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Abstract

This thesis investigates the challenges associatedwith the use of Brain-Computer
Interface (BCI) technology for post-stroke upper limb rehabilitation. Although
BCI has gained increasing attention as a potential tool for stroke rehabilitation,
different BCI designs have been used in clinical trials, resulting in different clin-
ical outcomes. One of the main motivations of this research is to investigate the
differences in BCI designs, including differences in the settings and parameters
of the BCI system, in order to find the most effective BCI paradigms for upper
limb stroke rehabilitation.
Another challenge with the use of BCI for stroke rehabilitation is that a consider-
able number of stroke patients are dismissed from the study due to their inability
to use the BCI. Most of the clinical studies in BCI rehabilitation use the brain sig-
nals from the ipsilesional hemisphere, which may not be suitable for all patients,
as their ability to modulate these signals can be significantly affected depend-
ing on the lesion size and location. Therefore, this thesis also investigates the use
of contralesional hemisphere signals as an alternative approach to BCI rehabil-
itation.
Finally, the current BCI equipment is expensive, complex, and mainly used in a
hospital or lab. This research develops a portable BCI system for home-based
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rehabilitation, allowing patients to use the technology with remote supervision.
The proposed BCI system is evaluated through a clinical trial to assess its feasib-
ility and acceptability.
Altogether, by addressing the challenges associated with BCI-based rehabilita-
tion, this thesis contributes to the development of more effective and accessible
BCI-based rehabilitation methods.
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1
Thesis Background

1.1 Background
Stroke is the second leading cause of death worldwide, and it is correspond-

ingly one of the leading disabilities [1]. In the UK, there are more than 100,000
people experience their first stroke every year and there are over 1.2 million
stroke survivors across the country [2]. Stroke affects men and women equally
and causes significant social and economic burdens to society [3]. The annual
financial burden of the stroke in the UK is around £ 25.6 bn, and that amount is
predicted to increase significantly over the next 20 years [4, 5].
Therefore, there is a need to develop amore effective therapy in order to reduce
the disabling effects of stroke [5]. Typically, the arm movements of one side are
mostly controlled by the opposite side (contralateral hemisphere) of the brain
[6]. Thus, a stroke affecting the right side of the brain will cause weakness in left
limb and vice versa.
Around 65% of stroke survivors experience permanent disability at six months [7].
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It is believed that the neural plasticity is the underlying mechanism of improve-
ment in motor function outcome after stroke [8]. Hence, it is crucial to develop
more effective and efficient rehabilitation approaches that better induce the
neural plasticity and promote functional recovery.
Many studies have assessed different therapeutic interventions for post stroke
upper limb rehabilitation. They include constraint-induced movement therapy
(CIMT) [9], robot-assisted therapy [10], non-invasive neuro-stimulation [11], and
brain-computer interface (BCI) [12]. In CIMT, the patient is encouraged to per-
form specific tasks using his/her affected hand, while the unaffected hand is
constrained [13–15].
Indeed, the success of this approach showed that neuroplasticity andmotor re-
covery would be more influenced by relearning instead of the time after stroke
[16]. Despite success to some extent, CIMT is not suitable for stroke patients who
suffer from severe impairment since the residual movement of the affected limb
is essential for such rehabilitation approaches [6].
Recently, robot-assisted therapy has been widely used in stroke rehabilitation
[17]. Themain benefit of using the robot-assisted therapy is the ability to perform
high-intensity of repetition while less intervention is required from a therapist [18].
The intensity of the intervention in the robot-assisted therapy was reported being
an essential parameter of the upper limb motor function recovery for chronic
stroke patients. A randomized control trial conducted by [19] revealed that
the group of patients who received a higher intensity robot-assisted therapy
achieved significantlymoremotor function improvements compared to the stroke
patients who received a lower intensity robot-assisted therapy. Nevertheless,
a robot-assisted therapy provides passive movements which might reduce pa-
tients’ engagements and motivation in long-term.
Functional electrical stimulation (FES) is another intervention that has some evid-
ence to facilitate motor recovery after stroke [20]. FES generates muscle move-
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ments through tiny electrical pulses delivered using electrodes placed on the
patient’s skin near to the nerve [21]. FES can provide sensory and visual feed-
back in a repetitive manner, which are stated as essential elements of a suc-
cessful rehabilitation approach inducing motor function recovery after stroke
[7, 20]. Nonetheless, a rehabilitation intervention using FES is typically a passive
practice that does not take into account the patient’s volitional effort [22].
Mental practices such as motor imagery (MI) have been stated to be helpful for
recovery after stroke [23]. Functional imaging research indicated that during MI
as well as planning of movement the brain motor network is activated [24]. Thus,
such mental practices could be potentially used as a rehabilitation strategy to
trigger the motor network in the stroke patients [25]. However, unlike physical
practice, MI is not observable and it might be difficult for the patient and ther-
apist to verify if the mental task has been performed correctly and effectively.
Brain-computer interface (BCI) as a novel rehabilitation approach has attracted
a lot of attention. A BCI records, analyses and decodes brain signals and trans-
lates them to commands for communication and control [16]. BCI can poten-
tially enhance neuroplasticity in stroke patients by providing feedback about
the performed mental practices relevant to the impaired limb [26]. In other
words, BCI couples the performed motor mental practice (i.e. either MI or the
intention of the movement) with some sorts of feedback such as robotic-based
movements. The other existing rehabilitation therapies are typically unpaired,
since the performed tasks are not associated with the patients’ brain activities
[27]. On the other hand, BCI can be coupled with the existing therapies and
enhance their outcomes by providing an active rehabilitation.
A number of recent clinical trials examined the efficacy of BCI for stroke rehab-
ilitation and compared the outcomes with those obtained from other existing
therapies [28–31]. Interestingly, there is a recent meta-analysis study showing
the effectiveness of the BCI on upper extremity motor recovery [32]. Despite
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the encouraging results achieved up to now, several BCI designs reported dif-
ferent clinical outcomes. For example, clinical trials conducted by [29–31] and
[28] have found significant motor function improvements in BCI groups as com-
pared to other existing therapies. On contrast, the clinical trials in [33, 34] have
reported non-significant difference inmotor function improvements after the BCI
intervention when compared with the control groups. Furthermore, even for
those clinical studies that reported positive outcomes of the BCI group, a high
variance in BCI outcomes was observed among stroke patients, where some
patients achieved considerably larger motor function improvements as com-
pared to the rest of patients.
Another matter is that typically the clinical studies conduct a screening session
before the BCI intervention to evaluate the ability of post-stroke patients to use
BCI. Subsequently, those patients who could not achieve a BCI classification ac-
curacy above the chance level are excluded from the study [33, 35]. According
to [36], about 20% of stroke patients are excluded from BCI rehabilitation due to
their inability to operate the BCI.
Finally, medical care provided at home rather than in a hospital has grown in
popularity [37]. Stroke patients may also benefit from such developments. How-
ever, most of BCI systems are bulky, expensive, technically challenging, and diffi-
cult to set upwith a large number of electrodes to be placed on scalp. Because
of the hardware’s current limits, rehabilitation must currently take place in a hos-
pital or lab, which has its own set of challenges. For stroke survivors with limited
mobility, it may be difficult to make regular trips to the hospital for rehabilitation.
This restricts access for individuals who do not have access to hospitals, particu-
larly during a pandemic when hospital resources are scarce. Additionally, stroke
patients face a heightened risk of contracting a virus during these times.
Therefore, in order to improve the effectiveness of BCI for stroke rehabilitation,
it could be remarkably helpful to address the following challenges. The first
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challenge is improving the BCI design by investigating why some clinical studies
that used BCI for upper limbmotor function recovery were very successful, while
some others were not that much successful. The second challenge is to make
BCI rehabilitation applicable for more (preferably all) stroke patients. Thus, for
those patients who are initially excluded from BCI studies due to their inefficiency
to operate BCI, the BCI can be changed in a way to include them also. Finally,
there is a need to develop a novel BCI system for stroke rehabilitation that is
portable and can be used at the patient’s home with only remote supervision.

1.2 Motivation and research direction
Recently, BCI has garnered increasing attention as a potential tool for post-

stroke upper limb rehabilitation. However, clinical trials utilizingdifferent BCI designs
have reported varying outcomes [28, 35, 38], making it challenging to determ-
ine the most effective BCI paradigms. Variations in BCI settings and parameters,
such as mental practice methods, extracted brain features, feedback types,
and the hemisphere used for BCI operation, may contribute to these disparities.
The primary motivation of this research is to investigate the design differences of
BCI configurations and identify the optimal setups based on existing clinical trial
results. Additionally, this researchaims to evaluate the effectiveness of BCI for up-
per limb stroke rehabilitation in both the short and long term. Furthermore, many
studies screen stroke patients for their ability to use BCI, leading to the exclu-
sion of a significant percentage (approximately 20%-30%) who cannot achieve
classification accuracy above chance level. Most studies focus on using brain
signals from the ipsilesional hemisphere (the damaged hemisphere) to operate
BCI [28, 31, 35].
However, depending on lesion size and location, stroke patients may struggle
to modulate signals from the ipsilesional hemisphere effectively [39]. Recent
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findings suggest that using the contralesional hemisphere (unaffected side) for
BCI control may offer signals of better quality and consistency [40]. Despite this
potential advantage, there is currently no guideline for predicting which BCI ap-
proachwould bemore suitable for individual patients, especially those capable
of controlling both contralesional and ipsilesional BCIs.
Finally, while BCI-based rehabilitation shows promise in improving upper limbmo-
tor function post-stroke, its clinical application is hindered by lengthy setup and
calibration times ( 20 minutes) and the requirement for in-person visits [41–43].
Motivated by the potential benefits of BCI for stroke patients, this thesis aimed
to enhance the effectiveness of BCI-based upper limb stroke rehabilitation by
addressing these challenges. By doing so, it is hoped to develop advanced
BCI technologies capable of significantly enhancing motor function recovery in
stroke patients, potentially expanding its utility across a broader patient popu-
lation.

1.3 Aim and Objectives
The aim of this thesis is to improve the effectiveness of BCI design for upper

limb stroke rehabilitation. In order to achieve this overall aim, this thesis intend to
fulfill the following objectives, as shown in figure 1.1.
Objective 1: Conduct a comprehensive meta-analysis to answer the following
questions:

• How effective is BCI in short-term compared to conventional therapies in
terms of motor function improvements in upper-limb stroke rehabilitation?

• How effective is BCI in long-term (follow-up) compared to conventional
therapies in terms of motor function improvements in upper-limb stroke re-
habilitation?
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Objective 2: Evaluate the efficacy of different BCI settings in improving upper
limb motor functions of post-stroke patients by conducting a number of sub-
groups meta-analyses. It is particularly interested in answering the following
questions:

• What is the most effective mental practice used for BCI-rehabilitation?

• What are the most effective neural features for classification used for BCI-
rehabilitation?

• What is the most effective type of BCI feedback for BCI rehabilitation?

Therefore, it is anticipated that the findings from these objectives will offer valu-
able insights into different BCI designs, thus aiding in the enhancement of BCI
design for upcoming clinical trials.
Objective 3: Evaluate the ability of stroke patients to control BCI using either
ipsilesional hemisphere, contralesional or both hemisphere. To address this, a
large EEG dataset from 136 stroke patients who performed motor imagery of
their stroke-impaired hand will be analyzed. The datasets were originally collec-
ted as part of four clinical trials [44–47]. It is important to clarify that the data
collection was conducted by researchers who contributed to these clinical tri-
als. BCI features will be extracted from channels covering either the ipsilesional,
contralesional, or bilateral hemispheres. Offline BCI accuracy will be calculated
using 10x10-fold cross-validation to answer the following questions:

• Are the stroke patients able to meaningfully operate a BCI-based rehabil-
itation system using EEG signals from only the contralesional hemisphere?

• Is there a difference in the performance of stroke patients in controlling BCI
using EEG from the contralesional hemisphere when compared to using
EEG from the ipsilesional hemisphere or even from both hemispheres and
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how much is this different?

• Are there any relationships between the BCI performance and the pa-
tient’s demographic data including Fugl-Meyer assessment score and time
since stroke?
Therefore, it is hoped that the findings of the aforementioned objectives
can provide some insights into various BCI settings, thereby helping to im-
prove the BCI design when conducting clinical trial.

Objective 4: Design a home-based BCI-FES system that operates using only a
limited number of electrodes placed on the scalp. This could significantly de-
crease the cost and increase the convenience of the user. The patient will use
the EEG signals during attempted arm movements to operate a FES. The com-
mercially available FES, directed by the user thoughts will deliver the stimulation
to activate upper limbmuscles. Importantly, the entire delivery of BCI rehabilita-
tion will bemade over telecommunication networks and the internet. This allows
patients to interact with BCI therapist remotely and can be used to monitor the
rehabilitation remotely and troubleshoot the system if needed.
The following aims are aimed to be answered by conducting this clinical trial:

• To develop a home based BCI-FES system for rehabilitation of arm weak-
ness following stroke

• To assess if the patients can use BCI-FES system at home for post stroke
upper limb rehabilitation?

• To assess the patient’s perspective about use of BCI-FES device for home
based arm rehabilitation.
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Figure 1.1.: Four objectives are planned for achievement. Objective 4 is dependent upon fulfill-
ment of the objectives presented above them in the figure.
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1.4 Thesis Overview
• Chapter two: The literature review will provide an insight into stroke-related

disabilities, particularly upper extremity motor disabilities, and technolo-
gical interventions for upper extremity stroke rehabilitation. It will also out-
line the research conducted in the field of BCI to improve upper extremity
recovery.

• Chapter three: The first and second objectives were achieved by perform-
ing a meta-analysis to assess the efficacy of different BCI designs for up-
per extremity stroke rehabilitation. This chapter included 12 clinical trials
involving 298 patients. The effect sizes of pooled and individual studies
were assessed by computing Hedge’s g values with a 95% confidence in-
terval. Subgroup analyses were also performed to examine the impact
of different BCI designs on the treatment effect. The chapter concludes
with a discussion of the chapter’s findings and recommendations for future
clinical trials.

• Chapter four: The third objective was achieved by investigating the effect-
iveness of the BCI in detecting motor imagery of the affected hand from
contralesional hemisphere. A large EEG dataset from 136 stroke patients
who performed motor imagery of their stroke-impaired hand were ana-
lyzed. BCI features were extracted from channels covering either the ipsile-
sional, contralesional or bilateral hemisphere, and the offline BCI accuracy
was computed using 10x10-fold cross-validations. The chapter concluded
with a discussion of the chapter’s findings.

• Chapter five: The home-based BCI-FES stroke rehabilitation system is de-
signed to achieve the ultimate objective. There were seven participants
participated in the clinical study. The BCI-FES intervention took place in
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participants’ homes. The home session consisted of one practice session
and three rehabilitation sessions per week for three weeks. On average,
each session lasted for roughly 60 minutes, with 10 minutes spent on pre-
paration, 40 minutes on the intervention, and 10 minutes on an interview
about the user’s experience with the device and any adverse effects they
may have encountered. The chapter concludes with a discussion of the
chapter’s findings and recommendations for future clinical trials.

• Chapter six: The overall conclusions of the thesis are discussed, including
the achievement of the objectives and the significance of the progress
made in the field of BCI for upper limb stroke rehabilitation. Furthermore,
future works are outlined.

1.5 Key Contributions
• A systematic review and meta-analysis of the short- and long-term effects

of BCIs on upper limb rehabilitation after stroke; Additionally, the impact of
different BCI design characteristics on the effectiveness of upper extremity
rehabilitation after stroke was investigated. Chapter 3 presents this contri-
bution in more detail.

• Exploring the ability of stroke survivors in using the contralesional, ipsilesional
or both hemispheres to control a BCI. Additionally, the study examined the
effect of the patient’s demographic information, such as Fugl-Meyer as-
sessment scores and time since stroke, on the performance of BCI. Chapter
4 presents this contribution in more detail.

• Conducting a clinical trial to evaluate the acceptability and feasibility of
BCI telerehabilitation for chronic stroke survivors. Chapter 5 presents this
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contribution in more detail.

1.6 Publications Based on this Thesis
1. Published a journal paper based on ameta-analysis and systematic review

of the efficacy of brain-computer interfaces and the impact of their design
features on upper extremity rehabilitation after stroke.

Mansour S, Ang KK, Nair KP, Phra KS, ArvanehM: Efficacy of brain-computer
interface and the impact of its design characteristics on post stroke upper-
limb rehabilitation: a systematic review and meta-analysis of randomized
controlled trials. Clin EEG Neurosci 2022; 53: 79–90. PMID:33913351

2. Published a conference paper based on comparing the performance of
contralesional and Ipsilesional brain-computer interface in stroke survivors.

Mansour S, Giles J, Ang KK, Nair KP, Phua KS, Arvaneh M. Comparing the
Performance of Contralesional and Ipsilesional brain-computer interface
in stroke survivors. InNeuroergonomics Conference 2021 Proceedings 2021.
Neuroergonomics Conference.

3. Published a journal paper based on exploring the ability of stroke survivors
in using the contralesional Hemisphere to control a brain-computer inter-
face.

Mansour S, Giles J, Ang KK, Nair KPS, Phua KS, Arvaneh M. Exploring the
ability of stroke survivors in using the contralesional hemisphere to con-
trol a brain-computer interface. Sci Rep. 2022 Sep 28;12(1):16223. doi:
10.1038/s41598-022-20345-x. PMID: 36171400; PMCID: PMC951957

4. Mansour, Salem, et al. "A Clinical Trial Evaluating Feasibility and Acceptab-
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ility of a Brain-computer Interface for Telerehabilitation in Stroke Patients."
under review.

5. Chapter Book: ’Brain-Computer Interface for Rehabilitation of Upper Limb
Dysfunction Following Stroke’ Authors: Salem SL Mansour, Mahnaz Arve-
nah, and Krishnan Padmakumari Sivaraman Nair Status: Under editing at
Indian Association of Physical Medicine and Rehabilitation Publisher: Text-
book of Physical Medicine and Rehabilitation Publisher’s Location: Salubris
Medical Publisher, New Delhi, India
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2
Review of the Research Area

„ A part of this chapter is currently under

editing as a chapter book with the Indian

Association of Physical Medicine and

Rehabilitation

– Status: Under editing –

2.1 Stroke
In the UK, over 1.2 million people suffer from strokes [48]. A stroke is caused

by a sudden interruption of blood flow to a specific part of the brain, leading
to haemorrhage or ischaemia [49]. Haemorrhage occurs when blood vessels
in the brain burst, while ischaemia occurs when the blood supply to the brain is
blocked by a blood clot. Ischaemia is more common, affecting four out of five
individuals who experience stroke symptoms [50].
Following a stroke, patientsmay experience impairments such as loss of coordin-
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ation, weakness in one or more limbs, and spasticity [51]. About 65% of stroke
patients have permanent disability six months after onset, and rehabilitation in-
terventions are critical to reduce dependence on caregivers and improve qual-
ity of life [52]. Relearningmotor function skills is believed to be essential for motor
function recovery after a stroke, and this process is associated with neuroplas-
ticity [53]. Therefore, it is crucial to develop more effective and efficient rehab-
ilitation interventions that focus on maximizing functional regain and inducing
neuroplasticity. The impact of stroke on body movements, particularly which
side of the body is affected, is depicted in Figure 2.1. This figure illustrates how
stroke can influence motor functions on either the left or right side of the body.
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Figure 2.1.: Shows the impact of the stroke on the movement of the body. A stroke that affects
the right hemisphere will affect movement on the left side of the body, and vice
versa. The image adapted from [54]
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2.2 Neuroplastisity and its role in stroke recovery
The recovery after a stroke depends on the capability of the brain to recon-

struct itself through neuroplasticity [55]. Neuroplasticity happens when brain
cells attempt to restore, rebuild, and reorganize neural connections in response
to the damage imposed by a brain lesion [56]. Thus, the brain works around the
damaged cells and tries to build other neural pathways to compensate[57].
Currently, researchers believe that one of the best approaches to induce brain
plasticity is through repetitive training [58]. Hence, the repetition of specific
activities can promote the brain to generate new neural pathways and con-
nections in order to take over the skills of the damaged neurons [58].

2.3 The Involvement of the Contralesional Hemisphere
versus the Ipsilesional Hemisphere in the Process of
Stroke Recovery
It is widely agreed that, in a healthy subject, movement of the hand causes

an increase in the activation of the contralateral motor cortex and a decrease
in the activation of the ipsilateral motor cortex as compared to the resting state
[59]. Strokes commonly result in significant changes to the brain’s connections
and functionality [60].
Stroke patients with motor impairment, usually show increased motor cortex ex-
citability on the ipsilateral hemisphere (i.e. contralesional region commonly re-
ferring to the unaffected part of the brain) during movements of the affected
side [61]. In other words, post-stroke patients demonstrate an inter-hemispheric
asymmetry where the the contralesional hemisphere is not inhibited by ipsile-
sional hemisphere (i.e. the affected hemisphere of the brain) [62]. Additional
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details, along with a figure, can be found in Appendix B. More in-depth details
can be found in Chapter 4.
Understanding the neural mechanisms underlyingmotor recovery might be cru-
cial for developing effective rehabilitation strategies. In recent years, research
has begun to focus on the role of the ipsilesional and contralesional hemispheres
in motor recovery after stroke [63].
It is well established that the ipsilesional hemisphere is critical for the recovery of
motor function after a stroke [64]. However, recent research has shown that the
contralesional hemisphere also plays a crucial role in motor recovery [65].
Interestingly, neural plasticity can occur in either the ipsilesional or contralesional
hemisphere during recovery[40]. The ipsilesional hemispheric reorganization is
typically considered to play a critical role in motor function recovery [28, 38].
However, the contralesional hemisphere can also contribute in motor recovery
where the damage on the ipsilesional hemisphere is more severe [66].
Importantly, the ability to modulate ipsilesional brain activity decreases with in-
creasing cortical damage [67]. Moreover, our recent study involving 136 stroke
patients showed that motor-related brain signals can also be detected in the
contralesional hemisphere of patients using EEG [68].
Thus, it may be especially crucial for rehabilitation intervention to concentrate
on the contralesional hemisphere if the patients could not modulate the brain
signal in the ipsilesional hemisphere, although the exact role of contralesional
hemisphere in the patient’s recovery is not well clear yet.
Further research is needed to fully understand the neural mechanisms under-
lying their contribution to post-stroke motor recovery. This information can be
used to develop rehabilitation strategies that optimize motor recovery in stroke
survivors.
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2.4 Overview of a number of existing and emerging stroke
rehabilitation approaches
The objective of rehabilitation intervention after a stroke is to help the patient

recover their normal motor function and improve their quality of life. To achieve
this goal, various rehabilitation methods can be employed.

2.4.1 Constraint-induced movement therapy

As shown in figure 2.2, constraint-induced movement therapy (CIMT) is a thera-
peutic approach that encourages the stroke patients to perform the function-
ally oriented activities using the affected upper limbs (arm and hand), while
constrained the unaffected arm and hand [13]. It has been indicated that the
repetitive practice using the affected upper limb, while the unaffected one is
restricted, may better induce the neural plasticity [69]. Moreover, recent studies
reported that strategies such as CIMT could be valuable approaches to recover
motor function in chronic stroke patients [14].
However, CIMT usually requires one-to-one interaction between the patient and
a trained therapist that helps and encourages the patient to perform specific
tasks. CIMT is also not suitable for severe stroke patients, since the residual phys-
ical movement is required for such a rehabilitation intervention [6].

2.4.2 Robot assisted therapy

A repetitive exercise of specific functional training is reported to be beneficial
for motor function improvement after stroke [71]. Because of this requirement,
stroke rehabilitation requires additional therapist intervention. The most signific-
ant benefit of using robot devices in stroke rehabilitation is the ability to carry

2.4 Overview of a number of existing and emerging stroke rehabilita-
tion approaches
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Figure 2.2.: A stroke patient performing CIMT. The unaffected hand was constraint and then the
stroke patient was encouraged to use the affected arm for drinking a glass of water
as a regular exercise of daily living. The image adapted from [70]

high-intensity training with less therapist intervention.
There have been many robot-assisted therapy devices presented to facilitate
upper limb rehabilitation for post-stroke patients. The next section presents the
MIT-MANUS robot because it has been extensively tested for the upper limb of
stroke patients [72] .

MIT-MANUS robot

The MIT-MANUS robot was firstly introduced by Hogan and co-workers to explore
whether repetitive tasks using a robotic-assisted therapy can induce improve-
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ment of the arm function in hemiparetic post-stroke patients [73]. As shown in
figure 2.3, the MIT-Manus robot is a wearable robot that has been extensively
studied for providing individualized rehabilitation after stroke. The MIT-MANUS
robot enables a post-stroke patient to move the affected arm in the horizontal
plane.
During the intervention, the patient is instructed to reach toward target across
the computer screen. If needed, the robot facilitates the movement of the af-
fected arm by providing assistive forces based on the patient’s speed and the
direction of the movement. Although rehabilitation with the MIT-Manus robot
can be potentially effective [74, 75].
However, the movement generated by the MIT-MANUS robot can turn to be
a completely passive movement if the patient does not get engaged in gen-
erating voluntary attempt. As the system does not force the user to generate
voluntary attempts, the patient’s motivationmay reduce over time, which could
lead to a decrease in the potential benefits of the therapy. Studies have shown
that patient motivation and engagement are crucial for successful rehabilita-
tion outcomes[76, 77].

2.4 Overview of a number of existing and emerging stroke rehabilita-
tion approaches
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Figure 2.3.: A stroke patient is using MIT-MANUS robot for upper limb stroke rehabilitation . The
image adapted from [78]

2.4.3 Functional electrical stimulation (FES)

Functional electrical stimulation (FES) is one of the rehabilitation interventions
that has been developed to promote motor function recovery following stroke.
FES uses small voltage pulses through electrodes placed on the patient’s skin
near the nerve to generate muscle movements artificially as shown in figure 2.4.
FES can be used to generate hand and arm functions for grasping and reaching
in post-stroke patients [79, 80].
Some clinical studies have reported that FES has a positive influence on the mo-
tor function recovery after stroke [81, 82]. Additionally, FES could reduce spasti-
city, strengthen paralyzedmuscles and improve the range of movement in post-
stroke patients [83, 84].
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In particular, it has been reported that the influences of FES might be maxim-
ized by generating muscle activity and finally to visualize the movement of the
affected limb [84]. In spite of the encouraging results that have been reported
from the former studies, there is insufficient evidence to confirm that FES is ef-
fective for patients with chronic stroke [85]. In addition to that, the movement
of an affected hand by FES is passive because it is not paired with the patient’s
intentional attempt [86].

Figure 2.4.: This figure shows a stroke patient using FES to move the affected hand by activating
the muscles using electrodes. The image adapted from [87]

2.5 Brain- computer interface as a new approach for
stroke rehabilitation
BCI is a hardware-software communication device that measures brain activ-

ities andconverts them into commands to control an external device in real-time
[88, 89]. BCI can be used as a rehabilitation tool by pairing motor-related men-
tal (i.e the imagination or the attempt to move the affected hand) and physical
practices to promote neuroplasticity [26, 90].

2.5 Brain- computer interface as a new approach for stroke rehabilita-
tion

23



2.5.1 Components of BCI for upper limb stroke rehabilitation

A BCI system for stroke rehabilitation typically consists of six stages as shown in
Figure 2.5.

1. Signal acquisition:A number of modalities for acquisition of brain signals
are suitable for the BCI in stroke rehabilitation, namely electroencephalo-
graphy (EEG), functional near-infrared spectroscopy (fNIRS), and magne-
toencephalography (MEG). Due to its lower cost, higher temporal resolu-
tion, and portability, EEG is themost commonly usedmodality in BCI-based
stroke rehabilitation [91].

2. Mental practice: : In the motor imagery based BCI studies, the patients
are instructed to imagine moving the impaired hand without any physical
movements, whereas in the intention of the movement based BCI studies,
the patients attempt to perform physical movement of the impaired hand
if possible.
Themotor imagery or the intention of themovement produces brainwaves,
called movement-related cortical potentials (MRCPs) and event-related
desynchronization/synchronization (ERD/ERS) [92, 93].
MRCP and ERD/ERS are distinct movement-related brain patterns. MRCP is
characterized as slow changes of the brain signals in the time domain. ERD
and ERS are, respectively, described as a suppression and an enhance-
ment in thepower of the sensorimotor rhythms [94]. For example, thepower
of mu and beta rhythm (8-30 Hz) recorded over the sensorimotor regions
has been shown to decrease before the motor task, reaches its minimum
during themovement execution (ERD), and then recovers sharply after the
end of the motor task (ERS). In the application of upper-limb stroke rehab-
ilitation, the BCI is used to detect either MRCP or ERD/ERS in brain signals
when the patient performs the relevant mental practice.
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Figure 2.5.: Components of brain–computer interface commonly used for upper-limb stroke re-
habilitation. Abbreviations: CSP, common spatial patterns; EEG, electroencephalo-
graphy; FBCSP, filter bank common spatial patterns; fNIRS, functional near-infrared
spectroscopy; IM, intention of movement; MI, motor imagery; MEG, magnetoen-
cephalography.

3. Preprossessing: The recorded brain signals can be contaminated with arti-
facts caused by blinking, muscle activity, and other sources of noise. In the
preprocessing stage, different spectral, temporal, and spatial algorithms
areappliedon themeasuredbrain signals to reduce theseartifacts. Among
different preprocessing algorithms, the threshold-based artifact rejection,
and 8 to 30 Hz band-pass filtering have been widely used in many BCI-
based stroke rehabilitation studies [95].

4. Feature extraction: : In order to accurately detectmovement-relatedbrain
patterns, it is important to extract informative, non-redundant, and dis-
tinctive features from preprocessed brain signals. In previous studies on
BCI-based stroke rehabilitation, researchers have used one of three types
of features: common spatial patterns (CSP), filter bank CSP (FBCSP), and
band power features [29–31, 33–35, 38, 96].
CSP is a feature extraction algorithm that assigns different weights to dif-

2.5 Brain- computer interface as a new approach for stroke rehabilita-
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ferent EEG channels, maximizing the weighted sum of the powers of brain
signals for one class and minimizing it for the other class [97]. The CSP fea-
tures are typically the weighted sum of the powers of brain signals within an
8 to 30 Hz band-pass filter. An alternativemethod is the Filter BankCommon
Spatial Patterns (FBCSP) approach, which involves filtering a bank of brain
signals through various narrow band-pass filters to extract multiple CSP fea-
tures across nine frequency bands ranging from 4-8 Hz to 36-40 Hz [98]. This
technique has shown to be effective in improving classification accuracy
compared to CSP alone [99].
Finally, band power features, specifically from alpha (8–12 Hz) and beta
(13–30 Hz) frequency bands in EEG signals, have been utilized in previous
studies on BCI-based stroke rehabilitation [29–31, 38]. These features re-
flect distinct cortical activities during motor imagery and execution, mak-
ing them valuable for classifying brain states relevant to stroke rehabilitation
using BCIs [100].

5. Classification: The extracted features are fed toaclassifier to detectwhether
or not the recorded brain signals prominently represent the movement-
related brain patterns associated with the performed mental practice. If
the movement-related brain patterns are detected, a control signal is sent
to an external device to provide the feedback.

6. Feedback: The patient is presented with feedback indicating whether the
classificationalgorithmaccurately interpreted theirmotor intention/imagination.
The commonly used type of BCI feedback in stroke rehabilitation is kin-
esthetic, whereby following the detection of the movement-related brain
patterns, the impaired hand is moved along a predefined trajectory. For
instance, Ang et al [36] and Biasiucci et al [31] respectively, used an MIT-
Manus robot and FES in order to facilitate the movement of the impaired
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hand as the BCI feedback (see Figure 2.6).
To enhance neuroplasticity in the post-stroke upper-limb rehabilitation, the
BCI links the movement-related brain patterns (generated during either
motor imagery, or the intention of the movement of the affected arm) with
feedback such as robotic-based movements, neuromuscular stimulation,
virtual reality etc [27]. In other words, the BCI is coupled with the existing
therapies to enhance their efficacy by making the rehabilitation more act-
ive [101].

Figure 2.6.: The user sits in front of the desktop and wears an EEG headset, which includes a
display with visual cues to guide the user. The EEG headset records brain activities,
and the BCI analyses these activities in real time. Once the BCI system identifies the
intended hand movement, the FES is triggered to initiate hand movement.

Typically, before using the BCI system, a calibration session needs to be con-

2.5 Brain- computer interface as a new approach for stroke rehabilita-
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ducted. This session is required to collect subject specific brain signals for train-
ing the BCI classifier, where a number of repetitive visual cues are presented to
the patient. According to the presented visual cue, the patient is expected to
either rest or perform the desired mental practice related to the impaired limb
as shown in Figure 2.7.

Figure 2.7.: The figure shows an example of the timing of one trial in a BCI calibration session,
instructing the user to perform a mental task of the left/right, hand or resting state.

2.5.2 Advantages of BCI as a potential rehabilitation approach

The potential BCI as a rehabilitation approach for individuals with stroke has
gained growing attention. There are several advantages that BCI offer as a
rehabilitation tool, including:

• By using BCI, stroke patients can learn to control a computer or robotic
device with their brain signals. This promotes the activation of the dam-
agedmotor cortex and the strengthening of neural connections [102]. The
repetitive training and feedback provided by BCI can lead to brain plasti-
city and functional recovery in stroke patients [103]

• BCI can be used without invasive procedures, making them a safer and
less painful option for stroke patients

• Studies have shown that, compared to other therapies, BCI can help chronic
stroke patients achieve significant improvement in motor function, even
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many years after the stroke [104].

• BCI can be used in remote or resource-limited settings, making rehabilita-
tion more accessible to a wider population [37].

• BCI can provide real-time feedback to patients, allowing them to see their
progress and encouraging them to continue with therapy.

• BCI technology can be applied in the initial phases of stroke rehabilitation,
resulting in more favorable functional outcomes when compared to con-
ventional therapy [105].

2.6 Studies using BCI for stroke rehabilitation
This section will discuss the clinical studies that used BCI for stroke rehabilita-

tion. The clinical studies were categorized into randomized clinical trials (RCTs)
or single clinical studies (i.e. study without a control group). In RCTs, stroke pa-
tients were randomly allocated to either receive BCI intervention or belong to
the control group, which received either sham BCI or traditional rehabilitation.

2.6.1 Randomized clinical trails (RCTs)

Several studies have explored the use of BCI for stroke rehabilitation. For in-
stance, a randomized clinical trial (RCT) conducted by [28] demonstrated sig-
nificant improvement in motor function among 12 chronic stroke patients who
underwent 20 sessions of ipsilesional BCI training to activate hand and arm or-
thoses. This improvement was compared to a control group of 12 patients who
received sham BCI training, where orthosis movement was random and not re-
lated to the stroke patients’ ipsilesional signals. A RCT reported by [106] showed
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that 10 stroke patients who performed fNIRS-based MI BCI coupled with visual
feedback achieved significantly greater gain in motor function compared to
the sham BCI group. A later RCT conducted by [35]compared changes in mo-
tor function among 11 chronic stroke patients who underwent MI BCI coupled
with robot-assisted therapy (136 repetitions per session) with those of 15 chronic
stroke patients who received conventional robot-assisted therapy (1040 repe-
titions per session). The study reported that 60% of chronic stroke patients in
the MI-based BCI group achieved significantly greater improvements in motor
function compared to the control group who underwent more repetitive and
intensive conventional robot-assisted therapy. However, the study did not find
statistically significant differences between the two groups overall.

The study presented in [29] aimed to explore the impact of combining Action
Observation Training (AOT) with BCI to trigger FES on motor function recovery of
the upper limb in stroke patients. Thirty stroke patients were randomly divided
into two groups: an experimental group (n=15) received AOT combined with
BCI-FES, while a control group (n=15) only received conventional therapy. The
study found that the experimental group showed significantly greater improve-
ment in motor function compared to the control group.
The study in [33] investigated the effect of transcranial direct current stimulation
(tDCS) on a BCI system combined with the MIT-MANUS robot. 19 chronic stroke
patients were randomly divided into two groups, a BCI group (n=10) and a con-
trol group (n=9). In the BCI group, brain stimulation with tDCS was applied for
20 minutes, while in the control group, sham tDCS was applied for only the first
30 seconds, followed by one hour of MI-based BCI with robotic feedback for
both groups. After two weeks of intervention, no significant difference in motor
function improvement was observed.
Another RCT study conducted by [35] investigated the effectiveness of MI BCI
coupled with a haptic knob in upper limb stroke rehabilitation. Twenty-one
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chronic stroke patients were randomly allocated to BCI with the haptic knob
(n=6 ), haptic knob alone (n=7 ) or standard arm therapy groups (n=8). The
study revealed that the BCI group gained significantly more motor function im-
provement as compared to the standard arm therapy group.
The study by [30] explored the benefit of combining BCI with FES. 18 chronic
stroke patients were randomly divided into two groups, a BCI group (n=8) re-
ceived BCI combined with FES, while a sham BCI group (n=8) received sham
feedback, where the FES activation was not related to the patient’s brain activ-
ity. Both groups underwent an equal amount of FES, with one hour of twoweekly
sessions for five weeks. The results showed that the motor function in the BCI
group significantly improved.
Another RCT conducted by [96] studied the effectiveness of MI BCI coupled
with FES for the patients with severe upper limb impairment (n=8), compared to
patients in control group who received only FES (n=7). The BCI group achieved
a significant motor function improvement of the upper limbs . Furthermore, the
event-related desynchronization (ERD) of the ipsilesional hemisphere in the BCI
group was significantly induced as compared to the preintervention.
RCT conducted by [38] studied whether stroke patients with severe upper limb
motor function could be get a benefit from ten BCI training sessions. Stroke pa-
tients in the BCI group (n = 36) performed MI BCI to trigger hand exoskeleton
strapped to their affected hand, and the movement of hand exoskeleton. In a
sham BCI group (n = 11), the movement of hand exoskeleton was not related
to the patient’s brain activity. The difference between two groups was not stat-
istically significant.
Authors in [31] recently published the results of their RCT, reporting that the 14
chronic stroke patients who received EEG-based BCI coupledwith FES achieved
significantly more motor function improvements than the 13 chronic stroke pa-
tients in the sham BCI group. Moreover, the BCI group showed an increase in

2.6 Studies using BCI for stroke rehabilitation 31



the functional connectivity between the motor regions in the ipsilesional hemi-
sphere which was significantly correlated with the motor function improvement.
In summary, these randomized controlled trials reported the efficacy of BCIs
comparedwith other therapies for upper extremity stroke rehabilitation. Although
the reported results are encouraging, significant differences exist in terms of mo-
tor recovery outcomes following stroke. Further research is needed to investig-
ate the effectiveness of different BCI designs for upper extremity rehabilitation
after stroke.

2.6.2 Single group clinical trails

As one of the first clinical trials, [107] found that stroke patients could success-
fully learn to control their ipsilesional sensorimotor rhythms using BCI. The clinical
study presented by [108]measured the EEGduringmotor imagery in 29 patients.
The study found that greater impairment was associated with greater ERD in the
contralesional hemisphere. The study in [109] found that intention of movement,
as defined by the attenuation in mu-rhythm (8-13 Hz), was detectable in post-
stroke patients, and this signal was successfully used in 4 of 6 stroke patients to
control a BCI coupled with FES. However, these clinical studies did not showmo-
tor function improvement as a result of BCI based rehabilitation.
These outcomes highlight the technical feasibility and potential of BCIs to de-
tect and utilize brain signals associated with motor imagery in stroke patients.
The study by [110] investigated the effectiveness of physical practice followed
by mental practice using BCI coupled with hand exoskeleton in 4 chronic stroke
patients. After six weeks (2 to 3 sessions/week) of the BCI intervention, the pa-
tients showed improvement in motor function recovery, the mood, increased
motivation and decreased fatigue. The improvement in BCI performance was
correlated with motor function recovery.
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A recent clinical study conducted by [43] aimed to investigate the efficacy of
combining BCI with FES in improving motor function after stroke. Fifty-one stroke
patients participated in this study and underwent 25 BCI therapy sessions. The
results demonstrated a significant improvement in the motor function of the af-
fected arm, as well as a reduction in wrist and finger spasticity following the
intervention.
In summary, these clinical studies highlight the potential of BCI technology to
enhance functional outcomes and motivate patients during stroke rehabilita-
tion. However, further research is needed to comprehensively understand both
the advantages and limitations of implementing BCI in this context, as will be
discussed in the next section.

2.7 Limitations and possible research directions of current
BCI for stroke rehabilitation
Despite the promising results, the use of BCI technology for stroke rehabilita-

tion is still in the early stages of development and study. There are several un-
answered questions and further efforts are needed to improve the feasibility,
acceptability, reliability, and validity of BCI for this application. This may include
(but is not limited to):

• Conducting more RCT studies with a large number of patients to increase
the validity of the BCI for upper limb stroke rehabilitation.

• It would bedesirable to investigate the integration between FES andhand/arm
orthosis to assess if a BCI that controls both of them can result in more sig-
nificant motor function improvement [31].

• Improving the design of the BCI to make it suitable also for those patients

2.7 Limitations and possible research directions of current BCI for stroke
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who were excluded from previous studies due to their inability to operate
the BCI. Table 2.1 shows the percentage of patients who have been ex-
cluded from the previous clinical trial due to their inability to use BCI.

• Designing lighter and inexpensive BCI devices to increase the feasibility
and acceptability of the technology.

• Design a remote BCI system for convenient, personalized, and adaptive
therapy sessions from the comfort of home. Therefore, the cost of rehabilit-
ation will be lower and travel will not be required, as opposed to in-person
therapy.

Table 2.1.: The percentage of the excluded patients due to their inability to use BCI. CA refers to
classification accuracy and np refers to number of patient

Study np Not meet BCI CA % Excluded
[35] 23 6 26 %
[34] 30 11 36%
[33] 22 5 23%

• Different BCI designs, used in the existing clinical trials, reported different
clinical outcomes. The mechanism and efficiency of BCI for stroke rehab-
ilitation generally remains unclear, and it could be hard to conclude the
more effective BCI paradigms for upper limb stroke rehabilitation.Therefore,
it might be desirable to conduct a comprehensive meta-analysis to evalu-
ate different aspects of the BCI design.
In this Line, the next chapter of this thesis will present a comprehensive
meta-analysis to evaluate the short-term and long-term efficacy of BCI for
the hemiparetic stroke rehabilitation, as well as sub-groupsmeta-analysis to
evaluate the efficacy of different aspects of the BCI design according to
the type of performed mental tasks, applied neural classification features,
and feedback mechanism given to patient.
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3.1 Chapter Introduction
Recently, a number of randomized controlled trials (RCTs) have investigated

the efficacy of the BCI for post stroke upper-limb rehabilitation, and compared
the outcomes with those obtained from other existing therapies [28, 31, 112].
Despite the encouraging results in many of these RCTs, there is a significant vari-
ance in their reported BCI outcomes [31, 33, 35, 112]. This issue might be due to
the heterogeneity among their BCI study designs [113], including differences in
the performed mental practice, the extracted brain features, the type of feed-
back given to the patients, and the level of stroke chronicity in the participants.
Ameta-analysis conducted byCervera et al. reported positive effects of the BCI
on upper-limb stroke rehabilitation in a short-term [114]. Another meta-analysis
conducted by Bai et al. considered the long-term efficacy of the BCI on upper-
limb stroke rehabilitation [103].
However, given the considerable heterogeneity in the motor function improve-
ment among the BCI RCTs, there is a need for an extensive meta-analysis to as-
sess the impact of different BCI designs on the treatment efficacy. This chapter
conducted a systematic review and meta-analysis of the short-term and long-
term effects of BCI on upper-limb rehabilitation after stroke.
Importantly, we also study the impact of different BCI design characteristics
on the efficacy of the post-stroke upper-limb rehabilitation. The findings of this
meta-analysis aim to improve the future clinical trials by providing evidence-
based information about different designs of the BCI used for rehabilitation.

3.2 Method
This chapter was conducted in accordance with the PRISMA check list for

systematic review and meta-analysis [115]. PRISMA aims to help researchers ef-
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fectively report the findings of systematic reviews and meta-analyses [116]. The
PRISMA checklist contains 27 items, which should be reported to ensure trans-
parency and completeness of the report. The 27 items are divided into 7 cat-
egories, including title, abstract, introduction, methods, results, discussion and
funding. Using the keywords provided in Supplemental Appendix Table A.1, we
systematically searched PubMed, PEDro and Cochrane Library for the studies
that published up until 25 April 2020. Appendix Table A.1 provides the detailed
electronic search strategy that we used. The identified studies were included in
this meta-analysis only if they met the following inclusion criteria:

1. The study is written in English;

2. The study design is a randomized controlled trial of upper-limb BCI rehabil-
itation, in which the two groups (i.e. the experimental group and the con-
trol) are all stroke patients;

3. The study reported the results of upper limb Fugl-Mayer Assessment (FMA-
UE) before and after the intervention; We chose the Fugl-Meyer Assess-
ment, because it is the most commonly used outcome measure in the
upper-limb BCI rehabilitation studies [117]. The FMA-UE is widely used to
evaluate and measure the upper-limb motor function impairment in pa-
tients after the stroke [118].

The FMA-UE score is mainly in the range of a minimum 0 (hemiplegia) to a max-
imum of 66 (normal motor function). We excluded studies without a control
group, studies with healthy subjects, studies with a feedback mechanism not
combined with BCI or studies without Fugl-Meyer Assessment (e.g. to assess the
changes in cortical activity ).
We extracted the following details from each included studies: surname of the
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first author, year of the publication, aim of the study, brain imaging modality,
number of participants, phase of the stroke (i.e. chronic or sub-acute), length
and frequencyof the interventions, outcomemeasures, typeof performedmen-
tal practice during the BCI intervention (i.e. motor imagery or intention of move-
ment), BCI feature extraction method, type of feedback, and length of follow-
up assessments after the intervention. The corresponding investigators were
contacted if the included studies lacked some details.
The Physiotherapy Evidence-Based Database (PEDro) scale is commonly used
to measure the methodological quality of a clinical trial by considering 11 cri-
teria (i.e. eligibility criteria Specified, randomly allocated, concealedallocation,
baseline comparability, blinded subjects, blinded therapist, blinded assessor,
Adequate follow-up , intention to treat analysis, between-group statistical com-
parison for at least one key outcome, point and variability measures) [119].
The PEDro score is a score ranging from 0 to 10, which represents the total num-
ber of criteria that have been satisfied in the clinical trial, excluding the eligibility
criteria. A clinical trial with a score from 6 to 10 is considered as high quality, 4
to 5 as fair quality and less than or equal to 3 as poor quality. In this study, two
reviewers independently applied the PEDro scale to assess the methodological
quality of the included studies. In the case of disagreement, a third reviewer
was consulted and an agreement reached.
Weconducted themeta-analysis using theComprehensiveMeta-Analysis (CMA)
version 3.0 software [120]. CMA is a tool to perform meta-analysis, create the
forest plot, calculate effect sizes, and much more. We calculated the effect
sizes for the pooled and individual studies using Hedge’s equation with correc-
tion for small studies [121].
Due to considerable variations in characteristics of the included studies, random-
effects models were used to estimate the pooled effect sizes and their 95% con-
fidence intervals (CIs) (Additional details can be found in Appendix A.1). In addi-
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tion, we performed subgroup analyses to investigate the impact of different BCI
design characteristics (i.e. performed mental practice, extracted BCI features,
typeof the given BCI feedbackand the strokephase) on treatment efficacy. We
used the Higgins’ I2 statistic to assess heterogeneity across the included studies
[122].
Generally,I2 greater than 50% could be considered as substantial heterogeneity.
Finally, the probability of publication bias in our meta-analysis was assessed by
plotting the funnel plot and applying Egger’s regression test [123].

3.3 Results

3.3.1 Literature search and characteristics of the selected studies

Figure 3.1 shows the flowchart of the search strategy and the selection steps
taken in this review. We initially identified 585 articles, 12 of which met the inclu-
sion criteria. The study by Ang et al. [34] had two control groups, one control
group used the standard arm therapy, and the second control group used the
haptic knob. Thus, we combined the two control groups into a single control
group as recommended by the Cochrane handbook for systematic reviews of
interventions [124]. Table 3.1 provides the main characteristics of the included
studies.
Appendix Table A.2 presents the PEDro scores for all of the twelve selected stud-
ies. It can be seen that according to the PEDro scores, none of the selected
studies are considered to have lowmethodological quality. Appendix Table A.3
presents the mean and standard deviation of the changes in FMA-UE scores
between the pre- and post-intervention in the selected studies, while the Ap-
pendix Table A.4 shows the mean and standard deviation of the changes in
FMA-UE scores between the pre-intervention and the follow-up session.
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Figure 3.1.: Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow-
chart illustrating the process for the selection of the included studies in this meta-
analysis.

3.3.2 Short-term and long-term efficacy of BCI

The pooled results showed that, according to the short-term assessments im-
mediately after finishing the intervention, the BCI is significantly more effective
than the control interventions in post-stroke upper-limb rehabilitation (Hedge’s
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g= 0.73; P=0.006) (Figure 3.2 A). In nine out of twelve studies, the BCI resulted in
higher improvements in FMA-UE, compared to the control interventions ( Ang et
al. [125], Biasiucci et al.[31], Frolov et al. [38], Kim et al. [29], Li et al. [96], Mihara
et al. [106], Pichiorri et al. [126], Ramous et al. [28] and Wu et al. [112] ). The
highest BCI intervention effect size was reported by Wu et al. [112] (Hedge’s g
=3.48; P<0.001). In six studies, namely Biasiucci et al. [31], Kim et al. [29], Mihara
et al. [106], Pichiorri et al. [126], Ramos et al. [28] and Wu et al. [112], the effect
size was significantly favoring BCI. There was substantial heterogeneity among
the included studies (I2 =77.12%; Q= 48.077; df=11; P= 0.000). There is no evid-
ence that the short-term effects of BCI are subject to publication bias. As shown
in Appendix Figure A.1, the included studies have a relatively symmetric distri-
bution across the overall effect size in the funnel plot. Moreover, the P value for
Egger’s test is not significant (p= 0.3795).
The overall effect size, shown in Figure 3.2 B, indicates the effectiveness of the
BCI intervention in long-term (Hedge’s g=0.33; P=0.041) with no heterogeneity
among the included studies (I2= 0.000%; Q=5.839; df= 6; P= 0.442). Specifically,
in five out of seven studies, the FMA-UE changes between the follow-up session
and the pre-intervention was in favor of the BCI group.
The funnel plot of the long-term effect of BCI appears to be symmetric (see Ap-
pendix Figure A.2), and there is no evidence of publication using the Egger’s
test (P = 0.541).

3.3.3 Chronic versus sub-acute

Eight studies recruited stroke patients in the chronic phase (>6 months from
stroke onset) [28, 29, 31, 33, 35, 38, 125, 127], and the remaining four studies
recruited stroke patients in the sub-acute phase (1–6 months from stroke onset)

42 Efficacy of Brain–Computer Interface and the Impact of Its Design

Characteristics on Poststroke Upper-limb Rehabilitation: A Systematic Review and
Meta-analysis of Randomized Controlled Trials



Figure 3.2.: Evaluating effects of brain–computer interface, compared to control interventions,
in improving upper-limb motor functions after stroke: (A) assessed immediately after
finishing the intervention and (B) assessed in the follow-up session a number of weeks
after finishing the intervention.

[96, 106, 112, 126]. The pooled effect size of BCI was higher for the patients in the
sub-acute phase than those in the chronic group (Hedge’s g = 1.45; P= 0.008
versus Hedge’s g =0.41; P= 0.138) (Figure 3.3 A).
The observed effect sizes tended to be significantly different between the two
subgroups (P =0.09).
Furthermore, still a substantial heterogeneity was observed between the studies
in sub-acute phase (I2 = 80.17%; Q= 15.128; df=3; P = 0.002) as well as in the
chronic phase (I2 = 71.634%; Q= 24.577; df= 7; P = 0.001).
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3.3.4 Motor imagery (MI) versus intention of movement (IM)

In the included studies, the performed BCI mental practices were different (Fig-
ure 3.3 B). Nine studies instructed the BCI group to imagine themovement of the
affected hand [33, 35, 38, 96, 106, 112, 125–127], whereas three studies asked
the BCI group to attempt moving the affected hand [28, 29, 31].
The effect size on motor function recovery was higher for the studies using the
intention of movement (Hedge’s g= 1.21; P< 0.001) compared with those us-
ing the motor imagery (Hedge’s g= 0.55; P =0.089). However, the difference
between the two subgroups was not statistically significant (P =0.135).
The heterogeneity among the studies using the intention ofmovementwasmod-
erate (I2= 42.38%; Q= 3.471; df= 2; P= 0.176), whereas there was a substantial
heterogeneity among the motor imagery studies (I2 =78.348%; Q=37.01; df= 8;
P= 0.000).

3.3.5 BCI classification features

The included studies were also different in BCI features that they used. Seven
studies used the band power features to detect movement-related brain pat-
terns in BCI [28, 29, 31, 38, 106, 112, 126]. The CSP features were used only in one
study [96] and the FBCSP features were used in four studies [35, 125, 127, 128].
The group of studies that used band power features had the highest significant
effect size on motor function recovery in favor of the BCI intervention (Hedge’s
g=1.25; P<0.001) (Figure 3.4), with substantial heterogeneity among the studies
(I2 = 75.208%; Q=24.201; df= 6; P= 0.000).
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Figure 3.3.: (A) A subgroup meta-analysis comparing the efficacy of brain–computer interface
in improving upper-limb motor functions, between 2 different phases of stroke. (B) A
subgroup meta-analysis comparing the efficacy of brain–computer interfaces with
different mental practices on poststroke upper-limb motor recovery; (ie, motor im-
agery vs intention of movement).
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Conversely, the effect size onmotor function recovery was in favor of the control
group in the studies using the FBCSP features in the BCI intervention (Hedge’s g
=-0.23; P=0.315) with no heterogeneity. The difference between the studies with
the band power features and the studies with the FBCSP features was statistically
significant (P <0.001). Only one study used the CSP features in their BCI model,
yielding the effect size in favor of the BCI group (Hedge’s g =0.66; P =0.2).

Figure 3.4.: A subgroup meta-analysis comparing the efficacy of brain–computer interface,
grouped based on different classification features, on poststroke upper-limb motor
recovery.

3.3.6 Type of BCI feedback

The type of BCI feedback used to move the affected hand was different across
the studies. As can be seen in Figure 3.5, functional electrical stimulation (FES)
was used in three studies [29, 31, 96]. A hand exoskeleton robot was used in
two studies [38, 112]. The MIT-MANUS robot was used in tow studies [33, 35], and
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haptic knob and orthosis (hand and arm) robot was used in one each [28, 125].
One study provided only visual feedback to the patients [106]. Finally, the study
conducted by Pichiorri et al. used a virtual hand to provide the BCI feedback
to the patients [126]. Compared to the control interventions, the highest stat-
istically significant effect size on upper extremity recovery was obtained by the
group of studies that used FES as the BCI feedback (Hedge’s g =1.2; P =0.001),
with moderate heterogeneity among the studies (I2 = 47.369%; Q=3.8; df= 2; P=
0.15).
However, the effect size of the group studies with the FES-based feedback was
not significantly higher than the effect sizes of the other groups of studies with
the other types of BCI feedback.

Figure 3.5.: A subgroup meta-analysis comparing the efficacy of brain–computer interface,
grouped based on different types of feedbacks, on poststroke upper-limb recov-
ery.
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3.4 Discussion
This study was conducted according to the recommendations of the PRISMA

checklist for meta-analyses and systematic reviews [115]. Our meta-analysis
studied changes in the FMA-UE scores between pre- and post-intervention, and
showed that BCI had a significantly higher effect size in improving upper ex-
tremity functions following stroke, when compared with control therapies. These
findings are consistent with the results of the previous meta-analysis conducted
by Cervera et al.[114], and support the short-term efficacy of BCI. Importantly,
our study analysed 12 randomized controlled trials involving 295 stroke patients,
while Cervera et al. study covered 9 randomized controlled trials with 235 stroke
patients.
We also analyzed the results of 7 out of 12 included studies that reported the
FMA-UE scores of the patients in a follow up session held a number of weeks
after the cession of the intervention. Our results showed that the BCI effects in
restoring upper extremity functions are persistent over long-term with a pooled
effect size significantly better than the control interventions. As an example, the
upper-limb improvements were almost maintained at 36 weeks after the inter-
vention in the study conducted by Biasiucci et al. [31].
However, the recentmeta-analysis conductedby Bai et al. [103] did not observe
long-termefficacyof BCI compared to conventional therapies. The reasonmight
be because they considered a smaller number of randomized clinical trials (5
studies). In addition, we combined the two control groups in the study con-
ducted by Ang el al. [34] to create a single control group, while Bai et al.[103]
selected the haptic knob group and excluded the standard arm therapy group.
Interestingly, the most recent randomized controlled trial, conducted by Wu et
al. showed the highest effect size in improving upper extremity functions in fa-
vour of BCI (i.e. g =3.48 ) [112]. As can be seen in Figure 3A, the BCI effect size
of this study is much larger than the effect sizes of the other included studies.
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In this study, unlike the other studies, the motor imagery instruction was given
to the patients by displaying a video of a hand using different tools. Then the
patients were asked to repeat the presented hand movement using mental im-
agery. The authors emphasized that the given instruction played an important
role in the observedmotor function recovery, possibly by linking the brain’s visual
and motor system.
Compared with conventional therapies, our subgroup meta-analysis showed
that for subacute and chronic patients, BCI is more effective in improving up-
per limb function (see Figure 4A). Our results indicated that participants who
engaged in intention or attempted movement of the impaired hand, often fol-
lowed by actual movement when possible, achieved a higher overall effect size
in favor of BCI use compared to those who performed only motor imagery, al-
though this difference was not statistically significant. We propose that the act
of intending to move, as opposed to merely imagining the movement, likely
leads to higher activity in neural circuits and enhances patient engagement
and attention [129]. This hypothesis is supported by previous research which
shows that intending and attempting movements can stimulate neural circuits
more robustly than motor imagery alone, resulting in better rehabilitation out-
comes. For instance, Blokland et al. [130] demonstrated that BCI systems focus-
ing on the intention of movement showed significantly higher accuracy com-
pared to those relying solely on motor imagery. Additionally, for healthy parti-
cipants, the brain’s spectral responses and BCI performance during movement
intention and execution were more similar compared to those during motor im-
agery. This suggests that intending or attempting to move can engage the
brain’s motor areas more effectively, potentially leading to improved motor re-
covery. Moreover, engaging in attempted movements may provide sensory
feedback, which further stimulates neural plasticity and reinforces motor learn-
ing pathways. This dual engagement of motor and sensory pathways could
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contribute to a more comprehensive rehabilitation process, as highlighted by
studies such as Birbaumer et al. and Grefkes and Fink, which noted greater
activation in motor-related brain areas during active movement tasks, facilit-
ating neural plasticity and motor functional recovery [131, 132]. Considering
these findings, future BCI-based stroke rehabilitation studies should focus more
on the intention or attempted movement of impaired limbs rather than relying
solely onmotor imagery to achievemore significant therapeutic outcomes. Fur-
ther research is needed to confirm these observations and explore the under-
lying mechanisms in greater detail. Our subgroup meta-analysis grouped the
included studies according to the BCI features used, further revealing that the
use of band power features yielded the highest effect size on favour of BCI com-
pared to the control interventions. Indeed, the BCI studies using the band power
features achieved a significantly greater upper-limb motor function recovery
than those using the FBCSP features (P< 0.001). Previous studies on healthy and
stroke participants suggested that FBCSP could lead to a higher BCI accuracy
than the band power features. In addition, some studies have reported that
there is a correlation between the BCI accuracy and the motor function im-
provement after a BCI intervention [39, 129].
Thus, someone may initially assume that using FBCSP should produce a higher
BCI effect size on motor recovery. However, the long term effectiveness of BCI
for stroke rehabilitation greatly involves human learning. The results of our meta-
analysis suggest that most-likely in long-term the use of band power features
help patients better learn to self-regulate their brain patterns, leadingmore func-
tional recovery and inducing neuroplasticity as compared to more complex
features such as FBCSP. In FBCSP, the patients may not easily find a connection
between their mental practice and what they observe as the output BCI. The
randomized control trials that used BCI to trigger FES had the largest significant
effect size in restoring upper-limb function. This improvement may be due to the
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positive impact of FES on the cortical excitability as reported by several studies
[133, 134].
In the study conducted by Ang et al. [35], the effect size was in favour of the
control group. This may be due to the relatively small number of training repe-
titions in experimental group compared to the control group (136 versus 1040
repetition). In addition to the number of training repetitions, the use of motor
imagery and FBCSP may have contributed in the negative results, as discussed
in this study. Another study by the same research group also showed an effect
size in favour of the control group [45]. This finding might be because of the
short period of the rehabilitation intervention (2 weeks). Interestingly, this study
reported a slight improvement in the BCI outcomes at the follow-up session held
4 weeks post-intervention. However, it would be difficult to distinguish if this ob-
served slight improvement was as a result of the BCI intervention or the transcra-
nial direct current stimulation (tDCS). Typically, a longer intervention, such as six
weeks of rehabilitation with three sessions per week is recommended [36].

3.5 Limitations
In this meta-analysis, we observed large variations in the BCI intervention ef-

fect sizes across the included clinical trials. As discussed previously, these vari-
ations can be potentially due to differences in the BCI design including differ-
ences in the BCI feedback, performed mental practices, extracted classifica-
tion features, and the phase of the stroke in the participants, among others. This
finding further confirms that there is a need to optimize the BCI design for upper
limb stroke rehabilitation in order to maximize the potential motor function im-
provement in patients. Only twelve randomized clinical trials (295 patients) were
available to analyze in this study. Hence, more studies with a larger number of
patients are required to increase the reliability and generalizability of the results.
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Moreover, in order to increase the reliability of sub-group meta analyses, it has
been recommended to have at least five clinical trials in each sub-group [135].
In some of our sub-group analyses, this condition could not be met. Moreover,
we did not consider the variations among the included clinical trials in terms of
the intensity of BCI intervention (see Table 3.1).

3.6 Conclusion
This chapter showed that BCI has significant immediate and long-term effects

in improving upper-limbmotor functions after stroke, compared to conventional
therapies. Our results support using intention of movement of the impaired hand
as the BCI mental practice, the band power features as the BCI classification
features and functional electrical stimulation as the BCI feedback in future BCI-
based stroke rehabilitation studies.
It is important to note that in many BCI-based studies, the activation of the
ipsilesional hemisphere was considered a key factor required for motor recov-
ery after stroke. However, emerging evidence suggests that the contralesional
hemisphere also plays a role in motor function rehabilitation. Therefore, the next
chapter is going to investigate the effectiveness of the BCI in detecting motor
imagery of the affected hand from contralesional hemisphere.
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4.1 Chapter Introduction
In several BCI clinical studies, the provided neurofeedback was based on the

activity of the ipsilesional motor cortex [64, 105, 136]. These studies are aligned
with functional magnetic resonance imaging (fMRI) and transcranial magnetic
stimulation (TMS) studies, confirming that enhancing the excitability of the ipsile-
sional motor cortex can play an important role in motor recovery after stroke
[137]. On the other hand, other studies reported that enhancing the excitabil-
ity of the contralesional side appears to play a significant role in motor recov-
ery for a subset of stroke patients [63, 65, 138]. Similarly, Kaiser et al. [139] re-
ported that during motor imagery of the impaired hand, more impaired pa-
tients showed higher event-related desynchronizations (ERDs) (i.e. EEG signa-
ture of motor tasks) in the contralesional hemisphere when compared with less
impaired patients. Antelis et al. [140] found similar outcomes in stroke patients
when they attempted and executed a hand movement. Interestingly, a very
recent study demonstrated that for stroke users encountering BCI deficiency,
i.e. those with poor conventional BCI accuracy, neuronal modulation was sig-
nificantly greater in the contralesional hemisphere compared to the ipsilesional
hemisphere [141].
Hence, we hypothesize that for some stroke patients, EEG signals from the con-
tralesional hemisphere may outperform EEG signals from the ipsilesional hemi-
sphere in terms of BCI performance. Physiologically, as the contralesional hemi-
sphere is usually unaffected by stroke, it may implied that many stroke patients
should be able to generate brain signals from the contralesional hemisphere
in response to imagined or attempted movement of the affected hand [142].
Furthermore, a previous study used EEG signals from the contralesional hemi-
sphere to successfully control a BCI [143]. However, this study was limited to only
10 stroke patients, and the final results were not compared with the results of a
conventional BCI system that uses ipsilesional signals. More research is needed
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to fully understand the effects of other confounding variables that may affect
the cortical activation patterns and BCI performance in stroke patients, includ-
ing lesion location and size, and time since stroke.
In short, this chapter aims to address the following questions:

• Are the stroke patients able to meaningfully operate a BCI-based rehabil-
itation system using EEG signals from only the contralesional hemisphere?

• Is there a difference in the performance of stroke patients in controlling BCI
using EEG from the contralesional hemisphere when compared to using
EEG from the ipsilesional hemisphere or even from both hemispheres and
how much is this different?

• Are there any relationships between the BCI performance and the pa-
tient’s demographic data including Fugl-Meyer assessment score and time
since stroke?

In this study, EEG signals of 136 stroke patients performing motor imagery of their
impaired hands and their respective BCI features were extracted from chan-
nels covering either the ipsilesional, contralesional or both hemispheres using
the common spatial patterns (CSP) algorithm [97], the filter bank common spa-
tial patterns (FBCSP) algorithm [98], and the band power (BP) feature extraction
algorithm [144]. In order to reduce the dimensionality of the features, we only
used the most discriminative ones by applying the mutual information-based
best individual feature (MIBIF) algorithm for feature selection. Next, the selected
features were classified using the naive Bayesian Parzen window (NBPW) classi-
fier [145]. The abovementioned feature extraction and classification algorithms
have been commonly used in previous BCI-based stroke rehabilitation clinical
trials [44, 146, 147]. Finally, the average 10-fold cross validation outcomes of the
three types of BCI (i.e. ipsilesional, contralesional and bilateral BCI ) were stat-
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istically analyzed in terms of BCI accuracy, as well as the impact of the motor
impairment and post-stroke time on the BCI performance. We hope that the
results of this study will contribute to a deeper understanding of how to promote
personalized modulation of neural signals to enhance neuroplasticity, thereby
benefiting the stroke patients. It should be noted that the EEG data utilized in
this chapter was obtained from four separate clinical trials conducted by other
researchers [44–47]. This data was obtained through collaboration with the re-
searchers who conducted these trials.

4.2 MATERIALS AND METHODS

4.2.1 Datasets description

Participants

We analyzed the EEG datasets recorded from 136 stroke patients during the BCI
screening sessions of four clinical trials [44–47]. Among the 136 participants, 17
were in subacute phase (3.32 ± 1.5 months from stroke onset) and 119 in chronic
phase (23.68 ± 17.72 months from stroke onset). Participants were 52.81 ± 11.36
years old, on average Fugl-Meyer score was 28.64±12.92.
These four clinical trials were carried out from 1 January 2011, to 30 September
2017 with ethics approval from the institution’s Domain Specific Review Board,
National Healthcare Group, Singapore. All four clinical trials are registered on
ClinicalTrials.gov as: NCT00955838 [44], NCT01897025 [45], NCT01287975 [46],
and NCT02765334 [47]. The clinical trial in [44] investigated the efficacy of the
BCI system coupled with the MIT-Manus robotic feedback on upper-limb motor
function improvement, whereas the clinical trial in [45] studied the possible be-
nefits of using transcranial direct current stimulation (tDCS) in combination with
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the BCI and robotic feedback to improve the motor function. The purpose of
the clinical trial described in [46] was to observe whether the BCI combinedwith
the haptic knob robot can enhance the arm rehabilitation of stroke patients,
whereas the effectiveness of BCI with visual feedback for upper-limb stroke re-
covery as well as the impacts of mental fatigue on BCI performance were in-
vestigated in [47].
The participants participating were between 21 and 70 years old with the fol-
lowing inclusion criteria:
1) Participants had their first cortical and sub-cortical stroke, with a Fugl-Meyer
score ranging from mild to severe impairment of upper extremity function.
2) Participants could understand the verbal instructions, and achieved a score
higher than 6 out of 10 in the abbreviated mental test.
3) Participants did not suffer from any medical instability, epilepsy, severe de-
pression, skin problems that could get worse due towearing the EEGcap, severe
spasticity in any of the elbow, finger, shoulder or wrist as assessed by the modi-
fied Ashworth scale (score > 2 ), or severe vision problems.

Motor imagery-based BCI paradigm

All participants first attendedamotor imagery based BCI screening sessionwithout
feedback. During the screening session, the participants were instructed to per-
form motor imagery of their affected arm and hand. The BCI screening session
consists of 4 runs and each run consists of 20 trials of the motor imagery task and
20 trials of the idle state in random order. After each run, a 2 minute break was
given to the participant. On average, each trial took 12 seconds and each run
took about 8 minutes. Figure. 4.1 illustrates the timing of one trial. A total of 160
trials were collected in each session. The BCI screening session lasted about an
hour, including the EEG cap setting.
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Figure 4.1.: The timing of one trial in the BCI screening session, instructing the patient to perform
either motor imagery of stroke-affected hand or idle task.

EEG signal acquisition

For the first three clinical trials [44–46], the Neuroscan Nuamps EEG amplifier with
unipolar Ag/AgCl electrode channels was used to collect EEG data from 27
channels, which were referenced to the nasion. The collected EEG data was
digitally sampled at the frequency of 250 Hz with the resolution of 22 bits and
the voltage range of ±130 mV. For the fourth clinical trial [47], EEG data was
collected using theNeurostyle EEGamplifier with 24 unipolar Ag/AgCl electrode
channels referenced to the FPz. The EEG was digitally sampled at 256Hz with a
resolution of 24 bits for voltage ranges of ±300mV.

4.2.2 BCI classification models

Figure. 4.2 shows all the procedures required to training and evaluating the BCI
models.

Preprocessing and BCI feature extraction

In order to calculate the features, we selected a specific channel set for each
type of BCI model (i.e. contralesional, ipsilesional or bilateral BCI):

• Channels that cover either the left or right hemisphere: (FC3, FCz, T7, C3,
Cz, CP3, CPz, P3, Pz; or FCz, FC4, Cz, C4, T8, CPz, CP4, Pz, P4 ). Depending
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The raw EEG datasets
(136 stroke patients)

Pre-processing
(To reduce the noise and artefacts

Feature extraction 
(FBCSP,CSP, and BP)

Feature extraction 
(FBCSP,CSP, and BP)

Feature extraction 
(FBCSP,CSP, and BP)

Bilateral BCIContralesional BCI Ipsilesional BCI

Feature selection
(MIBIF)

Feature selection
(MIBIF)

Feature selection
(MIBIF)

Classification
(NBPW classifier)

Classification
(NBPW classifier)

Classification
(NBPW classifier)

The BCI accuracy
(10x10 fold cross validation)

The BCI accuracy

(10x10 fold cross validation)
The BCI accuracy

(10x10 fold cross validation)

Results analysis
(Comparing BCI accuracies)

Figure 4.2.: Flowchart presenting the steps taken for training and evaluating the BCI models.
Abbreviations: BP, band power; CSP, common spatial patterns; FBCSP, filter bank
common spatial patterns; MIBIF, mutual information-based best individual feature
selection; NBPW, Naive Bayesian Parzen window.

on the location of the lesion, they would be called either ipsilesional or
contralesional channels.

• Bilateral channels: (FC3, FCz, T7, C3, Cz, CP3, CPz, P3, Pz; FC4, C4, T8, CP4,
, P4 ).

The channels of interests are shown in Figure 4.3. In this study, we used the three
most commonly used feature extraction algorithms in the BCI-based stroke re-
habilitation, namely common spatial patterns (CSP), filter bank common spatial
patterns (FBCSP), and band power features (BP) [44, 105, 146]. When using CSP
and BP, we first employed a zero-phase band-pass filter from 8 to 30 Hz in order
to clean the raw EEG signal from high-frequency noise and low-frequency arti-
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facts. This frequency band has been selected because it contains the mu (8-12
Hz) and beta (13-30 Hz) rhythms, which are well associated with motor imagery
and actual movement [148]. For the FBCSP, we employed a filter bank with nine
band-pass filters to partition the EEG dataset into nine frequency bands (4-8 Hz,
8-12 Hz,..., and 36-40 Hz) [98]. Four seconds motor imagery and idle class EEG
data were extracted after the visual cue for CSP, FBCSP and BP feature extrac-
tion. We also extracted 1.5 seconds of EEG during the preparation period, be-
fore the visual cue, as the baseline reference for the BP feature extraction. More
detailed information about these feature extraction methods can be found in
the subsequent sections. This study was performed without any artifact rejec-
tion.

Common spatial patterns (CSP) The CSP algorithm has been commonly used
in classification of multi-channel EEG signals, recorded during motor imagery
[97]. The main concept of CSP is to weight the EEG channels, such that the vari-
ance of band-pass filtered EEG signals is maximized in one class and minimized
in the other [97]. In this study, the first 2 rows and the last two rows of the CSP
matrix were used for spatially filtering the EEG signals. After that, the normalized
log variance of the spatially filtered EEG signals were used as the input features
for the classifier. Hence, 4 CSP features were extracted in total.

Filter bank common spatial patterns (FBCSP) The CSPmethod can successfully
design the optimal spatial filters for distinguishing the two classes of EEG signals in
motor imagery-based BCI [149]. However, the efficacy of thismethod is depend-
ent on its operating frequency band due to the large variability between users
[98]. The FBCSP algorithm has been introduced to solve this problem by using a
filter bank to filter the EEG data into 9 frequency bands ( i.e. 4-8 Hz, 8-12 Hz, 12-
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Figure 4.3.: A scalpmap showing the 10-20 international electrodemap for EEG. The green color
indicates the position of the channels that have been used in this study.
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16 Hz, .... and 36-40 Hz) [98]. Next, for each frequency band, the band-specific
CSP filters are calculated and applied to the corresponding band-passed EEG
signals. In this study, for each band, 4 CSP features were extracted using the first
and the last two CSP filters. Thus, a total of 36 FBCSP features were extracted.

Band power features (BP) The motor imagery and intention of movement can
change ongoing brain waves in a form called event-related desynchroniza-
tion/synchronization (ERD/ERS) [150]. ERD/ERS is characterized by suppression
and enhancement of the power of sensorimotor rhythms, respectively, in the
frequency range [8-30 Hz] [100].
In the present study, the BP features measure the average ERD/ERS changes re-
lative to the baseline, as suggested by [151]. After band-pass filtering the EEG
signals from 8 to 30 Hz, the BP feature of the ith channel from the jth trial, BP(i, j),
was calculated as

BP(i, j) = log
(

T(i, j)− B(i, j)
B(i, j)

× 100
)

, (4.1)

where T(i, j) denotes the average power of the channel i at the trial j when
performing the task (i.e. 4 seconds EEG signals immediately after the cue). Sim-
ilarly, B(i, j) denotes the average power of the channel i at the trial j during the
preparation period (i.e. 1.5 seconds before the cue).

Feature selection

In order to select a more discriminative feature subset from the extracted fea-
tures, weemployed themutual information-basedbest individual feature (MIBIF)
algorithm based on the filtering feature selection approach [145]. MIBIF calcu-
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lates themutual information betweeneach feature and the corresponding class
labels, and arranges them in ascending order. Next, the top 4 features with the
highest mutual information are selected. In the case of CSP, feature selection
was not used because there were only 4 CSP features extracted. Further inform-
ation about MIBIF can be found in [152].

Classification and validation

In this step, we choose the Naïve Bayesian Parzen Window (NBPW) classifier,
which is known for its relatively fast classification capabilities [98, 145, 153]. Dif-
ferent classification algorithms can be employed; however, research by Ang et
al. indicated that the NBPW classifier showed superior performance in offline
BCI accuracy [98].
As described in [154], in our study, we employed a 10×10-fold cross-validation
technique to ensure a robust evaluation of the classifier outcomes. Specifically,
for each patient, we conducted 10 separate runs, where in each run, the 160
trials were randomly divided into 10 portions. During each run, we performed
10-fold cross-validation by using nine portions for training and one for testing,
iterating this process such that each portion served as the test set exactly once.
This procedure was repeated 10 times, each with a new random split of the
data, providing a comprehensive assessment by averaging the results of these
multiple cross-validation processes. This approach differs from the standard 10-
fold cross-validation, which typically involves a single random division into folds.
Such an enhanced approach to cross-validation is supported by findings in the
literature, which suggest that repeated cross-validation and multiple random
splits can provide more reliable performance [155, 156].
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4.2.3 Visualization of cortical activity during motor imagery

Event-related synchronization/desynchronization (ERS/ERD) was used to visual-
ize the cortical activationduringmotor imagery. Thegrandaverage time-frequency
maps and the grand average ERD/ERS plots were calculated for the ipsilesional
and the contralesional hemisphere separately, at either C3 or C4, by pooling the
motor imagery trials of all patients. Time-frequency maps are commonly used
to visualize the changes in the spectral power of different frequency bands in
response to a stimulus across the time [157]. The time-frequencymapswere plot-
ted by calculating the power spectrum within a sliding time window and then
averaging results across trials. The baseline period for time-frequency maps is
1.5 second before the cue.
To obtain the ERD/ERS plots, the relative change in the relative power with re-
spect to the average power of the preparation period was calculated from 8 to
30 Hz, as presented in [144]. The grand average ERD/ERS plots were presented in
time intervals from -2 to 4 seconds relative to the onset of the cue, with baseline
of 1.5 second before the cue (i.e. preparation period).

4.2.4 Statistical Analysis

Weanalyzed thedata using IBM SPSS Statistics forWindows, released in 2019, ver-
sion 26.0. In this study, the classification accuracy of the BCI types were com-
pared across the three feature extraction methods using the Wilcoxon signed
rank test. Since our classification accuracy comes from 4 different datasets, we
used this non-parametric test [158].
The 99% confidence of the chance performance for 160 trials is around 60%
when using the inverse binomial distribution function [154]. Hence, any parti-
cipant who has a BCI accuracy of less than 60% is considered to be performing
at a chance level. We selected 80% as the other threshold, because in several
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BCI studies participants with above 80% BCI accuracy were considered as BCI
high performers [159].
We also calculated the correlation between the classification results and the
Fugl-Meyer scores as well as the time since stroke for each feature extraction
method and each BCI type. Correlation analysis was conducted with Kendall’s
Tau correlation, which is a non-parametric method [160]. The significant level
was set to p = 0.05 for all the analyses.

4.3 Results

4.3.1 ERD/ERS in contralesional and ipsilesional hemisphere

The time-frequency maps with the ERD/ERS patterns during motor imagery in
the contralesional and ipsilesional hemisphere are shown in Figure 4.4. We ob-
served that the ERD/ERS phenomenon occurs in both the contralesional and
ipsilesional hemispheres. On average, the ipsilesional hemisphere had slightly
higher ERD than the contralesional hemisphere, mostly in the beta band. How-
ever, the contralesional hemisphere generated a stronger grand average ERS,
mostly in the mu-rhythm, compared to ipsilesional hemisphere. The mu rhythm
refers to a specific frequency band of brain waves, typically ranging between 8
and 13 Hz [161]. It is prominently observed over the sensorimotor cortex. Figure
4.5 shows the grand average power changes in ERD/ERS in the contralesional
and ipsilesional hemisphere. It can be observed that during motor imagery
there is a relative power decrease (ERD) after onset of motor imagery (t = 0),
followed by an increase in the power (ERS) in both hemispheres. The grand av-
erage ERD has a slightly lower amplitude in the ipsilesional hemisphere than in
the contralesional hemisphere. However, as compared to the ipsilesional hemi-
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sphere, the contralesional hemisphere showed a higher amplitude of ERS. Im-
portantly, comparing different time-intervals as well as performing point-to-point
comparisons, we did not observe any statistically significant difference between
the ERD/ERS of the ipsilesional or contralesional hemispheres over the time range
of [0, 4] s (p>0.05, Wilcoxon signed-rank test).

Figure 4.4.: Time-frequency representation shows the grand average of event-related
(de)synchronization (ERD/ERS). a, The ERD/ERS in the contralesional hemisphere. b,
The ERD/ERS in ipsilesional hemisphere. ERD is indicated by the blue colors, whereas
ERS is indicated by the red colors.

4.3.2 Comparing classification results of contralesional, ipsilesional and
bilateral BCI types

Figure 4.6 and Table 4.1 compare the 10×10-fold cross-validation results of the
three types of BCI (i.e. bilateral, contralesional or ipsilesional channels) obtained
from 136 stroke patients, using either FBCSP, CSP or BP features. Overall, the use
of the bilateral channels with FBCSP features yielded the highest BCI perform-
ance, which was significantly better than the ipsilesional and contralesional BCI
performance using FBCSP and CSP (P < 0.001). However, it was not signific-
antly better than the contralesional BCI with BP features (p > 0.05). The results
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Figure 4.5.: The grand average power change in event-related (de)synchronization (ERD/ERS)
in contralesional and ipsilesional hemispheres during motor imagery (i.e. from 0 to 4
second), relative to the resting baseline 1.5 seconds before the cue.

also showed that, on average, the contralesional BCI performed slightly better
than the ipsilesional BCI. Importantly, when using FBCSP and BP feature, there
was no statistically significant difference in the stroke patients’ performance in
controlling BCI using the ipsilesional hemisphere compared to the one using the
contralesional hemisphere.

Table 4.1.: Comparison of the average 10× 10 fold cross-validation BCI accuracies between the
three types of BCI (bilateral, contralesional or ipsilesional channels), obtained using
three different BCI feature extraction methods.

Feature Bilateral Acc. Contralesional Acc. Ipsilesional Acc. Bilateral vs Cont. Bilateral vs Ipsi. Cont. vs Ipsi.
Extraction (Mean ± SD) (Mean ± SD) (Mean ± SD) (p-value) (p-value) (p-value)

FBCSP 74.8 ± 13.02 71.23 ± 11.44 70.7 ± 12.66 < 0.001 < 0.001 0.62
CSP 69.05 ± 12.59 65.87 ± 12.10 64.01± 12.65 < 0.001 < 0.001 0.029
BP 74.01 ± 6.9 72.52 ± 9.06 71.99±9.65 0.18 0.017 0.641

Abbreviation: Acc., Accuracy, Cont., contralesional; Ipsi., ipsilesional; SD, standard de-
viation; vs, versus.
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Figure 4.6.: The box-plot shows average cross-validation BCI accuracy of 136 stroke patients us-
ing either bilateral channels that cover both hemisphere, contralesional or ipsile-
sional channels. The y axis represents the BCI accuracy resulted from 10×10-fold
cross-validations, and the x axis represents the three types of BCI accurcies using
either FBCSP, CSP or BP as feature extraction.

Table 4.2 shows that the overall number of patients who did not achieve an
average BCI accuracy above 60% using the contralesional hemisphere was less
than the number of patients who failed to achieve an average BCI accuracy
above of 60% using the ipsilesional BCI. Interestingly, when we look at the scat-
ter plots in Fig. 4.7, it can be observed that the contralesional BCI yielded a
better classification accuracy than the ipsilesional BCI for those with the the ip-
silesional BCI accuracy less than 60% (p < 0.05 for all three feature extraction
methods obtained using Wilcoxon signed-rank test). On the contrary, those with
the ipsilesional BCI accuracy greater than 80% achieved lower accuracy using
the contralesional BCI (p < 0.05 for BP, FBCSP and p = 0.09 for CSP, obtained
using Wilcoxon signed-rank test). Table 4.3 provides more details on the corres-
ponding statistical results.
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4.3.3 Impact of Post-stroke Sensorimotor Impairments and the time
since Stroke on BCI Performance

We did not observe a significant correlation between the ability of stroke pa-
tients to use contralesional, ipsilesional or bilateral hemispheres to operate BCI
and their Fugl-Meyer score ( Table 4.4 ). That being said, we observed signific-
ant difference between the Fugl-Meyer scores of those with average ipsilesional
BCI accuracy less than 60% and the Fugl-Meyer scores of those with ipsilesional
BCI accuracy higher than 80%. From Table 4.5, we observe that those with the
ipsilesional BCI accuracy below 60% had significantly higher motor impairments,
measured using Fugl-Meyer assessment, than those with the ipsilesional BCI ac-
curacy above 80% (p < 0.05, Wilcoxon signed-rank test).
Regarding the impact of stroke duration on BCI Performance, we did not ob-
serve any significant correlation between the accuracy of detecting motor im-
agery using either, contralesional, ipsilesional, or bilateral hemisphere and the
time since stroke (see Table 4.6 ). Furthermore, no significant difference was
found in the time following stroke of patients with the ipsilesional BCI accuracy
below 60%, and those with the ipsilesional BCI accuracy above 80% (p > 0.05,
Wilcoxon signed-rank test).
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Figure 4.7.: Scatter plots comparing the average cross validation accuracy of contralesional
and ipsilesional BCIs using different feature extraction algorithms (FBCSP, CSP, and
BP). The blue dots represent the average BCI accuracy for each stroke patient.

Table 4.2.: Percentage of the patients with the average BCI accuracy (bilateral channels, con-
tralesional, or ipsilesional) less than 60% using different BCI feature extractionmethods.

Feature extraction Contralesional Ipsilesional Bilateral

Below 60% Below 60% Below 60%

FBCSP 15.6% 22.79% 13.76%

CSP 28.1% 42.64% 34.1%

BP 7.1% 8.82% 6.6%
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Table 4.3.: Comparison of the average 10 × 10 fold cross-validation accuracy of the ipsilesional
and contralesional BCI for those with ipsilesional BCI accuracy below 60% and those
with the ipsilesional BCI accuracy above 80%, obtained using three different BCI fea-
ture extraction methods.

Ipsilesional Acc.<60% Ipsilesional Acc.>80%
Feature Ipsilesional Contralesional p-value Ipsilesional Contralesional p-value
Extraction (Mean ± SD) (Mean ± SD) (Mean ± SD) (Mean ± SD)

FBCSP 54.37 ± 3.29 57.74 ± 6.51 0.02 89.01 ± 5.55 83.92 ± 7.33 3.8 × 10−5

CSP 52.32 ± 4.65 57.34 ± 9.57 5.05 × 10−5 88.52± 5.65 82.62± 8.55 0.002
BP 52.27 ± 5.91 61.35 ± 8.55 0.05 85.05±3.36 77.08±9.58 7.79 × 10−4

Abbreviation: Acc., Accuracy, SD, standard deviation.

Table 4.4.: Correlation between the Fugl-Meyer scores of the patients and their BCI accuracies
obtained using either contralesional, ipsilesional, or bilateral channels using three dif-
ferent BCI feature extraction methods.

Feature extraction Contralesional channels Ipsilesional channels bilateral channels
Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value

FBCSP 0.057 0.415 0.09 0.199 0.089 0.211
CSP 0.042 0.551 0.093 0.181 0.115 0.92
BP 0.055 0.429 0.1 0.15 0.23 0.67

Table 4.5.: Comparison of the Fugl-Meyer scores between those with the ipsilesional BCI accur-
acy below 60% and those with the ipsilesional BCI accuracy over 80%, obtained using
three different BCI feature extraction methods.

Ipsilesional Acc.<60% Ipsilesional Acc. >80%
Feature Extraction FMA score FMA score p-value

FBCSP 16.28 ± 16.16 29.57 ± 13.84 0.016
CSP 18.68 ± 14.24 32.54 ± 15.88 0.015
BP 19.77 ± 10.96 30.33 ± 13.69 0.047

Abbreviation: FMA, Fugl-Meyer Assessment; Acc., Accuracy.

4.3 Results 71



Table 4.6.: Correlation between the time since stroke and the obtained BCI accuracy using con-
tralesional, ipsilesional, or bilateral channels with three different BCI feature extraction
methods.

Feature extraction Contralesional channels Ipsilesional channels Bilateral channels
Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value

FBCSP -0.03 0.691 0.022 0.771 -0.014 0.85
CSP -0.009 0.897 0.086 0.252 -0.046 0.542
BP 0.1 0.19 -0.037 0.622 0.09 0.431

4.4 Discussion
Many studies showed that in a healthy human, movement of the hand leads

to an increased activation in the contralateral motor cortex and a decrease in
activation of the ipsilateralmotor cortexwhencompared to the resting state[59].
Although the capacity of modulating ipsilesional brain activity reduces where
the damage on the ipsilesional hemisphere is more severe [162], several BCI clin-
ical studies have shown that many stroke patients are still able to control BCI us-
ing EEG signals recorded over the ipsilesional hemisphere[64, 136]. Furthermore,
a functional imaging study indicated that the ipsilesional hemisphere particip-
ated during the motor tasks [163]. This might be because surviving neurons in
the ipsilesional cortex are activated during motor tasks [164].
Interestingly, after stroke undamaged parts of the brain play an adaptive com-
pensatory role, such that movement of the stroke-affected hand may cause
an increase in activation of the contralesional motor cortex [165]. Motor at-
tempts and motor imagery are commonly used for stroke recovery using BCI.
Brain activation vary amongdifferentmotor tasks. Tasks involvingmotor imagery,
increasedmotor impairment was reported to be associated with stronger ERD in
the contralesional hemisphere [166]. However, the tasks involvingmotor attempt
,were associated with higher hemispheric asymmetry in ERS [166]. Nevertheless,
people who make good recovery in hand function after a stroke often show
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relatively normal task-related brain activation in both hemispheres when per-
forming these motor tasks [167].
It is important to mention that motor execution and motor imagery are com-
plex tasks, involving changes in activity of different parts of the brain including
prefrontal, sensory and motor cortex[168]. Prefrontal cortex plays an important
role in preparation and planning of movement[169]. Similarly, it is shown that the
parietal cortex is involved in high-level cognitive aspects of action control [170].
Stroke often induces widespread brain functional changes and connectivity al-
terations (Appendix Figure B.1 presents examples of the inter-subject variability
in brain activation during motor imagery for six stroke patients) [60]. Recent
studies observed that motor function recovery in stroke involves not only the
corticospinal system but also prefrontal and precortex [168, 169]. Thus, the most
desirable BCI system for rehabilitation may require the use of a combination of
brain signals from the frontal, central and parietal cortex as the BCI control sig-
nal.
This study investigated the ability of stroke patients to control the BCI using EEG
activity of the contralesional hemisphere. Our results suggest that ERD/ERS phe-
nomenon does occur in both the contralesional and ipsilesional hemispheres.
This is further confirming the findings of Antelis et al. [140], which suggest that
the contralesional hemisphere is also involved during the motor imagery of the
affected hand.
In addition, the present study finds that the majority of stroke patients are able
to operate the BCI using either their contralesional or ipsilesional hemisphere. By
comparing the BCI accuracy obtained from the contralesional and ipsilesional
hemisphere, we found that patients with the ipsilesional BCI accuracy less than
60% had significantly more motor impairment compared to those with the ip-
silesional BCI accuracy greater than 80%. Interestingly, those who achieved the
ipsilesional BCI accuracy below 60% achieved a significantly higher contrale-

4.4 Discussion 73



sional BCI accuracy. Conversely, those who achieved the ipsilesional BCI ac-
curacy greater than 80% had a significantly lower contralesional BCI accuracy.
These findings are consistent with previous studies, which indicated that more
impaired patients had stronger neural modulations in the contralesional hemi-
sphere than less impaired patients during motor imagery of the affected hand
[139–141].

4.5 Conclusion
This chapter seems to suggest that the use of ipsilesional BCI may lead to a

lower BCI accuracy in those patients with severe impairment which offers the
use of contralesional BCI as a viable alternative. That being said, future works
may include randomized control clinical studies comparing the effects of con-
tralesional and ipsilesional BCI on improving motor function after stroke.
It is important to mention that BCI-based upper limb stroke rehabilitation also
faces several challenges. The equipment used is bulky, expensive, and technic-
ally complex, requiring precise placement of numerous electrodes. As a result,
it is mainly confined to hospitals or labs, which can be difficult for stroke patients
with mobility problems who need frequent rehabilitation visits.
Moreover, the calibration process before each use can be time-consuming, of-
ten taking up to 20 minutes. These factors collectively hinder the widespread
adoption of BCI-based rehabilitation technology in real-world settings. There-
fore, the next chapter is going to address these challenges by developing a
novel telerehabilitation system, called Tele BCI-FES, that combines BCI and FES
technologies for the rehabilitation of upper limb function after a stroke.
The proposed system is portable and offers patients the ability to receive ther-
apy remotely from their homes while still providing supervised therapy and the
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ability to make adjustments in real-time. Finally, the feasibility and acceptability
of the proposed system are validated by conducting a clinical trial.

4.5 Conclusion 75



5
A clinical trial evaluating the
acceptability and feasibility of
brain-computer interface for
upper-limb telerehabilitation after
stroke

5.1 Chapter Introduction
Among 1.2 million stroke survivors in the UK, 77% experience upper limb weak-

ness, of which 66% experience weakness beyond 6 months [171]. Upper limb
motor impairments are commonamong stroke survivors andare associatedwith
an increased risk of falling, dependency on care, and reduced quality of life [4,
172]. The annual financial burden of the stroke in the UK is around £25.6 bn, and
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that amount is predicted to increase significantly over the next 20 years [173,
174]. Therefore, there is an urgent need to develop a more effective and effi-
cient rehabilitation techniques in order to reduce the disabling effects of stroke.
Currently, available rehabilitation methods focus on assisting in recovery within
the first fewmonths after the stroke. Thesemethods include the use of constraint
induced movement therapy and functional electrical stimulation (FES)-based
therapies as well as robotic based therapies [37, 94]. These therapies are mostly
passive, requiring little to no effort from the patient themselves, and/or require
intensive intervention from therapists.
Brain-computer interface (BCI) can be combined with available therapies to
make them active where the movement of the impaired limb is directed by the
patient’s thoughts [111]. This active participation enhances neuroplasticity in
stroke patients [90]. Recent clinical trials, including our meta-analysis, showed
the superior efficacy of BCI in improving upper-limbmotor function compared to
other traditional rehabilitation approaches, for both patients in sub-acute and
chronic stroke patients [105, 111].
Although the results from these studies are promising there are still a number of
limitations with the technology. One primary issue is that the equipment used for
BCI based rehabilitation is bulky, expensive, technically complex, and requires
careful placement of numerous electrodes. As a result, the BCI based rehab-
ilitation process is currently limited to hospitals or labs due to these hardware
constraints, which can also create additional challenges. The need to travel fre-
quently to the hospital for receiving rehabilitation can be challenging for stroke
patients with mobility problems. Another issue that limits the real-world applica-
tion of this technology is the calibration time required by a BCI for training before
each use [175]. In some cases, it can take up to 20 minutes to calibrate the BCI
before rehabilitation starts [41].
Therefore, the objective of this study is to develop a novel BCI system that is
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both feasible and appealing for stroke survivors to utilize in home-based rehab-
ilitation. To achieve this, a novel portable BCI system has been developed, spe-
cifically designed for stroke rehabilitation. This system enables patients to con-
veniently use it in the comfort of their own homes while receiving remote super-
vision through the internet when required.
The BCI system classifies the EEG signals collected from the patient and iden-
tifies when the patient is attempting to move their weakened hand or staying
still. When the BCI detects EEG signals associated with attempted movement,
it activates a functional electrical stimulation system to provide assistance with
the movement.
In short, the study objectives are:

• To assess if the patients can use the Tele BCI-FES system at home for post-
stroke upper limb rehabilitation.

• To assess the patient’s perspective about the use of the Tele BCI-FES device
for home-based arm rehabilitation

The data from this study will be utilized to enhance the design of the Tele BCI-
FES system and facilitate a larger clinical study.

5.2 Methods and Materials

5.2.1 Tele BCI-FES System Design

To complete this study it was necessary to create a novel system of hardware
and software thatwas portable and easy to set up so that the participants could
set it up at their homes. All attempts weremade to ensure that the device is very
user-friendly. Multiple Patient Public Involvement (PPI) sessions were conducted
with individuals undergoing upper limb rehabilitation after a stroke. These ses-
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sions were aimed at gathering valuable feedback and suggestions from the
patients themselves regarding the necessary improvements for the system. The
final Tele BCI-FES components are shown in Figures 5.1 and 5.2.
During the experiment, a Dell laptop model Latitude 5420 was used as the plat-
form for presenting instructions and providing feedback to the participant. The
laptop had remote access and remote control computer software installed,
which enabled the patient to communicate with the physiotherapist and/or
researcher during the rehabilitation session. This software also allowed the re-
searcher and/or physiotherapist to monitor the quality of the signals recorded
from Tele BCI-FES and make adjustments to the parameters of Tele BCI-FES if ne-
cessary. Furthermore, the laptop was utilized for preprocessing and classifying
the EEG signals collected by the EEG system. The selected EEG system for data
collection was the Neuroelectrics ENOBIO 8, which captured signals from eight
channels using gel-filled electrodes that were secured within a cap. This EEG
system was selected for its compact size, ease of set up and adaptability, with
the location of the electrodes being personalized for each of the participants.
The FES device was the Odstock OML XL pace unit which is currently used by
the NHS England and is recommended by the National Institute for Health and
Care Excellence (NICE). To facilitate communication between the laptop and
the FES stimulator, a control box was designed and created. The control box in-
corporates an Arduino programmed to replicate the signal typically transmitted
to the FES through a foot switch. By replicating this signal, the laptop can safely
activate the FES.
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Figure 5.1.: This figure shows the Tele BCI-FES equipment that the participants used at home
which included a latitude 5420 dell laptop, an Odstock ODFS® Pace XL FES unit, a
control box, an ENOBIO8 EEG amplifier with Electrode lead, EEG cap with electrodes
and a bottle of electrode gel used during the study.
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Figure 5.2.: The proposed Tele BCI-FES system for upper-limb stroke rehabilitation. The control box
is equipped with an emergency button that instantly halts the system in case of any
emergencies. Additionally, an Arduino board is used in the control box to receive
commands from the laptop and send them to activate the FES device.

5.2.2 Tele BCI-FES single-arm clinical trial Design

Ethics statement and consent to participate

Ethics committee approval for this study was obtained from the NHS North of
Scotland Research Ethics Service (REC reference: 22/NS/0018 and IRAS project
ID: 305929). We applied to the Scottish ethics committee because the earliest
available slot was there, allowing us to begin our research without unnecessary
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delays. This clinical study is registered at clinicaltrials.gov under the study iden-
tifier (NCT05215522) and registered with the ISRCTN registry (ISRCTN42991002).
Every participant in the study provided written consent to participate after re-
ceiving comprehensive information about the research.

Inclusion and exclusion criteria

The study involved participants aged 18 and older who had experienced an
ischemic or hemorrhagic stroke at least 6 months ago. These participants had
residual arm weakness resulting from the stroke, affecting their ability to perform
daily activities. Other inclusion criteria were a Fugl-Meyer score of upper limb
less than 45, Cognitive and linguistic capacities to comprehend and take part
in the study procedure, and having a caregiver who is willing to help deliver the
Tele BCI-FES intervention. Furthermore, we included only participants capable
of remaining seated for one hour with or without support, and those able to
provide consent and understand instructions.
The exclusion criteria for selecting participants were as follows: Cognitive limita-
tions that could hinder the capacity to adhere to the experimental protocol
or give informed consent; dermatological, rheumatologic or orthopaedic ill-
nesses of the affected arm interfering with movement of the elbow, history of
epilepsy, having pacemaker or any other electrical implanted devices, preg-
nancy, severe dystonia/spasm. Moreover, those who were unable to perform
thebaseline assessments or achieveabaseline BCI accuracybelow thechance
level (i.e. 58%) were excluded from the study. Participants were also excluded
if they previously participated in other upper limb rehabilitation studies.
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Screening session

The clinical team distributed the patient information sheet to stroke patients
attending the outpatient or Functional Electrical Stimulation clinic at Sheffield
TeachingHospitals. Patientswhoexpressed interest in participatingandprovided
consent underwent an eligibility screening process. Eligible patients were then
invited to the University of Sheffield for their initial visit, where their eligibility was re-
assessed and functional assessments were conducted. The optimal electrode
location and stimulation intensity for the FES were determined for each parti-
cipant. Finally, the BCI system was explained to them, and a calibration session
with the BCI system was conducted.

BCI calibration: In the BCI calibration session, participants were instructed on
how to set up and clean the EEG system. In addition, EEG signals were collected
from the participants to assess the system’s accuracy. During BCI calibration, 20
channels were used to collect EEG signals, as shown in figure 5.3.

Figure 5.3.: The figure shows the position of 20 channels that were used for BCI calibration session.
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The participants were instructed to attempt to extend their weakened hand
with their fingers and wrist upwards so that the palmwas facing forward and the
fingers upwards. Those unable to produce any movement were asked to try to
focus on this movement and imagine their handmoving. The BCI calibration ses-
sion consisted of 5 runs, where each run had 11 trials of the attempt movement
task and 11 trials of the staying still in random order. As shown in figure 5.4, for
runs one to four each trial lasted 10 seconds, consisting of a two-second ready
period following a beep, four seconds of either attempted movement or stay-
ing still, and four seconds of rest. On the fifth run, the FES was activated for the
trials that the participants attempted to move their weakened hands, increas-
ing the trial length to 18 seconds. Indeed, the fifth run gave the participants
the chance to familiarize themselves with the FES activation. After each run, a
break was given to the participants. On average, the BCI calibration session las-
ted about an hour, including the cap set up, demonstration of the equipment,
collection of the EEG, and breaks.
After the EEG was collected it was used to train the BCI model and evaluate the
participant’s ability to control the BCI. The extracted EEGdatawere filtered using
a zero-phase band-pass filter from 8 to 13 Hz. Zero-phase filter was used in EEG
data filtering to prevent phase distortion, ensuring the accurate temporal rep-
resentation of neural events [176]. Then the BCI features were extracted using
a common spatial patterns (CSP) algorithm. Next, the extracted features were
classified using a linear discriminant analysis (LDA) classier. LDA was chosen for
our Tele-BCI-FES system due to its frequent use in BCI based rehabilitation, as it
is more suitable for online BCI intervention with reduced computational costs
during the calibration and validation stages [42, 43, 177].
The classifier outcomes were objectively evaluated using 10 runs× 10-fold cross-
validation.
Following the classification of the EEG data from 20 channels, the best eight
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electrodeswere obtained. Participantswith a BCI classificationaccuracygreater
than 58% were then offered a 3-week home-based rehabilitation using Tele BCI-
FES system.

Figure 5.4.: Timing of the trials for the 5 runs of the BCI calibration session. The FES activates
to produce hand movement when the participant is instructed to try to move their
weakened hand during the final run (i.e, run 5).

Home sessions

Enrolled participants were provided with a Tele-BCI FES system at the end of the
screening session to take home with them. This kit included all the BCI and FES
equipment required to conduct the intervention at home, as shown in figure 5.1.
In addition to the equipment, the participant was given instructions on the set-
up of the EEG and FES, investigator contact details, a remotemeeting schedule,
and a custom EEG electrode location map.
Throughout this study, 10 remote sessions, each lasting one hour were sched-
uled. The first one was for practicing and making sure the participant and their
caregiver are comfortable in setting up and using the Tele BCI-FES system. The
next 9 sessions (3 sessions per week) consisted of 10 minutes of preparation (in-
structions, setup/calibration time), 40 minutes of Tele BCI-FES rehabilitation, a
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5-minute patient interview on their experience with the session, and a 5-minute
interview on experiencing any adverse effects and general health check.
During the home sessions, participants, with the assistance of their carer and
remote guidance from the researchers, completed the system setup, which in-
volved the following steps:

• Powering on the laptop.

• Connecting the EEG amplifier and control box to the laptop.

• Connecting the FES to the control box.

• Applying the FES electrodes to the arm with the guidance of a remote
physiotherapist.

• Placing the electrodes in the EEG cap.

• Applying the provided gel to the electrodes and wearing the EEG cap.

The setup process was initially demonstrated during the screening session. Once
the laptop was turned on, the researcher/physiotherapist were available re-
motely to provide guidance and support with the setup. Using the Team Viewer,
a remote access software, the researcher was able to remotely access and
control the laptop to configure the necessary software and initiate a video call.
Before proceeding with the Tele BCI-FES intervention, a brief checklist was com-
pleted to ensure the participant had not experienced any adverse reactions
since the previous session and was comfortable continuing with the study.
After ensuring the proper setup and connection of the system, the participant
engaged in a remote rehabilitation session under the remote supervision of the
physiotherapist. During this session, the FES was activated by the BCI whenever
an attempted movement was detected. The home rehabilitation session lasted
approximately 45 minutes, consisting of five runs. Each run mirrored the struc-
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ture of the fifth run from the screening session, followed by a break.At the end of
each home session, the participant was asked to fill a brief quantitative ques-
tionnaire to report their perception of the Tele BCI-FES system at that session.
Please see section 5.2.3 for more details.

Final Assessment Session

After completing the home sessions, participants and their carers were invited to
the University of Sheffield for a comprehensive post-assessment. This assessment
included repeating the motor function evaluations conducted at screening to
quantitativelymeasure theextent of hand function improvement achievedafter
the Tele-BCI-FES interventions. Following the post-assessment, in-depth qualitat-
ive interviews were conducted with participants and their carers. The interviews
aimed to explore their experiences and perceptions regarding the use of the
Tele-BCI-FES system.

5.2.3 Primary Outcomes

Recruitment and retention rates

Recruitment and retention rates were calculated to evaluate the success of the
study in attracting and retaining participants [178]. The recruitment rate indic-
ates the percentage of individuals who were approached to participate in the
study and agreed to do so, while the retention rate represents the proportion of
participants who completed the study in relation to the initial number of parti-
cipants who enrolled. Study completion was considered as completing at least
seven out of nine Tele BCI-FES home sessions.
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Patients’ participation rate

Patients’ participation rate in the remote therapy sessions was assessed through
the number of sessions they agreed to attend within a set period and using Pitts-
burgh Rehabilitation Participation Scale (PRPS) [179]. PRPS is scored on a 6-point
scale that takes into account the patient’s engagement in therapy (1: none-
patient refused entire session to 6: excellent- patient participated in all activities
of the session). This score was provided by the researcher and physiotherapist
at the end of each session.

Participants Perception on adoption of technology

In order to evaluate the system’s feasibility and acceptability, cumulative ques-
tionnaires were collected after each session. A in-depth final questionnaire was
conducted face to face when the participants returned to have their final func-
tional assessment. The questionnaires specifically focused on the participants’
and carers’ experiences during the session, including the setup process, adher-
ence to instructions, quality of supervision, and perceived effectiveness of the
rehabilitation session. The participant and carer were asked to rate these exper-
iences on a scale of 1 to 5 (where 1 is very difficult, 2 difficult, 3 normal, 4 easy,
and 5 very easy), the patient answered the following questions:

1. How difficult or easy did the carer find the Tele BCI-FES equipment setup?

2. How difficult or easy was to communicate with the remote connection sys-
tem?

3. How difficult or easy did you find the use of the Tele BCI-FES device for
rehabilitation?
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4. How easy or difficult did you find wearing the Tele BCI-FES equipment?

The participants were also asked if they would recommend the Tele BCI-FES
system to other patients with stroke. In addition, theywere askedwhether there is
anything about the Tele BCI-FES system that they believe needs to be improved.

5.2.4 Secondary Outcomes (Functional Assessment)

We conducted the functional assessments both before and after the Tele BCI-
FES intervention, using the upper extremity section of the Fugl-Meyer assessment
(FMA_UE) [180]. This assessment assigns a numerical score to a patient’s motor
function and can be used to measure changes in their motor function and to
evaluate the effectiveness of the intervention. The FMA_UE score ranges from 0
to 66, with lower scores indicating greater impairment in upper limb function.
The Leeds Arm Spasticity Impact Scale (LASIS) were also employed to assess
passive arm function in subjects who had spasticity and little to no active upper
extremity movement [181, 182]. The LASIS consists of 12 items that assess passive
and low-level active function. Items are evaluated from 0 to 4 (0 indicates no
difficulty; 1 indicates slight difficulty; 2 indicates a moderate level of difficulty; 3
indicates extreme difficulty; and 4 indicates an inability to carry out the activity).
It may be worth mentioning that in our selection of LASIS) as functional assess-
ment tool over the Modified Ashworth Scale (MAS), we considered the LASIS’s
ability to comprehensively evaluate the impact of spasticity on daily functional
tasks [182, 183]. While the MAS is widely used for assessing abnormal tone and
resistance to passivemovements in patients with neurological conditions, it does
not provide a complete view of how spasticity affects daily activities [184, 185].
Finally, the Numerical Rating Scale (NRS) was completed by each participant.
On a scale of 0 (no pain) to 10 (severe pain), participants were asked to rate
their level of pain using NRS scale [186].
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5.2.5 Statistical Analysis

In this study, we used a paired one-tailed t-test to assess the significance of
changes in outcome measures between the post-intervention and the screen-
ing session. The rationale for choosing aone-tailed test over a two-tailed test was
based on our specific research hypothesis, which aims to explore the effective-
ness of the proposed system in improving upper extremity recovery. Since our
hypothesis predicted a directional improvement (i.e., post-intervention scores
would be higher than the screening scores), a one-tailed test is appropriate
for detecting this specific directional effect with greater statistical power [187].
Data analysis was carried out using MATLAB, with a significance level of p =

0.05. Based on the inverse binomial distribution function, a chance perform-
ance of 110 calibration BCI trials has a 99% confidence level of approximately
58%. Therefore, participants with a BCI accuracy of less than 58% in the calib-
ration session were considered to be at chance level and were excluded from
the study [154].

5.3 Results
Figure 5.5 presents a flow chart of the Tele BCI-FES study, from enrollment to

analysis.

5.3.1 Participant Characteristics

Nine participants attended the screening session and had their eligibility for
participation assessed. Eight of these participants continued to complete the
home sessions while one participant was excluded from the study because their
BCI accuracy was below the chance level. Seven participants completed the
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Figure 5.5.: Flow chart of the study from enrollment to analysis.

5.3 Results 91



study, while one participant decided to withdraw from the study after attending
three sessions (see figure5.5). The demographic information for eachparticipant
who participated in this study is shown in Table 5.1. One participant (P03) had
to stop early after seven sessions due to health problems unrelated to the inter-
vention and the final face-to-face session was delayed by three weeks due to
illness. Another participant (P05) received botulinum toxin treatment before the
start of the study and was therefore not included in the motor functional assess-
ment as the botulinum toxin affect on motor function changes over the time.
The average age of the group was 52.43 years, with a range of 29 to 73, and it
consisted of four men and three women. The average length of the stroke was
66.14 months, with a range of 10 to 160. Throughout the study, there were no
serious adverse events or increases in pain related to the intervention.

Table 5.1.: Participants’ demographic information, recorded in the screening session

ID Gender
Age

(years)

Paretic

Side

Stroke onset

(Months ago)

P01 Female 51 Right 10

P02 Male 33 Left 14

P03 Male 72 Right 144

P04 Female 52 Right 36

P05 Female 57 Left 75

P06 Male 73 Right 160

P07 Male 29 Right 24
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5.3.2 Primary Outcomes

Recruitment and retention rates

Fifteen stroke patients were invited to participate in the study, of which thirteen
agreed to take part, resulting in a recruitment rate of 86.7%. In total, eight stroke
survivors were included in the study, and the retention rate was 87.5%, with seven
participants successfully completing at least sevenout of nine Tele-BCI FES home
sessions. Only one participant withdrew from the study for unknown reasons.

Participation Rate of Patients in Tele BCI-FES Rehabilitation

The results of the study showed that the participation rate of the patients in the
proposed Tele BCI-FES rehabilitation was excellent, as assessed by the PRPS. Six
out of seven participants attended all nine Tele BCI-FES home sessions, while one
participant (P03) attended seven Tele BCI-FES sessions due to illness. The mean
PRPS score for the participants was 5.8 out of 6, which indicates a high level of
participation [188]. This indicates that the patients were highly engaged in the
telerehabilitation program.

Participants’ Perception on Adoption of the Technology

Based on the feedback received throughout the experiment, participants gen-
erally had a positive experience with the ease of setting up and cleaning the
BCI system. In the final qualitative interview, conducted in the final assessment
session, one participant mentioned finding the equipment cleaning process te-
dious, while two others had no issues, and the remaining participants did not
comment on it. The main complaint raised by three participants during the final
interview was about the electrodes, which they found to be somewhat fiddly
to use. While they managed to set up the system, they faced some difficulty
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inserting and removing the electrodes from the cap. This feedback highlighted
a potential issue for improvement going forward. Interestingly, upon examining
Figure 5.6.a, it becomes evident that by the final session, participants’ responses
are centered between "easy" and "very easy" on average. This suggests that
despite initial struggles, the majority of participants found the setup process to
be moderately easy by the end of the study.

Figure 5.6.: The line plot with error bars, presents the average responses obtained from quantit-
ative interviews conducted with the seven participants during the nine Home-based
Tele BCI-FES sessions. Subplots a, b, c anddare displaying the participants’ responses
to the questions 1, 2, 3 and 4 respectively.

During the trial period, the effectiveness of the remote supervision provided
was generally well received by participants. Overall, themajority of participants
found the remote supervision to be effective in facilitating the sessions. However,
it is worth noting that there were occasional issues with the remote communic-
ation software, particularly related to sound problems. These technical issues
resulted in disruptions during some sessions, impacting the overall user experi-
ence. To mitigate the sound issues, research team resorted to using phones for
communication with the participants as an alternative method. This solution
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proved to be effective, enabling uninterrupted communication during the ses-
sions. Despite this workaround, it was observed that the sessions affected by
sound problems received lower scores, as indicated in Figure 5.6.b.
In addition to technical challenges, only two participants provided specific sug-
gestions for improvement. They expressed concerns about the low volume of
the beeps used during the sessions. One participant also mentioned that the
initial video screen size was too small for their preference.
Based on the data presented in Figure 5.6.c, feedback about the ease of us-
ing the system for rehabilitation was generally positive. Participants found the
instructions easy to follow and highly effective. One participant recommended
adding some form of gamification, as they found the system monotonous over
time, while two others appreciated the simplicity of the text, finding the lack of
distractions beneficial.
When asked about the ease of wearing and comfort of the system, the primary
issue raised by participants was the use of gel in the electrodes. One participant
expressed being uncertain about using the system in the long term due to the
gel, while two others stated they would be happy to use a few times per week,
but a daily usage would be problematic due to the use of EEG gel. Cleaning
out the gel took a while, especially for more disabled participants who needed
assistance with showering. Some participants arranged their sessions for early
morning or evening to allow time for cleaning. The EEG cap was only provided
in three sizes, i.e. small, medium and large, as these were the only options avail-
able from the manufacturer. As a result, two participants expressed concerns
about the limited variation in cap sizes available, with one participant experi-
encing a slightly tight cap and two others facing a slightly loose cap. However,
except for one participant whose cap became tight in later sessions due to their
hair growing, most found the equipment comfortable to wear (Figure 5.6.d).
Participants provided valuable feedback regarding potential improvements for
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the system, including implementing distinct beeps for different commands, in-
corporating a progress bar, and using dry electrodes. They also expressed a
desire for more comprehensive information about brainwaves and BCI, as well
as schematic diagrams to simplify the setup process.
Overall, both participants and caregivers showed motivation to continue using
the Tele BCI-FES system, considering it worthwhile despite the additional setup
requirements. Encouragingly, they also expressed a willingness to recommend it
to other stroke patients. However, certain aspects of the system, particularly the
gel and the complexity of the setup process, should be addressed to enhance
the overall user experience.

5.3.3 Secondary Outcomes (Functional Assessment)

Table 5.2 and figure 5.7 show the FMA_UE and LASIS scores before and after the
intervention for 6 out of 7 participants. One participant (P05) was not included
in the functional assessment due to having received botulinum toxin treatment
prior to the study. On average, there was a significant improvement in FMA_UE
scores after intervention (mean= 23.33, p = 0.032) compared to pre-intervention
(mean = 19.50). Hence, the differences between FMA_UE scores before and
after the intervention was 3.83 points.
In terms of individual FMA_UE score, P01, P02 and P03 achieved the highest in-
crease in FMA_UE score ( 9, 4, 6 points respectively). The FMA_UE scores of the
remaining participants increased slightly by 2 points for P04 and by 1 point for
both P06 and P07. The high standard deviation of both pre and post meas-
urements (± 12.44 and ± 12.97 respectively) suggests a large variability in the
FMA_UE scores among participants. However, the statistical significance of the
results (p=0.032) highlights the overall positive effect of the Tele BCI-FES interven-
tion on the FMA_UE score.
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For the LASIS score, themean valuemeasured before the interventionwas 27.83,
while the mean value measured after the intervention was 27.17, indicating that
spasticity as assessed by LASIS improved slightly after the intervention (p=0.80).
Notably, certain individuals (P01, P03, P04) experienced positive changes in their
arm movement, including heightened awareness, enhanced stability, and in-
creased mobility in the shoulder, elbow, and fingers. Moreover, the system en-
abled easier nail cutting, improved grip and release, and enhanced passive
movement (P04).
It is important to emphasize that the primary focus of this study was to assess the
acceptability and feasibility of the Tele BCI-FES rehabilitation approach. Given
the limited number of sessions (9) provided in this study compared to other BCI
rehabilitation studies which typically involved 18 to 20 sessions, significant func-
tional improvements were not anticipated. Furthermore, it should be noted that
no follow-up assessments were conducted in theweeks following the conclusion
of the intervention.

5.3 Results 97



Table 5.2.: Clinical scores for 6 participants

ID
FMA_UE LASIS

Pre Post Pre Post

P01 12 21 28 25

P02 17 21 35 31

P03 37 43 18 22

P04 8 10 33 25

P06 10 11 30 39

P07 33 34 23 21

Mean 19.50 23.33 27.83 27.17

± Std 12.44 12.97 6.37 6.76
P05 was administered botulinum toxin
treatment prior to the study, which resul-
ted in her exclusion from the functional
assessment.
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Figure 5.7.: The box-plot shows average (Pre-Post) FMA_UE and LASIS scores of 6 stroke patients

5.4 Discussion
The present study aimed to investigate the feasibility and acceptability of a

novel Tele BCI-FES system for upper limb rehabilitation in individuals with stroke.
In this study, seven participants with chronic stroke completed a home-based
Tele BCI-FES intervention. The results showed that the system is feasible and safe
for use in individuals with stroke, with a high recruitment rate of 86.7% and a re-
tention rate of 87.5%. The participants’ feedback suggested that the system is
generally acceptable. Moreover, the secondary outcome analysis showed that
the Tele BCI-FES intervention resulted in a significant improvement in the FMA_UE
score compared to the pre-intervention score. The findings of this study suggest
that the proposed Tele BCI-FES system may be a promising tool for upper limb
rehabilitation in individuals with stroke.
Interestingly, the high recruitment and retention rates suggest a strong interest
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in the use of the Tele BCI-FES system as a new rehabilitation tool. This is in line
with previous studies that have shown a positive attitude towards the use of
technology-assisted interventions and home-based training in stroke rehabilita-
tion [189, 190]. The feedback from the participants suggested that the ease of
setup for the BCI systemwasmixed, with someaspects beingmanageablewhile
others were tedious or complex, particularly in regards to connecting the elec-
trode cables. However, as seen in figure 5.6, participants reported an increased
ease of use and efficiency in setting up the system with each subsequent ses-
sion. Having said that, these findings highlight the importance of user-centered
design in the development of such technologies, with a particular focus on en-
suring ease of use and minimizing the burden on the user [191].
When considering the utilization of the Tele BCI-FES system for rehabilitation pur-
poses, participants’ feedback highlighted concerns regarding the gel used in
the electrodes. In order to address this issue, dry electrodes present themselves
as a potentially convenient alternative. Unlike wet electrodes, dry electrodes
eliminate the need for conductive gel or saline solution, simplifying the applic-
ation process and minimizing messiness. However, it is worth noting that dry
electrodes may yield lower quality signals compared to wet electrodes, poten-
tially impacting the accuracy of collected data [192, 193]. Additionally, certain
designs of dry electrodes, characterized by spiky textures, have been associ-
atedwith reported pain and discomfort when used for extended periods of time
[194].
In terms of functional assessment, one participant (P05) was excluded due to
receiving botulinum toxin a few weeks prior to the study. Botulinum toxin treat-
ment can reduce spasticity, which may help improve motor function for a few
weeks [195]. Therefore, this improvement in motor function could have affected
the results of the assessment. This demonstrates the importance of careful par-
ticipant selection and consideration of confounding factors when conducting
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research.
The functional assessment analysis of 6 participants showed a significant im-
provement in the FMA_UE scores after the Tele BCI-FES intervention, with an av-
erage increase of 3.83 points. In addition, the present study demonstrated that
the Tele BCI-FES system has the potential to improve motor function in chronic
and severe stroke patients, even several years after the stroke (see Table 5.1
and Table 5.2). Importantly, some participants reported some improvements in
their arm movement, with increased movement in the shoulder, elbow, and fin-
gers. However, the large variability in FMA_UE scores among participants high-
lights the need for individualized treatment and the importance of identifying
potential factors that may influence treatment response. Future studies should
investigate the optimal parameters for Tele BCI-FES interventions, including the
intensity, frequency, and duration of the intervention [196].
It is worth noting that the Tele BCI-FES intervention in this study had a relatively
short duration, consisting of only nine sessions, which is shorter compared to
other lab-based BCI studies such as the study by Sebastian et al. [43] and Miao
et al. [42]. Specifically, in the study by Sebastian et al., stroke patients received
25 sessions of BCI-FES intervention in a laboratory setting. Despite the remoteand
brief intervention period in the study, promising results were obtained, suggest-
ing that even a limited amount of Tele BCI-FES intervention can have a positive
impact on upper limb stroke rehabilitation in a home setting. However, further
research is needed to determine the optimal duration and frequency of Tele
BCI-FES intervention for stroke patients in a home setting. This information could
help to guide the development of more effective and efficient rehabilitation
protocols, and enhancing patient outcomes.
Overall, these findings add to the body of evidence supporting the growing
trend towards home-based medical care by demonstrating the feasibility and
acceptability of Tele BCI-FES for upper limb stroke rehabilitation in a home set-
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ting [197–199]. These results suggest that home-based care options have the
potential to improve outcomes for stroke patients and highlight the need for
continued research in this area. By providing access to effective rehabilitation
interventions in a familiar and comfortable environment, home-based caremay
offer a promising alternative to traditional clinic-based rehabilitation, particularly
for patients with geographical or mobility constraints.

5.5 Limitations and Improvements
The study’s findings are limited by the small sample size, which restricts their

generalizability. Further research with larger sample sizes and longer interven-
tion periods is essential to establish the robustness of Tele BCI-FES in enhancing
upper extremity recovery. Addressing this limitationwas constrainedbypractical
considerations such as fund availability and study feasibility within the allocated
time-frame. Additionally, participant selection criteria, including demographics,
diversity, and educational levels, could impact accessibility, motivation, and the
extent of caregiver support, all of which should be carefully considered in future
researcher to better understand the broader applicability of the intervention.
The set-up process for the Tele BCI-FES system could also be improved to be
more user-friendly for less technically-minded participants. Additional labels or
instructions could be provided to help participants navigate the system more
easily. Furthermore, an initial in-person session at the participant’s house to help
set up the equipment and show how it works could be a useful improvement
to ensure a smooth and comfortable experience for the participants during the
study. The use of none-gel EEG electrodes can be considered in future studies
to ensure participants’ convenience. However, it’s also important to ensure that
the electrodes are effective and comfortable for the user to wear.
During the study, it was found that the audio quality using third-party video con-
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ferencing software between the research team and participants was not al-
ways effective. As a result, the research team sometimes had to resort to using
phone calls to communicate with participants. Additionally, a few participants
encountered challenges when trying to open the webcam and audio during
home sessions due to the small size of the icon. Therefore, it is recommended
that alternative video conferencing software andmethods be explored in future
studies.

.

5.6 Conclusion
In summary, the present chapter offers evidence supporting the feasibility and

acceptability of the proposed Tele BCI-FES system for upper limb rehabilitation
in individuals with chronic stroke. The high recruitment rate suggests patients’
interest in the proposed Tele BCI-FES system; however, this observation requires
confirmation through studies with larger sample sizes and long-term interven-
tions. Despite suggestions for future improvements, the overall retention rates,
ease of use, and positive feedback from participants indicate a strong accept-
ance of this device. The noteworthy improvement in FMA_UE scores underscores
the potential of the Tele BCI-FES system to enhance motor function in chronic
and severe stroke patients, even years after the stroke occurred. Nevertheless,
further research is required to fine-tune intervention parameters and assess the
effectiveness of this technology in larger sample sizes and longer intervention
periods.
In conclusion, the findings offer promising evidence for the role of Tele BCI-FES
as a valuable tool in stroke rehabilitation.
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6
Conclusions

6.1 Key Achievements
This thesis detailed scientific achievements that have added important new

knowledge to the discipline of BCI for upper extremity stroke rehabilitation.

1. The thesis successfully conducted a systematic review and meta-analysis
and showed that BCI has significant immediate and long-term effects in
improving upper-limb motor functions after stroke, compared to conven-
tional therapies. The results supported using intention of movement of the
impaired hand as the BCI mental practice, the band power features as the
BCI classification features, and the functional electrical stimulation as the
BCI feedback in future BCI-based stroke rehabilitation studies.

2. This thesis successfully analyzed EEG datasets of 136 stroke patents with
upper limb weakness and showed that contralesional hemisphere can be
used to control BCI effectively. Particularly, the thesis showed that this ap-
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proach may be used for controlling BCI by those who have a high motor
impairment and cannot achieve a meaningful control using their ipsile-
sional hemisphere.

3. This thesis successfully developed a novel Tele BCI-FES system for stroke re-
habilitation that is portable and can be used at the patient’s home with
only remote supervision. The feasibility and acceptability of the proposed
BCI system was confirmed by conducting clinical trial.

The following sections describe these contributions in more details.

6.2 Efficacy of BCI and the Impact of Its Design
Characteristics on Post stroke Upper-limb
Rehabilitation
The first objective of this research project was to investigate the BCI and its

design characteristics’ impact on post-stroke upper-limb rehabilitation. Through
a comprehensive meta-analysis of 12 clinical trials involving 298 patients, the
study successfully demonstrated that BCI has significant and lasting effects on
improving upper-limb motor functions compared to conventional therapies.
The results revealed substantial effect sizes, with 0.73 for short-term and 0.33 for
long-term improvements, confirming the superiority of BCI interventions. Sub-
group analyses provided valuable insights into the role of different BCI designs
in treatment outcomes. Notably, employing the "intention of movement" as the
BCI mental practice resulted in a significantly higher effect size (Hedge’s g =
1.21) compared to "motor imagery" (Hedge’s g = 0.55). Moreover, interventions
utilizing "band power features" exhibited notably higher effect sizes (Hedge’s g
= 1.25) than those using "filter bank common spatial patterns features" (Hedge’s

6.2 Efficacy of BCI and the Impact of Its Design Characteristics on Post
stroke Upper-limb Rehabilitation
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g = -0.23). Additionally, using "functional electrical stimulation" as the BCI feed-
back led to the most substantial effect size (Hedge’s g = 1.2) among all other
devices studied.
This project has therefore successfully provided robust evidence supporting the
effectiveness of BCI for post-stroke upper-limb rehabilitation. The study emphas-
izes the significance of "band power features," "intention of movement," and
"functional electrical stimulation" as pivotal considerations in designing success-
ful BCI interventions for stroke survivors. These findings could serve as valuable
guidelines for future BCI designs in upper-limb stroke rehabilitation.

6.2.1 Exploring the ability of stroke survivors in using the contralesional
hemisphere to control a BCI

The second objective of this research aimed to investigate the effectiveness of
BCI in detecting motor imagery of the affected hand from the contralesional
hemisphere in stroke patients. A comprehensive analysis was conducted on a
substantial EEG dataset from 136 stroke patients, who performedmotor imagery
of their impaired hand.
BCI features were extracted from channels covering the ipsilesional, contrale-
sional, or bilateral hemisphere, and the offline BCI accuracy was computed us-
ing 10x10-fold cross-validations. The results revealed that most stroke patients
could successfully operate the BCI using either their contralesional or ipsilesional
hemisphere.
Furthermore, interesting correlations were observed between BCI accuracy and
motor impairments. Stroke patients with ipsilesional BCI accuracy below 60%
exhibited significantly higher motor impairments compared to those with ipsile-
sional BCI accuracy above 80%. Interestingly, individuals with ipsilesional BCI ac-
curacy below 60% demonstrated significantly higher contralesional BCI accur-
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acy, while those with ipsilesional BCI accuracy above 80% had notably poorer
contralesional BCI accuracy
These findings suggest that contralesional BCI might prove to be a valuable ap-
proach for stroke patients with high motor impairments, who may struggle to
accurately generate signals from the ipsilesional hemisphere for effective BCI
operation.

6.2.2 A clinical trial evaluating the feasibility and acceptability of BCI
as telerehabilitation for chronic stroke survivors

The third objective of this research project focused on the development of a
novel telerehabilitation systemcalled ’Tele BCI-FES, integrating BCI and FES tech-
nologies for poststroke upper limb rehabilitation. This system allows stroke surviv-
ors to receive therapy remotely from the comfort of their homes while ensuring
supervised therapy and real-time adjustments.
The study involved seven chronic stroke patients and their caregivers, who com-
pleted nine home-based Tele BCI-FES sessions (three sessions per week), while
receiving remote support from the research team. The primary outcomes were
recruitment and retention rates, as well as participants’ perceptions of techno-
logy adoption. The secondary outcomes assessed upper extremity function im-
provements using the Fugl-Meyer Assessment for Upper Extremity (FMA_UE) and
the Leeds Arm Spasticity Impact Scale (LASIS).
Results indicated high retention (87.5%) and recruitment rates (86.7%), with par-
ticipants providing mixed feedback on setup ease. However, they gradually
found the system easier to use, and the setup process became more efficient
with continued sessions. Participants also offered suggestions for enhancing
user experience. Following the intervention, there was a significant increase in
FMA_UE scores, with an average improvement of 3.83 points (p = 0.032).

6.2 Efficacy of BCI and the Impact of Its Design Characteristics on Post
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This project has therefore successfully demonstrated the feasibility and accept-
ability of the proposed Tele BCI-FES system for upper extremity rehabilitation in
stroke survivors.

6.3 Summary
In summary, this thesis makes significant advancements in the understanding

and application of BCI in stroke rehabilitation. The findings offer valuable insights
for designingeffective BCI interventions and tele-rehabilitation approaches. Not-
ably, the novel Tele BCI-FES system holds promise in revolutionizing stroke rehab-
ilitation, expanding stroke patient access to therapy, and ultimately enhancing
their quality of life.

6.4 Future works
In future works, a priority will be given to designing a more user-friendly Tele

BCI-FES system, considering the valuable feedback from participants in Chapter
5. Additionally, future works may also include:

1. Conducting a clinical trial with a larger and more diverse sample size to
validate the effectiveness of the Tele BCI-FES system for upper limb rehab-
ilitation in stroke patients. This would help establish the generalizability of
the findings and provide more robust evidence of its clinical efficacy.

2. Extend the intervention period to evaluate the long-term effects of using
the Tele BCI-FES system. Assess the sustainability of motor function improve-
ments and the potential for continued progress beyond the initial interven-
tion period.
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3. Investigate the use of none-gel EEG electrodes to enhance participant
convenience and comfort during the setup and usage of the Tele BCI-
FES system. Validate the effectiveness and reliability of these alternative
electrodes in acquiring accurate brain signals.

4. Conducting a randomized clinical trials to compare the effectiveness of
the Tele BCI-FES system with other innovative rehabilitation technologies,
such as virtual reality-based interventions or robot-assisted therapies, to
identify the most effective and efficient approach for stroke rehabilitation.

5. Expanding the use of Tele BCI-FES to include lower limb rehabilitation and
other acquired brain injuries, such as multiple sclerosis, spinal cord injury,
and motor neuron diseases,.

6. Finally, Conducting a randomized clinical trials to compare the effects of
contralesional and ipsilesional BCI interventions on improving motor func-
tion after stroke.
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Appendix: Supplemental Material for
Chapter 3

A.1 Equations
We analyzed the data using the comprehensive meta-analysis software CMA

https://meta-analysis.com/. The effect size of the intervention, g, for each
individual RCT study was calculated using Hedge equation with correction for
small studies as follows [121]:

g =

(
Me − Mc

SDpool

)
J, (A.1)

where Me and Mc are the mean of changes in FMA-UE scores from pre to post
intervention for the experimental group and control group respectively.J is the
correction factor, and SDpool is the pooled standard deviation of changes in
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FMA-UE scores of the patients from both groups. J was calculated as [200]

J = 1 −
(

3
4(ne + nc)− 9

)
, (A.2)

where ne and nc are number of patients in the experimental and control group
respectively. SDpool was calculated using the following equation:

SDpool =

√
(ne − 1)SD2

e + (nc − 1)SD2
c

(ne + nc − 2)
, (A.3)

where SDe and SDc are the standard deviation of changes in FMA-UE scores for
the experimental and control group respectively. Subsequently, the 95% confid-
ence interval (95% CI) for the intervention effect size of each RCT, g, was calcu-
lated as [120]:

95% CI = g ± 1.96 SEg, (A.4)

where SEg is the standard error of g, calculated using the following equation:

SEg =

(√
1
ne

+
1
nc

+
g2

2(ne + nc)J2

)
J. (A.5)

Considering all the RCTs, the overall effect size of the intervention, g, was cal-
culated as

g =

k
∑

i=1
wigi

k
∑

i=1
wi

, (A.6)

where gi is the effect size of the ith study, i ∈ {1, 2, 3, ..., k}. Similarly, wi is the weight
assigned to the ith study, calculated as

wi =
1

SE2
gi

. (A.7)
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In order to study the heterogeneity between the included RCT studies, the
Higgins’ I2 statistic percentage was used [122]. A high I2 statistic means there
are high deviations in the intervention effect sizes across the RCTs. Higgins’ I2

statistic was calculated as:

I2 =

(
Q − df

Q

)
× 100, (A.8)

where df is the degree of freedom, calculated as df = k − 1 where k is the num-
ber of included studies. Q is the Cochran’s statistical test for heterogeneity, cal-
culated as follows [120]:

Q =
k

∑
i=1

wi(gi − g)2. (A.9)

Followed by calculating g, to predict the possible effect size for the future RCT
studies, we calculated 95% predictive interval (95% PI) using the following equa-
tion:

95%PI = g ± t SDPI, (A.10)

where t is two tailed critical value. SDPI is the standard deviation of 95% PI cal-
culated as [201]:

SDPI =

√
SEg

2
+ τ2, (A.11)

where SEg is the standard error of g , and τ2 is the variance between the effect
size of the studies. τ2 was computed using the following equations [202]:

τ2 =


Q−df

C , if Q > df

0, if Q ≤ df

and
C = ∑ wi −

∑ wi
2

∑ wi
. (A.12)
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 Appendix Table   A.1. Search strategy used in the considered databases 

#1  Search: stroke rehabilitation 

#2 Search: (Brain-computer Interface) OR (Brain-machine Interface) 

#3 Search: (BCI) OR (BMI) 

#4 Search: ((((Randomized controlled trial) OR (randomized controlled trials)) OR (controlled 

clinical trial)) OR (random allocation)) OR (double-blind method) 

#5 Search: ((#1) AND ((#2) OR (#3) AND (#4 )) 

 
 

Supplemental Table S3.2. PEDro scale for assessing the methodological quality of the included studies. 

Items Ang et 

al.  

Ang et 

al.  

Ang et 

al. 

Biasiucci 

et al.  

Cheng 

et al.  

Frolov 

et al.  

Kim et 

al.  

Li  

et al.  

Mihara  

et al.  

Pichiorri et 

al. 

Ramos et 

al.  

Wu et 

al.  

1. Eligibility Criteria Specified Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

2.Randomly allocated Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes 

3.Allocation was concealed No No No No No No Yes No Yes Yes Yes No 

4.Baseline comparability Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5.Blinding of subjects No No No Yes NO No No No No No Yes No 

6.Blinding of therapists No No No Yes No No No No Yes No Yes No 

7.Blinding of assessors Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes 

8.Adequate follow up Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 

9. Intention of treat analysis No No No No No No No No No No No No 

10.Between group comparisons Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

11.Points Estimates and variability Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Total score 6/10 6/10 6/10 7/10 6/10 5/10 7/10 6/10 8/10 7/10 8/10 6/10 
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Appendix Table A.3: The mean and standard deviation (SD) of the changes in Fugl-Meyer 

Assessment scores between the pre- to the post-intervention for the selected randomized 

controlled trials. N refers to the number of participants. 

Study Experimental (i.e. BCI) Control 

 N Mean SD N Mean SD 

Ang et al. 6 7.2 2.3 15 6.18 4.78 

Ang et al.  11 4.5 5.19 14 6.3 7.6 

Ang et at.  10 0.9 3 9 2.8 4 

Biasiucci et al. 14 6.7 5.6 13 2.1 3 

Cheng et al. 5 3.8 5.36 5 5.6 2.61 

Frolov et al.  36 5.29 4.5 11 4.09 2.91 

Kim et al.  15 7.87 2.42 15 2.93 2.74 

Li et al.  7 12.7 11.3 7 6.7 4.1 

Mihara et al.  10 4.8 2.6 10 2.3 1.8 

Pichiorri et al.  14 13.6 8.9 14 6.5 7 

Ramos et al.  16 3.4 2.2 16 0.36 4.2 

Wu et al.  14 16.93 2.56 11 8.36 2.21 

A.1 Equations 143



 

Appendix Table A.4: The mean and standard deviation (SD) of the changes in Fugl-Meyer 

Assessment scores from the first to the follow up session which was a number of weeks after 

finishing the intervention. The studies without a follow up session were excluded from this table. 

N refers to the number of participants. 

Study Experimental (i.e. BCI) Control 

 N Mean SD N Mean SD 

Ang et al.  6 9.7 2.6 15 6.1 5.26 

Ang et al.  11 5.2 5.12 14 7.4 7.6 

Ang et at.  10 5 4.4 9 5.4 5.7 

Biasiucci et al.  13 6.9 4.1 12 2.8 4.97 

Cheng et al.  5 4.6 4.77 5 2 4.64 

Mihara et al.  10 6.6 4.4 10 4.2 2.8 

Ramos et al.  16 2.28 2.59 16 1.46 2.52 
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Appendix Figure A.1.  Funnel plot as a visual aid for investigating publication bias in our meta-

analysis, assessing the immediate effect of BCI intervention. 
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Appendix Figure A.2.  Funnel plot of the meta-analysis for investigating publication bias in the 

long-term effects of BCI on upper-limb motor function rehabilitation after stroke. 
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Appendix: Supplemental Material for
Chapter 4

The figure below presents examples of the inter-subject variability in brain ac-
tivation during motor imagery for 6 stroke patients, obtained using the relevant
CSP filter. As can be seen, participant P01 exhibited significant contralesional
sensorimotor brain activation, whereas P06 exhibited ipsilesional sensorimotor
activation. Interestingly, P05 presented activation in both ipsilesional and con-
tralesional motor cortex. Results for participants P02, P03, P04, and P06 showed
changes in frontal, sensorimotor, and parietal brain activation in the ipsilesional
hemisphere. This observation may imply that brain activation is present not only
in sensorimotor regions (C3, C4, CP1, CP2, and CP6), but also in parietal re-
gions (P3, P4) and frontal regions (FC6) during the motor imagery of the stroke-
affected hand. The BCI based stroke rehabilitation could be able to identify
and use this activity to trigger the feedback.
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