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Abstract

Speech separation remains a vital area of research for many modern technologies. The

ubiquitous spread of deep neural networks (DNNs) in many areas of signal processing (SP) and

machine learning (ML) research over the past decade has resulted in significant improvements

in single-channel speech separation on a number of benchmark datasets, particularly for

anechoic speech separation. Speech separation and enhancement in noisy and reverberant

acoustic environments remains challenging, particularly in single-channel models. This is the

area this thesis primarily focuses on.

In recent years, the temporal convolutional network (TCN) has been a popular sequence

model, particularly for speech separation. Arguably, the most popular of such models, the

convolutional time-domain audio separation network (Conv-TasNet) model, is analysed in

the second part of this thesis for how well it performs in dereverberation tasks with a view

to improving the combined speech enhancement and separation performance. It is shown

that the network’s optimal receptive field varies depending on the reverberation time of the

data being dereverbed. Further to this, the weighted multi-dilation temporal convolutional

network (WD-TCN) is proposed as an improvement to the TCN and is shown to give

consistent improvements in dereverberation and separation tasks using various parts of a noisy

reverberant speech mixtures corpus known as WHAMR. The WD-TCN allows the TCN to

dynamically adjust the focus of its receptive field to focus on more or less localized temporal

context. An alternative improvement which adjusts the receptive field itself at the frame

level is also proposed. This model is referred to as the deformable temporal convolutional

network (DTCN) as it uses deformable convolution in place of vanilla convolution which allows

the convolutional kernel to have a fully adaptive receptive field by using a linear interpolation

function.

The TCN model is typically considered a computationally lightweight model compared

to other DNN models; however, it doesn’t model global sequence information beyond the

mean and variance. Transformer networks that process high-level global context have led

to breakthroughs in performance across various areas of machine learning, including speech

separation. The third part of this thesis starts by looking at how incorporating multihead

attention (MHA), the main mechanism used in Transformers, can be leveraged to encode
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global context in the encodings of the Conv-TasNet model. A multihead self-attention (MHSA)

encoder is proposed and shows notable improvements in performance across a number of

acoustic conditions. A series of MHA decoders are also proposed with some but less notable

improvements. Following on from this, a study on training signal lengths (TSLs) is performed

on the dual-path (DP) Transformer-based speech separation model known as SepFormer.

This study demonstrated that the choice of TSL is non-trivial and depends on the signal

length distribution of the training data in particular but also the data segmentation strategy

and the model architecture. Following on from this study, a DNN model referred to as the

time domain Conformer (TD-Conformer) is proposed. This model is proposed as a more

optimal analogue of the DP Transformer model, particularly for noisy reverberant speech

separation. The Conformer is also notably more efficient to train than the DP Transformer

in the context of the work presented in this thesis. It is shown that the TD-Conformer

model, which uses convolution in place of Transformers for processing local context leads to

improved performance for combined speech separation and enhancement with a reduction

in computational complexity on shorter signal lengths. Evidence is also provided that this

is likely due to a large model size resulting in improved generalization properties of the

network. A further chapter is dedicated to analysing the differences between DP models

and the conformer models by proposing a model which combines the two, referred to as

the convolutional separation Transformer (ConSepT) model. The analysis of this model

highlights the strength of the larger model size of the Conformer models in helping the model

to generalize and further demonstrates some of the redundancies in the SepFormer model.

In the final part of this thesis, the application of speech separation to multi-speaker

automatic speech recognition (ASR) is explored. A novel method is proposed to fine-tune the

TD-Conformer model for ASR in a transcription-free fashion. This is done by leveraging the

embeddings of pre-trained ASR models and computing the differences between them. The

proposed method is shown to result in a reduction in word error rate (WER) on a dataset of

real doctor-patient conversations.
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Chapter 1

Introduction

1.1 Overview

Source separation techniques aim to separate an additive mixture of data, typically from the

same domain (e.g. audio), into its individual summative components. Speech separation is

the application of source separation techniques specifically for the separation of overlapping

speakers, commonly referred to as speech mixtures. A popular example of this is the so-called

cocktail party problem (Haykin & Chen, 2005). Speech separation has many applications, from

assistive hearing devices, e.g. hearing aids, to multi-speaker ASR, e.g. meeting recognition,

(Haeb-Umbach et al., 2021; Graetzer et al., 2021; Chang et al., 2019). Over the past decade,

the ubiquitous application of deep neural networks (DNNs) in research for trying to solve a

wide range of traditional machine learning and signal processing problems has resulted in the

rapid improvement of single-channel speech separation performance across many benchmark

evaluation corpora (Wang et al., 2018; Luo & Mesgarani, 2019; Subakan et al., 2021; Wang

et al., 2023a). Furthermore, a knock-on effect of this has been improvements in multi-channel

array-based speech separation and enhancement (Ochiai et al., 2020) as well as multi-speaker

ASR (Chang et al., 2019).

This thesis is primarily concerned with single-channel speech separation. In the final

chapter, its application to multi-speaker ASR is explored as well. Single-channel speech

separation models are only able to use one microphone channel of input information to

make inferences from the audio data, making it a particularly challenging task, especially

when the overlapping speech sources are additionally corrupted by delayed speech reflections

off acoustic boundaries, referred to as reverberation, or noise (Cord-Landwehr et al., 2022;

Maciejewski et al., 2020; Naylor & Gaubitch, 2010). Many different types of noise exist;

in this thesis, the primary type addressed is non-stationary noise, i.e. noise sources that

change over time. Multichannel separation models can exploit information from multiple

information streams as well as cross-channel spatial information of multiple microphones,

2
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neither of which are available in the single-channel separation problem. Despite its obvious

benefits, the suitability of multichannel separation solutions is highly dependent on both the

practicality of implementing a microphone array on the device for which the model will be

deployed as well as the availability of suitable data for training the model. Single-channel

speech separation is, therefore, a highly important field with many real-world applications

(Haeb-Umbach et al., 2021).

This thesis opens with an overview of speech separation research from the past to present

day. In Chapter 2, several prominent model types used for speech separation are introduced,

including independent component analysis (ICA), NMF and DNNs in order to highlight their

key features and discuss their differences. The former two models were more popular in earlier

research, but in more recent years, DNN models have come to dominate speech separation

benchmarks (Hyvärinen, 2013; Le Roux et al., 2015; Wang et al., 2018; Luo & Mesgarani,

2018b; Wang et al., 2023b). Further information about these model types, as well as detailed

descriptions of two popular single-channel DNN models highly relevant to this thesis, namely

Conv-TasNet and SepFormer, are given in Chapter 2.

In Chapter 3 to Chapter 5, the robustness of the Conv-TasNet model (Luo & Mesgarani,

2019) to (in particular) reverberant but also noisy acoustic conditions is investigated. Conv-

TasNet was initially proposed for single-channel speech separation using anechoic data (Luo

& Mesgarani, 2019) and while it has been evaluated on speech enhancement tasks, not a huge

amount of analysis has been done on the network structure and how different configurations

respond to differing acoustic conditions. A key feature of the Conv-TasNet model is what

is known as its receptive field. The receptive field is essentially the amount of temporal

information (measured in seconds or samples) the model can observe to produce a single

output frame. Not much attention has been paid to this property and how it interacts with

temporal features of the environment acoustics, such as reverberation time, i.e. how much

time it takes for environmental reflections to decay by a certain amount of energy. The main

contributions of this thesis begin in Chapter 3 by investigating how Conv-TasNet performs in

reverberant conditions. This is done by reformulating the separation model as a denoising

autoencoder (DAE) for performing dereverberation (Ravenscroft et al., 2022b). In Chapter 4,

an improvement to the Conv-TasNet model is proposed to enable the model to adapt the

focus of its receptive field to different acoustic conditions using a computationally lightweight

utterance-level attention network. In Chapter 5, this general idea is taken further by proposing

a type of convolution known as deformable convolution (Dai et al., 2017), which enables the

network to have a fully adaptive receptive field at the frame level. This model consistently

improves speech separation in noisy and reverberant conditions with only a minor increase in

model size.

A potential limitation of fully convolutional DNN models, such as Conv-TasNet, is their

inability to model global context due to the limitation of the receptive field. As such, from
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Chapter 6 to Chapter 9 combining convolutional structures in time-domain audio separation

networks (TasNets) with multi-head attention or Transformer layers (Vaswani et al., 2017) is

investigated in a number of different ways. Attention is a type of DNN layer used to apply

greater weight to features with greater similarity. In Section 6.1, dot-product attention is

reformulated as a cross-correlation function to demonstrate that it gives greater weighting to

features in a sequence that have higher correlations to one another, and hence, it is argued

that attention has inherent denoising properties, assuming the noise is uncorrelated. In

Chapter 6, this denoising idea is applied to the time-domain encodings in the aforementioned

Conv-TasNet model. Novel encoder and decoder networks are proposed, which incorporate

MHA. This idea is shown to be particularly effective in the encoder as it focuses the feature

representation on highly correlated features in the speech sequence prior to the separative mask

estimation network. In Chapter 7, a study is performed to investigate the impact of training

signal lengths (TSLs) on the separation performance of the aforementioned Conv-TasNet and

SepFormer models. The insights gained from this section are then used in the remaining

chapters for training novel separation models. A time-domain Conformer model, referred to

as the TD-Conformer, is proposed in Chapter 8 as an alternative model to the dual-path (DP)

network structure of the aforementioned SepFormer model. This model performs better

than the SepFormer model, specifically on noisy and reverberant data, with a favourable

computational expenditure on shorter signal lengths and shorter training times. The following

chapter, Chapter 9, takes insights gained about the performance of the SepFormer and

TD-Conformer models on both anechoic and noisy reverberant data and aims to combine the

model structure to provide a balanced trade-off in terms of performance between both model

structures.

The final contributory chapter is Chapter 10. In this final chapter, the application of the

TD-Conformer model for multi-speaker ASR is explored. A novel technique for transcription-

free adaptation of separation models for ASR is proposed using connectionist temporal

classification (CTC) features instead of a transcription-dependant loss function such as CTC.

The proposed method is demonstrated to give increases in WER performance consistently.

The final two chapters, Chapter 11 and Chapter 12, are given to provide some final

discussion, ideas for future work and some closing remarks. The remainder of this section is

given to outlining the research questions and contributions contained within this thesis.

1.2 Research Questions and Contributions

This section introduces the research questions addressed in this thesis as well as the contri-

butions made. Not all contributions relate to one of the specified research questions and

are sometimes a byproduct of the work seeking to address the specified questions. Where a

contribution has been published, the reference to the publication is also given.
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1.2.1 Research Questions

In this thesis, five main research questions (RQs) are posed. The first four directly address the

problem of speech separation in noisy reverberant environments. The final question addresses

speech separation more generally, but in the chapters addressing this question, emphasis is

put on the noisy reverberant scenario.

RQ1 Given the temporal variations introduced by (non-stationary) noise and reverberation,

how can time-domain audio separation networks (TasNets) be extended to better model

temporal context in noisy and reverberant environments?

RQ2 Given the importance of the receptive field in controlling the amount of temporal

information temporal convolutional networks can process, what relationship, if any,

exists between the size of the receptive field of fully convolutional speech dereverberation

models and reverberation time?

RQ3 Relating to the previous question, if a relationship can be found between the receptive

field of convolutional derverberation networks and the temporal structure of reverbera-

tion, how can the receptive fields of those networks be made adaptive to varying acoustic

conditions, in particular for combined speech enhancement and separation tasks?

RQ4 Given the inherent denoising properties of dot-product attention for uncorrelated noise

in features, how can attention be applied in TasNet encoders to yield less noisy encoded

speech features for TasNet separation models?

RQ5 Given the high time and computational requirements in training DP Transformer TasNet

models, what methods and models can be found or derived that can deliver similar or

better performance with a lower cost to train?

1.2.2 Contributions

The majority of contributions in this thesis have been published in a series of conference and

journal papers (Ravenscroft et al., 2022b,c, 2023a, 2022a, 2023b,c). The contributions in

Chapter 9 have been accepted for publication at ICASSP 2024 (Ravenscroft et al., 2024), and

the contents of Chapter 10 have not yet been published due to the recency of this work. The

following list is a set of descriptions of the contributions in this thesis and how they relate to

research questions with associated citations or chapter references.

1. A study in Chapter 3 on how the receptive fields of TCNs affect their performance for

monaural speech dereverberation, published in Ravenscroft et al. (2022b). This study

addresses RQ2 with a view to address RQ1. In Chapter 3, a popular speech separation

and enhancement TCN model known as Conv-TasNet is reformulated for dereverberation
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tasks. The model is evaluated across many different model configurations to gain insights

on how varying the receptive field influences dereverberation performance.

2. A TCN based structure incorporating an utterance-weighted multi-dilation convolutional

block is introduced in Chapter 3 for improved dereverberation performance. The findings

of this study address RQ1 and RQ3, and are published in Ravenscroft et al. (2022c).

This approach proposes allowing TCNs to dynamically weight their focus within their

receptive field using a lightweight convolutional attention mechanism known as squeeze-

and-excite. The already published work in Ravenscroft et al. (2022c) is also added to in

Chapter 4 by additionally evaluating the proposed model speech separation tasks.

3. A deformable TCN for speech separation in noisy reverberant environments along with

a publicly available toolkit for computing 1D deformable convolution proposed and

evaluated in Chapter 5. This work addresses RQ1 and RQ3 again and was published in

Ravenscroft et al. (2023a). The deformable convolutional layer proposed in this work

allows TCNs to have a fully dynamic receptive field at the frame level. This technique

is shown to be particularly useful for noisy and reverberant data.

4. A method for analysing encoded features in TasNets based on depthwise Euclidean

distance of the encoded features is proposed in Algorithm 1. This method was published

as a part of (Ravenscroft et al., 2022a).

5. A multihead self-attention (MHSA) encoder for TasNets resulting in improved perfor-

mance in noisy reverberant environments is proposed in Chapter 6. A series of MHA

encoders and decoders are also investigated in this chapter with varying performance.

The contents of this study were published in Ravenscroft et al. (2022a). This contribution

addresses RQ1 and RQ4.

6. Novel findings are reported in Chapter 7 on TSL limits for training speech separation

models where it is demonstrated that the signal length distribution of a training dataset

can notably alter the overall performance when TSL limits are employed due to random

sampling. In addition, it is shown that using TSL limits results in much faster training

times for the SepFormer model with no negative impact on performance. The findings

of this study were also published in Ravenscroft et al. (2023b) and address RQ1 and

RQ5.

7. A subsampling-based TD-Conformer model for speech separation in anechoic and noisy

reverberant environments is proposed in Chapter 8. This work was published in

Ravenscroft et al. (2023c) and addresses RQ1 and RQ5. In this work, the computational

attributes of convolution augmented Transformers (Conformers) are investigated in

comparison to DP Transformers. Based on these insights, a new separation network
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is proposed that can outperform recently state-of-the-art (SOTA) models on noisy

reverberant speech mixtures.

8. A further study on combining Conformer and DP Transformers to investigate the

generalisation properties on real mixtures is performed in Chapter 9. This work is

accepted for publishing in Ravenscroft et al. (2024).

9. As a part of the previous contribution, a method for evaluating speech separation

performance on real mixtures using intrusive metrics is also proposed, again also to be

published in Ravenscroft et al. (2024).

10. A method for transcription-free fine-tuning of speech separation models for multi-

speaker ASR is proposed in Chapter 10. This work is as yet unpublished, primarily

due to the recency of it. In this work, it is shown that frozen ASR encoder network

embeddings can be used to compute an embedding difference function, which can be

backpropagated through speech separation networks for purposes of fine-tuning them

towards multi-speaker speech recognition tasks.

1.3 Notation

Before proceeding, some guidance is given on the notation used in this thesis so that it might

aid the reader. Where possible, the following conventions are followed for assigning notation:

• Scalar variables are written using lowercase symbols, e.g. x

• Constants are denoted using uppercase symbols, e.g. X. Note this includes model

hyperparameters, as they remain constant per the model configuration in question.

• Vectors are written using lowercase boldface, e.g. x

• Matrices and higher dimensional tensors are written using uppercase boldface, e.g. X

• The above conventions apply to Greek symbols as well, e.g. θ,Θ,θ,Θ

• Frequency-domain variables are written using a sans-serif font, e.g. x,X, x,X

• All vectors should be assumed to be column vectors by default.



Chapter 2

Speech Separation Background

The work in this thesis is primarily concerned with speech separation methods for applications

in adverse acoustic scenarios, i.e. in the presence of non-stationary background noise and

reverberation. Reverberation is the effect that occurs when speech reflects off boundaries in

an acoustic environment, resulting in delayed reflections of the speech also being picked up at

the same microphone as the direct path of the speech from speaker to microphone. As will be

discussed further in this thesis, this effect is often detrimental to speech separation performance

(Maciejewski et al., 2020; Cord-Landwehr et al., 2022). In this thesis, speech separation is

considered to fall under the category of speech enhancement technology, although sometimes

speech separation and enhancement is used to emphasise models that jointly perform speech

separation and some combination of noise and reverberation removal from the speech signal,

referred to as denoising and dereverberation respectively (Maciejewski et al., 2020; Subakan

et al., 2021; Rixen & Renz, 2022; Ravenscroft et al., 2023a). Another terminological point is

that speech separation here specifically refers to models that aim to reconstruct more than

one speaker signal, if more than one is present, from a mixture of speakers. Recently, many

target speaker extraction (TSE) models have been proposed (Žmoĺıková et al., 2019; Delcroix

et al., 2020) which have many similarities to speech separation. However, TSE is explicitly

referred to in this thesis as a different technology to separation, as it aims to extract only one

speaker from a mixture of speakers at a time.

Speech separation research has its roots in early blind source separation (BSS) methods

(Jutten & Herault, 1991; Benesty, 2000; Bell & Sejnowski, 1995; Burel & Rondel, 1993; Yilmaz

& Rickard, 2004; Virtanen, 2007). The goal in BSS is to separate C data sources denotes

sc, c ∈ {1, . . . , C} from an additive mixture of the data, denoted x, with no prior information

about the sources s except what can be ascertained from the mixture x. Source separation

research has long been dominated by machine learning and signal processing techniques such

Some of the contents of this chapter are a revised version of the author’s own work found in (Ravenscroft
et al., 2022a).
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as ICA and artificial neural networks (ANNs) (Jutten & Herault, 1991; Herault et al., 1985;

Richard et al., 2023). More recently, DNN models have heavily dominated the field due to

improved access to data combined with improvements in parallel computing technologies

(e.g. graphics processing units (GPUs) and tensor processing units (TPUs)) enabling large

models with millions or more parameters to be trained on datasets in excess of hundreds of

hours of data. A particular variant of DNN models, known as time-domain audio separation

networks (TasNets) (Luo & Mesgarani, 2018b) have dominated benchmark datasets used for

evaluating speech separation and enhancement models up until recently. The original TasNet

(Luo & Mesgarani, 2018b) is composed of a single-layer convolutional neural network audio

encoder, a recurrent neural network mask estimation network that filters the encoded audio

and a decoder that decodes the filtered encoded audio back into the separated time domain

audio signals. A number of variants have been proposed, with significant research interest in

the mask estimation network in particular (Luo & Mesgarani, 2019; Tzinis et al., 2022b; Chen

et al., 2020a; Li et al., 2022a; Subakan et al., 2021; Rixen & Renz, 2022). Two of note in this

thesis are the Conv-TasNet (Luo & Mesgarani, 2019) and SepFormer (Subakan et al., 2021)

models. These are highly cited models and are widely used separation networks in related

research (Tzinis et al., 2022b; Maciejewski et al., 2020; Cord-Landwehr et al., 2022). They are

both used widely as baselines and for evaluating methods throughout this thesis. Most of the

information described in the remainder of this thesis typically relates to one or more of these

models in some way, and as such, both are described fully in Section 2.9 and Section 2.10.

The remainder of this chapter proceeds as follows. The signal models used for the speech

separation and enhancement models in this thesis are introduced in Section 2.1. Some widely

used datasets used for creating and evaluating speech separation and enhancement models

are introduced and described in Section 2.2. Some discussion of formulations is then given to

earlier solutions to solving speech separation. The ICA model is briefly described in Section 2.3

and the NMF model in Section 2.4. In Section 2.5, DNN models are introduced along with

some foundational information about different components of DNN models, such as training

procedures, layer types and commonly used objective functions. In Section 2.7, some commonly

used evaluation metrics of speech enhancement and separation models, particularly those

used in this thesis, are introduced. From Section 2.8 to Section 2.10, significant discussion is

given to so-called time-domain audio separation network (TasNet) models (Luo & Mesgarani,

2018b). These are a type of DNN model that, up until recently, typically dominated most

speech separation benchmarks in terms of raw separation performance (Rixen & Renz, 2022;

Wang et al., 2023b). The Conv-TasNet model (Luo & Mesgarani, 2019) is described in-depth

in Section 2.9 along with some baseline results. This model has been highly popular for a

number of different applications leveraging speech separation models (Ochiai et al., 2020;

Delcroix et al., 2020) due to its reliable performance and comparatively lightweight and

efficient design to other TasNet models (e.g. Chen et al. (2020a)). It is introduced here as
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it is the main point of investigation from Chapter 3 to Chapter 5. The SepFormer model

(Subakan et al., 2021) is introduced in Section 2.10. Up until mid-2022, SepFormer remained

state-of-the-art on numerous benchmarks and has been widely researched for downstream

applications (Luo et al., 2022; Cord-Landwehr et al., 2022). It is used as a baseline model

for investigations and evaluations throughout Chapter 7 to Chapter 9. As such, a detailed

description is provided in this chapter first before proceeding. The application of speech

separation to multi-speaker ASR is described more thoroughly in Section 2.11. Some final

discussion on other related topics that might be useful to the reader, such as dereverberation

and unsupervised speech separation, are given in Section 2.12.

2.1 Signal Models

The speech separation problem is commonly defined as trying to separate source speech signals

sc[i], c ∈ 1, . . . , C from a mixture

xclean[i] =
C∑
c=1

sc[i]. (2.1)

for discrete-time index i. Thus, the goal of using speech separation methods here is to attain

an estimate ŝc[i] for each of the C source signals sc[i]. In this traditional formulation (Schmidt

& Olsson, 2006), the signal model assumes no other disturbances to the speech signal.

In realistic applications of speech separation, noise and reverberation often impact the

signal quality (Haeb-Umbach et al., 2021; Maciejewski et al., 2020). Therefore it is often

suitable to include these in the signal model, i.e.

x[i] =
C∑
c=1

hc[i] ∗ sc[i] + ν[i] (2.2)

where ∗ denotes the convolution operator, hc[i] is the room impulse response (RIR) corre-

sponding to speaker c and ν[i] denotes additive noise.

In some parts of this thesis (Chapter 3 and Chapter 4), the focus is primarily on single-

speaker speech dereverberation with a later view to evaluating combined speech separation

and dereverberation models. To this view, a discrete single-channel reverberant single speaker

signal for C = 1 is defined as

xreverb[i] = h[i] ∗ s[i] (2.3)

= sdir[i] + srev[i] (2.4)

where h[i] is the RIR of the single speaker. The reverberant speech signal h[i] ∗ s[i] can be
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decomposed into the direct-path speech signal sdir[i] = αs[i− i0], with a delay i0 and possible

attenuation by a factor α, and reverberant part srev[i] = (h[i]∗s[i])−sdir[i]. In dereverberation

tasks in Chapter 3 and Chapter 4, the aim in this thesis is to estimate sdir[i], denoted ŝ[i].

Using the reverberation model in (2.4), the reverberant part of (2.2) can also be formulated

as a purely additive problem such that

x[i] =
C∑
c=1

(sdir,c[i] + srev,c[i]) + ν[i] (2.5)

where sdir,c[i] denotes the direct path of the cth speaker to the receiving microphone and

srev,c[i] denotes the remaining impulse train of the RIR hc[i], i.e. typically the reflections from

walls and surfaces in the acoustic environment. The signal model (2.5) is often more relevant

Figure 2.1: Visualisation of the noisy reverberant speech separation problem (with
C = 2 speakers) as described by Eq. (2.2).

to simulated speech corpora such as WHAMR (Maciejewski et al., 2020) (described later in

Section 2.2.1) where sdir,c[i] is typically used as the target signal for training speech separation

models. The signal model in (2.5) is depicted in Figure 2.1 where C = 2 speakers are seen with

the direct paths of their speech reaching the microphone without any prior interference except

for additive noise in the background until the reflected speech path reaches the microphone.

Note that in Figure 2.1, only one reflection path is displayed. Many speech separation models

that aim to solve this problem are also trained or constructed to suppress the noise or extract

noise as an additional source (Wichern et al., 2019; Maciejewski et al., 2020; Subakan et al.,

2021; Tzinis et al., 2022a). As speech reflections are highly correlated with their respective

speech sources, not all speech separation approaches seek to suppress reverberant effects.

Some approaches aim to perform speech dereverberation prior to separation or after separation

(Zhang et al., 2020a; Ueda et al., 2021).
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Figure 2.2: Example RIR h[i] depicted using time and time-frequency representa-
tions. Arrows annotate the early and late portions. The example shown is from
air type1 air binaural lecture 1 5.wav in the OPENRIR database (Ko et al.,
2017).

Another approach is to suppress only late reflections of speech (typically > 50ms) and

retain early reflections (≤ 50ms) (Drude et al., 2019; Cord-Landwehr et al., 2022). The

separate early and late parts of an RIR are visualised in Figure 2.2. This is motivated by

research demonstrating the benefits of early reflections for speech intelligibility (Bradley et al.,

2003; Bradley & Sato, 2002). This approach is formulated as

x[i] =
C∑
c=1

(searly,c[i] + slate,c[i]) + ν[i] (2.6)
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where searly,c[i] includes the direct path and early speech reflections and slate,c[i] denotes late

speech reflections. The signal model in (2.6) is a special case of (2.5), and thus, the mixture

signal x[i] is consistent between the two.

2.2 Datasets, Corpora & Challenges

Before discussing more technical details of speech separation models, some discussion is first

given to the data available for training such models. As most ML speech separation models

“learn” their behaviour from data, thus data is required to create them. The term far-field is

sometimes used in this section to describe speech data. Far-field refers to the microphone

being relatively far away from the speaker. Far-field speech data typically encompasses very

noisy and reverberant speech signals, hence its usage in this section and subsequent chapters.

A number of corpora are available that have some application to the noisy reverberant

multi-speaker scenario on which this project is focused. Some are simulated, and some are

“real”. The term “real” in this work refers to speech corpora where the signals used for training

or evaluation are not artificially mixed with other speech or noise sources and, for reverberant

speech, the speech was not artificially reverbed using real or simulated RIRs. Some corpora

are entirely single channel, but most contain some kind of multichannel configuration. They

also vary greatly regarding scenario, i.e. the microphone configurations, acoustic environment,

speaker characteristics and linguistic content. Settings can vary from dinner party settings

(Barker et al., 2018; Segbroeck et al., 2019) to meeting rooms (Carletta et al., 2006) to

pedestrian areas (Barker et al., 2015; Vincent et al., 2016; Wichern et al., 2019; Maciejewski

et al., 2020).

Some older datasets widely used for training multi-party transcription models, also called

meeting recognition, are the NIST Rich Transcription Evaluations (RTE) series (NIST, 2020,

2009). The NIST datasets have not been widely explored in the modular separation and

recognition approach described and explored later in this thesis but remain relevant to the

field nonetheless. Around the same time as the NIST RTE series, the AMI meeting corpus

was developed (Carletta et al., 2006; Hain et al., 2006). The AMI corpus has seen widespread

use in a number of applications that utilise speech separation, including speech recognition

and diarization (Chang et al., 2019; Morrone et al., 2023). Neither of these corpora is used in

this thesis, but both are historically significant in multi-speaker speech processing, and AMI

still regularly appears as a training and evaluation set in modern multi-speaker processing

research (Chang et al., 2019; Radford et al., 2023).

The REVERB challenge (Kinoshita et al., 2011) presented real and simulated multichannel

datasets intended for training and evaluating speech dereverberation & enhancement models.

The simulated data is created from the WSJCAM0 (Robinson et al., 1995) corpus, and the

real data is from the MC-WSJ-AV (Lincoln et al., 2005) corpus which is also used later in
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this thesis in Chapter 9 to evaluate speech separation models in far-field environments. The

CHiME 3 & 4 challenges (Barker et al., 2015; Vincent et al., 2016) similarly used real and

simulated data for far-field audio recordings in a number of public places. Speakers were asked

to record utterances from the WSJ0 corpus (Paul & Baker, 1992) in public places to create the

real data for these corpora. This challenge also came in multiple multi-channel microphone

configurations. The successor challenges to CHiME 3 and 4, the CHiME 5 and 6 challenges

utilised a corpus of dinner parties with speakers being recorded from multiple microphone

arrays and moving between rooms (Barker et al., 2018; Watanabe et al., 2020). The most

recent CHiME 7 challenge had two sub-tasks: distant automatic speech recognition and

unsupervised domain adaptation for speech enhancement (UDASE). The CHiME 7 datasets

contained a diverse set of real and simulated data with the goal of speech recognition in

far-field environments and unsupervised adaptation of speech enhancement models to realistic

data (Cornell et al., 2023; Leglaive et al., 2023). Some other recent challenges of relevance to

this project include the SPEAR and Clarity challenges (Guiraud et al., 2022; Graetzer et al.,

2021). The SPEAR challenge was a binaural (2-channel) speech enhancement challenge for

augmented reality headsets. There have been many versions of the Clarity challenge, but

all have been concerned with speech enhancement for hearing aid devices. The reader is

encouraged to refer to the relevant references for more information on these challenges and

accompanying datasets.

Many simulated corpora have been proposed for training speech separation and speaker

extraction models. One of the most commonly used datasets for anechoic (non-reverberant

noise-free) speech separation is the WSJ0-Mix corpus (Isik et al., 2016), which consists

of artificially mixed speech signals from the Wall Street Journal corpus. This corpus has

2-speaker and 3-speaker datasets, referred to as WSJ0-2Mix and WSJ0-3Mix, respectively.

The WHAM dataset (Wichern et al., 2019) is an extension of WSJ0-2mix that combines

non-stationary ambient noise recorded in real environments with the artificial speech mixtures

of WSJ0-2Mix. The WHAMR dataset (Maciejewski et al., 2020) takes this a step further

again by reverberating the speech mixtures using simulated RIRs. Another similar dataset is

the LibriMix dataset (Cosentino et al., 2020). Again, this is a simulated dataset that uses

utterances drawn from the open-source LibriSpeech dataset (Panayotov et al., 2015). It also

uses the ambient noise in the WHAM dataset to create noisy mixtures. The WSJ0-Mix,

WHAM, WHAMR and LibriMix datasets have been instrumental benchmarks in advancing

the state-of-the-art in speech separation and related fields (Wang et al., 2018; Luo & Mesgarani,

2019; Subakan et al., 2021; Wang et al., 2023b). More in-depth details of these datasets are

given in the following two sections, as these are all used extensively in this thesis.
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2.2.1 WSJ-Mix & WHAMR

The WSJ0-Mix dataset was described first in Hershey et al. (2016) and Isik et al. (2016). In

this corpus, simple speech mixtures are generated by mixing utterances at varying signal-to-

noise ratios (SNRs) from 0-5dB. For each training example there is a speech mixture sample

and two or three reference (target) speaker samples. As previously mentioned WSJ0-Mix

comes with two speaker configurations for 2-speaker (WSJ0-2Mix) and 3-speaker (WSJ0-3Mix)

mixtures. The WSJ0-Mix and the following WHAM and WHAMR corpora come in 8 kHz and

16 kHz configurations. In addition, there are another two configuration options referred to as

min and max. The min configuration truncates all utterances to the length of the shortest

utterance in the mixture. The max configuration pads the signal to the longest utterance.

A drawback of WSJ0-2Mix is it neither includes additional noise nor reverberation as

targeted in this work in Eq. (2.2). To incorporate additional noise, the WHAM (WSJ0 Hipster

Ambient Mixtures) corpus was introduced in (Wichern et al., 2019), and to incorporate

reverberation, the WHAMR dataset was proposed by (Maciejewski et al., 2020) as a noisy

reverberant extension to WSJ0-2Mix. Noise clips were sampled from a number of urban

environments and these are mixed with the speech mixtures at a randomly selected SNR

value from a uniform distribution between −6 and +3 dB. RIRs are also simulated from room

acoustic parameters, and microphone and speaker positions that are randomly generated from

uniform distributions specified by the authors of the corpus Maciejewski et al. (2020). An RIR

is generated for each speaker from the same simulated room environment. The RIRs have a

reverberation time RT60 ranging from 0.1 s to 1 s are generated using the pyroomacoustics

software package (Scheibler et al., 2018). RT60 is a measure in seconds, of the amount of time

it takes for an impulse response (IR) to decay by 60 dB.

For all WSJ0-Mix derived corpora mentioned in this section, the training set consists

of 20000 training examples, resulting in an overall 58.03 hours of speech; the validation set

consists of 5000 training examples, equalling 14.65 hours of speech, and the test set consists

of 3000 examples resulting in 9 hours of speech.

2.2.2 LibriMix

LibriMix is a simulated 2-speaker (Libri2Mix) and 3-speaker (Libri3Mix) mixture corpus

derived from the LibriSpeech and WHAM corpora (Cosentino et al., 2020). Speech samples

come from the LibriSpeech corpus (Panayotov et al., 2015), and noise samples come from

the WHAM corpus. Instead of speech-to-speech ratios (SSRs), LibriMix uses loudness units

relative to full scale (LUFS) measured in dB to set the loudness of speakers and noise in the

mixtures. Speakers have a loudness between -25 and -33 LUFS and noise between −38 and

−30 LUFS.

The source clean LibriSpeech corpus has subsets of train-100, train-360, dev and test. For
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training, LibriMix maintains the two separate train-100 and train-360 subsets from the parent

LibriSpeech corpus (Panayotov et al., 2015). For Libri2Mix, the train-360 set comprises

50,800 mixtures and 212 hours of speech and the train-100 set comprises 13,900 mixtures

and 58 hours of speech. For Libri3Mix, the train-360 set comprises 33,900 mixtures and 146

hours of speech and the train-100 set comprises 9,300 mixtures and 40 hours of speech. For

all speaker configurations the dev and test sets both consist of 3,000 utterance and 11 hours

of speech mixtures.

2.3 Independent Component Analysis (ICA)

Independent component analysis (ICA) was one of the first highly popular solutions to BSS.

As such, this section briefly introduces the ICA source separation model, first proposed in

Jutten & Herault (1991). The popularity of ICA was due to the simplicity of the approach

and given computational restraints at the time. It is introduced here as it is a foundational

BSS formulation (Richard et al., 2023) and also for the purposes of comparison to the NMF

and DNN methods discussed in Section 2.4 and Section 2.5. It has been shown that using

ICA formulations can solve the problem of noisy speech separation in addition to “clean”

speech separation (Hongyan & Guanglong, 2010). ICA was first proposed and formalized as

a multichannel problem and the solution requires a multichannel formulation. As such, in

the following, the model is introduced as a multichannel model and then in the later part of

the section, it is explained how it can be adapted for single-channel source separation. In the

ICA model, a multichannel mixture signal

X =


x1[1] x1[2] · · · x1[Lx]

x2[1] x2[2]
. . .

...
...

. . .
. . .

...

xM [1] xM [2] · · · xM [Lx]

 (2.7)

with Lx discrete signal samples for M channels is composed of weighted sums of hidden factors

sc[i] such that

xm[i] =

C∑
c=1

am,csc[i] (2.8)

where am,c is a constant value in a mixing matrix (Hyvärinen, 2013). The ICA model is

typically formulated as the matrix equation

X = AS (2.9)

where the mixing matrix A ∈ RM×C comprises the mixing parameters am,c and speech matrix
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S ∈ RC×Lx . Thus the solution is to solve for the estimated speech matrix Ŝ by calculating

the unmixing matrix A−1, where Ŝ = XA−1 (Benesty, 2000). The formulation stated above

relies on spatial information, i.e. M > 1 microphone channels, in order to solve the source

separation problem reliably. However, the single-channel source separation problem (M = 1)

can be solved using ICA by artificially increasing M with delayed copies of x1.

To solve for the unmixing matrix A−1, a number of assumptions are made about the

sources S. The main assumption is that any source sc is non-Gaussian and statistically

independent of any other source sc′ (Hyvärinen & Oja, 1999; Tharwat, 2021). Sometimes,

other assumptions such as uncorrelatedness or the orthogonality of sources are also assumed

(Hyvärinen & Oja, 1999). Mathematically, the independence of two sources is described by

the likelihood

P (sc ∩ sc′) = P (sc)P (sc′) . (2.10)

If statistical independence is true, then the expectation

E (scsc′) = E (sc) E (sc′) , (2.11)

i.e. the covariance of the two sources is zero (Ingle et al., 2005),

cov (sc, sc′) = E (scsc′)− E (sc) E (sc′) . (2.12)

In most ICA algorithms, a whitening of X is typically performed before the actual ICA

estimation (Hyvärinen, 2013). The whitening process typically involves transforming X by

some whitening matrix Z where

1

Lx
(ZX)(ZX)⊤ = I, (2.13)

where (·)⊤ denotes the matrix transpose and I is an identity matrix. The matrix Z is fairly

trivially found using principal component analysis (PCA) (Hyvärinen, 2013; Wold et al., 1987).

The ICA model still holds following this stage as

Z = A′S = VAS (2.14)

with the consequence that now the quantity A′ = (VA) is to be estimated instead of just A

in (2.9). A′ is also now an orthogonal matrix, i.e. its inner and outer product with itself is

an identity matrix. After applying whitening, the estimation of the mixing matrix can be

constrained to the space of orthogonal matrices (Hyvärinen, 2013). This, in turn, reduces the

number of unused (or free) parameters in the model. A major motivation for the whitening

process is that if the matrix A′ is orthogonal, this typically results in faster and more stable
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estimation.

The final stage is an optimization process where (A′)−1 is estimated. This is done by

maximising some criterion referred to as the objective function. More common approaches

for the optimization stage include the maximum-likelihood estimation and the minimization

of mutual information (Pham & Garat, 1997; Eriksson & Koivunen, 2004; Comon, 1994;

Hyvärinen & Oja, 2000). There are a number of possible approaches to solving the ICA

problem for speech separation. As this is superfluous information to the remaining chapters

of this thesis, greater detail is not provided here. However, some descriptions of notable

algorithms specifically for single channel source separation using ICA can be found in (Davies

& James, 2007; Barry et al., 2005). Some notable ICA algorithms include FastICA (Hyvarinen,

1999), projection pursuit (Hyvärinen & Oja, 2000), and Infomax (Hyvärinen & Oja, 2000).

2.4 Non-negative Matrix Factorisation (NMF)

NMF is another well-established technique in BSS research (Benesty, 2000; Le Roux et al.,

2015; Cauchi et al., 2016). NMF forms part of the transition from signal-processing-based

source separation to learning-based approaches Roux et al. (2019). It also inspires the later

formulation of the TasNet model in Section 2.8 (Luo & Mesgarani, 2018b). A key feature of

NMF is the non-negativity constraint, which enforces the input data only to be represented

by additive combinations of weighted basis signals. Commonly, speech processing models

often use purely positive features to achieve their goal, e.g. magnitude and power spectral

representation. Thus, the NMF model continues in this fashion by enforcing non-negative

representation learning using basis functions. This is a useful feature of the model, particularly

as it aids its interpretability. A key difference of using NMF as an alternative to ICA is that

it can recover the sources without requiring explicit knowledge or making assumptions about

the signal statistics.

In NMF, a non-negative matrix representation of the mixture signals, such as absolute

magnitude or power spectral representations, X of shape Nspec × LX, where Nspec is the

number of spectral features and LX is the sequence length, is defined as

X ≈ BW (2.15)

where B ∈ R+
Nspec×C defines the basis of the data and W ∈ R+

C×LX contains the energy for

each basis. The non-negativity constraint is enforced by B,W ≥ 0. The matrices B and W

are intialised to positive values estimated from example data in the training stage (Abdali &

NaserSharif, 2017). A common approach in the case of speech separation of a mixture of C
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speakers, i.e.

X =

C∑
c=1

Sc (2.16)

where Sc is the spectral representation of the cth speaker, is to define the basis matrix as a

concatenated matrix of C submatrices (Schmidt, 2009) such that

B = [B1, . . . ,BC ] (2.17)

where Bc ∈ RNspec×C′
and C′ is an arbitrary dimension size. Correspondingly, for the weight

matrix, this means using concatenation of sparse matrices, i.e.

W =
[
W⊤

1 , . . . ,W
⊤
C

]
(2.18)

where WC ∈ RC′×LX . By enforcing the sparsity of the weight sub matrices W, the approxima-

tion for each individual source can be found by

Ŝc ≈ BcWc, c ∈ {1, . . . , C}. (2.19)

This approach is generally referred to as sparse non-negative matrix factorization (SNMF)

(Schmidt, 2009; Peharz & Pernkopf, 2012).

To estimate B and W an iterative optimization algorithm is typically used (Schmidt &

Olsson, 2006; Peharz & Pernkopf, 2012). One of the simplest solutions to this optimization

problem is to minimize the difference between X and BW subject to the non-negativity

constraint, i.e.

min
B,W

(∥X− BW∥) s.t. B,W ≥ 0. (2.20)

To enforce the sparsity constraint in NMF, an additional term for W is often included which

is a weighted sum of its contents, i.e.

min
B,W

∥X− BW∥+ λ
∑
c,ℓ

Wc,ℓ

 s.t. B,W ≥ 0 (2.21)

where λ controls the sparsity. More in-depth descriptions of optimization algorithms used

for NMF and SNMF can be found in Schmidt & Olsson (2006); Schmidt (2009); Peharz &

Pernkopf (2012).
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2.5 Deep Neural Networks (DNNs)

A significant drawback of ICA and NMF is that they are limited by their linearity and inability

to model complex, in particular, non-linear relationships in the data, i.e. (2.9) and (2.15) are

linear models. The further development of DNN models, with their ability to learn non-linear

hierarchical representations of the data, has led to significant improvements in separation

performance.

The rise in deep learning (DL) research around the early 2010s in a number of different

fields (Krizhevsky et al., 2012; Hinton et al., 2012a; Graves, 2013) similarly led to a rise in

interest in applying similar methods to speech separation. This section gives an overview

of the foundational DNN-based contributions to speech separation research. In addition, a

mathematical description of some of the more common network layers and loss functions,

particularly those used heavily in this thesis, are given.

The earliest work on ANNs for modelling computational data dates back to the 1940s

(McCulloch & Pitts, 1943). Since then, a number of different types of models and strategies for

training neural network models have been developed. The training process of a neural network

model refers to optimising the model’s various multiplicative and additive parameters, often

called weights and bias, respectively. This process is how models learn their behaviour, usually

from example data. In this thesis, the primary focus is on supervised neural network models.

Supervised models are models that can be trained on labelled data (Haykin, 2009). Labelled

data refers to datasets where each training input sample has a paired reference output sample

(the “label”) that can be used to compute an error term between the reference output sample

and the predicted output of the neural network model. The function used to compute the error

term is called the loss function. Depending on context, the loss function is sometimes referred

to by its negative value, the objective function. Thus, the aim in supervised training is usually

to either minimise the loss function or maximise the objective function; the former phrasing

is typically used due to the nature of the optimization algorithms commonly used for training

neural network models. The optimization algorithm used throughout this thesis is known as

error backpropagation (Rumelhart et al., 1986). Section 4.4-4.8 of Haykin (2009) provides a

thorough mathematical description of error backpropagation for neural networks. In error

backpropagation, the output of the loss function (the error term) is used to optimise the

parameters of the neural network by backpropagating error gradients backwards layer-by-layer

through the neural network. The network parameters are then updated via gradient descent,

a widely used optimization technique described in Haykin (2009). Gradient descent involves

iteratively adjusting model parameters in multiple steps until the model reaches a minimum

criterion of the loss function, ideally the minimum, but usually manually specified as some

condition by which the loss appears to no longer decrease after a set number of epochs

of training. The amount the parameters are adjusted is controlled by a hyperparameter
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called the learning rate, denoted η. The overall schematic for supervised training via error

backpropagation is visualized in Figure 2.3.

Figure 2.3: Diagram of the supervised approach to training deep neural networks
using error backpropagation. Solid lines indicate information flow. The dashed line
indicates direction of gradient propagation.

The loss function is often computed across multiple training examples and averaged across

the so-called batch of training examples before being backpropagated through the network.

This approach typically speeds up training as foward passes for each example in the batch can

be computed in parallel using floating point acceleration hardware such as GPUs (Krizhevsky

et al., 2012).

In the methods proposed in this thesis, the error backpropagation optimization algorithm

is mostly taken for granted. The main point to emphasize on the backpropagation algorithm

is that any neural network operation must be differentiable else it will not be possible to

backpropagate errors through the network properly, and thus, the model will be untrainable.

This is a particularly important point later in Chapter 5 for the deformation algorithm that

dynamically changes seemingly discrete sample points in convolutional DNN layers (introduced

in Section 2.5.6). Many issues arise in training neural networks, often relating to the gradients.

A common issue is the vanishing or exploding gradient problem (Hochreiter, 1998) with very

deep networks or inputs with very long sequences. Every additional backpropagation of a

gradient through another layer or sequence step can result in exponentially small or large

gradients. For example, if all gradients are < 1, they tend towards 0 with every additional

sequence step or network layer. Conversely, if gradients are > 1, they tend towards ∞ with

every additional sequence step or network layer. When using discrete floating point numbers

on a computer, this can result in the error gradients becoming zero-valued, in which case the

parameters will not be updated, or the gradients can become infinite valued, often leading to

infinite valued parameters and other unintended behaviour.

2.5.1 DNNs for Speech Separation

Separation techniques using neural network models have been around since the early days

of BSS research (Herault et al., 1985; Jutten & Herault, 1991). Although DNNs had been
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dominating many areas of research since the early 2010s, they were not popularized in speech

separation research until around 2015 (Roux et al., 2019; Hershey et al., 2016). This was

primarily due to the permutation problem, i.e. which model output ŝc[i] should be mapped to

which reference signal sc[i] in the loss, known as the permutation problem (cf. Section 2.6.2),

and the unknown number of sources. With the introduction of deep clustering (DC) (Hershey

et al., 2016), DNNs models became a lot more dominant in the field of speech separation

(Chen et al., 2017; Luo & Mesgarani, 2019; Wang et al., 2023a). This approach developed

an objective function to enable the use of the unsupervised k-means clustering algorithm to

separate out deep embeddings into separate classes from spectral inputs, i.e. each speaker’s

embeddings are clustered individually. This method proved effective, outperformed an NMF

baseline and implicitly solved the permutation problem. Permutation invariant training (PIT)

(Yu et al., 2017) was proposed around a similar time to DC as another approach to solving

the permutation problem with DNN models. PIT solves the permutation by minimizing the

loss pairs in a permutation matrix and assumes the minimum loss permutation is the most

accurate way to solve the problem. This is formulated mathematically later in Section 2.6.2.

A deep attractor network (DANet) was proposed shortly following DC and PIT (Chen

et al., 2017). This method proposed using clustering combined with a masking network

and similarity functions to assign frequency bins to each specific speaker. This method

required less preprocessing than the DC approach and gave better performance as well. The

Chimera and Chimera++ networks (Luo et al., 2017; Wang et al., 2018) similarly aimed to

perform separation using a two-headed network, one DC subnetwork and one time-frequency

masking subnetwork. This approach resulted in performance improvements over the DC

approach. The Chimera++ network at the time of publishing was SOTA on the WSJ0-2Mix

dataset (outperforming both DANet and DC). A further improvement to the PIT algorithm

referred to as utterance-level permutation invariant training (uPIT) was proposed which gave

comparable results to Chimera++ and DC-based models. The uPIT algorithm also improves

the efficiency of PIT by solving the permutation at the utterance level as opposed to the

frame level. Nowadays it is common to see uPIT simply referred to as PIT as there is no

benefit to using PIT as it was formulated in Yu et al. (2017) over uPIT. For all the models

trained in this thesis, uPIT is used and often referred to simply as PIT.

All of the DNN models discussed in the previous paragraph operate in the time-frequency

(TF) domain. However, as will be discussed in Section 2.8 and beyond, a learnable time-

domain representation alternative can outperform TF models and give SOTA performance

in many cases (Luo & Mesgarani, 2019; Subakan et al., 2021; Rixen & Renz, 2022). This

was first proposed in the later discussed TasNet model (Luo & Mesgarani, 2018b) by using a

convolutional neural network to encode the time domain signal. Other hand-crafted features

such as multi-phase gammatone (MPGT) filterbanks have also been proposed as an alternative

to TF representations (Ditter & Gerkmann, 2020).
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Most of the previously mentioned and other DNN separation models can be separated

into one of two classes, namely, mapping or masking. Mapping networks take some encoded

speech mixture W ∈ RL×N , of sequence length L and feature dimension N , and directly

map the mixtures to C encoded speech signals Vc ∈ RL×N for c ∈ {1, . . . , C}. Masking

networks, on the other hand, take the encoded mixture W and produce a sequence of masks

Mc ∈ RL×N for each speaker. The masks are then multiplied with the original encoded

mixture W using the Hadamard product, denoted ⊙, to give the encoded features for each

speaker, i.e. Vc = Mc ⊙W. It has been suggested that masking networks give better

intelligibility of speech while mapping networks retain better quality, but the research on

mapping vs. masking networks is as yet fairly inconclusive (Nossier et al., 2020). Many

examples of masking networks will be discussed in greater depth later in this thesis, such as

Conv-TasNet (Luo & Mesgarani, 2019) and SepFormer (Subakan et al., 2021). Some notable

examples of mapping networks in more recent separation research include the Wavesplit model

(Zeghidour & Grangier, 2021) and the TF-GridNet model (Wang et al., 2023a).

The remainder of this section introduces commonly used network layers and loss functions

used in speech separation models with particular emphasis on those most relevant to this

thesis. The background of the aforementioned TasNet models is discussed in their own sections

later in this Section 2.8. Two of these, the Conv-TasNet model and the SepFormer model, are

given their own section as they form a significant backbone of much of the work done in the

proceeding chapters. As such, it is seen as necessary to give each of these a more in-depth

explanation and analysis than some of the previously mentioned models.

2.5.2 Network Layers

A number of different network layers have been proposed, typically due to how they model

spatial or sequential information differently. The following subsections introduce the founda-

tional layer types relevant to the remainder of this thesis. According to their relevance to this

thesis, some types receive more in-depth descriptions than others. The first type of network

layer, historically referred to as the perceptron (Rosenblatt, 1958; Haykin, 2009) but nowadays

more commonly referred to as a feedforward or linear layer, is a simple mathematical or

computational abstraction of how neurons fire in the human brain originally proposed as a

probabilistic model for memory storage. In addition to this layer structure, a number of types

of network layers are introduced in Section 2.5.3 to Section 2.5.8, including recurrent layers,

convolutional layers and the more recent Transformer layer, along with some discussion of the

difference between each type. Most of the layers discussed take an input sequence of length L

with feature dimension D. In some cases, particularly for higher dimensional convolutional

layers, the feature space may be multi-dimensional, i.e. D × . . .×D′. In this thesis, higher

dimensional layers are never used and, as such, are not included in the following as essential
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information. For more information, however, the reader is referred to Section 4.17 in Haykin

(2009).

Comments on notation In the proceeding subsections describing each layer, the input

features of any layer are drawn from a L length sequence of features of dimension D denoted

Y =


y1

y2

...

yL

 =


y1,1 y1,2 . . . y1,D

y2,1 y2,2 . . . y1,D
...

...
. . .

...

yL,1 yL,2 . . . yL,D

 ∈ RL×D (2.22)

The feature (row) vector of Y at temporal frame index ℓ ∈ {1, . . . , L} is denoted yℓ with the

ℓ subscript omitted, i.e. just y, sometimes if it applies ∀ℓ ∈ {1, . . . , L}. Sometimes scalar

features are used with the subscripts ℓ ∈ {1, . . . , L} for sequence indexing and feature indexing

d ∈ {1, . . . , D}, i.e. yℓ,d. Commonly, the ℓ index is also omitted from yℓ,d, i.e. yd, if the layer

applies the same to all L feature vectors independent of ℓ. Greek notation (θ, β, etc.) is used

primarily for trainable model parameters in these sections (the main exclusions to this rule

include standard deviation σ and mean µ which are used for statistics). The bias terms β can

often be considered as “optional” or nonessential to the layer and consequently are omitted in

more complex formulations, such as depthwise separable convolution (cf. (2.49)). Sometimes,

this is due to the nature of the layer being described, but it is also common that bias terms

are instead effectively replaced by normalization layers, as is the case in the later described

Conv-TasNet model (cf. Section 2.9). The notations for mean, µ, and standard deviation, σ,

always refer to the input features drawn from Y. A final comment is that the batch dimension

is left out from the above notation in the following subsections. This is because none of

the layers described below perform batch-wise operations, e.g. batch normalization (Ioffe

& Szegedy, 2015), so this dimension is unnecessary to include. The reader should assume

all layer functions are applied identically to each sample in a batch, with no information

traversing samples in the batch.

2.5.3 Feedforward & Linear Layers

Feedforward layers (sometimes referred to as linear layers) are the most straightforward type

of DNN layer. In its simplest form, it projects a set of features y ∈ RD of dimension D into a

different feature space of dimension E, i.e. F : RD → RE (Haykin, 2009). This is done using

a set of network parameter weights Θff ∈ RD×E and biases β ∈ RE , i.e.

F (y,Θff ,β) = yΘff + β. (2.23)



CHAPTER 2. SPEECH SEPARATION BACKGROUND 25

2.5.4 Nonlinearties and Activations Functions

On their own, the feedforward layers in (2.23) are only useful for mapping linear relationships in

data (Haykin, 2009). Nonlinearities, also in some contexts referred to as activation functions,

are a necessary component of neural networks in order to model the complex nonlinear

hierarchical relationships in data such as far-field speech, cf. Section 2.2 for the meaning of

far-field speech. In this subsection, only the nonlinearities most relevant to the remainder of

this thesis are introduced. However, many variants have been proposed and are widely used

(Maas et al., 2013; He et al., 2015; Elfwing et al., 2018; Dauphin et al., 2017; Hendrycks &

Gimpel, 2016; Haykin, 2009).

2.5.4.1 Hyperbolic Tangent

One of the most prominent activation functions is the hyperbolic tangent function, defined as

Htanh (yd) = tanh(yd) (2.24)

where tanh : R 7→ (−1, 1). This function has a sigmoidal shape, normalising output features

on the interval (−1, 1). This activation is only used in one instance in this thesis, the gating

mechanism for the SepFormer model described later in Section 2.10, cf. Figure 2.9.

2.5.4.2 Sigmoid

The sigmoid function has many uses in ML algorithms, particularly due to its common

application in logistic regression (Haykin, 2009). A favourable quality of the function is that

it results in feature space normalized in the interval (0, 1). The sigmoid function for a scalar

feature yd in feature vector y ∈ RD, d ∈ {1, . . . , D} is defined as

Hσ(yd) =
1

1 + eyd
. (2.25)

2.5.4.3 Softmax

The softmax function is an extension of the sigmoid function which normalises a feature vector

y on a probabilistic space by dividing the exponent of each feature yd by the sum of the total

of the exponents of all the features, i.e.

Hsoftmax(y, u) =
eyu∑D
d=1 e

yd
(2.26)

for u ∈ {1, . . . , D}. It is often most useful in speech processing for classification and recognition

tasks such as the CTC multi-speaker ASR models introduced later in Chapter 10.
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2.5.4.4 Rectified Linear Unit (ReLU)

The rectified linear unit (ReLU) function was proposed as an alternate to the sigmoidal

activation functions previously described. It is defined as

HReLU(yd) =

0, for yd < 0

yd, for yd ≥ 0
(2.27)

for a scalar feature yd ∈ R. It is more efficient to compute than sigmoidal functions and has

other favourable qualities, such as a derivative of 1 for positive values, which can aid in the

so-called vanishing gradient problem described in Hochreiter (1998) and explained earlier in

this chapter. It is used in the encoder of the Conv-TasNet and SepFormer models described

later in Section 2.9 and Section 2.10, respectively.

2.5.4.5 Parametric ReLU (PReLU)

The parametric rectified linear unit (PReLU) is a proposed improvement to the ReLU function.

Originally proposed to improve the accuracy of image classification, it is defined as

HReLU(yd, ζd) =

ζdyd for yd < 0

yd for yd ≥ 0
(2.28)

where ζd is a trainable parameter. It is widely used in the aforementioned Conv-TasNet model

(Luo & Mesgarani, 2019).

2.5.4.6 Sigmoid Linear Unit (SiLU)

The sigmoid linear unit (SiLU) (sometimes also referred to as Swish) function proposed in

(Elfwing et al., 2018) is a so-called self-gated activation function (Ramachandran et al., 2018).

It is defined as

HSiLU(yd) = ydHσ(yd) =
yd

1 + eyd
. (2.29)

It has been reported to result in faster convergence than ReLU (Gulati et al., 2020) and better

performance than ReLU when applied to deeper networks (Ramachandran et al., 2018).

2.5.4.7 Gated Linear Unit (GLU)

The gated linear unit (GLU) function was proposed in (Dauphin et al., 2017). It is related to

the SiLU function, but instead of features gating themselves, half the feature vector gates the
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other half. GLU is defined as

HGLU(y) = y1:D
2
⊙Hσ(yD

2
:D) (2.30)

where D is an even number. Note that this activation function reduces the input feature

dimension size by 2 at the output, i.e. HGLU : RD 7→ R
D
2

2.5.5 Normalization Layers

Normalization layers are typically used to improve training accuracy and speed (Wu & He,

2018; Ba et al., 2016). Most normalization layers compute the mean and variance across

feature vectors, channels, groups of channels, samples and/or batches of samples and then

subtract the mean from the features and divide them by the standard deviation, often with

additional feature weights θLN ∈ RD and biases β ∈ RD applied to the normalized features to

scale them accordingly.

2.5.5.1 (Global) Layer Normalization

The simplest and most common layer normalization is formulated as

G (Y,θLN,β) =
Y − µY

σY
⊙ θLN + β (2.31)

where ⊙ is the Hadamard product, and µY = E (Y) and σY =
√

Var (Y) are the mean and

standard deviation of features Y, respectively. In subsequent chapters, this formulation is

also referred to as global layer normalization (gLN) to differentiate it from channel-wise layer

normalization (CN) and cummulative layer normalization (cLN) also used in Conv-TasNet

models (Luo & Mesgarani, 2019).

2.5.5.2 Channel-wise Layer Normalization

Channel-wise layer normalization (CN) is used in many public implementations of the Conv-

TasNet model (such as Li et al. (2021); Ravanelli et al. (2021)) introduced later in Section 2.9.

The CN layer for each block of a feature vector yℓ is defined as

GCN (yℓ,θLN,β) =
yℓ − µyℓ

σyℓ

⊙ θLN + β (2.32)

where µyℓ
and σyℓ

define the mean and standard deviation of yℓ, and as before, θLN ∈ RD

and β ∈ RD are trainable weights and basis, respectively.
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2.5.5.3 Cumulative Layer Normalization

The cLN layer was proposed to address the non-causal nature of the layer normalization (LN)

formulation in 2.31 due to the computation of the mean over the entire sequential axis (of size

L). The way the cLN layer addresses this is by aggregating the mean as ℓ increases across the

sequential axis, i.e. ℓ ∈ {1, 2, . . . , L}. Therefore, the cLN function is defined as

GcLN (yℓ,θLN,β) =
yℓ − µk≤ℓ

σk≤ℓ
⊙ θLN + β (2.33)

where µk≤ℓ = E (yk≤ℓ) is the mean of all yk, k ≤ ℓ and σg≤ℓ =
√

Var (yk≤ℓ) is the standard

deviation of all yk, k ≤ ℓ, for all yℓ ∈ Y.

2.5.5.4 Group Normalization and Instance Normalization

An extension of LN is group normalization (GN) where subgroups of the feature vectors of Y

are grouped into groups of size G, where G is constrained such that G < D and D is perfectly

divisible by G, i.e. D −G
⌊
D
G

⌋
= 0. The GN layer is defined as

GGN (Y,θLN,β, G) = [G (Y1:G,θLN,1:G,β1:G) ,G
(
YG+1:2G,θLN,G+1:2G,βG+1:2G

)
,

. . . ,G
(
YD−G:D,θLN,D−G:D,βD−G:D

)
]. (2.34)

Note that if G = 1, then µ and σ are only computed along the sequential axes of Y. This is

referred to commonly as instance normalization (IN) (Wu & He, 2018).

2.5.6 Convolutional Layers

Convolutional layers can be viewed as an extension of the feedforward layer (cf. Section 2.5.3)

to higher dimensions, e.g. sequential, temporal or spatial. In 1D convolutional layers, typically

the convolutional kernel, i.e. the parameters, are used to process sequential information

simultaneously (also known as depthwise information) in addition to the feature axis (also

referred to as pointwise information). In this simpler case, there are technically 2 dimensions

of information, the feature axis and the sequential axis, but one of them (the feature axis) has

a fixed dimension D and the other (the sequential axis) is of an arbitrary dimension L. Hence,

the “1” in 1D refers to the sequential axis. Following this logic, the 2D convolutional kernel

processes the feature dimension and two sequential dimensions, also often discussed as spatial

information (Chen et al., 2021a). Following this logic, the shape of the input information

of a Y -dimensional convolutional kernel is D × L1 × . . .× LY . The output shape of a kernel

can depend on the hyper-parameters of the kernel, such as its kernel size, stride and dilation

factor, as well as engineering design choices such as the use of padding or truncating the input
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data. In this section, E is still used as the output feature dimension of the convolutional

layer but this is sometimes referred to as its number of output channels, similarly the input

feature dimension D is often referred to as the number of input channels. As these are

convolutional models they can be viewed similarly to linear time-invariant (LTI) systems

(Proakis & Manolakis, 1996). Because of this, it is also sometimes the case that these are

referred to as the number of input and output filters or just the number of filterbank features in

the case of the output feature dimension. All of these terms are consistent and interchangeable

but often vary significantly in the literature depending on the chosen domain, e.g. audio

processing, image processing, biosignal processing and so on.

A 1D convolutional kernel of kernel size P has weights Θ1D ∈ RE×P×D and biases β ∈ RE

where

Θ1D =
[
Θ⊤

1 , . . . ,Θ
⊤
E

]⊤
(2.35)

and Θe ∈ RP×D. For convolutional layers, the input sequence of features is non-trivial to

formulate as the dilation factor f and stride K hyperparameters alter what view of the

input matrix is processed by the convolutional layer. The dilation factor controls whether

and by how much the convolutional kernel skips intermediate features of an input sequence

Y =
[
y⊤
1 , . . . ,y

⊤
L

]⊤
, i.e. the ℓth convolution in a sequence using a kernel with dilation factor

f and kernel size P would process the input subsequence

Ydil,ℓ =
[
y⊤
ℓ ,y

⊤
ℓ+f ,y

⊤
ℓ+2f , . . . ,y

⊤
ℓ+(P−1)f

]⊤
∈ RP×D. (2.36)

Note that this formulation omits the stride, which will be explained in the following. The

stride controls the level of subsampling on the output sequence, i.e. with subsampling indices

ℓ ∈
[
1, 1 + K, 1 + 2K, . . . , 1 + K

⌊
L

K

⌋]
(2.37)

ignoring the kernel size P and dilation factor f (although note this is correct for the pointwise

convolutional layers defined further down in this section). If dilation factor f and P are

factored in then the subsampling indices become

ℓ ∈
[
1, 1 + K, 1 + 2K, . . . , 1 + K

⌊
(L− f(P − 1)

K

⌋]
. (2.38)

The stride also changes the length of the output signal, such that the output signal is of length

Lout =

⌊
(L− f(P − 1)

K

⌋
+ 1. (2.39)

Zero-padding is often used for a stride of K = 1 (i.e. when subsampling is undesirable) to
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ensure that the input and output sequences are of the same length, Lout = L. Simply put,

zero-padding is the practice of appending zeros to the beginning or end of a sequence. The view

of the input matrix to the 1D convolutional layer is therefore defined as Y1DView ∈ RLout×P×D

where

Y1DView =


y1 y1+f · · · y1+(P−1)f

y1+K y1+f+K · · · y1+(P−1)f+K
...

...
. . .

...

y1+K(Lout−1) y1+K(Lout−1)+f · · · y1+K(Lout−1)+(P−1)f

 (2.40)

=


Ydil,1

Ydil,2

...

Ydil,1+K(Lout−1)

 . (2.41)

Using this, the 1D convolutional operation is defined as

C1D(Y,Θ1D,β, f, P,K) =
∑

(Y dil,1 ⊙Θ1)
∑

(Y dil,1 ⊙Θ2) · · ·
∑

(Y dil,1 ⊙ΘE)∑
(Y dil,1+K ⊙Θ1)

∑
(Y dil,1+K ⊙Θ2) · · ·

∑
(Y dil,1+K ⊙ΘE)

...
...

. . .
...∑(

Y dil,1+K(Lout−1) ⊙Θ1

)
· · · · · ·

∑(
Y dil,1+K(Lout−1) ⊙ΘE

)


+ β (2.42)

where ⊙ denotes the Hadamard product,
∑

(·) is a short-hand for the total sum of the resulting

matrix, i.e. ∑
(Y dil,ℓ ⊙Θe) =

P∑
p=1

D∑
d=1

(Y dil,ℓ ⊙Θe)p,d (2.43)

and the output is of shape Lout×E. The higher dimensional convolutional layers thus have an

output shape of Lout,1 ×Lout,2 × . . .×E, i.e. an additional variable length dimension for each

additional dimension of the convolutional layer. An often discussed quantity of convolutional

layers is the receptive field (RF). This is the width of input frames from a sequence that are

observed to produce one output frame. This quantity depends primarily on the kernel size P

and dilation factor f . It is defined as

R (P, f) = 1 + f(P − 1). (2.44)

The receptive field can also be formulated for multiple stacked 1D convolutional layers by
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starting at the final output layer and observing back through the network the minimum and

maximum points in the input sequence the layer was able to process data from to produce

one output frame. The formula for the output layer is the same as in (2.44) but for each

additional layer lower in the network an additional f(P − 1) frames can be observed. This is

formulated as

Rtotal ({P1, . . . , PX}, {f1, . . . fX}) = R(PX , fX) +
X−1∑
i=1

fi(Pi − 1) (2.45)

for a stack of X 1D convolutional layers with varying dilation factors fi and kernel sizes Pi.

This formulation and the concept of a receptive field is particularly relevant in Chapter 3,

Chapter 4 and Chapter 5.

A number of variants of the standard convolutional kernel have been proposed. One used

widely in this thesis is known as depthwise separable convolution (DS-Conv) (Chollet, 2017).

The idea behind DS-Conv is to reduce the computational cost of vanilla convolutional opera-

tions shown in Eq. (2.42) by factorising out the operation to perform convolution first across

the feature axis (referred to as pointwise convolution) and then across the temporal/sequential

axis (referred to as depthwise convolution).

The depthwise convolution (D-Conv) layer groups the layer parameters by each output

channel, where the term groups has a similar connotation to the feature groups described

with respect to GN in (2.34). In D-Conv, the number of groups G is fixed to the number of

input and output channels, i.e. G = D = E. The convolution operation is performed solely

across the sequential axis for each group. The weight tensor for the operation is defined as

ΘD-Conv =
[
θ⊤
1 , . . . ,θ

⊤
D

]⊤ ∈ RD×P and the D-Conv operation for a 1D kernel is defined as

CD-Conv(Y,ΘD-Conv,β, f, P,K) =
ydil,1,1θ1 ydil,1,2θ2 · · · ydil,1,DθD

ydil,1+K,1θ1 ydil,1+K,2θ2 · · · ydil,1+K,DθD

...
...

. . .
...

ydil,1+1+K(Lout−1),1θ1 · · · · · · ydil,1+1+K(Lout−1),DθD

+ β (2.46)

where

ydil,ℓ,d =
[
yℓ,d, yℓ+f,d, yℓ+2f,d, . . . , yℓ+(P−1)f,d

]⊤ ∈ RP . (2.47)

The pointwise convolution (P-Conv) is a convolutional layer with kernel size P = 1. Note

that the dilation factor f is irrelevant here due to the kernel size of 1. This layer is equivalent

to the feedforward layer defined in (2.23). In the 1D convolutional formula in (2.42) the

P-Conv weights would be defined as ΘP-Conv ∈ RE×1×D. Note that if the middle dimension
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is collapsed, then Θ′
P-Conv ∈ RE×D, which is equivalent to the feedforward weights in (2.23)

via its transpose, i.e. Θ′
P-Conv

⊤
= Θff .

Ignoring the bias terms (β), which are often omitted and replaced by LN layers (Luo &

Mesgarani, 2019), the 1D convolutional kernel can be factorised as

Θ1D =


Θ⊤

D-Conv ⊙Θ′
P-Conv,1

Θ⊤
D-Conv ⊙Θ′

P-Conv,2
...

Θ⊤
D-Conv ⊙Θ′

P-Conv,E

 ∈ RE×P×D. (2.48)

Thus, the DS-Conv layer is defined as

S (Y,ΘP-Conv,ΘD-Conv,β, f,K, P ) = C1D (CD-Conv (Y,ΘD-Conv), f,K, P ) ,ΘP-Conv,β, 1, 1, 1) .

(2.49)

The motivation for using this factorized approach is a reduction in mode size and also the

so-called time-complexity, i.e. the computational complexity as the sequence length increases.

Ignoring bias terms as these are identical for both 1D convolution and DS-Conv, the parameter

count of the 1D convolutional layer, is defined as

BConv1D(P,D,E) = P ×D × E (2.50)

The parameter count of the P-Conv layer is defined as

BP-Conv(D,E) = D × E (2.51)

and of the D-Conv layer is defined as

BD-Conv(P,E) = P × E. (2.52)

Consequnetly, the parameter count of the DS-Conv layer is defined as

BDS-Conv(E,P,D) = E × (P + D) . (2.53)

Thus the parameter count of the DS-Conv operation reduces the parameter count of the

model by E×P
E+P when E ≫ P (Luo & Mesgarani, 2019). Another consequence of this is a

reduction in computational expenditure, i.e. less mutiply-accumulate operations (MACs) for

equal sequence lengths L when using DS-Conv. This is demonstrated in Figure 2.4 where

it is shown that for all dimensions D and kernel sizes P the complexity of the standard 1D

convolutional layer is significantly higher.

There are a number of other improvements which have been proposed to convolutional
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Figure 2.4: The DS-Conv complexity compared to complexity of standard 1D
convolutional layers as sequence length L increases. The input feature dimension is
denoted as D and the kernel size is denoted as P .

kernels such as gating mechanisms (Zhang et al., 2020b), dynamic convolution (Chen et al.,

2020b) and deformable convolution (Dai et al., 2017). Dynamic convolution (Chen et al.,

2020b) uses multiple weighted and summed convolution kernels to give more flexibility in the

parameter weights based on specific input data. A variation on this is proposed in Chapter 4

and will be described in greater depth accordingly in this chapter. Deformable convolution

(Dai et al., 2017) was proposed to enable convolutional kernels to have dynamic/adaptive

receptive fields. This is achieved using a subnetwork to compute offsets which then alter the

positional indexes of the parameter weights using linear interpolation operations. A more

complete and mathematical description of deformable convolution is given later in Chapter 5

where the deformable temporal convolutional network (DTCN) is proposed.

2.5.7 Recurrent Layers

Recurrent neural network (RNN) layers were proposed as an extension of the feedforward

layer described in Section 2.5.3 for modelling sequences of features as opposed to singular

feature vectors in feedforward layers. They also have a benefit over convolutional layers in

that they can model global context as opposed to the convolutional layer that can only process

context within its receptive field.

The simplest RNN layer is a weighted sum of the current feature vector yℓ in the sequence

denoted yℓ and the previous output of the RNN layer denoted gℓ−1. The layer is formulated

as

Z (yℓ,gℓ−1,Θff ,Θrec,β) = gℓ = yℓΘff + β + gℓ−1Θrec + βrec (2.54)
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where Θff ∈ RD×E and Θrec ∈ RE×E are the parameter matrices of the feedforward and

recurrent parts of the layer and βrec ∈ RE are the biases for the recurrent part. A number of

variants of RNNs have been proposed. Note that the longer the sequence is, the less weight is

given to the earlier context because of the way the layer is formulated. One approach that

can mitigate this somewhat is to use bidirectional layers that process the sequence in both

directions, forwards, ℓ ∈ {0, . . . , L}, and backwards, ℓ ∈ {L, . . . , 0}. This ensures more even

weighting at either extreme of the sequence but is still suboptimal for longer sequences. The

long short term memory (LSTM) layer was proposed by Hochreiter & Schmidhuber (1997) to

address this issue more directly in the mechanisms used inside the network cell. LSTMs use a

memory cell that can retain historical information or release it from memory using two gating

mechanisms in the cell. Another variant of RNN is the gated recurrent unit (GRU) (Cho et al.,

2014) that aimed to achieve the same result as the LSTM but with a reduction in computation

via an improved gating mechanism. Further research has been done in this direction but this

is beyond the scope of this project as RNNs are not the main focus in this thesis. However,

some notable examples for further reading include the light gated recurrent unit (LGRU)

(Ravanelli et al., 2018) and the quasi-recurrent neural network (QRNN) (Bradbury et al.,

2017).

Since the introduction of the non-causal Transformer model by Vaswani et al. (2017)

(discussed in the following sections), RNN models have been replaced in many domains in

order to achieve SOTA performance on benchmark datasets (Radford et al., 2023; Takase &

Kiyono, 2023). This network structure outperforms RNNs in most cases but comes with an

unfortunately high computational cost due to quadratic sequential complexity, for L indices

in a sequence L2 kernel operations are performed. More recently (at the time of writing this

thesis), state-space models (Gu & Dao, 2023) have become prominent in the research field of

sequence models. Linear state-space models, however, are RNN-like in terms of their causal

structure but show promising performance improvements over the Transformer, notably so on

audio processing tasks related to those in this thesis (Gu & Dao, 2023).

2.5.8 Attention & Transformer Layers

One of the most significant contributions to the DL field over the past decade has been

the attention revolution and its consequences: dot-product attention (Luong et al., 2015),

self-attention (SA) (Lin et al., 2017), multihead attention (MHA) (Vaswani et al., 2017) and

Transformers (Vaswani et al., 2017). The idea behind the attention mechanism was to design

a function or algorithm that would apply more weight to more relevant features and implicitly

less weight to inconsequential or mostly irrelevant features. In practice, this typically means

computing a correlation function across two vectors or axes and applying more weight to the

features which have higher correlations. Other attention operations and networks do exist
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that operate slightly differently, such as the computationally efficient squeeze-and-excite (SE)

attention network Hu et al. (2018) introduced in Chapter 4, but these are not the focus of this

section. In terms of computational expenditure, Transformer layers consume a lot of memory

for computing the attention matrix and have quadratic time-complexity. Both of which are a

drawback compared to RNNs. One key benefit of this structure however is the lack of any

causality dependence meaning the layer computations are much more parallelizable and can

have faster inference in some contexts.

This section focuses primarily on describing the Transformer and its related attention

functions, starting from the ground up with dot-product attention. As the name suggests,

dot-product attention is the result of performing the dot-product between two feature matrices

or tensors, referred to as the keys and querys in its most common formulation. The terms

come from machine translation (MT) tasks (Bahdanau et al., 2015) and bear little practical

meaning in speech processing, perhaps making the model more complicated to comprehend at

first. It is perhaps more useful to articulate these as input matrices, which are to be compared

in terms of their correlation or similarity. Each of these is of shape Lk ×Dk for the key and

Lq ×Dq for the query. The dot-product is computed as

QK⊤ ∈ RLq×Lk . (2.55)

Note that this requires the constraint that Dk = Dq so that the result is complete. The result

of the dot-product is then passed through a softmax function, computed along the axis of

length Lk, to normalize the weights on a probabilistic-like space (between 0 and 1). This gives

a sequence of vectors of normalized weights. Typically, the dot-product is scaled by
√
Dk

as this has been found to improve training stability (Vaswani et al., 2017). This is where

the term scaled dot-product when discussing Transformers comes from (Vaswani et al., 2017).

In the final step, the dot-product is computed between the resulting weight matrix and the

value matrix of input features that is to have attention applied to it, denoted V ∈ RLv×Dv

where Lv = Lq to be complete. Again, this terminology bears little meaning in most speech

processing usage and is possibly more useful to think of the value matrix as simply as the

input sequence of features that one wants to filter or add weight to using the output of (2.55).

The final scaled dot-product attention mechanism is defined as

A(Q,K,V) = softmax

(
QK⊤√

Dq

)
V. (2.56)

The terms self-attention and cross-attention have become common vernacular in DL

research communities Radford et al. (2023). As the name suggests, self-attention is used

when attention is computed from the same two inputs, i.e. Q = K. Conversely, cross-

attention refers to the case where the two inputs are explicitly different, i.e. Q ̸= K. From a
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signal processing perspective, self-attention is akin to computing a pointwise (cross-feature)

auto-correlation function of the input matrix, and cross-attention is akin to computing a

pointwise cross-correlation function between the two input matrices. This will be demonstrated

mathematically later in Section 6.1. Furthermore, this argumentation provides the basis for

the work in Chapter 6 where attention mechanisms are employed to implicitly denoise noisy

and reverberant encoded speech features.

2.5.8.1 Multihead Attention Layer

The following introduces multihead attention (Vaswani et al., 2017) as an extension to scaled

dot product attention.

Linear projections and attention heads The notation of V ∈ RLv×Dv ,K ∈ RLk×Dk and

Q ∈ RLq×Dq are also used in this section, as defined in the previous section. The first stage

in the MHA layer is to linearly project the inputs into a lower dimensional space. This is

achieved by multiplying the input sequences by 3 trainable weight matrices,

Θkey,g ∈ RDk×Ak (2.57)

Θquery,g ∈ RDq×Aq (2.58)

Θvalue,g ∈ RDv×Av (2.59)

for each attention head g ∈ {1, ..., Gheads} where Gheads is the number of attention heads and

A = D/Gheads, {A,D} ∈ {{Dk, Ak}, {Dq, Aq}, {Dv, Av}} is the reduced dimension size. The

motivation for reducing the dimensionality is that this retains roughly the same computational

cost of using a single attention head with full dimensionality while allowing for using multiple

attention mechanisms. The choice of Gheads is normally motivated by empirical analysis.

Each of these weight matrices are used to compute Kg,Qg and Vg for each attention head

g ∈ {1, ..., Gheads} such that

Kg = KΘkey,g ∈ RLk×Ak (2.60)

Qg = QΘquery,g ∈ RLq×Aq (2.61)

Vg = VΘvalue,g ∈ RLv×Av . (2.62)

For each attention head, the attention function is computed using (2.56) such that

Dg = A(Qg,Kg,Vg) (2.63)

where Dg is the gth attention head.
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Multihead Attention The final stage is connecting the attention heads by concatenating

along the A length dimension and projecting the features using a linear layer defined by a

weight matrix

Θout ∈ RAGheads×D = RD×D (2.64)

The combined concatenation and linear projection is defined by the Multihead Attention

function

M(Q,K,V) = [D1, . . . ,DGheads
]Θout. (2.65)

2.5.8.2 Transformer Layers

Transformer layers are an applied use of multihead attention (MHA) in a larger network

module with additional linear and normalization layers as well as what is known as positional

encoding (PE). Originally proposed in (Vaswani et al., 2017), Transformers are normally

composed of two-layer variants: Transformer encoders and Transformer decoders. The

Transformer network is visualised in Figure 2.5. Each stack of Transformer layers is preceded

by a PE function defined as

Q (ℓ, d) =


sin

(
ℓ

10000
2d
D

)
d ∈ {0, 2, 4, 6, 8, . . .} d ≤ D

cos

(
ℓ

10000
2d
D

)
d ∈ {1, 3, 5, 7, 9, . . .} d ≤ D

(2.66)

for ℓ ∈ {1, . . . , L} in the case of the Y ∈ RL×D feature sequence previously defined in (2.22).

The PE function adds a sinusoidal shape to the input features to provide positional sequence

information in the network (Vaswani et al., 2017). Although the MHA layer models global

context, it does not capture positional information explicitly, hence the need for PE.

Transformer encoder layers are primarily composed of a multihead self-attention (MHSA)

layer with a residual connection, a normalisation layer, a linear layer, and another normalization

layer. The residual connection is where the input and output of the layer are summed at

the output; this helps with gradient stability in training (He et al., 2016). When concerning

speech processing, particularly speech enhancement and separation, it is common to only see

the Transformer encoder layers used, i.e. the transform from Y to Y′ in Figure 2.5. This is

because the input and output features are encoded from and decoded to the same domain.

Typically, the inputs and outputs are also of the same dimension and size.

For tasks such as speech recognition, it is more common to see the Transformer decoder

being used in addition to Transformer encoder. This is due to highly mismatched sequence

lengths of speech audio signals and text and very different input and output feature spaces,

e.g. audio spectral features as inputs and probabilities of character labels as outputs. As

the output dimension is governed by the input V in (2.65), this is the reasoning behind
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Figure 2.5: Diagram of a Transformer network, consisting of RTE Transformer
encoder layers and RTD Transformer decoder layers.
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cross-attention in the following. The decoder Transformer layer is composed of a MHSA layer

with a residual connection, a normalization layer, a multihead cross-attention (MHCA) layer

with a residual connection, another normalization layer, a linear layer and a final normalization

layer. The first decoder operates on a different sequence Y′′ ∈ RL×D′
from the input to

the Transformer encoder Y ∈ RL×D and its output Y′ ∈ RL×D′
. This input Y′′ governs

the decoder’s final output dimension, i.e. D′, will be, but it must be of the same sequence

length as Y′. The output of the MHSA part of the decoder is denoted Y′′′. The next MHA

layer is cross-attentive, the attention weights are computed on the output from the encoder

layers, but attention weights are still applied to the output of the preceding MHA layer, i.e.

M (Y′,Y′,Y′′′′), where Y′′′′ is the output of the decoder layer, or in the case of the first

decoder layer the input sequence, i.e. M (Y′,Y′,Y′′).

2.6 Loss Functions & Permutation Solving

2.6.1 Loss Functions

A number of loss functions have been proposed for speech separation and enhancement (Close

et al., 2023; Kolbæk et al., 2020; Braun & Tashev, 2021; Close et al., 2024). Typically, most

loss functions compute some kind of difference function between the estimated speech signal

in the time domain or time-frequency domain.

A commonly used loss function for speech separation and enhancement tasks is the averaged

L2 norm (Défossez et al., 2021), i.e. MSE between time-domain signals,

LTD-L2 (s, ŝ) =
1

Ls

Ls∑
i=1

(ŝ[i]− s[i])2 =
1

Ls
∥s− ŝ∥ . (2.67)

Alternatively, the L1 norm can also be used,

LTD-L1 (s, ŝ) =
1

Ls

Ls∑
i=1

|ŝ[i]− s[i]| = 1

Ls
|s− ŝ| . (2.68)

Similarly, the MSE of the absolute values of short-time spectral representations (e.g. short-

time Fourier transforms (STFTs)), can be used as a loss function, e.g.

LST-MSE

(
S, Ŝ

)
=

1

LSNspec

LS∑
ℓ=1

Nspec∑
n=1

(
|Ŝℓ,n| − |Sℓ,n|

)2
(2.69)

where Nspec is the number of spectral bins (e.g. real fast Fourier transform (FFT) size).

Similar to the time-domain losses in the previous paragraph, the L1 of the absolute magnitude
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spectra distance can be used for computing the loss, i.e.

LST-MAS

(
S, Ŝ

)
=

1

LSNspec

LS∑
ℓ=1

Nspec∑
n=1

∣∣∣|Ŝℓ,n| − |Sℓ,n|
∣∣∣ (2.70)

Other time-domain loss functions have been popularized in recent years, in particular, the

SISDR loss (Luo & Mesgarani, 2018b, 2019; Luo et al., 2020; Subakan et al., 2021; Chen et al.,

2020a). As will be discussed in Section 2.7, SISDR is the main metric used for evaluating

speech separation models in more recent research, including the contents of this thesis. SISDR

is based of the signal-to-distortion ratio (SDR) function, i.e.

SDR (s,νdist) = 20 log

(
∥s∥
∥νdist∥

)
(2.71)

where νdist is the vector the time domain disortion signal. In the case of the distortion signal

in training a speech enhancement or separation system this equates to νdist = ŝ − s. The

SISDR loss function is thus defined as

LSISDR (ŝ, s) := −10 log10
∥starget∥2

∥νsdist∥2
, (2.72)

where

starget =
⟨ŝ, s⟩s
∥s∥2

. (2.73)

in (2.72) is the scale invariant target speech and

νsdist = ŝ− starget (2.74)

is the residual distortion present in the estimated speech after rescaling the reference. The

value starget is a rescaled version of s to make the difference (or distortion) calculation νdist

invariant to scale mismatches between the estimate ŝ and references s. The term scale here

refers to amplitude scaling, i.e. the scale invariance is introduced to make the loss term more

agnostic to the difference in signal energy between the reference signal and the estimated

signal. While this results in faster convergence in training, it does often result in estimated

signals being in abnormal amplitude ranges (e.g. ŝ[i] > 1), but this can be handled via clipping

functions on the model output or regularizing loss terms.

2.6.2 Permutation Invariant Training

Determining which speaker should be assigned to which output channel ŝc[i] is a non-trivial

problem and often referred to as the permutation problem (Huang et al., 2019; Kolbaek et al.,

2017). Some proposed approaches to solving this problem have involved assigning the louder



CHAPTER 2. SPEECH SEPARATION BACKGROUND 41

speaker or male speakers to the first output channel (Huang et al., 2019). However, these

solutions start to fail when the speaker energies are very similar, or the speakers are of the

same gender (Huang et al., 2019).

PIT solves this permutation assignment problem in an agnostic fashion by matching the

targets to the estimates rather than trying to force the estimator to match estimated signals

to the pre-assigned reference signals. The permutation-solving formula in PIT is defined as

ϕ̂ = arg min
ϕ∈Φ

C∑
c=1

L
(
ŝ(ϕ)c , sc

)
(2.75)

where ϕ is some permutation in the set Φ of Φ = C! possible permutations where ŝ
(ϕ)
c denotes

the ϕth possible permutation of ŝc. L denotes an arbitrary loss function here but in the

specific case of this chapter (and many proceeding chapters) L = LSISDR. ϕ̂ denotes the

estimated best-matching permutation according to the formula.

2.7 Evaluation Metrics

A number of evaluation metrics have been proposed for analysing speech separation and

enhancement models (Goetze et al., 2014; Kolbæk et al., 2020; Close et al., 2022, 2023; Liu

et al., 2015; Luo & Mesgarani, 2018b; Tzinis et al., 2022b; Cord-Landwehr et al., 2022). These

vary in complexity from simple signal and spectral level difference measures to measures

that emphasise the quality or intelligibility of separated speech (Deng et al., 2020). Quality

typically refers to naturalness, pleasantness and clarity of speech, while intelligibility refers to

how understandable the speech is (Gul et al., 2022).

As with evaluating most DL models in other domains, the loss function L used for training

can similarly provide insights about overall model performance. This is typically an approach

used within speech enhancement and separation research but often with supplementary metrics

that provide greater insights. In the case of speech separation, it is very common in recent

research trends to see SISDR (2.72) being used both as an objection function and a primary

evaluation metric (Luo & Mesgarani, 2018b; Rixen & Renz, 2022; Wang et al., 2023b). Typical

ranges for SISDR in speech separation evaluation are within −20dB to 30dB (Maciejewski

et al., 2020; Wang et al., 2023a). Subjectively, the just noticeable difference value of the

metric is a value is around values excess of 2dB SISDR difference, also referred to in this

thesis as ∆ SISDR.

The SDR evaluation metric was previously introduced in (2.71). SDR is a generalized

SNR metric that measures the amount of energy in the signal compared with the energy in

the combined residual noise, artefacts and interference. SDR has been widely used in assessing

source separation models in general (Stoller et al., 2018; Luo & Mesgarani, 2019; Tzinis et al.,
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2022b).

PESQ was proposed by (Rix et al., 2001a) as an objective measure for speech quality

assessment. The design of PESQ is supposed to offer similar results to mean opinion score

(MOS) by using psychoacoustically motivated filter models. The measure ranges from -0.5 to

4.5, with -0.5 being considered the lowest quality. PESQ is often used for assessing general

denoising and dereverberation tasks. It has also been used for assessing speech separation

performance (Wang et al., 2014; Deng et al., 2020). Perceptual objective listening quality

assessment (POLQA) is a proposed improvement to PESQ by Gaoxiong & Wei (2012)

for wideband and narrowband speech but it has not seen as much popular use in the speech

enhancement literature.

Short-time objective intelligibility (STOI) is an intelligibility metric proposed by

(Taal et al., 2010) which uses correlation ratios between clean and degraded signals to assess

the intelligibility of the degraded signal with a score between 0 and 1. STOI has been

commonly used for assessing general speech enhancement tasks but has also been used in

assessing speech separation models (Deng et al., 2020). ESTOI, proposed in (Jensen & Taal,

2016), is an extension of STOI that has been widely used in speech ehancement literature (Li

et al., 2020; Naithani et al., 2018)

In some areas, especially when speech enhancement and separation systems are being

utilised for downstream speech recognition tasks, WER is often used. In its simplest form,

word error rate (WER) computes the word-edit distance between the output utterance of an

ASR model and a reference transcription. Multi-speaker implementations of this metric have

also been proposed more recently (Sklyar et al., 2022; Watanabe et al., 2020) and are used

extensively in Chapter 10.

SRMR (Falk et al., 2010; Santos et al., 2014) is a measure that is able to estimate

reverberation energy in speech signals. It has seen use in a variety of speech enhancement

literature (Fu et al., 2022; Ernst et al., 2018).

A less commonly used in the speech separation literature but highly useful metric is mean

opinion score (MOS) (ITU-T Rec. P.800.1) (Möller & Köster, 2017; ITU, 2003). MOS is a

subjective metric which uses real listeners to assess speech quality. Listeners are asked to give

ratings between 1 & 5, and the average value is obtained as the final metric.

2.8 Time-domain Audio Separation Networks (TasNets)

The ever-increasing accessibility of high-performance computing resources has led to more

memory-consuming and computationally complex DL models. This is true in many machine

learning domains including speech separation (Vaswani et al., 2017; Tzinis et al., 2022b).

In speech enhancement research, which here includes speech separation and extraction,

denoising, dereverberation, and beamforming technology (among others), time-domain ap-



CHAPTER 2. SPEECH SEPARATION BACKGROUND 43

proaches (as opposed to STFT or frequency-domain based methods) have gained much-

increased interest in recent years due to their notable performance improvements on (in

particular) speech separation benchmarks (Luo & Mesgarani, 2018b, 2019; Subakan et al.,

2021; Zhao & Ma, 2023). Luo & Mesgarani (2018b) published a paper on time-domain audio

separation networks (TasNets) which drew from ideas in previous research on non-negative

matrix factorization for speech enhancement as well as SOTA speech separation models using

DNNs (Le Roux et al., 2015; Kolbaek et al., 2017; Wang et al., 2018). In their technique,

they train a convolutional layer to learn encoded mixture weights (similar to the basis signals

learned in NMF models), which are then processed by a BLSTM network to compute “speaker

masks”. The encoded features are then masked accordingly to attain encoded representations

for each speaker. These representations are then transformed back into the time domain using

a transposed convolutional layer. They further refined their design into a fully convolutional

architecture by using temporal convolutional networks (TCNs) as a replacement for the

BLSTM layers in Luo & Mesgarani (2018b) with superior performance; this is later described

in depth in Section 2.9. The original bidirectional long short term memory (BLSTM) network

in Luo & Mesgarani (2018b) is often referred to simply as TasNet. In this thesis the term

TasNet is used to apply to a whole family of models that use this same network structure but

typically have a different mask estimation network only (Luo & Mesgarani, 2019; Subakan

et al., 2021; Rixen & Renz, 2022; Tzinis et al., 2022b).

An NMF based problem formulation informs the intuition behind TasNet models and

thus is elaborated on in the following. It is assumed that there exists some matrix of basis

functions B = [b1, . . . ,bN ]⊤ ∈ RN×J where N is the number of basis functions to be used

and that a block of size J of signal x[i] denoted xℓ ∈ RJ can be represented by some weighted

sum of the basis functions such that

xℓ = wℓB (2.76)

where wℓ ∈ R+
N is non-negative. It is also therefore assumed that it is possible to find some

weight vector vc ∈ [0,∞)1×N for each of the C sources in x such that

sc = vcB w =

C∑
c=1

vc. (2.77)

Note that this formulation of the model assumes no noise or reverberation is present in the

signal x. In later sections, this assumption is dropped.

Using this formulation, it is possible to derive mask-like vectors mc = (vc ⊘w)∈RN for

each of C speakers that represent the relative amount of energy each speaker c is contributing

to the energy for each basis function representation in w. This can be derived by performing
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elementwise operations across the vectors such that

w =

C∑
c=1

w ⊙ (vc ⊘w) := w ⊙
C∑
c=1

mc (2.78)

where ⊙ and ⊘ are the elementwise multiplication and division respectively and therefore

vc = mc ⊙w. (2.79)

The original TasNet is composed of 3 subnetworks: an encoder, mask estimation network

and decoder, which are visualised in Figure 2.6. Time domain speech mixtures are first encoded

Separation Network

(Mask Estimator)
Encoder

Decoder

Decoder

Figure 2.6: Generalised TasNet Model Schematic (exemplarily shown for two
channels, C = 2)

using a 1D convolutional layer and an activation function (or gated activation function in

the case of the original TasNet (Luo & Mesgarani, 2018b)) to produce a sequence of features.

The mask estimation takes the sequence of features as an input and produces two sequences

of masks. These masks are then multiplied with the encoded features to produce an encoded

feature sequence for each speaker. The sequence is then decoded back into a time domain

using a transposed 1D convolutional layer. The original TasNet used a reasonably simple deep

BLSTM network for the mask estimation component. At the time, this model gave SOTA

performance on the anechoic WSJ0-2Mix benchmark.

2.9 Conv-TasNet

In this section, the Conv-TasNet model is described in depth. The Conv-TasNet model is the

main baseline model for Chapter 3 to Chapter 5. It is a comparatively lightweight separation

model that has been utilised in a number of areas relating to speech separation (Ochiai et al.,

2020; Delcroix et al., 2020; Mošner et al., 2022). It was proposed as an improvement to

the LSTM TasNet model. The model replaces the deep LSTM with a so-called temporal

convolutional network (TCN). TCNs are constructed of stacked convolutional blocks of
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increasing dilation factors. Each additional block in the stack increases the dilation factor by

a factor of 2. The stack is also repeated to reduce the extent to which the receptive field is

increased with each additional block, i.e. at the bottom of each stack, the dilation factor is

smallest (f = 1).

The Conv-TasNet model gained a lot of popularity in the research community due to its

reliable performance combined with a comparatively small computational footprint (typically

measured in terms of floating operations per second (FLOPS) or MACs) and small model

size, making it useful for downstream tasks such as ASR (Ochiai et al., 2020), which typically

have a large computational footprint of their own. Previous work has investigated adaptations

to Conv-TasNet with additional modifications such as multi-scale convolution and gating

mechanisms applied to the outputs of convolutional layers, but these significantly increase

the computational complexity (Zhang et al., 2020b). While these modifications improve

performance, they come at a significant cost to model size (Zhang et al., 2020b) and overall

computational complexity.

In other applications, Kinoshita et al. (2020) adapted the Conv-TasNet architecture to

denoise speech for ASR tasks with notable reductions in relative WER improvement on both

simulated and real data. This approach also consistently outperformed the same network

using frequency rather than time domain features. Ochiai et al. (2020) proposed an minimum-

variance distortionless response (MVDR) beamforming approach that used Conv-TasNet to

estimate power spectral densities for speakers and noise in the signal. Another multichannel

speech separation approach based on TasNet was proposed in Gu et al. (2019). This approach

computed inter-phase differences (IPDs) and provided them as an input to the TCN separation

network. The multichannel approach led to significant increases in SISDR performance for

2-speaker separation on the WSJ0-2Mix corpus. Luo et al. (2019) proposed a low-latency

adaptive beamforming model that adapted the Conv-TasNet model into a multi-channel

enhancement and separation system that performed denoising and separation. This approach

improved performance for both joint denoising and dereverberation, and speech separation of

noisy echoic speech over using either model separately. Furthermore, it showed the adaptability

of the Conv-TasNet model for more than just monaural enhancement and separation systems.

The remainder of this section describes the Conv-TasNet speech separation model in

detail. As with the original LSTM TasNet model, the network is primarily composed of

three sub-networks: an encoder network, a mask estimation network, and a decoder network.

The generalised schematic of the overall network structure is the same as that visualised in

Figure 2.6 where the network is configured to produce C = 2 output speaker signals. The

mask estimation network formulated in this section follows the implementation that can be

found in the open-source SpeechBrain (Ravanelli et al., 2021) and ESPnet (Li et al., 2021)

software toolkits. This implementation differs slightly from the original model proposed by

(Luo & Mesgarani, 2019) by leaving out a set of skip connections (SCs) and replacing cLN
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with CN. The removal of the SCs and its consequences are discussed in further detail in

Section 2.9.7.

In the same way as the original TasNet model (Luo & Mesgarani, 2018b), the encoder

network transforms the overlapping blocks of the time domain signal xℓ into a sequence of

features. The encoder is a convolutional neural network where the layer weights are learned in

an end-to-end (E2E) fashion. Another way this is sometimes described is a learned filterbank

(Pariente et al., 2020; Ditter & Gerkmann, 2020). The mask estimation network takes the

output of the encoder network wℓ and uses it to estimate a set of mask-like vectors mℓ,c for

each of the C speakers. These mask-like vectors are then multiplied with the encoded signal

vector wℓ, producing a masked weight vector for each speaker. The decoder in the original

Conv-TasNet approach (Luo & Mesgarani, 2019) is a transposed 1D convolutional layer that

decodes the masked encoded mixture, wℓ⊙mℓ,c, c ∈ {1, . . . , C}, back into the time domain to

result in C separated source estimates ŝℓ,c. The goal of the decoder is theoretically to perform

the inverse function of the encoder although this is not explicitly enforced in the network

structure (Luo & Mesgarani, 2018b, 2019).

2.9.1 Encoder

The first stage of the network is to encode the input mixture signal x[i]. The mixture signal

x[i] (defined in (2.2)) of length Lx is processed in Lx blocks of length J with a 50% overlap

and block index ℓ defined as

xℓ = [x[0.5(ℓ− 1)J ], . . . , x[0.5(1 + ℓ)J − 1]] . (2.80)

The encoder is constructed using a 1D convolutional filter of kernel size J with 1 input channel

and N output channels and a nonlinear encoder activation layer denoted by Henc : R...×N →
R...×N . For a piece of audio of length Lx this results in Lx frames and N output channels

such that the network produces Lx encoded mixture vectors wℓ ∈ R1×N given by

wℓ = Henc (xℓU) (2.81)

where U ∈ RJ×N represents a matrix of the trainable convolutional weights. In the im-

plementation used in this section, the nonlinear activation used is chosen as a ReLU func-

tion, i.e. Henc(xℓ) = HReLU(xℓ). The encoded signal mixture for all frames ℓ is defined as

W ∈ RLx×N such that

W =
[
w⊤

1 , . . . ,w
⊤
Lx

]⊤
. (2.82)
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2.9.2 Channel Sorting for Visualising Encoded Representations

The following describes a proposed approach for visualizing the encoded representations

of TasNet models originally published in Ravenscroft et al. (2022a). While time-frequency

approaches for speech separation based on masking spectrogram representations are often easy

to interpret, for visualization of the encoded signal W, sorting over the output convolutional

channels n is beneficial. When visualising the encoded representations in this work, the encoded

signals’ channels are thus reordered according to the sorting algorithm defined in Algorithm 1

based on depthwise Euclidean distance. In the Conv-TasNet paper, (Luo & Mesgarani, 2019)

propose using unweighted pair group method with arithmetic mean (UPGMA) to sort the

channels by Euclidean filter similarity. The proposed Algorithm 1 was found to be preferable in

many cases to (Luo & Mesgarani, 2019)’s approach as it leads to a less granular representation

with most of the speech energy being located in the lower region of the representation,

making it easier to observe lower energy noisier regions within the encoded signal. By this,

the proposed channel sorting algorithm results in visualisations more similar to well-known

spectrogram-like time-spectral representations. The key difference of the proposed sorting

algorithm is that (Luo & Mesgarani, 2019)’s method uses filter similarity to sort channels

whereas the proposed method sorts channels according to encoded feature similarity. The use

of UPGMA which is based on a clustering approach to sort the channels, is also not clearly

motivated by (Luo & Mesgarani, 2019); hence, in the proposed approach, the channels are

sorted by decreasing similarity from the most similar channels measured in Euclidean feature

similarity. This is premised on the assumption that the most similar channels will contain the

most amount of speech energy. The strength of this assumption gradually weakens as the

signal-to-noise ratio (SNR) of the encoded signal decreases, particularly as it passes 0dB SNR.

The distance matrix E in line 1 of Algorithm 1 is composed of Euclidean distances between

Algorithm 1 Channel sorting algorithm

Input: W = [w⊤
1 , . . . ,w

⊤
Lx

] ∈ RN×Lx # cf. (2.82)

1: E← Distance(W,W) ∈ RN×N # cf. (2.83)
2: E← E + I ·max(E)
3: {v, b} ← argmin(E)
4: E← E− I ·max(E)
5: v← Ev,:

6: z← argsort(v)
7: return z
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the encoded channel representations, calculated element-wise by

Ei,j = ∥W:,ni −W:,nj∥2 (2.83)

=

√√√√ Lx∑
ℓ=1

(Wℓ,ni
−Wℓ,nj

)2 (2.84)

with w:,ni and w:,nj being the channels i and j, respectively, i.e. the ith and jth row of W.

Since the Euclidean distances are zero on the main diagonal of E, these are replaced by the

maximum value of E in line 2. Here, I is the identity matrix. Next, the most similar channels

are identified in line 3. These are enumerated as the vth and bth channel. Zeros on the main

diagonal of E are restored in line Algorithm 4 to make sorting by distance possible for any

given row in E. In line 5 the vth row of E is selected. This row contains every distance between

all N channels and channel v such that v ∈ RN . The indices of vector v are then sorted in

order of increasing distance from channel v such that z = argsort(v) = [v, b, . . . , argmax(v)].

A comparison of the original encoded NRSM signal with its channels reordered according

to Algorithm 1 can be seen in Figure 2.7. It can be seen that the right panels of Figure 2.7

are closer to what you would expect from a spectrogram representation and thus allow for

more insight when analysing signals and masking. By contrast, the method used by Luo

and Mesgarani in (Luo & Mesgarani, 2019) seemingly provides a large number of small

clusters containing speech energy across the entire vertical axis. Note that values larger than

0.05×max(W) in Figure 2.7 have been normalized to 1 to deal with a few extraneously large

values (which are less than 1 % of the values).

2.9.3 Mask Estimation Network

The separation network is visualised in Figure 2.8. It uses a TCN which consists of X layers

of convolutional blocks (horizontal and coloured in Figure 2.8 (a)) which are repeated R times

(vertical in Figure 2.8 (a)). The features are first normalized using CN as defined in (2.32).

Following this, a P-Conv layer acts as a bottleneck layer and produces B channels as input for

the successive convolutional blocks. At the output of the mask estimation network, a set of

masks are produced in a single vector, one each speaker at each frame (cf. also Section 2.9.3.3).

This is done using a single P-Conv that changes feature dimension from B to CN .

2.9.3.1 Convolutional Blocks

Each of the convolutional blocks consists of a P-Conv layer proceeded by a DS-Conv operation

as visualized in Figure 2.8 (b) resulting in H channels within the convolutional block. Each

subsequent convolutional block has an increasing dilation factor f = 20, 21, . . . , 2X−1 which

widens the temporal context of the network for every additional block. This implementation



CHAPTER 2. SPEECH SEPARATION BACKGROUND 49

Figure 2.7: Encoded signal matrix W for clean speech mixtures (CSM) (top) and
noisy reverberant speech mixture (NRSM) (bottom). From left to right: unsorted;
sorted using (Luo & Mesgarani, 2019)’s method; sorted using the proposed method
in Algorithm 1.

of the Conv-TasNet TCN follows that which is used in popular research frameworks such as

SpeechBrain1 (Ravanelli et al., 2021) and ESPnet (Watanabe et al., 2018; Li et al., 2021). This

implementation is in contrast to the original Conv-TasNet proposed by (Luo & Mesgarani,

2019) which includes an additional skip connection from a parallel convolutional layer at the

output of the convolutional blocks. As will be reported in Table 2.1, these skip connections

are redundant; adding significantly to the model size and computational expenditure with no

positive impact on model performance.

Conv-TasNet was originally proposed in both causal and non-causal implementations. In

the causal implementation cumulative layer normalization is proposed by (Luo & Mesgarani,

2019) for the normalization layers in the convolution blocks. In the implementations and

results in the following sections, the focus is on the non-causal model, which utilises gLN

(2.31) for normalizing intermediate layers inside the convolutional blocks.

A PReLU activation function (2.28) is used after the initial P-Conv as well as the in

the DS-Conv, denoted by S in Figure 2.8 (b), cf. also (2.49). The TCN takes an Lx × N

dimensional input and produces a Lx × CN dimensional output. The input sequences to

1Conv-TasNet implementation in SpeechBrain: https://github.com/speechbrain/speechbrain/blob/

develop/speechbrain/lobes/models/conv_tasnet.py

https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/conv_tasnet.py
https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/conv_tasnet.py
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Figure 2.8: (a) Temporal Convolutional Mask Estimation Network. (b) Network
layers inside convolutional block in Figure 2.8 (a). G(·) denotes the layer normali-
sation as defined in (2.31) and S(·) is the DS-Conv as defined in (2.49).

the DS-Conv layers are zero-padded, i.e. zeros are appended to the beginning and end of

the sequence, such that the output sequences are always of the same length as the input

sequences.

2.9.3.2 Receptive Field & Temporal Context

This subsection expands upon the receptive field of convolutional layers as described by (2.85)

in Section 2.5.6. The TCN has a fixed window of depthwise inputs that the output layer is

able to observe for a given output block. This window of data points is of interest particularly

as the input speech data to the network can be modelled as a causal system with long-term
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dependencies particularly with reverberant speech signals for which the room impulse response

hc(t) in Eq. (2.2) significantly increases long term dependencies. As discussed earlier in

Section 2.5.6, the receptive field of a convolutional network refers to the number of frames in a

sequence that can be simultaneously observed by the network at the final convolutional layer

in a deep convolutional network. This can be measured in terms of the number of input frames

or time (e.g. in seconds) when dealing with time-domain signals. The receptive field measured

in frames for the TCN used in Conv-TasNet depends on the number of convolutional blocks

defined by blocks repetitions X and R as well as the kernel size P and can be defined as

RTCN(R,X,P ) = 1 + R(P − 1)

X∑
i=1

2X−i. (2.85)

The intuition behind this formula is that for every additional layer in the network, it is possible

to observe an additional (P − 1) ∗ fi frames, where fi is the ith dilation factor in a stack of X

convolutional blocks, can be observed. As fi, i ∈ 1, . . . , X is equal to 2X−i for the TCN hence

the resulting formula is (2.85). Note that R is multiplicative as it simply repeats the same

structure of X convolutional blocks in each stack.

It is possible to use the receptive field formula in (2.85) to measure the total receptive

field in seconds. This is also sometimes referred to as the temporal context (Luo & Mesgarani,

2019). Given the sample rate fs and the encoder block size J , the receptive field measured in

seconds is

RTT(J,R,X, P ) =
J

2fs

(
1 + R(P − 1)

X∑
i=1

2X−i

)
+

J

2fs
(2.86)

=
1

fs

(
J +

RJ

2
(P − 1)

X∑
i=1

2X−i

)
. (2.87)

2.9.3.3 Output Masks

The output features of the TCN network for each frame ℓ is a concatenated vector of estimated

masks, which is defined as [
m⊤

ℓ,1, . . . ,m
⊤
ℓ,C

]
⊤ ∈ R+

CN (2.88)

where mℓ,c ∈ R+
1×N and c ∈ {1, . . . , C} such that there is a set of mask vectors for each source

signal c. Note that in this work, one should consider the mask-estimation stage complete

when the mask-like features in (2.88) of shape Lx × CN are split into C features matrices of

shape Lx ×N and thus all computation proceeding from this stage is considered part of the

decoder.
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2.9.4 Decoder

The input of the decoder is an element-wise multiplication of the masks mℓ,c and the encoded

mixture wℓ from (2.81). Estimates for the source signals ŝℓ,c are then obtained from performing

a transposed 1D convolution operation defined as

ŝℓ,c = (wℓ ⊙mℓ,c)B (2.89)

where B ∈ RJ×N represents a set of learned basis vectors to be convolved with the masked

mixture. ŝℓ,c ∈ R1×J is the estimated segment ℓ of for each audio source c. The matrix B is

ideally the same as the B in the original TasNet formulation, cf. (2.76), s.t

xℓ = wℓB. (2.90)

where this operation ideally performs the inverse operation of U; however, no restraints are

put on the model training to enforce this condition so that this only assists the understanding

of how the model is expected to learn and hence can be a useful approach in interpreting the

model.

2.9.5 Loss Function

The loss function used for training the Conv-TasNet is negative SISDR (cf. (2.72)) with a PIT

wrapper (Section 2.6.2). This loss function, previously discussed in Section 2.6, was originally

proposed for the BLSTM-TasNet model (Luo & Mesgarani, 2018b). Its key features are that

it uses the SDR evaluation metric as an objective for training but includes scale invariance as

this accelerates convergence because it decreases the penalty for inaccurate energy scaling.

2.9.6 Training Setup & Configurations

All Conv-TasNet models in the remainder of this thesis are trained over 100 epochs with an

initial learning rate of 10−3, identical to the original implementation of Conv-TasNet (Luo &

Mesgarani, 2019). The learning rate is fixed for the first 50 epochs, after which it is halved if

there is no improvement in performance after 3 epochs. Gradient clipping is used to improve

training stability (Mikolov, 2012).

Gradient clipping is designed to address exploding gradients when training neural networks.

The method works by thresholding the maximum norm, denoted Γ, of the gradients in the

network. The algorithm for clipping a gradient, denoted ∇, by a maximum norm value by its

norm is visualised in Algorithm 2. It is a very simple algorithm, whereby if ∇ is larger than

the maximum specified norm Γ then it is normalized by its norm, i.e. ∇
∥∇∥ , and multiplied by

the maximum norm Γ.
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Algorithm 2 Gradient clipping by maximum norm algorithm. ∇ denotes the gradient and Γ
denotes the maximum norm specified.

Input: ∇, a parameter error gradient, and Γ, the maximum norm hyperparameter
1: if ∥∇∥ ≥ Γ then
2: ∇ ← Γ ∇

∥∇∥
3: end if

In the Conv-TasNet model, a maximum norm of Γ = 5 is selected for this (Luo &

Mesgarani, 2019). For most experiments involving Conv-TasNet-style TCNs the default

encoder configuration uses a block (or kernel) size of J = 16 and stride of 8 samples (50%

overlapping blocks). The output feature dimension of the encoder is N = 512. The TCN

based mask estimation network has a bottleneck feature dimension of B = 128. It has X = 8

stacked convolutional blocks of increasing dilation factors repeated R = 3 times. The internal

feature dimension of the convolutional blocks is H = 512 with a kernel size of P = 3.

Baseline Evaluation Metrics SISDR is reported for all experiments as this is used for

model training as well as being the most prevalent metric currently used in speech separation

literature (Luo & Mesgarani, 2018b, 2019; Tzinis et al., 2022b; Subakan et al., 2021; Rixen &

Renz, 2022; Wang et al., 2023b; Roux et al., 2019).

2.9.7 Baseline Results

In this subsection, some initial baseline results are provided, which are used in the later

chapters for further analysis and development of the Conv-TasNet architecture. Results are

provided for the simulated noisy reverberant WHAMR corpus (cf. Section 2.2.1) of two speaker

mixtures as well the anechoic WSJ0-2Mix speech mixtures (cf. Section 2.2.1) for completeness.

The original Conv-TasNet with SCs included is compared to the baseline implementation

of Conv-TasNet which neglects the SCs of the original as they are shown to drastically increase

the model size with no improvement in SISDR performance. The Conv-TasNet implementation

without the SCs actually outperforms the original Conv-TasNet model even though it has

fewer parameters. For this reason, the SpeechBrain (Ravanelli et al., 2021) & ESPnet (Li

et al., 2021) style implementation, with no SCs, is used as the primary baseline in subsequent

chapters.

WSJ0-2Mix WHAMR

Model SISDR (dB) ∆ SISDR (dB) SISDR (dB) ∆ SISDR (dB) Model Size

Raw Mixture x[i] 0 N/A -6.1 N/A N/A
Conv-TasNet (Luo & Mesgarani) 15.3 15.3 3.3 9.4 5.1M
Conv-TasNet (w/o SCs) 15.3 15.4 3.5 9.7 3.6M

Table 2.1: Comparison of Conv-TasNet original implementation with SpeechBrain
implementation without SCs. The model size is reported in the number of parameters
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2.10 SepFormer

In this section, the separation Transformer (SepFormer) model (Subakan et al., 2021) is

introduced. This model was formerly SOTA on the WHAMR and WSJ0-2Mix benchmarks

up until recently (Subakan et al., 2021, 2023). It is a foundational model highly relevant

to the work in Chapter 7 to Chapter 9 so a detailed description is given in the following

sections. SepFormer is a type of dual-path (DP) network. DP networks sequentially process

local and global information using different tensor views. Section 2.10.1 first gives an overview

of DP networks and the background literature behind SepFormer. Further details of the

SepFormer network structure, training configuration and some baselines results are given in

Section 2.10.2.

2.10.1 Dual-Path Networks

Dual-path (DP) networks are a type of sequence model proposed as an improvement to the

TasNet and Conv-TasNet models. The dual path recurrent neural network model (DPRNN)

was the first DP network to be proposed (Luo et al., 2020). The DPRNN model first chunks

the input sequence from a shape of L×D to a shape of L
Lchunk

× Lchunk ×D. The first local

RNN layer then process each L
Lchunk

chunks of length Lchunk individually. The output of

these parallelizable RNN operations is the same dimensionality and shape as the input to

the RNN layers. In the next stage, the sequential and chunk axes are swapped such that the

representation is of shape Lchunk× L
Lchunk

×D. Then the Lchunk sequences of length L
Lchunk

are

passed through the second global RNN layer. This second process is equivalent to passing a

dilated view of the input sequence through an RNN layer where the dilation factor is equal

to Lchunk. The best performing DPRNN configuration also used very small block sizes in

the encoder, J = 2 at 8kHz equivalent to 0.125ms of audio. However, this resulted in less

efficient inference and training for the model due to the high temporal resolution of the model

(8× larger than the best-performing Conv-TasNet model (Luo & Mesgarani, 2019; Luo et al.,

2020)).

Some notable further improvements to the DP method were to replace the RNNs with

Transformers. The Dual path Transformer network (DPTNet) model was the first such

network to incorporate this technique. This model did not do away with RNNs entirely as

it replaced the sinusoidal PE with an RNN layer. While both DPTNet (Chen et al., 2020a)

and DPRNN (Luo et al., 2020) gave SOTA performance and had a small model size, less

than 3M parameters, they both came with notable computation inefficiencies in terms of real

time factor (RTF) and computational expenditure. The SepFormer model was the second DP

Transformer network to be proposed. SepFormer maintained the convention sinusoidal PE

used in Transformers (Vaswani et al., 2017), reducing the computational expenditure. It also

operates on a lower temporal resolution than the DPRNN model, which in turn reduces the
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computational expenditure, particularly for Transformers that have quadratic time-complexity.

However, the model size of the best-performing SepFormer configuration is 10× larger than

DPRNN or DPTNet.

2.10.2 SepFormer Network

The SepFormer model is described in this section. SepFormer is chosen because it is a large

Transformer model that is among the state-of-the-art models on several speech separation

benchmarks (Subakan et al., 2021, 2023). The model uses the same encoder, mask estimation

network, and decoder structure as the TasNet models in the previous two sections, cf. Figure 2.6.

As with the Conv-TasNet, DPRNN and other TasNet models (Luo & Mesgarani, 2019; Luo

et al., 2020; Luo & Mesgarani, 2018b), the SISDR loss function (2.72) with a PIT wrapper is

used for training the network.

2.10.2.1 Encoder & Decoder

The SepFormer uses an identical convolutional encoder to the Conv-TasNet encoder in

Section 2.9.1. Similarly, the decoder is a single transposed 1D convolutional layer as discussed

in Section 2.9.1. As the encoder and decoders are the same, the same W notation is used for

the encoded features and Mc for the masking features of the cth speaker.

2.10.2.2 Mask Estimation Network

A SepFormer mask estimation network diagram is shown in Figure 2.9. This diagram

shows both the overall network architecture (left) as well as a detailed schematic of the DP

Transformer layers (right). In the first stage of the mask estimation network, the encoded

features W ∈ RLx×N are transformed using a linear layer and LN layer to give features

H ∈ RLx×Z , where Z is the internal feature dimension used in the rest of the mask estimation

network. As previously discussed, the mask estimation network uses a dual-path structure

(Luo et al., 2020) whereby a series of Transformer encoder layers are stacked such that each

alternating layer computes multihead attention over the sequence’s local or global context.

Please note that throughout the rest of this section, for the sake of brevity, Transformer encoder

layers are shortened to just Transformer layers as Transformer decoder layers are not used in

this model, cf. Section 2.5.8.2. Please see Figure 2.5 for a visualization of the Transformer

encoder. The local processing is achieved by first splitting the features H ∈ RLx×Z into 50%

overlapping chunks of a predetermined size U turning a 2D tensor of shape H ∈ RLx×Z into a

3D tensor

Hchunk = [hchunk,1, . . . ,hchunk,LU
] ∈ RLU×U×N . (2.91)
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Figure 2.9: Diagram of the SepFormer mask estimation network (left) and dual
path (DP) Transformer layers (right).

where LU = 2Lx
U . Note that the batch dimension is omitted for brevity and simplicity in

this description. The chunked representation is then passed through the first self-attentive

Transformer layer iteratively, i.e.

M (hchunk,k,hchunk,k,hchunk,k)∀k ∈ {1, . . . , LU} (2.92)

This first Transformer is referred to in the source literature (Subakan et al., 2021) as the

intra-Transformer. It is used for modelling short-term, also referred to as local, dependencies

(or context). The output of the local Transformer layer is another 3D tensor of the same

shape which is then reshaped by swapping the 1st and 2nd axes of the chunked features (of
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size LU and U respectively), denoted H′
chunk ∈ RU×LU×Z , before being passed through the

global Transformer layer, i.e.

M
(
h′
chunk,k,h

′
chunk,k,h

′
chunk,k

)
∀k ∈ {1, . . . , U}. (2.93)

The 1st and 2nd axes are then swapped back. The DP network consists of RDPT DP layers

(i.e. a DP layer being defined as a combined intra-Transformer and inter-Transformer). The

entire output of the DP network is repeated (i.e. the output features are fed back into the

input of the network) V times.

On the output of the DP network is a PReLU activation with a linear layer. The output

of this layer, denoted H′′
chunk ∈ RLU×U×ZC , is reconstructed to a 2D tensor of shape Lx ×ZC

using the overlap-add method, denoted

H′′ =



1
2h

′′
chunk,1,1:U

2

1
2

(
h′′
chunk,1,U

2
:U

+ h′′
chunk,2,1:U

2

)
1
2

(
h′′
chunk,2,1:U

2

+ h′′
chunk,3,U

2
:U

)
...

1
2

(
h′′
chunk,LU−1,U

2
:U

+ h′′
chunk,LU ,1:U

2

)
1
2h

′′
chunk,LU ,U

2
:U


∈ RLx×Z . (2.94)

The reconstructed feature matrix H′′ is then gated using two linear layers, one with a tanh

activation and another with a Sigmoid activation (cf. the bottom left network in Figure 2.9).

The output of this gating module is then projected into C sets of masking features with

correct feature dimension, i.e. M ∈ RLx×CN where Mc ∈ RLx×N for each speaker, using a

linear layer and ReLU activation function similar to the final layer of the mask estimation

network in Conv-TasNet (cf. Section 2.9.3.3). The encoded features are then masked and

decoded back into the time domain using the same decoder network as the Conv-TasNet

model: a transposed 1D convolutional layer (cf. Section 2.9.1).

2.10.3 Training Configuration & Data Setup

This subsection describes the standard configuration used to train the best-performing

SepFormer model in (Subakan et al., 2021). The encoder uses a kernel size of J = 16 and

output feature dimension of N = 256, the internal feature dimension of the DP network is

Z = 1024, the chunk size is U = 250, the number of DP Transformer layers is RDPT = 8 and

the number of network cycles is V = 1.
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Subakan et al. (2021) used a technique known as dynamic mixing (DM) where, instead of

using one pre-simulated training dataset, new speech mixtures are simulated for each epoch

to increase the data diversity and thus model generalization. Subakan et al. (2021) also take

this a step further by using speed perturbation training to augment the data further, i.e. the

pre-simulated speech samples are sped up or slowed down ±5%.

2.10.4 Baseline Results

Baseline results for the Sepformer model on the WSJ0-2Mix and WHARM datasets are

shown in Table 2.2. Note that these are reproduced results and differ slightly from those

Table 2.2: Baseline SepFormer results on the WSJ0-2Mix (Isik et al., 2016) and
WHAMR (Maciejewski et al., 2020) datasets, with and without Dynamic Mixing
(DM) (as implemented in Subakan et al. (2021) and Subakan et al. (2023))

WSJ0-2Mix WHAMR

Model DM SISDR (dB) ∆ SISDR (dB) SISDR (dB) ∆ SISDR (dB)

SepFormer ✗ 20.4 20.4 5.4 11.5
SepFormer ✓ 22.3 22.3 7.9 14.0

reported by the original authors in Subakan et al. (2023) where SepFormer achieves 11.5 dB

on WHAMR but 11.4 in Subakan et al. (2023). The introduction of DM notably improves

the performance of the model on both datasets. As such, this method is employed on all

the proposed separation models later in Chapter 4, Chapter 5, Chapter 8 and Chapter 9.

Incidentally, it is also found later in Chapter 9 that using slightly different hyperparameters,

particularly the learning rate, yields improved performance. Further analysis on improving the

training time of SepFormer by truncating the training signal length (TSL) limits is provided

in Chapter 7.

2.11 Speech Separation & Multi-Speaker Speech Recognition

In Chapter 10, the application of speech separation to multi-speaker Speech Recognition is

explored. As such, in this chapter, an overview is provided of recent developments in multi-

speaker ASR using DNN separation networks. Numerous approaches to multi-speaker ASR

have been proposed, often including a variety of speech technology subcomponents including

but not limited to multichannel and monaural speech enhancement, speech separation,

speaker diarization and speech recognition itself (Watanabe et al., 2020). More recently,

serialized output training (SOT) was proposed, a technique that enables the design of

explicitly multispeaker ASR models with no subcomponents (Kanda et al., 2020). While there

is a benefit to having a simplified pipeline that requires no fine-tuning on subcomponents, this

can come at the expense of model interpretability. At the point in time that this thesis is being
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Figure 2.10: Visualization of a modular multi-speaker ASR system, combining
speech separation and single-speaker ASR model, for C = 2 speakers. The ASR
model is the same model for both speakers.

written, as far as the author is aware, there is no in-depth study on whether the SOT approach

or the modularized approach typically gives better overall performance when controlling for

computational expenditure. In this thesis, the primary interest is in a modularized separate-

and-recognize approach, i.e. using a speech separation model to first separate the input audio

signal x[i] in C estimated speech signals ŝc[i] for C speakers and then feeding each separated

signal individually into a speech recognition module to attain predicted transcription of

discrete character tokens t̂c (Cord-Landwehr et al., 2022). The modular multi-speaker ASR

approach is visualised in Figure 2.10. One of the weaknesses of the modularized approach is

that the speech separation module often introduces distortions into the speech signals that the

speech recognizer is not trained to be robust to. One proposed solution is to mask the model

artefacts with noise as described in Cord-Landwehr et al. (2022). Another option is to design

a speech recognition model that generalizes very well to a large variety of speech. The recently

proposed Whisper model is probably the best example of a model trained for this purpose

(Radford et al., 2023). This model was trained via weak supervision, i.e. the model is trained

on large amounts of poorly labelled data rather than smaller amounts of very well-labelled

data, resulting in better overall ASR performance regardless of the acoustic qualities of the

speech. In von Neumann et al. (2023a), the authors have claimed SOTA performance on

meeting recognition benchmarks using the Whisper model combined with the currently SOTA

TF-GridNet speech separation model (Wang et al., 2023b). The final approach to mitigating

the training mismatch between separators and recognizers is to jointly train the separation

and recognition elements using a recognition-based loss function. Qian et al. (2018) proposed

a combined feature separation and recognition network that could be jointly trained using a

PIT loss function from the output of the recognition model. This was possible because every

operation in and between the two subnetworks was fully differentiable, enabling the use of the

error backpropagation (Rumelhart et al., 1986) for training the separative part of the network

as well, cf. Figure 2.3. Chang et al. (2019) expanded upon this idea into a multichannel model

that used a so-called minimum-variance distortionless response (MVDR) beamformer where

the speakers were separated in TF domain. Again, this method was possible because the

STFT computation of the TF features and the MVDR formulation are both differentiable
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functions. Around the same time Xu et al. (2019) proposed a similar method, using an STFT

beamformer for separating the speakers that could be trained jointly with so-called acoustic

model in an ASR system. Single channel variations of this approach have also been proposed

(Chang et al., 2020). All these proposed end-to-end methods require reference transcriptions

to do end-to-end training. In Chapter 10, it is explored whether these models can be jointly

trained without requiring reference transcriptions by instead using feature representations

from DNN ASR encoder models.

2.12 Related Work & Further Reading

In this final section, some related works are covered to provide a broader context for the

modern state of speech separation and enhancement technology. In subsection Section 2.12.1

an overview of derverberation research particularly with respect to DNN models is provided.

This information is particularly relevant to the dereverberation experiments Chapter 3. In

subsection Section 2.12.2, some discussion is given to the various approaches that have been

proposed in recent speech separation performance to achieve either SOTA or create more

computationally efficient models and how these two approaches to designing models often

come at the expense of one another. This is provided to aid some of the discussion in later

chapters relating to computational efficiency and how it impacts performance. The final

section, Section 2.12.3, discusses more recent unsupervised approaches to training speech

separation networks. This is primarily for the readers’ own interest, but it relates to the

proposed fine-tuning method in Chapter 10, which in some sense could be considered partially

unsupervised if pretraining the ASR encoder network was not considered part of the training

scheme for the separation network.

2.12.1 Dereverberation Literature

Although the overall goal in this thesis is combined speech enhancement and separation

models, the earlier parts of this thesis (Chapter 3 and Chapter 4) focus extensively on the sole

dereverberation task to gain insights about the Conv-TasNet model. As such, a brief overview

of some relevant literature on, particularly, DNN based dereverberation methods is given.

Dereverberation of speech signals has been studied thoroughly over the past decades

(Naylor & Gaubitch, 2010; Cauchi et al., 2015; Oppenheim et al., 1968) based on machine

learning models and SP techniques (Haeb-Umbach et al., 2021; Habets, 2007). Typically, SP

approaches model reverberant speech as a mixture of the anechoic speech signal summed with

delayed, exponentially decaying weighted sums of itself. SP methodologies for suppressing

reverberant content in speech signals range from a number of techniques, with the more

prominent approaches in recent work using spectral suppression or linear predictive modelling
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(Nakatani et al., 2010; Park et al., 2018; Zhang et al., 2020a). Recent advances in speech

dereverberation performance in a number of domains have been driven by DNN models

(Kinoshita et al., 2017; Ernst et al., 2018; Wang & Wang, 2020; Wang et al., 2021; Zhao

et al., 2021). DL models have mostly surpassed pure SP approaches for enhancing reverberant

speech signals on objective measures such as WER or PESQ (Purushothaman et al., 2020;

Kinoshita et al., 2017; Zhao et al., 2020). The original BLSTM-TasNet (Luo & Mesgarani,

2018b) was also proposed for dereverberation (Luo & Mesgarani, 2018a) with promising results.

However, this evaluation was quite limited. A dereverberation network using a TCN, similar to

Conv-TasNet, with self-attention was proposed in (Zhao et al., 2020) which demonstrated that

TCN models give competitive results with other state-of-the-art dereverberation techniques

such as DNN weighted prediction error (WPE) models (Kinoshita et al., 2017).

2.12.2 Lightweight Models vs. SOTA Peformance

The DP models discussed in Section 2.10.1 typically perform well but have a drawback of

being poor in terms of computational performance with issues such as slow training times

and high real time factors (RTFs) often due to high computational complexity and memory

consumption (Tzinis et al., 2022b). This is especially the case with DP Transformer models

(Subakan et al., 2021; Chen et al., 2020a) due to the quadratic time complexity of Transformer

layers. Time domain (i.e. TasNet) models, in general, tend to have much higher computational

expenditure than TF methods as well. This is normally due to the very high temporal

resolution often used to achieve optimal results. The DPRNN model is a key example of this

where the proposed previous SOTA configuration has an encoder kernel size of J = 2 with a

stride of K = 1 (yielding Lx = 8000 frames at 8kHz). While time domain methods have up

until recently remained SOTA in terms of SISDR performance on popular benchmarks, there

has been scientific criticism of using this as the sole approach to evaluating these models. In

Cord-Landwehr et al. (2022), the authors firstly show that with careful modifications, the

TF methods can reach parity, and, in some cases, improve upon time-domain methods on

multi-speaker ASR evaluations. Furthermore, Cord-Landwehr et al. (2022) show that the

PIT-BLSTM model (Kolbaek et al., 2017) published in 2017 can match the performance

of the SepFormer model, questioning the real-world utility in the gains found using more

recently proposed approaches such as TasNet and SepFormer. Very recent developments in

speech separation research have proposed using TF features again with demonstrable SOTA

results (Wang et al., 2023a). However, these models still have comparably high computational

complexity to time domain models (Wang et al., 2023a; Tzinis et al., 2022b).

The Conv-TasNet model can generally be considered “lightweight” in terms of computa-

tional expenditure when compared to other TasNet models such as SepFormer; however, its

performance is lacking in terms of raw SISDR performance on many popular benchmarks
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such as WHAMR (Maciejewski et al., 2020) and LibriMix (Cosentino et al., 2020). There

has been notable research interest in having so-called lightweight models without the drop in

performance typically found when using them. Some notable example of these works include

the SuDO-RM-RF and SuDO-RM-RF++ models (Tzinis et al., 2022b, 2020), the Skipping

Memory LSTM (SkiM) model Li et al. (2022a) and the work on Tiny SepFormers (Luo

et al., 2022). The techniques employed in these networks typically involve carefully modifying

pre-existing models and network structures, U-Net (Ronneberger et al., 2015) in the case

of Tzinis et al. (2022b), LSTMs (Hochreiter & Schmidhuber, 1997) in the case of Li et al.

(2022a) and SepFormer (Subakan et al., 2021) in the case of Luo et al. (2022). The approach

in all of these newer models is usually to identify and remove computational redundancies in

the original model structures while maintaining overall performance.

2.12.3 Supervised vs. Unsupervised

The emphasis in this thesis is on supervised models, but in recent years, there has been an

increased interest in unsupervised methods due to the limitations of using labelled data where

targets always typically contain some imperfections (Tzinis et al., 2022a; Cornell et al., 2023).

Unsupervised methods also yield the possibility of doing away with labelled data altogether

and enable training on real speech mixtures instead of simulated speech mixtures. While

unsupervised methods have improved over recent years, supervised approaches still typically

give the best overall performance. As this isn’t the focus of this thesis, no more detail is

provided but for more on unsupervised speech separation, the reader is encouraged to refer

to the MixIt unsupervised models proposed in (Wisdom et al., 2020), the RemixIT model

(Tzinis et al., 2022a), the CHiME-7 UDASE challenge (Leglaive et al., 2023) and the most

recently proposed UNSSOR model (Wang & Watanabe, 2023).
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Chapter 3

Receptive Field Analysis for

Dereverberation

This chapter and the following two chapters are primarily concerned with gaining insights

about the Conv-TasNet model in order to develop technical improvements and then implement

and evaluate those improvements. As alluded to in Chapter 2, convolutional models, such as

Conv-TasNet, are typically less computationally expensive in a number of ways than most

recurrent or Transformer-based models due to their purely feed-forward structure. Thus,

for the purpose of developing higher-performing but lighter-weight models (computationally

speaking), they form a good basis for developing new techniques that improve upon previous

models in these areas.

In this chapter, the capabilities of the Conv-TasNet model for performing monaural

dereverberation of speech are analysed according to the model configuration and the acoustic

characteristics of reverberation. The goal of this research is to attain insights about the

Conv-TasNet model which might aid in developing improvements to the model for the purpose

of the combined speech enhancement and separation task that is explored more in-depth in

the following chapters. In the proceeding content of this chapter, the Conv-TasNet model is

reformulated as a denoising autoencoder (DAE) (Luo & Mesgarani, 2018a), i.e. the number of

output speakers is reduced to C = 1. The Conv-TasNet model is evaluated across a number

of configurations with particular attention paid to the receptive field. The main focus is to

analyse the interplay between receptive field, model size and RIR length on the capability

of Conv-TasNets to dereverb speech. The motivation for this is that both the model and

data have a temporal variable: receptive field for the Conv-TasNet model and reverberation

time (measured in RT60) in the case of RIRs. The RT60 measure is defined as the amount of

time it takes for an IR to attenuate by 60 dB from its maximum excitation point, typically

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2022b).
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measured in time (i.e. seconds (s) or milliseconds (ms)).

The remainder of the chapter proceeds as follows, Section 3.1.1 Conv-TasNet is formulated

as a DAE, in Section 3.2 the data and experimental setup are discussed, in Section 3.3 results

are presented and Section 3.4 concludes the paper.

3.1 Conv-TasNet as a Denoising Auto-Encoder for Derever-

beration

In the remaining work in this Chapter, the signal model for a reverberant single-speaker signal

is used, cf. (2.4). The aim in this chapter is to estimate the values of the direct path of the

speech sdir[i] from xreverb[i] denoted as ŝ[i], cf. (2.4) for more details on the single-speaker

reverberation signal model.

3.1.1 Denoising Auto-Encoder (DAE)

The Conv-TasNet model is reformulated as a DAE again composed of an encoder, a mask

estimation network and a decoder (Luo & Mesgarani, 2019; Ravenscroft et al., 2022a),

cf. Figure 2.6. The only change is that C = 1 and thus there is only one output channel. As

in Section 2.9, the audio blocks xℓ are encoded into feature vectors wℓ. The mask estimation

network produces a sequence of masks from the encoded signal. The masks mℓ are then

multiplied with the encoded features wℓ to produce a sequence of output features that are

decoded back into a time domain signal by the decoder.

The SISDR objective function formulated in (2.72) is used for training the DAE network.

Note that for single-speaker dereverberation, the SISDR only needs to be computed for the

single-speaker signal and averaged across the batch prior to back-propagation, i.e. there is

no need to use PIT as in the previous chapter because C = 1 and thus there is only one

permutation to consider.

3.2 Data and Experiments

3.2.1 Data

WHAMR (cf .Section 2.2.1) and an extension of WHAMR, referred to as WHAMR ext in the

following, are used for all experiments in this chapter. Only the first speakers’ audio clips are

used (c ≡ 1) since the focus is on single speaker dereverberation. In WHAMR, RT60 values for

the RIRs are randomly generated between 0.1s and 1s. To create WHAMR ext, reverberant

speech with larger RT60 values between 1s and 3s were simulated following the same routine

as for WHAMR. The RIRs in WHAMR ext are generated the same as in WHAMR, using the
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pyroomacoustics (Scheibler et al., 2018) software framework. Scripts to recreate WHAMR ext

have been published on GitHub1 for reproducibility. The 8kHz sample rate min configuration

of both WHAMR and WHAMR ext (cf. Section 2.2.1) is used for all training and evaluation.

3.2.2 Training Configuration

Training is performed over 100 epochs with an initial learning rate set to 10−3 that is halved

if there is no improvement in the average SISDR over the validation set after 3 epochs. The

number of blocks, X, in the dilated stack of the TCN was varied from 1 to 10 and the number

of repeats, R, of the stack itself was varied from 1 to 8. The rest of the network’s configuration

is fixed. The encoder has a kernel size of J = 16 and N = 512 output channels. The TCN is

configured such that there are B = 128 output channels from the bottleneck layer and each

convolutional block has H = 512 internal convolutional channels and a kernel size P = 3.

3.2.3 Evaluation Metrics

Several metrics are used for evaluating models in this chapter. The primary metric used is

the objective function, but also PESQ (Rix et al., 2001b), ESTOI (Jensen & Taal, 2016) and

SRMR (Falk et al., 2010) are reported for some results in this chapter. Refer to Section 2.7

for further details on these metrics.

3.3 Results

3.3.1 ∆ SISDR on WHAMR and WHAMR ext

The ∆ SISDR results for the models trained and evaluated on the WHAMR dataset can be

seen in Table 3.1 for varying X and R. These parameters are varied such that they change

the receptive field and model size of TCNs where X has more effect on the receptive field (cf.

(2.86)) and both increase the number of layers in the network, but R has more effect on the

temporal parameter density, i.e. number of parameters per second of the receptive field. Note

that one convolutional block has

BH + H + HP + HB = 133, 120 parameters. (3.1)

Results in Table 3.1 show that for smaller models (≲ 2M parameters) it is preferable to

have a larger receptive field, i.e. a higher X value, than a deeper network per the receptive

field, i.e. a higher R value. For example, for a model with 12 convolutional blocks the best

performing model configuration is (X,R) = (6, 2) where X = 6 is the largest possible value for

the 4 possible TCN configurations, {(X,R)} = {(4, 3), (3, 4), (6, 2), (2, 6)}. The importance of

1Mixing script available online at https://github.com/jwr1995/WHAMR_ext

https://github.com/jwr1995/WHAMR_ext


CHAPTER 3. RECEPTIVE FIELD ANALYSIS FOR DEREVERBERATION 67

Table 3.1: ∆ SISDR in dB for all TCN configurations trained and evaluated on
WHAMR, the best-performing model for a number of convolutional blocks (X ·R)
in TCN is shown in bold.

X
1 2 3 4 5 6 7 8 9 10

1 1.88 2.61 3.32 4.05 4.66 5.09 5.41 5.65 5.67 5.68
2 2.48 3.58 4.45 5.25 5.92 6.26 6.47 6.45 6.60 6.63
3 2.95 4.08 4.94 5.94 6.43 6.80 6.88 6.94 7.02 7.01
4 3.28 4.46 5.47 6.53 6.97 7.01 7.16 7.23 7.14 7.11
5 3.54 4.82 5.86 6.70 7.06 7.31 7.29 7.32 7.42 7.44
6 3.74 4.99 6.16 6.87 7.25 7.37 7.45 7.51 7.47 7.40

R

8 4.09 5.55 6.44 7.12 7.44 7.63 7.59 7.54 7.48 7.40

Table 3.2: ∆ SISDR in dB for all TCN configurations trained and evaluated on
WHAMR ext, best performing model for number of convolutional blocks (X ·R) in
TCN shown in bold.

X
1 2 3 4 5 6 7 8 9 10

1 3.04 3.85 4.67 5.79 6.84 7.68 8.09 8.55 8.69 8.69
2 3.65 4.76 6.11 7.44 8.56 9.19 9.52 9.64 9.76 9.79
3 4.06 5.44 6.98 8.42 9.29 9.83 10.13 10.19 10.21 10.15
4 4.45 6.10 7.62 8.96 9.68 10.11 10.41 10.42 10.42 10.47
5 4.70 6.51 8.21 9.36 10.01 10.37 10.60 10.62 10.54 10.50
6 4.96 6.85 8.48 9.63 10.15 10.49 10.74 10.77 10.67 10.60
7 5.29 7.14 8.75 9.71 10.34 10.61 10.72 10.68 10.76 10.70

R

8 5.45 7.44 9.03 10.02 10.49 10.80 10.81 10.67 10.68 10.57

widening the receptive field is also apparent in the first row of Table 3.1 where R = 1 remains

constant for best performance for the first 9 convolutional blocks. This importance of having

X > R disappears as the number of convolutional blocks surpasses 36 (X = 6, R = 6) at

which point the best performance is gained by models with R > X, i.e. more importance is

given to a deeper network than a wider receptive field.

Comparing the best performing models for increasing the number of convolutional blocks

(X ·R) trained on WHAMR (cf. Table 3.1) and WHAMR ext (cf. Table 3.2) indicates that

for a dataset containing only larger RT60 values between 1s and 3s it is more preferable

to increase the model’s receptive field as the number of convolutional blocks in the TCN

increases up to 42, i.e. (X,R) = (7, 6). For RT60 values between 0.1s and 1s (WHAMR corpus,

Table 3.1) the model only benefits from putting more emphasis when expanding the receptive

field up to 36 convolutional blocks.

Table 3.3 shows the best-performing models in terms of SISDR, trained on each training

set and evaluated on each test set. These results show that performance improvements in
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Table 3.3: Best performing models for models trained on WHAMR and
WHAMR ext evaluated on each test set. The model size is reported in param-
eter count. The receptive field is denoted by R and calculated in seconds. ∆
indicates the ∆-measure (i.e. improvement over the unenhanced signal) of the
measure to its respective left. SISDR measures are reported in dB.

train eval X R # params R (s) SISDR ∆ PESQ ∆ ESTOI ∆ SRMR ∆

WHAMR WHAMR 6 8 6.6M 1.02 12.03 7.63 3.46 0.91 0.93 0.15 8.7 2.26

WHAMR WHAMR ext 8 8 8.8M 4.09 5.89 9.64 2.3 0.94 0.74 0.35 8.48 5.72

WHAMR ext WHAMR 6 8 6.6M 1.02 10.79 6.39 3.24 0.69 0.92 0.14 8.81 2.36

WHAMR ext WHAMR ext 7 8 7.7M 2.04 7.07 10.81 2.46 1.11 0.81 0.42 9.18 6.42

SISDR are similarly replicated in SRMR, PESQ and ESTOI measures and thus correspond

to an objective improvement in perceived reverberation, quality and intelligibility of speech.

Table 3.1 and Table 3.2 have been calculated also for SRMR, PESQ and ESTOI, which show

similar trends. Table 3.3 also indicates that when evaluated on WHAMR the model that was

trained on WHAMR ext gives better dereverberation performance (in SRMR) but was more

distorted (in SISDR), c.f. SISDR and SRMR results in rows 1 & 3. It is, however, expected

that training on both WHAMR and WHAMR ext jointly would lead to further generalisation

improvements on the WHAMR test set.

3.3.2 Receptive Field and Model Size

Figure 3.1 shows the results for models trained on WHAMR (upper panel) and WHAMR ext

(lower panel) depending on the receptive field and model size. Note that the SISDR measure

is used here, as opposed to the ∆ SISDR measure, because it is later compared with SRMR

in this section. In terms of model size, the SISDR performance that can be achieved by

TCNs alone saturates as the number of parameters approaches 6M, for both WHAMR and

WHAMR ext when evaluated on WHAMR. For evaluation on WHAMR ext, the SISDR

performance also saturates as it approaches 6M parameters but the results for the model

trained on WHAMR in Table 3.3 indicate it may benefit from the larger model size when

having to dereverb larger reverberation times especially when trained only with smaller RT60s.

Figure 3.1 further illustrates that the SISDR performance saturates before the receptive field

reaches 1s for models trained on WHAMR, i.e. the highest occurring RT60 in WHAMR. The

receptive fields of the best-performing models can be seen in Table 3.3. The best model trained

and evaluated on WHAMR in terms of SISDR has a receptive field of 1.02s. Analysing the

same models but evaluated on WHAMR ext, the best SISDR performance is attained with a

receptive field of 4.09s. This indicates that although the network has not been trained on large

RT60s it may still be able to use the larger receptive field to analyse the longer reverberation

tails in a meaningful way. For models trained on WHAMR ext, the optimal model evaluated

on WHAMR has a receptive field of 1.02s and a receptive field of 2.04s when evaluated on
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(a) Trained on WHAMR.

(b) Trained on WHAMR ext.

Figure 3.1: SISDR depending on the logarithmic receptive field. Circles and
squares indicate evaluation on WHAMR and WHAMR ext test sets, respectively.
Maximum RT60s of WHAMR and WHAMR ext are shown by dashed lines. The
colour scale indicates the number of model parameters.

WHAMR ext. Figure 3.2 analyses the best-performing models on each of the two datasets

by their Receptive fields depending on model size (i.e. a number of convolutional blocks).

This indicates that for larger RT60 values TCNs benefit from having a larger receptive field

as most of the best performing models evaluated on WHAMR ext have a larger receptive

field than the best performing models evaluated on WHAMR. The SISDR of the estimated

signal improves even with RT60s larger than the receptive field as can be seen in Figure 3.1.

This implies the network learns how to estimate masks that suppress the characteristic of

reverberation, as opposed to trying to perform a blind deconvolution operation based on an
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Figure 3.2: receptive fields for the best performing models in Tables Table 3.1 and
Table 3.2 shown by increasing model size measured in number of convolutional blocks
(one convolutional block is 133,120 parameters). Line colour and style indicates
the training and test set used.

estimated RIR representation in the network. As such, it should be possible to dereverb RIRs

of any RT60 value regardless of the receptive field, but Table 3.3 indicates that having a

receptive field in a similar range to the maximum RT60 value is optimal and if the model has

a receptive field in a similar range to the largest RT60 being evaluated then the SISDR will

benefit from this even if it was trained on smaller RT60 values.

3.3.3 SRMR vs SISDR

Comparing results of SISDR (Figure 3.1) with SRMR (Figure 3.3) indicates that with

sufficiently large model sizes (≳ 4M parameters) much of the residual distortions in the signal

are artefacts introduced by the network and not reverberation itself. This also indicates that

the larger the reverberation time, the more residual distortions are present in the estimated

clean speech signal. Audibly, the distortions present in RT60s ≲ 1 were not particularly

noticeable however as the RT60 approaches 3s they become more noticeable as informal

listening tests showed. The performance of SRMR also saturates slightly earlier than that

of SISDR similarly implying that some of the gain from increasing the model size has more

correlation to reducing artefact distortions in ŝ[i] than any residual reverberant effects. This is

an argument in favour of using the SISDR function over a pure reverberation-based measure

like SRMR as the loss function because SRMR is more agnostic to general distortions in the

signal.

3.3.4 Improvement on WHAMR vs WHAMR ext

The ∆ SRMR results in Figure 3.4 demonstrate that greater reverberation improvement can

be attained on the more reverberant WHAMR ext dataset but that larger model sizes (≳ 4M

parameters) are required to capitalize on this fully. Also, for both WHAMR ext evaluations,
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(a) Trained on WHAMR.

(b) Trained on WHAMR ext.

Figure 3.3: SRMR depending on the logarithmic receptive field. Circles and
squares indicate evaluation on WHAMR and WHAMR ext test sets, respectively.
Maximum RT60s of WHAMR and WHAMR ext are shown by dashed lines. Colour
scale indicates the number of model parameters.

there is a much broader distribution of values as the receptive field increases. This is related to

the R variable in the TCN, in other words using a deeper network leads to a more significant

improvement when evaluating SRMR improvement on larger RT60s.
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Figure 3.4: ∆ SRMR for model trained on WHAMR depending on logarithmic re-
ceptive field. Circles and squares indicate evaluation on WHAMR and WHAMR ext
test sets, respectively. Maximum RT60s of WHAMR and WHAMR ext are shown
by dashed lines. Colour scale indicates the number of model parameters.

3.4 Conclusion

In this chapter, TCNs were analysed for their application in dereverberation tasks. It was

found that for smaller models more emphasis should be put on widening the receptive field of

the network than using more layers in a network. The model performance in both SISDR and

SRMR starts to saturate around a model size of 4M parameters. It was shown that for larger

RT60 values, there is strong evidence that having a wider receptive field is important for

achieving optimal performance. This is especially true when the model is trained on smaller

RT60s. It was found that SRMR performance was fairly agnostic to the variation in RT60

values but SISDR performance was significantly impacted. This indicates that much of the

distortion remaining in the signal maybe modelling errors as opposed to reverberant effects.

It was also found that much of the distortions in the dereverberated signal were network

artefacts as opposed to reverberant effects. The optimal receptive field for a model tested

and evaluated on RT60 values between 0.1s and 1s was found to be 1.02s. A new corpus

containing larger RT60 values between 1s and 3s was created and when re-evaluated on this

dataset the optimal receptive field was found to be 4.09s. When trained on RT60s between 1s

and 3s the optimal receptive was found to be 2.04s regardless of RT60 range in the evaluation

set. Given models trained and evaluated on the same RT60 ranges, for the model trained on

larger RT60 values it was shown that increasing the receptive field of the model was a more

pertinent factor to improving model performance than it was for the model trained on smaller

RT60 values.



Chapter 4

Utterance-Weighted Multi-Dilation

TCNs

In Chapter 3, it was shown that the best performing TCN models for speech dereverberation

tasks typically have a larger receptive field for data with higher reverberation times T60 and

a smaller receptive field for data with small T60s (Ravenscroft et al., 2022b) which forms the

primary motivation for the proposed method in this chapter.

In this chapter, a TCN architecture is proposed which is able to focus on specific temporal

context within its receptive field. This is achieved by using an additional depthwise convolution

kernel in the depthwise-separable convolution with a small dilation factor. Inspired by work

in dynamic convolutional networks, a squeeze-and-excite (SE) attention network is used to

select how to weight each of the depthwise kernels (Han et al., 2021; Chen et al., 2020b).

The remainder of this chapter proceeds as follows. Section 4.1 introduces the WD-TCN

dereverberation network. Section 4.2 describes the experimental setups and training configu-

rations. Results are presented in Section 4.2.4.

4.1 Weighted Dilation TCN for Monaural Dereverberation

In this section, the monaural speech dereverberation signal model is introduced and the

proposed WD-TCN dereverberation model is described. The general WD-TCN model archi-

tecture is similar to the reformulation of the Conv-TasNet speech separation model (Luo &

Mesgarani, 2019) as a DAE in Chapter 3.

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2023a).
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4.1.1 Encoder & Decoder

The encoder is the same 1D convolutional layer used in the Conv-TasNet model (Luo &

Mesgarani, 2019) and Chapter 3, see Section 2.9.1 for details. Similarly the decoder is also

the Transposed 1D convolutional layer used in Chapter 3 and described in Section 2.9.1.

4.1.2 Mask Estimation using WD-TCNs

A mask estimation network is trained to estimate a sequence of masks mℓ that filter the

encoded features wℓ to produce a dereverbered encoded signal defined as

vℓ = mℓ ⊙wℓ. (4.1)

The ⊙ operator denotes the Hadamard product. The reader should refer back to Section 2.9.3

for a more detailed description of the TCN used as the baseline structure that is built upon

in this chapter.

The conventional TCN consists of an initial stage which normalizes the encoded features

wℓ and reduces the number of features from N to B for each block using a P-Conv bottleneck

layer (cf. Section 2.9). The TCN is composed of a stack of X dilated convolutional blocks that

is repeated R times. This structure allows for increasingly larger models with increasingly

larger receptive fields as discussed in Chapter 3. The D-Conv layer in the blocks has an

increasing dilation factor to the power of two for the X blocks in a stack, i.e. the dilation factors

f for each block are taken from the set {20, 21, . . . , 2X−1} in increasing order. Figure 4.1 (a)

depicts the convolutional block as implemented in (Ravanelli et al., 2021; Ravenscroft et al.,

2022a). The convolutional block consists primarily of P-Conv and D-Conv layers with

PReLU activation functions (He et al., 2015) and gLN layers (Luo & Mesgarani, 2019). The

P-Conv and D-Conv layers are structured to allow increasingly larger models to have larger

receptive fields. The reader is also reminded that combining these two operations is known

as DS-Conv (cf. Eq. (2.49)). More detailed definitions of P-Conv, D-Conv and DS-Conv

layers are given previously in Section 2.5.6. It may be useful for the reader to refer back to

these definitions when proceeding with the definition of the proposed weighted multi-dilation

depthwise convolution (WD-Conv) operations that replace the DS-Conv operations in TCNs.

The WD-Conv itself is introduced in Section 4.1.2.1.

4.1.2.1 Weighted Multi-Dilation Depthwise-Separable Convolution (WD-Conv)

The WD-Conv network structure depicted in Figure 4.1 (b) is proposed here as an extension to

the DS-Conv operation where it is preferable to allow the network to be more selective about

the temporal context to focus on without drastically increasing the number of parameters in

the model. The proposed WD-Conv layer incorporates additional parallel D-Conv layers that



CHAPTER 4. UTTERANCE-WEIGHTED MULTI-DILATION TCNS 75

Figure 4.1: (a) Convolutional block in baseline TCN; (b) Proposed convolutional
block. Example for a final block in a stack of conv. blocks for Q = 2 with dilation
factor f = 2X−1. Note that a residual connection around the entire block is omitted
for brevity.

can have different dilation factors, hence the phrase multi-dilation. The output features of

the D-Conv layers are weighted in a sum-to-one fashion and summed together. This summed

output is then passed as the input to a P-Conv. As in Section 2.5.2, in the following, the

notation Y ∈ RL×D is used for an arbitrary sequence of features of length L with dimension

D. The WD-Conv operation is formulated as

CWD

(
Y,
(
ΘD-Conv1 , . . . ,ΘD-ConvQ

)
,ΘP-Conv

)
=

C1D

 Q∑
q=1

aqCD-Conv

(
Y,ΘD-Convq

)
,ΘP-Conv

 (4.2)

where Q is the number of parallel D-Convs in the WD-Conv and aq are their corresponding

weights that sum-to-one, i.e.
∑Q

q=1 aq = 1. In the model proposed here the number of D-Convs

is set to Q = 2; one with a dilation factor f = 1 and the other according to the exponentially

increasing dilation rule defined previously and used in (Luo & Mesgarani, 2019; Ravenscroft

et al., 2022b,a) where f is increasing in powers of 2 with every successive block in a stack

of X blocks. Note that the first convolutional blocks of a stack of X blocks in the proposed

implementation use an identical dilation of f = 1 for each of the D-Conv kernels in the

WD-Conv operation.

Inspired by the dynamic convolution kernel proposed in (Chen et al., 2020b), the imple-

mentation proposed in this chapter computes the weights for each D-Conv layer using an SE

attention network (Hu et al., 2018). The SE attention network is shown in Figure 4.2 and is

composed of a global average pooling layer that reduces the sequence dimension from Lx to
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Figure 4.2: Squeeze and excite attention weighting network. The output dimen-
sionality of each layer is indicated above the arrows.

1 producing a vector of dimension H, the same as the feature dimension of the input. This

feature vector is then compressed using a linear layer, with a ReLU activation, to a dimension

of 4 as in (Chen et al., 2020b). The final stage is a linear layer that computes a weight for

each of the D-Conv kernels in the WD-Conv structure. In the proposed model, there are two

D-Conv kernels, and so the linear layer has an input dimension of 4 and an output dimension

of 2. A softmax activation is used to ensure the sum-to-one constraint on the weights of the

D-Conv layers.

4.1.3 Objective Function

The objective function used here is the SISDR function (Roux et al., 2019) which is the same

as that used to train the baseline TCN (Chapter 3). See (2.72) for the SISDR formulation.

4.2 Experimental Setup

This subsection describes the experimental setup used for first evaluating the WD-TCN model

on dereverberation tasks. The dereverbation results have been published in Ravenscroft et al.

(2022c). In addition, some novel results using the WD-TCN as a mask estimator in a (TasNet)

speech separation model (cf. Figure 2.6), which were not included in the original publication

(Ravenscroft et al., 2022c), are also included later in Section 4.3.

4.2.1 Model and Training Configuration

Different model configurations are compared in the following to demonstrate the improvement

gained by the proposed WD-TCN model across a range of model sizes. This is done by

varying the number of convolutional blocks in a dilated stack X as well as the number of

times the dilated stack is repeated R. Based on the previous work Ravenscroft et al. (2022b),

the ranges of X ∈ {4, 5, 6, 7, 8} and R ∈ {4, 5, 6, 7, 8} were selected, resulting in 25 different

configurations. All other parameters are fixed, i.e. kernel size J = 16, number of encoder

output channels N = 512, number of bottleneck output channels B = 128, number of channels

inside the convolutional blocks H = 512 and the kernel size inside each D-Conv P = 3. For
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more details on these parameters see Ravenscroft et al. (2022b,a); Luo & Mesgarani (2019)

and Section 2.9.

The same training approach as in Ravenscroft et al. (2022b) is used for both the baseline

TCN and WD-TCN. Each model is trained for 100 epochs. An initial learning rate of 0.001

is used and is halved if there is no improvement for 3 epochs. A batch size of 4 is used. The

training was performed using the SpeechBrain speech processing toolkit (Ravanelli et al.,

2021). The implementation of the proposed WD-TCN is available on GitHub1.

4.2.2 Data

The simulated WHAMR noisy reverberant two-speaker speech separation corpus (Section 2.2.1)

is used for the following experiments in this section. For the dereverberation tasks, only the

reverberant and clean first speaker data (c = 1) is used for the input data x[i] and target data

sdir[i]. The 8kHz min configuration is used for all experiments.

Some supplementary evaluations are later performed by applying the WD-TCN model

to the speech separation task using the WHAMR and WSJ0-2Mix corpora. For these, the

standard data setup used for the Conv-TasNet and SepFormer baselines (cf Section 2.9.7 and

Table 2.2) are used

4.2.3 Evaluation Metrics

A number of metrics are used to assess a variety of properties in the dereverberated speech.

The objective function SISDR is also used to measure distortions in signals. SRMR (Falk et al.,

2010) is used to directly measure reverberant effects in the signal. PESQ (Rix et al., 2001b)

is used to assess the quality and intelligibility of signals. In addition, ∆ and improvement

measures are used. Measures denoted with ∆ indicate a change in measurement value between

the reverberant signal x[i] and the dereverberated signal ŝdir[i]. Improvement measures

indicate the improvement of the WD-TCN model over the TCN baseline from (Ravenscroft

et al., 2022b).

4.2.4 Results

4.2.4.1 Performance Metrics and Model Size

The average SISDR results on the WHAMR evaluation set for the 25 chosen model configura-

tions of the proposed WD-TCN model are given in Table 4.1 with SISDR improvements over

the TCN model in the parenthesis. The bold font indicates the best performance and highest

improvement, respectively. These results show that the WD-TCN outperforms the TCN

model across all 25 model configurations. The biggest performance gains are seen around

1Link to WD-TCN model repository on GitHub: https://github.com/jwr1995/WD-TCN

https://github.com/jwr1995/WD-TCN
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Figure 4.3: Comparison of baseline TCN and WD-TCN over model size (no. of
parameters) in terms of SISDR (top) and SRMR (bottom).

{X,R} = {5, 7} and the WD-TCN model with most parameters and largest receptive field,

{X,R} = {8, 8}, shows best overall performance, contrary to the TCN model which gave the

best SISDR results with {X,R} = {6, 8}. Figure 4.3 (top) shows SISDR performance for all

models over the model sizes in numbers of parameters. It can be seen that using the WD-TCN

is a more parameter-efficient approach to improving model performance than increasing the

number of convolutional blocks (larger X or R values) in a conventional TCN. The SRMR

performance against model size (Figure 4.3, lower panel) shows the same findings, i.e. that the

WD-TCN is a more parameter efficient approach to improving performance. For some larger

models (> 6M parameters) performance differs less. However, the best-performing model in

terms of SRMR is still the WD-TCN.

Table 4.2 shows the results of the best performing TCN and WD-TCN models for each of

X
4 5 6 7 8

4 11.21 (.28) 11.66 (.29) 11.81 (.40) 11.94 (.38) 12.04 (.40)
5 11.51 (.41) 11.86 (.41) 11.94 (.23) 12.11 (.42) 12.11 (.39)

R 6 11.64 (.38) 11.95 (.30) 12.08 (.31) 12.09 (.23) 12.11 (.20)
7 11.65 (.20) 12.17 (.44) 12.22 (.30) 12.16 (.13) 12.14 (.16)
8 11.79 (.27) 12.03 (.19) 12.20 (.17) 12.21 (.22) 12.26 (.32)

Table 4.1: SISDR performance of WD-TCN with SE attention in dB. Numbers
in (·) report performance improvement over baseline TCN.
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the chosen performance metrics, highlighted in yellow, compared with the respective other

model for the same X and R hyper-parameters. The performance in PESQ is inconclusive

as many TCN models outperform their corresponding WD-TCN configurations but the best

PESQ score of 3.5 is achieved with the WD-TCN model. The WD-TCN models show slightly

better performance in ESTOI in line with the trend already observed in SRMR and SISDR.

Note that SRMR is considered a more significant metric for the dereverberation evaluations

here evaluation as it is designed to assess reverberation only. The performance increase in

SRMR and SISDR are minor but also mostly reflected in ESTOI where these improvements

are consistent but also minor.

Table 4.2: Best performing TCN and WD-TCN models compared corresponding
models in SISDR, PESQ, ESTOI and SRMR. Bold indicates best performance per
configuration, in terms of the X and R hyper-parameters. Results highlighted in
yellow indicate best overall results for each model in each metric.

Model X R # params SISDR PESQ ESTOI SRMR

TCN 6 7 5.8M 11.92 3.46 0.930 8.65
WD-TCN 6 7 6.0M 12.22 3.5 0.933 8.69

TCN 6 8 6.6M 12.03 3.46 0.932 8.70
WD-TCN 6 8 6.8M 12.20 3.43 0.934 8.72

TCN 8 4 4.5M 11.63 3.48 0.927 8.60
WD-TCN 8 4 4.6M 12.04 3.45 0.931 8.67

TCN 8 7 7.7M 11.98 3.46 0.933 8.79
WD-TCN 8 7 7.9M 12.14 3.45 0.935 8.72

TCN 8 8 8.8M 11.94 3.46 0.933 8.71
WD-TCN 8 8 9.1M 12.26 3.45 0.935 8.8

4.2.4.2 Squeeze-and-Excite Attention Analysis and T60 Variation

In the following, the attentive weights aq in (4.2) in the convolutional blocks are analysed.

Note that a1 corresponds to the attention weight applied to the D-Conv layers with the

increasing dilation of f ∈ {1, 2, . . . , 2X−1} for all convolutional blocks (cf. Figure 4.1 (b)) and

a2 = is the weight corresponding to the D-Conv layers with the more local fixed dilation

f = 1. The variation of a1 for three increasingly larger model sizes and for 3 speech samples

of increasing T60 is shown in Figure 4.4. Many blocks were trained such that the attention

gave balanced mixtures of the two D-Convs, i.e. a1 ≈ a2 ≈ 0.5. It is also noticeable that

for the larger the model, the greater the variance of a1 appears to be. It was also observed

that samples with low T60 values typically produce less variance in a1 as the overall model

size increases. To analyse whether the SE attention approach was working as intended the

attention weights were firstly computed across the entire evaluation set for every WD-TCN

model trained in Table 4.1. Mean values of the weights for each model and each sample in
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Figure 4.4: Variation of a1 through the WD-TCN for three different samples of
varying T60 values for three different model configurations {X,R} = {4, 4} (top),
{X,R} = {6, 6} (middle) and {X,R} = {8, 8} (bottom). Vertical dashed lines
denote blocks with the highest dilation factors f = 2X−1.

the evaluation set were then computed and the evaluation set was divided into increasing T60

ranges from 0.1s up to 1s. The mean for each weight aq over all models and samples denoted

as āq, q ∈ {1, 2}, was then computed for each T60 range. Figure 4.5 shows how the mean

weight values vary across increasing T60 ranges. As the T60 range increases ā1 increases.

This demonstrates the SE attention approach is working as intended because the network has

a less local focus within its receptive field for speech signals with larger reverberation times.

Similarly, the mean of the local attention weight ā2 decreases as the T60 range increases,

demonstrating that the network is more focused on local information in its receptive field

when the speech has a smaller reverberation time.

4.3 WD-TCN for Speech Separation in Noisy Reverberant

Environments

Having validated the WD-TCN mask estimation network’s improved capability over the

vanilla TCN of Conv-TasNet for dereverbing speech, it is now applied to the combined speech

enhancement and separation task using the WHAMR corpus. Evaluations are also performed

using the anechoic “clean” WSJ0-2Mix dataset for completeness. Descriptions of both corpora

are found in Section 2.2.1. The 8kHz min configurations are used for all evaluations. To
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Figure 4.5: Mean values of attention weights āq across six different T60 ranges in
the WHAMR evaluation set over all models with X ∈ {4, . . . , 8} and R ∈ {4, . . . , 8}.

extend the model for speech separation, the procedure for turning Conv-TasNet into a DAE

is inverted (cf. 3.1.1). The separation network uses the same structure as the TasNet and

Conv-TasNet models visualised in Figure 2.6.

4.3.1 Training Configuration

Generally, the same training configuration is used for the derverberation networks in Section 4.1.

The only difference is for the network hyperparameters, the number of convolutional blocks

in a stack is set to X = 8 and the number of stack repeats is set to R = 3, identical to the

Conv-TasNet baselines in Table 2.1.

4.3.2 Results

Results are provided for the WHAMR corpus and WSJ0-2Mix corpus in Table 4.3. The

Table 4.3: Comparison of speech separation ∆ SISDR performance between
WD-TCN model and TCN models on WSJ0-2Mix and WHAMR benchmarks. Re-
sults are also shown with and without dynamic mixing (DM). Mean ∆ SISDR for
the WHAMR corpus is −6.12 dB.

Model WSJ0-2Mix WHAMR Model Size

TCN 15.4dB 9.7dB 3.4M
TCN+DM 16.6 10.8dB 3.4M

WD-TCN 16.0dB 10.4dB 3.7M
WD-TCN+DM 17.2dB 11.4dB 3.7M

results demonstrate the efficacy of the WD-TCN model with a 0.7dB improvement in SISDR

performance over the TCN on the WHAMR dataset without DM. These results suggest the

dynamic convolution structure of the WD-TCN is beneficial not only for the dereverberation
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task but also for the separation and possibly the denoising aspect of the WHAMR task.

This is confirmed by the 0.6dB increase in performance on the WSJ0-2Mix dataset where

no dereverberation or denoising is being performed by the network. With DM, further

performance gains are seen on both WSJ0-2Mix and WHAMR. These gains are, however,

almost in line with the baseline TCN model implying that the WD-TCN does not give any

particular benefit in the way of model generalization. Overall these results confirm the efficacy

of the multi-dilation approach for not only dereverberation tasks but also speech separation

and denoising tasks. This also suggests, perhaps, that having more adaptive receptive fields is

beneficial for these tasks as well. This is explored in further depth in Chapter 5.

4.4 Conclusions

This chapter proposed the WD-TCN model for TCN-based speech dereverberation by replacing

depthwise-separable convolutions with weight multi-dilation depthwise-separable convolutions.

It was shown that the WD-TCN consistently outperformed a conventional TCN across 25

different model configurations and that using the WD-TCN was a more parameter-efficient

approach to improving model performance than increasing the number of convolutional

blocks in the TCN. New findings applying the WD-TCN mask estimation network to speech

separation were also presented, with WD-TCN model showing consistent improvement across

both anechoic and noisy reverberant speech separation.



Chapter 5

Deformable TCNs

In Chapter 3 it was shown that the optimal receptive field of TCNs in dereverberation

models varies with reverberation time when the model size is sufficiently large (Ravenscroft

et al., 2022b). Furthermore in Chapter 4, it was shown that multi-dilation TCN models can

be trained implicitly to weight differently dilated convolutional kernels to optimally focus

within the receptive field on more or less temporal context according to the reverberation time

in the data for dereverberation tasks (Ravenscroft et al., 2022c), i.e. for larger reverberation

times more weight was given to kernels with larger dilation factors. Similarly, in this chapter,

deformable depthwise convolutional layers (Dai et al., 2017; Bhagya & Suchetha, 2021; Chollet,

2017) are proposed as a replacement for standard depthwise convolutional layers (Luo &

Mesgarani, 2019) in TCN based speech separation models for reverberant acoustic conditions.

Deformable convolution allows each convolutional layer to have an adaptive receptive field.

This is proposed as a replacement for standard convolution in a TCN, which enables the

TCN to have a receptive field that can potentially adapt to different acoustic conditions, such

as varying reverberation times. Using shared weights (Zhang et al., 2020b) and dynamic

mixing (Zeghidour & Grangier, 2021) are also explored as ways to reduce the model size and

improve performance. A Python library for training deformable 1D convolutional layers as

well as a SpeechBrain (Ravanelli et al., 2021) recipe for reproducing results (cf. Section 5.3)

are provided.

The remainder of the chapter proceeds as follows. The DTCN is introduced in Section 5.1.

Section 5.2 discusses the experimental setup, data and baseline systems. Results are given in

Section 5.3. Section 5.4 provides an analysis of the proposed models. Section 5.5 provides

some unpublished results on using the DTCN model for single-speaker speech enhancement.

Conclusions are provided in Section 5.6.

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2023a).
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5.1 Deformable Temporal Convolutional Separation Network

5.1.1 Deformable TCN Architecture

The deformable temporal convolutional network (DTCN) separation network uses the same

mask-based approach used in Section 2.9 and Chapter 4, which is briefly reviewed in the

following. Readers are encouraged to refer back to Section 2.9.1 for more details. Encoded

features wℓ are used as the input to a mask estimation network to produce masks mℓ,c for

each speaker c ∈ {1, . . . , C}. The masks are then applied to the encoded features using the

Hadamard product, i.e. wℓ ⊙mℓ,c resulting in vℓ,c. The encoded estimates vℓ,c for speaker c

are decoded from the same space as wℓ back into the time domain using the decoder weights

B ∈ RN×J , such that

ŝℓ,c = vℓ,cB (5.1)

where ŝℓ,c is the estimated clean speech signal for frame ℓ in the time domain. These frames are

then combined using the overlap-add method. The network model diagram is foundationally

the same as that shown for a generic TasNet model Figure 2.6.

5.1.2 Mask Estimation Network

In this subsection, the deformable depthwise convolution (DD-Conv) layer is introduced as a

replacement for D-Conv layers and then the DTCN network is described in full. The mask

estimation network consists of CN and a bottleneck P-Conv layer which transforms the feature

dimension from N to B followed by the DTCN which is followed by a P-Conv and ReLU

activation to compute a sequence of masks mℓ,: with dimension CN (Luo & Mesgarani, 2019).

The reader may want to refer back to Section 2.5.6 in this section for definitions of layer types

such as P-Conv, D-Conv and DD-Conv.

5.1.2.1 Deformable Depthwise Convolution (DD-Conv)

The formulation of DD-Conv in this section is adapted from (Dai et al., 2017) and (Bhagya &

Suchetha, 2021). To begin with, the definition of a D-Conv layer is revised for an individual

D-Conv operation, i.e. one cell in Eq. (2.46). A single D-Conv operation of kernel size P ,

dilation factor f and convolutional kernel weights for the dth channel of an input with D

channels denoted Y = [y1, . . . ,yD] ∈ RL×D at the ℓth frame of L frames is defined as

KD-Conv(ℓ,yd,θd, f, P ) =

P∑
p=1

θd,p yd[ℓ + f · (p− 1)]. (5.2)



CHAPTER 5. DEFORMABLE TCNS 85

The corresponding DD-Conv function with learnable continuous offset of the pth kernel weight

denoted τℓ,p at frame ℓ is defined as

KDD-Conv(ℓ,yd,θd, τℓ,1:P , f, P ) =

P∑
p=1

θd,p yd[ℓ + f · (p− 1) + τℓ,p]. (5.3)

Note that τℓ,p only varies temporally and not across channels. It is feasible to vary these values

across channels, but in this work, offsets are only varied temporally to reduce computational

expenditure. An illustration of the DD-Conv operation is shown in Figure 5.1. To simplify

Figure 5.1: Single channel example of the deformable depthwise convolution
(bottom) on pseudo-random signal (shown in black) with a kernel size of 6, dilation
factor of 2, and stride of 11. R denotes the receptive field of the kernel. Dotted
lines indicate the original sampling position of kernel weights before deformation.

notation let ∆ℓp = ℓ + f · (p − 1) + τℓ,p. Linear interpolation is used to compute values of

y[∆ℓp] from input sequence y such that

y[∆ℓp] =

⌊∆ℓp⌋+1∑
u=⌊∆ℓp⌋

max(0, 1− |u−∆ℓp|)y[u]. (5.4)

In practice the interpolation function is designed to constrain the deformable convolutional

kernel so it cannot exceed a maximum receptive field of P · (f − 1) + 1 by replacing u = ⌊∆ℓp⌋
with u = min(⌊∆ℓp⌋, ℓ + P · (f − 1) − 1) in the bottom of the summation of (5.4). This

constrains the kernel with the benefit of improving interpretability for the overall scope of the

DTCN described in the following subsection.

5.1.2.2 Deformable Temporal Convolutional Mask Estimation Network

The DTCN is formulated in the same way as the Conv-TasNet TCN described in Section 2.9.

This implementation again deviates slightly from the original Conv-TasNet (Luo & Mesgarani,

2019) by neglecting the SCs and their associated P-Conv layers. As demonstrated in Sec-

tion 2.9.7, the SC layers have a negligible impact on performance (≤ 0.1 dB SISDR) while

having a significant negative impact on model size (≈ 35% parameter increase).
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Figure 5.2: Layers inside deformable temporal convolutional blocks.

The DTCN is composed of X ·R convolutional blocks where X,R ∈ Z+ (Ravenscroft et al.,

2022a). Each convolutional block consists of a P-Conv which projects the feature dimension

from B to H, DD-Conv that performs a depthwise operation across the H channels and

another P-Conv layer which projects the feature dimension back to B from H. The DD-Conv

proceeded by P-Conv layer forms a deformable depthwise-separable convolution (DDS-Conv)

structure. DS-Conv, i.e. a P-Conv proceeded by any D-Conv layer, is used as a replacement for

standard convolutional layers as it is more parameter efficient and mathematically equivalent

(Luo & Mesgarani, 2019). In each convolutional block the DD-Conv has an increasing dilation

factor f for each additional block in a stack of X blocks as in (Ravenscroft et al., 2022a;

Luo & Mesgarani, 2019). The dilation factor f increases in powers of two through the stack

such that f ∈ {1, 2, . . . , 2X−1}. Note that in D-Conv the dilation factor determines the fixed

receptive field whereas in the proposed DD-Conv the dilation factor defines only the maximum

possible receptive field of the kernel. The stack of X convolutional blocks is then repeated

R times where the dilation factor is reset to 1 at the beginning of each stack. Using shared

weights (SW) for each repeat is experimented with as this significantly reduces the model size

similar to (Zhang et al., 2020b). The offsets τℓ,p are computed using DS-Conv following the

initial P-Conv in the block, referred to as the offset sub-network. A PReLU activation is used

at the output as this allows for both negative and positive offsets. Residual connections are

applied around each of the convolutional blocks similar to the TCN described in (Ravenscroft

et al., 2022a). A schematic of the convolutional blocks is shown in Fig. 5.2.

5.1.3 Loss Function

The negative SISDR function with a PIT wrapper is used as the loss function for training the

DTCN models. This is the same loss function used to train Conv-TasNet Luo & Mesgarani

(2019) and many other TasNet models (Luo et al., 2020; Subakan et al., 2021). For the

formulation of SISDR, please refer to (2.72), and for PIT, refer to Section 2.6.2.
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5.2 Experimental Setup

5.2.1 Data

Two datasets are used to evaluate and validate the proposed DTCN model. The first is

the clean speech WSJ0-2Mix corpus described in Hershey et al. (2016); Isik et al. (2016)

and Section 2.2.1. The second is the noisy reverberant speech WHAMR corpus proposed

by Maciejewski et al. (2020) and also described in Section 2.2.1. In this chapter, the use of

DM is also explored for improving separation model generalization, cf. Section 2.10. As in

Table 2.2, speed perturbation training is performed as part of the DM process. The 8kHz

min configurations of both corpora are used.

5.2.2 Model Configuration

Feature dimensions N , B and H, kernel size P and encoder block size J are fixed:

{N,B,H, P, J} = {512, 128, 512, 3, 16}. (5.5)

These values correspond to the optimal TCN network in Luo & Mesgarani (2019). Note J

equates to 2 ms at 8kHz. Five DTCN model configurations are evaluated:

{X,R} ∈ {{3, 8}, {4, 6}, {5, 5}, {6, 4}, {8, 3}}. (5.6)

These configurations are selected as they have a similar or the same number of convolutional

blocks to the optimal model configuration in Luo & Mesgarani (2019), i.e. {X,R} = {8, 3}.
Two GitHub repositories have been released in conjunction with this work. The first1 is

a Pytorch library for performing 1D deformable convolution. The second23 is a model and

recipe for reproducing our results with the DTCN model using the SpeechBrain (Ravanelli

et al., 2021) framework.

5.2.3 Evaluation Metrics

Several metrics are used to evaluate the performance of the proposed DTCN models. SISDR

and SDR (Roux et al., 2019) are used to measure residual distortion in the signal. PESQ

(Rix et al., 2001b) and ESTOI (Jensen & Taal, 2016) are used to measure speech quality

and intelligibility, respectively. SRMR (Falk et al., 2010) is used to measure residual speech

reverberation for the WHAMR corpus. For more details on evaluation metrics, refer to

Section 2.7.

1URL to dc1d pip repository: github.com/jwr1995/dc1d
2URL to DTCN recipe: github.com/jwr1995/DTCN
3URL to newer PubSep repository that also includes the DTCN recipes: github.com/jwr1995/PubSep

https://github.com/jwr1995/dc1d
https://github.com/jwr1995/DTCN
https://github.com/jwr1995/PubSep
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5.3 Results

The results for various performance measures against each DTCN configuration’s receptive

field on the clean speech WSJ0-2Mix evaluation are shown in Fig. 5.3 where they are also

compared against their corresponding TCN configurations. Performance improvements can be

Figure 5.3: Performance measures over receptive field for WSJ0-2Mix clean speech
mixtures.

seen across all configurations but is more significant with the models which have a receptive

field of 0.19s to 0.51s. The improvement in most metrics at the highest receptive field 1.53s is

marginal and for the intelligibility metric ESTOI the performance is identical to the TCN.

Figure 5.4: Performance measures over receptive field for WHAMR noisy rever-
berant speech mixtures.

Fig. 5.4 shows respective results for each DTCN configuration’s receptive field against the

performance measures on noisy reverberant WHAMR data. Note that SDR has been replaced
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Table 5.1: Comparison of various DTCN models with other speech separation
models of varying size and complexity. DM and SW demote dynamic mixing
and shared weights, respectively. Compuational efficiency is expressed in MACs.
Where possible, MACs have been estimated on a 5.79s signal (mean signal length
of WHAMR evaluation set) using thop (Zhu, 2022).

WSJ0-2Mix WHAMR

Model ∆SISDR ∆SDR ∆SISDR ∆SDR Model size GMACs

Conv-TasNet (Luo & Mesgarani) 15.3 15.6 9.2 - 5.1M 5.2
Conv-TasNet (w/o SC) 15.4 15.7 9.7 9.1 3.4M 3.5

Conv-TasNet (w/o SC and H = 532) 15.2 15.5 9.8 9.1 3.6M 3.7
WD-TCN (Chapter 4) 16.0 16.2 10.4 9.7 3.7M 3.7

WD-TCN+DM (Chapter 4) 17.2 17.4 11.4 10.6 3.7M 3.7
SkiM-KS8 (Li et al.) 17.4 17.8 - - 6.0M 5.1

Tiny-SepformerS-32 (Luo et al.) 15.2 16.0 - - 5.3M -
SuDoRM-RF++ 1.0x+DM (Tzinis et al.) 17 - - - 2.7M 2.7

SuDoRM-RF 0.5x+DM (Tzinis et al.) 15.4 - - - 1.4M 1.7
SepFormer+DM (Subakan et al.) 22.3 22.4 14.0 13.0 26M 59.4

QDPN+DM (Rixen & Renz) 23.6 - 14.4 - 200M -

DTCN (proposed) 15.6 15.9 10.2 9.3 3.6M 3.7
DTCN+DM (proposed) 17.2 17.4 11.1 10.3 3.6M 3.7
DTCN+SW (proposed) 15.0 15.3 10.0 9.3 1.3M 3.7

DTCN+SW+DM (proposed) 16.1 16.3 10.1 9.5 1.3M 3.7

by SRMR to provide a measure of reverberation. The DTCN again shows improvement over

the TCN across all measures and model configurations. The performance also increases more

consistently as the receptive field increases. The performance convergence seen on the clean

speech mixtures in Fig. 5.3 at the largest receptive field, R = 1.53s, is not seen in the results

for the noisy reverberant data in Fig. 5.4. These findings suggest that deformable convolution

is particularly useful for noisy reverberant data and that if the receptive field is sufficiently

large for anechoic mixtures, the use of deformable convolution is most likely redundant.

In 5.1, the proposed DTCN model is compared against other speech separation models

in size, efficiency and performance. In the third row, the model size of the Conv-TasNet

model without SCs is made the same size as the proposed DTCN by changing H from 512

to 532. Comparing for model size the proposed DTCN outperforms all the Conv-TasNet

model baselines including those of equal or larger model size (Luo & Mesgarani, 2019), and

the recurrent SkiM-KS8 model (Li et al., 2022a). When DM is used in training, the DTCN

outperforms the much larger convolutional SuDo-RM-RF 1.0x++ model (Tzinis et al., 2022b).

Using SW reduces the model size by two-thirds but is still able to give comparable performance

to the SuDoRM-RF 0.5x model of similar size and much-improved performance when DM is

also used.
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5.4 Analysis

In the following the offset values of the best-performing model configuration {X,R} = 8, 3

are analysed with the aim to provide insight as to how temporal offsets τℓ,p in (5.3), cf. also

Fig. 5.1, behave relative to one another. The 2nd convolutional block of the 2nd repeat in

the DTCN (i.e. the 10th block overall) was selected for analysis as it was found to have the

highest average offset variance over the WHAMR evaluation set. The motivation for this

choice is that it is assumed that blocks with offsets of larger variances are more indicative of

the benefits of using deformable convolution. A correlation analysis was performed between

Figure 5.5: Mean offset values τ̄2 (top) and τ̄3 (bottom) of the 10th convolutional
block of the DTCN model plotted against the mean offset value of the first kernel
weight τ̄1 for each example in the WHAMR evaluation set. Pearson correlation
coefficients are denoted with ρ. Dashed black line indicates line of best fit.

each of three offset values averaged per utterance τ̄p, corresponding to the three kernel weight

positions. Fig. 5.5 shows scatter plots for the mean of the middle and outermost offsets

denoted τ̄2 and τ̄3, respectively, against the mean offset value of the first kernel sample point

τ̄1 for every example in the evaluation set. A strong negative correlation (ρ = −0.99) can be

observed between τ̄1 and τ̄3 indicating that the deformation is causing the receptive field of the

kernel to shrink and grow more than shifting its focal point. A less strong negative correlation

(ρ = −0.88) was found between τ̄1 and τ̄2 indicating similar behaviour. The comparison of τ̄2

against τ̄3 is omitted from Fig 5.5 for brevity but these mean offset values were found to have

a positive correlation of ρ = 0.81.

5.5 Single-Speaker Speech Enhancement Performance

Some further results on single-speaker denoising, dereverberation and enhancement tasks are

provided in Table 5.2 to analyze the DTCN’s enhancement performance compared to the
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TCN. Results are shown using the 8kHz min WHAMR corpus (cf. Section 2.2.1) with C = 1.

Comparing the DTCN to the TCN there is a minor improvement of 0.3 dB ∆ SISDR over the

Table 5.2: Comparison of TCN and DTCN models on dereverberation, denoising
and enhancement tasks with the WHAMR dataset.

Model Task ∆ SISDR (dB) SISDR (dB)

TCN Dereverberation 6.9 11.3
DTCN Dereverberation 7.2 11.5

TCN Denoising 13.9 13.1
DTCN Denoising 14.1 13.2

TCN Enhancement 10.8 8.2
DTCN Enhancement 11.0 8.3

TCN model for dereverberation and a minor improvement of 0.2 dB ∆ SISDR for denoising.

Similarly, for the combined denoising and dereverberation enhancement task, only a minor

gain of 0.2 dB ∆ SISDR is observed. Interestingly, this suggests that the biggest gains using

the proposed method are seen for the separation task. This is a similar trend also seen in

Chapter 4 whereby the main benefit of the WD-TCN was actually seen in the separation

task itself, with only relatively minor improvements in dereverberation performance. Some

additional work was done to see if a correlation between the DTCN offset variation and

reverberation time (T60) for both the dereverberation task and the combined enhancement

on separation target but the strongest correlation coefficients ρ that could be found were

ρ = 0.06 for dereverberation and ρ = 0.12 for the combined enhancement and separation task.

5.6 Conclusion

In this chapter, deformable convolution was proposed as a method to improve TCNs for noisy

reverberant speech separation. It was shown that the DTCN model is particularly useful

for noisy reverberant conditions as performance increases were less consistent in the case of

anechoic speech separation with a sufficiently large receptive field. Using shared weights and

dynamic mixing led to further performance improvements, resulting in a small model size for

the DTCN compared to other separation models, which give comparable performance. It was

shown that the DTCN offsets vary the size of the receptive field of convolutional blocks in the

network relative to the input data. Finally, it was also shown that the DTCN model is also

useful for single-speaker denoising and dereverberation tasks, yielding some improvements

over the baseline TCN model.
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Chapter 6

Attending to TasNet Encodings

The design of the TasNet models discussed up to this point put the majority of the onus for

enhancing the signal on the mask estimation network when used without any pre-processing of

the input data or post-processing of the separation network output data. The use of multihead

attention (MHA) is proposed in this chapter as an additional layer in the encoder and decoder

to help the separation network attend to encoded features that are relevant to the target

speakers and, conversely, suppress noisy disturbances in the encoded features. As is shown

later in this chapter, incorporating MHA mechanisms into the encoder network, in particular,

leads to a consistent performance improvement across numerous quality and intelligibility

metrics on a variety of acoustic conditions using the WHAMR corpus. The use of MHA is

also investigated in the decoder network where it is demonstrated that smaller performance

improvements are consistently gained within specific model configurations.

Models that used learned filterbank transforms from the time domain such as TasNets,

up until recently (Wang et al., 2023b), have been able to consistently outperform models

based on STFT features (Luo & Mesgarani, 2018b, 2019; Luo et al., 2020; Chen et al., 2020a;

Subakan et al., 2021). The encoder of TasNets can be interpreted as filterbank features as

alluded to earlier in this thesis in Section 2.9. It was shown by (Yang et al., 2019) that

combining the learned features of Conv-TasNet’s encoder with STFT features leads to a

small improvement in performance for clean speech separation tasks. Similarly, Pariente et al.

(2020) demonstrated that using complex-valued learnable analytic filterbanks in the encoder

and decoder can lead to further performance improvement over the real-valued encoder of

Conv-TasNet. (Ditter & Gerkmann, 2020) proposed hand-crafted MPGT filterbank features

over the learned filterbank in Conv-TasNet. This approach was effective when just applied to

the encoder but the learned decoder of Cont-TasNet proved more effective than their MPGT

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2022a).
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based decoder.

Vaswani et al. (2017) proposed MHA as a way to parallelize a single attention mechanism

into multiple attention heads while maintaining a similar parameter count to single-headed

attention. This work proposes incorporating multihead attention mechanisms into the encoders

and decoders of Conv-TasNet to improve the performance on noisy and reverberant speech

mixtures where it is assumed that the noisy content of the data is orthogonal (i.e. uncorrelated)

to the speech. Some discussion about the relevance of the orthogonality assumption and its

relationship to cross-correlation is given to motivate why attention mechanisms are a suitable

choice for improving the encoders and decoders. The network structures are evaluated on

noisy and reverberant data from the WHAMR corpus (Maciejewski et al., 2020). Although

the main goal of this work is to minimize the negative effects of additive noise under the

assumption of orthogonality, separation of reverberant speech mixtures, i.e. with convolutive

noise (reverberation) are also considered.

The remainder of this chapter proceeds as follows. In Section 6.1, some discussion is

provided to demonstrate that dot-product attention is a special case of cross-correlation

function and to provide some motivation for using attention to denoise encoded features. In

Section 6.2 the proposed multihead attention and the novel encoder and decoder structures are

introduced. The training configuration and experiments conducted on the WHAMR corpus

are explained in Section 6.3. Further discussion and some conclusions are given in Section 6.4.

6.1 Dot-Product Attention & Cross-Correlation

Some brief discussion is given to how the scaled dot product function in MHA can be

formulated as computing a cross-correlation matrix of finite discrete processes across the

features of each frame ℓ. This motivates the design of the MHA encoder and decoder designs

in the following sections. Using this formulation, it is suggested that the attention mechanism

naturally applies more weight across frames that are highly cross-correlated. In this section

the notation for Q, K and V is taken from Section 2.5.8 where D is an arbitrary size of a

dimension. It may be useful for the reader to refer back to Section 2.5.8 in the following.

The discrete cross-correlation function of two finite processes q[i] and k[i] can be estimated

by

r̂qk[κ] =
D∑

d=1

q[d]k[d + κ]. (6.1)

The dot-product QK⊤ in the numerator of the dot-product attention mechanism in (2.56) is
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the following matrix of size Lq × Lk can be written as

QKT =


q1k

T
1 q1k

T
2 . . . q1k

T
Lk

q2k
T
2 q2k

T
2 . . . q2k

T
Lk

...
...

. . .
...

qLqk
T
1 qLqk

T
2 . . . qLqk

T
Lk

 (6.2)

where

qℓ = [qℓ[1], qℓ[2], . . . , qℓ[Dq]] (6.3)

kℓ = [kℓ[1], kℓ[2], . . . , kℓ[Dk]] (6.4)

For each cell in the resultant matrix, there is the dot-product of the feature vectors qℓ and kℓ,

both of which have a common feature dimension size Dq = Dk. As such each cell is written

more explicitly as

r̂ (qℓ,kℓ) =

Dq∑
d=1

qℓ[d]kℓ[d]. (6.5)

The formula for the dot-product in (6.5) for r̂qℓkℓ
is equivalent cross-correlation formulation

in (6.1) where κ = 0 and D = Dq. The intuition proposed using this formulation is that

because the features resulting from additive noise sources are assumed to be uncorrelated

across frames to one another and the encoded speech signal features, very little weight will be

given to the noisy features, implicitly denoising the encoded speech feature sequence.

6.2 Multihead Attention (MHA) Encoder and Decoders

In the following, the proposed MHA encoder and decoder designs are introduced as extensions

to the Conv-TasNet encoder and decoder, cf. Section 2.9.1. The scaled dot product attention

function (Vaswani et al., 2017) and MHA are briefly introduced, and the proposed application

of MHA in the TasNet architecture is described. Attention was first proposed by Bahdanau

et al. (2015) as a layer in DNN models that can be used to assess the similarity or relevance

between two sets of features and thus provide attention to more relevant features. The reader

is encouraged to consult Section 2.5.8 for formulations of dot-product attention and multi-head

attention used ubiquitously in this chapter.

In the encoders and decoders proposed here, the output of the attention function is used

to re-weight a sequence of features according to which features in a sequence have the most

pointwise correlation (i.e. correlation across channels as opposed to across discrete time) to

one another. There is a twofold assumption in the proposed application of the attention

function. The first is that encoded blocks containing speech will have a higher correlation to
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one another than blocks containing noise. Note that this is a typical assumption made when

discussing noise and speech such as in (Roux et al., 2019). The second assumption is that in

the encoded speech mixture of each individual speaker’s speech signal, sc[i] will have a larger

pointwise correlation to itself than to any other speaker across all frames.

Figure 6.1 demonstrates the motivation for the proposed approach by calculating the

self-attention (Lin et al., 2017) of the transposed encoded signal blocks W from (2.82),

i.e. K = Q = V = W⊤. The lower right panel shows the output of the attention mechanism

which is then used to re-weight the encoded mixture in the lower left panel. Not that

in Figure 6.1, only the dot-product attention operation is computed, there is no neural

network model parameters involved, yet the representation already visually appear less noisy.

Futhermore, Figure 6.2 shows the attention-weighted encoded input (middle panel) compared

to an encoded noisy reverberant speech mixture (NRSM) features (top panel) as well as the

corresponding encoded clean speech mixtures (CSM) features (bottom panel). Attention

weighting adds greater emphasis to the features containing speech and, conversely, weights

down some of the noisier parts of the encoded features.

6.2.1 MHA Encoder and Decoder architectures

In this section, the MHA encoder and decoder architectures are described. Both the encoder

and decoder models use a similar paradigm by applying a multihead attention layer followed

by a non-linearity to produce a set of mask-like features, which are then used to weight an

encoded mixture.

6.2.1.1 Self-Attention Encoder

For the encoder self-attention (Lin et al., 2017) is used. Self-attention refers to applying

attention across a sequence to itself. Therefore the inputs to the MHA layer are defined as

visualized in Figure 6.3 such that

V = K = Q = [Henc (x1U) , . . . ,Henc (xLxU)]T ∈ RLx×N (6.6)

where every input to the MHA layer is the encoded mixture from a 1D convolutional layer and

ReLU activation similarly as in Conv-TasNet, cf. (2.81). The output of the MHA layer is then

treated in a mask-like fashion where it is multiplied element-wise with the encoded mixture.

This representation is then proceeded by a ReLU activation. Empirically it was found that

placing the ReLU activation after the elementwise multiplication as opposed to using the

direct output of the MHA layer consistently yielded better performance across all acoustic

conditions. The complete network diagram for the MHA encoder is shown in Figure 6.3.
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Figure 6.1: Top left: encoded NRSM signal from the WHAMR corpus (Maciejewski
et al., 2020). Top right: Computed attention matrix weights. Bottom right: Scaled
dot product attention. Bottom left: encoded NRSM signal re-weighted with attention.
The figures on the left have had values above 0.05× their maximum values clipped
and are normalized between 0 and 1. The figures on the right are normalized
between 0 and 1. Channels are sorted using Algorithm 1.

6.2.1.2 MR and PM Decoders

A number of approaches are proposed. Two encoder-decoder attention (Vaswani et al., 2017)

based decoder models are proposed in the following subsection. The first is referred to as MR

and the other is referred to PM. Both decoders are composed of a MHA layer proceeded by a

ReLU activation function and a transposed 1D convolutional layer. For both architectures,
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Figure 6.2: Top: Encoded NRSM signal blocks. Middle: Encoded NRSM signal
blocks re-weighted with attention as defined in ( (2.56)). Bottom: Encoded CSM
signal blocks (ν[i] = 0, hc[i] = δ[i], ∀t ≥ 0). The top and bottom figures clip values
above 0.05× the maximum value of the encoded NRSM signal and then normalized
between 0 and 1. The middle figure clips values above 0.05× its maximum value
and is then normalized between 0 and 1.

Figure 6.3: Convolutional MHA encoder diagram



CHAPTER 6. ATTENDING TO TASNET ENCODINGS 99

the input to the MHA layers are defined as

V = [w1, . . . ,wLx ]T ∈ RLx×N (6.7)

Kc = [m1,c, . . . ,mLx,c]
T ∈ RLx×N (6.8)

Qc = [w1 ⊙m1,c, . . . ,wK ⊙mLx,c]
T ∈ RLx×N (6.9)

where c ∈ {1, ..., C} and C is the number of target signals. These inputs are defined to

combine the principles of encoder-decoder attention, described in Section 3.2.3 of (Vaswani

et al., 2017), with those of self-attention as both the key and query contain information from

the estimated masks. The same MHA layer is used for each speaker.

The mask refinement (MR) decoder produces a mask from the MHA layer proceeded by

a ReLU function which is multiplied by the encoded mixture and this re-masked encoded

mixture is then decoded back into the time domain with the transposed 1D convolutional

layer. The MR decoder model is depicted in Figure 6.4 (a). The motivation in this design

is to use the MHA mechanism to produce a mask that refines the already masked encoded

representation such that it attends better to features most relevant to the most present speaker

features in the original masked encoded features.

The post-masking decoder (PMD) also uses an MHA layer to produce a new mask but in

this model the new mask is used to refine the already masked encoded mixture. The PMD

model is shown in Figure 6.4 (b). The motivation in this design is to use the MHA mechanism

to produce a new mask by observing speaker information in the masks and masked encoded

mixtures to produce an improved hypothesis of what the masks should be by attending to the

most prevalent correlated speaker information in both types of representation.

6.2.1.3 SA Decoder

An additional decoder based on self-attention is proposed shown in Figure 6.4 (c). This

decoder applies MHA to the masks estimated by the network defined in Section 2.9.3 in a

self-attentive manner such that

V = K = Q = [m1, . . . ,mLx ]T ∈ RLx×N . (6.10)

The output of the MHA layer is proceeded by a ReLU function to produce a new set of masks.

The Hadamard product of the new masks with the encoded mixture is then computed. This

masked encoded mixture is then decoded back into the time domain using a transposed 1D

convolutional layer.
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Figure 6.4: (a) MHA mask refinement (MR) decoder architecture. (b) MHA
post-masking (PM) decoder architecture. (c) MHA self-attention (SA) decoder
architecture.
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6.2.2 Architecture Complexities

Some brief discussion is given to the model complexities predominantly for reference. The

complexities for each of the proposed encoders and decoders as well as the baselines used later

in Section 6.3 are given in Table 6.1. The proposed encoder described in Section 6.2.1.1 is

Table 6.1: Complexity of all encoder and decoder models evaluate including
all non-linearities, weights and biases. Best performing results for each acoustic
condition shown in bold.

Model Complexity

Conv-TasNet encoder (Luo & Mesgarani) (J + 1)LxN

Conv-TasNet decoder (Luo & Mesgarani) JLxN

Deep-PReLU encoder (Kadıoğlu et al.) (J + 7)LxN + 3LxN
2

Deep PReLU-decoder (Kadıoğlu et al.) (J + 6)LxN + 3LxN
2

SA encoder (proposed) (J + 3)LxN + LxN
2 + (1 + 1

Gheads
)L2

xN

SA decoder, PM decoder, MR decoder (proposed) (J + 2)LxN + LxN
2 + (1 + 1

Gheads
)L2

xN

more computationally complex than the encoders proposed by Luo & Mesgarani (2019) and

Kadıoğlu et al. (2020) however, a significant reason for this is that the attention operation

considers the entire sequence length as opposed to operating over a smaller context window

as is the case in the other encoders. The same is true of the proposed decoders described in

Section 6.2.1.2 and Section 6.2.1.3 compared with the purely convolutional decoders proposed

by (Luo & Mesgarani, 2019) and (Kadıoğlu et al., 2020). In future work, ways to alleviate the

computational complexity using linear attention (Katharopoulos et al., 2020) and restricted

self-attention (Vaswani et al., 2017) can be explored, but this is beyond the scope of the work

presented here.

6.3 Experimental Setup

This section presents details on the experimental setup as well as the results performed to

evaluate the proposed encoders and decoders in the previous section.

6.3.1 Data

The WHAMR dataset (cf. Section 2.2.1) is primarily used for the evaluations in this section.

Speech mixtures are evaluated under four different acoustic conditions (ACs): clean speech

mixtures (CSM), i.e. ν[i] = 0 and hc[i] = δ[i] in Eq. (2.2), noisy speech mixture (NSM),

i.e. hc[i] = δ[i] but noise present in Eq. (2.2), reverberant speech mixture (RSM) i.e. v[i] = 0

but reverberation present in Eq. (2.2), and noisy reverberant speech mixture (NRSM). 8kHz

audio samples are used and truncated to 3-second segments for training. This length constraint
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is removed for validation and testing. The impact of TSL limits is explored later in Chapter 7.

6.3.2 Loss Function

The negative SISDR function (cf. (2.72)) with a PIT wrapper (cf. Section 2.6.2) is used for

training all models. This is the same strategy used for training the Conv-TasNet model (Luo

& Mesgarani, 2019) and the DTCN in Chapter 5.

6.3.3 Training Configuration

The Conv-TasNet model is implemented using the SpeechBrain framework introduced by

(Ravanelli et al., 2021). As previously noted, the mask estimation network in SpeechBrain

neglects the skip connections in the original Conv-TasNet model proposed by (Luo & Mesgarani,

2019) and implemented in (Maciejewski et al., 2020). A description of the baselines model

parameters as well as the CSM SISDR performance and temporal context, reported in

seconds (s), is shown in Table 6.2. Note that for this section, the TCN is configured using

{X,R} = {6, 4} instead of the {X,R} = {3, 8} configuration previously used.

Table 6.2: Details of the Conv-TasNet configuration compared to (Maciejewski
et al., 2020). Proposed baseline SISDR result is shown in bold.

Variable Description Baseline

N Input channels 512

J Input block size 16

B Bottleneck output channels 128

H Output channels 512

P Kernel size of conv. block 3

X Blocks of increasing dilation 6

R Repeats of dilated layers 4

RTT(·) Receptive field (s) 0.51

SISDR SISDR (dB) on CSM 14.6

An initial learning rate of 1 × 10−3 is used, and a learning rate scheduler is used that

halves the learning rate if there is no average SISDR improvement of the model for 3 epochs.

A batch size of 4 was used. A total of 100 epochs of training were performed.

6.3.4 Evaluation Metrics

Performance is measured using SISDR, SDR, PESQ and STOI. Refer to Section 2.7 for more

details on these measures. ∆ measures are shown in addition to the absolute metric values

to indicate the improvement in quality or intelligibility between the noisy reverberant signal

mixture x[i] and the network estimates ŝc[i] against the reference sc[i].
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6.3.5 Additional Baselines

Some work has already been done to investigate improved encoders and decoders for the

Conv-TasNet model. Deeper convolutional encoder and decoder networks were proposed

by (Kadıoğlu et al., 2020) for use with Conv-TasNet on speech separation tasks. In this

work, this deep convolutional encoder and decoder model is implemented as an additional

baseline to the original Conv-TasNet model described in the previous part of this section.

The deep convolutional encoder consists of three additional 1D convolutional layers each

with a kernel size of 3 and a stride of 1. Each convolutional layer is proceeded by a PReLU

activation function. The number of input and output channels are equal to N . Their deep

convolutional decoder is similarly constructed of an additional 3 transposed 1D convolutional

layers proceeded by PReLU activation functions. Each additional transposed 1D convolutional

layer has the same kernel size and stride as the additional encoder layer. Each layer also has

N input and output channels. It was found by (Kadıoğlu et al., 2020) that increasing the

dilation of the encoder and decoder layers had negligible effects on the SISDR separation

performance and so a fixed dilation of 1 is used for each layer.

6.3.6 Results

The following subsections address the speech separation results of the proposed method in

comparison to baseline methods on the WHAMR corpus. The MHA encoder is evaluated

first and then two subsequent sections analyse the MHA decoder architectures and look at

how the number of attention heads affects performance. Every set of results is compared

against the original encoder and decoder proposed by (Luo & Mesgarani, 2019) reported as

Conv-TasNet and the deep convolutional encoder and decoder model proposed by (Kadıoğlu

et al., 2020) is reported as Deep PReLU.

6.3.7 MHA Encoder Results

The MHA encoder model seen in Figure 6.3 is compared to the original Conv-TasNet baseline

encoder proposed by (Luo & Mesgarani, 2019) as well as the Deep PReLU approach proposed

by (Kadıoğlu et al., 2020). The results for this comparison across all four acoustic conditions

can be seen in Table 6.3. The MHA encoder is denoted as the self-attention encoder (SAE) in

all results. These results demonstrate a consistent improvement of the MHA encoder over

the original baseline purely convolutional encoder. Highest improvement in performance

can be observed for the clean speech mixtures (CSM) since this is the easiest task for the

network. The MHA encoder achieved slightly more performance improvement on the RSM

condition than the NSM condition and the NRSM. The MHA encoder outperformed the Deep

PReLU encoder on every acoustic condition. Figure 6.5 shows the intermediate features in
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Table 6.3: Comparison of MHA encoder with 4 attention heads to Original Conv-
TasNet encoder across various acoustic conditions. Best performing results for
each acoustic condition shown in bold. ∆ columns refer to the improvement of the
respective measure in the adjacent column to the left.

AC Encoder SISDR (dB) ∆ SDR (dB) ∆ PESQ ∆ STOI ∆

Conv-TasNet 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342
CSM Deep PReLU 14.8 14.8 15.2 15.1 2.96 1.66 0.941 0.344

SAE 15.7 15.7 16.1 16.0 3.15 1.84 0.952 0.355

Conv-TasNet 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373
NSM Deep PReLU 7.83 12.3 8.51 12.7 2.04 0.900 0.840 0.432

SAE 8.37 12.9 9.01 13.2 2.09 0.93 0.854 0.446

Conv-TasNet 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312
RSM Deep PReLU 5.91 9.20 8.09 8.21 2.26 1.04 0.860 0.325

SAE 6.39 9.67 8.57 8.68 2.34 1.10 0.874 0.339

Conv-TasNet 3.54 9.66 5.48 8.96 1.79 0.656 0.75 0.366
NRSM Deep PReLU 3.63 9.76 5.56 9.05 1.82 0.68 0.76 0.372

SAE 4.11 10.4 6.00 9.48 1.92 0.754 0.787 0.399

the MHA encoder encoding an NRSM signal. Comparing the encoded signal after the first

convolutional layer in the network to the similar representation in Figure 6.3 it is notable

that the convolutional layer has learned to focus on a narrow set of channels. This implies a

large number of the channels are, in fact, redundant, a similar finding to the MPGT encoder

and convolutional decoder model proposed by Ditter & Gerkmann (2020). The final output

of the MHA encoder further narrows the focus of the encoded features. Another interesting

finding of the output of the MHA layer is that the mask-like features (top right in Figure 6.5)

do not seem to attenuate the signal where there is only noise present as one might expect due

noise not being present in the target signal at training. This effect can be seen more clearly

when compared to the intermediaries of the CSM signal encoded by the MHA encoder in

Figure 6.6.

6.3.8 MHA Decoder Architecture Comparisons

A comparison of the MRD in Figure 6.4 (a), the PMD in Figure 6.4 (b) and the self-attention

decoder (SAD) in Figure 6.4 (c) is carried out in the following to analyse which approach, if

any, leads to superior decoding performance over the Conv-TasNet baseline (Luo & Mesgarani,

2019) and Deep PReLU decoder (Kadıoğlu et al., 2020). The results are shown in Table 6.4.

In each case the number of attention heads is set to A = 2. There was a clear performance

improvement on clean speech mixtures across all metrics with the MRD in Figure 6.4 (a). Also

a noticeable performance increase can be observed for the reverberant speech mixtures but this

improvement is not also seen for the noisy reverberant speech mixtures where there was a small

drop across all measures except for the STOI measure. The PMD design showed decreased
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Figure 6.5: Top left: encoded NRSM features after 1D convolution and non-
linearity in MHA encoder sorted using Algorithm 1. Top right: mask-like output of
self attentive MHA layer in MHA. Bottom left: output of the MHA encoder. Bottom
right: Averaged attention weight matrix across all attention heads, Gheads = 4.

performance across all conditions and metrics. The best performing of the proposed decoders

across all conditions was the self-attention decoder. This decoder also outperformed the

baseline Deep PReLU decoder with greater success the more challenging the audio became, c.f.

SISDR results for CSM, NSM conditions with SISDR results for RSM and NRSM conditions.

6.3.9 Number of Heads Comparison in MHA Decoders

Results shown in Section 6.3.8 demonstrated that the proposed self-attention decoder in

Figure 6.4 (c) was more effective than the MR and PM decoders. The MR decoder also

showed some potential performance improvement for the CSM condition but this was not
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Figure 6.6: Top left: encoded CSM features after 1D convolution and non-linearity
in MHA encoder. Top right: mask-like output of self attentive MHA layer in MHA.
Bottom left: output of the MHA encoder. Bottom right: Averaged attention weight
matrix across all attention heads, Gheads = 4.

replicated across all conditions. In the following subsection, further analysis is done using the

SAD and MRD to observe the effect that using a variable number of heads might have on the

model. Experiments were performed using Gheads = {2, 4, 8} attention heads for both decoders

and are again compared against the Conv-TasNet (Luo & Mesgarani, 2019) and Deep-PReLU

baselines (Kadıoğlu et al., 2020). The results in Table 6.5 show that using Gheads = 4 attention

heads leads to a small but consistent performance increase across all metrics used for MRD

over the original Conv-TasNet decoder. The smallest improvement is often close to 0.1 dB

SISDR and it is thought that this is not a strong enough improvement beyond the effects

of randomized model initialization to confirm that this technique as implemented here is

any more effective than the original Conv-TasNet decoder. The SAD again shows consistent
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Table 6.4: Comparison of MRD in Figure 6.4 (a) to PMD in Figure 6.4 (b) across
various acoustic conditions. Best performing results for each acoustic condition
shown in bold.

AC Decoder SISDR (dB) ∆ SDR (dB) ∆ PESQ ∆ STOI ∆

Conv-TasNet 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342
Deep PReLU 15.0 15.0 15.5 15.3 3.01 1.72 0.943 0.345

SAD 15.0 15.0 15.5 15.3 3.09 1.78 0.944 0.347
MRD 15.1 15.1 15.6 15.4 3.06 1.76 0.946 0.348

C
S

M

PMD 12.5 12.5 13.1 13.0 2.85 1.55 0.932 0.335

Conv-TasNet 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373
Deep PReLU 7.87 12.4 8.55 12.8 2.05 0.913 0.834 0.426

SAD 7.88 12.4 8.53 12.8 2.05 0.9 0.842 0.434
MRD 7.52 12.0 8.19 12.4 1.98 0.837 0.837 0.429

N
S

M

PMD 7.39 11.9 8.08 12.3 1.96 0.82 0.835 0.427

Conv-TasNet 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312
Deep PReLU 5.85 9.14 7.88 7.99 2.27 1.04 0.856 0.32

SAD 5.92 9.2 8.07 8.19 2.27 1.03 0.859 0.323
MRD 5.77 9.06 7.96 8.07 2.20 0.976 0.855 0.319

R
S

M

PMD 5.37 8.66 7.32 7.44 2.22 0.986 0.850 0.315

Conv-TasNet 3.54 9.66 5.48 8.96 1.79 0.656 0.75 0.366
Deep PReLU 3.68 9.81 5.54 9.03 1.82 0.681 0.761 0.373

SAD 3.87 9.99 5.74 9.22 1.88 0.718 0.774 0.385
MRD 3.19 9.32 5.12 8.61 1.76 0.62 0.769 0.381N

R
S

M

PMD 3.08 9.20 4.84 8.32 1.76 0.62 0.756 0.368

improvement over the previously demonstrated model with only 2 attention heads for both

Gheads = 4 and Gheads = 8. Typically for both models Gheads = 4 leads to best average

improvement across all metrics for both the MRD and SAD.

6.3.10 Combined MHA Encoder & Decoder Evaluations

The final set of results given in this section compare the MHA encoder and decoder approach

to a deep convolutional encoder and decoder proposed by (Kadıoğlu et al., 2020). A Conv-

TasNet model utilising both the proposed MHA encoder and decoder was trained in an E2E

fashion. For all results the SAE, SAD and MRD 4 attention heads were used. Similarly, a

Conv-TasNet model using both the deep encoder and decoder proposed by (Kadıoğlu et al.,

2020) was trained. The SAE with the original Conv-TasNet decoder are reported with the

decoder abbreviated to convolutional decoder (CD) for brevity in some results.
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Table 6.5: Comparison of using 2, 4 and 8 attention heads in MRD (Figure 6.4 (a))
against the original Conv-TasNet decoder proposed by (Luo & Mesgarani, 2019).
Best performing results for each acoustic condition shown in bold.

AC Decoder Gheads SISDR (dB) ∆ SDR (dB) ∆ PESQ ∆ STOI ∆

Conv-TasNet - 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342
Deep PReLU - 15.0 15.0 15.5 15.3 3.01 1.72 0.943 0.345

MRD 2 15.1 15.1 15.6 15.4 3.06 1.76 0.946 0.348
MRD 4 15.0 15.0 15.4 15.3 3.07 1.75 0.944 0.347
MRD 8 14.6 14.6 15.1 14.9 3.02 1.71 0.936 0.338
SAD 2 15.0 15.0 15.5 15.3 3.09 1.78 0.944 0.347
SAD 4 15.3 15.3 15.7 15.5 3.1 1.79 0.946 0.349

C
S

M

SAD 8 15.3 15.3 15.8 15.6 3.14 1.82 0.948 0.351

Conv-TasNet - 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373
Deep PReLU - 7.87 12.4 8.55 12.8 2.05 0.913 0.834 0.426

MRD 2 7.52 12.0 8.19 12.4 1.98 0.837 0.837 0.429
MRD 4 7.74 12.2 8.40 12.6 2.04 0.87 0.834 0.426
MRD 8 7.51 12.0 8.17 12.4 2.04 0.873 0.831 0.423
SAD 2 7.88 12.4 8.53 12.8 2.06 0.9 0.842 0.434
SAD 4 7.97 12.5 8.62 12.9 2.08 0.919 0.844 0.436

N
S

M

SAD 8 7.96 12.5 8.61 12.8 2.09 0.931 0.841 0.433

Conv-TasNet - 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312
Deep PReLU - 5.85 9.14 7.88 7.99 2.27 1.04 0.856 0.320

MR 2 5.77 9.06 7.96 8.07 2.20 0.976 0.855 0.319
MR 4 5.58 8.87 7.84 7.96 2.25 1.00 0.846 0.311
MR 8 5.46 8.75 7.71 7.83 2.21 0.968 0.846 0.306
SA 2 5.92 9.2 8.07 8.19 2.28 1.03 0.859 0.323
SA 4 6.01 9.3 8.13 8.25 2.29 1.05 0.863 0.328

R
S

M

SA 8 5.99 9.28 8.12 8.24 2.28 1.04 0.862 0.326

Conv-TasNet - 3.54 9.66 5.48 8.96 1.79 0.656 0.75 0.366
Deep PReLU - 3.68 9.81 5.54 9.03 1.82 0.681 0.761 0.373

MR 2 3.19 9.32 5.12 8.61 1.76 0.622 0.769 0.381
MR 4 3.61 9.73 5.54 9.03 1.87 0.710 0.764 0.376
MR 8 3.61 9.74 5.53 9.01 1.88 0.714 0.765 0.376
SA 2 3.87 9.99 5.74 9.22 1.88 0.718 0.774 0.385
SA 4 3.81 9.93 5.74 9.23 1.89 0.728 0.766 0.377

N
R

S
M

SA 8 3.81 9.93 5.67 9.15 1.88 0.719 0.769 0.38

6.4 Conclusions and Future Work

In this chapter, novel MHA encoder and decoder networks were proposed for improving

TasNet models. The proposed self-attention based MHA encoder demonstrated significant

improvement over other encoder baselines across SISDR, SDR, PESQ, and STOI metrics.

Three MHA decoders, two using encoder-decoder attention approaches and one using a self-

attention approach, were proposed. Performance compared to the original Conv-TasNet model

(Luo & Mesgarani, 2019) and a Deep PReLU decoder (Kadıoğlu et al., 2020) baselines varied.

The Deep PReLU decoder typically performing better under most acoustic conditions than

the MR decoders. The self-attention decoder consistently performed better than all the other

proposed and baseline decoders. Using the MHA encoder alone yielded better performance
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Table 6.6: Comparison of MHA encoder and decoder against the deep convolutional
encoder/decoder Conv-TasNet model proposed in Kadıoğlu et al. (2020). Best
performing results for each acoustic condition shown in bold.

AC Model Size SISDR (dB) ∆ SDR(dB) ∆ PESQ ∆ STOI ∆

Conv-TasNet 3.5M 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342
Deep PReLU 8.2M 14.8 14.8 15.2 15.1 2.96 0.66 0.943 0.345
SAE & MRD 5.5M 15.2 15.2 15.7 15.5 3.12 1.81 0.946 0.349
SAE & SAD 5.5M 15.6 15.6 16.0 15.9 3.16 1.85 0.952 0.355

C
S

M

SAE & CD 4.5M 15.7 15.7 16.1 16.0 3.15 1.84 0.952 0.355

Conv-TasNet 3.5M 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373
Deep PReLU 8.2M 8.20 12.7 8.88 13.1 2.07 0.938 0.849 0.441
SAE & MRD 5.5M 7.97 12.5 8.62 12.9 2.06 0.896 0.839 0.431
SAE & SAD 5.5M 8.3 12.8 8.94 13.2 2.11 0.943 0.852 0.444

N
S

M

SAE & CD 4.5M 8.37 12.9 9.01 13.2 2.09 0.93 0.854 0.446

Conv-TasNet 3.5M 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312
Deep PReLU 8.2M 6.23 9.51 8.24 8.36 2.32 1.10 0.870 0.334
SAE & MRD 5.5M 6.13 9.42 8.32 8.44 2.29 1.05 0.869 0.334
SAE & SAD 5.5M 6.13 9.41 8.33 8.44 2.29 1.05 0.869 0.334

R
S

M

SAE & CD 4.5M 6.39 9.67 8.57 8.68 2.34 1.10 0.874 0.339

Conv-TasNet 3.5M 3.54 9.66 5.48 8.96 1.79 0.656 0.750 0.366
Deep PReLU 8.2M 3.81 9.93 5.64 9.12 1.80 0.667 0.760 0.376
SAE & MRD 5.5M 3.80 9.93 5.69 9.19 1.88 0.717 0.778 0.389
SAE & SAD 5.5M 3.91 10.0 5.78 9.27 1.9 0.735 0.778 0.39N

R
S

M

SAE & CD 4.5M 4.11 10.42 6.00 9.48 1.92 0.754 0.787 0.399

than any changes to the decoder even with both an MHA encoder and MHA decoder. Further

analysis of the intermediate MHA features in the self-attention encoder showed evidence that

the network was being more selective in the features being attended to and that many of the

channels in the encoder might be mostly redundant. The best-performing MHA models yield

a mean 0.6 dB scale-invariant signal-to-distortion (SISDR) improvement on noisy reverberant

mixtures over a baseline 1D convolution encoder. A mean 1 dB SISDR improvement is

observed on clean speech mixtures.

There are a number of avenues for further research with the proposed MHA encoder and

decoders. The MHA encoder demonstrated reliable performance improvements without the

significant increase in model size seen in other encoder and decoder networks proposed for

Conv-TasNet (Kadıoğlu et al., 2020). One drawback in any implementation using the MHA

layer proposed by Vaswani et al. (2017) is the significant memory usage and computational

complexity of these network layers. Work by Katharopoulos et al. (2020) proposed linear

attention layers. Linear attention reduces the quadratic sequential complexity L2
x of the scaled

dot-product attention mechanism used by Vaswani et al. (2017) to have a linear complexity

of Lx. Another avenue for future work is to apply the self-attentive designs proposed in this

chapter on other kinds of filterbank features such as the MPGT filterbank features proposed

by Ditter & Gerkmann (2020). In this work, the focus was solely on using individual attention
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mechanisms to improved performance but particularly with the encoder it is likely that using

additional self-attention layers might lead to further improvements in performance across all

acoustic conditions.



Chapter 7

On Data Sampling Strategies for

TasNet Models

Many DNN speech separation models use LSTM or Transformer layers (Luo et al.,

2020; Subakan et al., 2021; Rixen & Renz, 2022) which are typically less efficient than the

convolutional layers focussed on heavily in Chapter 3 to Chapter 5. Transformers, in particular,

consume large amounts of memory and have quadratic time-complexity, i.e. for L input frames

of data the model performs at least L2 operations (Katharopoulos et al., 2020). This is a

particular concern in training when memory requirements are higher due to storing gradients

for each operation required in the back-propagation stage (Haykin, 2009). This increased

computational load also means longer training times. One way to compensate for the memory

requirements is to use a batch size of 1 (Subakan et al., 2021) which leads to even longer

training times as more parameter updates have to be performed. This is the case with the

SepFormer model described earlier in Section 2.10. Another approach to training that reduces

memory requirements and allows for larger batch sizes is to reduce the mixture signal length

(Luo & Mesgarani, 2019). This reduces the training time but potentially at the expense of

performance.

In this chapter, the first aim is to address if there are TSL limits at which seemingly no

additional performance gain can be attained by DNN speech separation models. It is shown

that, depending on model and dataset selection, there is a TSL limit at which not only no

additional performance gain is attained but actually limiting the TSL to a specific value can

lead to notably improved performance on some datasets. This effect is demonstrated to be

due to a random sampling of the start index when using TSL limits. Further evaluations show

the benefit of having more unique training examples than using the full signal lengths. Finally,

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2023b).
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the application of TSL limits used with DM (Zeghidour & Grangier, 2021) is evaluated.

The remainder of this chapter is structured as follows. The separation networks and

datasets used are described in Section 7.1.1, and Section 7.1.2.1, respectively. Section 7.2

presents evaluations for varying TSL limit for each separation network and dataset. Section 7.3

explores splitting signals to generate more train examples and whether DM mitigates the

gains found using TSL limits. Final conclusions are provided in Section 7.5.

7.1 Experimental Setup

7.1.1 Separation Models

The SepFormer (Subakan et al., 2021) and Conv-TasNet (Luo & Mesgarani, 2019) models are

both used in this chapter for the purpose of analysis on different signal lengths. These models

are selected due to their contrasting features; Conv-TasNet being a smaller (3.6M parameters),

more efficient, fully convolutional model and SepFormer conversely being a much larger (25.8M

parameters) less efficient, Transformer based model. The reader is encouraged to refer to

Section 2.9 for an in-depth description of Conv-TasNet and Section 2.10 for an in-depth

description of Sepformer. The fully convolutional structure of Conv-TasNet means that it is

only able to process more localized information within its receptive field (cf. Eq. (2.44)) and

the Transformer based architecture of SepFormeris able to model global context.

Both Conv-TasNet and SepFormer have a similar overall structure owing to them both

being derived from the TasNet model, an example of which is visualized in Figure 2.6 for

C = 2 speakers Both are also trained using the PIT SISDR objective function (cf. Section 2.6)

(Kolbaek et al., 2017; Luo & Mesgarani, 2019; Subakan et al., 2021; Roux et al., 2019). Models

are trained according to the best-performing models in each of their original papers (Luo &

Mesgarani, 2019; Subakan et al., 2021) unless stated otherwise. Batch sizes of 2 and 4 are

used for SepFormer and Conv-TasNet, respectively, except where otherwise stated.

7.1.2 Datasets & Signal Length Distributions

7.1.2.1 Datasets

Three corpora of 2-speaker mixtures are analysed in this work: WSJ0-2Mix, WHAMR and

Libri2Mix. The trends demonstrated later in Sections 7.2 and 7.3 for the 2-speaker scenario

are assumed to generalize to higher C values based on findings in Li et al. (2024); Cosentino

et al. (2020). The reader should refer back to Section 2.2.1 and Section 2.2.2 for descriptions

of these corpora. For the Libri2Mix dataset, the configuration without noise, i.e. ν[i] = 0 in

(2.2), is used for the purpose of comparison to WSJ0-2Mix. Furthermore, the signal length

distribution of LibriMix differs greatly for WSJ0-Mix derived datasets, an important point of
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comparison in the remainder of this chapter. For the Libri2Mix dataset, train-100 is used for

training. The motivation for this selection is faster training times than the larger train-360

set with near identical signal length distributions. For all corpora, the 8kHz min configuration

is used.

7.1.2.2 Signal Length Distributions

The distribution, density estimation (DE) and the mean and standard deviation of the mixture

signal length in the WHAMR train tr and test tt sets can be seen in Figure 7.1. WSJ0-2Mix

Figure 7.1: Distributions of mixture signal lengths in WSJ0-2Mix/WHAMR
(left) and Libri2Mix (right) for both train (top) and test (bottom) sets. Density
estimation (DE) is shown by solid green lines, mean values are indicated by dashed
red lines and standard deviation values by dash-dotted blue lines.

and WHAMR have identical signal distributions as WHAMR is derived from the former.

These distributions are shown in the left panel. The train and test sets in WHAMR have

similar distributions of signal length with mean values within 0.3s of one another and standard

deviations within 0.1s of one another. This contrasts the distributions of the Libri2Mix dataset

(Cosentino et al., 2020) also shown in Figure 7.1 where the train-100 and test sets have a

difference in mean value of 6.2s and difference in standard deviation of 1.79s.

7.2 Training Signal Length Analysis

Evaluations of varying the TSL limits are presented in this section. For all evaluations, the

improvement in SISDR over the input mixture signal, denoted by ∆ SISDR, is used as the

evaluation metric. More details on SISDR are given in Section 2.6, and the formulation is

found in (2.72).
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7.2.1 Initial TSL Limit Evaluations

As a first experiment, twelve SepFormer models are trained and evaluated on WSJ0-2Mix,

WHAMR and Libri2Mix, each with a different TSL limit. Twelve logarithmically spaced

signal limits Tlim are selected between 0.5s and 10s:

Tlim ∈ {0.5, 0.66, 0.86, 1.13, 1.49, 1.95, 2.56, 3.36, 4.42, 5.8, 7.62, 10}s. (7.1)

The notation Llim is used for the respective discrete sample index, i.e. Llim = Tlimfs for sampling

rate fs. When cutting the training signal lengths such that Lx ≤ Llim the starting sample

index of the signal is randomly selected from the discrete uniform distribution of integers

U (0, 1 + max (0, Lx − Llim)). Performance for SepFormer models trained and evaluated on

all three datasets is compared in Figure 7.2. For the WHAMR corpus, an increase in overall ∆

Figure 7.2: SepFormer results for varying the TSL limit for the anechoic WSJ0-
2Mix (top), Libri2Mix (middle) and WHAMR (bottom) test sets.

SISDR performance from the 0.5s to 1.95s limit can be observed. The optimal TSL is at 3.36s.

Between 3.36s and 10s performance decreases again by −1.4dB. This may seem surprising as

the general convention with training DNNs is that more data normally results in improved

overall performance. For an immediate explanation of this effect refer ahead to Section 7.4.

A similar trend is observed for WSJ0-2Mix where there is a notable increase between 0.5s

and 3.36s and then a drop in performance of 0.8dB between 4.4s and 10s. For Libri2Mix, the

performance saturates before a TSL limit of 4.42s. There is no drop in performance as the

TSL limit approaches 10s which is likely due to the Libri2Mix training set having a more

uniform distribution below signal lengths of 10s than the WHAMR or WSJ0-2Mix datasets,

cf. Figure 7.1. More is elaborated on this effect in later sections.

The results for the WHAMR evaluation set are separated into quartiles of mixture signal

length for the following experiment. ∆ SISDR results for each quartile are shown in Figure 7.3.



CHAPTER 7. ON DATA SAMPLING STRATEGIES FOR TASNET MODELS 115

Comparing Q1 to Q4 shows that, with a sufficiently large TSL (≥ 1.95s), the best separation

Figure 7.3: Training signal length (TSL) analysis of the 1st to 4th signal length
quartiles in the WHAMR evaluation set.

performance in SISDR is found on the longest signal lengths, regardless of TSL. A loss in

SISDR performance is still observed from 3.36s to 10s regardless of which quartile is evaluated.

7.2.2 Training Time Evaluation

The average training ED for the SepFormer model on WHAMR and Libri2Mix training sets

are shown in Figure 7.4. Note the ED for WSJ0-2Mix is omitted for brevity but is similar

to WHAMR due to having the same TSL distribution (cf. Figure 7.1). All models were

trained on the same hardware to control any impact this has on speed. The average EDs

Figure 7.4: Comparison of average epoch duration (in mins) for the SepFormer
model on the Libri2Mix and WHAMR training sets.

for the WHAMR dataset have a sigmoidal shape due to the majority of the signal lengths

being concentrated around the mean signal length of the training set (5.6s, cf. Figure 7.1).

Libri2Mix has a more linear relationship between TSL limit and ED due to the more uniform

shape of the signal length distribution below the maximum TSL limit of 10s in the train-100

set, cf. Figure 7.1. Reducing the TSL limit has more benefit in terms of ED for the Libri2Mix

dataset when iterating over all training examples.
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7.2.3 Fixed vs. Random Start Index

In Section 7.2.1, the start index of each shortened signal was randomly sampled from a uniform

distribution. In this section, this is compared to using a fixed start sample. A start sample of

1999 (= 0.25s at 8kHz, zero-indexed) was used for signals where the original mixture signal

length was larger than Llim, else the entire signal length was used. The motivation for this

was that many training examples contain silence at the beginning of clips. It was considered

desirable to omit as much silence to make for a fairer comparison with the randomly sampled

clips which are assumed to have a lower likelihood of beginning with silence. Results in

Figure 7.5 confirm that the loss in performance from a TSL limit of 3.36s to 10s with WHAMR

is due to randomly sampling the start index. The performance saturates at a TSL limit of

Figure 7.5: Comparison of TSL variation for the SepFormer model trained
and evaluated on the WHAMR datasets on a subset of TSL limits in the range
[1.95, 7.62]s.

5.8s when using a fixed start index. This is similar to the performance saturation point of

Libri2Mix in Figure 7.2 demonstrating the performance drop in higher TSLs seen before on

WHAMR (cf. Figure 7.2) is related to both a non-uniform TSL distribution and the random

sampling used.

7.2.4 Transformer vs. Convolutional Model

Results comparing the Conv-TasNet model (cf. Section 2.9) to the SepFormer model (cf. Sec-

tion 2.10) are shown in Figure 7.6. The loss in performance above 3.36s is not as notable for

the Conv-TasNet model. All SISDR results above Tlim = 1.95s are within in 0.5dB of each

other suggesting Conv-TasNet is more invariant to the TSL limit if the limit is sufficiently

large. This is possibly due to the 1.53s receptive field of the Conv-TasNet models being

smaller than these particular TSLs limits (Ravenscroft et al., 2022b).
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Figure 7.6: Comparison of SepFormer and Conv-TasNet across TSL limits
Tlim ∈ [4.42, 7.62] using the WHAMR corpus.

7.3 Signal Splitting and Dynamic Mixing

Next, two sampling strategies are evaluated to (i) investigate whether with WHAMR the

performance gained by using TSL limits with random sampling on shorter sequences still

holds when the same quantity of audio data in terms of length in seconds is used and (ii)

whether using TSL limits still result in performance gains with DM, i.e. simulating new speech

mixtures for each epoch (Zeghidour & Grangier, 2021).

7.3.1 Signal Splitting

A signal splitting strategy was designed such that a batch of inputs Ybat ∈ RW×Lx was

reshaped to Y′
bat ∈ R

WGsplit× Lx
Gsplit for batch size W . Signal length Lx is still limited such that

Lx ≤ Llim. The motivation of this method is to evaluate the importance of training on the

entire sequence length compared to the raw data quantity used in seconds. Computational

complexity in training is also reduced. TSLs for Tlim ∈ [4.42, 10]s are analysed for D = 2.

Figure 7.7 shows that DGsplit = 2 improves performance for shorter TSL limits (Tlim ≤ 5.8s)

compared to Gsplit = 1 (the original shape). However for Tlim ≥ 7.62s the performance is

similar to Gsplit = 1. As in Figure 7.2 this is likely due to the TSL distribution of WHAMR.

Figure 7.7: Comparison of split signal and batch reshape training Gsplit = 2
(orange) against full signal training Gsplit = 1 (blue) for the SepFormer model.
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7.3.2 Dynamic Mixing

As discussed in previous chapters (cf. Chapter 5), dynamic mixing (DM) has been shown

to consistently improve the performance of various speech separation models (Zeghidour &

Grangier, 2021; Subakan et al., 2023). DM often results in a 1.0 to 1.5dB SISDR performance

improvement dependant upon the model and dataset (Zeghidour & Grangier, 2021; Ravenscroft

et al., 2023a). The random start index sampling used in Section 7.2 is similar to DM in that

it provides the model with unique training examples each epoch but without simulating new

mixtures. In this section using DM and TSL limits is compared against just using TSL limits

to see if further performance gains can be attained using both approaches. The DM results

for the WHAMR corpus are shown in Figure 7.8. It can be seen that with DM the drop in

performance is less (at 7.62s) than without DM. The best performing model Tlim = 4.4s is

Figure 7.8: Comparison of SepFormer model training using TSL limits with and
without dynamic mixing being used as well on WHAMR evaluation set.

compared to the Sepformer model with no TSL limit in Table 7.1. The batch size reported

for the model with no TSL is the largest it was found possible to train on a 32GB Nvidia

V100 GPU. It can be seen that using the TSL limited model is able to match its performance

with an average ED reduction of 44%, highlighting the benefit of this approach.

Table 7.1: Comparison of best performing SepFormer models on WHAMR with
and without TSL limits. W denotes batch size and the average epoch duration (ED)
is reported in minutes.

Model W Tlim (s) ∆ SISDR (dB) ED (mins)

SepFormer + DM 1 − 14.0 85
SepFormer + DM 2 7.62 13.6 74
SepFormer + DM 2 4.42 14.0 59

7.4 Discussion

When this work was originally published in Ravenscroft et al. (2023b), the paper lacked of

formal explanation for why the shorter TSL limits can result in improved performance. Below,
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this is outlined using a more mathematical formulation than the verbal explanations given

earlier in this chapter. Given the input signal length Lx and signal length of the TSL in

samples Llim using TSLs with random sampling means that the data can now be sampled

from

ξ = Lx − Llim (7.2)

possible unique training examples can be sampled. A consequence of this is that the larger

Llim is, the smaller ξ is, i.e. the fewer unique training examples the model is likely to be

trained on and the less diverse the training examples will be, due to the higher likelihood

a “unique” training example will overlap with a previous training example the larger Llim

is. Thus, if the TSL distribution doesn’t skew much larger than the TSL limit, as is the case

with the 4.4s TSL limit on WHAMR (cf. Section 7.1.2.2) it is favourable to use shorter TSL

limits as it improves the overall data diversity.

7.5 Conclusion

In this chapter, it was shown that TSL limits can affect the overall performance for speech

separation models in a number of ways. For WSJ0-derived speech separation benchmarks,

i.e. WSJ0-2Mix and WHAMR, it is optimal to use shortened training examples randomly

sampled from the original examples due to the signal length distribution of these corpora.

For the Libri2Mix dataset, the same method led to shorter training times with no notable

loss in performance. The SepFormer model was compared to the Conv-TasNet model and

it was shown that the Conv-TasNet performance has less variation. Using dynamic mixing

and TSL limits with random sampling was shown to be able to match the performance of the

SepFormer model trained DM using full sequence lengths on WHAMR with a 44% reduction

in training time. With some previous literature opting to limit TSLs (Luo & Mesgarani, 2019;

Luo et al., 2020) and others not (Rixen & Renz, 2022; Subakan et al., 2021) while using the

same benchmark datasets for evaluating models, the results in this work suggest that this

is not necessarily a fair comparison and that TSL limiting is important to factor in when

analysing results, particularly for the WSJ0-2Mix and WHAMR benchmarks.



Chapter 8

Time-domain Conformers for Speech

Separation

In the Chapter 7, it was shown that the training of the SepFormer model can be significantly

improved using TSL limits combined with random sampling with no loss in performance.

Even with this modification, the total training time is still over 6 days on the same hardware

used in the original SepFormer paper (Nvidia V100 32GB GPU) (Subakan et al., 2021). It is

shown in this chapter that a large source of the computational complexity in the SepFormer

model is the intra-Transformer used for processing local context with a fixed window of size U .

This fixed window size means that, for all LU chunks the model intra-Transformer processes,

it results in a time-complexity function of LU × U2. As is demonstrated later in Section 8.1.3,

this can have a significant impact on the efficiency of the model in processing shorter signal

lengths. This chapter proposes the Conformer (Gulati et al., 2020) model as an analogue of

the SepFormer model. The Conformer, originally proposed for speech recognition (Gulati

et al., 2020), is notably more efficient for computing shorter signal lengths because it uses

convolutional layers for processing local context while still modelling global context via a

Transformer layer. It is demonstrated in this chapter that using the Conformer can result in

more efficient training with improved performance on the noisy reverberant WHAMR speech

separation benchmark dataset.

A STFT-based Conformer model has been proposed for continuous speech separation

in (Chen et al., 2021b) which shows reasonable performance on the LibriCSS dataset but

does not compare to time-domain models on other popular benchmarks as it is shown later

in Section 8.3.3, most likely due to its lower temporal resolution as Cord-Landwehr et al.

(2022) similarly demonstrated. Conformers have been proposed widely in other areas of

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2023c).
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speech processing. Most closely related to speech separation, a TCN augmented Conformer

model has been proposed for speech enhancement (Koizumi et al., 2021) and a time-domain

Conformer and a TCN-augmented Conformer model were proposed for speech extraction

in Sinha et al. (2022). The TCN model performs best but has a much wider local context

window, or receptive field, than the pure Conformer model. Questions remain, however, about

whether the full TCN approach is necessary if a convolutional module in a Conformer were to

have a sufficiently wide kernel size (Sinha et al., 2022; Rixen & Renz, 2022) and comparable

model size, as this was not analysed in Sinha et al. (2022).

This chapter evaluates a single channel TD-Conformer model across different model sizes

and computational expenditures from both theoretical and experimental perspectives. While

TasNets and Conformer models are well studied, the combination of the two for separation

tasks with a corresponding optimisation and performance analysis is as yet missing from the

speech separation literature. Furthermore, this chapter demonstrates why it is an oversight in

the area of speech separation research to not explore this particular combination in greater

depth given the proposed model configuration in this work is able to achieve close to SOTA

results with useful trade-offs in computational expenditure for the separation of shorter speech

utterances. It is shown that, in the local-layer global-layer paradigm often used in speech

separation DNN models (Luo et al., 2020; Chen et al., 2020a; Subakan et al., 2021), Conformer

layers can be a more computationally suitable option in terms of efficiency.

In this work, a subsampling method is also introduced, which further reduces the computa-

tional TC of the dot product attention in the Transformer layers, similar to the SE-Conformer

model (Kim & Seo, 2021). Several evaluations are performed to assess the optimal receptive

field (Ravenscroft et al., 2022b) of the convolutional component in the Conformer, the impact

of subsampling on performance and computational complexity, and the benefits of the time

domain approach over the STFT model proposed in (Chen et al., 2021b). Results are compared

to a number of other SOTA models in terms of performance, model size, and computational

complexity across multiple benchmarks and acoustic conditions.

The remaining chapter proceeds as follows. In Section 8.1 the proposed TD-Conformer

model is described in detail. Training configurations are explained in Section 8.2 and results

are presented in Section 8.3. Section 8.4 gives the conclusions for this chapter.

8.1 TD-Conformer Separation Networks

The proposed TD-Conformer, described in the following, is a TasNet composed of the same

three main components as all other TasNet models previously discussed: a feature encoder, a

mask estimation network and a decoder (cf. Figure 2.6). The encoder is the same learnable

filterbank (Luo & Mesgarani, 2018b; Ditter & Gerkmann, 2020) based on 1D convolutional

layer with a ReLU function described in Section 2.9.1 and also used in the SepFormer model
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(Section 2.10). The decoder is again identical to that used in Conv-TasNet and SepFormer

(Section 2.9.1) that performs the inverse function to convert encoded features back into the

time domain. The mask estimation network calculates C masks mℓ,c for each time frame ℓ to

obtain estimated frames ŝℓ,c of the clean input speech signals sℓ,c. Boldface letters indicate

vectors capturing respective frames of samples of the quantities in Eq. (2.2).

8.1.1 Encoder & Decoder

Similar to (Subakan et al., 2021; Luo & Mesgarani, 2019), the mixture signal x[i] in Eq. (2.2)

is segmented into Lx overlapping blocks xℓ of size J which are encoded into wℓ ∈ R1×N using

a 1D convolutional layer with weights U ∈ RJ×N for N output channels, followed by a ReLU

activation function Henc : R1×N → R1×N producing encoded features

wℓ = HReLU (xℓU) ∈ RN∀ℓ ∈ [1, . . . , Lx]. (8.1)

The masked encoded mixture mℓ,c⊙wℓ is decoded back into the time domain signal sℓ,c using

a transposed convolutional layer of weights B, the same as that described Section 2.9.1.

8.1.2 Conformer Mask Estimation Network

The mask estimation network is based on the Conformer architectures proposed in (Gulati

et al., 2020; Kim & Seo, 2021) and Figure 8.1. A diagram of the Conformer mask estimation

network is shown in Figure 8.1. The input sequence of features wℓ is normalized using layer

normalization (Ba et al., 2016) before being projected from dimension size N to B using a

P-Conv layer followed by a PReLU activation. Note that B is the same notation used in the

TCN, DTCN and WD-TCN models, as all networks are structured the same up to this point.

This results in a sequence of features of shape Lx ×B. This sequence is then fed through S

subsampling layers each of which is a 1D convolutional layer of a fixed kernel size of 4 and

stride of 2 thus reducing the temporal dimension by a factor of 2 giving a sequence of shape
Lx

2S
× B. Each subsampling layer has a residual connection to a respective supersampling

block composed of a 1D transposed convolutional layer, PReLU and layer normalization. This

structure increases the temporal dimension by a factor of 2 to restore the sequence length to

Lx. In between the subsampling and supersampling blocks are a series of Rconf Conformer

layers.

The Conformer layers are shown in detail in Figure 8.2 and are composed of a feed-forward

module, a convolution module, a MHSA module and another feed-forward module. The

convolution module comes before the MHSA module contrasting the original Conformer (Gulati

et al., 2020) which has MHSA first. This is so the model processes the local context first similar

to the DP models proposed in (Luo et al., 2020; Subakan et al., 2021). The two feed-forward
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Figure 8.1: Proposed TD-Conformer mask estimation network structure with
subsampling and supersampling layers to reduce and increase the temporal resolution,
and also enabling a reduction of the time-complexity (TC) in the Conformer layers.

Figure 8.2: Diagram of a single Conformer layer composed of feed-forward,
convolution and MHSA modules. Note the first feed-forward module is identical to
the final module but its details are omitted for brevity.

modules are composed of layer normalization, a linear layer with SiLU activation (Elfwing

et al., 2018), dropout (Hinton et al., 2012b) and then another linear layer followed by another
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dropout. Dropout (Hinton et al., 2012b) is a method used in DNNs where certain neurons

are randomly ignored (or zeroed out) during training, predominantly to improve a model’s

generalization capabilities and prevent overfitting from occurring. Each feed-forward module

has a weighted residual connection from input to output. The convolution module is composed

of layer normalization, a P-Conv with GLU activation, a D-Conv with kernel size P , group

normalization (Wu & He, 2018), a SiLU activation and lastly a P-Conv layer followed by

dropout. For group normalization, the number of groups equals the number of input channels,

i.e. instance normalization (IN). A residual connection goes from the input to the output of

the module. The MHSA module is composed of layer normalization and MHSA with relative

PE (Vaswani et al., 2017) followed by dropout. The MHSA module has a residual connection

around the entire module.

8.1.3 Conformers vs. Dual-Path Transformers

The Conformer layers are proposed in analogy to the DP Transformer layers in the widely

researched SepFormer model (Subakan et al., 2021; Cord-Landwehr et al., 2022). Note that

other DP Transformer layers have been proposed, such as in (Chen et al., 2020a), but these

are disregarded here as they are more computationally expensive and less performant than

SepFormer (Subakan et al., 2021; Tzinis et al., 2022b). In this section, the respective TC

functions of the Conformer layer and the DP Transformer layer are modelled to demonstrate

that under certain (often more realistic) signal lengths and feature dimensions, Conformers are

less computationally complex than DP Transformers. The intra-Transformer is compared to

the convolutional module of the Conformer as a local context layer and the inter-Transformer

is compared to MHSA modules of the Conformer as a global context layer. The TC for a

Conformer layer is defined as

TConf =
Lx

2S
(
PB + B2

)
+

L2
x

22S
B + B2Lx

2S
. (8.2)

The TC for a dual-path Transformer layer in the style of SepFormer (Subakan et al., 2021) is

defined as

TDPT =

(
Lx

2U
+

U

2

)(
U2B + B2U

)
+

Lx

4U2
B + B2Lx

2U
, (8.3)

where U represents the chunk size (Subakan et al., 2021). The time-complexities for DP

Transformer and Conformer layers with a feature sequence from an 8kHz piece of audio

encoded with block length J = 16 are shown in Figure 8.3 for different feature dimensions B

where the DP Transformer features dimension is fixed to Z = B. The average and maximum

signal lengths in the WHAMR tt evaluation set used later in Section 8.3, are 5.79s and 13.87s,

respectively (Ravenscroft et al., 2023b). Hence, in evaluations on this dataset, the Conformer

layer is the less computationally complex option overall. For larger B values the Conformer
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Figure 8.3: Comparison of TCs measured in GFLOPS for a Conformer layer and
a DP Transformer layer for different feature dimensions B ∈ {128, 256, 512}, where
the feature dimension of the DP Transformer is fixed to Z = B, over relative signal
length in seconds. Note that S = 0 for the Conformer layer here and P = U = 250
is used as it is equal to the best performing configuration of the DP model in
(Subakan et al., 2021).

more likely has lower TC than the DP Transformer. Another benefit of the Conformer is that,

assuming a small number of subsampling layers, it has a much higher temporal resolution

than the DP approach when processing the global context. Figure 8.4 demonstrates that every

Figure 8.4: Comparison of Conformer TC function over relative signal length for
varying subsampling layers S ∈ {0, 1, 2, 3}.

additional subsampling layer can significantly reduce the TC of the Conformer layer. The

impact of increasing the subsampling on overall performance is explored in more depth later in

Section 8.3.2. Note that the DP Transformer topology also has its own implicit subsampling

strategy akin to a dilated view of the output tensor from the local Transformer layer which

reduces the computational complexity but also the temporal resolution significantly (Rixen &

Renz, 2022; Subakan et al., 2021).

8.1.4 Objective function

An SISDR objective function (Roux et al., 2019; Luo & Mesgarani, 2018b) with an PIT

wrapper (Kolbaek et al., 2017) is used to train all of the models. The formula for SISDR can

be found in Eq. (2.72), and a description of PIT can be found in Section 2.6.2.
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8.2 Experimental Setup

8.2.1 Data

The WHAMR (Maciejewski et al., 2020) and WSJ0-2Mix (Isik et al., 2016) datasets are used

for analysing the proposed TD-Conformer models. Details of each corpus can be found in

Section 2.2.1. As the noisy reverberant condition is the main area of interest for this thesis,

the WHAMR dataset is used for all results to fine-tune hyperparamaters as well as compare

the proposed TD-Conformer to other similar models. WSJ0-2Mix is used as a benchmark for

the purposes of comparison to other models in Section 8.3.3. For all evaluations the 8kHz

min configuration is used.

8.2.2 Network configurations

Four model configurations are proposed to vary the model size in increasing internal mask

estimation feature dimension B of 128 (denoted as small (S)), 256 (medium (M)), 512

(large (L)) and 1024 (extra-large (XL)). The encoder has a fixed output dimension of N = 256

and a kernel size of J = 16 with a 50% stride of 8 samples. The number of Conformer layers

is fixed to Rconf = 8, the same as the number of DP layers in (Subakan et al., 2021). In the

results sections the number of subsampling layers S and Conformer kernel size P are modified

to gain a better understanding of their impact on separation performance and computational

cost. For all evaluations, a dropout of 10% is used.

8.2.3 Training configurations

All models are trained using an initial learning rate of 5× 10−5. Learning rates are fixed for

the first 90 epochs and then halved if there is no performance improvement after 3 epochs.

Training is performed over 200 epochs. Training examples were limited to 4 seconds. In

(Ravenscroft et al., 2023b) it was shown that this signal length is in an optimal range to

reduce training time without impacting overall performance for the datasets used in this work.

By limiting the TSLs, it enables the use of a batch size of 4 even with the largest XL models

proposed in Section 8.2.2. This contrasts the best performing SepFormer model where it has

been shown that even with comparable TSL limits the largest batch size it was possible to

use was 2 (Ravenscroft et al., 2023b) on the same GPU used in this work, a 32GB Nvidia

V100. Further to the discussion in Section 8.1.3, the reason for this difference is that despite

both the TD-Conformer XL model and the Sepformer using an internal feature dimension of

1024, the use of MHSA in the Sepformer for processing local information consumes a lot more

memory for an utterance of 4s in length. An open-source SpeechBrain (Ravanelli et al., 2021)

recipe is provided with this work to enable other researchers to reproduce the results in this
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chapter.1

8.2.4 Evaluation Metrics

The main separation evaluation metric used is SISDR (cf. (2.72)) improvement over the

noisy mixture, denoted by ∆ SISDR and measured in dB. Where relevant, computational

expenditure is report using MACs. MACs are calculated using the thop (Zhu, 2022) toolkit

on a signal of 5.79s in length, equal to the mean signal length in the WHAMR test set. This

is to be more reflective of a realistic input as the TD-Conformer models contain quadratic

time complexities. Model size is measured in parameter count where relevant.

8.3 Results

The results below are separated into three subsection; first an investigation into the impact of

kernel size on performance, second an investigation into the impact subsampling layers on

performance and third optimizing for computational expenditure and performance compared

to a number of similar models.

8.3.1 Varying kernel sizes

In this section, the kernel size P of the D-Conv layer in the Conformer layer is varied for

different feature dimensions B to evaluate if there exists a common P value across all models

that gives optimal performance. Five P values are evaluated: {16, 32, 64, 125, 250}. The

values 16 and 32 are similar to the kernel sizes in the original Conformer model (Gulati et al.,

2020) as well as in (Chen et al., 2021b; Kim & Seo, 2021). The values 64, 125 and 250 were

selected to give the D-Conv layer a comparable receptive field to the local Transformer layer

of popular DP models such as SepFormer (Subakan et al., 2021) where the chunk size is set to

U = 250 for the equivalent J = 16 model configuration. The results in Figure 8.5 show that

for all models the performance in ∆ SISDR peaks for a kernel size of P = 32. For sampling

rate fs, the relative receptive field of each convolution module in seconds is defined as

Rconv(S, P, J, fs) =
1

fs

(
2S−1JP +

J

2

)
(8.4)

which for the configuration {S, P, J, fs} = {2, 32, 16, 8000} is 0.129s. This receptive field value

is used later in Section 8.3.3 for optimising the model hyperparameters.

1GitHub link to SpeechBrain Conformer recipe: https://github.com/jwr1995/PubSep.

https://github.com/jwr1995/PubSep


CHAPTER 8. TIME-DOMAIN CONFORMERS FOR SPEECH SEPARATION 128

Figure 8.5: Performance in ∆ SISDR for Conformer layer kernel sizes P ∈
{16, 32, 64, 125, 250} and different model sizes based on B.

8.3.2 Varying the number of subsampling layers

Altering the number of subsampling layers changes the temporal resolution of the input

encoded features to the Conformer layers in the mask estimation network. It also inversely

affects the overall model size, i.e. more subsampling layers result in lower temporal resolution

but slightly larger model size. In this second experiment the number of subsampling layers S

is varied from 0 to 3. Note that for S = 0, a smaller batch size of 2 has to be used due to the

increased memory consumption of the Transformer layers. A fixed kernel size of P = 32 is

used. From Figure 8.6 it is notable that the difference in performance between S = 0 and

Figure 8.6: Performance over number of subsampling layers S for all Conformer
model sizes (S, M, L & XL) with respective computational cost in MACs exemplary
for signal of length 5.79s.

S = 1 layers is less than between S = 1 and S = 2 and likewise then for S = 2 and S = 3.
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It is also noticeable that for the smaller model sizes the reduction in performance for each

additional subsampling layer is also smaller. The S = 0 configuration gives the best overall

performance for both the S and XL TD-Conformer models. This is expected as S = 0 gives

the MHSA layers in the Conformer the highest temporal resolution when processing the global

context. This improvement comes at a significant computational cost however as can be seen

from the MACs reported in Figure 8.6 (note the scales vary for each row). This provides

some justification for using a small number of subsampling layers at the benefit of significant

reductions in computational requirements.

8.3.3 Hyper-parameter optimization and comparison to other models

In the following, TD-Conformer models are compared with several other discriminative

supervised speech separation models. To find optimal configurations for the Conformer

models, a set of TD-Conformer models with S = 1 subsampling layers and kernel sizes

P ∈ {64, 125} are trained. Models with no subsampling (S = 0) are not evaluated, due to

unreasonably long training times on the hardware available for only minor improvements

in performance (cf. Section 8.3.2). The kernel size P = 64 was specifically chosen as it

gives an equal receptive field to the optimal configuration {P, S} = {32, 2} in Section 8.3.1,

cf. (8.4). DM, as implemented in (Zeghidour & Grangier, 2021), is also used to maximise

model performance for each of the models. Results are reported with and without DM.

MACs are reported for all models for which an open source implementation was available for

evaluation (Luo & Mesgarani, 2019; Tzinis et al., 2022b; Ravenscroft et al., 2023a; Subakan

et al., 2021). Performance in terms of ∆ SISDR for the WSJ0-2Mix anechoic speech mixture

dataset (Isik et al., 2016) is shown for completeness.

Table 8.1 shows that all TD-Conformer models outperform the STFT Conformer model

proposed in (Chen et al., 2021b). The small TD-Conformer-S models outperform the similarly

sized and complex DTCN and SuDoRMRF++ baselines (Ravenscroft et al., 2023a; Tzinis

et al., 2022b) with DM on WSJ0-2Mix and show comparable performance on WHAMR without

DM. Interestingly, with DM, there was a small performance drop. Later analysis suggested

this was likely due to the η = 10−5 learning rate being too small for the TD-Conformer-S

model. The medium TD-Conformer-M models give comparable performance to the similarly

sized SkiM baseline (Li et al., 2022a) on the WSJ0-2Mix benchmark but with less than half

the number of MACs. The large TD-Conformer-L models give better performance than the

SepFormer baseline on the WHAMR benchmark and comparable performance on WSJ0-2Mix

with a similar model size but roughly a third of MACs. The TD-Conformer-XL model

outperforms the much larger quasi-dual-path network (QDPN) model on WHAMR, with the

best model giving 14.6 dB ∆ SISDR. The TD-Conformer does not quite reach parity with

the most recently SOTA MossFormer-L and TF-GridNet (Zhao & Ma, 2023; Wang et al.,
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Table 8.1: ∆ SISDR results for various TD-Conformer models with S = 1
compared to other separation models on the WSJ0-2Mix (abbrev. W-2Mix) and
WHAMR benchmarks. * indicates results not included in the respective paper cited
for a model.

∆ SISDR (dB)
Model P WSJ0-2Mix WHAMR MACs Params

Conv-TasNet (Luo & Mesgarani) - 15.6 9.7* 3.6G 5.1M
STFT-Conformer (Chen et al.) - 10.8* 6.7* 1.8G 57.5M

SuDoRMRF++ +DM (Tzinis et al.) - 17 - 2.7G 2.7M
WD-TCN (Chapter 4) - 16.0 10.4 3.7G 3.7M

WD-TCN+DM (Chapter 4) - 17.2 11.4 3.7G 3.7M
DTCN (Chapter 5) - 15.6 10.2 3.7G 3.6M

DTCN+DM (Chapter 5) - 17.2 11.1 3.7G 3.6M
SkiM (Li et al.) - 18.3 - 19.7G 5.9M

SepFormer (Subakan et al.) - 20.4 11.5* 60.7G 25.6M
SepFormer+DM (Subakan et al.) - 22.3 14 60.7G 25.6M

QDPN (Rixen & Renz) - 22.1 13.1 - 200M
QDPN+DM (Rixen & Renz) - 23.6 14.4 - 200M

MossFormer-L+DM (Zhao & Ma) - 22.8 16.3 42.8G 42.1M
TF-GridNet (Tab. XIII) (Wang et al.) - 22.0 - 29.8G 6.8M

TF-GridNet (Wang et al.) - 23.4 17.1 228.2G 14.3M

TD-Conformer-S 64 15.8 10.5 3.7G 1.8M
TD-Conformer-S 125 15.9 10.5 3.7G 1.8M

TD-Conformer-S+DM 64 17.4 9.7 3.7G 1.8M
TD-Conformer-S+DM 125 17.5 9.7 3.7G 1.8M

TD-Conformer-M 64 17.7 11.7 8.5G 6.7M
TD-Conformer-M 125 17.8 11.6 8.6G 6.8M

TD-Conformer-M+DM 64 18.1 12.0 8.5G 6.7M
TD-Conformer-M+DM 125 18.8 11.9 8.6G 6.8M

TD-Conformer-L 64 19.5 12.3 21.9G 25.9M
TD-Conformer-L 125 19.7 12.5 22.0G 26.2M

TD-Conformer-L+DM 64 20.3 13.4 21.9G 25.9M
TD-Conformer-L+DM 125 20.2 13.2 22.0G 26.2M

TD-Conformer-XL 64 20.4 13.1 63.6G 102.2M
TD-Conformer-XL 125 20.3 13.0 63.9G 102.7M

TD-Conformer-XL+DM 64 21.1 14.6 63.6G 102.2M
TD-Conformer-XL+DM 125 21.2 14.3 63.9G 102.7M

2023a) models; however, the largest TF-GridNet model has significantly higher computational

expenditure, and MossFormer is an augmented version of a Conformer model. Thus the

results here help to validate the design choice of this approach.
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Table 8.2: Training time comparison of the TD-Conformer-XL model with
{S, P} = {1, 63} with to the SepFormer model. Best results for each metric
are indicated in bold.

Model Params. GPU Mem. TSL Max. BS ED Epochs Train. Time

SepFormer+DM (Subakan et al.) 25.8M 32GB N/A 1 85 mins 150 8.9 days
SepFormer+DM (Table 7.1) 25.8M 32GB 4s 2 59 mins 150 6.1 days

TD-Conformer-XL+DM 102.7M 32GB 4s 4 39 mins 200 5.4 days

8.3.4 Training Times

The following is supplementary information not included in the original publication relating to

this work (Ravenscroft et al., 2023c). In this subsection, a comparison of the TD-Conformer-XL

to the SepFormer model is given. The TD-Conformer-XL+DM model with {S, P} = {1, 64}
from Table 8.1 was selected as this gave the best overall performance on WHAMR. The

models are all trained on the same GPU as the original SepFormer model with 32GB VRAM

available. The models are evaluated in terms of the maximum batch size (BS) it was possible

to fit on the GPU without out of memory (OOM) errors, as well as mean epoch duration

(ED) and total training time for each model as originally proposed. The results are shown in

Table 8.2. Despite the TD-Conformer-XL’s much larger model size than SepFormer (≃ 4×),

when using the TSL limit of 4s also used for the SepFormer model in Table 7.1, it was possible

to use double the batch size. The consequence of this is a much short mean epoch duration of

39 minutes vs. 59 minutes for the optimised SepFormer training. Furthermore, even with

50 epochs of extra training, the TD-Conformer still took almost a day less to train than the

SepFormer model.

8.4 Conclusion

In this paper, a single-channel time-domain Conformer speech separation model was introduced

and evaluated. It was shown to reach comparable ∆ SISDR performance to SOTA models

on the WHAMR and WSJ0-2Mix benchmarks. Using Conformer layers in place of DP

Transformer layers was demonstrated to reduce the TC of processing local information whilst

increasing the TC for processing global context. A benefit of increased global TC is that it

gives the global context layer a higher temporal resolution as demonstrated by varying the

number of subsampling layers before the Conformer layers in the proposed network. The

proposed TD-Conformer-XL model achieves 14.6 dB ∆ SISDR on the WHAMR benchmark.

The smallest TD-Conformer-S model outperforms a number of larger and similarly complex

models on the WSJ0-2Mix and WHAMR benchmarks. Furthermore, it is demonstrated that

despite its larger size, the TD-Conformer-XL model is notably more efficient to train than the

SepFormer model while still yielding better performance on the WHAMR evaluation.



Chapter 9

Combining Conformers and

Dual-Path Transformers

In Chapter 8, the TD-Conformer was proposed and analysed, particularly with respect

to its similarities to the SepFormer, but had interesting trade-offs in both SISDR separation

performance and computational expenditure. Most pertinently, the TD-Conformer performed

better on noisy reverberant mixtures, and the SepFormer performed better on anechoic clean

mixtures. The goal in the following work is thus to analyse these models further by combining

them and seeing if it is possible to gain insights about each model and understand if, by

combining them, the negative trade-offs between the two network types can be mitigated.

To do this, the ConSepT model is proposed in this chapter. ConSepT is a mixed Conformer

and DP Transformer model. The motivation for combining the two variant layers is that,

controlling for model complexity, DP Transformer models were shown to be more performant

for anechoic speech mixtures (cf. Figure 8.3) and Conformer models have been shown to

be more performant on noisy reverberant speech mixtures (cf. Section 8.3.3) (Ravenscroft

et al., 2023c; Subakan et al., 2021). This contrast is explored by mixing the two layer types

to analyse whether combining them can achieve higher overall performance. The model is

structured so that Conformer layers process the earlier features in the network under the

assumption that they contain more noise, and thus, the DP Transformer layers are used to

process the cleaner features. There are two key contrasts between the two model types; firstly,

the Conformer layers result in a larger model size primarily due to the convolutional local

context layer in the Conformer block, and secondly, the DP Transformer layers typically

have significantly more computational complexity given to processing local context whereas

Conformer layers give most of their computational complexity to processing global context as

The contents of this chapter are a revised version of the author’s own work found in (Ravenscroft et al.,
2024).
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they are implemented in this chapter, Chapter 8 and Subakan et al. (2021). The consequences

of these characteristics of each layer type is explored with respect to model performance and

model generalisation by varying the numbers of each type of layer while keeping the overall

number of layers in the network constant. To do this, the generalisation benefits gained from

using DM, where new training data is simulated for each epoch, are contrasted for models

trained on the simulated WHAMR dataset and evaluated using the real recorded speech

mixtures in the MC-WSJ-AV corpus (Lincoln et al., 2005). A preprocessing script for aligning

the MC-WSJ-AC recordings is also provided as part of the contribution of this work.

The remainder of this chapter proceeds as follows. Section 9.1 introduces the ConSepT

model. In Section 9.2 the training configurations and experimental setup are discussed.

Results are given in Section 9.3 and conclusions in Section 9.4.

Figure 9.1: The ConSepT network composed of encoder, mask estimation network
and decoder. The ⊙ symbol denotes the Hadamard product. For more details on
the sub-components of the mask estimtation network refer to Figure 2.9, Figure 8.1
and Figure 8.2.

9.1 ConSepT Separation Network

The proposed ConSepT model is described in the following. The model uses the same general

TasNet architecture as the TD-Conformer and SepFormer models, cf. Figure 2.6. The mixture

signal x[i] from (2.2) is first chunked into Lx blocks xℓ of size J with 50%-overlap. Each block

xℓ is then encoded into a feature vector wℓ, which is then passed into a mask estimation

network to produce masks mc,ℓ for each speaker. The encoded feature vectors are then masked

for each speaker before being decoded back into the time domain.

9.1.1 Encoder & Decoder

The encoder and decoder are the same as that used for the TD-Conformer model, SepFormer

model, and most other models discussed thus far in this thesis, excluding Chapter 6. The

encoder is composed of a single 1D convolutional layer and ReLU activation function that

encodes time-domain blocks of the mixture signal x. the decoder is a transposed 1D convolu-

tional layer that decodes the masked encoded mixture back into the time domain. Readers

should refer to Section 2.9.1 for further details.
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9.1.2 Mask Estimation Network

The mask estimation network is comprised of two subnetworks processed sequentially. The

first is a Conformer network with subsampling layers, based on (Ravenscroft et al., 2023c),

and the second is a dual-path Transformer network, based on (Subakan et al., 2021).

The Conformer subnetwork uses subsampling and supersampling layers to reduce the

computational complexity of proceeding Transformer layers in Conformer blocks. The sub-

sampling is performed using a projection layer proceeded by a 1D convolutional layer with a

kernel size of 4 and a stride of 2, thus reducing the temporal resolution by a factor of 2. The

effect of this subsampling on performance is explored in (Ravenscroft et al., 2023c). A set of

Rconf Conformer layers proceeds the subsampling layer. Each Conformer layer is composed of

four modules: a feed forward module with internal feature dimension B, a convolution module

with kernel size P and dimension B, a MHSA with PE module of Gched attention heads,

and another feed forward module with dimension B. A supersampling layer composed of a

transposed 1D convolutional layer that reverses the subsampling layer follows the Conformer

layers. A final projection layer in the subnetwork transforms the feature dimension back to N .

The DP Transformer network is composed of a series of alternating local and global

Transformer layers with each combined local and global Transformer layer being referred to

as a single DP Transformer layer. The output of the supersampling layer of the Conformer

subnetwork is first reorganised into overlapping chunks of length U . The chunks are then

processed by the local Transformer of dimension Z with Gintra attention heads. Following

this the axes for the chunk size and the number of chunks are swapped and then the sequence

is processed by the global context Transformer of dimension Z with Ginter heads. The axes

are then swapped back passed through an additional RDPT DP Transformer layers and the

entire network is repeated V times.

The final part of the network is a linear layer followed by a ReLU activation function that

takes the output of the DP Transformer network to produce a series of masks, mℓ,c.

9.1.3 Objective function

SISDR is used as the objective function for training the networks as it is the same objective

used to train the original TD-Conformer and SepFormer models (cf, Ravenscroft et al. (2023c)

and Subakan et al. (2021)). A PIT wrapper around the function is used to resolve the speaker

permutation problem (Kolbaek et al., 2017). Details on SISDR and PIT can be found in

Section 2.6.
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9.2 Experimental Setup

9.2.1 Data

The WSJ0-2Mix (Isik et al., 2016) and WHAMR datasets (Maciejewski et al., 2020), as

described in Section 2.2.1, are used for training and evaluating models. WSJ0-2Mix is a

simulated 2-speaker dataset of anechoic mixtures. WHAMR is a simulated noisy reverberant

extension of WSJ0-2Mix. The 8kHz min configuration is used for both (cf.Section 2.2.1).

Differing from the previous chapters, the far-field MC-WSJ-AV dataset (Lincoln et al., 2005)

is also used for evaluating models on out-of-domain unseen data. The olap part of this dataset

contains real far-field multi-channel recordings of 2-speaker mixtures. The 20k subset of

the dataset is used. The 1st channel of array 1 is used as the input mixture, and headset

microphones are used as reference signals. Preprocessing steps were performed to make

the data suitable for evaluation. First, the audio is downsampled from 16kHz to 8kHz as

MC-WSJ-AV was recorded at 16kHz. The headset recordings were both aligned to the array

signal using a cross-correlation method for computing time-delays (Azaria & Hertz, 1984).

The loudness of the array channel was adjusted to match that of the sum of the headset

channels using the pyloudnorm toolkit (Steinmetz & Reiss, 2021) to minimize the possibility

of signal energy having an impact on the evaluation as the WHAMR mixture loudness is

more similar to the targets than the array channels are to the headsets in MC-WSJ-AV.

The preprocessing script has been made available on GitHub1. The resulting evaluation set

comprises 312 real speech mixtures with aligned headset references for each speaker.

9.2.2 Training Configuration

The models use a similar training configuration to the TD-Conformer (Ravenscroft et al.,

2023c) with learning rate of 10−5 that is fixed for 90 epochs and then reduced if their is no

performance improvement after 3 epochs. TSLs are limited to 4s and randomly sampled

from the original training example (Ravenscroft et al., 2023b). The feature dimension of the

Conformers layers are the same as the TD-Conformer-XL model in Ravenscroft et al. (2023c),

i.e. B = 1024. The feature dimension of the DP Transformer layers are the same as that in

Subakan et al. (2021) Z = 1024. For the DP Transformer layers, the number of network cycles

V = 2. For the Conformer layers, the number of attention heads Gched = 4 as in (Ravenscroft

et al., 2023c). For the DP Transformer layers Ginter = Gintra = 8 as in (Subakan et al., 2021).

The constraint RDPT + Rconf = 8 is used but the specific R values are experimented with in

the results section. The value 8 is used as it corresponds to the number of Conformer layers

in (Ravenscroft et al., 2023c) and the number of DP Transformer layers in (Subakan et al.,

2021).

1https://github.com/jwr1995/mc-wsj-aligned
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9.2.3 Evaluation Metrics

The main evaluation metric used to assess separation performance is the SISDR improvement

over the original mixture signal, denoted ∆ SISDR. Improvement in ESTOI, a speech intelli-

gibility metric (Jensen & Taal, 2016), and PESQ, a speech quality metric (Rix et al., 2001b),

are also reported for some results. Improvement in SRMR (Falk et al., 2010) is used to assess

the residual energy of reverberant effects in the estimated signals. For more information on

evaluation metrics, please refer to Section 2.7. The computational complexity of models is

assessed using MACs. MACs are computed on a signal length of 5.79s, equal to the mean

signal length in the WHAMR and WSJ0-2Mix corpora (Ravenscroft et al., 2023b). Model

size is reported in the number of parameters.

9.3 Results

9.3.1 Evaluations on In-Domain Data

The first evaluation looks at the ratio of Conformer layer repeats Rconf to DP Transformer

repeats RDPT Transformers for the standard configuration with RDPT + Rconf = 8 on the

WSJ0-2Mix and WHAMR datasets. Rconf is varied from 0 to 8. The results are shown

for both with and without using DM in Figure 9.2. For both the WSJ0-2Mix evaluation

and the WHAMR evaluation with DM the SISDR performance improves as the number of

Conformer layers increases. This corresponds to an increase in number of parameters and a

relatively minor decrease in computational complexity. For the WHAMR evaluation without

DM, SISDR performance remains fairly consistent for all Rconf . This possibly suggests that

without DM there is no benefit to having a larger model size as the model is as generalized as

is possible without providing the network new training examples. The biggest performance

gains with DM are seen on the more challenging WHAMR dataset which demonstrates the

benefit of larger model sizes for noisy and reverberant data.

9.3.2 Evaluations on Out-Of-Domain Data

Table 9.1: Full results for best performing ConSepT model trained on WHAMR
using DM in terms of SISDR.

Eval. set Rconf RDPT Params. PESQ ESTOI SRMR SDR SISDR ∆ SDR ∆ SISDR

WHAMR 7 1 93.84M 2.29 0.75 9.36 10 dB 8.6 dB 13.6 dB 14.7 dB
WHAMR 8 0 102.30M 2.25 0.75 9.2 10.1 dB 8.6 dB 13.6 dB 14.7 dB

MC-WSJ-AV 7 1 93.84M 2.20 0.53 8.84 5.8 dB -15.8 dB 8.3 dB 4.3 dB

The models trained on WHAMR are re-evaluated using the out-of-domain MC-WSJ-AV

corpus. The results are shown in Figure 9.3. On the MS-WSJ-AV evaluations for models
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Figure 9.2: Top and middle: separation performance against model configuration
for WHAMR (top) and WSJ0-2Mix (middle). Bottom: corresponding computa-
tional complexity (in MACs) and model size for each configuration.

trained using DM, a similar increasing trend in performance is observed with the increase in

model size (i.e. more Conformer layers than DP Transformer layers) for SISDR, PESQ and

ESTOI. This implies the models trained using WHAMR and DM are not just generalizing

better towards the specific acoustic conditions of the WHAMR noise and reverberation but

noise and reverberation in general to some extent. It should be noted the ∆ SISDR values

between the WHAMR and MC-WSJ-AV evaluations differ by ≈ 10dB, see Table 9.1 for more

detailed numbers on the best performing DM models. This is partly explained by the fact that

MC-WSJ-AV is both real data and out-of-domain but also it should be noted that the headset

references of the MC-WSJ-AV evaluation set are not as “clean” as the WHAMR references,

partly due to imperfect alignment but also as there is sometimes some small audio bleed from

the other speaker in the room and some minimal noise interference as well. This can be seen

in Figure 9.4 where the estimated speech signal ŝc appears more denoised than the “clean”

reference sc. Interestingly there appears to be no trend in SRMR improvement as the value

of Rconf increases. The SRMR values are quite high relative to the WHAMR evaluations in
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Figure 9.3: Re-evaluation on MC-WSJ-AV of models trained using WHAMR with
and without DM for ∆ SISDR, ∆ PESQ and ∆ ESTOI

Table 9.1, indicating good dereverberation performance. This was subjectively confirmed by

listening through evaluation outputs. All models generally exhibited good dereverberation and

noise suppression for WHAMR and MC-WSJ-AV. The estimated speech however, contained

obvious distortions and intelligibility was lacking, this is reflected in the various results across

all metrics in Table 9.1.
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Figure 9.4: Example spectrograms from the MC-WSJ-AV dataset for Rconf = 7
of the far-field mixture x (top), estimated speaker signal ŝc (middle) and reference
“clean” speaker signal sc (bottom).

9.4 Conclusions

In this chapter, a novel architecture combining DP Transformer and Conformer layers was

proposed for modelling local and global context differently in speech separation networks. It

was shown that for the purpose of generalisation in the case of the Conformer layers, having

a larger model size was beneficial particularly when DM was being used for training. This

generalisation finding was shown to extend to out-of-domain real evaluation data using an

aligned version of the MC-WSJ-AV corpus.



Part IV

Applications to Multi-Speaker

Speech Recognition
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Chapter 10

Transcription-Free Fine-Tuning for

ASR

In previous chapters, the focus has been on more theoretical speech separation experiments

primarily evaluated in terms of SISDR performance. While SISDR has meaningfulness in

terms of evaluating the raw signal quality compared to the reference and it also typically

correlates reasonably to objective intrusive perceptual measures such as PESQ (Rix et al.,

2001b) and ESTOI (Jensen & Taal, 2016), it is non-optimal when fine-tuning separation for

specific tasks such as multi-speaker ASR (Shi et al., 2022; Settle et al., 2018).

In this chapter, the focus is on applying speech separation technology to a realistic use

case, namely multi-speaker ASR. As will be shown in this chapter, while speech separation

technology can improve the separation of speakers while reducing background noise and

reverberation, this doesn’t necessarily translate into improved ASR performance often due to

model artefacts and distortions introduced in the separation process. To address these issues,

a transcription-free method is proposed in this chapter to fine-tune speech separation models

for improved ASR WER performance.

In (Close et al., 2023, 2024) it has been demonstrated that computing embedding dif-

ferences between self-supervised speech representations (SSSRs) can be used as loss terms

for training speech enhancement networks. Furthermore, in (Bagchi et al., 2018) it was

shown that computing the difference between senone representations can be used to adapt

speech enhancement networks for robust ASR. A similar concept is applied in this chapter for

fine-tuning speech separation models for the purpose of multi-speaker ASR. Embeddings from

different ASR models, namely a Wav2Vec2 CTC model (Baevski et al., 2020) and a Whisper

model (Radford et al., 2023), are used to compute differences between reference speech and

separated speech. This is formulated as a loss function such that the averaged difference

between the embeddings can be used in back-propagation for fine-tuning the network.
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Figure 10.1: (a) Baseline modular multi-speaker ASR pipeline using a DNN
separation network. (b) The proposed transcription-free loss function for fine-
tuning DNN-based speech separators using the MSE of ASR encoder outputs. All
ASR encoders and decoders are the same. Solid lines indicate information flow.
Dashed lines indicate the propagation of gradients.

10.1 Modular Multi-Speaker Speech Recognition

In this section, a modular (or separate and recognize) approach to Multi-Speaker ASR is

described, along with a baseline implementation using a TasNet separator and CTC recognizer.

The term modular refers to the fact that the multi-speaker ASR pipeline is composed of more

than one network, cf. Figure 2.10. This differs from non-modular approaches such as SOT

where there is only one network that is trained to perform multi-speaker ASR explicitly.

A schematic for the baseline modular approach can be seen in Figure 10.1 (a). The

schematic is very similar to Figure 2.6 where the separator is trained using an SISDR loss

function, however, each output from the separator is fed separately to an ASR model which

produces C predicted transcripts, one for each speaker in the mixture.

In the baseline pipeline used in this section, the TD-Conformer-S model is used for

separation with no alterations to the model itself. The ASR model used for evaluation is the

base version of Wav2Vec2 model available publicly via the torchaudio library1.

1Link to Wav2Vec2 Base model from torchaudio: https://pytorch.org/audio/0.10.0/pipelines.html#
torchaudio.pipelines.WAV2VEC2_BASE

https://pytorch.org/audio/0.10.0/pipelines.html#torchaudio.pipelines.WAV2VEC2_BASE
https://pytorch.org/audio/0.10.0/pipelines.html#torchaudio.pipelines.WAV2VEC2_BASE
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10.2 Transcription-Free Fine-Tuning Method

This section describes the proposed transcription-free method for fine-tuning a separation

network. The method is visualised in Figure 10.1 (b). The first stage of the approach is to

pre-train the separation network using a standard SISDR loss function and a PIT wrapper,

cf. Section 2.6. This chapter uses real far-field single-speaker utterances to generate artificial

mixtures for pre-training the separation network. The proposed method then uses feature

representations from a pre-trained ASR model as opposed to reference grapheme or phoneme

(or similar) representations in an attempt to fine-tune a separator to give better performance

in terms of WER for each speaker.

10.2.1 Pre-Training on Imperfect Targets

In the first stage, the separation network is pre-trained using an SISDR function on artificial

mixtures of real single-speaker utterances. This follows the standard method described in

Chapter 8. For each training example, a new speech mixture is created, and then the separator

attempts to separate the time-domain mixture into two time-domain speech signals. Finally,

the SISDR losses are computed between the estimated signals and the reference signals with

a PIT wrapper and then averaged before being backpropagated.

10.2.2 Logit Difference (LD) Loss Function

This section describes the logit difference (LD) loss function used for fine-tuning the speech

separation model. The phrase logit difference is used to refer to this loss as it computes the

difference between the log probabilities (logits) of a CTC ASR encoder. Hypothetically, any

CTC ASR model could be used in a similar fashion but in this chapter, the Wav2Vec2 base

model (as used in the baseline cf. Section 10.1) fine-tuned on LibriSpeech (Panayotov et al.,

2015) data is selected. This version was chosen due to computational constraints, but larger

models trained on different corpora may yield better results. The CTC Wav2Vec2 Encoder is

defined as a function

VCTC : RLx 7→ RLCTC×NCTC (10.1)

where LCTC is the output sequence length and NCTC is the number of possible labels, i.e. the

number of characters that can be interpreted by a decoder or decoding function (minimum

of 26 plus word boundary token for the Latin alphabet). In the Wav2Vec2 base model used

in the following experiments, the number of labels is NCTC = 30 (29 characters that are

interpreted verbatim plus a word boundary token“|”).

As previously alluded to, the output layer of the model of dimension NCTC represents log

probabilities (i.e. log(P (·))) for each of the labels referred to as logits. The LD loss function

computes the difference between the output logits of the inputs ŝc and sc ∀c ∈ {1, . . . , C}.
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The loss function is the MSE of the two logit embedding sequences defined as

LLD (sc, ŝc) =
1

LCTCNCTC

LCTC∑
ℓ=1

NCTC∑
w=1

(VCTC(ŝc)ℓ,n − VCTC(sc)ℓ,n)2 (10.2)

10.2.3 Whisper Encoder Loss Function

The Whisper encoder (WE) loss function is proposed as an alternate to the LD loss function.

The Whisper model (Radford et al., 2023) was proposed primarily for robust speech recognition.

The model relies on large-scale weak supervision to train an encoder-decoder Transformer

model. Large-scale weak supervision involves leveraging large amounts of training data with

poor-quality transcriptions. This contrasts the Wav2Vec2 CTC model in Section 10.2.2. The

Whisper Encoder is defined as a function

VWE : RLx 7→ RLWE×NWE (10.3)

where LWE is the output sequence length and NWE is the number of output features (NWE =

512 for the Whisper Tiny model used later (Radford et al., 2023)).

The WE loss function computes the difference between the output logits of the inputs ŝc

and sc ∀c ∈ {1, . . . , C}. The loss function is the MSE of the two Whisper encoder output

feature sequences defined as

LWE (sc, ŝc) =
1

LWENWE

LWE∑
ℓ=1

NWE∑
n=1

(VWE(ŝc)ℓ,n − VWE(sc)ℓ,n)2 (10.4)

10.2.4 Guided Permutation Invariant Training (GPIT)

Empirically, it was found that using a standard PIT wrapper around the LD loss function

resulted in model divergence. It was discovered that the permutation-solving algorithm was

notably less robust to noise when trying to minimise the LD loss than the SISDR loss. This

is likely due to the more fine-grained information in the feature space of the ASR encoder.

As such, in this section, a new approach is proposed, which uses an alternate criterion to

the actual loss function to guide the permutation solving. The actual loss function is then

computed once the minimum permutation has been “solved”.
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10.3 Experimental Setup

10.3.1 Data and Training Configuration

A corpus of doctor-patient conversations (referred to as DoPaCos) was used for the following

experiments2. The data mostly consists of conversations recorded in a far-field setting using a

mobile phone microphone. The data also includes a small amount of reasonably clear dictation

recordings.

For pre-training and fine-tuning, 20, 000 speaker utterance pairs were generated. A mix-

on-the-fly approach is used for simulating speech mixtures. A TSL scheduler varied the TSLs

linearly from 3s to 7s in the pre-training stage and 5 to 7 in the fine-tuning stage. Following

from the findings in Chapter 7, the idea behind using a TSL scheduler was to maximise the

number of unique examples the network observes but also vary the the amount of context the

ASR encoder is able to observe. This was to deal with the fact that it was unknown how the

amount of context affects the performance of the proposed losses. An overlap scheduler was

also introduced to linearly vary the minimum overlap of speaker 2 to speaker 1 from 90% to

10% for the pre-training stage. Neither of these techniques is validated in this chapter but

remains consistent across all experiments, so they are unlikely to impact the overall findings.

For pre-training, the TD-Conformer-S model (cf. Chapter 8) is trained using a SISDR loss

function over 100 epochs with a learning rate of η = 2× 10−4 that is fixed for 70 epochs and

then halved if there is no improvement after 3 epochs. In the fine-tuning stage the pre-trained

TD-Conformer-S is trained using the proposed ASR encoder loss functions for an additional

30 epochs with a learning rate of 2× 10−7.

10.3.2 Evaluation Measures

The prior evaluation metrics, such as SISDR and PESQ, are less relevant as they do not tell us

enough about ASR performance. The most widely used measure for ASR performance is WER.

This is a fairly trivial measure for single-input single-output (SISO) ASR, but is non-trivial

for multiple-input multiple-output (MIMO) pipelines, as in the case of Multi-Speaker ASR.

A number of options are available for multi-speaker WER evaluation (von Neumann et al.,

2023b). In this chapter, two such definitions are chosen: concatenated minimum-power word

error rate (CP-WER) (Watanabe et al., 2020) and optimal reference combination word error

rate (ORC-WER) (Sklyar et al., 2022). The key difference between the two measures is that

CP-WER penalizes output speaker channel switches and ORC-WER is unconcerned with

whether a given speaker is output on a single channel or multiple channels, so long as the

ASR model is still able to estimate the word accurately. CP-WER is the more important

2Please note, this corpus is not publicly available and was only made available to the author via an internship
with 3M UK & 3M Health Information System Inc.
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measure as, ideally, in the proposed system, the goal is to have one speaker for each output

channel. However, the addition of ORC-WER provides additional insight into the overall

intelligibility of the speech regardless of which channel(s) a given speaker gets output to.

10.4 Results

The results are shown comparing the LD loss with and without SISDR regularization to the

WE Loss with regularization in Table 10.1. In addition the WER measures for the oracles,

i.e. the output of the ASR model with the clean references sc[i] as input, and for the original

speech mixtures x[i]. The third row also shows the result of the TD-Conformer-S after

pre-training. These results show that the pre-trained separation network, while it improves

CP-WER, actually results in a degradation in performance in ORC-WER compared to the

original mixture. The LD loss on its own gives the best results overall in both CP-WER and

ORC-WER. The inclusion of SISDR as a regularization term results in worse performance

interestingly. Similarly, the WE loss also leads to even worse performance in both WER

measures. One should note, however, that these WER gains are very minor though they do

indicated the methods works. Further work will explore training on cleaner speech references

compared to those in the DoPaCos corpus, assuming that further gains can be made with less

distorted ASR encoder representations.

Table 10.1: Comparisons of LD Loss, WE Loss and baseline performance. The LD
and WE loss terms are computed using GPIT with SISDR as the guiding function.
The SISDR loss terms are computed using the standard PIT methodology.

Configuration Signal Fine-tune CP-WER ∆ CP-WER ORC-WER ∆ ORC-WER

Oracles sc[i] - 53.70% - 53.60% -
Simulated Mix x[i] - 80.20% - 66.10% -

LSISDR ŝc[i] - 67.40% -12.8% 66.50% 0.4%

LLD ŝc[i] 30 epochs 65.90% -14.3% 65.20% -0.9%
LLD + LSISDR ŝc[i] 30 epochs 66.30% -13.9% 65.70% -0.4%
LWE + LSISDR ŝc[i] 30 epochs 66.60% -13.6% 65.80% -0.3%

10.5 Conclusion

In this section, the TD-Conformer model proposed in Chapter 8 was applied to multi-speaker

ASR. It was shown that in a standard configuration, the TD-Conformer leads to improved

CP-WER but a loss in ORC-WER. A transcription-free method for fine-tuning the speech

separation model was proposed using ASR encoder representations from the Whisper and

Wav2Vec2 models. The Wav2Vec2 model, in particular, led to notable reductions in both
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ORC-WER and CP-WER. This Whisper model also led to some improvement but to a lesser

extent.
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Chapter 11

Discussion and Future Research

A number of different areas have been researched throughout this thesis. While most chapters

reached a reasonable point of conclusion, there is still further work that can be done for all to

add greater insights and help move speech separation research forward in the right direction.

In Chapter 3 progress was made in understanding how receptive fields of fully convolutional

networks impact performance for speech dereverberation tasks. This study could first be

expanded to other dimensions of reverberation such as the spectral qualities and reverberation

energy. Furthermore, although reverberation was treated as a correlated noise source in this

chapter, the study could be repeated for uncorrelated additive noise by replacing reverberation

time or T60 with measures of noise such as SNR. These studies could inform the initialisation

of TCNs but also the later proposed WD-TCN and DTCN models. Furthermore, as the DTCN

and WD-TCN models, though lightweight, do not give SOTA in the proposed configurations

compared to more modern models (Wang et al., 2023b; Rixen & Renz, 2022; Zhao & Ma,

2023), research ought to be done to investigate if they can be incorporated into SOTA such

as the QDPN model (Rixen & Renz, 2022) which already uses a TCN for modelling local

context or the Mossformer model (Zhao & Ma, 2023) which uses gated convolutions to model

local context. The combination of the weight-dilation method in Chapter 4 and deformable

depthwise layers in Chapter 5 may also yield meaningful performance improvements worth

investigating. Additionally combining this with the gating mechanisms in the Mossformer

model Zhao & Ma (2023) may yet lead to further improvements. The DTCN model proposed

in Chapter 5, while theoretically computationally inexpensive, led to OOM errors with a batch

size greater than 2 on a 32 GB GPU. Compare this to the TCN, which it was possible to train

on the same GPU with a batch size as large as 8 and it highlights a current flaw that requires

further investigation. Lots of effort was put into optimising the deformable algorithm used in

the implementation, e.g. using the floor functions in Eq. (5.4), and further improvements can

still be made. The main issues are likely due to a twofold issue in the implementation being

used: the first is it was written entirely in Python and the second is the irregular memory

149
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addressing often found in deformable convolution as highlighted in Li et al. (2022b); Chu et al.

(2023). In the later stages of this project, it was found that a more recent deformable toolkit

tvdcn1 enabled a further reduction in memory usage and consequently a batch size as large

as 4. One of the benefits of this toolkit is the fact that the kernels are written in low-level

CUDA C++ code. This toolkit however came with a reduction in performance, the cause of

which is as yet unconfirmed but likely due to the fact that these kernels do not constrain the

deformable convolution to a maximum receptive field of the offset estimation sub-network as is

the case in Section 5.1.2.1. There has also been research focussed on improving the efficiency

of deformable convolution, particularly with a focus on 2D convolutions within the computer

vision (CV) community. However, open-source implementations of these for 1D deformable

convolution, are extremely uncommon which limits the ease of research in this direction.

The work done on improving the signal encoder in Chapter 6 would benefit from being

evaluated with different mask estimation network models. In this work, we focus primarily

on the fully convolutional TCN mask estimation network in the evaluations. It would be

interesting to gain further insights on whether Transformer-based mask estimation networks

might mitigate some of the performance improvements observed with the SA encoder. Further-

more, while we presented a novel way of analysing these representations visually to provide a

more “spectrogram-like” visualisation, there has been more in-depth work in speech processing

research on what these time-domain encoded representations actually show. For example, in

Pasad et al. (2023), it has been possible to show that the convolutional encoder layers in the

SSSR models typically learn a representation that correlates quite highly to mel filterbank

features by using singular vector canonical correlation analysis (SVCCA) (Raghu et al., 2017)

on the encoded features.

In Chapter 8 and Chapter 9, the strengths of Conformer models over the previously

popular DP Transformer approaches were demonstrated. This work, combined with other

more recent work such as the gated convolutions in Zhao & Ma (2023) and TCN modules in

Sinha et al. (2022); Rixen & Renz (2022) used for processing local context, suggests these

computationally lighter-weight approaches (although often less parameter-efficient) result in

better separation performances for noisy signals with lower memory consumption than the

constrained-view Transformer layers of the DP Transformer. To take this study further, it

would be useful to contrast the use of various types of layers used for processing local context,

including vanilla convolutional layers, gated convolutions, TCNs as well as the proposed

WD-TCNs and DTCNs and possibly even RNN layer variants.

The work done in Chapter 10 showed that it was possible to fine-tune separation networks

for multi-speaker ASR tasks without requiring access to transcriptions. While the method

was shown to lead to improved WER, there is a lot more work that can be done in this

1tvdcn on GitHub: https://github.com/inspiros/tvdcn

https://github.com/inspiros/tvdcn
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direction. First, it would be useful to repeat the evaluations on an alternate dataset with

comparisons to the fine-tuning done with transcription-based loss functions, e.g. the CTC and

PIT method used in Chang et al. (2019). In addition, due to time and resource constraints,

the method was only evaluated using relatively small models, TD-Conformer-S, Whisper

Tiny and Wav2Vec2 Base. In particular, using a larger more powerful ASR encoder, such as

Wav2Vec2 Large, for fine-tuning, the model would be able to make more powerful inferences,

leading to better training and consequently reduced WER. The models were only evaluated

using the Wav2Vec2 base model and the best results were found on the model fine-tuned and

evaluated using the Wav2Vec2 base encoder. It is quite possible that the WE Loss might

outperform the LD Loss if one were to evaluate using the corresponding Whisper model.

The overall scope of speech separation research as it stands has depended heavily on

supervised methods. The drawback of this approach is the dependence on simulated speech

mixtures due to the lack of reference audio, particularly with respect to the noisy reverberant

scenario heavily investigated in this thesis. The main issue with this is the domain mismatch

that usually occurs between simulated mixtures and real mixtures. A greater emphasis on

unsupervised methods Wang & Watanabe (2023) and domain adaptation techniques Leglaive

et al. (2023) is the most obvious path for speech separation researchers to overcome this

hurdle. For task-specific separation models, such as those used in Chapter 10 for multi-speaker

ASR, knowledge transfer from the respective domain will likely yield improved results as some

of the work in Chapter 10 suggests. Again the purely supervised methods are limited by a

reliance on high-quality reference audio and objective functions that may be suboptimal for a

given task and thus greater emphasis should be put on how the models specifically use data

to optimise for a given downstream task.



Chapter 12

Concluding Remarks

In this thesis, a number of advances were made with respect to DNN techniques for speech

separation and enhancement.

12.1 Conclusions from Part II

A novel investigation was done on various TCN configurations for speech derverberation.

Evidence was found that the optimal receptive field for TCN configuration has a relationship

to the reverberation time of the data, i.e. a larger receptive field is more suitable for data

with larger RT60s. With this knowledge two alternate TCN inspired networks were proposed,

the WD-TCN and the DTCN. The WD-TCN used a multi-dilation depthwise separable layer

with SE attention to allow the network to adapt to different reverberation conditions in the

data by applying greater attention in the receptive field to more or less highly localised context.

This approach was shown to give consistent performance improvements across all evaluated

dereverberation configurations. It was then evaluated for the combined speech enhancement

and separation task. Again, this model showed notable performance improvements over the

standard TCN model with a negligible increase in model size. The DTCN model employed a

method known as deformable depthwise convolution Dai et al. (2017) to replace the depthwise

convolutions in the standard TCN model. Deformable convolution allows the network to

have a completely dynamic receptive field. The DTCN again showed consistent performance

improvements over the TCN model across various model configurations, but in particular, for

noisy and reverberant data, validating the original motivation for proposing the technique.

12.2 Conclusions from Part III

The third part of this thesis began by focussing more on the encoder representations of TasNet

models. In Chapter 6 it was shown that MHSA (Lin et al., 2017; Vaswani et al., 2017) is
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particularly useful for improving the encoded time-domain representations. The self-attention

mechanism was analogised to a depthwise cross-correlation operation, i.e. similar features are

emphasised more so than uncorrelated features, e.g. additive noise, resulting in a “cleaner”

representation of the speech. MHA decoder models were also proposed but these results in

less notable performance improvements. In Chapter 7 a novel study was performed into the

effect of TSL limits on model performance for the SepFormer and Conv-TasNet models across

the WSJ0-2Mix, WHAMR and Libri2mix benchmark datasets. It was found that for specific

datasets, WSJ0-2Mix and WHAMR, better performance could actually be achieved on shorter

TSLs (3-4s) when random sampling was used. It was also shown that with more informed

knowledge about TSLs it was possible to reduce the training time of the SepFormer model in

Subakan et al. (2021) by 44% without any reduction in separation performance. Following

this study, a novel conformed-based model was proposed as an alternative to the SepFormer

model. It was shown that Conformers have a reduced computational cost on shorter signal

lengths than the dual-path Transformer technique used in SepFormer (Subakan et al., 2021).

In Chapter 9 it was further shown that improvements in the Conformer model on noisy

reverberant data were likely due to the increased model size enabling better generalization

qualities of the model.

12.3 Conclusions from Part IV

The application of speech separation models to multi-speaker ASR was explored in Chap-

ter 10. A novel transcription-free method for fine-tuning speech separators for downstream

ASR tasks was proposed. This method computed the embedding difference between ASR

encoder representations of clean and separated speech as a loss function, which could then be

backpropagated through the network. Two ASR encoders, the Wav2Vec2 Base model and

the Whisper Tiny model, were analysed. Both resulted in a reduction of ORC-WER and

CP-WER with the WAv2Vec2 model yielding the best results in the experiments conducted.
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J. (2019). Speakerbeam: Speaker aware neural network for target speaker extraction in

speech mixtures. IEEE Journal of Selected Topics in Signal Processing, 13(4), 800–814.

https://doi.org/10.1109/JSTSP.2019.2922820 (Cited on p. 8)

https://doi.org/10.1109/ICASSP49357.2023.10096646
https://doi.org/10.1109/ICASSP49357.2023.10096646
https://doi.org/10.1109/ISCSLP49672.2021.9362064
https://doi.org/10.1109/ISCSLP49672.2021.9362064
https://doi.org/10.1109/TASLP.2020.2995273
https://doi.org/10.1109/TASLP.2020.2995273
https://pypi.org/project/thop/
https://doi.org/10.1109/JSTSP.2019.2922820

	I Introduction & Background
	Introduction
	Overview
	Research Questions and Contributions
	Research Questions
	Contributions

	Notation

	Speech Separation Background
	Signal Models
	Datasets, Corpora & Challenges
	WSJ-Mix & WHAMR
	LibriMix

	Independent Component Analysis (ICA)
	Non-negative Matrix Factorisation (NMF)
	Deep Neural Networks (DNNs)
	DNNs for Speech Separation
	Network Layers
	Feedforward & Linear Layers
	Nonlinearties and Activations Functions
	Hyperbolic Tangent
	Sigmoid
	Softmax
	Rectified Linear Unit (ReLU)
	Parametric ReLU (PReLU)
	Sigmoid Linear Unit (SiLU)
	Gated Linear Unit (GLU)

	Normalization Layers
	(Global) Layer Normalization
	Channel-wise Layer Normalization
	Cumulative Layer Normalization
	Group Normalization and Instance Normalization

	Convolutional Layers
	Recurrent Layers
	Attention & Transformer Layers
	Multihead Attention Layer
	Transformer Layers


	Loss Functions & Permutation Solving
	Loss Functions
	Permutation Invariant Training

	Evaluation Metrics
	Time-domain Audio Separation Networks (TasNets)
	Conv-TasNet
	Encoder
	Channel Sorting for Visualising Encoded Representations
	Mask Estimation Network
	Convolutional Blocks
	Receptive Field & Temporal Context
	Output Masks

	Decoder
	Loss Function
	Training Setup & Configurations
	Baseline Results

	SepFormer
	Dual-Path Networks
	SepFormer Network
	Encoder & Decoder
	Mask Estimation Network

	Training Configuration & Data Setup
	Baseline Results

	Speech Separation & Multi-Speaker Speech Recognition
	Related Work & Further Reading
	Dereverberation Literature
	Lightweight Models vs. SOTA Peformance
	Supervised vs. Unsupervised



	II Temporal Convolutional Networks for Speech Separation
	Receptive Field Analysis for Dereverberation
	Conv-TasNet as a Denoising Auto-Encoder for Dereverberation
	Denoising Auto-Encoder (DAE)

	Data and Experiments
	Data
	Training Configuration
	Evaluation Metrics

	Results
	Delta SISDR on WHAMR and WHAMR_ext
	Receptive Field and Model Size
	SRMR vs SISDR
	Improvement on WHAMR vs WHAMR_ext

	Conclusion

	Utterance-Weighted Multi-Dilation TCNs
	Weighted Dilation TCN for Monaural Dereverberation
	Encoder & Decoder
	Mask Estimation using WD-TCNs 
	Weighted Multi-Dilation Depthwise-Separable Convolution (WD-Conv)

	Objective Function

	Experimental Setup
	Model and Training Configuration
	Data
	Evaluation Metrics
	Results
	Performance Metrics and Model Size
	Squeeze-and-Excite Attention Analysis and T60 Variation


	WD-TCN for Speech Separation in Noisy Reverberant Environments
	Training Configuration
	Results

	Conclusions

	Deformable TCNs
	Deformable Temporal Convolutional Separation Network
	Deformable TCN Architecture
	Mask Estimation Network
	Deformable Depthwise Convolution (DD-Conv)
	Deformable Temporal Convolutional Mask Estimation Network

	Loss Function

	Experimental Setup
	Data
	Model Configuration
	Evaluation Metrics

	Results
	Analysis
	Single-Speaker Speech Enhancement Performance
	Conclusion


	III Attention, Transformers and Speech Separation
	Attending to TasNet Encodings
	Dot-Product Attention & Cross-Correlation
	Multihead Attention (MHA) Encoder and Decoders
	MHA Encoder and Decoder architectures
	Self-Attention Encoder
	Mask refinement (MR) and Post-masking (PM) Decoders
	Self-attention (SA) Decoder

	Architecture Complexities

	Experimental Setup
	Data
	Loss Function
	Training Configuration
	Evaluation Metrics
	Additional Baselines
	Results
	MHA Encoder Results
	MHA Decoder Architecture Comparisons
	Number of Heads Comparison in MHA Decoders
	Combined MHA Encoder & Decoder Evaluations

	Conclusions and Future Work

	On Data Sampling Strategies for TasNet Models
	Experimental Setup
	Separation Models
	Datasets & Signal Length Distributions
	Datasets
	Signal Length Distributions


	Training Signal Length Analysis
	Initial TSL Limit Evaluations
	Training Time Evaluation
	Fixed vs. Random Start Index
	Transformer vs. Convolutional Model

	Signal Splitting and Dynamic Mixing
	Signal Splitting
	Dynamic Mixing

	Discussion
	Conclusion

	Time-domain Conformers for Speech Separation
	TD-Conformer Separation Networks
	Encoder & Decoder
	Conformer Mask Estimation Network
	Conformers vs. Dual-Path Transformers
	Objective function

	Experimental Setup
	Data
	Network configurations
	Training configurations
	Evaluation Metrics

	Results
	Varying kernel sizes
	Varying the number of subsampling layers
	Hyper-parameter optimization and comparison to other models
	Training Times

	Conclusion

	Combining Conformers and Dual-Path Transformers 
	ConSepT Separation Network
	Encoder & Decoder
	Mask Estimation Network
	Objective function

	Experimental Setup
	Data
	Training Configuration
	Evaluation Metrics

	Results
	Evaluations on In-Domain Data
	Evaluations on Out-Of-Domain Data

	Conclusions


	IV Applications to Multi-Speaker Speech Recognition
	Transcription-Free Fine-Tuning for ASR
	Modular Multi-Speaker Speech Recognition
	Transcription-Free Fine-Tuning Method
	Pre-Training on Imperfect Targets
	Logit Difference (LD) Loss Function
	Whisper Encoder Loss Function
	Guided Permutation Invariant Training (GPIT)

	Experimental Setup
	Data and Training Configuration
	Evaluation Measures

	Results
	Conclusion


	V Conclusions and Future Research Directions
	Discussion and Future Research
	Concluding Remarks
	Conclusions from Part II
	Conclusions from Part III
	Conclusions from Part IV



