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Abstract
Evolution is an inherently stochastic process comprised of many randomly occurring
events. The evolutionary fate of a population depends largely on its underlying ecological
interactions, while ecological interactions can also be influenced by evolutionary change
in turn. This phenomenon is known as an eco-evolutionary feedback loop. Ecological
models tend to have a strong focus on how complex ecological features such as interaction
structures influence the behaviour of ecosystems, rather than their consequences on long-
term evolutionary fates. Evolutionary models on the other hand tend to overlook the
complexities associated with their underlying ecological features. This is of particular
importance since many evolutionary problems in nature, particularly those associated
to the evolution of sexual reproduction, are underpinned by myriad ecological factors.
The aim of this thesis is to develop mathematical models for ecological and evolutionary
problems in biology, with particular focus on problems surrounding the evolution of sexual
reproduction. We begin in chapter 2 by developing an analytical prediction for the stability
of generalised Lotka-Volterra systems with biologically motivated interaction structures.
In chapter 3, we develop an eco-evolutionary model for the evolution of gamete size and
motility to study the evolution of male and female sexes. Chapter 4 repurposes the model
of chapter 3 to look at how binary cell fusion can evolve in response to environmental stress.
Chapter 5 investigates how genetic recombination evolves in response to environmental
stress using an integrative mathematical model that incorporates aspects of population
dynamics, population genetics and eco-evolutionary feedback. This allows us to explain
analytically how recombination and hibernation evolved to occur together, as well as why
they both occur shortly before the onset of environmental stress.
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500. Blue ρ = 0.7, red ρ = 0 and green ρ = −0.7.
Black line is the line on which max(Re(λ)) = −mini∈{1,n}x

∗
i . Panel (c)

plots max(Re(λ)) actual against that of J constructed by sampling x∗

independently of A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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S7 Analytical approximations of E(x∗
i ), V ar(x∗

i ) and Cov(x∗
i , x∗

j) as a func-
tion of σ at various orders of σ. Fine solid curve order σ2, dash dotted
curve order σ4 and bold solid curve order σ6. Circles are numerical simu-
lations of these quantities, obtained from 10000 numerical solutions of
main text Eq. (2.5), which are acquired as described in Section IV. Here,
C = 1. Since we do not have an analytical approximation of Cov(x∗

i , x∗
j)

to order σ6, there is no bold solid curve in the right panel. For values
of σ such that σ

√
nC > 1/(1 + ρ), the Neumann approximation of x∗

Eq. (2.9) breaks down given fixed n and C. This condition is equivalent
to σ > 0.0670 here. Since n is finite, the normality in distribution of x∗

breaks down at some point where σ
√

nC < 1/(1 + ρ) (see Section 2.12 for
explanation). Due to this, numerical results for V ar(x∗

i ) and Cov(x∗
i , x∗

j)
no longer converges upon increase in sample size. σ is plotted up to the
largest value in which these numerical results still converge, which is
0.0575 here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

S8 Panels showing how Pfeas changes as each quantity (E(x∗
i ), V ar(x∗

i ) or
Cov(x∗

i , x∗
j)) is varied, provided that the other two quantities are fixed,

e.g. if E(x∗
i ) is varied, we fix V ar(x∗

i ) and Cov(x∗
i , x∗

j). The two fixed
quantities are set to the analytically approximated value (Eqs. (2.13-2.15)
in main text) they would take if σ = 0.04, n = 100 and C = 1. Black
curve shows how Pfeas varies with each of these quantities and vertical
lines show the varying quantity analytically approximated at different
orders of σ. Notations for the line textures are consistent with all other
Figures in this section, except here, we have a dotted line which represents
the actual numerically simulated Cov(x∗

i , x∗
j), since we do not have the

analytically approximation of Cov(x∗
i , x∗

j) at order σ6. . . . . . . . . . . . 80

S9 For an n = 25 system, x∗
i is normally distributed for small values of

σ, such as σ = 0.01. For this given system size n = 25, the normality
breaks down when σ = 0.145, which corresponds to γ = 0.725. Light blue
markers represent x∗

1 and x∗
2 values of 10000 numerical solutions of x∗,

obtained as described in Section 2.8. Panel insets show histograms for
the distribution of x∗

1. Other parameters are ρ = 0 and C = 1. . . . . . . 82

S10 As in Figure S9 but for an n = 2 system. For an n = 2 system, the
normality breaks down when σ = 0.35, which corresponds to γ = 0.495. . 82
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3.1 Schematic of dynamics within each generation. Mature cells (adults)
produce gametes at the start of a generation. All the gametes are given a
fixed time period T in which to complete the fertilization process. At the
end of the fertilization period, there will be a pool of fertilized zygotes and
unfertilized gametes, both of which are capable of maturation. Each cell
survives according to its independent survival functions ((1−Cz)S(β, m1+
m2) and (1 − Cp)S(β, mi) respectively) to produce a number of mature
cells in the subsequent generation. The pool of gametes consist of resident
(blue) and mutant gametes (green), where the mutation occurs in either
the mass m or fertilization rate α. . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Phase portraits for the co-evolutionary dynamics in a fixed environment
(see Eq. (3.5)). High fertilization rates are the only evolutionary outcome
in panel (a), while high and zero fertilization rate are both evolutionary
outcomes in panel (b) (see Eq. (3.9)). The red region shows trajectories
leading to points on the α = 0 boundary for which evolution selects for
decreasing fertilization rate (dα/dτ < 0) (the point at which dα/dτ = 0
is marked by a red arrow). Red filled (stable) and unfilled (unstable)
circles mark a fixed point in the evolutionary dynamics of m (m∗ = β, see
Eq. (3.35)). Blue circles and arrows illustrate the high fertilization rate
attractor ((m∗, α∗) → (β/4, ∞), see Eq. (3.37)). Average population trait
trajectories, (⟨m⟩(t), ⟨α⟩(t)), from simulation of the stochastic model (see
Appendix 3.8.3) are plotted in light gray, and their mean over multiple
realisations are given dark gray. The time at which mutations occur,
whether the trait values of m or α increase/decrease at each mutation
event and the trait that undergoes mutation at each mutation event are
random, giving rise to stochasticity in the evolutionary trajectories. The
cost to fertilization is Cz = 0.3 (panel (a)) and Cz = 0.6 (panel (b)). In
both panels β = 1 and Cp = 0. Remaining model parameters are given
in 3.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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3.3 Numerical illustration of evolutionary branching in Figure 3.2(b). Panel
(a): Analytic predictions for the early evolutionary dynamics (as Fig-
ure 3.2(b)) overlaid with trajectories (mi(t), αi(t))) for each ith trait.
Evolutionary branching is observed along the m ≈ β/4 manifold, indi-
cated by the blue star. Green arrows show the temporal progression of
the branching. Panels (b) and (c): The temporal trajectories of the traits
αi(t) and mi(t) respectively, showing that the evolutionary trajectory
passes from isogamy to oogamy. Parameters used are A = 100, M = 1,
T = 1, Cz = 0.6, Cp = 0, β = 1, δ = 0.01, µ = 10−3, f0 = 2 × 10−3 and
simulation run for 3.5 × 106 generations. . . . . . . . . . . . . . . . . . . 96

3.4 Analytical prediction (blue) and numerical illustration of the range of αmax

in which branching to anisogamy is possible. Black markers represent
the mass of each gamete genotype within the population after 2.5 × 106

generations. Once branching to anisogamy has occurred, a dimorphic
gamete population, characterised by the presence of two genotypes would
be present. One genotype where m ≈ β − δm and one where m = δm.
Vertical line represents the analytically predicted αmax above which
branching can occur in m Eq. (3.10). The blue curve left of this line is
the numerical solution to dm/dτ |α=αmax = 0 in Eq. (3.34) and the blue
horizontal lines towards the right represent the theoretical masses of the
macrogametes (m = β − δm) and microgametes (m = δm). Parameters
are A = 100, M = 1, T = 0.1, Cz = 0.3, Cp = 0, β = 1, δ = 0.01,
µ = 10−3 and f0 = 2 × 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.5 Numerical illustration of the ratio of macrogamete to microgamete fertil-
ization rate, αmacro/αmicro. Oogamy is favoured over anisogamy above a
sufficiently high fertilization cost Cz, predicted analytically by the verti-
cal line (see Eq. (3.11)). Here Cp = 0.5, (m(0), α(0)) = (0.25, 0.02) and
αmax = 1.3. All other parameters are as in Figure 3.2 except f0 = 0.02
and the simulation is run for 6 × 106 generations. Back arrows point in
the direction towards which αmacro/αmicro evolves in infinite time. . . . . 100
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3.6 Phase portraits for the co-evolutionary dynamics in a switching environ-
ment (see Eq. (3.8)). In addition to qualitatively similar dynamics as in
the fixed environment (see Figure 3.2), two new evolutionary scenarios are
now possible, including populations in which stable intermediate fertiliza-
tion rates (filled blue circle) are the only evolutionarily stable state (see
panel (a)) and populations in which there is an additional zero fertilization
stable state (filled red circle, see panel (b)). Open orange circles represent
the (now unstable) states to which the population can be attracted in
either environment 1 or 2 (where β = β1 or β = β2). Average population
trait trajectories, (⟨m⟩(t), ⟨α⟩(t)), from simulation of the full stochastic
model in the FRTI regime are overlaid in gray. In panel (c) we plot the
time-series in the FRTI regime (gray, as in panel (a)) alongside those in
the FRTE regime (purple) and our analytic predictions (black-dashed).
In all panels, A = 100, M = 10, T = 0.1 and f0 = 2 × 10−3. Under the
FRTI regime (overlaid in gray in panels (a), (b) and (c)), µ = 3.5 × 10−4,
δ = 7 × 10−3 and the simulation is run for 107 generations. Under the
FRTE regime (overlaid in purple in panel (c)), µ = 5 × 10−3, δ = 5 × 10−3

and the simulation is run for 7 × 106 generations. In panel (a) (and
panel (c) gray), Cz = 0.35, β1 = 3, P1 = 0.335, (m(0), α(0)) = (2, 0.4),
λ1→2 = 0.250 and λ2→1 = 0.126. In panel (b), Cz = 0.7, β1 = 4,
P1 = 0.74, (m(0), α(0)) = (2, 0.6), λ1→2 = 5.86 × 0.01 and λ2→1 = 0.167.
In panels (c) and (d), the switching rates for the FRTE regime (purple)
are λ1→2 = 2.93 × 10−5 and λ2→1 = 8.34 × 10−5. Switching rates and
mutation rates µ are all measured in units of (number of generations)−1

and Cp = 0 in all panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7 Analytic theory for the fertilization rate at the switching-induced isog-

amous fixed point (blue line, see Eq. (3.14)) against simulations (dots).
The black vertical line is the analytic prediction for when this fixed point
vanishes, with parameters left of the line corresponding to destabilized
isogamy. Simulations are obtained by averaging over 25 realisations of
⟨α(t)⟩ corresponding to stochastic evolutionary trajectories. Parameters
are δ = 0.01, µ = 5×10−4, f0 = 2×10−3, τ1 = 0.25 and simulation run for
1.2 × 107 generations. All other parameters are the same as in the FRTI
regime of Figure 3.6 (a). Red markers are for (m(0), α(0)) = (0.29, 0.075),
green for (m(0), α(0)) = (0.29, 0.15) and blue for (m(0), α(0)) = (0.29, 0.3).103
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3.8 Diagram, inspired by the life-cycle of Ectocarpus, illustrating the model
dynamics in terms of diploid sporophytes and haploid parthenosporopytes.
The figure is adapted from [151] to account for the fact that in our
model, both male and female gameteophytes can in principle develop
parthenogenetically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.9 Illustration of the total proportion of cells that are fertilized at the end
of a fertilization period (length T = 1) in a monomorphic isogamous
population (without branching) as a function of trait variables m and α.
Parameters used are the same as those in Figure 3.2. The vertical black
dashed line gives the location of the manifold (β/4, α), along which the
population is attracted to when approaching the high α attractor. . . . . 110

3.10 Invasion dynamics for a mutant with mass m + δm. Blue - analytical
prediction using Eq. (3.32), black - numerical simulation. The initial
condition is (m(0), α(0)) = (0.4, 0.1). Parameters are δm = −0.005,
f0 = 0.002, G = 4 × 103, A = 100, M = 1, T = 1, Cz = 0.6, Cp = 0 and
β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.11 Invasion dynamics for a mutant with fertilization rate α + δα. Blue -
analytical prediction using Eq. (3.33), black - numerical simulation. The
initial conditions and parameters are the same as in Figure 3.10 except
δα = 1/200, δm = 0 and G = 1.5 × 104. . . . . . . . . . . . . . . . . . . . 114

3.12 Numerical illustration of evolutionary branching for the case where Cz =
0.9 and Cp = 0. All other parameters the same as Figure 3.2, except
(m(0), α(0)) = (0.6, 0.5) and run for 3000/µ generations. . . . . . . . . . 121

3.13 Numerical illustration of the stabilization of isogamy below a sufficiently
low αmax. System parameters are A = 100, M = 1, T = 0.1, Cz = 0.6,
Cp = 0, β = 1, αmax = 0.1 and simulation parameters are δ = 5 × 10−3,
f0 = 2 × 10−3 and run for 6 × 106 generations. Using Eq. (3.53) we can
calculate that branching would occur if αmax ⪆ 0.1068 for these parameter
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.14 Numerical illustration of the evolution of pseudo-oogamy in fixed envi-
ronment. Parameters are Cz = 0, Cp = 0, δm = 0.005, (m(0), α(0)) =
(0.25, 0) and simulation run for 1.6 × 107 generations. Remaining param-
eters are as given in Appendix 3.12. . . . . . . . . . . . . . . . . . . . . . 124
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3.15 Invasion dynamics for a population undergoing bet-hedging when the
environment switches FRTI. Blue curve is the analytical approximation
using Eq. (3.54) and jagged curve is the numerical simulation. Mutation
occurred in mass with δ = 0.005, f0 = 0.002, (m(0), α(0)) = (0.3, 0.1),
λ1→2 = 13/222, λ2→1 = 1/6. All other parameters the same as Figure 3.6. 125

3.16 Numerical simulation showing an absence of branching for a system un-
dergoing bet-hedging in an environment that switches FRTI. Parameters
are same as Figure 3.6 (a) and system run for 4000/µ generations. . . . . 128

3.17 Numerical illustration showing an absence of evolutionary branching for
a system undergoing bet-hedging in an environment that switches FRTE.
Parameters the same as Figure 3.6 (c) and the system is run for 4000/µ

generations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.18 Simulation of Figure 3.6 (a) under periodic environmental switching in
the FRTI regime. Evolutionary branching can occur to give rise to mild
anisogamy. Following branching, the microgamete extincts, giving rise
to branching-extinction cycles, as shown in the inset of the top panel.
All simulation parameters are identical to the FRTI regime in Figure 3.6
except δ = 0.02 and µ = 1/500. This is to help speed up simulations. To
allow periodic switching with a discrete number of generations, λ1→2 = 1/4
and λ1→2 = 1/8, which is a good approximation of the switching rates in
Figure 3.6 (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.19 Invasion dynamics of a population with one gamete with smaller mass
than that at the switching induced fixed point Eq. (3.14), and one with
mass larger than at the switching induced fixed point Eq. (3.14), under the
FRTI regime with stochastic environmental switching (top) and periodic
switching (bottom). Under periodic switching, coexistence between the
small and large gamete occurs, while under stochastic switching, one
type of gamete can be driven to extinction due to a long period between
two switching events. Parameters are identical to Figure 3.6 (a), with
f0 = 0.01, The small and large gametes have masses 0.22 and 0.26
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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3.20 Simulation of Figure 3.6 (a) under the FRTE regime. Evolutionary
branching does not occur. All simulation paraemeters are identical to the
FRTE regime in Figure 3.6 except δ = 0.02 and µ = 1/500 to speed up
simulations. Switching rates are λ1→2 = 1/2000 and λ2→1 = 1/4000 to
ensure that switching occurs after a discrete number of generations, as in
Figure 3.18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.21 Simulation of evolutionary trajectories with periodic switching under the
FRTI regime for a different set of parameters as Figure 3.18. Here, we
observe branching-extinction cycles about the switching induced fixed
point Eq. (3.14). System parameters are, A = 100, M = 1, T = 1 β1 = 4,
β2 = 0.1, Cz = 0.6, Cp = 0, λ1→2 = λ2→1 = 1/5. Simulation parameters
are δ = 0.01, µ = 1/1000, f0 = 0.002 and (m(0), α(0)) = (0.5, 0.03) which
is located in the vicinity of the switching induced fixed point. . . . . . . 132

3.22 Simulation of evolutionary trajectories as in Figure 3.21 but with stochas-
tic switching. All system and simulation parameters are identical to
Figure 3.21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.1 Schematic for the model dynamics within each growth cycle. Panel (a):
Illustrative dynamics for the evolutionary dynamics of cell mass alone.
Due to energetic constraints genotypes in the population can either
produce fewer, larger mature cells or more numerous, smaller cells (see
different shades of green). Daughter cells are produced following cell
division. Their survival is dependent on mass, such that smaller cells are
more likely to die (see Eq. (4.2)). Surviving cells seed the next growth
cycle. panel (b): Illustrative dynamics for the coevolutionary dynamics
of cell mass and cell fusion rate. The model is similar to that in panel (a),
but now a fraction of daughter cells are given the opportunity to risk
fusing to form binucleated cells; with probability C fusion fails, and
both daughter cells are lost. However should a fused cell successfully
form, it experiences an enhanced survival probability as a result of its
larger cytoplasmic volume. Following growth and vegetative segregation,
surviving cells seed the next growth cycle. . . . . . . . . . . . . . . . . . 136
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4.2 Stochastic simulations of evolutionary trajectories when the system is
subject to a switch from the benign environment (β1 = 0.5, green region)
to the harsh environment (β2 = 2.2, orange region) at growth cycle 500.
Panel (a) for the case where the fusion rate is held at 0, representing the
case where the physiological machinery for fusion has not evolved, and
panel (b) for the case where fusion rate is subject to evolution. Remaining
model and simulation parameters are given in section 4.6 and the initial
condition is (m(0), α(0)) = (1.16, 0). . . . . . . . . . . . . . . . . . . . . . 138

4.3 Phase portraits for the co-evolutionary dynamics in a fixed environment
(see Eq. (4.5)). High fusion rates are the only evolutionary outcome when
costs to cell fusion are low (panel (a)), while under intermediate costs
(panel (b)), high fusion rate and zero fusion rate (obligate asex) are both
evolutionary outcomes, and under high costs, zero fusion rate becomes
the only evolutionary outcome (Panel C), as summarised analytically in
Eq. (4.11). The red shaded region shows trajectories leading to points
on the α = 0 boundary for which evolution selects for decreasing fusion
rate (dα/dτ < 0) and the critical point at which dα/dτ = 0 is marked
by the red arrow (see section 4.5.2). The red circles mark a fixed point
in the evolutionary dynamics of m (m∗ = β, see Eq. (4.11)), which
may be unstable (open circles) or stable (filled circle) under coevolution
with α. The blue circles and arrows illustrate the evolutionary attractor
for high fusion rates ((m∗, α∗) → (β/4, ∞), see Eq. (4.11)). Average
population trait trajectories, (⟨m⟩(t), ⟨α⟩(t)), from simulation of the full
stochastic model are plotted in light gray, and their mean over multiple
realisations are dashed. Initial conditions: (m(0), α(0)) = (1.5, 0.6) and
(m(0), α(0)) = (2, 0.1). Simulation is run for 1.1 × 107 growth cycles in
panel (a), 1.24 × 107 growth cycles in panel (b) and 107 growth cycles in
panel (C). Remaining system parameters are given in section 4.6. . . . . 146
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4.4 Illustrative phase portrait for co-evolutionary dynamics of (m1, α1, m2, α2)
in a switching environment with phenotypic switching that exhibits facul-
tative binary cell fusion. In both environment 1 (panel (a)) and environ-
ment 2 (panel (b)) the cost to cell fusion is C = 0.6, purple circles represent
the initial condition (m1(0), α1(0)) = (m2(0), α2(0)) = (β1, 0), and orange
circles represent the initial condition (m1(0), α1(0)) = (m2(0), α2(0)) =
(m∗

α=0, 0), with m∗
α=0 taken from Eq. (4.9). Environmental parameters

are β1 = 0.5 and β2 = 2.2 making environment 1 the more benign envi-
ronment, in which the population typically spends a proportion P1 = 0.7
of its time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.5 Regions in the β1-β2 parameter space where we evolve obligate fusion,
given various initial conditions (m(0), 0). The region plot is independent
of E and T . Here, C = 0.5 and P1 = 0.7. Since C > 1 − 1/

√
e (see

Eq. (4.11)), fusion can only evolve in at most one of the two environments.
In this case it is environment 1 where fusion can evolve since m(0) =
m∗

2,α=0 (see Eq. (4.10)). A numerical simulation to support this regionplot
is shown in Figure 4.6. This plot is obtained as described in Appendix 4.5.2.150

4.6 Black markers show numerical simulations of the evolutionary outcome
in a switching environment with phenotypic plasticity. If the marker has
a y-coordinate of 2, we evolve obligate fusion in environment j given
both (m(0), α(0)) = (βi, 0) and (m(0), α(0)) = (P1β1 + (1 − P1)β2, 0)
for i ∈ {1, 2}, i ̸= j. If the marker has a y-coordinate of 1, we evolve
obligate fusion in environment j given (m(0), α(0)) = (βi, 0) only (for
j ̸= i) and if the marker sits at 0, we evolve no fusion given either initial
condition. Different coloured regions represent the behaviour predicted
analytically predicted in Figure 4.5 of the main text. In panel (a) β2 = 2
and i = 1 and in Panel B β1 = 2 and i = 2. We see that the numerical
simulations match the analytical predictions. The parameter conditions
are E = 100, T = 1, C = 0.5, (P1 = 0.7 if β1 > β2 and P1 = 0.3 if
β2 > β1), δ = 2 × 10−2, µ = 2 × 10−3 and f0 = 2 × 10−3. Simulation is
run for 2 × 105 growth cycles (500/µ growth cycles). . . . . . . . . . . . 156
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5.1 Schematic illustrating Muller’s Ratchet. Each oval represents a 2-locus
bialleic genotype as in Figure 5.2. Genotypes containing 2 blue alleles are
optimally adapted (with no deleterious mutations) and those with 2 yellow
alleles are the most maladapted (two deleterious mutations). Assuming
that deleterious mutations are the only possible mutation event, staying
in asexual reproduction causes buildup of maladapted genotypes and
depletion of optimally adapted genotypes (Panel (a)). In panel (b), we
show how genetic recombination can restore optimally adapted genotypes
following deleterious mutations. . . . . . . . . . . . . . . . . . . . . . . . 161

5.2 Schematic illustrating the Red Queen hypothesis. Each oval represents
a 2-locus biallelic genotype with circles representing alleles. Genotypes
containing 2 blue alleles are optimally adapted to environment 1 and
those containing 2 orange alleles are optimally adapted to environment 2.
Each allele mutates at rate µ. Panel (a): Upon switching to environment
2, an asexual population requires two or more mutations per individual to
adapt to its environment, whereas a sexual population can adapt through
genetic recombination following one mutation. This hastens adaptation as
recombination occurs on a faster timescale than the buildup of mutations.
Panel (b): If hibernation immediately follows sex, the fitness advantage
conferred by recombination is not utilised, since the fittest genotype
cannot grow in hibernation. . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Schematic of hibernation model behaviour within a growth period. The
population begins each growth period in logistic growth (at rate r). At
some time tH , members of the population begin entering hibernation (at
rate γ). In the resource limited environment at the end of the growth
period (time T ), the population is subject to a round of mortality, where
only members that have ended up in hibernation (grey) survive. Surviving
members form the beginning of the next growth period, and this cycle
repeats itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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5.4 Population dynamics within a growth period when the hibernation phase
begins at different times. Parameters are given in Appendix 5.9. For the
parameters in this figure, the optimal timing of hibernation is tH = 4.7
(as in panel (b)), which can be found using Eq. (5.3) as described in Sec-
tion 5.2.1.2 below. If the hibernation phase occurs too early panel (a) the
population sacrifices too much opportunity for growth, and if hibernation
occurs too late panel (c), there will be less time for population members
to enter hibernation. In Appendix 5.6.5 we prove that the individual
and evolutionary optimal timing of hibernation are identical. Blue curves
represent the population in hibernation y(t) and red represents the pop-
ulation not in hibernation x(t). In panel (a), tH = 2 and in panel (b),
tH = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Schematic of genetic recombination model behaviour within a growth
period. During the logistic growth phase, genotypes are subject to
deleterious mutations (at rate µ). At time tR, members of the population
begin entering recombination, which occurs at rate α. At the end of a
growth period (time T ), individuals are subject to a round of mortality,
where only viable genotypes survive. We also assume that recombination
does not occur in the resource limited environment at time T . Blue dot
represents the non mutant 0 allele and yellow represents the deleterious
mutant 1 allele. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.6 During genetic recombination, crossover events occur whereby the alleles
in one of the two loci gets exchanged between the two population members
undergoing sexual encounter. A successful crossover between a

(
1
0

)
and(

0
1

)
genotype produces one

(
0
0

)
genotype and one lethal genotype

(
1
1

)
(red

genotype). A successful crossover event between all other pairs of viable
genotypes does not change the population composition of any genotype.
Sexual encounters occur at rate α, and the probability that a crossover
occurs upon each sexual encounter is PR. . . . . . . . . . . . . . . . . . . 171



List of Figures 25

5.7 Population dynamics within a growth period. The population composition
of each genotype changes within a growth period due to deleterious
mutations. Panel (a) is the case where recombination does not occur and
panel (b) is the case where recombination occurs at tR = 3.65. These
plots correspond to numerical solutions to Eqs. (5.6-5.7). Remaining
parameters are given in Appendix 5.9. The total population at any given
time is denoted as xtotal(t) = x00(t) + x01(t) + x10(t) + x11(t). . . . . . . . 172

5.8 Change in the frequency of non mutant genotypes
(

0
0

)
and single mutant

genotypes (
(

0
1

)
and

(
1
0

)
) at the beginning of a growth period (f00(0) and

f1(0) respectively) over 100 growth periods for Eqs. (5.6-5.7). In panel (a)
there is no recombination tR ≥ T and in panel (b) there is recombination
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1

Introduction

The main focus of this thesis is on the development of eco-evolutionary models for
problems in biology. The motivation of the thesis title is as follows. Stochasticity
refers to processes comprised of many random events that happen over time. This
results in uncertainty in the time series of the process. Evolution can be thought
of as a stochastic process as it results from many random processes that happen
over time. Randomness refers to the uncertainty in the value of a quantity i.e a
random variable. A quantity that is a function of many random variables is also a
random variable. Ecological features such as ecosystem stability may be considered a
random variable, as it is governed by many random processes including interspecific
interations.

This thesis adopts a journal style presentation and contains 6 chapters. Chapter 1
is the introduction chapter, and each chapter from Chapters 2 to 5 corresponds to
an individual research project. Chapter 6 is our discussion chapter which provides a
synthesis of our results along with some future perspectives. In Chapter 1, we detail
some of the main tenets of eco-evolutionary modelling and its applications. This
chapter also includes an overview of the current literature in the field of mathematical
ecology and the evolution of the sexes and sexual reproduction, which are areas
where we wish to develop eco-evolutionary models in. In Section 1.4, we summarise
what we do in each of the following chapters.
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1.1 INTRODUCTION TO ECO-EVOLUTIONARY MODELLING

Ecology is the study of interactions between organisms and their environment as
well as all the biotic and abiotic factors that make their environment habitable [102].
In ecology, it is often assumed that groups of organisms interact as a single unit,
known as an ecosystem. This unit may either be comprised of many species, in
which case it is called a community, or many strains of a single species, in which
case it is called a population. It is also possible for an ecosystem to be comprised of
many communities. Ecological modelling has useful applications in many fields such
as conservation, where it is important to study the factors that lead to habitat loss
and the maintenance of species diversity [175, 210]. Due to climate change and the
unsustainable demands of natural resources such as food, there is an ever greater
need to understand the ecological factors that constitute species extinctions and the
maintenance of biodiversity.

Evolution on the other hand studies how traits of organisms change over time
when populations are subject to selective pressures [27]. Rather than considering a
static configuration of interactions and traits in the ecosystem, evolution is about
how populations modify their physiological traits over time to better adapt to their
environment. Evolutionary change results from a combination of selection pressures,
mutations, invasions and extinctions of species. As all these factors occur randomly
in nature, the evolutionary outcome of the population is a result of a series of random
events. Evolution can thus be thought of as a stochastic phenomenon [116, 157], where
its outcome cannot be predicted precisely. Nevertheless, mathematical modelling
enables us to predict the expected evolutionary outcome amid the stochasticity.

Although ecological factors have important implications for the dynamical be-
haviour of ecosystems, it is necessary to be aware that ecosystems are subject to
evolution over time due to factors such as mutations and invasions of new species
[170]. Such factors may influence how organisms interact with one another in the
ecosystem, for instance, the emergence of a mutant strain that is better adapted to
the environment will impact how strains in the population interact with each other.
Conversely, the fate of an evolving ecosystem can also be influenced by its underlying
ecological factors [91]. This complex feedback is known as an eco-evolutionary
feedback loop [53, 57]. Indeed, there has been a growing awareness of the importance
of such a feedback loop in the past few decades, with [120, 181] to be the first
few authors to come across it. Despite this increasing awareness, many models in
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evolutionary biology tend to overlook the complexity associated with eco-evolutionary
feedbacks, while purely ecological models [5, 67, 146] tend to pay little attention to
how their complex features may govern their evolutionary fates.

The main aim of this thesis is to apply eco-evolutionary modelling to study
various evolutionary problems in biology. For this thesis, we focus on evolutionary
problems in sexual reproduction, an aspect underpinned by numerous ecological
factors, such as cheating [230], sexual conflict [29], gamete competition [124] and the
twofold [123] ecological cost of sex incurred by the requirement of two parents to
produce an offspring. First, we include a summary of some of the current gaps in the
literature of mathematical ecology and evolutionary modelling to provide context for
our research.

1.2 CURRENT LITERATURE IN MATHEMATICAL ECOLOGY

Mathematical ecologists have had a longstanding interest in how the dynamical
properties and behaviour of complex ecosystems are influenced by their ecological
features, prompting the development of macroecological models [24]. Such models
enable us to elucidate how ecological stability may in general be influenced by various
system parameters, such as species diversity [146, 188, 210], interspecific interaction
strengths and interaction structures [4, 71]. Classical models for macroecological
systems assume a large number of species and randomly distributed interaction
strengths, which allowed the use of random matrix theory (RMT) techniques to
study analytically the effect that system parameters had on ecological stability in
general [70, 146, 229].

One of the most famous models that studies the stability of macroecological
systems is May’s RMT model [146], which posits that the stability is governed
by a single compound parameter that is a function of three system parameters;
diversity, interaction strength and connectance of the ecological network. This
compound parameter is coined as “complexity”. Although May’s model has been
celebrated for its elegance, it lacks biological realism in a few ways. First, it is
based on a linearisation of some non-linear ecological model [107], and can only
capture the linear stability of the system at best. As May’s model is not associated
to any specific ecological model, it cannot account for species abundances, and
the system parameters that give rise to biologically meaningful species abundances.
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A biologically meaningful species abundance is one where the abundance of every
species takes positive values, known as feasible. In addition, the model does not
account for biases in interaction structure (e.g ecosystems with mere predation,
mutualism or competition).

Subsequent attempts have been made to either relate May’s linear ecological
model to specific ecological models [69, 188, 210], or to generalise May’s model
to account for biologically motivated interaction structures [4, 75]. Stone [210]
was the first to directly link May’s model [146] to the generalised Lotka-Volterra
(GLV) model. Here it investigated the parameter regions that most likely gave rise
to biologically meaningful equilibrium abundances. Analytical results by [4] have
shown that stability is reduced by mutualistic and hierarchical interaction structures,
including the niche [231] and cascade [35] models. Separate analytical results have
also shown how stability can be increased by competitive interactions [39, 49] and
modularity (block structure) in the ecological interaction network [75].

Analyses of models that capture the effect of interaction structures on ecosystem
stability tend to be based on linear stability, without accounting for specific ecological
models. However, analyses that relate random interaction matrices to specific
ecological models tend to neglect specific interaction structures [49, 210]. There is
thus scope for making analytical progress in the stability analysis of models that
both account for biologically motivated interaction structures and relate to specific
ecological models. Our project in Chapter 2 develops an analytical approximation
of the stability of a random GLV model with ecologically motivated interaction
structures. Details of May’s RMT model along with other RMT based models will
be presented in Chapter 2.

1.3 CURRENT LITERATURE IN EVOLUTIONARY MODELLING
OF SEXUAL REPRODUCTION AND SEXES

Evolutionary biologists have had a long interest in the origin of the sexes and the
selection pressures that gave rise to sexual reproduction itself. Interests in the origins
of the sexes can be traced back to Darwin [43] in his famous book “The Descent
of Man, and Selection in Relation to Sex” that focused on sexual selection, where
selection acts on the sexes themselves. Males with the most desirable sex specific
traits are likely to produce more offspring and pass on their traits, for instance,
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vigorous stags with larger horns stand a greater chance of producing more offspring
than their hornless counterparts. There has also been curiosities into the evolutionary
advantages of sexual reproduction itself, dating back to Weismann [228], who first
proposed that sex may be favorable due to its potential to create genetic diversity.
These lead naturally to the question of what gave rise to the male and female sexes
in the first place.

Within the past few decades, the topic on the evolution of the sexes have received
great attention [109, 173, 196]. The male sex is characterised by individuals that
produce small motile gametes (sperms) while the female sex is characterised by
those that produce large immotile gametes (eggs). An early model known as the
Parker-Baker-Smith (PBS) model [173] investigated the evolution of the sexes based
on the assumption that the survival of gametes depends on their mass, with gametes
of greater mass having a greater chance of survival [222]. Their model showed that
if individuals have a fixed energy budget for gamete production, selection favours
the production of either a large number of small, poorly adapted gametes (males)
or a small number of large well adapted gametes (females). This is known as a
“quality-quantity” tradeoff.

The quality-quantity tradeoff theory for the evolution of the sexes paved the
way for subsequent work that examined the various conditions under which the
two sexes can evolve. By applying the eco-evolutionary modelling framework of
adaptive dynamics, Maire [143] showed that anisogamy (the size dimorphism of
gametes that characterises the sexes themselves) can evolve from isogamy even in the
presence of one self-compatible mating type. However, in addition to size dimorphism,
the gametes of the two sexes also exhibit motility dimorphism, with highly motile
sperms and immotile eggs, known as oogamy. Recent eco-evolutionary models have
investigated the conditions in which anisogamy can evolve under the assumption
that gametes can develop without fertilisation (parthenogenetic development) should
they fail to fertilise [37, 130]. Although, none of the aforementioned models explain
how oogamy or sexual reproduction evolved at first place.

There is thus the scope to investigate the selective pressures that gave rise to
sexual reproduction at first place. As fertilisation is an intrinsic mechanism of sexual
reproduction, we could investigate the selective pressures for sexual reproduction
by considering the mechanistic advantage conferred by fertilisation. In particular,
what conditions allow fertilisation to evolve from a state of no fertilisation, and if
fertilisation evolves, what size and motility should the gametes evolve to. This can
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be done by utilising the modelling framework of [37, 130], and will be the focus of
Chapters 3 and 4. Allowing for parthenogenic development also enables us to gain
better insights into the mechanisms leading to the evolution of facultative sex, which
is frequently observed in organisms such as the green algae C. reinhardtii and the
fission yeast S. pombe [77, 197].

Much of the existing literature on the evolutionary origins of sexual reproduction
are based on genetic arguments, such as the rate at which genetic diversity is conferred
during genetic recombination, which facilitates adaptation to novel environments [65,
154, 221]. Now we outline some literature for the evolution of sexual reproduction
that focuses on the selective advantages of genetic recombination, which sets the
scene for our project in Chapter 5. An early theory for the genetic benefits of sex is
the Fisher-Muller hypothesis [54], which states that genetic recombination allows
multiple advantageous genes to be combined into the genome of one individual on a
faster timescale than mutations alone. Another theory known as Muller’s ratchet
asserts that the advantage of genetic recombination lies in its ability to prevent
the buildup of deleterious mutations [154], thereby enhancing the survival of the
organism. Subsequent theories have argued that genetic recombination increases the
rate at which genetic diversity, and thus well adapted genotypes, are created which
hastens adaptation in unpredictable environments [82, 106, 221].

All of the theories above imply a strong genetic advantage to recombination,
although it is worth noting that they are based solely on population genetics, with
no account for the numerous ecological factors at play in sexually reproducing
populations. As mentioned in Section 1.1, these ecological factors have significant
consequences for the evolutionary fate of the population. Another overlooked
ecological factor that can even influence the cost of sex itself is population density
[47, 193]; as the population density increases, the population growth rate naturally
reduces due to resource limitation, which reduces the cost of sex.

There is the opportunity to develop models for the evolution of sex that combine
population genetic approaches with eco-evolutionary modelling. In Chapter 5,
we develop an eco-evolutionary model that incorporates population genetics to
investigate how genetic recombination can evolve as a response to environmental
stress.
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1.4 OVERVIEW OF THESIS

In Chapter 2, we develop an analytical approximation that allows us to study
the feasibility, stability and resilience of a GLV model with biologically motivated
interaction structures. Here, we specifically consider the effects of predator-prey,
mutualistic and competitive interactions on the stability of ecosystems. Stone
[210] investigated the feasibility probability of a GLV system where its underlying
interaction matrix is May’s interaction matrix [146]. Here, we generalise Stone’s
result to the case where the underlying interaction matrix is Allesina and Tang’s
interaction matrix [5], which accounts for predator-prey, competitive and mutualistic
interactions.

In Chapter 3, we investigate the early evolution of sexual reproduction by
considering the mechanistic benefits conferred by fertilisation of gametes due to the
increased mass. To do this, we coevolve gamete mass and fertilisation rate by suitably
modifying an existing eco-evolutionary model [37]. We assume self-compatible mating
types for simplicity. By accounting for gamete mass, we simultaneously explore
the evolution of different modes of sexual reproduction. For instance, anisogamy
is a reproductive mode that characterises the sexes themselves, where males are
microgametes and females are macrogametes. First, we find the parameter regions
where sexual reproduction evolves, followed by the masses that gametes evolve to.
As we are coevolving mass and fertilisation rate, we can also examine whether the
population evolves any heterogeneity in fertilisation rates, such as in oogamy. In line
with empirical observations and recent models [37, 130], we assume that gametes
can undergo parthenogenic development should they fail to fertilise.

In Chapter 4, we use the same model as in Chapter 3 to investigate how cell
fusion may evolve as a response to environmental stress. Here, we assume that
organisms exhibit phenotypic plasticity, where they can evolve different strategies
in different environments. By neglecting any genetic factors associated with sex or
cell fusion, our work may provide an alternative mechanistic hypothesis for how sex
evolves as a response to environmental stress, in contrast to some existing population
genetics hypotheses [62, 221]. In addition to sex, our work in this chapter will have
important implications for how facultative multicellularity evolves as a response to
environmental stress [76, 215]. Note well that the phrase “fusion” which we use in
this chapter and “fertilisation” which we use in Chapter 3 both refer to the same
thing in our model, but are phrased differently, to match the context of the papers
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corresponding to the chapters.
In Chapter 5 we develop an eco-evolutionary model that incorporates population

genetics aspects of genetic recombination to study how sex evolves as a response to
environmental stress. This partly complements the work in Chapter 4, where we
investigate stress induced sex in terms of the mechanistic benefits of cell fusion. By
accounting for population dynamics as well, we are able to factor in the ecological
costs of sex. Furthermore, by suitably modifying our model, we investigate how
hibernation can be triggered by environmental stress as well as sex.

Chapter 6 contains a general discussion which seeks to synthesise the results
presented in this thesis within the broader scope of eco-evolutionary modelling. Some
future research questions are described and prioritised, with suggestions as to the
methods which may be useful in seeking their answers.



2

Feasibility and Stability of large Lotka
Volterra Systems with Interaction

Structure

Abstract

Complex system stability can be studied via linear stability analysis using Random
Matrix Theory (RMT) or via feasibility (requiring positive equilibrium abundances). Both
approaches highlight the importance of interaction structure. Here we show, analytically
and numerically, how RMT and feasibility approaches can be complementary. In generalised
Lotka-Volterra (GLV) models with random interaction matrices, feasibility increases when
predator-prey interactions increase; increasing competition/mutualism has the opposite
effect. These changes have crucial impact on the stability of the GLV model.

2.1 INTRODUCTION

In the 1950s, ecologists such as Odum and MacArthur argued [141, 166] that
ecosystems with a larger number of species tend to be more stable than less biodiverse
systems. This idea was famously mathematised by May in 1972, who applied random
matrix theory (RMT) to the problem [146]. May considered perturbations in the
abundances of n species communities, ζ, where ζ was linearised about a hypothetical
fixed point of some unspecified nonlinear ecological model, with near-equilibrium
dynamics described by

dζ

dt
= Aζ (2.1)
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where he suggested parameterising A according to

Aii = −1 , Aij = σcaij (2.2)

with Aii representing the species self-regulation at equilibrium and aij ∼ N (0, 1)
represents the interaction coefficients which are distributed according to standard
normal distribution, and c ∼ B(1, C) is a Bernoulli random variable representing
the probability that a pair of species interact. Here Aij represents random species
interactions that are non-zero with probability C (referred to as connectance) and
when present have standard deviation σ (referred to as interaction strength). Since
the asymptotic stability of Eq. (2.1) is governed solely by its eigenvalues, system-level
stability is determined by characterising the eigenvalues of random matrix A.

The eigenvalue distribution of A is uniform across a circle in the complex plane,
centered on (−1, 0) and with radius σ

√
nC as n → ∞ [146, 214, 229].

Thus the stability criterion for Eq. (2.1) is σ
√

nC < 1 (see Fig. 2.1(a)). This
suggests that more diverse ecosystems with more interspecific interactions are less
likely to be stable for a given variance in interaction strength.

Allesina and Tang [4] added ecologically-motivated structure to May’s approach,
choosing elements of A pairwise by imposing a correlation, ρ, between Aij and Aji

for j ̸= i,

(Aij, Aji) = σc(aij, aji) where (2.3)

(aij, aji) ∼ N (0, Σ) with Σ = [(1, ρ), (ρ, 1)]

where again c ∼ B(1, C). Ecologically, ρ < 0 implies more predator-prey interactions
in the ecosystem (Aij and Aji are more likely to have opposite signs), while ρ > 0
implies more mutualistic and competitive interactions (Aij and Aji are more likely to
have the same sign). Utilising another RMT result [71, 201] they generalised May’s
stability criterion to

σ
√

nC(1 + ρ) < 1 . (2.4)

Thus, increasing the proportion of predator-prey interactions increases stability,
whilst increasing the proportion of competitive and mutualistic interactions reduces
stability in Eq. (2.1) (see Fig. 2.1(a)). Eq. (2.4) implies that in the extreme limit
ρ → −1, ecosystems are stable as long as there is sufficient self-regulation, since the
real part of all the eigenvalues of A will be equal to the mean of its diagonal elements
Aii when ρ → −1, which is negative in the presence of sufficient self-regulation.
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These analytic results are independent of the underlying non-linear model from
which they are hypothetically derived. However, this apparent generality conceals
an implicit assumption that the fixed point about which the non-linear system
is linearised (to arrive at Eq. (2.1)) exists and is biologically meaningful. Such
biologically meaningful fixed points, where every species is present at a positive
abundance, are termed feasible equilibria [188].

As in the case of [210, 67, 34], we use the generalised Lotka-Volterra model (GLV)

dx

dt
= x ⊙ (r + Ax) , (2.5)

to explore the links between the parameterisations of the interaction matrix A in
Eqs. (2.2-2.3) and feasibility. Here xi is the abundance of species i, ri is its intrinsic
growth rate, A the interaction matrix, and ⊙ the Hadamard product, where xi and
ri are components of the vectors x and r in Eq. (2.5) respectively. Eq. (2.5) has a
single non-zero fixed point, x∗, with a Jacobian, J , such that

x∗ = −A−1r , J = diag(x∗)A. (2.6)

Note that if the elements of A are drawn from a random distribution, then x∗ is also a
random variable (see, for instance Fig. 2.2). We denote the multivariate distribution
of x∗ as P (x∗). In particular, there is nothing intrinsic about the structure of x∗ in
Eq. (2.6) that guarantees that it is feasible (i.e. that x∗

i > 0 ∀ i). Instead, for any
given randomly sampled A, there is a probability that the fixed point is feasible,
which we denote Pfeas. The relationships between feasibility, stability and different
system constraints such as interaction structure is a central theme in theoretical
ecology [26].

Early analytic insight into the feasibility of x∗ in Eq. (2.6) assumed that A had
interaction coefficients with fixed strengths, or with randomly generated signs [72,
69, 188]. Stone [210] linked this to May’s approach by considering the probability
that x∗ is feasible given an ensemble of random interaction matrices parameterised
according to Eq. (2.2). Under the condition that ri = 1 ∀ i ∈ [i, n], the distribution of
x∗

i can be determined using some mathematical arguments as outlined in Section 2.2
(see also Appendix VIII and [210]). Those arguments show that under the condition
that σ

√
n < 1, x∗

i tends to a normal distribution in the limit of large n. Stone thus
assumed that such a parameterisation of interaction matrices gives rise to a normally
distributed x∗

i (see Figure 2.2 and Appendix VIII).
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Figure 2.1: Panel (a): Eigenvalue distributions of interaction matrix A parameterised
according to Eq. (2.2) (red, ρ = 0, see [146]) and Eq. (2.3) (blue and green, ρ ≠ 0,
see [4]), used to infer the stability of the linear model proposed in Eq. (2.1). Parameter
values are σ = 0.01, n = 1000, C = 1 and |ρ| = 0.6. Panel (b): Feasibility probability,
Pfeas, for an ensemble of random fixed points from the non-linear GLV model, Eq. (2.5),
with interaction matrices parameterised according to Eq. (2.2) (ρ = 0, see [210]). Pfeas
is plotted as a function of May’s complexity parameter γ = σ

√
nC, for community

sizes ranging from n = 14 to n = 100. In this panel C = 1. Curves are analytical
predictions and markers are numerical simulations, obtained by sampling 104 random
interaction matrices A parameterised according to Eq. (2.2) and calculating the
proportion of those that give rise to a feasible equilibrium solution of the GLV model
(see Appendix IV).

Stone showed that under the assumption that x∗
i is normal, the probability of

feasibility for a fully connected system C = 1 is

Pfeas = 2−n

(
1 + erf( 1

γS

√
1 + γ2

S + γ4
S)

)
)n

, (2.7)

where γS = σ
√

n is known as the disturbance in Stone’s analysis, which is equivalent
to May’s definition of complexity for the case C = 1. We see that Pfeas drops sharply
at a critical value of γS, and also has an additional dependence on system size n

(see Fig. 2.1(b)). By working in the limit n → ∞, [19, 34] determined a threshold
interaction strength above which feasibility is lost in GLV models with interaction
matrices parameterised according to Eq. (2.2). An analytical prediction for the
relationship between Pfeas and the complexity γ = σ

√
nC which accounts for C was

obtained by Dougoud et al. [49]. Akjouj et al. [3] investigated the feasibility of
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sparse ecosystems with interaction matrices that are block structured and d-regular
(where each species interacts with d other species). Together these results suggest
that feasibility is the more critical measure of complex system stability; compared
to linear stability, feasibility is lost at smaller values of complexity.

Here we seek to strengthen the links between RMT [5, 146] and feasibility analyses
by calculating how the feasibility of an ecosystem changes with complexity [3, 49, 208,
210] when additional species interaction structure is accounted for [4, 5]. It was shown
by Bunin [26] that feasible systems lose stability above a certain interaction strength
by transition to a phase with multiple attractors. The interaction strength of this
phase transition increases as predator-prey interactions increase. Numerical results by
Clenet et al. [34] also show that systems biased towards predator-prey interactions
lose feasibility at larger interaction strengths than systems without interaction
structure, and those biased towards competition and mutualism lose feasibility at
smaller interaction strengths than systems without interaction structure. They also
obtained an analytical result for the interaction strength above which feasibility is
lost, in the limit of large n. In this limit the effect of the correlation parameter ρ, the
parameter that governs the proportion of predator-prey or competition/mutualistic
interactions, disappears [34]. In this chapter, we instead work in the large but finite n

limit in order to explore the effect of ρ on the probability of feasibility, Pfeas. In order
to calculate Pfeas, we must also obtain an approximation for the distribution of fixed
points. This approximation opens up the possibility of leveraging recent results [9,
67] to determine the probability of stability of the GLV model with interaction
structure.

2.2 ANALYSIS

Following Stone [209] we obtain an analytical approximation of Pfeas(γ) via the
distribution of equilibrium species abundances P (x∗). In particular Stone [210]
applied the Central limit theorem to x∗ in Eq. (2.9) to argue that P (x∗) is normal
as n → ∞, and this normality remains a good approximation when n is large but
finite. Indeed we have shown numerically in Appendix VIII that for n = 25, this
normal approximation holds. The task of calculating the feasibility probability is
then equivalent to calculating

Pfeas =
∫ ∞

x∗=0
P (x∗)dx∗ ≈

∫ ∞

x∗=0
N (µx∗Σx∗)dx∗ (2.8)
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Figure 2.2: Plots showing the joint distribution of x∗
1 and x∗

2 for the GLV model
Eq. (2.5) with n = 2, σ = 0.01 and C = 1. Blue markers represent 104 numerical
solutions of the GLV model, obtained as described in Appendix IV. Contours
are analytical predictions for the joint distribution of x∗

1 and x∗
2 calculated using

Eqs. (2.13-2.15).

where µx∗ and Σx∗ are respectively the mean and covariance matrix of the species
abundances at equilibrium. Note that by symmetry, we can see that for interaction
matrices randomly generated according to Eq. (2.3), µx∗ and Σx∗ are themselves
highly symmetric, with [µx∗ ]i = [µx∗ ]j, [Σx∗ ]ii = [Σx∗ ]jj and [Σx∗ ]ij = [Σx∗ ]ji for all
i, j ∈ [1, n] (i.e. µx∗ is a constant vector and the variance-covariance matrix Σx∗ is
a double constant matrix [165]).

We now calculate approximations for µx∗ and Σx∗ . For simplicity we focus on the
case ri = 1 ∀ i in Eq. (2.5). Recall that following [5], the elements of the interaction
matrix Aij and Aji have correlation ρ. Writing A = σE − I, our fixed point in
Eq. (2.6) can be expressed as a Neumann series [119] for ||σE|| < 1:

x∗ = (I − σE)−1r ≡
( ∞∑

j=0
(σE)j

)
r. (2.9)

where its elements x∗
i may alternatively be expressed as

x∗
i = 1 + σc

n∑
i=1

aij + . . . (2.10)

As Eq. (2.10) involves sums over n random variables, the Central limit theorem
can be applied to show that x∗

i is normally distributed as n → ∞. However, the
normality in the distribution of x∗

i ∀i ∈ [1, n] does not necessarily imply that the
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multivariate distribution of x∗ is normal. Given that x∗
i is normal ∀i ∈ [1, n], a

necessary condition for x∗ to be a multivariate normal distribution is for any linear
combination of all the x∗

i ∀i ∈ [1, n] to also be normal [6]. As x∗
i has the same

distribution ∀i ∈ [1, n], the Central limit theorem can be applied to see that any
linear combination of the abundances of all species is normally distributed [6], which
justifies that the distribution of x∗ is a multivariate normal distribution.

This enables us, in principle, to calculate x∗
i up to an arbitrary order in σ. In our

work, we approximate E(x∗
i ), V ar(x∗

i ) and Cov(x∗
i , x∗

j) taking into account ρ and C.
Using Eq. (2.9), we approximate E(x∗

i ) and V ar(x∗
i ) up to and including order σ6.

Using the fact that the product of an odd number of normal random variables with
zero mean has zero expectation, we know that all terms of E(x∗

i ) at odd orders of σ

vanish. From Eq. (2.9), we find that the expression for the expectation of x∗
i up to

this given order is

E(x∗
i ) = E

1 + σ2
n∑

j=1
j ̸=i

n∑
k=1
k ̸=j

κaijajk

+ e4σ
4 + e6σ

6 (2.11)

where e4 and e6 are coefficients of σ4 and σ6 respectively in the expectation of x∗
i ,

and

κ =

C if i = k ,

C2 if i ̸= k ,
(2.12)

since i = k corresponds to the case where ajk = aji, which corresponds to the case
where Aij and Aji are both nonzero with probability C (see Eq. (2.3) and Allesina
and Tang [5]). We use Eq. (2.11) to illustrate how we obtain our approximation
of E(x∗

i ). Since E(aijaji) = ρ, E(aij) = 0 and E(aijajk) = 0 if k ̸= i, Eq. (2.11) is
equal to

E(x∗
i ) = 1 + (n − 1)ρCσ2 + e4σ

4 + e6σ
6 (2.13)

where through direct calculation, it can be shown that e4 = (n − 1)(C + ρ2(2C +
2C2(n − 2))), given by Eq. (2.28). Similarly we can calculate e6, which is given by
Eq. (2.66) of the Appendix.

An analogous approach can be used to obtain an approximation for V ar(x∗
i ) and

Cov(x∗
i , x∗

j) (see Appendix I), with V ar(x∗
i ) given by

V ar(x∗
i ) = (n − 1)Cσ2 + v4σ

4 + v6σ
6 + O(σ8) (2.14)
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where v4 and v6 are the coefficients of σ4 and σ6 respectively, which depend on n,
ρ and C. Specifically, v4 is the coefficient of σ4 in Eq. (2.35) and v6 is given by
Eq. (2.73) in the Appendix. The formulas for v4 and v6 are too lengthy to produce
here, however of particular note is the fact that they, along with coefficients e4 and
e6, are nontrivial polynomials that do not preserve the simple dependence on the
complexity parameter γ observed in [4] or [146]. Cov(x∗

i , x∗
j) is given by

Cov(x∗
i , x∗

j) = ρCσ2 + c4σ
4 + O(σ6) (2.15)

where c4 = (3 + (6 + C(5n − 11))ρ2). While we could extend this approximation to
order σ6, we note that this makes little quantitative difference to the approximation.
In the expression for Cov(x∗

i , x∗
j), the coefficient of each order of σ is a factor of n

smaller than the corresponding coefficients in the expression for E(x∗
i ) and V ar(x∗

i )
(see Appendix VII). This implies that for a fixed value of large but finite n, Cov(x∗

i , x∗
j)

increases more slowly with σ than E(x∗
i ) and V ar(x∗

i ), and thus Cov(x∗
i , x∗

j) plays a
smaller role in governing how P (x∗), and similarly Pfeas, varies with σ. It is therefore
possible to approximate Cov(x∗

i , x∗
j) to order σ4 without sacrificing the accuracy of

the analytical prediction of Pfeas. The slower increase in Cov(x∗
i , x∗

j) with σ is verified
numerically in Figure S7. Since an analytical approximation of Cov(x∗

i , x∗
j) to order

σ6 requires considerably more algebra (see Appendix 2.5.4.5) without conferring
significant improvements to the accuracy of Pfeas, we restrict our analysis to the
order σ4 approximation given in Eq. (2.15).

Eqs. (2.13-2.15) are then used to construct µx∗ and Σx∗ in Eq. (2.8). Note that we
expect our approximation to hold when n is large (such that P (x∗) is approximately
normal, see Eq. (2.8)) and when σ is small (such that the expansions in Eqs. (2.13-
2.15) remain sufficient). When these conditions are not met, the approximations
given in Eqs. (2.13-2.15) break down at lower values of |ρ|. For instance in a 25
species (n = 25) system, the analytical approximation of V ar(x∗

i ) in Eq. (2.14) loses
accuracy when |ρ| > 0.25), while for a 100 species system V ar(x∗

i ) remains accurate
up to |ρ| = 0.5 (see Appendix II).

The fact that our normal distributions feature such a high degree of symmetry,
with µx∗ a constant vector and Σx∗ a double constant matrix, allows us to further
simplify the calculation of Pfeas. This provides ease of computation for large systems.
Using the results of [41] which expresses integrals over the cubic region of the variable
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space, Eq. (2.8) can be reduced to an expression involving a single integral, given by

Pfeas =
∫ ∞

−∞

{
n∏

i=1
Φ( yi − biu

(1 − b2
i )1/2 )

}
ϕ(u)du (2.16)

where ϕ(u) is the density function of a standard normal random variable u and
Φ(v) denotes the cumulative distribution function of a standard normal random
variable v. In our analytical prediction of Pfeas, we have that yi = E(x∗

i )√
V ar(x∗

i )
and

bi =
√

Cov(x∗
i ,x∗

j )
V ar(x∗

i ) (see Appendix III). In other words, Pfeas is the expression obtained
by substituting these expressions for yi and bi into Eq. (2.16). (see Appendix III).
Interestingly, note that in the results of [5, 146], C appears as a compound parameter
with σ2, but in Eqs. (2.13-2.15), C appears in a complicated polynomial form. The
analytical prediction of Pfeas(γ) is shown in Figure 2.3 (a)-(b). Moreover, the fact
that Cov(x∗

i , x∗
j) is a factor of n smaller than V ar(x∗

i ) partly explains the observation
of Clenet [34] that as n → ∞, the effect of ρ on Pfeas completely disappears.

2.3 RESULTS

2.3.1 Predator-prey interactions increase the feasibility of ran-
dom ecosystems

The qualitative difference in how Pfeas changes with the complexity γ as the correlation
ρ is varied is shown analytically in Figure 2.3. For a given value of n, when ρ is
positive (blue), feasibility is lost at a smaller complexity compared to the case where
ρ = 0 (red). However when ρ is negative (green), we observe the opposite effect
whereby feasibility is lost at a larger complexity than the case ρ = 0. In other
words, increasing ρ reduces the feasibility probability for a given complexity in a
GLV system of finite n.

It can be seen in Figure 2.3 that the magnitude of the difference between Pfeas(γ, ρ)
and Pfeas(γ, 0) also varies with γ. For instance when γ is sufficiently small, there
is no difference between Pfeas(γ, ρ) and Pfeas(γ, 0), since Pfeas is 1 regardless of ρ.
The bottom panels of Figure 2.3 below plot this difference, demonstrating how
it varies with γ. The difference between Pfeas(γ, ρ) and Pfeas(γ, 0) is the greatest
for intermediate values of complexity γ, where the system is transitioning rapidly
away from feasibility. For a given system size n, the magnitude of this difference
(|Pfeas(γ, ρ)-Pfeas(γ, 0)|) also increases with the magnitude of ρ.
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Figure 2.3: Panels (a) and (b) plot the feasibility probability Pfeas as a function of
complexity γ for systems with ecologically motivated interaction structure: blue
(ρ > 0) biased toward competitive/mutualistic interactions; red (ρ = 0) unbiased
interactions; green (ρ < 0) biased towards predator-prey interactions. Panels
(c) and (d) plot the difference between Pfeas in systems with ρ ̸= 0 and Pfeas in

systems where ρ = 0 (Pfeas(γ, ρ) − Pfeas(γ, 0)) as a function of γ, with lines the
prediction derived from Eq. (2.16) and markers the results of numerical simulation.
In panel (c), n = 25 and hollow circles show the results of numerical simulations for
the case |ρ| = 0.25. In panel (d), where n = 100 (and our approximations are valid
for larger values of ρ) hollow circles again represent the case the case |ρ| = 0.25, while
asterisks are numerical simulations for the case |ρ| = 0.5. Numerical simulations are
obtained by sampling 104 random interaction matrices A parameterised according
to Eq. (2.2) and calculating the proportion of those that give rise to a feasible
equilibrium solution of the GLV model Eq. (2.5) (see Appendix IV)

In Appendix I.E, we see that for all values of ρ, the loss of feasibility in the GLV
model with Allesina and Tang type interaction matrices occurs at a smaller complexity
than the loss of stability in the corresponding linear model. As an extreme example,
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in linear systems comprising all predator-prey interactions (ρ = −1) stability is
guaranteed regardless of ecosystem complexity (see Eq. (2.4)); conversely feasibility
is still lost above a critical value of the complexity parameter γ (see Figure S2 of
Appendix). Figure 2.3 demonstrates that the analytical results in Eq. (2.13-2.15)
can be used to accurately predict Pfeas as a function of γ in the case where C = 1.
Furthermore, Appendix V shows that the same analytical results remain highly
accurate for predicting Pfeas as a function of γ in the case where C = 0.3. By
comparing the feasibility probabilities of such a system with that of a fully connected
system, we see that a sparsely connected system of n = 100 shows an almost identical
feasibility-complexity relation as a fully connected system.

Most importantly, in Eqs. (2.13-2.15) we have analytically approximated the
distributions of x∗

i for non-linear GLV models Eq. (2.5) where the underlying inter-
action matrix A is constructed according to Eq. (2.3). This opens up the possibility
to extend these results to predict the stability of GLV models with ecologically
motivated interaction structures. Such a stability analysis is beyond the scope of
this work, but would be attainable through detailed analysis of the GLV Jacobian.
In the next section we investigate how this might be achieved within the scope of
existing methods.

2.3.2 Comparing RMT predictions with GLV Jacobian matrices

Gibbs et al. [67] studied the eigenvalue distribution of a matrix that is assumed to be
of the same structure as the GLV Jacobian (Eq. (2.6) right), where J is decomposed
into a product of an interaction matrix A and fixed points x∗. However, for simplicity,
they assume that the distribution from which x∗ is drawn is independent of A, whereas
this is clearly not the case (see Eq. (2.6) left).

Gibbs’ assumption of independence between the random elements of A and
x∗ means that cross correlations between them need-not be considered, thereby
simplifying the analysis. We test whether this assumption holds, in order to determine
whether Gibbs’ method may be applicable to calculating the eigenvalue distribution of
the GLV Jacobian (Eq. (2.6)). To do so, we first calculate the eigenvalue distribution
of J = x∗A where the elements of x∗ are sampled independently to those of A. The
distribution from which we sample the elements of x∗ is a normal distribution with
E(x∗

i ), V ar(x∗
i ) and Cov(x∗

i , x∗
j) given by Eq. (2.13-2.15), which we approximated. A

is constructed according to Eq. (2.3). We then compare this eigenvalue distribution
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(shown in Figure 2.4 bottom panels) to that of the GLV Jacobian where the exact
x∗ corresponding to each given A is used (shown in black markers of Figure 2.4 top
panels).

ρ=-0.7 ρ=0 ρ=0.7

Re(λ)

Im
(λ
)

Figure 2.4: Top row: Orange ellipses are eigenvalue distributions of A where A is
parameterised according to Eqs. (2.2-2.3). Yellow boundaries are predicted by Allesina
and Tang. Black markers represent 50 realisations of the eigenvalue distribution of
the GLV Jacobian J = x∗A where the exact x∗ corresponding to each given A is used.
Bottom row: 50 realisations of the eigenvalue distribution of J = x∗A where elements
of x∗ are sampled independently of A, from the multivariate normal distribution
characterised by Eqs. (2.13-2.15). Parameter values are σ = 0.01, n = 500 and C = 1.
Given these parameters, Eqs. (2.13-2.15) predict that in the left panel Pfeas = 0.993,
middle panel Pfeas = 0.997 and right panel Pfeas = 1.000.

By comparing the black markers on the top panels with those of the bottom
panels of Figure 2.4, we see that our method of sampling x∗ independently of A from
our distribution of x∗ works well in predicting the eigenvalue distribution of the GLV
Jacobian. This comparison is conducted in a region where feasibility is almost surely
guaranteed. From the top panels, we see that when the correlation parameter is
negative i.e ρ < 0, the bulk eigenvalue distribution of J gets stretched in the Im(λ)
plane, and when ρ > 0 in the Re(λ) plane. This qualitative effect is consistent with
the result of Allesina and Tang [5]. It is shown numerically in Appendix VI that
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increasing ρ decreases the average resilience of the GLV model, where resilience is a
measure of the ability for communities to recover following perturbations in species
abundance from their equilibrium abundance [210]. Increasing the real part of the
eigenvalue with the largest real part decreases the resilience of the GLV model.

The average maximum outlier eigenvalue (averaged over multiple realisations of
the interaction matrix A) is also correctly predicted by our theory, which relies on
the assumption of statistical independence between A and our calculated distribution
of x∗ (see Eqs. (2.13-2.15)), as illustrated in Figure S6 (a). However, our theory does
not correctly predict the maximum outlier eigenvalue of individual realisations of
the GLV Jacobian. This suggests that cross-correlations between the entries of A

and x∗ may be quantitatively important in calculating the stability of individual
realisations of the GLV model. As the stability of a system is governed solely by the
eigenvalue with the largest real part, a stability analysis of the GLV model must be
preceded via calculating such an eigenvalue. Below, we provide an insight into some
possible techniques for calculating the stability of the GLV model with Allesina and
Tang type interaction matrices.

Stone [208] showed that provided that ||σE|| is sufficiently small, the eigenvalue
with the largest real part (outlier eigenvalue of J) is approximately equal to minus
the abundance of the least abundant species i.e λmax ≈ −mini∈{1,n}x

∗
i ; in which case

we have the weak condition whereby feasibility corresponds to the local asymptotic
stability of the GLV model. In the case where ρ = 0 or |ρ| is small, −mini∈{1,n}x

∗
i is

an accurate estimate of the outlier eigenvalue of J , however this accuracy breaks
down as we increase |ρ| (see Appendix VI).

Relying on Gibbs’ assumption allows us to accurately capture the bulk eigenvalue
distribution of J and the effect that the correlation parameter ρ has on the average
resilience over a large number of realisations (see Figure S6 (a)), although it fails to
accurately calculate the outlier eigenvalue of J corresponding to a specific realisation
of A.

2.4 DISCUSSION

We have obtained an analytical prediction of the feasibility probability as a function of
complexity γ = σ

√
nC for random GLV models with interaction matrices of Allesina

and Tang type [5]. By extending the analytical result of [34] to the case of large, but
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finite n, we have shown that a positive value of ρ reduces the feasibility probability for
a given complexity, while a negative value of ρ increases the corresponding feasibility
probability, an effect not quantifiable in the infinite n limit. We have also accounted
for the connectance C. Since natural ecological systems are sparsely connected [60],
both these generalisations mentioned above add biological realism to the result of
Stone 2016 [209]. Relationships between complexity and feasibility have also been
studied by [74], where they characterised feasibility by how freely one could choose
the intrinsic growth rate vectors to allow the system to remain feasible. As a whole,
these results strengthen connections between feasibility and RMT systems, whilst
also adding biological realism.

Along the way, we managed to analytically approximate the distribution of x∗

as a function of the system parameters n, C, σ and ρ. In doing so, we emphasise
how the small covariance between the abundances of species can partly explain the
observation of [34] that the effect of interaction structure on feasibility completely
disappears as n → ∞. Most importantly, our approximation of the distribution of x∗

has allowed us to check the utility of Gibbs’ assumption of independence between x∗

and A in predicting the eigenvalue distribution of the GLV Jacobian for systems with
Allesina and Tang type interaction matrices [67, 208]. Figure 2.4 shows that Gibbs’
assumption can be used to accurately predict the effect of interaction structure [5]
on the eigenvalue distribution of feasible random GLV models. It is worth noting
that since A is random, the outlier eigenvalue of the GLV Jacobian would vary with
each realisation of A, which makes the stability and resilience of the GLV model a
random variable as well. Nevertheless, we have shown in Appendix VI that Gibbs’
assumption allows us to accurately predict the effect that interaction structure has
on the average resilience over multiple realisations of A.

It is of note that our method for calculating the feasibility probability relies
on several assumptions on the parameter values to ensure accuracy (see Appendix
I.E and II). We also assumed that x∗

i is normally distributed. Since the Neumann
series approximation for x∗

i is normal in the limit n → ∞, and is convergent if and
only if σ

√
nC < 1, our method is accurate for large n and small σ (see Appendix

VIII). Since the Neumann series expansion is precise, it is straightforward to extend
our analysis to arbitrary orders of precision by working to higher orders in σ (see
Eq. (2.9)).

The concept of feasibility has been associated with the extinction probability. It
was summarised by Stone (1988) [210] that a higher feasibility probability is linked
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to the reduction in the probability of extinction following structural disturbances,
which are perturbations to the interaction coefficients that cause changes to the
dynamical mode of the GLV model. Our results imply that increasing predator-prey
interactions reduces the chance of extinction following structural disturbances.

We have used the assumption of May (1972) that all species are self-regulating.
This is representative of natural ecosystems since they require 50 percent of species to
self-regulate to allow for stability [8]. However, the assumption that ri = 1 ∀i ∈ [1, n]
may not be biologically realistic, as natural ecosystems contain consumer species
which do not grow in isolation. This is an interesting area for future investigation,
however it was suggested by Song et al. [202] that this assumption gives the parameter
region where feasible systems are likely to be present.

Having generalised the distribution of x∗ to account for arbitrary ρ, we have
opened up the possibility for extending the results of Gibbs et al. [67] to analytically
predict the boundary of the eigenvalue distribution of the GLV Jacobian of such
systems. This would enable us to calculate the stability of such GLV models. One
potential method to perform this calculation is by applying the cavity method
as detailed in [67]. It may also be possible to calculate the expected value of
−mini∈{1,n}x

∗
i by applying order statistics as detailed in [175], and thus the expected

resilience of a GLV model with a given value of ρ, although this is only applicable
to systems where |ρ| is small. We note, also, that the analytical approaches central
to this study lead to predictions of normal distributions of steady-state species
abundances. Empirical evidence is typically scale-dependent and points to a range
of more complex possible species-abundance distributions [7] and the development
of scale-dependent theory to bridge this gap with models may be a fruitful line of
further enquiry.

Overall, our analyses, combined with [5, 34, 175] show that increasing the
proportion of predator-prey interactions not only increases feasibility, but also
the resilience of feasible GLV models. This provides greater support to Allesina
and Tang’s [5] conclusion that predator-prey interactions are stabilising whilst
competitive/mutualistic interactions are destabilising.
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2.5 APPENDIX I: ANALYTICALLY APPROXIMATING V ar(x∗
i )

TO ORDER σ6

2.5.1 Coefficient of σ4 in V ar(x∗
i )

We first approximate the coefficient of σ4 in V ar(x∗
i ). To do this we specify the

Taylor expansion of x∗
i in σ in index notation. In matrix form, the Taylor expansion

of x∗ to order σ4 is

x∗ = (I + σE + σ2E2 + σ3E3 + σ4E4 + O(σ5))r (2.17)

where

E =


0 a12 ... a1n

. . .
0

an1 0

 , r =


1
1
...
1

 . (2.18)

In index notation, Eq. (2.17) can be expressed as

x∗
i = 1 + σEij + σ2(E2)ij + σ3(E3)ij + σ4(E4)ij + O(σ5) (2.19)

since ri = 1 for all i ∈ [1, n]. All terms in Eq. (2.19) represent terms to be summed
over. The subscript i in Eq. (2.19) is the free index while all other indicies are
dummy indicies. Please note that terms such as Eij denote vectors and not matrices,
since i is the free index. V ar(x∗

i ) is defined by the equation

V ar(x∗
i ) = E(x∗

i
2) − E(x∗

i )2 (2.20)

so we need to we seek the second moment of x∗
i , which can be found using Eq. (2.19).

The expression for x∗
i

2 is deduced by squaring Eq. (2.19). Since the expectation of
all terms of odd powers of σ is 0, we can safely ignore them, which gives

x∗
i

2 = 1+σ2
(
2(E2)ij+EijEik

)
+σ4

(
2(E4)ij+2(E3)ij(E)ik+(E2)ij(E2)ik

)
+O(σ6) (2.21)

which we can apply to calculate the second moment of x∗
i . We see from Eq. (2.21) that

we need to determine E((E4)ij), E((E3)ij(E)ik) and E((E2)ij(E2)ik). The expression
for (E4)im can be expressed as a sum of terms involving products of interaction
coefficients

(E4)im =
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k,l ̸=m

aijajkaklalm (2.22)
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and the expression for (E4)ij is

(E4)ij = (E4)ii + (E4)ij1{j ̸=i} (2.23)

we first determine the expectation of (E4)iiri. We see from Eq. (2.22) that the
expression for (E4)ii is

(E4)ii =
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k

aijajkaklali. (2.24)

It is also possible for Eq. (2.24) to have terms where i = k, j = l or both, which give
rise to terms of Eq. (2.24) with nonzero expectation. To represent the case where
i = k but j ̸= l, Eq. (2.24) is multiplied by δik and to represent the case where j = l

but i ̸= k, Eq. (2.24) is multiplied by δjl. To represent the case where both i = k

and j = l, we multiply Eq. (2.24) by δikδjl. The expectation of Eq. (2.24) is

E((E4)ii) = E

(
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k

aijajkaklali(δik + δjl + δikδjl)
)

(2.25)

=
n∑

j ̸=i,j ̸=l

n∑
l ̸=i

E(aijajiailali) +
n∑

j ̸=i

n∑
k ̸=j,k ̸=i

E(aijajkakjaji) +
n∑

j ̸=i

E(a2
ija

2
ji)

= (n − 1)(1 + 2(n − 1)ρ2). (2.26)

It is also proven in Section 2.5.2 below that the second summation term of Eq. (2.23)
(E4)ij1{j ̸=i} has an expectation of 0, which implies that

E((E4)ij) = E((E4)ii) (2.27)

= 2(n − 1)(n − 2)ρ2 + (n − 1)(1 + 2ρ2)

= (n − 1)(1 + 2(n − 1)ρ2).

When generalised to account for C, this expression becomes

E((E4)ij) = (n − 1)(C + ρ2(2C + 2C2(n − 2))). (2.28)

This generalisation is done by counting the number of pairwise uncorrelated terms
in the expectation e.g in E(aijajiailali), the variables (aij, aji) and (ail, ali) are
uncorrelated, so a factor of C2 would be present in E(aijajiailali). It is crucial to
note that Eq. (2.28) is also the coefficient of σ4 in the expression for E(x∗

i ). The
expression for (E3)ijEik can be expressed as a sum of terms involving products of
interaction coefficients

(E3)ijEik =
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k,l ̸=m

aijaikaklalm. (2.29)
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The terms that give rise to nonzero expectation of Eq. (2.29) include those where
m = k and i = l, l = i and m = j and those where m = k only.

E((E3)ijEik) = E

(
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k

aijaikaklalm(δilδmk + δilδmj + δmk)
)

(2.30)

=
n∑

j ̸=i,j ̸=l

n∑
l ̸=i

E(a2
ijaikaki) +

n∑
j ̸=i

n∑
k ̸=j,k ̸=i

E(a3
ikaki) +

n∑
j ̸=i

E(a2
ikaklalk)

= 3(n − 1)ρ + 2(n − 1)(n − 2)ρ. (2.31)

The expression for (E2)ij(E2)ik can be expressed as a sum of terms involving products
of interaction coefficients

(E2)ij(E2)ik =
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k,l ̸=m

aijajkailalm. (2.32)

The terms that give rise to nonzero expectation of Eq. (2.32) include those where
k = i and l = j and m = i, k = m and j = l and those where k = i and m = i.

E((E2)ij(E2)ik) = E

(
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k

aijajkailalm(δkiδljδmi + δkmδjl + δkiδmi)
)

=
n∑

j ̸=i,j ̸=l

n∑
l ̸=i

E(a2
ija

2
ji) +

n∑
j ̸=i

n∑
k ̸=j,k ̸=i

E(a2
ija

2
jk) +

n∑
j ̸=i

E(aijajiailali)

= (n − 1)
(
(n − 1) + nρ2

)
. (2.33)

We have also ensured that no terms in all the summations above are double counted.
Substituting all the results derived here into Eq. (2.21), we see that the coefficient of
V ar(x∗

i ) at order σ4 is (n − 1)2 + ρ(n − 1)(4n − 2) + ρ2(n − 1), and combined with
the coefficient of V ar(x∗

i ) at order σ2 we get

V ar(x∗
i ) = (n − 1)σ2 + σ4

(
(n − 1)2 + ρ(n − 1)(4n − 2) + ρ2(n − 1)

)
+ O(σ6). (2.34)

We can generalise the expression for V ar(x∗
i ) to account for the connectance C.

Since aij and aji are zero with probability (1 − C) and are sampled from a bivariate
normal distribution with probability C and Corr(aij, aji) = ρ, we have that

V ar(x∗
i ) = (n − 1)Cσ2 + σ4

(
[C(n − 1) + C2(n − 1)(n − 2)] +

ρ[4C2(n − 1)(n − 2) + 6C(n − 1)] +

ρ2[2C(n − 1) + C2(n − 1)(n − 2) − (n − 1)2C2]
)

+ O(σ6). (2.35)
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The analytics in Eq. (2.35) show that for the case where C < 1, sampling aij and aji

from a bivariate distribution with probability C gives a different V ar(x∗
i ) to when A

is sampled randomly with connectance C, as was done by May [146].

2.5.2 Proof that ∑n
j ̸=i(E4)ijrj has Zero Expectation

In the particular scenario where i ̸= m in Eq. (2.22), the possible scenarios are
m = j, m = k and m = l. In the case where m = j, Eq. (2.22) becomes

(E4)ij =
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k,l ̸=j

aijajkaklalj (2.36)

and it is possible that i = k, j = l or i = l. If j = l, Eq. (2.36) is 0 since Eii = 0
for all i ∈ [1, n]. We therefore consider the cases i = l and i = k in the case where
m = j. The expression for the expectation of (E4)ij is

E((E4)ij) = E

(
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k

aijajkaklalj(δik + δil + δikδil)
)

(2.37)

=
∑

j ̸=i,j ̸=l

∑
l ̸=i

E(aijajiailalj) +
∑
j ̸=i

∑
k ̸=j,k ̸=i

E(aijajkakiaij) + 0

= 0.

Now we consider the case where m = k. In this case, it is possible that j = l and
i = l. It is not possible for i = k since we are considering the scenario in Eq. (2.22)
where i ̸= m. The expression for the expectation of (E4)ik is

E((E4)ik) = E

(
n∑

k=1

n∑
j ̸=i,j ̸=k

n∑
l ̸=k

aijajkaklalk(δil + δjl + δjlδil)
)

(2.38)

=
∑

j ̸=i,j ̸=l

∑
l ̸=i

E(aijajkakiaik) +
∑
j ̸=i

∑
k ̸=j,k ̸=i

E(aijajkakjajk) + 0

= 0.

Finally, in the case where m = l, we have that E((E4)il) = 0 since (E4)il involves a
product of Elm which equals 0 if l = m. We have therefore proven that ∑n

j ̸=i(E4)ijrj

has an expectation of 0.

2.5.3 Coefficient of σ4 in Cov(x∗
i , x∗

j)

Using the same technique as entailed in Section 2.5.1, here we provide the calculation
of the σ4 coefficient of Cov(x∗

i , x∗
j). Firstly, Cov(x∗

i , x∗
j) is defined by the equation

Cov(x∗
i , x∗

j) = E(x∗
i x

∗
j) − E(x∗

i )E(x∗
j). (2.39)
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Due to symmetry in the expression for x∗, E(x∗
i ) is identical to E(x∗

j) and so
Eq. (2.39) simplifies to

Cov(x∗
i , x∗

j) = E(x∗
i x

∗
j) − E(x∗

i )2. (2.40)

Here, the only extra number we need to calculate is E(x∗
i x

∗
j). Again in index notation,

the expression for x∗
i is given by

x∗
i = 1 + σEik + σ2(E2)ik + σ3(E3)ik + σ4(E4)ik + O(σ5) (2.41)

and x∗
j is given by

x∗
j = 1 + σEjl + σ2(E2)jl + σ3(E3)jl + σ4(E4)jl + O(σ5) (2.42)

x∗
i x

∗
j = 1 + σ2

(
2(E2)ik + EikEjl

)
+ σ4

(
2(E4)ik + 2(E3)ikEjl + (E2)ik(E2)jl

)
. (2.43)

We can calculate E(x∗
i x

∗
j) directly from Eq. (2.43). From Eq. (2.43), we see that the

extra terms we need to determine are E[(E3)ikEjl] and E[(E2)ik(E2)jl]. E[(E4)ik] is
already determined from our calculation of the σ4 coefficient of V ar(x∗

i ) in Section
2.5.1. Firstly, the expression for (E3)ikEjl can be expressed as

(E3)ikEjl =
n∑

k=1,k ̸=o

n∑
m ̸=i,m ̸=o

n∑
l ̸=k,l ̸=m

n∑
o ̸=m,o ̸=k

ajlaimamoaok. (2.44)

The terms that give rise to nonzero expectation of Eq. (2.44) include those where
j = o and k = l, o = l and k = j, o = i and m = k, and simply m = k. The
expectation of Eq. (2.44) is

E[(E3)ikEjl] = E

(
n∑

k=1,k ̸=o

n∑
m̸=i,m ̸=o

n∑
l ̸=k,l ̸=m

n∑
o ̸=m,o ̸=k

ajlaimamoaok

(
δjoδkl + δloδkj + δoiδmk + δmk

))

=
n∑

l ̸=j

n∑
m ̸=i,m ̸=j

E(ajlaimamjajl) +
n∑

l ̸=j,l ̸=m

n∑
m ̸=i,m ̸=l

E(ajlaimamlalj) (2.45)

+
n∑

k ̸=i

n∑
l ̸=j

E(ajlakiaikaki) +
n∑

l ̸=j

n∑
k ̸=i,k ̸=o

n∑
o ̸=k

E(ajlaikakoaok).

We now calculate the expectations of each of the individual summation terms in the
second and third rows of Eq. (2.45).

n∑
l ̸=j

n∑
m̸=i,m ̸=j

E(ajlaimamjajl) = 0 (2.46)
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n∑
l ̸=j

n∑
m ̸=i,m ̸=j

E(ajlaimamlalj) =
n∑

m̸=i

E(ajiaimamiaij) + E(a2
ija

2
ji) (2.47)

= (1 + 2ρ2) + (n − 2)ρ2

n∑
l ̸=j

n∑
m ̸=i,m ̸=j

E(ajlaikakiaik) = E(a2
ija

2
ji) = (1 + 2ρ2) (2.48)

n∑
l ̸=j

n∑
k ̸=i,l ̸=n

n∑
o ̸=i

E(ajlaikakoaok) =
n∑

o ̸=i

E(aijajiaioaoi) = (n − 2)ρ2. (2.49)

Noting that Eq. (2.48) is already counted into Eq. (2.47), we neglect Eq. (2.48) to
prevent double counting. Summing Eq. (2.46), Eq. (2.47) and Eq. (2.49) we see that

E[(E3)ikEjl] = 1 + 2(n − 1)ρ2. (2.50)

The expression for (E2)ik(E2)jl is given by

(E2)ik(E2)jl =
n∑

k=1,k ̸=m

n∑
m ̸=i,m ̸=k

n∑
l ̸=o

n∑
o ̸=j,o̸=l

aimamkajoaol. (2.51)

The terms that give rise to nonzero expectation of Eq. (2.51) include those where
m = j and i = k, l = j, and m = j and i = o. The expectation of Eq. (2.51) is

E[(E2)ik(E2)jl] = E

(
n∑

k=1,k ̸=m

n∑
m ̸=i,m ̸=k

n∑
l ̸=o

n∑
o ̸=j,o̸=l

aimamkajoaol(δoiδlm + δmoδli + δlj)
)

=
n∑

m ̸=i,m ̸=k

n∑
k ̸=m

E(aimamkajiaim) +
n∑

m ̸=i,m ̸=j

n∑
k ̸=m

E(aimamkajmami)

+
n∑

m ̸=i,m ̸=k

n∑
k ̸=m

n∑
o ̸=j

E(aimamkajoaoj). (2.52)

We now calculate the expectations of each individual summation term in the second
line of Eq. (2.52).

n∑
m̸=i,m ̸=k

n∑
k ̸=m

E(aimamkajiaim) = E(a2
ija

2
ji) = (1 + 2ρ2) (2.53)

n∑
m ̸=i,m ̸=k

n∑
k ̸=m

E(aimamkajmami) =
n∑

m̸=i,m ̸=j

E(aimamjajmami) (2.54)

= (n − 2)ρ2

n∑
m̸=i,m ̸=k

n∑
k ̸=m

n∑
o ̸=j

E(aimamkajoaoj) =
n∑

o ̸=j

n∑
m̸=i

E(aimamiajoaoj) (2.55)

= ((n − 1)2 − 1)ρ2
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Summing Eq. (2.53), Eq. (2.54) and Eq. (2.55) we see that

E[(E2)ik(E2)jl] = 1 + n(n − 1)ρ2. (2.56)

Substituting Eq. (2.56) and Eq. (2.50) into the expression or the expectation of
Eq. (2.43), we can determine the σ4 coefficient of Cov(x∗

i , x∗
j) which is given by

3 + 5(n − 1)ρ2. The expression for Cov(x∗
i , x∗

j) up to and including order σ4 is

Cov(x∗
i , x∗

j) = ρσ2 + (3 + 5(n − 1)ρ2)σ4 (2.57)

and for the case where C < 1, it can be generalised to

Cov(x∗
i , x∗

j) = ρCσ2 + (3 + (6 + C(5n − 11))ρ2)σ4. (2.58)

2.5.4 Coefficient of σ6 in V ar(x∗
i )

To obtain the coefficient of σ6 in V ar(x∗
i ), we apply the Taylor expansion of x∗

i up
to order σ6, given by

x∗ = (I + σE + σ2E2 + σ3E3 + σ4E4 + σ5E5 + σ6E6 + O(σ7))r (2.59)

which in index notation is

x∗
i = 1 + σEij + σ2(E2)ij + σ3(E3)ij + σ4(E4)ij + σ5(E5)ij + σ6(E6)ij + O(σ7). (2.60)

Again, we need to apply Eq. (2.20), which requires us to calculate the second moment
of x∗

i as well as E(x∗
i )2. To calculate E(x∗

i ), we need to calculate E((E6)ij). To
calculate E(x∗

i
2), we need to calculate the expectation of the square of Eq. (2.60)

with terms of order higher than σ6 truncated. At order σ6, it is convenient to adopt
a different notation to that detailed in Section 2.5. Here, we re-express the matrix E
in the form

E =
n−1∑
i=1

n∑
j=2,j>i

Φij (2.61)

where Φij represents matrices such that their (i, j)-th component is aij (i.e. (Φij)ij =
aij and (Φij)ji = aji for j > i) and all other entries are zero. The coefficients of x∗

i
2

at order σ6 are given in Eq. (2.62) below.

2(E6)ij + 2(E5)ijEik + 2(E4)ij(E2)ik + (E3)ij(E3)ik (2.62)
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and the coefficients of E(x∗
i )2 at order σ6 are

2E[(E6)ij] + 2E[(E4)ii]E[(E2)ii] (2.63)

and the coefficient of V ar(x∗
i ) at order σ6 referred to as v6 in the main text is given

by

2E[(E5)ijEik] + 2E[(E4)ij(E2)ik] + E[(E3)ij(E3)ik] − 2E[(E4)ii]E[(E2)ii] (2.64)

obtained by subtracting Eq. (2.63) from Eq. (2.62). To calculate the coefficient of
σ6 in V ar(x∗

i ), it is necessary to calculate the expectation of (E5)ij(E)ik, (E4)ij(E2)ik

and (E3)ij(E3)ik in Eq. (2.64). To calculate the expectations of these terms, we
consider the expression for the sixth power of Eq. (2.61) in terms of the Φij terms.
In Sections 2.5.4.1 to 2.5.4.4, we describe the method of calculating the expectations
of each of the terms in Eq. (2.64). We note that to obtain an approximation of E(x∗

i )
to order σ6, it is necessary to calculate E[(E6)ij]. The principles used to calculate
this are identical to those used to calculate all the terms in Eq. (2.64), and we begin
this subsection by explaining the procedures for calculating E[(E6)ij].

2.5.4.1 Calculating E((E6)ij)

Only terms in (E6)ij involving products of certain Φij terms have nonzero expectation,
such as Φ2

12Φ2
13Φ2

23 which is the product of the square of three Φij terms that involve
mutually uncorrelated variables. As another example, terms of the form Φ4

ijΦ2
ik for

j ̸= k also has nonzero expectation. Another term in (E6)ij with nonzero expectation
is Φ6

ij. To count the number of terms of each form, we consider in Table 2.1 below
the set of all forms in which the terms having nonzero expectation can take. Let A,
B and C denote the Φij matrices with variables that are all mutually uncorrelated
when ρ ̸= 0 e.g. A = Φ12, B = Φ13 and C = Φ23, we have that
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A2B2C2 A4B2 A6

Φ2
ijΦ2

ikΦ2
jk Φ4

ijΦ2
ik Φ6

ij

Φ2
ijΦ2

ikΦ2
il Φ4

ijΦ2
jk

Φ2
ijΦ2

ikΦ2
kl Φ4

ijΦ2
kl

Φ2
ijΦ2

jkΦ2
kl

Φ2
ijΦ2

ikΦ2
jl

Φ2
ijΦ2

jkΦ2
jl

Φ2
ijΦ2

jkΦ2
il

Table 2.1: Set of all forms of different terms of E6 which have nonzero expectations.
We specifically do not allow any pair of indicies to be equal i.e. i ̸= j, j ̸= k.
The first column (A2B2C2) involves products of 3 different matrices that contain
mutually uncorrelated variables, while the second column (A4B2) involves products
of 2 different matrices that contain mutually uncorrelated variables. i is assumed to
be the free index throughout Section 2.5.4, with all other indicies dummy indicies.

Since matrix multiplication is not commutative, we now consider the set of
all permutations of each entry of Table 2.1 above. First, we seek the set of all
permutations of terms of each form that gives rise to a nonzero sum of first row
(first row sum) (we take the first row i = 1 without loss of generality). Φ2

ijΦ2
ikΦ2

jk

contains 6 permutations that give rise to a nonzero first row sum. The expectation
of the first row sum of each matrix of this form (i.e expectation of the first row
sum of Φ12Φ13Φ23) is ρ3. Since two indicies (j and k) are summed over, there exists
(n − 1)(n − 2) terms in the sum. There exists 6 permutations with nonzero first row
sums, but three of these 6 permutations are double countings of the other three. The
expectation of Φ2

ijΦ2
ikΦ2

jk is thus 3(n − 1)(n − 2)ρ3.
Φ2

ijΦ2
ikΦ2

il contains 2 distinct permutations that give rise to nonzero first row sum,
and with 3 indicies summed over, there are ((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))
terms in the sum. Subtraction of (n − 1)2 + 2(n − 1)(n − 2) from (n − 1)3 is to ensure
no double countings in the sum over 3 indices. Since the expectation of the first
row sum of each matrix of this form is also ρ3, the expectation of Φ2

ijΦ2
ikΦ2

il is thus
2((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ3. The expectation of each entry of Table
2.1 is deduced by following these steps.

1. Checking the number of permutations of each entry of Table 2.1 that has a
nonzero sum of (first) row. We do this for the first row if we set our dummy
index i to 1 without loss of generality Check if any pair of rows are double
countings of each other.
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2. Calculating the expectation of the first row sum of each permutation that has
a nonzero first row sum.

3. Count the number of terms in the sum over its set of dummy indicies. We
specifically do not allow any index to equal each other, not even the free index.

4. Check if any terms in the sums over its dummy indicies are double counted
by relabelling dummy indicies. If there are double countings, subtract the
number of double counted terms from the quantity deduced in 3. For example,
if summing over 2 indicies and we specifically do not allow any index to equal
each other, then there are (n − 1)2 − (n − 1) terms, since (n − 1)2 terms are
summed over and (n − 1) of them are double counted.

Finally we take the product of all quantities deduced in 1. to 3. above to give the
expectation of each entry of Table 2.1. Repeating this procedure for all entries of
Table 2.1 and summing, we find that

E((E6)ij) = (n − 1)(n − 2) + (n − 1)(9ρ + 6ρ3) (2.65)

+6(n − 1)(n − 2)ρ(1 + 2ρ2)

+3(n − 1)(n − 2)ρ3 + 5((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ3.

If A has a connectance C and aij and aji are sampled from a bivariate distribution,
then they are both nonzero with probability C, and so we have

E((E6)ij) = (n − 1)(n − 2)C3 + (n − 1)(9ρ + 6ρ3)C (2.66)

+6(n − 1)(n − 2)ρ(1 + 2ρ2)C2

+3(n − 1)(n − 2)ρ3C3 + 5((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ3C3.

2.5.4.2 Calculating E((E5)ijEik)

Now we seek to find E((E5)ijEik). Table 2.2 shows the set of all forms in which the
terms of (E5)ijEik having nonzero expectation can take.
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A2B2C2 A4B2 A6

(Φ2
ijΦ2

jkΦik)Φik (Φ4
ijΦik)Φik (Φ5

ij)Φij

(Φ2
ijΦ2

ikΦil)Φil (Φ2
ijΦ3

ik)Φik

(ΦijΦ2
jkΦ2

jl)Φij (Φ3
ijΦ2

jk)Φij

(Φ2
ijΦ2

jkΦil)Φil (ΦijΦ4
jk)Φij

(ΦijΦ2
ikΦ2

jl)Φij

(ΦijΦ2
ikΦ2

kl)Φij

Table 2.2: Set of all forms of different terms of (E5)ijEik which have nonzero expecta-
tions. Here, all the Φij matrices inside the brackets represent matrices that comprise
the term (E5)ij and the matrix outside the brackets represent the Φij matrices that
comprise Eik.

Next, we repeat step 1. detailed in the page above, but only for the terms inside
the brackets. This gives (E5)ij . After that, multiply the first row sums of all matrices
with nonzero first row sum by the first row sum of the Φ outside the bracket. In
other words, multiplying (E5)ij with Eik. We next calculate the expectation of this
quantity. Then we repeat step 3 and 4. We find that

E((E5)ijEik) = 2(n − 1)(n − 2)(1 + 2ρ2) + 5(3ρ2(n − 1)(n − 2)) + (n − 1)(n − 2)ρ

+5((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ2

+(n − 1)(3 + 12ρ2) (2.67)

and if A has connectance C with aij and aji sampled from a bivariate distribution,
then we have

E((E5)ijEik) = 2(n − 1)(n − 2)(1 + 2ρ2)C2 + 4(3ρ2(n − 1)(n − 2))C2 + (2.68)

(3ρ2(n − 1)(n − 2))C3 + (n − 1)(n − 2)ρC3 +

5((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ2C3 + (n − 1)(3 + 12ρ2)C.

2.5.4.3 Calculating E((E4)ij(E2)ik)

Now we seek to find E((E4)ij(E2)ik). Table 2.3 shows the set of all forms in which
the terms of (E4)ij(E2)ik having nonzero expectation can take.
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A2B2C2 A4B2 A6

(Φ2
ijΦ2

jk)(Φ2
ik) (Φ2

ijΦ2
ik)(Φ2

ij) (Φ4
ij)(Φ2

ij)
(ΦijΦikΦ2

il)(ΦijΦik) (Φ2
ijΦ2

jk)(Φ2
ij)

(ΦijΦikΦ2
jk)(ΦijΦik) (Φ3

ijΦik)(ΦijΦik)
(ΦijΦikΦ2

jl)(ΦijΦik) (Φ3
ijΦjk)(ΦijΦjk)

(ΦijΦikΦ2
kl)(ΦijΦik) (ΦijΦ3

jk)(ΦijΦjk)
(ΦijΦjkΦ2

ik)(ΦijΦjk) (Φ4
ij)(Φ2

ik)
(ΦijΦjkΦ2

il)(ΦijΦjk)
(ΦijΦjkΦ2

jl)(ΦijΦjk)
(ΦijΦjkΦ2

kl)(ΦijΦjk)
(Φ2

ijΦ2
jk)(Φ2

il)
(Φ2

ijΦ2
ik)(Φ2

il)

Table 2.3: Set of all forms of different terms of (E4)ij(E2)ik with nonzero expectations.
Here, all the Φij matrices inside the left bracket represent those that comprise the
(E4)ij term and all the Φijs in the right bracket represents all those in the (E2)ik

term.

Now, it is necessary to seek the set of all (E4)ij(E2)ik such that both (E4)ijs and
(E2)iks have nonzero first row sums. In other words, all the entries in Table 2.3 in
which both their left and right brackets have nonzero first row sums. To do this, we
repeat step 1 for both the left and right brackets of each entry of table 2.3, discarding
any permutations of matrices in each bracket that have zero first row sums. Next,
calculate the expectation of the product of the first row sum of the left bracket and
the first row sum of the right bracket. Finally, repeat steps 3. and 4. We find that

E((E4)ij(E2)ik) = 4(n − 1)(n − 2)ρ(1 + 2ρ2) + 8ρ(n − 1)(n − 2) (2.69)

+3ρ((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2)) + (n − 1)(n − 2)ρ3

+(n − 1)(n − 2)ρ2 + 2((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ3

+(n − 1)(9ρ + 6ρ3)

and if A has connectance C with aij and aji sampled from a bivariate distribution,
then we have

E((E4)ij(E2)ik) = 4(n − 1)(n − 2)ρ(1 + 2ρ2)C2 + 6ρ(n − 1)(n − 2)C2 (2.70)

+2ρ(n − 1)(n − 2)C3 + (n − 1)(9ρ + 6ρ3)C

+3ρ((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))C3

+(n − 1)(n − 2)ρ3C3 + (n − 1)(n − 2)ρ2C3

+2((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))ρ3C3.
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Now, we find E((E3)ij(E3)ik). Since (E3)ij(E3)ik involves the product of two terms
that contain a third power of E , each one of which has a range of permutations that
give rise to nonzero first row, (E3)ij(E3)ik will have more permutations that give
nonzero first row. For instance, the first (E3)ij can contain a product of either two
or three different Φijs. We therefore follow an alternative set of steps.

1. Find the set of all permutations of the tuples (1, 2, 3, 1, 2, 3) and (1, 1, 1, 1, 2, 2).
Each number in the tuple represents a distinct Φij matrix e.g. 1 representing
Φij, 2 for Φik, 3 for Φil. Tuple (1, 2, 3, 1, 2, 3) represents the order of products
of three distinct matrices (A2B2C2) while (1, 1, 1, 1, 2, 2) represents the order
of products of two distinct matrices (A4B2). The permutations of each of these
tuples should be expressed as a table.

2. Split the tables of permutations found in step 1. into two tables by separating
columns 1 to 3 and 4 to 6. In each of these two tables, discard any repeated
rows if any. The table containing columns 1 to 3 represents the set of all
permutations of (E3)ij and the table containing columns 4 to 6 represents the
set of all permutations of (E3)ik.

3. Check which rows of both tables represent permutations that give nonzero first
row sum in BOTH (E3)ij and (E3)ik.

4. Repeat Steps 3 and 4 in the list above Eq. (2.65).

2.5.4.4 Calculating E((E3)ij(E3)ik)

The entries of Table 2.4 represents the set of all Φij matrices that comprise the
(E4)ij(E2)iks which have nonzero expectations.

A2B2C2 A4B2 A6

ΦijΦikΦil ΦijΦik Φij

ΦijΦikΦjk ΦijΦjk

ΦijΦikΦjl

ΦijΦjkΦjl

ΦijΦjkΦkl

ΦijΦikΦkl

Table 2.4: Each entry of the table contains the set of Φij matrices that make up the
(E4)ij(E2)ik with nonzero expectations. The column A2B2C2 are the set of products
of three different Φij matrices that can give nonzero first row sums depending on
the permutation. A4B2 are the set of products of two different Φij matrices that can
give nonzero first row sums, and A6 is the product of a one such matrix e.g. Φ6

ij.



2.5. APPENDIX I: Analytically Approximating V ar(x∗
i ) to Order σ6 69

Using the method outlined immediately above, we find that

E((E3)ij(E3)ik) = 4ρ2((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2)) (2.71)

+2(n − 1)(n − 2)ρ2 + (n − 1)(n − 2)ρ3 + (n − 1)(n − 2)

+((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))

+4(n − 1)(n − 2)3ρ2 + 2(n − 1)(n − 2)(1 + 2ρ2)

+(n − 1)(3 + 12ρ2)

and if A has connectance C with aij and aji sampled from a bivariate distribution,
then we have

E((E3)ij(E3)ik) = 4ρ2((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))C3 (2.72)

+2(n − 1)(n − 2)ρ2C3 + (n − 1)(n − 2)ρ3C3 + (n − 1)(n − 2)C3

+((n − 1)3 − (n − 1)2 − 2(n − 1)(n − 2))C3

+4(n − 1)(n − 2)3ρ2C2 + 2(n − 1)(n − 2)(1 + 2ρ2)C2

+(n − 1)(3 + 12ρ2)C.

We can use Eq. (2.65) to Eq. (2.72) to calculate Eq. (2.64). Putting this together,
we see that the order σ6 coefficient of V ar(x∗

i ) is equal to

C(n − 1)(9 − 12C − 2C2(n − 2) + 6Cn + C2(n − 2)n) (2.73)

+C(n − 1)
(
18 − 38C − 12C2(n − 2) + 18Cn + 6C2(n − 2)n

)
ρ

+C(n − 1)(36 − 96C − 32C2(n − 2) + 48Cn + 14C2(n − 2)n)ρ2

+C(n − 1)(12 − 28C − 5C2(n − 2) + 12Cn)ρ3.

2.5.4.5 Number of Extra terms required to calculate Cov(x∗
i , x∗

j) to order σ6

We note that the fact that the expression for Cov(x∗
i , x∗

j) involves an extra (free) index
j makes the algebra required for its calculation lengthier. We have the additional
term Φij where both i and j are the free indices. For clarity, in this section we will
denote the second free index as i′ instead of j. The number of indices inside each
bracket of the tables in Section 2.5.4 is at most the number of unique Φ plus 1 (i.e
(ΦijΦikΦ2

il) in Section 2.5.4.3 has 3 unique Φs Φij, Φik and Φil, and 4 indices i,j,k
and l). We formalise this as

Nmax
ind = NuniqΦ + 1. (2.74)
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It is possible for the index i′ to occur in the bracket a various number of times. The
maximum number of times i′ can occur in the left bracket is

max(#i′) = Nmax
ind − 1 (2.75)

since the left bracket has to include the free index i. Just for terms of the form
(A2B2)C2 (see Table in Section 2.5.4.3), the number of terms needed is equal to 1 plus
the number of terms of the form (A2B2)C2 already present in V ar(x∗

i ) (NV ar(x∗
i )

(A2B2)C2)
all times max(#i′), in other words

(NV ar(x∗
i )

(A2B2)C2 + 1)max(#j). (2.76)

When we have two free indices i and i′, Nmax
ind = 3 and max(#i′) = 2. In the ex-

pression for V ar(x∗
i ), there are 3 terms of the form (A2B2)C2 so N

V ar(x∗
i )

(A2B2)C2 =
3. Since max(#i′) = 2, we have (NV ar(x∗

i )
(A2B2)C2 + 1)max(#i′) = 8, and so we re-

quire 8 terms of the form (A2B2)C2. Since it is also possible for the index i′

to not occur inside the bracket (A2B2), we have an extra (NV ar(x∗
i )

(A2B2)C2 + 1) terms
which brings the total number of (A2B2)C2 type terms to 12. The terms of
the form (A2B2)C2 are (Φ2

ijΦ2
jk)(Φ2

i′j), (Φ2
ijΦ2

ik)(Φ2
i′j), (Φ2

ijΦ2
ii′)(Φ2

i′j), (Φ2
ii′Φ2

ij)(Φ2
i′k),

(Φ2
ii′Φ2

i′j)(Φ2
i′k), (Φ2

ijΦ2
i′j)(Φ2

i′k), (Φ2
ijΦ2

ik)(Φ2
i′l), (Φ2

ijΦ2
jk)(Φ2

i′l), (Φ2
ijΦ2

jk)(Φ2
i′i), (Φ2

ijΦ2
ik)(Φ2

i′i),
(Φ2

ijΦ2
i′j)(Φ2

i′i).

Terms of the form (AB2C2)(A) contain 3 variables in the left bracket, and so it
can have 4 indices in that bracket. This means that Nmax

ind = 4 and max(#j) = 3. In
the expression for V ar(x∗

i ), there are 6 terms of the form (AB2C2)A, so Nmax
ind = 6,

and we require (6 + 1) × 3 = 21 terms.

2.5.5 Accuracy of Analytical Prediction

The analytical prediction of Pfeas(γ, ρ) remains accurate up to |ρ| = 0.5 for n = 100
and |ρ| = 0.25 for n = 25.
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γ =2AT

γ =1AT

γ =2/3AT

γ =4/3AT

γ =1AT

γ =0.8AT

Figure S1: Dots are numerical simulations of Pfeas(γ, ρ). Solid curves are analytical
predictions of Pfeas(γ, ρ) using E(x∗

i ) approximated up to and including order σ3

and V ar(x∗
i ) up to and including order σ6. The system has C = 1. Blue ρ < 0, red

ρ = 0 and green ρ > 0. γAT is the complexity above which linear stability is lost in
the Allesina and Tang 2015 model. For any value of ρ, feasibility is lost at smaller
complexities than linear stability in large systems.

We see from Figure S1 that feasibility is lost at a smaller complexity compared
to linear stability. For systems with ρ < 0, feasibility is lost at a much smaller
complexity compared to linear stability than systems with ρ > 0, implying that
increasing the proportion of predator-prey interactions will have a more modest
effect on stability than predicted by Allesina and Tang. Figure S2 plots numerical
simulations of Pfeas(γ, ρ) for the case where ρ = ±1. For the case where ρ = −1,
Pfeas still decreases to 0 above a sufficiently large complexity even though the system
is linearly stable for all complexities.

n=25 n=100

Figure S2: Numerical simulations of Pfeas(γ, ρ) for the case where |ρ| = 1. Analytical
predictions break down for this magnitude of ρ, so only numerical simulations are
included. The system has C = 1.
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2.6 APPENDIX II: PARAMETER REGIONS WHERE APPROXI-
MATION OF V ar(x∗

i ) BEYOND ORDER σ6 IS REQUIRED

In Figure S4, we show examples of plots in parameter regions where the approximation
of Pfeas(γ, ρ) breaks down. It is apparent from Figure S3 that for large magnitudes
of ρ, the analytical approximation of V ar(x∗

i ) to order σ6 breaks down at a smaller
value of σ. Since systems with a large negative ρ also has a higher Pfeas at a
given value of σ, the analytical prediction of Pfeas(γ, ρ) becomes inaccurate before
Pfeas(γ, ρ) transitions to 0. These points indicate how the analytical approximation
would break down given a sufficiently large negative ρ. We also show in Figure S4
that for systems such as n = 25, the analytical prediction of Pfeas(γ, ρ) also breaks
down for small C.

Figure S3: V ar(x∗
i ) as a function of γ for systems with n = 25. Panel (a) is for

system with |ρ| = 0.25 and panel (b) for |ρ| = 0.7. It is evident from panel (b) that
for large negative ρ such as ρ = −0.7, the analytical prediction of V ar(x∗

i ) breaks
down at around γ = 0.5, which is a smaller value than for the case ρ = −0.25 where
the analytical prediction breaks down at a around γ = 0.8. For ρ = 0 and ρ > 0,
outliers in x∗

i begin to emerge above a sufficiently large γ, causing numerical data of
V ar(x∗

i ) to become noisy.

In the right panel (n = 25, ρ = −0.7), the feasibility probability at value of γ at
which the order σ6 approximation of V ar(x∗

i ) breaks down is 0.632, whereas in the
left panel (n = 25, ρ = −0.25), this corresponding feasibility probability is 0.021. In
Figure S4, we show that the analytical prediction of Pfeas(γ, ρ) can break down if
either ρ is sufficiently large or if C is sufficiently small for a fixed community size n.
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Figure S4: Left: The analytical prediction of Pfeas(γ, ρ) breaks down when ρ is
sufficiently large and negative given a sufficiently small n. Here C = 1. Right: The
analytical prediction of Pfeas(γ, ρ) begins to break down when C is sufficiently small.

It is worth noting that when ρ becomes sufficiently large and negative, the variance-
covariance matrix ceases to be positive semi-definite if V ar(x∗

i ) is approximated up
to order σ6.

2.7 APPENDIX III: ANALYTICAL PREDICTION OF FEASIBIL-
ITY PROBABILITY AS A FUNCTION OF COMPLEXITY

The analytical prediction of Pfeas as a function of complexity γ is determined by
integrating the joint density function of x∗ from x∗

i = 0 to x∗
i = ∞ for all i ∈ [1, n].

For systems of n ≤ 25, this is done using the mvncdf command in MATLAB. For
systems where n > 25, mvncdf is no longer applicable, therefore we obtain the
analytical prediction of Pfeas as a function of γ by reducing the multivariate normal
integral to a single integral using the method detailed in [41]. The multivariate
normal distribution function is given by

FX(X) =
∫ xi

−∞
. . .
∫ xn

−∞
fX(X, ΣX)dX (2.77)

where ΣX is the variance-covariance matrix of X. Here X is a random variable such
that Xi = −x∗

i . Define yi as a standardised normal random variable yi = Xi−µXi

σXi
. If

Corr(x∗
i , x∗

j) can be expressed in the form Corr(x∗
i , x∗

j) = bibj where bi, bj ∈ R, then
FX(X) can be expressed as

FX(X) =
∫ ∞

−∞

{
n∏

i=1
Φ( yi − biu

(1 − b2
i )1/2 )

}
ϕ(u)du (2.78)
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where ϕ(u) is the density function of a standard normal random variable u and Φ(v)
denotes the cumulative distribution function of a standard normal random variable
v [41]. The condition of feasibility x∗ > 0 is equivalent to the condition that X < 0.
Since yi = Xi−E(Xi)

σXi
, the condition that Xi < 0 is equivalent to the condition that

yi < −E(Xi)/σXi
and thus yi < E(x∗

i )/σx∗
i
. In our analytical prediction of Pfeas, we

have that yi = E(x∗
i )√

V ar(x∗
i )

and bi =
√

Cov(x∗
i ,x∗

j )
V ar(x∗

i ) . In other words, Pfeas is the expression
you get by plugging these expressions for yi and bi into Eq. (2.78). The integral
Eq. (2.78) is also applicable for Cov(x∗

i , x∗
j) < 0, however the integrand is complex

[41]. As a result, we approximated Pfeas(γ, ρ) for the case ρ < 0 by numerically
integrating Eq. (2.78) using the Nintegrate command in mathematica. The lower
and upper limits of this integral are set to -20 and 20 respectively. This numerical
integral works well since the imaginary part is of magnitude 10−18 and the real part
matches the numerical simulations of Pfeas(γ, ρ) closely, as can be seen in Figure S1.

2.8 APPENDIX IV: OBTAINING NUMERICAL SIMULATIONS
OF FEASIBILITY PROBABILITY

In fully connected systems C = 1, we obtained 10000 numerical solutions of x∗

by doing 10000 successive runs of the GLV equation (Eq. (2.5) in main text). In
particular, the numerical solutions were obtained by generating 10000 random
interaction matrices A parameterised according to Eq. (2.3) of the main text and
calculating each of their corresponding x∗ using Eq. (2.5). The feasibility probability
is found by calculating the fraction of numerical solutions of x∗ out of the 10000
realisations that contain all non-negative entries (i.e. the fraction of numerical
solutions of x∗ such that x∗

i > 0 ∀ i ∈ [1, n]). For each value of n, ρ and C we
considered, the step described above is repeated for a range of values of σ, where
this range falls within the interval γ ∈ [0, 1] (where γ = σ

√
nC). For the n = 25 case

(Figure 2.3 (a)), the feasibility probability is calculated for values of σ ranging from
0.01 and 0.2, with increment of 0.01. In other words, the width between each marker
in Figure 2.3 (a) is 0.01

√
25. For the n = 100 case (Figure 2.3 (b)), the values of σ

range from 0.008 to 0.096, with increment of 0.008, where the width between each
marker is 0.008

√
100. For predator-prey, mutualistic and competitive interactions

(ρ ̸= 0), the interaction matrix A is constructed according to Eq. (2.3) of the main
text. For fully connected (C = 1) systems with random interaction structure (i.e
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Figure (3) red in main text), A is constructed according to Eq. (2.2) of the main
text.

When considering sparsely connected matrices (C < 1), we exclude such matrices
A that contain disconnected components. In particular, we obtain 10000 realisations
of x∗ which correspond to sparse interaction matrices constructed according to
Eq. (2.3) and contain no disconnected components. Even in the case where ρ = 0,
we construct A according to Eq. (2.3) rather than Eq. (2.2). This is done because for
the case where C < 1, constructing A according to Eq. (2.3) would mean that if Aij

is nonzero, then Aji is also nonzero, which is not true if A is constructed according to
Eq. (2.2). As a result, these two different ways of constructing A would give different
Pfeas. However in the case where C = 1, constructing A according to Eq. (2.3) with
ρ = 0 would give the same feasibility probability as when A is constructed according
to Eq. (2.2).

2.9 APPENDIX V: ANALYTICAL PREDICTION FOR
SPARSELY CONNECTED SYSTEMS

Empirical ecological networks may be sparsely connected [60], so it would be useful
to generalise our feasibility calculations to account for connectance C. Recent work
by Akjouj and Najim [3] have shown that in sparse random GLV models with block
structure, Pfeas also exhibits a rapid transition to 0 above a critical interaction
strength, hinting that it could be viable to generalise Stone’s analytical prediction
to account for C. In this section, we demonstrate the success of this generalisation
by providing an example in Figure S5. In Figure S5, we show that for a system
with n = 100, analytical predictions for Pfeas(γ, ρ) remain highly accurate even in
systems with connectance as low as C = 0.3.
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Figure S5: We show that the analytical prediction of feasibility probability as a
function of complexity [210] can be generalised for C as well as ρ (i.e. Pfeas as a
funtion of γ where γ = σ

√
nC). All labels and parameters for this figure are the

same as that of Figure 3 right, except C = 0.3. Our analysis of n species systems
concerns systems comprising n species that interact as a single unit, so interaction
matrices of C < 1 that contain disconnected components are excluded from our
analysis (see Supplemental Information 2.8).

By comparing the analytical and numerical data in Figure S5 with those of Figure
S1, we see that the system with C = 0.3 shows an almost identical feasibility profile
with a system of C = 1. In other words, we get the same value of Pfeas for a given
value of γM in both systems. This implies that increasing σ and decreasing C to
give the same complexity has negligible effect on the feasibility profile.

2.10 APPENDIX VI: EFFECT OF ρ ON OUTLIER EIGENVALUE

This section shows the effect of ρ on the stability of GLV models by looking at how
the outlier eigenvalue of J changes with ρ. It also shows that the abundance of the
least abundant species is a good predictor of the outlier eigenvalue of J , and thus its
stability.
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n=500(a) (b) (c)

Figure S6: Panel (a) shows the effect of ρ on the outlier eigenvalue of J = x∗A,
averaged over 3500 realisations. Black represents the outlier eigenvalue of the actual
GLV Jacobian (max(Re(λ)) actual), where each realisation possesses a feasible
x∗. Light green represents the outlier eigenvalue approximated by the relation
max(Re(λ)) = −mini∈{1,n}x

∗
i and pink is the outlier eigenvalue of J constructed

by sampling x∗ and A independently. Error bars represent the standard error
about the mean. Panel (b) plots −mini∈{1,n}x

∗
i against max(Re(λ)) actual for 500

realisations of the GLV model, with γ = 0.01
√

500. Blue ρ = 0.7, red ρ = 0 and green
ρ = −0.7. Black line is the line on which max(Re(λ)) = −mini∈{1,n}x

∗
i . Panel (c)

plots max(Re(λ)) actual against that of J constructed by sampling x∗ independently
of A.

Panel (a) shows that the outlier of the Jacobian constructed by sampling x∗ inde-
pendently of A (Grilli’s assumption) correctly captures the qualitative effect of ρ on
stability. Although it is shown in panel (c) that constructing the Jacobian by adopting
Grilli’s assumption fails to accurately calculate the outlier eigenvalue of each Jacobian.
Panel (b) shows that −mini∈{1,n}x

∗
i is a highly accurate predictor of stability of the

GLV model corresponding to a given realisation of A, since most green markers sit
close to the diagonal line. Notice that for systems where ρ > 0, the markers lie
below the diagonal line. This implies that the stability is marginally overestimated
by the relation max(Re(λ)) = −mini∈{1,n}x

∗
i and for ρ < 0, this relation underes-

timates the stability slightly. Since Corr(max(Re(λ)), −mini∈{1,n}x
∗
i ) = 0.9999,

when ρ = 0 Corr(max(Re(λ)), −mini∈{1,n}x
∗
i ) = 0.9996 when ρ = −0.7 and

Corr(max(Re(λ)), −mini∈{1,n}x
∗
i ) = 0.9995 when ρ = 0.7, −mini∈{1,n}x

∗
i is an accu-

rate predictor of stability for all regimes of ρ. It is of note that for large magnitudes of
ρ, −mini∈{1,n}x

∗
i becomes a poor predictor of the outlier eigenvalue of J statistically,

and thus a poor estimator of stability.
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For smaller n systems, the accuracy of −mini∈{1,n}x
∗
i at predicting the outlier

eigenvalue of J is reduced to such an extent that it ceases to accurately predict the
effect of ρ on resilience.

2.11 APPENDIX VII: EFFECT OF E(x∗
i ), V ar(x∗

i ) AND Cov(x∗
i , x∗

j)
ON PROBABILITY OF FEASIBILITY

For a multivariate normal distribution with a given E(x∗
i ) and Cov(x∗

i , x∗
j), Increasing

V ar(x∗
i ) decreases feasibility probability. Increasing E(x∗

i ) acts to increase Pfeas,
given fixed values of Cov(x∗

i , x∗
j) and V ar(x∗

i ) and increasing Cov(x∗
i , x∗

j) also acts
to increase Pfeas given fixed values of V ar(x∗

i ) and E(x∗
i ). In Figure S7 below, we

show that out of these three quantities, Cov(x∗
i , x∗

j) increases most slowly with σ

(and thus γ). As a result, Cov(x∗
i , x∗

j) plays the smallest part in governing how Pfeas

changes with γ. In Figure S8, we justify how this argument holds true by quantifying
the effects of E(x∗

i ), V ar(x∗
i ) and Cov(x∗

i , x∗
j) on Pfeas.
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Figure S7: Analytical approximations of E(x∗
i ), V ar(x∗

i ) and Cov(x∗
i , x∗

j) as a
function of σ at various orders of σ. Fine solid curve order σ2, dash dotted curve
order σ4 and bold solid curve order σ6. Circles are numerical simulations of these
quantities, obtained from 10000 numerical solutions of main text Eq. (2.5), which are
acquired as described in Section IV. Here, C = 1. Since we do not have an analytical
approximation of Cov(x∗

i , x∗
j) to order σ6, there is no bold solid curve in the right

panel. For values of σ such that σ
√

nC > 1/(1 + ρ), the Neumann approximation
of x∗ Eq. (2.9) breaks down given fixed n and C. This condition is equivalent to
σ > 0.0670 here. Since n is finite, the normality in distribution of x∗ breaks down at
some point where σ

√
nC < 1/(1 + ρ) (see Section 2.12 for explanation). Due to this,

numerical results for V ar(x∗
i ) and Cov(x∗

i , x∗
j) no longer converges upon increase in

sample size. σ is plotted up to the largest value in which these numerical results
still converge, which is 0.0575 here.

In Figure S8 below, we show how varying each of the quantities E(x∗
i ), V ar(x∗

i )
and Cov(x∗

i , x∗
j) individually impacts Pfeas. In each panel, we vary one of the three

quantities while keeping the other two fixed. In the middle panel of Figure S8,
we see that if we vary V ar(x∗

i ) by an amount equal to the difference between its
approximation at order σ2 and σ6, Pfeas changes by 0.5493, which is significantly
large. Even if we vary V ar(x∗

i ) by the difference between its approximation at order
σ4 and σ6, Pfeas still changes by 0.1097. If we vary Cov(x∗

i , x∗
j) by an amount equal

to the difference between its approximation at order σ2 and σ4, an even smaller
change in Pfeas manifests (change of 0.0019). Since we do not have the approximation
of Cov(x∗

i , x∗
j) at order σ6, we showed what happens if we vary Cov(x∗

i , x∗
j) by an

amount equal to the difference between its approximation at order σ2 and its actual
value. In this case, Pfeas exhibits a change of 0.0037. All of the above demonstrate
that going to higher orders in the approximation Cov(x∗

i , x∗
j) confers negligible effect
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on Pfeas.
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Figure S8: Panels showing how Pfeas changes as each quantity (E(x∗
i ), V ar(x∗

i )
or Cov(x∗

i , x∗
j)) is varied, provided that the other two quantities are fixed, e.g. if

E(x∗
i ) is varied, we fix V ar(x∗

i ) and Cov(x∗
i , x∗

j). The two fixed quantities are set
to the analytically approximated value (Eqs. (2.13-2.15) in main text) they would
take if σ = 0.04, n = 100 and C = 1. Black curve shows how Pfeas varies with
each of these quantities and vertical lines show the varying quantity analytically
approximated at different orders of σ. Notations for the line textures are consistent
with all other Figures in this section, except here, we have a dotted line which
represents the actual numerically simulated Cov(x∗

i , x∗
j), since we do not have the

analytically approximation of Cov(x∗
i , x∗

j) at order σ6.

Below, we show analytically that Cov(x∗
i , x∗

j) increases more slowly with σ

compared to E(x∗
i ) and V ar(x∗

i ).

Analytical Illustration of the Magnitudes of E(x∗
i ), V ar(x∗

i ) and
Cov(x∗

i , x∗
j)

Here, we illustrate analytically how Cov(x∗
i , x∗

j) increases more slowly with σ than
E(x∗

i ) and V ar(x∗
i ), and therefore plays the smalest part in governing how Pfeas

changes with σ. In the expression for V ar(x∗
i ), the coefficient of σ2 contains a term

of order n, and the corresponding coefficient in the expression for E(x∗
i ) contains a

term of order nρ. The corresponding coefficient in Cov(x∗
i , x∗

j) contains a term of
order ρ. At order σ4, the coefficient for V ar(x∗

i ) includes terms of order n2, ρn2 and
ρ2n while the coefficient of E(x∗

i ) includes terms of order n and ρ2n2. Finally, the
coefficient of Cov(x∗

i , x∗
j) includes terms of order 1 and ρ2n. We see that at both
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order σ2 and σ4, the coefficients of Cov(x∗
i , x∗

j) are a factor n smaller than those of
E(x∗

i ) and V ar(x∗
i ), which implies that Cov(x∗

i , x∗
j) increases slowly with σ given

fixed values of n and C. The small increase in Cov(x∗
i , x∗

j) with σ is also shown
numerically in Figure S8.

2.12 APPENDIX VIII: DISTRIBUTION OF x∗
i

It is crucial to note that the Neumann series in Eq. (2.9) of main text is convergent
if ||σE|| < 1. This corresponds to the spectral radius of A being less than 1. For
systems of large n, this spectral radius is analytically approximated by σ

√
nC(1 + ρ)

(see Eq. (2.4) of main text), and thus the Neumann propagation of x∗
i is applicable

only under the condition σ
√

nC < 1/(1 + ρ) (or equivalently γ < 1/(1 + ρ)). Stone
[210] argued using the Central limit theorem (CLT) that Eq. (2.9) is normally
distributed as n → ∞. This implies that the statement that x∗

i is normal for all
cases satisfying σ

√
nC < 1/(1 + ρ) is only exact in the limit as n → ∞. Here we

show using numerical solutions to Eq. (2.5) that the distribution of x∗
i is normal

for small σ, and this normality breaks down for larger values of σ. The numerical
solutions are obtained as described in Section 2.8.

This agrees with the CLT argument above which infers that the larger the value
of n, the smaller the value of σ at which the boundary σ

√
nC = 1/(1 + ρ) is reached

(provided a given C), and thus the distribution of x∗
i is more likely to be normal at or

near the boundary γ = 1/(1 + ρ) as we increase σ. As we increase n, the normality
in the distribution of x∗

i breaks down at a larger value of γ such that γ < 1/(1 + ρ)
(see Figure S9 and S10). In theory, as n → ∞, the distribution of x∗

i would remain
normal up to γ = 1/(1 + ρ).
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Figure S9: For an n = 25 system, x∗
i is normally distributed for small values of σ,

such as σ = 0.01. For this given system size n = 25, the normality breaks down
when σ = 0.145, which corresponds to γ = 0.725. Light blue markers represent x∗

1
and x∗

2 values of 10000 numerical solutions of x∗, obtained as described in Section
2.8. Panel insets show histograms for the distribution of x∗

1. Other parameters are
ρ = 0 and C = 1.

Figure S10: As in Figure S9 but for an n = 2 system. For an n = 2 system, the
normality breaks down when σ = 0.35, which corresponds to γ = 0.495.

We see from Figure S9 and S10 that as n increases, the value of γ at which
normality in x∗

i is lost increases. Similarly for the equivalent n = 100 system as in
the two Figures above, numerical results show that normality is lost at σ = 0.085
which corresponds to γ = 0.85. We see that the larger the value of n, the larger the
value of γ up to which the distribution of x∗

i remains normal. In theory, as n → ∞,
x∗

i would remain normally distributed up to γ = 1/(1 + ρ), which corresponds to
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γ = 1 for the scenario in the two Figures above, since we have ρ = 0. Our analytical
results for Pfeas in Figure (3) of the main text are highly accurate since for systems
where n ≥ 25, Pfeas already becomes approximately 0 before the point at which
normality in x∗ is lost (see Figure S1). At γ = 0.725 where normality in x∗ breaks
down for an n = 25, ρ = 0 system, Pfeas ≈ 0.02.



3

Adaptive dynamics, switching
environments and the origin of the sexes

Abstract

In the face of varying environments, organisms exhibit a variety of reproductive modes,
from asexuality to obligate sexuality. Should reproduction be sexual, the morphology of the
sex cells (gametes) produced by these organisms has important evolutionary implications;
these cells can be the same size (isogamy), one larger and one smaller (anisogamy), and
finally the larger cell can lose its capacity for motility (oogamy, the familiar sperm-egg
system). Understanding the origin of the sexes, which lies in the types of gametes they
produce, thus amounts to explaining these evolutionary transitions. Here we extend classic
results in this area by exploring these transitions in a model in which organisms can
reproduce both sexually and asexually (a reproductive mode present in many unicellular
species). In particular, we investigate the co-evolution of gamete cell size and fertilization
rate, which is a proxy for motility but usually held constant in such models. Using adaptive
dynamics generalized to the case of switching environments, we find that isogamy can
evolve to anisogamy through evolutionary branching, and that anisogamy can evolve to
oogamy through a further branching driven by sexual conflict. We also derive analytic
conditions on the model parameters required to arrest evolution on this isogamy-oogamy
trajectory, with low fertilization rates and stochastically switching environments stabilizing
isogamy under a bet-hedging strategy, and low fertilization costs stabilizing anisogamy.

84
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3.1 INTRODUCTION

The origin of the sexes lies in the types of sex cells they produce; males produce
small microgametes while females produce larger macrogametes [95]. This gamete
size dimorphism is referred to as a state of anisogamy [219]. Should the microgamete
be motile (sperm) and the macrogamete sessile (egg), the population is said to
be oogamous [112]. While anisogamy is the most commonly observed mode of
sexual reproduction in eukaryotic organisms [145], having evolved several times in
evolutionary history [84], it is now widely accepted to be derived from isogamy (equal
gamete sizes) [12]. While rarer, isogamous species include study organisms such
as the yeast Saccharomyces cerevisiae [160] and the green algae Chlamydomonas
reinhardtii [103], where self-incompatible mating types play the role of ancestral
versions of the true sexes [121]. Indeed, the volvocine algae (of which C. reinhardtii
is a member), provide neat empirical examples of these transitions, with phylogenetic
analysis indicating that numerous independent lineages have undergone the transition
from isogamy, to anisogamy, and finally to oogamy [81, 112]. Explaining the
evolutionary mechanisms behind these transitions has been the focus of much work
in evolutionary theory.

While theoretical investigations of the evolution of anisogamy date back to the
1930’s [109] and were developed into the 1960’s [110, 196], it was arguably the
Parker-Baker-Smith (PBS) model [173] that synthesised these ideas into a complete
evolutionary model that is now widely accepted as providing an explanation for the
evolution of anisogamy [128, 172, 218]. They assumed that a fixed mass or energy
budget is allocated by individuals to gamete production, such that microgametes can
be produced in larger quantities than macrogametes. However, while microgametes
may be more numerous, they contribute a lower fitness than macrogametes to a
fertilized zygote due to their low cytoplasmic volume [222]. In this way the PBS
model was able to show how anisogamy was the result of a quality-quantity trade-off,
with disruptive selection acting on gamete size [218]. In simple terms, the PBS
model posits that selection simultaneous favours the production of large gametes to
enhance survival, and a large number of gametes to compete for fertilisation [128].

The key elements of the PBS model have since been set in a game theoretic [25]
and population genetic [32, 105] context, as well as extended to account for more
general reproductive modes such as hermaphrodism [92]. Models using adaptive
dynamics [113] in particular have been useful. It has been shown analytically that
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even in the absence of mating types, anisogamy can evolve from isogamy through
evolutionary branching in mass [143]. Meanwhile, accounting for self-incompatibility
of mating types and investigating the effect of varying fertilization rate, [124] showed
that anisogamy can evolve from isogamy through both gamete competition and
gamete limitation. Altogether, the results described above suggest that fertilization
rate is a crucial factor that may impact gamete survival, and selection is likely to
act on the fertilization rate between microgametes and macrogametes.

As addressed, oogamy, the loss of motility in eggs and specialization for motil-
ity in sperm, is often seen as the “last step in the evolution of the egg–sperm
dichotomy” [133], a view supported by empirical analyses that suggest oogamy is
derived from anisogamy [198]. However the theory of this transition is comparatively
less studied than the earlier transition from isogamy to anisogamy. Ghiselin [66]
provided an argument based on the physiological division of labour between macro
and microgametes, with females specialising in provisioning and males in motility.
Most other work has considered the evolution of oogamy as a strategy to maximise
gamete encounter rate. This can be achieved by having a population of pheromone
emitters and receivers [79, 96] and by having a large stationary target egg and small
motile sperm [38, 50]. Although the assumption of an inverse speed-size relationship
in [38] has justification in some gametic systems, it is also worth noting that positive
speed-size relationship have been observed in C. reinhardtii, due to larger cells having
greater propulsive forces; at scales such as these the precise speed-size relationship
is complicated by details of cell morphology [204]. Lastly, the prior evolution of
internal fertilization has been proposed as a mechanism that could generate selection
for oogamy [132], consistent with empirical evidence from volvox (external fertiliza-
tion and anisogamous) and its sister lineage platydorina (internal fertilization and
oogamous) [164].

The work described above all assumes obligate sexual reproduction (unfertilized
gametes die at the end of each generation) and a fixed fertilization rate (the rate
at which gametes encounter one another and fertilize to form zygotes) and a static
environment [25, 124, 133]. Recently, however, inspired by the life-histories of green
and brown algae such as Blidingia minima (isogamous [216]), Urospora neglecta
(anisogamous [140]), and Saccharina japonica (oogamous [111]), whose gametes can
develop asexually through parthenogenesis should they fail to find a mate (see [136,
140, 216], respectively), the first of these assumptions was relaxed in two theoretical
papers [37, 130]. In [130], extra survival costs were incurred by gametes developing
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parthenogenetically, while in [37] extra survival costs on either the parthenogenetic
or the sexual reproductive route were considered. They found that in the presence
of two self-incompatible mating types, isogamy can be stabilized under low costs to
parthenogenesis, while anisogamy is the evolutionarily stable state when fertilization
is favoured.

The studies described above on parthenogenesis and the evolution of anisogamy
lead to a natural question; if the sexual route (via fertilization) and asexual route
(via parthenogenesis) carry different survival costs, how should the fertilization rate
evolve to account for this? Should this rate increase (to minimise the number of
unfertilized gametes taking a potentially perilous route to survival) or should it
decrease (to avoid potential costs incurred during cell fusion)? The modelling of
fertilization kinetics is an interesting topic in its own right [126, 129], and plays a role
in models for the evolution of anisogamy from isogamy [124]. However fertilization
kinetics are also clearly a key element of the evolution of oogamy, with selection on
sperm to increase their encounter rate with eggs and selection on eggs to remain
sessile.

In this chapter, we modify the adaptive dynamics models of [37, 130, 143] to
study the co-evolution of gamete size and fertilization rate in species capable of
parthenogenesis under external fertilization. For simplicity, we assume an absence
of self-incompatible mating types [12, 143]. We show that under such assumptions,
anisogamy can evolve from an initial state of isogamy, followed by the subsequent
evolution to oogamy under sexual conflict between microgametes and macrogametes.
In Section 5.2, we introduce the model, describing its key behaviour in Section 5.3.
These behaviours include the evolution of oogamy (Section 3.3.2), conditions that
stabilize isogamy (Section 3.3.3), conditions that stabilize anisogamy (Section 3.3.4),
and the emergence of isogamy as a bet-hedging strategy in switching environments
(Section 3.3.5).

3.2 MODEL

In this section we describe the specifics of the models we use, paying careful attention
to the various time scales involved. We begin by considering the evolutionary model
in a fixed environment (Section 3.2.1), before generalizing to the case of a under
which bet-hedging strategies can evolve (Section 3.2.2).
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3.2.1 Model dynamics in a fixed environment

The evolutionary dynamics of the model are built from a hierarchy of timescales,
which are particularly important to keep in mind once environmental switching is
introduced in later sections. The shortest timescale is the generational timescale.
The intermediate timescale is that over which the invasion of a rare mutant (taking
place over many generations) can occur. The longest timescale is the evolutionary
timescale, representing the cumulative effect of multiple mutations and invasions.

Dynamics within each generation
At the start of each discrete generation, a number of adults with haploid mass

M (energy budget allocated to the production of haploid cells) produce gametes
(mass m), such that mass/energy budget is conserved (i.e. each adult produces M/m

gametes). Note that this implicitly assumes, for simplicity, that a continuous (rather
than discrete) number of gametes is possible. Gametes then enter a pool and the
fertilization process takes place. After a finite time window, the resultant cells face
a round of survival dependent on their mass. The surviving cells form the basis of
the next generation, completing the generational cycle, as illustrated in Figure 3.1.
The assumption of a continuous number of gametes is particularly suitable for large
populations [83], such as the population of gametes in a pool of gametes.

Fertilization Kinetics For simplicity, we assume that all gametes may fertilize each
other (i.e. there are no self-incompatible mating types). Given a total of A adults, the
population is initially comprised of N = (AM)/m single gametes produced by adults
through meiosis. We assume fertilization is external, with cells fertilizing according
to mass action dynamics at rate α, such that the number of single (unfertilized) cells,
N , is given by the solution to

dN

dt
= −αN2 , N(0) = AM

m
(3.1)

(see also [127]). At the end of the fertilization window, which is assumed to have a
duration T , there are therefore N(T ) single cells remaining, and (N(0) − N(T ))/2
fertilized cells.

The parameter α is variously referred to as the fertilization rate, the colli-
sion rate [126], the “‘aptitude’ for union” [196], or the “bimolecular reaction con-
stant” [224]. We will refer to α as the fertilization rate, and treat it as a trait
subject to evolution. Overall, α captures the compound effect of the propensity for
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Figure 3.1: Schematic of dynamics within each generation. Mature cells (adults)
produce gametes at the start of a generation. All the gametes are given a fixed time
period T in which to complete the fertilization process. At the end of the fertilization
period, there will be a pool of fertilized zygotes and unfertilized gametes, both of
which are capable of maturation. Each cell survives according to its independent
survival functions ((1 − Cz)S(β, m1 + m2) and (1 − Cp)S(β, mi) respectively) to
produce a number of mature cells in the subsequent generation. The pool of gametes
consist of resident (blue) and mutant gametes (green), where the mutation occurs in
either the mass m or fertilization rate α.

fertilization between cells encountering each other, as well as additional mechanisms
to enhance cell encounter rate such as increased emission or response to cheomoat-
tractants [79] or cell motility [220]. In practice there is a likely upper-bound on α,
brought about by energy trade-offs, diffusion in aquatic environments, or dispersal
in terrestrial environments. To account for this we introduce a ceiling on α, and
restrict its evolutionary dynamics to the range αmax ≥ α ≥ 0.

Survival Probability At the end of a finite fertilization window at time T , the
population will consist of both fertilized and unfertilized gametes. Fertilized gametes
produce diploid zygotes, while unfertilized gametes can develop as haploids partheno-
genetically (e.g. parthenosporophytes [151]). We assume that the probability that
either of these cell types survives is given by the Vance survival function [222], which
is a common assumption in the literature [25, 124, 135]. Given a cell size mc (for
either fertilized or unfertilized cells), the survival probability is given by

S(β, mc) = exp
(

− β

mc

)
. (3.2)

Note that this is an increasing function of cell size, and we do not account for gamete
mortality during the fertilization period. Thus, although both fertilized and unfertil-
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ized gametes are exposed to the same survival function, fertilized cells (with a mass
around twice the size of unfertilized cells in a monomorphic isogamous population)
will have a greater survival probability than unfertilized cells. Meanwhile for a given
mass mc, increasing β will decrease the survival probability. We therefore refer to β

as the resistance to survival, with high β corresponding to harsh environments in
which survival is difficult, and low β corresponding to more benign environments in
which even cells of modest mass have a high probability of surviving.

In addition to the benefits explained in the introduction, fertilization may also
carry risks: generally these include cell-fusion failure [80], selfish extra-genomic
elements in the cytoplasm [86] and cytoplasmic conflict [100, 101]. However costs
may also arise in multicellular organisms if the reproductive output of diploids
(e.g. sporophytes) is less than twice that of haploids (e.g. parthenosporophytes), as
described in Appendix 3.5. We therefore introduce an additional fixed cost, 1 ≥ Cz ≥
0, applied to fertilized zygotes independent of their mass. Similarly, there can be
costs associated to parthenogenetic development such as reduced fitness due to lack of
genetic diversity [1] and the possibility of failure of parthenogenetic development [130].
The final probability of survival for a zygote formed from the fertilization of two
gametes of sizes m1 and m2 is then given by (1 − Cz)exp [−β/(m1 + m2)], while the
probability of survival for an unfertilized cell of size m is (1 − Cp)exp [−β/m].

Invasion Dynamics

We assume that haploid gametes are characterised by two genetically determined
non-recombining traits; their mass, m, and their fertilization rate, α. We next consider
a monomorphic resident population to which a mutant individual is introduced at
rate µ. This mutant may produce gametes of a different mass to its ancestor, m±δm,
where δm represents the size of a mutational step. Under this scenario the mutant
may produce more or fewer gametes than its ancestor (see Appendix 3.6.1), but the
survival probability of its unfertilized cells (mass m ± δm), mutant-resident fertilized
cells (mass 2m ± δm), and mutant-mutant fertilized cells (mass 2(m ± δm)), will
also be simultaneously decreased or increased (see Eq. (3.2) and Appendix 3.6.3).
The cumulative effect of this quality-quantity trade-off will either lead to selection
for or against the mutant over subsequent generations.

Alternatively, the mutant may engage in an increased or decreased fertilization
rate relative to its ancestor, at a rate α±δα (see Appendix 3.6.2). Under this scenario
the mutant fertilizes with residents at their average fertilization rate (2α ± δα)/2
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and other mutants at a rate α ± δα. Mutants will either contribute to more or fewer
fertilized cells and depending on the resistance to survival, β, the costs to fertilization,
Cz, and the costs to parthenogenesis, Cp, may experience a selective advantage over
the resident by devoting more of its gametes to one of the reproductive routes (see
Appendix 3.6.4).

In order to mathematically characterise the invasion dynamics (which occur
over discrete generations), we assume that δm and δα are small, so that we can
approximate the dynamics continuously. Denoting by f̂m the frequency of mutants
of size m ± δm in the population, and tg the number of generations, we find (see
Appendix 3.7.1)

df̂m

dtg

= hm(m, α, β, Cz, Cp)f̂m(1 − f̂m) , (3.3)

where hm(m, α, β, Cz, Cp) is a constant selective pressure that depends on the pa-
rameters m, α, β, Cz, Cp (see Eq. (3.32)). Similarly, denoting by f̂α the frequency of
mutants with fertilization rate α ± δα in the population (see Appendix 3.7.2), we
find

df̂α

dtg

= hα(m, α, β, Cz, Cp)f̂α(1 − f̂α) (3.4)

where hα(m, α, β, Cz, Cp) is a constant that depends on the parameters m, α, β, Cz, Cp

(see Eq. (3.33)). Our analytical results Eqs. (3.3-3.4) show that in the case of a
single mutant, we have frequency-independent selection for both traits, and whether
selection acts to increase the frequency of the mutant depends on the resistance to
survival β, the cost to fertilization and parthenogenesis Cz and Cp, and the traits
of the resident population, m and α. We assume for the remainder of this section
that mutants encounter a strictly monomorphic resident population, allowing us
infer a simple trait substitution process that considerably simplifies the evolutionary
analysis. However we will return to the possibility of mutants coexisting with
residents in Section 3.3.2 of the Results. Here, we have assumed for simplicity that
tg is a continuous parameter, which is a reasonable assumption since invasion of a
mutant takes place over a large number of generations (typically of the order 103).
In Figures 3.10 and 3.11 in Appendix 3.8, we indeed see that this assumption allows
us to capture the invasion dynamics with great accuracy.

Evolutionary Dynamics



92
Chapter 3. Adaptive dynamics, switching environments and the origin of

the sexes

Following standard approaches in adaptive dynamics [150] (see also Appendix 3.8),
we construct the evolutionary equations for the gamete mass, m, and the fertilization
rate, α. Denoting by τ the evolutionary timescale over which mutations appear and
trait substitutions occur, we find

dm

dτ
= Hm(m, α; β, Cz, Cp)

= −4(1 − Cp)m(m − β) + AMαT (1 − Cz)e β
2m (4m − β)

4m2((1 − Cp)m + AMαT (1 − Cz)e β
2m )

dα

dτ
= Hα(m, α; β, Cz, Cp)

= −m
((1 − Cp) − (1 − Cz)e β

2m ) ln(1 + AMαT
m

)
2α((1 − Cp)m + AMαT (1 − Cz)e β

2m )
.

(3.5)

Note that these equations involve highly nonlinear functions, with some evident
non-physical behaviour near the boundaries (e.g. when cell masses are zero). This
feature is common in simplified models of anisogamy evolution [37].

3.2.2 Evolutionary dynamics in switching environments

We now wish to consider the case of a population characterised by gamete mass
(m) and fertilization rate (α) traits, evolving subject to changing environmental
conditions. We may again employ techniques from adaptive dynamics, but now
generalized to dynamic environments [155]. Explicitly, we allow the resistance to
survival to alternate between two values β1 and β2; recall from Eq. (3.2) that if
β1 > β2 then β1 represents a comparatively “harsh environment”, where cells have
a lower survival probability than in environment β2. This form of environmental
fluctuations is frequently used in the literature concerning evolution in switching
environments [155, 15], and enables us to capture how the evolutionary dynamics
may differ with the rate of environmental switching.

Switching between these two environments is modelled as a discrete stochastic
telegraph process [15, 99]; the time spent in each environment is distributed geomet-
rically (a discrete analogue of the exponential distribution), spending an average
period τ1 ≈ 1/λ1→2 in environment 1 and τ2 ≈ 1/λ2→1 in environment 2, where
λi→j is the transition rate from environment i to j. We must carefully consider the
magnitude of these timescales in comparison with the other timescales at work in
the model (see Section 3.2.1).
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First consider the case where the environmental switching timescales, τ1 and τ2,
are larger than the generational timescale (tg), but much smaller than the invasion
timescale (characterised by the inverse of the strength of selection, proportional to
1/δm and 1/δα) and the mutational timescale (1/µ). We call this the ’fast relative
to invasion’ switching regime (FRTI). In this scenario, the population does not
switch environments during a single round of fertilization kinetics, but typically
switches between the two environmental states many times before an invasion has
time to complete i.e. once every few generations. When switching occurs this
frequently, we can approximate the dynamics mathematically by observing that the
population experiences the weighted average of the selection pressures in the two
environments [99]. Denoting by P1 and P2 the probability of finding the population
in either of the respective environments, we have

P1 = τ1

τ1 + τ2
, P2 = τ2

τ1 + τ2
= (1 − P1) . (3.6)

The effective selection pressure on mutants with mass m+δm in a resident population
of mass m during an invasion is then given by

P1hm(m, α, β1, Cz, Cp) + P2hm(m, α, β2, Cz, Cp) (3.7)

which can be contrasted against the selection pressure hm(m, α, β, Cz, Cp) in Eq. (3.3).
An analogous approach allows us to approximate the invasion dynamics for mu-
tants with a different fertilization rate to their ancestors in this FRTI regime (see
Appendix 3.11.1).

With equations for df̂m/dtg and df̂α/dtg in hand, we can proceed to apply the
same standard techniques from adaptive dynamics as were used to derive Eq. (3.5)
from Eqs. (3.3-3.4) (see Appendix 3.11). We obtain the effective evolutionary
dynamics

dm

dτ
= P1Hm(m, α; β1, Cz, Cp) + P2Hm(m, α; β2, Cz, Cp)

dα

dτ
= P1Hα(m, α; β1, Cz, Cp) + P2Hα(m, α; β2, Cz, Cp)

(3.8)

where Hm(m, α; β1, Cz, Cp) and Hα(m, α; β1, Cz, Cp) retain the functional forms given
in Eq. (3.5), and P1 and P2 are taken from Eq. (3.6).

In contrast to the FRTI regime discussed above, we can also investigate the
regime in which environmental switching occurs on a comparable or slower timescale
than invasion, but still occurs fast relative to the evolutionary timescale. In this
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scenario, which we call the “fast relative to evolution” switching regime (FRTE),
environmental switching occurs on a similar rate to that at which new mutations
are introduced, but much faster than the combined effect of mutation and selection
(e.g. λi→j ≪ µ × δm), such that only a small number of mutations can fixate in
either environment before the population switches to the alternate environment. In
this regime, the environment would typically switch once every few mutation events
rather than every few generations as in the FRTI regime. Although we shall show via
simulations in Section 3.3.5 that this FRTE regime leads to quantitatively different
evolutionary trajectories compared to the FRTI regime, we show mathematically in
Appendix 3.11.2 that the evolutionary dynamics can be approximated by the same
equations (see Eq. (3.8)).

3.3 RESULTS

In this section we proceed to analyse the evolutionary dynamics derived in Sec-
tions 3.2.1-3.2.2 and compare our results to numerical simulations of the full stochas-
tic simulations. In these simulations, the fertilisation kinetics are run for a fixed
time period and solved numerically using the ODE solver ode45. The time at which
mutations and environmental switching events occur as well as the trait that mutates
at each mutation event and whether they mutate up or down are random, giving rise
to stochasticity in the evolutionary trajectories. In other words, our evolutionary
dynamics become a piecewise deterministic Markov process (PDMP) [44] with de-
terministic dynamics between the randomly occurring events. The mean stochastic
evolutionary trajectory averaged over a large number of realisations is thus expected
to converge to the deterministic trajectories as predicted by Eq. (3.5). Repeating the
simulations for the FRTI regime under periodic switching, we find that the results
are in general qualitatively similar, however some interesting differences emerge. An
initial investigation into periodic environmental switching in this context is presented
in Appendix 3.13, and may form the basis for valuable future research [15, 212].

3.3.1 Initial evolution of fertilization rate

In Figure 3.2, we see two potential evolutionary outcomes for the co-evolutionary
dynamics of m and α in a single fixed environment that are dependent on the initial
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Figure 3.2: Phase portraits for the co-evolutionary dynamics in a fixed environment
(see Eq. (3.5)). High fertilization rates are the only evolutionary outcome in panel
(a), while high and zero fertilization rate are both evolutionary outcomes in panel
(b) (see Eq. (3.9)). The red region shows trajectories leading to points on the α = 0
boundary for which evolution selects for decreasing fertilization rate (dα/dτ < 0)
(the point at which dα/dτ = 0 is marked by a red arrow). Red filled (stable) and
unfilled (unstable) circles mark a fixed point in the evolutionary dynamics of m
(m∗ = β, see Eq. (3.35)). Blue circles and arrows illustrate the high fertilization rate
attractor ((m∗, α∗) → (β/4, ∞), see Eq. (3.37)). Average population trait trajectories,
(⟨m⟩(t), ⟨α⟩(t)), from simulation of the stochastic model (see Appendix 3.8.3) are
plotted in light gray, and their mean over multiple realisations are given dark
gray. The time at which mutations occur, whether the trait values of m or α
increase/decrease at each mutation event and the trait that undergoes mutation
at each mutation event are random, giving rise to stochasticity in the evolutionary
trajectories. The cost to fertilization is Cz = 0.3 (panel (a)) and Cz = 0.6 (panel (b)).
In both panels β = 1 and Cp = 0. Remaining model parameters are given in 3.12.

conditions and parameters; the population can either evolve to large fertilization
rates (limited only by αmax) or to zero fertilization rates.

When the cost to fertilization, Cz, is low (Figure 3.2, panel (a)), there exists a
smaller region of initial conditions that drive α towards zero (pink shaded region).
When α = 0 within this region, selection on gamete mass, m, drives the population
towards the point m = β (red dot, see also Appendix 3.8.2). As this point exists
outside the region in which dα/dτ < 0, selection for increased α can again mani-
fest along the evolutionary trajectory. Thus when costs are sufficiently low, high
fertilization rates are the only evolutionary outcome.
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Figure 3.3: Numerical illustration of evolutionary branching in Figure 3.2(b). Panel
(a): Analytic predictions for the early evolutionary dynamics (as Figure 3.2(b))
overlaid with trajectories (mi(t), αi(t))) for each ith trait. Evolutionary branching
is observed along the m ≈ β/4 manifold, indicated by the blue star. Green arrows
show the temporal progression of the branching. Panels (b) and (c): The temporal
trajectories of the traits αi(t) and mi(t) respectively, showing that the evolutionary
trajectory passes from isogamy to oogamy. Parameters used are A = 100, M = 1,
T = 1, Cz = 0.6, Cp = 0, β = 1, δ = 0.01, µ = 10−3, f0 = 2 × 10−3 and simulation
run for 3.5 × 106 generations.

Conversely when costs to fertilization, Cz, are intermediate (Figure 3.2, panel
(b)), there exists a larger region of initial conditions that drive α towards zero (pink
shaded region). The point m = β (red dot), towards which the population evolves
when α = 0, is now contained within this region in which dα/dτ < 0, and so is a
stable fixed point. Thus when costs are sufficiently high, there are two evolutionary
outcomes, depending on the initial conditions; either high fertilization rates or zero
fertilization rates.

In Appendix 3.8.2 we conduct a mathematical and numerical analysis to for-
malise the arguments above. In summary, the possible early evolutionary attractors,
(m∗, α∗), are given by:

(m∗, α∗) →


(β/4, αmax) if 1 − 1−Cp√

e > Cz ≥ 0

(β/4, αmax) or (β, 0) if 1 ⪆ Cz > 1 − 1−Cp√
e

(β, 0) if Cz ≈ 1

(3.9)

where we note that in the absence of parthenogenesis costs i.e Cp = 0, the condition
in which a high fertilization rate is the only evolutionary outcome is 0 ≤ Cz <
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1 − 1/
√

e ≈ 0.39 (see Figure 3.2). Since situations in which the fertilization rate
initially tends to zero are not of interest in the current analysis, we work in the
remainder of this paper in the regime in which increasing fertilization rate is selected
for; that is, 1 ⪆ Cz and with initial conditions that do not lead to a stable α = 0
fixed point (see Figure 3.2, unshaded regions).

3.3.2 Evolutionary branching can lead to anisogamy, followed by
oogamy

In Figure 3.2 we see that the approximation obtained for the co-evolutionary dynamics
of m and α in a single fixed environment, Eq. (3.5), accurately captures the dynamics
of the full model realised via numerical simulation at early times. One point of
departure is that at long times as α increases along the m ≈ β/4 manifold, we see
the mean mass trait value from simulations increasing to higher values than those
predicted analytically. In Figure 3.3, we show that this is a result of evolutionary
branching in the simulations.

Should the evolutionary trajectories reach a sufficiently large fertilization rate, α,
along the m ≈ β/4 manifold, anisogamy can evolve through evolutionary branching
in mass (see Figure 3.3), which gives rise to a dimorphic gamete population that
contains one large gamete (macrogamete) with mmacro ≈ β − δm and one small
gamete (microgamete) with mmicro = δm. Analytically, this is shown to be due
to disruptive selection in mass in the vicinity of the m ≈ β/4 manifold at high
values of α. In Section 3.9, we show that this region is an approximate evolutionary
singularity. This initial branching has been noted in other models that also do not
account for self-incompatible mating types but that consider the case of fixed α and
obligate sexual reproduction [143].

As the mass of the macrogamete becomes larger (and that of the microgamete
smaller), a branching in fertilization rates can also occur (see Figure 3.3 (b)). Near
this mass mmacro ≈ β − δm, the macrogamete has a high survival rate under
parthenogenesis, and the benefits of fertilization (in particular with microgametes of
very small mass) can be outweighed by the costs of fertilization. Selection can thus
act to lower the fertilization rate of macrogametes, αmacro, towards zero. This in
turn leads to an increased selection pressure for the microgametes to increase their
fertilization rate, with αmicro → αmax, to increase the probability of microgametes
fertilizing macrogametes (averting the low survival probabilities of microgametes



98
Chapter 3. Adaptive dynamics, switching environments and the origin of

the sexes

under parthenogenesis). This is a situation in which macrogametes are still fertilized
by microgametes (at a rate αmicro/2) but do not fertilize themselves. Biologically,
this situation can be interpreted as the evolution of oogamy, with αmicro → αmax and
obligate sexual reproduction in the limit αmax → ∞.

Above we have shown that when costs to fertilization are accounted for, a
continuous evolutionary trajectory can exist that takes the population from a state
of isogamy to oogamy. In the following sections we demonstrate how each of these
transitions can be arrested under various parameter regimes.

3.3.3 A low ceiling on the fertilization rate can stabilize isogamy

If the maximum possible fertilization rate αmax is limited to a low value, for instance
due to energetic constraints on motility or environmental constraints such as turbu-
lence, then it is possible to prevent the transition from isogamy to anisogamy. In
Section 3.9, we derive the minimum value of αmax at which evolutionary branching
in mass can occur, and find that if

48(1 − Cp)β
35AMT (1 − Cz)e 7

6
> αmax (3.10)

evolutionary branching in mass cannot occur. These results are illustrated in
Figure 3.4. Should αmax lie below this threshold (equivalent in approximately 70%
of cells gametes fertilized in Figure 3.4, see Figure 3.9) the population is held in a
state of isogamy. Alternatively, we can see in Eq. (3.10) that increasing the cost
to parthenogenesis Cp and reducing the resistance to survival β can decrease the
minimum value of αmax at which anisogamy can evolve, meaning that anisogamy
evolves more readily under costly parthenogenesis.

3.3.4 High costs of parthenogenesis relative to zygote formation
can stabilize anisogamy

Analytically, we show in Appendix 3.8.4 that when costs for zygote formation are
relatively low and costs for parthenogenesis relatively high, true oogamy (in which
the macrogamete’s fertilization rate evolves towards zero, αmacro → 0) does not
evolve following the transition to anisogamy. The costs to fertilization must instead
be sufficiently high, such that

Cz > 1 − (1 − Cp)exp
(

− δm

β − δm

)
(3.11)
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Figure 3.4: Analytical prediction (blue) and numerical illustration of the range of
αmax in which branching to anisogamy is possible. Black markers represent the mass
of each gamete genotype within the population after 2.5 × 106 generations. Once
branching to anisogamy has occurred, a dimorphic gamete population, characterised
by the presence of two genotypes would be present. One genotype where m ≈ β −δm
and one where m = δm. Vertical line represents the analytically predicted αmax above
which branching can occur in m Eq. (3.10). The blue curve left of this line is the
numerical solution to dm/dτ |α=αmax = 0 in Eq. (3.34) and the blue horizontal lines
towards the right represent the theoretical masses of the macrogametes (m = β −δm)
and microgametes (m = δm). Parameters are A = 100, M = 1, T = 0.1, Cz = 0.3,
Cp = 0, β = 1, δ = 0.01, µ = 10−3 and f0 = 2 × 10−3.

for true oogamy to evolve. This is illustrated in Figure 3.5. Essentially if the costs
to the macrogamete of fertilization are not sufficiently high, then there is no longer
a selective pressure (as described in Section 3.3.2) for the macrogamete to avoid
fertilizations by decreasing its fertilization rate. While the population does not evolve
towards oogamy, its ultimate state is dependent on the maximum fertilization rate,
αmax.

Suppose we initially place no limit on the maximum fertilization rate, αmax → ∞,
and that the costs Cp and Cz are such that there is no longer selection for the
fertilization rate of the macrogamete to decrease (i.e. the inequality in Eq. (3.11)
does not hold). While there may be a selective pressure for the fertilization rate of
the macrogamete to increase, this selection pressure is weaker for the parthenogenetic
macrogamete than the microgamete, as the microgamete relies more heavily on the
fertilization pathway for its survival. Thus although the fertilization rates of both
macrogametes and microgametes, αmacro and αmicro, evolve to increase α indefinitely
the macrogamete does so at a considerably slower rate. This scenario is known
as pseudooogamy [198] where the fertilization rate of the macrogamete does not
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Figure 3.5: Numerical illustration of the ratio of macrogamete to microgamete fertil-
ization rate, αmacro/αmicro. Oogamy is favoured over anisogamy above a sufficiently
high fertilization cost Cz, predicted analytically by the vertical line (see Eq. (3.11)).
Here Cp = 0.5, (m(0), α(0)) = (0.25, 0.02) and αmax = 1.3. All other parameters are
as in Figure 3.2 except f0 = 0.02 and the simulation is run for 6 × 106 generations.
Back arrows point in the direction towards which αmacro/αmicro evolves in infinite
time.

evolve towards zero but still evolves to a fertilisation rate lower than that of the
microgamete. While this situation is only observed when αmax → ∞, in the case
of large but finite αmax, pseudooogamy is a prolonged transient state (see Figures
3.5 and 3.14). Lastly, should αmax be smaller, such that the increasing fertilization
rate of macrogametes can “catch up” with that of microgametes, the population can
return to anisogamy following a transient period of oogamy.

3.3.5 In a switching environment, the population can evolve a
bet-hedging strategy that stabilizes isogamy

In Figure 3.6, we see that the analysis for the evolutionary dynamics in the case
of a switching environment (see Eq. (3.8)) provides a good approximation to the
dynamics of the full model (which accounts for multiple traits coexisting under a
mutation-selection balance) realised via numerical simulation. A mutation-selection
balance refers to the balance between the rate at which deleterious mutations arise
and the rate at which they are eliminated by selection. The number of coexisting
traits depends on this balance, whereby increasing the mutation rate would increase
the number of traits that coexist under this mutation-selection balance. We now see
three broad evolutionary outcomes.

We begin by considering the intuitive limit of τ1 ≫ τ2. In this scenario the
population spends almost all of the time in environment 1, and a comparatively
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Figure 3.6: Phase portraits for the co-evolutionary dynamics in a switching envi-
ronment (see Eq. (3.8)). In addition to qualitatively similar dynamics as in the
fixed environment (see Figure 3.2), two new evolutionary scenarios are now possible,
including populations in which stable intermediate fertilization rates (filled blue
circle) are the only evolutionarily stable state (see panel (a)) and populations in
which there is an additional zero fertilization stable state (filled red circle, see panel
(b)). Open orange circles represent the (now unstable) states to which the population
can be attracted in either environment 1 or 2 (where β = β1 or β = β2). Average
population trait trajectories, (⟨m⟩(t), ⟨α⟩(t)), from simulation of the full stochastic
model in the FRTI regime are overlaid in gray. In panel (c) we plot the time-series
in the FRTI regime (gray, as in panel (a)) alongside those in the FRTE regime
(purple) and our analytic predictions (black-dashed). In all panels, A = 100, M = 10,
T = 0.1 and f0 = 2 × 10−3. Under the FRTI regime (overlaid in gray in panels
(a), (b) and (c)), µ = 3.5 × 10−4, δ = 7 × 10−3 and the simulation is run for 107

generations. Under the FRTE regime (overlaid in purple in panel (c)), µ = 5 × 10−3,
δ = 5 × 10−3 and the simulation is run for 7 × 106 generations. In panel (a) (and
panel (c) gray), Cz = 0.35, β1 = 3, P1 = 0.335, (m(0), α(0)) = (2, 0.4), λ1→2 = 0.250
and λ2→1 = 0.126. In panel (b), Cz = 0.7, β1 = 4, P1 = 0.74, (m(0), α(0)) = (2, 0.6),
λ1→2 = 5.86 × 0.01 and λ2→1 = 0.167. In panels (c) and (d), the switching rates for
the FRTE regime (purple) are λ1→2 = 2.93×10−5 and λ2→1 = 8.34×10−5. Switching
rates and mutation rates µ are all measured in units of (number of generations)−1

and Cp = 0 in all panels.

insignificant amount of time in environment 2 (i.e. P1 ≈ 1 and P2 ≈ 0). Consequently,
the population evolves approximately as if it were simply in a fixed environment with
β = β1, and the conditions given for the fixed environment, Eq. (3.9), can be used
to infer the evolutionary outcome. An analogous argument holds for the dynamics
when τ2 ≫ τ1, but with β = β2 in Eq. (3.9). Once on the m = βi/4 manifold towards
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the high-fertilization rate attractor, evolutionary branching towards anisogamy and
oogamy can occur as described in Section 3.3.2. When the time spent in each
environment is of the a comparable order however (e.g when τ1, and τ2 have not
entirely dissimilar magnitudes), we find the emergence of bet-hedging strategies (see
Figures 3.6, 3.7 and Eq. (3.14)).

Under a range of parameter conditions, we find analogous evolutionary attractors
for the fertilization rate as in the fixed-environment case (see Eq. (3.9) and Figure 3.6),
but with bet-hedging strategies for the gamete mass;

(m∗, α∗) → (m∗
α=0, 0)

(m∗, α∗) → (m∗
α→∞, αmax)

(3.12)

with
m∗

α=0 = P1β1 + (1 − P1)β2

m∗
α→∞ = 1

4 (P1β1 + (1 − P1)β2) .
(3.13)

The population thus initially evolves either to high fertilization rates or zero fertil-
ization rates, but with a mass which is the weighted average of the optimal strategy
in either environment.

Under a more restricted set of parameter conditions however we find that a
bet-hedging strategy for the fertilization rate can also evolve; essentially a switching-
induced fixed point can manifest, as illustrated in Figures 3.6 and 3.7. Here the
tension between the evolutionary dynamics in the two environments (which can
select for high fertilization rate and large gametes in one environment, and zero
fertilization rate and small gametes in the other) can lead to the population being
held in a state at which intermediate finite fertilization rate and isogamy form the
evolutionarily stable bet-hedging strategy. In Appendix 3.11.3, we show that the
switching-induced fixed point is given by

m∗ = 1
4 [P1β1 + (1 − P1)β2]

α∗ = (1 − Cp)m∗

AMT (1 − Cz)

×

 (1 − Cz)
(

P1e
β1

2m∗ + (1 − P1)e
β2

2m∗

)
− (1 − Cp)

(1 − Cp)(P1e
β2

2m∗ + (1 − P1)e
β1

2m∗ ) − (1 − Cz)e
β1+β2

2m∗

 .

(3.14)

In Figure 3.6 (c-d) we see that this switching induced fixed point is observed in
the evolutionary simulations in which multiple traits can be held in the population
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under a mutation-selection balance. In the FRTI regime (gray lines), in which the
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Figure 3.7: Analytic theory for the fertilization rate at the switching-induced isoga-
mous fixed point (blue line, see Eq. (3.14)) against simulations (dots). The black
vertical line is the analytic prediction for when this fixed point vanishes, with param-
eters left of the line corresponding to destabilized isogamy. Simulations are obtained
by averaging over 25 realisations of ⟨α(t)⟩ corresponding to stochastic evolutionary
trajectories. Parameters are δ = 0.01, µ = 5 × 10−4, f0 = 2 × 10−3, τ1 = 0.25 and
simulation run for 1.2 × 107 generations. All other parameters are the same as in
the FRTI regime of Figure 3.6 (a). Red markers are for (m(0), α(0)) = (0.29, 0.075),
green for (m(0), α(0)) = (0.29, 0.15) and blue for (m(0), α(0)) = (0.29, 0.3).

environment changes more quickly, the population is held at the predicted mass m,
while more variability between simulations is seen around the predicted fertilization
rate α as a result of the weaker selection on this trait. In the slower-switching
FRTE regime (purple lines), a greater quantitative difference between the results of
simulations and the analytic predictions is observed. However in both regimes, the
key prediction of finite fertilization rate (Figures 3.6 and 3.7) and isogamy is indeed
captured (see Figures 3.16 and 3.17).

3.4 CONCLUSIONS

In this chapter we have extended classic results on the evolution of anisogamy [124,
173] to account for parthenogenetic development [37, 130], the co-evolution of
fertilization rate and gamete cell mass, and stochastically varying environments. In
doing so we have demonstrated the possibility of a continuous evolutionary trajectory
from an initial state of isogamy to anisogamy followed by oogamy, an evolutionary
trajectory observed throughout the eukaryotes [81, 112].
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Consistent with earlier theoretical results on the evolution of anisogamy that
neglected the pre-existence of self-incompatible mating types [143], we have shown
that anisogamy can evolve from isogamy through evolutionary branching. However
our model also shows that when the possibility of parthenogenetic development
is accounted for, a subsequent branching to oogamy in the population is possi-
ble. Importantly, this transition is possible even without explicitly accounting for
pheromone-receptor systems [79, 96], speed-mass relationships [38], mechanistic
gamete encounter rates [50] or costly motility [199], as in previous work. Instead
in our model, oogamy can naturally evolve from anisogamy via sexual conflict [29],
following the evolution of anisogamy from isogamy. In particular, microgametes
receive a survival advantage by increasing their fertilization rate with macrogametes,
while macrogametes evolve to zero fertilization rate to overcome fertilization costs.
This requirement of fertilization costs for oogamy to evolve under parthenogenesis
provides a complementary result to [198], where instead high motility costs were
required for oogamy.

We have shown analytically that various conditions exist that can arrest the
population at different stages of the isogamy-anisogamy-oogamy evolutionary trajec-
tory. In particular our model suggests that isogamy can be stabilized under greater
energetic constraints or in highly turbulent environments. We have also shown that
isogamy can be stabilized as a bet-hedging strategy under switching environmental
conditions. Here, in organisms that reproduce parthenogenetically, microgametes
that fail to find a partner face low survival prospects under harsh environmental
conditions, and thus the transition to anisogamy is frustrated. Such dynamics may
be at play in isogamous species that reproduce parthenogenetically, such as those
among the ectocarpus [125] and Blidingia minima [216].

The results described above are dependent on the capacity for parthenogenetic
development amongst gametes that fail to find a partner to fertilize with. Such a
capacity is widespread in the brown algae [151] and can also be found in the green
algae [130]. We have also shown that for the evolution of oogamy in our model, we
require costs of fertilization to exceed those of parthenogenetic development. While
empirically parthenosporophytes have lower survival probabilities than zygotes [130],
disentangling the costs of development pathways (parthenogenesis or fertilization)
from those of increased mass is challenging [37]. By invoking costs to zygote
formation arising from cytoplasmic conflict [86], our work is reminiscent of alternative
hypotheses for the evolution of anisogamy [100, 101], that suggest that anisogamy
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reduces the potential for such conflict by limiting cytoplasmic contributions from the
microgamete. However many other costs to fertilization could be present, including
the possibility of failure during cell fusion [80], and the energetic and time costs
of sexual reproduction [131]. Unpacking and quantifying these costs remains an
interesting area of empirical research.

Our primary reason for neglecting the existence of mating types in our model
was for mathematical simplicity [143]. Including such types in a model would be a
natural next step, and based on the biological reasoning above, such a model should
demonstrate similar qualitative behaviours. However it is worthwhile noting that
many models of the evolution of sexual reproduction in early eukaryotes suppose the
existence of a "unisexual" early ancestor that mated indiscriminately [89]. Thus our
model, which has neglected the existence of mating types, could be seen as reflecting
such a system. In this context, the evolution we have seen of incompatibility between
macrogametes (that fuse with each other at rate zero in the oogamous scenario) is
interesting, as the origins of self-incompatible mating types are still debated [16,
78]. This mechanism would represent an "anisogamy consequence" model for the
evolution of mating types that manages to identify the conditions under which fusion
between large macrogametes is disadvantageous [17]. However as such "anisogamy
consequence" models are not consistent with most empirical observations (that
suggest mating types preceded anisogamy), this interpretation should be treated
with caution.

As with any model, there are omissions from our formulation. These include the
mortality of gametes (known to stabilize isogamy [124]) the discrete nature of cell
divisions leading to gametes [130], and non-local trait mutations. While these would
be interesting additions to our model, the key insights derived from the PBS model
have remained remarkably robust to such generalizations, and so the inclusion of these
additional considerations to our model may lead primarily to quantitative, rather
than qualitative, changes in results. More generally, extending our mathematical
approach leveraging adaptive dynamics to switching environments [155] in other
facultatively sexual populations might prove particularly fruitful [36, 42].

In this chapter, we have extended the models of [143, 171] in several ways; by
allowing the fertilization rate to evolve, accounting for the possibility for unfertilized
gametes to develop parthenogenetically should they fail to locate a partner, and
subjecting the system to switching environments. In doing so, we have shown its
capacity to parsimoniously capture continuous evolutionary trajectories from isogamy
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to oogamy in parthenogens. Moreover, our models emphasise the importance of
investigating the co-evolutionary dynamics for a range of evolutionary parameters
and its implications for the evolution of oogamy.

3.5 APPENDIX I: INDIVIDUAL SPOROPHYTES MUST PRO-
DUCE TWICE AS MANY SPORES AS PARTHENOSPORO-
PHYTES TO MAINTAIN THE SAME REPRODUCTIVE OUT-
PUT

Figure 3.8: Diagram, inspired by the life-cycle of Ectocarpus, illustrating the model
dynamics in terms of diploid sporophytes and haploid parthenosporopytes. The
figure is adapted from [151] to account for the fact that in our model, both male
and female gameteophytes can in principle develop parthenogenetically.

Here, we show that diploid sporophytes must produce twice as many meio-spores
as are produced by haploid parthenosoprophytes in order to maintain a parity in
reproductive output (see Figure 3.8). Further, we show that meio-spore production
in sporophytes below this level constitutes an implicit cost of fertilization.

Recall that, in the main text, Cz is the survival cost incurred by taking the sexual
reproductive route while Cp is the survival cost incurred by taking the parthenogenetic
reproductive route. We denote F (T ) as the number of fertilized zygotes, 2F (T ) as
the number of haploid gametes that have formed zygotes at the end of a generation,
and N(T ) as the number of unfertilized gametes at the end of a generation. The
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107functional form for the absolute fitness of a single genotype is

w = 2F (T )S(β, mz)(1 − Cz) + N(T )S(β, mp)(1 − Cp)

= (1 − Cp)
[
2F (T )S(β, mz)

(
1 − Cz

1 − Cp

)
+ N(T )S(β, mp)

]
(3.15)

where mz is the mass of fertilized zygotes, mp is the mass of unfertilized gametes
and S(β, m) is the survival function (see Eq. (3.2)).

Alternatively, we can express the model in terms of the number of sporophytes
and parthenosporophytes, and their individual rates of meio-spore/spore production,
Gz and Gp respectively. We again denote the number of zygotes (destined to become
diploid sporophytes) as F (T ) and the number of unfertilized gametes (destined to
become haploid parthenosporophytes) as N(T ). The absolute fitness of a single
genotype can now be written

w = F (T )S(β, mz)Gz + N(T )S(β, mp)Gp

= Gp

(
F (T )S(β, mz)Gz

Gp

+ N(T )S(β, mp)
)

. (3.16)

We now note that in terms of relative fitness, the constant factors (1 − Cp) and Gp

preceding Eqs. (3.15-3.16) are inconsequential.
Now equating the pre-factors of F (T )S(β, mz) in Eqs. (3.15-3.16) allows us to

evaluate the mass-independent costs to zygote formation in the model. We see that

2
(

1 − Cz

1 − Cp

)
= Gz

Gp

(3.17)

we can rearrange in terms of Cz to get

Cz = 1 − Gz

2Gp

(1 − Cp) . (3.18)

For zero costs to parthenogenesis, Cp = 0, production of meio-spores by sporophytes
(Gz) must be twice that of spores by parthenosporophytes (Gp) in order to achieve zero
cost to zygote formation. This result has a straightforward biological interpretation.
Since under Mendelian inheritance the reproductive fitness of sporophytes is shared
between the gametes that contribute towards its production, the fitness of sporophytes
must be at least twice that of parthenosporophytes to avoid an implicit cost to
zygote formation.
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3.6 APPENDIX II: WITHIN GENERATION DYNAMICS

At the start of each generation, we assume a total of A organisms of mature cell size
(or energy budget) M divide to form gametes. We further assume that the frequency
of mutants in this adult population is given by 1 ≥ f̂i ≥ 0, with i = m for mutants
that change the mass of gametes and i = α for mutants that change the fertilization
rate of gametes.

3.6.1 Fertilization kinetics: mutant with different mass

If a mutation occurs changing the size of gametes produced by the mutant (m̂ =
m + δm for resident gamete mass m), the fertilization kinetics themselves (see
Eq. (3.1)) are unaffected by the change in mass. However the number of gametes
produced by the mutant will change. Denoting by N the number of resident gametes
and N̂ the number of mutant gametes, we have

dN

dt
= −α(N2 + NN̂) ; N(0) = AM(1 − f̂m)

m

dN̂

dt
= −α(N̂2 + NN̂) ; N̂(0) = AMf̂m

m̂
,

(3.19)

which has a solution
N(t) = N(0)

1 +
(
N(0) + N̂(0)

)
αt

N̂(t) = N̂(0)
1 +

(
N(0) + N̂(0)

)
αt

.

(3.20)

This allows us to determine the number of unfertilized cells of each type at the end
of the fertilization window at U = N(T ) and Û = N̂(T ), where we recall that T is
the length of the fertilization window.

We also need to determine the number of fertilized cells formed from the fertil-
ization of two residents, F N

N , two mutants, F N̂
N̂

, and a mutant and a resident, F N̂
N .

For this we need to solve

dF N
N

dt
= 1

2αN2; F N
N (0) = 0

dF N̂
N

dt
= αNN̂ ; F N̂

N (0) = 0

dF N̂
N̂

dt
= 1

2αN̂2; F N̂
N̂

(0) = 0 ,

(3.21)
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which can be solved by substituting for N and N̂ from Eq. (3.20) to yield

F N
N (t) = 1

2
N(0)2t

1 +
(
N(0) + N̂(0)

)
αt

F N̂
N (t) = N(0)N̂(0)t

1 +
(
N(0) + N̂(0)

)
αt

F N̂
N̂

(t) = 1
2

N̂(0)2t

1 +
(
N(0) + N̂(0)

)
αt

.

(3.22)

3.6.2 Fertilization kinetics: mutant with different fertilization
rate

If a mutation occurs changing the fertilization rate of gametes produced by the
mutant (α̂ = α + δα for residents with fertilization rate α), the fertilization kinetics
themselves are altered relative to Eq. (3.1). We assume for simplicity that the
fertilization rate between resident-pairs is the mean of the fertilization rate between
the two types in isolation, such that

dN

dt
= −αN2 −

(
α + α̂

2

)
NN̂ ; N(0) = AM(1 − f̂α)

m

dN̂

dt
= −α̂N̂2 −

(
α + α̂

2

)
NN̂ ; N̂(0) = AMf̂α

m
.

(3.23)

Solving this equation is slightly less straightforward than solving Eq. (3.19). However
we can make analytic progress by making a change of variables and applying an
approximation based on small mutational step size δα.

We introduce the transformed variables Ntot and r̂ = N̂
N+N̂

, representing the total
number of unfertilized cells and the frequency of unfertilized mutant cells respectively.
Eq. (3.23) then becomes

dNtot

dt
= −N2

tot(α + δα r̂)
dr̂

dt
= −1

2δα Ntotr̂(1 − r̂) .

(3.24)

We now see that although this equation is also intractable, the leading order dynamics
of Ntot are governed by α. Therefore when α ≫ δα, we make the approximation
(dNtot/dt) ≈ −αN2

tot. We then obtain

Ntot(t) ≈ Ntot(0)
1 + Ntot(0)αt

, (3.25)
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Figure 3.9: Illustration of the total proportion of cells that are fertilized at the end
of a fertilization period (length T = 1) in a monomorphic isogamous population
(without branching) as a function of trait variables m and α. Parameters used are
the same as those in Figure 3.2. The vertical black dashed line gives the location of
the manifold (β/4, α), along which the population is attracted to when approaching
the high α attractor.

and substituting this into our equation for r̂ in Eq. (3.24), we can solve to obtain

r̂(t) = r̂(0)
r̂(0) + (1 − r̂(0))(1 + Ntot(0)αt) δα

2α

. (3.26)

Inverting the transformation, we then arrive at

N(t) = Ntot(t)(1 − r̂(t))

N̂(t) = Ntot(t)r̂(t) ,
(3.27)

with Ntot and r̂(t) taken from Eqs. (3.25-3.26). We shall see in Appendix 3.6.4 that
calculating F N

N , F N̂
N̂

, and F N̂
N explicitly is in fact unnecessary, and these expressions

for N(t) and N̂(t) are sufficient for analytical progress.

3.6.3 Change in mutant frequency over a generation: mutant with
different mass

We begin by calculating the fitness of the resident and a mutant that changes the
mass of gametes, wm and ŵm respectively, which are simply given by the total
number of cells of each type at the end of a generation. Recalling that fertilized and
unfertilized gametes both survive with a probability governed by the parameter β
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and the mass of the cell mc (see Eq. (3.2)), and that fertilized cells survive with an
additional probability (1 − Cz), we have

wm = (1 − Cz)
(
2F N

N (T )S(β, 2m)

+F N̂
N (T )S(β, m + m̂)

)
+ N(T )S(β, m)(1 − Cp)

ŵm = (1 − Cz)
(
2F N̂

N̂
(T )S(β, 2m̂)

+F N̂
N (T )S(β, m + m̂)

)
+ N̂(T )S(β, m̂)(1 − Cp)

(3.28)

where F N
N (T ), F N̂

N̂
(T ), and F N̂

N (T ) are taken from Eq. (3.22), and N(t) and N̂(t) are
taken from Eq. (3.20). These expressions can be used to calculate the frequency at
the end of the generation, f̂ ′

m, of a mutant that changes the mass of gametes as

f̂
′

m = ŵm

wm + ŵm

. (3.29)

The change is the frequency of the mutant over the course of a generation is then
f̂ ′

m − f̂m.

3.6.4 Change in mutant frequency over a generation: mutant with
different fertilization rate

Taking an analogous approach to Appendix 3.6.3, we begin by calculating the
fitness of the resident and a mutant that changes the fertilization rate, wα and ŵα

respectively. We obtain

wα = (1 − Cz)
(
2F N

N (T )S(β, 2m)

+F N̂
N (T )S(β, 2m)

)
+ (1 − Cp)N(T )S(β, m)

= (1 − Cz)S(β, 2m) (N(0) − N(T ))

+ (1 − Cp)N(T )S(β, m)

ŵα = (1 − Cz)
(
2F N̂

N̂
(T )S(β, 2m) (3.30)

+F N̂
N (T )S(β, 2m)

)
+ (1 − Cp)N̂(T )S(β, m)

= (1 − Cz)S(β, 2m)
(
N̂(0) − N̂(T )

)
+ (1 − Cp)N̂(T )S(β, m)

where N(t) and N̂(t) are now taken from Eq. (3.27). Here we have used the
fact that since the survival function for fertilized cells, S(β, 2m), is independent
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of the composition of the fertilized cells (mutations here only affect fertilization
rate) the number of cell-types contributing to the fertilized cells can be inferred
under cell conservation during the fertilization period (e.g. for resident cell types
d/dt

[
2F N

N (t) + F N̂
N (t) + N(t)

]
= 0, and similarly for mutant cell types).

These expressions can be used to calculate the frequency at the end of the
generation, f̂ ′

α, of a mutant that changes the fertilization rate as

f̂
′

α = ŵα

wα + ŵα

. (3.31)

The change is the frequency of the mutant over the course of a generation is then
f̂ ′

α − f̂α.

3.7 APPENDIX III: INVASION DYNAMICS

Our aim is to derive the dynamics of the frequency of a mutant with a small mutation
in either of the traits, m or α, over multiple generations. We introduce tg as a measure
of the number of discrete generations.

3.7.1 Invasion ODE: mutant with different mass

We begin by deriving the dynamics for the frequency of a mutant that changes the
mass of gametes. We begin by assuming that the mutational step size, δm, is small.
Under these conditions, the frequency of mutants changes only by a small amount
over the course of one generation, and we can approximate the frequency of mutants
at the end of the generation (see Appendix 3.6.3) by f̂ ′

m = f̂m + δm (df̂ ′
m/d δm)|δm=0,

where f̂m is the frequency of the mutants at the beginning of the generation. The
dynamics of the mutant frequency over an invasion can then be approximated by

df̂m

dtg

=
 f̂ ′

m − f̂m

tg

∣∣∣∣∣∣
tg→1

= δm

[
df̂ ′

m

d δm

]∣∣∣∣∣
δm=0

= δm

AMαT (1 − Cz)e β
2m (β − 4m) − 4m(m − β)(1 − Cp)

4m2
(
AMαT (1 − Cz)e β

2m + m(1 − Cp)
)


× f̂m(1 − f̂m)

≡ hm(m, α, β, Cz, Cp)f̂m(1 − f̂m) ,

(3.32)
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(see also Eq. (3.3)), where df̂ ′
m/d δm is derived from Eq. (3.29). We show in

Figure 3.10 that as expected, this is a good approximation for the dynamics when
δm is small.
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Figure 3.10: Invasion dynamics for a mutant with mass m + δm. Blue - analytical
prediction using Eq. (3.32), black - numerical simulation. The initial condition is
(m(0), α(0)) = (0.4, 0.1). Parameters are δm = −0.005, f0 = 0.002, G = 4 × 103,
A = 100, M = 1, T = 1, Cz = 0.6, Cp = 0 and β = 1.

3.7.2 Invasion ODE: mutant with different fertilization rate

We now derive the dynamics for the frequency of a mutant that changes the fer-
tilization rate of gametes. Taking an analogous approach to Appendix 3.7.1, we
assume the mutational step size for mutation, δα, is small. We can then approxi-
mate the frequency of mutants at the end of the generation (see Appendix 3.6.4)
by f̂ ′

α = f̂α + δα (df̂ ′
α/d δα)|δα=0, where f̂α is the frequency of the mutants at the

beginning of the generation. The dynamics of the mutant frequency over an invasion
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can then be approximated by

df̂α

dtg

=
 f̂ ′

α − f̂α

tg

∣∣∣∣∣∣
tg→1

= δα

[
df̂ ′

α

d δα

]∣∣∣∣∣
δα=0

= δα

m
(
(1 − Cz)e β

2m − (1 − Cp)
)

ln
(

αAMT
m

+ 1
)

2α
(
αA(1 − Cz)MTe

β
2m + m(1 − Cp)

)


× f̂α(1 − f̂α)

≡ hα(m, α, β, Cz, Cp)f̂α(1 − f̂α) ,

(3.33)

(see also Eq. (3.4)) where df̂ ′
α/d δα is derived from Eq. (3.31). We show in Figure 3.11

that as expected, this is a good approximation for the dynamics when δα is small.

g

<

Figure 3.11: Invasion dynamics for a mutant with fertilization rate α + δα. Blue
- analytical prediction using Eq. (3.33), black - numerical simulation. The initial
conditions and parameters are the same as in Figure 3.10 except δα = 1/200, δm = 0
and G = 1.5 × 104.

3.8 APPENDIX IV: EVOLUTIONARY DYNAMICS: FIXED ENVI-
RONMENT

3.8.1 Derivation of evolutionary ODEs

We begin by noting that the functional form of df̂m/dtg (see Eq. (3.32)) and df̂α/dtg

(see Eq. (3.33)) is f̂i(1 − f̂i), which implies a situation of trait substitution [150];
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mutants are either driven to fixation or extinction, and polymorphic equilibria are
not possible. This simplifies the subsequent analysis considerably.

Taking a classic adaptive dynamics approach [150] and define the invasion fitness
of the mutants as their per-capita rate of reproduction upon arising in the population
(i.e. when f̂m ≈ 0 and f̂α ≈ 0). Under the standard assumptions of adaptive
dynamics (i.e. that mutations are of small effect, 1 ≫ δm, δα, and occur sufficiently
rarely that each mutation can fixate before a new mutation occurs), the evolutionary
dynamics are given by

dm

dτ
= d

df̂m

df̂m

dtg

∣∣∣∣∣
f̂m=0

= hm(m, α, β, Cz, Cp)

= Hm(m, α, β, Cz, Cp)
dα

dτ
= d

df̂α

df̂α

dtg

∣∣∣∣∣
f̂α=0

= hα(m, α, β, Cz, Cp)

= Hα(m, α, β, Cz, Cp) .

(3.34)

Substituting for df̂m/dtg from Eq. (3.32), and df̂α/dtg from Eq. (3.33), we obtain
Eq. (3.5) in the main text.

3.8.2 Analysis of ODEs

In this section we aim to analytically characterise the long term evolutionary be-
haviour of the population in a fixed environment, with dynamics given by Eq. (3.5),
as illustrated in Figure 3.2.

We begin by calculating the evolutionary behaviour of m when the fertilization
rate is fixed to zero (α = 0). Solving Hm(m, 0, β, Cz, Cp) = 0, for m = m∗

α=0 we
obtain

δm
(β − m)

m2 = 0

=⇒ m∗
α=0 = β .

(3.35)

We now turn to the evolutionary behaviour of m and α. For (m∗
α=0, 0) identified above

to remain stable if evolution on α is allowed requires that [dα/dτ ]|(m=β,α=0) < 0 (i.e.
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that evolution selects against increases in α). Stating this condition in full, we have

0 > δα

m
(
(1 − Cz)e β

2m − (1 − Cp)
)

ln
(

αAMT
m

+ 1
)

2α
(
αA(1 − Cz)MTe

β
2m + m(1 − Cp)

)
∣∣∣∣∣∣

(m=β,α=0)

=⇒ 0 > (1 − Cz)e 1
2 − (1 − Cp)

=⇒ Cz > 1 − (1 − Cp)e− 1
2 .

(3.36)

If fertilization costs exceed this this value, evolutionary trajectories starting at
(m∗

α=0, 0) will remain there (see Figure 3.2, panel (b)). Conversely if fertilization costs
do not exceed this value, evolutionary trajectories starting at (m∗

α=0, 0) will initially
experience a selective pressure for increasing α, due to the fact [dα/dτ ]|m=β > 0
under these conditions (see Figure 3.2, panel (a)); the dynamics are then pulled to
another attractor, which we characterise below.

When Cz > 1 − (1 − Cp) exp (−1/2) (but less than another critical value, yet to
be determined), only a subset of initial conditions fall within the basin of attraction
of this attractor described above (see Figure 3.2, panel (b)), with remaining initial
conditions leading to an evolutionarily state at which α∗ → ∞. Conversely, when
Cz < 1 − (1 − Cp) exp (−1/2), all initial conditions lead to this attractor at which
α∗ → ∞ (see Figure 3.2, panel (a)). We now calculate the mass to which the
population evolves at this second attractor. Taking the limit α → ∞ in the
evolutionary dynamics for m (see Eq. (3.5)) and solving for zero;

0 = Hm(m, α, β, Cz, Cp)|α→∞

= δm
(β − 4m)

4m2

=⇒ m∗ = β

4 .

(3.37)

Therefore the second early evolutionary attractor is at (m, α) → (β/4, ∞).
For even greater costs of fertilization, Cz, our mathematical analysis (which

assumes monomorphic resident populations and no evolutionary branching) suggests
that (m, α) → (m∗

α=0, 0) becomes the only attractor, with (m, α) → (β/4, ∞) ceasing
to be an attractor. To determine the critical cost at which this occurs, we take
[dα/dτ ]m=β/4 and calculate the conditions under which this is negative when α is
large (i.e. when (m, α) → (β/4, ∞) is no longer attracting, but repelling). Expanding
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[dα/dτ ]m=β/4 in small 1/α, we find that to leading order we must have;

0 > δα

m ((1 − Cz)e2 − (1 − Cp)) ln
(

αAMT
β

)
8α2A(1 − Cz)MTe2


=⇒ 0 > (1 − Cz)e2 − (1 − Cp)

=⇒ Cz > 1 − (1 − Cp)e−2

=⇒ Cz ⪆ 0.86 , for Cp = 0 .

(3.38)

However, while this accurately captures the short-term evolutionary dynamics, we
see evolutionary branching (which our model Eq. (3.5) does not account for) should
trajectories approach the m ≈ β/4 manifold. Unless costs are exceedingly high
(Cz ≈ 1), this eventually leads to anisogamy followed by oogamy (see Figure 3.12).
We discuss this more in Section 3.9.

3.8.3 Implementation of simulations

Here we detail the process of numerical simulation (see Code availability statement).
We employ a multigenotype model whereby a mutation occurs at rate µ. This rate
is the inverse of the expected number of fertilization processes (i.e. generations)
until the next mutation event. Before each successive mutation event, the number of
fertilization processes until the next mutation event is determined by generating a
number from a Geo(µ) distribution and taking the inverse of that number. In an S

genotype model, if a given genotype i has a trait value of (mi, αi) and has frequency
fi, then the mean population trait value is given by

⟨m⟩ =
S∑

i=1
mifi , ⟨α⟩ =

S∑
i=1

αifi . (3.39)

The simulations in Figure 3.2 are repeated for 5500 mutation events. Below, we
detail how we simulate the dynamics on each timescale.

Fertilization Kinetics
We construct our model for fertilization kinetics assuming that each genotype,

characterised by their unique (mi, αi), can fertilize with one another. The input
parameters of this function are the trait values of each genotype m and α, their
frequency in the preceding adult generation f , and the parameters A, M and T .
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The fertilization kinetics simulations are then run according to

dNi

dt
= −1

2

S∑
j=1

(αi + αj)NiNj (3.40)

dFij

dt
= 1

2(αi + αj)NiNj (3.41)
dFii

dt
= 1

2αiN
2
i

where Fij is the number of fertilized cells formed from genotypes i and j, and Fii is
the number of fertilized cells formed from two cells of genotype i for any i, j ∈ [1, S].
The initial conditions are

Ni(0) = AMfi

mi

(3.42)

Fij(0) = 0 . (3.43)

The fertilization process is run for a fixed time period T . At the end of this time
period, the function outputs the number of cells of each type. These include the
number of unfertilized cells with each trait pair, Ni(T ), and fertilized cells of each
type Fij(T ). The fertilization kinetics are simulated by solving Eqs. (3.40-3.41) using
the ODE solver ode45 in MATLAB.

Single Generation Dynamics
We simulate the frequency of each genotype after the end of each generation

taking into account the survival probability of each genotype. Upon maturation,
only a fraction of unfertilized and fertilized cells survive to adulthood. We use the
outputs of the fertilization kinetic function along with the Vance survival functions
Eq. (3.2) to calculate the probability that each progeny survives into adulthood. The
single generation dynamics are run according to

f ′
i = wi∑S

j=1 wj

(3.44)

wi = (1 − Cp)Ni(T )S(β, mi) (3.45)

+ (1 − Cz)
(

S∑
j=1,j ̸=i

Fij(T )S(β, mi + mj)

+ 2Fii(T )S(β, 2mi)
)

where f ′
i is the frequency of genotype i in the subsequent generation and wi is its

absolute fitness. The input parameters of this function are Ni(T ) and Fij(T ), m ,α,
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β, Cz and Cp whilst the output is f , the frequency of all genotypes at the end of the
generation.

Invasion Dynamics

The invasion dynamics are run for approximately one unit of τ (i.e. until the next
randomly chosen mutation event after G generations). As outlined in the opening
paragraph of Appendix 3.8.3, G is generated from a Geo(µ) distribution following
each mutation event. The inputs of this function are f , m, α, A, M , T , Cz, Cp, G

and β and the output is the frequency of each genotype f after one unit of τ (i.e
after G fertilization processes). Please note we have adopted one single notation for
the frequency of all genotypes.

Evolutionary Dynamics

The evolutionary dynamics have the input parameters δ, µ, f , Nmut, f0, A,
M , T , Cz and Cp where δ is the mutational stepsize and Nmut is the number of
mutations that occur in our simulation. The initial frequency of a newly introduced
mutant f0 is chosen to be small (equal to 0.002 in our model). We initialise the
simulation with two genotypes, where each genotype is characterised by a unique
pair of trait values e.g. (mi, αi) for genotype i. A mutant is introduced into the
population after a random number of fertilization processes G (generated from a
Geo(µ) distribution) at frequency f0. The mutation is chosen to occur in either α

or m with equal probability 1/2. The mutation also acts to increase/decrease the
trait value each with probability 1/2. Upon introduction of this mutant, the invasion
dynamics of the population is run for G fertilization processes. In the meantime,
the mean mass and fertilization rate of the population is recorded using Eq. (3.39).
Next, we repeat the process of introducing a new mutant into the population. Since
the population now has more than two genotypes, the genotype that mutates is
chosen with probability weighted by the frequency of each genotype. There is now
the possibility of back mutation to one of the existing genotypes. In this case, if
an existing genotype k with frequency fk mutates to another existing genotype l

that has frequency fl, then following mutation, the frequency of genotype k becomes
fk − f0 and the frequency of genotype l becomes fl + f0. Furthermore, a genotype is
thought to be extinct if its frequency falls below 10−3, in which case we remove that
genotype.
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3.8.4 Evolutionary Branching in Gamete Mass and fertilization
rate

In this section we present additional numerical results investigating the evolutionary
branching that occurs in simulations on the manifold m ≈ β/4 (along which dα/dt ≈
0).

In a fixed environment, when Cz is small relative to Cp, branching in fertilization
rate still occurs but no longer gives rise to oogamy

When the cost to fertilization, Cz is small compared to Cp, we find that although
branching in both gamete mass and fertilization rate still occurs, the branching in
α no longer acts to decrease the fertilization rate of macrogametes. Therefore, we
observe pseudooogamy but not oogamy. This behaviour is illustrated in Figures 3.5
and 3.14. We can estimate the critical value of Cz at which this occurs by comparing
the survival probability of a macrogamete that does not fertilize with a microgamete,
which has cost Cp with that of a macrogamete that does fertilize with a microgamete
at cost Cz; if this first probability exceeds the second, there should be no evolutionary
pressure for oogamy to evolve. We find

(1 − Cp) exp
(

− β

mmacro

)
> (1 − Cz) exp

(
− β

mmacro + mmicro

)
(3.46)

or, noting that mmacro approaches β − δm and mmicro approaches δm

(1 − Cp) exp
(

− β

β − δm

)
> (1 − Cz) exp (−1) (3.47)

=⇒ 1 − (1 − Cp) exp
(

− δm
β − δm

)
> Cz ≥ 0 . (3.48)

In a fixed environment, when Cz is very large, branching in mass and fertilization
rates can still occur, with oogamy possible (dependent on initial conditions)

Our analysis of the dynamics of Eq. (3.5) in Appendix 3.8.2 suggested that zero
fertilization rates is the only evolutionary attractor when costs to fertilization are
high (see Eq. (3.38)). However, our analysis in Section 3.9 along with our simulations
reveal that although dα/dt < 0 along the m ≈ β/4 manifold, any trajectory that
approaches this manifold can experience branching in gamete mass, unless Cz = 1.
Once branching in gamete mass occurs, the smaller gametes (e.g. microgametes)
again experience a strong selective pressure to increase their fertilization rate, despite
the high costs imposed by fertilization; sexual conflict drives the population towards



3.9. APPENDIX V: αmax below which branching to anisogamy can be
arrested 121

obligate oogamy imposed by motile microgametes. Thus as for Cz < 1, there is
always a subset of initial conditions that lead to trajectories along the m ≈ β/4
manifold (most obviously initial conditions on the manifold itself) and thus oogamy
remains one of the two evolutionary outcomes, albeit requiring an increasingly small
and biologically unrealistic set of initial conditions (see Figure 3.12 below).
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Figure 3.12: Numerical illustration of evolutionary branching for the case where
Cz = 0.9 and Cp = 0. All other parameters the same as Figure 3.2, except
(m(0), α(0)) = (0.6, 0.5) and run for 3000/µ generations.

3.9 APPENDIX V: αmax BELOW WHICH BRANCHING TO ANISOGAMY
CAN BE ARRESTED

The two necessary conditions for evolutionary branching to occur is for the fitness
gradient of an invading mutant to be zero (i.e. dm/dτ in Eq. (3.34) to equal zero if
the mutation occurs in mass, this is also known as an evolutionary singularity) and
the second derivative of Eq. (3.29) with respect to the mutational stepsize δm to be
positive [46, 64] when δm = 0. Using Eq. (3.34), we see that the vertical manifold
m ≈ β/4 is an approximate evolutionary singularity since [dm/dτ ]|m=β/4 ≈ 0. The
condition for selection in mass to be disruptive about an evolutionary singularity is

d

df̂

[
d2f̂ ′

d δm2

]
δm=0

∣∣∣∣∣
f̂=0

> 0 , (3.49)
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where f̂
′ is the frequency of the mutant in the subsequent generation, given by

Eq. (3.29). The explicit expression for the left hand side of Eq. (3.49) is given by

d

df̂

[
d2f̂ ′

d δm2

]
δm=0

∣∣∣∣∣
f̂=0

= U/V , (3.50)

where

U = A(−1 + Cz)e
β

2m MTα
(
32m2 − 12mβ + β2

)
+16(−1 + Cp)m

(
2m2 − 4mβ + β2

)
V = 16m4

(
(−1 + Cp)m + A(−1 + Cz)e

β
2m MTα

)
.

The first condition for branching to occur in mass i.e dm/dτ = 0 can be calculated
straightforwardly by setting Eq. (3.34) to zero and solving for α, which gives

α = 4m(Cp − 1)(m − β)e− β
2m

AMT (Cz − 1)(4m − β) . (3.51)

We then substitute Eq. (3.51) into Eq. (3.50) to obtain

∂

∂f̂

[
d2f̂ ′

d δm2

]
δm=0

∣∣∣∣∣∣
f̂=0

= (3β − 7m)(β − 4m)β
12βm4 , (3.52)

which needs to be positive for selection to be disruptive. Eq. (3.52) equals 0 if
m = 3β/7 or m = β/4 and is positive for β/4 < m < 3β/7. By substituting the
boundaries of this interval into Eq. (3.51), we find that it corresponds to

48(1 − Cp)β
35AMT (1 − Cz)e 7

6
< αmax < ∞ , (3.53)

and thus the value of αmax above which branching will occur in mass is the value
given on the left hand side of the inequality Eq. (3.53). In other words, Eq. (3.53)
is the interval in αmax in which branching is expected to occur. The vertical line
in Figure 3.4 corresponds to the lower limit of this interval. In Figure 3.13 below,
we provide a numerical example showing how isogamy can be stabilized below a
sufficiently low αmax.
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Figure 3.13: Numerical illustration of the stabilization of isogamy below a sufficiently
low αmax. System parameters are A = 100, M = 1, T = 0.1, Cz = 0.6, Cp = 0,
β = 1, αmax = 0.1 and simulation parameters are δ = 5 × 10−3, f0 = 2 × 10−3 and
run for 6 × 106 generations. Using Eq. (3.53) we can calculate that branching would
occur if αmax ⪆ 0.1068 for these parameter values.

3.10 APPENDIX VI: THE STABILIZATION OF ANISOGAMY
UNDER HIGH COSTS OF PARTHENOGENESIS RELATIVE
TO FERTILIZATION

In Figure 3.14, we provide an example of a parameter regime where pseudooogamy
occurs. When the parameters are close to the boundary where we observe the
transition between oogamy and anisogamy (i.e close to where the inequality in
Eq. (3.48) becomes an equality), we observe pseudooogamy, where there is a con-
siderably stronger selection pressure for microgametes to increase their fertilization
rate than macrogametes. Under pseudooogamy, macrogametes are still motile but
are considerably less motile than microgametes.

3.11 APPENDIX VII: EVOLUTIONARY DYNAMICS: SWITCH-
ING ENVIRONMENTS WITH BET-HEDGING

We first tackle the derivation of the approximate dynamics in the FRTI (fast relative
to invasion) switching regime in Appendix 3.11.1, before verifying the qualitative
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Figure 3.14: Numerical illustration of the evolution of pseudo-oogamy in fixed
environment. Parameters are Cz = 0, Cp = 0, δm = 0.005, (m(0), α(0)) = (0.25, 0)
and simulation run for 1.6 × 107 generations. Remaining parameters are as given in
Appendix 3.12.

robustness of these results in the FRTE switching regime in Appendix 3.11.1.

3.11.1 Derivation of evolutionary ODEs: FRTI

df̂m

dtg

≈ [P1hm(m, α, β1, Cz, Cp)

+P2hm(m, α, β2, Cz, Cp)] f̂m(1 − f̂m)
df̂α

dtg

≈ [P1hα(m, α, β1, Cz, Cp)

+P2hα(m, α, β2, Cz, Cp)] f̂α(1 − f̂α) ,

(3.54)

where hm(m, α, β, Cz, Cp) and hα(m, α, β, Cz, Cp) are given in Eq. (3.32) and Eq. (3.33)
respectively. In Figure 3.15 we show that this indeed is a good approximation of
the dynamics when δm and δα are small and when the residency times in each
environment are small relative to the invasion time. Note that as in the case of the
fixed environment, the functional form of fi in these equations implies that trait
substitution occurs for independent mutations on the gamete mass and fertilization
rate.
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Figure 3.15: Invasion dynamics for a population undergoing bet-hedging when
the environment switches FRTI. Blue curve is the analytical approximation using
Eq. (3.54) and jagged curve is the numerical simulation. Mutation occurred in mass
with δ = 0.005, f0 = 0.002, (m(0), α(0)) = (0.3, 0.1), λ1→2 = 13/222, λ2→1 = 1/6.
All other parameters the same as Figure 3.6.

We now apply the same approach as in Appendix 3.8.1 (see Eq. (3.34)) to obtain

dm

dτ
= [P1hm(m, α, β1, Cz, Cp)

+P2hm(m, α, β2, Cz, Cp)] d
df̂m

(
f̂m(1 − f̂m)

) ∣∣∣∣∣
f̂m=0

=

= P1Hm(m, α, β1, Cz, Cp) + P2Hm(m, α, β2, Cz, Cp)
dα

dτ
= [P1hα(m, α, β1, Cz, Cp)

+P2hα(m, α, β2, Cz, Cp)] d
df̂α

(
f̂α(1 − f̂α)

) ∣∣∣∣∣
f̂α=0

=

= P1Hα(m, α, β1, Cz, Cp) + P2Hα(m, α, β2, Cz, Cp) .

(3.55)

We see in Figure 3.6 that these also provide a good approximation of the evolutionary
dynamics.

3.11.2 Derivation of evolutionary ODEs: FRTE

In the FRTI scenario in the previous section, we supposed that switching between
the environments was happening sufficiently regularly relative to the timescale of
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invasion that the effective invasion dynamics could be described by a weighted
mean of the invasion dynamics in both environments (see Eq. (3.54)). Applying an
analogous logic, we now assume in the FRTE scenario that switching between the
environments occurs regularly relative to the timescale of evolution (the arrival rate
of new mutations) that the effective evolutionary dynamics can be described by a
weighted mean of the evolutionary dynamics in both environments; that is

dm

dτ
= P1Hm(m, α, β1, Cz, Cp) + P2Hm(m, α, β2, Cz, Cp)

dα

dτ
= P1Hα(m, α, β1, Cz, Cp) + P2Hα(m, α, β2, Cz, Cp) .

(3.56)

We note that these are in fact exactly the same evolutionary dynamics as derived
in the FRTI scenario (see Eq. (3.55)). In Figure 3.6 we show that these do indeed
remain a good approximation for the dynamics in the FRTE scenario. The difference
between the dynamics in both regimes is quantitative, rather than qualitative. In
the very-fast switching FRTI regime, the populations follow the effective dynamics
very closely. In the comparatively slower FRTE regime, although the populations no
longer follow the dynamics as well, the qualitative picture of the dynamics is still
captured by Eq. (3.56). In particular, we still observe an evolutionarily stable state
of intermediate fertilization rate (see Figure 3.6).

3.11.3 Analysis of ODEs

We begin, as in Appendix 3.8.2, by considering the evolutionary behaviour of m

when the fertilization rate is fixed to zero (α = 0). We recall that if the population
was fixed in environment 1 or 2 with α = 0, the mass of gametes would evolve to
m = β1 and m = β2 respectively. In the switching environment we instead find the
bet-hedging strategy

m∗
α=0 = P1β1 + (1 − P1)β2 . (3.57)

Meanwhile the region of the boundary α = 0 over which reduced fertilization rates
are selected for is given by [dα/dτ ]|α=0 < 0, or

0 > (1 − Cz)
[
P1e

β1
2m + (1 − P1)e

β2
2m

]
− (1 − Cp)

=⇒ Cz > (1 − Cp) − 1
P1e

β1
2m + (1 − P1)e

β2
2m

.
(3.58)

If this condition holds for m = m∗
α=0, then the switching-induced fixed point (m, α) =

(m∗
α=0, 0) is stable. We next turn to the high fertilization rate attractor, for which
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α → ∞. In a similar manner to Eq. (3.37) (albeit with Hm(m, α, β, Cz, Cp) replaced
with [P1Hm(m, α, β1, Cz, Cp) + P2Hm(m, α, β2, Cz, Cp)]), we find the bet-hedging
strategy

m∗ = 1
4 [P1β1 + (1 − P1)β2] . (3.59)

However, unlike in the fixed environment case, (m, α) = (m∗, ∞) is not always an
evolutionary attractor.

In the switching environment, a third evolutionary attractor can emerge, brought
about by a balance between selection for high fertilization rates in one environ-
ment and zero fertilization rates in the other. Solving P1Hα(m, α, β1, Cz, Cp) +
P2Hα(m, α, β2, Cz, Cp) = 0 for α we obtain

α∗ = m∗(1 − Cp)
AMT (1 − Cz)

×

 (1 − Cz)
(

P1e
β1

2m∗ + (1 − P1)e
β2

2m∗

)
− (1 − Cp)

(1 − Cp)(P1e
β2

2m∗ + (1 − P1)e
β1

2m∗ ) − (1 − Cz)e
β1+β2

2m∗

 .

(3.60)

A good approximation for m∗ in this equation can be deduced by noting that the
fixed point sits on a vertical manifold of trajectories along which m is approxi-
mately held constant as α → ∞; thus we substitute ≈ m∗ from Eq. (3.59) to obtain
the approximate expression for the attractor (m∗, α∗) given in Eq. (3.14). In Ap-
pendix 3.11.5, we verify from simulations that evolutionary branching does not occur
at this switching-induced fixed point, and that the population is instead held in a
state of isogamy.

3.11.4 Implementation of simulations

In the bet-hedging scenario, we simulate the evolutionary dynamics using the same
principles as in the fixed environment scenario (see Appendix 3.8.3), however we
now implement a Gillespie algorithm [68] to allow us to incorporate environmental
switching events as well as mutations, both of which occur stochastically. In par-
ticular, we introduce environmental switching events and mutations randomly with
geometrically distributed waiting times, measured in units of number of fertilization
processes tg. To simulate the FRTI regime, we set the environmental switching rates
to larger values than the mutation rate i.e. λ2→1, λ1→2 >> µ. Likewise, in the FRTE
regime, we set λ2→1 and λ1→2 to smaller values than µ. The mutation rate in the
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Figure 3.16: Numerical simulation showing an absence of branching for a system
undergoing bet-hedging in an environment that switches FRTI. Parameters are same
as Figure 3.6 (a) and system run for 4000/µ generations.

numerical simulation of the FRTI regime overlaid in Figure 3.6 (a) is µ = 3.5 × 10−4

and the switching rates are λ2→1 = 67/532 and λ1→2 = 1/4. For Figure 3.6 (b) we
have µ = 3.5 × 10−4 and the switching rates are λ2→1 = 1/6 and λ1→2 = 13/222. For
the FRTE regime, µ = 5 × 10−4 and the switching rates are λ2→1 = (67µ)/532 and
λ1→2 = µ/4 in Figure 3.6 (a) and λ2→1 = µ/6 and λ1→2 = (13µ)/222 in Figure 3.6
(b).

3.11.5 Absence of Evolutionary Branching at Switching-Induced
fixed point

In this section we present additional numerical results that confirm that evolutionary
branching does not occur at the switching-induced fixed point calculated in Eq. (3.14).
We see that under both FRTI and FRTE, the population is held in a state of isogamy.
This behaviour is illustrated in Figures 3.16 and 3.17.
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Figure 3.17: Numerical illustration showing an absence of evolutionary branching for
a system undergoing bet-hedging in an environment that switches FRTE. Parameters
the same as Figure 3.6 (c) and the system is run for 4000/µ generations.

3.12 APPENDIX VIII: MODEL PARAMETERS IN FIGURES

3.12.1 Figure 3.2

The initial points of the trajectories are (m(0), α(0)) = (1.5, 0.6) and (m(0), α(0)) =
(2, 0.1). Remaining model parameters are A = 100, M = 1, T = 1 and β = 1.
Simulation parameters: Initial frequency of novel mutant genotype f0 = 2 × 10−3,
mutation rate µ = 5 × 10−4 (number of generations)−1, run for 1.1 × 107 generations
in panel (a) and 1.24 × 107 generations in panel (b). The mutational stepsize is
δ = 5 × 10−3. Throughout the paper, we use δm and δα to denote mutational
stepsize in m and α respectively, however in simulations involving co-evolution of m

and α, the same stepsize is used for both traits. For convenience, we thus denote
mutational stepsize as δ in these simulations.

3.13 APPENDIX IX: BRANCHING TO ANISOGAMY CAN OC-
CUR UNDER PERIODIC ENVIRONMENTAL SWITCHING
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In the case where environmental switching is periodic in the FRTI regime,
evolutionary branching can occur about the switching induced fixed point (m∗, α∗)
Eq. (3.14), as shown in Figures 3.18 and 3.21. This can be justified as follows. In the
case of periodic switching, the invasion dynamics of each genotype is deterministic,
hence a gamete with mass greater than the evolutionary stable mass at the switching
induced fixed point and one with a smaller mass than that evolutionary stable mass
are guaranteed to coexist (see bottom panel of Figure 3.19). This coexistence is what
gives rise to branching. Here, the frequencies of both genotypes oscillate between
two fixed frequencies under switching environments. However when switching is
stochastic, as shown in the top panel of Figure 3.19, a longer than average period
spent in a given environment can cause fixation of one of the genotypes, which is
likely to prevent coexistence. The increased chance of extinction due to the long
period spent in a given environment has also been noted in Berríos-Caro et al. [15],
which investigated the effect of environmental switching on the evolution of number
of mating types.

Furthermore, repeating the simulations of the FRTE regime of Figure 3.6 for
periodic switching, we find that branching does not occur (see Figure 3.20).

Figure 3.18: Simulation of Figure 3.6 (a) under periodic environmental switching in
the FRTI regime. Evolutionary branching can occur to give rise to mild anisogamy.
Following branching, the microgamete extincts, giving rise to branching-extinction
cycles, as shown in the inset of the top panel. All simulation parameters are identical
to the FRTI regime in Figure 3.6 except δ = 0.02 and µ = 1/500. This is to
help speed up simulations. To allow periodic switching with a discrete number of
generations, λ1→2 = 1/4 and λ1→2 = 1/8, which is a good approximation of the
switching rates in Figure 3.6 (a).
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Figure 3.19: Invasion dynamics of a population with one gamete with smaller mass
than that at the switching induced fixed point Eq. (3.14), and one with mass larger
than at the switching induced fixed point Eq. (3.14), under the FRTI regime with
stochastic environmental switching (top) and periodic switching (bottom). Under
periodic switching, coexistence between the small and large gamete occurs, while
under stochastic switching, one type of gamete can be driven to extinction due to a
long period between two switching events. Parameters are identical to Figure 3.6 (a),
with f0 = 0.01, The small and large gametes have masses 0.22 and 0.26 respectively.

Figure 3.20: Simulation of Figure 3.6 (a) under the FRTE regime. Evolutionary
branching does not occur. All simulation paraemeters are identical to the FRTE
regime in Figure 3.6 except δ = 0.02 and µ = 1/500 to speed up simulations.
Switching rates are λ1→2 = 1/2000 and λ2→1 = 1/4000 to ensure that switching
occurs after a discrete number of generations, as in Figure 3.18.
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Figure 3.21: Simulation of evolutionary trajectories with periodic switching under
the FRTI regime for a different set of parameters as Figure 3.18. Here, we observe
branching-extinction cycles about the switching induced fixed point Eq. (3.14).
System parameters are, A = 100, M = 1, T = 1 β1 = 4, β2 = 0.1, Cz = 0.6, Cp = 0,
λ1→2 = λ2→1 = 1/5. Simulation parameters are δ = 0.01, µ = 1/1000, f0 = 0.002 and
(m(0), α(0)) = (0.5, 0.03) which is located in the vicinity of the switching induced
fixed point.

Figure 3.22: Simulation of evolutionary trajectories as in Figure 3.21 but with
stochastic switching. All system and simulation parameters are identical to Fig-
ure 3.21.
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Cell size, switching environments and
selection for stress-induced binary cell

fusion

Abstract

Binary cell fusion is a crucial process in sexually reproducing organisms and can form
the basis for the evolution of various reproductive modes. Microorganisms exhibit a
variety of reproductive modes, and these modes vary with changing environments. Adverse
environments are typically associated with cell fusion, while benign environments favour
cell fission. Here, we develop mathematical models which capture the co-evolution of
mass and cell fusion rate to investigate the environmental conditions that select for cell
fusion. Cells are shown to evolve to increase their mass in response to environmental stress.
However, if the physiological machinery for cell-fusion becomes available, binary cell fusion
is selected for instead of increasing mass. Furthermore, we show that in the presence of
phenotypic plasticity, where genotypes can produce different phenotypes in response to
different environmental conditions, evolution of binary cell fusion may occur as a response
to environmental stress. These results highlight a nascent mechanistic advantage to cell
fusion, due to the increase in cytoplasmic volume. Since the conditions giving rise to the
evolution of facultative sex and facultative multicellularity broadly coincide, both occurring
under harsh environmental conditions and involve cell fusion, our results have the potential
to shed light on the coincidence between the early evolution of facultative multicellularity
and sex.
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4.1 INTRODUCTION

Although the details of the early evolution of sexual reproduction in the last common
eukaryotic common ancestor (LECA) are shrouded in mystery, it is argued that the
process began with the evolution of cell–cell fusion and meiosis [73] in an archaeal
ancestor [51, 52]. This step can be further broken down into the evolution of binary
cell fusion, the one spindle apparatus, homologous pairing and chiasma, and finally
reduction, division and syngamy [147]. The vast majority of theoretical studies
investigating the evolution of sexual reproduction have focused on later stages of this
evolutionary trajectory, namely the conditions that give rise to a selective pressure
for genetic recombination [87, 154, 221]. However, comparatively few studies have
investigated the selective pressures that may have first given rise to binary cell
fusion, which sets the stage for the evolution of homologous pairing and genetic
recombination by bringing nuclei together in the same cell.

Hypotheses for the evolution of binary cell fusion generally rely on hybrid fitness
advantage. It has been suggested that selection for cell–cell fusions might have
initially been driven by “selfish” transposons and plasmids [93, 94, 191], or negative
epistatic interactions between mitochondrial mutations [182, 217]. However, once a
heterokaryotic cell has been formed (binucleate with nuclei from both parental cells),
the advantage of hybrid vigor and the masking of deleterious mutations could lead
to the maintenance of cell fusion [147]. Such benefits are required to alleviate costs
to cell-fusion, which include selfish extra-genomic elements in the cytoplasm [86] and
cytoplasmic conflict [100, 101].

In this chapter, we avoid the complexity associated with these genetic factors.
Instead, we focus on how the survival advantage associated with increasing cyto-
plasmic volume might select for binary cell fusion; this relies on the physiological
advantages conferred by cell-cell fusion and is independent of the question of the
genetic advantages (and disadvantages) of sexual reproduction. This alternative
perspective offers useful new insights that can be usefully compared with empirical
observation.

That size-based processes could play a role in the early evolution of sexual
reproduction has theoretical support. The “food hypothesis” [225] suggests that
metabolic uptake could drive horizontal gene transfer in bacteria and archaea, with
DNA molecules providing nutrients for the receiving cell [186, 185]. Indeed, horizontal
gene transfer has been shown experimentally to be an important source of carbon
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and nutrients in bacteria [156, 169]. Meanwhile amongst eukaryotes, the benefits of
increasing cytoplasmic volume are understood to be strong enough to drive selection
for the sexes themselves [128, 173]. However, the role of cytoplasmic volume in the
evolution of binary cell fusion has yet to be explored. In suggesting a mechanistic
hypothesis for the evolution of binary cell fusion, our work has interesting parallels
with [144], where an advantage to cell fusion is identified in terms of shortening the
cell-cycle.

The fusion of any pair of genetically distinct cells may incur conflicts of interest
[215], which requires cooperation in order to be resolved [163]. This presents another
cost to cell fusion. However we show here that the increased mass conferred by cell
fusion presents a sheer physiological advantage, which may be sufficient to overcome
such costs.

An early theory known as Muller’s Ratchet states that sex evolved due to the
ability for genetic recombination to prevent the buildup of deleterious mutations
[154]. Another hypothesis known as the Red queen hypothesis [221] states that
recombination generates genetic diversity which hastens adaptation to fluctuating
environments.

4.2 MODEL

4.2.1 Insights from Simulations

We consider a computational model of a haploid population that reproduces via binary
cell fission. This population dynamics proceed as follows: there is an initial growth
and binary fission phase where a fixed energy budget E can be used for population
growth and binary fission (see Figure 4.1 (a)), followed by an environmentally-induced
mortality phase where growth and fission are suspended and survival depends on
cell size. Explicitly, we assume that cells reach maturity at size M , so that in the
absence of binary fission (n = 0 rounds of fission) the total number of mature cells at
the end of a growth cycle is E/M (see Figure 4.1 (a)). If, however, the population
undergoes n > 0 rounds of binary fission, then each resulting daughter cell has
mass m = M/2n and the total number of daughter cells is (2nE)/M . After this
growth and fission phase each daughter cell is subject to an extrinsic mass-dependent
mortality, such that larger daughter cells are more likely to survive into the next
growth cycle (see Figure 4.1, panel (a)). We denote this survival function S(m; β);
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(b) Coevolutionary dynamics of cell mass and cell fusion

(a) Evolutionary dynamics of cell mass

Figure 4.1: Schematic for the model dynamics within each growth cycle. Panel (a):
Illustrative dynamics for the evolutionary dynamics of cell mass alone. Due to
energetic constraints genotypes in the population can either produce fewer, larger
mature cells or more numerous, smaller cells (see different shades of green). Daughter
cells are produced following cell division. Their survival is dependent on mass, such
that smaller cells are more likely to die (see Eq. (4.2)). Surviving cells seed the next
growth cycle. panel (b): Illustrative dynamics for the coevolutionary dynamics of
cell mass and cell fusion rate. The model is similar to that in panel (a), but now a
fraction of daughter cells are given the opportunity to risk fusing to form binucleated
cells; with probability C fusion fails, and both daughter cells are lost. However should
a fused cell successfully form, it experiences an enhanced survival probability as a
result of its larger cytoplasmic volume. Following growth and vegetative segregation,
surviving cells seed the next growth cycle.

the parameter β describes the magnitude of the mortality process (i.e. the harshness
of the environment). For a given value of m, an increase in β decreases the survival
probability.

In an initial investigation, we view the mass of daughter cells, m, as a single
trait subject to evolution. To increase the number of daughter cells they produce
(E/m) mature cells can grow to smaller sizes (reduced M) or increase their number
of cell-divisions (increased n) . However by increasing n, individuals also produce
smaller daughter cells that are more vulnerable to extrinsic mortality. The size of
daughter cells is thus subject to a quality-quantity trade-off. For simplicity, we model
the mass of daughter cells m as a continuous trait, and explore its evolution using
simulations.



4.2. Model 137

Figure 4.2 summarises the outcome of such evolutionary dynamics. Panel (a)
shows that the population evolves towards an evolutionarily stable strategy (ESS) in
m for a given environment. In the context of adaptive dynamics, an ESS is a strategy
where the local fitness gradient is zero and is uninvadable by any nearby mutants
[150] (i.e a fixed point in the evolutionary phase plane). Should the environment
suddenly become harsher (via an increase in β) the population evolves towards a
new ESS, in which daughter cells are larger.

We now modify the model to allow for the possibility of binary cell fusion.
Daughter cells may now fuse to form a binucleated cell (e.g. a dikaryon, in which the
cytoplasm of the contributing cells are mixed but their nuclei remain distinct [122])
or remain a mononucleated cell. The rate of cell fusion is given by α, such that when
α = 0 all cells remain mononucleated, and cell survival into the next growth cycle is
calculated as before. Conversely for α > 0, some proportion of daughter cells will
have fused and in the limit α → ∞, all cells will have fused. These fused cells will
receive a survival advantage from their increased mass. However they will also pay
an additional cost, C, resulting from factors such as cell-fusion failure [80], selfish
extra-genomic elements in the cytoplasm [86], cytoplasmic conflict [100, 101] and
maintenance of a binucleated cell [227]. Together this means that fused cells survive
with a total probability (1 − C)S(2m; β). Surviving adults divide to form a new
growth cycle of mononucleated haploid daughter cells, with binucleated parental
cells producing mononucleated progeny through vegetative segregation [189]. Note
that although we do not account for the possibility of binucleated cells failing to
form mononucleated progeny (i.e. failed segregation), this can be accounted for by
their additional survival cost, C (see Figure 4.1, panel (b)).

We now explore the coevolution of daughter cell mass, m, and fusion rate, α. In
Figure 4.2, panel (b), we see that in the benign environment, α remains at zero, and
the population evolves towards an ESS in m as in Figure 4.2, panel (a). However
now when the population is introduced to a harsher environment, the evolutionary
dynamics differ from those in Figure 4.2, panel (b) (where α was held artificially at
zero). Rather than cells evolving to be larger, we see a different response emerging;
selection for binary cell fusion.

The result above is in some sense surprising. Despite the presence of additional
survival costs associated with binary cell-fusion, selection for non-zero fusion rates
(rather than increased daughter cell size) persists in the harsh environment. We
explain the emergence of this behaviour mathematically in the Results section.
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(b) Coevolutionary dynamics of cell mass and cell fusion
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Figure 4.2: Stochastic simulations of evolutionary trajectories when the system is
subject to a switch from the benign environment (β1 = 0.5, green region) to the
harsh environment (β2 = 2.2, orange region) at growth cycle 500. Panel (a) for the
case where the fusion rate is held at 0, representing the case where the physiological
machinery for fusion has not evolved, and panel (b) for the case where fusion rate
is subject to evolution. Remaining model and simulation parameters are given in
section 4.6 and the initial condition is (m(0), α(0)) = (1.16, 0).

4.2.2 Mathematical Model

Our model takes inspiration from the classic Parker-Baker-Smith (PBS) model for the
evolution of anisogamy [173] (the production of sex cells of differing size). However,
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whereas such models typically consider the binary cell fusion (fertilization) rate a
fixed parameter, we here treat it as a trait subject to evolution. In doing so our work
builds on Chapter 3, where a very similar model with a different biological motivation
was used to investigate the evolution of anisogamy with parthenogenesis. In order
to analyse the dynamics of the model, we use tools from adaptive dynamics [22],
assuming that traits are continuous and that mutations have small effect.

In addition we will explore the effect of switching environments, another departure
from the PBS model. As such it is important to keep track of the hierarchy of
timescales at play. The shortest timescale is the timescale of a growth cycle. The
intermediate timescale is that over which the invasion of a rare mutant (taking place
over many growth cycles) can occur and the longest timescale is the evolutionary
timescale, representing the cumulative effect of multiple mutations and invasions.
Finally we assume that environmental switching can take place on either intermediate
or long timescales (see section 3.2.2 in Chapter 3).

4.2.3 Dynamics within each growth cycle

A total of (2nE)/M daughter cells enter a pool in which binary cell fusion can
occur. After a finite time window, the resultant cells are subject to a round of mass
dependent mortality, such that cells of larger mass are more likely to survive. The
surviving cells form the basis of the next growth cycle, completing the growth cycle,
as illustrated in Figure 4.1.

Fusion Kinetics

We assume that the attractor to which the population evolves depends on the
initial conditions cells may fuse with each other, an assumption consistent with most
models of the early evolution of sexual reproduction, which suppose the existence of a
“unisexual” early ancestor that mated indiscriminately [89]. Initially, the population
is comprised of N unfused daughter cells. Fusion between mononucleated cells occurs
at a rate of α, such that the number of unfused cells, N , is given by the solution to

dN

dt
= −αN2 , N(0) = 2nE

M
. (4.1)

At the end of the fusion window of duration T there are then N(T ) unfused (mononu-
cleated) cells remaining, and (N(0) − N(T ))/2 fused (binucleated) cells.
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Survival Probability

We assume that both unfused and fused cells are subject to the same extrinsic
mass-dependent mortality function, S(m; β), while fused cells pay an additional
mass-independent cost C. Many choices for such a function are possible, so long as
it is an increasing function of cell size (which we equivalently refer to as cell mass
m). However here we assume that S(m; β) is the Vance survival function [222], a
common assumption in the literature [25, 124, 135]. We thus have that at the end
of the fusion window, the survival probability of unfused and fused cells are given
respectively by

S(mi; β) = exp
(

− β

mi

)
,

(1 − C)S(mj + mk; β) = exp
(

− β

mj + mk

)
,

(4.2)

where mi is the mass of a particular unfused cell and mj and mk are the masses of
two daughter cells that have fused. For a given cell mass, increasing β will decrease
the survival probability. We therefore refer to β as the environmental harshness
parameter, with high β corresponding to harsh environments in which survival is
difficult, and low β corresponding to more benign environments in which even cells
of modest mass have a high probability of surviving.

Having defined how the survival of a cell depends on its mass, we have the
necessary tools to mathematically characterise the fitness of a rare mutant, and
whether it can invade the resident population. In the following section, we provide
mathematical approximations of the invasion dynamics of such a mutant.

4.2.4 Invasion Dynamics

Adopting the classical assumptions of adaptive dynamics as in Chapter 3, we mathe-
matically characterise the invasion dynamics of a mutant (which occur over discrete
growth cycles). Denoting by f̂m the frequency of mutants of size m ± δm in the
population where δm is the mutational stepsize in m, which is assumed to be small
and tg the number of growth cycles, we find

df̂m

dtg

= hm(m, α, β, C)f̂m(1 − f̂m) , (4.3)

where hm(m, α, β, C) is a constant that depends on the parameters m, α, β, C. This
constant provides the fitness gradient of the mutant. Similarly, denoting by f̂α the
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frequency of mutants with fusion rate α ± δα in the population where δα is the
mutational stepsize in α, which is again assumed to be small, we find

df̂α

dtg

= hα(m, α, β, C)f̂α(1 − f̂α) , (4.4)

where hα(m, α, β, C) is the fitness gradient of a mutant with fusion rate α + δα. We
see that in the case of a single mutant, we have frequency-independent selection for
mutants with different masses and fusion rates. We assume for the remainder of
the mathematical analysis that mutants encounter a monomorphic resident popula-
tion (trait substitution), which substantially simplifies the subsequent evolutionary
analysis in the following section.

4.2.5 Evolutionary Dynamics

We assume that haploid daughter cells are characterised by two genetically non-
recombining traits mass m and cell fusion rate α. As in Chapter 3, we assume that
mutations occur in m or α independently at a fixed rate µ, where µ is measured
in units of (number of growth cycles)−1. A mutation in m represents a change in
the mass of the daughter cell produced, and a mutation in α represents a change in
the fraction of the population that undertakes either one of the reproductive routes
(obligate fusion/no fusion).

Mutants with a different mass to their ancestor can produce either more or fewer
daughter cells than their ancestor (see Eq. (4.1)), which impacts their survival (see
Eq. (4.2)). When mutants have a different fusion rate to their ancestor, although the
number of daughter cells produced does not differ from their ancestor, the number of
fused cells at the end of a growth cycle can either increase/decrease, which impacts
their survival, since fused cells have greater mass. The survival of fused cells is also
influenced by the cost of fusion C.

Our mathematical analysis in the remainder of this section is based on the
assumptions of adaptive dynamics [22], which assumes that mutations are of small
effect, and mutants encounter a strictly monomorphic population (i.e. that mutations
fixate before the introduction of a new mutant). However in our numerical simulations,
mutants arise in the population stochastically at a finite rate, making it possible
that a subsequent mutation occurs before the fixation of the previous mutant. We
therefore allow for the coexistence of multiple traits in the population, held under a
mutation-selection balance, as described in Section 3.3.5 of Chapter 3.
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Fixed Environment

We first consider the evolutionary dynamics in the case where the environment is
fixed (i.e. when the parameter β, which measures the harshness of the environment
(see Eq. (4.2)), is constant throughout the evolution. Assuming that δm and δα

are small (small mutational step size), we use techniques from adaptive dynamics
[37, 138] to obtain equations for the evolutionary dynamics of m and α. These are
obtained from Eqs. (4.3-4.4) and are given by

dm

dτ
= Hm(m, α; β, C)

= −4m(m − β) + EαT (1 − C)e β
2m (4m − β)

4m2(m + EαT (1 − C)e β
2m )

dα

dτ
= Hα(m, α; β, C)

= −m
(1 − (1 − C)e β

2m ) ln(1 + EαT
m

)
2α(EαT (1 − C)e β

2m + m)
.

(4.5)

Switching environments with phenotypic plasticity

Now, we consider the case where evolution acts on the same traits as before, but
the environment is subject to change. We model environmental change as switching
between two environments β1 and β2. If β1 > β2, then β1 is the harsher environment
(see Eq. (4.2)). We also allow for phenotypic plasticity such that the population
can evolve different strategies in different environments [180]. The population’s
evolutionary state is now described by four traits; the daughter cell mass in en-
vironments 1 and 2 (m1 and m2) and fusion rate in these environments (α1 and
α2).

For simplicity we assume that any cost of phenotypic switching or environmental
sensing is negligible and that this plastic switching is instantaneous upon detection
of the change in environmental conditions. The evolutionary dynamics in each
environment are then decoupled. However the evolutionary trajectories in each
environment are coupled by the initial trait values for the population in each
environment, which we assume are the same (i.e. the population begins in a
phenotypically undifferentiated state). With phenotypic plasticity, the evolutionary
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dynamics are then given by

dm1

dτ
= P1Hm(m1, α1; β1, C), dm2

dτ
= P2Hm(m2, α2; β2, C)

dα1

dτ
= P1Hα(m1, α1; β1, C), dα2

dτ
= P2Hα(m2, α2; β2, C)

(4.6)

with initial conditions

m1(0) = m2(0) = m0, and α1(0) = α2(0) = α0 . (4.7)

Here, Hm(m, α; β, C) and Hα(m, α; β, C) retain the functional form in Eq. (4.5), and
P1 and P2 represent the probability of finding the population in environment 1 and
2 respectively, as described in Chapter 3.

As Eqs. (4.6) are only coupled through their shared initial conditions, m0 and
α0, the choice of these initial conditions is an important consideration. Since we are
interested in the initial evolution of binary cell fusion, it is natural to assume that the
population evolves from a state of zero fusion, α0 = 0. Deciding on a plausible initial
daughter cell mass takes more thought. One parsimonious choice would be that the
population is already adapted to either environment 1 or environment 2 and that m0

is given by an evolutionary fixed point in one of these environments. However if the
population has been exposed to both the environments before phenotypic placticity
has evolved, it is possible that m0 is instead given by a bet-hedging strategy. We
explore what such a strategy would look like in the following section.

Switching environments without phenotypic plasticity

We now consider the case where there is switching between environments but where
the population exhibits no phenotypic plasticity. As described in the previous section,
we are particularly concerned with the period before the physiological machinery for
cell fusion has evolved, and so focus on the case where the cell fusion rate is fixed to
zero, α = 0. Evolution then solely acts on the daughter cell mass, m.

As in Chapter 3, environmental switching is modelled as a discrete stochastic
telegraph process, with the time spent in each environment distributed geometrically.
The population spends an average of τ1 = 1/λ1→2 in environment 1 and τ1 = 1/λ2→1

in environment 2, where λi→j is the transition rate from environment i to j.
The two switching rates most relevant to our model are when the environment

switches many times before an invasion can complete, (fast relative to invasion,
FRTI) and when each switching event occurs after multiple invasions have completed,
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(fast relative to evolution, FRTE). More detail of these switching rates are provided
in section 3.2.2 in Chapter 3 . However in Chapter 3, we show that the evolutionary
dynamics for m in both these regimes can be approximated using the same dynam-
ical equations. Using adaptive dynamics techniques modified to account for such
environmental switching [155], we obtain

dm

dτ
= P1Hm(m, 0; β1, C) + P2Hm(m, 0; β2, C) (4.8)

where Hm(m, α; β, C) retains the functional form in Eq. (4.5) and P1 = τ1/(τ1 + τ2)
and P2 = τ2/(τ1 + τ2) are the probabilities of finding the population in the two
respective environments. We therefore see that in the absence of phenotypic plasticity,
the evolutionary dynamics is the weighted average of the dynamics in the two
environments.

Obtaining the ESS for Eq. (4.8) is relatively straightfoward. Substituting for
Hm(m, 0; β1, C) and Hm(m, 0; β2, C) using the functional form given in Eq. (4.5) and
setting dm/dτ = 0 in Eq. (4.8), we obtain the ESS

m∗
BH,α=0 = P1β1 + (1 − P1)β2 . (4.9)

This strategy constitutes a bet-hedging strategy in cell mass when the population
has yet to evolve phenotypic plasticity nor the capacity for cell-cell fusion. In the
limits P1 → 1 and P2 → 1, we can recover the ESS strategies in the two respective
environments:

m∗
1,α=0 = β1 , m∗

2,α=0 = β2 , (4.10)

which can be verified from a consideration of the equations for dm/dτ = 0 in a fixed
environment (see Eq. (4.5)). Thus far, our analyses have only considered the scenarios
where the environment switches numerous times before invasion has time to complete
(FRTI) and where the environment switches once every few mutation events (FRTE).
An interesting area for future consideration would be the evolutionary dynamics for
the regime between FRTI and FRTE i.e. if the environment switches a small number
of times before invasion has time to complete. We can now proceed to analyse how
binary cell fusion can be selected for when the fusion rate α is allowed to increase
from zero in the following Results section.

4.2.6 Implementation of Numerical Simulations

The stochastic simulations of the evolutionary trajectories are also implemented
using a Gillespie algorithm [68] where successive mutations and environmental
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switching events occur randomly with geometrically distributed waiting times. The
rates of mutations µ and environmental switching λ are measured in units of
(number of growth cycles)−1. In the simulations, multiple traits coexist under a
mutation-selection balance (see Section 3.3.5 of Chapter 3 and [183] for more detail),
which allows us to account for variations in selection strengths in simulations of our
evolutionary trajectories.

4.3 RESULTS

In this section we proceed to analyse the evolutionary dynamics derived from the
mathematical model and compare our results to numerical simulations of the full
stochastic simulations.

4.3.1 In a fixed environment the population evolves to either no
cell fusion, or to high levels of cell-fusion, dependent on
the cost of cell fusion

In Figure 4.3, we see two potential evolutionary outcomes for the fusion rates in
a single fixed environment; the population can either evolve to high (technically
infinite) fusion rates or to zero fusion rates. To which of these ESS the population is
attracted depends both on the parameters and the initial conditions.

When the costs to cell fusion are low (C < 0.39), the only evolutionary attractor
is the high fusion rate attractor (see Eq. (4.11) and Figure 4.3, panel (a)). In this
scenario, obligate fusion is the only evolutionary outcome.

For intermediate costs to cell fusion 0.39 < C < 0.86, there are two evolutionary
attractors. The attractor to which the population evolves depends on the initial
conditions (see Eq. (4.11) and Figure 4.3, Panel B). If the initial mass on the α = 0
boundary is small, selection acts to increase fusion rate and obligate fusion is the
ESS. However, if the initial mass on the boundary is sufficiently large, the state of
no cell fusion becomes the evolutionarily stable state.

Finally when costs to fusion, C, are extremely high (Figure 4.3, Panel C), selection
for decreased fusion rate acts regardless of initial conditions and a state in which
α = 0 (zero fusion rate) is the only evolutionary outcome. Under this high cost
regime, dα/dt < 0 along the entire line α = 0 and so fusion rate is never selected to
increase given any initial conditions.
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Figure 4.3: Phase portraits for the co-evolutionary dynamics in a fixed environment
(see Eq. (4.5)). High fusion rates are the only evolutionary outcome when costs to
cell fusion are low (panel (a)), while under intermediate costs (panel (b)), high fusion
rate and zero fusion rate (obligate asex) are both evolutionary outcomes, and under
high costs, zero fusion rate becomes the only evolutionary outcome (Panel C), as
summarised analytically in Eq. (4.11). The red shaded region shows trajectories
leading to points on the α = 0 boundary for which evolution selects for decreasing
fusion rate (dα/dτ < 0) and the critical point at which dα/dτ = 0 is marked by the
red arrow (see section 4.5.2). The red circles mark a fixed point in the evolutionary
dynamics of m (m∗ = β, see Eq. (4.11)), which may be unstable (open circles) or
stable (filled circle) under coevolution with α. The blue circles and arrows illustrate
the evolutionary attractor for high fusion rates ((m∗, α∗) → (β/4, ∞), see Eq. (4.11)).
Average population trait trajectories, (⟨m⟩(t), ⟨α⟩(t)), from simulation of the full
stochastic model are plotted in light gray, and their mean over multiple realisations
are dashed. Initial conditions: (m(0), α(0)) = (1.5, 0.6) and (m(0), α(0)) = (2, 0.1).
Simulation is run for 1.1 × 107 growth cycles in panel (a), 1.24 × 107 growth cycles
in panel (b) and 107 growth cycles in panel (C). Remaining system parameters are
given in section 4.6.

In section 4.5.2, we conduct a mathematical and numerical analysis to for-
malise the arguments above. In summary, the possible early evolutionary attractors,
(m∗, α∗), are given by

(m∗, α∗) →


(β/4, ∞) if 1 − 1√

e > C ≥ 0

(β/4, ∞) or (β, 0) if 1 ⪆ C > 1 − 1√
e

(β, 0) if C ≈ 1

(4.11)

where we note 1 − e−1/2 ≈ 0.39 and 1 − e−2 ≈ 0.86. While intermediate costs
(0.86 ⪆ C ⪆ 0.39) lead to two potential evolutionary outcomes depending on the
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initial conditions, it is the second of these, (m∗, α∗) = (β, 0), that is arguably the
most relevant for the evolution of early cell fusion; if evolution had acted on daughter
cell size, m, before the physiological machinery necessary for cell fusion had evolved,
the initial condition for the co-evolutionary dynamics would be (m(0), α(0)) = (β, 0),
at which the population would be subsequently held by costs to fusion.

In Figure 4.3 we also see that our mathematical analysis is a good predictor of the
outcome of stochastic simulations (gray shaded lines). One minor point of departure
is that at high fusion rates our simulated trajectories begin to diverge from from our
analytic prediction. This discrepancy is the result of evolutionary branching in cell
mass, which we explored in Chapter 3. However this branching happens at a later
evolutionary stage than the focus of this study, the early emergence of binary cell
fusion.

We conclude this section by addressing the key biological result that arises from
this analysis; cell fusion is uniformly selected for even under moderately high costs
(with a fraction of up to C ≈ 0.39 of fused cells failing to survive) and can even be
selected for under higher costs (up to C ≈ 0.86) given necessary initial conditions.
In the context of the evolution of early binary cell fusion, this provides a surprising
nascent advantage to cell fusion. This advantage could even help compensate for
other short-term costs arising from the later evolution of sex and recombination. The
selective advantage experienced by fusing cells comes from their increased cytoplasmic
volume, which leads to increased survival probabilities.

4.3.2 In a switching environment with phenotypic plasticity, binary
cell fusion can evolve as a facultative stress response to
harsh environments

Having considered the case of the evolutionary dynamics in a fixed environment,
we now move on to consider the evolutionary dynamics of a population exhibiting
phenotypic plasticity in a switching environment (see Eq. (4.6)). We recall that
under the assumptions of costless and immediate phenotypic switching, the dynamics
of (m1, α1) and (m2, α2) are decoupled. The evolution of the traits in the respective
environments are coupled however through the initial conditions from which they
evolve, which must be the same (i.e. a phenotypically undifferentiated state).

We consider two parsimonious choices for these initial conditions, both beginning
in a state without fusion (α1(0) = α2(0) = 0). In the first scenario, we assume that the
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population has evolved to a stable non-fusing mass adapted to a single environment
(see Eq. (4.10)) such that m1(0) = m2(0) = m∗

1,α=0 or m1(0) = m2(0) = m∗
2,α=0.

This is a situation in which the alternate environment is in some sense novel and to
which the population has not adapted. In the second scenario, we instead assume
that the population has evolved to a bet-hedging strategy in mass (optimising
the mass of daughter cells across the two environments, see Eq. (4.9)) such that
m1(0) = m2(0) = m∗

BH,α=0. An illustrative phase portrait is shown in Figure 4.4.
We initially consider the scenario in which a population has initially evolved under

environment 1 to reach a stable state (m1, α1) = (β1, 0) (see red disk and surrounding
purple circle, Figure 4.4 (a)). The population is now exposed to a second, harsher
environment (β2 > β1) and allowed to evolve a phenotypically plastic response to
this new environment. Starting from an initial state (m2(0), α2(0)) = (β1, 0) (see
purple circle, panel (b)), traits m2 and α2 can evolve to (m2, α2) = (β2/4, ∞).

Similarly, we now consider second scenario in which the population has initially
evolved under the switching environments to reach a stable state bet-hedging strategy
in mass (m1(0), α1(0)) = (m2(0), α2(0)) = (m∗

α=0, 0) (see orange circles in Figure 4.4).
Upon the evolution of phenotypic plasticity, in the benign environment we see the
population traits relax to a stable state (m1, α1) = (β1, 0) (no cell fusion, see Figure 4.4
(a)). However in the harsh environment, we see that the bet-hedging strategy in mass
becomes unstable, and the population evolves towards traits (m2, α2) = (β2/4, ∞)
in environment 2 (see Figure 4.4 (b)).

In both scenarios described above, we see the emergence of facultative binary
cell-fusion as a response to harsh environmental conditions that lower the survival
probability of daughter cells. However we note that this is only possible if there is
an appreciable increase in environmental harshness, β, between the environments.
In Figure 4.5, we summarise the key results over the β1 − β2 parameter plane. Here
we assume that the cost to cell fusion is intermediate (1 − e−2 > C > 1 − e−1/2,
i.e. 0.86 ⪆ C ⪆ 0.39) such that there are regions on the boundary α = 0 at which
increased fusion rates are both selected for and against depending on the value of m

(see section 4.5.2 and Eq. (4.11)); this restricts us to the more interesting parameter
regime in which different evolutionary outcomes are possible in each environment.

In Figure 4.5, we see that when one of the environments is not appreciably
worse than the other, binary cell fusion does not evolve in either environment.
However when the difference between the environments grows more substantial, it
is possible to evolve cell fusion in the harsher environment from initial condition
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Figure 4.4: Illustrative phase portrait for co-evolutionary dynamics of (m1, α1, m2, α2)
in a switching environment with phenotypic switching that exhibits facultative bi-
nary cell fusion. In both environment 1 (panel (a)) and environment 2 (panel (b))
the cost to cell fusion is C = 0.6, purple circles represent the initial condition
(m1(0), α1(0)) = (m2(0), α2(0)) = (β1, 0), and orange circles represent the initial con-
dition (m1(0), α1(0)) = (m2(0), α2(0)) = (m∗

α=0, 0), with m∗
α=0 taken from Eq. (4.9).

Environmental parameters are β1 = 0.5 and β2 = 2.2 making environment 1 the
more benign environment, in which the population typically spends a proportion
P1 = 0.7 of its time.

(m1(0), α1(0)) = (m2(0), α2(0)) = (βi, 0) (where the population has first evolved
towards the evolutionary optimum of the more benign environment). Finally when the
difference between the environments is extreme, it is also possible to evolve cell fusion
in the harsher environment from initial condition (m1(0), α1(0)) = (m2(0), α2(0)) =
(m∗

α=0, 0) (where the population has first evolved towards a bet-hedging strategy in
cell mass).

4.4 DISCUSSION

The evolution of sexual reproduction and its consequences for the subsequent evolu-
tionary trajectory of populations is of general importance to biologists [2, 87, 182].
In this chapter we have illustrated a reversal of the classic two fold cost of sex in
organisms with distinct sexes [131]; in unicellular organisms, binary cell fusion can
be selected for even in the presence of substantial costs due to a survival benefit that
comes from increased mass. It is particularly interesting that the benefits conferred
to cell-fusion through increased mass are sufficient to withstand remarkably high
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No Fusion in either
environment

Fusion evolves in
environment 1
given m(0)=m2,α=0

Fusion evolves in
environment 1
given m(0)=m2,α=0
and m(0)=mBH,α=0

*

*

*

Figure 4.5: Regions in the β1-β2 parameter space where we evolve obligate fusion,
given various initial conditions (m(0), 0). The region plot is independent of E and T .
Here, C = 0.5 and P1 = 0.7. Since C > 1 − 1/

√
e (see Eq. (4.11)), fusion can only

evolve in at most one of the two environments. In this case it is environment 1 where
fusion can evolve since m(0) = m∗

2,α=0 (see Eq. (4.10)). A numerical simulation to
support this regionplot is shown in Figure 4.6. This plot is obtained as described in
Appendix 4.5.2.

costs, with obligate sexuality remaining the only evolutionary attractor with costs
equivalent to a loss of ∼ 39% cells that attempt to fuse.

Perhaps most interesting is the case of switching environments with phenotypic
plasticity. Here we find under a broad set of biologically reasonable conditions
(costs to cell fusion equivalent to 39% − 86% additional mortality to fused cells
and at least moderate changes in environmental quality) that high fusion rates
are selected for in harsh environments and zero fusion rates are maintained in
benign environments. This behaviour parsimoniously recapitulates the empirically
observed reproductive strategies of numerous facultatively sexual species, including C.
reinhardtii [18], S. pombe [197] and D. discoideum [159]. This mechanism, under which
cell fusion evolves to increase the survival probability of daughter cells, provides a
complementary perspective on the frequent evolution of survival structures (resistant
to environmental stress) that form following the formation of a zygote. These
include ascospores in fungi [161] and zygote-specific stress-resistant stress wall in C.
reinhardtii [226]. Note that such correlations between sexual reproduction and the
formation of survival structures are not as easily explained under genetic explanations
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for the evolution of sexual reproduction, where engaging in both behaviours at once
constitutes a simultaneous (and therefore potentially costly) change in genotype and
temporal dislocation in environment [62, 115].

The results above are particularly interesting in the case of the evolution of early
binary cell-fusion as a first step in the evolution of sexual reproduction. While most
studies focus on the genetic benefits of cell-fusion [168] (including a functionally-
diploid dikaryotic cell [147]), or the genetic benefits of mixed cytoplasm [182, 217]
(which can also come with costs), the mechanism at play here is purely physiological.
Yet, as addressed above, it naturally captures the empirical observation of binary
cell-fusion as response to challenging environmental conditions. While the mechanism
does not explain the evolution of sexual reproduction and genetic recombination
itself, it does provide a nascent advantage to binary cell fusion that sets the stage for
the evolution of sex by bringing nuclei into contact for prolonged periods, as well as
countering short-term costs associated with recombination. Conceivably, if genetic
recombination is beneficial for myriad genetic reasons in the long-term [158], it would
seem natural that it would be instigated when the opportunity arises (i.e. when
physiological survival mechanisms bring nuclei into close contact). In this scenario
recombination may not be only a direct response to environmental variability [28,
40], but also to the correlated formation of a survival structure.

One element absent from our model is the fusion of multiple cells, which is likely
to be selected for under the assumptions implicit in our model. There would clearly
be an upper-limit on the number of fusions selected for, arising from the likely
multiplicative effect of the fusion cost C. However in this context, it is interesting to
note that one of the hypotheses for the evolution of self-incompatible mating types is
as a signal to prevent the formation of polyploid cells [174]. Such a mechanism could
also prevent the formation of trikaryotic cells should the cost of multiple fusions
be too great. Thus, the model neatly preempts the second stage in models for the
evolution of eukaryotic sex, the regulation of cell–cell fusion [73].

More generally, it is interesting to note that the conditions for facultative sexuality
(e.g. harsh environmental conditions) broadly coincide with those for facultative
multicellularity in both bacteria and eukaryotes, with starvation triggering the
formation of fruiting bodies in myxobacteria [20, 108] and flocking in yeast [45,
223]. Meanwhile in C. reinhardtii, the formation of multicellular palmelloids and
aggregates are an alternate stress response to sexual reproduction [30], as are the
formation of fruiting bodies in D. discoideum [211]. In this multicellular context,
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the sexual behaviour of D. discoideum is particularly interesting, as once formed,
the zygote attracts hundreds of neighboring cells that are then cannibalised for the
provision of a macrocyst [48]. These various survival strategies are unified in our
model as a mechanism for the evolution of binary cell fusion.

The evolutionary transition from unicellularity to facultative multicellularity was
first observed in cyanobacteria [213, 215]. The life cycles of these organisms are
observed to alternate between a multicellular filamentous phase and unicellularity, in
response to environmental cues. Environmental stresses such as drops in salinity trig-
ger multicellularity, while increases in population density due to filament formation
causes fragmentation back into solitary cells [213]. Furthermore, eco-evolutionary
models have shown that environmental fluctuations and costs of fragmentation can
give rise to a diverse range of fragmentation patterns [177, 178, 179], which could
potentially explain the diverse modes of facultative multicellular life cycles observed
in bacteria [118]. However, most existing work has focused on the fragmentation of
clusters rather than the selective pressures that drive solitary cells to come together
initially. The process of forming small aggregates by single cells coming together is
costly, due largely to the risk of conflict between the cells [163, 215]. By analysing
the evolutionary benefits of binary cell fusion, our model may provide an alternative
perspective on the mechanistic benefits of solitary cells coming together.

As addressed above, trade-offs on the evolution of cell-fusion rate, inbreeding,
and the possibility of higher-order cell-fusions offer interesting avenues to extend
this analysis. In addition, we have not accounted for the discrete nature of divisions
leading to daughter cells, costs to phenotypic switching, non-local trait mutations,
or pre-existing mating types. More generally, extending our mathematical approach
leveraging adaptive dynamics to switching environments in other facultatively sexual
populations might prove particularly fruitful [42, 121].

In this chapter we have extended the classic PBS model [173] in two key ways;
allowing the fusion rate to evolve and subjecting the population to switching envi-
ronments. In doing so, we have shown its capacity to parsimoniously capture the
evolution of obligate binary cell fusion, no fusion and stressed induced binary cell
fusion in unicellular organisms. These results offer particularly interesting implica-
tions for the evolution of binary cell-fusion as a precursor to sexual reproduction, as
well as suggesting common mechanistic links to the evolution of binary cell fusion.
Moreover, our analysis emphasises the importance of exploring the coevolutionary
dynamics of a range of evolutionary parameters, and of developing computational
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and mathematical approaches to elucidate facultative sexual reproduction.

4.5 APPENDIX I: EVOLUTIONARY DYNAMICS: SWITCHING
ENVIRONMENTS WITH PHENOTYPIC PLASTICITY

4.5.1 Derivation of evolutionary ODEs

With phenotypic plasticity, the evolutionary trajectory of the population in one
environment is independent of that in the other. A mutation would exert a selection
pressure in only one environment. If a mutation occurs on traits mi or αi in
environment i, the invasion dynamics are given respectively by

df̂m1

dtg

= f̂m1(1 − f̂m1)Γm(β1)P1

df̂α1

dtg

= f̂α1(1 − f̂α1)Γα(β1)P1

df̂m2

dtg

= f̂m2(1 − f̂m2)Γm(β2)P2

df̂α2

dtg

= f̂α2(1 − f̂α2)Γα(β2)P2 ,

(4.12)

for each mutant type, where Γm(β) and Γα(β) are of the same functional form as
hm(m, α, β, C) and hα(m, α, β, C) respectively in Eq. (4.3). From here, we can apply
the same approach as section 4.2.5 to obtain the evolutionary dynamics given by
Eq. (4.6) of the main text.

4.5.2 Analysis of ODEs

By inspection of Eq. (4.6) of the main text, we note that the co-evolutionary dynamics
of the mass and fusion rate in environment 1 (m1, α1) and environment 2 (m2, α2)
themselves are identical to that of a fixed environment with β = β1 and β = β2

respectively. Since the dynamics of (m1, α1) and (m2, α2) are decoupled, we can infer
the behaviour of the system in each environment by treating them as two separate
fixed environments, but with shared initial conditions.

Using the analysis given in section 4.3.1, we infer that in cases where C < 1−1/
√

e,
obligate fusion is the only evolutionary outcome in both environments, given any
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initial condition within the phase plane. In other words, (m1, α1) = (β1/4, ∞) and
(m2, α2) = (β2/4, ∞) is the only evolutionary attractor of the system under this
regime.

In the case where C > 1−1/
√

e, there exists a scenario whereby obligate fusion can
evolve if the initial state of the population is (m1(0), α1(0)) = (m2(0), α2(0)) = (β1, 0).
Since (m1, α1) = (β1, 0) is a stable fixed point, obligate fusion does not evolve in
environment 1. The condition for obligate fusion to evolve in environment 2 is
for β1 < −β2/(2 ln(1 − C)). Using the same argument, if the initial state of the
population is (m1(0), α1(0)) = (m2(0), α2(0)) = (β2, 0), obligate fusion does not
evolve in environment 2. Given this initial state, the condition for obligate fusion to
evolve in environment 1 is β2 < −β1/(2 ln(1 − C)). In other words, if C > 1 − 1/

√
e,

it is only possible for obligate fusion to be selected for in the alternate environment
to which the population has stabilised, prior to evolving the mechanism of fusion.
The criterion for obligate fusion to evolve in this alternate environment j is for
(m0

j , α0
j ) = (βi, 0) (i ̸= j) to sit left of the critical point at which dαj/dτ = 0 on the

αj = 0 boundary (this critical point is represented by the red arrow in Figure 4.3 of
main text). This critical point is situated at approximately mj = −βj/(2 ln(1−C)). If
the criterion for obligate fusion in environment j is fulfilled, the evolutionary attractor
in environment j is (mj, αj) = (βj/4, ∞) as is the case for a fixed environment with
β = βj (see Eq. (4.11) in the main text).

If the initial state of the population is (m1(0), α1(0)) = (m2(0), α2(0)) = (m∗
α=0, 0)

where m∗
α=0 = P1β1 + (1 − P1)β2, obligate fusion evolves in environment 1 if P1β1 +

(1 − P1)β2 < −β1/(2 ln(1 − C)), provided that β1 > β2. From the same initial state,
obligate fusion evolves in environment 2 if P1β1 + (1 − P1)β2 < −β2/(2 ln(1 − C)),
provided that β2 > β1.

Again, using the analysis given in Eq. (4.11) of the main text, we infer that in
the case where C > 1 − 1/e2, zero fusion is the only evolutionary outcome in both
environments too.

4.5.3 Implementation of simulations

We numerically simulate the evolutionary dynamics starting from the initial states as
described in Figure 4.4 of the main text. To simulate the evolutionary dynamics for
a population with initial conditions (m1(0), α1(0)) = (m2(0), α2(0)) = (β1, 0), we use
a fixed value of β2, and run the evolutionary dynamics as described in section 4.2.6,
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for various values of β1 (ranging from 0 to 4 in our simulations). To simulate
the evolutionary dynamics for a population with initial condition (m1(0), α1(0)) =
(m2(0), α2(0)) = (P1β1 + (1 − P1)β2, 0), we again run the evolutionary dynamics as
described in the above sentence, using the same fixed value of β2. The parameters
used to run the evolutionary dynamics are δ = 1/50, µ = 1/500, f0 = 1/500 and
simulation run for 400/µ growth cycles. All the other parameters are as in Figure 4.5
of main text. Running it for 2 × 105 growth cycles (400/µ growth cycles) provides
sufficient time for the stochastic trajectory to reach the m ≈ β/4 manifold in the
alternate environment. At the 400th mutation event, we check whether the conditions
|m − β/4| < δ and α > δ are satisfied in order to determine whether the trajectory
has reached the vicinity of the m ≈ β/4 manifold. A numerical simulation is shown
in Figure 4.6.
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Figure 4.6: Black markers show numerical simulations of the evolutionary outcome in
a switching environment with phenotypic plasticity. If the marker has a y-coordinate
of 2, we evolve obligate fusion in environment j given both (m(0), α(0)) = (βi, 0)
and (m(0), α(0)) = (P1β1 + (1 − P1)β2, 0) for i ∈ {1, 2}, i ̸= j. If the marker has a y-
coordinate of 1, we evolve obligate fusion in environment j given (m(0), α(0)) = (βi, 0)
only (for j ̸= i) and if the marker sits at 0, we evolve no fusion given either initial
condition. Different coloured regions represent the behaviour predicted analytically
predicted in Figure 4.5 of the main text. In panel (a) β2 = 2 and i = 1 and in Panel
B β1 = 2 and i = 2. We see that the numerical simulations match the analytical
predictions. The parameter conditions are E = 100, T = 1, C = 0.5, (P1 = 0.7 if
β1 > β2 and P1 = 0.3 if β2 > β1), δ = 2 × 10−2, µ = 2 × 10−3 and f0 = 2 × 10−3.
Simulation is run for 2 × 105 growth cycles (500/µ growth cycles).

4.6 APPENDIX II: PARAMETERS FOR SIMULATIONS

In all the relevant figure panels, unless otherwise stated, the system parameters used
are E = 100, T = 1 and β = 1 and the simulation parameters are δ = 5 × 10−3,
f0 = 2 × 10−3, µ = 5 × 10−4 (number of growth cycles)−1
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Evolution of environmentally-triggered
sexual reproduction and hibernation

Abstract

Environmentally triggered facultative sex is observed in a range of organisms, including
green algae, yeast and water fleas. These species switch to sexual reproduction in response
to environmental adversity (e.g. nitrogen limitation) and revert to their default asexual
reproductive mode when the ideal environmental condition returns. Sexual reproduction is
also frequently observed to co-occur with the formation of stress-resistant survival structures
that are associated to hibernation. Existing theories for the evolution of environmentally
triggered facultative sex include the Red Queen hypothesis, which proposes that sex hastens
adaptation in fluctuating environments due to its ability to generate genetic diversity
rapidly through genetic recombination. However, the Red Queen hypothesis alone is
incompatible with the theory of hibernation. Conversely, Muller’s ratchet argues that sex
evolved due to its ability to prevent deleterious mutations from accumulating through
genetic recombination, but has not been linked to hibernation. By modifying Muller’s
ratchet to account for population dynamics as well as the selective advantages of genetic
recombination in terms of purging deleterious mutations, we develop an eco-evolutionary
model that explains how hibernation as well as sex can evolve at high population densities
when opportunity costs for population growth diminish. By suitably modifying our model,
we demonstrate that hibernation is subject to the same selective pressure as sex, and evolves
at high population densities too, which parsimoniously explains how they both evolve
to occur in tandem. In addition to our analysis, we provide simulations of evolutionary
trajectories, which reveal richer dynamical behaviour beyond what is predictable by our
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analytics.

5.1 INTRODUCTION

There are numerous organisms that exhibit environmentally triggered sex, such as in
algae, fruitfly, slime moulds and aphids [62, 200]. In the green algae C. reinhardtii
and the yeast S. pombe [197], sexual reproduction is triggered in response to nitrogen
limitation, while daphnia water fleas have been shown to switch to sexual reproduction
in response to extreme temperatures [77]. The social amoeba D. discoideum [159]
undergoes sexual reproduction in response to darkness and moisture. Environmentally
triggered sex is also present in several plant species such as R. reptans [114], where
it was shown experimentally that germination of sexually produced seeds was more
frequent when grown at higher population densities.

An early theory for the evolution of sex is Muller’s Ratchet [154], which proposes
that sex evolved due to its ability to prevent the build up of deleterious mutations
through genetic recombination. It summarises that in a finite non-recombining
population, the buildup of deleterious mutations is so rapid that it cannot be
prevented by the selection that acts against them. Genetic recombination in sexual
reproduction allows advantageous genes from separate individuals to be combined
into the genome of one individual more often, which can help prevent the buildup
of deleterious mutations. Redfield [187] was the first to use computer simulations
to demonstrate this selective advantage, which showed that bacteria with a heavy
deleterious load that underwent genetic transformation (equivalent to meiotic sex)
evolved a higher fitness than asexual bacterial populations. Although this has been
used to explain the evolution of sex, it does not explain why sex occurs in response
to fluctuating environments, which is frequently observe empirically [162].

Another theory, known as the Red Queen hypothesis [221] proposes that sex
evolved due to its ability to facilitate adaptation in actively changing environments
[10, 31, 221], as different genotypes are favoured in different environments. Since
sex involves genetic recombination, it allows well adapted genotypes to be generated
more rapidly than asexual populations, where mutations are the only means of
generating novel genotypes (see Figure 5.2 (a)). The Red Queen hypothesis is also
the most common explanation for the occurrence of sex in hosts as a means of
resisting infection by parasites [82, 106], which are themselves rapidly evolving.
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Although the Red Queen hypothesis explains how sex occurs in response to changing
environments, it does not explain how dormancy occurs following sex in most
facultatively sexual organisms (see Figure 5.2 (b)). In fact, almost all organisms
exhibiting environmentally triggered sex enter a phase of dormancy [21, 62, 197].

One key element not accounted for in the aforementioned theories for the evolution
of sex is the underlying ecological factors, which may influence the cost of sex. A
mechanistic cost of sex is that it reduces the population growth rate [62, 131],
meaning that in a population under logistic growth, the demographic cost of sex
is diminished as the population approaches carrying capacity [47, 63] (i.e upon
resource limitation or reaching a sufficient population density). Experimentally,
it has been shown that sex is induced in daphnia upon reaching high population
densities [63]. Here, we detail some literature that considers how the propensity for
sex in a population is influenced by the population density.

Computational simulations of the consumer-resource model by [193, 203] have
shown how sexual populations can outcompete asexual populations under resource
scarcity. In particular, sexual populations are favorable in conditions such as low
population death rates and low resource replenishment rate. However, their model
simply considered the regions in the genotype space that allow sexual populations
to invade asexual populations, without accounting for any aspects of evolution,
including trait mutations or population genetics.

Furthermore, Gerber et al. [61] investigated the evolution of environmentally
triggered facultative sex in the daphnia reproductive system, where sex necessitates
the production of dormant female eggs required for survival, while asexual reproduc-
tion promotes fast population growth. In particular, they used a genetic algorithm
to investigate the time during a growing season that the population engages in sex
to maximise survival across seasons. They showed that if the season length is less
predictable, the population adopts a bet-hedging strategy by switching from asexual
to sexual reproduction earlier in the season [206].

Taking inspiration from the work of [61], we develop an eco-evolutionary model
that provides a novel analytical explanation for environmentally triggered facultative
sex, based on the ability for sex to prevent the buildup of deleterious mutations
through genetic recombination (referred to as “recombination” throughout the
chapter). By incorporating biologically realistic population dynamics into Muller’s
Ratchet and accounting for the ecological costs of sex, we investigate the optimal time
for a population to switch from asexual reproduction with logistic growth to sexual
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reproduction. As dormancy incurs similar ecological costs as sex [62, 134], our model
parsimoniously explains how dormancy can evolve in response to environmental
stress.

Evolving populations typically contain genotypes with different trait values
competing against each other, which may impose eco-evolutionary effects that cause
the evolutionary optimal state to differ with the state that maximises the fitness
of an individual genotype (individual optimum) [53, 163]. It is thus vital for us to
consider both these optimal states. In Section 5.2, we provide details of our models
for hibernation and genetic recombination and in Section 5.3, we include details of
our results.

5.1.1 Illustration of Muller’s Ratchet and the Red Queen hypoth-
esis

Here, we use diagrams to illustrate the Red Queen hypothesis and Muller’s Ratchet.
In Figure 5.1, we demonstrate Muller’s Ratchet, which describes how recombination
can increase population fitness by reversing the depletion of genotypes free of
deleterious mutations. In the absence of recombination, the only way by which
genetic diversity can increase is through mutations. An asexual population would
have to wait until the mutants arise by chance [33, 54, 153], which is very inefficient
due to the slow timescale over which mutations accumulate. In sexual populations,
recombination allows multiple well adapted genes from different individuals to be
combined into one individual, which speeds up adaptation by reducing the number of
mutations per individual required for adaptation. This is known as the Fisher-Muller
hypothesis [54, 153].

In Figure 5.1 (b), we see that a recombination event between two genotypes that
contain one deleterious mutation (single mutants) can produce genotypes that contain
no deleterious mutations (non mutants), which are better adapted than both the
recombining genotypes themselves. Although genotypes containing two deleterious
mutations (double mutants) can be produced, those are likely to be selected out
of the population due to their maladaptedness. We have hereby demonstrated the
advantage conferred by genetic recombination.

In Figure 5.2 (a), we demonstrate how recombination can speed up adaptation
to novel environments when the environment is actively changing (Red Queen
hypothesis), and furthermore its inability to explain the evolution of dormancy
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Figure 5.1: Schematic illustrating Muller’s Ratchet. Each oval represents a 2-locus
bialleic genotype as in Figure 5.2. Genotypes containing 2 blue alleles are optimally
adapted (with no deleterious mutations) and those with 2 yellow alleles are the most
maladapted (two deleterious mutations). Assuming that deleterious mutations are
the only possible mutation event, staying in asexual reproduction causes buildup of
maladapted genotypes and depletion of optimally adapted genotypes (Panel (a)).
In panel (b), we show how genetic recombination can restore optimally adapted
genotypes following deleterious mutations.

Figure 5.2 (b). Many living organisms have evolved to enter the process where they
enter a dormant state in response to environmental stress e.g seasonal changes [232].
This process is known as “hibernation”, which we refer to throughout this chapter.

5.2 MODELS

Our aim is to show why the onset of sexual reproduction is often correlated with
hibernation or dormancy sometime after. To this end we investigate two models.
We begin with our model for hibernation in Section 5.2.1 before moving onto our
model for sex, as our model for hibernation is the simpler one. By accounting for
the buildup of deleterious mutations, our hibernation model can be modified to
one that investigates sex, which is shown in Section 5.2.2. Since we are considering
sex in terms of its ability to improve the survival of the population via genetic
recombination, sex is equivalent to genetic recombination in our model, and we use
these terms interchangably. We refer to our model for sex as “model for genetic
recombination”.
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Figure 5.2: Schematic illustrating the Red Queen hypothesis. Each oval represents a
2-locus biallelic genotype with circles representing alleles. Genotypes containing 2
blue alleles are optimally adapted to environment 1 and those containing 2 orange
alleles are optimally adapted to environment 2. Each allele mutates at rate µ.
Panel (a): Upon switching to environment 2, an asexual population requires two
or more mutations per individual to adapt to its environment, whereas a sexual
population can adapt through genetic recombination following one mutation. This
hastens adaptation as recombination occurs on a faster timescale than the buildup of
mutations. Panel (b): If hibernation immediately follows sex, the fitness advantage
conferred by recombination is not utilised, since the fittest genotype cannot grow in
hibernation.

In both our models for hibernation and genetic recombination, we assume a time
period T over which the population is capable of logistic growth, defined as the
“growth period”. The end of the growth period (time T ) represents the time when
either the resources fall below a threshold abundance or when the population density
exceeds a threshold (see Appendix 5.5) such that population growth can no longer
occur, and only sufficiently fit population members can survive. We assume that the
population may begin entering hibernation (in our hibernation model) or genetic
recombination (in our genetic recombination model) anytime during this period.
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As population growth is naturally attenuated during hibernation and sexual
reproduction [62, 63], we assume that population growth stops once it begins to
engage in sex or hibernation (i.e once it enters the sex or hibernation phase). As
mentioned in the introduction, there are two ways to investigate the optimal timing
of hibernation or recombination. One is the “individual optimal timing” and the
other is the “evolutionary optimal timing”. The individual optimal timing represents
the timing of hibernation tH or recombination tR that maximises the fitness of a
population that is monomorphic in tR or tH (i.e a population only one trait value for
tR or tH). The evolutionary optimal timing represents the value of tH or tR that the
population evolves to when the population contains genotypes with different values
of tH or tR interacting with each other. We denote the individual optimal timing
of hibernation and sex as t

(I)
H and t

(I)
R respectively, and the evolutionary optimal

timing of these processes as t∗
H and t∗

R. To investigate the evolutionary dynamics, we
apply an adaptive dynamics type framework to our simulations, where we assume
continuous trait spaces with small mutational stepsizes, as in Chapters 3 and 4.

5.2.1 Evolution of Hibernation Time

The growth period begins with the population under logistic growth. At some time
during the growth period tH , population members may begin entering a phase of
hibernation at a fixed rate to ensure that some members survive at time T (see
Figure 5.3). The value of tH thus impacts the number of population members
in hibernation at time T . We assume that non-hibernating population members
cannot survive the environment at time T , so at time T , the population is subject
to a round of mortality where only population members in hibernation survive
(see Figure 5.3). To this end, we are interested in the optimal value of tH that
maximises the population that survives at time T . To do this, we investigate the
individual optimal timing of hibernation t

(I)
H and the evolutionary optimal timing

of hibernation t∗
H (see Appendix 5.5). Both quantities require us to consider the

population dynamics within a growth period, which is where we begin our analysis.

5.2.1.1 Dynamics within a growth period

At a given time tH during the growth period where 0 < tH < T , members of the
population begin entering hibernation at a rate of γ. We refer to the period after
the population begins entering hibernation as the “hibernation phase” (i.e when
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Figure 5.3: Schematic of hibernation model behaviour within a growth period.
The population begins each growth period in logistic growth (at rate r). At some
time tH , members of the population begin entering hibernation (at rate γ). In
the resource limited environment at the end of the growth period (time T ), the
population is subject to a round of mortality, where only members that have ended
up in hibernation (grey) survive. Surviving members form the beginning of the next
growth period, and this cycle repeats itself.

tH < t < T ). In addition to the survival benefits, there are costs to hibernation,
such as missed opportunities for population growth [134] and diapause occurring at
the wrong time [97], which are accounted for by assuming that population growth
stops during hibernation phase. Due to the logistic growth that occurs before the
hibernation phase, the value of tH can influence population fitness, as population
fitness is governed by the number of hibernating members at time T (see Figure 5.4).
Below, we provide equations that describe the population dynamics within a growth
period. Denoting x(t) as the population under logistic growth and y(t) as the
population in hibernation at a given time, the population dynamics of the system
before entering hibernation phase (0 < t < tH) is given by

dx

dt
= rx

(
1 − x

k

)
(5.1)

dy

dt
= 0

where r is the intrinsic growth rate and k is the carrying capacity. Once the population
enters hibernation phase (i.e during tH < t < T ), the population dynamics are given
by

dx

dt
= −γx (5.2)

dy

dt
= γx .
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The population dynamics of a system that enters hibernation at various times during
the growth period (various tH) are shown in Figure 5.4. As in Chapters 3 and 4, we
assume a continuous number of population members for simplicity. In Figure 5.4,

0 5 10 15 20
t

0

0.5

1

Hibernation too early(a)

0 5 10 15 20
t

0

0.5

1
Optimal hibernation(b)

0 5 10 15 20
t

0

0.5

1
Hibernation too late(c)

Figure 5.4: Population dynamics within a growth period when the hibernation phase
begins at different times. Parameters are given in Appendix 5.9. For the parameters
in this figure, the optimal timing of hibernation is tH = 4.7 (as in panel (b)), which
can be found using Eq. (5.3) as described in Section 5.2.1.2 below. If the hibernation
phase occurs too early panel (a) the population sacrifices too much opportunity
for growth, and if hibernation occurs too late panel (c), there will be less time for
population members to enter hibernation. In Appendix 5.6.5 we prove that the
individual and evolutionary optimal timing of hibernation are identical. Blue curves
represent the population in hibernation y(t) and red represents the population not
in hibernation x(t). In panel (a), tH = 2 and in panel (b), tH = 15.

we see that entering hibernation either too early or too late reduces the population
in hibernation at time T . It is thus ideal for the population to enter hibernation
some time during the middle of a growth period. For convenience, we refer to tH

as the “timing of hibernation” throughout this chapter. Below, we investigate the
individual optimal timing of hibernation.

5.2.1.2 Individual Optimal Timing of Hibernation

To determine the individual optimal timing of hibernation t
(I)
H , we need to use the

solution for y(T ) in Eqs. (5.1-5.2), which is given by

y(T ) = kxtotal(0)ertH

k + xtotal(0)(ertH − 1)(1 − e−γ(T −tH)) , (5.3)

where xtotal(0) is the total population at the beginning of each growth period.
Eq. (5.3) is obtained by first solving for x(t) and y(t) in Eq. (5.1) and evaluating
them at t = tH . Next we solve Eq. (5.2) for x(t) and y(t). As Eq. (5.2) is defined over
the time interval (tH < t < T ), it is necessary here to label t as t′ in x(t) and y(t)
where t′ = t − tH , so that the initial condition x(t′)|t′ =0 = x(tH). To calculate t

(I)
H , it
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is necessary to solve for tH in the expression dy(T )/dtH = 0 (see Appendix 5.6.5 for
details). Since dy(T )/dtH = 0 is a transcendental equation with no explicit solution
in tH , we evaluate t

(I)
H numerically using the Findroot command in Mathematica

(see hibernation.nb in the Evol_Env_triggered_sex repository, where its link is
provided in the Accompanying Material section).

5.2.1.3 Evolutionary Optimal Timing of Hibernation

Now, we determine the evolutionary dynamics of tH , which requires an approximation
for the invasion dynamics. In order to approximate the invasion dynamics, it is
necessary to determine the population dynamics within a growth period for the case
where a mutant that enters hibernation at time t̂H = tH + δtH is in competition with
the resident population, which enters hibernation at time tH (see Appendix 5.6.2).

As in Chapters 3 and 4, we adopt the classical assumptions of adaptive dynamics
here. The frequency of mutants in the subsequent growth period is given by the
proportion of mutants in the hibernating population (see Eq. (5.23)).

5.2.1.4 Invasion Dynamics

Here, we mathematically characterise the invasion dynamics of a mutant (see Ap-
pendix 5.6.3). The invasion dynamics of the mutant with a different timing of
hibernation is of the form

df̂tH

dt
= f̂tH

(1 − f̂tH
)htH

(tH) (5.4)

where htH
(tH) is a constant that depends on tH and all the system parameters. We

observe in Eq. (5.4) that we have frequency independent selection. Eq. (5.4) can
then be used to mathematically characterise the evolutionary dynamics of tH (see
Appendix 5.6.4).

5.2.1.5 Evolutionary Dynamics

As shown in Figure 5.4, the timing of hibernation affects the number of hibernating
population members at the end of a growth period. The evolutionary dynamics for
the timing of hibernation tH are derived using Eq. (5.4), and is given by

dtH

dτ
= r(k − xtotal(0))

(k − xtotal(0) + ertH xtotal(0)) − γ

(eγ(T −tH) − 1) (5.5)

(see Appendix 5.6.4 for derivation). The evolutionary optimal timing of hibernation
t∗
H is given by the solution for tH to Eq. (5.5) that corresponds to the stable fixed
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point in the interval [0, T ]. As for the case of y(T ) in Eq. (5.3), dtH/dτ = 0 is
again a transcendental equation in tH , which makes it necessary to seek a numerical
solution for tH . Here, we again use the Findroot command in Mathematica (see
hibernation.nb in the Evol_Env_triggered_sex repository). In Appendix 5.6.5,
we also prove that t∗

H is equal to t
(I)
H i.e. the timing of hibernation that the population

evolves to is equal to the timing of hibernation that maximises the number of
hibernating population members at the end of a growth period (individual optimal
timing). This is expected in our hibernation model, since the only form of interactions
between different genotypes are competitive interactions, with no public goods or
other interaction types.

5.2.2 Evolution of timing of Genetic Recombination

In this section, we demonstrate how our model for hibernation can be modified to
investigate the evolution of environmentally triggered sex. As in our hibernation
model, we assume a period T over which the population can undergo logistic growth
and genetic recombination. The population is again subject to a round of fitness
dependent mortality at time T , but this time, it is the genotypes with relatively few
deleterious mutations that survive. These surviving population members form the
beginning of the subsequent growth period.

At some time tR during the growth period, population members enter a phase
of recombination. In principle, it is possible to obtain an analytical approximation
for the evolutionary dynamics for the timing of recombination, however due to the
lengthy expression for the population of the genotypes, an analytical derivation of
the evolutionary dynamics would be of little practical use. We therefore restrict our
analysis to the individual optimal timing of recombination t

(I)
R . Although, we can

still obtain insights into the evolutionary dynamics of tR by simulating evolutionary
trajectories. Predicting t

(I)
R analytically requires us to consider the population

dynamics within a growth period, however here, there are two regimes for genetic
recombination.

In the first regime, population members can engage in sex many times during
their lifetime (iteroparous), which is observed in species including daphnia. In the
second regime, population members can only engage in sex once in their lifetime
(semelparous), and this is observed in organisms such as S. pombe and C. reinhardtii
[85, 197]. We abbreviate these two regimes as “iteroparous” and “semelparous”
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respectively. For both regimes, we analytically investigate the individual optimal
timing of recombination t

(I)
R .

Our model for recombination is inevitably more complex than our model for
hibernation, due to the presence of deleterious mutations, and four different genotypes
that emerge through deleterious mutations or genetic recombination events. To
this end, we provide an overview of the exact process by which genotypes emerge
and the precise definitions for each genotype, before providing the equations for the
population dynamics within a growth period.

5.2.2.1 Model Behaviour

In our model, each growth period starts with a population of genotypes free of
deleterious mutations. These genotypes are subject to deleterious mutations as the
population grows logistically. We construct a three locus model where one locus is a
non-recombining region that encodes the timing of recombination tR. The other two
loci determine the genetic identity (genotype) of the population members. Each of
these two loci can contain two possible alleles 0 or 1, where 0 is the non mutant allele
and 1 as the deleterious mutant. We assume that mutations are strictly deleterious,
i.e mutations from 0 to 1 are the only possible mutation event. These mutations
occur at a fixed rate of µ at each locus.

We represent the genotype of an individual using vectors
(

a
b

)
where a and b

correspond to the alleles in the top and bottom locus respectively. There are four
possible genotypes in our model

(
0
0

)
,
(

0
1

)
,
(

1
0

)
and

(
1
1

)
. A deleterious mutation event

transforms
(

0
0

)
into either

(
0
1

)
or
(

1
0

)
depending on the locus in which the mutation

occurred, and
(

0
1

)
and

(
1
0

)
transforms into

(
1
1

)
.

We class
(

0
0

)
,
(

0
1

)
and

(
1
0

)
as viable genotypes and

(
1
1

)
as the lethal genotype.

The lethal genotype cannot survive in the resource limited environment, nor undergo
logistic population growth (i.e r = 0) or recombination, all of which the viable
genotypes can (see Figure 5.5). It is important to stress that

(
0
1

)
and

(
1
0

)
thus

have the same fitness as the
(

0
0

)
genotype, as they have the same growth rate and

survive equally well in the resource limited environment. However as the
(

0
1

)
and(

1
0

)
genotypes are one mutation away from becoming the lethal

(
1
1

)
genotype, it is

more favorable to have a smaller population of these types in the beginning of a
growth period, to reduce the buildup of deleterious mutations. Throughout the text,
we refer to the

(
0
0

)
as the non mutant genotype,

(
0
1

)
or
(

1
0

)
as the single mutant

genotype and
(

1
1

)
as the double mutant genotype. During each growth period, the
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Figure 5.5: Schematic of genetic recombination model behaviour within a growth
period. During the logistic growth phase, genotypes are subject to deleterious
mutations (at rate µ). At time tR, members of the population begin entering
recombination, which occurs at rate α. At the end of a growth period (time T ),
individuals are subject to a round of mortality, where only viable genotypes survive.
We also assume that recombination does not occur in the resource limited environment
at time T . Blue dot represents the non mutant 0 allele and yellow represents the
deleterious mutant 1 allele.

population of each genotype is subject to continuous change, due either to the
buildup of deleterious mutations or the population switching from logistic growth to
recombination. In the following sections, we use equations and figures to describe
how the population of the genotypes change throughout each growth period in both
the iteroparous and semelparous regimes.

5.2.2.2 Iteroparous regime (Multiple rounds of sex)

In this section, we analytically investigate the individual optimal timing of recombina-
tion t

(I)
R for the iteroparous regime. In this regime, organisms can engage in multiple

rounds of sex during a growth period. The equations describing the population
dynamics within a growth period are given below.



170
Chapter 5. Evolution of environmentally-triggered sexual reproduction

and hibernation

Dynamics within a growth period

The population dynamics of the system during the logistic growth phase (0 < t < tR)
is given by

dx00

dt
= rx00

(
1 − xtotal

k

)
− 2µx00 (5.6)

dx01

dt
= rx01

(
1 − xtotal

k

)
+ µx00 − µx01

dx10

dt
= rx10

(
1 − xtotal

k

)
+ µx00 − µx10

dx11

dt
= µ(x01 + x10)

where x00(t), x01(t), x10(t) and x11(t) are the populations of the
(

0
0

)
,
(

0
1

)
,
(

1
0

)
and

(
1
1

)
genotypes respectively and xtotal(t) = x00(t) + x01(t) + x10(t) + x11(t). Deleterious
mutations result in the buildup of lethal genotypes

(
1
1

)
throughout the logistic growth

phase. We keep explicit track of x11(t) as resources have been used to produce such
offspring, limiting population growth (see Appendix 5.5). Note in Eq. (5.6) that we
assume that single mutants have the same growth rate r as the non mutants.

Now we describe the population dynamics for the recombination phase (tR < t < T ).
Recombination involves crossover events where the alleles in one of the two loci gets
swapped between the pair of population members engaging in sexual encounter (see
Figure 5.6). Sexual encounters are assumed to occur at rate α, and the probability
that a crossover event occurs in at least one locus during a sexual encounter is PR.
With probability 1 − PR, the offspring is identical to the parent.

As mentioned in the introduction, sex incurs costs which limit population growth
[62]. These costs include the need to go through the time consuming process of
meiosis [131] and reduced fecundity [131, 139]. Daphnia is an extreme example where
sexual production reduces fecundity; their sexual clutches can only contain at most
2 eggs while asexual clutches can contain 110 eggs [63]. It was noted by [47, 63, 193]
that such demographic costs of sex can be reduced as the population of asexuals
approach carrying capacity. As in our model for hibernation, we account for these
costs by assuming that population growth stops once it enters the recombination
phase. The population dynamics for the recombination phase (tR < t < T ) is given
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Figure 5.6: During genetic recombination, crossover events occur whereby the alleles
in one of the two loci gets exchanged between the two population members undergoing
sexual encounter. A successful crossover between a

(
1
0

)
and

(
0
1

)
genotype produces

one
(

0
0

)
genotype and one lethal genotype

(
1
1

)
(red genotype). A successful crossover

event between all other pairs of viable genotypes does not change the population
composition of any genotype. Sexual encounters occur at rate α, and the probability
that a crossover occurs upon each sexual encounter is PR.

by

dx00

dt
= αPRx10x01 (5.7)

dx01

dt
= −αPRx01x10

dx10

dt
= −αPRx01x10

dx11

dt
= αPRx10x01 .

We note that although the lethal genotype
(

1
1

)
cannot engage in sex, they can still

be a product of recombination between the
(

1
0

)
and

(
0
1

)
genotypes (see Figure 5.6),

which justifies how their population can change throughout the recombination phase.
The population of

(
0
0

)
remains unchanged following recombination with any genotype

(see Figure 5.6), but since they are also a product of recombination between
(

1
0

)
and(

0
1

)
, their population can still increase over the recombination phase (see Eq. (5.7)

and Figure 5.6).
In Appendix 5.7.1.2, we derive an analytical approximation for the population

dynamics of each genotype x00(t), x01(t), x10(t) and x11(t) within a growth period
(approximate solutions to Eq. (5.6-5.7)). These approximations assume that the rate
of deleterious mutation µ is small (i.e of order 10−2 or less). In Appendix 5.7.4, we
show how these analytical approximations break down for sufficiently large µ.
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Below, we provide plots that show how the population of each genotype changes
within a growth period. We see in Figure 5.7 (a) that if recombination does not
occur, non mutant genotypes

(
0
0

)
deplete as the lethal double mutants build up over

the course of the growth period. If recombination occurs during the growth period
(Figure 5.7 (b)), the population can reverse the depletion of non mutant genotypes,
increasing its population at time T .
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Figure 5.7: Population dynamics within a growth period. The population com-
position of each genotype changes within a growth period due to deleterious
mutations. Panel (a) is the case where recombination does not occur and
panel (b) is the case where recombination occurs at tR = 3.65. These plots
correspond to numerical solutions to Eqs. (5.6-5.7). Remaining parameters are
given in Appendix 5.9. The total population at any given time is denoted as
xtotal(t) = x00(t) + x01(t) + x10(t) + x11(t).

If the population engages in recombination too early in the growth period, it
gives up too much opportunity for population growth, whereas if it engages in
recombination too late in the growth period, the number of viable genotypes will
have depleted by too much due to the buildup of deleterious mutations. The best
time to attempt recombination is some time during the middle of the growth period,
which we show analytically in Section 5.3.2.

Although the analytical approximations of x00(t), x01(t), x10(t) and x11(t) (see
Eq. (5.45) in Appendix 5.7) enable us to calculate t

(I)
R , we note that due to the

difference in the fitness of each genotype in Eqs. (5.6-5.7), a mutation selection
balance will be reached after multiple growth periods, which we demonstrate in the
following section.
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Mutation Selection Balance in the Genotypes

In our model, mutation selection balance is characterised by the state where the
frequency of each genotype at the beginning of each growth period stops changing
over multiple growth periods (equilibriates). We demonstrate this in Figure 5.8
below.
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Figure 5.8: Change in the frequency of non mutant genotypes
(

0
0

)
and single mutant

genotypes (
(

0
1

)
and

(
1
0

)
) at the beginning of a growth period (f00(0) and f1(0)

respectively) over 100 growth periods for Eqs. (5.6-5.7). In panel (a) there is no
recombination tR ≥ T and in panel (b) there is recombination tR < T . Upon
reaching mutation selection balance, f00(0) and f1(0) tend towards an equilibrium
(f ∗

00 and f ∗
1 respectively). Black lines in panel (b) are analytical predictions for the

equilibrium frequencies of both genotypes f ∗
00 and f ∗

1 , (see Eq. (5.48) in Appendix 5.7).
Remaining parameters are given in Appendix 5.9.

In Figure 5.8 we see that over a large number of growth periods, the frequency
of non mutant and single mutant genotypes at the beginning of each growth period
(f00(0) and f1(0) respectively) tends to an equilibrium, which we define as the
“equilibrium frequency”. We denote the equilibrium frequencies of non mutants and
single mutants as f ∗

00 and f ∗
1 respectively.

If recombination does not occur (Figure 5.8 (a)), f00(0) tends to 0 and f1(0) tends
to 1 after a large number of growth periods. If recombination occurs (Figure 5.8 (b)),
f00(0) and f1(0) would both tend to a value between 0 and 1 (see Eq. (5.48) in
Appendix 5.7 for analytical expression of this equilibrium frequency). Since the
double mutant is lethal, their frequencies are always 0 at the beginning of each
growth period, and we have the condition that f00(0) + f1(0) = 1. Note also that
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if the growth period T or sexual encounter rate α becomes infinitely large, the
f ∗

00 corresponding to Eqs. (5.6-5.7) tends to 1 (see Eq. (5.48) in Appendix 5.7 and
Figure 5.21). However, this is not true for the case where recombination occurs once
(semelparous regime), which we talk about in Section 5.2.2.3.

Using the analytical approximation for f ∗
00 (see Eq. (5.48) for the “iteroparous”

regime and Eq. (5.62) in Appendix 5.7 for the “semelparous” regime), we obtain an
analytical expression for the individual optimal timing of recombination t

(I)
R .

Given the lengthy analytical expressions of f ∗
00 (Eqs. (5.48) and (5.62) in Ap-

pendix 5.7) and the large number of genotypes in this complex model, analytical
expressions for x00(tR), x00(t̂R) (where t̂R is the recombination timing of a mutant)
which are necessary for analytically predicting the evolutionary dynamics would be
even lengthier. It would thus be of little practical use to obtain analytical predic-
tions for the evolutionary dynamics of tR. However, a convenient way to acquire
insights into the evolutionary dynamics of tR is through stochastic simulations of its
evolutionary trajectories (see Appendix 5.7.3). In Section 5.2.2.3 below, we consider
the semelparous regime, where each individual can attempt recombination once in a
growth period.

5.2.2.3 Semelparous regime (one round of sex)

Here, we consider the case where population members only have one opportunity
to engage in sex (semelparous). In this case, an inherent cost of sex is manifested
through the risk of unsuccessful recombination (occurring with probability 1 − PR),
as once a population member has engaged in sex, it cannot engage in further sexual
encounters. As sexual encounters occur between random members of the population,
there is a chance that recombination occurs between a pair of genotypes such that
even a successful recombination will not increase the population of the

(
0
0

)
genotype,

which further accentuates the cost of sex. An example of this is when
(

0
1

)
recombines

with
(

0
1

)
to produce

(
0
1

)
and

(
0
1

)
(see Figure 5.9), which can undergo no further sexual

encounters. Out of all the possible recombination events, it is only the successful
recombination between

(
1
0

)
and

(
0
1

)
that can reverse the depletion of

(
0
0

)
genotypes

due to deleterious mutations.

Dynamics Within a growth period

In the semelparous regime, the dynamics of the population before it enters recom-
bination is identical to that of the iteroparous regime (Section 5.2.2.2). In this
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Figure 5.9: Schematic of the genetic recombination process in the semelparous
regime. The difference between the iteroparous regime in Figure 5.6 is that once a
sexual encounter has occurred, no further sexual encounters occur. The products of
recombination shown in maroon cannot undergo further recombination.

section, we only consider the population dynamics of the recombination phase (i.e at
tR < t < T ), which is given by Eq. (5.8) below. Here, we adopt separate notations
for the population that have engaged in sex (attempted recombination) and the
population that have not engaged in sex (not attempted recombination). Denoting by
χ00, χ1 and χ11 as the population of non mutants, single mutants and double mutants
that have not attempted recombination and y00, y1 and y11 as the corresponding
populations that have attempted recombination, the population dynamics are given
by

dχ00

dt
= −αχ00(χ01 + χ10) − αχ2

00 (5.8)
dχ01

dt
= −αχ01(χ10 + χ01 + χ00)

dχ10

dt
= −αχ10(χ01 + χ10 + χ00)

dχ11

dt
= 0

dy00

dt
= αPRχ10χ01 + αχ00(χ10 + χ01) + αχ2

00

dy01

dt
= αχ00χ01 + α(1 − PR)χ01χ10 + αχ2

01

dy10

dt
= αχ00χ10 + α(1 − PR)χ01χ10 + αx2

10

dy11

dt
= αPRχ10χ01 .
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As we can observe, there is a remarkable difference between Eq. (5.8) and the
population dynamics of the recombination phase in the iteroparous regime Eq. (5.7)
(see Figure 5.14 in Section 5.3.2.2 for illustration). In this semelparous regime,
the frequency of each genotype also reaches a mutation selection balance over
many generations as in the iteroparous regime (see Figure 5.8 and Eq. (5.62) in
Appendix 5.7). Due to the conceptual similarity between the iteroparous regime, a
figure showing the mutation selection balance for this regime is omitted.

5.2.2.4 Simulations of evolutionary trajectories

In our analyses above, we have only accounted for the optimal timing of recombination
for a monomorphic population, where all members enter the recombination phase
at the same time. When the timing of recombination tR is an evolving trait, the
population will contain multiple genotypes that enter recombination at different
times during the growth period (i.e with different values of tR). In such a case, the
genotypes with different values of tR can have sexual encounters with each other
and the single mutants

(
1
0

)
and

(
0
1

)
become public goods. For instance, a

(
1
0

)
from

an individual that enter recombination at tR = t
(1)
R can recombine with a

(
0
1

)
from

an individual with tR = t
(2)
R , to reverse the depletion of non-mutants

(
0
0

)
in the

population of each other. This can give rise to phenomena such as cheating, whereby
one genotype (the cheater) can reap the benefits of another genotype (the cooperator)
without paying a reasonable cost. In our model, this can occur when a mutant with a
different tR to the resident genotype enters the population at a small frequency (see
Appendix 5.8). Such phenomena can have an effect on the subsequent evolutionary
dynamics for tR. In Figure 5.10, we show different ways in which genotypes with
different values of tR can interact with each other in a two genotype population.

The stochastic simulations for the iteroparous regime are implemented according
to Eqs. (5.52-5.53) in Appendix 5.7 and the corresponding simulations for the
semelparous regime are implemented according to Eqs. (5.65-5.66) in Appendix 5.7).

5.3 RESULTS

In this section, we present our analytical and numerical results for the hibernation
model and recombination model. We begin by considering the hibernation model.
In Section 5.3.1, we provide analytical results and numerical simulations for the
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Figure 5.10: When the population contains two genotypes with different values of tR,
there are times when both genotypes are under logistic growth (0 < t < t

(1)
R ), one

under logistic growth and one in recombination phase (t(1)
R < t < t

(2)
R ), or both in

recombination phase (t(2)
R < t < T ). When both genotypes are in the recombination

phase, sexual encounters can occur between members of the other genotype.

evolutionary dynamics of the timing of hibernation. In Section 5.3.2, we present
our analytical results for the individual optimal timing of recombination along with
numerical simulations for the evolutionary dynamics of the timing of recombination
for both the iteroparous and semelparous regime.

5.3.1 Environmental Stress Induces Hibernation

In Figure 5.11, we provide stochastic simulations for the evolutionary dynamics of
the timing of hibernation tH (bottom row) alongside their corresponding population
dynamics within each growth period (top row). In the top panels of Figure 5.11, we
see that as expected, the evolutionarily optimal timing of hibernation occurs during
the middle of a growth period, where both the opportunity cost of hibernation is
sufficiently low while ensuring that a sufficient population ends up in hibernation at
time T . In Figure 5.11, we also see that for shorter growth periods, the population
evolves to enter hibernation phase earlier to allow time for population members to
enter hibernation. In Appendix 5.6.6, we show that the fixed point of Eq. (5.5) (red
lines in Figure 5.11 top) is indeed an evolutionarily stable state for the parameters
in Figure 5.11, which justifies why we do not observe evolutionary branching.

Having provided simulations of evolutionary trajectories for tH , we are now
interested in how the evolution of hibernation is influenced by various system
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Figure 5.11: Top: Stochastic simulations of the evolutionary trajectories tH(i)(τ) for
each i-th genotype in the population. Darkness of the trajectories represents the
frequency of a given genotype tH(i) in the population and red lines correspond to
the analytical prediction of the stable fixed point of Eq. (5.5). Panel (a) is for the
case where T = 5 and panel (b) for the case where T = 20. Bottom: Population
dynamics within a growth period (Eqs. (5.1-5.2)) . Panels (c) and (d) correspond
to the parameters in panels (a) and (b) respectively. Hibernation occurs at their
evolutionary optimal timing of hibernation t∗

H , with t∗
H ≈ 2.42 in panel (c) and

t∗
H ≈ 4.71 in panel (d). Remaining parameters are given in Appendix 5.9.

parameters. In Figure 5.12 below, we show how T and xtotal(0) affects the fraction of
the population in hibernation at time T . We see that the fraction of the population
that end up in hibernation at time T increases with both T and xtotal(0). This is
because for small T , the population needs to enter hibernation phase sooner while
opportunity costs are still high, in order to allow time for population members to
enter hibernation.

We also note that should xtotal(0) be too large or T be sufficiently small in
our model, the opportunity for population growth becomes so limited that the
population would be better off residing in the hibernation phase throughout the
growth period (black regions in Figure 5.12). We stress that this parameter regime is
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not of significant biological relevance, since it either represents an extremely resource
limited population at the beginning of a growth period, or a very high Rcrit (see
Section 5.5).
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Figure 5.12: Heatmap showing the analytical prediction (panel (a)) and numerical
simulation (panel (b)) of the fraction of population members in hibernation as a
function of growth period T and the initial population xtotal(0). In the black region,
t∗
H ≤ 0, which represents the case where it is ideal for the population to reside in

hibernation throughout the growth period. The heatmap in panel (a) are generated
using Eq. (5.16) in Appendix 5.6 and in panel (b), numerical simulations are obtained
by simulating evolutionary trajectories for tH over a large number of mutation events
(see Appendix 5.6.7). Remaining parameters are given in Appendix 5.9.

5.3.2 Environmental Stress Induces Genetic Recombination

In this section, we begin by presenting analytical results on the individual optimal
timing of recombination for the iteroparous regime Eqs. (5.6-5.7). We then inves-
tigate the parameter regions where recombination occurs within a growth period,
which relates to our original question of the conditions under which we evolve envi-
ronmentally triggered sex. Afterwards, we present the corresponding results for the
semelparous regime Eq. (5.8). In Section 5.3.3, we present results for our simulations
of evolutionary trajectories in tR to provide insights into the evolutionary dynamics
for the timing of sex. Interestingly these simulations reveal a rich array of dynamical
behaviour that depends on the rate of sexual encounter α.
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5.3.2.1 Iteroparous regime (many rounds of sex)

In the iteroparous regime Eqs. (5.6-5.7), the individual optimal timing of recombina-
tion is given by

t
(I)
R = 1

r
log

(
(r − µ)(k − xtotal(0))

µxtotal(0)

)
(5.9)

(see Appendix 5.7.1.2 for derivation) and the condition under which recombination
occurs during the growth period is t

(I)
R < T . Notice that t

(I)
R in Eq. (5.9) depends

on r, µ and xtotal(0) but is independent of T , so it would be crucial to examine the
values of T that result in recombination occurring during the growth period. It is
also interesting to examine how varying the other parameters in Eq. (5.9) impacts
the value of T that results in recombination during the growth period. In Figure 5.13,
we present a heatmap to show the regions in the parameter space of T and xtotal(0)
where recombination occurs.
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Figure 5.13: Panel (a) is a heatmap showing how the analytical approximation of t
(I)
R

varies with xtotal(0) and T . Red curve represents t
(I)
R . Its colourmap indicates the

value of T −t
(I)
R . Panel (b) is the corresponding numerical result for panel (a), obtained

by simulating evolutionary trajectories for tR as described in Section 5.2.2.4 (see
also Eq. (5.53) in Appendix 5.7.3). The colourmap represents the quantity T − ⟨tR⟩
where ⟨tR⟩ is the mean tR in a multigenotype population (see Appendix 5.7.3).
Panel (c) is the time spent in recombination as a function of T for case where
xtotal(0) = 0.05. Solid black line is the analytical prediction from Eq. (5.9) and
markers are numerical simulations taken from panel (b). The linear increase with T

of the time in recombination shows that t
(I)
R does not vary with T for a given value

of xtotal(0). Remaining parameters are given in Appendix 5.9. The parameters for
this figure corresponds to the case of small α, where the evolutionary optimal tR is
well predicted by the individual optimal tR (this is discussed more in Section 5.3.3).

From Figure 5.13, we notice that as long as the growth period is sufficiently long
(i.e T sufficiently large), environmentally triggered sex is expected to occur. We also
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see that the individual optimal timing of recombination can be an accurate predictor
of the evolutionary optimal timing of sex, due to the close match between panels (a)
and (b). However, this accuracy breaks down under certain parameter conditions
which we discuss in Section 5.3.3.

5.3.2.2 Semelparous regime (one round of sex)

Surprisingly, in the semelparous regime Eq. (5.8), the individual optimal timing of
recombination is given by exactly the same expression as the iteroparous regime
Eq. (5.9) (see Appendix 5.7.2.2 for derivation). The parameter regions in T and
xtotal(0) under which environmentally triggered sex is present is thus exactly identical
to the iteroparous regime. However, the difference between these two regimes lies in
the population dynamics during the recombination phase. In other words, the way
in which the population composition of each genotype changes once the population
enters recombination differs between the two regimes (compare Eq. (5.7) with (5.8)
and see Figure 5.14). This in turn impacts the equilibrium frequencies of

(
0
0

)
. Here,

unlike in the iteroparous regime, the frequency of
(

0
0

)
does not tend to 1 as α or

T tends to infinity, but tends to some value between 0 and 1 (see Eq. (5.62) in
Appendix 5.7). We justify this difference using Figure 5.14 in Section 5.3.2.3 below.

5.3.2.3 Difference in population dynamics between these two regimes

As well as the population composition, there is also a qualitative difference in how the
population of each genotype changes once the population enters recombination (see
Figure 5.14). In the semelparous regime, the population of all genotypes eventually
level off at some value above zero after every individual has attempted recombination
(Figure 5.14 (b)), whereas in the iteroparous regime, the population of

(
0
1

)
and

(
1
0

)
genotypes will continually decay until it reaches zero (Figure 5.14 (a)).

When genotypes are at their equilibrium frequencies (f00(0) = f ∗
00 and f1(0) = f ∗

1 ),
the population of each genotype at time T can also be evaluated analytically. This
is done using the following step. For the iteroparous regime, we substitute f ∗

00

given by Eq. (5.48) into the expressions for x00(t)|t=T and x1(t)|t=T in Eq. (5.45) in
Appendix 5.7, and for the semelparous regime, we substitute f ∗

00 given by Eq. (5.62)
into the expressions for (χ00(t) + y00(t)) |t=T and (χ1(t) + y1(t)) |t=T in Eq. (5.60) in
Appendix 5.7. This is indeed what we did to arrive at Eq. (5.9). Using these, we
can determine what happens to the population of each genotype at time T in the
limit as α tends to infinity (open circles in Figure 5.14). For the iteroparous regime,
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Figure 5.14: The change in population composition of each genotype following
recombination differs between the iteroparous regime (panel (a)) and the semelparous
regime (panel (b)). All genotypes are at their equilibrium frequencies (i.e f00(0) = f ∗

00
and f1(0) = (1 − f ∗

00)) in this figure. Open circles represent the populations of each
genotype at time T in the limit as α tends to infinity (see Eq. (5.70) in Appendix 5.7).
Remaining parameters are given in Appendix 5.9.

x1(T ) tends to 0 and x00(T ) tends to (xtotal(T ) − x11(T )), while for the semelparous
regime, (χ00(T ) + y00(T )) and (χ1(T ) + y1(T )) both tend to some value above 0.

What this result tells us is that if population members have one opportunity for
recombination in a growth period, then even if all members attempt recombination
instantaneously (i.e at infinite rate), the population still cannot fully reverse the
depletion of the

(
0
0

)
genotypes due to deleterious mutations. This illustrates the cost

of sex in this regime due to either recombination failure or recombination occurring
between a pair of genotypes which does not increase the population of the

(
0
0

)
genotype (see Figure 5.9 in Section 5.2.2.3). In Section 5.3.3, we see that as well as
the population dynamics within a growth period, the evolutionary trajectories for tR

also differs between these two regimes.

5.3.3 Evolutionary trajectories for timing of genetic recombina-
tion reveals richer dynamics

In this section, we present results for our stochastic simulations of evolutionary
trajectories in the “semelparous” and “iteroparous” regimes. We show that in both
regimes, evolutionary trajectories reveal a rich array of dynamical behaviour, which
depends on the value of α. We begin by interpreting our simulation results for the
iteroparous regime. When the encounter rate α is small (Figure 5.15 (a)), evolution
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Figure 5.15: Stochastic simulations of evolutionary trajectories for tR in the
iteroparous regime (see Eq. (5.53) and Appendix 5.7.3 for implementation). In
panel (a), α = 0.03 (order 10−2), panel (b) α = 3 (order 100), panel (c) α = 100
(order 102) and panel (d) α = 10000 (order 104). Darkness of the trajectories
represents the frequency of a given genotype tR(i) in the population. The red lines in
each panel represents the individual optimal timing of recombination t

(I)
R given by

Eq. (5.9). Remaining parameters are given in Appendix 5.9.

gives rise to a population comprising one phenotypic cluster of genotypes, where the
mean population trait value of tR is well approximated by the individual optimal
timing of recombination t

(I)
R (see Eq. (5.9)). When α is of the order 100 (i.e a few

sexual encounters occur per unit time, e.g. day), the population initially evolves to
a trait value approximately equal to the individual optimal timing of recombination
before undergoing evolutionary branching, with one cluster evolving to a large value
of tR (Figure 5.15 (b)). Next, when α is of the order 102 (i.e a hundred or so sexual
encounters occur per unit time), evolution gives rise to a population comprising
one cluster of genotypes that delays recombination until right before the end of the
growth period (Figure 5.15 (c)). For even higher values of α (Figure 5.15 (d)), the
dynamics remains the same as in (Figure 5.15 (c)).

Now we consider the evolutionary dynamics for the semelparous regime. In this
regime, we see that when α is small (i.e if a small population engages in recombination
during the growth period), evolution again gives rise to a population comprising one
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cluster of genotypes, where the mean population trait value of tR is well approximated
by the individual optimal timing of recombination Eq. (5.9) (Figure 5.16 (a)). In the
case where α is of the order 100, the population initially evolves to delay tR until
the end of the growth period (time T ), before it undergoes branching in tR, with
one cluster of low frequency evolving to a smaller value of tR (Figure 5.16 (b)).

frequency

t R

(a) frequency

t R

(b)

frequency

t R

(c) frequency(d)

t R

Figure 5.16: Stochastic simulations of evolutionary trajectories for tR in the semel-
parous regime Eq. (5.8) (see Eq. (5.66) and Appendix 5.7.3 for implementation). In
panel (a) α = 0.03 (order 10−2), panel (b) α = 7 (order 100), panel (c) α = 200 (order
102) and panel (d) α = 15000 (order 104). All other parameters are as in Figure 5.15.
Red lines in each panel represents the individual optimal timing of recombination
t
(I)
R given by Eq. (5.9). Remaining parameters are given in Appendix 5.9.

When α is of the order 102, the evolutionary dynamics behave differently to the
iteroparous regime. Instead of delaying recombination until time T , the population
initially evolves to a trait value approximately equal to the individual optimal timing
of recombination before it undergoes branching, with one cluster of low frequency
evolving to a large value of tR (Figure 5.16 (c)). Interestingly, this resembles the
dynamics in Figure 5.16 (b) but in a qualitatively reversed manner. In the case
where α is of the order 104, the population evolves one cluster of genotypes which is
well approximated by t

(I)
R , as in the case of small α.

As expected, the evolutionary dynamics differ between the semelparous and
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iteroparous regimes for large values of α where the sexual encounter rate ceases to
be a limiting factor. For the semelparous regime, the population evolves to enter
recombination earlier than the iteroparous regime (compare panel (d) of Figures 5.15
and 5.16). This is likely due to the greater cost of recombination in the semelparous
regime.

5.4 DISCUSSION

The main take home message of this chapter is that we have provided a novel expla-
nation for the evolution of environmentally triggered sex using an eco-evolutionary
model that incorporates a population genetics framework (Muller’s Ratchet [154]),
alongside biologically realistic population dynamics. In particular, we have shown
that the optimal timing of hibernation broadly coincides with that of recombination
within a growth period. As hibernation and recombination are both subject to the
same selective pressure, and evolve when opportunities for population growth become
limited, our model explains how sex and hibernation may occur in tandem as a
response to the same environmental trigger. This behaviour is observed frequently
in organisms such as C. reinhardtii and S. pombe [197] when subject to nitrogen
limitation.

Through performing stochastic simulations of the evolutionary dynamics of the
timing of recombination, we have accounted for eco-evolutionary aspects, which are
key components in the evolution of sexual reproduction. These include the aspect of
cheating present in sexual reproduction [230]. Accounting for these eco-evolutionary
aspects enabled us to uncover a broader range of dynamical behaviour that occur
on the evolutionary timescale. Our simulations reveal that when members of the
population are presented with one opportunity for sex (semelparous), they may
evolve to invest in sex earlier during the growth period than when they have multiple
opportunities for sex (iteroparous).

Our work follows on from that of [61], by considering the selective advantages
of sex explicitly in terms of its genetic benefits, whilst also providing analytical
expressions that explain our results, made possible with our eco-evolutionary model.
While their model was tailored specifically to the breeding cycle of daphnia, our
model considered both semelparous and iteroparous breeding cycles, encompassing
the behaviour of a range of organisms.
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One limitation of our model of hibernation is that it does not explain the diverse
modes of hibernation observed in different organisms. Hibernation in C. reinhardtii
occurs through zygospore formation which is preceded by the fertilisation of gametes,
and S. pombe [167] hibernate by forming dormant spores following the production
of daughter cells in meiosis. We simply assumed that members of the population
enter hibernation exponentially at a constant rate. Existing eco-evolutionary models
that account for cell fusion include [37, 138], which investigated the evolution of
anisogamy by assuming mass dependent survival of cells. Importantly, our results
have managed to shed light on the empirical observation of why sex is correlated
with the occurrence of hibernation [62].

Another feature not assumed in our models is the presence of self-incompatible
mating types, which may impact reproductive success in various ways. In C. rein-
hardtii [137], gamete specific MID (minus dominant) genes are expressed in response
to nitrogen limitation, which differentiates vegetative cells into mating types MT +

and MT − on their MT locus. Intriguingly, S. pombe even have the ability to switch
mating types upon genetic recombination due to the genes on their MAT-1 locus
[233]. It is observed in daphina that when there is a biased sex ratio, mate limitation
can induce sexual selection [59] and reduced reproductive success. They showed
experimentally that populations with biased female to male sex ratios resulted in
fewer eggs per ephippum, indicating low reproductive success.

Although our results successfully explain how environmentally triggered faculta-
tive sex can occur under different parameter regions of our model, the precise details
of our results differ under different modelling scenarios. For instance, if the timing of
recombination is an evolving parameter, social conflict can give rise to evolutionary
branching, which can delay the population mean timing of recombination to some
later time than the optimal timing for an individual genotype. Crucially, both these
scenarios imply that environmentally triggered facultative recombination is expected.
It is only the timing of such event that differ between these scenarios. This in turn
explains how sex tends to occur shortly before the environment becomes harsh in
the facultatively sexual organisms discussed in this chapter.

Our work also echoes that of Gerber et al. [62], which used an agent based
simulation to shown how sex, dormancy and dispersal can covary with each other
when they are independently coevolving mechanisms. Their results showed that
investment in sex can covary positively with hibernation, but negatively with dispersal
in fluctuating environments. Furthermore, [207] investigated how the association
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between sex and the formation of dormant survival structures can prevent facultative
sexuals from being outcompeted by asexuals, which provides important implications
for the maintenance of facultative sex.

As well as theories and empirical observations, environmentally triggered sex
and its advantages have been demonstrated experimentally. One experiment showed
that individuals of S. cerevisiae that underwent genetic recombination had a greater
adaptation rate than their asexual counterparts [117]. Statistical analyses on ex-
perimental data [195] have shown that investment in sex in filamentous fungus is
negatively correlated with the fitness of a genotype in a given environment.

5.5 APPENDIX I: RESOURCE LIMITATION AND LOGISTIC
GROWTH

In this section, we describe how the one dimensional logistic growth model relates
to resource limitation or saturation in population density. We begin by considering
the one species MacArthur consumer-resource model [142] which is given as follows.
For simplicity, we assume an absence of species death. Denoting x as the consumer
species and R as the resource, the model is given by

dx

dt
= θRx (5.10)

dR

dt
= −θRx

where θ is the intrinsic growth rate of the population. Now we demonstrate how
Eq. (5.10) is equivalent to the logistic growth model. First, we note that the total
population of consumers and resources are constant k = x + R, and we define this
constant as the carrying capacity. Rearranging in terms of x and substituting into
Eq. (5.10), we get

dx

dt
= θx(k − x) (5.11)

which is of the same functional form as the logistic growth model. Furthermore, we
assume that if the resource abundance falls below a critical abundance i.e R(t) < Rcrit

or if the population density becomes sufficiently large i.e x(t) > xcrit, only consumers
of sufficient fitness can survive. This is equivalent to running the logistic growth
model Eq. (5.11) over a set time period T , and subjecting the population to a round
of fitness dependent mortality at time T . The time T is defined as the growth period.
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5.6 APPENDIX II: EVOLUTION OF HIBERNATION TIME

5.6.1 Dynamics within a growth period

The population dynamics of logistic growth phase (0 < t < tH) is given by

dx

dt
= rx

(
1 − x

k

)
(5.12)

dy

dt
= 0

where x(t) is the non-hibernation population and y(t) is the hibernating population.
The population dynamics of the hibernation Phase (tH < t < T ) is given by

dx

dt
= −γx (5.13)

dy

dt
= γx .

The solution to Eq. (5.12) is

x(t) = kxtotal(0)
xtotal(0) + (k − xtotal(0))e−rt

(5.14)

and the solution to Eq. (5.13) is

x(t) = x(tH)e−γ(t−tH) (5.15)

y(t) = x(tH)(1 − e−γ(t−tH))

where x(tH) is determined by evaluating Eq. (5.14) at t = tH . The fraction of
population members that have ended up in hibernation at the end of a growth period
is given by

y(t)
x(t) + y(t) = 1 − e−γ(t−tH) (5.16)

which is independent of xtotal(0).

5.6.2 Dynamics within a growth period in the presence of a mutant

Here, we consider the dynamics within a generation for the case where the population
contains a mutant at small frequency. When neither the mutant nor the resident has
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entered hibernation phase (t < tH < t̂H < T ), the population dynamics are given by

dx

dt
= rx

(
1 − x + x̂

k

)
(5.17)

dx̂

dt
= rx̂

(
1 − x + x̂

k

)
dy

dt
= 0

dŷ

dt
= 0

where x(t) and x̂(t) denote the population of residents and mutants not in hibernation
respectively, while y(t) and ŷ(t) denotes the corresponding population in hibernation.
The solutions to Eq. (5.17) are given by

x(tH) = (1 − f̂tH
)
(

xtotal(0)ertH

1 + 1
k
xtotal(0)(ertH − 1)

)
(5.18)

x̂(tH) = f̂tH

(
xtotal(0)ertH

1 + 1
k
xtotal(0)(ertH − 1)

)
y(t) = 0 , ŷ(t) = 0

when evaluated at the timing of hibernation t = tH , where f̂tH
is the frequency of

the mutant with a different tH to the resident. If the resident genotype has entered
hibernation phase but the mutant is not in hibernation (tH < t < t̂H < T ), the
population dynamics become

dx

dt
= −γx (5.19)

dx̂

dt
= rx̂

(
1 − x + x̂ + y

k

)
dy

dt
= γx

dŷ

dt
= 0 .

The solutions to Eq. (5.19) are given by

x(t̂H) = x(tH)e−γ(t̂H−tH) (5.20)

x̂(t̂H) =
x̂(tH)(x(tH)

k
− 1)

er( x(tH )
k

−1)δtH (x(tH)+x̂(tH)
k

− 1) − x̂(tH)
k

y(t̂H) = x(tH)(1 − e−γ(t̂H−tH)) , ŷ(t̂H) = 0



190
Chapter 5. Evolution of environmentally-triggered sexual reproduction

and hibernation

when evaluated at the mutant’s timing of hibernation t = t̂H , where t̂H = tH + δtH .
Finally when both the mutant and resident have entered hibernation phase
(tH < t̂H < t < T ), the population dynamics become

dx

dt
= −γx (5.21)

dx̂

dt
= −γx̂

dy

dt
= γx

dŷ

dt
= γx̂

where the solutions are given by

x(t) = x(tH)e−γ(t−tH) (5.22)

y(t) = x(tH)(1 − e−γ(t−tH))

x̂(t) = x̂(t̂H)e−γ(t−t̂H)

ŷ(t) = x̂(t̂H)(1 − e−γ(t−t̂H))

where x(tH), x(t̂H) and x̂(t̂H) are given in Eqs. (5.18) and (5.20). We can then
evaluate the expressions in Eq. (1.22) at t = T to obtain expressions for x(T ), x̂(T )
and y(T ) and ŷ(T ) and thus the population of hibernating members at the end of
a growth period, which can be used to define the invasion fitness function in the
following section.

5.6.3 Invasion Dynamics

The invasion dynamics is approximated using the invasion fitness function of the
mutant, given by

f̂
′

tH
= ŷ(T )

y(T ) + ŷ(T ) (5.23)

where ŷ(T ) is the population of mutants that have ended up in hibernation at the
end of the growth period T . As in Chapters 3 and 4, we assume that the mutational
stepsize parameter δtH is small to enable us to approximate the invasion dynamics
using the formula

df̂tH

dt
= d

dδtH

[
df̂ ′

tH

dt

]∣∣∣∣∣
δtH=0

+ O(δt2
H) (5.24)
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where
df̂ ′

tH

dt
≈ f̂ ′

tH
− f̂tH

. (5.25)

Using the steps detailed in this section, we see that the invasion dynamics is given by

df̂tH

dt
= f̂tH

(1 − f̂tH
)
[

r(k − xtotal(0))
(k − xtotal(0) + ertH xtotal(0)) − γ

(eγ(T −tH) − 1)

]
. (5.26)

5.6.4 Evolutionary Dynamics

As in Chapters 3 and 4, the evolutionary dynamics can simply be determined using
the formula

dtH

dτ
= d

df̂tH

[
df̂tH

dt

]∣∣∣∣∣
f̂tH

=0
, (5.27)

where we assume that the initial frequency of the novel mutant is small, so that we
can evaluate df̂tH

/dt at the mutant free steady state f̂tH
= 0. By applying Eq. (5.27)

to Eq. (5.26), we get that
dtH

dτ
= r(k − xtotal(0))

(k − xtotal(0) + ertH xtotal(0)) − γ

(eγ(T −tH) − 1) , (5.28)

and we can find the evolutionarily stable state of Eq. (5.28) by finding the root of
dtH/dτ = 0 for tH in Eq. (5.28). To show that there exists only one finite root to
dtH/dτ = 0 in Eq. (5.28), we check that Eq. (5.28) is monotonically decreasing in
tH for all tH < T , which can be done by calculating the derivative of Eq. (5.28) with
respect to tH . This is given by

d
dtH

[
dtH

dτ

]
= −(k − xtotal(0))xtotal(0)r2ertH

(k + (ertH − 1)xtotal(0))2 − γ2eγ(T −tH)

(eγ(T −tH) − 1)2 , (5.29)

which is strictly negative in fact for all tH ∈ R. Since dtH/dτ is a strictly decreasing
function of tH , there exists only one finite root to dtH/dτ = 0 in Eq. (5.28).

5.6.5 Individual optimal timing of hibernation is equal to the
evolutionary optimal timing of hibernation

To determine the individual optimal hibernation time t
(I)
H , we begin by seeking

analytical solutions for y(T ) using Eq. (5.15). Note that Eq. (5.15) contains x(tH),
which we evaluate by setting t = tH in Eq. (5.14). Denoting tH as the timing of
hibernation and y(T ) as the number of hibernating cells at time T , we have

y(T ) = kxtotal(0)ertH

k + xtotal(0)(ertH − 1)(1 − e−γ(T −tH)) (5.30)
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and we seek the value of tH such that dy(T )/dtH = 0 in Eq. (5.30), i.e a tH that
maximises the number of hibernating cells at time T . We note that

dy(T )
dtH

=
e−T γ+tH(r+γ)kxtotal(0)

(
A(De−γtH − 1) − γ(B + xtotal(0)ertH )

)
(k + (−1 + ertH )xtotal(0))2 (5.31)

where A = r(k − xtotal(0)), B = k − xtotal(0) and D = eγT . As Eq. (5.31) is a
transcendental in tH , it would be necessary to obtain a numerical approximation
of the solution to dy(T )/dtH = 0 for tH using Findroot in Mathematica (see
hibernation.nb in the Evol_Env_triggered_sex repository).

Now we prove that this is equal to the evolutionary optimal timing of hibernation,
which is the root of dtH/dτ = 0 for tH in Eq. (5.28). First note that Eq. (5.28) can
be reexpressed as

dtH

dτ
= r(k − xtotal(0))(eγ(T −tH) − 1) − γ(k − xtotal(0) + xtotal(0)ertH )

(k − xtotal(0) + xtotal(0)ertH )(eγ(T −tH) − 1)

= A(De−γtH − 1) − γ(B + xtotal(0)ertH )
(De−γtH − 1)(B + xtotal(0)ertH ) (5.32)

and here we see that the numerator of Eq. (5.31) is exactly equal to that of Eq. (5.32)
multipled by a factor of kxtotal(0)e−T γ+tH(r+γ). By noting that the denominator
of Eq. (5.31) as well as kxtotal(0)e−T γ+tH(r+γ) are strictly positive, the only finite
positive solution for tH such that dy(T )/dtH = 0 is if the expression equal to the
numerator of Eq. (5.32) is zero, i.e if

A(De−γtH − 1) − γ(B + xtotal(0)ertH ) = 0 . (5.33)

This implies that the root of dy(T )/dtH = 0 for tH in Eq. (5.31) is equal to the root
of dtH/dτ = 0 for tH in Eq. (5.32), which proves that the individual optimal timing
of hibernation is equal to the evolutionary optimal timing of hibernation.

5.6.6 Is the fixed point of dtH/dτ an Evolutionarily Stable State?

Furthermore, we have the tools to calculate whether the fixed point of Eq. (5.28) for
a given set of parameters is an evolutionary stable state, in which case we do not get
evolutionary branching in tH . This can be done by considering the second derivative
of the mutant frequency in the subsequent growth period with respect to δtH [46,
64]. Selection is disruptive if the condition given by

d
dt

[
d2f̂ ′

tH

dδt2
H

]∣∣∣∣∣
δtH=0

∣∣∣∣∣
f̂tH

=0
> 0 (5.34)
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is satisfied. To obtain an expression that allows us to check if selection is disruptive
about the fixed point of Eq. (5.28), we apply Eq. (5.34) to Eq. (5.23), which is the
invasion fitness of a mutant that enters hibernation at a different time. We have that

d
dt

[
d2f̂ ′

tH

dδt2
H

]∣∣∣∣∣
δtH=0

∣∣∣∣∣
f̂tH

=0
(5.35)

=
r2(k − xtotal(0))2 −

γ

(
k+(ertH −1)xtotal(0)

)(
γxtotal(0)ertH +(k−xtotal(0))(γ+2r)

)
eγ(t−tH )−1(

k + xtotal(0)(ertH − 1)
)2

which we use to check if selection is disruptive about the fixed point of Eq. (5.28) for
a given set of parameters. Since the denominator of Eq. (5.35) is strictly positive,
we can simply just check the sign of the numerator of Eq. (5.35). The condition that
gives rise to disruptive selection is thus equivalent to

eγ(t−t∗
H)r2(k − xtotal(0))2 −

(
ert∗

H γxtotal(0) + (k − xtotal(0))(r + γ)
)2

> 0 (5.36)

where t∗
H is the optimal timing of hibernation. As t∗

H is analytically intractable,
we can only check if Eq. (5.36) is satisfied for a given set of parameters. For the
parameters in Figure 5.11, we see that Eq. (5.36) is not satisfied and hence the
fixed point of Eq. (5.28) are indeed evolutionary stable states, and we should not
expect evolutionary branching to occur. In Figure 5.11 (a), Eq. (5.36) evaluates to
-34486 and in panel (b), it evaluates to -9.0878 which suggests that selection is not
disruptive.

5.6.7 Simulation of Evolutionary Dynamics

In our simulation of the evolutionary dynamics for tH , the population will contain
multiple genotypes with different values of tH at any given time. Our dynamics within
a growth period needs to account for that. If g ⊂ {1, S} is the set of genotypes under
logistic growth and m ⊂ {1, S} is another set under recombination with g ∩ m = ∅,
and S is the number of genotypes in the population, the dynamics of the set g under



194
Chapter 5. Evolution of environmentally-triggered sexual reproduction

and hibernation

logistic growth is given by

dx(i)

dt
= rx(i)

(
1 − xtotal

k

)
(5.37)

dy(i)

dt
= 0

dx(j)

dt
= −γx(j)

dy(j)

dt
= γx(j)

for all i ∈ g and j ∈ m. The total population of hibernating and non-hibernating
members in the beginning of each generation is xtotal(0) and the xtotal in Eq. (5.37)
denotes the total population at any given time xtotal = ∑S

i=1 x
(i)
total. To simulate the

invasion dynamics, we calculate the change in frequency of each genotype between
two successive growth periods. The frequency of genotype i with tH = t

(i)
H is given

by

f
′

i = y(i)(T )∑S
i=1 y(i)(T )

(5.38)

and the input parameters of this function are r, γ, k, xtotal(0) and T . The output of
this function is f , the frequency of all genotypes at the end of a growth period.

5.7 APPENDIX III: EVOLUTION OF TIMING OF GENETIC
RECOMBINATION

5.7.1 When recombination can occur arbitrarily many times during
a growth period (Iteroparous)

Here, we consider the iteroparous regime. Due to the complexity of this model, we
examine the optimal timing of recombination of a genotype with a given value of tR.
This is the value of tR that maximises the population of viable genotypes at the end
of the growth period.
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5.7.1.1 Dynamics within a growth period of an Individual genotype

For a genotype with a given value of tR, the population dynamics before recombination
(0 < t < tR) is given by

dx00

dt
= rx00

(
1 − xtotal

k

)
− 2µx00 (5.39)

dx01

dt
= rx01

(
1 − xtotal

k

)
+ µx00 − µx01

dx10

dt
= rx10

(
1 − xtotal

k

)
+ µx00 − µx10

dx11

dt
= µ(x01 + x10)

where xtotal(t) is the total population at a given time. The dynamics of the population
once it enters recombination phase (tR < t < T ) is given by

dx00

dt
= αPRx10x01 (5.40)

dx01

dt
= −αPRx01x10

dx10

dt
= −αPRx01x10

dx11

dt
= αPRx10x01 .

Analytical approximations of the solutions to Eqs. (5.39-5.40) are obtained as
described in the section below.

5.7.1.2 Analytical Approximation of Individual Optimal timing of recombination

Using Eq. (5.39), we can approximate the frequencies of each genotype as follows.

df00

dt
= r

(
1 − xtotal

k

)
f00(1 − f00 − f1) − 2µf00 (5.41)

df1

dt
= r

(
1 − xtotal

k

)
f1(1 − f00 − f1) + 2µf00 − µf1

dxtotal

dt
= r(f00 + f1)xtotal

(
1 − xtotal

k

)
.

By assuming that µ is small (relative to r), we assume that the frequency of x11

in the population remains small throughout a growth period. This implies that
the term (1 − f00 − f1) is of small magnitude. Since the term r(1 − xtotal/k) which
multiplies the (1 − f00 − f1) is also of small magnitude, we can neglect the term
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r(1 − xtotal/k)(1 − f00 − f1) in Eq. (5.41), which simplifies Eq. (5.41) to

df00

dt
= −2µf00 (5.42)

df1

dt
= 2µf00 − µf1

dxtotal

dt
= rxtotal

(
1 − xtotal

k

)
which we can solve to obtain solutions for f00(t) and f1(t). The solution f00(t) is
given simply by f00(t) = f00(0)e−2µt, that can be substituted into the expression
for df1/dt in Eq. (5.42) to solve for f1(t), which is given by f1(t) = e−µt(f1(0) +
2f00(0)(1 − e−µt)). In Figures 5.17 and 5.18, we show that this approximation yields
highly accurate solutions for Eq. (5.39). The accuracy of the solutions to f00(t)

Figure 5.17: Change in the frequencies f00(t) and f1(t) over a growth period. Param-
eter values are T = 20, k = 1, r = 1, xtotal(0) = 0.05, f00(0) = 0.5 and f1(0) = 0.5,
µ = 0.01. Dashed curves are analytical approximations and solid curves are actual
frequencies. Analytical approximations are solutions to Eq. (5.42).

and f1(t) as shown in Figure 5.17 allows us to approximate the abundance of each
genotype x00(t), x1(t) and x11(t) by multiplying those solutions by xtotal(t), which
we do in Figure 5.18. In other words, x00(t) = xtotal(t)f00(t), x1(t) = xtotal(t)f1(t)
and x11(t) = xtotal(t)(1 − f00(t) − f1(t)). The analytical approximations for the
abundances we observe in Figure 5.18 are given by

x00(t) = kxtotal(0)f00(0)e(r−2µ)t

k + xtotal(0)(ert − 1) (5.43)

x1(t) = kxtotal(0)et(r−2µ)(−2f00(0) + etµ(f00(0) + 1))
k + xtotal(0)(ert − 1)

x11(t) = kxtotal(0)et(r−2µ)(etµ − 1)(−f00(0) + etµ)
k + xtotal(0)(ert − 1)
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Figure 5.18: Change in the abundances x00(t) and x1(t) over one growth period.
Parameter values same as Figure 5.17. The analytical approximations are given
by multiplying the solutions to f00(t) and f1(t) in Eq. (5.42) with the analytical
approximation of xtotal(t) derived from Eq. (5.42), just as in Figure 5.17. The
expressions for these are given by Eq. (5.43).

which are obtained by multiplying xtotal(t) by the frequencies of each genotype
(solutions to Eq. (5.42)). Since the

(
1
1

)
genotypes die at time T , each growth period

will begin with only
(

0
0

)
,
(

0
1

)
and

(
1
0

)
genotypes which means that f00(0) + f1(0) = 1,

simplifying our analysis. In Eq. (5.43), we have substituted f1(0) with 1 − f00(0).

5.7.1.3 Analytical approximation of the recombination phase

In order to analytically approximate the dynamics of the population once it enters
the recombination phase (tR < t < T ), we consider Eq. (5.40). Importantly, we
assume that the

(
1
1

)
genotype does not attempt recombination, and its solution is

given by

x00(t) = x00(tR) + x01(tR) − 1
x01(tR)−1 + αPR(t − tR) (5.44)

x1(t) = 2
αPR(t − tR) + x10(tR)−1

x11(t) = x11(tR) + x01(tR) − 1
x01(tR)−1 + αPR(t − tR) .
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Evaluating the expressions for Eq. (5.43) at t = tR and substituting them into
Eq. (5.44), we get

x00(t) = kxtotal(0)etR(r−µ)(f00(0) + 0.5(1 − f00(0)))
k + (ertR − 1)xtotal(0) − 1

αPR(t − tR) + C

x1(t) = 2
αPR(t − tR) + C

(5.45)

x11(t) = kxtotal(0)(etR(r−µ)(−f00(0) − 0.5(1 − f00(0))) + ertR)
k + (ertR − 1)xtotal(0)

− 1
αPR(t − tR) + C

where
C = 2e−tR(r−2µ)(k + xtotal(0)(ertR − 1))

kxtotal(0)(eµtR(f00(0) + 1) − 2f00(0)) . (5.46)

As shown in Figure 5.8 of the main text, f00(0) equilibriates over a large number of
growth periods, and it is necessary to calculate the equilibrium frequency of f00(0).
We note that the frequency of each genotype at equilibrium are a function of all
the system parameters xtotal(0), µ, r, k, α, PR and T as well as tR. The equilibrium
frequency of f00(0) is approximated analytically by solving the equation

x00(t)
x00(t) + x1(t)

∣∣∣∣∣
t=T

− f00(0) = 0 (5.47)

for f00(0), where x00(t) and x1(t) are obtained from Eq. (5.45). The solution to
Eq. (5.47) for f00(0) is given by

f00(0) =
(

e−2rtR(2etR(r+µ)(etRµ − 1)(k + (ertR − 1)xtotal(0)) − e2rtRkPR(tR − T )xtotal(0)α

−1
2

(
(4etR(4r+µ)(etRµ − 2)k2P 2

R(T − tR)2xtotal(0)2α2 + 4e2rtR(2etRµ(k − xtotal(0))

−2e2tRµ(k − xtotal(0)) + 2etR(r+µ)xtotal(0) − 2etR(r+2µ)xtotal(0) (5.48)

+ertRkPR(tR − T )xtotal(0)α)2)
)1/2

)
/

(
(etRµ − 2)kPR(tR − T )xtotal(0)α

)

which is then substituted into Eq. (5.45-5.46). In the main text, we denoted the
equilibrium frequency of f00(0) as f ∗

00, which is literally the expression given by
Eq. (5.48). In Figure 5.8, we also see that this expression is a highly accurate
approximation. Having obtained an accurate approximation for the equilibrium
abundances of each genotype, we have all the necessary material to calculate the
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individual optimal timing of recombination, which can be calculated by solving

d
dtR

(x00(t) + x1(t))
∣∣∣∣
t=T,f00(0)=f∗

00

= 0 (5.49)

for tR, where x00(t) and x1(t) are obtained from Eq. (5.45). The total population of
viable genotypes at time T is given by

x00(T ) + x1(T ) = kxtotal(0)etR(r−µ)

k + (ertR − 1)xtotal(0) (5.50)

which we can apply Eq. (5.49) to in order to calculate the individual optimal timing
of recombination t

(I)
R , given by

t
(I)
R = 1

r
log

(
(r − µ)(k − xtotal(0))

µxtotal(0)

)
. (5.51)

5.7.1.4 Dynamics within a growth period for Evolutionary Dynamics Simulation

In our simulation of the evolutionary dynamics, the population will contain multiple
genotypes with different values of tR at any given time. Our dynamics within a
growth period will thus need to account for that. Given that each genotype has a
different value of tR, it is possible that at any given time, there are genotypes in
recombination and genotypes that are still under logistic growth. We describe our
simulation model as follows, if g ⊂ {1, ..., S} is the set of genotypes under logistic
growth and m ⊂ {1, ..., S} is another set that is under recombination with g ∩ m = ∅,
the dynamics of the set under logistic growth are given by

dx
(i)
00

dt
= rx

(i)
00

(
1 − xtotal

k

)
− 2µx

(i)
00 (5.52)

dx
(i)
01

dt
= rx

(i)
01

(
1 − xtotal

k

)
+ µx

(i)
00 − µx

(i)
01

dx
(i)
10

dt
= rx

(i)
10

(
1 − xtotal

k

)
+ µx

(i)
00 − µx

(i)
10

for all i ∈ g where the superscript i represents the i-th genotype and xtotal =∑S
i=1 x

(i)
total is the total population. We now consider the case where a subset

g ⊂ {1, ..., S} of genotypes are under logistic growth and another subset m ⊂ {1, ..., S}
is in recombination with g ∩ m = ∅. The timing of recombination tR is determined
by a gene in the third non-recombining locus, and therefore in our simulations, we
employ a three locus model instead of a two locus model. Assuming that we have
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free recombination, the dynamics are given by

dx
(i)
00

dt
= rx

(i)
00

(
1 − xtotal

k

)
− 2µx

(i)
00 (5.53)

dx
(i)
1

dt
= rx

(i)
1

(
1 − xtotal

k

)
+ 2µx

(i)
00 − µx

(i)
1

dx
(i)
11

dt
= µx

(i)
1

dx
(j)
00

dt
= αPR

3

(
x

(j)
01
∑

j′∈m
j′ ̸=j

x
(j′)
10 + x

(j)
10
∑

j′∈m
j′ ̸=j

x
(j′)
01

)
+ 2αPR

3 x
(j)
01 x

(j)
10

+2αPR

3

(
x

(j)
01
∑

j′∈m
j′ ̸=j

x
(j′)
00 + x

(j)
10
∑

j′∈m
j′ ̸=j

x
(j′)
00

)
− 2αPR

3

(
x

(j)
00
∑

j′∈m
j′ ̸=j

x
(j′)
01 + x

(j)
00
∑

j′∈m
j′ ̸=j

x
(j′)
10

)

dx
(j)
01

dt
= 2αPR

3 x
(j)
00
∑

j′∈m
j′ ̸=j

x
(j′)
01 − 2αPR

3 x
(j)
01
∑

j′∈m
j′ ̸=j

x
(j′)
00 − αPRx

(j)
01
∑

j′∈m
j′ ̸=j

x
(j′)
10 + αPR

3 x
(j)
10
∑

j′∈m
j′ ̸=j

x
(j′)
01

− 2αPR

3 x
(j)
01 x

(j)
10

dx
(j)
10

dt
= 2αPR

3 x
(j)
00
∑

j′∈m
j′ ̸=j

x
(j′)
10 − 2αPR

3 x
(j)
10
∑

j′∈m
j′ ̸=j

x
(j′)
00 − αPRx

(j)
10
∑

j′∈m
j′ ̸=j

x
(j′)
01 + αPR

3 x
(j)
01
∑

j′∈m
j′ ̸=j

x
(j′)
10

− 2αPR

3 x
(j)
01 x

(j)
10

dx
(j)
11

dt
= αPR

3

(
x

(j)
01
∑

j′∈m
j′ ̸=j

x
(j′)
10 + x

(j)
10
∑

j′∈m
j′ ̸=j

x
(j′)
01

)
+ 2αPR

3 x
(j)
01 x

(j)
10

for all i ∈ g and j, j′ ∈ m. Eqs. (5.52-5.53) describes the dynamics within a growth
period, and is run for a time period of T . The initial population at the beginning of
each growth period is xtotal(0). To simulate the subsequent evolutionary dynamics,
it is necessary to simulate the invasion dynamics (see Section 5.7.3).

It is crucial to highlight that under the assumption of free recombination, the
probability that a crossover event occurs in one or more loci PR differs between the two
locus and three locus model. If the probability that a crossover event occurs at a given
locus is PR, then in the two locus model (e.g Eqs. (5.39-5.40)), PR = P 2

CO +(1−PCO)2,
while in a three locus model (e.g Eqs. (5.52-5.53)), PR = P 3

CO + (1 − PCO)3. If
PCO = 1/2, then PR = 1/2 in a two locus model and PR = 3/4 in a three locus
model.
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5.7.2 When recombination occurs once during a growth period
(Semelparous)

5.7.2.1 Dynamics within a growth period of Individual genotype

For this scenario, the population dynamics for the phase before recombination
(0 < t < tR) is also given by Eq. (5.39), as in the iteroparous regime. Thus in this
section, we only include equations describing the dynamics of the population already
in recombination. Denoting χ00(t), χ1(t) and χ11(t) as the population that have yet
to undergo recombination and y00(t), y1(t) and y11(t) as the population that have
already attempted recombination, the population dynamics of the recombination
phase (tR < t < T ) is given in Eqs. (5.54) and (5.55).

dχ00

dt
= −αχ00(χ01 + χ10) − αχ2

00 (5.54)
dχ01

dt
= −αχ01(χ10 + χ01 + χ00)

dχ10

dt
= −αχ10(χ01 + χ10 + χ00)

dχ11

dt
= 0

dy00

dt
= αPRχ10χ01 + αχ00(χ10 + χ01) + αχ2

00

dy01

dt
= αχ00χ01 + α(1 − PR)χ01χ10 + αχ2

01

dy10

dt
= αχ00χ10 + α(1 − PR)χ01χ10 + αx2

10

dy11

dt
= αPRχ10χ01
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denoting χ1(t) = χ01(t) + χ10(t) and assuming that χ10(t) = χ01(t), Eq. (5.54) can
be reexpressed as

dχ00

dt
= −αχ00(χ00 + χ1) (5.55)

dχ1

dt
= −αχ1(χ00 + χ1)

dχ11

dt
= 0

dy00

dt
= αPRχ2

1
4 + αχ00χ1 + αχ2

00

dy1

dt
= αχ00χ1 + α(1 − PR)χ2

1
2 + αχ2

1
2

dy11

dt
= αPRχ2

1
4

which can be used conveniently to obtain analytical approximations for the population
dynamics, which we do below.

5.7.2.2 Analytically Approximating the Individual Optimal timing of recombi-
nation

Here, we derive the solutions to Eq. (5.55). First we can use the substitution
χviable(t) = χ00(t) + χ1(t) and see that

dχviable

dt
= −αχ2

viable (5.56)

which has solution

χviable(t) = 1

α
[
(t − tR) + (αχviable(tR))−1

] (5.57)

for (tR < t < T ). Due to the symmetry of dχ00/dt and dχ1/dt in Eq. (5.55), we
notice that the quantity fχ00 = χ00(t)/(χ00(t) + χ1(t)) is constant over time t i.e
dfχ00/dt = 0. As a result, we get that

χ00(t) = χviable(t)fχ00 (5.58)

χ1(t) = χviable(t)(1 − fχ00) .

For our analysis, we set fχ00 straightforwardly as fχ00 = χ00(tR)/(χ00(tR) + χ1(tR))
where χ00(tR) and χ1(tR) are given in Eq. (5.43). From Eq. (5.55), we determine
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that

dy00

dt
= C(tR)

α2
[
(t − tR) + (αχviable(t))−1

]2 (5.59)

dy1

dt
= D(tR)

α2
[
(t − tR) + (αχviable(t))−1

]2

dy11

dt
= E(tR)

α2
[
(t − tR) + (αχviable(t))−1

]2

where

C(tR) =
αPR

4 χ1(tR)2 + αχ1(tR)χ00(tR) + αχ00(tR)2

(χ00(tR) + χ1(tR))2

D(tR) =
α(1−PR)

2 χ1(tR)2 + αχ1(tR)χ00(tR) + α
2 χ1(tR)2

(χ00(tR) + χ1(tR))2

E(tR) =
αPR

4 χ1(tR)2

(χ00(tR) + χ1(tR))2

together this gives

y00(t) = C(tR)
α

[
χviable(tR) − χviable(t)

]
(5.60)

y1(t) = D(tR)
α

[
χviable(tR) − χviable(t)

]
y11(t) = E(tR)

α

[
χviable(tR) − χviable(t)

]
.

As in the semelparous regime, we now approximate the equilibrium frequency of χ00

which is denoted as f ∗
00 in the main text, but now by solving the equation

χ00(t) + y00(t)
χ00(t) + χ1(t) + y00(t) + y1(t)

∣∣∣∣∣
t=T

− f00(0) = 0 (5.61)
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for f00(0), since y00(t) and y1(t) also forms part of the viable population now. The
solution to Eq. (5.61) for f00(0) is given by

f00(0) =
(

e−tR(r−2µ)(−4(ertR − 1)(etRµ − 1)xtotal(0) (5.62)

−2k

(
− 2 + 2etRµ + ertR(PR − 2)(tR − T )xtotal(0)α

−2etR(r−µ)(PR − 1)(tR − T )xtotal(0)α
)

+
(

(−4e2tR(r−µ)k2(e2tRµ(PR − 4)

−4etRµ(PR − 2) + 4(PR − 1))PR(T − tR)2xtotal(0)2α2

+4(2(ertR − 1)(etRµ − 1)xtotal(0)

+k(−2 + 2etRµ + ertR(PR − 2)(tR − T )xtotal(0)α

−2etR(r−µ)(PR − 1)(tR − T )xtotal(0)α))2)
)1/2)

/

(
2k(e2tRµ(PR − 4)

−4etRµ(PR − 2) + 4(PR − 1))(tR − T )xtotal(0)α
)

where again xtotal(0) denotes the total population at the beginning of a growth period.
Having obtained an accurate approximation for the abundances of each genotype,
we have all the necessary material to calculate the individual optimal timing of
recombination. This quantity can be calculated simply by solving

d
dtR

(χ00(t) + χ1(t) + y00(t) + y1(t))
∣∣∣∣
t=T,f00(0)=f∗

00

= 0 (5.63)

for tR, where χ00(t) and χ1(t) are obtained from Eq. (5.58) and y00(t) and y1(t) from
Eq. (5.60). In this scenario, we find that the total population of viable genotypes at
time T is given by the same function as that in the iteroparous regime

χ00(T ) + χ1(T ) + y00(T ) + y1(T ) = kxtotal(0)etR(r−µ)

k + (ertR − 1)xtotal(0) (5.64)

which gives rise to the same optimal timing of recombination between these two
regimes Eq. (5.51).

5.7.2.3 Dynamics within a growth period for Evolutionary Dynamics Simulation

As in the iteroparous regime, here we include the equations used to numerically
simulate the dynamics within a growth period of a population where genotypes of
different timing of recombination tR recombine with each other. At a given time,
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if g ⊂ {1, ..., S} is the set of genotypes under logistic growth and m ⊂ {1, ..., S} is
another set that is under recombination with g ∩ m = ∅, the dynamics of the set
under logistic growth are given by

dχ
(i)
00

dt
= rχ

(i)
00

(
1 − xtotal

k

)
− 2µχ

(i)
00 (5.65)

dχ
(i)
01

dt
= rχ

(i)
01

(
1 − xtotal

k

)
+ µ(χ(i)

00 − χ
(i)
01 )

dχ
(i)
10

dt
= rχ

(i)
10

(
1 − xtotal

k

)
+ µ(χ(i)

00 − χ
(i)
10 )

dχ
(i)
11

dt
= µ(χ(i)

01 + χ
(i)
10 )

dy
(i)
00

dt
= 0

dy
(i)
01

dt
= 0

dy
(i)
10

dt
= 0

dy
(i)
11

dt
= 0

for all i ∈ g where the superscript i represents the i-th genotype and xtotal = ∑S
i=1 x

(i)
total

is the total population that includes both the members that have engaged in sex and
those that have not. The dynamics of the set of genotypes j ∈ m in recombination
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are given by

dχ
(j)
00

dt
= −α(χ(j)

00 )2 − αχ
(j)
00
∑

j′∈m
j′ ̸=j

χ
(j′)
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00 (χ(j)

01 + χ
(j)
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(j)
00
∑
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j′ ̸=j

(χ(j′)
10 + χ

(j′)
01 ) (5.66)
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5.7.3 Simulation of Evolutionary Dynamics

To perform stochastic simulations of the evolutionary trajectories, it is necessary to
consider the invasion dynamics. For our simulation of the evolutionary trajectories,
we employ a multi-genotype model as in Chapters 3 and 4 whereby a novel mutant
with a different value of tR to the resident genotype emerges in the population at
rate µtR

. This rate is the inverse of the expected number of growth periods until
the next mutation event G. Before each successive mutation event, the number
of growth periods until the next mutation event G is determined by generating a
random number from a Geo(µtR

) distribution and inverting that number. In an S

genotype model, if a given genotype i has a tR of t
(i)
R and has frequency fi, then the

mean population trait value is given by

⟨tR⟩ =
S∑

i=1
t
(i)
R fi . (5.67)

This value is recorded immediately before each novel mutant emerges in the popu-
lation. Simulations of the evolutionary trajectories in our hibernation model (e.g
in Figures 5.11 and 5.12) is performed using the exact same principles as described
above, but with the rate at which a novel mutant with a different value of tH emerges
denoted as µtH

.

5.7.3.1 Dynamics within a growth period

Upon arrival of each novel mutant, the invasion dynamics is simulated. To simulate
the invasion dynamics, we first calculate the change in frequency of each genotype
between two successive growth periods. For the iteroparous regime, the frequency of
genotype i with tR = t

(i)
R in the subsequent growth period is given by

f
′

i = x
(i)
00 (T ) + x

(i)
1 (T )∑S

j=1(x
(j)
00 (T ) + x

(j)
1 (T ))

(5.68)

and for the semelparous regime, it is given by

f
′

i = χ
(i)
00 (T ) + χ

(i)
1 (T ) + y

(i)
00 (T ) + y

(i)
1 (T )∑S

j=1(χ
(j)
00 (T ) + χ

(j)
1 (T ) + y

(i)
00 (T ) + y

(i)
1 (T ))

(5.69)

and the input parameters of this function are xtotal(0), r, µ, k, α, PR and T . The
output of this function is f , the frequency of all genotypes at the end of the growth
period.



208
Chapter 5. Evolution of environmentally-triggered sexual reproduction

and hibernation

5.7.3.2 Invasion Dynamics

The invasion dynamics are run for one unit of τ i.e for G growth periods. The input
parameters of this function are G, xtotal(0), r, µ, k, α, PR and T and the output is
f , the frequency of all genotypes at the end of the growth period.

5.7.3.3 Evolutionary Dynamics

The evolutionary dynamics have the input parameters δtR, tR(0), f0, NEVOL, µtR

where δtR is the mutational stepsize, tR(0) is the timing of recombination of the
initial genotype in the simulation and f0 is the initial frequency of a novel mutant,
which is chosen to be small. All the remaining system parameters are as given in the
Invasion Dynamics. The mutation acts to increase/decrease the value of tR each with
probability 1/2. Upon introduction of the novel mutant, the invasion dynamics is run
for G subsequent growth periods, where G is generated from a Geo(µtR

) distribution
at frequency f0. In the meantime, the mean value of tR is recorded using Eq. (5.67).
Next, the process of introducing a new mutant into the population is repeated. Since
the population now has more than two genotypes, the genotype that mutates is
chosen with probability weighted by the frequency of each genotype. There is now
the possibility of back mutation to one of the existing genotypes. In this case, if fk is
frequency of this genotype before the introduction of an identical mutant, then the
frequency of this genotype becomes fk + f0 after its introduction. Furthermore, a
genotype is thought to be extinct if its frequency falls below the extinction threshold,
in which case we remove that genotype.

5.7.4 Analytical Approximations break down for large µ

Here, we demonstrate how our analytical approximations break down above a
sufficiently large value of µ. In Figure 5.19 we see that for µ = 0.15, the analytical
approximation for x00(t), x1(t) and x11(t) breaks down drastically. In Figure 5.20
below, we show that for sufficiently large µ, our analytical approximation of t

(I)
R

no longer matches our simulations of evolutionary trajectories either. In fact, even
for µ = 0.03, our analytical approximation of the individual optimal timing of
recombination t

(I)
R no longer matches our stochastic simulation, despite the small

value of α and PR.
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Figure 5.19: Change in the abundances x00(t) and x1(t) over one growth period as
in Figure 5.18, but for µ = 0.15 where our analytical approximation breaks down.
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Figure 5.20: Analytical prediction of individual optimal timing of recombination
t
(I)
R (red line) breaks down when µ ≈ 0.03. In panel (a) µ = 0.01 and in panel (b)

µ = 0.03 and panel (c) µ = 0.15. Remaining parameters are α = 0.3, PR = 0.1,
r = 2, k = 1, xtotal(0) = 0.05 and T = 5.4.

5.7.5 Equilibrium frequencies of non mutant genotype

In the case where recombination an occur arbitrarily many times in a growth period,
the equilibrium frequency of the

(
0
0

)
genotype f ∗

00 tends to 1 as α or T tends to
infinity. However in the semelparous regime, f ∗

00 tends to another limit smaller than
1 as α or T tends to infinity. In other words, the limit of Eq. (5.62) as α tends to
infinity is

e−tR(r−2µ)
(

− ertRk(PR − 2)(tR − T )xtotal(0) + 2etR(r−µ)k(PR − 1)(tR − T )xtotal(0)

+ 2
√

e2tR(r−µ)(etRµ − 1)k2(−1 + etRµ + PR)(T − tR)2xtotal(0)2

)
/

(
k(e2tRµ(PR − 4)

− 4etRµ(PR − 2) + 4(PR − 1))(tR − T )xtotal(0)
)

(5.70)
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see Figure 5.22 for illustration, and the limit of Eq. (5.62) as T tends to infinity is

e−tR(r−2µ)
(

− ertRk(PR − 2)xtotal(0)α + 2etR(r−µ)k(PR − 1)xtotal(0)α

− 2
√

e2tR(r−µ)(etRµ − 1)k2(−1 + etRµ + PR)xtotal(0)2α2

)
/

(
k(e2tRµ(PR − 4)

− 4etRµ(PR − 2) + 4(PR − 1))xtotal(0)α
)

(5.71)

which is illustrated in Figure 5.23.
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Figure 5.21: In the iteroparous regime, the equilibrium frequency of the
(

0
0

)
genotype

(f ∗
00) tends to 1 as α → ∞ (dashed line), where f ∗

00 is given by Eq. (5.48). Here,
tR = 4.11, T = 6, PR = 0.1 and all other parameters as in Figure 5.13.
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Figure 5.22: In the semelparous regime, the equilibrium frequency of the
(

0
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genotype

(f ∗
00) tends to a quantity smaller than 1 Eq. (5.70) as α → ∞ (dashed line), where

f ∗
00 is given by Eq. (5.62). Here, tR = 4.11, T = 6, PR = 0.1 and all other parameters

as in Figure 5.13
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Figure 5.23: In the iteroparous regime, the equilibrium frequency of the
(

0
0

)
genotype

(f ∗
00) tends to 1 as T → ∞ (dashed line), where f ∗

00 is given by Eq. (5.48). Here,
tR = 4.11, α = 0.3, PR = 0.1 and all other parameters as in Figure 5.13.
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Figure 5.24: In the semelparous regime, the equilibrium frequency of the
(

0
0

)
genotype

(f ∗
00) tends to a quantity smaller than 1 Eq. (5.70) as T → ∞ (dashed line), where f ∗

00
is given by Eq. (5.62). Here, tR = 4.11, α = 0.3, PR = 0.1 and all other parameters
as in Figure 5.13

5.7.6 Individual optimal timing of recombination is identical be-
tween iteroparous and semelparous regimes

Here, we detail why our analytical prediction for t
(I)
R is identical in both the

iteroparous and semelparous regimes. In both regimes, we note that during each
genetic recombination event, the rate at which

(
0
0

)
increases is exactly identical to the

rate at which
(

1
1

)
increases. The ability for recombination to reverse the depletion of(

0
0

)
genotypes is exactly equal to the ability to produce

(
1
1

)
as byproducts. This is
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known as the seesaw effect [234]. In the iteroparous regime, we have
dx00

dt
= dx11

dt
(5.72)

and in the semelparous regime, we have
d(χ00 + y00)

dt
= d(χ11 + y11)

dt
. (5.73)

We also demonstrate numerically that if the seesaw effect is violated, the value of
t
(I)
R ceases to be identical in the two regimes.

5.8 APPENDIX IV: CHEATING IN RECOMBINATION MODEL

Here we consider the case where the population contains a rare mutant with a
different timing of recombination tR to the resident, and both the resident and
mutant are in recombination phase. In such case, both the mutant and resident are
helping each other out in reversing the buildup of deleterious mutations, and we see
cooperation. We demonstrate how this scenario involves cheating if the mutant and
resident frequencies differ markedly in order of magnitude.

First, we consider the effect that the rare mutant (with frequency 10−2 or less
as rule of thumb) has on the resident population dynamics using Eq. (5.74), which
shows the resident population dynamics when both the resident and mutant are in
recombination. Denoting the resident’s abundance of

(
0
0

)
,
(

0
1

)
,
(

1
0

)
and

(
1
1

)
genotypes

as x00, x01, x10 and x11 and the mutant’s corresponding abundance as x̂00, x̂01, x̂10

and x̂11, we have
dx00

dt
= αPR

3

(
x01x̂10 + x10x̂01

)
+ 2αPR

3 x01x10 (5.74)

+2αPR

3

(
x01x̂00 + x10x̂00

)
− 2αPR

3

(
x00x̂01 + x00x̂01

)
dx01

dt
= 2αPR

3 x00x̂01 − 2αPR

3 x01x̂00 − αPRx01x̂10 + αPR

3 x10x̂01

− 2αPR

3 x01x10

dx10

dt
= 2αPR

3 x00x̂10 − 2αPR

3 x10x̂00 − αPRx10x̂01 + αPR

3 x01x̂10

− 2αPR

3 x01x10

dx11

dt
= αPR

3

(
x01x̂10 + x10x̂01

)
+ 2αPR

3 x01x10 .
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If the frequency of the mutant is small, x̂00, x̂01, x̂10 and x̂11 would be an order
of magnitude smaller than x00, x01, x10 and x11, and so terms involving products
of mutant abundances with resident abundance (e.g x01x̂10) would be of smaller
magnitude than terms involving products of resident abundance with itself (e.g
x01x10), illustrating the small effect that mutants have on the resident population
dynamics. In other words, the mutants have an extremely small beneficial effect on
the resident here. Now we consider the mutant population dynamics

dx̂00

dt
= αPR

3

(
x01x̂01 + x10x̂01

)
+ 2αPR

3 x̂01x̂10 (5.75)

+2αPR

3

(
x00x̂01 + x00x̂10

)
− 2αPR

3

(
x̂00x01 + x̂00x10

)
dx̂01

dt
= 2αPR

3 x̂00x01 − 2αPR

3 x00x̂01 − αPRx10x̂01 + αPR

3 x01x̂10

− 2αPR

3 x̂01x̂10

dx̂10

dt
= 2αPR

3 x̂00x10 − 2αPR

3 x00x̂10 − αPRx01x̂10 + αPR

3 x10x̂01

− 2αPR

3 x̂01x̂10

dx̂11

dt
= αPR

3

(
x01x̂01 + x10x̂01

)
+ 2αPR

3 x̂01x̂10 .

Here, terms involving products of mutant and resident abundances (e.g x̂01x10) are
of greater magnitude than those involving products of mutant abundances with
themselves (e.g x̂01x̂10), so it is the residents that have the greatest effect on the
mutant population dynamics as opposed to the mutants themselves. As the benefit
received by the mutant from the resident well exceeds the negligible benefit the
mutant provides to the resident in return, this constitutes cheating.

5.9 APPENDIX V: PARAMETERS FOR NUMERICAL SIMULA-
TIONS

Parameters for Figure 5.4 are r = 2, k = 1, xtotal(0) = 0.05, T = 20, γ = 0.3.

Parameters for Figure 5.7 are T = 15, µ = 0.03, α = 0.3, PR = 0.75, xtotal(0) = 0.05,
r = 2, k = 1 and f00(0) = 1.

Parameters for Figure 5.8 are r = 1, k = 1, α = 0.3, PR = 0.1, T = 15, xtotal(0) =
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0.05, µ = 0.01. In panel (b), tR = 5.

Parameters in Figure 5.11 are r = 2, k = 1, γ = 0.3 and xtotal(0) = 0.05 and
simulation parameters are NEVOL = 2000, µtH

= 0.005, δ = 0.05, f0 = 8 × 10−4,
tH(0) = 3.6 and extinction threshold is 5 × 10−4.

Parameters in Figure 5.12 are r = 1, k = 1, γ = 0.2 and simulation parameters are
NEVOL = 2000, δ = 0.05, µtH

= 0.005, f0 = 8 × 10−4 and extinction threshold is
5 × 10−4.

Parameters in Figure 5.13 are r = 2, k = 1, µ = 0.01, α = 0.3 and PR = 0.1.
Simulation parameters are NEVOL = 2000, δ = 0.1, µtR

= 0.005, f0 = 0.011 and
extinction threshold 0.01.

Parameters for Figure 5.14 are T = 10, α = 1000, PR = 0.75, and tR = t
(I)
R as defined

in Eq. (5.9), with remaining parameters as in Figure 5.13.

Parameters for Figure 5.15 are PR = 0.75, T = 5.4, r = 2, k = 1, µ = 0.01 and
xtotal(0) = 0.05. Simulation parameters are NEVOL = 1000, δtR = 0.1, µtR

= 0.005,
f0 = 0.011 and extinction threshold is 0.01.
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Discussion

In this chapter, we begin by discussing the results and wider implications of each
chapter in isolation before finishing with a holistic summary of our research and its
future perspectives. We begin by describing the key insights of the results for each
chapter along with some future research directions based on the results.

6.1 DISCUSSING THE RESULTS OF CHAPTER 2

6.1.1 Key insights and context within research literature

The key insight of this chapter is that we have developed an analytical approximation
of the feasibility probability for random ecological systems with ecologically motivated
interaction structures, which combines the feasibility based approach of [210] with
the RMT approach of [5].

Ecologically, a feasible (biologically meaningful) GLV system represents a commu-
nity of interacting species [210]. Since feasible GLV systems in our model are almost
always stable [209], the key implication of our result is on how interaction structures
impact the resilience of stable communities rather than the effect of interaction
structures on ecological stability itself. A biological implication of increased resilience
is that communities can recover more rapidly following changes in species abundances
[210], which can arise due to environmental disturbances.

As an increase in feasibility probability corresponds to a reduced likelihood of
species extinctions following environmental disturbances [210] , our results demon-
strate that biasing the population towards a given interaction type has a dual influence

215
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on both the community resilience and community persistence, which considers its
ability to maintain a given level of species diversity.

Although our results, along with the numerous existing results from GLV and
RMT models [5, 146, 210] imply that stability decreases with diversity, it is actually
observed that many of the world’s largest ecological systems are in fact the most
stable [88]. This contradiction is likely due to the fact that certain aspects of
macroecological realism are neglected in the models for those existing results. One
neglected aspect is interspecific predator interference which weakens interactions
between predators due to prey sharing, and this plays a role in creating a positive
diversity-stability relationship [152]. Allometrically linking metabolic rates to body
mass at different trophic levels has also been shown to stabilise diverse communities
[23]. Furthermore, the emergence of larger stable communities have also been shown
to be promoted by the presence of stage-structure in populations [190].

Even though the aforementioned factors may all play a role in promoting a positive
diversity-stability relationship, they do not explain how diversity may be the cause
of stability. Recent empirical results have shown that many natural communities
such as bird and fish communities exhibit sublinear population growth [88]. Under
such a regime, it has been shown analytically that increased diversity may be the
direct cause of stability [88].

6.1.2 Future research priorities

In contrast to macroecological systems, purely microbial ecosystems have a much
simpler trophic structure and negligible size structure, and thus simpler metabolic
scaling. This reduces the number of factors that play a role in creating a positive
complexity-stability relationship, which makes microbial systems potentially more
amenable to analysis using our model alongside existing RMT based approaches
mentioned above. Indeed, the assumption of linear population growth has been
observed in experimental microbial microcosms [192]. Excitingly, an empirical
network reconstructed from natural human and sponge microbiome communities
[235] has shown that the number of microbial species trades off with the number of
interspecific interactions, thereby providing empirical evidence for May’s complexity-
stability criterion.

Having predicted theoretically how the interaction structure impacts ecological
resilience, there is scope for future work to experimentally test such a prediction.
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This has promising potential since experimental microcosms have already reached
the necessary controllability to test a large number of theoretical predictions [184],
and have even been able to successfully replicate several aspects of the complexity-
stability relation [98]. In an experimental bacterial microcosm by Hu et al. [98],
the fraction of surviving bacterial species was shown to decrease with interaction
strength and number of species. The more generalised the ecological models become,
the more novel hypotheses and model predictions we could come up with, which
certainly opens up the possibility for more experimental inquiries in the future.

Throughout this chapter, our work has been centered around RMT based eco-
logical networks which assume a random interaction profile. It is worth noting
that ecological interaction networks are not random since they evolve and form
piecewise. Another useful area for future consideration would be to investigate how
the structure of the interaction network changes as an ecosystem evolves. It has been
shown by [149] that evolution can impact the effect of dispersal network structure on
the persistence of metapopulations, which has become increasingly important in the
context of coral reef conservation [148]. The sheer size of macroecological networks
mean that system dynamics techniques can be computationally expensive, and it
would be more plausible to apply techniques such as individual based modelling.

6.2 DISCUSSING THE RESULTS OF CHAPTER 3

6.2.1 Key insights and context within research literature

One of the main insights gained from this chapter is that by co-evolving mass and
fertilisation rate α in switching environments, we observe a broad range of dynamical
behaviour that can explain a variety of reproductive modes. In fixed environments,
obligate sexual reproduction with oogamy and obligate asexual reproduction (Fig-
ures 3.2,3.3 and Eq. (3.9)) are the only evolutionary outcomes. Our stochastic
simulations of evolutionary trajectories have shown that oogamy can evolve from
anisogamy through the ecological phenomena of sexual conflict, while anisogamy
results from evolutionary branching in gamete mass.

Empirically we observe that the degree of anisogamy varies with environmental
conditions. Gametes exhibit a greater degree of anisogamy in more turbulent
gamete limited environments [132, 218]. Our model on the other hand suggests that
the evolution of anisogamy from isogamy can be arrested under extreme gamete
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limitation (small α). However it is worth noting that the greater anisogamy in
benthic green algae can also arise due to the harsher environmental conditions in
deep water environments [132]. This statement is also in line with our model, where a
greater degree of anisogamy is favoured upon increasing the environmental adversity
parameter β.

The smaller degree of anisogamy in shallow water green algae species may also be
attributed to their photosynthetic needs, which necessitates the presence of organelles
such as eyespots (Chlamydomonas [218]) or chlorophylls (volvacine green algae [199]),
which place a lower limit on gamete size.

6.2.2 Bridge between Chapters 3 and 4

Throughout Chapter 3, we have analysed the conditions that give rise to the evolution
of anisogamy and oogamy, which is the root to our understanding of the evolution of
the sexes (males produce microgametes and females produce macrogametes) [125].
However, a topic that has been less emphasised in this chapter is the conditions
that bring about the evolutionary transition from asexual to sexual reproduction.
This can raise intriguing questions about the evolutionary origins of sex itself. A key
mechanistic benefit of sexual reproduction is that it involves the fusion of cells, and
fused cells have greater mass [222] which facilitates the survival of the organism in
harsh environmental conditions.

Another neglected aspect in this chapter is phenotypic plasticity, where the
population can adopt different strategies in different environments. Phenotypic
plasticity is observed in many organisms exhibiting facultative responses in varying
environments, such as D. discoideum [194] where cell aggregation occurs only at
times of environmental stress. Furthermore, it has been suggested by [58] that the
selection pressures induced by environmental switching could even be a trigger for
the evolution of phenotypic plasticity in organisms.

In Chapter 4, we show how binary cell fusion can evolve as a response to
environmental stress in the presence of phenotypic plasticity. Having demonstrated
how switching environments can give rise to the evolution of facultative sex in the
absence of phenotypic plasticity, we show that when phenotypic plasticity is present,
facultative binary cell fusion can also evolve in the face of switching environments.
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6.3 DISCUSSING THE RESULTS OF CHAPTER 4

6.3.1 Key insights and context within research literature

In this chapter, we have provided a novel explanation for the mechanistic advantages
of sex and multicellularity due to the increased mass conferred by binary cell fusion.
We have hereby demonstrated an alternative mechanism by which environmentally
triggered facultative sex and multicellularity can evolve in organisms with phenotypic
plasticity, without assuming any genetic aspects. Should a benign environment
become sufficiently harsh (i.e if the harsh environment has a sufficiently large value
of the environmental harshness parameter β), then cell fusion will be selected for in
this harsh environment. Since the state of no cell fusion is an evolutionarily stable
state in the benign environment, the organism is expected to revert back to that
state when the environment switches back to being benign.

Our model has provided an explanation for why facultative multicellularity may
evolve as an alternative stress response to facultative sex, which is observed in
organisms such as D. discodeium [30]. The fact that binary cell fusion is favoured in
harsh environments where hibernation/dormancy tends to occur in organisms also
provides a hint on why sex and hibernation are frequently observed to co-occur [20,
62]. In Chapter 5 we have provided a more mathematically explicit explanation for
this co-occurrence (see Section 6.4).

Our models in Chapters 3 and 4 have only considered the evolution of sexual
reproduction in terms of the mechanistic benefits of cell-fusion, without accounting
for any genetic factors or population dynamics. In Chapter 5, we developed an
eco-evolutionary model for genetic recombination, which is another process that
confers many selective advantages to sexual reproduction [154, 221].

6.3.2 Future research priorities

Capitalising on the idea of [155], we have been able to apply adaptive dynamics
techniques generalised to the case of switching environments in our models (we
abbreviate this generalisation as ADSE). To this end, a useful area of future work
would be to incorporate environmental switching into other adaptive dynamics
models alike, such as models used to study the evolution of anisogamy in populations
with two mating types [124, 130]. By doing so, we are incorporating ADSE to a
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more biologically realistic modelling regime since it is most commonly observed that
mating types evolved before anisogamy.

Thus far, our models have been based on organisms with external fertilisation.
Another area where we could incorporate ADSE would be in organisms with internal
fertilisation [132] where sperms are released as discrete packets to fertilise with
eggs. It would also be important to complement such models with simulations of
evolutionary trajectories, as that enables us to reveal richer evolutionary dynamics
that arise due to ecological interactions between multiple genotypes in the population,
such as evolutionary branching.

6.4 DISCUSSING THE RESULTS OF CHAPTER 5

6.4.1 Key insights and context within research literature

By developing an eco-evolutionary model that accounts for biological realism in the
population dynamics, we have been able to demonstrate the selective advantages of
both environmentally triggered genetic recombination and hibernation. In particular,
we have shown how genetic recombination and hibernation both evolve to occur
shortly before the end of a growth period (where resources run out or population
density becomes saturated), when opportunity costs of population growth are di-
minished. We have hereby provided an analytical explanation for how these two
traits evolved to co-occur. Although the positive covariance between these two traits
has been shown by an agent based simulation by [62], our model provides a more
analytically explicit explanation of this positive association by justifying how both
traits can be triggered by the same environmental cue.

Even though our model justifies how hibernation and genetic recombination can
be positively associated, it does not exclude the possibility that they can evolve
individually as alternative stress responses, nor whether they may act antagonistically.
Indeed, a small number of species such as D. pulex has been observed to produce
dormant eggs asexually [62, 104]. Seeking an answer to this would require us to
combine hibernation and recombination into one model.

The focus of our work has been on the evolutionary benefits of hibernation as
opposed to the exact mechanism and molecular basis for hibernation. Traditionally,
hibernation is believed to be a process whereby enzymes simply become idle in
adverse environments. Recent studies have shown that hibernation is caused by
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hibernation factor proteins that inhibit protein synthesis by binding to ribosomes
[90]. Experimental work by [90] has identified a specific hibernation factor protein
Balon which is responsible for inducing hibernation in the cold adapted bacteria
P. urativorans during environmental stress. This together with our model highlights
the need to better understand the physical mechanisms along with the evolutionary
basis of hibernation.

In addition to meiosis and genetic recombination, organisms can exhibit other
stress induced responses such as parasexuality, which frequently occurs in fungi
[14] when challenged by the host immune system. Parasexuality is a reproductive
mechanism where exchange of genetic material occurs without meiosis or fertilisation,
and can involve mating between two diploids to produce tetraploids. These tetraploids
then need to undergo concerned chromosomal loss to restore diploidy, however
concerned chromosomal loss frequently leads to aneuploidy, where an abnormal
number of chromosomes is present in a diploid set. Aneuploidy is known to enhance
adaptation not only does it increase genetic diversity through copy number variation
at a given locus (e.g through trisomic loci), but can increase genetic stability under
chromosomal imbalances, which facilitates adaptation further. Despite its adaptive
advantages, parasexuality occurs very rarely in nature due to the tremendous costs,
including the need to undergo cocnerted chromosome loss [55].

6.4.2 Future research priorities

In nature, the timing of growing seasons can vary due to the unpredictability of the
environment [61, 205]. This would constitute a variation in the length of the growth
period. Models with varying season lengths [56, 61] have shown that organisms
may adopt a bet-hedging strategy to undergo sex earlier under unpredictable season
lengths. Accounting for fluctuations in growth period length in our model would
thus be another fruitful area for future consideration. Given that the frequencies
of each genotype in our model depends on the growth period length, incorporating
these fluctuations into our model is likely to result in Red Queen dynamics, with
constantly fluctuating genotype frequencies.
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6.5 INTEGRATED SYNTHESIS OF CHAPTERS 3, 4 AND 5

In this thesis, we have been merely concerned with the selective forces driving the
evolution of sex and its various modes as opposed to the physical origin of sex. It is
worth emphasising that cell fusion is not a pre-requisite for genetic recombination
to evolve, as evident in the processes of genetic transformation in bacteria [185],
and parasexuality in fungi. In fact, one theory for the physical origin of meiotic
sex known as “viral eukaryogenesis” posits that meiosis resulted from a symbiotic
relationship of bacteria, archaea and a lysogenic DNA virus [13] in such a way that
caused cells to fuse together. Crossover (genetic recombination between homologous
chromosomes) occurred following cell fusion when the opportunity came. Crucially,
our work provides impetus for developing further, refined mechanistic explanations
for aspects concerning the evolution and the maintenance of sex [207].

Another fruitful area for future work would be to combine aspects of our recombi-
nation model in Chapter 5 with those of our model for cell fusion in Chapters 3 and
4. Doing so enables us to develop an integrative model that accounts for multiple
selective advantages of sexual reproduction together. Given the complexity of the
integrative model, one approach would be to utilise an agent based model, which
can account for a large number of variables.

6.6 CLOSING REMARKS

One of the key insights of this thesis is that we have demonstrated how the two
intrinsic mechanisms of sex; cell fusion (Chapter 4) and genetic recombination
(Chapter 5) can both be triggered by environmental stress. This not only strengthens
our argument for why sex often co-occurs with dormancy, but also the evolutionary
benefits of facultative sex. In other words, it is more evolutionarily favorable for
organisms to switch between sexual and asexual reproduction than to adopt a single
reproductive strategy, due to varying environmental conditions.

In Chapter 2, we investigated the effect that a large number of interacting species
can have on the dynamical behaviour of a macroecological system. In Chapters 3 and
4, we investigated how evolution can act on traits if the population contains genotypes
with multiple different trait values. By doing so, we have shown explicitly how long
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term evolutionary trajectories can be influenced by their underlying ecological
phenomena, which is the key essence of eco-evolutionary modelling.

Finally in Chapter 5, we developed an eco-evolutionary model that accounts for
population dynamics, discrete mutations in the population genetic traits as well as
the ecological aspects of evolution in a population with multiple continuous trait
values. We have hereby developed an integrative evolutionary model for a research
problem in the evolution of sex. As a future perspective, it would be useful to apply
such integrative modelling techniques to different problems in the evolution of sex
literature, or other evolutionary problems alike.

Throughout the thesis, I have developed a variety of mathematical techniques,
in particular techniques in ecological random matrix theory and the analytical
approximation of evolutionary dynamics in multi-timescale adaptive dynamics models.
I also got the opportunity to numerically simulate evolutionary trajectories by
applying stochastic models.

Eco-evolutionary modelling has also found applications in a range of other areas
as well including microbiome research [39] and cancer research. In cancers, enhanced
cell proliferation and drug resistance [11] are traditionally known to be driven by
mutations, however recent work has shown that they can be mediated by their
interactions between different cellular and non-cellular components within the tumor
ecosystem, known as the “tumor microenvironment” [176], complicating their eco-
evolutionary feedback loop. Above all, it would be of great interest to apply the
eco-evolutionary modelling techniques acquired in this thesis to these new exciting
areas.
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