
On Discrete Lagrangian Multiform Structures and their

Reductions

Jacob Joseph Richardson

University of Leeds

Department of Applied Mathematics

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

July, 2024



2



I confirm that the work submitted is my own, except where work which has formed

part of jointly authored publications has been included. My contribution and the other

authors to this work has been explicitly indicated below. I confirm that appropriate credit

has been given within the thesis where reference has been made to the work of others.

Chapter 3, Chapter 4 and Appendix A are based on the work in [44], Discrete

Lagrangian multiforms for quad equations, tetrahedron equations, and octahedron equations,

J. J. Richardson and M. Vermeeren, arXiv preprint arXiv:2403.16845 (2024). JJR and

MV jointly developed the ideas and the presentation of each Section. JJR provided the

initial idea. MV contributed more towards the writing of the Introduction, Section 2,

the Conclusion and the Appendix. JJR contributed more towards the writing and the

calculations of Section 5.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement.

3



4



Acknowledgements

First of all, I would like to thank Frank Nijhoff for countless knowledgable and fascinating

discussions, over many years. I would like to thank Vincent Caudrelier for his insightful

feedback and dynamic constructive discussions. As my supervisors, I massively appreciate

the amount of time both of them have invested in me.

I am also grateful to Mats Vermeeren; working together has been enjoyable and very

fruitful. I would like thank the Dr John Crowther sponsorship. I also appreciate the

School of Mathematics for their financial support and the friendly supportive environment.

Finally, my family and my girlfriend Ilinca have supported me throughout this journey,

and I am incredibly grateful for that.

.

5



6



Abstract

This thesis develops the theory of Lagrangian multiforms. For integrable equations which

belong to compatible systems of equations, this theory encapsulates the entire system in

a single variational principle.

We introduce definitions to distinguish between Lagrangian 2-forms and weak La-

grangian 2-forms in the discrete setting of quadrilateral stencils. We present three novel

types of discrete Lagrangian 2-form for the integrable quad equations of the ABS list.

Two of our new Lagrangian 2-forms have the quad equations, or a system equivalent to

the quad equations, as their Euler-Lagrange equations, whereas the third produces the

tetrahedron equations. This is in contrast to the well-established Lagrangian 2-form for

these equations, which produces equations that are weaker than the quad equations (they

are equivalent to two octahedron equations). We use relations between the Lagrangian

2-forms to prove that the system of quad equations is equivalent to the combined system

of tetrahedron and octahedron equations.

We formulate the double zero property of Lagrangian multiforms in the discrete

setting. For each of the discrete Lagrangian 2-forms associated with quad equations,

we show that double zero expansions can be derived in terms of their respective corner

equations.

We develop a framework to periodically reduce discrete Lagrangian 2-forms into

weak discrete Lagrangian 1-forms. This framework elevates periodic reductions to the

Lagrangian multiform level.

We link trigonometric functions to discrete and continuous Lagrangian 1-forms, making

use of their addition formula. We derive discrete commuting flows for the McMillan

equation (discrete autonomous Painlevé II), derive Jacobi elliptic solutions and develop a

discrete Lagrangian 1-form.
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Chapter 1

Introduction

In this work, we develop the theory of Lagrangian multiforms, which began in the

pioneering paper [28]. Specifically, we focus on discrete Lagrangian 2-forms and their

reductions, such that compatible systems of discrete integrable equations arise from a

single variational principle. These examples are interesting in their own right and our

contributions also help unify the entire theory of continuous, discrete and semi-discrete

Lagrangian multiforms into one cohesive framework.

The development of this mathematical theory is partly driven by the significance

of Lagrangian variational principles throughout physics. Each fundamental equation

in physics can be constructed from a Lagrangian variational principle (a stationary-

action principle) [20]. It is anticipated that Lagrangian multiforms will contribute to the

advancement of quantum path integrals [26, 51, 27], wherein the Lagrangian assumes a

central role.

We note that when Lagrangians are an alternative to Hamiltonian constructions,

they more easily handle: constraints, symmetries, generalised coordinates, covariance

and Lorentz invariance [20]. The theory of Lagrangian multiforms is strengthening the

Lagrangian approach by providing analogous features previously exclusive to Hamiltonians

[16].

Integrable equations are non-linear equations, which are richer and more interesting

than linear equations but can still be treated with exact methods [23]. We consider the

notion of an integrable equation, as one which belongs to a compatible set of equations

(multidimensionally consistent difference equations or a hierarchy of differential equations).

Lagrangian multiforms provide a single variational principle [28], involving multiple inde-

pendent variables, such that the compatible set of integrable equations arise variationally.
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In recent years, the continuous version of the theory, describing integrable differential

equations, has received a lot of attention [19, 16, 39, 41, 50, 55] and a semi-discrete version

was formulated [49]. However, the origins of the Lagrangian multiform theory lie in the

fully discrete setting [28] and this is what we focus on [31, 29, 62].

Lagrangian multiforms have now been connected with many features of integrability:

Lax pairs [47], classical r-matrices [18], hamiltonian structures [52, 59, 17], as well as

variational symmetries from Noether’s theorem [41, 48, 59]. There are also connections to:

pluri-harmonic functions in complex function theory and Baxter’s notion of Z-invariance

in the statistical mechanics of exactly solvable models [54]. After the first proposal of

Lagrangian multiforms in [28], similar constructions were considered under the name of

pluri-Lagrangian systems [54]. These constructions have lead to some useful developments

however they drop an important postulate: the closure relation.

Discrete Lagrangian multiforms are well suited to be applied to discrete quantum

theories of gravity, where discrete Lagrangians and symmetries play a key role [4, 5, 45, 46].

We also note that a connection has been made between Lagrangian multiforms and the

Chern-Simons theory [33].

We specifically consider discrete integrable systems, which are receiving growing

interest and are no longer seen as approximations to continuous integrable systems, but

in fact richer and more general than their continuous counterparts [23]. One can take

continuum limits of many discrete structures, including the discrete equations or the

discrete Lagrangian multiforms and recover the continuous analogues [58].

We focus on discrete Lagrangian multiforms [28, 10, 61] for quad equations of the ABS

list [1], which are integrable partial difference equations classified using multidimensional

consistency. Soliton solutions have been derived for quad equations using this integrable

property [14, 35]. These quad equations have many useful (integrable) features: they

admit Lax representations, are related to Bäcklund transformations and have vanishing

algebraic entropy [9, 38, 60, 1]. One important application of quad equations is that they

arise when studying solutions to the quantum Yang-Baxter equation in star triangle form,

as shown in [7, 6]. In the latter work, the authors utilise the fact that Q4 is the most

general quad equation and that Lagrangian structures exist for all quad equations.

In this thesis we will develop discrete Lagrangian 2-forms of quad equations, and

their periodic reductions. We discover many interesting developments and also help unify

the entire theory of Lagrangian multiforms, with the potential for future applications in

quantum path integrals. In the next section we provide an overview of the chapters.
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1.1 Thesis Overview

Chapter 2 is a pedagogical chapter, which introduces the following: integrability in the

sense of compatible equations, the conventional discrete Lagrangian variational principle

and the discrete Lagrangian multiform variational principle. We introduce these concepts

by focusing on the H1 quad equation (from the ABS list) as a basic example of a discrete

integrable partial difference equation. We review the pioneering work of [28] which started

the theory of Lagrangian multiforms, which applies to the H1 equation. Our contribution

in this chapter is to introduce a definition of a weak discrete Lagrangian 2-form, and

contrast it to the full definition of a discrete Lagrangian 2-form. We discuss the discrete

Lagrangian 2-form for H1, and how the compatible set of H1 equations are sufficient but

not necessary for the Lagrangian multiform variational principle. We finish the chapter

by discussing important features of Lagrangian multiforms.

In Chapter 3, we present two novel discrete Lagrangian 2-forms for any quad equation

of the ABS list (including H1). We resolve the insufficiency discussed in Chapter 2,

and show that the integrable quad equations are variational and follow from multiform

Euler-Lagrange equations. We review how the well-established discrete Lagrangian

2-form encapsulates weak combinations of quad equations, which are E-equations or

equivalently octahedron equations. We also introduce a third novel discrete Lagrangian

2-form encapsulating the tetrahedron equations, which are also weak combinations of

quad equations. We use relations between these Lagrangian 2-forms to connect quad

equations to tetrahedron and octahedron equations.

In Chapter 4 we reinforce that double zero expansions are a universal phenomenon

of Lagrangian multiforms, by considering them in the discrete setting. We show that

each of the discrete Lagrangian 2-forms considered in Chapter 3 admit a double zero

expansion in terms of their polynomial corner equations (quad, tetrahedron, octahedron

or E-polynomials).

In Chapter 5 we reinforce that integrable properties, including the Lagrangian multi-

form structure, are commonly preserved under reductions. We elevate periodic reductions,

from integrable partial difference equations to integrable ordinary difference equations, to

the Lagrangian (multiform) level. We present a novel framework to carry out periodic

reductions of discrete Lagrangian 2-forms into discrete Lagrangian 1-forms. The frame-

work is promising but leads to weak Lagrangian 1-forms. However, we resolve this for one

example considered and this approach has much potential for future research.

In Chapter 6, we investigate Lagrangian 1-forms. We relate discrete and continuous

15



Lagrangian 1-forms to addition formulae for trigonometric and elliptic functions. Further-

more, we present a promising discrete Lagrangian 1-form construction for the McMillan

equation (the discrete autonomous Painlevé II equation).
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Chapter 2

H1 Quad Equation and the

Development of Lagrangian

Multiforms

In this Chapter we introduce the following: integrability in the sense of compatible

equations, the conventional discrete Lagrangian variational principle and the discrete

Lagrangian multiform variational principle. We introduce these concepts by focusing

on the H1 quad equation as an ideal example of a discrete integrable partial difference

equation.

2.1 Integrable Potential Korteweg-de Vries Equation

We consider the H1 quad equation [1], which is also known as the lattice potential Korteweg-

de Vries (lpKdV) equation [36], as an archetypal example of a discrete integrable equation

[23], given by

(u− uij)(ui − uj)− αi + αj = 0 . (2.1)

We consider a field u(n) over the lattice n = (ni, nj) ∈ Z2, and lattice vectors ei and ej

in the ith and jth direction, respectively. Equation (2.1) is a partial difference equation,

where u = u(n), ui = u(n+ ei), uij = u(n+ ei + ej) and uj = u(n+ ej) are shifted field

variables, and αi, αj ∈ C are constants. In the next section we study this equation as a

discrete integrable equation. First of all, in this section, we will consider continuum limits

and see the connection to the Korteweg-de Vries partial differential equation.

We will present some of the technical details of the continuum limit, although they are
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not important for our purposes. Please refer to [58] for further explanations or to [36, 23]

for similar approaches. First we carry out the following non-autonomous transformation

in preparation for the continuum limit:

v(n) = u(n) +
ni
λi

+
nj
λj
, αi = −

1

λ2i
, αj = −

1

λ2j
, (2.2)

which leads to the equation

(
− 1

λi
− 1

λj
+ v − vij

)(
1

λj
− 1

λi
+ vi − vj

)
+

1

λ2i
− 1

λ2j
= 0 . (2.3)

Now we introduce independent time variables (t1, t2, t3, · · ·) as skew combinations of the

discrete variables in the following way:

v = v(n, t1 − 2niλi − 2njλj , t2 +
2niλ

2
i

2
+

2njλ
2
j

2
, t3 −

2niλ
3
i

3
−

2njλ
3
j

3
, · · ·) . (2.4)

If we Taylor expand in terms of the constants λi and λj , we find the following set of

equations:

∂v

∂t2
= 0 , (2.5a)

∂v

∂t3
= 3

(
∂v

∂t1

)2

+
∂3v

∂t31
. (2.5b)

The latter equation is the continuous potential Korteweg-de Vries equation [36]. Thus,

we have derived the corresponding partial differential equation from a continuum limit of

the partial difference equation. As is often the case for discrete integrable equations, the

discrete equation should not be seen as an approximation of a continuous equation, but

rich in itself and more general [23].

In fact we can go even further and consider more independent time variables

(t1, t2, t3, t4, t5, · · ·) to derive an infinite hierarchy of compatible partial differential equa-

tions, starting with

∂v

∂t2
= 0 , (2.6a)

∂v

∂t3
= 3

(
∂v

∂t1

)2

+
∂3v

∂t31
, (2.6b)

∂v

∂t4
= 0 , (2.6c)
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∂v

∂t5
= 10

(
∂v

∂t1

)3

+ 5
∂2v

∂t21
+ 10

∂v

∂t1

∂3v

∂t31
+
∂5v

∂t51
, (2.6d)

· · ·

Note that for all even time variables t2m, where m ∈ N, the derivative vanishes trivially

∂v
∂t2m

= 0. The derivatives in the odd time variables can all be written as combinations of

t1 derivatives (often distinguished with x := t1). It then follows that the infinitely many

odd time flows t2m+1 commute, in the following way:

∂2v

∂t2m+1∂t2m′+1
=

∂2v

∂t2m′+1∂t2m+1
m,m′ ∈ N . (2.7)

This gives us an infinite set of conservation laws for the pKdV partial differential equation,

or equivalently an infinite hierarchy of compatible partial differential equations.

This hierarchy is a powerful notion of integrability for continuous equations, particu-

larly relevant for Lagrangian multiforms. The lattice pKdV equation encapsulates the

continuous pKdV equation and its entire integrable hierarchy. In the next section, we will

focus on the lattice pKdV equation and the discrete analogue of an integrable hierarchy

of equations: multidimensional consistency.

2.2 The Multidimensionally-Consistent H1 Quad Equation

We return to the lpKdV equation (2.1), which we will henceforth refer to as the H1 quad

equation, written Q(u, ui, uij , uj ; αi, αj) = 0 with [1]

Q(u, ui, uij , uj ; αi, αj) = (u− uij)(ui − uj)− αi + αj . (2.8)

We fix αi, αj ∈ C as lattice parameters associated with the ni and nj directions, respec-

tively.

First of all, let us discuss the properties of this discrete integrable equation, which

characterise the more general quad equations of the ABS list that we will consider later

[1]. This partial difference equation involves the values of the field u, ui, uij , uj , which lie

on the square stencil. This is a polynomial equation and at most degree one in any one

field variable. Hence, it is a multiaffine quad equation, meaning we can solve for any one

field variable in terms of the other three.

Now let us consider its discrete symmetries. The variables u, ui, uij , uj are the values

at the four corners of the square in rotational order. By observation, the H1 equation can
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be seen to be symmetric under rotation around the square in the following way:

Q(ui, uij , uj , u; αj , αi) = −Q(u, ui, uij , uj ; αi, αj) , (2.9a)

Q(uij , uj , u, ui; αi, αj) = Q(u, ui, uij , uj ; αi, αj) , (2.9b)

Q(uj , u, ui, uij ; αj , αi) = −Q(u, ui, uij , uj ; αi, αj) . (2.9c)

We can also see that the H1 equation is symmetric under reflection about the diagonal:

Q(u, uj , uij , ui; αj , αi) = −Q(u, ui, uij , uj ; αi, αj) . (2.10a)

Altogether, the H1 equation is symmetric under the symmetries of the square (or the

dihedral group D4).

Next we consider the defining integrability criterion of quad equations. Integrable

equations are often part of a set of compatible equations, such as a hierarchy of differential

equations, or in this case multidimensionally-consistent partial difference equations. In

order to consider this property, we will attempt to impose H1 equations on the six faces of

a cube. To do this, we can extend our field to u(n) to be over a three-dimensional lattice

with n = (ni, nj , nk) ∈ Z3. For example, we can consider the value of the field shifted one

step in three different directions: ui = u(n+ ei), uj = u(n+ ej) and uk = u(n+ ek).

At this point, we introduce point inversion of the field variable on the cube, denoted

by←→, as follows:

←→u = uijk ,
←−→uijk = u , (2.11a)

←→ui = ujk ,
←→ujk = ui , (2.11b)

←→uj = uki ,
←→uki = uj , (2.11c)

←→uk = uij ,
←→uij = uk . (2.11d)

Later we will permute indices (i→ j, j → k, k → i), such that uij permutes to ujk, ujk

permutes to uki and uki permutes to uij . This is our reasoning for choosing the index

ordering uki above and henceforth, which we are free to do as uki = uik. Due to the

H1 equation satisfying the symmetries of the square, we can consider the equations at

opposite faces of the cube using point inversion:

Qij = (ui − uj)(u− uij)− αi + αj = 0 , (2.12a)

Qjk = (uj − uk)(u− ujk)− αj + αk = 0 , (2.12b)
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Qki = (uk − ui)(u− uki)− αk + αi = 0 , (2.12c)

←→
Q ij = (ujk − uki)(uijk − uk)− αi + αj = 0 , (2.12d)

←→
Q jk = (uki − uij)(uijk − ui)− αj + αk = 0 , (2.12e)

←→
Qki = (uij − ujk)(uijk − uj)− αk + αi = 0 . (2.12f)

Thus, the six quad equations on the faces of the cube that we consider are those that

follow from permutation of indices and point inversion of the original equation Qij = 0.

Qij = 0 ←→
Q ij = 0

Qjk = 0 ←→
Q jk = 0

Qki = 0 ←→
Qki = 0

Figure 2.1: Depicting the compatible set of six quad equations on a cube

We consider an initial value problem of this set of equations around a cube. We start

with values (u, ui, uj , uk) and use Qij = 0 to calculate uij , Qjk = 0 to calculate ujk, and

Qki = 0 to calculate uki. Ignoring potential singularities we can write this as

Qij = 0 =⇒ uij = u− αi − αj
ui − uj

, (2.13a)

Qjk = 0 =⇒ ujk = u− αj − αk
uj − uk

, (2.13b)

Qki = 0 =⇒ uki = u− αk − αi
uk − ui

. (2.13c)

Then we can use any of the three equations
←→
Q ij = 0 and

←→
Q ij = 0 and

←→
Q ij = 0 to calculate

uijk in terms of (u, ui, uj , uk):

Qjk, Qki,
←→
Q ij = 0 =⇒ uijk = −

αi − αj(
u− αk−αi

(uk−ui)

)
−
(
u− αj−αk

(uj−uk)

) + uk , (2.14a)
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Qij , Qki,
←→
Q jk = 0 =⇒ uijk = −

αj − αk(
u− αi−αj

(ui−uj)

)
−
(
u− αk−αi

(uk−ui)

) + ui , (2.14b)

Qij , Qjk,
←→
Qki = 0 =⇒ uijk = −

αk − αi(
u− αj−αk

(uj−uk)

)
−
(
u− αi−αj

(ui−uj)

) + uj . (2.14c)

u ui

uijuj

ujk

uk

uijk

(a)

u ui

uijuj

uk
uki

uijk

(b)

u

uj

ujk

uk uki

ui

uijk

(c)

Figure 2.2: Alternative multidimensionally consistent routes to calculate uijk from

u, ui, uj , uk using three quad equations: (a) using Qij , Qjk,
←→
Qki = 0, (b) using

Qij , Qki,
←→
Q jk = 0, (c) using Qjk, Qki,

←→
Q ij = 0.

These all lead to same expression for uijk in terms of (ui, uj , uk):

Qjk, Qki,
←→
Q ij = 0 or Qij , Qki,

←→
Q jk = 0 or Qij , Qjk,

←→
Qki = 0

=⇒ uijk =
αiui(uj − uk) + αjuj(uk − ui) + αkuk(ui − uj)

αi(uj − uk) + αj(uk − ui) + αk(ui − uj)

=
αiui(uj − uk) +⟲ijk

αi(uj − uk) +⟲ijk
.

(2.15)

Here we have abbreviated adding two more copies of an expression with indices permuted

once and then twice, by ⟲ijk. The fact that we can consistently calculate the value of

uijk via different routes is multidimensional consistency. Furthermore, the expression we

find can be rewritten as a multiaffine equation T (uijk, uk, ui, uj ; αi, αj , αk) = 0 on the

tetrahedron stencil with

T (uijk, uk, ui, uj ; αi, αj , αk)

= uijk (αi(uj − uk) +⟲ijk)− (αiui(uj − uk) +⟲ijk) .
(2.16)

This is the tetrahedron property.

We can also consider point inverting this and find an analogous tetrahedron equation

in terms of the other four variables T (u, uij , ujk, uki; αi, αj , αk). With a slight abuse of

notation we denote the two tetrahedron equations for H1 as

T = T (u, uij , ujk, uki; αi, αj , αk) ,

22



ui

uj

uk

uijk

(a)

ui

uj

uk

uijk

(b)

uj

uk

ui

uijk

(c)

Figure 2.3: Alternative multidimensionally consistent routes giving rise the same tetra-

hedron equation T (uijk, uk, ui, uj ; ) = 0 : (a) using Qij , Qjk,
←→
Qki = 0, (b) using

Qij , Qki,
←→
Q jk = 0, (c) using Qjk, Qki,

←→
Q ij = 0.

= u (αi(uki − uij) +⟲ijk)− (αiujk(uki − uij) +⟲ijk) , (2.17a)

←→
T = T (uijk, uk, ui, uj ; αi, αj , αk) ,

= uijk (αi(uj − uk) +⟲ijk)− (αiui(uj − uk) +⟲ijk) . (2.17b)

ui

uj

uk

uijk

←→
T = 0

u

ujk

uij

uki

T = 0

Figure 2.4: Two tetrahedron equations which arise from H1 equations around a cube

In the next section, we consider a conventional discrete Lagrangian structure which

can be related to the H1 equation.

2.3 Discrete Lagrangians on Quadrilateral Stencils

In this section we review the discrete analogue of the conventional variational principle,

specifically for discrete Lagrangians on quadrilateral stencils. We focus on the action and

its criticality (with respect to local variations of the field). Then in the next section we

consider Lagrangians associated with combinations of the H1 equation.

With calculus of variations in mind, we define an action over the lattice Z2 involving
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autonomous Lagrangians on quadrilateral stencils Lij : (u, ui, uij , uj ;αi, αj) 7→ C, that is

S[u] =
∑
n∈Z2

Lij(u(n), u(n+ ei), u(n+ ei + ej), u(n+ ej);αi, αj) ,

=
∑
n∈Z2

Lij . (2.18)

We could consider boundaries and boundary value problems in this action functional but

it is not necessary for our purposes.

Now we consider the conventional variational principle. We denote criticality of the

action with respect to local variations of the field by δS[u]
δu = 0, and it is defined in the

following way. The field u : Z2 7→ C is a critical point of the action S[u] if and only if the

partial derivatives vanish at every point in the lattice:

δS[u]

δu
= 0 ⇐⇒ ∂S[u]

∂u(n)
= 0 ∀ n ∈ Z2 . (2.19)

In order to rewrite these partial derivatives in terms of Lagrangians, we introduce shift

operators, Ti and Tj , which act on functions on the lattice, such that Tif(n) = f(n+ ei)

and T−1
i f(n) = f(n− ei). We can rewrite the partial derivatives of the action in (2.19)

as a sum of four shifted Lagrangians, which we call the discrete Euler-Lagrange equation:

δS[u]

δu
= 0 ⇐⇒ ∂

∂u

(
Lij + T−1

j Lij + T−1
i Lij + T−1

j T−1
i Lij

)
= 0 ∀ n ∈ Z2 . (2.20)

In other words, criticality of the action is equivalent to the discrete Euler-Lagrange

equation vanishing at every point in the lattice.

u

uj

ujj uijj uiijj

uiij

uiiui

uij

Lij

TjLij

TiLij

TiTjLij

Figure 2.5: The four translated Lagrangians which contribute to the conventional Euler-
Lagrange equation at uij

We restrict ourselves to autonomous discrete Lagrangians and thus the discrete

Euler-Lagrange equations at every point in the lattice has the same form. For example,
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we could instead consider the discrete Euler-Lagrange equation centred at uij , which is

∂

∂uij
(TiTjLij + TiLij + TjLij + Lij) = 0 . (2.21)

Figure 2.5 depicts the four shifted Lagrangians from the action which lead to this equation.

Furthermore, for a given Lagrangian, the corresponding variational equation is the one

which arises from the discrete Euler-Lagrange equation (2.21).

Next we review a discrete Lagrangian for a combination of the H1 quad equation,

and apply this conventional discrete variational principle.

2.4 Discrete Lagrangian for double H1

In this section we relate the conventional Lagrangian variational principle to the H1 quad

equation. We review a Lagrangian where the Euler-Lagrange equation is a combination

of two shifted H1 quad equations (double H1). We could consider the original 4-point

Lagrangian for double H1 [36, 1] (which in Chapter 3 we refer to as the trident Lagrangian),

but instead we present the Lagrangian introduced in [28]. Regardless of our choice of

Lagrangian, we see that being on solutions to the H1 quad equation is sufficient but

not necessary for the conventional action to be critical with respect to local variations

of the field (for the Euler-Lagrange equations to be satisfied). Also note that here

we only consider a single H1 quad equation in the two dimensional lattice Z2 without

multidimensional consistency.

In [28], the following expression was introduced, which we refer to as the triangle

Lagrangian for H1:

Lij = uui − uuj − (αi − αj) log(ui − uj) . (2.22)

This defines an action (2.18) on the 2-dimensional lattice Z2.

The action is critical with respect to local variations of the field when the conventional

discrete Euler-Lagrange equation (2.21) is satisfied. Calculating this explicitly using

(2.22), we can write the Euler-Lagrange equation as a combination of two shifted H1 quad

equations (2.12a):

∂

∂uij
(uijuiij − uijuijj + ujuij − (αi − αj) log(uij − ujj)− uiuij − (αi − αj) log(uii − uij))

= uiij − uijj + uj −
αi − αj
uij − ujj

− ui +
αi − αj
uii − uij

,
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= −(ui − uiij)(uii − uij)− αi + αj
uii − uij

+
(uj − uijj)(uij − ujj)− αi + αj

uij − ujj
,

= − TiQij
uii − uij

+
TjQij

uij − ujj
. (2.23)

Thus, the equation which follows from the conventional Lagrangian variational principle,

is not the H1 quad equation but a combination of two shifted copies of it, which we call

double H1. In [24], it is shown precisely how the solution of double H1 is more general

than H1. It is possible to obtain any solution of double H1 from a solution of H1 together

with the solution of a linear partial difference equation.

We emphasise that imposing the H1 quad equation Qij = 0 throughout the plane is

sufficient but not necessary for the criticality of the conventional action with respect to

variations of the field:

Qij = 0 =⇒ δS[u]

δu
= 0 . (2.24)

The H1 quad equation implies criticality but criticality does not imply the H1 quad

equation.

Now we note that the conventional variational principle considered so far only relates

to a single partial difference equation on the 2-dimensional lattice Z2. The desire to relate

multidimensionally-consistent sets of partial difference equations to a variational principle

lead to the invention of Lagrangian multiforms, which we consider next.

2.5 Weak Discrete Lagrangian Multiforms on Quadrilaterals

The theory of Lagrangian multiforms can provide a single variational principle to encapsu-

late compatible sets of integrable equations (in the continuous, discrete and semi-discrete

settings). This theory began in the pioneering paper [28], with constructions which we

will define as weak discrete Lagrangian 2-forms on quadrilateral stencils. In Section 2.6,

we discuss an example associated with combinations of the H1 quad equation. Then

in Section 2.7 we discuss the additional property required for the full definition of a

Lagrangian multiform.

With multidimensional consistency in mind, the authors of [28] considered an action

over 2-dimensional quad surfaces surfaces made of elementary squares in a higher dimen-

sional lattice. These quad surfaces are depicted in Figure 2.6. We simply consider the three

dimensional square lattice n ∈ Z3. However, this theory generalises to N -dimensional

square lattices ZN [11] and possibly also to the N -dimensional quadrilateral lattices
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Figure 2.6: A quad surface σ in Z3 made from elementary squares.

considered in [1]. We consider oriented elementary squares at points n ∈ Z3 defined by

σij(n) := (n,n+ ei,n+ ei + ej ,n+ ej) . (2.25)

A quad surface σ is a connected set of these elementary squares, such that σij(n) ∈ σ. In

the 3-dimensional lattice Z3, there are three pairs of directions and consequently a total

of six oriented elementary squares: σij , σjk, σki, σji, σkj , and σik. Now consider three La-

grangians Lij , Ljk and Lki, which lie on quadrilateral stencils Lij : (u, ui, uij , uj ;αi, αj) 7→

C, and are associated with the squares σij , σjk, and σki, respectively. Furthermore, con-

sider Lagrangians which are anti-symmetric under the swap of directions: Lji = −Lij ,

such that σji, σkj , and σik corresponds to −Lij , −Ljk, and −Lki, respectively.

Now we extend the conventional discrete action (2.18) and define an action over quad

surfaces σ in Z3:

S[u, σ] =
∑

σij(n)∈σ

Lij(u(n), u(n+ ei), u(n+ ei + ej), u(n+ ej);αi, αj) ,

=
∑

σij(n)∈σ

Lij .
(2.26)

Here, σij(n) ∈ σ can be one of six oriented elementary squares, and then we add the

corresponding signed Lagrangian (±Lij , ±Ljk, and ±Lki).

We are interested in a variational principle, such that criticality of the action relates

to multidimensionally-consistent sets of equations. We consider the effect that changing

the quad surface has on the action. In both Figure 2.7 and Figure 2.8, we consider a

quad surface with some fixed boundary and simply varying the surface locally by popping

up a cube. We say that the action (2.26) is critical with respect to local variations of the
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Figure 2.7: Two quad surfaces σ and σ + cube (with the same boundary) which differ by
the local variation of popping up a cube.

Figure 2.8: Two quad surfaces σ and σ + cube (with the same boundary) which differ by
the local variation of popping up a cube.

surface, if and only if the action does not change by the addition or subtraction of an

elementary cube:

δS[u, σ]

δσ
= 0 ⇐⇒ S[u, σ + cube] = S[u, σ] . (2.27)

Figure 2.9: The left depicts three of the elementary oriented squares which make up
the cube quad surface. The right depicts three Lagrangian contributions to the action
S[u, cube] over the cube, where each face of the cube contributes one Lagrangian term.

To understand this precisely, the quad surface of an oriented elementary cube (based

at u), depicted in the left of Figure 2.9, is simply the collection of six oriented squares:

cube = {Tkσij , σji, Tiσjk, σkj , Tjσki, σik} . (2.28)

The action on the elementary cube is the following, where we introduce the abbreviating
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notation:

Sijk := S[u, cube] = (TkLij − Lij) + (TiLjk − Ljk) + (TjLki − Lki) . (2.29)

The six Lagrangians which contribute to this action are depicted in the right of Figure 2.9.

Consequently, the criticality of the action with respect to local variations of the surface is

equivalent to the vanishing of the action on an elementary cube:

δS[u, σ]

δσ
= 0 ⇐⇒ S[u, cube] = Sijk = 0 . (2.30)

We will often refer to the final equality, Sijk = 0, as the closure relation. For given

Lagrangians Lij , Ljk and Lki, later we will ask whether a field u : Z3 7→ C exists, such

that the closure relation holds.

Now we consider criticality of the action with respect to variations of the field [11],

generalising equation (2.19) to involve an action over quad surfaces. We consider a field

u : Z3 7→ C and a quad surface σ with some boundary. We denote the internal lattice

points of the quad surface as V (σ) ⊂ Z3. Now we say that the action is critical with

respect to local variations of the field if and only if for generic quad surfaces σ the partial

derivatives vanish at every internal point:

δS[u, σ]

δu
= 0 ⇐⇒ ∂S[u, σ]

∂u(n)
= 0 ∀ n ∈ V (σ) . (2.31)

For criticality in this sense, we will see that instead of considering generic quad

surfaces, we can simply consider the elementary cube. Since the cube is itself a quad

surface, criticality for generic quad surfaces implies that the derivatives must vanish at

the internal points of the action around the cube:

δS[u, σ]

δu
= 0 =⇒ δS[u, cube]

δu
= 0 =⇒ ∇Sijk = 0 (2.32)

Note that this corresponds to eight corner equations of the cube:

∇Sijk =
(
∂Sijk
∂u

,
∂Sijk
∂ui

,
∂Sijk
∂uj

,
∂Sijk
∂uk

,
∂Sijk
∂ujk

,
∂Sijk
∂uki

,
∂Sijk
∂uij

,
∂Sijk
∂uijk

)
. (2.33)

Now making use of orientation, the derivative at any internal point of a generic quad

surface can be made from derivatives of the corners of the cube. One example of this

is depicted in Figure 2.10. The conventional discrete Euler-Lagrange expression (the
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Figure 2.10: The derivative at the internal point of a simple plane can be made from four
derivatives of corners of the cube, due to cancellations from orientation.

derivative at an internal point of a simple plane) is a combination of four translated corner

derivatives of the cube:

∂

∂uij
(TiTjLij + TiLij + TjLij + Lij)

=
∂TiTjSijk
∂uij

+
∂TiSijk
∂uij

+
∂TjSijk
∂uij

+
∂Sijk
∂uij

,

= TiTj
∂Sijk
∂u

+ Ti
∂Sijk
∂uj

+ Tj
∂Sijk
∂ui

+
∂Sijk
∂uij

.

(2.34)

For any internal point of a generic quad surface we find something similar. Then restricting

ourselves to autonomous Lagrangians, it follows that criticality of the action with respect

to local variations of the field on a generic quad surface is in fact equivalent to the

criticality of the action on the elementary cube:

δS[u, σ]

δu
= 0 ⇐⇒ δS[u, cube]

δu
= 0 ⇐⇒ ∇Sijk = 0 . (2.35)

With the right hand side equation, the eight corner equations of the cube are the multiform

Euler-Lagrange equations. Here, we consider generic quad surfaces which: are closed

surfaces, have a fixed boundary or have an open boundary. We demand criticality of the

action in terms of local and internal variations of the field, such that we can ignore effects

of the boundary on the multiform Euler-Lagrange equations.

Now we combine both types of criticality. An action over quad surfaces (2.26)

and partial difference equations K1(u), · · · ,KM (u) = 0 together define a weak discrete

Lagrangian 2-form, if on solutions to those equations, the action is critical with respect

to local variations of the surface and of the field:

K1(u), · · · , KM (u) = 0 =⇒


δS[u, σ]

δσ
= 0

δS[u, σ]

δu
= 0 .

(2.36)
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Using the results above (2.30) and (2.32), we define this type of weak Lagrangian multiform

in terms of the action on an elementary cube Sijk.

Definition 1. An action over quad surfaces (2.26) and partial difference equations

K1(u), · · · ,KM (u) = 0 together define a weak discrete Lagrangian 2-form, if the

following property is satisfied. When the field u : Z3 7→ C satisfies the given equations,

both the closure relation and the multiform Euler-Lagrange equations hold:

K1(u), · · · , KM (u) = 0 =⇒


Sijk = 0

∇Sijk = 0 .
(2.37)

Here the given equations K1(u), · · · ,KM (u) = 0 implicitly correspond to a particular

solution of the multiform Euler-Lagrange equations, but not necessarily the most general

solution. In the example below, instead of considering the multiform Euler-Lagrange

equations (a set of combinations of the H1 quad equation), the stronger set of each

individual H1 equation is given. Closure is then proved on these given equations. The

point is that the action alone does not define what equations we associate with a weak

discrete Lagrangian 1-form. We can recognise a set of equations which make the multiform

Euler-Lagrange equations vanish and then prove closure on that set. This is a weak

definition because it is easier to verify than the definition we give later. In Chapter 5 we

discover actions which immediately satisfy the conditions of a weak Lagrangian multiform.

It is difficult to then verify the full definition of a Lagrangian multiform, which we present

later.

Note that we can interchangeably talk about an action over quad surfaces or equiva-

lently a set of Lagrangians (which define an action) satisfying the definition of a weak

Lagrangian multiform. Moreover, a definition is not given in the original construc-

tions of [28]. We have introduced Definition 1 which applies to all of their explicit

constructions. This weak definition gives us something to contrast to when discussing

recent advancements, including our results in Chapter 3. Next we present an exam-

ple of a weak discrete Lagrangian 2-form from [28], where the given equations are the

multidimensionally-consistent set of H1 quad equations.

2.6 Weak Discrete Lagrangian Multiform for H1

In [28], the triangle Lagrangian Lij for H1, given by equation (2.22), was introduced and

considered in a higher dimensional lattice. Then we can define the action (2.26) over
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quad surfaces σ in terms of the three triangle Lagrangians in each plane: Lij , Ljk and

Lki. We take the given equations to be the multidimensionally-consistent set of quad

equations (around the cube): Qij , Qjk, Qki,
←→
Q ij ,
←→
Q jk,
←→
Qki = 0.

We can confirm criticality of the action with respect to local variations of the field

and the surface, simply by considering the action around the elementary cube. Explicitly,

the action around the elementary cube is

Sijk = (TkLij − Lij) + (TiLjk − Ljk) + (TjLki − Lki)

= ukuki − ukujk − (αi − αj) log(uki − ujk)

− uui + uuj + (αi − αj) log(ui − uj)

+ uiuij − uiuki − (αj − αk) log(uij − uki)

− uuj + uuk + (αj − αk) log(uj − uk)

+ ujujk − ujuij − (αk − αi) log(ujk − uij)

− uuk + uui + (αk − αi) log(uk − ui) .

(2.38)

In order to show that the closure relation holds on the H1 quad equations in [28], the

following was observed:

Qij , Qki = 0

=⇒ (uij − uki) = −
(αj − αk)ui + (αk − αi)uj + (αi − αj)uk

(ui − uj)(uj − uk)(uk − ui)
(uj − uk)

= Aijk(uj − uk) .

(2.39)

Importantly, Aijk is cyclically-symmetric (symmetric under permutations of i, j and k).

Now we can take cyclic permutations and apply this to this action around the elementary

cube:

Qij , Qjk, Qki = 0

=⇒ Sijk = Aijkuk(ui − uj)− (αi − αj) log(Aijk(ui − uj))

+ (αi − αj) log(ui − uj) +⟲ijk ,

= 0 .

(2.40)

We find that on solutions to the multidimensionally-consistent H1 quad equations, the

closure relation holds:

Qij , Qjk, Qki = 0 =⇒ Sijk = 0 . (2.41)
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Next we consider the corner equations of this action, starting at the ui corner:

∂Sijk
∂ui

= −u+
αi − αj
ui − uj

+ uij − uki + u− αk − αi
uk − ui

,

= −(u− uij)(ui − uj)− αi + αj
ui − uj

+
(u− uki)(uk − ui)− αk + αi

uk − ui

=
Qij

uj − ui
− Qki
ui − uk

. (2.42)

We can also find analogous expressions at uj and uk by permuting indices. At the opposite

corner of the cube ujk, we find

∂Sijk
∂ujk

= −uk +
αi − αj
uki − ujk

− uj −
αk − αi
ujk − uij

,

=

←→
Q ij

uki − ujk
−

←→
Qki

ujk − uij
. (2.43)

We find analogous expressions at uki and uij by permuting indices. We also find identically

zero expressions at u and uijk. Thus, the eight corner derivatives on the cube are

∂Sijk
∂u

= 0 ,
∂Sijk
∂uijk

= 0 , (2.44a)

∂Sijk
∂ui

=
Qij

uj − ui
− Qki
ui − uk

,
∂Sijk
∂ujk

=

←→
Q ij

uki − ujk
−

←→
Qki

ujk − uij
, (2.44b)

∂Sijk
∂uj

=
Qjk

uk − uj
− Qij
uj − ui

,
∂Sijk
∂uki

=

←→
Q jk

uij − uki
−

←→
Q ij

uki − ujk
, (2.44c)

∂Sijk
∂uk

=
Qki

ui − uk
−

Qjk
uk − uj

,
∂Sijk
∂uij

=

←→
Qki

ujk − uij
−
←→
Q jk

uij − uki
. (2.44d)

Thus, we have that the H1 quad equations around the cube imply the multiform Euler-

Lagrange equations:

Qij , Qjk, Qki,
←→
Q ij ,
←→
Q jk,
←→
Qki = 0 =⇒ ∇Sijk = 0 (2.45)

From (2.45) and (2.41), we indeed find a weak discrete Lagrangian 2-form on quadri-

lateral stencils satisfying Definition 1. On solutions to the multidimensionally-consistent

H1 quad equations, the closure relation holds and the multiform Euler-Lagrange equations

vanish:

Qij , Qjk, Qki,
←→
Q ij ,
←→
Q jk,
←→
Qki = 0 =⇒


Sijk = 0

∇Sijk = 0 .
(2.46)

Note, that like for the conventional discrete Euler-Lagrange equations (2.23), the
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multiform Euler-Lagrange equations (2.44) are combinations of H1 quad equations. Thus,

the constructions, which started the theory of Lagrangian multiforms and we call weak

Lagrangian multiforms, successfully relates the multidimensionally-consistent H1 equations

to a single variational principle. However, the H1 equations are sufficient but not necessary

for the criticality of the action. We would like the equations of interest to directly follow

from the variational principle. With this in mind, next we discuss developments in theory

of Lagrangian multiforms since its conception.

2.7 Lagrangian Multiforms

A key feature of a variational principle is that it produces the equations of interest. For

the conventional variational principle, the Euler-Lagrange equations are the variational

equations (2.20). It is important that for a given Lagrangian multiform the variational

principle produces the integrable equations of interest. This is developed in the discrete

quadrilateral setting in [11] in the context of so-called pluri-Lagrangian systems where the

closure relation is an optional property and not part of the definition. We reconcile their

developments while still retaining the original notion of a Lagrangian multiform, where

the closure relation plays a central role. For a weak Lagrangian multiform (Definition

1) one does not need to prove the closure relation on the full multiform Euler-Lagrange

equations, but can instead supply simpler equations which imply both the multiform

Euler-Lagrange equations and the closure relation. Whereas a Lagrangian multiform is

when the closure relation holds on the full set of multiform Euler-Lagrange equations.

Thus, we introduce the following stronger and full definition of a discrete Lagrangian

multiform

Definition 2. An action over quad surfaces (2.26) defines a discrete Lagrangian

2-form if it satisfies the following property. When the field u : Z3 7→ C satisfies the

multiform Euler-Lagrange equations, the closure relation holds:

∇Sijk = 0 =⇒ Sijk = 0 . (2.47)

Recall that the multiform Euler-Lagrange equations here are simply the eight cor-

ner equations of the cube. Given an action over quad surfaces (2.26) which satisfies

this definition, the associated variational equations are exactly the multiform Euler-

Lagrange equations. Furthermore, Definition 2 satisfies Definition 1 if the equations

K1(u), · · · ,KM (u) = 0 are taken to be full set of multiform Euler-Lagrange equations.

We can also say that: criticality with respect to local variations of the field produces
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multiform Euler-Lagrange equations, then on solutions to those equations, the action is

critical with respect to local variations of the surface:

δS[u, σ]

δu
= 0 =⇒ δS[u, σ]

δσ
= 0 . (2.48)

Note that we will interchangeably talk about an action over quad surfaces or equiva-

lently a set of Lagrangians (defining an action), which satisfy the definition of a Lagrangian

multiform. The reason it is natural to refer to the functions in the action over a quad

surface as Lagrangians is that multiform Euler-Lagrange equations imply each of the

conventional Euler-Lagrange equation via (2.34). However, one cannot consider any set

of discrete Lagrangians in three planes (Lij , Ljk and Lki) and their combined set of

conventional Euler-Lagrange equations. The multiform Euler-Lagrange equations for

this set of Lagrangians imply but are not necessarily equivalent to the combined set of

conventional Euler-Lagrange equations. The multiform Euler-Lagrange equations and

the closure relations involve combinations of Lagrangians in different planes. Thus, a

Lagrangian multiform defines a compatible set of Lagrangians.

The distinction between Definition 1 and Definition 2 is key to our major result in

Chapter 3. The results of [11] imply that the weak discrete Lagrangian 2-form we outlined

above for H1, with corner equations (2.44), actually satisfies the stronger Definition 2.

However the variational equations are not the H1 equations, but weak combinations of

them. Our major result in Chapter 3 is that we present novel Lagrangian multiforms

(satisfying Definition 2), such that the H1 equation (and other quad equations) are

variational equations, and arise directly from the multiform Euler-Lagrange equations.

Before we delve into this construction, with our clearer picture of what a Lagrangian

multiform is, we discuss some important features in the next two sections.

2.8 The Form Structure of Lagrangian Multiforms

We have emphasised the action of a Lagrangian multiform and under what conditions the

action is critical. However, the name Lagrangian multiform, comes from an equivalent

formulation as a form over a manifold satisfying certain properties. We can define a

discrete 2-form as [49, 50, 32]

L[u] = Lij dni ∧ dnj + Ljk dnj ∧ dnk + Lki dnk ∧ dni . (2.49)
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The action (2.26) over quad surfaces can be written in terms of this form:

S[u, σ] =
∑
σ

L[u] . (2.50)

By taking the exterior derivative of this form [49], the coefficient which arises is exactly

the action around the elementary cube (2.29):

dL [u] = Sijk dni ∧ dnj ∧ dnk . (2.51)

Then we could take the following to be the definition of a Lagrangian multiform L

(equivalent to Definition 2):

δ dL [u] = 0 =⇒ dL [u] = 0 . (2.52)

A Lagrangian multiform is closed on its multiform Euler-Lagrange equations. Alternatively,

the exterior derivative vanishes on its own variational derivatives. There are some

technicalities and subtleties when it comes to considering discrete and semi-discrete forms

with the discrete differentials dn and discrete analogues of Stokes’ theorem [49]. Thus,

for this work, we continue to emphasise the action of Lagrangian multiforms and under

what conditions they are critical.

2.9 The Closure Relation and Conservation Laws

At this point, we would like to say a bit more about the significance of the closure relation.

The connection between conservation laws and the closure relation for discrete Lagrangian

2-forms is still quite unexplored. In the case of discrete Lagrangian 1-forms, the closure

relation vanishing is equivalent to the existence of common integrals of motion [52].

We mention the case for continuous Lagrangian 1-forms, where the closure relation

is said to be “the direct counterpart of the Poisson involutivity of Hamiltonians, the

Liouville criterion for integrability” [16]. We can define a continuous Lagrangian 1-form

action over a continuous path Γ, with Lagrangians Lt1 , · · · ,LtN ,

S[u,Γ] =

∫
Γ
(Lt1 dt1 + · · · LtN dtN ) . (2.53)

Suppose we have Hamiltonians H1, · · · , HN defined via Legendre transformations. In [16],

the following formula is derived, where the first term is the continuous closure relation of

the Lagrangian multiform, the second term involves products of multiform Euler-Lagrange
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equations and the third term is a Poisson bracket of the corresponding Hamiltonians:

(
∂Lk
∂tj
− ∂Lj
∂tk

)
+Υm

k PmnΥ
n
j = {Hk, Hl}R . (2.54)

This formula is off solutions, and in fact an example of a double zero expansion, which

we discuss in Chapter 4. The important thing to take away is that on solutions to the

multiform Euler-Lagrange equations, the closure relation holding is equivalent to the

Poisson brackets vanishing.

In [48], continuous Lagrangian 2-forms and 3-forms are considered. The closure

relation itself is considered as a conservation law, and Noether’s theorem is then used

to show that every variational symmetry of a Lagrangian leads to a Lagrangian multi-

form. Furthermore, in [26] a quantum path integral analogue of the closure relation was

formulated.

The closure relation and its connection to conservation laws is a powerful and

important feature of Lagrangian multiforms, which we will touch upon in later Chapters.
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Chapter 3

Discrete Lagrangian 2-Forms

associated with Quad Equations

This chapter is based on sections 1-4 of [44] by J. J. Richardson and M. Vermeeren.

3.1 Chapter Introduction

The theory of Lagrangian multiforms describes integrable systems through a variational

principle. In recent years, the continuous version of the theory, describing integrable

differential equations, has received a lot of attention [19, 16, 39, 41, 50, 55] and a semi-

discrete version was formulated, extending the theory of differential-difference equations

[49]. However, the origins of Lagrangian multiform theory lie in the fully discrete setting

and concern integrable quad equations, in particular those of the Adler-Bobenko-Suris

(ABS) list [1]. This is a classification of scalar, multiaffine, multidimensionally consistent

difference equations on a quadrilateral stencil (under the additional assumption that there

exists a compatible “tetrahedron equation”). The observation that all equations on this

list have a variational structure led to the introduction of Lagrangian multiforms in [28].

Lagrangian multiform theory describes a set of compatible equations (multidimension-

ally consistent difference equations or a hierarchy of differential equations) through a single

variational principle involving a difference or differential form. This d-form is defined

on the space of all independent variables of the set of equations. For any d-dimensional

surface within the space of independent variables, we can consider an action, defined by

the integral/sum of the Lagrangian d-form over the surface. In Lagrangian multiform

theory (and in the closely related theory of pluri-Lagrangian systems), the variational

principle requires these integrals to be critical no matter which surface is chosen.
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The original Lagrangians of the ABS list [1] can be interpreted as defined on quadri-

lateral stencils. Whereas in [28], Lagrangians on triangle stencils were introduced and

generalised to discrete Lagrangian 2-forms. These have been studied in [10, 11, 13, 28, 61]

and produce a slightly weaker set of equations: the quad equations are sufficient conditions

for the variational principle, but not necessary conditions. It is emphasised in [11] that:

“quad-equations are not variational; rather, discrete Euler-Lagrange equations for the

two-forms given in [10, 28] are consequences of quad-equations”. In [30], attempts were

made to resolve this. However, in this chapter the literal interpretation of the first part of

the statement is shown to be not true: quad equations are variational. We generalise the

original Lagrangians on quadrilateral stencils to Lagrangian 2-forms and show that the

generalised Euler-Lagrange equations produce the quad equations exactly.

The Lagrangian 2-form considered in the existing literature on quad equations

produces Euler-Lagrange equations that are equivalent to a system of two octahedron

equations [13]. This cannot be equivalent to the set of six quad equations on a cube,

any four of which are independent. Furthermore, the two octahedron equations are

independent of the two tetrahedron equations. In fact, the combination of these two sets,

two octahedron equations and two tetrahedron equations, is equivalent to the full set of

quad equations.

The structure of this chapter is as follows. In Section 3.2 we review the structure of

the ABS equations and the assumptions behind their classification. In Sections 3.3.1–3.3.3

we present two new Lagrangian multiforms for which the variational principle produces

exactly the set of quad equations, as well as a third multiform that produces only the

tetrahedron equations (the latter has appeared in a slightly different context in [10]). In

Section 3.3.4 we contrast this with the well-known Lagrangian multiform. In Section 3.3.5

we discuss the closure property of each of these 2-forms. In Section 3.4, we show that

the relations between quad equations, tetrahedron equations, and octahedron equations

follow from relations between the different Lagrangian 2-forms.

3.2 Quad Equations

3.2.1 The ABS Classification

The ABS list [1] is a classification of integrable difference equations that satisfy the

following conditions:

• They are quad equations: they depend on a square stencil and on two parameters
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associated to the two lattice directions:

Q(u, ui, uj , uij , αi, αj) = 0 . (3.1)

• They are symmetric: Equation (3.1) is invariant under the symmetries of the square,

Q(u, ui, uj , uij , αi, αj) = ±Q(u, uj , ui, uij , αj , αi) = ±Q(ui, u, uij , uj , αi, αj) . (3.2)

Note that these two transformations of the tuple (u, ui, uj , uij) generate the symme-

try group D4, and that the αi, αj are interchanged accordingly.

• They are multiaffine: the function Q is a polynomial of degree one in each of the

u, ui, uj , uij (but can be of higher total degree). This guarantees that we can solve

the equations for any of the four variables, given the other three.

• They are three-dimensionally consistent: given initial values u, ui, uj , uk, use the

equations

Qij := Q(u, ui, uj , uij , αi, αj) = 0 (3.3a)

Qjk := Q(u, uj , uk, ujk, αj , αk) = 0 (3.3b)

Qki := Q(u, uk, ui, uki, αk, αi) = 0 (3.3c)

to determine uij , ujk, uki; then uijk should be uniquely determined by

←→
Q ij := Q(uijk, ujk, uki, uk, αi, αj) = 0 (3.3d)

←→
Q jk := Q(uijk, uki, uij , ui, αj , αk) = 0 (3.3e)

←→
Qki := Q(uijk, uij , ujk, uj , αk, αi) = 0 . (3.3f)

This is illustrated in Figure 3.1.

• They satisfy the tetrahedron property: the value obtained for uijk in the computation

above is independent of u, depending only on ui, uj , uk.

Remark 3. Note that, regardless of which signs occur in Equation (3.2), we have that

←→
Q ij := Q(uijk, ujk, uki, uk, αi, αj) = Q(uk, uki, ujk, uijk, αi, αj),

because the last equality is obtained by applying both symmetries of the square twice. We

will use the notation (· · ·) more generally to denote the point inversion u↔ uijk, ui ↔ ujk,
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Figure 3.1: Multidimensional consistency demands that all three of these routes to
calculate uijk from initial values u, ui, uj , uk produce the same value

etc.

It turns out that each equation Q(u, ui, uj , uij , αi, αj) = 0 of the ABS list is equivalent

to an equation in three-leg form:

Q(u)
ij := ψ(u, ui, αi)− ψ(u, uj , αj)− ϕ(u, uij , αi − αj) = 0 . (3.4)

Here ψ : (u, ui, αi) 7→ C and ϕ : (u, uij , αi − αj) 7→ C. This gives us a second, complemen-

tary, perspective on the ABS equations: we can either study the multiaffine expressions

Qij or the three-leg forms Q(u)
ij . We use calligraphic letters to denote leg forms. The

D4-symmetry imposed on the quad equations has significant implications for the three-leg

form. From the reflection symmetry it follows that ϕ(u, uij , αi−αj) = −ϕ(u, uij , αj −αi).

Applying rotational symmetry to Equation (3.4) we get equivalent three-leg forms based

at the other three vertices of the square:

Q(ui)
ij := ψ(ui, uij , αj)− ψ(ui, u, αi)− ϕ(ui, uj , αj − αi) = 0 , (3.5a)

Q(uij)
ij := ψ(uij , uj , αi)− ψ(uij , ui, αj)− ϕ(uij , u, αi − αj) = 0 , (3.5b)

Q(uj)
ij := ψ(uj , u, αj)− ψ(uj , uij , αi)− ϕ(uj , ui, αj − αi) = 0 . (3.5c)

The three-leg forms based at different vertices are illustrated in Figure 3.2. We emphasise

that

Qij = 0 ⇐⇒ Q(u)
ij = 0 ⇐⇒ Q(ui)

ij = 0 ⇐⇒ Q(uj)
ij = 0 ⇐⇒ Q(uij)

ij = 0 . (3.6)

On the faces of a cube adjacent to a fixed vertex, the three-leg forms based at that

vertex naturally combine to form an equation on a tetrahedral stencil, illustrated in Figure

3.3, for example:

T (u) := ϕ(u, uij , αi − αj) + ϕ(u, ujk, αj − αk) + ϕ(u, uki, αk − αi) (3.7a)
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Figure 3.2: Graphical representation of the four orientations of a three-leg form.

= −Q(u)
ij −Q

(u)
jk −Q

(u)
ki = 0 . (3.7b)
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Figure 3.3: Tetrahedron equation from three quad equations

To relate the three-leg tetrahedron equation (3.7a) with a multiaffine equation, we

will rely on some relations between the equations of the ABS list (which is given in the

Appendix A). The ABS list contains three types of equation, labeled Q, H, and A. Those

of type Q have the property that their short and long leg functions are the same, ϕ = ψ.

Each equation of type H and A shares its long leg function ϕ with an equation of type Q,

but has a different short leg function ψ. Thus the quad equations of type H and type A

have the same the tetrahedron equation as an equation of type Q. In fact, a multiaffine

tetrahedron equation T = 0, equivalent to T (u) = 0, can be defined in terms of a quad

polynomial of type Q, evaluated on a tetrahedron stencil:

T (u, uij , ujk, uki, αi, αj , αk) = Q(type Q)(u, uij , ujk, uki, αi − αj ,−αj + αk). (3.8)

Here Q(type Q) represents the multiaffine polynomial corresponding to a quad equation of

type Q. Consistent with the three-leg form (3.7a), this multiaffine polynomial is symmetric

under permutation of indices.

Now we can apply the rotational symmetry of the quad equation of type Q and obtain

equivalent three-leg forms of tetrahedron equation based at the other vertices:

T (uij) := ϕ(uij , uki, αj − αk) + ϕ(uij , u, αi − αj) + ϕ(uij , ujk, αi − αk) = 0 , (3.9a)
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T (uki) := ϕ(uki, ujk, αi − αj) + ϕ(uki, uij , αj − αk) + ϕ(uki, u, αk − αi) = 0 , (3.9b)

T (ujk) := ϕ(ujk, u, αj − αk) + ϕ(ujk, uki, αi − αj) + ϕ(ujk, uij , αi − αk) = 0 . (3.9c)

Altogether we have that

T = 0 ⇐⇒ T (u) = 0 ⇐⇒ T (uij) = 0 ⇐⇒ T (ujk) = 0 ⇐⇒ T (uki) = 0 . (3.10)

The same argument applies to the other four variables, so we can derive a second

tetrahedron equation in three-leg form, which is related to the first by point inversion:

←→
T (uijk) := ϕ(uijk, uk, αi − αj) + ϕ(uijk, ui, αj − αk) + ϕ(uijk, uj , αk − αi) = 0 . (3.11)

Similarly, we define the three-leg expressions
←→
T (ui),

←→
T (uj),

←→
T (uk), based at the remaining

three vertices. Considering also the polynomial
←→
T = T (uijk, uk, ui, uj , αi, αj , αk), we have

the following equivalent equations:

←→
T = 0 ⇐⇒

←→
T (uijk) = 0 ⇐⇒

←→
T (uk) = 0 ⇐⇒

←→
T (ui) = 0 ⇐⇒

←→
T (uj) = 0 . (3.12)

Example (H1), part 1. One of the simplest equations on the ABS list is the lattice

potential KdV equation, labeled H1, for which

Qij = (ui − uj)(u− uij)− αi + αj . (3.13)

In this case, the leg functions are given by

ψ(u, ui, αi) = ui and ϕ(u, uij , αi − αj) =
αi − αj
u− uij

. (3.14)

The quad equation Qij = 0 is equivalent to the three-leg equation Q(u)
ij = 0, where

Q(u)
ij = ψ(u, ui, αi)− ψ(u, uj , αj)− ϕ(u, uij , αi − αj)

= ui − uj −
αi − αj
u− uij

=
Qij

u− uij
. (3.15)

The three-leg form T (u) = 0 of the tetrahedron equation T = 0 is

T (u) = ϕ(u, uij , αi − αj) + ϕ(u, ujk, αj − αk) + ϕ(u, uki, αk − αi)

=
αi − αj
u− uij

+
αj − αk
u− ujk

+
αk − αi
u− uki
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=
T

(u− uij)(u− ujk)(u− ujk)
. (3.16)

The tetrahedron equation T = 0 can also be expressed in multiaffine form as

T (u, uij , ujk, uki, αi, αj , αk)

= (αi − αj)(uuij + ujkuki) + (αj − αk)(uujk + uijuki) + (αk − αi)(uuki + uijujk) ,

(3.17)

which is exactly the multiaffine polynomial of ABS equation Q1δ=0 (see Appendix A).

3.2.2 Discrete Lagrangians on Quadrilateral Stencils

Already in the original ABS paper [1], Lagrangian functions (in the traditional sense

considered in Section 2.3) were constructed for all equations from the ABS list. This

construction is based on the observation that, after a suitable transformation of the

variable u, there exist functions L and Λ such that the leg functions ψ and ϕ can be

expressed as

ψ(x, y, α) =
∂

∂x
L(x, y, α) , (3.18a)

ϕ(x, y, α− β) = ∂

∂x
Λ(x, y, α− β) , (3.18b)

where L and Λ have the following symmetries:

L(x, y, α) = L(y, x, α) , (3.19a)

Λ(x, y, α− β) = Λ(y, x, α− β) , (3.19b)

Λ(x, y, α− β) = −Λ(x, y, β − α) . (3.19c)

Note that this implies that

∂

∂y
L(x, y, α) = ψ(y, x, α) , (3.20a)

∂

∂y
Λ(x, y, α− β) = ϕ(y, x, α− β) . (3.20b)

The functions L and Λ can be combined into a 4-point Lagrangian [1]

Lij(u, ui, uj , uij , αi, αj) := L(u, ui, αi)− L(u, uj , αj)− Λ(u, uij , αi − αj) . (3.21)

which we will refer to as the trident Lagrangian, inspired by the three-leg structure
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Figure 3.4: (a) The stencil of the trident Lagrangian. (b) The discrete Euler-Lagrange
equation involves three-leg structures on two squares.

depicted Figure 3.4(a). The traditional Euler-Lagrange equation of L , depicted in Figure

3.4(b), is

∂

∂u

(
Lij(u, ui, uj , uij , αi, αj) + Lij(u−i, u, u−i,j , uj , αi, αj) + Lij(u−j , ui,−j , u, ui,−j , αi, αj)

+ Lij(u−i,−j , u−j , u−i, u, αi, αj)
)

= ψ(u, ui, αi)− ψ(u, uj , αj)− ϕ(u, uij , αi − αj)

+ ψ(u, u−i, αi)− ψ(u, u−j , αj)− ϕ(u, u−i−j , αi − αj) = 0 , (3.22)

where the subscript −i denotes a shift in the negative direction along the i-th coordinate

axis. This Euler-Lagrange equation is the sum of two shifted instances of the quad

equation (in the form (3.4) and (3.5b) respectively).
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Figure 3.5: (a) The stencil of the triangle Lagrangian. (b) The discrete Euler-Lagrange
equation involves three-leg structures on two squares.
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The functions L and Λ can be combined into a 3-point Lagrangian [28]

Lij(u, ui, uj , αi, αj) := L(u, ui, αi)− L(u, uj , αj)− Λ(ui, uj , αi − αj) , (3.23)

which we will refer to as the triangle Lagrangian, inspired by the three-leg structure

depicted Figure 3.5(a). The traditional Euler-Lagrange equation of L , depicted in Figure

3.5(b), is

∂

∂u

(
Lij(u, ui, uj , αi, αj) + Lij(u−i, u, u−i,j , αi, αj) + Lij(u−j , ui,−j , u, αi, αj)

)
= ψ(u, ui, αi)− ψ(u, u−j , αj)− ϕ(u, ui,−j , αi − αj)

+ ψ(u, u−i, αi)− ψ(u, uj , αj)− ϕ(u, u−i,j , αi − αj) = 0 , (3.24)

where the subscript −i denotes a shift in the negative direction along the i-th coordinate

axis. This Euler-Lagrange equation is the sum of two shifted instances of the quad

equation (in the form (3.5a) and (3.5c) respectively).

Both of these Lagrangians, for the entire ABS list, relate to the conventional action

(2.18) over Z2 discussed in Section 2.3. In both cases, if the field u satisfies the corre-

sponding quad equation in the plane, this implies criticality of the action with respect to

local variations of field:

Qij = 0 =⇒ ∂

∂u

(
Lij + T−1

j Lij + T−1
i Lij + T−1

j T−1
i Lij

)
= 0 =⇒ δS[u]

δu
= 0 . (3.25)

In the upcoming sections we will generalise from conventional Lagrangians to La-

grangian multiforms. We will present a Lagrangian multiform variational principle

which necessarily implies the quad equation, and furthermore necessarily implies the

entire multidimensionally-consistent set of quad equations.

3.3 Lagrangian Multiforms

In Section 2.6 we discussed the earliest construction of Lagrangian multiforms from

[28], and defined them as weak discrete Lagrangian 2-forms (Definition 1). Our major

contribution is to construct discrete Lagrangian 2-forms satisfying Definition 2 (2.47) for

the quad equations of the ABS list.

Similar to [28], the key idea is to interpret a Lagrangian L(u, ui, uj , uij , αi, αj), which

is skew-symmetric under the swap of indices i ↔ j, as a discrete 2-form on a higher-

dimensional quadrilateral lattice. In terms of Definition 2, we have an action over oriented
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quad surfaces σ, where Lij , Ljk and Lki are all of the same form, namely

S[u, σ] =
∑

σij(n)∈σ

Lij . (3.26)

For a given Lagrangian function Lij(u, ui, uj , uij , αi, αj), under what conditions is this

2-form action critical?

The Lagrangian multiform variational principle is the following: criticality of the

action with respect to local variations of the field produces multiform Euler-Lagrange

equations; then on solutions to those equations, the action is critical with respect to local

variations of the surface. It is equivalent to consider the criticality on the closed quad

surface of the elementary cube

Sijk := S[u, cube] = (TkLij − Lij) + (TiLjk − Ljk) + (TjLki − Lki) . (3.27)

Thus, for a given Lagrangian function L(u, ui, uj , uij , αi, αj), we have a discrete Lagrangian

2-form satisfying Definition 2 if we show that

∂Sijk
∂u

= 0
∂Sijk
∂uijk

= 0

∂Sijk
∂ui

= 0
∂Sijk
∂ujk

= 0

∂Sijk
∂uj

= 0
∂Sijk
∂uki

= 0

∂Sijk
∂uk

= 0
∂Sijk
∂uij

= 0


=⇒ Sijk = 0 . (3.28)

We require that on solutions to the corner equations, the closure relation holds.

In the next four subsections we will introduce three additional Lagrangian 2-forms

and contrast them to the known Lagrangian 2-form. Initially, we will only study their

corner equations. Then, in Subsection 3.3.5, we will prove that each of the Lagrangian

2-forms satisfies the definition, by showing that the closure relation holds on the respective

set of corner equations.

3.3.1 Trident 2-Form: Quad Equations are Variational

One of our main results is that the quad equations of the ABS list are variational. We will

show that the original 4-point Lagrangian construction in [1] generalises to a Lagrangian

2-form with corner equations that produce the quad equations directly. We recall the
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Lagrangian (3.21) and interpret it as the trident 2-form

Lij(u, ui, uj , uij , αi, αj) := L(u, ui, αi)− L(u, uj , αj)− Λ(u, uij , αi − αj). (3.29)
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Figure 3.6: (a) The leg structure of a single Lagrangian Lij(uk, uki, ujk, uijk, αi, αj). (b)
The leg structure for the action on an elementary cube of the trident 2-form L .

The action over an elementary cube of the trident 2-form can be written as (see

Figure 3.6(b))

Sijk = Lij(uk, uki, ujk, uijk, αi, αj)− Lij(u, ui, uj , uij , αi, αj) +⟲ijk

= L(uk, uki, αi)− L(uk, ujk, αj)− Λ(uk, uijk, αi − αj)

− L(u, ui, αi) + L(u, uj , αj) + Λ(u, uij , αi − αj) +⟲ijk

= (L(ui, uij , αj) + Λ(u, uij , αi − αj))− (L(ujk, uk, αj) + Λ(uk, uijk, αi − αj)) +⟲ijk

= L(ui, uij , αj) + Λ(u, uij , αi − αj)− (· · ·) +⟲ijk , (3.30)

where the notation − (· · ·) represents subtracting an inverted copy of the preceding

expression, and +⟲ijk indicates the addition of terms obtained by cyclic permutation of

(i, j, k). Thus, Equation (3.30) is manifestly symmetric under cyclic permutations and

skew-symmetric under point inversion.

Now we consider the corner expression at uij

∂Sijk
∂uij

=
∂

∂uij
(L(ui, uij , αj)− L(uij , uj , αi) + Λ(u, uij , αi − αj))

= ψ(uij , ui, αj)− ψ(uij , uj , αi) + ϕ(uij , u, αi − αj)

= −Q(uij)
ij . (3.31)

This gives us exactly the original quad equation in three-leg form (3.5b). The expressions
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at ujk and uki are analogous and follow from permutation of indices. At the uk corner we

find a similar expression,
←→
Q (uk)
ij , which is what we would expect from the skew-symmetry

under point inversion. The expressions at ui and uj are analogous and follow from

permutation of indices.

Let us consider the u corner expression produced by this 2-form

∂Sijk
∂u

=
∂

∂u
(Λ(u, uij , αi − αj) + Λ(u, ujk, αi − αj) + Λ(u, uki, αi − αj))

= ϕ(u, uij , αi − αj) + ϕ(u, ujk, αi − αj) + ϕ(u, uki, αi − αj)

= T (u) . (3.32)

We find exactly the tetrahedron equation (3.7a) in three-leg form. At the uijk corner we

find the same but negated and inverted −
←→
T (uijk). Altogether we conclude the following:

Theorem 4. The corner equations of the trident 2-form (3.21) are the quad equations

and tetrahedron equations in three-leg form:

∂Sijk
∂u

= T (u) = 0 ,
∂Sijk
∂uijk

= −
←→
T (uijk) = 0 ,

∂Sijk
∂ui

=
←→
Q (ui)
jk = 0 ,

∂Sijk
∂ujk

= −Q(ujk)
jk = 0 ,

∂Sijk
∂uj

=
←→
Q (uj)
ki = 0 ,

∂Sijk
∂uki

= −Q(uki)
ki = 0 ,

∂Sijk
∂uk

=
←→
Q (uk)
ij = 0 ,

∂Sijk
∂uij

= −Q(uij)
ij = 0 .

(3.33)

Proof. Take derivatives of (3.30) and recognise the three-leg terms (3.5b) (and their point

inversions), as well as the three-leg terms (3.7a) (and their point inversions).

Example (H1), part 2. For H1 we have

L(u, ui, αi) = uui , (3.34a)

Λ(ui, uj , αi − αj) = (αi − αj) log(ui − uj) . (3.34b)

Note in this form the symmetry Λ(uj , ui, αi−αj) = Λ(ui, uj , αi−αj) is up to an addition of

a complex constant. We comment on options to make this strictly symmetric in Appendix

A.

The trident Lagrangian is

Lij(u, ui, uj , uij , αi − αj) = uui − uuj − (αi − αj) log(u− uij). (3.35)
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Its action around the elementary cube of the 2-form is

Sijk = ukuki − ukujk − (αi − αj) log(uk − uijk)− uui + uuj + (αi − αj) log(u− uij)

+⟲ijk

= (uiuij + (αi − αj) log(u− uij))− (ujkuk + (αi − αj) log(uijk − uk)) +⟲ijk

= uiuij + (αi − αj) log(u− uij)− (· · ·) +⟲ijk . (3.36)

This leads to 8 corner expressions. For example, we have

∂Sijk
∂u

=
αi − αj
u− uij

+
αj − αk
u− ujk

+
αk − αi
u− uki

= T (u) =
T

(u− uij)(u− ujk)(u− uki)
. (3.37)

In addition, we have

∂Sijk
∂uij

= ui − uj −
αi − αj
u− uij

= −Q(uij)
ij =

Qij
u− uij

. (3.38)

Similarly, we find

∂Sijk
∂ui

=
←→
Q (ujk)
jk =

←→
Q jk

(ui − uijk)
, (3.39a)

∂Sijk
∂uijk

= −
←→
T (uijk) =

←→
T

(ui − uijk)(uj − uijk)(uk − uijk)
. (3.39b)

3.3.2 Cross 2-Form: Tetrahedron Equations are Variational

We will show that the tetrahedron equations arise as corner equations of the following

2-form, which we call the cross Lagrangian,

Lij(u, ui, uj , uij , αi − αj) = Λ(ui, uj , αi − αj)− Λ(u, uij , αi − αj) . (3.40)

The name for this Lagrangian is inspired on its leg structure, which is shown in Figure

3.7(a). This Lagrangian was studied in [10] in the more general context of Laplace type

equations on a bipartite quad graph. In our present context, it is particularly relevant

because it links our new trident Lagrangian to the known triangle Lagrangian.
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Figure 3.7: (a) The leg structure of a single Lagrangian Lij(uk, uki, ujk, uijk, αi, αj). (b)
The leg structure for the action on an elementary cube of the cross 2-form L .

Consider the action over an elementary cube and note that

Sij = Λ(uki, ujk, αi − αj)− Λ(uk, uijk, αi − αj)

− Λ(ui, uj , αi − αj) + Λ(u, uij , αi − αj) +⟲ijk

= Λ(u, uij , αi − αj)− Λ(ui, uj , αi − αj)− (· · ·) +⟲ijk . (3.41)

By taking partial derivatives of this action we can conclude the following:

Theorem 5. The corner equations of the cross 2-form (3.40) are the two tetrahedron

equations, in different three-leg forms, that is

∂Sijk
∂u

= T (u) = 0 ,
∂Sijk
∂uijk

= −
←→
T (uijk) = 0 ,

∂Sijk
∂ui

= −
←→
T (ui) = 0 ,

∂Sijk
∂ujk

= T (ujk) = 0 ,

∂Sijk
∂uj

= −
←→
T (uj) = 0 ,

∂Sijk
∂uki

= T (uki) = 0 ,

∂Sijk
∂uk

= −
←→
T (uk) = 0 ,

∂Sijk
∂uij

= T (uij) = 0 .

(3.42)

Proof. In the partial derivatives of (3.41), we recognise three-leg forms of the tetrahedron

equations: Equations (3.7a)–(3.9c) and their counterparts obtained by point inversion.

3.3.3 Cross-Square 2-Form

Here we study a second 2-form that produces a system of corner equations equivalent to

the quad equations. It will be particularly useful in later sections when we consider the

double zero property of the exterior derivative of a 2-form. The function defining this

2-form was introduced in [10], where it was studied on a single quad. To our knowledge,
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it was never before considered as a Lagrangian multiform. It is given by

Lij := L(u, ui, αi) + L(uij , uj , αi)− L(u, uj , αj)− L(uij , ui, αj)

− Λ(u, uij , αi, αj)− Λ(ui, uj , αi, αj)
(3.43)

Inspired by its leg structure, illustrated in Figure 3.8, we call it the cross-square Lagrangian.
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Figure 3.8: (a) The leg structure of a single Lagrangian Lij(uk, uki, ujk, uijk, αi, αj). (b)
The leg structure for the action on an elementary cube of the cross-square 2-form L .

The action over an elementary cube of the cross-square Lagrangian is

Sijk = 2L(ui, uij , αj) + Λ(u, uij , αi − αj) + Λ(ui, uj , αi − αj)− (· · ·) +⟲ijk ,

= 2Sijk − Sijk . (3.44)

so its corner equations consist of linear combinations of the corner equations of the trident

and cross Lagrangians:

Theorem 6. The corner equations of the cross-square 2-form (3.43) are combinations of

quad equations and tetrahedron equations in three-leg form, namely

∂Sijk
∂u

= −T (u) = 0 ,
∂Sijk
∂uijk

=
←→
T (uijk) = 0 ,

∂Sijk
∂ui

= 2
←→
Q (ui)
jk +

←→
T (ui) = 0 ,

∂Sijk
∂ujk

= −2Q(ujk)
jk − T (ujk) = 0 ,

∂Sijk
∂uj

= 2
←→
Q (uj)
ki +

←→
T (uj) = 0 ,

∂Sijk
∂uki

= −2Q(uki)
ki − T (uki) = 0 ,

∂Sijk
∂uk

= 2
←→
Q (uk)
ij +

←→
T (uk) = 0 ,

∂Sijk
∂uij

= −2Q(uij)
ij − T (uij) = 0 .

(3.45)

These are equivalent to the set of multiaffine quad equations around the cube (3.3).

Proof. From (3.44) we deduce that the corner equations are the corresponding linear
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combination of the corner equations (3.33) and (3.42) of the trident and cross Lagrangian

2-forms. If multiaffine quad equations hold, then all of the three-leg forms involved

in the system (3.45) vanish, so the corner equations are satisfied. Conversely, if all

equations of the system (3.45) hold, then in particular the tetrahedron equations in

three-leg form, centred at u and uijk, are satisfied. Then by the symmetries (3.10) and

(3.12), the tetrahedron three-leg forms centred at ui, uj , uk, uij , ujk, uki also vanish. The

remaining corner equations reduce to individual quad equations in three-leg form. These

are equivalent to the multiaffine quad equations.

3.3.4 Comparison with the Triangle 2-Form

Now we compare the above constructions to the known 2-form, which started the theory

of Lagrangian multiforms [28]. We review the results of [11], and in what way this original

example is a Lagrangian 2-form in the sense of Definition 2. We recall the Lagrangian

(3.23) and now interpret it as the triangle 2-form. We review how this 2-form is critical

on a set of equations weaker than the quad equations and we will relate it to our new

2-forms via Lij = Lij − Lij .
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Figure 3.9: (a) The leg structure of a single Lagrangian Lij(uk, uki, ujk, αi, αj). (b) The
leg structure for the action on an elementary cube of the triangle 2-form Lij sits on an
octahedral stencil.

The action around the elementary cube of the triangle Lagrangian depends on an

octahedral stencil depicted in Figure 3.9:

Sijk = L(ui, uij , αj) + Λ(ui, uj , αi − αj)− (· · ·) +⟲ijk . (3.46)

Since u and uijk does not appear in this action, there are no corner equations at these
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points. The corner equation at uij in terms of leg functions is

0 =
∂Sijk
∂uij

=
∂

∂uij
(L(ui, uij , αj)− L(uj , uij , αi)− Λ(uij , uki, αj − αk)− Λ(ujk, uij , αk − αi))

= ψ(uij , ui, αj)− ψ(uij , uj , αi)− ϕ(uij , uki, αj − αk)− ϕ(uij , ujk, αk − αi) (3.47)

=: Eij .

This can be written as a combination of quad equations in three-leg form:

Eij =
←→
Q (uij)
jk +

←→
Q (uij)
ki . (3.48)

In other words, the four-leg equations Eij = 0 can be obtained by eliminating the variable

uijk from two quad equations in three-leg form. Similarly, at the corner ui, we find the

corner equation −
←→
E ij = 0, where

←→
E ij = Q(uk)

jk +Q(uk)
ki .

Theorem 7. The corner equations of the triangle 2-form are

∂Sijk
∂u

= 0 ,
∂Sijk
∂uijk

= 0 ,

∂Sijk
∂ui

= −
←→
E jk = 0 ,

∂Sijk
∂ujk

= Ejk = 0 ,

∂Sijk
∂uj

= −
←→
E ki = 0 ,

∂Sijk
∂uki

= Eki = 0 ,

∂Sijk
∂uk

= −
←→
E ij = 0 ,

∂Sijk
∂uij

= Eij = 0 .

(3.49)

Proof. Using the action (3.46) and the definition (3.47) alongside cyclicity and point

inversion gives us these six expressions.

This 2-form produces a set of equations which vanish on the quad equations but are

not equivalent to them because they lack the variables u and uijk. Furthermore, we can

relate each of the four-leg equations (3.49) to a quad equation and a tetrahedron equation.

From Lij = Lij − Lij , we have

Sijk = Sijk − Sijk (3.50)

and thus

Eij = −Q
(uij)
ij − T (uij) . (3.51)
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Example (H1), part 3. For H1 we have

Lij = uui − uuj − (αi − αj) log(ui − uj) , (3.52)

so

Sijk = ukuki − ukujk − (αi − αj) log(uki − ujk) + (αi − αj) log(ui − uj) +⟲ijk ,

= uiuij + (αi − αj) log(ui − uj)− (· · ·) +⟲ijk (3.53)

Two corner equations are identically zero and the other six have a four-leg form. The

corner equations at uij, ujk and uki are all of the form

0 =
∂Sijk
∂uij

= ui − uj −
αj − αk
uij − uki

+
αj − αk
ujk − uij

=
←→
Q (uij)
jk +

←→
Q (uij)
ki = Eij . (3.54)

Clearly these equations vanish on the quad equations. Similarly, the other three corner

equations are of the form

0 =
∂Sijk
∂uk

= uki − ujk +
αk − αi
uk − ui

− αj − αk
uj − uk

= −Q(uij)
jk −Q(uij)

ki = −
←→
E ij . (3.55)

3.3.5 Closure Relations

In this section we will show that each of the 2-forms satisfies the closure relation on their

respective corner equations, which we stated in the theorems above and recall here:

1. The corner equations of the trident Lagrangian Lij are equivalent to the system of

quad equations.

2. The corner equations of the cross Lagrangian Lij are the tetrahedron equations.

3. The corner equations of the cross-square Lagrangian Lij are equivalent to the system

of quad equations.

4. The corner equations of the triangle Lagrangian Lij are equivalent to the system of

four-leg E equations.

In [28] it was verified (for most of the ABS equations) by direct computation that the

action Sijk of the triangle Lagrangian vanishes on solutions of the quad equations. In [10]

a conceptual proof of this property was given, which applies to all ABS equations. In [11]

it was observed that the same technique can be used to show that the closure property

for the triangle Lagrangian holds on the corner equations (i.e. E-equations). Below we
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will adapt this proof to our new Lagrangian multiforms.

Theorem 8. On solutions of the quad equations, Sijk = 0.

On solutions of the tetrahedron equations, Sijk = 0.

On solutions of the quad equations, Sijk = 0.

Note that the closure relation Sijk = 0 can be seen as a consequence of the star-triangle

relation of [10, Theorem 2].

An essential fact required to prove Theorem 8 is that the space of solutions is

connected:

Lemma 9. The following sets are connected:

1. The space of complex-valued solutions to the tetrahedron equations,

{(u, ui, uj , uk, uij , ujk, uki, uijk) ∈ C8 | T (u, uij , ujk, uki, αi, αj , αk) = 0

and T (uijk, uk, ui, uj , αi, αj , αk) = 0}.

2. The space of complex-valued solutions to the quad equations,

{(u, ui, uj , uk, uij , ujk, uki, uijk) ∈ C8 | Equations (3.3) hold}.

Proof. We give the proof of case 2. We parametrise the space of solutions by initial

conditions (u, ui, uj , uk) ∈ C4. Clearly, every solution corresponds to a unique element of

C4, but not every such 4-tuple generates a solution. For example, if
∂Qij

∂uij
= 0, we cannot

solve Qij = 0 for Qij . A solution exists with given initial values, if no such singulatity

occurs on any of the faces. Each of the six singularity sets has complex codimension one,

so real codimension two. Removing sets of codimension two from C4 does not disconnect

it, so the space of initial conditions avoiding singularities is connected.

Proof of Theorem. Let Sijk = Sijk, Sijk = Sijk, or S = Sijk. We consider the action Sijk

as a function of (u, ui, uj , uk, uij , ujk, uki, uijk). The corner equations express that the

gradient of Sijk with respect to these variables vanishes. Together with Lemma 9, this

shows that the action is constant on the set of solutions.

Consider any solution v = (u, ui, uj , uk, uij , ujk, uki, uijk) to the corner equations.

Then also←→v := (uijk, ujk, uki, uij , uk, ui, uj , u) is a solution. By the symmetry of L and

Λ we have

Sijk(
←→v ) = −Sijk(v). (3.56)
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Since Sijk is constant on the set of solutions, this implies that Sijk = 0.

The cross square 2-form satisfies an even stronger property than the closure relation.

Up to an additive term depending only on the lattice parameters, the Lagrangian vanishes

on a single quad as a consequence of the quad equation:

Proposition 10 ([10, Theorem 1]). On solutions of the quad equation, Lij = g(αi, αj),

for a function g(αi, αj) which does not depend on the fields (u, ui, uj , uij).

Proof. We start by considering the derivatives of an individual cross Lagrangian

∂

∂u
Lij = Q

(u)
ij

∂

∂ui
Lij = Q

(ui)
ij

∂

∂uj
Lij = Q

(uj)
ij

∂

∂uij
Lij = Q

(uij)
ij . (3.57)

These are exactly the quad equations in three-leg form. Hence, on solutions of Qij = 0 we

have ∇Lij = 0. Similar to Lemma 9 we have that the space of solutions of a single quad

equation is connected. It follows that the value of Lij (on solutions) does not depend on

(u, ui, uj , uij).

3.4 Quad Tetrahedron and Octahedron Equations

Above we discussed the three-leg forms equivalent to the multiaffine quad and tetrahedron

equations. In this section, we discuss the polynomial equations associated with the

four-leg corner equations (3.49) of the triangle 2-form. We review the related multiaffine

octahedron equations (also known as octahedron relations) and their relationship to quad

equations. Most of this section is based on [13], but in Proposition 12 we provide

an additional variational interpretation of the relation between the different types of

polynomial equations.

The four-leg equations Eij = 0, where the left-hand side is defined in Equation (3.48),

can be obtained by eliminating the variable uijk from two quad equations in three-leg form.

An equivalent polynomial equation is obtained by eliminating uijk from the corresponding

two multiaffine quad equations. This yields the equation Eij = 0, where the left-hand

side is the polynomial

Eij =
∂
←→
Q jk

∂uijk

←→
Qki −

∂
←→
Qki

∂uijk

←→
Q jk . (3.58)

We have two more polynomials by permuting indices and three more from point inversion:

←→
E ij =

∂Qjk
∂u

Qki −
∂Qki
∂u

Qjk . (3.59)
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These polynomials lead to equations that are equivalent to those involving the four-leg

expressions Eij :

Eij(ui, uj , uij , ujk, uki, αi, αj , αk) = 0 ⇐⇒ Eij(ui, uj , uij , ujk, uki, αi, αj , αk) = 0 .

(3.60)

From their definition as combinations of quad equations, it is clear that Eij = 0 and
←→
E ij = 0 are consequences of the quad equations. However, they are not equivalent to

the quad equations! Only two of these six equations are independent (see Proposition 11

below).

The relation (3.51) suggests that the polynomial Eij is related to the polynomials

Qij and T . Indeed, eliminating the variable u from the system T = 0, Qij = 0 must lead

to an equation equivalent to Eij = 0, so we find

∂Qij
∂u

T − ∂T

∂u
Qij = γ(αi, αj , αk)Eij . (3.61)

Here, γ(αi, αj , αk) does not contain field variables, because the left hand side depends

linearly on (ui, uj , ujk, uki) and quadratically on uij , as does Eij . Under point inversion

we find the analogous relation

∂
←→
Q ij

∂uijk

←→
T − ∂

←→
T

∂uijk

←→
Q ij = γ(αi, αj , αk)

←→
E ij . (3.62)

The main result of [13] is that for every member of the ABS list there exist two

octahedron equations which are equivalent to the set of E-equations. These are of the

form

Ω1(ui, uj , uk, uij , ujk, uki, αi, αj , αk) = 0 , (3.63a)

Ω2(ui, uj , uk, uij , ujk, uki, αi, αj , αk) = 0 , (3.63b)

where Ω1,Ω2 are multiaffine polynomials in the field variables ui, uj , uk, uij , ujk, uki, which

form an octahedral stencil.

Note for Q4 and A2, we define Ω1 and Ω2 as two linearly independent cyclic combi-

nations of the Ri, Rj , Rk from [13, Theorem 4.1]. For Q4 and A2 we have point inversion

symmetry such that
←→
Ω 1 = Ω1 and

←→
Ω 2 = Ω2. For the rest of ABS list there holds

←→
Ω 1 = −Ω1 and

←→
Ω 2 = Ω2.

In all cases we can get E-polynomials by eliminating a variable form the system of
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octahedron equations. For Q4 and A2, eliminating uk and uij leads to, respectively,

∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1 = µ(ui, uj , ujk, uki, αi, αj , αk)Eij , (3.64a)

∂Ω1

∂uij
Ω2 −

∂Ω2

∂uij
Ω1 = µ(ujk, uki, ui, uj , αi, αj , αk)

←→
E ij , (3.64b)

where the factor µ(ui, uj , ujk, uki, αi, αj , αk) is polynomial in ui, uj , ujk, uki. For the rest

of ABS list, we have the explicit expressions

∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1 = g1

(
∂Ω1

∂uij
− ∂Ω1

∂uk

)
Eij , (3.65a)

−∂Ω1

∂uij
Ω2 +

∂Ω2

∂uij
Ω1 = g1

(
−∂Ω1

∂uk
+
∂Ω1

∂uij

)
←→
E ij , (3.65b)

where g1 = g1(αi, αj , αk) is defined explicitly on a case by case basis in [13, Proposition

5.3].

Example (H1), part 4. For H1 the four-leg equations Eij = 0 and
←→
E ij = 0 are equivalent

to the following polynomials, respectively,

Eij = (ui − uj)(uij − ujk)(uij − uki) + αi(uki − uij) + αj(uij − ujk) + αk(ujk − uki) ,

(3.66a)

←→
E ij = (ujk − uki)(uk − ui)(uk − uj) + αi(uj − uk) + αj(uk − ui) + αk(ui − uj) .

(3.66b)

These can written in terms of the following multiaffine octahedron polynomials

Ω1 = ui(uki − uij) +⟲ijk , (3.67a)

Ω2 = αi(uk − uj + uij − uki) + uiujk(uj − uk − uijuki) +⟲ijk , (3.67b)

The equivalence between the corner equations of L (i.e. the E-equations obtained

by setting the expressions (3.58) and (3.59) to zero) and octahedron equations can be

seen as a particular case of the following statement. This holds in the sense of fractional

ideals, as explained in [13].

Proposition 11. Out of the set of equations consisting of the six E-equations and two

octahedron equations, any 2 equations imply the other six.

Further to this, a dimension-counting argument suggests that if we add the tetrahedron

equations to the set of octahedron equations (or E-equations), we should obtain a system

equivalent to the quad equations. The Lagrangian multiform structure provides an explicit
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proof of this fact:

Proposition 12. The tetrahedron equations and octahedron equations together are equiv-

alent to the quad equations.

Proof. From Equation (3.7a) (or from tetrahedron property as assumed in the ABS

classification [1]) it follows that the quad equations imply the tetrahedron equations.

From (3.64) or (3.65) it follows that the E-equations, and hence the quad equations,

imply the octahedron equations (in the sense of fraction ideals, as in [13]).

To prove the other implication, assume that the octahedron and tetrahedron equations

are satisfied. Then the actions of Lij and Lij are critical. Since Lij = Lij +Lij , it follows

that the action of Lij is critical, hence the quad equations hold.

2-Form Corner polynomials Equivalent system

Lij (T,
←→
Q jk,
←→
Qki,
←→
Q ij , Qij , Qjk, Qki,

←→
T ) Ω1,Ω2, T,

←→
T = 0

Lij (0,
←→
E jk,

←→
E ki,
←→
E ij , Eij , Ejk, Eki, 0) Ω1,Ω2 = 0

Lij (T,
←→
T ,
←→
T ,
←→
T , T, T, T,

←→
T ) T,

←→
T = 0

Lij (T,∼
←→
Q jk,∼

←→
Qki,∼

←→
Q ij ,∼ Qij ,∼ Qjk,∼ Qki,

←→
T ) Ω1,Ω2, T,

←→
T = 0

Table 3.1: Overview of the four types of Lagrangian multiform, with their corner equations
(in polynomial form) and a symmetric set of equations forming an equivalent system.

Note in the final row “∼
←→
Q jk” represents an expression such that, after the elimination

of a tetrahedron polynomial
←→
T , a quad polynomial

←→
Q jk remains.

Proposition 12 relates the three sets of equations we are dealing with: those produced

by Lij (or Lij), Lij , and Lij . (See Table 3.1 for an overview.) The corner equations of Lij
can be immediately identified with the tetrahedron equations. The equations produced

by Lij can be understood from two points of view. On the one hand they are generated

by the 5-point E-equations, which have an obvious variational interpretation, but are

far less symmetric than the other equations considered. On the other hand they are

generated by the octahedron equations, which have cyclic and point inversion symmetry,

but have no previously known variational interpretation. The equations produced by Lij
(or Lij) are the six quad equations around the cube (together with the two tetrahedron

equations), which are equivalent to the combined set of two tetrahedron equations and

two octahedron equations.

3.5 Chapter Conclusions

The major result in this chapter is the elevation of the Lagrangians from [1] and [10] to

full-fledged Lagrangian multiforms related to the ABS quad equations: Lij , Lij and Lij .
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We showed that, contrary to common belief, the ABS quad equations are variational:

they are the corner equations of Lij (and equivalent to the corner equations of Lij).

Using the relations between these new Lagrangian 2-forms and the well-established

Lagrangian 2-form Lij , we showed that the quad equations are equivalent to the combined

system of tetrahedron and octahedron equations.
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Chapter 4

Discrete Lagrangian 2-Forms and

Double Zero Expansions

This chapter is based on section 5 of [44] by J. J. Richardson and M. Vermeeren.

4.1 Chapter Introduction

An important property of Lagrangian multiform theory is that, on solutions to the

variational principle, the Lagrangian d-form is closed. This means in particular that the

action over a closed surface vanishes on solutions. Recently, an algebraic interpretation of

this property has been given more emphasis: we can write the exterior derivative of the

Lagrangian form as (a sum of) product(s) of Euler-Lagrange expressions. In other words,

the exterior derivative is not just zero on solutions of the Euler-Lagrange equations, but

attains a double zero on this set of equations. In the continuous (and semi-discrete) case,

the double zero property has been used implicitly in [48, 54] and discussed explicitly in

[16, 42, 49]. In the discrete setting, a double zero expansion for the lattice Boussinesq

equation was recently obtained in [40]. In this Chapter, we present double zero expansions

for the Lagrangian multiforms of the ABS list. With future work, double zero expansions

may be used to investigate conservation laws [43, 53] and variational symmetries [48, 54]

in this discrete quadrilateral setting.

We show that the exterior derivatives of all four 2-forms admit a double zero expansion

(in terms of quad, tetrahedron, and octahedron polynomials, respectively). We give a

general construction of these double zero expansions, as well as explicit expressions for

the quad equation H1.

To motivate the formulation of the double zero property, we first present some

63



observations regarding a linear quad equation. Then we formalise the definition of a

double zero expansion and provide constructions of double zero expansions for each of

the 2-forms for any member of ABS list. Afterwards we investigate explicit expansions

associated with each of the 2-forms for H1.

4.2 Double Zero Expansion Associated with a Linear Quad

Equation

We consider the linear quad equation Qij = 0, with

Qij = (αi + αj)(ui − uj)− (αi − αj)(u− uij). (4.1)

This equation can be considered as a linearisation of H1 and is associated to the following

triangle Lagrangian

Lij = u(ui − uj)−
αi + αj

2(αi − αj)
(u− uij)2 . (4.2)

Its action over an elementary cube can be written as

Sijk = Lij(uk, uki, ujk, αi − αj) + Ljk(ui, uij , uki, αj − αk) + Lki(uj , ujk, uij , αk − αi)

− Lij(u, ui, uj , αi − αj)− Ljk(u, uj , uk, αj − αk)− Lki(u, uk, ui, αk − αi)

=
O1O2

(αi − αj)(αj − αk)(αk − αi)
, (4.3)

where

O1 := (αj − αk)ui + (αj − αk)ujk +⟲ijk , (4.4a)

O2 := αi(αj − αk)ui − αi(αj − αk)ujk +⟲ijk . (4.4b)

Hence, the action over an elementary cube can be explicitly written as a product of two

expressions O1 and O2. In keeping with the terminology of [13], we refer to these as

octahedron expressions since they lie on the stencil (ui, uj , uk, uij , ujk, uki). They are

symmetric under cyclic permutation of the indices and under point inversion, in the sense

that
←→
O 1 = O1 and

←→
O 2 = −O2.

In analogy to multiple zeros of polynomials, we say that S has a double zero

on the equations O1 = 0 and O2 = 0. The factorisation (4.3) implies that for any
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v ∈ {u, ui, uj , uk, uij , ujk, uki, uijk} there holds

∂Sijk
∂v

=
1

(αi − αj)(αj − αk)(αk − αi)

(
∂O1

∂v
O2 +O1

∂O2

∂v

)
, (4.5)

which is zero if both O1 = 0 and O2 = 0. Hence, the double zero property tells us that

the action is critical if the two equations O1 = 0 and O2 = 0 hold. This implies that all

corner equations are consequences of these two equations!

Note that both O1 and O2 vanish on solutions to the linear quad equations. Indeed,

we have

O1 = Qij +Qjk +Qki =
←→
Q ij +

←→
Q jk +

←→
Qki, (4.6a)

O2 = −αkQij − αiQjk − αjQki = αk
←→
Q ij + αi

←→
Q jk + αj

←→
Qki. (4.6b)

This linear example shows the power of the double zero property: if S can be written

as a product of two expressions, then the fact that both these expressions vanish is a

sufficient condition for criticality. Hence, in this situation, two equations together are

equivalent to the full system of corner equations. In some examples, the double zero

expansion of Sijk involves more than two expressions and is a sum of products, rather

than a single product. In the next section we give a suitably general definition of a double

zero expansion.

4.3 Definition of a Double Zero Expansion

Now we give a suitably general definition of a double zero expansion in this discrete

setting.

Definition 13. We say that Sijk(u, ui, uj , uk, uij , ujk, uki, uijk) has a double zero on a set

of equations {Km(u, ui, uj , uk, uij , ujk, uki, uijk) = 0 | m = 1, . . .M} if it can be written as

Sijk =
∑

1≤m≤m′≤M
dm,m′ KmKm′ . (4.7)

Here dm,m′ are coefficients which can depend upon any variable or parameter, but must be

nonsingular on generic points of {Km(u, ui, uj , uk, uij , ujk, uki, uijk) = 0 | m = 1, . . .M}.

We call the right hand side of Equation (4.7) a double zero expansion of Sijk.

In other words, we are describing a function Sijk which can be written as a sum of

products of pairs of the expressions {Km}m=1,···,M . When we impose the set of equations
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{Km = 0}m=1,···,M on the function Sijk, it “doubly” vanishes. Below we discuss how this

is useful for Lagrangian multiforms. When we impose {Km = 0}m=1,···,M , we simply need

that dm,m′ is well-defined; it is not a problem if dm,m′ = 0.

This definition applies to the example above, because Equation (4.3) is of the form

(4.7) with M = 2, K1 = O1, K2 = O2, d1,1 = d2,2 = 0, and

d1,2 =
1

(αi − αj)(αj − αk)(αk − αi)
. (4.8)

Proposition 14. If the action over an elementary cube Sijk of a Lagrangian 2-form Lij

has a double zero on a set of equations {Km = 0 | m = 1, . . .M}, then this set implies the

multiform Euler-Lagrange equations of Lij.

Proof. For any v ∈ {u, ui, uj , uk, uij , ujk, uki, uijk} we have

∂Sijk
∂v

=
∑

1≤m≤m′≤M

(
∂Km

∂v
Km′ +Km

∂Km′

∂v

)
, (4.9)

which vanishes on {Km = 0 | m = 1, . . .M}.

Below we will use Taylor expansions to derive double zero expansions. For example,

for the action around the cube Sijk of the cross Lagrangian 2-form we will later see that

it can be Taylor expanded in terms of T and
←→
T in the following way

Sijk =

∞∑
n=0

dn T
n −

∞∑
n=0

←→
d n
←→
T n . (4.10)

Since this is the cross Lagrangian 2-form, we have that ∇Sijk = 0 ⇐⇒ T,
←→
T = 0 and

T,
←→
T = 0 =⇒ Sijk = 0. Those defining Lagrangian multiform properties give us that the

zeroth and first order terms in the above Taylor expansion must vanish and thus

Sijk =
∞∑
n=2

dn T
n −

∞∑
n=2

←→
d n
←→
T n . (4.11)

This is a double zero expansion satisfying Definition 13.

4.4 Double Zero Expansions for ABS 2-Forms

In this subsection we derive double zero expansions for the action over an elementary cube

for each of the discrete 2-forms for arbitrary members of the ABS list. The double zero

expansions are constructed from Taylor expansions in one variable, where the variable
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represents either a quad polynomial Q, a tetrahedron polynomial T or an E polynomial.

In this Taylor expansion, the zeroth order term vanishes due to the closure relation and

the first order term vanishes as a consequence of the corner equations. Hence, each

discrete 2-form has a double zero expansion in terms of the polynomials associated with

its corner equations. These double zero expansions are manifestly symmetric under cyclic

permutation of the indices and under point inversion.

Cross-square 2-form. Recall that Qij = 0 implies that Lij = g(αi, αj) and that

∇Lij = 0 (see Proposition 10 and its proof). With that in mind, we consider a change of

variables from (u, ui, uj , uij) to (Qij , ui, uj , uij), so that we can easily perform a Taylor

expansions “about solutions”, i.e. about Qij = 0.

Since the quad polynomial Qij is multiaffine, we can write it as

Qij(u, ui, uj , uij , αi, αj) = r(ui, uj , uij , αi, αj)u+ s(ui, uj , uij , αi, αj), (4.12)

so it is possible to write u as a rational function of Qij , ui, uj , uij :

u = V (Qij , ui, uj , uij , αi, αj) :=
Qij − s(ui, uj , uij , αi, αj)

r(ui, uj , uij , αi, αj)
. (4.13)

In the case of the cross square 2-form, we can consider the Lagrangian on a single square,

apply this variable transformation, and then Taylor expand about Qij = 0

Lij = Lij (V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

=
∞∑
n=0

(
1

n!

∂n

∂Qij
nLij(V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

∣∣∣
Qij=0

)
Qnij . (4.14)

Now, the fact that for Qij = 0 there holds Lij = g(αi, αj) and ∇Lij = 0 implies that the

zeroth order term is the constant g(αi, αj) and that the first order term vanishes. Hence

we have:

Lij = g(αi, αj)+

∞∑
n=2

(
1

n!

∂n

∂Qij
nLij(V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

∣∣∣
Qij=0

)
Qnij .

(4.15)

This has a significant consequence for the action of Lij over an elementary cube,

Sijk = −Lij +
←→
L ij +⟲ijk . (4.16)

Indeed, we can substitute in the expansion (4.15), using the fact that g(αi, αj)−(· · ·) = 0,

to conclude the following:
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Proposition 15. The action of the Lagrangian 2-form Lij over an elementary cube has

a double zero expansion in terms of Qij, Qjk, Qki,
←→
Q ij,

←→
Q jk
←→
Qki:

Sijk = −
∞∑
n=2

(
1

n!

∂n

∂Qij
nLij(V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

∣∣∣
Qij=0

)
Qnij

− (· · ·) +⟲ijk .

(4.17)

Cross 2-form. Recall that T,
←→
T = 0 implies that Sijk = 0 (see Theorem 8) and that

∇Sijk = 0 (these are the corner equations). With that in mind, and with the inten-

tion of finding a series expansion about T,
←→
T = 0, we consider a change of variables

form (u, ui, uj , uk, uij , ujk, uki, uijk) to (T, ui, uj , uk, uij , ujk, uki,
←→
T ). Since the tetrahe-

dron polynomial T is multiaffine, it is possible to rewrite u in terms of T (and uijk in

terms of
←→
T ) in the following way for the entire ABS list:

u =W (T, uij , ujk, uki, αi, αj , αk) , (4.18a)

uijk =W (
←→
T , uk, ui, uj , αi, αj , αk) . (4.18b)

Here, W is a fraction with a numerator which is multiaffine in (T, uij , ujk, uki) and a

denominator which is multiaffine in (uij , ujk, uki). Now we consider the action on an

elementary cube of the cross 2-form, apply the variable transformation, and Taylor expand

about T = 0 and
←→
T = 0:

Sijk = −L (u, ui, uj , uij , αi, αj)− (· · ·) +⟲ijk

= −Λ(ui, uj , αi − αj) + Λ(W (T, uij , ujk, uki, αi, αj), uij , αi − αj)− (· · ·) +⟲ijk

= −Λ(ui, uj , αi − αj) +
∞∑
n=0

(
1

n!

∂n

∂Tn
Λ(W (T, uij , ujk, uki, αi, αj), uij , αi − αj)

∣∣∣
T=0

)
Tn

− (· · ·) +⟲ijk .

(4.19)

Now, the fact that T,
←→
T = 0 =⇒ Sijk,∇Sijk = 0 means that the zeroth and first order

terms must vanish (i.e. the sum starts at n = 2), so we have:

Proposition 16. The action of the Lagrangian 2-form Lij over an elementary cube has

a double zero expansion in terms of T,
←→
T

Sijk =

∞∑
n=2

(
1

n!

∂n

∂Tn
Λ(W,uij , αi − αj)

∣∣∣
T=0

)
Tn − (· · ·) +⟲ijk , (4.20)
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where W =W (T, uij , ujk, uki, αi, αj).

Triangle 2-form. We note that Sijk = 2Sijk+Sijk and that Sijk(ui, uj , uk, uij , ujk, uki)

does not depend on u or uijk. Thus, imposing the equations T,
←→
T = 0 has no effect on

Sijk: we can take T = 0 and
←→
T = 0 as the definition of u and uijk in terms of the variables

(ui, uj , uk, uij , ujk, uki) that occur in Sijk. Since T,
←→
T = 0 implies Sijk = 0, we have that

T,
←→
T = 0 =⇒ Sijk = 2Sijk. (4.21)

Now recall that E,
←→
E = 0 implies Sijk = 0 (see Theorem 8) and ∇Sijk = 0 (these are the

corner equations). With all of this in mind, we note that the polynomial identity (3.61)

between T , Qij and Eij implies that

T,
←→
T = 0 =⇒ Qij =

γ(αi, αj , αk)
∂T
∂u

Eij . (4.22)

Applying these observations to the double zero expansion of the action of the cross square

Lagrangian (4.17) we find:

Proposition 17. The action of the Lagrangian 2-form Lijk over an elementary cube has

a double zero expansion in terms of Eij, Ejk, Eki,
←→
E ij,

←→
E jk,

←→
E ki

Sijk = −
1

2

∞∑
n=2

∂n

∂Qij
nLij(V, ui, uj , uij , αi, αj)

∣∣∣
Qij=0

n!
(
∂T
∂u

1
γ(αi,αj ,αk)

)n Enij − (· · ·) +⟲ijk , (4.23)

where V (Qij , ui, uj , uij , αi, αj).

Trident 2-form. Recall that Q,
←→
Q = 0 implies Sijk = 0 (see Theorem 8) and ∇Sijk = 0,

and that

Sijk =
1

2
Sijk +

1

2
Sijk . (4.24)

From the three-leg equation (3.7a) and its point inversion, we can derive the following

relations between the multiaffine polynomials T in terms of Qij , Qjk and Qki

c T = dij Qij + djkQjk + dkiQki , (4.25a)

←→c
←→
T =

←→
d ij
←→
Q ij +

←→
d jk
←→
Q jk +

←→
d ki
←→
Qki , (4.25b)

where d and cij are polynomials. We can apply these observations to the double zero

expansion of the cross 2-form (4.20) and cross-square 2-form (4.17) and conclude the

following:
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Proposition 18. The action of Lagrangian 2-form Lij over a an elementary cube has a

double zero expansion in terms of Qij, Qjk, Qki,
←→
Q ij,

←→
Q jk
←→
Qki

Sijk =
1

2

∞∑
n=2

(
1

n!

∂n

∂Tn
Λ(W,uij , αi − αj)

∣∣∣
T=0

)
1

cn
(dij Qij + djkQjk + dkiQki)

n

− 1

2

∞∑
n=2

(
1

n!

∂n

∂Qij
nLij(V, ui, uj , uij , αi, αj)

∣∣∣
Qij=0

)
Qnij − (· · ·) +⟲ijk ,

(4.26)

where W =W (T, uij , ujk, uki, αi, αj) and V = V (Qij , ui, uj , uij , αi, αj).

4.4.1 Double Zero Expansions in terms of Octahedron Equations

Some of the double zero expansions above can be written in terms of octahedron polyno-

mials. For Q4 and A2 we can rewrite the expansion (4.23) using Equation (3.64). With

the cyclic symmetry and point inversion symmetry of Ω1 and Ω2, we can conclude that:

Proposition 19. For Q4 and A2, a double zero expansion for the cube action of the

triangle 2-form in terms of Ω1, Ω2 is given by

Sijk = −
1

2

∞∑
n=2

∂n

∂Qij
nLij(V, ui, uj , uij , αi, αj)

∣∣∣
Qij=0

n!

(
∂T

∂u

µ(ui, uj , ujk, uki, αi, αj , αk)

γ(αi, αj , αk)

)n (∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1

)n

− (· · ·) +⟲ijk .

(4.27)

where V = V (Qij , ui, uj , uij , αi, αj).

For the rest of the ABS list we can rewrite the expansion (4.23) using Equation (3.65)

and can conclude that:

Proposition 20. For Q1, Q2, Q3, H1, H2, H3 and A1, a double zero expansion for the

cube action of the triangle 2-form in terms of Ω1, Ω2 is given by

Sijk = −
1

2

∞∑
n=2

∂n

∂Qij
nLij(V, ui, uj , uij , αi, αj)

∣∣∣
Qij=0

n!

(
∂T

∂u

1

γ(αi, αj , αk)
g1

(
∂Ω1

∂uij
− ∂Ω1

∂uk

))n (∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1

)n

− (· · ·) +⟲ijk ,

(4.28)

where V = V (Qij , ui, uj , uij , αi, αj).

These propositions give a possible variational interpretation to the octahedron equa-

tions. The double zero expansions imply that the equations Ω1 = 0 and Ω2 = 0 are

sufficient conditions for criticality, hence they imply the corner equations.
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4.5 Example: Double Zero Expansions for H1

In this subsection we show that the general construction described above leads to succinct

double zero expansions for the actions over the cube of each of the discrete 2-forms

associated with H1. For this example, we will show by explicit computation that the

zeroth and first order terms vanish in the Taylor expansions.

Cross-square Lagrangian. Solving the quad equation Qij = 0 for u, with Qij given

by Equation (3.13), we find a change of variables expressing u in terms of the quad

polynomial Qij :

u =
αi − αj +Qij

ui − uj
+ uij . (4.29)

Now we apply this to a single cross-square Lagrangian and Taylor expand in Qij

Lij = uui + ujuij − uuj − uiuij − (αi − αj) log(u− uij)− (αi − αj) log(ui − uj) ,

= (u− uij)(ui − uj)− (αi − αj) log ((u− uij)(ui − uj)) ,

= αi − αj +Qij − (αi − αj) log(αi − αj +Qij)

= (αi − αj)(1− log(αi − αj))−
∞∑
n=2

Qnij
n(αj − αi)n−1

. (4.30)

We find that the first order term vanishes as expected, but the zeroth order term does

not. It depends only on the lattice parameters, in line with Proposition 10. (These lattice

parameter terms could be removed by redefining the leg terms of Lagrangians.) When we

consider the action around the cube, the zeroth order contributions cancel and we find

Sij =
←→
Lij − Lij +⟲ijk

=

∞∑
n=2

Qnij
n(αj − αi)n−1

− (· · ·) +⟲ijk . (4.31)

Equation (4.31) is a double zero expansion for the action around the cube of the cross

square 2-form associated with H1 in terms of Qij ,Qjk,Qki,
←→
Q ij ,

←→
Q jk,
←→
Qki.

Cross Lagrangian. In order to derive a double zero expansion for the cross 2-form

associated with H1, we consider a variable transformation for u in terms of T , obtained

from Equation (3.17),

u =
T − ((αi − αj)ujkuki +⟲ijk)

((αi − αj)uij +⟲ijk)
. (4.32)
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From this we obtain

u− uij =
T + (αi − αj)(uij − ujk)(uki − uij)

((αi − αj)uij +⟲ijk)
. (4.33)

We have an analogous transformation for uijk in terms of
←→
T . Now we apply this to the

action around the cube of the cross 2-form and Taylor expand in T and
←→
T . Using the

point inversion symmetry we find

Sijk = −Lij +
←→
L ij +⟲ijk

= −(αi − αj) log(ui − uj) + (αi − αj) log(u− uij)− (· · ·) +⟲ijk

= (αi − αj) log(ujk − uki) + (αi − αj) log(u− uij)− (· · ·) +⟲ijk

= (αi − αj) log((u− uij)(ujk − uki))− (· · ·) +⟲ijk . (4.34)

Now we substitute u using Equation (4.33):

Sijk = (αi − αj) log
(
T (ujk − uki) + (αi − αj)(uij − ujk)(uki − uij)(ujk − uki)

((αi − αj)uij +⟲ijk)

)
− (· · ·) +⟲ijk .

(4.35)

Then we observe that

(αi − αj) log((uij − ujk)(uki − uij)(ujk − uki)) +⟲ijk = 0 ,

(αi − αj) log((αi − αj)uij +⟲ijk) +⟲ijk = 0 , (4.36)

because the logarithms are invariant under cyclic permutations of i, j, k, so we find

Sijk = (αi − αj) log
(

T

(uij − ujk)(uki − uij)
+ (αi − αj)

)
− (· · ·) +⟲ijk

= −
∞∑
n=2

Tn

n(αi − αj)n−1(uij − ujk)n(uij − uki)n
− (· · ·) +⟲ijk . (4.37)

Note that the zeroth and first order terms vanish. Hence, Equation (4.37) is a double

zero expansion in terms of T and
←→
T .

Triangle Lagrangian. In order to derive a double zero expansion for the action on the

elementary cube of the triangle 2-form, we note the following relation for H1:

T = 0 =⇒ Qij =
(αi − αj)Eij

(αi(uij − uki) +⟲ijk)
. (4.38)
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T,
←→
T = 0 =⇒ Sijk = 0, so we deduce form Equations (3.44) and (3.50) that

T,
←→
T = 0 =⇒ Sijk =

1

2
Sijk −

1

2
Sijk =

1

2
Sijk . (4.39)

Since Sijk(ui, uj , uk, uij , uji, uki) does not depend on u or uijk, we can assume that T = 0

and
←→
T = 0, without affecting the action. Thus, we can write the cube action for the

triangle 2-form as

Sijk =
1

2

∞∑
n=2

1

n(αj − αi)n−1

(
(αi − αj)Eij

(αi(uij − uki) +⟲ijk)

)n
− (· · ·) +⟲ijk

=
1

2

∞∑
n=2

(αj − αi)(−1)n

n (αi(uij − uki) +⟲ijk)
nE

n
ij − (· · ·) +⟲ijk . (4.40)

Equation (4.40) is a double zero expansion for the triangle 2-form in terms of Ei, Ej , Ek,
←→
E i,
←→
E j ,
←→
E k.

We can use the identities (3.65), where g1 = 1 for H1, to rewrite this in terms of Ω1

and Ω2:

Sijk =
1

2

∞∑
n=2

(αj − αi)(−1)n

n (αi(uij − uki) +⟲ijk)
n

(
∂Ω1
∂uk

Ω2 − ∂Ω2
∂uk

Ω1

∂Ω1
∂uij
− ∂Ω1

∂uk

)n
− (· · ·) +⟲ijk . (4.41)

Equation (4.41) is a double zero expansion for the triangle 2-form in terms of the

octahedron polynomials.

Trident Lagrangian. To derive the double zero expansion for action of the trident 2-

form, we consider equation (4.25), which shows that cyclic combinations of quad equations

lead to the tetrahedron equation. For H1, this can be written explicitly as

T = −(u− ujk)(u− uki)Qij − (u− uki)(u− uij)Qjk − (u− uij)(u− ujk)Qki. (4.42)

Using Equation (3.44), we can write the action on an elementary cube of the trident

2-form as

Sijk =
1

2
Sijk +

1

2
Sijk

=
1

2

∞∑
n=2

(
Qnij

n(αj − αi)n−1
− Tn

n(αi − αj)n−1(uij − ujk)n(uij − uki)n

)
− (· · ·) +⟲ijk

=
1

2

∞∑
n=2

(
Qnij

n(αj − αi)n−1
−

(−Qij(u− ujk)(u− uki) +⟲ijk)
n

n(αi − αj)n−1(uij − ujk)n(uij − uki)n

)
− (· · ·) +⟲ijk .

(4.43)
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Equation (4.43) a double zero expansion for the cube action of the trident 2-form in terms

of the quad polynomials Qij ,Qjk,Qki,
←→
Q ij ,
←→
Q jk,
←→
Qki.

4.6 Example: Double Zero Expansions for Q1δ=0

In this subsection, we apply the construction above to Q1δ=0 and note down explicit double

zero expansions for three of the 2-forms in terms of their multiaffine corner polynomials.

The cube action of the Q1δ=0 cross square 2-form can be written as a double zero

expansion in terms of Qij ,Qjk,Qki,Qij , Qjk,Qki

Sijk =
∞∑
n=2

(
1

nαn−1
i (ui − uij)n(ui − uj)n

− 1

n(αi − αj)n−1(ui − uij)n(−uj + uij)n

− 1

nαn−1
j (ui − uj)n(uj − uij)n

)
Qnij − (· · ·) +⟲ijk . (4.44)

On the level of polynomials, if we can impose T, T = 0 then we can rewrite Qij in

terms of Eij in the following way

T, T = 0 =⇒ Qij =
(αj − αi)Eij

αk(αi(uki − uij) +⟲ijk)
. (4.45)

We can use Sijk =
1
2Sijk +

1
2Sijk and use the fact that Sijk is independent of u to safely

apply T, T = 0. This leads to a double zero expansion of the cube action of the triangle

2-form in terms of Eij ,Ejk,Eki,Eij , Ejk,Eki

Sijk =
1

2

∞∑
n=2

(
1

nαn−1
i (ui − uij)n(ui − uj)n

− 1

n(αi − αj)n−1(ui − uij)n(−uj + uij)n

− 1

nαn−1
j (ui − uj)n(uj − uij)n

)
(αj − αi)nEnij

αnk(αi(uki − uij) +⟲ijk)n
− (· · ·) +⟲ijk .

(4.46)

Recall that all tetrahedron equations associated with ABS quad equations are of

type Q. The tetrahedron equation for this example of Q1δ=0 is the same as it is for H1.

Identical to H1, the cube action of the Q1δ=0 cross 2-form can be written as a double

zero expansion in terms of T , T

Sijk = −
∞∑
n=2

Tn

n(αi − αj)n−1(uij − ujk)n(uij − uki)n
− (· · ·) +⟲ijk . (4.47)

Next we consider some of these double zero constructions for another member of the
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ABS list.

4.7 Example: Double Zero Expansions for H2

In this subsection, we apply the construction to the H2 quad equation. We simply consider

the H2 cross square 2-form and H2 cross 2-form, for brevity.

This is a double zero expansion for the cube action of the H2 cross square 2-form in

terms of Qij ,Qjk,Qki,Qij , Qjk,Qki

Sijk =
∞∑
n=2

1

αi − αj − ui + uj

(
1

n!n(αj − αi)n(αj + ui + uij)n
− 1

n!n(αj − αi)n(αi + uj + uij)n

+
1

n! (−αi + αj − ui + uj)n(αi + uj + uij)n

− 1

n! (−αi + αj − ui + uj)n(αj + ui + uij)n

)
Qnij − (· · ·) +⟲ijk .

(4.48)

This is a double zero expansion for the cube action of the H2 cross 2-form in terms of

T, T

Sijk =
∞∑
n=2

1

(αi(uki − uij) +⟲ijk)

(
1

n! (αi − αj)n(αj − αk + uij − uki)n(αi − αk − uij + ujk)n

− 1

n! (αi − αj)n(αj − αk − uij + uki)n(αi − αk + uij − ujk)n

)
Tn − (· · ·) +⟲ijk .

(4.49)

4.8 Chapter Conclusions

We formulated the double-zero property, which has recently seen a lot of emphasis in

the continuous and semi-discrete settings, on the discrete level. We showed that the

exterior derivative of the discrete 2-forms (the action around the cube) for the ABS

quad equations can be written as double zero expansions of their multiaffine corner

equations. We emphasised that the double zero expansions follows from the property

∇Sijk = 0 =⇒ Sijk = 0, which defines a discrete Lagrangian 2-form.

The Trident and Cross square Lagrangian 2-forms admit double zero expansions

in terms of quad equations, emphasising that they encapsulate the quad equations

variationally. The Cross Lagrangian 2-form also admits double zero expansions in terms

of tetrahedron equations, emphasising that it encapsulates the tetrahedron equations
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variationally. The octahedron equations had previously only been considered on the

level of the equations. Now we have written double zero expansions of discrete 2-forms

(particularly the triangle 2-form) in terms of the octahedron equations, emphasising how

they are a minimal and symmetric set of multiaffine equations.

This reinforces the universality of the double zero property for all Lagrangian mul-

tiforms, beyond the examples considered here. These double zero expansions set us up

for investigation of conservation laws [43, 53] and variational symmetries [48, 54] in this

discrete quadrilateral setting.
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Chapter 5

Periodically Reducing Quad

2-Forms to Discrete 1-Forms

In this Chapter, we develop a novel framework to carry out periodic reductions of discrete

Lagrangian 2-forms to discrete Lagrangian 1-forms. We reinforce the phenomenon that

integrable properties, including the Lagrangian multiform structure, are preserved under

periodic reductions [23].

This framework applies to the discrete Lagrangian 2-forms outlined in Chapter 3,

such that we elevate periodic reductions of quad equations to the Lagrangian multiform

level. Integrable ordinary difference equations have been derived from periodic reductions

of the lattice potential Korteweg-de Vries (H1) equation in [15, 24]. Furthermore in

[26], periodic reductions were applied to the multidimensionally-consistent linear quad

equation (which admits a discrete Lagrangian 2-form). This periodic reduction on the

level of the equations produced a system of multicomponent ordinary difference equations.

Then reduced variables were applied to derive a commuting system of discrete harmonic

oscillators. A discrete Lagrangian 1-form was derived and then quantised in the sense of

path integrals. The goal of our framework is to derive more general discrete Lagrangian

1-forms, with multiform Euler-Lagrange equations that are non-linear and richer than a

system of harmonic oscillator equations. Furthermore, with future work, we would like

these more general Lagrangian 1-forms to be quantisable in the sense of path integrals, in

order to generalise the work of [26].

We note that there is a previous example of a discrete Lagrangian 2-form being

periodically reduced to a discrete Lagrangian 1-form [12], however its periodicity is in one

direction and not on a staircase. Furthermore, our framework offers a unique picture of
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the periodic reduction on the action involving a four dimensional periodic quad surface,

which is a novel and promising perspective.

Our starting points are the discrete Lagrangian 2-forms discussed so far, but gener-

alised to act on quad surfaces in a four dimensional lattice n = (ni, nj , nk, nl) ∈ Z4. Four

dimensions will allow us to consider a periodic staircase in the ni and nj directions and

evolution perpendicular to this plane, in the nk or nl directions. Even though this higher

dimensional picture is more abstract, we will see that isolating the periodic reduction

from the evolution leads to a useful geometric picture. In the next section we outline

how discrete Lagrangian 2-forms can be generalised to act on quad surfaces in a four

dimensional lattice.

5.1 Discrete Lagrangian 2-forms in Z4

A useful feature of discrete Lagrangian 2-forms (Definition 2) which encapsulate

multidimensionally-consistent equations, is that the formulation immediately generalises

from 3-dimensional lattices to higher-dimensional lattices [28]. For the framework in this

Chapter, it will be useful to consider a field u(ni, nj , nk, nl) over the four dimensional

lattice Z4. We have (2-dimensional) quad surfaces σ made from oriented elementary

squares (σij , σik, σil, σjk, σjl, σkl) in the four dimensional lattice. The action over quad

surfaces is defined analogously to (2.26)

S2[u, σ] =
∑

σij(n)∈σ

Lij (5.1)

We introduce the subscript 2 to specify that this action corresponds to a discrete La-

grangian 2-form (and not a discrete Lagrangian 1-form). As we are now in Z4, there are

four elementary cubes to consider (cubeijk, cubejkl, cubekli, and cubelij). The statements

in Definition 2 apply to each of these cubes. We also introduce the following notation,

such that on cubeijk we have

∂S2[u, cubeijk]

∂u
= 0

∂S2[u, cubeijk]

∂TiTjTku
= 0

∂S2[u, cubeijk]

∂Tiu
= 0

∂S2[u, cubeijk]

∂TjTku
= 0

∂S2[u, cubeijk]

∂Tju
= 0

∂S2[u, cubeijk]

∂TkTiu
= 0

∂S2[u, cubeijk]

∂Tku
= 0

∂S2[u, cubeijk]

∂TiTju
= 0


=⇒ S2[u, cubeijk] = 0 .

(5.2)
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We have the same statement for: cubejkl, cubekli, and cubelij . On solutions to the

multiform Euler-Lagrange equations, the closure relation holds. In other words, the corner

equations of the four cubes (cubeijk, cubejkl, cubekli, and cubelij), define the multiform

Euler-Lagrange equations and on solutions to those equations the action on each of the

cubes vanish.

Our framework produces weak discrete Lagrangian 1-forms which act on discrete

paths. Thus we outline what discrete Lagrangian 1-forms are in the next section, with

two relevant definitions.

5.2 Discrete Lagrangian 1-Forms

Now we introduce an N -component field w(n) = (w1(n), · · · , wN (n)) on the 2-dimensional

lattice n = (nk, nl) ∈ Z2. It is sufficient to consider Z2, then it is straightforward to

generalise to a higher dimensional quadrilateral lattice. Later when we are on solutions,

this field will satisfy (integrable) ordinary difference equations separately in the nk and

nl directions. For now, we impose nothing.

We consider directed discrete edges at points n ∈ Z2 defined by

Γ±k(n) := (n,n± ek) , (5.3a)

Γ±l(n) := (n,n± el) , (5.3b)

A discrete path Γ is a connected set of these discrete edges, depicted in Figure 5.1 and

such that Γ±k(n) ∈ Γ. We define an action over discrete paths Γ by

S1[w,Γ] =
∑

Γ±k(n)∈Γ

±Lk . (5.4)

Here, the sum
∑

Γ±k(n)∈Γ implicitly sums over all discrete edges in the nk and nl directions

in the discrete path Γ. Furthermore, each discrete edge is associated with a function at a

point in the lattice, defined as:

Lk : (w(n), w(n+ ek)) 7→ C , (5.5a)

Ll : (w(n), w(n+ el)) 7→ C . (5.5b)

Note that we do not a priori define these as Lagrangians, as that follows from the definition

of a Lagrangian multiform. Also note that each directed edge in the discrete path is

signed and is associated with a signed Lagrangian in (5.4).
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(a) (b)

Figure 5.1: Two discrete paths Γ and Γ + squarekl in the two dimensional lattice, which
differ by a local variation of adding a square.

In this setting, let us consider the full definition of a Lagrangian multiform from

Section 2.7. We would like this action over discrete paths to satisfy the following:

δS1[w,Γ]

δw
= 0 =⇒ δS1[w,Γ]

δΓ
= 0 . (5.6)

This is that criticality of the action with respect to local variations of the field produces

multiform Euler-Lagrange equations, then on solutions to those equations, the action is

critical with respect to local variations of the path. Now we will define both types of

criticality for discrete Lagrangian 1-forms.

Similar to discrete Lagrangian 2-form with cubes, it is sufficient to just consider the

behaviour of the action on elementary squares, which are defined by

squarekl = {Γk, TkΓl, TlΓ−k, Γ−l} . (5.7)

To see this, let us first consider Figure 5.1. For each of these, consider a discrete path

with some fixed end points and simply vary it locally by popping up a square. If the

action (5.4) is critical with respect to local variations of the path, then the action should

not change by the addition or subtraction of an elementary square. The action around

the closed path of the elementary square is

S1[w, squarekl] = Lk + TkLl − TlLk − Ll . (5.8)

We define criticality of the action with respect to local variations of the path to be
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equivalent to the vanishing of the action on the elementary square

δS1[w,Γ]

δΓ
= 0 ⇐⇒ S1[w, squarekl] = 0 . (5.9)

Now we consider criticality of the action with respect to local variations of the field.

We consider a field w : Z2 7→ CN and a discrete path Γ with some boundary. We denote

the internal lattice points of the discrete path as V (Γ) ⊂ Z2. Now we say that the action

is critical with respect to local variations of the field if and only if for generic discrete

paths Γ the partial derivatives vanish at every internal point:

δS1[w,Γ]

δw
= 0 ⇐⇒ ∂S1[w,Γ]

∂u(n)
= 0 ∀ n ∈ V (Γ) . (5.10)

Since the elementary square is a discrete path itself, the derivatives at every internal point

(every corner) of the action around the square must vanish:

δS1[w,Γ]

δw
= 0 =⇒ ∇S1[w, squarekl] = 0 . (5.11)

Here we use a slight abuse of notation to denote the four corner derivatives of the action

around the square as

∇S1[w, squarekl] =
(
∂

∂w
,

∂

∂Tkw
,

∂

∂Tlw
,

∂

∂TkTlw

)
S1[w, squarekl] . (5.12)

Every internal point of a path is either a corner (like the corner of a square) or a straight

segment. We can write any straight segment as the combination of two corners of the

square:
∂

∂Tkw
(Lk + TkLk) =

∂

∂Tkw
(Lk + TkLl − TkLl + TkLk)

=
∂S1[w, squarekl]

∂Tkw
+
∂S1[w, Tksquarekl]

∂Tkw
.

(5.13)

Now, since our Lagrangians are autonomous, it follows that criticality of the action with

respect to local variations of the field for a generic discrete path is equivalent to criticality

of the action on the elementary square:

δS1[w,Γ]

δw
= 0 ⇐⇒ ∇S1[w,Γ] = 0 . (5.14)

With (5.6), (5.9) and (5.14), we can define the following

Definition 21. An action over discrete paths (5.4) defines a discrete Lagrangian

1-form if it satisfies the following property. When the field w : Z2 7→ CN satisfies the
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multiform Euler-Lagrange equations, the closure relation holds:

∇S1[w, squarekl] = 0 =⇒ S1[w, squarekl] = 0 . (5.15)

However, for our framework we also need to consider weak Lagrangian multiforms,

defined analogously to Definition 1, as follows:

Definition 22. An action over discrete paths (5.4) and ordinary difference equations

K1(w), · · · ,KM (w) = 0 together define a weak discrete Lagrangian 1-form, if the

following property is satisfied. When the field w : Z2 7→ CN satisfies the given equations,

both the closure relation and the multiform Euler-Lagrange equations hold:

K1(w), · · · , KM (w) = 0 =⇒


S1[w, squarekl] = 0

∇S1[w, squarekl] = 0 .
(5.16)

5.3 Example: Periodically Reducing Lagrangian 2-Form for

H1 Quad Equation

5.3.1 The Staircase Z and Periodic Map θZ

In this section, we introduce our periodic reduction framework with an example, to avoid

unnecessarily abstract notation. Later we will discuss how this generalises. We will

consider a period N = 4 staircase and a discrete Lagrangian 2-form associated with the

H1 equation.

First of all we introduce an example of a finite staircase Z ⊂ Z2 ⊂ Z4 made from

N = 4 elementary steps in the ni and nj directions, depicted in Figure 5.2, that is

Z = {(ni, nj , nk, nl), (ni + 1, nj , nk, nl), (ni + 1, nj + 1, nk, nl),

(ni + 2, nj + 1, nk, nl), (ni + 2, nj + 2, nk, nl)} ⊂ Z4 .
(5.17)

Figure 5.2: A finite staircase in Z in the four dimensional lattice, made from N = 4 steps
in the ni and nj directions.

Now we consider our example staircase with N = 4, such that there are 4 components
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w = (w1, w2, w3, w4). With this we introduce a periodic map θZ : u 7→ w which maps

to a field where Z is periodic staircase. The field w allows for evolution of the periodic

staircase in the nk and nl directions. The periodic map θZ is defined in the following way,

simply as a relabelling:

w1 = θZ(u) w2 = θZ(Ti u) w3 = θZ(TjTi u)

w4 = θZ(TjT
2
i u) w1 = θZ(T

2
j T

2
i u)

Tk w1 = θZ(Tk u) Tk w2 = θZ(TkTi u) Tk w3 = θZ(TkTjTi u)

Tk w4 = θZ(TkTjT
2
i u) Tk w1 = θZ(TkT

2
j T

2
i u)

(5.18)

Figure 5.3 depicts the image of this mapping.

Figure 5.3: This shows the periodic variables w = (w1, w2, w3, w4) and them shifted in
the nk direction, Tkw = (Tkw1, Tkw2, Tkw3, Tkw4).

Our framework is fully on the level of the Lagrangians. However, it is useful to first

understand the periodic reduction and the map θZ on the level of the equations. We apply

this periodic reduction to the H1 quad equations. With multidimensional-consistency we

can impose H1 quad equations throughout the Z4 lattice. There are six possible pairs of

directions in Z4, thus the following six H1 quad equations define evolution of the field u

in the ni nj nk and nl direction

Qij = (u− TiTju)(Tiu− Tju)− αi + αj = 0 , (5.19a)

Qjk = (u− TjTku)(Tju− Tku)− αj + αk = 0 , (5.19b)

Qki = (u− TkTiu)(Tku− Tiu)− αk + αi = 0 , (5.19c)

Qkl = (u− TkTlu)(Tku− Tlu)− αk + αl = 0 , (5.19d)

Qli = (u− TlTiu)(Tlu− Tiu)− αl + αi = 0 , (5.19e)

Qjl = (u− TjTlu)(Tju− Tlu)− αj + αl = 0 . (5.19f)
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Now we consider periodicity along the staircase Z and evolution of this staircase. Now

we consider an example of applying the periodic staircase and only consider shifted copies

of two of these equations ((5.19b) or (5.19c)). We consider periodic initial conditions

w = (w1, w2, w3, w4) along Z and evolution in the nk direction. This only involves

applying periodicity to shifted copies of two H1 quad equations ((5.19b) or (5.19c)). The

evolution (w1, w2, w3, w4) 7→ Tk(w1, w2, w3, w4) is defined by the following four equations

θZ(Qki) = (w1 − Tkw2)(Tkw1 − w2)− αk + αi = 0 , (5.20a)

θZ(TiQjk) = (w2 − Tkw3)(w3 − Tkw2)− αj + αk = 0 , (5.20b)

θZ(TjTiQki) = (w3 − Tkw4)(Tkw3 − w4)− αk + αi = 0 , (5.20c)

θZ(TiTjTiQjk) = (w4 − Tkw1)(w1 − Tkw4)− αj + αk = 0 . (5.20d)

Let us show more explicitly how one of these works, emphasising that θZ is simply a

relabelling map that commutes

θZ(Ti(Qjk(u, uj , ujk, uk))) = Qjk(θZ(ui), θZ(uij), θZ(uijk), θZ(uki))

= Qjk(w2, w3, Tkw3, Tkw2)

= (w2 − Tkw3)(w3 − Tkw2)− αj + αk .

(5.21)

Similarly we can define evolution of the periodic staircase in the nl direction,

(w1, w2, w3, w4) 7→ Tl(w1, w2, w3, w4),

θZ(Qli) = (w1 − Tlw2)(Tlw1 − w2)− αl + αi = 0 , (5.22a)

θZ(TiQjl) = (w2 − Tlw3)(w3 − Tlw2)− αj + αl = 0 , (5.22b)

θZ(TjTiQli) = (w3 − Tlw4)(Tlw3 − w4)− αl + αi = 0 , (5.22c)

θZ(TiTjTiQjk) = (w4 − Tlw1)(w1 − Tlw4)− αj + αl = 0 . (5.22d)

5.3.2 Periodic Quad Surfaces and a 1-Form Action

Now that we understand the effect of θZ on the level of the equations, we no longer

impose any equations on our fields. We now consider things on the level of Lagrangians

and actions.

We consider the discrete Lagrangian 2-form defined by the H1 trident Lagrangians

Lij = uui − uuj − (αi − αj) log(u− uij) (5.23)
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We have the action on quad surfaces σ

S2[u, σ] =
∑

σij(n)∈σ

Lij (5.24)

And for any three pairs of directions (any four of the possible elementary cubes): the

corner equations of the action around the elementary cube are the quad equations

∂S2[u, cubeijk]

∂u
= 0

∂S2[u, cubeijk]

∂TiTjTku
= 0

∂S2[u, cubeijk]

∂Tiu
= 0

∂S2[u, cubeijk]

∂TjTku
= 0

∂S2[u, cubeijk]

∂Tju
= 0

∂S2[u, cubeijk]

∂TkTiu
= 0

∂S2[u, cubeijk]

∂Tku
= 0

∂S2[u, cubeijk]

∂TiTju
= 0


⇐⇒ Qij , Qjk, Qki,

←→
Q ij ,
←→
Q jk,
←→
Qki = 0 .

(5.25)

Then on solutions to the quad equations, the corresponding closure relation holds

Qij , Qjk, Qki,
←→
Q ij ,
←→
Q jk,
←→
Qki = 0 =⇒ S2[u, cubeijk] = 0 . (5.26)

Figure 5.4: A 2-dimensional quad surface σ = Γ × Z in 4D, represented in 3D. It is made
from a periodic staircase Z ⊂ Z2 (in the nk and nl direction) and an oriented discrete
path Γ (in the ni and nj direction).

A key ingredient is to consider specific quad surfaces of the form σ = Z × Γ made

from the finite staircase Z and a discrete path Γ. Note that Z and Γ live in perpendicular

planes, such that σ = Z × Γ is a 2-dimensional quad surface in the four dimensional

square lattice. For any discrete Lagrangian 2-form, the action

S2[u,Γ× Z] (5.27)

is well defined and criticality with respect to variations of the field implies criticality with

respect to variations of the surface.
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Now we can define an action over discrete paths Γ (in the ni and nj direction), by

applying the periodic map θZ to this action

S1[w,Γ] = θZ (S2[u, Z × Γ]) . (5.28)

The map θZ deforms the finite quad surface Z ×Γ into a periodic cylindrical surface. The

action on left contains the field value along Z inside the components of w and thus it is a

well-defined action on the discrete path Γ.

In order to consider the Lagrangian 1-form aspects of this action, we first consider the

contributions from the quad surface σ = Z × Γ. Visually we can see that is a collection of

oriented squares. For this example, there are four oriented squares in each row and five

rows, which we can explicitly write as

Z × Γ = { σik, Tiσjk, TjTiσik, TjT
2
i σjk,

Tkσil, TkTiσjl, TkTjTiσil, TkTjT
2
i σjl,

TlTkσil, TlTkTiσjl, TlTkTjTiσil, TlTkTjT
2
i σjl,

T 2
l Tkσik, T 2

l TkTiσjk, T 2
l TkTjTiσik, T 2

l TkTjT
2
i σjk,

T 2
l T

2
kσik, T 2

l T
2
kTiσjk, T 2

l T
2
kTjTiσik, T 2

l T
2
kTjT

2
i σjk } .

(5.29)

We can write the action explicitly using the Lagrangian 2-form and the periodic map,

which for this example is

S1[w,Γ] = θZ

(
Lik + TiLjk + TjTiLik + TjT

2
i Ljk +

TkLil + TkTiLjl + TkTjTiLil + TkTjT
2
i Ljl +

TlTkLil + TlTkTiLjl + TlTkTjTiLil + TlTkTjT
2
i Ljl +

T 2
l TkLik + T 2

l TkTiLjk + T 2
l TkTjTiLik + T 2

l TkTjT
2
i Ljk +

T 2
l T

2
kLik + T 2

l T
2
kTiLjk + T 2

l T
2
kTjTiLik + T 2

l T
2
kTjT

2
i Ljk

)
.

(5.30)

Next we can identify that rows of this sum correspond to one step in the discrete
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Figure 5.5: The function Lk made from summing periodically reduced 2-form Lagrangians
along a row (parallel to the staircase Z). This function is associated to a single step in
the nk direction.

path. This function is depicted in Figure 5.5 and defined as

Lk = Lk(w, Tkw)

:= θZ(Lik + TiLjk + TjTiLik + TjT
2
i Ljk) ,

= w1w2 − w1Tkw1 − (αi − αk) log(w1 − Tkw2)

+ w2w3 − w2Tkw2 − (αj − αk) log(w2 − Tkw3)

+ w3w4 − w3Tkw3 − (αi − αk) log(w3 − Tkw3)

+ w4w1 − w4Tkw4 − (αi − αk) log(w4 − Tkw1) ,

(5.31)

We can also identify rows in the nl and define the following function

Ll = Ll(w, Tlw)

:= θZ(Lil + TiLjl + TjTiLil + TjT
2
i Ljl) .

= w1w2 − w1Tlw1 − (αi − αl) log(w1 − Tlw2)

+ w2w3 − w2Tlw2 − (αj − αl) log(w2 − Tlw3)

+ w3w4 − w3Tlw3 − (αi − αl) log(w3 − Tlw3)

+ w4w1 − w4Tlw4 − (αi − αl) log(w4 − Tlw1) .

(5.32)

With this identification the action (5.30) over the discrete path Γ can be written in the

form of a Lagrangian 1-form, that is

S1[w,Γ] = Lk + TkLl + TlTkLl + T 2
l TkLk + T 2

l T
2
kLk . (5.33)
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We can easily generalise this to a generic path Γ

S1[w,Γ] =
∑

Γ±k(n)∈Γ

±Lk . (5.34)

Next we consider in what sense this action corresponds to the definition of a Lagrangian

1-form.

5.3.3 Deriving a Weak Lagrangian 1-Form

Let us consider the path around an elementary square depicted in Figure 5.6

S1[w, squarekl] = θZ

(
S2[u, cubeikl + Ticubejkl + TjTicubeikl + TjT

2
i cubejkl ]

)
. (5.35)

Let us also consider derivatives, for this example there are 16 = 4× 4 corner equations for

the 4 corners and 4 components. They are all of the following form, linear combinations

of Lagrangian 2-form corner equations with the periodic map applied,

∂S1[w, squarekl]

∂Tkw1
= θZ

( ∂

∂Tku
S2[u, cubeikl] +

∂

∂Tku
S2[u, TjT

2
i cubeikl]

)
. (5.36)

Figure 5.6: The path around a square corresponds to a periodic quad surface built out of
cubes.

Recall that we have (5.25) for any cube, including the four involved here: cubeikl,

Ticubejkl, TjTicubeikl and TjT
2
i cubejkl. Thus the periodic reductions of the quad equa-

tions throughout the lattice implies the vanishing of the 16 = 4× 4 corner equations of

this 1-form action:

θZ(Qij), θZ(Qjk), θZ(Qki), θZ(Qkl), θZ(Qil), θZ(Qjl) = 0 =⇒ ∇S1[w, squarekl] = 0 .

(5.37)

Similarly recall that we have (5.26) for any cube, including the four involved here:
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cubeikl, Ticubejkl, TjTicubeikl and TjT
2
i cubejkl. Thus the periodic reductions of the quad

equations throughout the lattice implies that the closure relation holds:

θZ(Qij), θZ(Qjk), θZ(Qki), θZ(Qkl), θZ(Qil), θZ(Qjl) = 0 =⇒ S1[w, squarekl] = 0 .

(5.38)

Lemma 23. Consider an action (5.34) over discrete paths Γ with 1-form Lagrangians

(5.31) and (5.32). This satisfies the definition of a weak discrete Lagrangian 1-form

(Definition 22), where the given equations are the periodically reduced (θZ) H1 quad

equations.

Proof. With the staircase Z and map θZ , the periodic reduction of the multidimensionally-

consistent H1 quad equations is well defined by (5.20) and (5.22). Combining together

(5.37) and (5.38) gives us (5.16) on the periodically reduced H1 quad equations and

Definition 22:

θZ(Qij), θZ(Qjk), θZ(Qki), θZ(Qkl), θZ(Qil), θZ(Qjl) = 0 =⇒


S1[w, squarekl] = 0 ,

∇S1[w, squarekl] = 0 .

(5.39)

5.4 Periodically Reducing Discrete Lagrangian 2-Forms on

Quadrilateral Stencils

Lemma 23 straightforwardly generalises to generic periodic staircases and the trident

discrete Lagrangian 2-form (3.21), for any quad equation of the ABS list. We define

a finite staircase Z ⊂ Z2 as the N + 1 vertices which arise from a sequence of N

single positive steps in the ni and nj directions. Then we can define a periodic map

θZ : u(ni, nj , nk, nl) 7→ w(nk, nl), such that Z becomes a periodic staircase, with the

field w having N components for each value along the staircase. Refer to [56] for a

general discussion on well-posed periodic initial value problems for partial difference

equations. One can straightforwardly apply the staircases Z and periodically reduce any

quad equation Qij(u, ui, uij , uj ;αi, αj) = 0 of the ABS list. With this, we conclude that

Theorem 24. Consider a staircase Z and a trident discrete Lagrangian 2-form (3.21),

whose multiform Euler-Lagrange equations are quad equations. Consider an action (5.34)

over discrete paths Γ with Lagrangians analogous to (5.31) and (5.32). This satisfies

Definition 22 of a weak discrete Lagrangian 1-form, where the given equations are the
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periodically reduced (θZ) quad equations.

Proof. The proof of Lemma 23 immediately generalises to a generic staircase Z and general

quad equations Qij(u, ui, uij , uj ;αi, αj) = 0. For any multidimensionally-consistent set of

multiaffine quad equations in four dimensions, it is well-posed to apply the staircase Z as

a periodic initial value problem [56]. An analogues construction gives us that the periodic

reduction of the quad equations throughout the lattice implies that the closure relation

and the multiform Euler-Lagrange equations hold:

θZ(Qij), θZ(Qjk), θZ(Qki), θZ(Qkl), θZ(Qil), θZ(Qjl) = 0 =⇒


S1[w, squarekl] = 0 ,

∇S1[w, squarekl] = 0 .

(5.40)

Remark 25. We consider generalising Theorem 24 to arbitrary single-component discrete

Lagrangian 2-forms on quadrilateral stencils satisfying Definition 2, such as the triangle

2-form (3.23) and the cross 2-form (3.40). The construction straightforwardly generalises

such that instead of taking periodic reductions of quad equations, one takes periodic reduc-

tions of the single-component multiform Euler-Lagrange equations in the four dimensional

lattice. We only need to check that this periodic initial value problem with staircase Z

is well posed in the sense discussed in [56]. In other words we need to check that the

following is a compatible set of ordinary difference equations: θZ(∇S2[u, cubeijk]) = 0,

θZ(∇S2[u, cubejkl]) = 0, θZ(∇S2[u, cubekli]) = 0, and θZ(∇S2[u, cubelij ]) = 0.

Remark 26. We consider generalising Theorem 24 to arbitrary multi-component dis-

crete Lagrangian 2-forms on quadrilateral stencils satisfying Definition 2 (including the

Boussinesq 2-form from [29]). The construction straightforwardly generalises such that

instead of taking periodic reductions of quad equations, one takes periodic reductions of

the multi-component multiform Euler-Lagrange equations in the four dimensional lattice.

We only need to check that this periodic initial value problem with staircase Z is well posed

in the sense discussed in [56].

5.5 Example: Periodically Reducing 2-Form for Linear

Quad Equation

In this section we pick a particularly simple example, so that we can go beyond our

framework and in fact derive a (non-weak) discrete Lagrangian 1-form. Let us start with
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a field u(ni, nj , nk, nl) in a four dimensional lattice. For each quad in this lattice, such

as (u, ui, uj , uij), we can associate a Lagrangian coefficient from a discrete Lagrangian

2-form, which is quadratic in u variables

Lij := u (Tiu− Tju)−
1

2

αi + αj
αi − αj

(u− TjTiu)2 . (5.41)

This is a full Lagrangian 2-form, because the multiform Euler-Lagrange equations

are multidimensionally consistent and lead to the vanishing of the closure relation.

Furthermore, the linear quad equations appear directly from the multiform Euler-Lagrange

equations

∂S2[u, cubeijk]

∂ui
= TiQjk

∂S2[u, cubeijk]

∂ujk
= Qjk

∂S2[u, cubeijk]

∂uj
= TjQki

∂S2[u, cubeijk]

∂uki
= Qki

∂S2[u, cubeijk]

∂uk
= TkQij

∂S2[u, cubeijk]

∂uij
= Qij

∂S2[u, cubeijk]

∂u
= −Qij −Qjk −Qjk

∂S2[u, cubeijk]

∂uijk
= −TiQjk − TjQki − TkQij

Here, the Q’s are linear quad expressions with

Qij = Tiu− Tju−
αi − αj
αi + αj

(u− TjTiu) . (5.42)

One can check that the cube action can be written in terms of the quad equations, but

furthermore it can be written as double zero expansion in terms of them.

The construction (5.31) gives us a discrete Lagrangian 1-form in the nk direction

Lk = Lnk
(w, Tnk

w)

:= θZ(Lik + TiLjk + TjTiLik + TjT
2
i Ljk)

= w1 (w2 − Tkw1)−
1

2

αi + αk
αi − αk

(ui − Tkw2)
2

+ w2 (w3 − Tkw2)−
1

2

αj + αk
αj − αk

(w2 − Tkw3)
2

+ w3 (w4 − Tkw3)−
1

2

αi + αk
αi − αk

(w3 − Tkw4)
2

+ w4 (w1 − Tkw4)−
1

2

αj + αk
αj − αk

(w4 − Tkw1)
2

(5.43)

The Lagrangian in the n4 direction is analogous. This leads to 16 discrete multiform
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Euler-Lagrange expressions of the form

∂S1[w, squarekl]

∂w2
= θZ (−TiQjk − TiQlj ) (5.44)

∂S1[w, squarekl]

∂Tkw2
= θZ (Qik + TiTkQlj ) (5.45)

∂S1[w, squarekl]

∂Tlw2
= θZ (TiTlQjk +Qli ) (5.46)

∂S1[w, squarekl]

∂TlTkw2
= θZ (−TlQik − TkQli ) (5.47)

From the construction outlined in this chapter we know that closure could also be written

as a sum of periodically reduced linear quad equations θZ(Q). This gives us a weak

discrete Lagrangian 1-form.

Instead, for this particular example, we would like to check if closure vanishes on the

1-form corner equations. One can check that 8 Euler-Lagrange expressions are independent

and equivalent to the 16 given above. The 8 we consider are all of the form:

∂S1[w, squarekl]

∂w2
= θZ (−TiQjk − TiQlj ) (5.48)

∂S1[w, squarekl]

∂TlTkw2
= θZ (−TlQik − TkQli ) (5.49)

It turns out that we can write the square closure relation in terms of these 8 expressions

in the following way:

S1[w, square34] (5.50)

= θZ

(
S2[u, cubeikl + Ticubejkl + TjTicubeikl + TjT

2
i cubejkl ]

)
=
∑
Z

θZ ( cubeikl )

=
∑
Z

θZ (Lik − TlLik + Lil − TkLil )

=
∑
Z

(
(αi + αk)(αi + αl)

4αi(αk − αl)

(
∂S1[w, squarekl]

∂TlTkw2

2

− ∂S1[w, squarekl]

∂w1

2
)

+
1

2

αk + αl
αk − αl

(
(Tkw1 − Tlw1)

2 − (Tkw2 − Tlw2)
2
)

+ Tk(w1Tlw1)− Tk(w2Tlw2) + Tl(w1Tkw1)− Tl(w2Tkw2)

)

=
∑
Z

(
(αi + αk)(αi + αl)

4αi(αk − αl)

(
∂S1[w, squarekl]

∂TlTkw2

2

− ∂S1[w, squarekl]

∂w1

2
) )

. (5.51)

In the third equality we utilised periodicity, orientation and the sum across the staircase

to remove the Lagrangians in the nk and nl direction. The fourth equality was found by
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playing with the explicit terms of the Lagrangians, and grouping expressions in terms of

the corner equations. The final terms in the fourth equality vanish by the sum over the

staircase. What we are left with in the fifth and final equality is that the square closure

relation can be written as a double zero expansion in terms of the eight corner equations.

Thus, we find that closure vanishes on the discrete 1-form Euler-Lagrange equations.

Hence, this is not weak and it satisfies the full definition of a discrete Lagrangian 1-form

(Definition 21):

∂S1[w, squarekl]

∂w
= 0

∂S1[w, squarekl]

∂TiTjw
= 0

∂S1[w, squarekl]

∂Tiw
= 0

∂S1[w, squarekl]

∂Tjw
= 0

 =⇒ S1[w, squarekl] = 0 .

(5.52)

This example gives us hope, that with future research, this framework can be developed

such that it gives full discrete Lagrangian 1-forms in a general case.

5.6 Chapter Conclusions

In this chapter, we outline a framework to periodically reduce discrete Lagrangian 2-

forms on quadrilateral stencils to weak discrete Lagrangian 1-forms. This framework is a

promising development in the theory of Lagrangians multiforms, elevating the periodic

reductions of multidimensionally consistent quad equations to the Lagrangian level.

Furthermore, we have a clear understanding of moving between the discrete 2-form action

over quad surfaces and the discrete 1-form action over discrete paths. On an example,

associated with the linear quad system, we derive a discrete Lagrangian 1-form, that is

not weak. This gives us hope, that with future research, this framework can be developed

such that it gives (full) discrete Lagrangians 1-forms in the general case.
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Chapter 6

Deriving Lagrangian 1-Forms

In this chapter we are motivated to find Lagrangian 1-forms, which could in future work

be quantised with path integrals. In [26], path integrals were calculated for a specific

Lagrangian 1-form, with linear multiform Euler-Lagrange equations, and this started

the theory of quantum multiforms. The next step is to quantise a Lagrangian 1-form

with nonlinear multiform Euler-Lagrange equations. We expect the singularities from the

nonlinearity to play an important role. A noteworthy nonlinear 1-form structure is that of

the discrete-time Calogero-Moser system in [62]. This system has many nice integrability

properties, but also some technicalities which make it not ideal as a nonlinear toy system

to investigate quantum multiforms.

In the first half of this chapter, we would like to develop the understanding of

Lagrangian 1-forms, even for quite simple integrable systems, so that we can discover

useful nonlinear toy systems for the study of quantum multiforms. We link the addition

formulae for trigonometric functions to a Lagrangian multiform structure. In Section

6.2 we reconsider the continuous and discrete Lagrangian 1-forms associated with linear

equations and sinusoidal solutions. In Section 6.3 we discover a continuous and discrete

Lagrangian 1-form associated with nonlinear equations and cosecant solutions.

In Section 6.4, we reconsider periodic reductions of discrete Lagrangian 2-forms

for the H1 quad equation considered in Lemma 23. We will review how this periodic

reduction of H1 (or lpKdV) leads to the McMillan equation (autonomous discrete Painlevé

II equation) [34, 37, 22, 21]. In [25], the standard Lagrangian of this discrete ordinary

difference equation was quantised in terms of path integrals, and a 2-step propagator

was derived. We are motivated to generalise this to a quantum multiform structure,

however developments in the classical setting are required. Our major contribution is the
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derivation of classical commuting equations, and finding Jacobi elliptic solutions involving

non-trivial parameters. We then develop a discrete Lagrangian 1-form. We find that

already on the classical level the equations and Lagrangian 1-form are non-trivial and

involve subtle square-root terms.

6.1 Discrete and Continuous Lagrangian 1-Forms

In this section, we first note a useful and equivalent formulation of a discrete Lagrangian

1-form (Definition 21), inspired by [52, 62]. We now use the notation x(n) = x(nk, nl) for

the field over the lattice Z2 (instead of w(n)), and as before denote discrete shifts with

xk = x(n+ ek). Consider (5.13) and the fact that the corner equations are autonomous

and hold anywhere in the lattice. One can check that the four multiform Euler-Lagrange

equations are, in fact, equivalent to two conventional Euler-Lagrange equations and one

corner equation:

∇S1[x, squarekl] = 0 ⇐⇒



∂Lk
∂xk

+
∂TkLk
∂xk

= 0

∂Ll
∂xl

+
∂Tl Ll
∂xl

= 0

∂Lk
∂x

=
∂Ll
∂x

(6.1)

Thus, we can equivalently say that a discrete Lagrangian 1-form is a pair of functions

Lk : (x, xk; λk) 7→ C and Ll : (x, xl; λl) 7→ C where

∂Lk
∂xk

+
∂TkLk
∂xk

= 0

∂Ll
∂xl

+
∂Tl Ll
∂xl

= 0

∂Lk
∂x

=
∂Ll
∂x


=⇒ TlLk − Lk = TkLl − Ll . (6.2)

Here we have written the closure relation in a different form. We emphasise that the

property (6.2) defines the Lagrangian multiform: on solutions to the multiform Euler-

Lagrange equations, the closure relation holds.

Now we comment on how we have restricted the form of Lagrangians in this definition

of a discrete Lagrangian 1-form. The Lagrangians Lk : (x, xk; λk) and Ll : (x, xl; λl) are

first order and do not involve discrete shift in the other direction, xl and xk, respectively.

This restriction means that the following equations vanish trivially:

∂Lk
∂xl

= 0 , (6.3a)

96



∂Ll
∂xk

= 0 . (6.3b)

Later we will define a continuous Lagrangian 1-form in an analogous way to a discrete

Lagrangian 1-form, however the Lagrangians will not be restricted in this way. Continuous

equations analogous to (6.3) will not vanish identically and will instead be considered as

additional multiform Euler-Lagrange equations.

Now consider the corner equation in (6.2), and note that it corresponds to the

existence of some shared conjugate momentum y(nk, nl) on the lattice Z2, defined by

y =
∂Lk
∂x

=
∂Ll
∂x

. (6.4)

This is key to keep in mind when attempting to derive Lagrangian 1-forms. One can start

with any two conventional Lagrangians, but having this compatibility is a rare property.

Furthermore, we can also generalise a discrete Lagrangian 1-form from 2 to N

compatible Lagrangians and from a field x(n) over the 2-dimensional lattice Z2 to one

over the N -dimensional lattice ZN . For example, consider N = 4, with four Lagrangians

Li(x, xi; λi), Lj(x, xj ; λj), Lk(x, xk; λk) and Ll(x, xl; λl), as well as a field x(ni, nj , nk, nl)

over the lattice Z4. The four Lagrangians are compatible and a discrete Lagrangian 1-form,

if for all six pairs of Lagrangians the property (6.2) holds.

The above is more visibly a discrete analogue of the definition of a continuous

Lagrangian 1-form given in [52], which we now present. Let us now consider a field

x(tα, tβ) with two continuous independent variables (tα, tβ) ∈ R2. We denote continuous

derivatives in the following way:

xtα :=
∂x

∂tα
, xtαtα :=

∂2x

∂t2α
, (6.5a)

xtβ :=
∂x

∂tβ
, xtβtβ :=

∂2x

∂t2β
. (6.5b)

This notation is not to be confused with the notation for discrete shifts (xk, xkk, xl, xll,

xi, xl) or the notation for constants: λk, λl, λα, λβ ∈ C.

We only consider a continuous Lagrangian 1-form with two directions without loss of

generality. We define an action over one-dimensional continuous paths Γ ∈ R2 as

S1[x,Γ] =

∫
Γ
(Lα dtα + Lβ dtβ) , (6.6)
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with functions

Lα : (x, xtα , xtβ ; λα) 7→ C , (6.7a)

Lβ : (x, xtα , xtβ ; λβ) 7→ C . (6.7b)

Now we give the following definition similar to the constructions in [52, 62].

Definition 27. A continuous Lagrangian 1-form is given by an action (6.6) over con-

tinuous paths, which satisfies the following property. On solutions to the multiform

Euler-Lagrange equations (the variational equations), the closure relation holds:

∂Lα
∂xtβ

= 0

∂Lβ
∂xtα

= 0

∂

∂tα

∂Lα
∂xtα

− ∂Lα
∂x

= 0

∂

∂tβ

∂Lβ
∂xtβ

−
∂Lβ
∂x

= 0

∂Lα
∂xtα

=
∂Lβ
∂xtβ



=⇒ ∂Lα
∂tβ

=
∂Lβ
∂tα

. (6.8)

The first two multiform Euler-Lagrange handle “alien derivatives” as discussed in

[58]. The third and fourth equations are the conventional Euler-Lagrange equations. The

fifth equation is the corner equation and implies that there exist some shared conjugate

momentum y(tα, tβ), defined by

y =
∂Lα
∂xtα

=
∂Lβ
∂xtβ

. (6.9)

It is key to keep this in mind when attempting to derive Lagrangian 1-forms.

6.2 Lagrangian 1-Form for Common Sinusoidal Solutions

In this section we will derive a continuous Lagrangian 1-form, such that a general solution

to the continuous multiform Euler-Lagrange equations is a common sine solution:

x(tα, tβ) = A sin(ξ + λαtα + λβtβ) . (6.10)

To do that, we will find a system of equations involving the parameters, λα, λβ, such

that two initial conditions determine A and ξ. Then we will derive a discrete Lagrangian

1-form, such that a general solution to the multiform Euler-Lagrange equations is a

98



common sine solution:

x(nk, nl) = A sin(ξ + λknk + λlnl) . (6.11)

To do that, we will find a system of equations involving the parameters, λk, λl, such that

two initial conditions determine A and ξ. Hence, the perspective of this section is to derive

Lagrangian multiforms from special functions. This will prepare us for later sections,

where we will generalise this to non-trivial examples. Furthermore, we want a system of

equations in terms of x which encapsulates the following key functional properties of sin

cos(a) = sin(a+ π/2) (6.12a)

∂

∂a
sin(a) = cos(a) (6.12b)

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) (6.12c)

sin2(a) + cos2(a) = 1 (6.12d)

Here, a and b are arbitrary.

Let us consider continuous equations. For the time variable tα, sinusoidal solutions

of the form x = A sin(ξ + λαtα) arise from the harmonic oscillator equation, which is a

linear second order differential equation

xtαtα + λ2α x = 0 . (6.13)

The parameters A and ξ in the solution are determined by two initial conditions. Further-

more, solutions x = A sin(ξ + λαtα) satisfy the following biquadratic first order differential

equation, involving the initial condition parameter A:

1

λ2α
x2tα + x2 −A2 = 0 . (6.14)

This equation reconciles the property (6.12d) of sine as well as the fact that the parameter

A is invariant with time. If we also consider similar equations in the tβ direction, we have

two separate solutions x = A sin(ξ + λαtα) and x = A′ sin(ξ′ + λβtβ). How do we link

together evolution in the tα direction and tβ direction and make the parameter A shared?

This can be done with the following linear differential equation

xtα
λα

=
xtβ
λβ

. (6.15)
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Then, the general solution to this system of equations is x = A sin(ξ + λαtα + λβtβ).

Furthermore, this equation defines a shared momentum y(tα, tβ) in the following way:

y =
xtα
λα

=
xtβ
λβ

. (6.16)

In terms of the general solution, we have that y(tα, tβ) = A cos(ξ + λαtα + λβtβ).

Now we consider discrete equations. Sinusoidal solutions of the form x =

A sin(ξ + λknk) arise from the discrete harmonic oscillator equation, which is a linear

second order difference equation:

xkk − 2ck xk + x = 0 . (6.17)

Here, we introduce the constants ck = cos(λk), sk = sin(λk), cl = cos(λl) and sl = sin(λl).

The subscript notation is subtle, and we emphasise that λk, ck, sk, λl, cl, sl ∈ C are

constants, whereas xk = x(nk + 1, nl), xkk = x(nk + 2, nl), xl = x(nk, nl + 1) and xll =

x(nk, nl + 2) are discrete shifts of the field. Furthermore, solutions x = A sin(ξ + λknk)

satisfy the following biquadratic first order differential equation, involving the initial

condition parameter A:

1

s2k
(xk − ck x)2 + x2 −A2 = 0 . (6.18)

This equation expresses the property (6.12d) of sine as well as the fact that the parameter

A is invariant with time. If we also consider similar equations in the nl direction, we

have two separate solutions x = A sin(ξ + λknk) and x = A′ sin(ξ′ + λlnl). How do we

link together evolution in the nk direction and nl direction and make the parameter A

shared? This can be done with the following linear difference equation, which follows

from the addition formulae (6.12c):

xk − ck x
sk

=
xl − cl x

sl
(6.19)

Then, the general solution to this system of equations is x = A sin(ξ + λknk + λlnl).

Furthermore, this equation defines a shared momentum y(nk, nl) in the following way:

y =
xk − ck x

sk
=
xl − cl x

sl
(6.20)

In terms of the general solution, we have that y = A cos(ξ + λknk + λlnl).

Next we will construct a continuous Lagrangian 1-form for this system, and then a
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discrete Lagrangian 1-form.

6.2.1 Continuous Lagrangian 1-Form

Let us start with a Lagrangian with a general form and derive its terms by imposing that

that the 1-form Euler-Lagrange equations have sinusoidal solutions. For this pedagogical

example, let us consider Lagrangians Lα quadratic in xtα with coefficients which are

functions f, g, h : (x; λα) 7→ C

Lα = f(x; λα)x
2
tα + g(x; λα)xtα + h(x; λα) , (6.21a)

Lβ = f(x; λβ)x
2
tβ

+ g(x; λβ)xtβ + h(x; λβ) . (6.21b)

Now we impose that the standard continuous Euler-Lagrange equation is proportional

to the second order differential equation (6.13) with sine solutions

∂

∂tα

∂Lα
∂xtα

− ∂Lα
∂x

= 2f ′(x; λα)x
2
tα + 2f(x; λα)xtαtα − h′(x; λα)

∝ xtαtα + λ2αx

(6.22)

This restricts f, g and h in the following way

f ′(x; λα) = 0 − h′(x; λα) = 2f(x; λα)λ
2
αx . (6.23)

Thus, the Lagrangian of the harmonic oscillator has the following form

Lα = f(λα)
(
x2tα − λ

2
αx

2
)
+ g(x; λα)xtα . (6.24)

The final term is a total derivative and does not effect the standard Euler-Lagrange

equation.

Now we impose the corner Euler-Lagrange equation by introducing a free function

ϕ(y, x) and using the corner equations (6.16)

∂Lα
∂xtα

= 2f(λα)xtα + g(x; λα) = ϕ

(
xtα
λα

, x

)
= ϕ(y, x) . (6.25)

This forces f(λα) = γ/λα with γ ∈ C and g(x; λα) = g(x) . Now we have that the
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following Lagrangians satisfy the multiform Euler-Lagrange equations:

Lα = γ

(
1

λα
x2tα − λα x

2

)
+ g(x)xtα , (6.26a)

Lβ = γ

(
1

λα
x2tβ − λβ x

2

)
+ g(x)xtβ . (6.26b)

The final term is what we call an exact Lagrangian 1-form and it is a freedom which does

not effect the Lagrangian 1-form structure.

Next we consider the continuous closure relation

∂Lα
∂tβ
−
∂Lβ
∂tα

= 2γ

(
1

λα
xtαtβxtα − λαxtβx

)
− 2γ

(
1

λβ
xtαtβxtβ − λβxtαx

)
= 2γ

(
xtα
λα
−
xtβ
λβ

)(
xtαtβ + λαλβx

)
.

(6.27)

What we find is, in fact, a double zero expansion. This is stronger than having the closure

relation on solutions to the multiform Euler-Lagrange equations. Altogether, we conclude

the following.

Proposition 28. The double zero expansion (6.27) gives us a continuous Lagrangian

1-form (Definition 27). The general solution to the multiform Euler-Lagrange equations

can be written in terms of the sine function, as in (6.10).

We can also Legendre transform the Lagrangian and recover the invariant equation

(6.14), by setting g(x) = 0

Iα = γ

(
1

λα
x2tα + λαx

2

)
. (6.28)

On the general solution, with initial conditions defining A, we have

(6.10) =⇒ Iα = γλα A
2 . (6.29)

Next we consider an analogous discrete Lagrangian 1-form construction.

6.2.2 Discrete Lagrangian 1-Form

Let us start with two discrete Lagrangians of the following form, whose terms will be

derived by imposing a sinusoidal discrete Lagrangian 1-form structure:

Lk = f(xkx; λk) + g(xk;λk) + h(x; λk) , (6.30a)

Ll = f(xlx; λl) + g(xl;λl) + h(x; λl) . (6.30b)
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Here we take Lk and Ll to have the same form. We allow for generic functions f , g and

h, and note that f(xkx; λk) acts on the symmetric product xkx. We could instead start

with a Lagrangian quadratic in x and xk. However, it is interesting to see how imposing

the sinusoidal multiform structure takes us from function terms to polynomial terms.

Let us start with

∂

∂xk
(Lk + TkLk)

= f(xkx; λk)x+ f ′(xkkxk; λk)xkk + g′(xk;λk) + h′(xk; λk)

∝ xkk − 2ck xk + x = 0 .

(6.31)

This restricts f, g and h in the following way

f(xkx; λk) = ζ(λk)xkx g′(xk; λk) + h′(xk; λk) = −2ζ(λk)ckxk . (6.32)

This leads to

f(xkx; λk) = ζ(λk)xkx h(x; λk) = −ζ(λk)ck x2 − g(x; λk) . (6.33)

Thus, Lagrangians with discrete harmonic oscillators as standard Euler-Lagrange equations

have the following form:

Lk = ζ(λk)
(
xkx− ck x2

)
+ g(xk; λk)− g(x; λk) . (6.34)

Now we impose that the corner Euler-Lagrange equation holds, utilising equation

(6.20) and a free function ϕ(y, x):

−∂Lk
∂x

= −ζ(λk) (xk − 2ckx)− g′(x; λk)

= ϕ

(
xk − ck x

sk
, x

)
= ϕ(y, x)

(6.35)

This leads to Lagrangians of the following form satisfying discrete multiform Euler-

Lagrange equations for sine:

Lk = ζ

(
1

sk
xkx−

ck
2sk

(
x2k + x2

))
+G(xk)−G(x) , (6.36)
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Now let us consider the discrete closure relation for these Lagrangians

TlLk − Lk − TkLl + Ll

=
ζ sksl

2(clsk − cksl)

((
∂Lk
∂x
− ∂Ll

∂x

)2

−
(
∂TkLl
∂xkl

− ∂TlLk
∂xkl

)2
)

+
ζ
(
(s2l + c2l − 1)s2k − (s2k + c2k − 1)s2l

)
(x2k − x2l )

2sksl(clsk − cksl)
.

(6.37)

What we find is, in fact, a double zero expansion, which is stronger than the closure relation.

Note that this double zero expansion only requires the following identity s2k + c2k − 1 = 0

(and s2l + c2l − 1 = 0) between the coefficients sk and ck. Altogether, we conclude the

following.

Proposition 29. The double zero expansion (6.37) gives us a discrete Lagrangian 1-form

(Definition 21). The general solution to the multiform Euler-Lagrange equations can be

written in terms of the sine function (6.11).

We can also take derivatives of the Lagrangian with respect to a lattice parameter to

find the following integral of motion (6.18) on common sine solutions [52]

Ik =
∂

∂λk
Lk = ζ

(
− 1

s2k
xkx−

ck
2sk

(
x2k + x2

))
(6.38)

On the general sine solution, we recover find the constant parameter A defined by initial

conditions

(6.11) =⇒ Ik = −
ζ

2
A2 . (6.39)

In the next section we similarly derive a continuous and discrete Lagrangian 1-form,

but from common cosecant solutions.

6.3 Lagrangian 1-Form for Common Cosecant Solution

In this section we will derive a continuous Lagrangian 1-form, such that a general solution

to the continuous multiform Euler-Lagrange equations is a common cosecant solution:

x(tα, tβ) = A csc(ξ + λαtα + λβtβ) . (6.40)

To do that, we will find a system of equations involving the parameters, λα, λβ, such

that two initial conditions determine A and ξ. Then we will derive a discrete Lagrangian

1-form, such that a general solution to the multiform Euler-Lagrange equations is a

104



common cosecant solution:

x(nk, nl) = A csc(ξ + λknk + λlnl) . (6.41)

To do that, we will find a system of equations involving the parameters, λk, λl, such that

two initial conditions determine A and ξ.

Let us consider what form the multiform Euler-Lagrange equations should take,

starting with the continuous equations. The following second order differential equation

in the tα direction has general solutions of the form x = A csc(ξ + λαtα):

xxtαtα − 2x2tα − λ
2
αx

2 = 0 (6.42)

These solutions satisfy the following continuous invariant equation

x4λ2α
x2tα + λ2αx

2
−A2 = 0 (6.43)

Alternatively, we can write this invariant equation in the following form

x2tα
λ2αx

4
+

1

x2
− 1

A2
= 0 (6.44)

To get corner equations we could consider the equality of two invariant equations in

different directions. If we also consider similar equations in the tβ direction, we have two

separate solutions x = A csc(ξ + λαtα) and x = A′ csc(ξ′ + λβtβ). We can link together

evolution in both directions with the following differential equation, which also defines a

shared momentum y(tα, tβ)

y = −λαx
2

xtα
= −

λβx
2

xtβ
(6.45)

For the discrete evolution, the following second order difference equation in terms of

x, xk and xkk has general solutions in terms the cosecant function

xk(xkk + x)− 2ck xkkx = 0 (6.46)

Here, we introduce the constants ck = cos(λk), sk = sin(λk), cl = cos(λl) and sl = sin(λl).

The subscript notation is subtle, and we emphasise that λk, ck, sk, λl, cl, sl ∈ C are

constants, whereas xk = x(nk + 1, nl), xkk = x(nk + 2, nl), xl = x(nk, nl + 1) and

xll = x(nk, nl + 2) are discrete shifts of the field. These solutions satisfy the following
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equation expressing the invariance of the initial condition parameter A:

(1− c2k)x2kx2

x2k − 2ckxkx+ x2
−A2 = 0 (6.47)

Alternatively we can write this “invariant” equation as

−2ck
s2k

1

xkx
+

1

s2k

(
1

x2k
+

1

x2

)
− 1

A2
= 0 . (6.48)

If we also consider similar equations in the nl direction, we have two separate solutions

x = A csc(ξ + λknk) and x = A′ csc(ξ′ + λlnl). We can link together evolution in both

directions with the following differential equation, which also defines a shared momentum

y(nk, nl)

y =
sk xkx

x− ck xk
=

sl xlx

x− cl xl
. (6.49)

Then, the general solution to this system of equations is x = A csc(ξ + λknk + λlnl), and

we also have that y = A sec(ξ + λknk + λlnl).

First we will construct a continuous Lagrangian 1-form, then a discrete Lagrangian

1-form.

6.3.1 Continuous Lagrangian 1-Form

We will start with a Lagrangian in a general form and then impose the continuous

Lagrangian 1-form structure. Let us consider the conventional Euler-Lagrange equation,

and assume that it gives us an equation which is proportional to (6.42), that is

∂

∂tα

∂Lα
∂xtα

− ∂Lα
∂x
∝ xtαtα −

2x2tα
x
− λ2αx = 0 . (6.50)

With this in mind, let us assume a Lagrangian of the following general form

Lα = f(x; λα)x
2
tα + g(x; λα) + h(x; λα)xtα . (6.51)

This leads to

∂

∂tα

∂Lα
∂xtα

− ∂Lα
∂x

= 2
∂f(x; λα)

∂x
x2tα + 2f(x; λα)xtαtα +

∂h(x; λα)

∂x
xtα

− ∂f(x; λα)

∂x
x2tα −

∂g(x; λα)

∂x
− ∂h(x; λα)

∂x
xtα ,

= 2f(x; λα)xtαtα +
∂f(x; λα)

∂x
x2tα −

∂g(x; λα)

∂x
(6.52)
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∝ xtαtα −
2x2tα
x
− λ2αx

This results in two differential equations constraining f and g. Let us consider the f

equation first
∂f(x; λα)

∂x
= −4f(x; λα)

x
=⇒ f(x; λα) =

θ(λα)

x4
(6.53)

Integration gave rise to a free function θ(λα). Next let us consider the constraint equation

on g, which is

−∂g(x; λα)
∂x

= −2f(x; λα)λ2αx = −2θ(λα)λ
2
α

x3
=⇒ g(x; λα) = −

θ(λα)λ
2
α

x2
(6.54)

This leads to the following Lagrangian which satisfies the standard Euler-Lagrange

equation:

Lα =
θ(λα)

x4
x2tα −

θ(λα)λ
2
α

x2
+ h(x; λα)xtα . (6.55)

We have a multiplicative freedom by a function of the lattice parameter and a total

difference term.

Now we impose the multiform Euler-Lagrange equations. Let us assume that the

“shared momentum” is a function of y and x. With this in mind let us write down the

following equation

1

yx2
= − xtα

λαx4
= −

xtβ
λβx4

. (6.56)

Let us assume that the corner equation is proportional to this in the following way, where

we introduce a constant γ ∈ C and a function F (x)

∂Lα
∂xtα

=
2θ(λα)

x4
xtα + h(x; λα) = −

γxtα
λαx4

+ F (x) =
γ

yx2
+ F (x) . (6.57)

This gives us the following Lagrangians which satisfy the multiform Euler-Lagrange

equations:

Lα = γ

(
x2tα
λαx4

− λα
x2

)
+ F (x)xtα , (6.58a)

Lβ = γ

(
x2tβ
λβx4

−
λβ
x2

)
+ F (x)xtβ . (6.58b)

The last term is an exact 1-form, which makes no contributions to the continuous

Lagrangian 1-form.
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Now we consider the continuous closure relation, that is

∂Ltα
∂tβ

−
∂Ltβ
∂tα

= γ

(
2xtαxtαtβ
λαx4

−
4x2tαxtβ
λαx5

+
2λαxtβ
x3

)

− γ

(
2xtβxtαtβ
λβx4

−
4x2tβxtα

λβx5
+

2λβxtα
x3

)

= γ

(
xtα
λαx4

−
xtβ
λβx4

)(
xtαtβ −

2xtαxtβ
x

− λαλβx
)
. (6.59)

This is a double zero expansion in terms of the multiform Euler-Lagrange equations. This

is stronger than having the closure relation on solutions to the multiform Euler-Lagrange

equations.

Proposition 30. The double zero expansion (6.59) defines a continuous Lagrangian

1-form (Definition 27). The general solution to the multiform Euler-Lagrange equations

can be written in terms of the cosecant function (6.40).

We can also Legendre transform the Lagrangian and recover the invariant we consid-

ered in the common solutions (6.44), by setting g(x) = 0:

Iα = γ

(
−
x2tα
λαx4

− λα
x2

)
. (6.60)

On the general solution, with initial conditions defining A, we have

(6.40) =⇒ Iα = −γλα
1

A2
. (6.61)

At this point we realise that the transformation x 7→ 1
x takes the continuous Lagrangian

1-form for sine (6.26a) to the continuous Lagrangian 1-form for cosecant (6.58a). Perhaps it

is unsurprising that the Lagrangian multiform structure is preserved by this transformation.

Thus we can transform between Lagrangian 1-forms with linear multiform Euler-Lagrange

equations and Lagrangians 1-forms with non-linear multiform Euler-Lagrange equations.

Next we consider an analogous discrete Lagrangian 1-form construction.

6.3.2 Discrete Lagrangian 1-Form

In this section we derive a discrete Lagrangian 1-form where the general solution of the

multiform Euler-Lagrange equations is the cosecant function, as in (6.41). Now we apply

the transformation x 7→ 1
x and xk 7→ 1

xk
on the discrete 1-form Lagrangians (6.36) with
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sinusoidal solutions. This leads to the following discrete Lagrangians:

Lk = ζ

(
1

sk

1

xkx
− ck

2sk

(
1

x2k
+

1

x2

))
+G

(
1

xk

)
−G

(
1

x

)
. (6.62)

One can check that the conventional Euler-Lagrange equation is proportional to equation

(6.46), and the corner Euler-Lagrange equation is proportional to equation (6.49)

Now let us consider the discrete closure relation

TlLk − Lk − TkLl + Ll

=
ζ sksl

2(clsk − cksl)

((
∂Lk
∂x
− ∂Ll

∂x

)2

−
(
∂TkLl
∂xkl

− ∂TlLk
∂xkl

)2
)

+
ζ
(
(s2l + c2l − 1)s2k − (s2k + c2k − 1)s2l

)
(x2l − x2k)

2sksl(clsk − cksl)x2kx2l
.

(6.63)

What we find is, in fact, a double zero expansion, which is stronger than the closure

relation. Note that this double zero expansion only requires the identity s2k + c2k − 1 = 0

(and s2l + c2l − 1 = 0) between the coefficients sk and ck. Altogether, we conclude the

following.

Proposition 31. The double zero expansion (6.63) gives us a discrete Lagrangian 1-form

(Definition 21). The general solution to the multiform Euler-Lagrange equations can be

written in terms of the cosecant function, as in (6.41).

We can also take derivatives of the Lagrangian with respect to a lattice parameter to

find the following integral of motion (6.48):

Ik =
∂Lk
∂λk

= ζ

(
−ck
s2k

1

xkx
+

1

2s2k

(
1

x2k
+

1

x2

))
(6.64)

On the general cosecant solution, we recover the constant parameter A determined by

initial conditions

(6.41) =⇒ Ik =
ζ

2

1

A2
. (6.65)

So far we have considered Lagrangian 1-forms associated with sine/cosine solutions and

cosecant/secant solutions. In the next section we will see an example of how generalising

to elliptic solutions is quite non-trivial. We consider periodic reductions of lpKdV (or the

H1 quad equation) and develop a discrete Lagrangian 1-form.
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6.4 Developing Lagrangian 1-Form for the Discrete McMil-

lan Equation

In this section we consider the periodic reductions of the H1 quad equation (or lpKdV)

on the N = 4 staircase considered in 5.3 and (5.22). In this section we will emphasise it

as a periodic reduction of lpKdV and use different notation.

6.4.1 Periodic Reduction of Lattice Korteweg-de Vries Equation

In this subsection we derive novel integral ordinary difference equations which commute

with the McMillan equation in the four-dimensional lattice Z4. In order to do this, we

review a derivation of the McMillan equation from a periodic reduction of lattice potential

Korteweg-de Vries (lpKdV) [3, 15, 25]. We note the work in [24], where higher dimensional

commuting maps are not considered, but more general periodic reductions of lpKdV are

derived. We start with a field u(ni, nj , nk, nl), satisfying the lpKdV equation, written in

the following way

(p− q − ui + uj)(p+ q + u− uij) = (p2 − q2) . (6.66)

Here, p and q are lattice parameters associated with ni and nj directions respectively.

We impose a periodic initial staircase along the steps (Ti, Tj , Ti, Tj) such that there is

periodicity T 2
i T

2
j = 1. The following periodic staircase is imposed: w1 := u, w2 := ui,

w3 := uij and w4 := uiij . If we consider evolution of staircase variables in the ni direction

we get the map (w1, w2, w3, w4) 7→ (Tiw1, Tiw2, Tiw3, Tiw4)

Tiw1 = w2 , (6.67a)

(p− q − Tiw2 + w3)(p+ q + w2 − w4) = (p2 − q2) , (6.67b)

Tiw3 = w4 , (6.67c)

(p− q − Tiw4 + w1)(p+ q + w4 − w2) = (p2 − q2) . (6.67d)

Analogously, if we consider evolution of staircase variables in the nj direction we get the

implicit map (w1, w2, w3, w4) 7→ (Tjw1, Tjw2, Tjw3, Tjw4)

(p− q − w2 + Tjw1)(p+ q + w1 − w3) = (p2 − q2) , (6.68a)

Tjw2 = w3 , (6.68b)

(p− q − w4 + Tjw3)(p+ q + w3 − w1) = (p2 − q2) , (6.68c)

Tjw4 = w1 . (6.68d)
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The next step of this reduction involves reduction variables. To find these, we first

define the lpKdV Lax matrices [23, 36]:

Lp =

 p− ui 1

k2 + p(u− ui)− uui p+ u

 (6.69a)

Lq =

 q − uj 1

k2 + q(u− uj)− uuj q + u

 (6.69b)

We can then take the trace of the monodromy matrix, which is a shifted product of Lax

matrices along the staircase:

Tr(TiTjTiLp · TiTjLq · TiLq · Lp )

= (w1 − w3)
2(w2 − w4)

2 − (p2 + q2)((w1 − w3) + (w2 − w4))
2 (6.70)

− 2pq
(
((w1 − w3) + (w2 − w4))

2 + 2(w1 − w3)(w2 − w4)
)
+ 2p2q2 +O(k2) .

This leads to an invariant in terms of (w1, w2, w3, w4) on the staircase once we ignore

higher order terms of k. In this expression we observe the pairings ±(w1 − w3) and

±(w2 − w4). Thus, we make the following natural choice for our definitions of x and y

x := w1 − w3 y := w2 − w4 . (6.71)

We also introduce the following parameter abbreviation, which we will henceforth use

alongside p and q for brevity:

ϵ := p+ q γ := p− q . (6.72)

Now we can rewrite the invariant above, where we utilise the freedom to subtract constants

for brevity, in the form

J(x, y) := 2 ϵ γ x y − ϵ2 (x2 + y2) + x2 y2 . (6.73)

With these reduction variables, we can derive the following equations for evolution in

the ni direction

yi = −x+
2 ϵ γ xi
ϵ2 − x2i

, (6.74a)

y = xi . (6.74b)
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For evolution in the nj direction we get

y = xj +
2 ϵ γ x

ϵ2 − x2
, (6.75a)

yj = −x . (6.75b)

This leads to the following two second order ordinary difference equations

xii −
2 ϵ γ xi
ϵ2 − x2i

+ x = 0 , (6.76a)

xjj +
2 ϵ γ xj
ϵ2 − x2j

+ x = 0 . (6.76b)

Due to the symmetry of this periodic staircase, evolution of x in the ni and nj directions

are the same up to opposite signs of the parameter. One can easily check that the

invariants, J(x, xi) and J(xj ,−x), are conserved under the respective second order

difference equations.

Now we consider the implicit map (w1, w2, w3, w4) 7→ (Tkw1, Tkw2, Tkw3, Tkw4) which

arises from considering evolution in the direction nk, perpendicular to the plane of the

periodic staircase:

(p− r − w2 + Tkw1)(p+ r + w1 − Tkw2) = (p2 − r2) , (6.77a)

(q − r − w3 + Tkw2)(q + r + w2 − Tkw3) = (q2 − r2) , (6.77b)

(p− r − w4 + Tkw3)(p+ r + w3 − Tkw4) = (p2 − r2) , (6.77c)

(q − r − w1 + Tkw4)(q + r + w4 − Tkw1) = (q2 − r2) . (6.77d)

As this map arises from a periodic reduction of the multidimensionally-consistent lpKdV

equations, we expect it to commute with the maps (6.67) and (6.68a), in the plane of the

staircase. In order to derive equations in terms of x and y, we choose to exchange w1 and

w2 for x and y, using w1 ≡ w3 + x and w2 ≡ w4 + y to get

(p− r + (Tkw3 − w4) + xk − y)(p+ r − (Tkw4 − w3) + x− yk) = p2 − r2 , (6.78a)

(q − r + (Tkw4 − w3) + yk)(q + r − (Tkw3 − w4) + y) = q2 − r2 , (6.78b)

(p− r + (Tkw3 − w4))(p+ r − (Tkw4 − w3)) = p2 − r2 , (6.78c)

(q − r + (Tkw4 − w3)− x)(q + r − (Tkw3 − w4)− xk) = q2 − r2 . (6.78d)

It turns out that the remaining four variables w3, w4, Tkw3, Tkw4 appear only in two pairs

(Tkw3 − w4) and (Tkw4 − w3). Now by eliminating the pairs and applying the quadratic
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formula, we derive the following equations for y and yk

y =
ϵ γ x

ϵ2 − x2
±3

√
γ2ϵ2 + (4r2 − γ2 − ϵ2)(x− ϵ)(xk − ϵ) + (x− ϵ)2(xk − ϵ)2

2(x− ϵ)

±3

√
γ2ϵ2 + (4r2 − γ2 − ϵ2)(x+ ϵ)(xk + ϵ) + (x+ ϵ)2(xk + ϵ)2

2(x+ ϵ)
, (6.79a)

yk =
ϵ γ xk
ϵ2 − x2k

∓3

√
γ2ϵ2 + (4r2 − γ2 − ϵ2)(x− ϵ)(xk − ϵ) + (x− ϵ)2(xk − ϵ)2

2(xk − ϵ)

∓3

√
γ2ϵ2 + (4r2 − γ2 − ϵ2)(x+ ϵ)(xk + ϵ) + (x+ ϵ)2(xk + ϵ)2

2(xk + ϵ)
. (6.79b)

We denote the two possible choice of signs associated in the nk direction with ±k. The

two simplest options for the behaviour of the signs on solutions is that they remain

fixed or that they flip once on every step. Such flipping leads to the trivial solution

y = ykk, whereas we use fixed signs from henceforth and derive consistent non-trivial

equations. There is another possibility, which we do not consider, that the signs update in

a non-trivial way upon being shifted. The square roots which appear here are symmetric

in x and xk and hence we define the following

Γr(v) :=
√
γ2ϵ2 + (4r2 − γ2 − ϵ2)v + v2 . (6.80)

We can now write down the set of commuting equations, in directions ni, nj and nk,

as well as a fourth direction nl which is analogous to nk but with lattice parameter s

y − ϵ γ x

ϵ2 − x2
= − ϵ γ x

ϵ2 − x2
+ xi , (6.81a)

yi −
ϵ γ xi
ϵ2 − x2i

=
ϵ γ xi
ϵ2 − x2i

− x , (6.81b)

y − ϵ γ x

ϵ2 − x2
=

ϵ γ x

ϵ2 − x2
+ xj , (6.81c)

yj −
ϵ γ xj
ϵ2 − x2j

= − ϵ γ xj
ϵ2 − x2j

− x , (6.81d)

y − ϵ γ x

ϵ2 − x2
= ±k

Γr((x− ϵ)(xk − ϵ))
2(x− ϵ)

±k
Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)
, (6.81e)

yk −
ϵ γ xk
ϵ2 − x2k

= ∓k
Γr((x− ϵ)(xk − ϵ))

2(xk − ϵ)
∓k

Γr((x+ ϵ)(xk + ϵ))

2(xk + ϵ)
, (6.81f)

y − ϵ γ x

ϵ2 − x2
= ±l

Γs((x− ϵ)(xl − ϵ))
2(x− ϵ)

±l
Γs((x+ ϵ)(xl + ϵ))

2(x+ ϵ)
, (6.81g)

yl −
ϵ γ xl
ϵ2 − x2l

= ∓l
Γs((x− ϵ)(xl − ϵ))

2(xl − ϵ)
∓l

Γs((x+ ϵ)(xl + ϵ))

2(xl + ϵ)
. (6.81h)

Here, we consider four dimensions, so that we can consider two maps, Tk and Tl, which

evolve perpendicular to the plane of the staircase. Unlike the Ti and Tj maps, the
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Tk and Tl maps each have their own independent parameter, r and s, respectively.

These perpendicular maps and their parameters involve lots of interesting non-triviality.

Furthermore, we could use the fact that the parameters r and s are to free to generalise

this to an integrable system of N commuting maps. We will also that we can use a limit

to recover the simpler Ti and Tj maps from the non-trivial Tk and Tl maps. Note that

this set of equations here suggests a Lagrangian 1-form structure is possible, which is

discussed in the next section. For now we investigate these equations and the invariants

further. We can make a link between the shared variable y and the invariant J

y − ϵ γ x

ϵ2 − x2
= ±

√
ϵ2x4 + (J + (γ2 − ϵ2)ϵ2)x2 − Jϵ2

ϵ2 − x2
, (6.82a)

yi −
ϵ γ xi
ϵ2 − x2i

= ±

√
ϵ2x4i + (J + (γ2 − ϵ2)ϵ2)x2i − Jϵ2

ϵ2 − x2i
. (6.82b)

Now we write down second order difference corner equations in terms of x(ni, nj , nk, nl).

We can eliminate two equations involving y to derive a corner equation for (x, xi, xj)

xi −
2ϵ γ x

ϵ2 − x2
− xj = 0 . (6.83)

We can eliminate two equations involving yj to derive the following trivial corner equation

xij = −x . (6.84)

We can eliminate two equations involving y to derive a corner equation for (x, xi, xk)

xi −
ϵ γ x

ϵ2 − x2
∓k

Γr((x− ϵ)(xk − ϵ))
2(x− ϵ)

∓k
Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)
= 0 . (6.85)

We can eliminate two equations involving y to derive a corner equation for (x, xk, xl)

±k
Γr((x− ϵ)(xk − ϵ))

2(x− ϵ)
±k

Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)

∓l
Γs((x− ϵ)(xl − ϵ))

2(x− ϵ)
∓l

Γs((x+ ϵ)(xl + ϵ))

2(x+ ϵ)
= 0 .

(6.86)

Furthermore, we can eliminate two equations involving yk to derive a corner equation for

(x, xk, xkl)

∓k
Γr((x− ϵ)(xk − ϵ))

2(xk − ϵ)
∓k

Γr((x+ ϵ)(xk + ϵ))

2(xk + ϵ)

∓l
Γs((xk − ϵ)(xkl − ϵ))

2(xk − ϵ)
∓l

Γs((xk + ϵ)(xkl + ϵ))

2(xk + ϵ)
= 0 .

(6.87)

We now eliminate two equations involving yk to derive the second order difference
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equation for evolution in the nk direction involving (x, xk, xkk)

±k
Γr((x− ϵ)(xk − ϵ))

2(xk − ϵ)
±k

Γr((x+ ϵ)(xk + ϵ))

2(xk + ϵ)

±k
Γr((xk − ϵ)(xkk − ϵ))

2(xk − ϵ)
±k

Γr((xk + ϵ)(xkk + ϵ))

2(xk + ϵ)
= 0 .

(6.88)

This can be expanded out to give a polynomial, which is a polynomial and a second order

difference equation in (x, xk, xkk)

4x6k(x+ xkk)
2 + 8x5k(x+ xkk)(4r

2 − γ2 + xxkk)

+ 4x4k((4r
2 − γ2)2 − ϵ4 − ϵ2(x2 + x2kk) + 2(4r2 − γ2 − 2ϵ2)xxkk)

− 4x3k(x+ xkk)(ϵ
2(12r2 − γ2 + ϵ2) + (4r2 − γ2 + 3ϵ2)xxkk)

− 4x2k(ϵ
2(16r4 − (γ2 − ϵ2)2) + 4r2ϵ2(x+ xkk)

2 + (16r4 − 8r2γ2 + γ4 − ϵ4)xxkk)

+ 4xkϵ
2(4r2 − γ2 + ϵ2)(x+ xkk)(ϵ

2 − γ2 + xxkk) + ϵ2(4r2 − γ2 + ϵ2)(x+ xkk)
2

= 0

(6.89)

This polynomial is symmetric in x and xkk, and it is of sixth degree in xk. It is

a generalisation of the McMillan equations (6.76). These commuting flows must be

compatible with the McMillan equations (6.76), but also generalise them, which we will

show in later sections.

Similarly, (6.86) can be squared to give a sixth degree equation in x and fourth degree

in xk and xl,

0 = c6(xk, xl, ϵ, γ, r, s)x
6 + c5(xk, xl, ϵ, γ, r, s)x

5 + c4(xk, xl, ϵ, γ, r, s)x
4

+ c3(xk, xl, ϵ, γ, r, s)x
3 + c2(xk, xl, ϵ, γ, r, s)x

2 + c1(xk, xl, ϵ, γ, r, s)x

+ c0(xk, xl, ϵ, γ, r, s)

(6.90)

The coefficients ci and the entire equation is symmetric under (xk, r)↔ (xl, s).

We now derive an equations defining the invariant J in terms of x and xk. Let us

start with

±
√
ϵ2x4 + (J + (γ2 − ϵ2)ϵ2)x2 − Jϵ2

ϵ2 − x2
= ±k

Γr((x− ϵ)(xk − ϵ))
2(x− ϵ)

±k
Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)
(6.91)

We can expand this out. Along the way this gives J in terms of x and xk

J = − 2r2ϵ2 − 1

2
ϵ2(x2 + x2k) +

1

2
(4r2 − γ2 − ϵ2)xxk +

1

2
x2x2k

+
1

2
Γr((x− ϵ)(xk − ϵ))Γr((x+ ϵ)(xk + ϵ))

(6.92)
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Expanding out gives the following biquadratic polynomial for x and xk involving the

invariant J :

0 = − J +
J(8r2 − 2(γ2 + ϵ2)2) + ϵ2(16r4 − (γ2 − ϵ2)2))

2J + 8r2ϵ2
xxk

− ϵ2(4J + (4r2 − γ2 + ϵ2)2)

4J + 16r2ϵ2
(x2 + x2k) + x2x2k .

(6.93)

This can also been seen as a quadratic equation in terms of the invariant J .

6.4.2 Jacobi Elliptic Solutions

In this subsection we derive Jacobi elliptic function solutions for the McMillan equation

and its system of corner equations.

Theorem 32. Given a value for the invariant J(x, xi) from two initial conditions x and

xi, as well lattice parameters p, q, r and s, we have a general Jacobi elliptic solution for

the commuting McMillan equations

x(ni, nj , nk, nl) = A sn(ξ + λini + λjnj + λknk + λlnl; k) . (6.94)

Here, the equations (6.97), (6.98), (6.99) and (6.100) define A(J, p, q), k(J, p, q), ξ(J, p, q),

λi(J, p, q)), λj(J, p, q)), λk(J, p, q, r) and λl(J, p, q, s).

Two prove this theorem we first derive a first order difference equation for x(ni) =

A sn(ξ + λini; k), with the parameters A, k and λi appearing explicitly in the equation

A4

k2
+

2A2cn(λi)dn(λi)

k2sn(λi)2
xxi −

A2

k2sn(λi)2
(x2 + x2i ) + x2x2i = 0 (6.95)

This can be derived from the addition formula for the Jacobi sn function. Now, let us

recall the McMillan invariant (6.73) for x and xi, namely

J(x, y) := 2 ϵ γ x xi − ϵ2 (x2 + x2i ) + x2 x2i .

Equating coefficients of the two equations leads to

J = −A
4

k2
, (6.96a)

2 ϵ γ =
2A2cn(λi)dn(λi)

k2sn(λi)2
, (6.96b)

−ϵ2 = − A2

k2sn(λi)2
. (6.96c)

We can solve these three equations alongside cn(λi, k)
2dn(λi, k)

2 ≡ (1− sn(λi, k)
2)(1−
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k2sn(λi, k)
2), to get solution parameters in terms of ϵ(p, q), γ(p, q), J(x, xi, p, q) and x

A2 = −J + γ2ϵ2 − ϵ4

2ϵ2
±
√

(J + γ2ϵ2 + ϵ4)2 − (2γϵ3)2

2ϵ2
, (6.97a)

k2 = −J
2 + 2Jγ2ϵ2 + ϵ4(γ2 − ϵ2)

2Jϵ4
±

(J + γ2ϵ2 − ϵ4)
√
(J + γ2ϵ2 + ϵ4)2 − (2γϵ3)2

2Jϵ4
,

(6.97b)

ξ = sn−1(x/A) (6.97c)

The following equations determine the parameters λi and λj , which define evolution in

the ni and nj direction:

λi , λj ∈ C s.t. (6.98a)

cn(λi, k)dn(λi, k) =
γ

ϵ
, (6.98b)

cn(λj , k)dn(λj , k) = −
γ

ϵ
, (6.98c)

sn(λi, k)
2 = sn(λj , k)

2 =
A2

k2ϵ2
. (6.98d)

These parameters can be solved for by inverting the elliptic functions and make a choice

with the freedom of the elliptic periods. Alternatively, one could solve for these parameters

numerically.

Now we derive the solutions for a commuting flow equation in the nk direction,

recalling (6.93). This leads to (6.97) and the following equations, which determine the

parameter λk, defining evolution in the nk direction:

λk ∈ C s.t. (6.99a)

cn(λk, k)dn(λk, k) =
J(8r2 − 2(γ2 + ϵ2)2) + ϵ2(16r4 − (γ2 − ϵ2)2))

ϵ2(4J + (4r2 − γ2 + ϵ2)2)
, (6.99b)

sn(λk, k)
2 =

4J + 16r2ϵ2

ϵ2(4J + (4r2 − γ2 + ϵ2)2)

A2

k2
. (6.99c)

We can consider another analogous flow in the fourth direction with λl associated with s

λl ∈ C s.t. (6.100a)

cn(λl, k)dn(λl, k) =
J(8s2 − 2(γ2 + ϵ2)2) + ϵ2(16s4 − (γ2 − ϵ2)2))

ϵ2(4J + (4s2 − γ2 + ϵ2)2)
, (6.100b)

sn(λl, k)
2 =

4J + 16s2ϵ2

ϵ2(4J + (4s2 − γ2 + ϵ2)2)

A2

k2
. (6.100c)

This concludes this section, given us everything we need for the theorem above. We have
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commuting Jacobi elliptic solutions with non-trivial solution parameters.

6.4.3 Partial Discrete Lagrangian 1-Form

The corner equations (6.81) above can be integrated to give the following Lagrangians

Li := −xxi −
γϵ

2
log
(
ϵ2 − x2

)
− γϵ

2
log
(
ϵ2 − x2i

)
, (6.101a)

Lj := −xxj +
γϵ

2
log
(
ϵ2 − x2

)
+
γϵ

2
log
(
ϵ2 − x2j

)
, (6.101b)

Lk := ∓k
∫ (x+ϵ)(xk+ϵ) Γr(v)

2v
dv ∓k

∫ (x−ϵ)(xk−ϵ) Γr(v)

2v
dv , (6.101c)

Ll := ∓l
∫ (x+ϵ)(xl+ϵ) Γs(v)

2v
dv ∓l

∫ (x−ϵ)(xl−ϵ) Γs(v)

2v
dv . (6.101d)

The corner equations are recovered from the Euler-Lagrange equations in the following

way:

− ∂

∂x
Lk = ±k

Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)(xk + ϵ)

∂((x+ ϵ)(xk + ϵ))

∂x

±k
Γr((x− ϵ)(xk − ϵ))
2(x− ϵ)(xk − ϵ)

∂((x− ϵ)(xk − ϵ))
∂x

= ±k
Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)
±k

Γr((x− ϵ)(xk − ϵ))
2(x− ϵ)

,

(6.102a)

∂

∂xk
Lk = ∓k

Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)(xk + ϵ)

∂((x+ ϵ)(xk + ϵ))

∂xk

∓k
Γr((x− ϵ)(xk − ϵ))
2(x− ϵ)(xk − ϵ)

∂((x− ϵ)(xk − ϵ))
∂xk

= ∓k
Γr((x+ ϵ)(xk + ϵ))

2(xk + ϵ)
∓k

Γr((x− ϵ)(xk − ϵ))
2(xk − ϵ)

.

(6.102b)

We note the integrals in the Lagrangians above have the following forms in terms of

known functions∫
Γr(v)

2v
dv ≡ 1

2
Γr(v) + γϵ arctanh

(
v − Γr(v)

γϵ

)
− 4r2 − γ2 − ϵ2

4
log

(
− (4r2 − γ2 − ϵ2)− 2v + 2Γr(v)

) (6.103)

We note the following relevant identity:

arctanh(z) ≡ 1

2
log

(
1 + z

1− z

)
. (6.104)

We also note the following freedom. Each Lagrangian can be replaced with Li → L′i,

without breaking the multiform Euler-Lagrange structure:

L′i := f(ϵ, γ)Li + g(x, ϵ, γ)− g(xi, ϵ, γ) + hi(ϵ, γ) , (6.105a)
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L′j := f(ϵ, γ)Lj + g(x, ϵ, γ)− g(xj , ϵ, γ) + hj(ϵ, γ) , (6.105b)

L′k := f(ϵ, γ)Lk + g(x, ϵ, γ)− g(xk, ϵ, γ) + hk(ϵ, γ, r) , (6.105c)

L′l := f(ϵ, γ)Ll + g(x, ϵ, γ)− g(xl, ϵ, γ) + hl(ϵ, γ, s) . (6.105d)

The multiform Euler-Lagrange should guarantee constant closure. However, further

work is required to prove directly that these Lagrangians have constant closure, and then

vanishing closure up to certain choices of functions f, g and hi. We note that we can show

vanishing closure between Li and Lj , but this is trivial

xij = −x =⇒ Li − TjLi − Lj + TiLj = 0 . (6.106)

Overall, we can only conclude the following.

Theorem 33. The four Lagrangians (6.101) are a partial Lagrangian 1-form in the

following sense. The closure relation has not been proved, but the multiform Euler-

Lagrange equations correspond to a non-trivial integrable system of commuting maps (with

general solutions in terms of Jacobi elliptic functions given in Theorem 32).

6.4.4 Degenerations from Commuting McMillan to McMillan

In this subsection we describe how the commuting McMillan flows generalise the standard

McMillan flows in the plane of the staircase. When considering periodic reductions, the

flows perpendicular to the plane of the periodic staircase are fundamental. In this case

the degenerations r 7→ p and xk 7→ xi takes the commuting flows in nk to the McMillan

equations in ni. Analogously, one can consider r 7→ q and xk 7→ xj . The square roots

degenerate as follows:

lim
r→±p
xk→xi

Γr((x− ϵ)(xk − ϵ)) ≡ γϵ+ ϵ2 − ϵ(x+ xi) + xxi , (6.107a)

lim
r→±p
xk→xi

Γr((x+ ϵ)(xk + ϵ)) ≡ γϵ+ ϵ2 + ϵ(x+ xi) + xxi . (6.107b)

lim
r→±q
xk→xj

Γr((x− ϵ)(xk − ϵ)) ≡ γϵ− ϵ2 + ϵ(x+ xj)− xxj , (6.108a)

lim
r→±q
xk→xj

Γr((x+ ϵ)(xk + ϵ)) ≡ γϵ− ϵ2 − ϵ(x+ xj)− xxj . (6.108b)

All corner equations (6.81) degenerate accordingly, for example

lim
r→±p
xk→xi

±k
Γr((x− ϵ)(xk − ϵ))

2(x− ϵ)
±k

Γr((x+ ϵ)(xk + ϵ))

2(x+ ϵ)
≡ ±k(−

ϵ γ x

ϵ2 − x2
+ xi) , (6.109a)
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lim
r→±p
xk→xi

∓k
Γr((x− ϵ)(xk − ϵ))

2(xk − ϵ)
∓k

Γr((x+ ϵ)(xk + ϵ))

2(xk + ϵ)
≡ ∓k(

ϵ γ xi
ϵ2 − x2i

− x) . (6.109b)

One can also apply these degenerations to the Jacobi elliptic solutions above and see that

the dependence on J(x, xk) in the solution parameter λk disappears and simplifies.

6.4.5 Linearisation to Recover Discrete Harmonic Oscillator

In this section, we show that the discrete nonlinear 1-form above linearises to the discrete

harmonic oscillator 1-form structure from [26]. In order to carry out a linearisation we

first recognise a trivial solution to the set of equations, which is x(ni, nj , nk, nl) = 0. The

square roots with this solution lead to

±k Γr(ϵ2) := ±k 2rϵ . (6.110)

With this it can be easily checked that all of the corner equations (6.81) vanish under

x(ni, nj , nk, nl) = 0 and (y(ni, nj , nk, nl) = 0). Now we can linearise the Lagrangians

about this solution to obtain

lim
x→0
Lj ≡ −xxj −

γ

2ϵ
(x2 + x2j ) , (6.111a)

lim
x→0
Lk ≡

γ2 − ϵ2 − 4r2

4rϵ
xxk +

γ2 − ϵ2 + 4r2

8rϵ
(x2 + x2k)− hk(ϵ, γ, r) . (6.111b)

With f(ϵ, γ) = −ϵ, P := pq ≡ 1
4(ϵ

2 − γ2), Q := q2 and R := r2, we get

lim
x→0
L′j ≡

1

q

(
(P +Q)xxj +

1

2
(P −Q)(x2 + x2j )

)
. (6.112a)

lim
x→0
L′k ≡

1

r

(
(P +R)xxk +

1

2
(P −R)(x2 + x2k)

)
. (6.112b)

Hence linearisation recovers the discrete Lagrangian 1-forms of the harmonic oscillator,

as in [26].

6.5 Chapter Conclusions

In this chapter we developed Lagrangian 1-forms associated with special functions,

including the sine function, the cosecant function and Jacobi elliptic functions. In Section

6.3, we derived novel a discrete Lagrangian and a continuous Lagrangian 1-form, where the

general solution to the multiform Euler-Lagrange equations are common cosecant functions.

With future work, the discrete Lagrangian 1-form could be quantised in the sense of
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path integrals to generalise the work of [26]. In Section 6.4, we derived a partial discrete

Lagrangian 1-form, associated with the McMillan equation, where the general solution to

the multiform Euler-Lagrange equations is a common Jacobi elliptic function. Despite the

McMillan equation being a simple integrable ordinary difference equation arising from

a periodic reduction of lpKdV, the system of commuting maps and the corresponding

Lagrangian 1-form structure is rich and non-trivial. Further work is required to prove

that the discrete Lagrangian 1-form satisfies constant closure (and then vanishing closure)

on the multiform Euler-Lagrange equations. We find that the non-trivial commuting flows

generalise and degenerate to the McMillan equations. Furthermore, our partial discrete

Lagrangian 1-form for the McMillan equation can be linearised to recover the discrete

harmonic oscillator Lagrangian 1-form from [26].
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Chapter 7

Conclusion

The theory of Lagrangian multiforms is continuing to develop at a rapid pace. In this

thesis, we developed discrete Lagrangian 2-forms on quadrilateral stencils and their

reductions. We have highlighted some new aspects of the theory and clarified a number of

issues. We believe there are many opportunities for future developments and applications,

particularly in quantum integrable systems and quantum path integrals.

7.1 Summary of Results

In Chapter 2 we partly reviewed the concepts of integrable equations and discrete

Lagrangian multiforms, focussing on an example of the H1 quad equation. Importantly,

we introduced a definition of a weak discrete Lagrangian 2-form to describe the earliest

(pioneering) constructions of [28]. We then introduced a stronger definition of a discrete

Lagrangian 2-form to reconcile recent developments in the discrete setting [11], as well as

developments in the continuous [16] and semi-discrete setting [49].

Armed with this stronger definition, In Chapter 3 we present novel discrete Lagrangian

2-forms for the quad equations of the entire ABS list [1]. To achieve this, we reviewed the

quad equations of the ABS list which are classified by multidimensional consistency. We

emphasised the three leg form of the quad equations, as well as the related tetrahedron

polynomials and octahedron polynomials. The major result in this chapter is the elevation

of the Lagrangians from [1] and [10] to full-fledged Lagrangian multiforms related to the

ABS quad equations: Lij , Lij and Lij . We showed that, contrary to common belief, the

ABS quad equations are variational: they are the corner equations of Lij (and equivalent

to the corner equations of Lij). Using the relations between these new Lagrangian 2-forms

and the well-established Lagrangian 2-form Lij , we showed that the quad equations are
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equivalent to the combined system of tetrahedron and octahedron equations.

In Chapter 4 we reinforce that double zero expansions are a universal phenomenon of

Lagrangian multiforms, by formulating them in the discrete setting. We show that each

of the discrete Lagrangian 2-forms considered in Chapter 3 admit a double zero expansion

in terms of their respective multiaffine corner equations.

In Chapter 5, we develop a framework to periodically reduce discrete Lagrangian

2-forms into (weak) discrete Lagrangian 1-forms. We show that periodic reductions from

integrable partial difference equations to integrable ordinary difference equations, can

be carried out on the Lagrangian level, such that the Lagrangian multiform structure is

partially preserved. The key insight in this Chapter is to make use of multidimensional

consistency and consider evolution perpendicular to the periodic staircase. This leads

to an action over periodic quad surfaces in a four-dimensional lattice. This seems quite

abstract at first, however the properties of a weak discrete Lagrangian 1-form follow from

linearity. We consider this framework on a simple example and periodically reduce the

discrete Lagrangian 2-form associated with the linear quad equation. For this example,

we derive a discrete Lagrangian 1-form (satisfying the stronger definition), by explicitly

deriving a double zero expansion for it. This framework is promising and it lays the

groundwork to find a general framework to periodically reduce Lagrangian multiforms.

In Chapter 6, we investigate Lagrangian 1-forms. We relate discrete and continuous

Lagrangian 1-forms to addition formulae for trigonometric and reciprocal trigonometric

functions. We derive discrete commuting flows for the McMillan equation and develop a

discrete Lagrangian 1-form.

7.2 Future Work

As we emphasise from our discussion in the Introduction, there are potential applications

of discrete Lagrangian multiforms in quantum integrable systems, quantum path integrals

and discrete quantum theories of gravity. For instance, in [26], the authors considered

the quantum path integral of a discrete Lagrangian 1-form associated with the discrete

harmonic oscillator. One powerful property of discrete integrable equations (and discrete

Lagrangian multiforms) in this context is that they provide exact integrable discretisations

of their continuous counterparts, which resolves many of the mathematical issues associated

with the time-slicing limit. We believe discrete Lagrangian 1-forms related to work in

Chapter 5 and Chapter 6 will lead to non-linear generalisations of the quantum multiform

construction in [26]. Furthermore, our work in Chapter 3 provides an ideal discrete
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Lagrangian 2-form which could be used to quantise the lpKdV equation and other quad

equations.

Our definitions in Chapter 2 and novel constructions in Chapter 3 help unify discrete

Lagrangian multiforms with the semi-discrete and continuous case. So far there are

limited examples of semi-discrete Lagrangian multiforms [49], and we expect our work to

help in the discovery of more.

The double zero expansions of the discrete Lagrangian 2-forms around the elementary

cube in Chapter 4 are ripe for further exploration. We expect future investigations into

2-dimensional analogous of the discrete integrals of motion in [53]. Furthermore, it should

be possible to find a discrete Lagrangian 2-form analogue of the expressions in [16] or

the variational symmetries in [48, 54]. There is the question of what equivalent set of

equations should the double zero expansion be in terms of? We explored expansions in

terms of multiaffine equations in Chapter 4, but it is worth exploring expansions in terms

of the non-linear three-leg forms. We also believe there is more to be understood from

three leg forms as integrals of reciprocal biquadratics [61].
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Appendix A

The ABS list

Here we present the equations of the ABS list. For each we give leg functions ϕ and

ϕ making up a possible three-leg form. There is freedom both in how to present the

equations (such as Möbius transformations of the fields and point transformations of the

parameters). The forms below are chosen such that (except for Q4) they can be explicitly

integrated to give the Lagrangian functions L and Λ.

For H1–H3, A1–A2, and Q1 these are taken from [28] (with some modifications in H3

and A2 to clarify the case δ = 0 and to enforce the symmetry of Λ). The Lagrangians for

the equations Q2–Q3 are inspired on the ideas of that paper and on the three-leg forms

presented in [1, 10].

H1

Q = (u− uij)(ui − uj)− αi + αj

ψ = ui

ϕ =
αi − αj
u− uij

L = uui

Λ = (αi − αj) log(u− uij)

A comment on the symmetry of Λ is in order. If the fields are real-valued we can interpret

the log-term as log(|u− ui|), which makes the symmetry u↔ ui manifest. If the fields are

complex-valued, we have log(u− ui)− log(ui − u) = πi, so the symmetry holds up to a

constant which does not affect the corner equations. Of course we could write an explicitly

symmetric expression, Λ = 1
2(αi − αj) log

(
(u− ui)2

)
, but for the sake of conciseness we

choose not to write such symmetrised expressions.
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H2

Q = −α2
i + α2

j − (αi − αj)(u+ ui + uij + uj) + (u− uij)(ui − uj)

ψ = log(αi + u+ ui) + 1

ϕ = log(αi − αj + u− uij)− log(−αi + αj + u− uij)

L = (αi + u+ ui) log(αi + u+ ui)

Λ = (αi − αj + u− uij) log(αi − αj + u− uij)

+ (αi − αj − u+ uij) log(−αi + αj + u− uij)

H3δ=0

Q = (uui + uijuj)e
αi − (uiuij + uuj)e

αj

ψ =
log(uui)

u

ϕ =
αi − αj

u
−

log
(
−ueαi−αj

uij
+ 1
)

u
+

log
(
−ue−αi+αj

uij
+ 1
)

u

L =
1

2
log(uui)

2

Λ = (αi − αj) log
(
u

uij

)
+ Li2

(
ueαi−αj

uij

)
− Li2

(
ue−αi+αj

uij

)

where Li2 denotes the dilogarithm function. The symmetry of Λ follows from the diloga-

rithm identity

Li2(z) + Li2

(
1

z

)
= −π

2

6
− (ln(−z))2

2
.

H3δ=1

Q = (uui + uijuj)e
αi − (uiuij + uuj)e

αj + e2αi − e2αj

ψ =
αi
u

+
log(uuie

−αi + 1)

u

ϕ =
αi − αj

u
−

log
(
−ueαi−αj

uij
+ 1
)

u
+

log
(
−ue−αi+αj

uij
+ 1
)

u

L = αi log(uui)− Li2(−uuie−αi)

Λ = (αi − αj) log
(
u

uij

)
+ Li2

(
ueαi−αj

uij

)
− Li2

(
ue−αi+αj

uij

)

A1δ=0

Q = (uuij + uiuj)(αi − αj) + (uui + uijuj)αi − (uiuij + uuj)αj
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ψ =
αi

u+ ui

ϕ =
αi − αj
u− uij

L = αi log(u+ ui)

Λ = (αi − αj) log(u− uij)

A1δ=1

Q = −(αi − αj)αiαj + (uuij + uiuj)(αi − αj) + (uui + uijuj)αi − (uiuij + uuj)αj

ψ = log(αi + u+ ui)− log(−αi + u+ ui)

ϕ = − log(αi − αj − u+ uij) + log(−αi + αj − u+ uij)

L = (αi + u+ ui) log(αi + u+ ui) + (αi − u− ui) log(−αi + u+ ui)

Λ = (αi − αj − u+ uij) log(αi − αj − u+ uij) + (αi − αj + u− uij) log(−αi + αj − u+ uij)

A2

Q = −(uuiuijuj + 1) sin(αi − αj) + (uiuij + uuj) sin(αi)− (uui + uijuj) sin(αj)

ψ =
iαi
u
−

log
(
−uuieiαi + 1

)
u

+
log
(
−uuie−iαi + 1

)
u

ϕ =
iαi − iαj

u
−

log
(
−ueiαi−iαj

uij
+ 1
)

u
+

log
(
−ue−iαi+iαj

uij
+ 1
)

u

L = iαi log(uui) + Li2(uuie
iαi)− Li2(uuie

−iαi)

Λ = (iαi − iαj) log
(
u

uij

)
+ Li2

(
ueiαi−iαj

uij

)
− Li2

(
ue−iαi+iαj

uij

)

Q1δ=0

Q = αi(u− uj)(ui − uij) + αj(u− ui)(uij − uj)

ψ =
αi

u− ui
L = αi log(u− ui)

For equations of type Q, the long-leg function ϕ is identical to the short leg function ψ,

and correspondingly Λ is identical to L.

Q1δ=1

Q = (αi − αj)αiαj + αi(u− uj)(ui − uij) + αj(u− ui)(uij − uj)
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ψ = log(αi + u− ui)− log(−αi + u− ui)

L = (αi + u− ui) log(αi + u− ui) + (αi − u+ ui) log(−αi + u− ui)

Q2

Q = −(α2
i − αiαj + α2

j − u− ui − uij − uj)(αi − αj)αiαj

+ αi(u− uj)(ui − uij) + αj(u− ui)(uij − uj)

ψ =
log
(
αi +

√
u+
√
ui
)

2
√
u

+
log
(
αi +

√
u−√ui

)
2
√
u

−
log
(
−αi +

√
u+
√
ui
)

2
√
u

−
log
(
−αi +

√
u−√ui

)
2
√
u

L = (αi +
√
u+
√
ui) log

(
αi +

√
u+
√
ui
)
+ (αi +

√
u−
√
ui) log

(
αi +

√
u−
√
ui
)

+ (αi −
√
u−
√
ui) log

(
−αi +

√
u+
√
ui
)
+ (αi −

√
u+
√
ui) log

(
−αi +

√
u−
√
ui
)

Q3δ=0

Q = −(uuij + uiuj) sin(αi − αj) + (uui + uijuj) sin(αi)− (uiuij + uuj) sin(αj)

ψ =
iαi
u
−

log
(
−ue(iαi)

ui
+ 1
)

u
+

log
(
−ue(−iαi)

ui
+ 1
)

u

L = iαi log

(
u

ui

)
+ Li2

(
ueiαi

ui

)
− Li2

(
ue−iαi

ui

)

Q3δ=1 An explicit function L is only known after a change of variable u→ cosh(u):

Q = sinh(αi)(cosh(u) cosh(ui) + cosh(uij) cosh(uj))

− sinh(αj)(cosh(ui) cosh(uij) + cosh(u) cosh(uj))

− sinh(αi − αj)(cosh(u) cosh(uij) + cosh(ui) cosh(uj))

− sinh(αi − αj) sinh(αi) sinh(αj)

ψ = αi − log
(
−e(αi−u+ui) + 1

)
− log

(
−e(αi−u−ui) + 1

)
+ log

(
−e(−αi−u+ui) + 1

)
+ log

(
−e(−αi−u−ui) + 1

)
L = αi(u− ui)− Li2(e

(αi−u+ui))− Li2(e
(αi−u−ui)) + Li2(e

(−αi−u+ui)) + Li2(e
(−αi−u−ui))

Q4: We present Q4 in its elliptic parametrisation [38]. Consider the following parameter

pairs related to αi, αj through the Weierstrass elliptic function ℘:

(a,A) =
(
℘(αi), ℘

′(αi)
)
,
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(b, B) =
(
℘(αj), ℘

′(αj)
)
,

(c, C) =
(
℘(αj − αi), ℘′(αj − αi)

)
.

Then, after a change of variable u→ ℘(u), Q4 can be written as

Q = A((℘(u)− b)(℘(uj)− b)− (a− b)(c− b))((℘(ui)− b)(℘(uij)− b)− (a− b)(c− b))

+B((℘(u)− a)(℘(ui)− a)− (b− a)(c− a))((℘(uj)− a)(℘(uij)− a)− (b− a)(c− a))

−ABC(a− b) .

Its three-leg form is given by [2]:

ψ = log

(
σ(u+ ui + αi)σ(u− ui + αi)

σ(u+ ui − αi)σ(u− ui − αi)

)
.

A corresponding function L was constructed in [57] by taking a power series expansion of

ψ and integrating it term by term. No closed form formula for L is known. The analytic

properties of L may be developed by considering elliptic dilogarithms, such as in the work

of [8] on scattering amplitudes.
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