplicity of the ray equations makes it

45
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more feasible to implement a more complicated dispersion relation encapsulating more of

the physics than it would be to do so in a full-wave code.

The ray equations (3.1) can be solved given an initial condition for r, k, and ω iterating

over time steps to follow the trajectory of a ray through the plasma and extracting relevant

information along its path.

The ray tracing approach can be extended to beam tracing which accounts for the diver-

gence of a launched microwave beam [38].

However, neither of these methods accounts for the scattering effect of turbulent density

profiles, which broaden incident beams. Due to the expected importance of this affect, there

have been attempts at including scattering via statistical models of the turbulence [27–29].

However, as the ray tracing approach is only valid when the density fluctuations occur on

a length scale larger than the wavelength, or the fluctuation level is small enough that the

density gradient scale length is longer than the wavelength. The wavelength of microwaves

used to power injection in fusion plasmas can have wavelengths of order a millimetre up

to tens of centimetres, meaning that while density scale lengths are long enough to make

ray tracing approaches valid in the core of the plasma, turbulence in the plasma edge can

invalidate these approximations. This limits the applicability of such an approach meaning

there are some cases where the more computationally expensive full-wave approach must be

taken.

3.1.2 Full-Wave Modelling

Full wave codes solve the full form of Maxwell’s equations. In order to do this, an additional

equation describing the dielectric response of the plasma is also needed, which is found using

the plasma dispersion relation. As they are not utilising the WKB approximation, full-wave

codes do not rely on the refractive index being slowly varying in space and time compared to

the wavelength and wave period [39], though this is usually only needed in a narrow region

near the plasma edge.

A finite element approach can be used to solve Maxwell’s equations where the simulation

domain is split using local approximations found by expanding the global equations [40].

However, the more common approach, and thus the focus here, is a finite difference method

which solves the equations on a discretised grid. Two classes of finite difference methods

exist: time domain and frequency domain [39].
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Finite difference frequency domain (FDFD) methods transform Maxwell’s equations to

the frequency domain before discretising them [41,42]. As there are no time steps to iterate

over, the simulations are run in steady state, and the method is limited to a single frequency.

Finite difference time domain (FDTD) methods iterate over the time-steps until a steady

state solution is reached where the total power in the simulation domain is constant and

when the wave electric field (when averaged over one wave period) is constant at each point

in the domain within numerical error, and can incorporate a spectrum of frequencies in one

simulation domain.

There are some scenarios where full-wave methods are not sufficient. Due to the increased

complexity of the equation set compared to ray tracing, incorporating temperature effects

or relativistic effects is not feasible. These effects would need to be incorporated into the

plasma response equation (the derivation of which is shown in Sec. 3.2.2 and would result

in an equation set that can no longer be solved using the FDTD method. This means the

physics encapsulated is often limited to that which is encapsulated by the cold plasma model

(for more details on these limitations, see Sec. 2.2). Near the upper hybrid resonance, a

warm plasma correction can be applied to the cold plasma dielectric tensor using a low-

order expansion of the full hot plasma dielectric. This allows the equations to still be solved

using full-wave methods. However, moving away from the upper hybrid resonance this

approximation can no longer be made, hence the need for another approach.

3.1.3 Kinetic Modelling

The codes mentioned in previous sections only calculate the wave propagating through a

plasma where the electron and ion populations follow a Maxwellian distribution function (in

the case of ray tracing) or use a cold plasma assumption where all the particles have the

same velocity with no thermal spread. They also do not calculate the effect that the wave

has on the plasma itself so do not calculate things like current drive or heating. Kinetic

codes allow the inclusion of non-Maxwellian distribution functions as well as simulation of

how the wave is absorbed and drives current or heating.

Particle-in-cell (PIC) codes calculate the movement of macro-particles representing many

actual particles. Density and current are calculated on a grid of discrete points using the

position and velocity of the macro-particles. These are then used to calculate the electric and

magnetic fields on the grid, which are then used to calculate the force on the macro-particles
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and thus calculate their movement. This process is then iterated over. This is usually more

computationally expensive than full-wave methods when being used for equivalent problems

but allows the investigation of some areas where full-wave codes are no longer valid [43–45].

Fokker-Planck codes allow the electron distribution in the plasma to be non-Maxwellian,

solving the drift-kinetic equation using a Fokker-Planck collision operator. This allows for

the evolution of the electron distribution function to calculate current drive [46].

3.2 The FDTD Method for Full-Wave Modelling in EMIT-3D

For the purposes of this thesis, full-wave modelling encapsulates the required physics while

also being computationally inexpensive enough to run the simulations over the domain sizes

and parameter ranges required to be relevant to fusion scenarios. It will therefore be the

focus of the rest of this section.

Here I detail the FDTD method for full-wave modelling as it is implemented in EMIT-3D,

the code that forms the basis of my PhD work.

EMIT-3D is a 3D full-wave, cold plasma code which was developed at the University of

York by T. N. R. Williams [3], parallelised in 3D using MPI by M. B. Thomas [47] with

further developments by D. Woodward [48].

3.2.1 The Yee Algorithm

The algorithm implemented in EMIT-3D was first proposed by Yee in 1996 [49]. It applies

a centred differencing scheme to Maxwell’s equations

∂B

∂t
= −∇×E, (3.2)

∂E

∂t
= c2∇×B− 1

ϵ0
J. (3.3)
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Figure 3.1: A Yee unit cell showing the grid point locations at which values are calculated.
Each value is calculated using its nearest neighbours on the previous time step. The grid
locations of E and H = B/µ are shown. Figure reproduced from [3].

These can be broken down into each of their components such that

∂Bx

∂t
=
∂Ey

∂z
− ∂Ez

∂y
(3.4)

∂By

∂t
=
∂Ez

∂x
− ∂Ex

∂z
(3.5)

∂Bz

∂t
=
∂Ex

∂y
− ∂Ey

∂x
(3.6)

∂Ex

∂t
= c2

(
∂Bz

∂y
− ∂By

∂z

)
− 1

ϵ0
Jx (3.7)

∂Ey

∂t
= c2

(
∂Bx

∂z
− ∂Bz

∂x

)
− 1

ϵ0
Jy (3.8)

∂Ez

∂t
= c2

(
∂By

∂x
− ∂Bx

∂y

)
− 1

ϵ0
Jz (3.9)

As can be seen from these equations, the time evolution of E depends on a spatial derivative

of B, and the time evolution of B depends on a spatial derivative of E. In order to use a

centred difference approach to the FDTD, it therefore makes sense to define these two fields

on displaced grids, as shown in Fig. 3.1 though in the equations, H shown in the figure is

replaced with B = µH. The current density, J is defined on the same grid points as E.

In this scheme, the spatial and temporal centred difference derivative of an arbitrary
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parameter u can be expressed as [41]

∂u

∂x

∣∣∣∣n
i,j,k

=
u|n

i+ 1
2
,j,k

− u|n
i− 1

2
,j,k

∆x
(3.10)

∂u

∂t

∣∣∣∣n
i,j,k

=
u|n+

1
2

i,j,k − u|n−
1
2

i,j,k

∆t
(3.11)

where n is the time-step, i, j ,and k are the grid points in x, y, and z respectively, ∆x is the

grid spacing, and ∆t is the time-step size. This means that the actual location is given by

x = i∆x and the time is given by t = n∆t. Equivalent equations can also be written for the

y and z derivatives but the grid spacing in every dimension is assumed to be uniform, and

to take the same value, ∆x.

The use of these centred difference derivative schemes as applied to Eqs. (3.4 – 3.9) then

results in the following update equations [3, 47]:

Bx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

=Bx|
n− 1

2

i,j+ 1
2
,k+ 1

2

(3.12)

− ∆t

∆x

[
Ez|ni,j+1,k+ 1

2

− Ez|ni,j,k+ 1
2

− Ey|ni,j+ 1
2
,k+1

+ Ey|ni,j+ 1
2
,k

]
By|

n+ 1
2

i+ 1
2
,j,k+ 1

2

=By|
n− 1

2

i+ 1
2
,j,k+ 1

2

(3.13)

− ∆t

∆x

[
Ex|ni+ 1

2
,j,k+1

− Ex|ni+ 1
2
,j,k

− Ez|ni+1,j,k+ 1
2

+ Ez|ni,j,k+ 1
2

]
Bz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
=Bz|

n− 1
2

i+ 1
2
,j+ 1

2
,k

(3.14)

− ∆t

∆x

[
Ey|ni+1,j+ 1

2
,k
− Ey|ni,j+ 1

2
,k
− Ex|ni+ 1

2
,j+1,k

+ Ex|ni+ 1
2
,j,k

]
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Ex|n+1
i+ 1

2
,j,k

=Ex|ni+ 1
2
,j,k

(3.15)

+
c2∆t

∆x

[
Bz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
−Bz|

n+ 1
2

i+ 1
2
,j− 1

2
,k
−By|

n+ 1
2

i+ 1
2
,j,k+ 1

2

+By|
n+ 1

2

i+ 1
2
,j,k− 1

2

]
− ∆t

ϵ0
Jx|

n+ 1
2

i+ 1
2
,j,k

Ey|n+1
i,j+ 1

2
,k
=Ey|ni,j+ 1

2
,k

(3.16)

+
c2∆t

∆x

[
Bx|

n+ 1
2

i,j+ 1
2
,k+ 1

2

−Bx|
n+ 1

2

i,j+ 1
2
,k− 1

2

−Bz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k
+Bz|

n+ 1
2

i− 1
2
,j+ 1

2
,k

]
− ∆t

ϵ0
Jy|

n+ 1
2

i,j+ 1
2
,k

Ez|n+1
i,j,k+ 1

2

=Ez|ni,j,k+ 1
2

(3.17)

+
c2∆t

∆x

[
By|

n+ 1
2

i+ 1
2
,j,k+ 1

2

−Bx|
n+ 1

2

i− 1
2
,j,k+ 1

2

−Bx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

+Bx|
n+ 1

2

i,j− 1
2
,k+ 1

2

]
− ∆t

ϵ0
Jz|

n+ 1
2

i,j,k+ 1
2

.

This algorithm has a stability condition given by the Courant-Friedrichs-Lewy (CLF)

number, S = c∆t/∆x, which must be less than some critical value, essentially requiring that

a wave does not transport information more than one grid point in one timestep. The critical

value for this number depends on the number of dimensions. In 1D, we require S < 1, in 2D

it is S < 1/
√
2, and in 3D it is S < 1/

√
3 [41].

In order to time-step these equations forward, an update equation for current density is

also needed.

3.2.2 The Plasma Response

In order to derive an expression for how current density evolves in time, we consider how

the plasma responds to the presence of a wave [50]. To do this, we consider the electrons

in the plasma as a collisionless fluid as fusion plasmas are generally low collisionality in the

regimes we are considering. In addition, we neglect the contribution of ions due to their large

masses resulting in slow response times compared to the wave period. Finally, as this is a

cold plasma model we neglect temperature effects. The linearised fluid equation of motion

of the electrons is then given by [51]

mene
∂ve

∂t
= −ene(E+ ve ×B0) (3.18)
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where, as in previous sections, the background electric field and electron fluid velocity are

assumed to be zero so that the only non-zero part is that perturbed by the wave. Any terms

non-linear in perturbed quantities have been discarded. This means that simulations cannot

directly capture the Doppler shift of waves caused by the rotation of the plasma, instead

requiring such simulations to be carried out using a series of snapshots of the plasma to

calculate the expected Doppler shift.

Using the previous assumption that ω >> ωp,i meaning that the contribution to current

from the ions is negligible we can write that J = −eneve along with the previously given

definitions for plasma and cyclotron frequency, this can then be rewritten as

∂J

∂t
= ϵ0ω

2
p,eE− ωc,eJ× b̂0. (3.19)

When needed, an artificial collisional damping term of −νJ can be included on the left-hand

side of this equation, such as when dealing with simulation of the OX-mode conversion where

a lack of power dissipation mechanism can result in nonphysical power build-up at the upper

hybrid resonance which would, in a warm plasma code, be carried away by electron Bernstein

waves. This collision frequency is artificial and non-physical, with the value chosen to be

sufficient to damp any build up of power at the UHR while not being so high as to damp

the rest of the wave significantly.

The discretisation of this for the update equations in the code is best understood by

rewriting it as a matrix equation.

∂J

∂t
= PJ+ ϵ0ω

2
p,eE (3.20)

where

P =


0 −b̂zωc,e b̂yωc,e

b̂zωc,e 0 −b̂xωc,e

−b̂yωc,e b̂xωc,e 0

 . (3.21)
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The resulting update equations are derived in [3] and are

Jx|
n+ 1

2

i+ 1
2
,j,k

=Θ1,1Jx|
n− 1

2

i+ 1
2
,j,k

+Θ1,2Jy|
n− 1

2

i,j+ 1
2
,k
+Θ1,3Jz|

n− 1
2

i,j,k+ 1
2

(3.22)

+ ω2
p,e

(
Ξ1,1Ex|ni+ 1

2
,j,k

+ Ξ1,2Ey|ni,j+ 1
2
,k
+ Ξ1,3Ez|ni,j,k+ 1

2

)
Jy|

n+ 1
2

i,j+ 1
2
,k
=Θ2,1Jx|

n− 1
2

i+ 1
2
,j,k

+Θ2,2Jy|
n− 1

2

i,j+ 1
2
,k
+Θ2,3Jz|

n− 1
2

i,j,k+ 1
2

(3.23)

+ ω2
p,e

(
Ξ2,1Ex|ni+ 1

2
,j,k

+ Ξ2,2Ey|ni,j+ 1
2
,k
+ Ξ2,3Ez|ni,j,k+ 1

2

)
Jz|

n+ 1
2

i,j,k+ 1
2

=Θ3,1Jx|
n− 1

2

i+ 1
2
,j,k

+Θ3,2Jy|
n− 1

2

i,j+ 1
2
,k
+Θ3,3Jz|

n− 1
2

i,j,k+ 1
2

(3.24)

+ ω2
p,e

(
Ξ3,1Ex|ni+ 1

2
,j,k

+ Ξ3,2Ey|ni,j+ 1
2
,k
+ Ξ3,3Ez|ni,j,k+ 1

2

)

where Θ and Ξ have the following meanings

Θi,j = b̂ib̂j [1− cos(∆tωc,e)]− ϵi,j,k b̂k sin(∆tωc,e) + δi,j cos(∆tωc,e) (3.25)

Ξi,j = b̂ib̂jα− ϵi,j,k b̂kβ + δi,jγ (3.26)

α = ω2
c,e − ωc,e sin(∆tωc,e) (3.27)

β = ωc,e − ωc,e cos(∆tωc,e) (3.28)

γ = ωc,e sin(∆tωc,e) (3.29)

and where ϵi,j,k is the Levi-Cevita symbol and δi,j is the Kronecker delta symbol.

Eqs. (3.22 - 3.24) along with Eqs. (3.12 - 3.17) were the update equations implemented

in the code EMIT-3D as I inherited it. This scheme altered the stability condition for the

FDTD scheme slightly and a full Von Neuman analysis was carried out in [3] which found

that this method would be stable as long as the Courant-Friedrichs-Lewy (CFL) condition

was obeyed.

For clarity, it is worth pointing out here that though the updated current density is used

to calculate the other fields, the plasma density profile used in the code itself does not evolve

in time.

3.2.3 The Antenna

In order to excite the waves in the code, a soft source antenna array is used to generate a

3D Gaussian microwave beam. This means that the electric field from the antenna is added
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to what is already present, rather than being set to a hard value. The electric field excited

at the antenna is purely in the x-direction with the wave propagating in the z-direction,

allowing the excitation of pure O-mode or pure X-mode (if launched in vacuum) by setting

the background magnetic field to point in the x- or y-direction respectively. In the context

of a tokamak, this is approximately equivalent to z being the radial direction and x or y

being the toroidal direction depending on how the background magnetic field is set.

The expression for the electric field excited by the antenna is then given by the standard

equation for a 3D Gaussian beam,

Ex(r, z) = E0
w0

w(z)
exp

[
−r2

w(z)2
− i

(
kz + k

r2

2R(z)
− ψ(z)

)]
sin(ωt), (3.30)

where the following definitions are used

w(z) = w0

√
1 +

(
z

zR

)2

(3.31)

R(z) = z

(
1 +

(
zR
z

)2
)

(3.32)

ψ(z) = arctan

(
z

zR

)
(3.33)

zR =
πw2

0

λ
. (3.34)

In these expressions, z is the distance along the beam path, k is the wave vector in direction

of propagation (z) at the centre of the beam at it’s waist location, r is the distance from the

beam centre, and w0 is the beam waist radius at the focal point. Usually, the focal point is

set to be at the antenna, at z = 0, but it can be set at any point along the beam forwards

or backwards. The beam waist radius along the beam line is given by w(z) and is defined

as the distance from the beam centre at which the electric field amplitude falls to 1/e of its

peak value corresponding to power decreasing by a factor of 1/e2. The radius of curvature

of the wave fronts is given by R(z), and ψ(z) is the Guoy phase, an additional phase term

to account for the apparent increase in wavelength and phase velocity near the waist. The

Rayleigh range, zR, is the distance along the direction of propagation of a beam from its

focal point to the point at which its cross-sectional area doubles (or the point at which its

beam waist radius is multiplied by
√
2).

In order to ensure that only the desired frequency is launched (as opposed to the multiple
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frequencies which would be generated by an instantaneous ‘switch-on’), Ex at the antenna

is ramped up to the value given in Eq. (3.30) over a period of five wave-periods.

The code also includes the option of having the beam propagate at any angle. As the

code is in Cartesian coordinates, in order to use this Gaussian beam expression in 3D we

can express r and z in spherical polar coordinates in terms of their x, y, and z components

in Cartesian coordinates and angle θ from the z-axis and angle ϕ from the xz-plane. This

gives

r2 = (x− x0)
2(sinϕ+ cos θ cosϕ)2 + (y − y0)

2(cosϕ+ cos θ sinϕ)2 (3.35)

z = (x− x0) sin θ cosϕ+ (y − y0) sin θ sinϕ+ z0. (3.36)

However, when propagating at an angle to the magnetic field which is not purely per-

pendicular, it is no longer possible to excite a pure O-mode or a pure X-mode in the code.

This can be corrected by allowing for an elliptical polarisation of the beam rather than a

purely linear polarisation, which I implemented as described in Chapter 4. This is a required

behaviour to be able to simulate as antennas are often designed to launch as close to pure

O-mode or X-mode as possible, so the code needs to be able to do the same if it is to be

useful in predictions and comparisons to experiment.

It is worth noting that the soft source antenna described in the previous section exists

inside the main simulation domain so is not within the boundary layer (or at the boundary

itself) as described in the following section. The location of the antenna within the simulation

domain can be set by the user, but should always be in vacuum.

3.2.4 Boundary Conditions

In order to solve the update equations on the edge grid points of the simulation domain,

boundary conditions are needed. In EMIT-3D, damping or absorbing boundaries are used.

These reduce the amplitude of the wave so that it is approaching zero at the edge of the

boundaries. The edge grid points are then set exactly to zero. Any reflections at the edge will

have travelled through the absorbing boundaries twice before they re-enter the simulation

domain, so reflected power is negligible.

This is implemented in the code by having a boundary layer of thickness dbound = 3λ0

where λ0 is the vacuum wavelength. In this boundary, the wave electric field is then multi-
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plied by the parabolic function

D(r) = 1 +
13

T

(
r − dbound
dbound

)3

(3.37)

where T is the wave period and r is the distance travelled into the boundary such that

r ≤ dbound.

A thorough testing and benchmark of these boundaries can be found in [47] where it is

shown that any reflections from either the gradient of the damping function or from the last

grid point are negligible.



Chapter 4

Code Development: EMIT

The code I inherited at the beginning of my PhD is described in Sec. 3.2. Throughout the

course of my PhD I continued to develop the code to suit my needs and fix bugs that I found

as well as writing a 2D version. The changes I made are described here, and the version of

EMIT used for my simulations had these changes implemented in it.

The current version of the code with my updates is not currently freely available, but is

accessible via invitation on a private git repository owned by my supervisor (Roddy Vann).

4.1 EMIT-3D

Whilst I primarily worked with a 2D version of the code that will be described in Sec. 4.2,

I also maintained and developed EMIT-3D so that it could be used for future work. This

section describes the changes made to the code, which were also implemented in the 2D

version that I wrote.

4.1.1 Change to Update Equations

It was found that when simulating the propagation of an X-mode beam, there was a slight

asymmetry in the propagation resulting in the beam travelling at a small angle away from

the perpendicular.

This was determined to be as a result of the update equations for current density, as

given in Eq. (3.22 - 3.24). If we consider just the update equation for Jx restated here for

57
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convenience

Jx|
n+ 1

2

i+ 1
2
,j,k

=Θ1,1Jx|
n− 1

2

i+ 1
2
,j,k

+Θ1,2Jy|
n− 1

2

i,j+ 1
2
,k
+Θ1,3Jz|

n− 1
2

i,j,k+ 1
2

(4.1)

+ ω2
p,e

(
Ξ1,1Ex|ni+ 1

2
,j,k

+ Ξ1,2Ey|ni,j+ 1
2
,k
+ Ξ1,3Ez|ni,j,k+ 1

2

)

we can see that the updated value depends on Jy, Jz, Ey, and Ez as defined at slightly

different locations due to the discretised grid, leading to a gradual drift of the beam centre

over the course of a simulation. This asymmetry would tend to zero as the grid resolution

became infinitesimal. However, to avoid setting a stringent resolution limit in the code and

drastically increasing the computational expense, another solution was needed.

Instead, an average value of each of the components was taken over the four closest grid

points such that the new update equation became

Jx|
n+ 1

2

i+ 1
2
,j,k

=Θ1,1Jx|
n− 1

2

i+ 1
2
,j,k

(4.2)

+ Θ1,2
1

4

(
Jy|

n− 1
2

i+1,j+ 1
2
,k
+ Jy|

n− 1
2

i,j+ 1
2
,k
+ Jy|

n− 1
2

i+1,j− 1
2
,k
+ Jy|

n− 1
2

i,j− 1
2
,k

)
+Θ1,3

1

4

(
Jz|

n− 1
2

i+1,j,k+ 1
2

+ Jz|
n− 1

2

i,j,k+ 1
2

+ Jz|
n− 1

2

i+1,j,k− 1
2

+ Jz|
n− 1

2

i,j,k− 1
2

)
+ ω2

p,e

[
Ξ1,1Ex|ni+ 1

2
,j,k

+ Ξ1,2
1

4

(
Ey|ni+1,j+ 1

2
,k
+ Ey|ni,j+ 1

2
,k
+ Ey|ni+1,j− 1

2
,k
+ Ey|ni,j− 1

2
,k

)
+ Ξ1,3

1

4

(
Ez|ni+1,j,k+ 1

2

+ Ez|ni,j,k+ 1
2

+ Ez|ni+1,j,k− 1
2

+ Ez|ni,j,k− 1
2

)]

and similarly for Jy and Jz.

4.1.2 Elliptical polarisation

In order to simulate a pure O-mode propagating at an oblique angle to the magnetic field, an

elliptical polarisation is required. This is needed for simulations of the OX-Mode conversion

process as well as potential Doppler back-scattering simulations.

The antenna remains a soft source and still launches a 3D Gaussian beam, but rather

than launching a wave linearly polarised only in the x-direction it can now launch a wave

with elliptical polarisation in the x- and y- and z-directions.
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From [52], we know that in order to launch a pure O-mode travelling at an angle φ to

the background field which points in the z-direction, the ratio of the axes in the polarisation

ellipse must be

ROxy =
Ex

Ey
= −Y

2 sin2 φ+
√
Y 2 sin4 φ+ 4 cos2 φ

2 cosφ
(4.3)

ROxz =
Ex

Ez
= −cosφ

sinφ
. (4.4)

Translating these expressions into EMIT-3D’s coordinate system, φ = π
2 − θ where θ is the

angle of beam propagation from the z-axis in the xz-plane. This then gives us these new

expressions for the wave excited by the antenna

EGauss = E0
w0

w(z)
exp

[
−r2

w(z)2

]
(4.5)

Ex = EGauss cos

(
kz + k

r2

2R(z)
− ψ(z)− ωt

)
Ey =

1

ROxy

EGauss cos

(
kz + k

r2

2R(z)
− ψ(z)− ωt

)
Ez = − 1

ROxz

EGauss sin

(
kz + k

r2

2R(z)
− ψ(z)− ωt

)

where we can see that the oscillations in z are 90o out of phase with those in x and y. Note

that this assumes the beam is travelling only in the xz-plane with the background magnetic

field aligned in the x-direction. The beam is still launched with a Gaussian profile in the

y-direction, it is just that it’s propagation direction does not have a y-component.

This now allows the launch of pure O-mode propagating at an angle to the magnetic

field. This will be particularly useful for any simulations of OX mode conversion.

4.2 EMIT-2D

Many of the scenarios of interest for my PhD were essentially 2D problems, as turbulence

is extended along magnetic field lines in fusion plasmas, making most quantities close to

uniform in the third dimension. Previous study has shown that 2D and 3D codes achieve the

same results for such problems [53]. As such, it made sense to develop a 2D code. This gives

me the ability to use larger simulation domains, simulating the power injection beams all

the way into the region where they would be absorbed and using realistic microwave beam
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waists. It also gives me the ability to carry out more simulations, such as those required for

large-scale parameter scans.

To this end, I wrote a 2D version of EMIT-3D named EMIT-2D.

4.2.1 Update Equations in 2D

In order to create a 2D version of the code, it is simply assumed that everything is uniform in

the third dimension. Because the original code excited a wave which was linearly polarised

in the x-direction and travelling in the z-direction, it made sense to eliminate the y-direction.

This means that any derivatives with respect to y become zero, resulting in these new update

equations:

Bx|
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2
,k+ 1
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As the plasma response update equations for current density, J, do not contain any

spatial derivatives, they remain unchanged. These are the equations as implemented in the

code.

4.2.2 Antenna in 2D

As all derivatives in the 3rd dimension (in the y-direction) are assumed to be zero, this means

that we now have plane-wave solutions in this dimension, with a 2D Gaussian beam in the

xz-plane (where by 2D, I mean it has a Gaussian profile in the 1st dimension and propagates

in the 2nd dimension). The equations for the electric field of the beam (either Ex for a

linear polarisation as given by Eq. (3.30) or a combination of Ex and Ey for the elliptical

polarisation as given by Eqs. (4.5)) are unchanged. What is different is the definitions of r

and z appearing in these equations.

The 2D code still allows for propagation out of the xz-plane at an angle of ϕ, though

this is almost always set to zero, as well as a propagation angle of θ from the z-axis. We can

therefore express the beam coordinate in terms of these angles and Cartesian coordinates x

and z:

r2 = (x− x0)
2(sinϕ+ cos θ cosϕ)2 (4.12)

z = (x− x0) sin θ cosϕ+ z0. (4.13)
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The option of elliptical polarisation, as described in Sec. 4.1.2, was also implemented in

EMIT-2D.

4.2.3 Parallelisation in OpenMP

EMIT-3D was initially parallelised using MPI due to the large computational cost of a

3D code. As a 2D code is significantly computationally cheaper, and due to the growing

numbers of cores with shared memory on a single node of HPC facilities, I decided that

OpenMP parallelisation would be sufficient for EMIT-2D. This is a reasonable choice as

the majority of the computational expense comes from performing ‘for loops’ over the grid

points which can be very efficiently parallelised in OpenMP. It is also more efficient due to

the shared memory meaning there is no need for additional ‘ghost cells’ in the simulation,

as are present in EMIT-3D and described in [47] and also no need for taking time to pass

messages between nodes at each timestep. In addition, it makes the input and output file

system significantly easier to use, allowing for input density and magnetic field to come from

a single file, and the output quantities to be output to a single file, rather than one file per

node.

The speedup from this parallelisation can be seen in Fig. 4.1 where near perfect speed-up

is observed until we approach 50 cores. The simulations conducted in this test utilised a

grid of 5000 × 5000 = 250 × 103 and 10000 × 10000 = 1 × 106 as these were comparable

parameters to those I anticipated would be required for many of my simulations. The size

of the grid was considered to be the most important factor here, seeing as the parallelisation

occurs over the spatial grid rather than the number of timesteps. Both simulations were run

for 5000 timesteps, which is likely less than a real simulation would need to be run for to

reach steady state. On one core, the simulations with 250× 103 grid-points took 8.15 hours

of wall time and on four cores, the simulation with 1 × 106 grid-points took 7.91 hours of

wall time.

4.2.4 Convergence Testing, Choice of Timestep and Resolution, and Nu-

merical Error

As discussed in Sec. 3.2, one constraint placed on the time-step is the CFL stability condition.

This sets the timestep in relation to the spatial resolution, meaning that decreasing the

spatial resolution (having more Yee cells per vacuum wavelength so a smaller spatial step
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Figure 4.1: Speedup of EMIT-2D on the MARCONI supercomputer [4] for two different
simulation domain sizes shown by the blue and orange data points.The black dashed line
represents the ideal speedup where a doubling of cores leads to a halving of wall time. Near
perfect speedup can be seen with only slight deviation after 40 cores is exceeded. Running
for 5000 timesteps, the runs on the smallest number of cores (one and four cores respectively)
took approximately 8 hours of wall time.

between Yee cells) also decreases the timestep. It is also possible to simply decrease the

timestep while keeping the resolution the same by changing the CFL number. Both these

changes improve the numerical accuracy of the code at the cost of computational time. It is

therefore desirable to choose the resolution and timestep that is accurate enough whilst also

as computationally cheap as possible. This can be achieved through convergence testing,

decreasing either resolution or timestep until convergence (within some limit) of the end

numerical result is achieved.

I did not carry out formal convergence testing with EMIT-2D, as I was using the same

algorithm in the same parameter space as covered by previous PhD students [3,47] allowing

me to use their numerical parameters as a starting point. In fact, the most stringent con-

straint on resolution was found to be the structure size in the density rather than numerical

dispersion. For most cases, a resolution of 25 Yee Cells per wavelength was found to be

sufficient to capture the smallest structure size, though in some cases, this was increased up

to 50 Yee Cells per wavelength. This was determined through a trial and error approach,

checking that a line readout of density throughout the simulation looked smooth rather than

having significant discrete steps. The numbers used for each simulation are given in the

relevant results chapters.
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For a 2D code, the stability limit requires that CFL < 1/
√
2 ≈ 0.707. For the majority

of simulations, a CFL = 0.5 was used in order to be accurate enough, within the stability

limit, and to be convenient such that a time period could be encapsulated within an integer

number of timesteps.

In order to verify that this was, indeed, accurate enough and to estimate numerical error,

results for CFL = 0.5 were compared to an equivalent simulation with CFL = 0.25. This

comparison was carried out for simulation set-ups which match the three scenarios in Chapter

6 and for the base case of the parameter scans as defined in Chapter 7. The example shown

here is from the parameter scan base case. The primary end result of interest in this thesis

is beam broadening factor, so this is the end result that was compared. This end result is

reached by simulating a beam propagating through an ensemble of turbulent density profiles

and calculating the ensemble average beam profile at the backplane of the simulation. A

Gaussian is then fit to this ensemble average to find its full width at half maximum (FWHM).

To calculate the broadening, this is compared to the FWHM of a Gaussian beam which

propagated through an equivalent background plasma with no turbulence present. The

results of this comparison can be seen in Fig. 4.2. In this case, a halving of the numerical

time-step has resulted in a 0.1 % numerical error. This is significantly smaller than the

statistical uncertainty associated with the ensemble averaging, so can be neglected. A similar

result was seen for all such comparisons, with numerical error remaining as at least one order

of magnitude smaller than other sources of uncertainty.

4.2.5 Benchmarking

As an initial benchmark of the 2D code, I verified that it could reproduce the O-mode and

X-mode dispersion relations as described in Eqs. (2.53) and (2.54) respectively.

In order to do this, I carried out a series of simulations with a homogeneous plasma with

the background magnetic field set at Y = ωc,e/ω = 0.5. The direction of the magnetic field

was aligned to launch pure O-mode or X-mode. The uniform plasma density was varied

across the simulations. For the O-mode, it was scanned between X = (ωp,e/ω)
2 = 0.0− 0.96

so as to approach the O-mode cut-off as described in Eq. (2.55) to ensure the code reproduced

the behaviour of the wavelength tending to infinity at this point. For the X-mode, the density

was scanned between X = 0.0 − 1.36, ensuring that a resonance as described in Eq. (2.58)

and two cut-offs as described in Eqs. (2.56) and (2.57) were included within the range to
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(a) CFL = 0.50, Broadening = 3.6145± 0.140 (b) CFL = 0.25, Broadening = 3.6111± 0.139

Figure 4.2: Comparison of beam broadening results when halving the time-step. The en-
semble average shows the average beam after travelling through an ensemble of turbulence
profiles. The background shows the beam at the same location in the simulation domain
after propagating through an equivalent background plasma with no turbulence present. The
broadening is found by comparing the FWHM of the ensemble average and the background
beam. The uncertainty values come from the standard error on the mean of the ensemble av-
erage. From this comparison, we can see that halving the timestep decreases the broadening
by 0.0034, equating to a numerical error or around 0.1 %, which is significantly smaller than
the uncertainty on the result. The numerical uncertainty due to discretisation can therefore
be neglected as insignificant compared to other sources of uncertainty.

verify that EMIT-2D reproduced the behaviour of the wavelength tending to infinity at the

cut-offs and to zero at the resonance.

The simulation domain was 10λ0 × 10λ0, and the wavelength was calculated by finding

the average peak-to-peak distance within the plasma, with the data being collected after 100

wave periods when steady-state had been reached. The resolution used was 30 Yee cells per

vacuum wavelength with a CFL number of 0.5. However, near the X-mode resonance as the

wavelength tended to zero in the plasma (for density values of X = 0.8, 0.84, 0.88, and 0.92),

a greater resolution of 60 Yee cells per vacuum wavelength was used.

The results are shown in Fig. 4.3 where good agreement between the code and analytical

theory is seen.

Further benchmarking by comparing to other codes can be found in Chapter 5 and a

comparison to experiments can be found in Chapter 6.
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(a) O-mode (b) X-mode

Figure 4.3: Relationship between normalised plasma density and wavelength of (a) an O-
mode (left) and (b) an X-mode (right) wave propagating through the plasma. The black
dots are from simulations in EMIT-2D, and the red lines are calculated directly from the
dispersion relations given by Eqs. (2.53) and (2.54) respectively.



Chapter 5

Code Comparison and OX Mode

Conversion Study

This work was the subject of a presentation by a collaborator at the 21st Joint Workshop on

Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC21). It was also

the subject of a proceedings paper which can be found at EPJ Web of Conferences 277, 01010

(2023) DOI: https://doi.org/10.1051/epjconf/202327701010 [54]. As such, much of

the following chapter is reproduced directly. It is also worth noting that I conducted the

simulations in EMIT-2D while my collaborators independently conducted their simulations

using their own codes. We then compared our results together.

This work was conducted as part of the project to install gyrotrons on MAST-U. MAST-

U is a spherical tokamak [55] with a novel divertor system. As a spherical tokamak, it is

often run in over-dense configurations, meaning that the cut-offs for the O-mode and X-mode

waves occur further out in the plasma than the location of the cyclotron frequency where

any such wave would be absorbed. This means that in order to inject power into the plasma

via microwaves, the OXB mode conversion scheme as described in Sec. 2.1.2.1 must be used.

In preparation for this project, a benchmark of a suite of codes (including EMIT-2D)

was performed to ensure their reliability, and an initial investigation into the effect of density

scale length on the OX mode conversion efficiency was carried out.

As the codes are cold-plasma codes, only the OX mode conversion was simulated, rather

than the full OXB scheme.

67

https://doi.org/10.1051/epjconf/202327701010


5.1. CODE COMPARISON 68

Scenario Plasma zant xant f0 w0 z0 θ

1 vacuum (no B-field) 0 0.2 m 28 GHz 4λ0 0.0 m 0o

2 vacuum (no B-field) 0 0.2 m 28 GHz 4λ0 0.2 m 0o

3 vacuum (no B-field) 0 0.2 m 28 GHz 4λ0 0.0 m 30o

4 plasma (no B-field) 0 0.2 m 28 GHz 4λ0 0.0 m 30o

5 magnetised plasma 0 0.2 m 28 GHz 4λ0 0.0 m 30o

6 magnetised plasma 0 0.2 m 28 GHz 4λ0 0.0 m θopt

Table 5.1: A summary of the scenarios used to benchmark the codes against each other. The
parameters xant and zant define the location of the antenna, and θ is the angle of propagation
of the beam to the z-axis. All other symbols have their previously given meanings.

5.1 Code Comparison

5.1.1 Simulation Set-Up

The codes compared were EMIT-2D (as described in Sec. 4.2), a 2.5D full-wave code called

IPF-FDMC [56], and a Fourier Full-Wave code (FFW) [57]. The other codes were developed

and run by my collaborators.

Though some of the minor details are different, such as how the boundaries are handled

or the implementation of the algorithm, EMIT-2D and IPF-FDMC work using the same

FDTD approach as previously described. The Fourier Full-Wave code also solves the same

set of equations (Maxwell’s equations coupled with a plasma response from the fluid motion

of electrons), but it uses a Fourier method in the plane normal to the density gradient. A

more detailed account of the other codes can be found in [54].

All the codes are cold-plasma codes, encapsulating the same physics, it is just their

implementation that differs. The main difference between FFW and the two FDTD codes

is that the FFW code launches a Gaussian beam all with the exact same wave vectors (so

truly pure O-mode) whereas the two FDTD codes launch a Gaussian beam whose centre is

pure O-mode, but with a range of wave vectors throughout the beam such that the tails of

the beam are no longer pure O-mode.

In order to compare the codes, a series of benchmark scenarios of increasing complexity

were decided on. A summary of these can be found in Table 5.1.

A summary of the numerical parameters used in each scenario for EMIT-2D can be

found in Table 5.2. The parameters used in the other codes were different, decided by my

collaborators without consultation between us as the primary purpose of this benchmark

was to determine if we would arrive at the same results each using our own processes.
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Scenario Resolution Nx Nz CFL Nt ν/ω0

1 50 4000 1500 0.25 20000 0
2 50 4000 1500 0.25 20000 0
3 50 4000 1500 0.25 20000 0
4 50 4000 1500 0.25 20000 0
5 50 4000 1500 0.25 20000 1× 10−4

6 50 4000 1500 0.25 20000 1× 10−4

Table 5.2: A summary of the numerical parameters used in the benchmark scenarios by
EMIT-2D. Resolution is the number of Yee cells per vaccuum wavelength, and Nx and Nz

are the number of Yee cells over which the simulation domain extends. CFL relates the time
step to the grid spacing, and Nt is the total number of timesteps over which the simulation
was run. Finally, ν is the numerical collision frequency normalised to the vacuum wave
frequency.

Figure 5.1: Simulation domain for scenarios 4, 5 and 6. The colourmap indicates normalised
density X = ne/ncrit. An arrow indicates the direction of the background field, B0 = 0.85 T
corresponding to Y ≈ 0.5, and a star indicates the position of the antenna.

In cases of perpendicular propagation, the beam propagates purely in the z-direction.

Where an angle of propagation is specified, it is the angle to the z-axis. In the case where a

plasma is present, the beam is still launched in vacuum, with a linear density gradient starting

mid-way into the simulation domain with a normalised density scale length of k0Ln = 25.

This density profile can be described as

ne(z > zstart) =
(
z − zstart

)2π
λ0

1

k0Ln
=
z − zstart

Ln
(5.1)

where zstart = 0.15 m is the location in z at which the plasma starts, and all other symbols

have their previously given meanings. A plot of this density profile can be seen in Fig. 5.1

with the antenna location and B-field direction (when present) also shown.

In the cases where a background magnetic field is present (scenarios 5 and 6) it was set

to a uniform value of B0 = 0.85 T (or Y = ωce
ω ≈ 0.5) pointing in the x-direction throughout
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the simulation domain.

In all cases, the launched beam has a frequency of f0 = 28 GHz, propagating either

entirely in the z-direction or at an acute angle to the z-axis. In the case where there is a

magnetised plasma present, an O-mode beam is launched using the new elliptical polarisation

functionality in EMIT-2D to match the elliptical polarisation used by the other codes. The

presence of a magnetised plasma also introduces cut-offs and resonances. For the purposes of

the OX-mode conversion scheme, the main cut-off of interest is the O-mode cut-off, however it

is important to note that the R-wave cut-off exists as well at a slightly lower density. Between

these two cut-offs is the UHR where, in a warm plasma code, the converted X-mode would

convert to an EBW. However, in a cold plasma code this is not possible. Instead, to dissipate

the power that would build up there, a numerical collisionality is used. This is the same

method used to damp the waves in the boundaries of the simulation domain, however, the

value used for the parameter within the simulation domain is significantly smaller, and is set

to a constant value throughout the domain. The same method is used by IPF-FDMC [58],

while FFW instead resolves the small scale electrostatic waves generated at the UHR which

carry the power away.

The comparison between the three codes was carried out by looking at the power of the

microwave beam at various slices in z.

5.1.2 Scenario 1

The first scenario considered was a diverging Gaussian beam, propagating through vacuum

purely in the z-direction with its focus at the antenna where it has a beam waist of 4λ0.

The power in the electric field at various slices in z can be seen in Fig. (5.2), along with the

difference between the codes at these locations.

In Fig. (5.2a), we can see the peak amplitude of the beam decreasing with z as it diverges,

spreading out its power over a larger area, as expected. In Fig. (5.2b) we can see that

the agreement is best between the two FDTD codes, EMIT-2D and IPF-FDMC, with the

difference between the codes remaining below 0.7% of the measured power. This is to be

expected as they are the most similar, employing different implementations of the same

algorithm. The agreement between the two FDTD codes and the FFW code is also good,

remaining below 5% of the measured power.

It is possible that improving the resolution in all three codes (increasing the number of
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grid points per wavelength) would result in even better agreement, but this would greatly

increase the computational cost. In addition, whilst comparing the power in the electric field

at slices in z is a good initial benchmark, we are more concerned with whether the end result

parameters (such as OX mode conversion efficiency in Scenario 5 and 6) agree using three

different codes where the users have chosen numerical parameters, such as resolution and

time-step, independently of each other.

As a further check, the total power in the electric field in each slice was calculated for

EMIT-2D, which we would expect to be conserved in vacuum. The percentage change in this

value can be seen in Fig. 5.3. As expected, the value is approximately conserved, with no

change exceeding a magnitude of 0.3 % of the original value in the antenna plane. The point

corresponding to the z-slice within the damping boundaries of the code is omitted from the

plot, but has a percentage change of −99.8 % as would be expected.

5.1.3 Scenario 2

The next scenario considered was a converging Gaussian beam, propagating through vacuum

purely in the z-direction with its focus 0.2 m into the simulation domain where it has a beam

waist of 4λ0. The power in the electric field at various slices in z can be seen in Fig. (5.4),

along with the difference between the codes at these locations.

In Fig. (5.4a), we can see the peak amplitude of the beam increasing with z as it con-

verges, getting narrower as expected. In Fig. (5.4b) we can see that just like for scenario 1,

the agreement is best between the two FDTD codes, EMIT-2D and IPF-FDMC, with the

difference between the codes remaining below 0.7% of the measured power. The agreement

between the two FDTD codes and the FFW code is also good, remaining below 1% of the

measured power.

As with scenario 1, the total power in the electric field in each slice was calculated

for EMIT-2D. The percentage change in this value can be seen in Fig. 5.3. As expected,

the value is approximately conserved, with no change exceeding a magnitude of 0.31 % of

the original value in the antenna plane. The point corresponding to the z-slice within the

damping boundaries of the code is omitted from the plot, but has a percentage change of

−99.8 % as would be expected.
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.2: Full-wave simulation results for scenario 1. A Gaussian beam is launched with
its focus at the antenna, propagating in the z-direction through a vacuum. The power in
the beam is read out at different slices in z and compared between the codes.
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Figure 5.3: Percentage change in the total power in the electric field at different slices in z
for EMIT-2D scenarios 1 and 2. The point corresponding to the z-slice within the damping
boundaries is omitted to avoid skewing the axis of the plot. The percentage change outside
of the damping boundaries does not exceed a magnitude of 0.31 % of the original value in
the antenna plane for any of the scenarios.
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.4: Full-wave simulation results for scenario 2. A Gaussian beam is launched with its
focus 0.2 m into the plasma, propagating in the z-direction through a vacuum. The power
in the beam is read out at different slices in z and compared between the codes.
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5.1.4 Scenario 3

The next scenario considered reverted to a diverging Gaussian beam with a beam waist of

4λ0 at the antenna. The beam was launched to propagate through vacuum at an angle of

30o to the z-axis. The power in the electric field at various slices in z can be seen in Fig.

(5.5), along with the difference between the codes at these locations.

In Fig. (5.5a), we can see the peak amplitude of the beam decreasing with z as it diverges,

while it also shifts to the left as expected for a beam propagating at an angle. In Fig. (5.5b)

we can see that just like for scenarios 1 and 2, the agreement is best between the two FDTD

codes, EMIT-2D and IPF-FDMC, with the difference between the codes remaining below

1% of the measured power. The agreement between the two FDTD codes and the FFW code

is also good, remaining below 5% of the measured power.

We no longer expect the total power in the electric field at each z-slice to be conserved,

as the beam is now propagating at an angle to z, hence it was not calculated.

5.1.5 Scenario 4

After studying the previous three vacuum cases, we then moved on to the scenarios where

a plasma was present, as shown in the density profile shown in Fig. (5.1). In the case of

this scenario, there was still no background magnetic field. In this set-up, we launched a

diverging Gaussian beam with a beam waist of 4λ0 at the antenna, propagating at an angle

of 30o to the z-axis. The power in the electric field at various slices in z can be seen in Fig.

(5.6), along with the difference between the codes at these locations.

In Fig. (5.6a), we can now see two peaks at each z-location — the injected and the

reflected beam. The peak amplitude of the reflected beam is clearly lower than the amplitude

of the injected beam in each case, as expected. We can also see that there is no longer any

signal beyond z ≥ 0.2 m as the beam is reflected at the cut-off density before this. In Fig.

(5.6b) we can see that the differences between the codes are most pronounced close to the

cut-off. Initially, we supposed that this could be due to a misalignment of the numerical

grids used by the various codes, placing the cut-off at slightly different locations relative to

the z-location at which the field is read. When very close to the cut-off, the shape of the

signal with respect to x depends very strongly on just how close to the cut-off it is and the

position at which it hits the cut-off, due to the fact that interference is taking place between

the incident and reflected beam, so moving the detected signal location slightly closer to the
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.5: Full-wave simulation results for scenario 3. A Gaussian beam is launched with
its focus at the antenna, propagating at 30o to the z-axis through a vacuum. The power in
the beam is read out at different slices in z and compared between the codes
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.6: Full-wave simulation results for scenario 4. A Gaussian beam is launched in
vacuum with its focus at the antenna, propagating at 30o to the z-axis into a plasma with a
linear density gradient. It is reflected at the cut-off density in the plasma before propagating
back to the antenna plane. The power in the beam is read out at different slices in z and
compared between the codes

cut-off (by as little as 1 mm for example) was expected to have a noticeable effect.

In order to test whether the difference was due to misalignment of numerical grids caused

by differing resolutions, I reran the simulation in EMIT-2D using different resolutions, how-

ever no great change was observed. For example, doubling the resolution, as shown in Fig.

(5.7), causes a maximal difference of order 1% in the slice closest to the cut-off, significantly
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Figure 5.7: Full-wave simulation results for scenario 4 using EMIT-2D with two different
resolutions. A Gaussian beam is launched in vacuum with its focus at the antenna, propa-
gating at 30o to the z-axis into a plasma with a linear density gradient. It is reflected at the
cut-off density in the plasma before propagating back to the antenna plane. The power in
the beam is read out at different slices in z and compared between the resolutions. The top
figure shows microwave beam power at various slices through the simulation domain when
using a resolution of 50 Yee Cells per wavelength. The middle figure shows the microwave
beam power at various slices through the simulation domain when using a resolution of 100
Yee Cells per wavelength. The bottom figure shows the difference between the two at various
slices through the simulation domain. This difference never exceeds 1.2% and is highest in
the slice closest to the cut-off, where we expect constructive and destructive interference to
be occurring, making the code more sensitive to slight changes in relative position between
the cut-off surface and the location we are reading the field due to the discrete grid.

less than the of order 10% difference observed between the different codes.

Instead, the discrepancy in codes was determined to be due to the polarisation of the

beam. As their is no magnetic field, we do not expect the dispersion relation to depend

on beam polarisation, provided we are not close to a cut-off. However, near a cut-off, the

direction of the polarisation vector with respect to direction of propagation and density

gradient will be important. In order to determine this, I reran the simulation in EMIT-2D
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using three different polarisations: the original x-polarised beam, an elliptically polarised

beam, and a y-polarised beam. The results of these simulations can be seen in Fig. (5.8).

As can be seen in the figure, changing the polarisation has minimal effect on power in the

electric field read out at different slices in z apart from when near the cut-off. Therefore,

this is likely the cause of the disagreement between the codes.

IPF-FDMC automatically uses an elliptical polarisation when launching at an angle.

Comparing the three codes utilising an elliptical polarisation in EMIT-2D as well gives the

results shown in Fig. (5.9). As can be seen, the large discrepancy between the two FDTD

codes and FFW remains, as now FFW is the only code with a linear polarisation, but the

difference between EMIT-2D and IPF-FDMC has reduced to have a maximum of around

5%. In future simulations for scenarios 5 and 6 an elliptical polarisation was used for all

three codes.

5.1.6 Scenario 5

This scenario still used the density profile shown in Fig. (5.1), while also adding a background

field of 0.85 T. The launch conditions were to use a diverging beam propagating at 30o to the

z-axis, however, now that there is a magnetic field present, in order to launch pure O-mode,

the elliptical polarisation must be used (rather than linear polarisation in the x-direction).

The power in the electric field at various slices in z can be seen in Fig. (5.10), along with

the difference between the codes at these locations.

In Fig. (5.10a), we can see two peaks at each z-location — the injected and the reflected

beam. The peak amplitude of the reflected beam is clearly lower than the amplitude of

the injected beam in each case, as expected. We can also see that there is no longer any

signal beyond z ≥ 0.2 m as the beam is reflected at the cut-off density before this. The peak

amplitude across the slices is in the slice closest to the cut-off. This is due to a power increase

at the UHR which must be dissipated using numerical collisionality. In Fig. (5.10b) we can

see that as in previous scenarios, agreement is best between EMIT-2D and IPF-FDMC as

expected as they are both different implementations of the same algorithm. The difference

between these two codes and FFW is most pronounced between the O-mode cut-off and

the UHR. We do not necessarily expect the codes to agree here, as they are not accurately

modelling the physical processes that would be taking place, as this would require a warm-

plasma code. The exact value of the electric field in this location is likely to be sensitive to
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(a) Linearly polarised in the x-direction

(b) Linearly polarised in the y-direction

(c) Elliptically polarised

Figure 5.8: Full-wave simulation results for scenario 4 using EMIT-2D with three different
polarisations. A Gaussian beam is launched in vacuum with its focus at the antenna, prop-
agating at 30o to the z-axis into a plasma with a linear density gradient. It is reflected at
the cut-off density in the plasma before propagating back to the antenna plane. The power
in the beam is read out at different slices in z.
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.9: Full-wave simulation results for scenario 4, now using an elliptical polarisation in
EMIT-2D. A Gaussian beam is launched in vacuum with its focus at the antenna, propagating
at 30o to the z-axis into a plasma with a linear density gradient. It is reflected at the cut-off
density in the plasma before propagating back to the antenna plane. The power in the beam
is read out at different slices in z and compared between the codes.
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the exact placement of the cut-off and resonance relative to the slice in z at which we are

reading the field out. It is also likely to be sensitive to the value chosen for the artificial

collisional frequency used by EMIT-2D and IPF-FMDC used to dissipate the power that

would otherwise build up at the UHR as well as being sensitive to the exact form of the

algorithm used to propagate the wave.

The OX mode conversion efficiency could then be calculated by comparing injected power

to reflected power in the antenna plane. Any missing power is then assumed to have been

successfully converted to X-mode. EMIT-2D gives an efficiency of 1.9 % while IPF-FDMC

gives 1.1 % and FFW gives 0.2 %. These values are low as we are far from the optimum

angle.

5.1.7 Scenario 6

This scenario still used the density profile shown in Fig. (5.1), with a background field of

0.85 T, just like in scenario 5. However, for this scenario we injected at the optimum angle

for OX mode conversion efficiency, as given by [52]

φopt = arccos

[(
Y

1 + Y

)1/2
]

(5.2)

where this angle is defined in reference to the magnetic field. Therefore, in the set-up

described where B0 points in the x-direction, our optimum angle of injection to z will be

θopt = 90o − φopt (5.3)

in degrees. For a frequency of 28 GHz and a background field of 0.85 T, this equates to

θopt ≈ 47o.

The power in the electric field at various slices in z can be seen in Fig. (5.11), along with

the difference between the codes at these locations.

In Fig. (5.11a), we can see that the amplitude of the reflected peak is now greatly reduced

due to significant OX mode conversion taking place. This results in significantly less O-mode

power being reflected back out of the plasma. The peak amplitude across the slices is in

the slice closest to the cut-off. This is due to a power increase at the UHR which must

be dissipated using numerical collisionality. Another important feature is the ‘hole’ in the

reflected (non-converted) part of the beam which can also be seen in Fig. (5.12). This is
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.10: Full-wave simulation results for scenario 5. A diverging O-mode Gaussian
beam is launched in vacuum with uniform background magnetic field in the x-direction,
propagating at 30o to the z-axis into a plasma with a linear density gradient. At the O-
mode cut-off density, the O-mode is reflected but some mode conversion to the X-mode also
occurs The power in the beam is read out at different slices in z and compared between the
codes
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due to the converted SX-mode being filtered out by the UHR (where it would convert to an

EBW in a warm plasma code) where it is dissipated via the numerical collisional damping

term in the codes.

In Fig. (5.11b) we can see that as in previous scenarios, agreement is best between

EMIT-2D and IPF-FDMC as expected as they are both different implementations of the

same algorithm. The difference between these two codes and FFW is most pronounced

between the O-mode cut-off and the UHR, as was the case in scenario 5, and the reasoning

as to why is believed to be the same here. As the codes are not actually modelling the physics

that would be occurring here, we are not particularly concerned with the exact values of the

field here. The main parameter of interest is the OX-mode conversion efficiency.

The OX mode conversion efficiency was calculated by comparing injected power to re-

flected power in the antenna plane. Any missing power is then assumed to have been success-

fully converted to X-mode. Now that we are at the optimum angle, we expect much higher

conversion efficiencies than in scenario 5. EMIT-2D gives an efficiency of 86.7 % while IPF-

FDMC gives 86.4 % and FFW gives 88 %. The higher value obtained from the FFW code

is due to its implementation of a Gaussian beam using a spectrum of k-components, each of

which is in pure O-mode polarisation. The two FDTD codes implement the Gaussian beam

via spatially varying wave electric field where the centre of the beam will be pure O-mode but

the tails will be in non-optimum polarisation (as one might expect from a physical antenna).

The differences between the values obtained from all three codes can be used to estimate the

numerical error on the OX mode conversion efficiency at approximately ±2%.

Overall, the codes are deemed to agree well across the range of scenarios, apart from

when proximity to the cut-off makes the exact details of polarisation important, and when

considering the region between the O-mode cut-off and the UHR, in which we do not expect

the output of the codes to be wholly physical anyway.

5.2 Effect of Density Scale Length on OX Mode Conversion

As mentioned previously, part of the motivation for this work was a project to install gy-

rotrons on MAST-U, developing a suite of codes that could be applied to optimisation stud-

ies and comparison to experiments. The process of optimising the current drive achievable

by the microwave system required considering different antenna positions for a possible 28
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(a) Microwave beam power at various slices through the simulation
domain

(b) Difference in the power signal between the codes.

Figure 5.11: Full-wave simulation results for scenario 6. A diverging O-mode Gaussian
beam is launched in vacuum with uniform background magnetic field in the x-direction,
propagating at the optimum angle for OX mode conversion efficiency, which equates to an
angle of 47o to the z-axis into a plasma with a linear density gradient. At the O-mode cut-off
density, mode conversion to the X-mode occurs, and any O-mode that is not converted is
reflected back out of the plasma. The power in the beam is read out at different slices in z
and compared between the codes
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Figure 5.12: Snapshot of the wave power for scenario 6. Colour represents power in arbitrary
units on a logarithmic scale. The diverging Gaussian beam can be seen travelling toward
the O-mode cut-off at the optimum angle for mode conversion. At the O-mode cut-off,
the majority of the beam is converted to the SX-mode. In a warm plasma, this would then
travel to the UHR where it converted to an EBW before propagating further into the plasma.
but, in this cold plasma code, the converted X-mode is instead dissipated with numerical
collisionality. The tails of the injected O-mode beam do not have the optimum wave-vector
so are not converted to the SX-mode. Any unconverted O-mode is reflected back, resulting
in the hollow middle of the reflected beam.

GHz launcher to heat both L-mode and H-mode plasmas using EBWs. The presence of the

pedestal in H-mode plasmas means that there will potentially be very steep density gradients

in the edge where the OX mode conversion is taking place.

To this end, as a final stage of the code comparison, we considered varying density scale

lengths, k0Ln, for the linear density profile. The simulation set-up was the same as for

scenario 6, injecting at the optimum angle and calculating the mode conversion efficiency in

each case. Based on high elongation, low plasma-β beta scenarios in MAST-U, the range

decided on was k0Ln = 2− 25. The results of this scan can be seen in Fig. 5.13. As before,

excellent agreement is seen between the three codes.

It is expected that decreased k0Ln will increase mode conversion efficiency, as steeper

density gradients are less sensitive to any slight angular mismatch which results from the

divergence of the microwave beam as it travels to the mode conversion layer. This is because
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Figure 5.13: How OX mode conversion efficiency depends on density scale length of a linear
density profile in the presence of uniform background magnetic field.

a steeper density gradient means that the evanescent layer the O-mode will have to tunnel

through to reach the OX mode conversion point will be thinner. Our results reproduced this

in the range k0Ln = 5 − 25 where a slow decrease in conversion efficiency can be seen with

increasing k0Ln.

The sharp decrease for steeper density profiles k0Ln < 5 was initially surprising. The

case for k0Ln = 3 is shown in more detail in Fig. 5.14. Looking at the electric field in the

antenna plane for scenario 6, a clear dip is seen in the beam centre where the missing power

has been converted into an X-mode wave. This dip is absent for the shorter density scale

length. We determined that this was due to the successfully mode-converted SX-mode being

able to tunnel through the evanescent layer between the UHR and the R cut-off and couple

to the FX-mode which then propagates out of the plasma. This is only possible when a

steep density gradient decreases the width of the evanescent layer sufficiently such that it is

of comparable length to the wavelength of the wave to allow significant tunnelling.

5.3 Summary and Conclusions

In summary, a comparison of three different full-wave codes EMIT-2D, IPF-FDMC, and

FFW has yielded good agreement in a range of scenarios with increasing complexity. This

gives me good confidence in the newly developed EMIT-2D for use in the research projects

described in Chapters 6 and 7.

As part of the benchmark, a brief study into the effect of density scale length on OX mode

conversion efficiency was carried out over parameter ranges relevant to MAST-U. This repro-

duced the expected result that OX mode conversion efficiency decreased for shallower density
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(a) Scenario 6 with k0Ln = 25 (b) Steeper density profile with k0Ln = 3

Figure 5.14: Power in the antenna plane for two scenarios with different density scale lengths.
The large peak to the left in each plot is the emitting antenna. The smaller peaks to the
right are the reflections, indicating the parts of the beam that were not successfully mode
converted. The gap in the middle of the reflected beam in figure (a) is typical for a case
where OX mode conversion has taken place. This is absent from figure (b) due to the X-mode
tunnelling back out of the plasma along with the reflected O-mode.

gradients and revealed that it also decreased for very steep profiles where the converted X-

mode was able to tunnel through the evanescent layer. This is a potentially important point

for the MAST-U gyrotron project when considering the path of reflected power and the

damage it could cause to in-vessel components.



Chapter 6

ECRH Beam Broadening on

DIII-D

This work was the subject of a paper published at M.W. Brookman, et al 2023 Nucl. Fusion

63 044001 DOI: 10.1088/1741-4326/acbb8e [59]. As such, much of the following chapter

is reproduced directly with the permission of Nuclear Fusion and EUROfusion.

When I started work on my PhD, this project was already in progress, with simulations

having been completed by a previous PhD student using the version of EMIT-3D I inherited

at the start of my PhD. However, the referees raised some valid concerns with some of the

assumptions that had gone into the simulations. These assumptions had been made to reduce

computational cost while using EMIT-3D. As such, when I started work on the project, my

role was to come up with a new methodology for the simulations which would not rely on

these assumptions. This was the main motivation for developing EMIT-2D.

The experimental measurements of beam broadening and the measurements of plasma

parameters such as background density, fluctuation amplitude, and turbulence length scales

were undertaken by collaborators. I then used the experimental information I had about the

plasma to create turbulence profiles and run simulations through them using EMIT-2D to

predict the beam broadening effect of the turbulence.

6.1 Motivation

As discussed in Sec. 1.3, microwaves have many uses in tokamaks. They are used in diag-

nostics such as ECE to measure the plasma temperature, and they are used for Doppler

89
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back-scattering reflectometry to characterise plasma turbulence [60]. They are also used for

heating and current drive where a high-power beam is injected with a frequency chosen to

match a particular resonance at the targeted absorption location [61,62].

The next generation of tokamaks, including ITER [63], will rely on high-power microwave

injection for global heating and for driving local currents to control and mitigate magneto-

hydrodynamic (MHD) instabilities. Local microwave power injection will be key in stabilising

neoclassical tearing modes (NTMs), magnetic reconnection instabilities which arise from the

interplay between local reductions in plasma current and a flattening of the pressure profile,

resulting in a degradation of confinement of the device. They can be stabilised by driving

a small local current to counteract the local reduction in plasma current, but this requires

precise spatial localisation of the current driven by the microwave beam [17,64–66].

However, as discussed in Sec. 1.2, steep temperature and density gradients near the edge

of fusion devices drive a number of instabilities, resulting in a layer of turbulence where

the density fluctuation level can exceed 100% of the background density [12]. These density

fluctuations are often on comparable length scales to microwave wavelengths. This can cause

significant scattering of incident microwaves and an overall broadening of beams.

This has been a topic of interest since high-power microwave sources became available for

plasma heating in the 1980s. Initially, numerical studies were conducted using ray tracing

codes in order to predict the scattering effect density fluctuations may have on an injected

microwave [67–69]. It was found that even for fluctuation levels as low as 1% significant

scattering could be expected but was determined to only be a critical issue in cases where

localised deposition was of importance, such as for the stabilisation of NTMs.

The topic regained focus after ITER-like scenarios of beam broadening by edge turbulence

were considered by Tsironis et. al (2009) [70] and it was found that it was possible the

additional broadening from the plasma turbulence could result in a doubling of beam width

in ITER-like scenarios [70]. Such a broadening could significantly impact the efficiency

of the microwave heating and current drive systems by depositing power where it will be

absorbed less efficiently, and wasting power building n undesired current drive profile, and

consequentially could significantly lessen the efficiency of the whole device. This will be a

key consideration when attempting to achieve net generation of power.

Furthermore, in the case of NTM stabilisation, broadening or misaligning of the mi-

crowave beams used leads to wasted power, reducing the machine efficiency, and may also



91 CHAPTER 6. ECRH BEAM BROADENING ON DIII-D

lead to additional requirements on the microwave systems such as additional modulation of

the microwave power in real-time [71]. In the worst-case scenario, it could also lead to a

failure to stabilise the NTM, leading to a critical loss of plasma confinement.

The prediction of the broadening of microwave beams by plasma turbulence is therefore

of great importance for the design and operation of future tokamaks. Studying this beam

broadening experimentally and with simulations is key to improve our understanding of the

effect and is an active area of research [28, 53, 70–76]. To this end, we have carried out an

investigation comparing experimentally measured beam broadening by plasma turbulence

to full-wave simulations using EMIT-2D. This benchmark of simulation against experiment

will lead to greater confidence in predictions for future devices, and is the first time such a

study has been carried out.

6.2 Experimental Measurements

A more detailed description of the experimental work can be found in [77]. It was conducted

by collaborators at DIII-D rather than by myself but is included here for completeness.

This work is based on experimental observations on the DIII-D tokamak plasma, with

typical parameters of [78]:

• major radius, R = 1.7 m

• minor radius, a = 0.67 m

• plasma current, Ip = 800 kA

• on-axis toroidal magnetic field, Bt = 2 T

The gyrotron beams are launched from a set of steerable mirrors located 60o above the

midplane on the tokamak’s outboard side, as shown in Fig. 6.1, and are optimised for X-

mode 2nd harmonic EC absorption at a magnetic field strength of 2 T with the following

parameters [79,80]:

• maximum gyrotron power, Pmax = 3 MW

• frequency, f0 = 110 GHz

• vacuum wavelength, λ0 ≈ 2.7 mm
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Figure 6.1: Cross-section of the DIII-D tokamak showing microwave launch. The dashed
black lines represent closed flux surfaces, the solid black line represents the separatrix, and
the thick grey line indicates the vacuum vessel. The injected microwave beam is illustrated
by the blue arrow with the 2nd harmonic electron cyclotron resonance indicated by the green
line. The red rectangle shows the spatial domain of the 2D full-wave simulations that were
carried out to compare to experiment.

• beam waist radius at launcher, w0 = 65 mm ≈ 24λ0

As the waist of the Gaussian beam is significantly larger than the wavelength, it can be

approximated as a plane wave solution. In actuality, the divergence of the beam is ∼ 1o

In order to find how much the microwave beam is additionally broadened compared

to what would be expected from simple refraction due to the plasma density profile, the

deposition profile of the beam is first measured from the heating profile. However, this is

made more complex by transport in the plasma occurring over the time required to measure

the heating profile. This transport results in the width of the measured heating profile

appearing larger than the width of the region illuminated by the beam.

In order to isolate the microwave beam deposition profile from the heating profile made to

appear larger by transport, the injected microwave beam is power-modulated with a square

wave at 70 Hz in an otherwise stationary discharge. This generates a periodic heat wave

propagating away from the highly localised deposition layer. The modulation is sufficiently

fast that the resulting density perturbation is negligible [81,82].

The electron temperature is then measured using fundamental ECE with a temporal

resolution of 2 µs and a spatial resolution of 5 mm. The time variation of the temperature

profile then allows the deduction of heat transport coefficients which can be used to calculate

the initial deposition profile from the measured heating profile.
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Scenario Shot Ip κ δ ρECH n̄e|ρ=0.95
δne
ne

∣∣
ρ=0.95

b

diverted L-mode 165 078 1.0 1.80 0.45 0.30 2.9 0.12 2.7
H-mode 165 146 1.0 1.83 0.32 0.25 3.2 0.05 1.7
−δ L-mode 166 192 0.9 1.32 -0.38 0.45 3.0 0.03 1.5

Table 6.1: Configuration of relevant discharges on DIII-D, all with Bt = 2 T. The plasma
current Ip is in units of MA and the background plasma density at a normalised radius of
ρ = 0.95 is in units of ×1019 m−3. Parameters κ and δ describe the shaping of the plasma,
and ρECH is the normalised radius of the power deposition location. The broadening factor,
b, comes from the width of the deposition profile (after transport analysis) divided by the
width predicted by TORAY-GA. This broadening can be seen to scale with fluctuation level
δne/ne at ρ = 0.95.

The ray tracing code TORAY-GA [83] is then used to predict what the power deposition

profile should be without additional broadening. This code accounts for the refractive effects

of the background plasma, allowing for 1D temperature and density profiles, but not for the

effect of plasma density fluctuations. Comparing the measured power deposition profile with

these predictions shows that the power deposition is substantially broadened compared to

what would be expected from TORAY-GA. This is in agreement with other experiments

[84,85].

By comparing the predicted deposition profile from TORAY-GA with the one measured,

a beam broadening factor is deduced. The results for three distinct operating scenarios are

given in Table 6.1.

To verify whether the primary cause of this broadening is due to edge turbulence, these

experimental results are compared to simulations.

6.3 Simulations

At the plasma edge, fluctuation levels of turbulent density can exceed 100% of the background

density [12]. While the fluctuations occur on similar length-scales to microwave wavelength,

turbulence in magnetised plasmas is elongated along magnetic field lines. This means that

the correlation length of the turbulence in the toroidal direction is very long compared to

microwave wavelength, so does not cause significant scattering. Perpendicular to B0 the

correlation length of the turbulent density structures, L⊥, typically scales with the drift

parameter ρs =
√
Temi/(eB0) such that L⊥ ≈ 5− 10ρs [86]. The resulting turbulent density

structure size for a typical L-mode discharge is then L⊥ ≈ 0.5 cm [86] which is the same
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order of magnitude as the vacuum wavelength of the injected microwave beam, resulting in

strong scattering [53], though this can increase to of order a few centimetres. The turbulent

structure size is typically smaller after the L-H transition. The large fluctuation levels and

structure size being comparable to λ0 means that a full-wave code is required to accurately

model the scattering of the microwave beam by turbulence.

To this end, the full-wave cold-plasma code EMIT-2D (as described in Sec. 4.2) was

used. As it is a cold-plasma code it does not simulate the absorption of the X-mode at

the resonance, merely simulating its propagation to the absorption layer. A 2D version

of the code is sufficient as the beam propagates mostly perpendicular to the background

magnetic field, similar to the scenario described in [29]. As such, computationally expensive

3D simulations can be avoided.

EMIT-2D allows for the simulation of the propagation of EM waves with arbitrary density

and magnetic field profiles. Compared to the speed of microwave propagation, the plasma

density fluctuations appear to be ‘frozen’ due to their comparatively low velocity of ∼ 104

ms−1. Therefore, to account for the effect of turbulence on the microwave beam, the mi-

crowave is sumlated propagating through a series of uncorrelated snapshots, reading out the

ERMS at the ‘absorption layer’ for each snapshot, then averaging the read out ERMS over the

ensemble to find the ensemble-average ERMS. The broadening is then calculated by fitting

a Gaussian to this ensemble-average ERMS and comparing to the Gaussian beam from a

background case where no turbulence was present, as shown in Fig. 6.2.

In this example case shown in Fig. 6.2, the width of the Gaussian fitted to the ensem-

ble average can be compared with the background case to give a relative broadening of

wfluct/wbackground ≈ 2.1. Both beams have been normalised to the amplitude of the back-

ground beam. It can be seen that the broadening of the beam by turbulence has also

decreased the central peak amplitude of the wave.

While this describes the general approach to calculating predictions of beam broaden-

ing by plasma density turbulence from simulations, before the exact simulation set-up was

decided upon, a number of different effects were considered.

6.3.1 Fluid vs Synthetic Turbulence

As stated above, before I started my PhD, work on this project had been carried out by

a previous PhD student using EMIT-3D. The computational cost of a 3D code had forced
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Figure 6.2: ERMS profile of microwave beam at absorption region perpendicular to B0 and
direction of beam propagation. Broadening is calculated by comparing to a background case
where no turbulence was present.

them to use a much smaller simulation domain, and they used fluid turbulence generated

using the Hermes fluid code in the BOUT++ framework [87]. Given the larger simulation

domains I wanted to use, synthetic turbulence offered a computationally cheaper and easier

method of turbulence generation. In order to verify that this would not affect our results, I

performed a comparison to the fluid turbulence over the initial, smaller simulation domain.

Note that this also necessitated using a smaller microwave beam waist of 6λ0 than was used

in the experiments.

The turbulence parameters used were chosen to match the fluid turbulence profiles pro-

duced by a previous PhD student. The case for the diverted L-mode was selected for compar-

ison. The correlation lengths were therefore Lr = 15 mm, Lp = 4 mm. The full background

density profile and fluctuation envelope are shown in Fig. 6.3 however a reduced simulation

domain was used, only simulating the beam propagating through the turbulent layer at the

edge rather than its whole journey to the absorption region. These envelopes were scaled

from Hermes outputs to match experimental data. It should be noted that the correlation

lengths and fluctuation amplitude envelope used here are not the same as those used in the

final comparison to DIII-D. These are used here only because they matched the already

existing fluid turbulence profiles so saved in computational expense generating more. This

was carried out for a small ensemble of twenty turbulence profiles of each kind to save com-

putational cost, so resulted in larger uncertainties on the broadening than the final results

which used a larger ensemble of profiles.

The density fluctuations for the synthetic turbulence were generated using a truncated
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Figure 6.3: Background density and fluctuation envelope for the L-mode case, as was used
by for the fluid turbulence vs synthetic turbulence comparison. It should be noted that the
actual simulation domain started at the outer edge and is cut off at R = 2.18 m.

sum of Fourier-like modes given by [29]

δne(x, z) =

Mi∑
i

Mj∑
j

Aij cos(kx,ix+ kz,jz + ϕi,j) (6.1)

whereAij are the amplitudes of the modes, and ϕi,j are independent random phases uniformly

distributed between 0 and 2π.

The amplitudes are related to the structure size by [29]

Aij =

√
2σxσz
π

exp[−σ2xk2x,i − σ2zk
2
z,j ] (6.2)

where σx = πLx/ax and σz = πLz/az, ax and az are the box size, and Lx and Lz are the

turbulence correlation lengths in the x and z directions in the simulation domain respectively.

In a tokamak scenario, these correspond approximately to the radial and poloidal directions

respectively for perpendicular injection along the radial coordinate.

The results for this scenario are shown in Fig. 6.4 and are summarised as follows:

• fluid turbulence gives broadening factor of 1.3± 0.1

• synthetic turbulence gives broadening factor of 1.2± 0.1
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(a) Fluid turbulence (b) Synthetic turbulence

Figure 6.4: Comparing the broadening found running simulations through fluid and syn-
thetic turbulence with the same macroscopic properties of turbulence correlation lengths,
background density, and fluctuation level envelope. The top panel shows the normalised
density ne/ncrit for a single turbulent snapshot. The middle pannel shows a single snapshot
of the wave electric field passing through a single turbulent snapshot. The bottom panel
shows the RMS electric field read out at the backplane of the simulation. Axis are plotted
in grid points where a resolution of 25 grid points per vacuum wavelength was used. For the
fluid turbulence, the broadening is found to be 1.3 ± 0.1 and for the synthetic turbulence,
it’s found to be 1.2± 0.1.
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where the uncertainty on the broadening factors is the standard error on the mean accross

the ensemble average ERMS. Given the good agreement between the two, we decided that

synthetic turbulence would be sufficient for further simulations.

This allowed us to generate our own turbulent density profiles with parameters matching

experiments which were used for the remainder of this chapter. Using experimental data

a correlation length of Lc = 5 mm was chosen for both the radial and poloidal correlation

length. They were set equal to each other as experimental data only existed for the radial

direction. The fluctuation envelope was set by fitting an exponential to the experimental

data points before capping the envelope at a fixed value informed by theory [12]. More on

the exact simulation setups can be found in Sec. 6.3.3.

6.3.2 Effect of Core Turbulence

Whilst there is a layer of turbulence at the edge of fusion plasmas with high fluctuation

levels, turbulence exists throughout the plasma. We anticipated the effect of core turbulence

to be much lower due to the small fluctuation level, but were aware that the beam travelled

through a greater distance of it all the way to the absorption region, so were concerned

that the cumulative effect might be significant. In addition, though the fluctuation level is

lower, it is occurring at higher densities so the absolute fluctuation amplitude is potentially

significant with the possibility of approaching cut-off densities. To ensure that we were not

missing important effects by neglecting the effect of core turbulence with its low fluctuation

level, we performed a comparison between a case including and excluding core turbulence for

the diverted L-mode scenario. As with the study of fluid turbulence compared to synthetic

turbulence, this was only carried out for a small ensemble of twenty turbulence profiles,

resulting in larger uncertainties on the broadening than the final results which used a larger

ensemble of profiles.

The background density profile and fluctuation envelopes used can be seen in Fig. 6.5.

This time, the full beam was simulated with a waist radius of 24λ0 as was the full propagation

to the absorption region. As I didn’t have experimental data for the turbulence scale lengths

in the plasma core, I set the scale length as constant throughout the plasma at 5 mm.

The results for this scenario are as follows:

• With core turbulence gives broadening factor of 2.3± 0.1
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Figure 6.5: Simulation set-up for inclusion of core turbulence to the diverted L-mode case.
Top panel shows the background density, middle panel shows the normalised fluctuation level
envelope with and without the inclusion of core turbulence at a level of 1% of the background
density. The bottom data shows the fluctuation amplitude normalised to the critical density
. The experimental data for background density and fluctuation level are shown as dots,

with the fits used as inputs for the simulation shown as dashed or solid lines.

• Without core turbulence gives broadening factor of 2.2± 0.1

Based on this, from this point on we will neglect the effect of core turbulence. This is in

agreement with previous studies [74].

6.3.3 Final Simulation Set-Up

Using the results of the previous sections, we decided to use synthetic turbulence with no

turbulence present in the core. The correlation length was set at Lc = 5 mm, informed

by Doppler reflectometry diagnostic data. The background density profiles were found by

performing an interpolation to the experimental data obtained from Thomson Scattering di-

agnostic measurements. The fluctuation envelope for the turbulence was found by performing

an exponential fit to the experimental data obtained from the Beam Emission Spectroscopy

measurements, capped at a maximum value informed by the literature [12]. For the diverted

L-mode case, this maximum was set at 100%, for the H-mode it was set at 40%, and for the

negative triangularity L-mode it was set at 20% of the background density.
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Scenario Resolution Nx Nz CFL Nt ν/ω0

Diverted L-mode 25 5000 5076 0.5 15000 0
H-mode 25 5000 5308 0.5 20000 0

−δ L-mode 25 5000 4447 0.5 15000 0

Table 6.2: A summary of the numerical parameters used in the benchmark scenarios. Reso-
lution is the number of Yee cells per vaccuum wavelength, and Nx and Nz are the number of
Yee cells over which the simulation domain extends. CFL relates the time step to the grid
spacing, and Nt is the total number of timesteps over which the simulation was run. Finally,
ν is the numerical collision frequency outside of the damping boundaries normalised to the
vacuum wave frequency.

The resultant background density and fluctuation level profiles as used in the simulations

are shown in Fig. 6.6. These were used to generate the turbulent density profiles using a

synthetic turbulence generator [29] described in more detail in Sec. 7.2.1.

The numerical parameters for the different scenarios are given in Table 6.2. The differing

number of grid points in the z-direction are due to the fact that the distance to the backplane

of the simulation was set via the distance to the absorption plane from the antenna for the

relevant scenario on DIII-D. The number of timesteps was set by waiting at least five full

wave-periods after steady-state was reached.

6.4 Results

Before the simulation results could be compared to the experiment, it was important to

consider the effect of uncertainty in the diagnostic data. The BES data used to get the

fluctuation amplitude of the turbulence had an uncertainty of 4% and a spatial uncertainty

of 1 cm. The Thomson Scattering data used to get the background density profiles also had

a spatial uncertainty of 1 cm.

In order to determine the sensitivity of the results to this uncertainty, extremal cases

were considered. The case expected to yield the least broadening would be where fluctuation

amplitudes were reduced by 4% and pushed into a region of lower density by shifting their

spatial location outward by 1 cm while the background density measurements were shifted

inward by 1 cm. The case expected to yield the most broadening would be where fluctuation

amplitudes were increased by 4% and pushed into a region of higher density by shifting their

spatial location inward by 1 cm while the background density measurements were shifted

outward by 1 cm. The results are summarised in Tab. 6.3.
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(a) Diverted L-mode

(b) H-mode

(c) Negative Triangularity L-mode

Figure 6.6: Background density and fluctuation level envelopes for all three scenarios, as
used to compare to experiments. The experimental data used to create these profiles are
shown as dots.
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Scenario Exp Min Sim Default Sim Max Sim Fin Sim

div L-mode 2.7± 0.3 1.91± 0.04 2.27± 0.05 2.71± 0.07 2.3± 0.5
H-mode 1.7± 0.2 1.115± 0.009 1.53± 0.02 2.03± 0.04 1.6± 0.5

−δ L-mode 1.4± 0.2 1.113± 0.009 1.21± 0.01 1.30± 0.02 1.2± 0.2

Table 6.3: Comparison of experimentally measured (Exp) and simulated broadening. Un-
certainty on simulated results comes from the standard error on the mean from the ensemble
of turbulence profiles for each scenario. The ‘Default Sim’ is the simulated broadening when
using the density and fluctuation data as measured rather than at the extremal ends of the
possible range.Uncertainty in the diagnostic data used as input for the simulations is used
to determine the minimum (Min Sim) and maximum (Max Sim) possible simulated broad-
ening. This leads to large uncertainty on the final simulated (Fin Sim) result, calculated as
the midpoint of the range of results, but ultimately yields agreement with the experimental
results.

Good agreement between simulation and experiment is seen. However, even very small

uncertainties in the diagnostic data used as input for the simulations can create large uncer-

tainties in the simulated broadening. This is particularly the case for the H-mode scenario,

where the steep density gradient means that even a small change in the spatial location of

the measurements for background density and fluctuation level has a large impact on the

simulated broadening. This motivates the need for ever-improving turbulence diagnostics

with even better resolution if we want to truly be able to predict this effect accurately.

6.5 Conclusions and Further Work

We have shown that edge turbulence can dramatically broaden the deposition profile of the

microwave beam in DIII-D. Experimentally measured beam broadening was compared to

first-principle full-wave simulations for a range of scenarios for the first time. As expected,

scenarios with larger turbulence fluctuation amplitudes led to more broadening, however,

as numerous parameters changed across the scenarios, no correlation can be deduced. The

affect of varying fluctuation amplitude is explored more fully in the next chapter. Quanti-

tative agreement between simulations (where the only possible cause of the broadening was

scattering by turbulence) and the experimental measurements has proven that turbulent

scattering is likely the primary cause for the beam broadening observed on DIII-D. It has

also validated a quantitatively accurate predictive simulation tool that can be used to predict

beam broadening on future devices. However, the work has also highlighted the significant

uncertainty in simulated broadening resulting from uncertainty in diagnostic data used as
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input for the simulations. This motivates the need for ever-improving turbulence diagnostics

to make our simulations as accurate as possible. It also motivates the need for accurate tur-

bulence modelling when considering predictions for new machines. The effects of variations

in other turbulence and plasma parameters such as turbulence scale lengths and background

density are explored in the next chapter.
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Chapter 7

Parametric Dependence of Beam

Broadening by Turbulence

This work was the subject of a paper published at L.A. Holland et al 2023 Nucl. Fusion 63

056013 DOI: 10.1088/1741-4326/acc25e [88]. As such, much of the following chapter is

reproduced directly with the permission of Nuclear Fusion and EUROfusion.

7.1 Introduction

replacedAs stated in previous chapters, microwaves are often used to inject power into MCF

plasmas In magnetically confined fusion (MCF) devices, microwaves are often used to inject

power into the plasmas for the purposes of global heating [19, 21], non-inductive start-up

[23, 24], and current drive [20]. Localized electron cyclotron current drive (ECCD) can also

be used to stabilize MHD instabilities such as neoclassical tearing modes (NTM), requiring

precise targeting of microwave beams [89].

In order to inject power, microwave beams must cross the plasma boundary, a region

where density fluctuation levels can reach 100 % of the background density on length scales

comparable to that of the microwave wavelength [12]. These fluctuations cause scattering of

incident microwaves, leading to the broadening of microwave beams travelling through the

plasma. For ITER-like scenarios, it has been predicted that this broadening could result

in the doubling of the beam width compared to if no turbulence was present [70]. In the

previous chapter, we found significant beam broadening on DIII-D, where the likely primary

cause was turbulent scattering. For L-mode, the beam width at the deposition region was

105
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more than doubled by the presence of turbulence, and for H-mode, where NTM stabilisation

using targeted, localised ECCD will likely be of great importance, density fluctuation were

found to result in a beam broadening factor of roughly 1.6. This broadening has the potential

to significantly impact the efficiency of both global and local power injection via microwave

beams. It’s therefore important to be able to predict this effect when designing and running

microwave power injection systems. Whilst full-wave simulations using codes like EMIT-2D

can achieve this, their computational expense makes them impractical when a wide range

of plasma and launch scenarios need to be considered, such as in an optimisation study

of a new heating and current drive system. For example, simulating a beam propagating

from the antenna to the absorption region at a resolution sufficient to capture the density

fluctuations takes around 10 core hours (running for 1 hour over 10 cores). Repeating

this for an ensemble of 20 turbulent density profiles would therefore take 200 core hours.

Therefore, each new scenario with a different background density profile, different injection

angle, different beam width, different microwave frequency, would each take 200 core hours

to predict the broadening for. It is therefore important to find ways to predict this effect

that allow it to be accounted for in integrated modelling and optimisation studies for future

tokamaks in a way that is computationally cheap.

One such approach is the development of analytical models for both O-mode [28] and

X-mode [90]. This approach has the benefit of allowing for very fast prediction of beam

broadening based on plasma and beam parameters, making it ideal for optimisation studies

or inter-shot analysis. However, these models utilise eikonal methods based on assumptions

that the fluctuation level is small, which will not be applicable in the case of strong turbulence

locally creating plasma densities close to or even above the cut-off density in the wave’s path,

meaning that they will not always be applicable for some fusion-relevant scenarios.

Ray tracing methods where the scattering effect is described using a Fokker-Planck solver

[27, 70, 91] are another alternative. They are less quick than analytical methods as they

still require simulation, but are significantly less computationally expensive than full-wave

codes. There have also been studies using a beam tracing code based on the wave kinetic

equation, incorporating the effect of turbulence via a scattering operator derived under the

Born approximation [92]. However, these methods are also valid only within certain limits,

such as when the turbulence amplitude is small compared to the cut-off density, or when the

refractive index does not vary significantly over length scales that are small compared to the
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wavelength.

In order to simulate particular fusion-relevant scenarios where the turbulent scale length

is comparable to the microwave wavelength and the fluctuation level is high, directly sim-

ulating the beam path through turbulent plasma using full-wave codes is often required.

Using this method, 1D parameter scans have previously been carried out [53]. However, the

range of parameters is yet to be extended to encompass certain fusion-relevant scenarios.

Furthermore, it has not been previously investigated if the impact of changing one parame-

ter is independent of changes in other parameters i.e. if the dependencies are ‘separable’ as

defined in Sec. 7.2.5.

The work presented here investigates how the broadening of microwave beams by a layer

of turbulent plasma depends on plasma and beam parameters. The parameter ranges were

set to cover fusion-relevant scenarios such as beams used for ECCD, including ranges where

turbulence scale length is comparable to microwave wavelength, and fluctuation level is as

high as 50%. Fluctuation level wasn’t raised to 100% as, though this value is reached in fusion

plasmas, it is usually only for a narrow width at the plasma edge in low density, whereas

these parameter scans will have the turbulence present for a range of thicknesses at a range of

background densities which would not be applicable and would result in saturated broadening

where the wave signal at the back-plane of the simulation is nearly indistinguishable from

background noise. We considered pairwise combinations of parameters to determine whether

the dependence on each parameter is independent of the others and conducted a point-wise

fit to the data set in order to determine an empirical formula for the beam broadening. By

determining the dependence of broadening on turbulence and beam parameters in fusion-

relevant scenarios, a predictive model can be developed which does not require full-wave

simulations but is still applicable in parameter regimes that are not analytically tractable.

This would be of great use in the development of future tokamaks by allowing the quick

prediction of beam broadening and could be incorporated into an integrated model used

to optimise heating and current drive efficiency. It could also be used to make predictions

on timescales useful for inter-shot analysis as well as real-time predictions based on plasma

measurements.
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7.2 Simulation Set Up

The code EMIT-2D as described in Chapter 4 was used to carry out the simulations for the

parameter scans.

By setting B0 to point in the y-direction, we launched an X-mode beam in vacuum.

We kept the normalized field strength constant throughout the simulation domain at Y =

ωce/ω = 0.5. Whilst this may not be fully realistic for a fusion reactor, we wanted to limit

the number of variables that we would change for this study for the sake of feasibility, and

we anticipate that the field strength would not change significantly over the region where

turbulence is strongest in the plasma edge.

7.2.1 Turbulent Density Profiles

We chose to study the influence of the following key parameters: background density, fluc-

tuation level, turbulence structure size, width of the turbulence layer, and beam waist. The

fluctuations were only in the density profiles, making the turbulence purely electrostatic.

To launch the beam in vacuum, we transitioned the density from zero to its constant

background value via a hyperbolic tangent function. In the constant background density

region, we transitioned the fluctuation level from zero to a constant value via the same

hyperbolic tangent function, before transitioning it back to zero via the same hyperbolic

tangent function. Though this sharp increase in density is not necessarily realistic for fusion

plasmas, we decided that introducing a pedestal-like background density would increase the

dimensionality of the problem too much. As such, this simplified approach was taken. By

considering the simulations run through background density profiles, looking at the wave

electric field across the whole simulation domain, we were able to determine that this sharp

increase in density did not perturb the beam as it remained Gaussian in nature as it prop-

agated through the domain, withought a significant or sudden change where it entered the

plasma. An example of the background density profile and fluctuation envelope, with an

image of a turbulent snapshot and beam propagating through that snapshot, are shown in

Fig. 7.1.

The simulation domain shown in Fig. 7.1 is in 2D. This is an acceptable simplification

as the turbulent structures are elongated along field lines [12], making the scattering in

the toroidal direction small compared to the radial and poloidal direction. The simulation
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Figure 7.1: Example ensemble average background density profile and fluctuation level enve-
lope (top), an example turbulent density profile (bottom left) and the RMS Electric field (bot-
tom right) of a microwave beam propagating through it. The simulation domain is given in
vacuum wavelengths. The colour represents the normalised density X = ω2

pe/ω
2 = ne,0/ncrit

(bottom left) and the RMS field strength in arbitrary units (bottom right). Arrows are
marked on to indicate the direction of the background field as well as the direction in which
the two different turbulence correlation lengths are defined.
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domain is therefore approximately equivalent to a poloidal cross-section in a tokamak.

The turbulent density profile shown in Fig. 7.1 represents a snapshot of the plasma. In

reality, the plasma would be moving at a speed significantly slower than the wave speed.

This allows us to make the assumption that the turbulence is ‘frozen’, and the overall effect

on the beam can be calculated by averaging over an ensemble of turbulence profiles.

In order to generate an ensemble of turbulent density profiles, we used synthetic turbu-

lence. This allowed full control over the turbulence parameters and, for the large number of

profiles needed, was less computationally demanding than fluid turbulence generation from

a turbulence code.

The turbulent density profiles were generated using the same method described in Sec.

6.3.1 , repeated here for convenience. The density fluctuations were generated using a trun-

cated sum of Fourier-like modes given by [29]

δne(x, z) =

Mi∑
i

Mj∑
j

Aij cos(kx,ix+ kz,jz + ϕi,j) (7.1)

whereAij are the amplitudes of the modes, and ϕi,j are independent random phases uniformly

distributed between 0 and 2π and Mi and Mj are the number of harmonics in x and z

respectively.

The amplitudes are related to the structure size by [29]

Aij =

√
2σxσz
π

exp[−σ2xk2x,i − σ2zk
2
z,j ] (7.2)

where σx = πLbin/ax and σz = πLperp/az, ax and az are the box size, and Lbin and Lperp

are the turbulence correlation lengths in the x and z directions respectively. The number

of harmonics (Mi and Mj) in Eq. (7.1) are set such that exp [−π2M2
x,z(Lbin,perp/ax,z)

2] <

1 × 10−8. Within the geometry of the simulations, the correlation length perpendicular to

the beam path is Lperp, and the correlation length bi-normal to the beam path and the

background magnetic field is Lbin. In a tokamak scenario, these correspond approximately

to the radial and poloidal correlation lengths respectively for perpendicular injection along

the radial coordinate.

We generated an ensemble of twenty turbulence profiles for each combination of turbu-

lence correlation lengths. We then scaled the turbulence to the required fluctuation am-
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Figure 7.2: An example of the RMS electric field at the back-plane of the simulation domain,
after travelling through the turbulent layer, averaged over an ensemble of 20 uncorrelated
turbulence profiles. This is the ”base case” as defined in Table 7.1. A Gaussian fit to the
ensemble average is performed and compared to the background Gaussian beam to find the
broadening factor.

plitude, applied an envelope function to achieve the required turbulence layer thickness,

and added it to the background density. Any negative density values were truncated to

zero, resulting in the negative fluctuation amplitude being slightly lower than the positive

fluctuation amplitude.

7.2.2 Calculating Beam Broadening

In order to determine the broadening, Γ, for each combination of parameters in a scan, we

found the ensemble average RMS electric field (ERMS) at the back-plane of the simulation for

each turbulent snapshot. We then calculated the ensemble average of these ERMS profiles for

the ensemble of turbulence snapshots and compared it to a beam which propagated through

an equivalent background profile with no turbulence present. For all simulations, we used an

ensemble size of 20 turbulence profiles. This was sufficient for the centre of the broadened

beam to align closely with the background case. An example of this is shown in Fig. 7.2. This

approach results in a statistical uncertainty on the broadening value given by the standard

error of the ensemble.
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Table 7.1: Parameters that are varied, how they are varied, and the ‘base’ value each pa-
rameter takes in scans where it is not varied. Note that the background density is only
varied through nine values instead of ten, as at the timescales needed for higher densities,
the stability condition proved prohibitively computationally expensive.

Parameter Varied as Min Max Step Base

Perpendicular correlation length log(Lperp/λ0) -1.5 3.0 0.5 2.0
Binormal correlation length log(Lbin/λ0) -2.5 2.0 0.5 2.0
Beam waist radius w0/λ0 2.5 25.0 2.5 20.0
Fluctuation level δne/ne,0 0.05 0.50 0.05 0.30
Background density X = ne,0/ncrit 0.05 0.45 0.05 0.20
Width of turbulence layer Wturb/λ0 5 50 5 30

7.2.3 Parameter Scans

The parameters we investigated are listed in Table 7.1, with the value they take in the

‘base case’ included in every parameter scan as well as the ranges they are varied over.

All parameters are normalised. Length scales are normalised to the vacuum wavelength,

λ0, background density is normalised to the O-mode cut-off density ncrit, and fluctuation

amplitude is normalised to background density. We varied the turbulence correlation lengths

logarithmically, as we anticipated that broadening will be much smaller when the ratio

between correlation length and wavelength becomes either small or large, as seen in previous

work [53]. We, therefore, wanted to treat the ratio symmetrically, which is done by varying

its logarithm.

From previous work in the field, we expected scattering to be maximal when the corre-

lation lengths are close to the vacuum wavelength, and to decrease as the correlation length

moves from this value in either direction [53].

For low-density gradients within the perturbed density (meaning that fluctuation level is

small or correlation length is large compared to wave length such that any density gradients

are low over wavelength length scales), we expected scattering to increase quadratically with

fluctuation amplitude [27, 53, 90]. We also expected it to increase with background density

and width of the turbulence layer [53, 90]. For the microwave beam waist, we expected

an initial increase followed by a gradual decrease, as seen in previous studies [53]. This is

due to the dependence of the microwave beam width on its initial waist varying similarly

non-monotonically, as can be seen from Eq. 3.31.

In order to determine the separability of the dependence on each of these parameters,

we carried out a series of 2D scans considering each of the pairwise combinations. Each of
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these 2D scans required 100 ensembles of 20 simulations to be run, each at an approximate

computational cost of 80 CPU hours.

7.2.4 Numerical Parameters

For the base case in the parameter scans, the numerical parameters used were as follows:

• Resolution = 25 Yee cells per vacuum wavelength

• Nx = 10000 Yee cells in the x-direction

• Nz = 5000 Yee cells in the x-direction

• CFL = 0.5

• Nt = 14000 timesteps = 280 vacuum wave periods

• ν/ω0 = 0

These parameters were also used for simulations with the same background density as

the base case, unless one of the turbulence correlation lengths was below 1 λ0 in which case

a resolution of 50 Yee cells per vacuum wavelength was used and the number of timesteps

doubled accordingly so that the total simulation time remained the same number of vacuum

wave time periods.

The only parameter to change with changing background density was the number of

timesteps that the simulation was run for. Higher densities require the simulation to run for

longer before it reaches steady-state. These are given in Table 7.2 for the case of a resolution

of 25 Yee cells per wavelength. When either turbulence correlation length was smaller than

one wavelength and a resolution of 50 Yee cells per vacuum wavelength was used, the number

of timesteps was doubled accordingly so that it remained the same number of vacuum wave

periods.

7.2.5 Fitting

As before, we define broadening as Γ = FWHMensemble/FWHMbackground where FWHMensemble

is the full width at half maximum of the guassian fitted to the ERMS at the backplane of the

simulation, averaged over the ensemble of simulations through the ensemble of turbulence
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Table 7.2: Number of timesteps that the simulation was run for based on background density,
assuming a resolution of 25 Yee cells per wavelength. Higher background densities result in
the simulation taking longer to reach steady state. In all cases, the code was run for at least
one full wave period after steady state was reached.

ne,0/ncrit Nt

0.05 12000
0.10 12500
0.15 13000
0.20 14000
0.25 15000
0.30 17000
0.35 19000
0.40 22500
0.45 28000

profiles, and FWHMbackground is the full width at half maximum of the ERMS at the back-

plane of a simulation of an equivalent plasma without the turbulence present. To determine

the dependence of Γ on each parameter and confirm the separability of the dependencies, we

performed point-wise fits to the data-set from each 2D parameter scan.

By separable dependence, we mean that, for two parameters a and b, the overall broad-

ening can be expressed as a product of two independent functions, f and g, such that

Γ = 1 + f(a)g(b). (7.3)

Within the context of a point-wise fit, the broadening for a particular combination of pa-

rameters can then be calculated as

Γ(ai, bj) = 1 + Cf(ai)g(bj) = 1 + Cfigj. (7.4)

where C is a normalisation factor, fixing the value of the ‘base case’ broadening to be

Γbasecase = 1 + C. To allow for the possibility that the dependence is not separable, we

included a rotation of the coordinate axis in the fit, adding an additional fit parameter, θ.

The fit parameters fi and gj then depend on (a cos θ − b sin θ) and (a sin θ + b cos θ) as

Γ(ai, bj) = 1 + Cf(ai cos θ − bj sin θ)g(ai sin θ + bj cos θ) = 1 + Cfi,jgi,j. (7.5)

As each parameter was varied across ten values, for each 2D parameter scan this resulted

in 20 fitting parameters for 100 data points. The exception is scans where background den-
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sity is varied where, due to computational constraints, only nine values were included. This

is owing to the fact that the size of the simulation domain required increases for increased

broadening and that the wave speed in higher-density plasma decreases, making the simula-

tions take significantly longer to run (of order 100 core hours for each individual simulation,

therefore 2000 core hours for an ensemble of 20 turbulence profiles). It would be possible to

expand upon the range included here, but for this work, they were deemed computationally

too expensive.

Once a θ value was found for each 2D scan, we knew which dependencies were separable

and which were not. A pair of parameters we deemed to be separable if the θ found for them

was within error of zero. We then performed a point-wise fit to the whole data set, only

allowing for inseparability where it had been found.

7.3 Parametric Dependence

Performing the fits to the 2D scans individually, the only pairwise combinations where we

found the dependence to be inseparable were those for Lperp/λ0 vs Lbin/λ0, and for δne/ne,0

vs ne,0/ncrit.

An example plot of a 2D dependence of Γ on a pair of separable parameters (w0/λ0 vs

Wturb/λ0) is shown in Fig. 7.3. Plots of the 2D dependence of Γ on both pairs of inseparable

parameters (Lperp/λ0 vs Lbin/λ0 and δne/ne,0 vs ne,0/ncrit) are shown in Figs. 7.5 and 7.4

respectively. The rest of the 2D scans are shown in Figs./ (7.6-7.17) for completeness. In the

case of the two fully separable parameters, w0/λ0 andWturb/λ0, the same trends can be seen

across all 2D scans. For the case of the parameters which have one inseparable dependence,

the trends differ when shown in a 2D scan with their partner parameter as opposed to in a

2D scan with a parameter from which they are separable, as would be expected.

The results of a global pointwise fit, as described in Sec 7.2.5, are shown in Fig. 7.19.

These show how the broadening depends on each parameter (or linear combination of pa-

rameters in the cases where the dependence is not separable). It should be noted that for

the linear combinations of parameters, the extremal points only correspond to one ensemble

of simulations (for example, the point with the lowest Lbin and the highest Lperp). Every

other point corresponds to multiple ensembles. This is why the errors on the extremal points

are noticeably larger. In future studies, it would be possible to add more data points into
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Figure 7.3: Dependence of broadening on microwave beam waist (w0) and width of the tur-
bulence layer(Wturb). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present.

Figure 7.4: Dependence of broadening on turbulence correlation length in the direction
perpendicular to the magnetic field (Lperp) and in the direction binormal to both the mag-
netic field and direction of beam propagation (Lbin). Colour represents broadening factor
compared to a beam propagating through the same background density profile, with no tur-
bulence present. From this, we see that both correlation lengths affect broadening differently,
and the tilted nature indicates the dependence is not separable.
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Figure 7.5: Dependence of broadening on background density (ne,0/ncrit) and fluctuation
amplitude (δne/ne,0). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present. From this, we see
that broadening increases with both background density and fluctuation amplitude, and the
tilted nature indicates the dependence is not separable.

Figure 7.6: Dependence of broadening on microwave beam waist (w0) and fluctuation level
(dne/ne,0). Colour represents broadening factor compared to a beam propagating through
the same background density profile, with no turbulence present.
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Figure 7.7: Dependence of broadening on width of turbulence layer (Wturb) and fluctua-
tion level (dne/ne,0). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present.

Figure 7.8: Dependence of broadening on binormal correlation length (Lbin) and fluctua-
tion level (dne/ne,0). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present.
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Figure 7.9: Dependence of broadening on binormal correlation length (Lbin) and width of
turbulence layer (Wturb). Colour represents broadening factor compared to a beam propa-
gating through the same background density profile, with no turbulence present.

Figure 7.10: Dependence of broadening on perpendicular correlation length (Lperp) and
fluctuation level (dne/ne,0). Colour represents broadening factor compared to a beam prop-
agating through the same background density profile, with no turbulence present.
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Figure 7.11: Dependence of broadening on perpendicular correlation length (Lperp) and
width of turbulence layer (Wturb). Colour represents broadening factor compared to a beam
propagating through the same background density profile, with no turbulence present.

Figure 7.12: Dependence of broadening on binormal correlation length (Lbin) and background
density (ne,0/ncrit). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present.
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Figure 7.13: Dependence of broadening on perpendicular correlation length (Lperp) and
background density (ne,0/ncrit). Colour represents broadening factor compared to a beam
propagating through the same background density profile, with no turbulence present.

Figure 7.14: Dependence of broadening on width of the turbulence layer (Wturb) and back-
ground density (ne,0/ncrit). Colour represents broadening factor compared to a beam prop-
agating through the same background density profile, with no turbulence present.
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Figure 7.15: Dependence of broadening on microwave beam waist (w0) and binormal corre-
lation length (Lbin). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present.

Figure 7.16: Dependence of broadening on microwave beam waist (w0) and perpendicular
correlation length (Lperp). Colour represents broadening factor compared to a beam propa-
gating through the same background density profile, with no turbulence present.
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Figure 7.17: Dependence of broadening on microwave beam waist (w0) and background
density (ne,0/ncrit). Colour represents broadening factor compared to a beam propagating
through the same background density profile, with no turbulence present.

these extremal points, but only once the inseparability of the dependence is known, which it

wasn’t at the undertaking of these simulations.

The uncertainty in the broadening measurements from the simulations comes from the

standard error on the ensemble average ERMS. There is also an uncertainty associated

with the standard error on the ensemble average correlation lengths, fluctuation level, and

background density. This contributes to the error on the fit parameters, given by their

covariance.

From Fig. 7.19, we can see that there is only a weak dependence on the sum of the

logarithms of the correlation lengths and a stronger dependence on their difference. This

corresponds to having a stronger dependence on the ratio (Lperp/λ0)
0.4/(Lbin/λ0)

0.9, meaning

that having a larger Lperp compared to Lbin increases broadening. In fusion-relevant plasmas,

the poloidal correlation length (which corresponds to Lbin) is usually longer than the radial

correlation length (which corresponds to Lperp). This would result in less broadening. This

rough trend matches the analytical result that (in the low fluctuation level limit) broadening

is proportional to Lperp/L
2
bin [90].

We can also see that the linear combination of ne,0/ncrit and δne/ne,0 based on their

difference has a weaker effect on the broadening than the linear combination based on their
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sum. This suggests that perhaps a key consideration is the peak density of ne,0/ncrit+δne/ne,0

and how close it is to a cut-off. Due to the parameter ranges chosen, most points of the scan

are outside of the limit where analytical theory can be applied, where we find the dependence

of ne,0/ncrit and δne/ne,0 is no longer separable and the broadening no longer scales with

(δne/ne,0)
2 as predicted by theory [90].

The form of the dependence on microwave beam waist matches that found in [53], where,

as w0/λ0 is increased, there is first a sharp increase in the broadening, followed by a gradual

decrease. We believe this is due to the dependence of beam width on w0/λ0 even in the case

where turbulence is not present, which can be seen in Eq. 3.31 The location of the peak is

then dictated by the distance of the detection region (where the signal is measured) from

the antenna.

Finally, the dependence of beam broadening on the width of the turbulence layer shows

that asWturb/λ0 increases, so does broadening, until it reaches a maximal value and appears

to level off. We believe this is due to a kind of saturation effect, where the beam can no

longer become any broader without simply appearing as background noise. An example of

this can be seen in Fig. (7.18) where the broadened ensemble average beam can be seen to

be relatively flat and low amplitude. It could also be the cumulative affect of the previous

broadening leading to a decrease in subsequent broadening because, as we know from the

dependence on microwave beam waist, broader beams are broadened less by turbulence than

narrower ones (once the non-monotonicity of beam width as a function of initial beam waist

is accounted for).

The functional form of the dependence of broadening on plasma and beam parameters,

based on the separability of parameters, is then

Γ =1 + Cf1

[(
Lperp/λ0

)0.4(
Lbin/λ0

)0.9
]
f2

[(
Lperp

λ0

)0.9(Lbin

λ0

)0.4
]

× f3

[
0.2

(
ne,0
ncrit

)
− 1.0

(
δne
ne,0

)]
f4

[
1.0

(
ne,0
ncrit

)
+ 0.2

(
δne
ne,0

)]

× f5

[
w0

λ0

]
f6

[
Wturb

λ0

] (7.6)

where each function is a vector of points from the point-wise fit, which can be interpolated be-

tween to find the broadening for a given set of parameters within the range investigated.The

numerical values of these fit parameters can be found in Appendix A. The model presented
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Figure 7.18: The results for a beam broadening simulation through an ensemble of turbulent
profiles with all values as their base case apart from Wturb/λ0 = 50. The Ensemble average
ERMS can be seen to be very low and flat such that it starts to look similar to background
noise rather than a discernible Gaussian beam profile.

here is also available as a Python script [93].

7.4 Conclusions and Further Work

We used a 2D full-wave code to simulate microwave beams propagating through turbulent

plasma density profiles to determine the dependence of the beam broadening on plasma and

beam parameters. We carried out a series of 2D scans in order to identify which dependencies

were separable. We found that the dependencies on Lperp/λ0 and Lbin/λ0 weren’t separable

from each other, and neither were the dependencies on ne,0/ncrit and δne/ne,0. We found that

all other dependencies were separable. We then found the dependence of each parameter, or

linear combination of inseparable parameters, by means of a point-wise fit to the whole data

set.

Where applicable, agreement with previous studies was found. However, it would be

beneficial to compare this to other methods such as the analytical models [28,90], ray tracing

simulations [27,70,91], and beam tracing simulations [29,92] in order to determine the regions

of agreement and disagreement.

The inseparability of the dependence of broadening on the two turbulence correlation



7.4. CONCLUSIONS AND FURTHER WORK 126

Figure 7.19: The normalised dependence of broadening on each parameter considered. For
the case where the dependence of two parameters is not separable, the dependence on a
linear combination of those parameters is shown instead. The orange points correspond to
the base value of each parameter, which was used in scans where other parameters were
varied. The fit parameters are normalised to this point. The solid lines serve as a guide to
the eye.
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lengths is an important result. Currently, when simulating beam broadening in fusion-

relevant scenarios it is common only to have good data for the correlation length in one

direction, resulting in both correlation lengths being set equal to each other. This has the

potential to significantly under or over-predict the broadening of the microwave beam. The

sensitivity of broadening to correlation length emphasises the need for diagnostic tools which

can measure turbulence parameters to high degrees of precision. For example, from Fig. 7.5

the effect of uncertainty in correlation length measurement can be seen. If we take an example

where only Lbin = 2λ0 is measured, and for simulation purposes, the correlation lengths are

set equal to each other despite Lperp = 1λ0, the broadening would be over-predicted by a

factor of 1.2 resulting in a large error on the predicted deposition profile.

A detailed understanding of the parametric dependence of beam broadening on plasma

and beam parameters also introduces the possibility of being able to use beam broadening

as a turbulence diagnostic. For example, if the other parameters are known well enough,

the ratio of the turbulence correlation lengths could be deduced from the measured beam

broadening.

Using the parameter dependencies provided here, it should now be possible to predict

how much a beam will be broadened without further simulation, given the scenario falls

within the parameter ranges investigated here. This can be done almost instantaneously,

rather than the hours that would be required for an ensemble of full-wave simulations to be

carried out. This ability to rapidly predict beam broadening could allow for its inclusion

in integrated modelling and calculation during experiments, however, further work would

be needed to extend the model’s dimensionality if one wanted to simulated truly fusion-like

scenarios. It is hoped that the work done here provides a solid framework for these next

steps.
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Chapter 8

Conclusions and Future Work

The main objective of this research project has been to better understand how microwaves

propagate through fusion plasmas — crucially, how they propagate through magnetised

plasmas where the plasma density varies on length scales comparable to the microwave

wavelength.

In order to achieve this objective for parameters relevant to fusion reactors, a 2D full-wave

code was needed. I decided to develop this myself from EMIT-3D (a cold plasma full-wave

code utilising the FDTD method developed at the Universities of York and Strathclyde by

previous PhD students). While other 2D full-wave codes already exist, I believed that the

importance of having the absolute certainty that comes with fully knowing your own code,

along with the flexibility of being able to edit it to suit your exact needs, outweighed the

convenience of a pre-existing code.

The first portion of my PhD was therefore spent in code development followed by a

thorough benchmark of the code. This led to a brief study of the OX mode conversion process

in plasmas with steep density gradients. The objective then shifted to using EMIT-2D to

further our understanding of the scattering effect density fluctuations have on microwave

beams in fusion plasmas.

The first project was a study of ECRH beam broadening by plasma turbulence on the

DIII-D tokamak. Three specific operating scenarios were selected, chosen to cover a wide

range of parameters. Diagnostics on the device were used to build the plasma density profiles

used in the simulations. The results of these simulations were then compared to an experi-

mental measurement of the beam broadening. There were two main purposes of this work.

One was to confirm that the additional broadening seen experimentally was predominantly

129
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the result of turbulent scattering. The other was to provide an experimental benchmark of

the code, confirming that it could make real-world predictions of this effect.

The second project was born out of the first. My work simulating scenarios for the DIII-

D tokamak highlighted the sensitivity of beam broadening to plasma parameters. It also

started to highlight the fact that the dependencies of beam broadening on various param-

eters might not be separable from each other. This led us to attempt to parameterise the

beam broadening, considering pairs of parameters at a time in order to determine whether

the two dependencies could be separated from each other, with the end goal being to develop

an empirical formula or look-up table for beam broadening based on plasma and beam pa-

rameters. This work focused on X-mode propagation and the parameter ranges were chosen

to encompass fusion relevant scenarios. The parameters of interest were background density,

turbulence fluctuation level, turbulence correlation lengths (in both directions), width of the

turbulent layer, and microwave beam waist.

The findings of these projects are summarised here, along with future plans for further

work using EMIT-2D and EMIT-3D.

8.1 Conclusions

8.1.1 Code Development

The code development described in Chapter 4 was essential to the research carried out.

EMIT-3D was further developed to improve the stability of the current density update equa-

tion and to make it suitable for simulation of X-mode propagation. The ability to launch

an elliptically polarised beam was also added so that pure O-mode could be launched at an

angle to the background magnetic field for the purpose of OX mode conversion studies.

EMIT-2D was developed from EMIT-3D to allow the simulation of much larger domains

so as to be relevant for scenarios such as simulating a heating beam all the way from the

antenna to where it will be absorbed.

Though the changes to EMIT-3D have not yet been used, they were propagated through

to EMIT-2D and I’m sure they will be useful in future. The creation of EMIT-2D allowed for

simulations that could fully compare to experiment and allowed for a wide ranging parameter

scan to be carried out, which would not have been possible with the 3D code given constraints

on computational time.
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8.1.2 Benchmark and OX Mode Conversion Study

The benchmark described in Chapter 5 mostly found good agreement between EMIT-2D

and two other full-wave codes, one of which used a similar FDTD approach and the other

of which used a different Fourier method. Agreement was found for a range of scenarios of

increasing complexity giving us good confidence in the new 2D code. Discrepancies between

the codes were found close to the cut-off density when no magnetic field was present, but were

found to be due to differing polarisations. In simulations where a magnetic field was present,

the codes agreed comparatively poorly when between the O-mode cut-off and the UHR,

but in this region, none of the codes are trying to accurately model the physical processes

taking place as they are cold plasma codes. We therefore expect the exact values of the

field to be highly dependent on numerical parameters and the method of power dissipation

implemented. Outside of these regions, the three codes agreed well.

Once agreement between the codes was established, they were then used to carry out a

study of OX mode conversion efficiency of relevance to MAST-U. The effect of density scale

length was studied. The expected decrease in efficiency with increasing density scale length

was reproduced. This is due to being more sensitive to mismatch on the optimum angle when

the density gradient is less steep. However, an interesting additional effect was observed for

short density scale lengths, where conversion efficiency dropped sharply for k0Ln < 5. This

effect was observed in all three codes and was determined to be the result of the converted

SX-mode tunnelling through the evanescent layer between the UHR and the R-wave cut-off

to travel back out of the plasma along with the reflected O-mode. This is only possible when

this evanescent layer is narrow enough to be comparable to the wavelength, which occurs for

steep density gradients like those we might expect to see in H-mode operation on MAST-U,

making it a potentially important consideration for those scenarios, particularly with regard

to the path reflected power will take in the reactor and the damage it could cause to in-vessel

components.

8.1.3 ECRH Beam Broadening on DIII-D

The research project described in Chapter 6 was able to confirm that the experimentally

measured deposition profile of ECRH heating beams on DIII-D was broadened by turbulent

scattering in the plasma edge. The simulation set-up was informed by diagnostic data from

DIII-D for the background plasma density and turbulent density profile, and the beam was
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initialised to match the heating beam on DIII-D.

The simulations were carried out from first principles and found good agreement with

the experimental results. Given that the only possible source of broadening in the full-wave

simulations was from scattering by turbulence, this suggests it must be the primary source

of the broadening seen on DIII-D. Furthermore, though other parameters were changing as

well, a clear scaling between fluctuation level and the broadening factor can be seen across

the three scenarios. The fact that agreement was achieved for three operating scenarios

covering a wide range of plasma parameters increases our confidence in this agreement. It

also increases our confidence in the use of this approach to predict this effect in future

tokamaks.

However, it should be noted that uncertainty on the diagnostic data that was used to

construct the simulation density profiles resulted in significant uncertainty on the simulated

beam broadening. For example, for the H-mode result of a broadening factor of 1.6± 0.5 we

have an uncertainty of roughly 30%, but, given that the ‘zero-point’ of broadening is 1, it

might perhaps be more accurate to describe this as an uncertainty of around 80%. This is

most pronounced for the H-mode scenario due to the steep density gradients meaning small

spatial shifts in measurements have a larger effect. This motivates the need for turbulence

diagnostics with excellent spatial resolution as well as the need for accurate turbulence

modelling to allow for the accurate prediction of this effect.

8.1.4 Parametric Dependence of Beam Broadening by Turbulence

The research project described in Chapter 7 was able to thoroughly characterise how beam

broadening by electrostatic plasma turbulence depends on plasma and beam parameters.

This was the first time such a study had been completed over parameter ranges encompassing

fusion-relevant scenarios, where fluctuation level is high and structure size is comparable to

microwave wavelength, and cut-off densities might appear in the turbulence. It was also the

first time that the separability of dependencies on different parameters was investigated by

conducting 2D parameter scans in pairwise combinations of parameters.

We found that the dependence on the two orthogonal turbulence correlation lengths

could not be separated from each other, with the broadening strongly depending on the

ratio (Lperp/λ0)
0.4/(Lbin/λ0)

0.9. We considered this to be an important result, as it shows

that broadening will be less when the radial correlation length is shorter than the poloidal
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correlation length (which is the case in fusion plasmas). It also motivates the need for

good turbulence diagnostic data, as frequently one may only have experimental data for the

correlation length in one direction at any particular location in the tokamak (as was the

case for the previous study on DIII-D). In this case, it is common practice in simulations

to set correlation lengths equal to each other, but this approach is liable to over-predict the

broadening, potentially by quite large amounts.

We also found that dependences on background density and fluctuation level could

not be separated from each other, with the broadening strongly depending on the sum

1.0(ne,0/ncrit) + 0.2(δne/ne,0). We reason that this is because the key parameter is the peak

density present, and more specifically, how close that peak density is to a cut-off.

All the other dependences were found to be separable.

The scaling of beam broadening with microwave beam waist was reproduced from previ-

ous studies and was determined to depend not only on the beam waist at the antenna but

the distance between the antenna and the ‘receiver’. This is due to the fact that even if there

was no turbulence present, measuring the width of the beam at the ‘receiver’ would reveal a

non-monotonic dependence on the beam waist at the antenna due to beam divergence. The

true dependence is that broader beams are broadened less by turbulence overall, but beams

that start narrower at the antenna end up broader themselves even when turbulence isn’t

present, so are also broadened less.

Beam broadening was found to increase with the width of the turbulence layer as would

be expected, but after a certain point, a saturation effect was observed. We reasoned this

could be due to the fact that broadening decreases with increasing beam width (as discussed

above) so the broader a beam gets the less further broadening it experiences. It could also

be due to reaching a point after which any further broadening would mean the beam starts

to fade into background noise.

Where applicable, good agreement was found between the dependencies we observed and

previous studies, including analytical theory.

Combining the results of all the parameter scans, we then came up with an empirical

formula for the beam broadening, publishing a Python script for those who wish to use it

to predict beam broadening in a matter of microseconds rather than the hours required for

full-wave simulations.
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8.2 Future Work

8.2.1 Beam Broadening by Turbulence

Whilst the work in this thesis has progressed our understanding of the broadening effect

plasma turbulence has on microwave heating beams, there is still much work to be done.

One of the major outputs of the parameter scan work presented in Chapter 7 was a

workflow that could be repeated or expanded. Applying this workflow to a specific machine

could yield interesting and useful results. One of the main constraints with the original work

was the sheer volume of simulations to be completed. Each new parameter or each addi-

tional degree of complexity increased the computational time required massively. Instead,

constraining the parameter ranges with those relevant to a particular machine would reduce

this cost, while allowing for more complex situations to be investigated. In addition, now

that we know which dependencies are separable from each other, parameter scans in each

pairwise combination of parameters are no longer required. This could allow for the sim-

ulations to include a full pedestal density profile along with the fluctuation level envelope,

meaning pedestal width and steepness could also be investigated. It would also be of interest

to investigate the effect of launching the beam at an angle to the background field, though

to investigate the effect of toroidal injection angle would require the use of EMIT-3D which

would vastly increase the computational cost. Developments in machine learning approaches

could provide a helpful avenue for more easily and efficiently spanning a large parameter

space.

Any and all of this work could also be repeated for O-mode polarisation, as we only

considered X-mode. While the broadening effect is likely to be very similar, it would be

worth confirming that to be the case.

Furthermore, in our work so far, we have only considered the broadening effect on the

beam. We have not considered the scattering effect on the wave-vector components present in

the beam and the impact this will have on absorption and heating and current drive efficiency.

Whilst EMIT-2D and EMIT-3D are cold-plasma codes so cannot model the absorption of

the wave themselves, they could be used to simulate the propagation through turbulence to

the absorption region with the output used as input to codes which can model absorption

and current drive. Given that absorption and current drive are sensitive to the wave vector,

and we know that the scattering effect of turbulence will perturb the wave-vector make-up
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of the beam, this might have a significant impact on the heating and current drive efficiency

beyond the effect of broadening the deposition profile.

8.2.2 EMIT-3D Code Development

Whilst I spent some time developing the 3D version of the code, I did not end up using

it for any of my research projects. In addition to the work described in Chapter 4, I also

edited EMIT-3D to be truly 3D. Previously, all background parameters (plasma density and

background magnetic field) were set to be uniform in the third dimension, with only wave

quantities varying in all three dimensions. Whilst this is sufficient the vast majority of the

time, a full 3D code might be necessary in cases where the curvature of the magnetic field

in the toroidal direction is significant enough to become important.

In addition, I improved the parallelisation by making the code a hybrid of OpenMP and

MPI, though the speed-up from this change has not yet been investigated. This also makes

the file input and output system significantly easier to handle, as the input files only need to

be opened once from each node rather than each core and only one output file is produced

per node rather than one per core.

This development is still a work in progress, with some testing required before the code

is used for research projects.

These changes were primarily made for the sake of the future research projects described

here.

8.2.2.1 SAMI-2 Simulations

SAMI is a Synthetic Aperture Microwave Imaging diagnostic designed and built at the

University of York [94] followed by the upgraded SAMI-2 [95].

SAMI-2 has multiple dual polarisation antennas that operate in the frequency range 20

– 40 GHz. The diagnostic has no focusing optics, instead using the phase difference between

antennas to reconstruct a signal. It can operate in passive mode, detecting microwave emis-

sions from the plasma to reconstruct a 2D image, or it can operate in active mode as a 2D

Doppler back-scattering diagnostic.

In active mode, it can be used to calculate the magnetic pitch angle by finding the location

of maximal blue and red shift in the reflected signal. This, in turn, can be used to reconstruct

the edge current density profile which is crucial for understanding Edge Localised Modes.
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A current PhD student at the University of York is in the process of installing SAMI-2 on

MAST-U and analysing the data for this purpose.

Simulations will be key in the interpretation of diagnostic data. Plasma density and

magnetic field profiles can be constructed for simulations using data from other diagnostics

on MAST-U. A simulated SAMI-2 diagnostic can then be used to compare to experimental

results to help determine what signal we would expect to detect. This will help deter-

mine whether the diagnostic is directly measuring the magnetic pitch angle, for example, or

whether it is instead measuring a function of the magnetic pitch angle.

This will require some further code development, including two emitting antennas in

EMIT-3D rather than the single antenna currently present. These antennas will need to be

placed in the same physical locations that they appear on SAMI-2. It might also be beneficial

to include the option to output data only at the receiving antennas on SAMI-2 (rather than

across the whole antenna plane) for a true comparison to the diagnostic and to reduce data

storage requirements.

8.2.2.2 OX Mode Conversion Simulations for MAST-U and STEP

The project to install gyrotrons on MAST-U for the purpose of EBW heating and current

drive has already been discussed in Chapter 5. However, the work in that chapter focused

solely on a slab geometry rather than a real-world tokamak. Simulation of the OX mode

conversion process on MAST-U is ongoing. Furthermore, the UK prototype reactor STEP

(Spherical Tokamak for Energy Production) is also considering scenarios with significant

EBW heating and current drive contributions. This means understanding and being able to

accurately predict the efficiency of this process will be very important.

While ray-tracing tools can be very useful for this, there are areas where full-wave codes

are needed. For example, the reduction in OX mode conversion efficiency for steep density

gradients due to the SX-mode being able to tunnel back out the plasma, as observed in

Chapter 5, is an effect that can only be captured in a full-wave code. Another instance

where full-wave codes such as EMIT-3D will likely be required is when considering the effect

of edge turbulence on the mode conversion process.

Though the computational expense would be large, it would be beneficial to run full 3D

simulations for a couple of pre-optimised cases on MAST-U and STEP to investigate the

effect of edge turbulence on OX mode conversion efficiency. It would also be interesting to



137 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

investigate the effect on the XB mode conversion process, but this would require applying

warm plasma corrections to EMIT-3D perhaps using a similar approach to Köhn et al.

(2008) [96]. The results of these simulations could then be coupled to other tools such as ray

tracers followed by Fokker-Planck codes to investigate the overall effect of edge turbulence

on heating and current drive efficiency.
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Appendix A

Parametric Dependence Fit

Parameters

Here, we include the parameters from the fit as described in the Chapter 7. The results are

presented in a Table (A.1). In order to find the predicted broadening, a value of each f as

defined in Eq. (7.6) should be chosen. These are then multiplied together and multiplied by

C = 2.34 ± 0.07 before being added to 1 in order to find the factor by which the beam is

broadened, such that

Γ = 1 + Cf1f2f3f4f5f6. (A.1)
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[58] A. Köhn, J. Jacquot, M. W. Bongard, S. Gallian, E. T. Hinson, and F. A. Volpe. Full-

wave modeling of the o–x mode conversion in the pegasus toroidal experiment. Physics

of Plasmas, 18(8), 2011.

[59] M. W. Brookman, et al. Broadening of microwave heating beams in the diii-d tokamak

by edge turbulence. Nuclear Fusion, 63(4):044001, 2023.

[60] H.-J. Hartfuss and T. Geist. Fusion Plasma Diagnostics with mm-waves: an introduc-

tion. John Wiley & Sons, 2013.

http://dx.doi.org/10.1088/0741-3335/58/10/105008
https://ccfe.ukaea.uk/wp-content/uploads/2019/12/MAST-U_RP_2019_v1.pdf
https://ccfe.ukaea.uk/wp-content/uploads/2019/12/MAST-U_RP_2019_v1.pdf


LIST OF REFERENCES 146

[61] M. Bornatici, R. Cano, O. De Barbieri, and F. Engelmann. Electron cyclotron emission

and absorption in fusion plasmas. Nuclear Fusion, 23(9):1153, 1983.

[62] V. Erckmann and U. Gasparino. Electron cyclotron resonance heating and current drive

in toroidal fusion plasmas. Plasma physics and controlled fusion, 36(12):1869, 1994.

[63] M. Shimada, et al. Overview and summary. Nuclear Fusion, 47(6):S1, 2007.

[64] H. Zohm. Stabilization of neoclassical tearing modes by electron cyclotron current drive.

Physics of plasmas, 4(9):3433, 1997.

[65] C. C. Hegna and J. D. Callen. On the stabilization of neoclassical magnetohydrodynamic

tearing modes using localized current drive or heating. Physics of Plasmas, 4(8):2940,

1997.

[66] O. Sauter, M. A. Henderson, G. Ramponi, H. Zohm, and C. Zucca. On the requirements

to control neoclassical tearing modes in burning plasmas. Plasma Physics and Controlled

Fusion, 52(2):025002, 2010.

[67] E. Ott, B. Hui, and K. R. Chu. Theory of electron cyclotron resonance heating of

tokamak plasmas. The Physics of Fluids, 23(5):1031, 1980.

[68] B. Hui, E. Ott, P. Bonoli, and P. Guzdar. Scattering of electron cyclotron resonance

heating waves by density fluctuations in tokamak plasmas. Nuclear Fusion, 21(3):339,

1981.

[69] F. Hansen, J. Lynov, P. Michelsen, and H. Pécseli. Ordinary wave propagation in a

tokamak with random density fluctuations. Nuclear Fusion, 28(5):769, 1988.

[70] C. Tsironis, A. G. Peeters, H. Isliker, D. Strintzi, I. Chatziantonaki, and L. Vlahos.

Electron-cyclotron wave scattering by edge density fluctuations in ITER. Physics of

Plasmas, 16(11):112510, 2009.

[71] E. Poli, et al. On recent results in the modelling of neoclassical-tearing-mode stabiliza-

tion via electron cyclotron current drive and their impact on the design of the upper ec

launcher for iter. Nuclear Fusion, 55(1):013023, 2015.

http://dx.doi.org/10.1088/0741-3335/52/2/025002
http://dx.doi.org/10.1063/1.863085
http://dx.doi.org/10.1088/0029-5515/21/3/004
http://dx.doi.org/10.1088/0029-5515/28/5/002
http://dx.doi.org/10.1063/1.3264105
http://dx.doi.org/10.1088/0029-5515/55/1/013023


147 LIST OF REFERENCES
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