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Executive Summary  

This thesis investigates the application of Acoustic Emission (AE) monitoring to enhance the reliability and 

efficiency of grinding processes, specifically focusing on IN718 superalloy using aluminium oxide grinding 

wheels. The primary objective of this research was to develop a robust methodology for capturing and 

analysing AE signals to improve process monitoring, fault diagnosis, and predictive maintenance in 

industrial grinding operations. 

An advanced data acquisition system was implemented to capture synchronous signals from various 

sensors at high sampling rates. This system facilitated the comprehensive analysis of AE features, including 

AE RMS, Skew, MVD, CFAR, and ROP, across different grinding regimes: roughing, semi-finishing, and 

finishing. The study involved multiple grinding trials with varying grinding wheel diameters, enabling the 

assessment of AE signal repeatability and reliability. 

Key findings from the research include: 

AE RMS and MVD Values: Demonstrated high repeatability across different grinding regimes and wheel 

diameters, indicating their robustness for continuous process monitoring. The AE RMS values were 

particularly higher in the roughing regime due to increased material removal rates and grinding forces. 

Skew: Showed consistent patterns in roughing and semi-finishing regimes but exhibited variability in the 

finishing regime due to sensitivity to lower magnitude AE responses. This sensitivity highlighted the need 

for careful consideration of grinding parameters when using Skew as a diagnostic feature. 

CFAR: Maintained stable values across all grinding regimes and wheel diameters, reflecting the 

consistency of AE event frequency. The roughing regime had the highest CFAR values, indicating more 

intense interactions between the grinding wheel and the workpiece. 

ROP: The prominent frequency bands were in the 100–150 kHz range, consistent across all grinding 

regimes. This consistency suggests the potential for using ROP values in predictive modeling of grinding 

wheel wear. 

In addition, significant work was done on developing wavelet de-noising techniques to enhance AE signal 

quality by reducing machine noise. Parameters for the wavelet de-noising process were optimized to 

ensure maximum signal clarity without compromising the integrity of the data. This development was 

crucial for improving the accuracy of AE feature extraction and overall signal analysis. 
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The novelty of this work lies in the comprehensive application of AE monitoring to different grinding 

regimes and the integration of advanced signal processing techniques. The study's approach to 

understanding the correlation between AE features and grinding parameters provides valuable insights 

that can be leveraged for predictive maintenance and improved process control in industrial settings. 

In conclusion, this thesis contributes significantly to the field of process monitoring and fault diagnosis in 

grinding operations. The methodologies and insights developed herein provide a solid foundation for 

future research and industrial application, driving innovation and continuous improvement in the 

manufacturing sector. 
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II. Nomenclature  

Symbol  Description  Unit  Symbol Description Unit 
       

In718 Inconel 718   θ Normal force vector angle   

AE Acoustic emission    vfa Axial feed speed mm/min 

AMRC 
Advanced Manufacturing 
Research Center 

  
qd Roll speed ratio 

 

a, ae Depth of Cut mm  vd Dressing tool speed m/s 

lc Contact length mm  vs Grinding wheel speed  m/s 

Vs Grinding wheel surface speed m/s  CBN Cubic Boron Nitride   

Vw Workpiece feed rate mm/min  DTG Difficult to grind  

ds Grinding wheel diameter mm  G Grinding ratio  

Q Material removal rate mm3/min  RMS Root mean square  

Q' Specific material removal rate mm3/s  CFAR Constant false alarm rate  

bw Grinding contact width mm  ROP Ratio of power  

ec Specific grinding energy    MVD Mean-value deviance  

P Grinding power 
kW  

EXWT 
Energy of cross wavelet 
transform 

 

PNL No-load power  
kW  

DWTC 
Degree of wavelet 
coherence  

 

Pf Fluid drag power  
kW  

STFT  
Short term fourier 
transform  

 

Ft Tangential grinding force N  μ Mean  

Fn Normal grinding force  N  
σ Standard deviation   

Fv Vertical grinding force N  s Wavelet scaling  

Fh Horizontal grinding force 
N  

CWT 
Continuous wavelet 
transform 

 

Fa Axial grinding force 
N  

DWT 
Discrete wavelet 
transform 

 

vft Tangential feed speed  mm/min  SNR Signal to Noise ratio  

vfn Normal feed speed  mm/min  CSD  Cross spectral density   

    OWA One Way Assembly  
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1 Introduction  

1.1 Motivation 

Grinding of aerospace alloys stands as a pivotal facet in aviation manufacturing. As noted by Rowe [1], 

industries in the latter half of the twentieth century came to recognize grinding as the quintessential 

machining process defining part quality. Rowe [1] substantiates this claim by citing examples from 

industries such as aero-engines and missile guidance systems. Within the aviation industry, quality was 

critical to safety of design and advancement of technology in the industry. With intricate designs booming 

within the aviation industry to improve the capability of aero-engines and other aero parts, high accuracy 

was required to demand tight tolerances for size, shape and surface texture and grinding was the answer. 

To give an idea of the magnitude of tolerance limits and precision used within grinding, Rowe [1] mentions 

grinding was used for large parts where straightness is important and tolerance was considered in microns 

while grinding of small parts could tighten the tolerances into the nano range.    

Grinding is considered an abrasive process within machining operations. Unlike conventional machining 

practise where it involves the use of tools with cutting edges using defined shapes, grinding implements 

an array of fixed abrasive particles which project out of a binding material surface and removes material 

as it meets softer material at high speed. This is a rather minimalistic definition for grinding and is only 

used in this script to set the scene for the project’s motivation, a more venerate definition is given within 

the literature review.  

 Abrasive particles within grinding have complex shapes which means they have a complex geometry and 

when trying to understand the process, the kinematics to consider is also complex. Therefore Rowe [1] 

mentions that the knowledge required to advance the technology was limited in the second half of the 

twentieth century hence a great push to fill this gap within the industry was conceived by the industry 

naturally and still exists. Being one of the final steps within manufacturing there was great demand to 

conduct research within understanding grinding and being able to control the various outputs of grinding 

such that any costly mistakes towards the end of product manufacture is avoided. Adding to the 

complexity of grinding, the industry also pushed towards being able to use grinding as an opportunity of 

increased material removal rate and reaching final form with reduced number of operations.  Therefore, 

it can be concluded that grinding is highly complex and dynamic, characterized by non-stationary 

behaviour. The grinding mechanism undergoes constant evolution during the process, transitioning 

through various stages of material removal, including rubbing, ploughing, and cutting. Rubbing occurs 
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when abrasive grains lightly contact the workpiece surface without penetrating it deeply, resulting in mild 

wear. Ploughing involves abrasive grains penetrating the surface and displacing material to form ridges 

without necessarily removing it entirely. Cutting, on the other hand, occurs when abrasive grains deeply 

penetrate the workpiece, carving out chips of material. These stages of material removal are not mutually 

exclusive; rather, grains may experience a combination of rubbing, ploughing, and cutting during the 

grinding process. The dynamic nature of grinding arises from the interplay of multiple input variables, such 

as grinding wheel properties, workpiece material characteristics, and process parameters, which influence 

the prevalence of each material removal mechanism over time. Additionally, the evolution of the grinding 

mechanism is influenced by the changing conditions within the grinding zone, including changes in 

abrasive wear, workpiece deformation, and heat generation. As a result, the grinding process exhibits 

non-stationary behaviour, with material removal rates and surface quality fluctuating throughout the 

operation. Understanding and controlling these dynamic aspects of grinding are crucial for achieving 

consistent and desired outcomes in precision machining applications. With such a complex process, 

monitoring it becomes imperative to detect faults, capture process parameter information, and optimize 

grinding systems accordingly. 

Along with the advances in machining and grinding, another front which added to the intricacies of the 

technology was the changing materials that were present within the aerospace industry. The industry 

demanded superior properties from materials such that the industry could improve the capability of aero-

structures and propulsion. This gave rose to superalloys which had high thermal properties, corrosion-

resistance and superior mechanical strength. To give an example of the values, Wee et al [2] reviews 

mechanical thermal properties of superalloys and shows how conventional cast superalloys that have high 

thermal properties show a maximum ultimate tensile strength (UTS) of 550 MPa and maximum yield 

strength (YS) of 380 MPa at 1000°C and even higher strength of UTS: > 1000 MPa and YS:> 800 MPa at 

800°C which are operating temperatures within gas turbines in jet engines.  One of the main forms of 

superalloys which is widely used within the industry are nickel-based superalloys. Nickel based superalloys 

pushed the criteria limits for the operating temperatures of different aerospace components meanwhile 

maintaining the strength to provide safety and reliability. On the other hand, these superior properties of 

nickel-based superalloys made it difficult to grind material due to its high strength work hardening and 

low thermal conductivity. When grinding, the low thermal conductivity leads to significant heat 

generation and therefore if not controlled and monitored can affect the quality of the surface especially 

due to a heat affected zone that is created during grinding as described by Sinha et al [3]. Inconel 718 is 

one such superalloy which is widely used in the industry for production of gas turbine engine parts such 
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as compressor casings, discs and fan blades. This thesis has selected IN 718 as the primary material to be 

investigated due to its wide use in the industry such that it can advance process monitoring and stay 

relevant to the industry.  

Various methods exist for monitoring the dynamic grinding process, including grinding force, spindle 

power, acoustic emission, and vibration. Research has advanced within these fronts to understand how 

grinding can be controlled and one of interest within this thesis is the use of acoustic emission (AE). AE 

sensors’ capability allow for in-process detection of acoustic signals. Sensing technology has improved 

such that AE sensors with a large frequency range and high sensitivity has been packed into smaller 

dimensions. Therefore, AE sensors are more portable and can be easily integrated into a machine 

environment and can be rather considered a tool to deploy for dynamic sensing. Although AE sensors 

have been employed to detect contact between workpiece and tool, ongoing research aims to leverage 

AE for tasks such as grinding burn detection and wheel condition monitoring. However, a notable gap 

persists in establishing a clear link between AE data and grinding parameters—a gap this study seeks to 

address. The dynamic capabilities of AE sensors offer unprecedented opportunities for real-time 

monitoring and detection of faults during the grinding process. The insights gained from this research 

have the potential to not only advance the understanding of grinding processes but also pave the way for 

the industrialization and widespread adoption of AE-based monitoring systems. By providing actionable 

insights into the onset of faults during grinding, these systems have the potential to significantly reduce 

manufacturing defects, enhance product quality, and ultimately, reduce costs for aerospace 

manufacturers. 

Advanced Manufacturing Research Centre (AMRC) are currently at a stage to improve the data acquisition 

capability during machining as part of Industry 4.0 advancements and have invested in DAQ systems which 

can incorporate acquisition of signal from various sensors at the same time and improve the data 

acquisition rate capability. Before the time of writing this thesis, AMRC was limited to 1 Mhz data sampling 

rates for AE sensors and did not have the capability of acquiring synchronised data from different sensors 

(signal sources at different sampling rates) such as force, power and AE. Previous work conducted at AMRC 

with AE sensors have always looked at AE signals limited to less than 500 kHz due to Nyquist criterion 

limitation and there was no protocol to understand if the AE sensors had degraded during testing. The 

only checks conducted was to ensure that the AE sensors were calibrated as when required. At AMRC, 

there has been works conducted with AE sensors to understand different machining process but none 

which have been able to test the reliability and repeatability of using AE sensors for monitoring grinding.  
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This context underscores the pressing need to bridge the knowledge gap and enhance the reliability of AE 

signal utilization at AMRC. By instilling a systematic process for data acquisition with AE sensors, this 

research endeavor aims to lay the groundwork for integrating AE technology into the grinding domain. 

Establishing this precedent not only facilitates advancements in process monitoring capabilities within 

AMRC but also creates avenues for broader industry applications. With enhanced process monitoring 

capabilities, AMRC can spearhead initiatives to fund projects aimed at leveraging acoustic emission for 

monitoring and optimizing manufacturing processes across diverse machining operations. Furthermore, 

the transferability of AE technology to other machining processes holds immense potential for driving 

efficiencies and improving product quality across the manufacturing spectrum. Thus, this study is poised 

to contribute significantly to the ongoing efforts at AMRC to harness cutting-edge technologies for 

enhancing manufacturing efficiency and competitiveness. 

This study is centered on a comprehensive literature review aimed at delineating the intricacies of the 

grinding process, identifying key input-output relationships, and synthesizing existing research on AE 

sensor applications for process monitoring in the aerospace sector. Furthermore, it encompasses the 

design and execution of an experiment to systematically investigate the repeatability and reliability of AE 

signals recorded during the grinding of IN718—a widely used aerospace alloy. By integrating theoretical 

insights with empirical findings, this research endeavor seeks to advance our understanding of AE sensor 

applications in grinding processes, thereby paving the way for more efficient and reliable manufacturing 

practices in the aerospace industry. 

1.2 Aim  

This study aims to significantly enhance the Advanced Manufacturing Research Centre's (AMRC) process 

monitoring capabilities during the grinding of the aerospace alloy Inconel 718. The research will deploy a 

new and improved signal acquisition system to conduct a repeatability study, recording acoustic emission 

(AE) signals alongside force, power, and vibration signals under controlled and varied grinding parameters. 

A key objective is to implement an optimized wavelet de-noising method tailored for AE signals from the 

grinding process, ensuring accurate analysis by removing background noise from the coolant and machine 

environment. The study will investigate how grinding wheel diameter progression affects AE signals across 

different grinding regimes, including finishing, semi-finishing, and roughing. By analysing signal coherence 

and frequency distribution, as well as repeatability of AE features such as RMS, MVD, and CFAR, this 

research aims to establish robust process monitoring techniques. The outcomes will enhance AMRC's 

capabilities and provide a foundation for future advancements in grinding process monitoring. 
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1.3 Objectives  

1. To conduct a literature review on the understanding of grinding process and previous work 

conducted within process monitoring of grinding using acoustic emission signals. Therefore, 

address the knowledge gap that exists in this niche area of research.  

2. To characterise a set of AE features and signal parameters which needs to be investigated for 

repeatability using the knowledge gap addressed within the literature review.  

3. To design an experiment which is aimed at investigating the repeatability of recording AE signals 

with a varied set of grinding parameters and conclude on the reliability of using AE sensors for 

process monitoring during grinding at AMRC.  

4. To develop the pre-process routine for the recorded AE signal which de-noises it and filters out 

the unwanted signal from the grinding process.  

5. To deploy an upgraded signal acquisition system and thereby enhance the AMRC capability and 

its use of AE sensors for process monitoring in a machining environment.    

1.4 Thesis structure  

The thesis structure follows the format to introduce the concept of grinding and its basic understanding 

of the process before reviewing research conducted previously within process monitoring of grinding 

using acoustic emission and its signal processing techniques. Following this, the current capability of 

AMRC is explored and potential improvement to the system is identified. Having set the scene for the 

background of the project, the methodology for the experiment is defined and signal processing routine 

is detailed for the work. Finally, the results of the experiment is determined and discussed to evaluate the 

repeatability of AE signals during process monitoring of grinding IN718. The thesis concludes upon the 

lessons learnt from the experimental work and future work direction as an interpretation of the results. 

The detailed thesis structure is as follows: 

Chapter 2: This gives an outline of the motivation for this thesis and justifies the various approaches taken 

towards investigating the repeatability of AE signals during process monitoring of grinding. The aims, 

objectives and scope have been defined and stated. 

Chapter 3: This chapter entails the literature review conducted within this thesis. It introduces the grinding 

process and gives an overall review of the grinding mechanism and the key parameters which control the 

grinding process. Furthermore, the chapter dwells on the types of grinding wheels and how their 

dressing/topography affects the grinding process outputs. Another approach to the review is exploring 
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process monitoring by viewing the grinding process as a system and converging towards the use of AE 

signals within process monitoring of grinding. It concludes with the analysis of the AE signal pre-processing 

by detailing the study of wavelet denoising for this thesis.  

Chapter 4: The current AMRC capability is examined within this chapter within aspects of grinding 

capability, force monitoring, power monitoring, acoustic emission monitoring and finally the data 

acquisition capability. This is an overview of the status of the capabilities before the work was conducted 

on the thesis and a realisation of the potential for improvement.  

Chapter 5: Outlines the methodology adopted for experiment which defines repeatability of AE signals 

during process monitoring of grinding on IN718. The experimental set-up is detailed and a stepped 

approach to design the experiment to meet the objectives defined. AE sensor response reproducibility 

test that was developed to improve the AMRC capability for standardising AE signals and this also 

discussed within this chapter. The chapter concludes with the methodology to define AE signal de-noising 

using wavelet decomposition.  

Chapter 6: Presents the results for the various objectives set out within the thesis. Initially, the chosen 

parameters for wavelet de-composition and de-noising are discussed thereby rendering the pre-

processing required for AE signals before analysis. The pre and post AE sensor reproducibility test results 

are discussed to infer the reliability of the data captured through the sensors. Repeatability of the grinding 

parameters and output results are validated by analysing the grinding force and power results. Finally, the 

effect of grinding wheel diameter progression upon grinding force, power and AE response is explored 

while keeping the experiment controlled and hence repeatability discussed. Other aspects of repeatability 

is discussed from the perspective of power spectral analysis on the AE signals, spectral coherence and 

cross spectral density of AE response and the trends in AE features which were picked out from the 

literature review.  

Chapter 7: Discussed the lessons that were learnt during the preparation of the experiment and also any 

learning which would be helpful for the future works within this field of research. 

Chapter 8 : Brings in the conclusions to the objectives set out for the thesis and other findings which are 

relevant to the field of research.  

Chapter 9: Entails how the conclusions from this thesis models the work for the future in this area of 

research. The next steps required towards progressing process monitoring during grinding with AE are 

discussed.  
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2 Literature review  

2.1 Grinding  

2.1.1 The grinding process  

Grinding is defined as a machining process which makes use of hard abrasive particles as the cutting 

medium which are bonded onto a wheel to remove material off the machined workpiece. Grinding is an 

essential machining process due to its ability to produce fine surface finishes and accurate dimensions 

that are otherwise not easily achieved using conventional machining techniques such as turning or milling. 

The grinding wheel consists of two types, namely conventional and super abrasives [1]. Conventional 

grinding wheels usually have a hexagonal crystal structure, and the two main types are made from 

Aluminium oxide and silicon carbide which use vitrified, rubber or rubber reinforced bonds between 

grains. Super abrasive wheels have a cubic crystal structure, and the main types include diamond and 

cubic boron nitride which use vitrified, resin or metal bonds between grains. All wheels have a marking 

scheme which specify the properties such as the abrasive type used, abrasive grain size, grade, structure 

and bond type etc. In the grinding process, loading of the wheel with workpiece material or grains 

breaking off can cause two issues; i) sharpness of wheel lowers as the peak prominence of the grains 

reduce with the introduction of workpiece material loading onto the wheel ii) run-out of wheel increases 

when the workpiece material lodged onto wheel changes the macro-form of the wheel. These issues raise 

the need for dressing and truing which are key processes within grinding. Both these processes involve 

the removal of worn/unsharp grains and bond material off the wheel surface to reveal a fresh surface for 

which truing is done to maintain low run-out and good form while dressing helps regenerate and fresh 

sharp grinding wheel surface.  

The process is mainly considered as a finishing process within the macro-scale process of machining a 

product. It gets this characteristic due to its capability of providing a fine finish on machined surfaces with 

lower material removal rates. But over the years, these trends seem to be changing, there is a drive 

towards the grinding process involving a high material removal rate and achieving final machined 

dimensions through grinding with higher dept of cut - a new method of grinding (creep grinding). This 

shows the need for different types of grinding processes to exist to provide various finishing on machined 

surfaces. 
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2.1.2 Grinding mechanisms  

The cutting-tool geometry and its interaction with a workpiece during grinding is not easily defined and 

discrete. A grinding wheel has several cutting points which interact in an irregular pattern with the 

workpiece at random orientations and positions about the surface of the wheel. As a result, there is a 

great variation in the cutting geometry as the grinding process progresses. In the past, there has been 

several works to define the cutting mechanism and chip mechanism during grinding. The most favoured 

approach being looking at a single ‘typical’ or ‘average’ cutting point on a wheel and modelling the 

variability that can occur due to different amount of cutting points or even simulating the interaction 

between non-uniform surface and workpiece. The key parameters that can be picked out when analysing 

the kinematics involved would be the depth of cut (a), the contact length between grinding wheel and 

workpiece (lc), peripheral velocity of the grinding wheel (Vs) and workpiece feed rate  (Vw). An example 

of the parameters described are shown in Figure 1 for straight plunge grinding, the same type used in this 

thesis experiment.  

 

Figure 1 Illustration of straight surface plunge grinding operation [4] 

In the diagram Figure 1 , the wheel velocity (Vs) and workpiece velocity /feed (Vw) is in the opposite 

directions and this is known as ‘up-grinding’ and if these velocities were in the same direction, this would 

be known as ‘down grinding’. As the grinding wheel is in contact with the workpiece, there are normal 

and tangential forces generated between them which cause the grains to abrade the workpiece. An 

increasing depth of grain penetration determines the type of material removal experienced on the 

workpiece. A low depth of grain penetration initially causes rubbing on the workpiece, then with 

incremental depth of grain penetration, ploughing would result thereby creating ridges on the surface of 



18 
 

the material without removing the material. A high depth of penetration can develop the ploughing into 

a situation where the material is removed. Properties of the material is the strongest factor which 

determines the extent to which these grain cutting regimes affect the surface of a material. In down 

grinding, the grinding forces tend to be lower as the grains initially in contact can experience chip removal 

rather than rubbing initially as opposed to its counterpart and therefore benefit from better surface 

roughness and reduced wheel wear. There are also disadvantages to down grinding, one of the most 

important one being the control of colling fluid as it is difficult to carry the cooling fluid onto the grinding 

contact point as opposed to up-grinding. But over the years, coolant deployment technologies have 

caught up with this disadvantage to improve the cooling strategy during down-grinding. Therefore, in 

most situations, down-grinding is the most common type of grinding deployed.  

Removal rate (𝑄) of material during grinding is directly related to the grinding forces, deflection and power 

consumption during grinding. The removal rate is given as the product of workpiece feed rate (𝑣𝑤) in the 

direction of material removal and contact area. While specific material removal rate Q’ is the removal rate 

per unit width of grinding contact [1]. In the equations below 𝑏𝑤 is the grinding contact width and 𝑎𝑒 the 

depth of cut.  

𝑄 = 𝑏𝑤 . 𝑎𝑒 . 𝑣𝑤  removal rate 

Equation 1 

𝑄′ = 𝑎𝑒 . 𝑉𝑤  specific material removal rate 

Equation 2 

From the equation above it is apparent that in order to increase material removal rate, the grinding 

contact area and the feed rate needs to be increased. These options have their own effects on the grinding 

mechanism. An increased grinding contact width would mean higher grinding energy, therefore requiring 

higher grinding power and grinding wheel’s ability to withstand high deflection. Realistically, as grinding 

progresses, grinding wheel wears and the depth of cut at the periphery of the wheel can reduce. In a 

grinding wheel where the grains are not equally distributed this can bring other grains on the wheel 

surface to become active and the active contact area can change. Therefore, it is not realistic to imagine 

an ideal grinding wheel and grinding mechanism to be systematic throughout a grinding cut. Nevertheless, 

there are grain behaviours that can be studied and predicted from the process.  

Grinding energy gives a measure of the ability for a grinding wheel to remove material and this depends 

on its sharpness and the grindability of the workpiece material. Grindability is a term mainly used to 
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describe how easy it is to grind a material with a given abrasive and grinding condition. There is a loose 

definition around the term grindability, and it is considered that material which require low specific 

grinding energy are more  easily ground than those that require high specific energy. This specific grinding 

energy (𝑒𝑐) is given as the grinding power divided by the removal rate Q.  

𝑒𝑐 =
𝑃

𝑄
 

Equation 3 

The griding energy can be identified by recording the grinding wheel spindle power during a grinding cycle.  

An example of a griding cycle is shown in Figure 2 where grinding power, noted as P, can be picked out by 

subtracting the no-load power (𝑃𝑁𝐿) and fluid drag power (𝑃𝑓) after the power reading has stabilised 

within the grind.   

 

Figure 2 Graph showing representation of the grinding power P during a plunge cylindrical grinding [1]. 

Grinding power can also be calculated by resolving the grinding force and speed in which the direction of 

the force is acting. Grinding force can be resolved into three components (a) tangential force (𝐹𝑡) (b) 

normal force (𝐹𝑛) and (c) axial force (𝐹𝑎). These force components within an experimental setup can be 

deduced using a dynamometer for which the components should be accurately defined. An illustration 

for these force components is shown in Figure 3. 
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Figure 3 Three grinding force components shown (a) for small depth of cut during cylindrical grinding (b) large depth of cut for 
plunge surface grinding (exemplary to the type of grinding considered in this thesis) 

𝑃 =  𝐹𝑡 . (𝑣𝑠 ± 𝑣𝑓𝑡) + 𝐹𝑛. 𝑣𝑓𝑛 + 𝐹𝑎 . 𝑣𝑓𝑎 ≈ 𝐹𝑡𝑣𝑠 

Equation 4 

𝑣𝑠 − 𝑊ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 

𝑣𝑓𝑡 − 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑒𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

𝑣𝑓𝑛 − 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑒𝑒𝑑 𝑠𝑝𝑒𝑒𝑑  

  𝑣𝑓𝑎 − 𝑎𝑥𝑖𝑎𝑙 𝑓𝑒𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

The plus sign is applied when up-grinding and minus sign applied when down-grinding. The normal and 

axial feed speed is substantially smaller than the wheel speed therefore griding power can be closely 

resembled by the equation 𝑃 =  𝐹𝑡𝑣𝑠.  

Within this project, a large depth of cut is considered and therefore the components of the horizontal and 

vertical force recorded using a dynamometer needs to be used to deduce the normal and tangential force. 

The equation relating these forces are given as :  

𝐹𝑛 = 𝐹𝑣 cos(𝜃) −  𝐹ℎ sin(𝜃) 

Equation 5[5]  

𝐹𝑡 = 𝐹𝑣 sin(𝜃) + 𝐹ℎ cos(𝜃) 

Equation 6 [5] 

In order to evaluate the normal force vector angle, 𝜃 ; 

 𝜃 = √
𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑢𝑡

𝑊ℎ𝑒𝑒𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
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Equation 7 [5] 

Amongst these equations that have been used to define the grinding mechanism and its related grinding 

force, there has not been a simple way to define the concept of complicated and random process of 

grinding that helps the common shop floor technician. Badger [12 a] introduces this as a divide between 

the knowledge held in academia and the knowledge held on the shop floor. To close this gap, Badger [6] 

introduces the aggressive value that helps users easily evaluate their grinding parameters without the use 

of a complicated concept. Unlike turning, which can be easily represented in two dimensions using 

Merchant’s chip formation model [7], the inherently three-dimensional nature of grinding makes it very 

challenging to calculate chip thickness. Machine operators, who are used to the clear "speeds & feeds" 

diagrams available in turning, often find it frustrating that no such straightforward relationship exists for 

grinding. One of the most common equation for maximum chip thickness  [4] given in grinding, hm, can be 

summarised as : 

ℎ𝑚 = [
6

𝐶 ∙ 𝑟
∙

𝑣𝑤

𝑣𝑠
√

𝑎𝑒

𝑑𝑒
]

1/2

 

Equation 8 

Where C is the cutting-point density (number of cutting points per unit area) , r is the shape factor , vw is 

the workpiece velocity, vs is the wheel velocity, ae is the depth of cut, and de is the equivalent diameter. 

However, this complicated equation can be made simple to an equation that only takes into the account 

the machining parameters that can be varied i.e. – depth of cut, federate, wheel speed and wheel 

diameter and called aggressiveness[8]. Badger [12 a] further simplifies this equation and rewrites it as 

below: 

𝐴𝑔𝑔𝑟𝑒𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 16.7 ×
𝑣𝑤  (

𝑚𝑚
min

)

𝑣
𝑠(

𝑚
𝑠

)

× √
𝑎𝑒(𝑚𝑚)

𝑑𝑒(𝑚𝑚)
 

Equation 9 

2.1.3 Grinding wheel dressing and topography 

From reviewing the grinding mechanism, it is apparent how important the grinding wheel surface is for 

the output of the grinding task. Dressing is a task which prepares the grinding wheel surface and there are 

different stages to it. Firstly, truing to remove any deviations from the wheel’s specified form or 

straightness. Dressing is conducted to achieve a fresh cutting surface which is uniform with a well-
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balanced distribution of cutting edges and remove any workpiece material that would have loaded the 

wheel in previous grinds. Dressing also shares the responsibility of conditioning the wheel to an open 

wheel surface by removing the bond around abrasive grains (an important aspect to consider within resin 

bonded grinding wheels and vitrified super abrasive wheels) 

Stationary and rotary dressing tools are the two basic types of dressing tools. Stationary dressing tools 

include single-point diamond and impregnated diamond dressing tools which are mainly used for dressing 

conventional abrasives.  

The dressing process for a single-point dressing tool involves the dressing tool (normally diamond) in 

contact with the wheel and is traversed across the surface of the grinding wheel to create the required 

shape and cutting surface. Coolant also needs to be applied to keep the cutting tool cool during dressing. 

For single-point dressing tools, the dressing diamond can rapidly develop a flat with wear and this can 

affect the dressing forces. Therefore, these tools require it to be rotated 90o about its axis at given 

intervals.  

Vitrified CBN, resin-bonded CBN and diamond wheels are normally dressed using rotary dressing tools 

since this avoids rapid dressing tool wear. A rotary dressing tool takes the form of a narrow disk with a 

layer of diamonds set on the wheel peripherals or a cup form with a layer of diamonds around the edge . 

The rotary tool is used in a similar manner to the single point dressing tool by traversing across the wheel 

surface. A rotary dressing tool can also be wide to allow for form dressing the wheel and hence referred 

to as roll dressers. With a rotary dressing tool, the tool life is generally improved because of the increase 

in diamond contact points compared to single-point tool.  

An important parameter for rotary dressing tool is the dressing-roll speed ratio. An appropriate roll speed 

ratio (𝑞𝑑) is needed to output the required wheel surface.  

𝑞𝑑 =
𝑣𝑑

𝑣𝑠
 

Equation 10 

𝑣𝑑 − 𝑑𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑜𝑜𝑙 𝑠𝑝𝑒𝑒𝑑  

𝑣𝑠 − 𝑔𝑟𝑖𝑛𝑑𝑖𝑛𝑔 𝑤ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑  

Roll speed can be either positive, grinding wheel and dressing roll run in the same direction, or negative 

i.e. vice versa. If the wheel speed is equal to the dresser roll, the speed ratio would be a +1 and this would 
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be a crushing action. The resultant output is a wheel of high surface roughness and high normal forces on 

the roll. To lower the surface roughness and lower dressing forces, the speed ration needs to be reduced 

and should be negative. For a precise grinding operation with conventional wheels for example, the roll 

speed ratio is adjusted within the range of -0.2 to -0.8 while a CBN would require a positive speed range 

to get an open wheel surface. It is recommended that dressing of the grinding wheel is run at normal 

operating speeds since this would reduce any run-out of the wheel due to unbalance. On the other hand, 

it can be necessary to reduce the wheel speed during dressing to avoid a vibration mode in the machine. 

With advances in machine technology, it is normal to have vibration sensors placed within the machine 

which can detect any vibrations for frequencies that can occur during dressing and check to ensure that 

it does not affect any dressing at a given speed.  

Grinding force is heavily dependent on wheel grain sharpness. As grain becomes blunt the grinding forces 

increases, however, grains can sometimes fracture and pull-out, in which case forces reduce with tool 

wear. Dressing too fine or dressing too coarse can have adverse effects on the redress life of the grinding 

wheel. With dressing a wheel too fine, after initial wheel wear there will be a sharp drop in grinding power 

and then the surface of the wheel will stabilize followed by a period where the grinding force steadily 

increases as the wheel wears and blunts. For coarse dressing, whole grains break out of the wheel surface 

and number of active grains reduce but either way both fine/coarse dressing condition will eventually 

converge and stabilize towards the same value of grinding power. A redress is necessary when the 

workpiece parameters such as surface roughness, vibrations and size-holding are out of specification.  

2.1.4 Types of Grinding wheels 

Grinding wheels consist of abrasives grains held in a weaker bonding matrix. There are different forms of 

a grinding wheel with variation in grains, bond material, fillers and grinding aid materials. The 

performance and property of the different grinding wheels depend on these constituents of the wheel 

and the way it is manufactured. Type of abrasive grain material, size of the grain, the bond material, the 

property of abrasive and bond linkage and bond porosity are some of the parameters which define the 

grinding wheel.  

‘Conventional’ wheels are mainly made from either aluminium oxide or silicon carbide abrasive with 

vitrified or resinoid bonds. To give further understanding of the bonds mentioned, vitrified bonds are 

made from a mixture of clay and ceramic material are baked at high temperatures of upto 1300 °C to 

create a strong bond. Resinoid bonds are made from synthetic resins that are cured under heat and 

pressure to create the bonds. ‘Superabrasive’ wheels are made from either diamond or cubic boron nitride 
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(CBN)  abrasives with vitrified, resin and metal bonds. Conventional wheels is normally entirely composed 

of the abrasive grain and bond while superabrasive wheel is limited to a thin layer on the peripheral of a 

plastic or metal hub. The different requirements of wheel shapes and sizes to fit all the diverse grinding 

machines and jobs means grinding wheel can be manufactured in a diverse range.  

The focus of this literature review will be on vitrified Aluminium oxide which is used in this experiment to 

grind IN718. Aluminium oxide or otherwise known as corundum is used for grinding mainly ferrous 

materials. Depending on the purity or preparation of the grains, they can be blocky or sharp. Blocky grains 

have high impact resistance and are best for heavy material removal operations while grains that micro-

fracture are more durable and are kept sharp while minimizing force on the grains. There are other types 

of alumina such as zirconia alumina which are very tough grains, addition of chromium oxide in Pink/Ruby 

alumina increases friability. Brown alumina is a general purpose abrasive used for rough grinding.  

A vitrified wheel is a structure of grains, bond material and pores. The bonds are harder than organic 

bonds (e.g. resinoid bonds)  but softer than metal bonds. An advantage of vitrified wheel is that it is flexible 

due to its structure allowing for different forms for different grinding profiles by truing the wheel. These 

bonds are made from vitreous materials which have a low melting point, these are glasses formed when 

glass frits, clays are mixed with mineral fluxes e.g. feldspars and chemical fluxes e.g. borax. These bonds 

materials are mixed with water, binder, abrasive grains and compacted into a mould. The wheel is 

thereafter heated and cooled in a controlled cycle using an oven. The temperature can reach upto 1300oC 

and the temperature needs to be controlled to ensure that the bond becomes glassy and can flow just 

sufficiently in that state.  

The grinding wheels have a nomenclature to define wheel specification using a marking system. The 

marking system for the wheels are shown in Figure 4.  
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Figure 4 (a) Grinding wheel nomenclature for conventional abrasive grinding wheels. (b) Nomenclature for super abrasive 
grinding wheels. Figures adopted from Rowe [1]. 

For heavy stock material a coarse grit is used while a fine grit is used for low surface roughness material 

removal during grinding. The wheel grade gives an indication of the way in which a wheel wears. A softer 

wheel would wear much quicker than a hard wheel and the grade is directly linked to the volume of bond 

used within a wheel i.e. a larger portion of bond makes a wheel harder and vice versa. These 

characteristics of the wheel can also be influenced by the dressing procedure deployed. Coarse dressing 

would essentially make a more open surface on the grinding wheel and as a result making the wheel 

softer. Wheel structure refers to how densely packed the grains are in a grinding wheel. A lower numbered 

structure on the wheel indicates the grains are densely packed while a higher numbered structure 

indicates the grains are widely spaced. An open structure essentially allows for better swarf removal and 

also allows for better access for grinding fluids.  Porosity and structure of wheel are parameters which are 

closely related, porosity is also defined by the proportion of bond in the mix. For example, a highly porous 

wheel can have an open structure and lower proportion of bond than a wheel of the same structure but 

lower porosity. Wheel with higher porosity will act soft while wheel with low porosity will tend to act hard.  
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2.1.5 Grinding IN718 and its application in the industry  

Inconel 718 is a precipitation strengthened Ni based super alloy which is widely used in the aerospace 

industry. The metallurgy of the superalloy provides unique properties which helps with its application in 

the industry. One of its main benefits being able to operate at high strengths in extreme temperatures 

while exhibiting high yield, tensile and creep-rupture strength. The alloy has additions up of Nickel, Cobalt 

and Chromium which adds to its corrosion-resistance and resistance to oxidation. Different element 

additions supplements to the properties IN 718 possess as shown by Table 1. 

Table 1 Shows the relevant metallurgical properties attained due to element additions in IN 718 

Element addition IN718 metallurgical property 

Al, Ti, Nb Hardening precipitates and/or intermetallic 

Al, Cr, Y, La, Ce Oxidation resistance 

La, Th Improve hot corrosion resistance 

Cr Sulfidation resistance 

B Improves creep properties 

B(if present in large amounts, 
borides are formed) 

 

Increase rupture strength 

 

With its properties, it finds its application in turbines of jet engines including parts such as shafts, sheets, 

blades and discs. One of the less common applications within the industry is its use in tanks, containers, 

rings and pressure vessels in rocket engines.  At these extreme operating conditions, the properties 

defined for this material is dependent on the surface quality. Grinding is therefore one of the key 

machining processes used which influence the surface quality for these parts and hence demand attention 

to understand its grindability. IN718 possess low thermal conductivity and has high strain hardening which 

renders the material as a difficult-to-grind (DTG) material. Supplementary to this property, high chemical 

affinity towards conventional abrasives means that grinding chips stick onto grinding wheels easily, also 

resulting in re-deposition over the ground workpiece [9]. This phenomenon increases wheel wear and also 

affect end-surface quality of the ground product. Although conventional wheels show this behaviour, they 

are still the most preferred choice in the industry mainly due to lower abrasive cost and ease of use 

compared to super abrasive wheels.  
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Surface burn is a serious issue within grinding of IN718 because of its low thermal conductivity. Surface 

burns are based on the heat partition ratio; the ratio of heat absorbed by the workpiece against the total 

heat generated during grinding. Since IN718 has low thermal conductivity, there is accumulation of heat 

over the ground surface which creates the heat affected zone. During grinding of IN718, the heat partition 

ratio is 75 – 85 % [10] and as a result there is a high temperature accumulated over the surface of the 

workpiece. On the other hand, sub-surface temperature of the workpiece would be relatively lower, and 

this unequal distribution of temperature can cause the development of tensile stresses on the surface.  

This steep temperature gradient normally instils tensile residual stress which is opposing to the beneficial 

residual compressive stress that arise from crushing effect of abrasive grain and workpiece. Greater 

tensile residual stress can result in decreased fatigue strength of the workpiece. Therefore, it is vital to 

control grinding conditions/parameters to increase residual compressive stresses and decrease residual 

tensile stress. A high grinding zone temperature can also result in metallurgical phase changes that affect 

the mechanical strength properties of IN718.  

Tso [11] had studied IN718 grinding with different wheels and concluded that CBN wheels were the most 

suitable wheel for grinding of IN718 compared to silicon carbide and white aluminium oxide wheels. Tso 

[11] study was based on understanding the effect of various process parameters (including wheel speed, 

table speed and down feed) on the surface roughness, grinding forces and dimensional accuracy. It 

concluded that silicon carbide wheels had issues with rapid dulling during wet grinding and during dry 

grinding workpiece burns and re-deposition on the workpiece surface was identified. This paper definitely 

shown the superiority of CBN when grinding IN718 but as discussed previously current industry practise 

has been favouring the conventional wheels due to cost and ease of use. For the benefit of this project, 

this paper did provide a initial point of reference for the parameters that were used when grinding IN718.   

Looking closely towards the use of alumina wheels for IN718, Zhong et al. [12]  had conducted work on 

surface grinding of IN718 and Hastelloy with alumina wheels. The conclusions from the study reported 

that a high wheel speed (upto 160 m/s) resulted in smaller cutting depth (400 µm) and smaller 

undeformed chip thickness. As a result, grinding force can be reduced and surface quality improved with 

reduced residual stress. Pioneering work which clearly defined the comparison between Alumina wheels 

and CBN wheels was paper by Liu et al. [13] which declared that even though the grinding ratio (G) with 

CBN wheel was much higher than the alumina wheel the cost aspect tipped the scales in favour of the 

alumina wheel. Lie et al. [13] showed that cost-performance model based evaluation means that the 

material removal volumes of a CBN wheel must be 14 times as large as that of a 60E aluminium oxide 

wheel and in practise it is not an easy task to reach this performance level due to severe loading. Huddedar 
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et al. [14] showed with their work that with alumina wheel the grit size of the wheel had the dominant 

effect on the surface roughness during the surface girnding of IN718. Within this study, workpiece speed, 

infeed, grit size and type of lubricant were the control parameters. Therefore, it was a significant factor 

to consider within the experiment design for this project. Ways in which the grit size can be controlled is 

to ensure new wheels are used and the constant grit size wheel type is used for all grinding regimes that 

are investigated in this project. Comparison of vitrified bonded single alumina (SA) and resin bonded CBN 

wheels for surface grinding of IN718 that was conducted by Yao et al. [15] showed that better surface 

integrity was obtained with SA wheel for the same grinding parameters. For the perspective of this thesis, 

it is important to control the grinding end result as the acoustic emission signals are analysed from 

repeatable grinding regimes and therefore paper by Yao et al. [15] gives confidence in the use of alumina 

wheels for this experiment. Sinha et al. [16] which studied surface burn during grinding of IN718 also 

showed comparison of alumina and Silicon carbide wheels and concluded that Alumina wheels ground 

IN718 more effectively. Surface burn is a phenomenon to avoid within the experiment for this thesis as 

this study focuses on being able to realise the repeatable features with the use of acoustic emission signals 

and therefore improve the confidence on using acoustic emission for process monitoring during grinding 

on IN718. Having conducted a review on papers that have been written with respect to grinding of IN718, 

it evident there is not a single paper that targets the acoustic emission signal acquisition during grinding 

of IN718. This review rather helps evaluate a starting point for understanding the grinding regimes which 

are relevant to investigate when acquiring the acoustic emission signals.   

From the review of literature, it is evident that researchers can agree CBN wheels are the most effective 

wheel to use for grinding of IN718 but the cost aspect and ease of use nudges the industry to stick to using 

alumina wheels. There has been work done with varying parameters as control to understand the 

mechanism of grinding for IN718. Understanding the grinding parameters has concluded key parameters 

which influence the output of grinding as: depth of cut (a), the contact length between grinding wheel 

and workpiece (lc), peripheral velocity of the grinding wheel (Vs), workpiece feed rate and choice of 

grinding wheel.   

2.2 Process monitoring in grinding 

In this literature review, the term ‘process’ is considered as steps involved in successfully carrying out a 

grinding task/job in an industrial environment. Therefore, process monitoring involves the assessment of 

its output quantities to make a judgement regarding the state of the process at a given instance.  Figure 5 

shows a systematic approach of the grinding task, adapted from Tönshoff et al. [17], highlighting how the 
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different output quantities form part of the system hence opening the opportunity for the process to be 

monitored. System behaviours and system parameters have already been discussed within section 2.1 

and it is clear how these parameters influence the grinding mechanism and hence form as inputs to the 

grinding system. As a result, the outputs are the quantities which can be quantified or measured to 

understand the result of the grinding process. Methods of evaluating these quantities from the process 

are highlighted in section 2.4. 

From reviewing the grinding process, it is relevant how the workpiece material influences the output of 

the grinding process. The grindability of a material defines with how ease a material can be ground 

without resulting in grinding burn or even high grinding forces which are not efficient for the process. 

Coolant/lubricant helps regulate the grinding zone temperature which directly affects the chip formation 

during grinding and also helps with the progression of wheel wear. The stability the grinding machine 

provides during a grinding cut can reduce vibrations or other dynamics during the process which directly 

influences surface quality on workpiece. Grinding wheel properties have already been review within 

section 2.1.42.1.4  and its dressing/truing in section 2.1.3 which shows how the choice of grinding wheel 

can influence the grinding parameters chosen and the ouput. It is evident that, these inputs ( grinding 

parameters and grinding wheel choice) into the system directly influence the outputs when working 

together within the process. Therefore, monitoring the outputs of the grinding process is a great way of 

defining the status of the process. Furthermore, the state of the process can be used to make a change in 

the process input parameters and system behaviour in a closed-loop or open loop feedback system to get 

desired process state which in turn gives desired output from the grinding system. The feedback system 

allowing for such control within grinding is beyond the scope of this literature review but can be read 

further within the review by Tönshoff et al. [17].  
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Figure 5 Systematic breakdown of the grinding process adapted from Tönshoff et al. [17]  to show quantities which can be 
evaluated for process monitoring. 

2.3 Quantities evaluated through process monitoring  

Grinding force, power, acceleration, acoustic emissions and temperature are some of the process 

quantities which can be assessed either through peripheral sensors which are connected to a grinding 

machine or through the in-house sensors of controllers within the machine.  On the other hand, output 

quantities such as the workpiece macro/micro geometry, workpiece surface integrity or the abrasive tool 

macro/micro geometry could be assessed to evaluate the process status. Figure 6 gives an overview of 

evaluation methods for these quantities which has been gathered and summarised from the literature by 

Tönshoff et al. [17]. 
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Figure 6 Overview of measurement devices/techniques used to evaluate quantities within the grinding process. 

 

2.4 Process quantities  

2.4.1 Process quantity and state of art sensing: Force 

Force measurement was directly linked with the measurement of displacement for a material which has 

been subjected to a force and displacement could be measured by different sensors. The stiffness of a 

system plays a crucial part in defining displacement and in the past strain gauges struggled to accurately 

define displacement during grinding as system components which needed to be in direct contact with the 

strain gauge needed to be weak to record enough strain. Piezo electric quartz force transducers fit the 
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requirements to overcome this issue with strain gauges. Piezo electric force transducers’ directional 

measurement capability also meant they could be stacked in a housing to form a three-component force 

measurement device, forming the dynamometer, which could be used during measurement of cutting 

force in grinding. These force measuring devices can be formed of different types and sizes with required 

protection for it to be deployed in industrial application. Along with the piezo system, a charge amplifier 

would be required to amplify the signal from the transducers to voltage signals which can be deciphered 

as cutting forces during grinding.  

Other sensors for measuring force can use eddy current changes or pressure changes between a nozzle-

bounce plate system between components of a system. Compared to piezo electric transducers these 

sensors cannot reach the same sensitivity. Use of Magnetostrictive effect for sensing force or torque is 

the other type of sensors available. This can only be applied to ferromagnetic materials which change 

permeability under mechanical load.  

2.4.2 Process quantity and state of art sensing: Power  

Power measurement was rather simple and depending on the type of system used to provide power to a 

spindle system, the current, voltage and phase shift can be detected. It is possible to deduce this 

information from the system without any sensor and affecting the machine environment as a result. The 

only concern with power measurement is the sensitivity of the measured quantity. Power required for 

grinding was only a proportion of the total power consumption for a spindle and therefore information 

gathered from power system would also require information from force measurement to infer any 

changes in power measurement.  

2.4.3 Process quantity and state of art sensing: Acoustic emission   

Acoustic emission is defined as the stress or pressure waves generated during the dynamic process in 

materials[18]. Irreversible changes in materials such as crack propagation, metallurgical phase changes 

and dislocation movements causing plastic deformation are prime sources of acoustic emission in metals 

[19]. These acoustic emissions had a high-frequency range which allows it to be critical in being easy to 

monitor [20] during operations such as grinding as it is discrete from environmental noise or machine 

vibration, typically between 50 kHz and 20 MHz today [21]. These advantages give reasons for studies to 

be developed towards using acoustic emission technology within process monitoring in machining. 

Use of AE for process monitoring during grinding has predominantly been used in the industry for 

detection of grinding burn. This is an area of fault diagnosis during grinding which has witnessed most 
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development and promise such that it shows potential to be used in industry. Therefore, within the 

pursuit to understand the AE features that could be used for process monitoring this review will heavily 

focus on work that has been related to grinding burn detection.  

One of the first works in using AE for detection burn [22] was conducted in order to study surface grinding 

burn occurring within the camshaft production line for constant grinding wheel/workpiece speed (not 

transient conditions). In the study, instrumentation setup within the production line flagged suspected 

grinding burn by monitoring the AE amplitude against a threshold. This work was part of the most 

primitive forms of work using AE. This study was not specific to a certain material but was rather focused 

on camshafts for V6 and V8. The paper did not thoroughly examine how different grinding parameters 

such as wheel speed, feed rate and coolant application affected AE signals. The study primarily relied on 

the flank energy ratio derived from AE signals to detect grinding burn on the shop floor but this is only 

one of the features that can be derived from the AE signal. The idea within the paper for detecting grinding 

burn showed promise but still acknowledged the occurrence of false positives thereby showing the 

technology or concept of monitoring the acoustic emission signals was still in its infancy. For practical 

industrial application, it is critical to ensure repeatability of AE-based monitoring systems and this is the 

level of work and knowledge gap that needs to be addressed within this thesis.  

Wang et al. [23] made a detailed statistical inspection of the raw AE signals as input features vectors for 

neural networks for grinding burn detection. The study found that traditional statistical such as zero-

crossing rate, ratio of power and amplitude histogram, were ineffective in detecting grinding burn reliably 

due to their sensitivity to noise and variations in the grinding process. However, more advanced methods 

like Constant False Alarm Rate (CFAR) power law and Mean-Value Deviance (MVD) showed promise in 

detecting transients indicative of burn. The neural networks proved to be promising at detecting burn and 

the two feature vectors used included statistical features of the AE signal comprising of band power, 

kurtosis and skew and autoregressive coefficients which capture the spectral characteristics of the AE 

signals. The study focuses on 52100 bearing steel which will have different characteristics to IN718 and 

therefore learnings from the paper would be inspiration to the methods used for detecting grinding burn 

but the difference in mechanical properties will have an effect on the AE signal characteristics and results 

cannot be considered comparable. The study mainly varies the depth of cut to induce burn and does not 

look at how other grinding parameters may impact burn occurrence and even the AE signal characteristics 

and its effect on the neural network performance.    
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In 2004, Aguiar et al. [24] also looked at using AE statistics such as Root mean square (RMS), Constant 

false rate (CFAR), Ratio of power (ROP) and mean-value deviance (MVD). These AE statistics related terms 

and AE features are shortly explained within section 2.4.3.1 to 2.4.3.5. From this study, ROP was shown 

to be a good indicator for burn since it clearly showed the beginning and end of wheel-workpiece contact 

and a distinction between burn/no-burn conditions. While the study demonstrates the effectiveness of 

statistical tools in detecting grinding burns, it does not thoroughly address the repeatability of these 

statistical tools across the 15 experimental runs. There is still variability witnessed within these 

experimental runs suggesting the need for more extensive testing to consistently detect burns across 

different batches and operating settings. The study does not discuss the long-term stability and calibration 

of the AE sensors and the data acquisition system. For a repeatable process monitoring solution, the AE 

sensors and signal processing algorithms must maintain their accuracy and reliability over time, even with 

regular wear and tear of grinding equipment. The study concluded that while RMS, CFAR, ROP and MVD 

were useful for burn detection on ABNT 1045 steel with an aluminium oxide grinding wheel, skew and 

kurtosis required further investigation to determine their potential utility. The statistical features of AE 

signal used in this paper showed confidence in the ability to use AE data and can be used as the study 

base to develop AE features for process monitoring during grinding. Although, in this context these 

features are used for grinding burn, these are statistical features of the AE signal that may pick up other 

changes within the material during grinding and hence support process monitoring.   

Wavelet packet transforms have also been used with AE signals in order to extract features for AE signals, 

Liu et al [25]. used fuzzy pattern recognition to detect burn with this method and was successful in creating 

a well-performing algorithm. The study leverages wavelet packet transforms to extract features from AE 

signals and employs fuzzy clustering to optimize these features for accurate grinding status identification. 

The experimental setup involved grinding IN718 using a Makino A55 CNC machining center. The study 

found that wavelet packet transforms captured the intrinsic properties of AE signals, allowing for detailed 

analysis in both time and frequency domains. The fuzzy clustering successfully optimised the extracted 

features, reducing information redundancy and improving classification accuracy. The experimental 

results demonstrated a high recognition rate for grinding burn detection, with over 92 % accuracy.  

Following on, Aguiar et al. [26] later used grinding power, AE RMS and AE mean value deviance with fuzzy 

logic models developed to interpret the AE signals and predict the occurrence of grinding burns. Fuzzy 

clustering method were used to handle the imprecision and variability in data; an aspect which was 

considered a shortfall in the previous paper that focused on the same statistical AE features. Similar to 
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the previous study, varied grinding parameters such as depth of cut, wheel speed and feed rate was used 

to induce different grinding conditions on AISI 1045 steel using aluminium oxide grinding wheel. RMS, 

CFAR, ROP and MVD were effective in detecting grinding burns.  RMS provided a stable level for non-burn 

workpieces and significant variation for burnt workpieces. For instance, RMS values for non-burn 

conditions were consistently around 0.5 V, while severe burns showed RMS values exceeding 1.5 V.  CFAR 

showed high sensitivity to burn detection, maintaining a high detection rate without significant signal 

decrease. CFAR values for burn conditions were approximately 1.2 times higher than for non-burn 

conditions. ROP was found to be a good indicator for burns, with low levels for non-burn parts and high 

levels for burnt parts. Non-burn ROP values were around 0.3, whereas burn conditions had ROP values 

close to 0.8. MVD presented behavior similar to RMS but was less effective in some tests. MVD values 

varied from 0.4 for non-burn to 1.3 for burn conditions. Kurtosis and Skewness displayed variations during 

burn events but were inconsistent and less reliable indicators. For example, kurtosis values fluctuated 

between 2 and 4, while skewness ranged from -1 to 1. The fuzzy models demonstrated high accureacy in 

predicting grinding burns, with over 92 % accuracy. Specifically, the model using RMS and grinding power 

inputs achieved an accuracy of 94%, while the model incorporating MVD reached 92%. As previously 

mentioned, the study focused on AISI 1045 steel and not IN718 which have properties that can affect the 

AE signal characteristics. This paper is still at a stage of demonstrating offline analysis of AE signals. 

Implementing real-time burn detection would require ensuring that signal processing and fuzzy logic 

analysis can be performed in a quick manner with enough computing capacity to support intervention 

during the grinding process. This paper does form the foundation of understanding AE statistical features 

from a point of view for detecting grinding burn and can be a starting point when evaluating the rightful 

statistical features that would be of help within process monitoring during grinding. There is not another 

paper in the field that explicitly analysis acoustic emission signals during grinding.   

Some of the latest studies includes the use of AE to detect grinding burn successfully using the energy of 

cross wavelet transform (EXWT) and degree of wavelet coherence (DWTC) at specific frequency 

bandwidth [27]. Gao et al. [27] conducted two sets of experiment: laser-induced metal burns to produce 

pure burn signals and actual grinding experiments to generate grinding burn signals. This approach is also 

considered based on understanding the degradation of surface integrity of workpiece caused by excessive 

heat during the grinding process. For the former experiment, Laser heating was used to create pure metal 

burn signals on 1045 steel. The AE signals were captured using a PAC-II system with a sampling rate of 2 

MHz and an amplification factor of 40 dB. For the latter experiment, grinding burns were produced by 

varying the sharpness of the grinding wheel and conducting the grinding process without coolant. The 
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same AE acquisition system was used to capture the signals for both experiments. The AE signals were 

analyzed using XWT and DWTC to identify the coherence between the pure metal burn signals and the 

grinding burn signals, thereby distinguishing burn signals from other AE sources. The study found that 

from the laser burn experiment, the AE signals for no-burn and burn conditions showed distinct 

differences in their frequency content. Burn signals had higher amplitudes and were concentrated in the 

250-400 kHz range. Similar to the laser burn signals, the grinding burn signals exhibited distinct frequency 

components, particularly in the 250-400 kHz range, although the grinding process introduced more noise. 

XWT analysis revealed common areas with high power in the frequency band around 310 kHz, indicating 

the presence of grinding burns. WTC analysis showed high coherence between the laser burn signals and 

the grinding burn signals in the 200-530 kHz range, with the highest coherence observed between 600-

650 kHz, providing a reliable indicator of grinding burns.  The novel parameters derived from XWT and 

WTC (EXWT and DWTC) achieved a 100% detection accuracy in distinguishing between normal and burn 

conditions in the grinding signals. As with most of the work in grinding burn literature, this work was also 

conducted using AISI 1045 steel which further elevates the gap in literature regarding use of similar 

acoustic emission signals and processing techniques within grinding of IN718.  The control in this paper 

for creating different grinding regimes was through varying sharpness of grinding wheel. The technique 

of varying wheel sharpness through wear or dressing can introduce variability that is difficult to quantify 

accurately leading to inconsistent experimental conditions. This lack of precision can affect the 

repeatability and reliability of the process. Ther is risk that grinding wheel wear is not uniform and 

different sections of wheel may experience varying degrees of wear. This inconsistency can result in 

uneven grinding conditions, making it challenging to draw definitive conclusions about the relationship 

between wheel sharpness and grinding burns. From previous review on the grinding mechanisms suggests 

that the sharpness of the grinding wheel influences the heat generation during the grinding process. 

However, this technique does not allow for precise control over the exact amount of heat generated. 

Other factors, such as feed rate, wheel speed, and coolant application, also significantly impact heat 

generation and need to be controlled rigorously but is not discussed within the paper. In industrial 

settings, the sharpness of grinding wheels is typically maintained within specific tolerances to ensure 

consistent performance. The experimental variation of sharpness may not accurately reflect real-world 

grinding conditions, limiting the applicability of the findings to practical scenarios. 
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While there have been studies conducted towards using AE for detecting grinding burn there have also 

been studies going into understanding the behaviour of AE signals with high temperature condition to 

simulate grinding burn conditions. In the past, Liu et al. [28] has shown that energy distribution of AE 

signals of thermal expansion under high-temperature (simulative of grinding conditions) is concentrated 

in the higher frequency bands and proposed that this would give direction towards burn detection. The 

study employed wavelet packet transforms (WPT) to extract AE signal features that indicate grinding burn, 

aiming to improve real-time monitoring and quality control in grinding processes. The experimental setup 

consisted of simulating grinding thermal behavior using laser irradiation to produce thermal expansion AE 

signals. This approach helped in isolating the AE signals related to thermal effects from other mechanical 

interferences. Experimental setup was similar to the work by Goa et al. [27] but distinction being on the 

signal processing technique , WPT.  The laser experiment was conducted using AISI 1045 steel, laser 

irradiation was used to induce thermal expansion. AE signals were captured using a PAC-II system with a 

2 MHz sampling rate and a 40 dB amplification factor.  The objective being to obtain pure thermal AE 

signals for feature extraction. The grinding experiment was conducted on CMSX4 nickel-based alloy, 

Grinding was performed under conditions that varied the grinding wheel's sharpness and coolant 

application to induce burns. AE signals were captured under these conditions. The objective being to 

compare AE features from real grinding burns with those obtained from laser-induced thermal expansion. 

WPT was used to decompose AE signals into time-frequency representations. The energy of wavelet 

packets was calculated to identify features indicative of grinding burns. AE signals from laser irradiation 

showed distinct features at high temperatures, with energy concentrated in high-frequency bands (250-

400 kHz). High coherence was recorded between laser-induced AE signals and grinding burn AE signals at 

specific frequency bands (200-530 kHz). AE signals from grinding without coolant exhibited higher 

amplitude and energy concentration in the 750-880 kHz range, indicating grinding burn. Features 

extracted using WPT showed clear distinctions between normal and burn conditions, with significant 

peaks in high-frequency bands for burn conditions. 

Chen et al. [29] uses 3 levels of temperature detection levels from laser irradiation test and classifies the 

temperature rise as those seen in grinding burn conditions. Chen et al. [29] uses artificial neural networks 

to make these classifications with short-time Fourier transforms (STFT) of AE as inputs. The papers divides 

its experiment into 3 sections including laser irradiation tests, grinding experiments and signal processing. 

The idea behind the work was to use AE features from laser irradiation as a basis for developing artificial 

neural networks (ANNs) to monitor grinding thermal performance. IN718 and MARM002 workpiece was 

used during the laser irradiation tests using a Lumonics JK704 Nd laser machine. AE signals were captured 
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using a physical acoustic WD sensor with a frequency range of 100 kHz to 1 MHz, and thermocouples were 

used to measure temperature. Three off-focal distances (34 mm, 40 mm, and 46 mm) were used to vary 

the laser power density used during tests. IN718 was used to conduct grinding trials performed on a 

Makino A55 machine center with different depths of cut (0.02 mm and 0.2 mm) and no coolant. AE signals, 

force, power, and vibration were monitored. This grinding trial data would be used to fair the application 

of ANN in classifying grinding temperatures (high, medium & low) and detect burn. AE signals from laser 

irradiation showed higher amplitude and frequency components at higher temperatures. For IN 718, 

signals at 34 mm off-focal distance had higher amplitudes in the higher frequency range compared to 

those at 46 mm. Grinding at larger depths of cut produced higher amplitude AE signals with significant 

high-frequency components, similar to those observed in laser irradiation tests. The ANN, trained with 

laser-induced AE data, effectively classified AE signals from grinding trials. For instance, at a 0.02 mm 

depth of cut, the ANN classified 60.66% of AE data as medium temperature and 30% as low temperature 

in the first cut, with minimal high-temperature features. This distribution changed in subsequent cuts, 

reflecting the wheel's wear and thermal performance. Although the study showed that grinding burn is 

not only detected by temperature rise and there are other factors that promote burn, Chen et al. [29] has 

been successful in showing a concept that could save grinding experiments to build datasets for grinding 

burn. 

The paper by Adibi et al. [30]presented a study on the efficiency of acoustic emission (AE) signals to 

monitor the grinding performance of IN738. The research investigated the grinding process using cubic 

boron nitride (CBN) wheels and examines the relationship between AE parameters, such as the root mean 

square (AERMS) and amplitude, with grinding performance indicators. The paper showed that increasing 

the depth of wheel engagement generally resulted in higher specific grinding energy and AE amplitude. 

This was attributed to the increased material removal rate and greater interaction between the grinding 

wheel and the workpiece. Higher depths of engagement also led to increased surface roughness, 

indicating a rougher finish due to more aggressive grinding conditions. An increase in work feed speed 

resulted in a reduction of specific grinding energy. This was due to fewer contacts per grinding pass, 

leading to less wheel loading. The AE amplitude increased with work feed speed, indicating higher forces 

per grain but reduced overall contact frequency. Surface roughness increased with work feed speed, 

which was consistent with the higher forces per grain leading to a rougher surface finish. Higher wheel 

speeds reduced the cutting force but increased the number of contacts per pass, resulting in higher 

specific grinding energy. AE amplitude decreased with increasing wheel speed due to lower cutting forces. 

Surface roughness showed a decreasing trend with increasing wheel speed, demonstrating that higher 
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wheel speeds contributed to finer finishes. The AERMS values mirrored the trends observed in surface 

roughness, confirming its effectiveness as a monitoring tool. This paper works as a cornerstone for 

comparing the results that will be analysed with the thesis in question since the material used is close to 

the IN718 with variation being experimental setup and grinding machine.  

Since the grinding trials were completed in 2019 & 2020, further papers were also reviewed to evaluate 

the current gap in the field to remain relevant in the field of research. Some of the papers reviewed during 

this time period include : 

Yesiluirt et al. [31] presents a paper that explores the use of scalogram-based instantaneous features of 

acoustic emission (AE) signals for detecting grinding burn.  The authors have focused on two primary 

features: instantaneous energy and signal phase. The instantaneous energy (IE) values for burnt 

conditions were consistently lower than those for non-burnt conditions. For example, in regular grinding, 

the IE was observed to be approximately 0.074 for intact conditions and dropped to about 0.040 for burnt 

conditions. This significant reduction indicates the reliability of IE as an indicator of thermal damage. The 

phase deviation also exhibited noticeable differences. For instance, in the high cutting speed condition, 

the phase deviation for intact conditions was around 62684 radians, whereas it dropped to 37580 radians 

under burnt conditions, highlighting the sensitivity of the phase deviation to grinding burns. Experiments 

were conducted under various grinding conditions including normal grinding, higher cutting speed, larger 

infeed rate, and smaller dressing depth of cut. The results consistently showed that the proposed 

scalogram-based features could detect grinding burns with higher precision than traditional methods 

building on the confidence on these features. As with other previous studies, the work was focused on 

using the outer ring of the 6806 ball bearing made of DIN 100Cr6 steel and case hardened to a depth of 

0.15mm at 60HRc therefore different from IN718 which would showcase different properties during 

grinding.  Conducting a detailed study on the repeatability and reliability of AE features across multiple 

grinding cycles would have helped address one of the critical gaps in the current research. Ensuring that 

the AE features can consistently detect grinding burns will enhance the trustworthiness of this monitoring 

technique in industrial applications. Although the paper suggests positive conclusions from the capability 

of the process monitoring technique , the paper acknowledges limitations such as the need for real-time 

implementation and the challenge of handling large data volumes. For instance, the high calculation load 

due to the octave band-based fast calculation procedure was noted. Future work will focus on developing 

algorithms for real-time processing and further validating the features across different materials and 

grinding conditions. This is another aspect to consider when looking at features that are picked up from 
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acoustic emission signals and its viability of implementation in the industry as an in-process monitoring 

technique. In conclusion, the study makes a significant contribution to the field of grinding process 

monitoring. The proposed scalogram-based features show great promise for enhancing the detection of 

grinding burns, though further research is necessary to address the identified gaps and fully realize the 

method's potential in industrial settings. 

Yin et al. [32] investigated the relationship between grinding and AE signal characteristics, and develops 

a prediction model for grinding surface roughness using a BP neural network optimized by a genetic 

algorithm. The study focused on GH4169 superalloy, TC4 titanium alloy, and SiCp/Al composite materials 

for conducting its experiments. The paper evaluated the effect of grinding parameters on AE signal which 

was good to understand the effect of different materials being tested with controlled grinding conditions. 

The RMS value of AE signals increased with the increase of grinding depth for GH4169, TC4, and SiCp/Al, 

indicating higher energy release and interaction between the grinding wheel and workpiece. For instance, 

the RMS value for GH4169 increased from approximately 0.074 to 0.040 with increased depth. The RMS 

value of AE signals decreased with the increase of grinding wheel velocity (vs) due to reduced strain rate 

and plastic deflection of the material. The RMS value of AE signals increased with the increase of feed 

velocity (vw), corresponding to higher material removal rates and energy release. When evaluating the 

spectral distribution of the AE signals it was noted that spectral amplitude between 90 and 140 kHz 

increased as the grinding depth increased. This trend was consistent with the AE signal RMS values, which 

also increased with greater grinding depth due to higher energy release during the grinding process. The 

spectral amplitude of the primary energy concentration band (90-140 kHz) decreased with increasing 

grinding wheel linear velocity. This reduction in spectral amplitude correlated with a decrease in strain 

rate and plastic deflection of the material, resulting in lower energy release. This observation aligned with 

the decrease in the AE signal RMS value as the grinding wheel linear velocity increases. Higher feed 

velocities lead to increased material removal rates and strain rates, thus releasing more energy and 

increasing the spectral amplitude between the band of 90 – 140 kHz. This finding is consistent with the 

trend observed in the AE signal RMS value, which also increased with higher feed velocities. There was a 

positive correlation between the AE signal RMS value and surface roughness. As the RMS value increases, 

the surface roughness also increased. This indicated that higher energy release, as captured by the RMS 

value, corresponded to rougher surfaces. Similarly, the ringing count of the AE signal showed a positive 

correlation with surface roughness. An increase in the ringing count value corresponded to higher surface 

roughness. The FFT peak value of the AE signal also correlates positively with surface roughness. Higher 

FFT peaks indicate greater surface roughness. It is evident from this study how significant the output 
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surface roughness needs to be monitored from samples if repeatability is validated during process 

monitoring of grinding. As with most research literature in this field, the focus on GH4169, TC4, and 

SiCp/Al composites means it does not address IN718, a material critical to aerospace applications. 

Investigating AE response features specific to IN718 will provide valuable insights for industries relying on 

this material. 

Another aspect that has made progress within process monitoring using AE has been work done towards 

understanding wheel condition. González et al.[33] recently released a novel approach for monitoring the 

wear of grinding wheels using AE signals and deep learning techniques. Their experimental methodology 

involved conducting surface grinding tests under different conditions and collecting AE signals, which 

were then processed using Fast Fourier Transform (FFT) to extract frequency domain features. These 

features were analyzed using pre-trained Convolutional Neural Networks (CNNs) to automatically extract 

relevant information, followed by clustering using Principal Component Analysis (PCA) and t-Distributed 

Stochastic Neighbor Embedding (t-SNE). The pre-trained CNN effectively extracted features from the FFT 

plots of AE signals, eliminating the need for manual feature extraction, this is a novel method in 

comparison to the thresholding concepts adopted within this thesis. Both PCA and t-SNE showed good 

clustering performance in identifying the initial stage of the grinding wheel i.e. the dressing influence on 

the AE signal but found it difficult to categorise mid-life and end of life for wheel wear. The experiments 

were conducted using ASTM A681 tool steel but the generalization of this approach to other materials, 

such as IN718 used in aerospace applications, remains unexplored. The paper does not go into detail of 

its shortfalls on its ability to categorise the wheel wear to its different stages but promises better 

clustering with further research on other clustering techniques such as 3D clustering which help classify 

stages accurately.  

Bi et al. [34] focused on the condition monitoring of diamond grinding wheels using AE signals during the 

grinding of brittle materials – fused silica glasses. It is important to note that the material ground in Bi et 

al.’s paper is not representative of the superalloys discussed within this paper but highlights a different 

method for examination of the AE signals. The study highlighted the complexity of AE signals in such 

processes, characterized by a mixture of continuous-type AE (c-AE) and burst-type AE (b-AE). The 

researchers used CNN and Long Short-Term Memory (LSTM) networks for feature extraction and 

classification of the wheel state. They found that the AE frequency spectrum provided a more distinct 

representation of the grinding process compared to the time waveform, due to the separation of different 

crack mechanisms in the frequency domain. The LSTM model showed high prediction accuracy for the 
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wheel's state, further demonstrating the efficacy of deep learning in AE-based monitoring. The research 

utilized CNNs to classify the state of the grinding wheel based on original AE time waveforms, achieving 

over 90% accuracy in multi-class classification. Additionally, LSTM model was employed for regression 

analysis of wheel state using AE spectrums. The model demonstrated high prediction accuracy, with the 

Mean Absolute Error (MAE) and Mean Squared Error (MSE) significantly lower compared to traditional 

Back Propagation Neural Networks (BPNN). The LSTM model reduced the MSE by 78.1% and the MAE by 

50.9% compared to the BPNN model. 

Yang and Yu  [35] presented a novel system for monitoring grinding wheel wear using discrete wavelet 

decomposition and support vector machine (SVM) classification. The acoustic emission (AE) sensor 

collected grinding signals, which were then preprocessed to identify the grinding period signals. The 

feature vectors were created using the root mean square (RMS) and variance of the wavelet 

decomposition coefficients, which are used to classify wheel wear conditions. The results showed high 

classification accuracy, suggesting the system's efficacy in monitoring wheel wear. The classification 

accuracy of the system was tested under two different cut depths (10 μm and 20 μm) with 99.39 % 

achieved for the former and 100% for the latter. The extracted features(RMS and variance) were 

processed using a five-level coif2 wavelet decomposition. novel preprocessing method was employed to 

extract grinding period signals and eliminate noise. The preprocessing included high-pass filtering with a 

cut-off frequency of 90 kHz, which significantly improved the classification accuracy compared to a 30 kHz 

cut-off frequency which the authors suggest is due to its ability to retain useful information about wheel 

wear, which was otherwise submerged by lower frequency noises. The study noted that while 90 kHz was 

optimal for their conditions, different grinding setups might require different cut-off frequencies. This 

paper conducted a thorough investigation into the performance of signal processing techniques deployed 

to ensure the process was optimised. Study showed that Investigating the high pass filter at 90kHz 

performed better in classification compared to those filtered at 30 Hz. Various wavelet bases were tested 

(e.g., db1, db2, coif1, coif2, sym2, etc.), and the results indicated that while the choice of wavelet base 

affected classification accuracy, the coif2 wavelet at level 5 performed consistently superior. Although the 

paper discusses the selection of the wavelet base, it does not provide a comprehensive analysis of how 

different wavelet bases might perform under varying conditions or with different types of AE signals. This 

indicates a gap in understanding the optimal wavelet base for different grinding scenarios. The SVM 

classifier showed superior performance compared to the Backpropagation (BP) neural network, 

particularly under the 10 μm cut depth condition where the BP neural network's accuracy dropped to 

90.91%. The study suggested that the high classification accuracy obtained demonstrated the potential of 
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the proposed method for industrial applications, though it acknowledged the need for further testing 

under more complex and varied conditions.  

Literature review have shown that AE can be successfully used for the detection of burn and there has 

been a lot of work done towards understanding AE signals. Acoustic emission features that were chosen 

for this study were a collection of promising AE features that has shown to be useful in studies for 

detection and prediction of various faults or condition during grinding. Aguiar et al. [36] showed that AE 

root mean square (RMS), Constant false alarm rate (CFAR), Ratio of Power (ROP) and Mean value 

dispersion (MVD) were some of the statistics that helped detect burn while skew and kurtosis showed 

interesting behaviours in the signal. Therefore these AE features are further evaluated below:  

2.4.3.1 AE RMS  

This statistic gives the average sense of magnitude of signal in the block of AE data which is evaluated 

therefore considered an effective way of quantifying a varying signal. The RMS value of a signal gives a 

measure of the power content of the signal. See Figure 7 which shows a graphical representation of a 

signal. The equation to calculate AE RMS from signal data can be given as :    

𝐴𝐸𝑅𝑀𝑆 = √
1

𝑁
∑ 𝐴𝐸2(𝑖)

𝑁

𝑖=1

 

Equation 11 

N is the number of discrete data points in a block of AE dataset during a grinding pass.  

 

Figure 7 Graphical illustration of the calculation and reference of RMS for a sinusoidal signal. 
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2.4.3.2 CFAR  

CFAR is used for detection of events within the signal. For this statistic, the fast fourier transform of the 

signal needs to be derived initially. XK represents the kth magnitude-squared Fast Fourier Transform (FFT) 

bin and v is a changeable exponent while 2M is the total number of FFT bins. See Figure 8 which illustrates 

the FFT bins and illustration that are relevant to substitute into the equation for calculating CFAR. In this 

study, v = 2 is used as a suitable exponent for this investigation as it works as a good energy detector 

when evaluated against the whole signal. This statistic makes use of pre-normalised data. 

𝐶𝐹𝐴𝑅 =  ∑ 𝑋𝑘
𝑣

𝑀−1

𝐾=0

 

Equation 12 

 

Figure 8 Graphical illustration of Fast Fourier Transform bins calculated from the AE signal (X) showing the bins and magnitude 
of each bin. 

2.4.3.3 MVD 

MVD quantifies the average deviation of the AE signal from its mean value in a given block of data. A large 

value would indicate that the deviation is too great to be explained using a simple exponential distribution 

model.  Similar to CFAR, XK represents the kth magnitude-squared Fast Fourier Transform (FFT) bin, 2M is 

the total number of FFT bins and �̅� represents the mean of magnitude-squared FFT. 

𝑀𝑉𝐷 =
1

𝑀
∑ 𝑙𝑜𝑔 [

�̅�

𝑋𝑘
]

𝑀−1

𝑘=0

 

Equation 13 
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2.4.3.4 Kurtosis and Skew  

Skew is a statistic which shows if the distribution tail is longer than the other while Kurtosis expresses the 

tail size. They both can be used to indicate the variations in the AE signal. See Figure 9, Figure 10, Figure 

11 where graphical illustrations show how sample data is shaped with different values of kurtosis and 

skew. Any abrupt changes in AE signal will show up as spikes using this statistic. In Equation 14 and 

Equation 15, 𝑥 is the value of the acoustic emission while 𝜇 represent the mean of the block signal. 𝑁 is 

the number of samples recorded in a block of signal while  𝜎 is the standard deviation of the signal. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = ∑
(𝑥 − 𝜇)4

𝑁𝜎4
− 3 

Equation 14 

𝑆𝑘𝑒𝑤 = ∑
(𝑥 − 𝜇)3

𝑁𝜎3
 

Equation 15 

 

Figure 9 Graphical illustration of positive, negative and normal kurotsis for a sample variable.  

Frequency 

variable 
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Figure 10 Graphical illustration of a sample of data with positive skewness 

 

Figure 11 Graphical illustration of a sample of data with negative skewness 

2.4.3.5 Ratio of Power  

This statistics helps observe different parts of the frequency spectrum of the AE signal . Each block of AE 

data is investigated in a given frequency range just as frequency bands. The denominator eliminates the 

local effect of the power in equation. For the ratio of power, 𝑛  represents the frequency band which has 

been selected to evaluate the ratio of power.  XK represents the kth magnitude-squared Fast Fourier 

Transform (FFT) bin and 2𝑀 is the is the total number of FFT bins in the frequency band selected to 

calculate the ratio of power.  

𝑅𝑂𝑃 = ∑
|𝑋𝑘|2

∑ |𝑋𝑘|2𝑀−1
𝑘=0

𝑛2

𝑘=𝑛1

 

Equation 16 

Frequency 

variable 

Frequency 

variable 
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2.5 Wavelet de-noising of AE signal  

Acoustic emission signals recorded have both wanted and unwanted signal from a machining environment 

and these need to be separated effectively to ensure useful data analysis. Moreover, any noise/unwanted 

AE signal can affect the diagnosis of fault during process monitoring which is one of the main challenges 

within process monitoring. Noise can be present in the signals as electric noise, electromagnetic 

interference, background acoustic noise, rubbing noise and other sources during measurement[37]. To 

improve the noise immunity of these signals, data filtering algorithms needs to be considered and these 

have been widely discussed in the AE community.    

Noise in AE signals can be divided into three groups and these groups show the difference in difficulty 

dealing with these types of noise. 

Table 2 Types of noise signal, filtering methods and their difficulty.[26] 

 Type of noise signal Cause of appearance Filtering methods Filtering 

complexity 

1 Spikes (short impulses), 

harmonic noise, high-

frequency and low- 

frequency  noise 

Electric and 

electromagnetic noise 

FIR filters, IIR filters, 

median filter 

low 

2 White stationary noise AES noise, noise of 

electronic components 

Wavelet-filtering average 

3 Impulse, non-stationary 

noise 

Rubbing noise, hydro-

dynamic disturbances 

and cavitation 

Analysis of long 

realisations of AE signals 

high 

 

The noise of interest within this project is the white stationary noise which can also be a form of noise 

due to the coolant supply for which the wavelet transforms de-noising is utilised. The AE signal recorded 

from the grinding cuts has short impulses which can refer to the instantaneous impulses where the tool 

comes in contact with the workpiece, and this cannot be considered as noise nor removed from the overall 

signal. Any noise which is characteristic as high-frequency noise or low-frequency noise can be easily 

removed from the signal using band-pass filter with relevant knowledge of the non-essential frequency 

bands during a grinding cut.  
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At this point, it is worth noting that the writing used for understanding the wavelet transforms and its 

relative de-noising concept has been compiled within this report as a descriptive approach to comprehend 

the technique and with less prominence on the mathematical approach. Further readings outside the 

remits of this thesis is needed to fully grasp the mathematics behind the concepts and is not relevant for 

its application within this project. Burrus and Gopinath has the book “Introduction to wavelet and wavelet 

transforms” [38]  which is maybe of use to the mathematical minded audience while a much more concise 

version of the content can be found in “A mathematical introduction to wavelets” by Wojtaszczyk [39] .   

The algorithm used for wavelet-filtering is based upon using discrete wavelet transformations. The AE 

signal is broken down into wavelet decompositions given as detailed and approximation coefficients. In 

order to grasp this concept, it is essential to understand that a wavelet is a localised waveform of 

effectively limited duration that has an average value of zero. Contrary to Fourier transforms, the 

information of the timeframe for a signal in the frequency domain is kept. The method used to understand 

a signal’s timeframe within Fourier transforms is to use windowing, i.e. splitting the signal into separate 

blocks of signal and evaluating the Fourier transforms for each block and investigating i.e. known as short-

time Fourier transforms. This method would result in a narrow window giving good time resolution and 

poor frequency resolution to the evaluation. On the other hand, a wider window can provide good 

frequency resolution but poor time resolution. Moreover, general trends within acoustic signals has 

shown that a lower frequency components often last a longer period of time i.e. a high frequency 

resolution is required. Also, the high frequency signal components often appear as short bursts, therefore 

a higher time resolution is needed. This renders wavelet transforms technique to have a key advantage 

of extracting local spectral and temporal information simultaneously[40]. 

Therefore, wavelet transforms are used to create a non-linear method where these windowed spectra 

overlaps. The wavelet transform performs a correlation analysis against a mother wavelet and therefore 

the output is expected to be maximal when the input signal most resembles the mother wavelet. This 

mother wavelet that the signal is compared against can have different scales (scaling) and be shifted along 

the timeline (translation) when conducting the correlation analysis. Scaling (given as value, j, in Figure 12 

) changes the width of the mother wavelet and its central frequency as a result. Smaller values of j is an 

expanded mother wavelet which is better at resolving low frequency components of signal with bad time 

resolution hence overcoming the short fall of Fourier transforms discussed earlier. A higher value of j 

shrinks the mother wavelet and makes it better at resolving higher frequency component of the signal 

with good time resolution, just as needed.  
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Figure 12 A pictorial representation of translation of wavelet (every fourth k) and scaling (j) of a Daubechies (D4) wavelet [38]. 

Another aspect which can also give flexibility to the wavelet analysis is the shape of the wavelet itself, 

therefore there are different wavelet functions (different shape) available within wavelet transforms. This 

aspect will be further discussed within section 2.5.1 

2.5.1 Wavelet Bases  

There is a range of wavelets available in literature which find its application in different signal processing 

techniques based on their shape and function. One of the simplistic and primitive model is the Haar 

wavelet and there are also complex wavelets functions available too. These wavelets can be divided into 

two, wavelet with filters and wavelet without filters. Wavelet with filters can be used with filter bank 

theory while the other group of wavelets cannot be used to realise the decomposition of the signal. Within 

this group of wavelet with filters, there is a distinction between some with compact support and other 

non-compact supported. Compact supported wavelet are ones which are finite and are only non-zero 

within a given interval while non-compact are not just defined for a given interval. Within signal 

processing, wavelets with compact support have been identified as the most suitable and these are 
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further divided into orthogonal and Biorthogonal. Orthogonal wavelet filter banks generate a single 

scaling function and wavelet while Bi-orthogonal creates a pair of wavelets which can be used separately 

for decomposition and reconstruction [41]. Bi-orthogonal wavelets has linear phase filters which are 

highly desirable in reconstruction of signals. The grouping and division of wavelets available are shown in 

Table 3Error! Reference source not found. below:  

Table 3 Types of wavelet bases and abbreviations used. 

Wavelets  Abbreviations  

Haar Wavelet Haar 

Daubechies wavelet  Db 

Symlets  Sym  

Coiflets  Coif 

Bi-orthogonal wavelets  Bior 

Meyer wavelet Meyr 

Discrete meyer wavelet  Dmey 

Battle and lemarie wavelet  Btlm 

Gaussian wavelet  Gaus 

Mexican hat wavelets  Mexh 

Morlet wavelet Morl 

Complex gaussian wavelets  Cgau 

Complex shannon wavelets  Shan 

Copmlex B-spline frequency wavelets Fbsp 

Complex Morlet wavelets  Cmor 

 

Table 4 Grouping of wavelet functions shown in Table 3  [31] 

Wavelets with filters  Wavelets without filters  

With compact support  With non-

compact support  

Real  Complex  

Orthogonal Biorthogonal Orthogonal  Gaus, mexh, morl  Cgau, shan, fbsp, 

cmor  Db, haar,sym, coif  bior Meyr,dmey,btlm 
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Figure 13 Example of fourth-order Daubechies (D4) scaling function 𝜙(𝑥) and its  fourth-order mother wavelet  𝜓(𝑥) [42]

 

Figure 14 Example of Haar scaling function (a) and wavelet (b) [38] 

Since there are various wavelet base functions available, the choice of the correct wavelet base function 

for de-noising needs to be matched up with the type of signal that is to be analysed during wavelet 

decomposition. They all have different properties such as order of approximation, vanishing moments, 

orthogonality and compact support [43]. Orthogonal wavelets could reduce the redundant information 

within the signal and improve the calculation speed. Compactly supported wavelet could reduce 

computation complexity and have better time resolution. The shape of the wavelet should reflect the type 

of features present within the signal being analysed and therefore can be accurately extracted through 

wavelet decomposition. One of the key aspects which affects the shape of the wavelet is the filter length 

and in this study, the filter length for the different type of wavelets are studied for analysis. Some of these 

wavelet types which are equipped with these properties are evaluated in this study which include 

Daubechies, Symlet and Coiflets.  

The concept of wavelet coefficients (i.e. the output of the correlation analysis discussed above) is merely 

the idea of receiving a high output when the frequency of the mother wavelet matches part of the signal 

with very similar frequency and vice versa, as it is compared against each other and shifted along the 
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timeframe during the correlation analysis. Mathematically, this correlation is carried out by the 

convolution of the input signal against the scaled and translated version of the mother wavelet.  

A continuous wavelet transform (CWT) does not limit the level of scaled and translated versions of the 

mother wavelet that it is used for the correlation analysis. This would means CWT works with a huge 

amount of data. In order to simplify this method, the discrete wavelet transforms uses a multi resolution 

analysis (MRA) and uses scaling and the translation factor on power of 2 (dyadic) which makes the analysis 

much more efficient and accurate. Using this discrete sampling approach, down sampling is also used with 

discrete wavelet transforms (DWT) to reduce the amount of data used by passing it through a series of 

filters according to the filter bank theory. The signal of interest is generally decomposed to different levels. 

Matlab provides one of the most efficient tools for the multi-level decompositions of signal using DWT 

and resources available from their websites gives a simpler explanation of the process. Within this section, 

the graphical representation from Matlab have been used to support the description of wavelet 

decomposition using DWT. As an example, take into consideration the one-dimensional signal Figure 15.   

 

Figure 15 Example of signal used for wavelet decomposition.[44] 
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In one level of decomposition, the signal is passed through a high pass finite impulse response (FIR) filter 

and a low pass FIR filter and down sampled such that the number of data points is halved and wavelet 

coefficients received (see (a) in Figure 16 Figure 16). The output through the high pass filter gives high 

frequency wavelet coefficients which are known as the detailed coefficients (shown in Figure 16). The 

output through the low pass filter gives low frequency wavelet coefficients which are known as the 

approximation coefficients (shown in Figure 16). In multi-level decompositions, the approximation 

coefficients are further decomposed using the same technique to down sample and gain another set of 

detail and approximation coefficients at that level (see Figure 17 which shows 3 levels of decomposition 

on signal s). Applying the technique to an example signal such as the one shown in Figure 15 gives the 

output of the 3 levels decompositions in Figure 18). The maximum number of decomposition levels that 

can be attained with a signal is given as 𝑙𝑜𝑔2𝑁  , where N is the length of the signal of interest. This 

multilevel decomposition can also be reversed to reconstruct the signal using up-sampling, direct opposite 

of the decomposition method. It is at this point between decomposition and re-construction where de-

noising can be carried out. After multi-level decomposition, different thresholding algorithms can be 

applied to the detail coefficients (high frequency components) in order for it to be removed from the 

signal and re-constructed. During this thresholding method, it is vital to understand what is representative 

as the noisy component within the detail coefficients and hence use an appropriate threshold to remove 

this from the decomposed signal.  

 

Figure 16 Illustration of one-dimensional DWT for wavelet decomposition of a signal (S). 
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Figure 17 illustration showing the level of decomposition of signal using DWT. [45] 

 

Figure 18  A 3 level wavelet decomposition of the signal in Figure 15 using order 2 Daubechies wavelet. 
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2.5.2 Wavelet de-noising thresholding methods 

There have been various thresholding methods identified within various studies conducted with wavelet 

de-noising and these offer best performance on the basis of its application. MATLAB wavelet toolbox 

support certain thresholding methods which are most commonly used in signal processing and these are 

going to be studied within this review. 

2.5.2.1 ‘Rigrsure’  

This is a thresholding method based off the Stein’s unbiased risk estimation ( a quadratic loss function)  

criteria [46]: 

Threshold value =  σ√2 log(Nlog2N) 

Equation 17 

Where N represents the length of the signal and 𝜎 the standard deviation of the noise. The noise is 

estimated from the first level of signal decomposition:  

σ = |median(Detail coef. )|/0.674 

Equation 18 

2.5.2.2 ‘sqtwolog’ 

A fixed-form (universal) threshold yielding minimax performance multiplied by a small factor proportional 

to log(length(X)) [47]. Thereby given as: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 =  𝜎√2𝑙𝑜𝑔𝑒(𝑁) 

Equation 19 

2.5.2.3 ‘heursure’ 

A thresholding method which is a mixture between ‘rigrsure’ and ‘sqtwolog’. It rather allows for a heuristic 

approach to the estimation of the thresholding value using both techniques.  

2.5.2.4 ‘Minimax’ 

This gives a fixed threshold which makes use of the minimax principle. Therefore a fixed threshold is 

selected in order to get the minimum of the maximum mean square error, obtained for the worst function 

in a given set.  
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2.5.3 Hard/Soft thresholding  

The thresholding applied on the detail coefficients restrict the components of the signal and therefore will 

be discarded when reconstructing the signal. Thresholding methods can be applied through soft 

thresholding and hard thresholding. Hard thresholding has a linear approach where it discards the wavelet 

coefficients above selected threshold ands sets it to 0 whereas a soft threshold is a much more non-linear 

function and it shrinks the large magnitude wavelet coefficients above the threshold [48] as illustrated in 

Equation 21. In Equation 20 and Equation 21, 𝑤𝑗,𝑘 is a representation of the wavelet coefficients at 

decomposition level j and index k  while 𝛾 is the representation of the threshold value applied. In Equation 

21, 𝑠𝑔𝑛 is the symbolic piecewise function of the signal.  

Hard thresholding [49] given as: 

𝑤𝑗,𝑘 = {
𝑤𝑗,𝑘, |𝑤𝑗,𝑘| ≥ 𝛾

0,              |𝑤𝑗,𝑘| < 𝛾
 

Equation 20 

Soft thresholding [50] given as:  

  

𝑤𝑗,𝑘 = {
𝑠𝑔𝑛( 𝑤𝑗,𝑘) (|𝑤𝑗,𝑘| − 𝛾), |𝑤𝑗,𝑘| ≥ 𝛾

0,                                                  |𝑤𝑗,𝑘|  < 𝛾
 

Equation 21 

Once the apt thresholding method is applied to the decomposed signals, the signal can be reconstructed 

to attain the de-noised signal. 

The comprehensive literature review on the use of Acoustic Emission (AE) for process monitoring during 

grinding underscores the evolving application of AE technology in industrial machining. From literature 

review, it can be summarised that the state of the art within process monitoring during grinding includes 

work towards grinding burn detection, grinding wheel monitoring and wheel contact detection 

technology. Previous works have focused on AE signals in isolation, without integrating them with other 

sensor data (e.g., force, power, vibration) to provide a comprehensive process monitoring solution. 

Synchronizing data from multiple sensors could offer more robust insights into the grinding process. This 

integration is essential for understanding the complete picture of the grinding mechanism and optimizing 

process parameters effectively and this is one of the objectives that this thesis focuses on. 
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Early studies highlighted the potential of AE for detecting grinding burn, laying the groundwork for further 

exploration and refinement. For instance, initial works focused on AE amplitude thresholds to flag grinding 

burn, but these approaches often resulted in false positives due to their rudimentary nature. 

Advancements in statistical analysis of AE signals, as explored by Wang et al. [23], introduced more robust 

detection methods, such as the use of neural networks with statistical features like band power, kurtosis, 

and skewness. These studies demonstrated significant improvements in detecting grinding burn but were 

limited by material-specific characteristics and the variability of grinding parameters.  

Further refinement of AE process monitoring was achieved through the incorporation of advanced signal 

processing techniques like wavelet packet transforms and fuzzy logic models, as seen in the works of Liu 

et al. [13] and Aguiar et al. [26] [24]. These methodologies improved the accuracy and reliability of AE-

based monitoring by leveraging detailed time-frequency analysis and handling data variability with fuzzy 

clustering. However, challenges remained in terms of the repeatability and long-term stability of these 

systems in industrial settings. Previous studies have shown AE's potential in detecting grinding burns but 

often result in false positives and do not extensively explore different grinding parameters. The variability 

in AE features such as Root Mean Square (RMS), Mean-Value Deviance (MVD), and Constant False Alarm 

Rate (CFAR) under different conditions has not been thoroughly investigated. For instance, Wang et al 

[23] and Aguiar et al. [24],[26] demonstrated the use of AE for burn detection but did not address long-

term stability and calibration of AE sensors, which are critical for industrial applications. Therefore this 

thesis takes into consideration the need to take the characterised set of AE features, signal parameters 

and applying a repeatability study to cement the confidence in these features under different grinding 

regimes and improving the reliability of acoustic emission signal monitoring in the process.  

Recent studies have pushed the boundaries further by integrating deep learning techniques. González  et 

al. [33] and Bi et al. [34]utilised Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks to automate feature extraction and enhance the classification accuracy of wheel wear 

states and grinding burns. These studies achieved high prediction accuracies but often fell short of 

addressing real-time applicability and generalization across different materials. 

The literature review also brings into prominence the requirement for clean signal and data which allows 

for accurate analysis. Some of the literature share the different techniques that have been employed to 

de-noise the acoustic emission signal but there is inadequate exploration into wavelet de-noising. While 

wavelet packet transforms (WPT) and other signal processing techniques have been utilized, there is a 

lack of optimized wavelet de-noising methods tailored for AE signals in grinding. Effective de-noising is 



58 
 

crucial for accurate signal analysis, particularly in noisy environments like grinding. For example, Liu et al. 

[28] and Gao et al. [27]used WPT and cross wavelet transforms (XWT) but did not optimize de-noising 

specifically for AE signals from grinding. Wavelet de-noising showed great potential in cleaning acoustic 

emission signals within the machine environment during grinding. There is a need to optimise parameters 

for wavelet denoising which will allow for successful de-noising and opportunity to filter out the unwanted 

signal from the grinding process. This thesis will aim to develop this pre-process routine for the acoustic 

emission signal acquisition using wavelet de-noising.  

Despite the significant progress, gaps remain in the literature, particularly concerning the application of 

AE monitoring in the grinding of high-value aerospace material, IN718. Most studies have focused on 

materials such as AISI 1045 steel which exhibit different AE signal characteristics compared to IN718. 

Additionally, the feasibility of implementing these advanced monitoring systems in real-time industrial 

environments remains largely unexplored. This thesis aims to address these gaps by focusing on the 

feasibility of using AE signals for process monitoring during the grinding of IN718 at the Advanced 

Manufacturing Research Centre (AMRC). By enhancing the existing monitoring system with advanced 

signal processing techniques like wavelet de-noising and conducting a repeatability study with improved 

signal acquisition systems, this research seeks to provide a robust and reliable process monitoring 

solution. The experimental work will not only validate the effectiveness of AE features but also assess the 

system's repeatability and reliability across multiple grinding trials, thereby contributing valuable insights 

for practical industrial applications in the future. 
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3 Experimental method  

3.1 Grinding machine : Makino G7  

The Makino G7 is a 5-axis horizontal spindle machining centre (shown in Figure 19)which is capable of 

grinding, milling, drilling and tapping which features a Makino Professional 5 control system. The machine 

is capable of processing all main aerospace alloys and most importantly the nickel-based alloy (Inconel) 

which is used within this thesis. The machine is equipped with 24kW spindle with a 12,000 rpm limit which 

uses an ISO 40/BT40/BBT 40 (Big Daishowa Seiki Big Plus) interfaces. Machine has a working volume of 

690 (X-axis) x 650 (Y- axis) x 730 mm (Z-axis) with infinite C-axis rotation and 270-degree B-axis rotation, 

with maximum workpiece weight limit of 120 kg. The accuracy attainable on this machine is a positional 

capability of 0.0025 mm, and repeatability 0.0015 mm, in all axis directions. This precision is important to 

ensure the grinding contact point and movement is repeatable during the experiment. The smallest depth 

of cut investigated in this thesis is 0.1 mm and in comparison to the 2.5 % positional accuracy and 1.5 % 

repeatability is close to negligible for this kind of experiment.   

The grinding machine makes use of an intermittent dressing system which allows for single point, CNC 

disc or crush dressing capabilities. For this experiment, the crush option was used. The crush option means 

that the surface roughness of the wheel after dressing will be high as required for the grinding of IN718 

within this project.  IN718 generates significant heat during grinding due to its high strength and low 

conductivity. A grinding wheel with high surface roughness would allow for better heat dissipation and 

better coolant flow due to the spacing between the abrasive grains. Larger surface roughness on the 

grinding wheel would mean larger abrasive grains or a more open structure which allows the wheel to cut 

deeply into a material like IN718 thereby enhancing the rate of material removal. A higher surface 

roughness also encourages the creation of larger chip formation preventing the build-up of material on 

the wheel surface. This would ensure consistency in the grinding performance during the experiment. This 

thesis is focused on the repeatability of acoustic emission signals during grinding and therefore the higher 

surface roughness helps maintain the consistency and control but the dressing technique and planning of 

experimental method is crucial to ensure this is kept true.  

The dresser unit used was a hybrid vane dresser roll mounted onto the C-axis (shown in Figure 20). This 

dresser unit was chosen due to its ease of instalment on the machine and it was readily available to 

support the testing. The dressing method for all wheels within this machining trial was kept constant and 
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was control for the experiment. Measurement of the grinding wheel diameter pre and post dressing was 

measured using the Renishaw laser measurement system to ensure consistency and control.  

 

 

Figure 19 Makino G7 igrinder 

 

Figure 20 Hybrid vane dresser roll unit used for dressing of wheels. Sketch shows the coordinate system used to represent the 
motion while grinding with respect to the machine. Note the X-axis is represented as coming out of the paper. 

The coolant system allows for coolant to be delivered at pump pressures ranging from 30 bar to 70 bar. A 

3600 programmable nozzle is used to maintain positioning throughout the grinding process and maintains 

the coolant temperature between 18 and 22 ⁰C . For this experiment, Trim C272 Coolant was used which 

C- axis 

Z axis 

X axis 

Y axis 

B- axis 
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was delivered via RBM system two stage IFDR type (hydro-cyclonic) filtration system. Trim C272 is a semi-

synthetic coolant specifically formulated for a broad range of machining and grinding applications [51]. It 

offered a unique combination of advantages found in both synthetic and soluble oil coolants, hence 

delivering superior cooling and lubrication properties. The coolant maintains low foam levels, even under 

high pressure conditions which is also handy when it come to reduction of acoustic noise since foam 

formation also results in noise which can be propagated as it increases the turbulence of coolant flow. 

The RBM two-stage IFDR (hydro-cyclonic) system represents a cutting-edge filtration technology designed 

for use with machine tools which can separate and capture particles larger than 5 µm. This will allow for 

improved precision during the grinding process and consistency in the flow entering the machining 

environment which also contributes to the machine noise.  

Figure 21 shows the setup of the machine when conducting the grinding trials with the workpiece clamped 

on the workpiece fixture covered with protection from the high coolant flow. The G7 uses the EROWA 

pallet type chuck system, the PowerChuck P ITS system  [52]. Therefore, the complete range of compatible 

EROWA pallets are available for installation on the G7, with pallet loading repeatability within 5μm. For 

this experiment, where small blocks of Inconel were used as coupons, EROWA pallet ER-008517 with a 

small pallet interface was found to be most compatible and used to attach to a dynamometer.  The 

dynamometer had the workpiece fixtured attached to it to take recordings of grinding forces. The design 

and build of the workpiece fixture is described in section 3.3.  
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Figure 21 Setup of workpiece fixture onto dynamometer attached to pallet held on machine. Sketch shows the coordinate 
system used to represent the motion while grinding with respect to the machine.  

3.2 Workpiece preparation – IN718  

IN 718 workpieces were cut into the required coupons measuring 49 mm (L)  x 20 mm  (W) x 24 mm  (H) 

using wire EDM (electric discharge machining).  The IN718 stock was cut from solution annealed flat blank 

(at 1032 oC ) for 1.08 hours, water quenched, aged at 800 oC for 7 hours and air cooled. The mechanical 

properties of the stock was given as 837 MPa 0.2% Proof stress (PS) at 20 ⁰C  and 1175 MPa Ultimate 

tensile strength (UTS) in the longitudinal axis. The certificate of conformity on the stock confirmed that 

the material recorded Rockwell C hardness test results of 32,36 and 38 HRC on its surface (ASTM E18).  

Table 5 Chemical analysis of the stock as provided by the certificate of conformity 

Chemical composition 

Ni % 54.3 Si % 0.05 Si % < 0.001 

Cr % 18.5 Co % 0.04 Ca % 0.001 

Fe % 17.49 Cu % 0.03 Mg % 0.001 

Nb Ta % 5 Mn % 0.02 Se %  < 0.0003 

Nb % 4.99 C % 0.012 Pb % 0.0002 

Mo % 3.05 Ta % < 0.01 Bi % 0.00003 

Ti %  0.95 P % 0.004   

Al % 0.5 B % 0.004   

Z axis 

X axis 

Y axis 

C- axis 

B- axis 
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3.3 Work piece fixture 

The workpiece fixture was designed to cater for several functions. With the requirement to record 

grinding force, the dynamometer needed to be integrated into the machine bed allowing for the grinding 

forces from contact point to be transferred onto the dynamometer pallet. The fixture needed to also 

integrate the AE sensors and accelerometers into the environment closest to the grinding contact point. 

Moreover, these sensors needed to be protected from coolant/lubricants, especially since the Ingress 

Protection (IP) rating was not sufficient to handle the flooding of coolant in the machine environment. 

The fixture ensured repeatability in workpiece positioning and clamping since during the trials there was 

several changeovers of workpiece. Finally, the most important requirement for the design of fixture is to 

ensure that its designed for ease of machining programme.  

The programme featured straight grinding cuts on coupons and this took out the complexity involved with 

differential cuts and positioning change of tool path. The fixture had a cavity of 25 mm run through the 

middle of the fixture allowing for the workpiece to be held in place by locators and a clamp system. Figure 

22 shows the machined workpiece fixture while Figure 23 shows the drawing of the workpiece fixture 

focused on the cavity for workpiece to be clamped in place. The three locator dowels shown in Figure 25 

restricted the degree of free rotation of the workpiece within this cavity, worked as a reference for the 

placement of workpiece and “fool proofed” the placement of workpiece by preventing improper loading. 

The clamping was provided by two 8 mm bolt pushing against a clamp plate ( 3 mm (H) x 12 mm (W) x 30 

mm (L)) which transferred the force to hold the workpiece against the locators. Calculations were 

considered to evaluate the suitability of the clamping provided by the M8 bolt on clamp plate and then 

compared against grinding force data that have been recorded in previous literature closest to the 

grinding setup explored in this thesis.  
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Figure 22 Workpiece fixture design 

The relation between applied torque and axial force - or load - in a bolt can be calculated in this general 

equation as:  

𝑇 = 𝐾 𝑥 𝐹 𝑥 𝑑  

Equation 22 [53] 

Where, 

T = wrench torque (Nm, lbf ft) 
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K = constant that depends on the bolt material and size 

d = nominal bolt diameter (m, ft) 

F = axial bolt force (N, lbf) 

l = lubrication factor (%) 

The typical value K for a normal dry application within the application of this thesis is 0.2 considering a 

normal dry condition for this evaluation. Therefore, considering Equation 22, the axial bolt force for an 

M8 considering worst case tightening torque of 9.87 Nm (inclusive of lubrication factor) gives an 

approximation of 6200 N. This is for a 1 bolt configuration but for the application in this workpiece fixture 

2 bolts are transferring the axial force onto the clamp plate of 360 mm2, evenly distributing the force load. 

For comparison against grinding forces that would be experienced during the experiment, previous 

literature by Ruzzi et al [54]looked at the influence of grinding parameters on IN 625 (another nickel 

superalloy with mechanical properties close to the IN718) during surface grinding using silicon carbide 

wheel. The magnitude of grinding forces experienced with varying grinding parameters is in the 

magnitude of 0 – 200 N and hence suggesting how the safety factor considered using the clamping force 

of bolts is in the region of x10 magnitude giving confidence in the setup used. Furthermore, grinding force 

recorded from the dynamometer in thesis under section 4.4.1 also proved the safety factor to be in the 

same region giving confidence in the workpiece fixture clamping design. Grinding force measured in this 

thesis was in the region of maximum 70 N for tangential grinding force and normal force in the region of 

192 N as shown in Figure 52 which ensures a safety factor in order of magnitude of 10.   
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Figure 23 Drawing illustrating the cavity for coupons to be held within the workpiece fixture with general dimensions of the 
fixture stock for illustrative purposes. 

 

Figure 24 Drawings showing the holes for the screw clamp devised to hold the workpiece in place. A 3 mm clamp plate was also 
machined to provide enough shim for clamp plate to hold coupon in place once M8 bolts were placed to transfer the clamping 

force when tightened. 
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Figure 25 Drawing showing the position of holes for dowel pin that act as locators for the workpiece coupon. 

4 counterbore M6 holes were machined 20 mm deep to allow for bolts to clamp down the workpiece 

fixture directly onto the mounting plate on the dynamometer. This was designed based on the best way 

to interact with the mounting plate covering most of the surface and it was critical to ensure the holes 

were machined with positional accuracy to allow for good alignment with the bolt holes on the mounting 

plate.  Figure 26 shows the drawing highlighting these 4 holes. Once the fixture was fitted to the 

dynamometer mounting plate there is no requirement to remove or make any changes to the fixture 

position during the experiment. This alongside the clamping and locators ensured repeatability in the 

workpiece position and sensor positions during all the experiments/trials.   
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Figure 26 Drawing showing the 4 counter bore M6  holes which allows for the workpiece to be fastened to the mounting plate of 
the dynamometer. 

The other design aspect to consider was to accommodate the AE sensors and accelerometers with closest 

proximity to the grinding contact point to get quality data. Moreover, these sensors needed to be 

protected from coolant/lubricants, especially since the Ingress Protection (IP) rating was not sufficient to 

handle the flooding of coolant in the machine environment. 8 threaded M6 holes were machined (shown 

in Figure 29 strategically designed to allow for a heavy duty polythene sheet covering to be held around 

the workpiece fixture providing cover for the sensors from the jets of lubricant that floods the machining 

environment.  

Cavities were designed for the Kistler type 8152001 sensor, Mistras WSa sensor and the 3 axis 

accelerometer allowing for the wires to be routed safely within the workpiece fixture and in the direction 

of exit within the machine. There were 2 suitable cavities created for the Kistler AE sensor initially, (i) with 

the sensor seated vertical in line with the Z-axis of the machine (shown in Figure 27 ) and (ii) the sensor 

seated horizontal in line with the Y axis (shown in Figure 28). Due to the wire routing being difficult with 

increased risk of fretting against workpiece fixture when routed in position (i), it was decided that position 
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(ii) would be the most suitable for this investigation. For future experiment, this design also lends the 

opportunity to allow for an investigation into how the AE signal maybe affected from different orientation 

of AE sensors during the grinding trials. Figure 28 shows M6 threaded holes machined into the fixture in 

the undercarriage which allows for placing the Mistras AE sensor and accelerometer in position using a 

jig. The jig was an arbitrary design created to allow for the Mistras AE WSa sensor to be clamped and help 

in place while guiding the accelerometer in position when bolted onto the workpiece fixture. Figure 30 

shows the drawing which illustrates the through hole designed to allow for a threaded bolt to fasten onto 

the accelerometer against the fixture stock using the inbuilt female threaded hole on the sensor. Figure 

33 shows a complete arrangement of the sensors in their situ during the experimental trials giving an 

understanding of the setup.   

 

Figure 27 Drawing showing postion (i) described for the Kistler type 8152001 AE sensor seated vertically in the machine Z-axis. 
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Figure 28 Drawing showing position (ii) for Kistler Type 8152001 sensor and M6 threaded hole to accomodate jig that clamps 
Mistras AE sensor and holds accelerometer in place. 

 

Figure 29 Drawing showing the 8 off holes that help to clamp down the plastic covering for the workpiece fixture protecting the 
sensors. 
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Figure 30 Drawing showing hole position for accelerometer clamping. M6 through hole was machined into the workpiece fixture 
allowing for a threaded bolt to fasten the accelerometer in position against the fixture stock. 

All the sensors had different mounting techniques, and this needed to be accounted for within the fixture 

design. Threaded holes were used for sensors that were bolted onto fixture and 3D printed parts designed 

to hold sensors in a set position/orientation. The sensors were mounted in the undercarriage, under the 

cavity provided for the workpiece clamp such that the wiring and sensors were protected from direct 

coolant delivery. The Kistler and Mistras sensor were also placed in different orientations within 90o to 

each other. The AE sensors were place in these different orientations to understand how this affected the 

AE signal received from grinding contact point.  The workpiece fixture was made by machining a block of 

Engineering steel (EN24). 
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3.4 Signal acquisition system  

3.4.1 Force monitoring  

Kistler Multicomponent dynamometer type 9129AA was used to record the cutting forces during grinding 

for this experiment. The 9129AA is a precision instrument designed for the measurement of forces and 

moments in 3 orthogonal directions which is pre-dominantly used during force measurement in machining 

operations. It is built with stainless steel and high-strength aluminium alloy which has a measurement 

range of +/- 5 kN within the lateral forces (Fx and Fy) and +/- 10 kN within the vertical forces (Fz) while 

the moments range for Mx, My is +/- 200 Nm and +/- 100 Nm for Mz. The sensitivity is a crucial factor that 

makes the Kistler 9129 AA suitable for application within grinding giving Fx, Fy lateral forces ≈ -7.5 pC/N 

and Fz ≈ -3.7 pC/N. Another aspect to consider is the thermal sensitivity shift of the dynamometer and 

how this may affect the experimental results, given that all experimental trials were conducted on the 

same day there is minimal shift in ambient shop floor temperatures. Adding this information to the low 

thermal sensitivity shift, ≤±0.02%  per °C on the Fx, Fy and ≤±0.02% on the Fz, gives confidence in using 

the dynamometer for this experimental setup. The mounting plate (90 x 105 mm) was attached to the 

pallet interface which allowed for the custom built machine fixture to be attached directly to the mounting 

plate. All components that are within the machine environment were covered with heavy duty polythene 

sheet to protect them from coolant spray as shown in Figure 31 and Figure 32. The dyno uses an 8-channel 

measurement of the force, 4 channels on the x-axis, 2 axis on the y-axis and 2 on the z- axis. Within this 

experiment, the standard Kistler charge-amp has been omitted in order for the signal from the 

dynamometer to be directly fitted to an NI (National instruments)  system. The 8 channel signal is directly 

fed into NI9201 module using a D-SUB cable. This module has been fitted to a compact chassis cDAQ-9178 

which allows for the force signals to be captured in tandem with other signals synchronously. NI9201 has 

the capability of capturing signal at maximum frequency of 62.5 kHz. This NI system is an improvement 

from the old system where the signals from force, AE or power would have been captured using separate 

DAQs asynchronously making data analysis difficult. For this experiment, the force measurement was 

captured at 51.2 kHz as this is one of the capturing frequencies out of the 3 different sampling rates which 

can be applied using the NI Flex logger software used for data capture.  
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Figure 31 Setup of dynamometer in Makino G7 machine environment 

 

Figure 32 graphical illustration of the machining setup without coolant protection covering. 

The Kitler 9129AA is calibrated annually under controlled conditions to ensure accurate force 

measurement, before the grinding trial it was checked to have a valid calibration report before 

proceeding. While considering the grinding force measurement, it is also important to consider the 

external factors that can affect the accuracy of grinding force measurement. Rotational accuracy of the 
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grinding wheel is a critical factor when used on the grinding machine. Poor rotational accuracy which is 

often manifested as spindle runout and vibration can introduce significant error in force measurements. 

Runout causes the grinding wheel to move eccentrically, leading to inconsistent contact between the 

wheel and the workpiece. This inconsistency generates fluctuating forces that are not representative of 

the true grinding forces that are not representative of the true grinding forces. These rotational accuracies 

can cause variations in the grinding depth of cut, leading to an uneven surface finish on the workpiece 

and even unexpected acoustic emissions being generated which deems this experimental data irrelevant. 

The Makino G7 has spindle with a runout within 2 microns ensuring minimal eccentricity and vibration to 

give confidence in the results obtained in this experiment. Moreover, the Makino G7 system adjusts 

coolant flow dynamically to accommodate the changes in wheel diameter improving the cooling efficiency 

and precision. The Makino G7 also has a robust build with damping capability that minimizes vibrations 

and enhances the overall stability during grinding operations. Section 3.6.1 discusses further the dressing 

parameter used to control and monitor the grinding wheel wear to ensure that rotational accuracy 

affected by wear does not influence the data collected from force measurement, acoustic emission 

measurement and spindle power data. Section  3.7.3 discusses further on the signal processing conducted 

on the force measurement signal that was collected during the experiment which gives further confidence 

on the quality of data.  

3.4.2 Power monitoring  

The spindle power was measured using a BNC connection going directly from the spindle to the NI9215 

module on the cDAQ-9178. This module has the capability of capturing a maximum frequency of 100 kHz 

with a +/- 10 V input range suitable for this application and provides a 60 VDC isolation for safety and 

noise reduction.  For this experiment, the spindle power was recorded at 51.2 kHz on the same sampling 

rate band limited to the force signal on flex logger software package.  

3.4.3 Acceleration monitoring  

A 3-axis accelerometer was used for this experiment which was placed attached to the workpiece fixture 

to pick up the vibration from the grinding trials. This data is not further used for analysis within this 

experiment but showcases the ability to capture synchronous data using the new NI data capture system. 

The accelerometer was directly fitted to the NI9234 module fitted onto the cDAQ-9178 capturing the 

accelerometer signal at 51.2 kHz.  
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3.4.4 Acoustic emission monitoring  

2 different AE sensors were used for this experiment. Kistler Type 8152C01 AE sensor which has an 

operating frequency range of 50 – 400 kHz and the Mistras WSa sensor which has an operating frequency 

range between 100 – 1000 kHz. The Kistler AE sensor was attached to the AE-piezotron coupler type 5125C 

charge amp which is then attached to the NI9775 module.  The AE sensor outputs a very small charge 

signal, which needs amplification to be accurately measured. The charge amplifier converts this small 

charge into a proportional voltage signal. The charge amplifier also matches the high impedance of the 

AE sensor to the lower impedance required by the data acquisition system ensuring the signal integrity. 

Similar amplification is required for the Mistras WSa sensor.  The Mistras WSa sensor was attached to the 

2/4/6c pre-amplifier from which a BNC cable attaches to the NI9775 module.  The pre-amplifier helps 

reduce noise improving the signal-to-noise ratio and conditions the signals to be within the acceptable 

range for the NI9775, facilitating accurate measurement and analysis. The NI9775 module has got a 

maximum frequency capture of 20 MHz on all channels when the module is on trigger mode on flexlogger. 

In triggered mode, data acquisition starts based on predefined conditions or triggers, such as a specific 

signal threshold or an external event. This mode is useful for capturing data during specific events or 

intervals rather than continuously. For this experiment, for continuous capture of the AE signal during the 

experiment, the module is limited to a frequency capture of 4MHz across all channels by flexlogger. 

Therefore, this limitation is split amongst the 2 AE sensors such that 2MHz sampling rate is used for each 

sensor. The cDAQ-9178 allows for the 2 MHz sampling rate using the NI flex logger to capture the data 

synchronously with the other signals. The two AE sensors have been placed in different orientations and 

positions on the workpiece fixture as shown in Figure 33.The AE sensors were positioned to be equidistant 

from the point of contact between the grinding wheel and the workpiece such that AE signals can be 

compared to understand in the future how orientation of signal could also affect the AE signal recorded.  
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Figure 33 Shows the arrangement of AE sensors and accelerometer in the undercarriage of the workpiece fixture. 

3.5 Data acquisition system 

Prior to this project, AMRC capability involved acquisition of force data from the dynamometer separately 

using a sole DAQ provided by the Dyno supplier in tandem with any other signal (i.e. accelerometer, 

acoustic emission or spindle power monitoring) that needed to be investigated acquired using another 

suitable DAQ. The signals from these separate DAQs would then be stored onto a PC and captured with 

separate time stamps. This process limited the capability of having synced data for the different streams 

of signals with a single time stamp such that relations between signals could be drawn clearly. Moreover, 

the old methods of data acquisition from the separate DAQs were heavy files for which any attempt to 

synchronise using approximations or thresholding would require high cost of computation. Therefore, a 

new type of data was required for acquisition and storage of synced signals.  

This project introduced the use of a NI cDAQ-9178 and respective modules, described in section 3.4.1 - 

3.4.4, which could sync data from the different streams of signals at different sampling frequencies on the 

same time stamp. Although, this introduction was a step forward for data acquisition, there were 

limitations to the data acquisitions. Using NI Flexlogger, an easy-to-build data logging system software 

used in this project, there were three analog data rate levels (slow, medium and fast) at which sampling 

frequencies could be applied for data acquisition. The medium data rate level configuration was used for 

force, accelerometer, and spindle power signals at 51.2 KHz, slow rate of 10Hz was used for the ambient 

Kistler AE sensor 

Accelerometer 

Mistras AE sensor 
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shop floor temp from the thermocouple and  the fast data rate level was used for Acoustic emission at 2 

MHz. The data acquired using flexlogger gets saved as a tdms format which is well structured and gives 

great performance being in binary format compared to the usual csv format used.  The NI Flexlogger also 

gives the capability to monitor the signal while running the test in time domain and frequency domain to 

ensure the signal being captured is as expected. With introduction of the NI data acquisition system there 

is time saved with setup and post processing of data results is much quicker with all channels synced on 

the same time stamp. Figure 34 gives an overview of the full data acquisition system deployed during the 

grinding trials.  

 

Figure 34 Schematic showing the data acquisition system deployed for the grinding trails on the Makino G7. 
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3.6 Experimental set-up 

3.6.1 Design of experiment and chosen grinding parameters  

3 different wheel are used for the three different grinding cycles deployed within this experiment 

including a clean up cycle, base grinding wheel and parameter grinding wheel. The wheels used for clean-

up, surface prep and parameter grind has been recorded in Table 6. 

Table 6 Grinding wheel specification used for the various wheels. 

  Wheel Description Wheel Spec 

Wheel dimensions 

(mm) 

1 Clean Up wheel  VU33 A80 2HH 10VB1 220x30x32 

2 Base grinding wheel (BGW) VU33 A60 2HH 10VB1 220x30x32 

3 Parameter grind wheel (PGW) VU33 A60 2HH 10VB1 220x10x32 

 

Literature review discussed how aluminium oxide wheels and CBN wheels are common contenders for 

being used to grind IN718. CBN wheels are highly recommended because of their hardness and ability to 

maintain sharpness. They provide efficient material removal and good surface finish, although they are 

expensive and require precise dressing. While not as effective as CBN, aluminium oxide wheels can be 

used, particularly with a more open structure to help with heat dissipation. They are more affordable and 

easier to dress but may require frequent dressing and coolant use to prevent overheating. Given the 

industrial wide use of aluminium oxide wheel for grinding IN718 and the availability of wheels within 

AMRC, aluminium oxide wheels were chosen for this grinding experiment. The emphasis in this study is 

to understand the acoustic emission signal during grinding and therefore there is less significance in 

creating a superior surface finish but a consistent surface finish on IN718 workpieces. Given the availability 

of aluminium oxide wheels at disposal for the experiment, a clean up wheel with a 30 mm width was 

chosen to ensure the clean up of workpiece and essentially create a set “zero” surface on all workpieces. 

The width of the workpiece is 20mm and this clean up wheel has overhang that allows for full clean up on 

the surface of the workpiece. A coarse grain size of 80 was chosen for the clean up cycle and an open 

structure was used to help keep coolant supply and managing chip load during the grinding process 

thereby avoiding any thermal damage to the workpiece surface.          
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The base grind wheel and parameter grind wheel had the same specification except for the width of the 

grinding wheel. Similar to the clean up wheel, the purpose of the base grind wheel was to ensure a known 

controlled starting surface was established before parameter grind was recorded. The parameter grinds 

were carried out within 3 different grinding regimes of changing aggression values calculated using 

Equation 9. As previously discussed within the literature review, aggression values indicate  a difference 

in the chip creation and complex process of grinding which is a combination of the process parameters 

including feed rate, depth of cut and wheel speed which collectively defines the intensity of the grinding 

process. By varying these parameters, the aim is to simulate different grinding conditions from a light 

finishing pass to an aggressive high material removal rate scenarios. With the context of the objectives 

defined within this thesis, the different grinding helps understand how the acoustic emission signals and 

features may be affected by changes in the grinding regime. This investigation helps to investigate if the 

signals are repeatable to help validate findings about the AE features that have been gathered in previous 

literature under different grinding regimes. The three different grinding regimes were chosen to 

understand how change in grinding regimes can affect the repeatability in the AE response gathered and 

these grinding parameters used have been recorded in Table 7. These grinding regime cuts were repeated 

5 times using the same workpiece after each clean up and base grind such that most variables in the 

grinding environment could be kept constant. This left the experiment to have one variable which changed 

during the 5 repeats of the grinding cuts, i.e. the parameter grind wheel diameter. 

Table 7 Grinding parameters for the three different grinding regimes selected for repeatability study 

 Grinding 

regime 

Width of 

grinding cut -  

Ap 

(mm) 

Depth of 

grinding cut -  

Ae 

(mm) 

Wheel 

surface 

speed –  

Vc  

(m/s) 

Feed rate- 

Vw 

(mm/min) 

Q’ 

(mm2/s) 

Aggression 

value  

1 Finishing 10 0.1 30 1000 1.67 11.87 

2 Semi-

Finishing 

10 0.25 30 1000 4.17 18.77 

3 Roughing 10 1 30 1000 16.67 37.53 

 

For the grinding wheel diameter to be varied within the repeats systematically and have this monitored, 

the wheel was dressed with a decremental approach. Before each parameter grind, the PGW radius was 
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measured before and after dressing using the Renishaw laser measurement kit. The laser measurement 

kit used laser interferometry to measure the diameter of the grinding wheel upto 1 nanometre resolution 

to ensure that the dressing conducted was consistent with the dressing parameter set. Each dressing 

applied demanded the machine to dress off 1mm radius from the PGW. This controlled the PGW radius 

to reduce by 1mm every repeat cut and understand how this would affect the repeatability in using AE 

for process monitoring during grinding. The diameter of the grinding wheel significantly influences the 

grinding mechanism, affecting various aspects of the grinding process. The fundamental principle is that 

a larger wheel diameter increases the contact length between the wheel and the workpiece. This larger 

contact area distributes the grinding forces over a wider surface, potentially reducing the specific grinding 

energy required. Consequently, this can lead to lower temperatures and reduced risk of thermal damage 

to the workpiece. Another perspective to consider is that a larger diameter wheel tends to have a higher 

rotational inertia, which can stabilize the grinding process by reducing vibrations and improving surface 

finish. However, the increased mass and inertia also demand higher spindle power to maintain operational 

speed. This effect of rotational intertia and mass may not be as drastic with change of grinding wheel as 

far as 1mm redius reduction but may have a cumulative effect once several dressing and grinding passes 

have been completed during the grinding process. Additionally, a larger diameter wheel typically exhibits 

slower wear rates, contributing to more consistent grinding performance over time. Conversely, smaller 

diameter wheels concentrate the forces on a smaller contact area, increasing the grinding force per unit 

area, which can enhance material removal rates but also raise the risk of localized overheating and 

potential surface damage. Therefore, selecting the appropriate grinding wheel diameter is crucial for 

optimizing grinding efficiency, surface quality, and overall process stability 

3.6.2 Grinding machine programming & tool path  

The NC programme was written on Easygrind, in such a way that a simple tool path was programmed, and 

parameters of the cut varied such that the programme could be duplicated to change any parameters and 

make different grinding cuts to ensure efficiency in the design of experiments. The workpiece and its 

fixture was designed in such a way that a straight grind cut can be made across the workpiece, down 

grinding the workpiece, moving upwards on the sample edge as shown in Figure 35 and Figure 36.  
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Figure 35 Illustration of the tool path used within a grinding cycle. Sketch shows the coordinate system used to represent the 
motion while grinding with respect to the machine. Note the X-axis is represented as directed into the paper. 

 

 

Figure 36 Drawing illustrating the plan view and side view of the workpiece coupon as it is subjected to the down grind tool path 
during the grinding cycles. Sketch shows the coordinate system used to represent the motion while grinding with respect to the 

machine 
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Each grinding cycle is a straight movement including a run-in length of 50mm of the grinding cut before 

the grinding wheel gets in contact with the workpiece edge and 50mm after the contact with sample edge.  

The first grinding cycle administered on a sample workpiece involves a clean-up process. This cycle uses a 

0.5 mm depth of cut, removing a total of 1 mm of material from the workpiece, starting 0.5 mm above 

the designated height of the workpiece. The clean-up cycle (shown in Figure 37 ) employs a wide grinding 

wheel to ensure the entire surface of the workpiece is free from tapers and to account for any slight fixture 

errors. 

 

 

 

Figure 37 Clean up grinding cycle used within the grinding trial to prepare all sample workpiece coupons before they are 
subjected to grinding trials. Sketch shows the coordinate system used to represent the motion while grinding with respect to the 

machine. 

Following the clean-up cycle is the surface preparation cycle, where a base grinding wheel is used. Before 

this cycle, the wheel is dressed, and actual pre-grind measurements are taken using a Renishaw laser 

measurement system. The surface preparation cycle also utilizes a wide grinding wheel, which grinds the 

full surface of the sample edge with two grinding cuts at a 0.25 mm depth of cut each, removing a total 

of 0.5 mm of material from the sample edge (Figure 38). This creates an even surface for the actual 

parameter grind, which is to be monitored.  
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Figure 38 Surface prep cycle used within the grinding trial to “zero” and even workpiece coupon before they are subjected to 
grinding trials. Sketch shows the coordinate system used to represent the motion while grinding with respect to the machine. 

The thesis/project previously involved in its scope, analysing the surface after a grinding cut compared to 

the initial surface, the parameter grind is conducted with a narrow wheel covering half of the sample edge 

(Figure 39). This allows the initial surface on the sample edge to remain available before and after the 

parameter grind. Following the parameter grinding cycle, an air pass cycle is included within the program, 

which is a repeat of the parameter grind cycle with a 0.1 mm offset from the tool path. 

 

Figure 39 Parameter grind cycle used within the grinding trial to “zero” and even workpiece coupon before they are subjected to 
grinding trials. Sketch shows the coordinate system used to represent the motion while grinding with respect to the machine. 

After both the surface preparation and parameter grinding cycles, the workpiece surface is probed to 

determine the actual height of the workpiece after the grinding cuts. This probing is done using a three-
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point plane, with points equidistant within the 20 mm sample area of the clean-up/surface preparation 

grinding cut and the 10 mm width sample area of the grinding cut from the face of the fixture. The probing 

is carried out to ensure consistency in achieving the commanded depth of cut and an average of the three-

point measurements is used to finalize the measurement. Similarly, the diameter of the base grinding 

wheel used for surface preparation and parameter grinding is measured before and after the grinding 

pass using the Renishaw laser measurement kit.As discussed, this machining programme and tool path 

was designed to cater for a larger design of experiment which looked at surface analysis of the workpiece 

before and after grinding cuts by subjecting the workpiece to destructive analysis. As scope of this thesis 

changed, the same machine programme and tool path has been used in order to conduct repeatability 

study on the grinding machine.   

 

3.6.3 Control for repeatability test 

From literature review, it is apparent how different variables affects the grinding process and can directly 

influence the AE signals that are recorded along with the grinding force and spindle power. In this thesis, 

the objective is to control these parameters to understand how repeatable the AE signals are for the 

grinding process. A mind map was devised to understand what are these variables that can influence the 

repeatability and how can this be controlled for this thesis as shown in Figure 40. 
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Figure 40 Mind map showing the relationships between variables of the grinding process and mitigation methods to control any 
variation in studying the repeatability of AE signals. 

Starting from the base grind wheel, the wheel surface condition is directly linked to the workpiece quality 

that can be achieved as a function of the grinding mechanism deployed due to the surface condition. Finer 

grains produce a smoother finish, while coarser grains leads to a rougher finish on the workpiece. For this 

experiment, the grinding wheel have a grain size of 60 which is rather course and a rougher finish can be 

expected but what is important is the grain distribution. The uniformity of grain distribution affect the 

consistency of the surface finish. As the wheel wears, the effective cutting edges decrease and the wheel 

may develop an uneven surface which results in inconsistent surface finishes on the workpiece. Sharp 

grains cut more effectively, leading to higher material removal rates. As the grains become dull, the cutting 

efficiency decreases, requiring more force to remove material and reducing the material removal rate. 

Accumulation of material on the wheel surface (loading) increases friction and grinding forces. The base 

grinding wheel has an open structure which should facilitate reduction in wheel loading. An open structure 

wheel has more voids or spaces allowing for a better chip clearance during grinding. The larger space 

between grains also enables better coolant flow through the wheel which means lowered heat generation 

during grinding and reducing the chance of chip material adhering to the wheel.  Dressing the base grind 

wheel before and after a grinding pass to a set amount of wheel diameter change using the same dressing 

parameters can control this variable during grinding.  
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On the other hand, changes in the wheel wear mechanism means the grinding mechanism can change 

and this directly influences the grinding force which can show in the AE signals. To elaborate further into 

this concept, the grinding mechanism that were discussed in the literature review can be revisited; 

rubbing, ploughing and material removal were mechanism in which the grains of the grinding wheel would 

interact with the workpiece material.  This different mechanism can instigate different levels of acoustic 

emissions with the micro-cracks and shear planes that arise during grinding. The level at which each 

mechanism takes prominence during the grinding process can effect the acoustic emission recording from 

the sensors. Therefore it is important to ensure consistent condition of the grinding wheel to avoid 

influence of the grinding wheel condition to affect the acoustic emission data that is gathered during this 

grinding trial. Controlling the wheel wear would be to ensure that the wheel is dressed, and a fresh surface 

generated for each grind pass and therefore wheel condition or progression of wheel wear is alike and 

repeatable for each grinding pass.  

The grinding wheel diameter typically increases the contact area between the wheel and workpiece, 

distributing the grinding force over a large area and potentially reducing the specific grinding force (force 

per unit area). The larger contact area leads to a more distributed load, which can lower the grinding force 

per unit area but may require a higher total grinding force due to the increased material removal rate.  A 

smaller wheel diameter results in a smaller contact area, concentrating the grinding force on the smaller 

force on a smaller surface. This concentration of force increases the grinding force per unit area, 

potentially enhancing material removal rates but also increasing the risk of higher stress and thermal 

damage on the workpiece. In terms of the effect on spindle power, it is important to note that a larger 

wheel requires more spindle power to maintain the same rotational speed due to the higher mass and 

inertia. Wheel diameter is a parameter that will change with every dressing and the only way to control 

this variable would be to use a new grinding wheel for each grinding pass. Such an initiative would have a 

lot of material waste, not a sustainable practise and farfetched from a realistic grinding scenario in 

industry. Therefore, within this thesis, repeatability study will look at AE signals as the grinding wheel 

diameter progresses (reduces) as it is dressed every grinding pass. 

The parameter grinding wheel have variables connected to it just as the base grinding wheel. As a result 

controlled dressing of the wheel is conducted before and after grinding pass and the wheel wear limited 

using a fresh wheel surface. The wheel diameter progression is also controlled using a set amount of wheel 

diameter change during dressing of the wheel and this is monitored using the laser measurement kit 

installed on the machine.  
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Machine noise and coolant supply could directly affect the AE signals recorded during the machining trial. 

The best way to take this variable out of the experiment and control it was by separating the noise 

signature from the recorded AE signal and using signal processing techniques to remove the 

corresponding noise signals from the overall grinding pass signal. This can be done by implementing an 

air pass , discussed in section 3.7.2 to 3.7.4  and recording the AE signal to be further analysed. The coolant 

supply can influence the grinding force especially if the coolant direction is towards the workpiece during 

the movement of grinding wheel and coolant supply nozzle system. The grinding programme needs to 

take this into account and have the nozzle positioned for the coolant to be fed into a point on the wheel 

before it contacts the workpiece. This allows for the coolant to regulate the temperature at the contact 

point, which is its primary function and as a secondary benefit the porous/vitrified wheel can carry the 

coolant into the grinding cut. Similar to handling the AE signals from the airpass, the grinding force signals 

can be recorded during the airpass to process the overall grinding pass signal and remove the grinding  

force that may be attributed due to the coolant contacting the workpiece/workpiece holder.  

The final set of variables that can affect the grinding process would be the state of the workpiece. The 

workpiece surface condition needs to be constant before any repeat grinding pass to ensure that 

repeatability comparison is done correctly. Firstly, the stock block of IN718 material from which the 

workpiece has been machined has been tested with a certificate of conformity to adhere to the API6A 718 

standard to ensure that the surface hardness, material microstructure, residual stress, heat treatment 

method are monitored. Since all the workpiece generated for this experiment is from the same block, it 

can be assumed that this is constant. To meet the API6A 718 standards, the IN718 flat blank from which 

the workpieces have been generated from has gone through micrograph imaging checks on grain size, 

defects, duplex grains, deleterious phases, delta and laves phases and an ultrasonic examination to the 

ASTM A388 standard [55]. IN718 is material which has  a high hardness and harder workpiece surfaces 

results in higher grinding force to achieve material removal and the abrasive grains will need to exert more 

force to penetrate and shear off the material. Variation in microstructure closer to the surface can depend 

on its heat treatments. Variations in microstructure can cause uneven wear on the grinding wheel and 

fluctuating grinding forces due to differences in the material hardness and toughness at the 

microstructural level. Residual stress within the workpiece can also influence the grinding process which 

can affect the grinding force and even the acoustic emissions that result during grinding. Residual stress 

can lead to localised deformation and micro-cracking during grinding which can affect the acoustic 

emission signals that arise during grinding. The workpiece in this experiment has been through heat 

treatment under a controlled and monitored method that allows it to bear the certificate of conformity.  
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These interactions of factors show the significance of control within the workpiece condition. Alongside 

the confidence in creating workpiece from the same stock of IN718 it is also important to create a uniform 

defect-free and residual stress surface before conducting the grinding trials. For this, a base grind has 

been incorporated into the grinding cycle of the experiment such that each time a parameter grind is 

conducted, it is ensured that the surface of the workpiece has been returned to its controlled initial state 

with repeatable surface roughness and surface quality. Another aspect that is closely related would be 

the dimensions of the workpiece before and after the base grind pass. After every base grind, there needs 

to be assurance that the material taken off and grinding parameters used have been successful to repeat 

a fresh workpiece surface as it was done before a previous parameters grind. For this purpose, the 

workpiece is probed to ensure that the material taken off during the base grind and parameter grind is 

consistent for each repeat.  

3.7 Handling signal acquisition and pre-processing signals  

3.7.1 Pre- Grinding trials:AE sensor response reproducibility test 

At AMRC, the only measures taken to ensure AE sensors performed accurately within a test was to ensure 

that the AE sensors were updated with their latest calibration. There was no indication to ensure that the 

AE sensors go through degradation before/after use in test. Therefore, this project also incorporated the 

ASTM E976 standard method of determining the reproducibility of acoustic emission sensor response. 

From the standard guide, the acrylic rod method was used to test the sensor reproducibility. An acrylic 

rod was sourced similar to the dimensions provided by ASTM E2075 [56]. The standard followed the US 

metrics and therefore had the diameter for the rod set as the dimensions available in the US. In order to 

source the correct dimensions in the UK, the acrylic rod diameter had to be changed from 3.8 cm to 4.0 

cm as this was the standard acrylic rod diameter available in the UK, any machining of 4.0 cm rod to make 

it 3.8 cm was beyond the time scope of this project. All other dimensions were kept as accurate to ASTM 

E2075, as shown in Figure 41.  
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Figure 41 Acrylic rod description under ASTM E2075 standard. [56] 

For the reproducibility test, the AE sensor was attached to the end of the Rod which was closest to the 

reference point marked as pencil break regions. Silicone grease is applied to the AE sensor surface in 

contact with the end of the road and the tape used to hold the sensor firmly against the surface. The 

acrylic rod is place flat on a bench and held in position by two weights preventing the rod from rolling. 

The sensor is connected to the data acquisition system and set to record data at the standard sampling 

rate of 2Mhz for the AE sensors. The recording is taken for the time frame in which a pencil lead is broken 

using a special crafted shoe fitted to the end of the lead pencil to ensure the lead is broken in a repeatable 

manner on the reference mark. Two reference marks can be set and used depending on the type of lead 

used. The 10.2 cm reference mark from the end with the AE sensor is used for 0.3 mm pencil lead and the 

30.5 cm reference mark is used for the 0.5 mm pencil lead.  

For this project, the pencil lead break was repeated 5 times to ensure an average response of the lead 

pencil break can be used to compare before and after the test. For the AE response gathered, it is ensured 

that a clean ping is recorded in the data acquisition system as a peak in signal when the pencil lead breaks. 

For comparison of AE reproducibility, the AE frequency response is compared to ensure similar signals 

were recorded for pre and post reproducibility test. To ensure quantitative analysis, the AE response on 

the time domain is converted to dB and peak signal compared for before and after a test. Any variation in 

sensor response to the pencil break greater than 4 dB indicates that there is damage or degradation that 

has occurred to the AE sensors and any variation more than 6 dB can be considered as criteria unfit for 

further service.   
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3.7.2 Signal wavelet De-noising  

Wavelet decomposition and de-noising is a new method which has not been dominantly used in 

machining science. From literature review, wavelet packet transforms and related methods have been 

applied to acoustic emission (AE) signals for feature extraction in grinding processes. Liu et al. [25] 

successfully used wavelet packet transforms combined with fuzzy pattern recognition to detect grinding 

burns in IN718, achieving high classification accuracy by optimizing AE signal features. Similarly, Gao et al. 

[27] employed the energy of cross wavelet transform (EXWT) and degree of wavelet coherence (DWTC) 

to distinguish grinding burns, demonstrating a 100% detection rate. These studies primarily focus on 

specific materials like AISI 1045 steel and employ various signal processing techniques, but they do not 

explore wavelet denoising methods. This indicates a gap in the application of wavelet denoising within 

machining science for real-time monitoring and quality control, particularly for complex materials like 

IN718. 

Wavelet de-noising can be a highly effective method for removing noise from Acoustic Emission (AE) 

signals during grinding due to its ability to analyse and process signals in both time and frequency domains 

simultaneously. AE signals in grinding are typically high-frequency and can be contaminated by noise from 

various sources such as machine vibrations, ambient environmental sounds, and electrical interference. 

Traditional filtering methods might not effectively distinguish between noise and the valuable signal 

features. However, wavelet de-noising leverages the multi-resolution analysis capability of wavelets to 

decompose AE signals into different frequency components. This allows for precise identification and 

separation of noise from the actual AE signal generated by grinding phenomena. The wavelet transform's 

ability to retain important signal characteristics while removing unwanted noise results in clearer, more 

accurate signal representation. By improving the signal-to-noise ratio, wavelet de-noising facilitates more 

reliable and efficient grinding process monitoring, ultimately leading to better control over machining 

parameters and improved workpiece quality. 

This project explores the opportunity to devise this method to de-noise the acoustic emission signal which 

has been recorded for each grinding cut using the air-pass data gathered. Within the results and discussion 

section, the best set of parameters to use for wavelet de-noising within this application is discussed. For 

this project, the air-pass data has been collected to help with the parameter selection. The air pass data 

is full of noisy signal information which is unwanted AE noise signal during the grinding cut as it is not 

representative of the AE signal that occurs due to the interaction of the grinding wheel and the workpiece. 
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The use of air-pass has therefore become an ultimate tool to set the thresholds for the detailed coefficient 

for wavelet decomposition and thereby vary the parameters applied for wavelet denoising and compare. 

The method used within this thesis is to decompose the airpass signal to different levels and manually 

investigate the air pass to infer the threshold values at which the airpass data peaks for the different 

decomposition levels. Once this threshold values are inferred from the decomposition levels, this 

threshold value can be applied on the original signal with the optimised wavelet de-noising parameters 

finalised within this thesis. Figure 42 shows the final output of an example signal that has been wavelet 

denoised using the thresholding of air pass data, most importantly, the decomposition of coefficients 

before and after de-noising shown in Figure 43 show the significant improvement in removal of coefficient 

from the signal without the loss of the important signal through a grinding trial. Manual thresholding 

completely eliminates signal coefficients outside the contact period between wheel and workpiece which 

gives confidence that the unwanted signals are removed while important signals are kept through wavelet 

de-noising.  

 

Figure 42 Graph showing the output of wavelet de-noising where manual thresholding has been applied using the airpass data. 
The signal in black is the de-noised signal while the original signal is in red. 



92 
 

 

Figure 43 Spectogram showing the difference between the original coefficients from wavelet decomposition of original signal 
upto 5 levels  and after de-noisning using air-pass data thresholding. 

From this study, it can be gathered that the technique of wavelet de-noising has variable parameters 

which can affect the de-noising performance. Therefore, there needs to be a set way to analyse the 

performance of a signal that has been de-noised and a set design of experiment to evaluate all the possible 

parameter’s effect. The signal evaluated in this project is acoustic emission signals from grinding cuts and 

therefore prior knowledge that what is representative of noise in the signal is fully represented by the air 

pass dataset that is gathered alongside the grinding trials. This makes us reach a conclusion that the 

performance of de-noising technique can be compared using the parameter signal-to-noise ratio (SNR) 
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for the de-noised signal against the original signal after thresholding picked from air-pass is applied with 

different wavelet de-noising variables. Two approached that can be used to evaluate signal to noise ratio 

equations can be given as: 

𝑆𝑁𝑅3 =
𝑚𝑒𝑎𝑛(𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑅𝑀𝑆 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑅𝑀𝑆 𝑠𝑖𝑔𝑛𝑎𝑙)
 

Equation 23 adapted from[57]  

𝑆𝑁𝑅2 = 10𝑙𝑜𝑔10 (
∑ 𝐼𝑛

∑ (𝐼𝑛 − 𝐼′𝑛)𝑛
) 

Equation 24 adapted from[58]  

In Equation 24 (SNR 2), I is the denoised signal while I’ is the original signal and n is the length of the signal. 

In some application of this SNR formula, usually the power of the signal is considered but in this equation, 

we are simply investigating the amplitude of the signal itself. Equation 24 requires the noise of the signal 

to be clearly defined otherwise the equation would merely be a calculation of the amount of de-noised 

signal removed from the original signal. This would have been proved  to be a challenge within this trial 

scenario if it wasn’t for the introduction of airpass. The collection of airpass data within the grinding trials 

helps differentiate the distinct noise signal (machine noise, coolant supply noise, ambient noise, tool 

movement noise) against the original signal itself thereby calculation of the denominator in this equation 

is straight forward. In the equation, air pass data would be classed holistically as the ∑ (𝐼𝑛 − 𝐼′𝑛)𝑛  without 

requiring it to be subtracted from the original signal.   

In this thesis, Equation 23 (SNR 3) was investigated because the noise was not initially defined clearly from 

the full signal until the air pass data was analysed. A larger SNR for Equation 23 (SNR 3) indicates better 

performance of the de-noising algorithm, as it implies a higher mean of the de-noised signal (indicating 

reduced signal amplitude loss) and a lower standard deviation (indicating less signal spread and less noise 

interference). However, SNR 3 was not used further for parameter optimization because the signal 

amplification for the AE sensor varied drastically during the initial contact between the workpiece and the 

grinding wheel, significantly affecting the mean and standard deviation of the AE signal. This variation 

meant that the SNR 3 calculated by the equation was not representative of the full signal but was instead 

heavily influenced by its temporal nature, failing to provide a reliable indication of the signal-to-noise 

ratio. SNR 3 might be useful in other applications with constant signal acquisition rather than those 

involving transient response signals.  
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The literature review indicates that the key parameters for wavelet de-noising include the choice of 

wavelet, wavelet filter length, wavelet decomposition level, threshold algorithm, and type of 

thresholding. Specifically, the wavelet choices that closely resemble acoustic emission signals are symlets, 

Coiflets, and Daubechies. Figure 44 gives a graphical representation of the 3 types of mother wavelets 

discussed in comparison to the simple Haar wavelet. One aspect initially studied was how these three 

different wavelet bases affect the SNR across four different datasets. To define the optimal parameters 

for wavelet de-noising, a step-by-step elimination of parameter options was employed to systematically 

control and refine these parameters. 

 

Figure 44 Figure shows examples of Haar, daubechies-5, symlet-8 and coiflet-5 mother wavelets. These are some of the common 
wavelets used to characterice acoustic emission signals within machining science. [59] 

The first step involved identifying the optimal filter length for the three wavelet types while maintaining 

a constant wavelet decomposition level of five for a sample grinding cut signal. During this phase, the 

'rigrsure' thresholding method and soft thresholding were consistently applied across all trials. 

Subsequently, to determine the optimal wavelet decomposition level, the previously identified optimal 
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wavelet filter length was kept constant while the decomposition level was varied from 1 to 8 for the three 

wavelet bases on the sample signal. 

The final choice of decomposition levels is a trade-off between a few factors including performance and 

computational costs. Theoretically, the maximum decomposition level (M) can be calculated as: 

𝑀 = 𝑙𝑜𝑔2(𝑁) 

Equation 25 

Where N is the length of the signal. Therefore, the most suitable level of decomposition has to be 

determined by analysing the performance of de-noising algorithm such that quality de-noising 

performance can be achieved without decreasing computing efficiency and being lower than the 

maximum limit. Another aspect to consider, wavelet decomposition at different levels means that this is 

breaking down the signal coefficients into bands of frequencies (halved at each level) therefore, more the 

number of levels, more the resolution of frequencies when the signals are reconstructed from the wavelet 

coefficients. All matlab code that was used for data processing within this thesis has been included within 

the appendix in section 9.2 for reference.  

3.7.3 Analysing the grinding force signal 

Grinding force was measured from the 8-channel dynamometer and within the results section, the 

horizontal and vertical grinding force is collected from the dynamometer. These two forces have been 

observed for the changing grinding wheel diameter for the 5 repeat grinding cuts for the three grinding 

regimes. The grinding force recorded has been post processed to ensure that (1) air pass data is used to 

remove grinding force components which are a resultant of coolant supply (2) drift in the dynamometer 

is monitored and compensated for in the grinding signal by evaluating the drift curve for each grinding 

pass and removing the offset using a linear curve fitting (3) grinding force data is trimmed to remove the 

lead-in and lead-out section of the grinding cut, this is done to remove the section of the grinding cut 

where the depth of cut is variable and as a result leaving the stable region of the grinding cut. In order to 

pick up the stable region of the grinding cut, a threshold was applied to the AE signal such that the data 

selected is post the peak of the AE signal (section where the most variable depth of cut is noticed during 

lead-in of cut) and in a region where grinding force would be stable. Time stamps picked up using the AE 

signal thresholding is used to determine this start point for the grinding force signal. Hereafter, a grinding 

force dataset of length of 1 sec is extracted from each grinding cut. This AE signal threshold technique 

ensured that the grinding force section picked up from a grinding cut was a consistent, fair selection and 
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an easily automated process. Once the griding force signal was trimmed down, the signals collected were 

also inspected case-by-case to ensure that there were no anomalies in the data set. Equation 5[5]  , 

Equation 6   and Equation 7  were used to evaluate the normal grinding force and instantaneous tangential 

grinding force by solving with horizontal and vertical grinding force measured. In order to evaluate 𝜃, the 

actual depth of cut was calculated from the difference in measured height of the coupon pre and post 

grinding cut. Section 9.3 in appendix shows matlab code used for all data processing from the grinding 

results. The actual wheel diameter measured from the Renishaw laser measurement system was used as 

average of wheel radii pre and post grinding cut.   

3.7.4 Analysing the grinding power signal 

For the analysis of grinding power, the data technique used for the trimming and sectioning was the same 

as grinding force where AE data thresholding was used to time stamp the dataset and extract the data for 

the stable section of a grinding cut. Power data from each airpass was used to evaluate and subtract no-

load power (𝑃𝑁𝐿) and fluid drag power (𝑃𝑓) from the each grinding cut. Section 9.4 in appendix shows 

matlab code used for all data processing from the power data signal.  
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4 Results & Discussion  

4.1 Parameters for wavelet denoising 

The parameter study conducted have been reported for a sample grinding cut from both AE sensors with 

the approach identified under section 3.7.2. Although SNR 2 ( Equation 24 )comparison does not show 

drastic differences between the wavelet filter length and type of wavelet used,  Figure 45 & Figure 46 

shows that Coiflet of filter length 5 gives the best SNR across all grinding regimes and both AE sensors. 

The SNR values from both AE sensors are very different and this can be owed to the different operation 

of both sensors but what stands out is that the behaviour of wavelet filter type and length is consistent 

within the two AE sensors.  

 

Figure 45 Graph showing the comparison of SNR 2 for Kistler AE sensor data from the first trial sample of each grinding regime. 
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Figure 46 Graph showing the comparison of SNR for Mistras AE data from first trial sample for each grinding regime. 

 

For the Kistler AE sensor ( as shown in Figure 45 ) , the roughing operations displayed consistently high 

SNR values around 22-24 across all wavelet bases and filter lengths, with minimal variation. Semi-finishing 

operations yielded SNR values around 19-20, while roughing operations reported SNR values between 12-

14. Among these, Coiflet demonstrated slightly better performance across all operations, maintaining 

higher SNR levels with increased filter length stability which is optimised at filter length 5. 

Similarly, for the Mistras AE sensor ( as shown in Figure 46), roughing operations reported SNR values 

around 10-12, semi-finishing around 8-9, and roughing operations yielded lower SNR values in the range 

of 1-4. Again, Coiflet exhibited superior performance, particularly noticeable in the finishing operations 

where SNR was slightly higher and more consistent compared to Symlet and Daubechies. 

The general trend noticed within the SNR values is an increase with the grinding regime being rougher 

and this can be lend to the increased contact length of grinding wheel accompanied by increased material 

removal rate, leading to higher amplitude of acoustic emissions which does not increase proportionally 

with the noise within the environment. The other perspective to consider is that with increased acoustic 

emission activity during grinding, the wavelet de-noising technique might perform better under 
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conditions since the matching of the mother wavelet basis against the noise signal would be much easier 

and efficient. The stronger acoustic emission signal will be distinct from the noise signal which is being 

effectively filtered out from the signal.  

Based on this comprehensive analysis, Coiflet-5 was selected as the preferred wavelet base due to its 

consistent and relatively higher SNR performance across all grinding regimes and filter lengths. This choice 

ensures optimal de-noising efficiency, crucial for accurate signal interpretation in grinding operations. 

  

To optimize the decomposition level for wavelet de-noising, the change in SNR is compared for different 

grinding regimes in both AE sensor data samples for the first set of grinding trial data. From Figure 47, it 

is evident that the SNR plateaus after a decomposition level of 5. Specifically, the Kistler sensor shows a 

sharp initial decline in SNR across all regimes (finishing, semi-finishing, and roughing) until reaching a more 

stable trend around level 5. Similarly, the Mistras sensor exhibits a comparable pattern where SNR 

decreases with increasing decomposition levels but stabilizes beyond level 5. 

For the Kistler sensor, roughing operations start with the highest SNR, maintaining superior performance 

even after the plateau, which suggests effective signal retention despite increased decomposition. Semi-

finishing and finishing operations show a more significant drop initially but also stabilize around level 5, 

indicating an optimal balance of noise reduction and signal preservation at this level. The Mistras sensor, 

although demonstrating lower overall SNR values compared to Kistler, follows the same trend of initial 

decline and subsequent stabilisation around level 5 across all regimes. 

This observed plateau at decomposition level 5 aligns with the discussion in section 3.7.2, highlighting it 

as the compromise point between computational cost and performance. Higher decomposition levels may 

lead to diminishing returns in SNR improvement, while lower levels may not sufficiently reduce noise. 

Thus, selecting level 5 ensures an optimal balance, providing adequate de-noising without incurring 

unnecessary computational complexity. Therefore, the final optimum level of decomposition required for 
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wavelet de-noising is conclusively determined to be level 5, ensuring both efficiency and performance in 

signal processing for both Kistler and Mistras AE sensors. 

 

Figure 47 graph showing comparison of the change in SNR as AE sensors SNR change with wavelet decomposition level for the 
different grinding regimes. 

To finalise on the parameters used for wavelet denoising within this thesis, for each parameter grind 

signal, threshold values are determined from the air pass data for each parameter grind ( as discussed in 

section 3.7.2 ) and the signal decomposed using wavelet ‘Coiflet 5’ and decomposed to level 5 using soft 

thresholding.  

4.2 Pre and post AE sensor response reproducibility  

The two AE sensors, Kistler and Mistras, were run through the ASTM E976 reproducibility test before and 

after the grinding trial experiment was conducted. Each reproducibility test was repeated 5 times and the 

results averaged to compare the time domain signal response in dB to understand any changes. A MATLAB 

app had been coded to compare the average of these repeat runs automatically and ensure the standard 

AE signal produced by the pencil break was reproducible within the given limits of degradation. Both AE 

sensors showed good reproducibility and built confidence in ensuring the signal recorded are accurate 

without being exposed to degradation. The Mistras sensor showed higher amplification when compared 

to the Kistler which can be routed to the difference in the pre-amplifier systems used but the reproducible 

signals were within the tolerances of ASTM E976.  
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4.3 Grinding trial results  

Table 8 Shows actual measurements taken for the different trials in relationship with the targets given in Table 5 

Trial  Type  

Target 
Depth 
of 
grinding 
cut 
Ae(mm) 

Actual Pre-
grind Wheel 

radius 
measurement 

(mm) 

Actual Post-
grind Wheel 

radius 
measurement 

(mm) 

Actual 
depth 
of cut 
(mm)  

Actual 
wheel 

diameter  
(mm) 

010 Finishing 0.1 108.4 108.4 0.10 216.9 

020 Finishing 0.1 107.4 107.4 0.09 214.8 

030 Finishing 0.1 106.4 106.4 0.09 212.8 

040 Finishing 0.1 105.3 105.3 0.09 210.7 

050 Finishing 0.1 104.3 104.3 0.09 208.6 

060 Semi-finishing 0.25 108.4 108.4 0.25 216.9 

070 Semi-finishing 0.25 107.4 107.4 0.24 214.8 

080 Semi-finishing 0.25 106.4 106.4 0.25 212.8 

090 Semi-finishing 0.25 105.3 105.3 0.24 210.7 

100 Semi-finishing 0.25 104.3 104.3 0.24 208.6 

110 Roughing 0.5 108.5 108.5 0.50 217.0 

120 Roughing 0.5 107.5 107.5 0.50 215.0 

130 Roughing 0.5 106.5 106.5 0.50 212.9 

140 Roughing 0.5 105.4 105.4 0.50 210.8 

150 Roughing 0.5 104.4 104.3 0.49 208.7 

 

As discussed within section 3.6, trials were conducted as 5 repeat grinding cuts in 3 different grinding 

regimes. The trial No. given in Table 8 is later referenced within this section to describe the trials which 

are studied as part of the AE repeatability study. The actual wheel diameter measurements given in Table 

8 uses the Renishaw laser measurement system to record the pre and post radius measurement and 

averages the results to finalise the diameter of the grinding wheel during the grinding cut. 3 repeat 

measurements of the grinding wheel radius is completed before averaging to finalise the pre and post 

grinding wheel radius to improve the accuracy and precision.  The actual depth of cut is given by measuring 

the height of the workpiece coupon pre and post grinding cut by probing as described within section 3.6.2.  

Figure 48 shows the graph of the percentage of radial wear that the PGW witnesses during each parameter 

grind within the 3 different grinding regime. As the wheel radius decreases from 109 mm to 104 mm, 
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there is a noticeable variation in the percentage radial wear across the different grinding regimes but the 

% wear  fluctuates between 0.005 % 0.025 % which are low numbers. The finishing regime shows a more 

consistent and lower wear pattern, maintaining wear around 0.01-0.015% throughout the trials. Roughing 

shows intermediate wear values with some fluctuations but remains relatively consistent around the 0.02-

0.03% mark. The semi-finishing regime regime exhibits the most significant fluctuations in wear, starting 

around 0.015 % at 108.5 mm then rises to 0.02% as the grinding wheel radius drops to 106.5 mm but then 

drops to 0.01 % near 105.5 and has an outlier which peaks at 0.055 % at 104 mm grinding wheel radius. 

Overall, the radial wear is not consistent through the repeat grinding cycles, especially in the semi-

finishing regime, where significant wear variation suggests possible instability or variability in grinding 

conditions or material properties. Although, the trends shows this fluctuation, it is important to note that 

these values are minute in comparison to the grinding wheel radius and further relations to the grinding 

force and acoustic emission data needs to be inferred to understand if there is consistency in the grinding 

process recorded.  

 

Figure 48 Graph showing the % wheel wear experienced by the PGW wheel after each grinding repeat and dressing cycle for the 
separate grinding regime investigated. 
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4.4 Effect of grinding wheel diameter progression   

4.4.1 Grinding force  

As discussed within section 3.7.3 and the literature review, the grinding normal force and instantaneous 

tangential force is solved from the vertical and horizontal grinding forces measured by the dynamometer. 

The statistics compared between the regimes of grinding cuts are the mean and range of the grinding cut 

recorded with the dynamometer. The grind being a straight cut, it is expected to observe a higher normal 

grinding force than tangential. Given the difference in grinding regimes, it is expected for the roughing 

regime to observe the highest grinding forces than the finishing regime i.e., vertical, horizontal, tangential 

and normal force. As grinding aggression increases during the grinding of I718, the grinding forces are 

expected to exhibit notable changes due to the interaction between the abrasive particles and the 

workpiece material. Increased grinding aggression means higher depths of cut, increased feed rates, or 

higher wheel speeds, all of which result in more substantial material removal rates but within this grinding 

trial only the depth of cut is increased. With increased aggression, the tangential (cutting) force is 

expected to rise significantly. This is because more material is being sheared off per unit time, requiring 

greater energy and force to maintain the material removal process. Consequently, the normal force will 

also increase as the wheel exerts more pressure to penetrate the workpiece surface with increased depth 

of cut. Figure 49 and Figure 50 shows the comparison of mean vertical and horizontal grinding forces 

which have been post-processed for the three grinding regimes. The error bars show the range of the 

grinding forces giving the minimum and max recording for the stable region of the grinding cuts. As 

expected, the roughing regime show the highest forces in comparison with the finishing regime (smaller 

depth of cut). Given the vertical and horizontal forces plot it is evident that there is a clear distinction 

between the different regimes and the force readings are repeatable given the straight line plots.  
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Figure 49 Graph showing mean vertical grinding force for the 5 repeats of grinding cuts of the three grinding regimes The error 
bars show the maximum and minimum peaks of the horizontal grinding force registered during the grinding cut. 

 

 

Figure 50 Graph showing mean horizontal grinding force for the 5 repeats of grinding cuts of the three grinding regimes The 
error bars show the maximum and minimum peaks of the horizontal grinding force registered during the grinding cut. 
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For the changing grinding wheel diameter for the 5 repeats, there has been no drastic change in the 

grinding tangential (Figure 52) and normal force (Figure 51) within the grinding regimes. As expected the 

grinding forces are higher for a larger depth of cut and higher aggression values. The straight lines within 

the graph shows that grinding force is stable as the grinding wheel diameter changes and therefore this 

behaviour should also transfer on as stable AE readings as grinding wheel changes. In comparison to the 

grinding wheel wear trend noted in section 4.3, the fluctuations in wheel wear has not instigated a drastic 

fluctuation in the grinding forces recorded. One primary reason for this observation could be the potential 

for the grinding system to reach a quasi-steady state condition, where the worn areas of the wheel 

become stabilized through repeated use. In this scenario, the abrasive grains on the wheel surface may 

undergo a self-sharpening effect, where dull grains break away, exposing new, sharp grains, thereby 

maintaining consistent cutting efficiency. Intermittent analysis of the grinding wheel surface in the future 

would have helped to monitor this in future testing. The standard deviation of the tangential force, 

calculated from the mean horizontal and vertical forces, is given as 1.42, 0.85, and 0.37 for the finishing, 

semi-finishing, and roughing grinding regimes, respectively. When expressed as a percentage of the mean 

tangential force, these standard deviations indicate the relative consistency of the grinding forces. For the 

finishing regime, with an average tangential force around 25 N, the standard deviation represents 

approximately 5.68%. In the semi-finishing regime, with an average tangential force around 50 N, the 

standard deviation corresponds to about 1.70%. In the roughing regime, where the average tangential 

force is around 75 N, the standard deviation accounts for roughly 0.49%. These percentages highlight that 

the roughing regime exhibits the most stable and repeatable grinding forces, followed by the semi-

finishing regime, with the finishing regime showing the highest variability. This analysis suggests that 

despite the wheel wear fluctuations, the grinding forces remain relatively stable. 
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Figure 51 Graph showing the mean normal grinding force for the 5 repeats of grinding cuts of the three grinding regimes 
resolved from the horizontal and vertical forces measured on the dynamometer. 

 

Figure 52 Graph showing the mean tangential grinding force for the 5 repeats of grinding cuts of the three grinding regimes 
resolved from the horizontal and vertical forces measured on the dynamometer. 
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4.4.2 Grinding power 

Spindle power data recorded for the 5 repeats of the 3 grinding regimes were analysed to understand 

how the mean, maximum, RMS and skew changed with change in grinding wheel diameter progression.  

From Figure 53 to Figure 55, it is evident that all the statistics explored for the spindle power recording 

show stability and does not seem to be affected by the changing grinding wheel diameter. The values for 

three different regimes differ in magnitude but this is expected considering the difference in aggression 

for the grinding cuts. A high spindle power is expected for the higher aggression values considering the 

increased material removal rate and vice versa. Error bars given in the mean values calculated for the 

spindle power shows the range for the mean value (maximum and minimum) for each grinding cut dataset 

evaluated. Evaluating the standard deviation of the 5 sample of repeats for each grinding regime gives 

0.02, 0.01 and 0.04 for finishing, semi-finishing and roughing regimes respectively. Evaluating the standard 

deviation of the 5 samples of repeats for each grinding regime gives values of 0.02, 0.01, and 0.04 kW for 

the finishing, semi-finishing, and roughing regimes, respectively. When expressed as a percentage of the 

mean spindle power, these standard deviations provide insights into the consistency of the grinding 

power. For the finishing regime, with an average spindle power of approximately 0.7 kW, the standard 

deviation represents approximately 2.86%. In the semi-finishing regime, with an average spindle power 

of around 1.7 kW, the standard deviation corresponds to about 0.59%. In the roughing regime, where the 

average spindle power is around 2.75 kW, the standard deviation accounts for roughly 1.45%. These 

percentages indicate that the semi-finishing regime exhibits the most consistent spindle power, followed 

by the roughing regime, with the finishing regime showing the highest variability. These variation levels 

are very low numbers in comparison to overall mean of the spindle power suggesting that the grinding 

repeat cuts have been very stable in general even with reduction in grinding wheel radius/diameter. The 

RMS spindle power recordings shown in Figure 54 similar trends to the mean spindle power discussed 

previously. For the finishing regime, the RMS power remains around 0.7 kW with minimal variation, 

indicating stable power consumption during the grinding process. For the semi-finishing regime, the RMS 

power remains consistent around 1.7 kW, aligning well with the mean spindle power and demonstrating 

minimal fluctuation. The roughing regime shows the highest RMS power around 2.75 kW, consistent with 

the mean spindle power values, indicates relatively stable power usage despite the higher values involved. 

The skew of the spindle power provides information on the asymmetry of the power distribution during 

the grinding process. Figure 55 shows positive higher skew values which indicate a tendency for the power 

to have more frequent peaks, suggesting intermittent increases in load. In the finishing regime, the skew 

values hover around 4 to 5, indicating moderate asymmetry and the potential for occasional power spikes. 
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For the semi-finishing regime, the skew values are slightly lower, around 3.5 to 4, suggesting a more 

symmetric and stable power distribution. This low skew complements the minimal standard deviation in 

the mean and RMS power, confirming the consistency and control of the grinding process. The roughing 

regime exhibits the lowest skew values, around 2.5 to 3, indicating the most symmetric power distribution 

with fewer power spikes. Despite the higher mean and RMS power, the low skew suggests that the 

roughing regime maintains a relatively stable power profile without significant intermittent increases, 

ensuring a more controlled grinding process. 

 

Figure 53 Mean of spindle power recording for the 5 repeats of grinding cuts conducted for the 3 grinding regimes. The error bar 
indicates the maximum and minimum power during a grinding cut that is recorded.  
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Figure 54 RMS of spindle power recording for the 5 repeats of grinding cuts conducted for the 3 grinding regimes 

 

Figure 55 Skew of spindle power recording for the 5 repeats of grinding cuts conducted for the 3 grinding regimes. 
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4.5 Validation of grinding force and power results   

The measurement taken for grinding force and power can be compared to understand their relationships.  

Equation 4 in section 2.1.2 showed the relationship between tangential force and grinding power. This 

equation is used to see if there are differences in the measurement by comparing the two measurement 

approaches to evaluate grinding power.  

Table 9 Grinding power evaluation using two measurement approaches to compare results 

Trial  Type  

Grinding Power 
calculated using 

Equation 4  
(kW) 

Net grinding 
power 

measured  
(kW) 

% Difference in grinding 
power ((calculated – 

measured)/measured) 
 (%)  

010 Finishing 0.65 0.66 -1.60 

020 Finishing 0.64 0.68 -5.42 

030 Finishing 0.66 0.69 -4.87 

040 Finishing 0.66 0.69 -3.63 

050 Finishing 0.75 0.64 16.22 

060 Semi-finishing 1.38 1.72 -19.51 

070 Semi-finishing 1.44 1.70 -15.35 

080 Semi-finishing 1.44 1.72 -16.20 

090 Semi-finishing 1.43 1.70 -15.63 

100 Semi-finishing 1.43 1.71 -15.96 

110 Roughing 2.09 2.72 -23.09 

120 Roughing 2.10 2.68 -21.81 

130 Roughing 2.11 2.77 -23.67 

140 Roughing 2.11 2.73 -22.61 

150 Roughing 2.09 2.67 -21.87 

 

From Table 9, it is evident there is a greater difference between the two measurement approaches for 

semi-finishing and roughing grinding regimes. When comparing against the physical methods of testing it 

can be apparent that there is increased noise factors that contribute to the measurement of grinding force 

compared to grinding power.  In grinding operations, vibrations and oscillations can arise from multiple 

sources, including the machine structure, spindle bearings, and interactions between the wheel and the 

workpiece. Mechanical vibrations alter the normal and tangential forces acting on the wheel-workpiece 

interface. These fluctuations directly impact the measured grinding forces, introducing noise into the 
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grinding power calculation based on force measurements. Vibrations can cause periodic variations in force 

that are not captured in the average spindle power measurement, which integrates power over time and 

is less sensitive to high-frequency oscillations. Another noise factor that contributes to the difference is 

the dynamic force variations. As the grinding wheel engages with the workpiece, dynamic variations in 

force occur due to changes in contact conditions, material inhomogeneity, and wheel wear. These 

variations can lead to transient spikes and drops in the grinding forces. When calculating grinding power 

from these forces, the instantaneous changes can create a noisy signal, whereas spindle power 

measurement averages out these effects over time, providing a more stable reading. Another key factor 

that creates the difference is heat dissipation, spindle power records the energy provided to the spindle 

wheel to create the grinding cut but some of this heat escapes to the environment and even lost to the 

coolant. Some of this energy becomes friction and have a thermal effect on the workpiece and interaction 

between the grinding wheel and workpiece can be affected which cause fluctuations in the grinding force. 

This change in grinding force is recorded with the dynamometer but the energy lost through heat to the 

surrounding environment cannot be captured through the grinding force measurement. The calibration 

and sensitivity of force sensors can vary, leading to differences in the accuracy and precision of the 

measured forces. Force sensors can have inherent inaccuracies or drifts that introduce noise into the force 

measurements. It is important to note that drift and inaccuracies of the dynamometer signal has been 

catered for using signal processing which is discussed in seciton3.7.3. Additionally, the placement and 

alignment of sensors can affect the readings and within this thesis, it is considered that the workpiece 

fixture design and interaction should nullify the effect on this on the grinding force. Spindle power 

measurements, on the other hand, rely on power meters integrated into the spindle drive system, can 

offer more consistent and less noisy data.  

Looking at the variation for grinding force it is apparent that the range of the error bars is much greater 

than grinding power showing less reliability in using this measurement. Investigation into the most stable 

grinding regime from this grinding trial, the roughing regime, will show that the percentage of error bar 

in relation to the mean signal is 55.7% in the horizontal grinding force measurements , 54.0 % in the 

vertical grinding force measurements while the percentage of error bar in relation to the grinding power 

signal is 14.7 %.  The noise factors discussed in this section can be considered main contributors for this 

observation while also accepting the sensitivity of the force measurement is much greater than the power 

sensitivity.  
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The comparison of the percentage of standard deviation previously discussed (5.68%, 1.70%, and 0.49% 

for tangential grinding force, and 2.86%, 0.59%, and 1.45% for grinding power in the finishing, semi-

finishing, and roughing regimes respectively) for the 5 repeats highlights a greater variation in the 

tangential grinding force measurements across all three regimes compared to the grinding power 

measurements. This indicates that the grinding force measurement approach is more susceptible to 

variations in repeated grinding cuts. Among the different grinding regimes, the finishing regime shows the 

most repeatable results, as evidenced by the lower percentage of standard deviation in both 

measurement approaches. This consistency suggests that the trends observed in the data collected from 

both methods can be reliably linked. For the rest of the project, it will be important to determine if similar 

conclusions can be drawn from the collected AE data.     

4.6 Power spectral analysis of AE response: Repeatability  

Power spectral analysis was conducted on the Acoustic Emission (AE) response recorded during the 

repeated grinding cuts across the different grinding regimes. This analysis provided an overview of the 

spectral distribution within the signals, enabling a high-level comparison and ensuring the repeatability of 

the frequency domain despite changes in grinding wheel diameter between repeats. 

Initially, spectral analysis was performed separately on the different AE sensors and compared across the 

first trial for each of the three grinding regimes. A periodogram was used to analyse the spectral 

distribution of the full AE signal. The periodogram outputs a power spectral density estimate, which helps 

identify the dominant periods (or frequencies) within a time domain signal. This method ensures that the 

key frequency components of the AE signals are consistently captured and analysed, providing valuable 

insights into the grinding process. 

For both AE sensors, as shown in Figure 56 and Figure 57, the trend of the frequency bands activated 

during the grinding process is similar across the finishing, semi-finishing, and roughing regimes. The power 

magnitude increases significantly as the grinding becomes more aggressive. This increase in power 

magnitude is largely due to the higher grinding forces involved and the increased number of interactions 

between the grinding wheel and the workpiece, which result in more pronounced acoustic emissions. 

From a physics perspective, as grinding aggression increases, the contact area between the abrasive grains 

on the grinding wheel and the workpiece surface increases, leading to higher material removal rates. This 

increased contact area generates more friction and higher chances of mechanical interactions that 
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correlates to acoustic emission release, which in turn produce higher acoustic emissions in the same 

frequency regions. These emissions are captured as higher power magnitudes in the frequency spectrum. 

The Mistras AE sensor exhibits a higher power magnitude compared to the Kistler AE sensor across all 

operational frequency bands. Several factors could contribute to this difference, including the relative 

distance of each sensor from the interaction point between the grinding wheel and the workpiece, the 

intrinsic quality and sensitivity of each AE sensor, and the amplification provided by their respective pre-

amplifier systems. In this experiment, the relative distance of each sensor was kept consistent, with the 

sensor and workpiece fixture designed to be equidistant from the center of the grinding point. However, 

the orientation of the AE sensors relative to the grinding wheel direction differed. The intrinsic quality and 

sensitivity of each AE sensor can be a contributing factor, as both sensors operate at different frequencies 

with overlapping areas of the frequency domain. Despite these differences, it is noteworthy that the 

trends observed across the different grinding regimes are the same. The difference in signal amplification 

is expected given the performance characteristics of the AE sensors, as discussed in Section 4.2 during 

reproducibility tests. 

The distance from the interaction point affects the signal strength due to attenuation, while the quality 

and sensitivity of the sensors influence their ability to detect and transmit acoustic signals accurately. 

Furthermore, differences in pre-amplifier systems can lead to variations in signal amplification and noise 

levels. 

Given these complexities, it is challenging to pinpoint the exact reasons for the observed differences in 

power magnitude from these limited trials. Further investigation with controlled variables and additional 

trials would be necessary to isolate and understand the specific contributions of each factor to the overall 

sensor performance. 
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Figure 56 Power spectrum analysis for finishing grind (trial 010), semi-finishing grind (trial 060) and roughing grind (trial 110) 
using Kistel AE sensor data. Green shaded area shows the operating frequency range for the AE sensor. 

 

Figure 57 Power spectrum analysis for finishing grind (trial 010), semi-finishing grind (trial 060) and roughing grind (trial 110) 
using Mistras AE sensor data. Green shaded area shows the operating frequency range for the AE sensor. 

With the Kistler AE sensor as shown in Figure 58, the trend in prominent peaks observed is consistent 

between the 5 trials while in the Mistas AE sensor, as shown in Figure 59, trial 040 and trial 050 which has 

lower grinding wheel diameter seems to have lost its power magnitude and does not follow the trend 
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closely. Considering the trend is observed on both AE sensors, it gives validation that the drop in acoustic 

emission is real especially in the frequency band of 100 – 125 kHz where the signal has been active in all 

grinding cuts. The grinding wheel diameter is the only measured change within the grinding mechanism 

and analysing the radial wheel wear ( Figure 48 )  will show that the wheel is stable after trial 030. The 

grinding forces is consistent through trials 010 to 050 with a noticeable change of increased 12 % 

tangential force that was recorded on trial 050 while normal forces stayed stable. An increase in tangential 

force while the normal force remains constant generally indicates an increase in friction or shift towards 

less efficient material removal modes such as ploughing or rubbing. This could occur due to the wheel 

dulling in the process on trial 050 or increased material loading that was experienced towards the last 

trial. It could be the case that although the coolant supply and intermittent dressing was aimed at keeping 

the thermal conditions optimum and wheel surface controlled, there may have been build up that was 

not truly addressed before the last trial. This could have materialised to dampen the acoustic emission 

signals that are emitted during the last trials 040 and 050 as the material loaded and affected the 

interaction between the grains on the wheel and material surface. Further evaluation of the wheel surface 

would have been future steps to consider investigating into this hypothesis but beyond the scope of this 

thesis. Finishing parameters used have a low aggression this could mean that AE response could vary 

considerably and as previously discussed in section 4.4, there is significant variation noted during the 

finishing regime than the roughing regime. Low aggression values means less material being removed and 

hence given the lower contact length between the wheel and the material, the interactions between the 

abrasive grains and workpiece are less intense and can be more intermittent. This can results in the AE 

signals being less stable and more susceptible to variations due to minor inconsistencies in material or 

wheel surface. During the lead-in stage, as the wheel makes contact with the workpiece due to the low 

aggression levels, the grinding wheel may not maintain a constant, steady contact with the work piece. 

This inconsistent contact would mean that the energy released as acoustic emissions during the 

interaction between the grains and the workpiece surface will vary producing a signal with considerable 

variation. As discussed within the literature review regarding the grinding mechanisms that play a part of 

the grinding process, with low aggression values, a significant portion of energy would go into elastic 

deformation through the mechanism of rubbing and plouging [1] due to low depth of cut. Elastic 

deformation would generate a different acoustic emission compared to the plastic deformation during 

grinding and this maybe less predictable and variable as recorded within these grinding results. Finishing 

regime represents a lower cutting forces as recorded within the grinding force measurements, lower 

forces can cause the complex interaction between grains to engage and disengage more frequently 
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producing irregular AE signals and this can manifest itself as variability. The effect this variation in AE signal 

may have on repeatability can only be studied under the changes noted within exploring AE features for 

the different repeats.  

 

Figure 58 Kistler AE Power spectral distribution for the 5 repeats of finishing grinding regime with reducing grinding wheel 
diameter from trial 010 to trial 050. 

 

Figure 59 Mistras AE Power spectral distribution for the 5 repeats of finishing grinding regime with reducing grinding wheel 
diameter from trial 010 to trial 050. 
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The power spectral distribution within semi-finishing regime has not been consistent with the 5 repeats 

of changing grinding wheel diameter as shown in Figure 60 and Figure 61. The frequency bands which are 

activated within the 5 repeats are similar but the prominent peak behaviour differ between both AE 

sensors and reduction in the grinding wheel diameter. With the Kistler AE sensors, the prominent peaks 

are observed at 110 kHz and consistent between trial 080 and trial 100 while during trial 060 to 070 there 

are peaks arising at 100 kHz, 110 kHz and 120 kHz. Mistras AE sensor show consistency in the prominent 

peaks for trials 060 to trial 080 with peaks around 115kHz. Another interesting observation made is that 

the magnitude of acoustic emission power for the spectrum increases with decrease of the grinding wheel 

diameter which is contrary to the expectation that decrease in grinding wheel diameter would be linked 

with reduced contact between the wheel and the workpiece as a result reduced chance of acoustic 

emissions. Closer investigation against the wheel wear trace shown in Figure 48 indicates the trend of 

increased wheel wear with reduction in wheel diameter for the semi-finishing trials. This would give 

confidence in the observation made that higher wheel wear suggested evidence of greater interactions 

between wheel grains and workpiece which lead to higher acoustic emissions. Trial 090 is an outlier on 

the wheel wear graph where there is a sudden drop in wheel wear recorded, against the trend, before it 

picks up for trial 100. The drop in wheel wear for trial 090 also shows as a drop in the power magnitude 

of the AE signal across the whole frequency band that is detected in both Kistler and Mistras. Considering 

the observation is made on both AE sensors it can be considered real. Such a drop in wheel wear can be 

attributed to several factors even though these grind trials were conducted in a controlled experiment 

including a workpiece surface quality issue that may arise at the microstructural level at that depth of 

workpiece, an intermittent reduction in wheel loading that may have occurred during the dressing stage 

pior to the grinding cut and change in the wear pattern on the grinding wheel. Although a controlled 

dressing routine was implemented for the progression of wheel diameter, a post-experiment grinding 

wheel surface analysis would have benefitted in understanding this behaviour better.  
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Figure 60 Kistler AE Power spectral distribution for the 5 repeats of semi-finishing grinding regime with reducing grinding wheel 
diameter from trial 060 to trial 100. 

 

Figure 61 Mistras AE Power spectral distribution for the 5 repeats of semi-finishing grinding regime with reducing grinding wheel 
diameter from trial 060 to trial 100. 

Figure 62 and Figure 63 shows how the spectral distribution changes for the 5 repeats of roughing regime. 

Previous discussion within grinding force (4.4.1) and grinding power(4.4.2) has shown how roughing 

regime trials gave stable signal with less variation compared to the rest of the grinding regimes 

investigated within this thesis. These spectral distribution show how the trends are also reflected within 
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the roughing regime with the consistency and repeatability in the frequency bands that are activated. 

Kistler AE sensor show a consistent trend with all trials where the prominent peaks ( around 105 kHz) are 

consistent for the 5 repeats and the activated frequency bands are consistent between 100 – 120 kHz. 

The higher sensitive Mistras show more details within the prominent peaks, from Figure 63, it is evident 

how prominent peaks shown in trials 100 – 130 changes within trials 140 – 150. This change in prominent 

peaks have been marked by red boxed noted as (a) at 105 kHz and (b) at 110 kHz. Within boxed region 

(b), it is evident that the prominent peak in (a) still exists as a peak but with lower power magnitude and 

this may not have a big effect in understanding the repeatability of the AE response. To understand the 

impact of changes in prominent peaks, further investigation into the AE features analysis is necessary. 

This will help determine how much variation these changes may introduce in the output for fault diagnosis 

or process monitoring in the future. From, the analysis of all the different repeats, it is safe to conclude 

that the power spectral analysis does show consistency within the frequency bands activated during a 

grinding cut and therefore renders the experiment repeatable with further work using AE features 

required to understand how useful the AE response could be for process monitoring.  

In summary, the power spectral analysis of the AE response for the different grinding regimes 

demonstrates consistent trends in frequency bands activated during grinding. However, variations in 

power magnitude between the Kistler and Mistras AE sensors suggest the need for further investigation 

into sensor performance characteristics. The repeatability of AE signals for the 5 repeats of grinding trials 

under different regimes is validated, with the finishing regime showing the most variation due to lower 

aggression values. Future discussion in this thesis should focus on the detailed AE features analysis to 

enhance fault diagnosis and process monitoring capabilities based on these findings. 
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Figure 62 Kistler AE Power spectral distribution for the 5 repeats of roughing grinding regime with reducing grinding wheel 
diameter from trial 100 to trial 140. 

 

Figure 63 Mistras AE Power spectral distribution for the 5 repeats of roughing grinding regime with reducing grinding wheel 
diameter from trial 100 to trial 140. 
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4.7 Spectral Coherence and Cross spectral density of AE response: AE repeatability 

Spectral coherence gives the detail in frequencies at which two signals most strongly covary using a linear 

model. For a spectral coherence graph, the value closer to 1 means there is high coherence between the 

two signals and vice versa. For the data gathered from both AE sensors, spectral coherence analysis has 

been compared using the first trial on each grinding regime comparing each other.  

From Figure 64, it is evident that with Kistler AE sensor data, all signals show a steady value along all 

frequency bands above 0.5 and varying closer to 1. Therefore, it can be noted that the signals between all 

three grinding types have coherence. This gives more confidence that the AE response from different 

grinding regimes is reliable and are similar even with the different magnitude seen in power spectral 

analysis. The same trend can be noticed for Figure 65 which shows the Mistras AE sensor data.  

 

 

Figure 64 Spectral coherence estimate between pairs of the first grinding trial on each grinding regime using Kistler AE sensor 
data. 



122 
 

 

Figure 65 Spectral coherence estimate between pairs of the first grinding trial on each grinding regime using Mistras AE sensor 
data. 

Another aspect of spectral analysis is including a cross spectral density (CSD) which shows the distribution 

of power for a pair of signal and it can determine the influence of signal in relation to another. Same 

analysis approach of comparing the first trial data from each grinding regime is used. Figure 66 and Figure 

67 shows that the shapes of the CSD graph for each comparison are alike and therefore the pairs 

investigated in each graph have similar power distribution and related/statistically connected. The CSD 

analysis gives further assurance to the consistency in the activation of frequency bands noted in spectral 

analysis.  
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Figure 66 Cross power spectral density between pairs of the first grinding trial on each grinding regime using Kistler AE sensor 
data 

 

Figure 67 Cross power spectral density between pairs of the first grinding trial on each grinding regime using Mistras AE sensor 
data 
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4.8 Trends in AE features with roughing, semi-finishing and finishing parameters  

This chapter delved into the analysis of Acoustic Emission (AE) features, as explored in the literature 

review, to understand their behavior across different grinding regimes: roughing, semi-finishing, and 

finishing. The primary objective was to investigate how these AE features were influenced by repeated 

grinding cuts and varying grinding wheel diameters. By examining data from both AE sensors, comparisons 

of the AE features across all three grinding regimes were made to assess their repeatability. This analysis 

was crucial for identifying the extent to which changes in wheel diameter impacted the AE features, 

thereby affecting the consistency and reliability of the grinding process. The AE features analyzed in this 

section included AE RMS, Skew, MVD, CFAR, and ROP. Understanding the trends in these AE features 

provided valuable insights into the grinding process and its stability under varying operational parameters  

From Figure 68 and Figure 69, it is apparent that the average AE RMS value remains relatively constant, 

with minimal fluctuation, as the wheel radius changes and repeats are conducted. This consistency 

indicates good repeatability for this AE feature across the different grinding regimes. The different 

magnitudes observed between the grinding regimes are expected, as similar trends were noted with 

grinding force and spindle power measurements. 

The AE RMS magnitude is higher in the roughing regime compared to the semi-finishing and finishing 

regimes. This increase in magnitude is due to the higher aggression values associated with roughing, which 

involves higher depth of cut and increased material removal rates. These conditions lead to more 

interactions due to the increased contact area between the wheel and the workpiece with increased 

depth of cut and intense interactions between the grinding wheel grains and the workpiece, generating 

stronger higher amplitude acoustic emissions. The increased grinding forces are also an effect of more 

aggressive grinding regimes, increased tangential force indicates the increase in friction between the 

grinding wheel and workpiece. Increased friction generates heat and stress waves, both of which can 

contribute to higher AE levels. Greater grinding forces result in higher localized stresses and strain within 

the workpiece material which propagates plastic deformation within the workpiece which all leads to 

increase AE signals. The semi-finishing and finishing regimes show lower AE RMS values, reflecting the less 

aggressive grinding conditions and lower material removal rates. In these regimes, the interactions 

between the abrasive grains and the workpiece are less intense, resulting in lower acoustic emission 

signals. 

Both the Kistler and Mistras AE sensors exhibit similar trends in AE RMS values across the different 

grinding regimes, which enhances confidence in the repeatability and reliability of using this AE feature 
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for fault diagnosis and process monitoring. The consistency between the two sensors also suggests that 

the observed AE RMS values are robust and not significantly influenced by sensor-specific characteristics. 

In summary, the analysis of AE RMS values from both sensors across the different grinding regimes 

demonstrates the feature's repeatability and its correlation with grinding aggression levels. This makes AE 

RMS a valuable tool for future applications in fault diagnosis and process monitoring. 

 

 

Figure 68 AE RMS graph for Kistler AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel 
diameter 

 

Figure 69 AE RMS graph for Mistras AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel diameter 

Skew is a statistical measure that indicates the asymmetry of the probability distribution of the AE signal 

data set, providing insights into the 'tail' behavior of the data relative to its mean. From Figure 70 and 

Figure 71, the results exhibit a consistent pattern for roughing and semi-finishing grinds, with relatively 
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stable skew values. However, for the finishing grind, there is a noticeable increase in skew as the grinding 

wheel diameter increases.  

The increased skew in the finishing grind can be attributed to the lower magnitude of AE response in this 

regime. The finishing grind operates at lower aggression values, resulting in less material removal and 

lower overall acoustic emissions. Because the AE signals are weaker, any minor variations or noise in the 

signal can significantly affect the skew value, making it more sensitive and less repeatable compared to 

higher aggression grinds. 

Additionally, the increased skew in the finishing grind may be influenced by the more intermittent contact 

between the grinding wheel and the workpiece. At lower depths of cut, the interactions between abrasive 

grains and the workpiece are less consistent, leading to sporadic spikes in the AE signal that contribute to 

a higher skew. This behavior is reflected in both the Kistler and Mistras AE sensors, with the Mistras sensor 

showing a more pronounced increase in skew as the wheel radius increases. Another noteworthy 

observation in the finishing regime is that the skew values are positive for larger grinding wheel diameters 

but shift towards the negative as the grinding wheel diameter decreases. Focusing on the grinding trials 

for the finishing regime, it appears that the grinding mechanism stabilizes as the wheel diameter reduces. 

This stabilization is evident from the consistent wheel wear observed and aligns with previous 

observations in the power spectral distribution. The reduction in material loading and the dulling of the 

wheel could have resulted in the dampening of acoustic emissions, thereby producing a more symmetrical 

AE signal as the instantaneous peak of signals are not generated to cause the asymmetry in signal data. 

In summary, the skew of the AE signal is a valuable feature for characterizing the grinding process, 

particularly for roughing and semi-finishing grinds. However, its sensitivity to lower magnitude AE 

responses in finishing grinds indicates that it may be less reliable under these conditions. This analysis 

underscores the importance of considering the grinding regime and associated aggression values when 

utilizing skew as a diagnostic feature in process monitoring. 
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Figure 70 AE signal skew for Kistler AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel 
diameter 

 

Figure 71 AE signal skew for Mistras AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel 
diameter 

MVD shows how dispersed the signal is from the mean value for a signal. Figure 72 which looks at the 

Kistler AE sensor data shows the MVD values for the roughing and semi-finishing regimes remain relatively 

stable across different wheel diameters, fluctuating slightly around a mean value. Figure 73 which looks 

at Mistras AE sensor show the MVD values for the roughing and semi-finishing regimes show minimal 

variation, indicating consistent AE signal characteristics. The MVD values for the finishing regime show 

slight fluctuation but generally remains consistent across wheel diameters on the Kistler AE sensors but 

exhibit more noticeable variation, with a peak around wheel radius of 105.5 mm, before stabilising on the 

Mistras AE sensor.  
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The observed stability in MVD values for the roughing and semi-finishing regimes suggests high 

repeatability of the AE feature under these grinding conditions. This can be attributed to the higher 

aggression values in these regimes, which result in more consistent material removal and interaction 

between the grinding wheel and the workpiece. The higher aggression levels ensure that the AE signals 

generated are robust and less susceptible to minor variations in the grinding process, leading to stable 

MVD values. 

For the finishing regime, the variation in MVD, particularly observed in the Mistras AE sensor, can be 

explained by the lower aggression values characteristic of this regime. The finishing grind involves less 

material removal and lower forces, making the AE signals more sensitive to minor inconsistencies and 

noise. This sensitivity can lead to greater variability in the MVD values, as small changes in the grinding 

conditions or wheel surface condition including wheel loading can have a more pronounced effect on the 

AE signals. 

The peak in MVD observed in the finishing regime with the Mistras AE sensor around a wheel radius of 

105.5 mm may indicate a transitional phase in the grinding process, where the wheel's interaction with 

the workpiece undergoes subtle changes. This could be due to slight variations in wheel wear pattern or 

changes in the workpiece material properties at this specific depth of the workpiece which can have an 

effect in the deformation and grinding mechanisms witnessed on the contact length. Unfortunately, the 

investigation into wheel wear does not show the influence of irregular wear patterns unless the wheel 

surface was investigated, but this is beyond the scope of this thesis. As the wheel diameter continues to 

decrease, the process stabilizes during the finishing regime, and the MVD values return to a more 

consistent level. 

The MVD of AE signals demonstrates high repeatability for the roughing and semi-finishing grinding 

regimes, with stable values across different wheel diameters. In the finishing regime, the MVD values 

show more variability, reflecting the sensitivity of AE signals to lower aggression grinding conditions but 

does not show any trend that is affected by the grinding wheel diameter change. These observations 

underscore the importance of considering grinding parameters and wheel condition when using AE 

features like MVD for process monitoring and fault diagnosis. 
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Figure 72 AE signal MVD for Kistler AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel 
diameter 

 

Figure 73 AE signal MVD for Mistras AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel 
diameter 

CFAR is a feature which picks out the number of events occurring in an AE signal. From Figure 74, it is 

evident for the Kistler AE sensor the CFAR values for all three grinding regimes exhibit minimal fluctuation 

as the grinding wheel diameter decreases. This indicates a high degree of repeatability in the AE feature 

across different trials. From Figure 75, it is evident for Mistras AE sensors the CFAR values remain 

consistent across different grinding wheel diameters, reinforcing the repeatability of this AE feature. Both 

sensors show a clear separation in CFAR values between the different grinding regimes. The roughing 

regime consistently shows the highest CFAR values, followed by the semi-finishing and finishing regimes. 

Across both sensors, the roughing regime has the highest CFAR values, indicating a greater number of AE 
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events during this grinding process. The CFAR values for the semi-finishing and finishing regimes show 

minimal variation, suggesting that the AE event frequency is stable under these grinding conditions. 

The minimal fluctuation in CFAR values across different grinding wheel diameters for all three regimes 

indicates that this AE feature is highly repeatable and not correlated to a trend with changing grinding 

wheel diameter. This stability can be attributed to the controlled grinding parameters and consistent 

material removal processes during the grinding trials. The repeatability of CFAR is crucial for reliable fault 

diagnosis and process monitoring, as it reflects the frequency of AE events, which are indicative of 

interactions between the grinding wheel and the workpiece. 

The higher CFAR values in the roughing regime can be explained by the increased material removal rates 

and more aggressive grinding conditions. These factors lead to more intense interactions between the 

abrasive grains and the workpiece, resulting in a higher frequency of AE events. This is consistent with the 

observed trends in other AE features, where the roughing regime typically exhibits higher magnitudes due 

to the greater forces and energy involved. 

The clear separation in CFAR values between the different grinding regimes suggests that this feature can 

effectively differentiate between various grinding conditions. The semi-finishing and finishing regimes 

have lower CFAR values, reflecting the less aggressive nature of these processes. The consistent CFAR 

values in these regimes indicate stable grinding conditions with fewer AE events, likely due to the lower 

depth of cut and reduced material removal rates. 

The slight peak in CFAR values around a wheel radius of 105.5 mm in both sensors for the roughing regime 

could be indicative of transitional effects in the grinding process. This may result from changes in wheel 

wear dynamics or slight variations in the workpiece material properties at this specific depth. Further 

investigation of wheel surface quality at this point of the investigation would have given further indication 

of this slight variation but currently this change in CFAR is correlated with the prominent peak change 

noted under the roughing regime as discussed in 4.6. As previously discussed, there is a shift in the 

prominent peak from 110 kHz to 105 kHz, which coincides with an increase in wheel wear. This 

observation correlates with the acoustic emission (AE) data but is independent of any trend related to the 

change in wheel diameter. Increased wheel wear suggests that the abrasive grains become dull, and the 

vitrified bond material starts interacting more with the workpiece. The dull grains and vitrified bond create 

more friction, making the grains less effective at cutting. Consequently, ploughing and rubbing 
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interactions increase, which can cause a rise in AE at different frequencies as the interactions between 

the wheel and the workpiece change. 

Additionally, increased wheel wear implies a higher likelihood of grain breakage due to the open structure 

of the grinding wheel. This grain breakage contributes to changes in the AE signal pattern, as recognized 

in the spectral distribution and CFAR analysis. As the wheel diameter continues to decrease, the process 

stabilizes, and CFAR values return to consistent levels. 

 

Figure 74 AE signal CFAR for Kistler and Mistras AE sensor for the three grinding regimes and 5 repeats with changing grinding 
wheel diameter 

 

Figure 75 AE signal CFAR for Mistras AE sensor for the three grinding regimes and 5 repeats with changing grinding wheel 
diameter 

The most prominent ROP frequency bands are in the 100–150 kHz range across all grinding regimes (Figure 

76 to Figure 81) see , consistent with repeated grinding cuts and changes in grinding wheel diameter. 
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These trends in ROP align with observations made in the power spectral analysis of AE responses discussed 

in section 4.6. The Mistras AE sensors exhibit higher power magnitudes compared to the Kistler AE 

sensors, which can be attributed to their quality, sensitivity, and orientation during the experiments. 

Although further investigation is needed to fully understand the differences in AE power magnitude 

between the two sensors, the observed trends are consistent across both. 

 

Figure 76Comparison of ROP for finishing parameter grinds with repeats of change in grinding wheel diameter for Kistler AE 
sensor. Green shaded area represents the operational frequency for the respective AE sensors. 

 

Figure 77 Comparison of ROP for finishing parameter grinds with repeats of change in grinding wheel diameter for Mistras AE 
sensor. Green shaded area represents the operational frequency for the respective AE sensors. 
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For instance, Figure 78 and Figure 79 illustrate that the peak ROP within the 100–150 kHz range for both 

sensors occurs when the grinding wheel radius is at its smallest, 104.331 mm, after five grinding repeats. 

This observation coincides with the highest wheel wear recorded in the semi-finishing grinding regime. 

This suggests that increased wheel wear, which leads to greater interaction between the grinding wheel 

and the workpiece, results in higher AE signals recorded by both sensors, thereby validating the data. 

 

Figure 78 Comparison of ROP for semi-finishing parameter grinds with repeats of change in grinding wheel diameter for Kistler 
AE sensor. Green shaded area represents the operational frequency for the respective AE sensors. 

 

Figure 79 Comparison of ROP for semi-finishing parameter grinds with repeats of change in grinding wheel diameter for Mistras 
AE sensor. Green shaded area represents the operational frequency for the respective AE sensors. 
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Similarly, in the roughing regime (Figure 80 and Figure 81), trial 040 with a grinding wheel diameter of 

105.427 mm also showed a peak in the ROP for the 100–150 kHz frequency band in both the Mistras and 

Kistler AE sensors. This trial also exhibited higher wheel wear, indicating more significant interactions 

between the grinding wheel and the workpiece during the grinding cut, which is reflected in the ROP 

frequency band (100–150 kHz). 

 

Figure 80 Comparison of ROP for Roughing parameter grinds with repeats of change in grinding wheel diameter for Kistler AE 
sensor. Green shaded area represents the operational frequency for the respective AE sensors. 

 

Figure 81 Comparison of ROP for Roughing parameter grinds with repeats of change in grinding wheel diameter for Mistras AE 
sensor. Green shaded area represents the operational frequency for the respective AE sensors. 
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The results indicate that most acoustic emission generated during the grinding of IN718 using alumina 

wheels is concentrated within the 100–150 kHz frequency band. Further investigation could explore why 

this specific frequency band is the most active. Previous literature indicated that a high-pass cut-off 

frequency of 90 kHz [35] was useful for removing machine noise and other environmental noise. This 

study highlights the importance of the 90–150 kHz region for AE signals. 

The ROP values do not show a trend of increase or decrease with changes in grinding aggression, 

demonstrating that the frequency bands in which AE signals occur are consistent across grinding regimes. 

Apart from the outliers discussed in certain grinding cuts within the semi-finishing and roughing regimes, 

a stable grinding scenario always emits similar AE patterns. This consistency indicates that while the AE 

signal's power magnitude varies with grinding aggression, the frequency band remains constant. This 

opens opportunities for future pattern recognition work on the ROP to detect anomalies in the grinding 

mechanism. 

Currently, there is a good correlation between ROP values and wheel wear trends discovered in this thesis. 

Further research could explore the potential to predict wheel wear values using ROP. Analyzing ROP 

values with respect to grinding wheel diameter shows negligible variation within each grinding regime, 

with similar and consistent trends observed across both AE sensors. Overall, it can be concluded that ROP 

results are repeatable even with changes in grinding wheel diameter. 

Finally, the trends noticed in the AE features can be easily summarised into Table 10.  

Table 10 Shows the summary of the observations made with AE features investigated and if they are repeatable with grinding 
wheel diameter progression. 

AE feature  Observation/findings  Repeatable 
? 

AE RMS  ▪ Demonstrated repeatability with changes in wheel diameter. 
▪ Higher magnitudes observed in roughing parameters 

compared to finishing due to higher grinding forces and 
material removal rates. 

▪ Consistent trends across both Kistler and Mistras AE sensors, 
enhancing confidence in the feature's reliability for fault 
diagnosis and process monitoring. 

     

Skew ▪ At finishing parameter conditions, larger wheel diameter 
resulted in higher skew values due to more intermittent and 
less consistent AE signals. 

▪ Skew values shifted from positive for larger diameters to 
negative as the wheel diameter decreased. 
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▪ Other parameter conditions (roughing and semi-finishing) 
showed consistent and repeatable skew values. 

▪ Sensitivity to lower magnitude AE responses in finishing grinds 
makes skew less reliable under these conditions. 

MVD ▪ Showed repeatability across all grinding parameter conditions. 
▪ Stable values observed in roughing and semi-finishing regimes 

across different wheel diameters. 
▪ Slight fluctuations in finishing regime, particularly in Mistras 

AE sensor, indicating sensitivity to minor inconsistencies and 
noise at lower aggression levels. 

▪ Peaks in MVD during transitional phases of grinding suggest 
subtle changes in wheel-workpiece interactions. 

 

CFAR ▪ High CFAR values for roughing parameters compared to 
finishing and semi-finishing, indicating a greater number of AE 
events. 

▪ Minimal fluctuation in CFAR values across different wheel 
diameters, demonstrating high repeatability. 

▪ Clear separation in CFAR values between different grinding 
regimes, reflecting varying grinding conditions. 

▪ Stability attributed to controlled grinding parameters and 
consistent material removal processes. 

 

ROP  ▪ Most prominent frequency bands observed in the 100–150 
kHz range across all grinding regimes. 

▪ Higher power magnitudes in Mistras AE sensors compared to 
Kistler, attributed to sensor quality and sensitivity. 

▪ Peaks in ROP values correlated with higher wheel wear and 
increased interactions between the grinding wheel and 
workpiece. 

▪ Consistent frequency bands observed regardless of grinding 
aggression, with stable AE patterns indicating repeatability. 

▪ Good correlation with wheel wear trends, suggesting potential 
for future predictive analysis using ROP. 
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5 Conclusion 

Work conducted within this thesis has been successful at meeting the objectives set out in the beginning 

and report findings which can supplement the existing body of knowledge. Literature review conducted 

explored the background of process monitoring during grinding and picked grinding wheel diameter as a 

parameter which was crucial to understanding repeatability of AE signal during trials. As a result, the 

experiment was designed to investigate changes in AE signals in terms of repeatability across different 

grinding regimes and varying grinding wheel diameters.  

Signal pre-processing work for standardising wavelet de-noising has been conducted within this thesis to 

define the recommended de-noising method and selected parameters to remove background noise from 

coolant and machine environment for grinding AE signals.  

The AE features analysed in this study included AE RMS, Skew, MVD, CFAR, and ROP. The results 

demonstrated that AE RMS and MVD values showed high repeatability across different grinding regimes 

and grinding wheel diameters, making them reliable features for fault diagnosis and process monitoring. 

The Skew feature, although consistent in roughing and semi-finishing regimes, showed variability in the 

finishing regime due to its sensitivity to lower magnitude AE responses. CFAR values remained stable 

across all grinding regimes, indicating consistent AE event frequency, which is crucial for reliable process 

monitoring. 

Power spectral analysis of AE responses revealed consistent frequency bands across different grinding 

regimes, with increased power magnitude correlating with higher grinding aggression. The prominent 

frequency band of 100-150 kHz was identified as significant for AE signals during grinding, providing a 

focus for future studies on pattern recognition and anomaly detection. The study highlighted that 

increased wheel wear leads to higher AE signals due to more intense interactions between the grinding 

wheel and the workpiece. This correlation between AE features and wheel wear trends suggests potential 

for predictive analysis using AE data. 

Overall, this thesis contributes to the understanding of AE signal behaviour during grinding, emphasizing 

the importance of grinding wheel diameter and aggression levels. The findings provide a foundation for 

future work on process monitoring and fault diagnosis in grinding operations, with implications for 

improving the consistency and reliability of manufacturing processes. Further investigation into AE feature 

analysis and sensor performance characteristics will enhance the practical applications of AE monitoring 

in industrial settings. 
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6 Future work  

Work done within this thesis has set standards for working with AE sensors at AMRC and therefore further 

work needs to be focused on design of experiments which focus on fault detection. Different areas that 

the DOE can be focused to investigate the use of AE signals include detecting of nano hardness profile, 

residual stress, grain size profiling, depth of strain bands, white layer/grinding burn profile, cracks or swept 

grain. For this detection study, workpiece preparation and post-experiment analysis would be required to 

analyse and pin-point AE features which detect the above-mentioned surface integrity fault diagnosis 

within a workpiece. There has been research conducted within these fronts but none that have been 

substantial to show potential of industrial application but once successful, this initiative can save time and 

money from in-process failures for the high value manufacturing process in the aviation industry.  

This thesis focused solely on the repeatability of AE signals with grinding wheel diameter progression but 

a 100% repeatability of signal may not be required for detecting any fault diagnosis while process 

monitoring. Depending on the fault diagnosis that needs to be investigated, there would be a threshold 

or pattern recognition threshold which can reliably predict any fault diagnosis. Therefore while conducting 

further work within process monitoring using AE signals, it is important to run an independent 

repeatability study with fault induced experiment runs with key variables which may affect repeatability. 

This approach is suitable for supervised learning form of machine learning to detect any faults using AE 

data and defining the threshold and it is rather difficult to define a threshold using unsupervised learning. 

One key area for future research identified within research involves conducting additional grinding trials, 

particularly within the finishing grinding regime, to increase the data pool. This would help identify trends 

and improve the understanding of lower repeatability in less aggressive grinding conditions. Incorporating 

a wider range of grinding wheel diameter progression data points would provide a more comprehensive 

analysis, enabling a deeper understanding of AE signal behavior. 

The scope of this thesis changed from an EngD to the MPhil thesis which meant that the surface analysis 

of workpiece after these grinding cuts had been beyond the scope of this experiment. The machine 

programme and setup was initially designed to cater for the pre/post analysis of workpiece surface and 

this is still the case. Therefore future work, could still look at using the same grinding programme and tool 

path to enhance any fault diagnosis study  within grinding which can be supplemented by surface analysis 

pre/post grinding.  
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In conclusion, the continuation of this research will not only deepen the understanding of AE monitoring 

during grinding but also contribute to the development of more reliable and efficient manufacturing 

processes. By addressing the identified challenges and exploring the proposed future work, significant 

advancements can be made in process monitoring and fault diagnosis in the grinding industry. 
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7 Industrial implications 

The findings from this thesis have significant implications for the industrial application of AE monitoring 

in grinding processes. The comprehensive analysis and insights gained from studying the AE features 

across different grinding regimes provide a robust foundation for enhancing process monitoring, fault 

diagnosis, and overall manufacturing efficiency in industrial settings.  

The correlation between AE features and grinding wheel wear opens the potential for predictive 

maintenance. By analysing AE data, it is possible to forecast wheel wear and schedule maintenance 

activities proactively. This predictive approach reduces unexpected downtime and extends the lifespan of 

grinding wheels, resulting in cost savings and increased operational efficiency. Industries can plan 

maintenance schedules based on data-driven insights rather than relying on fixed intervals, thereby 

optimizing resource allocation. The study demonstrates that AE monitoring can effectively detect 

variations in grinding conditions, such as increased wheel wear or changes in material removal rates. This 

capability is crucial for fault diagnosis, as it allows for the early detection of anomalies that could lead to 

product defects or equipment damage. Implementing AE-based fault diagnosis systems can enhance the 

reliability of grinding operations and minimize the risk of producing defective parts, ultimately improving 

customer satisfaction and reducing waste. The consistent trends observed in AE features across different 

grinding regimes suggest that AE monitoring can be integrated into quality control processes. By 

establishing baseline AE signals for optimal grinding conditions, industries can compare real-time AE data 

to these baselines to ensure that each grinding operation meets quality standards. This integration can 

streamline quality assurance processes and provide a non-destructive method for verifying product 

integrity. The implementation of AE monitoring systems can lead to significant cost reductions by 

minimizing downtime, reducing wheel wear, and preventing defects. The increased efficiency and 

reliability of grinding operations translate to higher productivity and lower operational costs. Additionally, 

the ability to monitor and control grinding processes in real-time allows for the optimization of grinding 

parameters, leading to energy savings and more sustainable manufacturing practices. 

The work conducted within this thesis has significantly enhanced the process monitoring capability at 

AMRC. An improved data acquisition system, capable of capturing synchronous signals from various 

sensors at high data sampling rates, was implemented as part of the investigation. The capabilities and 

limitations of the new system have been shared with AMRC personnel, ensuring that future work can 

build on the progress made in this thesis. An ASTM standardized AE sensor reproducibility test method 

was deployed to assess the reliability of AE signals from sensors before and after testing. This standardized 
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work documentation has been shared with the relevant teams at AMRC for future use. Additionally, a 

MATLAB app (included in the appendix) was designed and implemented to facilitate the determination of 

AE sensor signal reproducibility. 

Learnings from this thesis on wavelet denoising have also been applied to other machining practices at 

AMRC for further research and development. The One-Way Assembly (OWA) project at AMRC trialed the 

wavelet denoising technique to reduce machine noise from AE signals recorded during the drilling of 

different material stacks. As part of this work, a MATLAB app (included in the appendix) was produced to 

help visualize and de-noise signals from four different types of materials investigated within the OWA 

project. 

In conclusion, the findings from this thesis highlight the significant industrial implications of AE monitoring 

in grinding processes. The adoption of AE monitoring systems can lead to enhanced process control, 

predictive maintenance, improved fault diagnosis, and overall cost efficiency. By leveraging these insights, 

industries can achieve higher product quality, operational reliability, and competitiveness in the 

manufacturing sector. The continued research and development in this area will further solidify the role 

of AE monitoring as a critical tool for modern manufacturing. 
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9 Appendix  

9.1 AE wavelet de-noising app : 

GUI screenshot : 

 

Script available on request. 
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9.2 Data analysis road map for thesis showing MATLAB files used : 

 

9.2.1 AE File extraction from dataset : 

 

AE_file_extractor.mlx: 

• Convert .tdms to .mat file  

• Extracted AE files for each sensors separately 

AE File extractor 



150 
 

 

% Prompt the user for the file 

[filename_1,pathname]=uigetfile({'*.mat','All Files (*.tdms)'},'Choose the TDMS 

Files', 'Multiselect' , 'on'); 

if isempty(filename_1) 

   print("No files selected"); 

   return % No files selected, does not  

end 

filename_full=fullfile(pathname,filename_1); 

num_mat_files=size(filename_full,2); % num 

for num_struct=1:num_mat_files % looping through each trial no file  

    clear ConvertedData 

    load(filename_full{num_struct},'ConvertedData'); 

    for i=1:length((ConvertedData)) 

    if isempty(strfind(ConvertedData(i).FileName,'Parameter'))==0 

        

AE_data(num_struct).trial_no=str2double(extractBetween(filename_1(num_struct),'Tr

ial_','.mat')); 

        

AE_data(num_struct).AE_Mistras_data_PG=tall(ConvertedData(i).Data.MeasuredData(16

).Data); % extracting Mistras AE sensor data for Paramater grind  

        

AE_data(num_struct).AE_Kistler_data_PG=tall(ConvertedData(i).Data.MeasuredData(15

).Data); % extracting Kistler AE Sensor data for Parameter grind  

    elseif isempty(strfind(ConvertedData(i).FileName,'Airpass'))==0 

        

AE_data(num_struct).AE_Mistras_data_AP=tall(ConvertedData(i).Data.MeasuredData(16

).Data); % extracting Mistras AE sensor data for Air pass 

        

AE_data(num_struct).AE_Kistler_data_AP=tall(ConvertedData(i).Data.MeasuredData(15

).Data); % extracting Kistler AE Sensor data for Air pass 

    end 

    end 

end 
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AE_file_denoiser.mlx: 

Segmented grinding pass data:  

• using threshold of 0.15 for Kistler AE sensor  

• using threshold of 0.2 for Mistras AE sensor 

 Segmented air pass data: 

• Using the first statistic RMS change point as thresholding start point.  

• Each signal limited to 4 secs of data = 4000000 samples at 2Mhz   

AE- file denoiser 

Segment the data with thresholding to remove useless data points 

Fs=2000000; % Sampling rate (2Mhhz for AE signals recorded) 

% For kistler data : 

for i= 1:length(AE_data) 

    AE_signal_i=gather(AE_data(i).AE_Kistler_data_PG); % getting pre_data 

    %Trimming for Kistler AE data 

    threshold=0.15; % threshold for Kistler data  

    threshold_point=find(AE_signal_i>(threshold),1,"first"); 

    AE_sig_trim_start=(threshold_point-(Fs*0.5)); % start the trim 0.5 seconds 

before threshold point 

    if threshold_point-(Fs*0.5)+((Fs*4)-1)>size(AE_signal_i,1) 

        AE_sig_trim_start=AE_sig_trim_start-(threshold_point-(Fs*0.5)+((Fs*4)-1)-

size(AE_signal_i,1)); % Moving the trim start further back if the segment to be 

cut out is longer than signal 

    elseif AE_sig_trim_start<0 

        AE_sig_trim_start=1; % If trimstart chosen is negative then it is made to 

start from 1 
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    end 

    AE_signal_i=AE_signal_i([AE_sig_trim_start:(AE_sig_trim_start+((Fs*4)-

1))],:); % segmenting the signal to gather the 4 sec signal of grinding pass. 

    AE_seg_data(i).AE_kistler_data_PG=AE_signal_i; % adding the segmented data to 

a new structure 

end 

% For Mistras data : 

for i= 1:length(AE_data) 

    AE_signal_i=gather(AE_data(i).AE_Mistras_data_PG); % getting the raw data 

    %Trimming for Mistras AE data 

    threshold=0.2; % threshold for Mistras data  

    threshold_point=find(AE_signal_i>(threshold),1,"first"); 

    AE_sig_trim_start=(threshold_point-(Fs*0.5)); % start the trim 0.5 seconds 

before threshold point 

    if threshold_point-(Fs*0.5)+((Fs*4)-1)>size(AE_signal_i,1) 

        AE_sig_trim_start=AE_sig_trim_start-(threshold_point-(Fs*0.5)+((Fs*4)-1)-

size(AE_signal_i,1)); % Moving the trim start further back if the segment to be 

cut out is longer than signal 

    elseif AE_sig_trim_start<0 

        AE_sig_trim_start=1; % If trimstart chosen is negative then it is made to 

start from 1 

    end 

    AE_signal_i=AE_signal_i([AE_sig_trim_start:(AE_sig_trim_start+((Fs*4)-

1))],:); % segmenting the signal to gather the 4 sec signal of grinding pass. 

    AE_seg_data(i).AE_Mistras_data_PG=AE_signal_i; % adding the segmented data to 

a new structure 

end 

 

 

figure  

%plot(AE_signal_i); 

plot(AE_seg_data(12).AE_kistler_data_PG); 

hold on  
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plot(AE_seg_data(12).AE_Mistras_data_PG); 

 

% Segment Airpass data to same length as a Parameter grind cut signal  

% for Kistler data : 

for i= 1:length(AE_seg_data) 

    clear AE_signal_AP 

    clear AE_signal_i 

    AE_signal_AP=gather(AE_data(i).AE_Kistler_data_AP); 

    rms_signal_AP=rms(AE_signal_AP,100000,1000,0); 

    [idx]=findchangepts(rms_signal_AP,"Statistic","rms","MaxNumChanges",4); 

    threshold_point=idx(1)*100000; 

    AE_sig_trim_start=(threshold_point); % start the trim 0.5 seconds before 

threshold point 

    if threshold_point+((Fs*4)-1)>size(AE_signal_AP,1) 

        AE_sig_trim_start=AE_sig_trim_start-(threshold_point+((Fs*4)-1)-

size(AE_signal_AP,1)); % Moving the trim start further back if the segment to be 

cut out is longer than signal 

    elseif AE_sig_trim_start<0 

        AE_sig_trim_start=1; % If trimstart chosen is negative then it is made to 

start from 1 

    end 

    AE_signal_i=AE_signal_AP([AE_sig_trim_start:(AE_sig_trim_start+((Fs*4)-

1))],:); % segmenting the signal to gather the 4 sec signal of grinding pass. 

    AE_seg_data(i).AE_kistler_data_AP=AE_signal_i; % adding the segmented data to 

a new structure 

end 

% for Mistras data : 

for i= 1:length(AE_seg_data) 

    clear AE_signal_AP 

    clear AE_signal_i 

    AE_signal_AP=gather(AE_data(i).AE_Mistras_data_AP); 

    rms_signal_AP=rms(AE_signal_AP,100000,1000,0); 
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    [idx]=findchangepts(rms_signal_AP,"Statistic","rms","MaxNumChanges",4); 

    threshold_point=idx(1)*100000; 

    AE_sig_trim_start=(threshold_point); % start the trim 0.5 seconds before 

threshold point 

    if threshold_point+((Fs*4)-1)>size(AE_signal_AP,1) 

        AE_sig_trim_start=AE_sig_trim_start-(threshold_point+((Fs*4)-1)-

size(AE_signal_AP,1)); % Moving the trim start further back if the segment to be 

cut out is longer than signal 

    elseif AE_sig_trim_start<0 

        AE_sig_trim_start=1; % If trimstart chosen is negative then it is made to 

start from 1 

    end 

    AE_signal_i=AE_signal_AP([AE_sig_trim_start:(AE_sig_trim_start+((Fs*4)-

1))],:); % segmenting the signal to gather the 4 sec signal of grinding pass. 

    AE_seg_data(i).AE_Mistras_data_AP=AE_signal_i; % adding the segmented data to 

a new structure 

end 

% %plot(AE_signal_AP); 

% %figure  

% %plot(AE_signal_i); 

% %figure 

% %plot(rms_signal_AP); 

% %plot(AE_data(12).AE_Mistras_data_PG) 

% plot(AE_seg_data(15).AE_Mistras_data_AP); 

% figure 

% plot(AE_seg_data(15).AE_kistler_data_AP); 

% figure 

 

 

% Wavelet denoising signal 

for i=1:length(AE_seg_data)% Kistler signal  

    AP_signal=(AE_seg_data(i).AE_kistler_data_AP); 
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    PG_signal=(AE_seg_data(i).AE_kistler_data_PG); 

    % Wavelet properties 

    wname='coif5'; % wavelet chosen 

    level=5; %decomposition level chosen 

    sorh='s'; % soft thresholding chosen 

    % % IDT Thresholding 

    % nb_Int = 3;   % Number of intervals for thresholding. 

    % 

[den_IDT_PG_signal,coefs,thrParams,int_DepThr_Cell,BestNbofInt]=cmddenoise(PG_sig

nal,wname,level,sorh,nb_Int); % wavelet denoising done 

    % %SNR1_IDT=10*log10(sum(PG_signal)/(sum(PG_signal-(den_IDT_PG_signal)'))); 

    % SNR_OG=snr((PG_signal),AP_signal) % snr of denoisned signal divided by 

airpass(noise) signal 

    % SNR2_IDT=snr((den_IDT_PG_signal)',AP_signal); % snr of denoisned signal 

divided by airpass(noise) signal 

    % SNR3_IDT=mean(den_IDT_PG_signal)/std(den_IDT_PG_signal); % mean of denoised 

signal / std of denoised signal 

    % Thresholding using Airpass information 

    [c,l]=wavedec(AP_signal,level,wname); 

    [cd1,cd2,cd3,cd4,cd5]=detcoef(c,l,[1 2 3 4 5]); 

    thresholds=[max(abs(cd1)) max(abs(cd2)) max(abs(cd3)) max(abs(cd4)) 

max(abs(cd4)) max(abs(cd5))]; 

    den_PG_signal=cmddenoise(PG_signal,wname,level,sorh,NaN,thresholds); % 

wavelet denoising done 

    %SNR1=10*log10(sum(PG_signal)/(sum(PG_signal-(den_PG_signal)'))); 

    SNR2=snr((den_PG_signal)',AP_signal) % snr of denoisned signal divided by 

airpass(noise) signal 

    SNR3=mean(den_PG_signal)/std(den_PG_signal) % mean of denoised signal / std of 

denoised signal 

    AE_den_sig(i).AE_kistler_data_PG=den_PG_signal; 

end 

for i=1:length(AE_seg_data)% Mistras signal  

    AP_signal=(AE_seg_data(i).AE_Mistras_data_AP); 
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    PG_signal=(AE_seg_data(i).AE_Mistras_data_PG); 

    % Wavelet properties 

    wname='coif5'; % wavelet chosen 

    level=5; %decomposition level chosen 

    sorh='s'; % soft thresholding chosen 

    % % IDT Thresholding 

    % nb_Int = 3;   % Number of intervals for thresholding. 

    % 

[den_IDT_PG_signal,coefs,thrParams,int_DepThr_Cell,BestNbofInt]=cmddenoise(PG_sig

nal,wname,level,sorh,nb_Int); % wavelet denoising done 

    % %SNR1_IDT=10*log10(sum(PG_signal)/(sum(PG_signal-(den_IDT_PG_signal)'))); 

    % SNR_OG=snr((PG_signal),AP_signal) % snr of denoisned signal divided by 

airpass(noise) signal 

    % SNR2_IDT=snr((den_IDT_PG_signal)',AP_signal); % snr of denoisned signal 

divided by airpass(noise) signal 

    % SNR3_IDT=mean(den_IDT_PG_signal)/std(den_IDT_PG_signal); % mean of denoised 

signal / std of denoised signal 

    % Thresholding using Airpass information 

    [c,l]=wavedec(AP_signal,level,wname); 

    [cd1,cd2,cd3,cd4,cd5]=detcoef(c,l,[1 2 3 4 5]); 

    thresholds=[max(abs(cd1)) max(abs(cd2)) max(abs(cd3)) max(abs(cd4)) 

max(abs(cd4)) max(abs(cd5))]; 

    den_PG_signal=cmddenoise(PG_signal,wname,level,sorh,NaN,thresholds); % 

wavelet denoising done 

    %SNR1=10*log10(sum(PG_signal)/(sum(PG_signal-(den_PG_signal)'))); 

    SNR2=snr((den_PG_signal)',AP_signal) % snr of denoisned signal divided by 

airpass(noise) signal 

    SNR3=mean(den_PG_signal)/std(den_PG_signal) % mean of denoised signal / std of 

denoised signal 

    AE_den_sig(i).AE_Mistras_data_PG=den_PG_signal; 

end 
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9.2.2 Delaying and aligning signals 

 

• Finddelay function was used between the Kistler and Mistras AE signal for the same trials.  

• Finddelay uses cross-correlation between each pair of signals at all possible lags. The estimated 

delay is given by the negative of the lag for which normalised cross-correlation has the largest 

absolute value.  

• The maximum delay that was noted from all trial signals was 9 milli seconds. In real space, the 

spacing distance between the AE sensors were about 10 – 15 mm, therefore  taking into account 

speed of sound in air, the approx. delay in signal could be 90 samples i.e. 0.045 milli seconds.  

• Considering the error that can occur from the noise in the signal, experimental setup and 

calculation of delay using cross-correlation, this minute delay is rather considered negligible and 

no further alignment of the signal is carried out. 

Delay scanner and alignment of signals 

% load AE_den_sig variable 

for i=1:15 

    Kistler_sig=AE_den_sig(i).AE_kistler_data_PG; 

    Mistras_sig=AE_den_sig(i).AE_Mistras_data_PG; 

    sig_delay(i)=finddelay(Kistler_sig,Mistras_sig); % find delay uses cross-

correlation between each pair of signals at all possible lags. The normalized  

    

[aligned_Kistler_sig,aligned_Mistras_sig]=alignsignals(Kistler_sig,Mistras_sig); 

    AE_aligned_den_sig(i).AE_kistler_data_PG=aligned_Kistler_sig; 

    AE_aligned_den_sig(i).AE_Mistras_data_PG=aligned_Mistras_sig; 

    %cross-correlation between each pair of signals is then calculated. The 

    %estimated delay is given by the negative of the lag for which 
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    %normalised cross-correlation has the largest absolute value.  

end 

 

mean_sig_delay=mean(sig_delay) 

average_time_delay=mean_sig_delay/2000000 % Number of samples/sampling rate, this 

is the max calculated delay in each PG.  

average_distance_delay=331*average_time_delay; 

% Given as 9 micro seconds.  

% speed of sound given as 331 m/s (approx), (any frequency changes means 

% wavlength is changed)  

% approx difference between the sensors calculated with this difference in 

% sig delay  

% signal delay to be  

 

 

% In reality the spacing between the AE sensors were about 10 - 15 mm, 

% therefore : 

expected_time_delay=(15/1000)/330; 

expected_sig_delay=expected_time_delay*2000000; 

% expected sig delay should be 90 samples in delay between the sensors.  

% This not what is seen using the 'finddelay' function. Considering the 

% difference in signal is  
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9.2.3 Power spectrum and Cross-correlation analysis  

 

• Provide an overview of the spectral distribution within the signal.  

• A high-level comparison between the signals and AE features will spend a more detailed 

exploration into the AE response with respect to frequency 

Power spectrum analysis  

% Power spectrum analyis between trial 010 / 060 /110  

Fs=2000000; 

sig1=AE_aligned_den_sig(1).AE_kistler_data_PG; 

sig2=AE_aligned_den_sig(6).AE_kistler_data_PG; 

sig3=AE_aligned_den_sig(11).AE_kistler_data_PG; 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P060,F060]=periodogram(sig2,[],[],Fs,'power'); 

[P110,F110]=periodogram(sig3,[],[],Fs,'power'); 

P010(1)=0; 

P060(1)=0; 

P110(1)=0; 

 

figure 

tiledlayout(3,1) 
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ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 010 Kistler') 

ax2=nexttile; 

plot(F060,P060,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 060 Kistler') 

ax3=nexttile; 

plot(F110,P110,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 110 Kistler') 

linkaxes([ax1,ax2,ax3]); 

ax1.YLim=[0 4*10^-6]; 

xlabel('Frequency (Hz)'); 

 

%Spectral choerence  

[Cxy1,f]=mscohere(sig1,sig2,[],[],[],Fs); 

[Cxy2,f]=mscohere(sig2,sig3,[],[],[],Fs); 

[Cxy3,f]=mscohere(sig1,sig3,[],[],[],Fs); 

 

figure 

n=tiledlayout(3,1); 

nx1=nexttile; 



161 
 

plot(f,Cxy1,"DisplayName","Spectral coherence estimate Trial 010 to 060"); 

xlabel('Frequency (Hz)'); 

title('Kistler - Spectral coherence estimate Trial 010 to 060') 

nx2=nexttile; 

plot(f,Cxy2,"DisplayName","Spectral coherence estimate Trial 060 to 110"); 

xlabel('Frequency (Hz)'); 

grid on 

title('Kistler - Spectral coherence estimate Trial 060 to 110') 

nx3=nexttile; 

plot(f,Cxy3,"DisplayName","Spectral coherence estimate Trial 010 to 110"); 

xlabel('Frequency (Hz)'); 

grid on 

title('Kistler - Spectral coherence estimate Trial 010 to 110') 

linkaxes([nx1,nx2,nx3]); 

xlabel('Frequency (Hz)'); 

 

% Cross power spectral density  

[Pxy1]=cpsd(sig1,sig2,[],[],[],Fs); 

[Pxy2]=cpsd(sig2,sig3,[],[],[],Fs); 

[Pxy3]=cpsd(sig1,sig3,[],[],[],Fs); 

phase1=-angle(Pxy1)/pi*180; 

phase2=-angle(Pxy2)/pi*180; 

phase3=-angle(Pxy3)/pi*180; 

 

% CPSD Plots  

figure 

o=tiledlayout(3,1); 

ox1=nexttile; 

cpsd(sig1,sig2,[],[],[],Fs); 

title('Kistler Trial 010 to 060') 
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ox2=nexttile; 

cpsd(sig2,sig3,[],[],[],Fs); 

grid on 

title('Kistler Trial 060 to 110') 

ox3=nexttile; 

cpsd(sig1,sig3,[],[],[],Fs); 

grid on 

title('Kistler Trial 010 to 110') 

grid on 

linkaxes([ox1,ox2,ox3]); 

%  

% % Cross-spectrum Phase (deg) Plots 

% figure 

% o=tiledlayout(3,1); 

% ox1=nexttile; 

% plot(f,phase1); 

% xlabel('Frequency (Hz)'); 

% title('Cross-spectrum phase (Deg) Trial 010 to 060') 

% ox2=nexttile; 

% plot(f,phase2); 

% grid on 

% xlabel('Frequency (Hz)'); 

% title('Cross-spectrum phase (Deg) Trial 060 to 110') 

% ox3=nexttile; 

% plot(f,phase3); 

% grid on 

% xlabel('Frequency (Hz)'); 

% title('Cross-spectrum phase (Deg) Trial 010 to 110') 

% linkaxes([ox1,ox2,ox3]); 
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% Power spectrum analyis between trial 010 / 060 /110  

Fs=2000000; 

sig1=AE_aligned_den_sig(1).AE_Mistras_data_PG; 

sig2=AE_aligned_den_sig(6).AE_Mistras_data_PG; 

sig3=AE_aligned_den_sig(11).AE_Mistras_data_PG; 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P060,F060]=periodogram(sig2,[],[],Fs,'power'); 

[P110,F110]=periodogram(sig3,[],[],Fs,'power'); 

P010(1)=0; 

P060(1)=0; 

P110(1)=0; 

 

figure 

tiledlayout(3,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 010 Mistras') 

ax2=nexttile; 

plot(F060,P060,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 060 Mistras') 

ax3=nexttile; 

plot(F110,P110,'k') 
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ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 110 Mistras') 

linkaxes([ax1,ax2,ax3]); 

ax1.YLim=[0 4*10^-6]; 

xlabel('Frequency (Hz)'); 

 

%Spectral choerence  

[Cxy1,f]=mscohere(sig1,sig2,[],[],[],Fs); 

[Cxy2,f]=mscohere(sig2,sig3,[],[],[],Fs); 

[Cxy3,f]=mscohere(sig1,sig3,[],[],[],Fs); 

 

figure 

n=tiledlayout(3,1); 

nx1=nexttile; 

plot(f,Cxy1,"DisplayName","Mistras Spectral coherence estimate Trial 010 to 060"); 

xlabel('Frequency (Hz)'); 

title('Mistras Spectral coherence estimate Trial 010 to 060') 

nx2=nexttile; 

plot(f,Cxy2,"DisplayName","Mistras Spectral coherence estimate Trial 060 to 110"); 

xlabel('Frequency (Hz)'); 

grid on 

title('Mistras Spectral coherence estimate Trial 060 to 110') 

nx3=nexttile; 

plot(f,Cxy3,"DisplayName","Mistras Spectral coherence estimate Trial 010 to 110"); 

xlabel('Frequency (Hz)'); 

grid on 

title('Mistras Spectral coherence estimate Trial 010 to 110') 

linkaxes([nx1,nx2,nx3]); 
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xlabel('Frequency (Hz)'); 

 

% Cross power spectral density  

[Pxy1]=cpsd(sig1,sig2,[],[],[],Fs); 

[Pxy2]=cpsd(sig2,sig3,[],[],[],Fs); 

[Pxy3]=cpsd(sig1,sig3,[],[],[],Fs); 

phase1=-angle(Pxy1)/pi*180; 

phase2=-angle(Pxy2)/pi*180; 

phase3=-angle(Pxy3)/pi*180; 

 

% CPSD Plots  

figure 

o=tiledlayout(3,1); 

ox1=nexttile; 

cpsd(sig1,sig2,[],[],[],Fs); 

title('Mistras Trial 010 to 060') 

ox2=nexttile; 

cpsd(sig2,sig3,[],[],[],Fs); 

grid on 

title('Mistras Trial 060 to 110') 

ox3=nexttile; 

cpsd(sig1,sig3,[],[],[],Fs); 

grid on 

title('Mistras Trial 010 to 110') 

grid on 

linkaxes([ox1,ox2,ox3]); 

 

 

% Power spectrum analyis between trial 010-050 (Finishing grinding parameter)  

Fs=2000000; 
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sig1=AE_aligned_den_sig(1).AE_Mistras_data_PG; 

sig2=AE_aligned_den_sig(2).AE_Mistras_data_PG; 

sig3=AE_aligned_den_sig(3).AE_Mistras_data_PG; 

sig4=AE_aligned_den_sig(4).AE_Mistras_data_PG; 

sig5=AE_aligned_den_sig(5).AE_Mistras_data_PG; 

 

 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P020,F020]=periodogram(sig2,[],[],Fs,'power'); 

[P030,F030]=periodogram(sig3,[],[],Fs,'power'); 

[P040,F040]=periodogram(sig4,[],[],Fs,'power'); 

[P050,F050]=periodogram(sig5,[],[],Fs,'power'); 

 

P010(1)=0; 

P020(1)=0; 

P030(1)=0; 

P040(1)=0; 

P050(1)=0; 

 

figure 

m=tiledlayout(5,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 010 Mistras') 

ax2=nexttile; 

plot(F020,P020,'k') 

ylabel('P1') 
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grid on 

axis tight 

title('Power Spectrum for Trial 020 Mistras') 

ax3=nexttile; 

plot(F030,P030,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 030 Mistras') 

ax4=nexttile; 

plot(F040,P040,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 040 Mistras') 

ax5=nexttile; 

plot(F050,P050,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 050 Mistras') 

linkaxes([ax1,ax2,ax3,ax4,ax5]); 

ax1.YLim=[0 5*10^-6]; 

xlabel('Frequency (Hz)'); 

title(m,'Mistras AE sensor Trial 010 - 050 : Finishing parameters') 

 

 

 

% Power spectrum analyis between trial 060-100 (Semi-finishing grinding parameter)  

Fs=2000000; 
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sig1=AE_aligned_den_sig(6).AE_Mistras_data_PG; 

sig2=AE_aligned_den_sig(7).AE_Mistras_data_PG; 

sig3=AE_aligned_den_sig(8).AE_Mistras_data_PG; 

sig4=AE_aligned_den_sig(9).AE_Mistras_data_PG; 

sig5=AE_aligned_den_sig(10).AE_Mistras_data_PG; 

 

 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P020,F020]=periodogram(sig2,[],[],Fs,'power'); 

[P030,F030]=periodogram(sig3,[],[],Fs,'power'); 

[P040,F040]=periodogram(sig4,[],[],Fs,'power'); 

[P050,F050]=periodogram(sig5,[],[],Fs,'power'); 

 

P010(1)=0; 

P020(1)=0; 

P030(1)=0; 

P040(1)=0; 

P050(1)=0; 

 

figure 

m=tiledlayout(5,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 060 Mistras') 

ax2=nexttile; 

plot(F020,P020,'k') 

ylabel('P1') 
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grid on 

axis tight 

title('Power Spectrum for Trial 070 Mistras') 

ax3=nexttile; 

plot(F030,P030,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 080 Mistras') 

ax4=nexttile; 

plot(F040,P040,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 090 Mistras') 

ax5=nexttile; 

plot(F050,P050,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 100 Mistras') 

linkaxes([ax1,ax2,ax3,ax4,ax5]); 

ax1.YLim=[0 5*10^-6]; 

xlabel('Frequency (Hz)'); 

title(m,'Mistras AE sensor Trial 060 - 100 : Semi-finishing parameters') 

 

 

% Power spectrum analyis between trial 110-150 (Roughing grinding parameter)  

Fs=2000000; 

sig1=AE_aligned_den_sig(11).AE_Mistras_data_PG; 
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sig2=AE_aligned_den_sig(12).AE_Mistras_data_PG; 

sig3=AE_aligned_den_sig(13).AE_Mistras_data_PG; 

sig4=AE_aligned_den_sig(14).AE_Mistras_data_PG; 

sig5=AE_aligned_den_sig(15).AE_Mistras_data_PG; 

 

 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P020,F020]=periodogram(sig2,[],[],Fs,'power'); 

[P030,F030]=periodogram(sig3,[],[],Fs,'power'); 

[P040,F040]=periodogram(sig4,[],[],Fs,'power'); 

[P050,F050]=periodogram(sig5,[],[],Fs,'power'); 

 

P010(1)=0; 

P020(1)=0; 

P030(1)=0; 

P040(1)=0; 

P050(1)=0; 

 

figure 

m=tiledlayout(5,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 110 Mistras') 

ax2=nexttile; 

plot(F020,P020,'k') 

ylabel('P1') 

grid on 
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axis tight 

title('Power Spectrum for Trial 120 Mistras') 

ax3=nexttile; 

plot(F030,P030,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 130 Mistras') 

ax4=nexttile; 

plot(F040,P040,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 140 Mistras') 

ax5=nexttile; 

plot(F050,P050,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 150 Mistras') 

linkaxes([ax1,ax2,ax3,ax4,ax5]); 

ax1.YLim=[0 5*10^-6]; 

xlabel('Frequency (Hz)'); 

title(m,'Mistras AE sensor Trial 110 - 150 : Roughing parameters') 

 

 

% Power spectrum analyis between trial 010-050 (Finishing grinding parameter)  

Fs=2000000; 

sig1=AE_aligned_den_sig(1).AE_kistler_data_PG; 

sig2=AE_aligned_den_sig(2).AE_kistler_data_PG; 
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sig3=AE_aligned_den_sig(3).AE_kistler_data_PG; 

sig4=AE_aligned_den_sig(4).AE_kistler_data_PG; 

sig5=AE_aligned_den_sig(5).AE_kistler_data_PG; 

 

 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P020,F020]=periodogram(sig2,[],[],Fs,'power'); 

[P030,F030]=periodogram(sig3,[],[],Fs,'power'); 

[P040,F040]=periodogram(sig4,[],[],Fs,'power'); 

[P050,F050]=periodogram(sig5,[],[],Fs,'power'); 

 

P010(1)=0; 

P020(1)=0; 

P030(1)=0; 

P040(1)=0; 

P050(1)=0; 

 

figure 

m=tiledlayout(5,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 010 Kistler') 

ax2=nexttile; 

plot(F020,P020,'k') 

ylabel('P1') 

grid on 

axis tight 
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title('Power Spectrum for Trial 020 Kistler') 

ax3=nexttile; 

plot(F030,P030,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 030 Kistler') 

ax4=nexttile; 

plot(F040,P040,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 040 Kistler') 

ax5=nexttile; 

plot(F050,P050,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 050 Kistler') 

linkaxes([ax1,ax2,ax3,ax4,ax5]); 

ax1.YLim=[0 5*10^-6]; 

xlabel('Frequency (Hz)'); 

title(m,'Kistler AE sensor Trial 010 - 050 : Finishing parameters') 

 

 

 

% Power spectrum analyis between trial 060-100 (Semi-finishing grinding parameter)  

Fs=2000000; 

sig1=AE_aligned_den_sig(6).AE_kistler_data_PG; 

sig2=AE_aligned_den_sig(7).AE_kistler_data_PG; 
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sig3=AE_aligned_den_sig(8).AE_kistler_data_PG; 

sig4=AE_aligned_den_sig(9).AE_kistler_data_PG; 

sig5=AE_aligned_den_sig(10).AE_kistler_data_PG; 

 

 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P020,F020]=periodogram(sig2,[],[],Fs,'power'); 

[P030,F030]=periodogram(sig3,[],[],Fs,'power'); 

[P040,F040]=periodogram(sig4,[],[],Fs,'power'); 

[P050,F050]=periodogram(sig5,[],[],Fs,'power'); 

 

P010(1)=0; 

P020(1)=0; 

P030(1)=0; 

P040(1)=0; 

P050(1)=0; 

 

figure 

m=tiledlayout(5,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 060 Kistler') 

ax2=nexttile; 

plot(F020,P020,'k') 

ylabel('P1') 

grid on 

axis tight 
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title('Power Spectrum for Trial 070 Kistler') 

ax3=nexttile; 

plot(F030,P030,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 080 Kistler') 

ax4=nexttile; 

plot(F040,P040,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 090 Kistler') 

ax5=nexttile; 

plot(F050,P050,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 100 Kistler') 

linkaxes([ax1,ax2,ax3,ax4,ax5]); 

ax1.YLim=[0 5*10^-6]; 

xlabel('Frequency (Hz)'); 

title(m,'Kistler AE sensor Trial 060 - 100 : Semi-finishing parameters') 

 

 

% Power spectrum analyis between trial 110-150 (Roughing grinding parameter)  

Fs=2000000; 

sig1=AE_aligned_den_sig(11).AE_kistler_data_PG; 

sig2=AE_aligned_den_sig(12).AE_kistler_data_PG; 

sig3=AE_aligned_den_sig(13).AE_kistler_data_PG; 
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sig4=AE_aligned_den_sig(14).AE_kistler_data_PG; 

sig5=AE_aligned_den_sig(15).AE_kistler_data_PG; 

 

 

[P010,F010]=periodogram(sig1,[],[],Fs,'power'); 

[P020,F020]=periodogram(sig2,[],[],Fs,'power'); 

[P030,F030]=periodogram(sig3,[],[],Fs,'power'); 

[P040,F040]=periodogram(sig4,[],[],Fs,'power'); 

[P050,F050]=periodogram(sig5,[],[],Fs,'power'); 

 

P010(1)=0; 

P020(1)=0; 

P030(1)=0; 

P040(1)=0; 

P050(1)=0; 

 

figure 

m=tiledlayout(5,1) 

ax1=nexttile; 

plot(F010,P010,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 110 kistler') 

ax2=nexttile; 

plot(F020,P020,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 120 Kistler') 



177 
 

ax3=nexttile; 

plot(F030,P030,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 130 Kistler') 

ax4=nexttile; 

plot(F040,P040,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 140 Kistler') 

ax5=nexttile; 

plot(F050,P050,'k') 

ylabel('P1') 

grid on 

axis tight 

title('Power Spectrum for Trial 150 Kistler') 

linkaxes([ax1,ax2,ax3,ax4,ax5]); 

ax1.YLim=[0 5*10^-6]; 

xlabel('Frequency (Hz)'); 

title(m,'Kistler AE sensor Trial 110 - 150 : Roughing parameters') 
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9.2.4 AE Feature extraction and analysis 

 

• To conduct a deeper investigation into the AE frequency response  

• Detailed exploration within AE features which are used in process monitoring of grinding.  

• Drawing conclusions on how much changes in AE features are affected with wheel dia change.   

AE Feature extractor 

 

Fs=2000000; % sampling frequency  

block_num=8000000;% samples in a singal set  

 

denm=((block_num/2)/(Fs/2)); % calcs for normalizing to the fft scale 

freq_range=[50000*denm 100000*denm 150000*denm 200000*denm 250000*denm 300000*denm 

350000*denm 400000*denm 450000*denm 500000*denm]; % frequency ranges for ROP calc 

%freq range as 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz 700kHz 800kHz 900kHz 

1000kHz  

block_n=length(AE_aligned_den_sig); 

ROP=zeros(block_n,8); % ROP matrix initiation 

CFAR_power_law=zeros(block_n,8); % initiating the CFAR Power law 

AE_rms=zeros(block_n,1); 

CFAR=zeros(block_n,1); 

MVD=zeros(block_n,1); 

Kurtosis=zeros(block_n,1); 
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Skew=zeros(block_n,1); 

 

 

%AE Kistler feature extraction  

for n=1:block_n 

    block_signal=(AE_aligned_den_sig(n).AE_kistler_data_PG)'; 

    mean_block_signal=mean(block_signal); 

    block_norm_signal=block_signal-mean_block_signal; 

    fft_blocks_data=fft(block_signal); 

    P2_block = abs(fft_blocks_data/block_num); 

    P1_block = P2_block(1:(block_num/2)); 

    P1_block(2:end-1) = 2*P1_block(2:end-1); 

    P1_block_squared=(P1_block.*P1_block); 

    f=Fs*(0:(block_num/2)-1)/block_num; 

    M=numel(P1_block); 

    mean_block_signal=mean(block_signal); 

    std_block_signal=std(block_signal); 

     

    fft_blocks_norm_data=fft(block_norm_signal); 

    P2_block_norm = abs(fft_blocks_norm_data/block_num); 

    P1_block_norm = P2_block_norm(1:(block_num/2)); 

    P1_block_norm(2:end-1) = 2*P1_block_norm(2:end-1); 

    P1_block_squared_norm=(P1_block_norm.*P1_block_norm); 

    f=Fs*(0:(block_num/2)-1)/block_num; 

    M=numel(P1_block_norm); 

    mean_block_norm_signal=mean(block_norm_signal); 

    std_block_norm_signal=std(block_norm_signal); 

     

    % AE RMS 

    AE_rms(n)=sqrt(sum((block_signal).^2)/block_num); %  root mean square 
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    %CFAR 

    CFAR(n)=sum((P1_block).^2); % v given as 2 

     

    % CFAR Power law 

    for i=1:numel(freq_range)-1 

        band_freq_data=P1_block(freq_range(i)+1:freq_range(i+1),1); 

        CFAR_power_law(n,i)=(sum(band_freq_data.^2))/((sum(band_freq_data)).^2); 

    end 

     

    % Mean value dispersion (MVD) 

    mean_P1_block_squared=mean(P1_block_squared); 

    MVD(n)=(sum(log(mean_P1_block_squared./P1_block_squared)))/(M); 

     

    % Kurtosis 

    Kurtosis(n)=sum((((block_signal-

mean_block_signal).^4)/(M*(std_block_signal)^4))-3); % FOR A GAUSSIAN SIGNAL is 

always three 

    

     

    % Skew 

    Skew(n)=sum(((block_signal-mean_block_signal).^3)/(M*(std_block_signal)^4)); 

     

    %ROP (For three parts of the AE frequency range from the AE block) 

    for i=1:numel(freq_range)-1 

        band_freq_data=P1_block_squared(freq_range(i):freq_range(i+1),1); 

        ROP(n,i)=sum((band_freq_data.^2)/(sum(P1_block_squared).^2)); 

    end 

    AE_kistler_features(n).AE_rms=AE_rms(n);  

    AE_kistler_features(n).CFAR=CFAR(n);  

    AE_kistler_features(n).CFAR_power_law=CFAR_power_law(n,:)';  
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    AE_kistler_features(n).MVD=MVD(n);  

    AE_kistler_features(n).Kurtosis=Kurtosis(n); 

    AE_kistler_features(n).Skew=Skew(n); 

    AE_kistler_features(n).ROP=ROP(n,:)'; 

    AE_kistler_features(n).fft=P1_block; 

    AE_kistler_features(n).f=f; 

end 

 

 

%AE Mistras feature extraction  

for n=1:block_n 

    block_signal=(AE_aligned_den_sig(n).AE_Mistras_data_PG)'; 

    mean_block_signal=mean(block_signal); 

    block_norm_signal=block_signal-mean_block_signal; 

    fft_blocks_data=fft(block_signal); 

    P2_block = abs(fft_blocks_data/block_num); 

    P1_block = P2_block(1:(block_num/2)); 

    P1_block(2:end-1) = 2*P1_block(2:end-1); 

    P1_block_squared=(P1_block.*P1_block); 

    f=Fs*(0:(block_num/2)-1)/block_num; 

    M=numel(P1_block); 

    mean_block_signal=mean(block_signal); 

    std_block_signal=std(block_signal); 

     

    fft_blocks_norm_data=fft(block_norm_signal); 

    P2_block_norm = abs(fft_blocks_norm_data/block_num); 

    P1_block_norm = P2_block_norm(1:(block_num/2)); 

    P1_block_norm(2:end-1) = 2*P1_block_norm(2:end-1); 

    P1_block_squared_norm=(P1_block_norm.*P1_block_norm); 

    f=Fs*(0:(block_num/2)-1)/block_num; 
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    M=numel(P1_block_norm); 

    mean_block_norm_signal=mean(block_norm_signal); 

    std_block_norm_signal=std(block_norm_signal); 

     

    % AE RMS 

    AE_rms(n)=sqrt(sum((block_signal).^2)/block_num); %  root mean square 

     

    %CFAR 

    CFAR(n)=sum((P1_block).^2); % v given as 2 

     

    % CFAR Power law 

    for i=1:numel(freq_range)-1 

        band_freq_data=P1_block(freq_range(i)+1:freq_range(i+1),1); 

        CFAR_power_law(n,i)=(sum(band_freq_data.^2))/((sum(band_freq_data)).^2); 

    end 

     

    % Mean value dispersion (MVD) 

    mean_P1_block_squared=mean(P1_block_squared); 

    MVD(n)=(sum(log(mean_P1_block_squared./P1_block_squared)))/(M); 

     

    % Kurtosis 

    Kurtosis(n)=sum((((block_signal-

mean_block_signal).^4)/(M*(std_block_signal)^4))-3); % FOR A GAUSSIAN SIGNAL is 

always three 

    

     

    % Skew 

    Skew(n)=sum(((block_signal-mean_block_signal).^3)/(M*(std_block_signal)^4)); 

     

    %ROP (For three parts of the AE frequency range from the AE block) 

    for i=1:numel(freq_range)-1 
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        band_freq_data=P1_block_squared(freq_range(i):freq_range(i+1),1); 

        ROP(n,i)=sum((band_freq_data.^2)/(sum(P1_block_squared).^2)); 

    end 

    AE_Mistras_features(n).AE_rms=AE_rms(n);  

    AE_Mistras_features(n).CFAR=CFAR(n);  

    AE_Mistras_features(n).CFAR_power_law=CFAR_power_law(n,:)';  

    AE_Mistras_features(n).MVD=MVD(n);  

    AE_Mistras_features(n).Kurtosis=Kurtosis(n); 

    AE_Mistras_features(n).Skew=Skew(n); 

    AE_Mistras_features(n).ROP=ROP(n,:)'; 

    AE_Mistras_features(n).fft=P1_block; 

    AE_Mistras_features(n).f=f; 

end 

 

figure 

plot(AE_Mistras_features(11).f,AE_Mistras_features(11).fft); 

9.3 Force file extractor and data compensator for drift  

Force extractor 

 

% Prompt the user for the file 

[filename_1,pathname]=uigetfile({'*.mat','All Files (*.tdms)'},'Choose the TDMS 

Files', 'Multiselect' , 'on'); 

if isempty(filename_1) 

   print("No files selected"); 

   return % No files selected, does not  

end 

filename_full=fullfile(pathname,filename_1); 

num_mat_files=size(filename_full,2); % num 

for num_struct=1:num_mat_files % looping through each trial no file  

    clear ConvertedData 



184 
 

    load(filename_full{num_struct},'ConvertedData'); 

    for i=1:length((ConvertedData)) 

    if isempty(strfind(ConvertedData(i).FileName,'Parameter'))==0 

        

Force_data(num_struct).trial_no=str2double(extractBetween(filename_1(num_struct),

'Trial_','.mat')); 

        

Force_data(num_struct).PG_Fx_12=tall(ConvertedData(i).Data.MeasuredData(7).Data);   

        

Force_data(num_struct).PG_Fx_34=tall(ConvertedData(i).Data.MeasuredData(8).Data);  

        

Force_data(num_struct).PG_Fy_14=tall(ConvertedData(i).Data.MeasuredData(9).Data); 

        

Force_data(num_struct).PG_Fy_23=tall(ConvertedData(i).Data.MeasuredData(10).Data)

; 

        

Force_data(num_struct).PG_Fz_1=tall(ConvertedData(i).Data.MeasuredData(11).Data); 

        

Force_data(num_struct).PG_Fz_2=tall(ConvertedData(i).Data.MeasuredData(12).Data); 

        

Force_data(num_struct).PG_Fz_3=tall(ConvertedData(i).Data.MeasuredData(13).Data); 

        

Force_data(num_struct).PG_Fz_4=tall(ConvertedData(i).Data.MeasuredData(14).Data);  

    elseif isempty(strfind(ConvertedData(i).FileName,'Airpass'))==0 

        

Force_data(num_struct).AP_Fx_12=tall(ConvertedData(i).Data.MeasuredData(7).Data);   

        

Force_data(num_struct).AP_Fx_34=tall(ConvertedData(i).Data.MeasuredData(8).Data);  

        

Force_data(num_struct).AP_Fy_14=tall(ConvertedData(i).Data.MeasuredData(9).Data); 

        

Force_data(num_struct).AP_Fy_23=tall(ConvertedData(i).Data.MeasuredData(10).Data)

; 

        

Force_data(num_struct).AP_Fz_1=tall(ConvertedData(i).Data.MeasuredData(11).Data); 

        

Force_data(num_struct).AP_Fz_2=tall(ConvertedData(i).Data.MeasuredData(12).Data); 
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Force_data(num_struct).AP_Fz_3=tall(ConvertedData(i).Data.MeasuredData(13).Data); 

        

Force_data(num_struct).AP_Fz_4=tall(ConvertedData(i).Data.MeasuredData(14).Data);  

    end 

    end 

end 

 

Force Drift compensation & Segmenting 

% Collecting the threshold points from AE data  

% need to load AE_Data  

Fs_AE=2000000; % Sampling rate (2Mhhz for AE signals recorded) 

Fs_force=51200; % Sampling rate for force (51.2kHz) 

for i= 1:length(AE_data) 

    %For PG dataset  

    AE_signal_i=gather(AE_data(i).AE_Kistler_data_PG); % getting pre_data 

    %Trimming for Kistler AE data 

    threshold=0.15; % threshold for Kistler data  

    threshold_point_PG(i,1)=find(AE_signal_i>(threshold),1,"first"); % threshold 

point for Kistler in Column 1  

    AE_signal_i=gather(AE_data(i).AE_Mistras_data_PG); % getting the raw data 

    %Trimming for Mistras AE data 

    threshold=0.2; % threshold for Mistras data  

    threshold_point_PG(i,2)=find(AE_signal_i>(threshold),1,"first"); % threshold 

point for Mistras in Column 2  

    % Finding the threshold point in Force data for PG: 

    t_stamp_Fs_AE=[0:(1/Fs_AE):15]; % creating time stamp vector for AE 

    t_stamp_Fs_Force=[0:(1/Fs_force):15]; % creating time stamp vector for Force 

    t_threshold_point_PG=t_stamp_Fs_AE(threshold_point_PG(i,2)); % find time stamp 

of threshold for AE Mistras 
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    [minD, IndexofMin]=min(abs(t_stamp_Fs_Force-t_threshold_point_PG)); % finding 

equivalent index of threshold point in force vector 

    Force_threshold_idx(i,1)=IndexofMin; % Threshold index to be used for force 

     

    % For AP dataset  

    clear AE_signal_i 

    AE_signal_AP=gather(AE_data(i).AE_Mistras_data_AP); 

    rms_signal_AP=rms(AE_signal_AP,100000,1000,0); 

    [idx]=findchangepts(rms_signal_AP,"Statistic","rms","MaxNumChanges",4); 

    threshold_point_AP(i,1)=idx(1)*100000; 

    AE_signal_AP=gather(AE_data(i).AE_Mistras_data_AP); 

    rms_signal_AP=rms(AE_signal_AP,100000,1000,0); 

    [idx]=findchangepts(rms_signal_AP,"Statistic","rms","MaxNumChanges",4); 

    threshold_point_AP(i,2)=idx(1)*100000; 

    % Finding the threshold point in Force data for AP: 

    t_stamp_Fs_AE=[0:(1/Fs_AE):15]; % creating time stamp vector for AE 

    t_stamp_Fs_Force=[0:(1/Fs_force):15]; % creating time stamp vector for Force 

    t_threshold_point_AP=t_stamp_Fs_AE(threshold_point_AP(i,2)); % find time stamp 

of threshold for AE Mistras 

    [minD, IndexofMin]=min(abs(t_stamp_Fs_Force-t_threshold_point_AP)); % finding 

equivalent index of threshold point in force vector 

    Force_threshold_idx(i,2)=IndexofMin; % Threshold index to be used for force 

end 

 

%% Drift compensation work: 

for i=1:length(Force_data) 

    %offsets to calulate drift regions 

    DriftOffset1=1*Fs_force; %sec Offest Before Cut (Default=1) 

    DriftOffset2=0.5*Fs_force; %sec Offest Before Cut  (Default=0.5) 

    DriftOffset3=0.5*Fs_force; %sec Offest After Cut 

(DefaultAT1=3.3)(DefaultAT2=7) 
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    DriftOffset4=1*Fs_force; %sec Offest After Cut 2 

(DefaultAT1=4.3)(DefaultAT2=8) 

    % Sum of Channels 

    

Force_data(i).XForce_PG=gather(Force_data(i).PG_Fx_12(1:450000))+gather(Force_dat

a(i).PG_Fx_34(1:450000)); 

    

Force_data(i).YForce_PG=gather(Force_data(i).PG_Fy_14(1:450000))+gather(Force_dat

a(i).PG_Fy_23(1:450000)); 

    

Force_data(i).ZForce_PG=gather(Force_data(i).PG_Fz_1(1:450000))+gather(Force_data

(i).PG_Fz_2(1:450000))+gather(Force_data(i).PG_Fz_3(1:450000))+gather(Force_data(

i).PG_Fz_4(1:450000)); 

    

Force_data(i).XForce_AP=gather(Force_data(i).AP_Fx_12(1:415000))+gather(Force_dat

a(i).AP_Fx_34(1:415000)); 

    

Force_data(i).YForce_AP=gather(Force_data(i).AP_Fy_14(1:415000))+gather(Force_dat

a(i).AP_Fy_23(1:415000)); 

    

Force_data(i).ZForce_AP=gather(Force_data(i).AP_Fz_1(1:415000))+gather(Force_data

(i).AP_Fz_2(1:415000))+gather(Force_data(i).AP_Fz_3(1:415000))+gather(Force_data(

i).AP_Fz_4(1:415000)); 

    %drift compensation for PG  

    % find points  

    % find drift points before each cut 

    CutStarts=Force_threshold_idx(i,1); 

    CutEnds=CutStarts+(4*Fs_force);% Cut ends at 4 but using 5sec to clear end of 

cut  

    DriftBeforeStart=(CutStarts-DriftOffset1); 

    DriftBeforeEnd=(CutStarts-DriftOffset2); 

    Drifts(1,:)=mean(Force_data(i).XForce_PG(DriftBeforeStart:DriftBeforeEnd)); 

    Drifts(2,:)=mean(Force_data(i).YForce_PG(DriftBeforeStart:DriftBeforeEnd)); 

    Drifts(3,:)=mean(Force_data(i).ZForce_PG(DriftBeforeStart:DriftBeforeEnd)); 

    DriftAfterStart=(CutEnds+DriftOffset3); 

    DriftAfterEnd=(CutEnds+DriftOffset4); 
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    if DriftAfterEnd>450000 

        DriftAfterEnd=450000; 

    end 

    if DriftAfterStart>450000 

        DriftAfterStart=450000; 

    end 

    Drifts_end(1,:)=mean(Force_data(i).XForce_PG(DriftAfterStart:DriftAfterEnd)); 

    Drifts_end(2,:)=mean(Force_data(i).YForce_PG(DriftAfterStart:DriftAfterEnd)); 

    Drifts_end(3,:)=mean(Force_data(i).ZForce_PG(DriftAfterStart:DriftAfterEnd)); 

    % Find drift points at very start and end of each data file  

    DriftAtStart(1,:)=mean(Force_data(i).XForce_PG(1:0.25*Fs_force)); 

    DriftAtStart(2,:)=mean(Force_data(i).YForce_PG(1:0.25*Fs_force)); 

    DriftAtStart(3,:)=mean(Force_data(i).ZForce_PG(1:0.25*Fs_force)); 

    DriftAtFinish(1,:)=mean(Force_data(i).XForce_PG(end-0.25*Fs_force:end)); 

    DriftAtFinish(2,:)=mean(Force_data(i).YForce_PG(end-0.25*Fs_force:end)); 

    DriftAtFinish(3,:)=mean(Force_data(i).ZForce_PG(end-0.25*Fs_force:end)); 

     

    %Assembling drift curve  

    DriftCurveX=linspace(DriftAtStart(1,:),Drifts(1,:),(CutStarts-DriftOffset1)); 

    DriftCurveY=linspace(DriftAtStart(2,:),Drifts(2,:),(CutStarts-DriftOffset1)); 

    DriftCurveZ=linspace(DriftAtStart(3,:),Drifts(3,:),(CutStarts-DriftOffset1)); 

     

    

DriftCurveX=[DriftCurveX,linspace(Drifts(1,:),Drifts_end(1,:),(DriftAfterStart-

DriftBeforeStart)),linspace(Drifts_end(1,:),DriftAtFinish(1,:),(DriftAfterEnd-

DriftAfterStart))]; 

    

DriftCurveY=[DriftCurveY,linspace(Drifts(2,:),Drifts_end(2,:),(DriftAfterStart-

DriftBeforeStart)),linspace(Drifts_end(2,:),DriftAtFinish(2,:),(DriftAfterEnd-

DriftAfterStart))]; 

    

DriftCurveZ=[DriftCurveZ,linspace(Drifts(3,:),Drifts_end(3,:),(DriftAfterStart-
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DriftBeforeStart)),linspace(Drifts_end(3,:),DriftAtFinish(3,:),(DriftAfterEnd-

DriftAfterStart))]; 

     

    Force_data(i).comp_XForce_PG=Force_data(i).XForce_PG(1:DriftAfterEnd)-

DriftCurveX'; 

    Force_data(i).comp_YForce_PG=Force_data(i).YForce_PG(1:DriftAfterEnd)-

DriftCurveY'; 

    Force_data(i).comp_ZForce_PG=Force_data(i).ZForce_PG(1:DriftAfterEnd)-

DriftCurveZ'; 

     

    %drift compensation for AP  

    % find points  

    % find drift points before each cut 

    CutStarts=Force_threshold_idx(i,2); 

    CutEnds=CutStarts+(4*Fs_force);% Cut ends at 4 but using 5sec to clear end of 

cut  

    DriftBeforeStart=(CutStarts-DriftOffset1); 

    DriftBeforeEnd=(CutStarts-DriftOffset2); 

    Drifts(1,:)=mean(Force_data(i).XForce_AP(DriftBeforeStart:DriftBeforeEnd)); 

    Drifts(2,:)=mean(Force_data(i).YForce_AP(DriftBeforeStart:DriftBeforeEnd)); 

    Drifts(3,:)=mean(Force_data(i).ZForce_AP(DriftBeforeStart:DriftBeforeEnd)); 

    DriftAfterStart=(CutEnds+DriftOffset3); 

    DriftAfterEnd=(CutEnds+DriftOffset4); 

    if DriftAfterEnd>415000 

        DriftAfterEnd=415000; 

    end 

    if DriftAfterStart>415000 

        DriftAfterStart=415000; 

    end 

    Drifts_end(1,:)=mean(Force_data(i).XForce_AP(DriftAfterStart:DriftAfterEnd)); 

    Drifts_end(2,:)=mean(Force_data(i).YForce_AP(DriftAfterStart:DriftAfterEnd)); 

    Drifts_end(3,:)=mean(Force_data(i).ZForce_AP(DriftAfterStart:DriftAfterEnd)); 
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    % Find drift points at very start and end of each data file  

    DriftAtStart(1,:)=mean(Force_data(i).XForce_AP(1:0.25*Fs_force)); 

    DriftAtStart(2,:)=mean(Force_data(i).YForce_AP(1:0.25*Fs_force)); 

    DriftAtStart(3,:)=mean(Force_data(i).ZForce_AP(1:0.25*Fs_force)); 

    DriftAtFinish(1,:)=mean(Force_data(i).XForce_AP(end-0.25*Fs_force:end)); 

    DriftAtFinish(2,:)=mean(Force_data(i).YForce_AP(end-0.25*Fs_force:end)); 

    DriftAtFinish(3,:)=mean(Force_data(i).ZForce_AP(end-0.25*Fs_force:end)); 

     

    %Assembling drift curve  

    clear DriftCurveX 

    clear DriftCurveY 

    clear DriftCurveZ 

     

    DriftCurveX=linspace(DriftAtStart(1,:),Drifts(1,:),(CutStarts-DriftOffset1)); 

    DriftCurveY=linspace(DriftAtStart(2,:),Drifts(2,:),(CutStarts-DriftOffset1)); 

    DriftCurveZ=linspace(DriftAtStart(3,:),Drifts(3,:),(CutStarts-DriftOffset1)); 

     

    

DriftCurveX=[DriftCurveX,linspace(Drifts(1,:),Drifts_end(1,:),(DriftAfterStart-

DriftBeforeStart)),linspace(Drifts_end(1,:),DriftAtFinish(1,:),(DriftAfterEnd-

DriftAfterStart))]; 

    

DriftCurveY=[DriftCurveY,linspace(Drifts(2,:),Drifts_end(2,:),(DriftAfterStart-

DriftBeforeStart)),linspace(Drifts_end(2,:),DriftAtFinish(2,:),(DriftAfterEnd-

DriftAfterStart))]; 

    

DriftCurveZ=[DriftCurveZ,linspace(Drifts(3,:),Drifts_end(3,:),(DriftAfterStart-

DriftBeforeStart)),linspace(Drifts_end(3,:),DriftAtFinish(3,:),(DriftAfterEnd-

DriftAfterStart))]; 

     

    Force_data(i).comp_XForce_AP=Force_data(i).XForce_AP(1:DriftAfterEnd)-

DriftCurveX'; 

    Force_data(i).comp_YForce_AP=Force_data(i).YForce_AP(1:DriftAfterEnd)-

DriftCurveY'; 
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    Force_data(i).comp_ZForce_AP=Force_data(i).ZForce_AP(1:DriftAfterEnd)-

DriftCurveZ'; 

     

end 

 

%%Segmenting data with thresholds - Segmenting without lead-in & lead-out 

%%taken out  

fields=fieldnames(Force_data); % making an array of the fieldnames for looping 

through  

for i=1:length(Force_data) 

    for k=24:26 % looping through the force channels of PG signal  

        Force_signal_i=gather(Force_data(i).(fields{k})); % Picking all the force 

channels  

        Force_threshold=Force_threshold_idx(i,1); 

        Force_sig_trim_start=(Force_threshold+(Fs_force*1)); % start the trim 0.5 

sampling rate after threshold point 

         if Force_threshold-(Fs_force*0.5)+((Fs_force*4)-

1)>size(Force_signal_i,1) 

             Force_sig_trim_start=Force_sig_trim_start-(Force_threshold-

(Fs_force*0.5)+((Fs_force*4)-1)-size(Force_signal_i,1)); % Moving the trim start 

further back if the segment to be cut out is longer than signal 

         elseif Force_sig_trim_start<0 

             Force_sig_trim_start=1; % If trimstart chosen is negative then it is 

made to start from 1 

         end 

         

Force_signal_i=Force_signal_i([Force_sig_trim_start:(Force_sig_trim_start+((Fs_fo

rce*1)-1))],:); % segmenting the signal to gather the 4 sec signal of grinding 

pass. 

         Force_seg_data(i).(fields{k})=Force_signal_i; % adding the segmented 

data to a new structure 

    end 

    for k=27:29 % looping through the force channels of AP signal  

        Force_signal_i=gather(Force_data(i).(fields{k})); % Picking all the force 

channels  

        Force_threshold=Force_threshold_idx(i,2); 

        Force_sig_trim_start=(Force_threshold-(Fs_force*1)); % start the trim 0.5 

seconds before threshold point 

         if Force_threshold-(Fs_force*0.5)+((Fs_force*4)-

1)>size(Force_signal_i,1) 

             Force_sig_trim_start=Force_sig_trim_start-(Force_threshold-

(Fs_force*0.5)+((Fs_force*4)-1)-size(Force_signal_i,1)); % Moving the trim start 

further back if the segment to be cut out is longer than signal 

         elseif Force_sig_trim_start<0 
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             Force_sig_trim_start=1; % If trimstart chosen is negative then it is 

made to start from 1 

         end 

         

Force_signal_i=Force_signal_i([Force_sig_trim_start:(Force_sig_trim_start+((Fs_fo

rce*1)-1))],:); % segmenting the signal to gather the 4 sec signal of grinding 

pass. 

         Force_seg_data(i).(fields{k})=Force_signal_i; % adding the segmented 

data to a new structure 

    end 

end 

9.4 Power signal data extractor and segmentation  

Spindle power file data extractor 

% Prompt the user for the file 

[filename_1,pathname]=uigetfile({'*.mat','All Files (*.tdms)'},'Choose the TDMS 

Files', 'Multiselect' , 'on'); 

if isempty(filename_1) 

   print("No files selected"); 

   return % No files selected, does not  

end 

filename_full=fullfile(pathname,filename_1); 

num_mat_files=size(filename_full,2); % num 

for num_struct=1:num_mat_files % looping through each trial no file  

    clear ConvertedData 

    load(filename_full{num_struct},'ConvertedData'); 

    for i=1:length((ConvertedData)) 

    if isempty(strfind(ConvertedData(i).FileName,'Parameter'))==0 

        

Power_data(num_struct).trial_no=str2double(extractBetween(filename_1(num_struct),

'Trial_','.mat')); 

        

Power_data(num_struct).PG_Spindle_Power=tall(ConvertedData(i).Data.MeasuredData(1

7).Data); 

    elseif isempty(strfind(ConvertedData(i).FileName,'Airpass'))==0 
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Power_data(num_struct).AP_Spindle_Power=tall(ConvertedData(i).Data.MeasuredData(1

7).Data); 

    end 

    end 

end 

 

Power segmentation 

% Gathering the thresholding points from AE segmentation   

Fs_AE=2000000; % Sampling rate (2Mhhz for AE signals recorded) 

Fs_Power=51200; % Sampling rate for force (51.2kHz) 

for i= 1:length(AE_data) 

    %For PG dataset  

    AE_signal_i=gather(AE_data(i).AE_Kistler_data_PG); % getting pre_data 

    %Trimming for Kistler AE data 

    threshold=0.15; % threshold for Kistler data  

    threshold_point_PG(i,1)=find(AE_signal_i>(threshold),1,"first"); % threshold 

point for Kistler in Column 1  

    AE_signal_i=gather(AE_data(i).AE_Mistras_data_PG); % getting the raw data 

    %Trimming for Mistras AE data 

    threshold=0.2; % threshold for Mistras data  

    threshold_point_PG(i,2)=find(AE_signal_i>(threshold),1,"first"); % threshold 

point for Mistras in Column 2  

    % Finding the threshold point in Force data for PG: 

    t_stamp_Fs_AE=[0:(1/Fs_AE):15]; % creating time stamp vector for AE 

    t_stamp_Fs_Force=[0:(1/Fs_Power):15]; % creating time stamp vector for Force 

    t_threshold_point_PG=t_stamp_Fs_AE(threshold_point_PG(i,2)); % find time stamp 

of threshold for AE Mistras 

    [minD, IndexofMin]=min(abs(t_stamp_Fs_Force-t_threshold_point_PG)); % finding 

equivalent index of threshold point in force vector 

    Force_threshold_idx(i,1)=IndexofMin; % Threshold index to be used for force 
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    % For AP dataset  

    clear AE_signal_i 

    AE_signal_AP=gather(AE_data(i).AE_Mistras_data_AP); 

    rms_signal_AP=rms(AE_signal_AP,100000,1000,0); 

    [idx]=findchangepts(rms_signal_AP,"Statistic","rms","MaxNumChanges",4); 

    threshold_point_AP(i,1)=idx(1)*100000; 

    AE_signal_AP=gather(AE_data(i).AE_Mistras_data_AP); 

    rms_signal_AP=rms(AE_signal_AP,100000,1000,0); 

    [idx]=findchangepts(rms_signal_AP,"Statistic","rms","MaxNumChanges",4); 

    threshold_point_AP(i,2)=idx(1)*100000; 

    % Finding the threshold point in Force data for AP: 

    t_stamp_Fs_AE=[0:(1/Fs_AE):15]; % creating time stamp vector for AE 

    t_stamp_Fs_Force=[0:(1/Fs_Power):15]; % creating time stamp vector for Force 

    t_threshold_point_AP=t_stamp_Fs_AE(threshold_point_AP(i,2)); % find time stamp 

of threshold for AE Mistras 

    [minD, IndexofMin]=min(abs(t_stamp_Fs_Force-t_threshold_point_AP)); % finding 

equivalent index of threshold point in force vector 

    Force_threshold_idx(i,2)=IndexofMin; % Threshold index to be used for force 

end 

 

 

% %%Segmenting data with thresholds  

% fields=fieldnames(Power_data); % making an array of the fieldnames for looping 

through  

% for i=1:length(Power_data) 

%     % looping through the Power data for PG signal 

%     k=3; 

%     Power_signal_i=gather(Power_data(i).(fields{k})); % Picking all the Power 

data for PG signal 

%     Power_threshold=Force_threshold_idx(i,1); 
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%     Power_sig_trim_start=(Power_threshold-(Fs_Power*0.5)); % start the trim 0.5 

seconds before threshold point 

%     if Power_threshold-(Fs_Power*0.5)+((Fs_Power*4)-1)>size(Power_signal_i,1) 

%         Power_sig_trim_start=Power_sig_trim_start-(Power_threshold-

(Fs_Power*0.5)+((Fs_Power*4)-1)-size(Power_signal_i,1)); % Moving the trim start 

further back if the segment to be cut out is longer than signal 

%     elseif Power_sig_trim_start<0 

%         Power_sig_trim_start=1; % If trimstart chosen is negative then it is 

made to start from 1 

%     end 

%     

Power_signal_i=Power_signal_i([Power_sig_trim_start:(Power_sig_trim_start+((Fs_Po

wer*4)-1))],:); % segmenting the signal to gather the 4 sec signal of grinding 

pass. 

%     Power_seg_data(i).(fields{k})=Power_signal_i; % adding the segmented data to 

a new structure 

%     k=1; 

%     Power_signal_i=gather(Power_data(i).(fields{k})); % Picking all the force 

channels 

%     Power_threshold=Force_threshold_idx(i,2); 

%     Power_sig_trim_start=(Power_threshold-(Fs_Power*0.5)); % start the trim 0.5 

seconds before threshold point 

%     if Power_threshold-(Fs_Power*0.5)+((Fs_Power*4)-1)>size(Power_signal_i,1) 

%         Power_sig_trim_start=Power_sig_trim_start-(Power_threshold-

(Fs_Power*0.5)+((Fs_Power*4)-1)-size(Power_signal_i,1)); % Moving the trim start 

further back if the segment to be cut out is longer than signal 

%     elseif Power_sig_trim_start<0 

%         Power_sig_trim_start=1; % If trimstart chosen is negative then it is 

made to start from 1 

%     end 

%     

Power_signal_i=Power_signal_i([Power_sig_trim_start:(Power_sig_trim_start+((Fs_Po

wer*4)-1))],:); % segmenting the signal to gather the 4 sec signal of grinding 

pass. 

%     Power_seg_data(i).(fields{k})=Power_signal_i; % adding the segmented data to 

a new structure  



196 
 

% end 

 

%Segmenting data with thresholds. Removing the lead-in and lead out signal. 

fields=fieldnames(Power_data); % making an array of the fieldnames for looping 

through  

for i=1:length(Power_data) 

    % looping through the Power data for PG signal 

    k=3; 

    Power_signal_i=gather(Power_data(i).(fields{k})); % Picking all the Power data 

for PG signal 

    Power_threshold=Force_threshold_idx(i,1); 

    Power_sig_trim_start=(Power_threshold+(Fs_Power*1)); % start the trim 0.5 

seconds before threshold point 

    if Power_threshold-(Fs_Power*0.5)+((Fs_Power*4)-1)>size(Power_signal_i,1) 

        Power_sig_trim_start=Power_sig_trim_start-(Power_threshold-

(Fs_Power*0.5)+((Fs_Power*4)-1)-size(Power_signal_i,1)); % Moving the trim start 

further back if the segment to be cut out is longer than signal 

    elseif Power_sig_trim_start<0 

        Power_sig_trim_start=1; % If trimstart chosen is negative then it is made 

to start from 1 

    end 

    

Power_signal_i=Power_signal_i([Power_sig_trim_start:(Power_sig_trim_start+((Fs_Po

wer*1)-1))],:); % segmenting the signal to gather the 4 sec signal of grinding 

pass. 

    Power_seg_data(i).(fields{k})=Power_signal_i; % adding the segmented data to 

a new structure 

    k=1; 

    Power_signal_i=gather(Power_data(i).(fields{k})); % Picking all the force 

channels 

    Power_threshold=Force_threshold_idx(i,2); 

    Power_sig_trim_start=(Power_threshold+(Fs_Power*1)); % start the trim 0.5 

seconds before threshold point 

    if Power_threshold-(Fs_Power*0.5)+((Fs_Power*4)-1)>size(Power_signal_i,1) 
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        Power_sig_trim_start=Power_sig_trim_start-(Power_threshold-

(Fs_Power*0.5)+((Fs_Power*4)-1)-size(Power_signal_i,1)); % Moving the trim start 

further back if the segment to be cut out is longer than signal 

    elseif Power_sig_trim_start<0 

        Power_sig_trim_start=1; % If trimstart chosen is negative then it is made 

to start from 1 

    end 

    

Power_signal_i=Power_signal_i([Power_sig_trim_start:(Power_sig_trim_start+((Fs_Po

wer*1)-1))],:); % segmenting the signal to gather the 4 sec signal of grinding 

pass. 

    Power_seg_data(i).(fields{k})=Power_signal_i; % adding the segmented data to 

a new structure  

end 

 

 


