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Behold the heaven, the earth, the sea; all that is bright in them or above 

them; all that creep or fly or swim; all have forms because all have number.  

Take away number and they will be nothing… Ask what delights you in 

dancing and number will reply: ‘Lo, here I am.’ Examine the beauty of bodily 

form, and you will find everything is in its place by number.  Examine the 

beauty of bodily motion and you will find everything in its due time by 

number. 

- St. Augustine 
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ABSTRACT 

Running gait analysis is often achieved using motion capture (MC), however 

this is largely confined to laboratories with costly and space-intensive 

equipment.  This study investigates measuring radial acceleration against time 

on a runner’s leg, using a sensitive wearable accelerometer as a simpler 

alternative.  Stride Frequency (SF) and Spectral Purity (SP) were identified as 

key parameters extracted using Fast Fourier Transformation (FFT) of 

accelerometery data as potential quantitative indicators of running gait quality.  

To assess these parameters as measures of gait quality and whether they are 

related to performance, Running Economy (RE) benefits from wearing the 

Nike® Vaporfly ZoomX Next% (VFN%) versus the Saucony® ProGrid Jazz 12 

(JAZ) running shoes were determined using a Cardiopulmonary Exercise Test 

(CPET) of 25 participants running at a fixed speed of 12 km/h on a treadmill 

over various inclines from 0-5%.  The RE benefits of the VFN% were confirmed 

to be 4.4% at 0% incline and shown to exponentially decline to a predicted 

minimum benefit of 2.3% by 16% incline and above.  The FFT of the 

corresponding accelerometer movement waves revealed that runners always 

have a lower SF and generally a better SP when wearing the VFN% running 

shoes.  As incline increased the difference between the lower SF in the VFN% 

vs the JAZ parallels the declining RE benefit of wearing VFN% over the JAZ 

whilst running at a fixed speed.  This novel analysis emphasises the potential 

of accelerometry as a tool for understanding gait quality and predicting 

performance outside the laboratory.  Further testing and optimisation are 
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required to make this type of gait analysis affordable and accessible for all 

athletes.  
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1. GENERAL INTRODUCTION 

SUMMARY  

This chapter covers the growing popularity of running and resultant increased 

interest in gait research.  While gait research laboratories offer valuable data, 

they are costly and not widely accessible.  Wearable devices are emerging as 

a low-cost alternative for gait analysis, though their consistency is debated, 

especially for high-speed movements.  There is a great deal of importance for 

energy efficiency leading to performance enhancement in running.  Where 

running shoe characteristics such as shoe mass, cushioning and midsole 

properties, is of growing interest due to their impact on running economy (RE) 

and associated improvement in performance.  The introduction of the carbon-

fibre midsole plate into running shoes, exemplified by the Nike® Vaporfly 

series revolutionised the market, demonstrating a 4% improvement in RE.  

The impact of shoe design on uphill RE and gait characteristics warrants 

further investigation.  Gait analysis, using accelerometers within wearable 

devices, offer a cost-effective alternative to laboratory-based methods.  This 

project aims to investigate accelerometer-based gait analysis for the 

quantitative assessment of running performance for potential application 

outside the laboratory.  The resolution of this research question would be 

particularly useful for recreation and professional runners, and coaches with 

an interest in objectively quantifying gait and running performance.  
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1.1. RUNNING 

The late 1960s and early 1970s saw a notable surge in distance running 

engagement (Novacheck, 1998), with Jim Fixx and his revolutionary book “the 

complete book of running” credited for facilitating America's fitness revolution 

by popularizing the sport of running and demonstrating the health benefits of 

regular jogging (Plymire, 2002).  Running became popular in the UK in the 

1980’s through the introduction of Chris Brasher and John Disley’s London 

Marathon, and Brendon Foster’s Great North Run (Scheerder J., Breedveld 

and Borgers J., 2015).  Recent statistics indicate that four in 10 individuals 

identify themselves as runners, with 30% engaging in running at least once 

weekly (Rizzo, 2021).  Running stands as one of the most favoured forms of 

physical activity globally, owing to its minimal equipment requirements and 

flexible structure.  According to the latest data from the International 

Association of Athletics Federation, running events drew over 107.9 million 

participants across 70,000 races in 2019, marking a 60% increase in 

popularity over the last decade (DeJong, Fish and Hertel, 2021).  The 

grassroots growth of initiatives like Parkrun, established in 2004, has 

contributed to this upward trend.  This free 5 km run, held weekly in 28 

countries, boasts over 5 million registered participants as of 2018 (Wiltshire, 

Fullagar, & Stevinson, 2018).  Its appeal lies in its inclusivity, welcoming 

participants of all abilities.  Runners can track their progress by scanning a 

barcode to log their performance time.   

The upsurge in both recreational and professional running has in turn fuelled 

increased interest in gait research and performance analysis which has been 

facilitated by technological advancements such as faster cameras and marker 
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systems, streamlining the once labour-intensive process of frame-by-frame 

digitisation (Menolotto et al., 2020). 

Knowledge is required on running gait variables to monitor and improve 

performance.  Historically, coaches used fast and simplistic visual assessment 

to capture and improve running gait variables, such as Stride Frequency (SF)1, 

which when improved can significantly enhance performance (Hoogkamer et 

al., 2018).  However, beyond measuring SF, visual assessment is highly 

subjective, with moderate validity and moderate test-retest repeatability (Kluge 

et al., 2017).  It is challenging to compare data sets within and between 

individuals to identify relationships between technique alterations and 

performance outcomes (Lissiana et al., 2017; Brahms et al., 2018).  This is 

especially true after implementing interventions, such as changes in footwear.   

Since 2017, the composition of running shoes significantly changed, with 

increases in the foam midsole volume plus the addition of a carbon-fibre 

midsole plate that has yielded the most successful racing shoes yet.  Those 

wearing running shoes of this composition have achieved several marathon 

world records, facilitating the breaking of the 2-hour marathon barrier 

(Hoogkamer et al., 2016; Hoogkamer, Kram and Arellano, 2017; Whiting, 

Hoogkamer and Kram, 2022).  However, as performance plateaus, other 

methods for improvement were adopted, such as seeking the in-depth 

knowledge and specialised equipment within gait research laboratories.  

These laboratories have the means to objectively identify running gait 

variables; unfortunately, this information is expensive to gather and not readily 

 
1 the number of strides taken in a unit of time, often per minute or per second. 
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accessible to much of the running community (Norris, Anderson and Kenny, 

2014). 

Wearable devices are being investigated as a low-cost and portable 

alternative for gait analysis due to their ability to record variables, such as gait 

cycle events, SF and peak impact force, that have already been validated 

against 3-D motion capture (MC) (Hu and Soh, 2014; Joukov, Karg and Kulic, 

2014; Bötzel et al., 2016, 2018).  Such wearable devices have provided a 

portable and convenient method enabling athletes and coaches to objectively 

identify and improve specific gait variables that inform performance.  The 

novelty of the wearable device is its ability to capture data within the field 

permitting the evaluation of such gait variables (Jenner et al., no date; Norris, 

Anderson and Kenny, 2014; Caldas et al., 2017).  Debate remains regarding 

the methodological consistency of wearable devices, specifically the capture 

of information from high-speed testing, such as performance running.  

 

1.2. BASIC MECHANICS OF RUNNING 

The analysis of gait is broken down into gait cycles, encompassing a series of 

lower limb movements.  One gait cycle is one stride, beginning with initial 

contact (IC) of the reference leg with the ground and ends with IC of the 

reference leg for the second time (Figure 1) (Novacheck, 1998).  
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Figure 1: Running gait cycle,  consisting of Initial Contact (IC), mid-Stance (mid-ST), Toe-Off (TO), mid-

Swing (mid-SW), finishing with Initial Contact (IC) again (Houglum, 2016).  

 

In running, toe-off (TO) occurs before 50% of the gait cycle is completed, thus 

both feet are airborne twice during the gait cycle at the beginning and end of 

swing (SW), known as double float (DF).  DF has an overlapping SW phase 

during each stride (Figure 2) (Novacheck, 1998).  As speed increases during 

running, ST2 time decreases, SW3 time typically remains relatively constant or 

may decrease slightly.  This is because higher running speeds are often 

associated with a shorter duration of the entire gait cycle, including both ST 

and SW phases.  To maintain a consistent stride frequency and overall pace, 

the duration of both ST and SW phases may be reduced proportionally. This 

reduction in ST time allows for quicker transitions between strides and 

facilitates a faster cadence. 

Maintaining a consistent cadence (stride rate) at different speeds optimises 

efficiency and minimises ground contact time.  Thus, while ST time decreases 

 
2 the time when the foot is in contact with the ground. 
3 the time when the foot is in the air. 

(generation) (generation) 
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with increasing speed, SW time is adjusted to ensure a smooth transition 

between strides while maintaining the desired cadence.  As speed increases, 

SF increases, meaning the time spent in the SW phase decreases because 

the leg must move quicker to keep up with the faster pace.  This is 

accompanied by the decreased duration of the ST phase allowing for a quicker 

transition from ST phase to SW phase, contributing to the overall decrease in 

SW time (Novacheck, 1998).  

 

 

 

Figure 2: Variation in gait cycle parameters with speed of movement showing two complete gait cycles 

or strides.  As speed increases, SW time (clear) increases, followed by ST time (shaded) decreases and 

DF increases with the overall gait cycle time shortening (Novacheck, 1998).   

 

1.3. MECHANICAL ENERGETICS - POTENTIAL ENERGY (PE) AND 

KINETIC ENERGY (KE)  

The process of energy transference between potential energy (PE) and kinetic 

energy (KE) involves the conversion of stored energy into the energy for 

motion.  This often occurs in the context of objects experiencing gravitational 
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forces.  PE is the stored energy an object possesses due to its position or 

state.  In the context of gravitational PE, an object can be calculated as the 

product of its mass (m), gravitational acceleration (g), and height (h) above a 

reference point (Equation 1) (Novacheck, 1998).  

 
Equation 1: Gravitational potential energy (PE) equation measured in joules (J) where m is the mass of 

an object, g is gravitational acceleration at 9.81 m/s2 and h is height above a reference point (Novacheck, 

1998).  

(1) 

𝑃𝐸	(𝐽) 	= 	𝑚𝑔ℎ 

 

Kinetic energy (KE) refers to the energy that an object possesses due to its 

motion by virtue of its velocity (v) and mass (m) (Equation 2) (Novacheck, 

1998). 

 

Equation 2: Kinetic energy (KE) equation measured in joules (J) where m is mass and v is velocity 

(Novacheck, 1998). 

(2) 

𝐾𝐸	(𝐽) 	= 	
1
2𝑚𝑣

!		 

 

PE and KE can be interconverted, for instance, when an object is elevated to 

a certain height (h) it has the capacity to do work but it is not currently in 

motion, thus possesses gravitational PE.  As the object falls under the 

influence of gravity, its PE is converted into KE.  KE increases until it reaches 

its maximum whilst PE decreases until it has zero gravitational PE and vice 

versa during upward motion.  In running, the KE and PE energy cycle are in 
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phase; springing from the lowest point during mid-stance (mid-ST), to the 

highest point in mid-swing (mid-SW).  This is where DF occurs, the point in 

running where both feet are off the ground (Figure 3) (Novacheck, 1998). 

 

 

Figure 3: The relationship between Potential Energy (PE) and Kinetic Energy (KE) in running noting 

Stance Phase Reversal (STR) and Double Float (DF) (Novacheck, 1998).  

 

The running gait cycle consists of two phases; the stance (ST) phase and the 

swing (SW) phase (Figure 1).  ST starts with IC, where KE from the previous 

stride is converted into PE as the leg starts to decelerate (Figure 3).  As the 

leg decelerates, the KE decreases.  Generation phase (the period when the 

foot is actively pushing off the ground, generating the force necessary to propel 

the body forward) at mid-ST, the PE continues to increase as the runner's body 

centre of mass (BCoM) gains height, contributing to the storage of PE as the 

body mass transitions over the supporting foot, moving from weight absorption 

to propulsion (Figure 1).  The KE is lower during mid-ST compared to IC.  At 

toe-off (TO), as the foot leaves the ground, PE is at its maximum and the KE 

is minimal.  The leg is now pushing off, converting PE into KE.  The propulsion 
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phase at late ST sees the BCoM shift forwards and upwards facilitating forward 

propulsion.  PE decreases as the BCoM starts to descend followed by KE 

increases as the runner gains velocity.    

At SW there is a moment of PE as the leg swings forward, lifting and preparing 

for the next stride.  The BCoM follows a parabolic trajectory, descending from 

its highest point in mid-ST to lowest during SW contributing to forward 

momentum.  The KE is relatively low during the initial SW.  At mid-SW PE is 

minimal, the BCoM continues to descend as the leg continues its forward SW 

with KE increasing as the leg accelerates during mid-SW.  By terminal SW, 

PE starts to build again, the BCoM remains low aiding stability as the leg 

prepares for the next IC.  KE reaches its peak just before IC.  The sum of KE 

and PE remains relatively constant in an isolated system, demonstrating the 

conservation of energy during the gait cycle (Alexander, 1991; Novacheck, 

1998; Bramble and Lieberman, 2004).   

 

1.4. MECHANICAL ENERGETICS - ELASTIC STORED ENERGY (ESE) 

The running gait cycle involves the storage and release of elastic stored 

energy (ESE) in various anatomical structures, particularly tendons, to 

enhance the efficiency of the movement.  At IC as the foot contacts the ground, 

the Achilles tendon undergoes elongation, storing elastic PE (Figure 1).  The 

triceps surae, including the gastrocnemius and soleus muscles, contract 

eccentrically to control the rate of ankle dorsiflexion and contribute to ESE 

storage.  At mid-ST, the Achilles tendon continues to elongate storing 

additional ESE.  Muscles, like the gastrocnemius and soleus, work 
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isometrically to maintain tension to control the descent of the BCoM, 

contributing to further ESE storage.  At TO, the ESE in the Achilles tendon is 

released and the triceps surae, specifically the gastrocnemius, contract 

concentrically, aiding in ankle plantarflexion and release of ESE to propel the 

body forwards.   

At initial SW, the leg swings forward, the biarticular muscles such as the hip 

flexor (iliopsoas) and quadriceps muscle (rectus femoris), eccentrically 

contract to continue leg lift forwards.  ESE is stored through the stretching of 

the tendons around the hip and knee joints.  By mid-SW ESE continues to be 

stored in tendons, preparing for ST. Muscles such as the hamstrings 

(comprising the biceps femoris, semitendinosus, and semimembranosus 

muscles) and the iliopsoas, primarily contract eccentrically to indirectly control 

knee extension through controlling the position of the pelvis and trunk during 

the descent of the thigh during running.  These eccentric contractions play a 

crucial role in managing movement and contribute to the storage of elastic 

strain energy, which aids in enhancing movement efficiency and conserving 

metabolic energy.  At terminal SW just before IC, the ESE in the tendons, 

particularly around the hip and knee joints, is released.  The hamstrings 

contract concentrically and quadriceps contract eccentrically, to control the 

leg's descent and contribute to a smooth transition to the next stance phase.  

The entire process then repeats with each step, creating a continuous cycle of 

ESE storage and release (Alexander, 1991; Novacheck, 1998; Bramble and 

Lieberman, 2004).  The up and down oscillation of the BCoM is often referred 

to using the spring mass model and simplistically mimics the motion of a pogo 

stick (Figure 4) (Li, 2011). 
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Figure 4: The spring-mass model for running (Li, 2011).  

 

The rate of energy consumption and cost of transport for running mammals 

between 30 g and 140 kg within the field can be determined using the cost of 

supporting body mass (work done by muscles and tendons to lift and 

accelerate the body and limbs) and the time course of force application or 

ground contact time (GCT) (time the foot is in contact with the ground.  The 

amount of energy consumed in moving a unit of body weight a unit distance 

decreases as step length increases with increasing body weight (Kram and 

Taylor, 1990). 

 

1.5. ENERGETICS OF RUNNING AND RUNNING ECONOMY (RE) 

The quantification and prediction of distance-running performance can be 

assessed using cardiopulmonary exercise testing (CPET)4 (Saunders et al., 

2004).  During a CPET, the individual typically exercises on a stationary bike 

 
4 a test used to evaluate the integrated performance of the cardiovascular (heart and blood 
vessels) and pulmonary (lungs) systems during exercise. 
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or treadmill while instruments measure physiological parameters such as heart 

rate, blood pressure, oxygen uptake (V̇O2), carbon dioxide production (V̇CO2), 

and respiratory rate.  CPET provides valuable information about an individual's 

exercise capacity, aerobic fitness, and cardiovascular and pulmonary function. 

It is often used to assess exercise tolerance, diagnose cardiovascular and 

respiratory conditions, determine optimal exercise prescription and evaluate 

responses to treatment or exercise interventions.  CPET expedites the 

objective quantification of performance indicators such the maximal rate of 

oxygen uptake (V̇O2max), lactate threshold5 and running economy (RE)6.  RE 

is frequently reported as the physiological energy expenditure in terms of 

oxygen uptake in units of submaximal rate of oxygen uptake (V̇O2submax) in 

millilitres per kilogramme per minute (ml/kg/min), or mechanical energy cost, 

being the work required to perform a task or activity, such as overcoming 

friction, inertia, and gravitational forces.  It is measured in Joules or Watts per 

kilogram per minute (J/kg/min or W/kg/min) (Novacheck, 1998; Snyder and 

Farley, 2011; Snyder, Kram and Gottschall, 2012; Barnes and Kilding, 2015).   

RE is a current research interest as it varies by up to 30% among elite runners 

(Table 1).  Athletes with similar V̇O2max scores but lower RE scores perform 

better, thus providing an additional level of performance categorisation and 

performance prediction (Novacheck, 1998; Barnes and Kilding, 2015, 2019; 

Hoogkamer et al., 2016).  Elite runners have stable V̇O2max, RE and lactate 

thresholds thus, reducing confounding variables within research.  However, 

using only elite athletes reduces the applicability of the research to a small 

 
5 utilisation of the maximal sustainable fraction of V̇O2max. 
6 submaximal rate of oxygen uptake (V̇O2submax) at a given speed. 
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sect of the running population (Saunders et al., 2004).  At maximum running 

speeds, men demonstrate greater efficiency compared to women, yet at 

equivalent relative running intensities measured in ml/km/kg, there are no 

discernible gender variations.  When individuals of both genders possess 

equal V̇O2max, males are more economical and when both genders have equal 

RE, males have a greater V̇O2max (Daniels and Daniels, 1992).   

The measurement of RE encompasses various factors that collectively 

represent the intricate functioning of metabolic, cardiopulmonary, 

biomechanical and neuromuscular systems (Figure 5).  Metabolic efficiency 

entails the effective utilisation of energy resources to enhance performance, 

while cardiopulmonary efficiency pertains to minimising the energy 

expenditure associated with oxygen transport and utilisation processes.  The 

neuromuscular and biomechanical attributes involve the interplay between the 

neural and musculoskeletal systems, impacting the conversion of power 

output into movement and consequently, performance. 
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Figure 5: Factors affecting running economy (Barnes and Kilding, 2015). 
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Table 1: Normative Running Economy (RE) values for male and female runners of varying ability despite the challenge of accumulating this information due to varied protocols, 

differing gas-analysis equipment, data averaging techniques and maximal aerobic capacity categorisation (Barnes and Kilding, 2015).   

   Male mean (range) Female mean (range) 
Runner 
classification 

Speed 
(km/h) 

Running economy (𝐕̇O2 
ml/kg/min) 

𝐕̇O2max 
(ml/kg/min) 

Running economy (𝐕̇O2 
ml/kg/min) 

𝐕̇O2max 
(ml/kg/min) 

Recreational 10 36.7 (35.4-38.8) 
54.2 (51.0-57.8) 

37.7 (32.8-42.6) 
49.7 (45.2-54.1)   12 42.2 (40.4-45.3) 43.2 (38.5-48.1) 

  14 47.4 (46.0-49.5) 47.3 (40.1-51.9) 
Moderately trained 12 40.7 (37.4-48.1) 

62.2 (56.6-69.1) 
41.9 (28.9-41.7) 

55.8 (50.5-59.4)   14 46.8 (42.0-55.5) 47.9 (43.2-53.4) 
  16 51.4 (51.6-62.3) 52.9 (45.7-61.0) 
Highly trained 12 n/a 

70.8 (65.3-80.2) 

41.3 (33.3-50.2) 

61.7 (56.2-72.3) 
  14 45 (32.4-56.5) 48.3 (39.0-56.7) 
  16 50.6 (40.5-66.8) 54.5 (46.2-61.9) 
  18 58.1 (48.0-72.0) 58.6 (54.4-67.1) 
  20 66.5 (65.7-71.6) n/a 
Elite 14 39.9 (36.1-44.5) 

75.4 (68.2-84.1) 

41.9 (38.7-46.9) 

66.2 (61.1-74.2) 
  16 47.9 (41.3-53.5) 48.9 (45.1-55.8) 
  18 55.9 (50.5-62.3) 56.1 (51.8-63.8) 
  20 63.9 (57.5-71.2) n/a 

 

 



 17 

The relationship between energy cost and speed is well-researched in gait 

biomechanics, specifically the walk to run transition.  Alexander (1992) used 

the work of Cavagna (1969) to produce the modelled data in Figure 6.  

Although this article is not available in English, the experimental procedures 

were published in Cavagna and Kaneko (1977) and in Rodolfo (1976) who 

detailed the participant descriptives for the four male subjects (28.3±7.8 years, 

70.3±10.1 kg and height 176.8±1.3 cm) included one national middle-distance 

runner, one national sprinter and two untrained runners.  

There is a linear increase in energy expended in watts per second (W/s) with 

increasing speed, where walking always expends less energy than running 

(Figure 6A) (Alexander, 1992).  These subjects walked at a preferred stride 

frequency at 1.3 m/s which required 300 watts (Joules per second), thus for 

every meter travelled approximately 230 J were utilised, approximately 140 J 

more than standing still.  Running, on the other hand, uses 260 J/m more than 

standing.  At higher speeds, the energy cost is lower for running compared 

with walking, as above certain speeds it is physically impossible to walk for 

mechanical, rather than energetic reasons (Margaria, 1976; Cavagna and 

Kaneko, 1977; Novacheck, 1998; Long and Srinivasan, 2013).   

Whereas the data in Figure 6A can be converted into energy per unit distance, 

where metabolic power7 in watts is divide by speed, to produce Joules per 

meter.  The resultant Figure 6B, depicts walking having an inverted U-shaped 

relationship; with the most energy efficient speed at the bottom of the U.  

Running, on the other hand, shows a significantly flatter relationship.  Simply, 

this figure depicts the most energy efficient speed for walking as 1.3 m/s, 

 
7 energy cost in joules per distance moved. 
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whereas for running it is 2.3 m/s.  Below this speed, walking is more 

economical and above, running is more economical.  Given a choice, the 

average adult would transition to running at approximately 2.3 m/s (Margaria, 

1976; Alexander, 1992).   

 

 

Figure 6: Example of results from cardiopulmonary exercise testing. (CPET) within the laboratory.  These 

curves are based on a male participant locomoting at different speeds. A. When displaying metabolic 

power for walking and running as a function of speed. B. When displaying energy cost in joules per meter 

for walking and running as a function of speed (Alexander, 1992).   

 

1.6. ENERGETICS OF RUNNING AND FOOTWEAR 

Several running shoe characteristics such as; mass, cushioning, longitudinal 

bending stiffness (LBS) and midsole viscoelasticity influence RE thus, in turn 

affects running performance.  When shoe mass is isolated, it determines RE 

with additional shoe mass increasing metabolic cost at a given workload.  It is 

understood that for every additional 100 g in total shoe weight (50 g per shoe) 

A B A B 
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there is a 1% increase in V̇O2 uptake at moderate speeds (Figure 7) 

(Cavanagh and Kram, 1985).  

 

 

Figure 7: The effect of shoe mass on oxygen uptake (𝑉̇O2 %).  Where 100 g increase (per pair) in running 

shoe mass equates to approximately an additional 1% in 𝑉̇O2 uptake (Cavanagh and Kram, 1985).  

 

According to a 14 study meta-analysis, the metabolic cost of running increases 

linearly with increasing shoe mass, where a combined shoe mass <440 g per 

pair had no detrimental effect on V̇O2 when compared to barefoot running 

(Fuller et al., 2015).  When extrapolated to a theoretical shoe mass of 0 g, the 

-0.58 standardised mean difference (SMD) in V̇O2 were calculated.  This 

negative mean V̇O2 suggests that running barefoot or with running shoes of 

negligible mass, could potentially reduce oxygen uptake compared to heavier 

running shoes.  This study provided a theoretical basis for running shoe 

characteristics, other than mass, being responsible for the reduction of oxygen 

uptake during running (Figure 8) (Fuller et al., 2015).   

 



 20 

 

Figure 8: Change in oxygen uptake for running in shoes of different mass compared with barefoot 

running.  Shoe mass values are the combined mass of a one shoe pair. Standardised mean difference 

(SMD) on the y-axis and 𝑉̇O2 is on the x-axis (Fuller et al., 2015).   

 

In recent years, minimalist and barefoot running was thought to be 

energetically optimal due to little or no shoe mass leading to higher RE 

benefits, however, it frequently requires greater muscular effort for the cost of 

cushioning the foot–ground impact (as demonstrated in Figure 8), due to the 

level of shock attenuation required whilst running barefoot (Fuller et al., 2015; 

Hoogkamer et al., 2018; Whiting, Hoogkamer and Kram, 2022).  This is 

thought to be the acute, short-term changes in running gait associated with 

the transition from a rearfoot strike to a forefoot strike pattern, increased 

cadence and reduced vertical oscillation of the BCoM, that contributes to an 

improved RE by up to 12% (Fuller et al., 2015; Hoogkamer et al., 2018).   
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The effect of shoe cushioning on RE is less clear, where it was postulated that 

cushioning allowed for running with straighter legs (less knee flexion), which 

required less muscular effort and improved the storage and return of 

mechanical energy.  This evidence may have facilitated the transition from 

minimalist running shoes to midsoles with significantly more foam (Barnes and 

Kilding, 2015; Hoogkamer et al., 2016).   

Midsole foams vary in their compliance (the amount of compression under a 

certain force), resilience (the percent of the stored mechanical energy that is 

returned) and viscoelasticity (both viscous and elastic behaviour, displaying a 

time-dependent response to deformation).  These properties affect the energy 

stored and returned by the running shoe midsole, hence, act in a similar 

capacity to tendons. Compliance and resilience are not mutually exclusive; 

more compliant and resilient midsoles were known to reduce the energetic 

cost of running from as early as 1985 (Figure 9) (Cavanagh and Kram, 1985), 

however, by 2018 it was the technological developments in the entire shoe 

design, not just the midsole cushioning, that improved RE by 4% (Worobets et 

al., 2014; Hoogkamer et al., 2018).  Further research is required to understand 

how these developments facilitate such significant RE benefits.   
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Figure 9: The effect of cushioning on running economy (RE).  Two similar weighted running shoes, with 

shoe two having more cushioning than shoe one. Shoe two utilised less 𝑉̇O2 than shoe one, thus had 

better RE (Cavanagh and Kram, 1985).  

 

Ethylene-vinyl acetate (EVA) foam was one of the first running shoe midsoles 

cushioning system innovations.  EVA provides a balance of compliance and 

resilience with a viscoelastic response that assists running performance.  EVA 

can be either high in compliance but low in resilience or high in resilience but 

low in compliance which is not conducive to consistent energy return.  

Thermoplastic polyurethane (TPU) and polyether block amide (PEBA) 

demonstrate more desirable properties due to its greater compliance and 

resilience simultaneously, (i.e. more linear and elastic than viscoelastic), 

potentially enhancing the effect of cushioning on RE, although TPU is denser 

than EVA so more foam is required (Worobets et al., 2014; Hoogkamer et al., 

2018).  As well as foam, manufacturers have recently embedded carbon-fibre 

plates into running shoe midsoles, enhancing the LBS and improving leverage, 

thus transmitting the force developed by the leg muscles through to the toes 

propelling the runner upward and forward.  Such plates reduce RE by 1% 

through changes in the leverage of the ankle joint and the foot–toe joint 

(metatarsophalangeal joint) (Healey and Hoogkamer, 2021).  
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In 2017, Nike®, Inc., released a new series of racing shoe with many of these 

features which have transformed the running shoe market, providing a brand-

new perspective on racing shoe design.  One such shoe in the series, known 

as the Nike® Vaporfly (VF), where Nike® incorporated a full length, curved, 

carbon-fibre midsole plate to add stiffness with very little added mass.  This 

was embedded within a thick yet lightweight and compliant PEBA based 

midsole being both resilient and responsive (Figure 10) (Hoogkamer et al., 

2018).  The Nike® Vaporfly 4% weighed c. 205 g per shoe (size 10) (Barnes 

and Kilding, 2019).  This transition instigated other large brands to produce 

running shoes with the same midsole characteristics.  

 

 

Figure 10: Exploded view of the Nike® prototype shoe that incorporates a newly developed midsole 

material and a full-length carbon-fibre midsole plate with forefoot curvature, embedded in the midsole 

(Hoogkamer et al., 2018).   

 

The prototype version of the VF shoe facilitated a reduced RE by 4% relative 

to the Nike® Zoom Streak 6 and the adidas® adizero Adios BOOST 2 during 

treadmill running at 14, 16 and 18 km/h.  As a result, Nike® aptly named their 

first public offering the Nike® Vaporfly 4% (VF4%).  The VF4% produced a 

0.9% longer SL, 5.0% increase in vertical oscillations and an 8.5% decrease 
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in plantar flexion velocity, with no significant increase in peak vertical force 

(Hoogkamer et al., 2018).  The predicted improvement in these biomechanical 

variables would translate into a 0.9% faster marathon time, or a 00:01:25 

(hh:mm:ss) saving at 16 km/hr, a significant performance improvement for a 

change of footwear (Hoogkamer, Kipp and Kram, 2019).    



 25 

 

Figure 11: Estimated change in race time, compared with a previous result, when switching shoes 

(Quealy and Katz, 2019).  

 

The VF series caused controversy in the running world when first released in 

2017, where World Athletics were considering a total ban (O’Grady and 

Gracey, 2020).  The limited peer-reviewed literature available concluded the 

VF series improved the RE of elite athletes by up to 4% (Hoogkamer et al., 

2018; Barnes and Kilding, 2019; Hoogkamer, Kipp and Kram, 2019; Healey 
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and Hoogkamer, 2021; Hunter et al., 2022; Whiting, Hoogkamer and Kram, 

2022).  It is yet to be understood if these benefits extend to recreational 

runners.  Quealy and Katz's (2019) conducted the most substantial analysis 

to date for the New York Times.  This comprehensive empirical analysis used 

statistical models with over 100,000 data points from publicly accessed Strava 

records to bolster the current peer-reviewed literature.  The authors pair 

matched runners and calculated a best guess percentage saving in completion 

time, with 95% confidence interval, as they switched from one model of 

running shoes to another.  Even after controlling for potential confounding 

variables such as, a runners’ propensity to wear a particular running shoe, 

runners’ ability, race conditions, and race course, the outputs were similar.  

Those that switched to the VF series ran 4 to 5 % faster, a clear outlier at 

approximately 2 % faster than the next-fastest running shoe model (Figure 11) 

(Quealy and Katz, 2019).  It appears that the culmination of publicly available 

evidence showing consistent performance improvements across all running 

abilities encouraged the switch to the VF series.  To date, 41% those with a 

sub three-hour marathon were wearing the VF series, it is unprecedented for 

a single brand and model of shoe to be worn by such a high percentage of 

runners.  

The metabolic savings of the VF were attributed to the spring-like foam 

midsole on energy return and the stiffness of the carbon-fibre midsole plate on 

ankle joint mechanics and the metatarsophalangeal (MTP) joint (Hoogkamer 

et al., 2018).  Further research is needed to understand how the RE benefit is 

distributed between the foam and carbon-fibre midsole plate.  
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1.7. INCLINE RUNNING 

In level running, supporting body weight is the greatest metabolic cost, with 

equal measures of ESE stored and recovered during each step.  However, 

running on an incline (uphill), the BCoM is lower at the beginning than at the 

end of ST, thus has a greater PE.  By toe-off, net positive work must be 

generated by metabolically expensive concentric muscle actions such as the 

hip extensors to provide sufficient KE to raise the height of the BCoM to its 

highest point during the DF and maintain speed on the incline against gravity.  

This energy cost increases linearly with incline and decline compared with 

level running at the same speed (Figure 12).   

 

 

Figure 12: Optimal velocity for locomotion over several inclines.  For a 65 kg participant, the most 

economical grade was about -10% decline, with energy cost increasing linearly with increasing incline 

and decline.  Adapted for this project by changing the units from cal/m/kg to 𝑉̇O2 ml/kg/min (Cavanagh 

and Kram, 1985). 
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During level running, gravitational PE and KE of the BCoM changes are 

symmetrical and in-phase (Figure 3). Theoretically, all this energy could be 

stored elastically in the tendons and subsequently recovered.  In uphill 

running, some mechanical energy generation is required due to the necessity 

of generating mechanical energy to overcome the incline.  Therefore, not all 

the energy can be equally stored and recovered (Figure 13) (Snyder, Kram 

and Gottschall, 2012). 

The implications of the observed changes in mechanical energy dynamics 

during uphill running are significant for overall running performance.  Steeper 

inclines lead to a decrease in the Maximum Possible Elastic Stored and 

Returned Energy (MPESE), and runners must compensate by expending 

additional energy to lift the BCoM to its original height within the stride and 

propel it further uphill (Figure 13).  This increased energy demand may have 

implications for endurance and efficiency during uphill segments of a run. 

The MPESE undergoes changes during uphill running, reflecting the challenge 

of storing and retrieving energy efficiently over more energetically demanding 

terrains.  Despite the challenges posed by steeper inclines, the stability in the 

percentage of Anatomically Estimated Elastic Stored Energy (AESE) suggests 

a consistent biomechanical adaptation calculated based on peak ground 

reaction force (GRF), anatomical characteristics of the foot arch and Achilles 

tendon implies that the body maintains a reliable mechanism for energy 

storage and release across various uphill grades (Snyder, Kram and 

Gottschall, 2012). 
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Figure 13: Elastic Stored Energy (ESE) differences with incline.  The solid curves are the mechanical 

energy fluctuations of the BCoM throughout stance, the black dashed lines represent the maximum 

possible elastic stored and returned energy (MPESE), the grey dashed lines, the anatomically estimated 

elastic energy storage (AESE).  Both mechanical energy generation and dissipation occur, with more 

generation occurring uphill, elastic stored energy decreases, thus the body must generate additional 

energy to account for this decrease.  Adapted for this project from Snyder, Kram and Gottschall, (2012).   

 

Whiting, Hoogkamer and Kram, (2022) found the VF4% is not as energy 

efficient on an incline compared to level running, yet Hunter et al., (2022) 

showed no difference on a 7% incline and decline between the VF4% and 

similar running shoes containing a carbon-fibre midsole plate.  The precise 

benefits of the VF at incline require further investigation.  Note that laboratory 

testing on a treadmill often uses a 1% incline to simulate the energetic cost of 

outdoor running, accounting for factors like wind resistance and surface friction 

(Jones and Doust, 1996). 

 

AESE 

AESE 
MPESE 
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1.8. STRIDE LENGTH (SL) AND STRIDE FREQUENCY (SF) 

Runners develop either an optimal stride length (SL) (the distance covered in 

one gait cycle between IC and IC of the same leg), an optimal SF, or an optimal 

combination of SL and SF for a given running speed.  Combinations of SL and 

SF are based on a runner’s perceived exertion or desired physiological 

response.  Preferred SL has a curvilinear relationship with RE, where the 

optimal SL is the most efficient at a given speed and is an important kinematic 

parameter for long-distance running (Figure 14) (Cavanagh and Williams, 

1982; Cavanagh and Kram, 1985; Novacheck, 1998; Barnes and Kilding, 

2015).   

 

 

Figure 14: The curvilinear relationship between 𝑉̇O2 and stride length (SL).  The dashed line represents 

the optimal SL which produces the least 𝑉̇O2 uptake at a given running speed.  The preferred SL is close 

to the optimal meaning self-optimisation occurs.  Adapted for this project (Cavanagh and Kram, 1985).   

 

The stride frequency–velocity relationship shows that SF increases with 

increased velocity.  Runners adopt lower SF to reduce the energetic cost 

caused by faster limb movement of unnatural and suboptimal gaits, and 

increased force exerted due to a shorter contact time (Whiting, Hoogkamer 

preferred preferred 
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and Kram, 2022).  This is due to the proposition that the maximal contribution 

of ESE to the total work occurs at the optimal stride frequency (OSF), due to 

muscles performing less mechanical work, hence, consume less metabolic 

energy than at other SF.  This notion is supported by the leg behaving like a 

simple spring at the preferred stride frequency (PSF) but not at lower SFs 

(Farley and González, 1996; Snyder and Farley, 2011).   

When required to run at an incline between 0% to 7% at 15 km/h (4.17 m/s), 

SF increased from 2.87 Hz to 2.98 Hz to compensate and as a result SL 

decreased from 1.41 m to 1.35 m, validating the use of the SL calculation from 

speed and SF (𝑆𝐿 = "#$$%	'/"
)*	+,

) (Padulo et al., 2013).   

 

 

Figure 15: The relationship between stride frequency (SF) and metabolic cost.  Trials were run at 2.8 

m/s with SF calculated for the preferred stride frequency (PSF) then 85%, 92%, 108% and 115% of PSF. 

The arrow represents optimal stride frequency (OSF) where the metabolic cost is at its lowest (Snyder 

and Farley, 2011).   

 

 

OSF 
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Runners travelling at a speed of 5.3, 8 and 11 km/h (1.5, 2.2 and 3 m/s) 

demonstrated the greatest RE benefit and maximal ESE return at an average 

SF 1.35 Hz or step frequency8 of 2.7 Hz.  More recently, a U-shaped 

relationship was discovered for level running at 2.8 m/s between metabolic 

cost and SF, with the lowest metabolic cost (3.17 J/kg/m) occurring at the OSF 

(1.44 Hz), which increased at SF less and more than the PSF; for 85% of PSF 

(3.67 J/kg/m), 92% (3.30 J/kg/m), 108% (3.28 J/kg/m) and 115% (3.54 J/kg/m) 

(Figure 15) (Snyder and Farley, 2011).   

Gender differences show women tended to have a shorter SL with a similar 

SF, compared to men, due to women having a smaller hip extension range 

possibly connected to an anatomically differing pelvis position at TO compared 

to males (Rueda et al., 2017).   

 

1.9. GAIT ANALYSIS  

Many recreational and professional runners want a plethora of objective 

information about their running performance with MC being the best objective 

method of movement analysis to date.  MC provides a quantitative 

assessment of running gait by recording data that when analysed can unveil 

a variety of kinematic gait variables (e.g. joint angles, angular velocity) and 

kinetic gait variables (e.g. GRF, joint moments, joint power) (Perry, 1992; 

Kaufman and Sutherland, 2006; Winter, 2009; Benson et al., 2018).   

 
8 also known as cadence, it refers to the number of steps taken per unit of time, usually 
measured in steps per minute (spm).  It represents the rate at which the left and right feet 
contact the ground. 
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Conducting tests within a laboratory setting has inherent limitations; MC 

demands costly video equipment, necessitating a spacious operating 

environment and considerable time investment. Furthermore, the setup and 

data processing require specialised expertise.  MC systems face challenges 

in collecting data from extensive participant cohorts over prolonged periods 

and there is a risk of influencing natural running biomechanics adversely.  This 

influence can arise from participants having to wear cumbersome equipment 

and the use of treadmill running to minimise environmental variability (Fogg, 

2005; Ferber et al., 2016; Sejdić et al., 2016; Barnes, 2017; Kluge et al., 2017; 

Anwary, Yu and Vassallo, 2018; Reilly et al., 2018; Ortega et al., 2021; Ortega, 

2022).  These restrictions mean gait analysis outside of the research 

environment rely heavily on subjective tools such as, questionnaires and 

visual assessment scoring, over objective methods (Jenner et al., no date; 

Barnes, 2017; Clark, 2017).  There is a clear need for the development of an 

objective tool to quantify gait using light weight, portable and unobtrusive 

equipment (Jenner et al., no date; Hu and Soh, 2014).   

 

1.10. WEARABLE DEVICES 

Micro-electromechanical systems (MEMS) accelerometers feature a 

polysilicon surface-micromachined structure positioned on top of a silicon 

wafer (Figure 16).  This structure is suspended over the silicon wafer by 

polysilicon springs, offering resistance against forces induced by applied 

acceleration.  Deflection of this structure is measured using differential 

capacitors, comprising of both fixed plates and plates connected to the moving 
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mass.  Acceleration causes deflection of the mass producing a sensor output 

directly proportional to the applied acceleration (Analogue Devices, 2015; 

Clark, 2017).   

 

 

Figure 16: MEMS accelerometer (Rao et al., 2019). 

 

The benefit of the MEMS accelerometer is that they are self-contained, require 

a low voltage supply, have low current drain thus can be run on batteries.  They 

have minimal range restrictions, no line-of-sight requirements, are small, 

lightweight and inexpensive.  They detect frequency and intensity of 

movements without being sensitive to external interference such as light and 

ferromagnetic objects.  This technology can provide real-time information at 

relatively high sample rates which has the potential to be conducted wirelessly. 

The sensors typically cost less than £5, hence a huge cost advantage over the 

best objective gait analysis method, MC, which for a 13-camera set up costs 

upwards of £90,000 (Fogg, 2005).   

The disadvantages of MEMS accelerometers are the captured data can 

contain errors caused by environmental issues such as temperature, humidity 

and pressure which can affect mechanical characteristics or sensitivity of the 
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sensor.  Poor mounting or instillation quality can increase mechanical stress 

or vibrations.  External interference such as electromagnetic interference can 

disrupt readings.  Calibration accuracy can reduce measurement accuracy this 

regular and accurate calibration is essential. Sensor degradation over time 

may reduce the sensors performance.  Cross axial sensitivity can introduce 

magnitude error and mechanical damage from excessive shock or impact can 

lead to recording inconsistency or sensor failure (Fogg, 2005; Yang and Hsu, 

2010; Barnes, 2017; Clark, 2017).  The absolute orientation of a data point 

recorded by an accelerometer is impossible to calculate without integrating the 

data with gyroscope or magnetometer data from the same data collection 

period.  Finally, accelerometers are sensitive to both static acceleration (due 

to gravity) and dynamic acceleration (caused by motion) which are difficult to 

separate onboard the device or post extraction, meaning data interpretation 

can be challenging (Yang and Hsu, 2010; Barnes, 2017).   

Linear acceleration is detected along the sensitive axis of each transducer, 

ergo, a tri-axial sensor measures acceleration in three axes (x-, y- and z-), also 

known as surge, heave and sway with their corresponding angular 

accelerations, roll, pitch and yaw respectively (Figure 17) (Yang and Hsu, 

2010).   
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Figure 17: The x-, y- and z-axes with the corresponding angular system of roll, pitch and yaw respectively 

(Ellis et al., 2014).   

 

Data captured from each axis of the accelerometer are recorded as a 

waveform, a graphical representation of how a signal varies with time, and will 

be referred to throughout this project as a movement wave.  The movement 

wave depicts the amplitude of the signal measured using gravitational 

acceleration (g), with 1 g equating to approximately 9.81 m/s2 along the 

sensitive axis.  

In signal processing, waves can represent various types of signals, such as 

audio signals, radio waves, or digital signals. Understanding the 

characteristics of waves is fundamental to tasks like signal analysis, filtering, 

modulation, and many other signal processing operations. Waves play a 

crucial role in describing and analysing signals in both analogue and digital 

domains. 

Commercial manufacturers have taken advantage of MEMS technology’s 

small size, crafting multiple movement sensors, such as accelerometers, into 

wearable devices.  The application of these devices in recent years has vastly 

increased, specifically enabling for objective self-monitoring and performance 
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analysis outside of the laboratory (Anwary, Yu and Vassallo, 2018; Brahms et 

al., 2018; Wada et al., 2018).   

Nonetheless, this method does not come without limitation, commercial 

wearable devices include predefined processing protocols that remain the 

intellectual property of the developer (Benson et al., 2018), meaning the raw 

data are not available to the end-user (Fridolfsson, Börjesson and Arvidsson, 

2018).  This reduction in processing transparency can lead to the deletion of 

important movement data points, thus the resultant feedback may not be truly 

representative of the activity undertaken (Jenner et al., no date; Barnes, 2017; 

Clark, 2017), which challenges the test-retest repeatability and application of 

findings (Fridolfsson, Börjesson and Arvidsson, 2018).  Due to this, research 

has transitioned to the use of custom-built wearable devices which allow for 

the unrestricted capture of raw data that can be extracted and processed out 

of the device.  Some research grade wearable devices have been coined as 

a low-cost alternative to laboratory-based gait analysis with several methods 

of processing able to identify gait features and running performance outcome 

measures, including; spatiotemporal gait parameters (i.e., stride time, ST time, 

SW time, SL) (Khusainov et al., 2013; Clark et al., 2016a, 2016b, 2017; Barnes 

et al., 2017; Clark, 2017; Hahn et al., 2017; Kluge et al., 2017; Anwary, Yu and 

Vassallo, 2018; Brahms et al., 2018; Youn et al., 2018), BCoM trajectory 

(Seminati et al., 2013), segment centre of mass vertical displacement , angular 

velocity (Norris, Anderson and Kenny, 2014), physical activity behaviours (i.e., 

adherence) (Grant et al., 2010; Barnes, 2017; Bötzel et al., 2018; Fridolfsson, 

Börjesson and Arvidsson, 2018), and GRF (Barnes, 2017; Clark, 2017; 

Shahabpoor and Pavic, 2018).   



 38 

 

1.11. ANALYTICAL TECHNIQUES 

Running gait is a fundamental skill that is learned, as such, individual 

characteristics can overlay basic movement patterns, resulting in unique 

personal gait features or asymmetries, which integrate into functional gait 

cycles (Inman et al., 2006).  Many factors contribute toward movement 

patterns including physical, neural and mental characteristics, for instance, 

prosthesis, shoe type, injury and mood.  The body compensates for these 

individual differences through the musculoskeletal system reducing energy 

expenditure or metabolic cost incurred because of an ineffective or 

asymmetrical gait (Tesio, Roi and Möller, 1991; Inman et al., 2006).   

Wearable devices, specifically accelerometers, have been prolifically 

researched for their use in gait analysis to quantify and classify pathological 

walking gait (Jenner et al., no date; Tesio, Roi and Möller, 1991; Moe-Nilssen 

and Helbostad, 2004; Tao et al., 2012; Norris, Anderson and Kenny, 2014; 

Anwary, Yu and Vassallo, 2018; Bach, Dominici and Daffertshofer, 2022) with 

few that look at quantifying gait in the healthy population (Malir, 2018; Soulard 

et al., 2021; Lee et al., 2023).  One such study on pathological walking gait, 

was able to use accelerometery to identify specific gait features, such as IC 

and TO, and process the data to identify gait symmetry (Figure 18) (Anwary, 

Yu and Vassallo, 2018).   
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Figure 18: Eight gait features highlighted in the accelerometer movement wave. Corresponds to the 

walking gait events that are defined in figure 1; 1. IC, 2. Load Response (LR), 3. mid-ST, 4. Terminal-

ST, 5. TO, 6. IS, 7. Mid-SW and 8. terminal-SW (Anwary, Yu and Vassallo, 2018).   

 

Wearable accelerometers have facilitated the categorisation of children’s 

physical performance from accelerometry and magnetometer movement data.  

When translating the temporal movement wave into the frequency domain 

using a fast Fourier Transform (FFT) (Figure 19A/ C),  followed by a cumulative 

distribution function (CDF) (Figure 19B/ D), a measure of gait quality was 

derived coined Spectral Purity (SP) (discussed in more detail in 2.11).  Better 

performers displayed a negatively skewed FFT, with more low frequency 

harmonics and fewer high frequency harmonics within the selected epoch9 

(Figure 19A/ B), compared to poorer performers who displayed a wider range 

of harmonics and greater frequency magnitude (Figure 19C/ D) (Barnes, 

2017).  

 
9 a specific time interval or segment of data. 
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Figure 19: Fast Fourier Transform (FFT)(A and C) and Cumulative Distribution Function (CDF) (B and 

D) plots from which Spectral Purity (SP) is determined.  Where figures A and B represent a child with 

low SP (higher gait quality), commonly displayed as a left (negative) skew with few, high amplitude, low 

frequency peaks, being classed as cleaner spectra.  C and D are from a child with a high SP (low gait 

quality) commonly displayed as many, lower amplitude, higher frequency peaks (Barnes, 2017). 

 

However, there are limitations of using individual gait variables to quantify gait 

quality as the causation of the asymmetry is challenging to distinguish and 

because inconsistency between measurement techniques, thus variables 

collected, cannot always be compared across different studies (Sadeghi et al., 

2000).  To date, there is only one unpublished study uncovered during the 
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literature searches, that uses accelerometry to globally index running gait 

quality, captured from an athlete returning to sport from injury, over several 

time points (Jenner et al., no date).  There is a clear lack of information 

surrounding the objective quantification of gait quality via accelerometry, 

specifically surrounding running performance.   

 

1.12. AIMS  

The overarching aim of this project is to collect suitable wearable device 

accelerometry data to derive a series of robust processing techniques that will 

quantitatively measure gait quality parameters captured from runners.  

Secondly, to validate these processing techniques against other objective 

measures, such as cardiopulmonary exercise testing (CPET).  Finally, to 

validate these processing techniques over differing inclines, replicating an 

outdoor environment.   

 

1.13. OBJECTIVES 

1. Investigate effect of incline on running shoe performance to establish a 

RE difference between types of shoes that is measurable by CPET.  

2. Understand the wearable accelerometer devices sensors and their 

functionality.  

3. Test the wearable accelerometer devices within the laboratory to 

ensure they are sensitive and reliable for the capture of quality 

movement data captured during running.  
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4. Formulate an accelerometer data processing technique to identify gait 

quality parameters that exhibit RE differences in objective 1.   

5. Statistically test the processed accelerometer data to determine its 

suitability for use in identifying gait quality parameters that exhibit RE 

differences in objective 1.   
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CHAPTER TWO  
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2. FORMULATION AND OPTIMISATION OF GENERAL 

METHODS 

SUMMARY 

This chapter aimed to develop a robust method for quantitative gait 

assessment using accelerometry from wearable devices, offering a low-cost 

alternative to traditional gait analysis.  Wearable devices, integrated into daily 

life, can capture gait data but commercial limitations hinder accessibility to raw 

data. Research-grade wearable devices, providing raw data access, enable 

transparent processing techniques for accurate gait analysis.  This chapter 

formulates a robust method to capture, extract, calibrate and analyse 

accelerometry data.  A novel series of analytical processing methods were 

coined the Global gait analysis Tool (GaiT).   
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2.1. INTRODUCTION  

Wearable devices have become integrated into the daily lives of individuals 

wanting to understand more about their performance data.  These devices 

are sensitive enough to record data in which gait variables can be extracted, 

such as gait cycle events and vertical acceleration (see Wearable devices - 

1.10) (Jenner et al., no date; Mariani et al., 2010; Tao et al., 2012; Barnes, 

2017; Clark, 2017; Anwary, Yu and Vassallo, 2018; Wada et al., 2018).  

Wearable devices present an opportunity to quantify the movement patterns 

of all types of runners in the real-world setting, not just elite athletes (Benson 

et al., 2018).  Due to this, wearable devices are currently being investigated 

as a low-cost and portable alternative for gait analysis offering the ability to 

examine performance objectively and independently of the professional 

research environment.   

Nonetheless, there are limitations to the commercial wearable devices, 

having predefined processing protocols that remain the property of the 

manufacturer.  Often, the data available to the end-user may have been 

processed within the device and the raw data are inaccessible.  Pre-

processing steps, such as filtering, can lead to the deletion of important 

information captured during movement.  Following data processing, the 

resultant data may not accurately represent the activity undertaken through 

the specific harmonics captured within the movement wave being filtered out.  

As the processing techniques on board the consumer grade wearable 

devices are proprietary information, research grade wearable devices have 

instead been adopted within the gait literature due to unrestricted access to 
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the raw data (Jenner et al., no date; Barnes, 2017; Benson et al., 2017; Clark, 

2017).   

The lack of consensus in contextualising accelerometry-based movement 

data underscores the need for transparent analytical methods. This chapter 

aims to bridge these gaps by utilising raw data from research-grade wearable 

accelerometry devices.  These data will build upon the research of Barnes, 

(2017), Clark, (2017) and Jenner et al., (no date) by developing advanced 

processing techniques that focus on parameters such as SF to achieve the 

objective quantification of running gait. 

 

2.1.1. AIM  

The aim of this chapter was to develop a method to formulate and optimise a 

quantitative gait assessment method for wearable accelerometers, with  

potential utilisation outside of the laboratory.  This iterative process was built 

up over smaller studies to form robust data collection, extraction and 

processing techniques with an analytical approach that proficiently 

contextualised running accelerometry data.  

 

2.1.2. OBJECTIVES  

1. Understand the wearable device sensors and their functionality.  

2. Test the wearable devices to ensure they are sensitive enough to capture 

the movement patterns in runners.  

3. Formulate a data processing technique to quantify running gait.   
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4. Statistically test the data processing technique to determine suitability for 

use in quantifying the running gait.  
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2.2. GENERAL METHODS 

Uniform methods were consistently employed throughout this thesis, 

consolidated for clarity in the General methods section (2.2).  As this chapter 

is focused on the optimisation of the method for potential gait analysis of 

accelerometry data captured whilst running, it includes some results alongside 

methodology.   

 

2.2.1. WEARABLE DEVICE TECHNICAL SPECIFICATION 

The research grade wearable device, previously named the SlamTracker, 

(Swansea University, UK) (Clark et al., 2016b) (Figure 20) contained a tri-

axial accelerometer (ADXL345) with a selectable dynamic range10 of ±2 g, ±4 

g, ±8 g, or ±16 g, a resolution11 of 4 mg/LSB (milli-g per least significant bit) 

for the ±2 g range, 8 mg/LSB for the ±4 g range, 16 mg/LSB for the ±8 g 

range, and 32 mg/LSB for the ±16 g range, an output data rate12 from 0.1 Hz 

to 3200 H, and is powered by 2.0 V to 3.6 V making it suitable for battery-

powered applications.  Two SlamTrackers were used throughout this 

research project (one fitted to each shank) and were predefined to record at 

40 Hz.   

 
10 determines the maximum acceleration it can measure along each axis. 
11 the smallest detectable change in acceleration that the sensor can measure. 
12 the frequency at which acceleration data is sampled and output by the sensor. 
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Figure 20: The two, custom made wearable devices (SlamTracker, Swansea University, UK).  

 

Each wearable device was previously tested under static and dynamic 

conditions, where at lower recording frequencies it concomitantly 

demonstrated a small variability (<0.001 g), low coefficient of variation (CoV) 

and deviation from the mean, making it suitable for data collection during 

physical activity at 40 Hz (Clark et al., 2016a, 2016b). 

 

2.2.2. PARTICIPANT INCLUSION CRITERIA 

Each participant completed a batch of questionnaires to gather personal 

information including; anthropometric characteristics, injury history, 

performance ability (whether they “yes” could or “no” could not complete 10 

km in £40 minutes as a crude performance indicator), physical activity 

readiness questionnaire (PAR-Q) and COVID questionnaire to understand if 

the participants were suitable to join the study.  See Ethics (2.2.3) for more 

details and associated appendices.   
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CRITERIA 

No positive PAR-Q (Appendix AError! Reference source not found.): 

o No injuries within the last 6 months and are not currently seeing 

a therapist for ongoing symptoms.    

o Healthy individual, with no symptomatic long-term health 

conditions.  

A clear COVID pre-visit questionnaire (Appendix BError! Reference source 

not found.): 

o Not having had COVID-19 within the past 14 days. 

o Not currently experiencing any COVID-19 symptoms. 

o Not currently living with anyone who is high risk, based on the 

COVID-19 guidelines.  

o Regular running experience with the ability to run 10 km. 

o Able to maintain running on a treadmill over various inclines.  

 

2.2.3. ETHICS 

This project was granted ethical approval by the Faculty of Biological Sciences 

Research Ethics Committee at the University of Leeds, UK; BIOSCI-18-016 

on 27/06/19 (Appendix C).  Additional COVID safe procedures were 

implemented from December 2020 to satisfy the UK Government and 

University guidelines (Appendix D), the University and Faculty Health and 

Safety Committee, and Faculty of Biological Sciences Research Ethics 

Committee at the University of Leeds, UK; BIOSCI-18-016 on 15/12/20.  
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All participants were given an information sheet detailing the study process 

and that they were permitted to leave at any point (Appendix E).  Each 

participant gave informed consent (Appendix F) before participating outlining 

results could only be withdrawn before entered the data analysis due to the 

anonymity process. 

 

2.2.4. STATISTICAL TESTING 

IBM SPSS Statistics for Macintosh, Version 28.0. (2021) (Armonk, NY: IBM 

Corp) was used to conduct all statistical tests.  

 

PARTICIPANT DESCRIPTIVES 

Within group differences for age, mass, height, body mass index (BMI) and 

performance level were investigated using an independent samples t-test to 

a significance of P £ 0.05.  

 

MAIN EFFECTS 

Homogeneity-of-variance was tested using normally distributed histograms 

and Mauchly’s Test of Sphericity.  A non-statistically significant result (P > 

0.05) allowed for the use of parametric measures with non-adjusted degrees 

of freedom, where sphericity was not met, a more conservative approach was 

taken by decreasing the degrees of freedom.  
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PARAMETRIC MEASURES 

The participant testing effect stems from a participant’s awareness of being 

studied.  This can yield positive or negative effects on performance based on 

the individual’s response.  To reduce the participant testing effect, the method 

was repeated and crossed.  Statistical testing was conducted using a two-way 

repeated measures ANOVA including a post-hoc pairwise comparison with 

Bonferroni correction to a statistical significance of P £ 0.05.  This was 

conducted for both within and between group differences, and degrees of 

freedom were adjusted for repeated measures.   

Further investigations were conducted using the simple effects of the 

repeated measures ANOVA, the paired correlation coefficients and paired 

sample t-test to locate the root cause of the statistically significant 

interactions, relationships and differences with the data, respectively.  

 

2.2.5. DATA EXTRACTION  

The wearable device data were collected on a micro-SD card and imported 

into the programme; daily diary management (DDMT) (Wild Life Computers 

Inc., Redmond, WA, USA).  The wearable device internal time wave 

(hh:mm:ss), plus three accelerometer x-, y- and z-axes waves were extracted 

as .txt files and imported into Igor Pro v8 (WaveMetrics, Oregon, USA).  I 

developed a custom data processing script for this project to process the raw 

accelerometry data (Appendix G).  A data processing summary (Appendix H) 

outlines the overall data extraction and processing steps taken.  The initial 

data extraction was the same for each study unless otherwise stated.  Any 
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additional data processing associated with a particular study was included 

within the respective section.   
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STUDY 1: WEARABLE DEVICE CALIBRATION 

SUMMARY  

The research cantered on employing the tilt test to discern any biases and 

sensitivities inherent in the tri-axial accelerometers of the two wearable 

devices.  Analysis of the results revealed the device's positioning within a right-

hand coordinate system and deviations from technical specifications.  The tilt 

test encompassed data collection across six orientations, enabling the 

calculation of sensitivity and bias along each accelerometer axis.  These 

computations will inform adjustments to dynamic data acquired during testing, 

enhancing data integrity. To efficiently handle large volumes of data, these 

data processing techniques were incorporated into automated data processing 

scripts in Igor and MATLAB.   
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2.3. PREMISE  

The tilt test plays a role in ensuring the accuracy and reliability of 

accelerometers by assessing their alignment between technical specifications 

and dynamic data capture (Analogue Devices, 2015; Barnes, 2017; Kieron et 

al., 2018).  By measuring static acceleration due to gravity (g), this test 

provides valuable insights, particularly when the accelerometer is positioned 

vertically.  In this orientation, the parallel axis registers 1 g, the antiparallel axis 

-1 g, and the perpendicular axis 0 g (Analogue Devices, 2015). 

By scrutinising alignment, sensitivity, and mechanical integrity, the tilt test 

detects manufacturing defects and mechanical errors, ultimately providing 

calibration data to enhance the performance of the wearable device sensors.  

The obtained bias and sensitivity values from this test are indispensable for 

calibrating dynamic data captured by accelerometers.  Additionally, the tilt 

test facilitates identifying the number of axes and establishing their coordinate 

system within the wearable devices, aligning them precisely with a known 

reference frame (Barnes, 2017; Clark, 2017).   

 

2.3.1. AIM  

The aim of this study was to assess the functionality of the accelerometer 

sensors embedded within each wearable device and ascertain the precise 

count and alignment of each axis.  Furthermore, this study sought to acquire 

data that was able to determine sensitivity and bias.  Additionally, this 

research aimed to develop a streamlined programming script capable of 

automating the calibration process of the dynamic data outside of the 



 56 

wearable devices.  This script was designed to ensure swift and accurate 

calibration during data processing, enhancing the efficiency of the overall 

data analysis. 

 

2.3.2. HYPOTHESIS TESTING 

Hypothesis testing has an unavoidable risk of error when accepting or 

rejecting the null hypothesis.  There are two types of error which influence 

each other; a type I error or alpha (α) is a false positive conclusion, and a type 

II error or beta (β) is a false negative conclusion.  Setting a lower significance 

level decreases the type I error risk but increases the type II error risk.  

Increasing the power of a test decreases a type II error risk but increases a 

type I error risk.   

 

HYPOTHESES 

1. H0: no difference was present between the technical specification and 

dynamic data captured from the accelerometers within the wearable 

devices.  

2. H1: there will be a difference between the technical specification and 

dynamic data capture from the accelerometers within the wearable 

devices, enabling for the calculation of sensitivity, bias and resultant 

dynamic data calibration.  
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2.3.3. OBJECTIVES 

A tilt test was conducted where both wearable devices were orientated in six 

different positions for one minute to capture static accelerations along each of 

the sensitive axes.  Sensitivity, bias and dynamic accelerometry data 

correction equations were formulated.  A data processing script was written to 

automate the correction of the accelerometry data.   

 

2.4. METHOD 

2.4.1. PROTOCOL 

One wearable device was marked with a dot on the left corner of the front 

side, marked “top” and the reverse side “bottom” (Figure 24).  The device was 

enclosed within a custom rectangular outer unit, allowing for it to stand 

independently for the tilt test.  The outer unit was marked to identify the 

devices orientation.  The wearable device was turned on, a vigorous shake 

performed to show the start of the tilt test on the resultant movement wave 

and then was sealed tightly within the foam filled unit to negate unwanted 

movement.   

The unit was placed on a level surface (0±0.1°), found using a BOSCH Laser 

Rangefinder (GLM 80 Professional, Robert Bosch Power Tools GmbH, 

Stuttgart, Germany), for 60 seconds in six different orientations (Figure 21).  

A vigorous shake was performed to mark the end of the tilt test before the 

device was removed from the outer unit and turned off.  The procedure was 

conducted again for the second device.   
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Figure 21: Orientations from 1-6 in which the wearable device was positioned for one minute each. 

 

2.4.2. DATA EXTRACTION 

Consistent data extraction methods were applied to each wearable device 

prior to commencing the data processing phase. For additional details, please 

refer to the section on Data extraction (2.2.5).   

 

2.4.3. DATA PROCESSING 

A 30 second time segment (epoch) was separated from the x-, y- and z-axis 

data for each of the six orientations.  These epochs were sectioned 10 

seconds from the orientation start time to ensure that a clean and consistent 

movement wave was captured.  The results from each of these orientations 

were used to calculate the average sensitivity (S) (Equation 3) and bias (B) 

(Equation 4) of the tri-axial accelerometer sensors.  This was conducted for 

both devices where the results provided the basis for the correction equation 

(Equation 5) used as the initial calibration step within the MATLAB script 

(Appendix I).    
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Equation 3: Sensitivity (S) equation for the x (xx), y (yy) and z (zz) axis. Where A indicates the sensor is 

the accelerometer, x-, y- and z- indicating the axis and the number demonstrating the orientation position 

of the device from Error! Reference source not found.. 

          (3) 

𝑆!!	 =	
𝐴!#	 −	𝐴!$

2
 

 

𝑆%%	 =	
𝐴%&	 −	𝐴%'
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Equation 4: Sensor bias (B) equation for x-, y- and z-axis all at 0 g.  Where A indicates the sensor is the 

accelerometer, x, y and z indicating the axis and the number demonstrating the orientation position of 

the device from Error! Reference source not found..  

          (4) 
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The smallest offset of the wearable device when mounted on a participant 

caused data crossover, hence, the incorrect magnitude of data was recorded 

in all three axes.  The data were calibrated for this offset using the corrected 

accelerometer output equation (𝐴)-.-/0_0.2/34.-$%) Error! Reference source 
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not found.where the bias reading (B) was deducted from the original 

accelerometer reading (A) during a static standing data sample, taken at the 

start of every testing sequency for a minimum of 10 seconds.  This was divided 

by the sensitivity of the device (S).  For instance, the 𝐴!-./.01_1/3045/.67 was the 

corrected value for the data recorded via the x-axis, after recalculation the 

value equated to 1 g.  This ultimately represented the participant standing 

vertically fitted with the wearable device’s  sensitive x-axis orientated upwards.   

 
Equation 5: Corrected accelerometer output reading (𝐴!"#"$%_%#'$()#"*+) equation.  Where A indicated the 

sensor is the accelerometer, x, y and z indicating the axis, S the sensitivity value Error! Reference 
source not found.and B indicating the sensor bias value.  

(5) 
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2.5. RESULTS AND DISCUSSION 

There were three waves present confirming the tri-axial accelerometer was 

working in all three axes.  Each wave was defined using a different colour; 

blue, green and red (Figure 22).     
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Figure 22: Tilt test gravitational effect on the each of tri-axial accelerometer axes (blue = x-axis, green = 

y-axis and red = z-axis) positioned in the six different orientations as noted, in Error! Reference source 
not found..   

 

Following each movement sequence allowed for the deduction of the 

orientation system of the sensor within the wearable device.  For instance, 

the green wave in position one read +1 g, position two, four, five and six 0 g, 

and position three -1 g (Table 2).  Therefore, the sensor had a standard right-

hand coordinate system, showing the device was rotated anticlockwise 

(Figure 22).  Meaning the green wave represented the y-axis, the blue wave 

the x-axis and red wave the z-axis.     

  

1 2 3 4 5 6 1 2 3 4 5 6 
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Table 2: tilt test results showing the gravitational (g) effect on each of the three accelerometer axes 

during the six orientations, performed on the red and blue wearable devices.  Sensitivity (S) and the 

subsequent sensor bias (B) were calculated with a worked example to correct the accelerometer 

coordinates (𝐴!"#"$%_%#''$()#"*+)Error! Reference source not found..  

Device 
colour Blue Red 

Wave colour Blue 
(g) 

Green 
(g) 

Red  
(g) 

Blue 
(g) 

Green 
(g) 

Red 
(g) 

Axis x y z x y z 
Orientation 1 -0.01881 1.07949 -0.00075 0.00749 1.02039 0.14658 

Orientation 2 0.98131 0.02517 -0.04105 0.94248 -0.01225 -0.02966 

Orientation 3 0.02327 -0.95726 -0.04476 -0.04740 -0.98092 0.00606 

Orientation 4 -0.97648 0.08687 -0.04158 -0.98519 0.04127 0.15762 

Orientation 5 -0.00141 0.03688 0.99204 0.08966 -0.02065 1.12326 

Orientation 6 0.00409 0.07991 -1.02920 -0.10812 0.07562 -0.94939 

Sensitivity 0.97890 1.01838 1.01062 0.96384 1.00066 1.03632 

Bias 0.00179 0.05721 -0.03203 -0.01459 0.02100 0.07015 

 

The figurative representation of the wearable device with its x-, y-, z-axes 

coordinate system in each of the six test positions was deduced (Figure 23).  

This coordinate system was transferred onto the wearable devices, initially 

as schematic (Figure 24A) with corresponding roll (j), pitch (r) and yaw (y) 

rotations established (Figure 24B).  Finally, for clarity a schematic was 

produced depicting the placement of the wearable devices with the positive 

x-axis pointing superiorly along the radial axis of the participant’s shank, at 

the point where the transverse axis converges with the tibial malleolar 

epicondyle (Figure 25).   
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Figure 23: The resultant right-hand coordinate system is shown for the device in each of the six 

orientations.  Gravity is demonstrated as a vertical, downward arrow.  

 

 

 

Figure 24: A. The wearable device schematic containing x-, y- and z-axes with corresponding counter 

clockwise rotations, roll (j), pitch (r) and yaw (y) respectively. B. The red and blue wearable devices 

marked with their corresponding coordinate system, top upper left corner marker, and top and bottom 

orientation. 
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Figure 25: Image depicting the radial and transverse axis of the lower limb and converging point where 

the wearable device will be fitted.   

 

The tri-axial accelerometer data were affected by the wearable device 

alignment, therefore, H1 was accepted as there was a difference between the 

technical specification and dynamic data captured from the accelerometers.  

To improve the accuracy of the data recorded, the results of the tilt test were 

used to calculate and correct for bias and sensitivity present in each device.  

A worked example of a bias and sensitivity offset calibration adjustment and 

corrected accelerometer x-axis coordinate was conducted (Textbox 1).  A 

calibration script in Igor Pro v8 was produced to automate the calibration 

process, reducing human error and saving a substantial amount of time 

(Appendix G).     

BO BO
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Textbox 1: Worked example from Equation 3, Equation 4 and Equation 5 respectively using a randomly 

selected x-axis coordinate for Ax.   

 

2.5.1. NEXT STEPS 

The subsequent phase in optimising the calibration techniques involved 

performing a sampling frequency test.  This test has been used to identify 

recording discrepancies due to an imperfect manufacturing process, 

assessing overall wearable device performance, ensuring data capture was 

accurate and reliable.  This is essential for valid interpretation and comparison 

with existing literature or standards. 

  

𝑆55	 =	
0.98131 −	−0.97648

2  

𝑆55	 = 	0.97890	𝑔 

𝐵5
67 = K

−0.01881 + 	0.02327 + −0.00141 + 0.00409
4 M 

𝐵5
67 = 	0.00179	𝑔 

 

𝐴!
-./.01_1/3045/.67 =

7.48026 − 0.00179
0.97890  

𝐴!
-./.01_1/3045/.67 = 	7.63967	𝑔 
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STUDY 2: WEARABLE DEVICE SAMPLE FREQUENCY TEST  

SUMMARY 

The study addresses discrepancies with the aim of identifying and correcting 

manufacturing errors.  The protocol involved attaching two devices, 

conducting synchronised movements and recording data over multiple 

sessions.  Results indicated there was no statistically significant interaction 

between clock type and device colour, however, the internal clock was chosen 

for its lower 95% confidence interval (CI), smaller standard deviation (S.D.), 

and standard error (S.E.).  A wave scaling calibration procedure was 

produced, negating the noticeable lag between the blue and red device 

accelerometry movement waves, improving data accuracy.  The study 

culminated in plans to rectify rotational inaccuracies using a rotation matrix in 

the subsequent testing phase. 
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2.6. PREMISE  

Sampling frequency discrepancies can be due to an imperfect manufacturing 

process.  The actual sampling frequency13, can vary between the technical 

specification and device’s ability to record.  Identifying these manufacturing 

errors allows for raw data to be processed and corrected accordingly, 

minimising the impact on the processed data (Analogue Devices, 2015; 

Barnes, 2017; Clark, 2017).   

 

2.6.1. AIM 

This study aimed to identify frequency recording error between the two 

wearable devices using a sampling frequency test.  A suitable wave scaling 

correction technique was formulated to correct for any error, if it occurred.  

 

2.6.2. HYPOTHESES 

Hypothesis testing has an unavoidable risk of error when accepting or 

rejecting the null hypothesis.  There are two types of error which influence 

each other; a type I error or alpha (α) is a false positive conclusion, and a type 

II error or beta (β) is a false negative conclusion.  Setting a lower significance 

level decreases the type I error risk but increases the type II error risk.  

Increasing the power of a test decreases a type II error risk but increases a 

type I error risk.   

 
13 the number of samples recorded per second. 
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H0: The red and blue devices exhibited identical sampling frequencies. 

H1: Either the red or blue devices demonstrated a disparity in sampling 

frequency. 

 

2.6.3. OBJECTIVES 

A sampling frequency test was used to assess for sampling error between two 

wearable devices.  The objectives of this study were to: 

1. conduct multiple sampling frequency tests of differing duration.  

2. use an internal and external time point to identify which was more 

suitable for synchronisation of the two devices movement waves.  

3. Address possible sampling frequency disparity using a wave scaling 

correction.  

 

2.6.4. METHOD 

2.6.5. GENERAL METHODS 

Uniform methods were consistently employed throughout this thesis, 

consolidated for clarity in the General methods section (2.2).   

 

2.6.6. PROTOCOL 

Two wearable devices, one blue and one red, were taped together so manual 

synchronisation movements could be conducted to both wearable devices at 

the same time and orientation.  A stopwatch (external time reference) was 
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used to note the time each wearable device was turned on.  A manual 

vigorous shake of the wearable devices was conducted in one direction to 

produce large magnitude peak on the movement wave during recording and 

then placed down on a flat surface.  This large magnitude peak was used to 

synchronise the blue and red device waves during the data analysis.  The 

wearable devices were left to record between three and six hours of static 

data.  This was repeated on three separate days at different time of the day.  

The wearable devices were picked up and periodically shaken throughout 

each test before being placed down on a flat surface again, which provided 

further reference and synchronisation points.  At the end of the test, one final 

vigorous shake was conducted before the external time noted and devices 

turned off.  The devices were used as per the manufacturer’s guidelines 

specifically in terms of the activity frequency and temperature range.  

 

2.6.7. DATA EXTRACTION 

Consistent data extraction methods were applied to each wearable device 

prior to commencing the data processing phase. For additional details, please 

refer to the section on Data extraction (2.2.5).   

 

2.6.8. DATA PROCESSING 

The sampling frequency was calculated (Equation 6) using the wearable 

device time wave (internal time) and stop watch (external time) and three tri-

axial accelerometer waves.  Initially, the accelerometry movement wave from 
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the red device (intended for the right leg - RL) and blue device (intended for 

the left leg - LL), were cut to the same length using the large magnitude peaks 

from the vigorous shaking at the start and end of the test.  The sampling 

frequency was also calculated for each of the large magnitude peaks that 

were conducted throughout to highlight any changes in sampling frequency 

during testing.  See the relevant appendices for details of the data processing 

script (Appendix G) and data processing procedures (Appendix H).   

 
Equation 6: Equations used to calculate frequency and wave scaling of each individual device, where 𝛥 

is change in, t is time in seconds (s), p is point number, Ft is finish time, Fp is finish point, It is initial time, 

Ip is initial point, f is frequency in hertz (Hz) and 𝛥 t,w is wave scaling. 

(6) 

Δ-	 =	𝐹- − 𝐼- 

 

Δ# =	𝐹# − 𝐼# 

 

𝑓 = 	
Δ#
Δ-
		 

 

∆-,9	=	
1
𝑓 

 

2.7. RESULTS AND DISCUSSION 

The repeated measures ANOVA using Greenhouse-Geisser14, demonstrated 

that there was no statistically significant interaction between clock type 

 
14The Greenhouse-Geisser correction is a statistical method used in repeated measures 
ANOVA (analysis of variance) when the assumption of sphericity is violated.  Sphericity 
assumes that the variances of the differences between all possible pairs of within-subject 
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(internal or external) and device colour (red or blue) (clock*colour), (F(1, 2) = 

13.364, P = .067, partial η2 = .870) (Table 3).  Meaning that the type of clock 

or colour of device had no statistically significant interaction on frequency of 

the data points recorded.  

 
Table 3: Results of three frequency tests with n=12; frequency (Hz) for each test, mean and S.D. 

frequency for each device and clock type.   

Test 
no. 

Test 
duration 
(hh:mm) 

Internal clock External clock 

  

Blue 
device 
(LL) 

frequency 
(Hz) 

Red 
device 
(RL) 

frequency 
(Hz) 

Blue 
device 
(LL) 

frequency 
(Hz) 

Red 
device 
(RL) 

frequency 
(Hz) 

1 03:04 39.99836 40.00110 39.99105 39.95726 

2 06:32 39.99991 40.00013 40.10233 40.06670 

3 04:33 39.99939 39.99957 40.31325 40.27142 

Mean 04:23 39.99921 40.00027 40.04411 40.02018 

S.D.  0.00079 0.00077 0.16365 0.15947 

S.E.  0.00046 0.00045 0.09448 0.09207 

 

A Bland-Altman plot (Figure 26 and Figure 27), also known as a difference plot 

or Tukey mean-difference plot, is a graphical method used to assess the 

agreement between two quantitative measures or methods.  Ideally, most data 

points should cluster around the bias line, indicating good agreement.  The 

limits of agreement (LOA) provide insight into the range of variability or 

disagreement between the methods, highlighting any systematic bias or 

variability between them (Giavarina, 2015). 

 
conditions are equal.  When this assumption is not met, the Greenhouse-Geisser correction 
adjusts the degrees of freedom to provide more accurate F-ratios and p-values for hypothesis 
testing.  This correction helps to reduce the risk of Type I errors (false positives) in statistical 
analysis.  
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Figure 26: Bland-Altman plot of the internal versus the external clock sampling frequency results.  Where 

the black line shows the bias, and the dashed black line the upper and lower limits of agreement (LOA).  

 

 

Figure 27: Bland-Altman plot of red versus the blue device sampling frequency results.  Where the black 

line shows the bias, and the dashed black line the upper and lower limits of agreement (LOA). 

Considering the plots in Figure 26 and Figure 27 the data points are scattered 

within the limits of agreement, meaning both the internal and external clock 
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and red and blue device were within the LOA.  The data points also fall around 

the bias line, meaning both the internal and external clocks and red and blue 

devices produced similar results with small bias of -0.136323333 Hz and -

0.001046667 Hz, respectively.  As there are only three data points it is 

impossible to make a firm conclusion, however both figures appear to have 

proportional bias, meaning that the clock type or device colour methods do not 

agree equally through the range of measurements captured (Giavarina, 2015; 

Hazra and Gogtay, 2016).  

The internal clock (39.99974±0.00090, 95%CI 0.00037) had a lower 95% 

confidence interval, smaller S.D., and S.E., over the external clock 

(40.11700±0.14594, 95% CI 0.05958), therefore, was selected for use during 

testing.  This will help to negate accumulated error from several occurrences 

of inexact time notation between the wearable device events and the external 

clock during testing.  It will also reduce the time discrepancies due to 

asynchronous human error such as, the inability to turn both devices on 

concurrently and physiologically being unable to press the stop watch start/ 

stop button within 0.1 s to precisely synchronise the external clock and the 

wearable device.   
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Figure 28: Graphical representation of the blue (LL) and the red (RL) devices x-, y- and z- accelerometer 

waves set at a 0.025 wave scaling (40 Hz).  The red (RL) device waves are on the left of the figure and 

the blue (LL) device waves are on the right side of the figure with seconds (s) along the x-axis and 

gravitational acceleration (g) on the y-axis.  There is an observable variation in the time and end point 

of the blue and red waves.  This can only be corrected after the data is extracted in the Igor Pro v8 

processing software by changing the wave scaling as in Equation 6.   

  

The graphed accelerometer waves (Figure 28) show three waves for each of 

the two wearable devices confirming each device containing a tri-axial 

accelerometers.  The waves are labelled blue being the x-axis, green the y-

axis and red the z-axis.  If Figure 17 was rotated by 90o, it would depict the 

orientation of the wearable devices whilst recording the data displayed in 

Figure 28, where the y-axis was the sensitive or vertical axis, as displayed 1g 

of gravitational acceleration, and the x- and z-axes were the perpendicular or 

the horizontal axes, as displayed 0 g.   

Using Figure 28 and the Table 3, it was evident that the blue device ran faster 

and recorded more data points than the red device.  At this point, the null 

hypothesis was rejected and hypothesis one accepted, concluding that the 

x103 

Blue (LL) 
device 
waves 

Red (RL) 
device 
waves 
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blue device ran at a faster sampling frequency that the red device.  This is a 

common manufacturing discrepancy for accelerometers and is rectified 

through calibration.  The data lag between the two devices was negligible over 

a short time frame (1 minute), however, during the 6.5 h test the blue device 

recorded 835 more data points, equating to an apparent discrepancy in 

recording duration of 21 s at the assumed sample frequency of 40 Hz.  

Therefore, when overlaying both waves, the blue wave experiences a phase 

shift in comparison to the red wave and when capturing running data, where 

the LL and RL running strides would naturally occur out of phase i.e., IC on 

the LL and mid-SW on the RL, the phases would eventually become in phase 

i.e., both the LL and RL at IC together (such as during jumping) and then out 

of phase again and so on and so forth.   

Calibrating the data at this stage was conducted by changing the wave scaling.  

In the context of signal processing, wave scaling refers the process of 

embedding the x-points into the y-data set (Igor Pro by WaveMetrics, 2021), 

aligning the x-values with the corresponding y-values as shown in Equation 6.   

This negates lag whilst maintaining phase, something that is typically done 

onboard consumer grade wearable devices.  The new wave scaling value for 

the blue device was calculated from the change in time of the red device and 

the number of points recorded from the blue device (Equation 7).  Once the 

waves were rescaled, no further sample frequency processing was needed.   
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Equation 7: New wave scaling for the blue device based on the data collected during testing. 

          (7) 

𝐵𝑙𝑢𝑒	𝑑𝑒𝑣𝑖𝑐𝑒	∆-,9	=	
Red	device	Δ-
Blue	device	Δ#

 

 

Rescaling accelerometry waves was essential for ensuring consistency, 

alignment, integration, and standardisation in the analysis of running data 

obtained from different devices.  Wave scaling between devices mitigates 

these effects, ensuring for accurate and meaningful interpretation of the data. 

 

2.7.1. NEXT STEPS 

Finally, only rotational error remains, which can be negated using a rotation 

matrix; a series of equations that transposes the x-, y- and z-axes data 

around their respective roll, pitch and yaw rotations (Barnes, 2017).  

Therefore, the next study within this chapter will implement a rotation matrix 

to negate rotational error.  This will be conducted by collecting tri-axial 

accelerometry data from two wearable devices whilst treadmill running in the 

laboratory.  The study will deduce if the wearable devices are sensitive 

enough to capture running gait detail and whether the calibration and 

processing techniques will provide sufficient context to the data. 
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STUDY 3: FEASIBILITY STUDY - QUANTITATIVE GAIT ANALYSIS USING 

WEARABLE DEVICES ON RIGHT AND LEFT LOWER LIMBS 

SUMMARY  

The study assessed running gait using bilateral lower limb accelerometry on a 

treadmill at 16 km/h and a 1% incline.  Wearable devices were tested for 

reliability, producing accelerometry movement waves from raw data, graphed 

to identify key protocol phases.  Analytical focus was on the x-axis or radial 

axis whilst processing gait parameters.  The FFT showed consistent 

Fundamental Frequency (FF) for both limbs but greater complexity in the right 

leg (RL).  Gait complexity, measured by the CDF, indicated higher complexity 

in RL.  Cross-correlation revealed stride-to-stride variation between limbs, with 

unexpected findings on placement style and gait symmetry.  The analytical 

tools developed were termed the Global gait analysis Tool (GaiT).  Strict 

wearable device placement showed more variation, contradicting 

expectations.  ANOVA demonstrated that there were no statistically significant 

effects on FF or SP for placement style or device colour.  The wearable 

devices were reliable for high-speed gait analysis.  Future steps included 

assessing gait quality on various inclines and linking accelerometry data to 

performance.   
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2.8. PREMISE 

A feasibility study will be conducted to investigate the use of accelerometry 

to quantify running gait.  This previous studies within this chapter have 

investigated the importance of calibrating the sensors within the wearable 

device.  This final study will combine these calibration techniques and 

introduce a filtering method plus a rotation matrix as the final calibration 

steps.  These methods will reduce the number of unwanted harmonics 

potentially clouding important movement information, and reorientate the 

accelerometry data to a known reference frame using trigonometric principles 

to reduce the magnitude of data crossover between axes (Fogg, 2005; Steins 

et al., 2014; Bieda and Jaskot, 2016; Anwary, Yu and Vassallo, 2018; Patonis 

et al., 2018).   

 

2.9. AIM 

This study aimed to optimise the full data processing strategy from calibration 

to analytical processing, formulating a comprehensive tool that objectively 

quantified running performance based on the accelerometry collected via 

running gait (Jenner et al., no date; Barnes, 2017; Benson et al., 2018). 

 

2.9.1. HYPOTHESES 

1. H0: There was no significant difference in objective gait quality between 

different wearable device placement styles or device colours during 

treadmill running at 16 km/h on a 1% incline. 
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2. H1: There is a significant difference in FF, SP and gait complexity 

between different wearable device placement styles or device colours 

treadmill running at 16 km/h on a 1% incline. 

 

2.9.2. OBJECTIVES 

A feasibility study was used to assess the use of accelerometry for quantifying 

running gait.  The objectives of this study were to:  

1. record running data at 16 km/h on a 1% incline on the wearable device tri-

axial accelerometers to understand if they were sensitive enough to 

capture detail to show the differences between running conditions on a 

treadmill.  

2. calibrate the treadmill running data using all techniques accumulated thus 

far, with the addition of a filtering and a rotation matrix to identify if the 

techniques selected were suitable.  

3. identify how stringent the wearable device placement method needed to 

be to not significantly affect the treadmill running data.  

4. develop several analytical techniques to process the treadmill running data  

in order to successfully contextualise the treadmill running data.  

5. statistically determine if the effects between different wearable device 

placement styles and device colours during treadmill running at on the 

contextualised treadmill running data. 
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2.10. DATA PROCESSING 

2.10.1. FILTERING  

There are two arguments to filtering data in this context, one; maintaining the 

full range of harmonics by not filtering the data may provide a fuller picture of 

movement behaviour (Barnes and Kilding, 2015)  Two; reducing the effects 

of sensor noise where low frequency vibration can limit conditions in which 

accelerometers can be used (Alam and Rohac, 2015).  The low-pass filter, 

and high and low pass filter, such as the Butterworth, are commonly used on 

accelerometry data.  A band pass range between 0.5 Hz and 12 Hz is capable 

of effectively detecting human movement (Puyau et al., 2002; Clark et al., 

2016b; Barnes, 2017).  Many filters depend on multiple factors including 

recording frequency and speed of activity.  The correct filtering range is 

important to avoid deleting harmonics produced through human movement.  

For this study, a filter was applied using a high pass filter at 0.5 Hz which 

needed to be lower than the average recreational running cadence of 160 

steps per minute (2.7 Hz), divided by two (1.35 Hz) due to using one 

accelerometer per limb (Clark et al., 2016b).  Followed by a low pass filter at 

the Nyquist frequency of 20 Hz which is half that of the sampling frequency 

of the wearable device (40 Hz) (Barnes, 2017; Barnes et al., 2017; Clark, 

2017; Clark et al., 2017).  The Nyquist frequency is the threshold above which 

aliasing can occur.  This concept occurs when higher frequency components 

of a signal are indistinguishably sampled and appear as lower frequency 

components in the sampled data.  Filtering out frequencies above the Nyquist 
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frequency will reduce, if not eliminate, aliasing and signal corruption (Proakis, 

and Manolakis, 2007).  

 

2.10.2. ROTATION MATRICES  

Wearable device fitting orientation affects the magnitude of acceleration 

received by the tri-axial accelerometer due to signal crossover.  To combat 

the difference in the ideal alignment reading i.e., 1 g, to that of the wearable 

device when fitted on a participant, the data captured needs to be calibrated 

(as above) and then rotated using a rotation matrix (Barnes, 2017).   

Secondly, accelerometers within the wearable device only be orientated to a 

world or laboratory frame in combination with a gyroscope or magnetometer 

sensor or by orientating one axis to a known direction.  In this study, we chose 

to orientate the x-axis vertically along the radial axis of the shank, thus 

equating to 1 g, after the sensitivity and bias values were accounted for.   
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Equation 8: Rotation matrices for A. roll (φ) around x-, B. pitch (ρ) around y-, and C. yaw (ψ) around z- 

axis.  

          (8 A) 

𝑅!	(φ) = '
1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

0 

          (8 B) 

𝑅%	(ρ) =	 /
cos(ρ) 0 sin(ρ)
0 1 0

−sin	(ρ) 0 cos(ρ)
0 

          (8 C) 

𝑅(	(ψ) = 1
cos(ψ) − sin(ψ) 0
sin	(ψ) cos(ψ) 0
0 0 1

2 

 

The vertical alignment of the x-axis along the shank meant that the assumption 

of the x-axis remained at remained at 0° meaning the transition of the y- and 

z- axis data around the x-axis (𝜑) was used to correct the data and remain 

within the frame of reference.  This meant that Equation 8 A was not necessary 

for this project but could be useful for future projects where gyroscope or 

magnetometer data could be integrated.  

Initially, the angle of transition (𝜑) was calculated (Equation 9) using 

trigonometric principles, where the difference between the average static 

standing accelerometer data sample required an x-, y- and z-axis reading of 1 

g, 0 g and 0 g.  The angle of transition (𝜑) was placed into the rotation matrix 

(𝑅:	(𝜑) Equation 8 B) to reorientate the z- and x-axes around the y-axis.  The 

calibrated static accelerometer coordinate with sensitivity and bias removed 

(𝐴)-.-/0_0.2/34.-$%) were rotated (𝑅:	(𝜑)) resetting the x-axis to 1 g and the z-
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axis to 0 g, forming a corrected static accelerometry coordinate 

(𝐴)-.-/0_0;44$0-$%) (Equation 10).  The resultant transition angles were used 

within a full rotation matrix to calibrate the accelerometer data recorded during 

running (Barnes, 2017; Clark, 2017).  The corrected static accelerometry 

coordinate was fed forward to calculate the pitch angle of transition (ψ) 

(Equation 11).  This angle of transition (ψ) was inserted into the corresponding 

pitch rotation matrix (𝑅(	(ψ)) (Equation 8 C) which rotated the y- and x-axes 

around z-axis.  The full roll and pitch rotation matrices (Equation 12) rotated 

the dynamic accelerometry coordinate (𝐴<:=.'/0) collected from running data 

to produce a resultant rotated dynamic accelerometry coordinate 

(𝐴<:=.'/0_4;-.-$%). 
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Equation 9: The calculation of the angle (𝜑) using the static calibrated coordinates using tangent = 

opposite / adjacent.  

          (9) 

𝜌 =	−atan 4
𝐴𝑧𝑆𝑡𝑎𝑡𝑖𝑐_𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑

𝐴𝑥𝑆𝑡𝑎𝑡𝑖𝑐_𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑
5 
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 Equation 8 B: Rotation matrix for pitch (ρ), where the angle from Equation 9 was inserted into the rotation 

matrix to rotate the z-axis and x-axis about the y-axis, producing a z-axis coordinate of 0 g. 

          (8 B) 

𝑅%	(ρ) =	 /
cos(ρ) 0 sin(ρ)
0 1 0

−sin	(ρ) 0 cos(ρ)
0 

 

Equation 10: The calculation of the static corrected accelerometer coordinate (𝐴!"#"$%_%,))*%"*+)  from a 

static calibrated accelerometer coordinate (𝐴!"#"$%_%#'$()#"*+) and the pitch rotation matrix (𝑅-	(𝜌))  

          (10) 

𝐴)-.-/0_0;44$0-$% =	𝐴)-.-/0_0.2/34.-$% 	∗	 𝑅:	(ρ) 

 
Equation 11: The calculation of the angle (𝜓) to move the y-axis and x-axis around the z-axis (yaw) from 

the corrected roll angle 𝑅.	(𝜓) using tangent = opposite / adjacent. 

          (11) 

ψ	 = atan6
𝐴𝑦𝑆𝑡𝑎𝑡𝑖𝑐_𝑐𝑜𝑟𝑟𝑒𝑐𝑐𝑡𝑒𝑑

𝐴𝑥𝑆𝑎𝑡𝑖𝑐_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
7 

  



 86 

Equation 8 C: Rotation matrix for yaw (𝜓), where the angle from Equation 11 will be inserted into the 

rotation matrix to rotate the y-axis and x-axis about the z-axis producing y-axis at 0 g. 

          (8 C)	

𝑅(	(ψ) = 1
cos(ψ) −sin(ψ) 0
sin	(ψ) cos(ψ) 0
0 0 1

2 

 

Equation 12: Full rotation matrix, from the calculated angles of transition from the static accelerometer 

data, the dynamic accelerometer data are used in the y and z rotation matrices. 

          (12) 

𝐴<:=.'/0_4;-.-$% =	𝐴<:=.'/0 ∗ 𝑅:	(ρ) 		∗ 𝑅,	(ψ) 

 

The rotation process was translated into a custom MATLAB script (Appendix 

I) for automated processing of the high volumes of data.   

 

2.11. ANALYTICAL TECHNIQUES 

2.11.1. FAST FOURIER TRANSFORMATION (FFT) FOR 

FUNDAMENTAL FREQUENCY (FF) 

The fast Fourier transform (FFT) algorithm is a fast and efficient way to 

compute the discrete Fourier transform (DFT), where X(k) is the complex 

result in the frequency domain, x(n) is the input sequence in the time domain, 

N is the number of samples in the sequence, and j is the imaginary unit. 

 

Equation 13: Discrete Fourier Transform (DFT), where X(k) is the complex result in the frequency 

domain, x(n) is the input sequence in the time domain, e: The base of the natural logarithm, 

approximately equal to 2.71828, j is the imaginary unit where j2=−1, k: The index of the frequency 

component and N is the number of samples in the sequence, 
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          (13) 

𝑋(𝑘) =e 𝑥	(𝑛)
LMN

=O6
⋅ 𝑒MP!QR=/	L 

 

The FFT algorithm decomposes this computation into smaller, more 

manageable subproblems, which allows for a statistically significant reduction 

in computational complexity compared to the direct computation of the DFT 

which recursively breaks down the DFT computation into smaller DFTs until 

the base case is reached (Barnes, 2017).  

The FFT can be used to describe gait complexity which can be deemed as 

gait smoothness, rhythm and stride-to-stride symmetry.  The FFT can be 

used to quantify gait complexity from the magnitude and distribution of the 

accelerometry signal harmonics within an activity sample.  In this study, the 

accelerometry sample time domain (x-axis) (Figure 29 A/ B) will be translated 

into the FFT frequency domain (x-axis) (Figure 29 C/ D) (Jenner et al., no 

date).  Each harmonic is displayed in terms of its cumulative magnitude (y-

axis) accumulated throughout the movement sample (Barnes, 2017; Clark, 

2017).  The more harmonics present within the FFT, the higher the gait 

complexity and lower the gait quality, which is understood to be an inability 

of an individual to repeat the same motor pattern consistently over the sample 

period (Jenner et al., no date; Clark, 2017).   
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Figure 29: A. and B. show a two second radial accelerometry sample from the uninjured left leg (LL) 

(solid line) and injured right leg (RL) (dotted line). C. and D. show the fast Fourier transform (FFT) of the 

two second accelerometry sample from A. and B. respectively.  A. and C. represent 4 km/h and B. and 

D. represent 15 km/h (Jenner et al., no date).   

 

Clark, (2017) coined the term SP to describe gait quality.  Spectral Purity can 

be qualitatively described using the FFT where few tall, narrow low frequency 

harmonics and very few short, high frequency harmonics shows a less 

complex or cleaner movement wave, hence a lower SP score (Figure 29 A/ 

C).  Conversely, an FFT with many short, wide, low frequency harmonics and 

several high frequency harmonics shows a more complex movement wave, 

indicating lower movement quality, thus a higher SP score due to fewer 

duplicate movement patterns (Jenner et al., no date; Barnes, 2017).   

The FFT has previously been used to identify Fundamental Frequency (FF) 

of a movement wave, where the FF appears as the first significant low 

frequency component, or peak, however, it may not have the largest 

Fundamental 
Frequency 
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amplitude (Figure 29 C/ D) (Clark, 2017).  Throughout the available literature, 

the FFT was used to capture movement quality between an injured and 

uninjured limb, where the uninjured limb had fewer harmonics, thus a cleaner 

movement wave, compared to the injured limb having more harmonics 

dispersed throughout the sample.  It was postulated that the additional high 

frequency harmonics came from changes in force distribution potentially due 

to compensatory motor patterns of the injured leg (Jenner et al., no date).  

The result produced a lower symmetry index (SI) meaning there was a 

difference between the limbs with higher numbers being associated with 

larger disparity between the limbs (in this case).  It is understood that fatigue, 

which would have affected the injured limb more so than the non-injured limb, 

would have negatively affected the SI thus recovery status (Jenner et al., no 

date; Martens et al., 2018).   

This approach was further developed by transforming the FFT into a 

cumulative distribution function (CDF), providing a quantitative, objective 

approach to analysing the FFT data (Jenner et al., no date; Barnes, 2017; 

Clark, 2017).  This transformation may aid in contextualising running gait data 

by providing the platform to understand gait complexity between different 

runners.   

 

2.11.2. CUMULATIVE DISTRIBUTION FUNCTION (CDF) FOR 

SPECTRAL PURITY (SP) 

A Cumulative Distribution Function (CDF) is a mathematical function that 

describes the probability distribution of a random variable.  𝐹(𝑥) represents 
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the probability that the random variable 𝑋 is less than or equal to 𝑥 (Equation 

14).   

 

Equation 14: CDF is a function of x, F(x), where the probability (P) that the random variable (c) is less 

than or equal to the variable x. 

          (14) 

𝐹(𝑥) = 𝑃(𝑐 ≤ 𝑥) 

 

The CDF has previously been used to quantitate the FFT frequency spectra 

via quantifying gait complexity where the gradient of the CDF measured how 

tightly distributed the frequency components were within the gait movement 

wave.  The gradient is determined at a probability of 0.5, or the median point, 

where it is established that the most common x-axis reading (in this case 

frequency) occurs less than or equal to 50% of the time.  Spectral Purity (SP) 

is a term used to describe gait quality by quantifying the CDF.  Qualitatively, a 

clean FFT movement wave with a regular repeating pattern is represented by 

an FFT with a high magnitude FF and few higher frequency harmonics would 

produce a CDF with a steeper gradient and a lower x-axis frequency reading 

at a probability of 0.5, equating to higher SP (Figure 30 A., C., and E.).  

Conversely, a less clean FFT with additional spectra randomly throughout 

results in a CDF demonstrating low SP through a high CDF derivative or x-

axis frequency value (Figure 30 B., D., and F.).  Where a one-minute epoch 

was taken from a movement wave from an individual with A. good motion and 

B. with poor motion, the corresponding FFT for C. good motion and D. poor 
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motion are them transformed into the equivalent CDFs for E. good motion and 

F. poor motion (Barnes, 2017; Clark, 2017).   

 

 

Figure 30: Sequency of the generation of a CDF:  A. one-minute movement wave from an individual with 

good motion, B. with poor motion, C. and D. are the corresponding FFT from the movement waves, E. 

and F. are the corresponding CDFs from the FFT (Barnes, 2017).   

 

The CDF has been used to link movement quality, in terms of SP, to human 

performance.  Within this research, there was a positive relationship between 

A B 

C D 

E F 
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children’s physical activity performance score and SP, therefore, the more 

skilful participants had better movement quality (Barnes, 2017).   

From this information, we propose that runners who have more experience 

will have a cleaner movement wave, hence, better SP, demonstrated by a 

lower SP score.  We surmise this will be due to an increased ability to repeat 

the same movement pattern over the sample period.   

 

2.11.3. CROSS-CORRELATION FOR GAIT SYMMETRY 

Correlations can be used to measure the similarity between signals.  The auto-

correlation function (ACF) measures the similarity of a signal with a delayed 

version of itself where the calculation of various lags provides information on 

periodicity and similarity of the signal (Equation 15).  Whereas the cross-

correlation function (CCF) measures the similarity between two signals at 

different time lags to identify time shifts and similarities between the two 

signals (Equation 16).  

 

Equation 15: Auto-correlation Function (ACF) where X[n] is the signal at time n, N is the total number of 

time points in the signal, k is the lag, 𝑋j is the mean of the signal. 

               (15) 

𝐴𝐶𝐹[𝑘]
∑ (𝑋[𝑛] − 𝑋j)(𝑋[𝑛 + 𝑘] − 𝑋j)LMR
=ON

∑ (𝑋[𝑛] − 𝑋j)!	L
=ON
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Equation 16: The Cross-correlation Function (CCF) 𝑋1[n] and 𝑋2[n] are the two signals at time n, N is 

the total number of time points in the signals, k is the lag, 𝑋j1 and 𝑋j2 are the means of the respective 

signals. 

            (16) 

𝐶𝐶𝐹[𝑘]
∑ (𝑋N[𝑛] − 𝑋jN)(𝑋![𝑛 + 𝑘] − 𝑋j!)LMR
=ON

o∑ (𝑋N[𝑛] − 𝑋jN)! ∑ (𝑋![𝑛] − 𝑋j!)!	L
=ON 	L

=ON
 

 

Gait symmetry measures provide further information based on the ACF and 

CCF.  A gait symmetry index (SI) is calculated from the normalised area 

under the CCF curve and ranges from 0 to 1, where 0 indicates complete 

asymmetry and 1 perfect symmetry between the two signals (Barnes, 2017).  

This analytical process has been effectively utilised to identify the symmetry 

between the muscle mass of runners left and right lower limbs (Equation 17) 

(Seminati et al., 2013).   

 

Equation 17: Gait Symmetry index (SI), X left  [n] is the signal from the left side (e.g., left leg) at time 

point n, X right  [n]  is the signal from the right side (e.g., right leg) at time point n, N is the total number 

of time points in the gait cycle. 

          (17) 

𝐺𝑎𝑖𝑡	𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦	𝐼𝑛𝑑𝑒𝑥	(𝑆𝐼) = 	
∑ |L
=ON 𝑋2$S-	[𝑛] ∙ 𝑋4/7T-	[𝑛]|

∑ (t𝑋2$S-[𝑛]t + t𝑋4/7T-[𝑛]t)L
=ON

 

 

When dealing with more than one wearable device signal at the same time, 

such as those representing the left and right limbs during running, both the 

ACF and CCF can be used.  Here, the auto correlation represents the perfect 

stride and the value of centre peak of the auto-correlation is divided by the 
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mean of the two surrounding peaks of the cross-correlation and expressed 

as a percentage (Jenner et al., no date; Barnes, 2017).   

 

Equation 18: A recovery score (R), ranging between 0 and 100% where the percentage was calculated 

from the difference between the auto and cross correlation gated sequence (epoch) over the auto-

correlation (Jenner et al., no date).   

          (18) 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦	𝑆𝑐𝑜𝑟𝑒	(𝑅) = 100 ∗	 v1 −	
∑ |𝑎𝑢𝑡𝑜0;44 − 𝑐𝑟𝑜𝑠𝑠0;44|!∆-

∑ |𝑎𝑢𝑡𝑜0;44|!∆-
x		 

 

Barnes, (2017) used the CCF to identify differences between the movement 

waves of several children during playtime.  Here, social-interactions where 

identified as symmetrical signals and represented the same activity being 

undertaken during that playtime.  Jenner et al., (no date) used the ACF and 

CCF with a customised SI to identify recovery status in an injured athlete.  

Differences were identified between two signals from the same individual, one 

signal from an injured limb and the other from a non-injured limb (Figure 31).  

The asymmetry between the auto and cross-correlation shows the dissimilarity 

between the movement profiles of left and right leg during activity.  We propose 

the auto and cross correlation would show a more symmetrical movement 

pattern, therefore, a higher recovery score (R) in runners who perform better.  
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Figure 31: Auto-correlation of the non-injured leg against itself (black line) against the cross-correlation 

of the injured leg against the non-injured leg (dotted red line) at 11, 19 and 48-weeks post-surgery 

(Jenner et al., no date).   

 

The test-retest repeatability of the wearable devices during running is of great 

interest.  The wearable devices need to be able to collect movement data 

consistently and accurately within and between trials. To reduce the 

likelihood of type I error a feasibility study will take on a randomised element 

to investigate how the device fitting protocol will affect the data captured.  

Finally, to contextualise the accelerometry data, the analytical techniques will 

be explored on the test-retest running data to investigate their suitability.    

 



 96 

2.12. PROTOCOL 

Two custom-built wearable devices (red and blue) (Figure 20) were turned 

on and set to record at 40 Hz, then shaken simultaneously to record a 

discernible large magnitude peak on the movement wave to signify the start 

of the protocol.  A stopwatch was used to capture the time the protocol events 

occurred to provide reference points to synchronise the two accelerometers.  

Two placement protocols were formulated for testing (strict and varied), 

where the strict placement protocol consisted of;  

• calculating 10% of the shank length (the distance between the lateral 

tibial condyle and the tibial malleolus), 

• strapping the wearable device 10% (as calculated above) above the 

tibial malleolar epicondyle, to avoid excess tilt if the device was placed 

directly on to the epicondyle, 

• orientating the wearable device’s positive x-axis vertically along the 

radial axis, 

• enforcing feet directly under the hips by marching on the spot two to 

three times before coming to a stop.  Visually assessing the final position and 

adjusting if necessary.   

In contrast, the varied placement protocol did not measure any distance, the 

wearable device was strapped in approximately the correct position to the 

lower limb with the x-axis along the radial axis.  The researcher paid little 

regard to the exact measurements of the shank or how the participant was 

standing for each fitting.  The wearable device colour (blue or red) and fitting 
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protocol (strict or varied) was randomised, using a random number sequence, 

for placement on either the left or right shank.   

Two male participants (n = 2, age = 48.1 ± 0.8 years, mass = 69.8 ± 2.5 kg, 

height = 184.9 ± 8.3 cm) completed eight trials for varied placement, with one 

participant completing eight trials for strict placement and the other participant 

completing seven trials for strict placement.  After each wearable device was 

fitted, the participant completed a set number of synchronisation movements 

at the start and end of every trial.  These created distinct patterns on the 

accelerometry movement wave, so the red and blue wearable device 

accelerometry movement waves could be synchronised to the same time 

point.  These movements consisted of star jumps, floor based double knee 

lifts and chair based double knee lifts.  

The participant was given operational and safety instructions for the treadmill 

(H/P/ cosmos sports & medical gmbh, Nussdorf-Traunstein Germany) before 

putting on the Nike® Vaporfly ZoomX NEXT% (VFN%) (UK 10).  The 

participant stood still on the treadmill for 10 seconds before completing a 10-

minute self-structured warm up and familiarisation period with the aim of 

reaching 16 km/h at a 1% incline.  Eight trials at 16 km/h (4.4 m/s) were then 

completed where 120 seconds of running at 16 km/h was captured before the 

participant could stop.  After the final trial, each participant was given the 

option to cool down before the synchronisation movements were repeated, 

equipment removed, wearable devices shaken then turned off, and external 

time noted.  This was repeated for each participant.  
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2.12.1. DATA EXTRACTION 

Consistent data extraction methods were applied to each wearable device 

prior to commencing the data processing phase. For additional details, please 

refer to the section on Data extraction (2.2.5).   

 

2.13. RESULTS AND DISCUSSION 

This study used bilateral lower limb (LL vs RL) accelerometry to investigate 

running gait on a treadmill at 16 km/h at a 1% incline.  The reliability of the 

wearable devices was tested using a strict and varied placement protocol.  The 

full data extraction and analytical processing techniques were tested on the 

resultant movement waves to contextualise the data.   

The wearable devices produced a raw accelerometry movement wave in the 

x-, y- and z- axes.  The movement waves were graphed to show the quality of 

the data, where the initial shake of the wearable device, the static standing 

position for 10 seconds, the participant building up their running speed, the 

120 second segment at 16 km/h, the winding or slowing down of the runner 

before stopping, and then the removal and final shake of the wearable device 

to indicate the end of the trial could be clearly identified (Figure 32).   
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Figure 32: Raw accelerometry data graphed to show x-, y- and z-axis movement waves from one of the 

test-retest repeatability trials.  The figure shows the protocol including the initial shaking movement of 

the wearable device, after fitting the participant standing in a static position, the participant building up 

their running speed as the treadmill was gradually increased to 16 km/h, the 120 second segment 

running at 16 km/h, the winding down of the runner as the treadmill was gradually decreased to 0 km/h, 

and the removal and final shake of the wearable devices to show the end of the trial.   

 

To simplify the analytical process and gain an initial understanding of the 

data, the extraction and processing will be conducted on the radial (x-) axis 

only, with the intention to add the y- and z-axes data at a later date to provide 

a fuller picture of how the body moves in a 3-D space, rather than just 

vertically.  Therefore, data extraction and some processing methods will be 

conducted on all movement waves captured to prepare for future processing 

and analysis, however, only the x-axis will be discussed from this point 

forward.  The x-axis was selected as is representative of the vertical 

movement during running and captures the largest magnitude, therefore, 
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should provide a more significant opportunity to identify any gait changes 

throughout testing (Barnes, 2017; Clark, 2017).   

The 120 second running segment (Figure 32) can be magnified so a 1.5 

second epoch was visible (Figure 33).  Within this epoch, two strides could 

be distinguished from the x-axis movement wave, which was clean enough 

to identify the gait parameters; push off, leg swing and maximum impact force 

(or the maximum GRF), based on the evidence collected by Barnes, (2017) 

using the same devices, which were validated against synchronous video 

recordings whilst treadmill running.  At this point, the clarity of the data was 

promising enough to warrant running the analytical processing steps with the 

anticipation of quantifying the running gait movement wave to gain some 

context.   

 

 

Figure 33: Two strides from the x-axis movement wave recorded via the blue accelerometer (Ac_x_LL) 

during a running trial at 16 km/h.  It is possible to identifying calculable gait parameters; push off, leg 

swing and maximum impact force (Barnes, 2017). 
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As only the radial (x-) axis data were to be discussed, the two x-axis movement 

waves, one from each wearable device (red and blue) were extracted (General 

methods, 2.2).  From the 120 second steady state segment at 16 km/h, a 100 

second epoch was sectioned and graphed (Figure 34) for analysis using the 

FFT, CDF, ACF and CCF.  Followed this, a statistical analysis (Statistical 

testing, 2.2.4) was conducted on device colour (red and blue) and placement 

style (strict or varied).   

 

 

Figure 34: Raw accelerometry wave for the x-axis for a 100 second sample of running at 16 km/h from 

the LL and RL, where the blue Acc_x_LL wave is for the accelerometry x-axis movement wave of the 

left leg (LL), and red Acc_x_RL is the same for the right leg (RL) which was extracted from Figure 32.   
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Figure 35: FFT in the frequency domain from a 100 second sample of running at 16 km/h where blue 

FFT_Acc_x_LL represents the FFT wave for the accelerometry x-axis movement wave of the left leg 

(LL), and red FFT_Acc_x_RL is the same for the right leg (RL) from Figure 34.  FF is Fundamental 

Frequency in Hz and SF is stride frequency in Hz.   

 

The FFT is an analytical technique used to distinguish movement data from 

noise through displaying separate harmonics, thus enabling for the 

identification of associated components of a movement pattern through their 

magnification.  Within this study, there was always a double peak present on 

the FFTs.  This could be attributed to the impact of the opposite leg being 

picked up by the accelerometer, therefore, the FF peak was half the frequency 

of the second peak which represented the cadence.  The LL and RL FF were 

the same in all trials for strict 1.36 ±0.01 Hz and varied placement 1.38 ±0.03 

Hz meaning there was an enhanced ability to repeat the same stride-to-stride 

pattern on the LL, whereas the RL had greater stride-to-stride variability 

(Figure 35).   

Fundamental frequency (FF) or  
Stride frequency (SF) 
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This variability, known as gait complexity, is demonstrated through the number 

of harmonics present in the sample.  More harmonics equate to more gait 

variability, ergo, increased gait complexity (Barnes, 2017).  In this case, the 

RL showed a higher level of movement complexity than the LL.  To quantify 

gait complexity, the FFT was analysed using the CDF.  

 

 

Figure 36: CDF of LL (blue) and RL (red) FFT during RE protocol at 16 km/h with black dashed line 

demonstrating 0.5 CDF probability and first blue dashed line representing LL normalised frequency and 

second red dashed line RL normalised frequency. 

 

Gait complexity has an inverse relationship with SP.  The mean SP of the RL 

for both placements (strict 0.0004128 ±0.0000828 Hz, varied 0.0004021 

±0.0000573 Hz) had a higher movement complexity equating to a higher SP 

score, meaning lower gait quality than the LL for both placements (strict 

0.0003758 ±0.0000472 Hz, varied 0.0003038 ±0.0000394 Hz).  The CDF 

from one trial (Figure 36) shows the LL (blue line) and RL (red line) cumulative 

probability, SP is extracted from 50% (shown by the red and blue dashed 
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lines).  This was supported by the qualitative inspection of the FFT, where 

between 0-5 Hz, the RL (red) movement wave showed an excess of small 

magnitude peaks that are absent in the LL (blue) movement wave.  This 

qualitative approach indicates that the participant repeated the same 

cadence with a similar movement pattern and magnitude per stride on the LL 

than the RL.   

The repeated measures ANOVA using Greenhouse-Geisser (as sphericity 

could not be assumed) demonstrated that there was a statistically significant 

main effect on SP between limbs whilst using the same device 

(F(1,17) = 6.953, P = .017, partial η2 = .290).  This means that the movement 

pattern exhibited between legs is fundamentally different.  Thus, it may not 

be possible to compare legs to one another unless using pre- and post-

measurements.  Moving forward, using the mean of both limbs combined will 

give a better approach to the analysis, however, further investigation is 

needed to establish firm relationships within the data.  This brings the ACF 

and CCF into contention as in this context they are used to analyse the 

differences between the two wearable device movement waves to investigate 

gait symmetry between the LL and the RL.  
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Figure 37: Auto-correlation of the RL vs RL (blue line) against the cross-correlation of the RL vs LL (red 

line) of x axis data during the RE protocol at 16 km/h. Where Acc_x_16kmh_Auto (RLRL) is the original 

100 s epoch of the accelerometry  wave for the RL that has been correlated against itself (auto-

correlation) and Acc_x_16kmh_Auto (RLLL) is the original 100 s epoch of the accelerometry movement 

wave for the RL that has been correlated against the accelerometry wave for the LL (cross-correlation).  

 

Gait symmetry was quantified from the stride-to-stride variation determined 

using the CCF and ACF.  This study found that in every case, the cross-

correlation two peaks magnitudes (left side 4968 g and right side 5047 g) 

surrounding the auto-correlation, was lower in amplitude and were dissimilar 

in shape compared to the central frequency peak of the auto-correlation 

(15054 g) demonstrating stride-to-stride variation between limbs.   

The R-score for the strict placement (LL 67.5±10.3%, RL 52.2±10.8%) was 

lower than for varied placement (LL 74.5±8.9%, RL 61.4±11.3%) by 7% in 

the LL and 9.2% in the RL.  This unexpectedly demonstrated the varied 

placement having smaller stride-to-stride variation between limbs than the 

strict placement, thus, better gait symmetry.  A paired samples t-test show a 

statistically significant difference (t(7) = 8.098, P  £ .001) between the LL 
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(69.6%±9.5%) and RL (53.1±9.1%) R-scores captured using the blue device.  

This supports the notion above that the differences between the devices are 

significant, thus, using the cross- and auto- correlation to calculate gait 

symmetry is not the appropriate analytical measure for this data.  Therefore, 

we will only continue to use the FFT for FF and the CDF for SP using the 

mean of both the LL and RL (Table 4).  

 

Table 4: Descriptive statistics for the strict and varied placement of the wearable devices and the 

analytical processing techniques. Where N = number of participants, S.D. = standard deviation and S.E. 

= standard error, LL is left leg and RL is right leg. .   

Placement 
style 

Analytical 
technique N Average (Hz) S.D.(Hz) S.E. (Hz) 

Strict 

Fundamental 
Frequency 15 1.36 0.01 0.00 

Spectral 
Purity LL 15 0.0003758 0.0000472 0.0000122 

Spectral 
Purity RL 15 0.0004128 0.0000828 0.0000221 

Varied 

Fundamental 
Frequency 16 1.38 0.03 0.01 

Spectral 
Purity LL 16 0.0003038 0.0000394 0.0000099 

Spectral 
Purity RL 16 0.0004021 0.0000573 0.0000143 

 

2.13.1. PLACEMENT STYLE AND DEVICE COLOUR ON 

FUNDAMENTAL FREQUENCY (FF) AND SPECTRAL PURITY (SP) 

The repeated measures ANOVA using Greenhouse-Geisser (as sphericity 

could not be assumed) demonstrated that there was no statistically significant 

main effect on FF for placement style or device colour (placement*colour) 

(F(1, 5) = 2.597, P = .168, partial η2 = .342).  This shows the blue and red 

wearable devices produced similar FF scores throughout the repeated trials, 



 107 

therefore the FFT appears to be suitable as a measure to quantify the FF of 

running gait.  

The repeated measures ANOVA using Greenhouse-Geisser (as sphericity 

could not be assumed) demonstrated that there was no statistically significant 

main effect on SP for placement style or device colour (placement*colour) 

(F(1, 4) = 4.128, P = .110, partial η2 = .511).  This shows the blue and red 

wearable devices produced similar SP scores when LL and RL values were 

combined throughout the repeated trials, therefore the CDF appears to be a 

suitable measure to quantify the SP of running gait.   

 

2.14. LIMITATIONS 

Some limitations of this study include a small sample size, small test-retest 

number, imbalanced randomisation groups and using two experienced male 

runners.  It is understood that when testing participants, adaptations to their 

running technique can consciously or subconsciously occur to accommodate 

for the change in footwear and the impact of equipment such as fitted 

accelerometers and locomoting on a treadmill without forward progression.  

Participants wearing the VFN% for the first time may have had their running 

style adversely affected which we attempted to reduce with a familiarisation 

period.  We will attempt to address some of these limitations in the next study, 

where possible, to broaden the applicability of the data. 
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2.15. CONCLUSION  

Overall, the blue and red wearable devices are reliable for collecting running 

data in repeated trials up to 16 km/h.  The movement data gained from these 

trials is sensitive enough to identify specific gait features at high speed.  The 

FFT was a reliable tool for identifying FF and harmonics present within the 

movement wave.  The CDF was a reliable tool for quantifying SP, however, 

only when the LL and the RL were combined.  The CCF and ACF are not 

suitable analytical techniques for accelerometry running data collected from 

these wearable devices.  As the novel element of this project is the 

combination of the analytical processing techniques to quantify gait, the tools 

will take a name that sums up their function, hence, the Global gait analysis 

Tool or GaiT.  The term global defines the overall quantification of gait, rather 

than the segmentation and individual quantification of gait characteristics as 

is seen frequently throughout the literature.  

 

2.15.1. NEXT STEPS 

The next step in this project is to understand if GaiT can quantitate running 

gait quality whilst running over a variety of inclines.  We intend to investigate 

how accelerometry and GaiT can be linked to performance.    
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CHAPTER THREE 
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3. STUDY 4: NIKE® VAPORFLY ZOOMX NEXT% RUNNING 

SHOES HAVE RUNNING ECONOMY BENEFITS OVER VARIOUS 

INCLINES COMPARED TO CONVENTIONAL RUNNING SHOES 

In chapter three, study four examined the running economy (RE) benefit or 

penalty produced in the Nike® Vaporfly ZoomX Next% (VFN%) in comparison 

to a conventional running shoe, the Saucony® ProGrid Jazz 12 (JAZ) across 

various inclines during treadmill running at 12 km/h.  Our parametric analysis 

confirmed the VFN% demonstrated a statistically significant RE benefits 

compared to the JAZ over all inclines.  A novel discovery unveiled the 

diminishing return for RE benefit with increasing incline, as supported by the 

exponential decay model.  The critical finding of the diminishing return was a 

fixed RE penalty due to mass and a fined RE benefit due to the VFN%s 

midsole technology comprising of the ZoomX foam and the carbon-fibre 

midsole plate.  The practical application of these findings suggests a 

noteworthy average 3.8% RE benefit can be achieved whilst using the VFN% 

over a marathon course with varied elevations.  Future research should 

explore the relationship between RE benefit, performance, and gait using 

accelerometry.  In summary, our study not only validated the RE benefit whilst 

running in the VFN% over conventional running shoes but also provided 

nuanced insights into the impact of incline.  
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3.1. INTRODUCTION 

This chapter will focus on capturing data that can be used to validate GaiT 

calculated from accelerometry captured during running.  A physiological 

measurement that can quantitate running performance will be used to explore 

possible relationships with running accelerometry data.  

 

3.1.1. RUNNING ECONOMY (RE) 

Running economy (RE) as defined by V̇O2submax, has been accepted as the 

universal measurement for comparing the economy of endurance activities 

and represents the combination of neuromuscular, biomechanical, metabolic 

and cardiorespiratory components of running gait without giving insight into 

how energy expenditure is partitioned between processes.  RE provides a 

relative measure of overall running efficiency.  It is often quantified using 

masked cardiopulmonary exercise testing (CPET), determined by the 

submaximal volume of oxygen uptake (V̇O2) in millilitres per kilogram of body 

weight per minute (ml/kg/min) at a given velocity, (often 16 km/h), or to make 

it comparable across any speed.  A higher value of V̇O2 represents a lower 

RE.  RE is also inversely related to metabolic cost, therefore, as metabolic 

cost increases, RE decreases (higher V̇O2 measurement), which in turn 

would lead to a slower performance time.   

RE can be influenced chronically through training, or through acute 

interventions such as footwear, (Barnes and Kilding, 2015, 2019; Martens et 

al., 2018; Hunter et al., 2019; Senefeld et al., 2021).  Small changes in RE 
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are meaningful, where a 3% improvement in RE is expected to translate to a 

1.97% faster running velocity, meaning an elite runner with a 2:04 marathon 

pace could achieve a 2:01:36 marathon time (Kipp, Kram and Hoogkamer, 

2019).  

 

3.1.2. BREAKING2 CAMPAIGN 

The Nike® Breaking2 Campaign (Nike® Inc., 2016) was held on 6th May 

2017, which facilitated three world-class distance runners in the pursuit of the 

sub two-hour marathon record using targeted performance improvement 

strategies and scientific innovation.  In addition to an ideal formation of 

pacers, ad libitum fluids, ideal climate, and course, Nike® Inc., also unveiled 

their new Nike® Vaporfly (VF) elite running shoe.  This running shoe 

combined a novel lightweight midsole material with an embedded carbon-

fibre midsole plate with increased LBS (Healey and Hoogkamer, 2021; 

Hunter et al., 2022).   

Nike® Inc’s., research team calculated a 01:59:59 (hh:mm:ss) marathon 

required an average speed of 21.1 km/h (5.9 m/s), being 2.56% (0.1 m/s) 

faster with a 2.7% reduction in RE, than Kimetto’s world record marathon time 

of 02:02:57 (20.6 km/h or 5.7 m/s) (Hoogkamer, Kram and Arellano, 2017).  

At this event, Eliud Kipchoge ran an unofficial men’s world record marathon 

time of 2:00:25.  However, it was not until the Ineos challenge on 12th October 

2019 when Kipchoge ran 01:59:40 in Vienna (Hoogkamer, Kipp and Kram, 

2019) and only one day later, on 13th October 2019, Brigid Kosgei ran 

02:14:04 at the Chicago marathon, breaking the 16-year women’s marathon 
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world record held by Paula Radcliffe.  Kipchoge and Kosgei had an important 

commonality, they both raced in the new Nike® series of running shoe (Nike® 

Vaporfly prototype (VF), Nike® Vaporfly ZoomX 4% (VF4%), Nike® Vaporfly 

Next% (VFN%), plus other modified models), which are known to encompass 

novel energy saving innovations (Burns and Tam, 2020). 

The VF prototype achieve a 4.01% RE improvement through a reduction in 

the metabolic cost of level running compared to conventional running shoes 

(Hoogkamer et al., 2018).  Now, the VF series dominates elite and recreation 

running, holding the largest amount of personal best times and world records 

alike (Quealy and Katz, 2019; Whiting, Hoogkamer and Kram, 2022).  This 

performance improvement is due to the embedded carbon-fibre midsole 

plate, the curvature of the carbon-fibre midsole plate, the midsole material, 

and the midsole thickness (Hoogkamer, Kipp and Kram, 2019; Healey and 

Hoogkamer, 2021; Senefeld et al., 2021).  However, there remains little 

understanding of the performance benefit for each component of the midsole.   

 

3.1.3. RUNNING ON AN INCLINE 

The biomechanical mechanisms underlying the 10-15% higher oxygen 

uptake during uphill running, whilst maintaining the same speed, are complex 

and multifactorial (Snyder and Farley, 2011; Snyder, Kram and Gottschall, 

2012; Whiting, Hoogkamer and Kram, 2022).  The additional energy 

expenditure comes from the muscular work required to lift the body uphill 

against gravity.  Furthermore, uphill running requires alterations in running 

technique, including shorter SL, increased ground contact time (GCT), and 
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greater range of motion at the ankle, knee, and hip joints (Saunders et al., 

2004).   

The carbon-fibre midsole plate in the VF series enhances LBS, transferring 

force more efficiently from IC to TO during running, therefore minimising 

energy expenditure and improving RE.  Additionally, the heightened LBS 

reduces movement at the MTP joint, resulting in additional energy savings 

and further enhancements in RE.  The carbon-fibre midsole plate appears to 

mimic the mechanisms experienced during uphill running, which are 

understood to modify running posture, prompting a forefoot IC pattern.  This 

modification maximises the lever effect by relocating the fulcrum of the lever 

towards the distal end of the foot (Barnes and Kilding, 2019; Nigg, Cigoja and 

Nigg, 2020; Whiting, Hoogkamer and Kram, 2022, 2022).   

A 1.01% RE penalty was measured to occur because of running up a 5% 

incline (2.82% RE benefit) compared to running on the level (3.83% RE 

benefit) confirming the VF4% had a negative linear relationship for RE benefit 

over a conventional running shoe versus increasing incline.  This drop in RE 

benefit is thought to be associated with the decreased ESE usage and return 

of the VF4%, meaning the body generates additional energy to maintain 

performance when running up an incline (Whiting, Hoogkamer and Kram, 

2022).   

 

3.1.4. RUNNING SHOE COMPOSITION  

Joubert and Jones, (2022) drew on the work of Worobets et al., (2014) 

explaining how thermoplastic polyurethane (TPU) midsole foam found in 
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many of the adidas® branded models of shoes without a carbon-fibre plate 

improved RE by 1% compared to traditional ethylene-vinyl acetate (EVA) 

foam in conventional shoes.  However, recent research has been directed 

toward a thicker foam midsole in the VFs which uses polyether block amide 

(PEBA), embedded with a full-length carbon-fibre midsole plate (Figure 38) 

(Hoogkamer et al., 2018; Barnes and Kilding, 2019; Hunter et al., 2019; 

Hébert-Losier et al., 2022).   

 

 

Figure 38: Breakdown of the Nike® Vaporfly (VF) running shoe build composition which contains the 

upper, upper midsole foam layer, carbon-fibre midsole plate, lower midsole foam layer and rubber 

outsole (Healey and Hoogkamer, 2021). 
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Many major running shoe companies have attempted to integrate such 

technological innovations to include a lightweight and resilient, thick midsole 

and a component that increases LBS, like a carbon-fibre midsole plate 

(Hunter et al., 2019).   

The ProGrid Jazz 12 (JAZ) (Figure 39) became Saucony®’s best value 

running shoe for the technology incorporated and weigh approximately 200 

g more per pair than the VFN% (c. 300 g per JAZ running shoe vs c. 200 g 

per VF running shoe) (Table 5) (Colloff, 2022).  This sable, neutral running 

shoe contains a compression moulded ethyl-vinyl acetate (EVA) midsole with 

a High Rebound Compound (HRC) Strobel Board with ProGrid™ at the heel 

and a Super Rebound Compound (SRC) impact zone with Respon-Tek™ in 

the forefoot linked by a midfoot support bridge.  This impact deflection 

technology is claimed to attenuate shock ensuring a smooth heel to toe 

transition.  
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Figure 39: Saucony®'s ProGrid Jazz 12, schematic view of the running shoe construction (Saucony® 

Inc., 2017).  

 

Table 5: Mass of lead weight added to the shoelaces of each shoe based on size (Colloff, 2022).  

Nike® Vaporfly Next% 
(UK size) 

Saucony® ProGrid Jazz 
12 (UK size)  

Mass Difference (g)  

5.5  5  92  

6.5 
6  97  

7 100  

7.5  8  109  

9  9  116  

10  10  101  

11  11  105  

 

Overall, although uphill running serves as a challenging and effective training 

method, alterations in running mechanics may amplify the energy 

expenditure associated with running.  This, in turn, contributes to the 

observed decrease in RE during uphill running.  A plethora of studies 

10. Upper 
11. Comfort ride sock liner 
12. Heel ProGrid 
13. SRC XTRA 
14. Dual Density Impulse EVA 
15. Midfoot Support Bridge 
16. SRC Impact Zone 
17. XT-900 Outsole 
18. Blown Rubber Outsole 

1. Upper 
2. Comfort ride sock liner 
3. Heel ProGrid 
4. SRC XTRA 
5. Dual Density Impulse EVA 
6. Midfoot Support Bridge 
7. SRC Impact Zone 
8. XT-900 Outsole 
9. Blown Rubber Outsole 
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demonstrated the 4.01% RE benefit of the VF4% on the level, however, there 

is limited evidence on an incline using the VFN%.  This is despite the new 

running shoe having an additional 15% ZoomX midsole foam that should 

further facilitate ESE storage and return, providing an additional RE benefit 

compared to the VF4% (Hunter et al., 2022).  When compared to the 

Saucony® JAZ that is 200 g in total heavier, we would assume that there will 

be an additional 1% RE benefit for the VFN% over and above the 

conventional running shoe (JAZ). 

 

3.1.5. AIM 

The aim of this study will investigate the effect of various inclines on RE whilst 

running in the VFN% compared to a conventional running shoe (JAZ).  

 

3.1.6. HYPOTHESES 

A RE benefit in the VFN% compared to the JAZ when running uphill should be 

achieved, however, at a lesser effect than level running due to the altered 

mechanics of running and the running shoe, therefore:   

1. The VFN% will provide a minimum 4.01% RE saving on the level (0% 

incline), compared to the conventional shoe. 

2. The VFN% will provide a minimum 2.82% RE saving for uphill running 

(5% incline), compared to the conventional shoe.  

3. The VFN% will have a negative linear relationship showing a 

decreasing RE benefit as incline increases.  
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4. The VFN% will provide an additional 1% RE benefit over the JAZ on 

all inclines because of the lower mass of the VFN%. 

 

3.1.7. OBJECTIVES 

A metabolic test was used to assess treadmill running performance via running 

economy (RE). The objectives of this study were to:  

1. perform CPET to determine the rate of oxygen (V̇O2) uptake and rate of 

carbon dioxide (V̇CO2) production, enabling the calculation of gross RE.   

2. conduct four treadmill inclines (0%, 1%, 3% and 5%) at 12km/h.   

3. repeat objective 1. for both the VF and control running shoe (JAZ).  
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3.2. METHOD 

3.2.1. GENERAL METHODS 

Uniform methods were consistently employed throughout this thesis, 

consolidated for clarity in the General Methods section. For more 

comprehensive insights, consult the General methods (2.2).   

 

3.2.2. STATISTICAL POWER 

A standard online power calculation requiring mean and S.D., results from 

the test-retest study (Results and discussion, 2.13) concluded that 18 

participants were needed to detect whether a statistical significance would be 

present within the data of the new study at the level of P = 0.05.   

 

3.2.3. PARTICIPANTS 

18 participants; n=6 females (age 25.68 ± 4.18 years, mass 57.68 ± 6.54 kg, 

height 167.97 ± 4.10 cm) and n=12 males (age 37.37 ± 12.26 years, mass 

76.54 ± 10.95 kg, height 181.29 ± 6.12 cm).  There were statistically 

significant differences between gender for age (P = .009), height (P £ .001) 

and mass (P £ .001) frequently attributed to the physiological differences in 

RE measurements (Barnes and Kilding, 2015)  Two participants did not 

complete JAZ 0% and VFN% 0%, and one participant did not complete JAZ 

5% and VFN% 5%.  Participants fitted a UK shoe size 5.5, 6.5, 7.5, 9, 10 or 

11.   
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Table 6: Participant descriptive statistics.    

*There are statistically significant differences between gender for age (P = 0.009), height (P £ .001) and 

mass (P £ .001). 

 

3.2.4. PROTOCOL 

Immediately before each test session, the METAMAX 3B metabolic system 

(©CORTEX Biophysik GmbH, Leipzig, Germany) was calibrated with a 

reference gas containing known concentrations of 17% O2 and 5% CO2 (to 

ensure the concentrations of the gases in exhaled air lies in the range 

between the calibration gas and room air).  A 3.0 L syringe (Hans Rudolph 

Inc., Kansas City, MO, USA) was used to calibrate the turbine to ensure 

accurate volume measurements.  The participant’s mass (kg) and height (m) 

were recorded before, a Polar Bluetooth smart heart rate monitor (Polar© 

Electro, Kempele, Finland) was fitted, resting heart rate (RHR) noted and 

maximal heart rate (HRM) calculated (200-age) (Sarzynski et al., 2013).  

Finally, a breathing mask was fitted (Hans Rudolph Inc., Kansas City, MO, 

USA) and connected to the METAMAX 3B which was worn in a harness on 

the participant’s torso.  The METAMAX 3B calculated the volumes of O2 

Descriptive  Mean (±S.D.) S.E. 
Total (n)  18  

Age (years)  33.5 ± 11.6* 2.7 
Mass (kg)  70.3 ± 13.2* 3.1 

Height (cm)  176.9 ± 8.4* 2.0 
BMI (kg/m2)  22.4 ± 3.3 0.8 

Performance 
(<40 min 10 km) 

Yes 10 (55.6%)  
No 8 (44.4%)  

Order 
VFN% vs JAZ 6 (33.3%)  
JAZ vs VFN% 12 (66.7%)  
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inspired and CO2 expired for every breath and averaged every 10 seconds.  

These data were output in real-time wirelessly to a laptop.  Two running shoe 

types were randomly allocated; the Nike® Vaporfly ZoomX NEXT% (VFN%) 

and the Saucony® ProGrid Jazz 12 (JAZ) as the conventional running shoe.  

Immediately before the warm up, a five-minute static standing measurement 

was recorded.   

A 10-minute self-structured warm up and familiarisation period was completed 

on the Pulsar treadmill (H/P/ cosmos sports & medical gmbh, Nussdorf-

Traunstein Germany) with the aim of reaching 12 km/h at a 5 % incline.  The 

warm up was followed by four intervals at 12 km/h at inclines of 0, 1, 3 or 5 % 

(Figure 40), where participants were blind to the randomised incline sequence 

by covering the incline display on the treadmill.  Following the warm up, the 

participant ran at each incline until their 𝑉̇O2 plateaued.  If the 𝑉̇O2 continued 

to rise and a plateau did not occur after seven minutes the interval was 

terminated, moving on to the next stage of the protocol.  A 100 second 

plateaued 𝑉̇O2 recording with the respiratory exchange ratio (RER) (ratio of 

the CO2 exhaled divided by the O2 inhaled) remaining ≤1 was necessary 

before the interval could be terminated.  This protocol was repeated on the 

second randomly selected running shoe type (Figure 40).  At the end of the 

eight intervals a cool down was offered before the equipment was removed.  
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Figure 40: Incline protocol schematic.  The full protocol demonstrating time spent testing the first, followed by the second randomised running shoe, at 12 km/h over 

four randomised intervals.    
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3.2.5. DATA EXTRACTION  

Consistent data extraction methods were applied to each wearable device 

prior to commencing the data processing phase.  For additional details, please 

refer to the section on Data extraction (2.2.5).   

 

3.2.6. DATA PROCESSING 

CALCULATION OF RUNNING ECONOMY (RE) 

V̇O2, V̇CO2 and RER were imported from the METAMAX 3B into Igor Pro (v8, 

WaveMetrics, Oregon, USA).  Outlier data points are common in breath-by-

breath experiments, for example, through coughing or talking, hence, where 

the data point variation exceeded the local median by a value >0.1 l/min for 

V̇O2  and having a ratio >0.01 for RER, seven-point median smoothing was 

applied to the outlying value with the median of the neighbouring seven 

values (three either side of the outlier).  If outliers remained, the process 

would be repeated with a 13-point median smooth.  If the processed data still 

contained large amounts of visible noise (peaks) outside of the normal range, 

the entire interval was removed.  The participant’s baseline average 

metabolic cost was calculated from 100 seconds of static standing 𝑉̇O2 data, 

taken at an appropriate plateau at least 10 seconds from the start and end of 

the 100 s data sample.  This was repeated for the active data recording where 

gross RE15 was calculated (Equation 19) when V̇O2 stabilised, or plateaued, 

 
15 Gross RE takes into consideration body weight as opposed to absolute RE which does not  
(Barnes and Kilding, 2015).   
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with an RER ≤1 (Hoogkamer, Kram and Arellano, 2017; Hoogkamer et al., 

2018; Healey and Hoogkamer, 2021; Whiting, Hoogkamer and Kram, 2022).   

 

Equation 19: Gross RE equation (𝑉̇O2) in ml/kg/min. 

(19) 

𝐺𝑟𝑜𝑠𝑠	𝑟𝑢𝑛𝑛𝑖𝑛𝑔	𝑒𝑐𝑜𝑛𝑜𝑚𝑦	(𝑚𝑙/𝑘𝑔/𝑚𝑖𝑛) = 	
z𝐺𝑟𝑜𝑠𝑠	𝑉̇𝑂!	(𝑙/𝑚𝑖𝑛) ∗ 	1000|

𝑚𝑎𝑠𝑠	(𝑘𝑔)  

 

PERCENTAGE RE BENEFIT OR PENALTY 

A RE benefit/ penalty (Equation 20) was used to calculate the difference 

between the RE benefit or penalty of the running shoe types.  Expressing the 

data in this way provided contextualisation of the research findings to the 

current literature (Hoogkamer et al., 2016, 2018). 

 

Equation 20: Percentage running economy (RE) benefit/ penalty.  

(20) 

𝑉𝐹	𝑅𝐸	𝑏𝑒𝑛𝑒𝑓𝑖𝑡/	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	(%)

= 	7
𝐽𝐴𝑍	𝑔𝑟𝑜𝑠𝑠	𝑉̇𝑂2	(𝑚𝑙/𝑘𝑔/𝑚𝑖𝑛) 		− 𝑉𝐹	𝑔𝑟𝑜𝑠𝑠	𝑉̇𝑂2	(𝑚𝑙/𝑘𝑔/𝑚𝑖𝑛)	

𝐽𝐴𝑍	𝑔𝑟𝑜𝑠𝑠	𝑉̇𝑂2	(𝑚𝑙/𝑘𝑔/𝑚𝑖𝑛)
B ∗ 100 
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3.3. RESULTS 

3.3.1. VARIANCE 

Homogeneity-of-variance, demonstrated through normally distributed 

histograms, was confirmed by Mauchly’s Test of Sphericity, X2(5) = 3.827, P 

= .576.  Therefore, the null hypotheses were investigated using parametric 

testing to a statistical significance of P = 0.05. 

 

3.3.2.  PARAMETRIC TESTING 

GENDER 

A repeated measures ANOVA demonstrated that there was no statistically 

significant interaction on RE measure for running shoe and gender (running 

shoe*gender) (F(1,13) = 0.047, P = 0.831, np2 = 0.004), incline and gender 

(incline*gender) (F(3,39) = 2.333, P = 0.089, np2 = 0.152) and for running 

shoe, incline and gender (running shoe*incline*gender) (F(3,39) = 0.358, p= 

0.784, np2 = 0.027).  Therefore, all results were combined and analysed 

using the two-way repeated measures ANOVA as one larger sample to 

strengthen the analysis (Appendix L).   
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Figure 41: Mean gross rate of submaximal oxygen uptake (𝑉̇O2 ml/kg/min) for the Nike® Vaporfly ZoomX 

NEXT% (VFN%) and Saucony® ProGrid Jazz 12 (JAZ) running shoes, averaged over all inclines, for 

males (blue) and females (orange) showing standard error (S.E.).  On average, the JAZ had a higher 

𝑉̇O2 uptake for both males and females than the VFN%.   
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Table 7: Testing results for n = 18 participants for gross  𝑉̇O2 (ml/kg/min) for running in the Nike® 

Vaporfly ZoomX NEXT% (VFN%) and Saucony® ProGrid Jazz 12 (JAZ) running shoes.  The table 

shows the minimum, maximum, mean and standard deviation (S.D.) for each result. 

Trainer Incline 
(%) 

Number of 
participants 
(n = female/ 

male) 

Mean (± S.D.) 
(𝐕̇O2 ml/kg/min) RER (± S.D.) 

JA
Z 

0 16 (5/11) 40.31 (3.16) 0.86 (0.04) 

1 18 (6/12) 42.40 (2.81) 0.89 (0.05) 

3 18 (6/12) 47.56 (2.90) 0.92 (0.04) 

5 17 (6/11) 52.72 (2.61) 0.95 (0.05) 

VF
N

%
 

0 16 (5/11) 38.52 (3.03) 0.84 (0.04) 

1 18 (6/12) 40.68 (2.81) 0.86 (0.04) 

3 18 (6/12) 46.24 (3.23) 0.90 (0.05) 

5 17 (6/11) 51.28 (2.50) 0.93 (0.05) 

D
iff

er
en

ce
 

0 16 1.79% (1.47)  

1 18 1.71% (1.97)  

3 18 1.31% (1.66)  

5 17 1.44% (1.20)  

 

TRAINER AND INCLINE INTERACTION ON RUNNING ECONOMY (RE) 

A two-way repeated-measures ANOVA demonstrated that there was no 

statistically significant interaction between running shoe type and incline 

(running shoe*incline) on RE (F(3,42) = 0.531, P = 0.663, np2 = 0.037).  This 

means that although there were clear differences in the mean V̇O2 ml/kg/min 

data (Table 7) the differences between the shoes were equal regardless of 

incline, hence the benefit of the VFN% was the same at each level and not 
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significantly better at a certain level.  Therefore, the simple effects of running 

shoe type on RE and incline on RE were used to understand the impact on 

the data.   

The simple effects of the two-way repeated-measures ANOVA demonstrated 

that there was a statistically significant interaction between mean RE and 

running shoe type (F(1,14) = 30.431, P £.001, np2 = 0.685).  To support this, 

a post hoc pairwise comparison with Bonferroni correction showed a 

statistically significant difference (P < .001) in mean V̇O2 ml/kg/min between 

the VFN% (44.225 ml/kg/min) and JAZ (45.748 ml/kg/min) (Figure 41).  

Therefore, the type of running shoe affected RE measure with the VFN% V̇O2  

uptake being less than the JAZ.  

A two-way repeated-measures ANOVA demonstrated that there was a 

statistically significantly interaction between mean RE measure and incline 

(F(3,42) = 467.784, P < .001, np2 = 0.971).  To support this, a post hoc 

pairwise comparison with Bonferroni correction showed a statistically 

significant difference in mean RE measure between running shoe types for 

each incline (0% = 39.536 ml/kg/min, 1% = 41.434 ml/kg/min, 3% = 46.885 

ml/kg/min and 5% = 52.092 ml/kg/min) thus, there was an increase in the 𝑉̇O2 

uptake as incline increased in both the VFN% and the JAZ (Figure 42).   



 130 

 

 

Figure 42: Gross submaximal rate oxygen uptake (ml/kg/min) at 0%, 1%, 3% and 5% incline in VFN% 

(orange line) and JAZ (blue line) with S.E., bars.  Gross 𝑉̇O2 uptake was significantly less in VFN% than 

the JAZ (P < 0.01). 

 

The paired t-test demonstrated a strong, positive correlation between the 

VFN% and JAZ for all inclines; 0% incline r = .889, P < .001, 1% incline r = 

.753, P < .001, 3% incline r = .858, p < .001, 5% incline r = .890, P < .001.  

There was also a statistically significant difference between mean RE 

measure and running shoe type (VFN% and JAZ) for all inclines; 0% incline 

t15 = 4.878, P < .001, 1% incline t17 = 3.679, P = .002, 3% incline t17 = 3.348, 

P = .004, 5% incline t16 = 4.939, P < .001 (Figure 42).   
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* Demonstrates a significance p < 0.01.  

Figure 43: Mean and individual gross oxygen uptake (𝑉̇O2 ml/kg/min) between the Nike® Vaporfly 

ZoomX NEXT% (VFN%) and Saucony® ProGrid Jazz 12 (JAZ) whilst running on a treadmill at 12 km/h 

at 0%, 1%, 3% and 5%.  The black line reports the mean gross 𝑉̇O2 of all participants and the grey lines 

are for each individual participant.  

 

The mean difference V̇O2 of the VFN% over the JAZ at 0% incline was 1.79 

ml/kg/min (95% CI [1.01-2.57]), 1% incline was 1.71 ml/kg/min (95% CI [0.73-

2.69]), 3% incline was 1.31 ml/kg/min (95% CI [0.48-2.14]), and 5% incline 

was 1.44 ml/kg/min (95% CI [0.82-2.06]) (Figure 43).   

 

ORDER OF RUNNING SHOE INTERACTION ON RE 

A two-way repeated-measures ANOVA demonstrated that there was no 

statistically significant interaction between mean RE measure and the order 

that the running shoes were tested (running shoe*order).  Where 10 
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participants (n=10) wore JAZ first (JAZ vs VFN%) and five participants wore 

VFN% first (VFN% vs JAZ) (F(1,13) = 2.886 , P = 0.113 np2 = 0.182).  There 

was no statistically significant interaction on mean RE measure between 

incline and order running shoes were tested (incline*order) (F(3,39) = 0.422 , 

P = 0.738 np2 = 0.031) meaning the changes in RE over incline was the same 

with either the JAZ or the VFN% worn first, or running shoe type, incline and 

the order of running shoe testing (running shoe*incline*order) (F(3,39) = 0.719 

, P = 0.527 np2 = 0.055), meaning the changes in RE changed by a similar 

value between each incline, each shoe type and order of wear.  To support 

this, a post hoc pairwise comparison with Bonferroni correction showed no 

statistically significant difference (P = 0.556) in mean RE measure between 

the order the running shoes were tested (JAZ followed by VFN% = 44.676 

ml/kg/min and VFN% followed by JAZ = 45.608 ml/kg/min).  Meaning, the 

randomisation of the trials for incline or running shoe type did not influence 

RE.   

 

PERFORMANCE ABILITY INTERACTION ON RE 

A mixed mode ANOVA demonstrated that there was no statistically 

significantly interaction on mean RE between running shoe type and 

performance ability (running shoe*performance) (F(1,13) = 0.636, P = 0.439, 

np2 = 0.047), incline and performance ability (incline*performance) (F(3,39) = 

0.158, P = 0.924, np2 = 0.012) (Figure 44), and running shoe type, incline and 

performance ability (running shoe*incline*performance) (F(3,39) = 0.914, P = 

0.443 np2 = 0.066).  To support this, a post hoc pairwise comparison with 

Bonferroni correction showed no statistically significant difference in mean RE 
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measure and performance (mean “yes” measure = 44.918 ml/kg/min and “no” 

measure = 45.123 ml/kg/min).  Although other studies have used elite athletes 

for the reduction of confounding variables, the applicability of the data to the 

real world is reduced, hence we studied a larger range of athletic abilities.  Our 

study found no statistically significant differences in mean RE between sub-

elite athletes (those that could complete 10 km in £40 minutes) and 

recreational runners (those that could not) over all inclines (Figure 44).   

 

 

Figure 44: Mean 𝑉̇O2 uptake for those that "yes" can and "no" cannot run 10 km £40-minute, against 

various inclines (0-5%).  The JAZ and VFN% for yes and no are not significantly different..   
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PERCENT RE BENEFIT 

The mean RE benefit (%) for the VFN% in comparison to the JAZ (thick black 

line) (Figure 45), demonstrates a 4.37% RE benefit at 0% incline, 3.95% RE 

benefit at 1% incline, 2.75% RE benefit at 3% incline and 2.70% RE benefit at 

5% incline (results table provided in Appendix J).  Individual participant’s RE 

benefit or penalty (light grey lines) were plotted to visualise the range of results 

for each incline with variability of these results being larger than that of the 

current literature.  We used 18 participants with a range of running abilities 

from -5.0% RE penalty to 13.4% RE benefit, in contrast (Hunter et al., 2019) 

used 19 participants who showed a range of 0.0% to 6.4% RE benefit and 

(Hoogkamer et al., 2018) used 18 participants, who achieved 2% to 6% RE 

benefit, all of which were high-calibre runners.   
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Figure 45: Running economy (RE) benefit/ penalty.  The difference between 𝑉̇O2 uptake VFN% and JAZ 

divided by the JAZ to give the benefit of the VFN%.  The individual grey lines are for each of the 18 

participants with the thick black line being the mean result for all participants. 

 

The RE benefit (%) between the running shoes was significantly different (P 

= .01) between each incline.  There appeared to be a gradual decline in RE 

benefit (%) with increased incline, therefore, the data was modelled using an 

exponential decay fit (Equation 21) with the final iteration containing a fixed 

variable for y0 (defined below) producing the best fit.   

 

Equation 21: The exponential decay function (F(x)). Equation demonstrated by the variables; y0 = fixed 

constant, a = is a constant (a + y0 = y-intercept (RE benefit), exp = exponential constant, x = x axis 

variable (incline), b = decay constant. Thus y0 = 2.28 % RE benefit, a = 2.16 % RE benefit such that A 

+ y0 = 4.45 % (close to the measured RE benefit of 4.37 % at 0 % incline) and b = 2.60 (% incline). 

(21) 

𝐹(𝑥) = (𝑦6) + 𝑎 ∗	𝑒𝑥𝑝M5/3 
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The exponential decay curve accurately predicted RE benefit (%) at its 

associated incline to infinity (Figure 46).  The concatenated table where the 

asymptote reaches 2.28% at 46% incline, however, there appears to be no 

further meaningful RE benefit after 16% incline (results table provided in 

Appendix K).  

 

 

Figure 46: Gross mean 𝑉̇O2 uptake difference (%) (blue dots) including standard error bars. The 

exponential decay fit (black line), where under the fit line depicts the fixed effect of the running shoe; the 

mass effect being a constant 1% RE penalty per 100 g per shoe of additional running shoe mass, and 

the midsole effect at 1.3% benefit for the VFN% running shoe regardless of incline. 
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3.4. DISCUSSION 

3.4.1. SUMMARY OF FINDINGS 

This study investigated the gross running economy (RE) or rate of 

submaximal oxygen (V̇O2) uptake between the Nike® Vaporfly ZoomX Next% 

(VFN%) and the conventional running shoe, the Saucony® ProGrid Jazz 12 

(JAZ) during level (0%) and incline (1, 3 and 5%) running on a treadmill at 12 

km/h.  For level treadmill running (0% incline) at 12 km/h, it was demonstrated 

that the VFN% achieved a 4.37% RE benefit compared to the JAZ, achieving 

a 0.36% better RE benefit than the 4.01% RE benefit achieved by the VF 

prototype, compared to a weight matched conventional running shoe 

(Hoogkamer et al., 2018).  At 1% incline running at 12 km/h, the VFN% 

achieved a 3.95% RE benefit compared to the JAZ, a 0.12% better RE benefit 

than the 3.83% RE benefit achieved by the VF4% (Whiting, Hoogkamer and 

Kram, 2022).  The exponential decay model with a fixed y variable (RE 

benefit) provided a good and appropriate fit for the data acquired during 

testing, establishing a fixed 2.28% benefit up to ~1616% incline and above.  

The mass of the shoes contributes to 1% RE penalty out of the 2.28% RE 

benefit.  The midsole effect contributes to 3.4545% RE benefit at 0% incline 

(4.4545% RE benefit – 1% RE penalty) and drops to 1.28% at ~1616% incline 

and above (2.28% RE benefit – 1% RE penalty). 
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3.4.2. HYPOTHESIS ONE; RUNNING ON THE LEVEL (0%) 

We hypothesised that the VFN% would demonstrate at least a 4.01% RE 

benefit over the conventional running shoe (JAZ) during level treadmill 

running (0% incline) at 12 km/h.  We demonstrated a 4.37% RE benefit for 

the VFN% (unweighted) compared to the JAZ.   

The 4.01% RE benefit measured from the VF prototype which was weight 

matched to the adidas® adizero Adios BOOST 2 (Hoogkamer et al., 2018) 

and a 4.20% RE benefit from the non-weight matched VF4% and a 2.9% RE 

benefit when weight matched to the adidas® adizero Adios BOOST 3, when 

tested at 14, 15, 16 and 18 km/h (Barnes and Kilding, 2019).  As our study 

was not weight matched we can apply the 1% RE penalty for every additional 

100g of additional mass per running shoe (Hoogkamer et al., 2018; 

Hoogkamer, Kipp and Kram, 2019; Nigg, Cigoja and Nigg, 2020), meaning 

the RE benefit at 0% incline was 3.37% when accounting for approximately 

200 g (100 g per shoe) of additional running shoe mass for the JAZ (Appendix 

K).  This is a 0.64% lower RE benefit than the 4.01% RE benefit when 

compared to the adidas® adizero Adios BOOST 2 (Hoogkamer et al., 2018), 

0.83% lower RE benefit than the 4.20% RE benefit from the VF4% (not weight 

matched), and 0.47% higher RE benefit than the 2.90% RE benefit (weight 

matched) to the adidas® adizero Adios BOOST 3 (Barnes and Kilding, 2019).   

Our results support the literature for the VFN% producing a RE benefit when 

compared to the conventional running shoe, JAZ (Hoogkamer et al., 2018; 

Barnes and Kilding, 2019; Hoogkamer, Kipp and Kram, 2019; Hunter et al., 

2019, 2022; Ortega et al., 2021; Hébert-Losier et al., 2022; Joubert and 

Jones, 2022; Whiting, Hoogkamer and Kram, 2022).  However, if we do not 



 139 

consider weight, our study provides an additional 0.36% RE benefit for the 

VFN% over the VF4% but when accounting for weight, the RE benefit for the 

VFN% at 0% incline is less than those reported in the literature, compared to 

a conventional running shoe.  Our study adds to the current literature by 

establishing that level running in the VFN% produces a greater than 4% RE 

benefit, as expected, due to the advancements in technology, such as a 15% 

increase in ZoomX foam content in comparison to the VF4%.   

It would be beneficial to have a systematic literature review on the RE 

differences between the various Nike® series running shoes when weight 

matched to the conventional running shoes to provide a true representation 

of the RE benefits of this running shoe series.  

 

3.4.3. HYPOTHESIS TWO; RUNNING ON AN INCLINE (1%, 3% AND 

5%) 

We hypothesised that the VFN% would demonstrate at least a 2.82% RE 

benefit during uphill running compared to the conventional running shoe 

(JAZ).  We accepted hypothesis two for 1% incline, with the VFN% achieving 

a 3.95% RE benefit (not weight matched) compared to the JAZ, a 1.13% 

greater RE benefit than predicted.  Hypothesis two was rejected for 3% 

incline with a 2.75% RE benefit (not weight matched), 0.07% lower RE benefit 

than predicted, and finally hypothesis two was rejected for 5% incline with a 

2.70% RE benefit (not weight matched), a 0.12% lower RE benefit than 

predicted.  Although these RE benefits are close to that in the current 

literature, they fall below the predicted 2.82% RE benefit achieved by the 

VF4% when compared to the Nike® Streak 6 (approximately the same 
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weight) when running on an incline (Whiting, Hoogkamer and Kram, 2022).  

As our study tested the VFN%, we anticipated a slightly better performance 

than the VF4% due to the technological improvements embedded into the 

VF4%, however, this was not the case on this occasion (Quealy and Katz, 

2019; Burns and Tam, 2020; Joubert and Jones, 2022).   

 

 

Figure 47: The RE benefit (%) of the VFN% versus the JAZ from this study (blue line) and from the VF4% 

versus the Nike® Streak 6 (grey line), over inclines 0-5%.  

 

Our study showed a 4.37% RE benefit for running at 12 km/h on a 0% incline 

and a 3.95% RE benefit on a 1% incline meaning there was a 0.42% RE 

penalty for running uphill, a 2.75% RE benefit on a 3% incline meaning there 

was a 1.62% RE penalty and 2.70% RE benefit on a 5% incline meaning 

there was a 1.57% RE penalty for running uphill, when compared to the JAZ.  

In comparison, Whiting, Hoogkamer and Kram, (2022) showed a 3.83% RE 

benefit at 0% incline and 2.82% RE benefit at 5% incline, meaning there was 

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5

RE
 B

en
ef

it 
(%

)

Incline (%)

Running Economy (RE) benefit of the 
VFN% compared to the JAZ

RE Benefit - Exponential
decay - this study

RE Benefit (%) - Whiting,
Hoogkamer and Kram, (2022)



 141 

a 1.01% RE penalty for running uphill for VF4% when compared to the Nike® 

Streak 6.  We hypothesised that there would be a linear relationship between 

RE benefit and incline based on the findings of Whiting, Hoogkamer and 

Kram, (2022), however, the data from our study allowed us to deduce the 

VFN% had a decreasing RE benefit with increasing incline, forming what 

appears to be an exponential decaying relationship (discussed further in the 

next hypothesis).   

When comparing the RE penalties at a 5% incline, our study achieved 2.70% 

RE benefit and a 1.57% RE penalty compared to running on the level in the 

VFN% when compared to the JAZ.  Whereas Whiting, Hoogkamer and Kram, 

(2022) achieved 2.82% RE benefit and a 1.01% RE penalty for VF4% when 

compared to the Nike® Streak 6.  According to these results, VF4% had an 

additional 0.12% RE benefit and a 0.56% lower RE penalty when running at 

a 5% incline than the VFN%, meaning they were less efficient which was not 

anticipated.  However, it is important to note that the RE penalty for the VFN% 

could be due to the performance differences between the conventional 

running shoes on an incline, or the difference in speed at which the 

participants were tested at.   

It is unclear if Nike® Inc., anticipated that the VF series of running shoes 

would produce less than 4% RE benefit whilst running on an incline, in 

comparison to similar running shoes.  Our study findings strongly support the 

notion that running uphill requires the generation of increased energy.  This 

increase in energy output is essential for overcoming the gravity encountered 

when propelling the BCoM up an incline.  Incline poses a challenge due to 

less effective ESE storage and return mechanisms, meaning the body must 
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supply additional energy to propel the BCoM uphill.  As runners ascend, they 

generate a reduced impact force upon the ground.  Diminished impact force 

leads to a lower ESE return from the VFN% running shoe, a consequence of 

the decreased impact force rather than the runner's ability to generate energy 

(Snyder, Kram and Gottschall, 2012).   

The evidence from our study highlights that, during each step, the work done 

on the BCoM is an additive factor to the cyclic process of ESE storage and 

return.  As incline increases, the work exerted on the BCoM also increases, 

where it becomes significantly higher than the energy being cycled.  This 

heightened demand for mechanical energy is a compensatory mechanism 

required to sustain uphill momentum (Snyder, Kram and Gottschall, 2012).   

 

3.4.4. HYPOTHESIS THREE; RELATIONSHIP OF THE DATA - 

EXPONENTIAL DECAY MODEL 

We hypothesised a negative linear relationship between RE benefit and 

increasing incline.  However, our third hypothesis was rejected for the 

discovery of a negative linear trend with a nonlinear distribution between the 

inclines for VFN% RE benefit compared to the JAZ.   

An exponential decay model emerged as the most fitting representation for 

the data.  This model illustrated a more accurate relationship between RE 

benefit and incline.  A novel aspect of our study highlighted a fundamental 

characteristic of the data between the RE benefit of the individual 

components within the VFN%, where a constant y0, representing a 2.28% 

asymptote baseline which RE will never drop below.  A 1% RE penalty, from 
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the 2.28%, was attributed to the "mass effect" of the running shoes with any 

RE benefit exceeding this 1% was attributed to the "midsole effect", 

encompassing factors such as enhanced elastic return and biomechanical 

advantages offered by the VFN% running shoe.  

 

THE MASS EFFECT 

The mass difference between the VFN% and the JAZ was 100 g per shoe, a 

lighter shoe mass provides a partial explanation for the enhanced RE benefit 

associated with the VFN% (Colloff, 2022).  The Nike® Streak 6 is considered 

a streamlined variant to the VF4%, weighing 11 g less (UK size 8).  This was 

a staple mid- to long-distance racing shoe used prolifically over the last 

decade.  Its reduction in mass is accompanied by a thinner midsole with less 

EVA foam by volume, featuring a rearfoot air-cushioning unit instead of a 

carbon-fibre midsole plate. 

In contrast to the recent literature, despite the lighter mass of the Nike® Zoom 

Streak 6, the VF4% demonstrated a superior 2.6% RE benefit.  This outcome 

supports our results that the “mass effect” alone cannot dictate RE benefit, 

meaning the PEBA foam midsole and the carbon-fibre midsole plate 

significantly influence the VF series RE benefits (Whiting, Hoogkamer and 

Kram, 2022).   

 

THE MIDSOLE EFFECT 

The 4.01% RE benefit observed in the VFN% compared to other conventional 

running shoes can partly be attributed to the heightened quantity and 
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advanced chemical structure of the ZoomX foam.  Our investigation unveiled 

the VFN% to exhibit a 4.37% RE benefit when compared to the JAZ, marking 

an additional 0.36% RE benefit compared to the VF prototype (Hoogkamer 

et al., 2018) and an additional 0.17% RE benefit over the VF4% (Barnes and 

Kilding, 2019). 

This improvement in RE benefit may be elucidated by the incorporation of a 

higher proportion (15% by volume) of the advanced ZoomX foam 

(Hoogkamer et al., 2018; Barnes and Kilding, 2019).  Whilst the teeter-totter 

effect attributes 6% RE benefit to midsole thickness (Nigg, Cigoja and Nigg, 

2020, 2021), our results and modelled data suggest a 1.28% RE benefit from 

the carbon-fibre midsole plate and ZoomX midsole foam in combination, 

supporting the work of Whiting, Hoogkamer and Kram, (2022).   

It is understood that VF series are composed of PEBA, which returns 87% of 

the energy under compression testing, as opposed to the traditional TPU or 

EVA foams which return 66% and 76% respectively (Burns and Tam, 2020; 

Dominy and Joubert, 2022; Joubert and Jones, 2022).  It is thought that the 

ZoomX foam midsole increases the elasticity and deformation potential at IC 

facilitating the ESE storage and return mechanism during running, absorbing 

and transfers more ESE as the foam reforms, which is then released as 

additional KE and transferred into forward propulsion, thus improving RE 

(Hoogkamer et al., 2018; Barnes and Kilding, 2019; Hoogkamer, Kipp and 

Kram, 2019).   

The carbon-fibre midsole plate further improves RE benefit by providing a 

stiffer running surface for the ZoomX foam to act upon, reducing the cost per 

stride at IC as explained above.  The carbon-fibre midsole plate acts as a 
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lever, creating a larger resultant moment by acting further from the point of 

rotation.  The curvature of the carbon-fibre midsole plate has a higher LBS, 

which stiffens the MTP joint, reducing the MTP joint range-of-motion and 

angular velocity.  It is postulated that the reduction in mechanical work at the 

MTB joint reduces muscular work, ergo improves RE.  During uphill running 

there is a shift to a forefoot/ midfoot toe strike pattern causing additional LBS 

of the carbon-fibre midsole plate, improving RE benefit due to the mechanical 

advantage of a longer moment arm about the ankle (Stefanyshyn and Nigg, 

2000; Roy and Stefanyshyn, 2006; Healey and Hoogkamer, 2021).   

 

3.5. APPLICATION 

We established a range of RE benefits for the VFN% running shoe compared 

to a conventional running shoe over a variety of inclines.  The highest return 

on energy investment is during level running providing 4.37% RE benefit with 

a calculated exponential decay of 4.45% RE benefit to a 16% incline where 

after 2.28% RE benefit, no further meaningful change was seen.  Translating 

these results into performance improvements and disseminating this 

evidence will facilitate bridging the gap between academia and the real-world 

experience, so all athletes can understand the implications of the VFN% RE 

benefits (Hunter et al., 2022).  
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Figure 48: New York City Marathon course profile; Implication of current research on calculating VFN% 

RE benefits based on the exponential decay results from this study (New York Road Runners, 2024). 

 

The exponential decay modelled data was used to produce RE benefit profile 

based on The New York City Marathon course with its several points of 

elevation (Figure 48).  By providing a weighted average for elevation changes 

using our modelled data alongside that of Whiting, Hoogkamer and Kram, 

(2022), over the 26.2 miles there is a possible 3.8% RE benefit at a velocity of 

12 km/h or pace of 03:30:00 hr.  Using a race metrics calculator (Kipp, Kram 

and Hoogkamer, 2019), based on the 3.8% RE benefit, a saving of 00:07:14 

hr is theoretically possible whilst running in the VFN% in comparison to 

wearing a traditional running shoe.   

This evidence will facilitate the calculation of RE benefit in accordance with 

differing running course profiles, thus enabling the development of customised 

racing strategies for optimum energy management. 

New York City Marathon Course Profile New York City Marathon Course Profile 
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3.6. CONCLUSION  

Ultimately, our study has provided an initial understanding of how the ZoomX 

foam and carbon-fibre midsole plate contribute to the RE benefit beyond the 

impact of the VFN%s lighter mass.  Through this evidence, we validate a 

synergistic relationship between the two key midsole components, coining it 

the "midsole effect."  This novel understanding was formed using the 

exponential decay modelled data, enabling the identification of VFN% RE 

benefit at specific inclines. 

 

FUTURE WORK  

Subsequent studies should aim to offer a deeper understanding of the 

relationship between the carbon-fibre midsole plate and ZoomX foam in the 

VFN%.  Emphasis should be placed on defining the exact contribution each 

midsole element makes toward the RE benefit observed.  Specifically, 

research should investigate the effect of the absence of the carbon-fibre 

midsole plate from the ZoomX foam midsole, and finally the effect of differing 

quantities of ZoomX foam on RE benefit in the VFN%.   

Interconnecting this study to the over-arching theme of this PhD thesis brings 

the next chapter of research to investigate the relationship between 

performance using RE benefit, and gait using accelerometry.   
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3.7. LIMITATIONS  

PARTICIPANT ERROR 

A novel element of this study explored participant performance ability; those 

that could and could not run 10 km in £40 minutes.  The mixed mode ANOVA 

tested performance ability and its interaction with RE, however, there was no 

statistically significant interaction.  Regardless, a larger participant sample, 

with a variety of performance abilities, distributed equally across groups may 

provide more insight into the effect of participant performance ability on RE 

over various inclines.  While we observed no interaction effect on RE based 

on performance ability, the potential for different outcomes exists, especially 

with an increase in sample size.  The impact of performance ability on the data 

may become more apparent with a larger and more diverse participant sample 

making the data more robust and more applicable to a broader range of 

runners.  To make the data more robust, the “yes”, “no” element of this study 

can be improved by collecting an exact performance indicator such as the 

participants most recent 10 km race time.  

 

GENDER DIFFERENCES  

Senefeld et al., (2021) highlighted in their retrospective, observational study 

that there was an optical gender difference with women achieving a 1.6% 

performance improvement compared to 0.8% for men, and for overall time with 

women improving by 3.7 min compared to men with 1.2 min whilst wearing the 

Nike® series during four major marathons.  This research highlighted these 

gender differences as in accordance with the RE saving models due to 
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women’s overall slower running times (Barnes and Kilding, 2015; Kipp, Kram 

and Hoogkamer, 2019).  

Upon closer examination, the assertion holds true when discussing 

performance as a percentage.  A more in-depth analysis of gender differences 

within the context of performance in the Nike® series should be considered to 

discern any gender-related differences. Our results indicated non-statistically 

significant differences warranted the combination of all data to be analysed 

collectively.  In future studies, it would be prudent to consider both collective 

and separate analyses for genders to explore potential variations.   

 

LABORATORY CONDITIONS  

The absence of climate control in the laboratory environment prevented the 

replication of outdoor conditions, with participants often describing the setting 

as "warm" or "hot".  To mitigate the impact of these conditions, fans were 

provided to enhance comfort.  It is important to note that temperature is a 

recognised factor to negatively influence performance (Moldover and Borg-

Stein, 1994; Novacheck, 1998; Saunders et al., 2004; Barnes and Kilding, 

2015).  Despite the conditions, there was no statistically significant interaction 

between trial order and RE, suggesting that the performance outcomes were 

consistent regardless of whether it was the 1st or 8th trial completed.  

Regardless, the broader impact of temperature on performance remains a 

noteworthy consideration for future studies.  
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An inherent challenge in testing involves the impedance via equipment 

utilised, such as the gas exchange mask and treadmill.  Despite efforts to 

mitigate this error through familiarisation periods, the extent to which RE was 

affected by the equipment used is crucial for accurate interpretation of results.  

Drawing a parallel, runners performed trials at a 1% incline to mirror the energy 

expenditure expected from the external environment (Ardigo, Saibene, and 

Avanzate, 1993; Barnes and Kilding, 2015).  Future studies should explore 

ways to evaluate and mitigate the impact of testing equipment on performance 

outcomes, thus enhancing the accuracy and reliability of research findings.  
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CHAPTER FOUR 
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4. STUDY 5: THE GLOBAL GAIT ANALYSIS TOOL (GAIT) FOR 

THE QUANTIFICATION OF RUNNING PERFORMANCE USING 

ACCELEROMETRY 

Study five used GaiT, an accelerometry-based tool to investigate Fundamental 

Frequency (FF) and Spectral Purity (SP) measures to explore the relationship 

between gait characteristics and running economy (RE).  23 participants ran 

four inclines at 12 km/h on a treadmill whilst wearing two custom-built wearable 

devices.  Accelerometry data recorded a total of eight trials over four inclines 

whilst wearing the Nike® Vaporfly ZoomX NEXT% (VFN%) and the 

conventional running shoe, the Saucony® ProGrid Jazz 12 (JAZ).  The results 

revealed FF increased with incline and typically SP decreased with incline, 

meaning gait quality improved with incline.  The VFN% consistently exhibited 

a lower FF, suggesting a lower stride frequency (SF) and lower SP, indicating 

superior gait quality compared to the JAZ, typically over all inclines.  The 

noteworthy parallel relationship between FF and running economy (RE) 

benefit suggests that VFN%, with lower FF values, may contribute to more 

economical running and potentially better performance.  However, SP benefits 

did not exhibit a parallel relationship with RE benefit, making the direct 

relationship between SP and running economy less clear. 

The GaiT method, particularly FF analysis, emerged as a promising predictive 

tool for quantifying running performance, with lower FF values potentially 

indicating more economical running and faster running times.  SP may not 

directly correlate with RE benefit but it still offers insights into gait quality. 
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4.1. PREMISE 

Along with the improvements in RE, the VFN% running shoes ability to change 

running mechanics over various inclines has been observed, compared to 

conventional running shoes.  Whiting, Hoogkamer and Kram, (2022),  

Hoogkamer et al., (2018) and Barnes and Kilding, (2019) used MC to show 

that running in the VF series resulted in an increased SL and decreased SF 

when running at a fixed speed.  Study 4: Nike® Vaporfly ZoomX NEXT% 

running shoes have running economy benefits over various inclines compared 

to conventional running shoes, determined RE benefits of running in the 

VFN% compared to the JAZ, over various inclines.  Quantifying such benefits 

can be time consuming and is often confined to the laboratory, therefore, a 

new, cost effective and accessible long-term approach is desirable to make 

gait analysis available to a larger remit.  Accelerometry has been investigated 

as a potential tool to quantify gait outside of the laboratory (Fogg, 2005; Tao 

et al., 2012; Barnes, 2017).  In the previous chapter we produced GaiT, a novel 

tool that quantified FF and SP as a measure of running gait quality using 

accelerometry (Analytical techniques, 2.11).  It is crudely accepted that those 

with better skill levels are better performers (Barnes, 2017), therefore, using 

similar accelerometry techniques we propose to investigate the feasibility of 

linking RE, as a performance measure, to FF and/ or SP as a gait quality 

measure.  The product of this investigation will be a tool that not only quantifies 

gait quality but can also predict performance within the laboratory, with the 

ultimate aim of extending these findings outside of the laboratory.   
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4.1.1. AIM  

The aim of this chapter is to relate GaiT measures; FF and SP from 

accelerometry to a running performance measure; RE from CPET.  A 

feasibility study will examine these measures from data collected during 

treadmill running at 12 km/h whilst wearing the VFN% and the JAZ over 

various inclines.  By correlating FF and SP with RE data from the previous 

study, we will explore the potential of predicting performance using GaiT.  The 

future work from the previous study recommended to split the data for gender 

and analyse as two separate groups which will be conducted for this study.   

 

4.1.2. HYPOTHESES 

For both males and females: 

1. The VFN% will produce a lower FF than the JAZ over all inclines, thus 

lower SF.   

2. FF will increase with increasing incline in both running shoes.   

3. Lower RE values will be associated with lower FF values.   

4. The VFN% will produce lower SP levels than the JAZ over all inclines, 

ergo have better gait quality.  

5. Higher SP values will be seen with increasing incline.  

6. Lower RE values will be associated with lower SP values.   
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4.1.3. OBJECTIVES  

Several treadmill running trials were conducted to contextualise gait quality via 

accelerometry.  The objectives were to: 

1. Conduct four treadmill running trials to collect accelerometry data at 

inclines (0%, 1%, 3% and 5%), at 12km/h for the VFN% and JAZ.  

2. Utilise the package of calibration, processing and analytical 

techniques  developed in chapter three to contextualise the 

accelerometry data captured.   

3. Statistically test the data to determine if GaiT variables FF and SP are 

suitable to quantify running gait.  

4. Explore any relationships between VFN% and JAZ, and the GaiT 

measures FF and SP.   

5. Explore any relationships between GaiT measures; FF, SP and RE 

with the aim of using GaiT as a predictive tool for running performance.   

 

4.2. GENERAL METHODS 

Uniform methods were consistently employed throughout this thesis, 

consolidated for clarity in the General Methods section. For more 

comprehensive insights, consult the General methods (2.2).   

 

4.2.1. STATISTICAL POWER 

A standard online power calculation requiring mean and S.D., results from 

Study 4: Nike® Vaporfly ZoomX NEXT% running shoes have running 
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economy benefits over various inclines, compared to conventional running 

shoes (Results, 3.3) concluded that 23 participants were needed to detect 

whether a statistical significance would be present within the data at the level 

of P = 0.05.   

 

4.2.2. PARTICIPANTS 

23 participants; n=6 females and n=17 males volunteered to participate within 

the study (Table 8).  There were statistically significant differences between 

gender for age (P = .012), mass (P £ .001) and height (P £ .001) therefore the 

data was grouped by gender and analysed separately. Two male and one 

female participant did not complete JAZ 0% and VFN% 0% due to a late 

protocol addition, one male did not complete VFN% 0%, 1%, 3% or 5%, one 

male participant and one female did not complete JAZ 3% due to a wearable 

device malfunction, and finally one male participant did not complete JAZ 5% 

or VFN% 5% due to fitness.  Participants fitted a UK shoe size 5.5, 6.5, 7.5, 9, 

10 or 11.   
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Table 8: Participant descriptive statistics.    

*There are statistically significant differences between gender for age (P = .012), mass (P £ .001) and 

height (P £ .001). 

 

4.2.3. PROTOCOL 

Additionally, to the Protocol (3.2.4), two custom-built wearable devices (red 

and blue) were turned on and set to record at 40 Hz, then shaken 

simultaneously to record a discernible large magnitude peak on the movement 

wave to signify the start of the protocol.  A stopwatch was used to capture 

protocol events providing reference points for synchronisation.  The red 

wearable device was fitted to the right shank and the blue to the left shank 

using the strict placement protocol;  

Gender Descriptive Category Value (%) Mean 
(±S.D.) 

Male 

Total (n)   17 

Age (years)   35.3 ± 12.7* 

Mass (kg)   74.6 ± 9.1 

Height (cm)   180.9 ± 6.4 

BMI (kg/m2)   22.9 ± 3.1 
Performance 
(<40 min 10 

km) 

Yes 13 (76.5%)  

No 4 (23.5%)  

Order 
VFN% vs JAZ 4 (23.5%)  

JAZ vs VFN% 13 (76.5%)  

Female 

Total (n)   6 

Age (years)   25.7 ± 4.2* 

Mass (kg)   57.7 ± 6.5* 

Height (cm)   168.0 ± 4.1* 

BMI (kg/m2)   20.4 ± 1.9 
Performance 
(<40 min 10 

km) 

Yes 2 (33.3%)  

No 4 (66.7%)  

Order 
VFN% vs JAZ 2 (33.3%)  

JAZ vs VFN% 4 (66.7%)  
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• calculating the shank length (the distance between the lateral tibial 

condyle and the tibial malleolus), 

• strapping the wearable device 10% above the tibial malleolar 

epicondyle in comparison to total shank length, to avoid excess tilt if the 

device was placed directly on to the epicondyle, 

• orientating the wearable device’s positive x-axis vertically along the 

radial axis, 

• enforcing feet directly under the hips.   

After each wearable device was fitted, the participant completed five small feet 

together jumps as they were distinct on the accelerometry wave.  These jumps 

were repeated before and after each trial as they facilitated the 

synchronisation of the red and blue accelerometer movement waves to each 

other. 

The participant was given operational and safety instructions for the treadmill 

(H/P/ cosmos sports & medical gmbh, Nussdorf-Traunstein Germany) before 

putting on the a pair of running shoes as directed by the randomisation 

protocol (see Protocol, 3.2.4 for further details).  The participant stood 

statically on the treadmill for 10 seconds before completing a 10-minute self-

structured warm up and familiarisation period with the aim of reaching 12 km/h 

at a 5% incline.  Following this, four trials were completed where the inclines 

0%, 1%, 3% and 5% were randomised, each lasting 120 seconds at 12 km/h 

(3.3 m/s).  The participants were blinded to the incline sequence by covering 

the incline display on the treadmill.  After the final trial, each participant was 

given the option to cool down before the synchronisation movements were 
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repeated.  This was conducted for the VFN% and JAZ and repeated for each 

participant.  

 

4.2.4. DATA EXTRACTION 

Consistent data extraction methods were applied to each wearable device 

prior to commencing the data processing phase. For additional details, please 

refer to the section on Data extraction (2.2.5).   

 

4.2.5. DATA PROCESSING AND ANALYTICAL TECHNIQUES 

Additionally, to the method above, the data processing has been summarised 

for ease (Appendix H).  The analytical measures were developed in an iterative 

process resulting in: 

• The FFT; instead of quantifying the first FF peak, the first four FF peaks 

will be quantified to understand how gait may vary over a larger range 

of harmonics.   

• The CDF; the function in its current format provided very small 

frequency readings across the x-axis which were not relatable to this 

project.    To transform to a CDF, the FFT was integrated using the 

rectangular method (Equation 22).  The median (50%) y-axis SP value 

was retained.   

• The CCF and ACCF; were removed as these were ineffective at 

providing consistent quantification of gait symmetry (see Conclusion 

(3.6) for detail).   
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Equation 22: Rectangular integration method of the FFT. A. the calculation of the intensity or height (h) 

of each rectangle under the FFT within the area to be calculated, where a is the initial point and b is the 

final of the base of the area along x (frequency domain).  This is then divided by n being the number of 

sections the distance between a-b was divided into. B. is the function of the integration equation of b-a 

where n is the repeating unit for the number of rectangles within the area to be integrated giving the total 

area under the FFT at each frequency harmonic i.e. the CDF of the FFT.   

(22 A) 

ℎ	 =
𝑏 − 𝑎
𝑛 	

(22 B) 

𝐼 = 	~ 𝑓	(𝑥)𝑑	𝑥
3

.
	≈ ℎ[𝑓(𝑥N∗) + 𝑓(𝑥!∗) + ⋯+ 𝑓(𝑥=∗)] 

 

PERCENTAGE FF AND SP BENEFIT OR PENALTY 

FF and SP benefit (%) (Equation 23) was created and calculated between the 

VFN% and JAZ running shoes, with the emphasis toward the VFN% benefit 

the provided compared to the JAZ.  The data were portrayed in this way to be 

comparable to the RE data produced in Study 4: Nike® Vaporfly ZoomX 

NEXT% running shoes have running economy benefits over various inclines 

compared to conventional running shoes that used Percentage RE benefit.   
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Equation 23: Percentage benefit/ penalty for FF and SP.  

(23) 

𝐹𝐹/	𝑆𝑃	𝑏𝑒𝑛𝑒𝑓𝑖𝑡/	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	(%)

= 		 �
𝐹𝐹/	𝑆𝑃	𝐽𝐴𝑍	(𝐻𝑧) − 𝐹𝐹/	𝑆𝑃	𝑉𝐹	(𝐻𝑧)

𝐹𝐹/	𝑆𝑃	𝐽𝐴𝑍	(𝐻𝑧) � ∗ 100 

 

4.3. RESULTS  

4.3.1. VARIANCE 

Homogeneity-of-variance, was demonstrated through normally distributed 

histograms and confirmed by Mauchly’s Test of Sphericity that sphericity was 

not met for the males for SP X2(5) = 6.794, P = .239, and for the females for; 

FF peak 1 X2(5) = 3.882, P = .621, FF peak 2 X2(5) = 7.644, P = .238, FF peak 

3 X2(5) = 3.637, P = .654, FF peak 4 X2(5) = 3.612, P = .657 and SP X2(5) = 

11.379, P = .076.  Due to this, a repeated measures ANOVA with the 

Greenhouse-Geisser correction was used.  Where sphericity was met (males 

FF Peak 1-4 only) the hypotheses were tested using the repeated measures 

ANOVA with sphericity assumed to a statistical significance of P = 0.05.   

 

4.3.2. STATISTICAL TESTING 

DETERMINING FF PEAK 

A paired samples t-test was conducted to determine if the FF peaks 1-4 were 

significantly different from one another between running shoe types.  The 

results indicated that for males; there was a non-statistically significant 
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difference between FF peak 1 and 2 (0.040±0.150); [t(13) = 0.998, P = .337], 

peak 1 and 3 (-0.037±0.144); [t(13) = 0.962, P = .354], peak 1 and 4 (-

0.757±2.95); [t(13) = -0.959, P = .355], peak 2 and 3 (-0.003±0.158); [t(13) = -

0.067, P = .947], peak 2 and 4 (-0.797±2.92); [t(13) = -1.02, P = .326], peak 3 

and 4 (-0.794±2.95); [t(13) = -1.008, P = .332].  With larger non-statistically 

significant differences for the females equalling; P = .936, .852, .731, .884, 

.640 and .498, respectively.   

Therefore, the null hypothesis was accepted as there was no statistically 

significant difference between FF peaks 1-4, thus only FF peak 1 will be 

discussed from this point forward. 

 

DETERMINING PERFORMANCE ABILITY  

The data were grouped by performance ability (those that could and could not 

complete 10 km in £40 minutes).  As the data did not satisfy the requirements 

of an ANOVA, an independent samples t-test was used to determine there 

were no statistically significantly differences in FF or SP for the inclines 0%, 

1%, 3% and 5%.  Therefore, the results were not grouped for performance 

ability throughout the statistical analysis.   

 

FUNDAMENTAL FREQUENCY (FF) 

For males and females, the two-way repeated-measures ANOVA 

demonstrated that there was no statistically significant interaction on FF for 

running shoe type (F(6,6) = 1.892, P = .229, np2 = 0.654), (F(1,3) = 4.545, P 

= .123, np2 = 0.602) respectively, indicating that the effect of trainer type on 
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FF was independent of incline.  Each running shoe type had the same effect 

of FF at each incline.   

For males, there was a statistically significant interaction between FF and 

incline (F(3,33) = 13.420, p < .001, np2 = .550).  This implied the statistically 

significant interaction for incline and FF was due to each incline having a 

different effect on FF.   

To support this, a post hoc pairwise comparison with Bonferroni correction 

showed a statistically significant difference for the FF of the JAZ between 

inclines 0% and 5% (P = .004) and 1% and 5% (P = .002), and the FF of the 

VFN% between inclines 0% and 5% (P = .027), 1% and 5% (P = .049), 3% 

and 5% (P = .038) ( 

 

 

Figure 49).  Ergo, each incline had a different effect on FF.   
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For males and females, the VFN% FF was consistently lower than the JAZ FF 

over all inclines (Figure 50, Table 9).  For the females, there was a statistically 

significant interaction for FF  and incline (F(1.523,4.570) = 11.214, P = .019, 

np2 = .789).  To inspect the causality, a post hoc pairwise comparison with 

Bonferroni correction showed a statistically significant difference between 

males and females for the FF of the JAZ and the VFN% at 1% incline (P = 

.041) (Figure 50), however, the differences at other inclines are non-

significant.  

 

 

 

Figure 49: Fundamental Frequency (FF) for the VFN% and the JAZ running shoe over incline 0%, 1%, 

3% and 5%.  Mean FF for all participants (black line), mean FF for females (orange line), mean FF for 

males (blue line) and FF for each individual participant (grey line).  Mean FF is lower for the VFN% than 

the JAZ over all inclines.  
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Figure 50: Mean Fundamental Frequency (FF) for the VFN% (orange) and the JAZ (blue) running shoes, 

where the VFN% facilitated a lower FF, thus SF than the JAZ whilst treadmill running over all inclines.   
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Table 9: Results for Fundamental Frequency (FF) for the VFN% and JAZ running shoes over 0%, 1%, 

3% and 5% incline, including the N, mean, S.D., and mean difference.  

Gender Incline 
(%) Measure N Mean 

(Hz) 
S.D. 
(Hz) 

Mean 
difference 

(Hz) 

Male 

0 JAZ 17 1.35 0.08 0.01 
0 VFN% 17 1.34 0.05  
1 JAZ 17 1.37 0.09 0.02 
1 VFN% 17 1.35 0.08  
3 JAZ 17 1.37 0.09 0.01 
3 VFN% 17 1.36 0.09  
5 JAZ 17 1.39 0.09 0.02 
5 VFN% 17 1.37 0.09  

Female 

0 JAZ 6 1.39 0.04 0.02 
0 VFN% 6 1.37 0.04  
1 JAZ 6 1.40 0.03 0.03 
1 VFN% 6 1.37 0.04  
3 JAZ 6 1.41 0.04 0.02 
3 VFN% 6 1.39 0.03  
5 JAZ 6 1.42 0.04 0.01 
5 VFN% 6 1.41 0.03  

 

CONTEXTUALISING FUNDAMENTAL FREQUENCY (FF) USING 

PERCENTAGE BENEFIT 

To explore the relationship between FF and RE, the data were transformed 

into percentage benefit (Equation 20) before being statistically analysed.   

A two-way repeated-measures ANOVA demonstrated that there was no 

statistically significant interaction between FF benefit and incline (F(3,33) = 

.584, P = .630, np2 = .050).  Meaning the RE benefit achieved over all inclines 

was statistically similar.  A post hoc pairwise comparison with Bonferroni 

correction showed there was no statistically significant difference between the 
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FF benefit over all inclines.  Although the differences were not statistically 

different, according to the mean difference between the FF benefit  of the 

VFN% compared to the JAZ, the VFN% produced a FF benefit (positive 

results), rather than a penalty (negative results), over all inclines; 0% incline 

(0.78±1.93 Hz), 1% (1.32±1.87 Hz), 3% (0.92±1.70 Hz) and 5% (0.99±1.66 

Hz) (Table 10, Figure 51).  The females (orange line) received a larger FF 

benefit compared to the males (blue line) at every incline (Table 10, Figure 

52).   

 

 

Figure 51: Fundamental Frequency (FF) benefit/ penalty.  The difference between FF in the VFN% and 

the JAZ divided by the FF in JAZ, times 100 to give the benefit of the FF in the VFN% (Equation 23).  

The individual grey lines are for each of the male and female participants, with the thick black line being 

the combined mean result for all participants. 
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Table 10: Results for Fundamental Frequency (FF) benefit for the VFN% over 0%, 1%, 3% and 5% 

incline, including the N, mean and S.D. 

Gender Incline (%) N Mean (%) S.D. (%) 
Male 0 17 0.75 2.09 

1 17 1.05 1.91 
3 17 0.80 1.71 
5 17 1.06 1.23 

Female 0 6 1.00 1.25 
1 6 2.12 1.18 
3 6 1.56 1.85 
5 6 1.19 2.78 

Both 0 23 0.78 1.93 
1 23 1.32 1.87 
3 23 0.92 1.70 
5 23 0.99 1.66 

 

 

Figure 52: Fundamental Frequency (FF) benefit expressed as a percentage between the VFN% and the 

JAZ running shoe.  The mean benefit of all participant data (black), female data (orange) and male data 

(blue) over all inclines tested.  This shows that at 1% incline there is a different response that at any 

other incline. The females have a greater FF benefit that the males, on average.   
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RUNNING ECONOMY (RE) AND FUNDAMENTAL FREQUENCY (FF) 

A Pearson correlation coefficient quantifies the strength and direction of a 

linear relationship between two variables. It ranges from -1 to +1, where r = 1 

indicates a perfect, strong positive linear relationship where, r = -1 indicates a 

perfect, strong negative linear relationship, values between 0.3 and 0.7 have 

a moderate relationship, between 0.1 and 0.2 have a weak relationship, and r 

= 0 indicates no linear relationship.  A Pearson correlation coefficient was 

computed to determine the relationship between the percentage difference 

(benefit or penalty) between the VFN% and the JAZ for FF and RE across 

inclines 0%, 1%, 3% and 5%.   

At 0% incline, the males had a statistically significant moderate, positive 

relationship between FF JAZ and RE JAZ [r(15) = .562, P = .029] (Figure 53).  

The females had a strong, negative relationship between FF JAZ and RE JAZ, 

[r(6) = -.874, P = .023], and FF VFN% and RE VFN%, [r(6) = -.817, P = .047] 

(Figure 54).  At 5% incline, the females had a strong negative relationship 

between FF JAZ and RE JAZ, [r(5) = -.929, P =.023].   
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Figure 53: Correlation for male running data at 0% incline for 𝑉̇O2 uptake (ml/kg/min) vs FF (Hz) whilst 

treadmill running in the JAZ running shoes.  This figure shows a statistically significant strong, positive 

relationship, where  𝑉̇O2 uptake increases, FF increases.  

 

 

Figure 54: Correlation for female treadmill running data at 0% incline for 𝑉̇O2 uptake (ml/kg/min) vs FF 

(Hz) for VFN% running shoes.  This figure shows a statistically significant strong, negative relationship, 

where when 𝑉̇O2 uptake increases, FF decreases.  
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CONTEXTUALISING FUNDAMENTAL FREQUENCY (FF) USING 

PERCENTAGE BENEFIT 

Due to the lack of consensus in the data, it was not possible to model FF 

benefit as conducted for RE in the previous chapter.  However, the data for FF 

benefit (Figure 55) has been superimposed with the RE benefit and RE 

exponential decay fit modelled data to provide a brief understanding of how 

these data may be interpreted together.   

 

 

Figure 55: Running Economy (RE) benefit versus Fundamental Frequency (FF) benefit.  The difference 

between FF in the VFN% and the JAZ divided by the FF in JAZ times 100 to give the percentage benefit 

of the FF in the VFN% (Equation 23).  The black line is the exponential decay fitted data, the blue dots 

are the mean RE benefit and the grey squares are the FF benefit.  
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provides a novel solution for predicting performance from accelerometry data 

by using FF benefit as a marker of RE benefit, which we have established up 

to a 5% incline and modelled using the exponential decay fit to calculate 

anticipated RE benefit based on incline.   

 

SPECTRAL PURITY (SP) 

For the males, the two-way repeated-measures ANOVA demonstrated that 

there was a statistically significant interaction between SP and incline 

(F(2.28,25.05) = 6.559, P = .004, np2 = .374) suggesting the effect of incline 

on SP varied.  There was no statistically significant interaction between SP 

and running shoe type (F(1.00,11.00) = .978, P = .344, np2 = .082), hence SP 

was consistent between running shoes.   

A post hoc pairwise comparison with Bonferroni correction showed there was 

a statistically significant difference between the SP values at 1% and 3% 

incline (P = .012) (Figure 56).   

For females, the two-way repeated-measures ANOVA demonstrated that 

there was no statistically significant interaction between SP and incline 

(F(1.659,4.978) = 1.326, P = .335, np2 = 0.307), or SP and running shoe type 

(F(1.000,3.000) = 0.050, P = .838, np2 = 0.016).  The absence of a statistically 

significant interaction indicates that the effect of incline on SP and the effect 

of running shoe on SP was the same at each level.   

For males and females, the VFN% had significantly superior SP over the JAZ 

over almost all inclines for both males and females (Table 11, Figure 56). 
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Figure 56: Mean Spectral Purity (SP) for the VFN% (orange) and the JAZ (blue) running shoe, where on 

average the VFN% facilitated lower SP, compared to the JAZ, over all inclines but 0%. This means that 

typically the VFN% has superior gait quality.  

 

  

6.30

6.40

6.50

6.60

6.70

6.80

6.90

7.00

7.10

7.20

0 1 2 3 4 5

SP
 (H

z)

Incline (%)

Mean spectral purity (SP) 
over various inclines for VFN% and JAZ

Mean SP JAZ
Mean SP VFN%



 174 

Table 11: Results for Spectral Purity (SP) for the VFN% and the JAZ running shoes over 0%, 1%, 3% 

and 5% incline, including the N, mean, S.D., and mean difference.   

Gender Incline 
(%) Measure N Mean 

(Hz) 
S.D. 
(Hz) 

Mean 
difference 

(Hz) 

Male 

0 JAZ 12 6.83 0.75 0.02 
0 VFN% 12 6.81 0.72  
1 JAZ 12 6.97 0.78 0.16 
1 VFN% 12 6.81 0.74  
3 JAZ 12 6.65 0.89 0.02 
3 VFN% 12 6.63 0.74  
5 JAZ 12 6.72* 0.83 0.09 
5 VFN% 12 6.64 0.66  

Female 

0 JAZ 4 7.34 1.19 -0.22 
0 VFN% 4 7.56 1.04  
1 JAZ 4 7.53 1.07 0.16 
1 VFN% 4 7.38 0.97  
3 JAZ 4 7.29 1.15 -0.02 
3 VFN% 4 7.30 1.16  
5 JAZ 4 7.45 1.12 0.20 
5 VFN% 4 7.25 1.15  

 

CONTEXTUALISING SPECTRAL PURITY (SP) USING PERCENTAGE 

BENEFIT 

To explore the relationship between SP and RE, the data were transformed 

into percentage benefit (Equation 20) before being statistically analysed.   

A two-way repeated-measures ANOVA demonstrated that there was no 

statistically significant interaction between SP benefit and incline (F(3,33) = 

1.035, P = .390, np2 = .086).   

A post hoc pairwise comparison with Bonferroni correction showed there was 

no statistically significant difference between SP benefit over all inclines.  
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There was a SP benefit for the VFN% compared to the JAZ over almost all 

inclines; 1% (.79±5.38 Hz), 3% (.27±4.86 Hz) and 5% (1.66±7.11 Hz) with the 

JAZ producing a SP benefit at 0% incline compared to the VFN% (-1.61±6.33 

Hz).  The males (blue line) received a larger SP benefit compared to the 

females (orange line) over incline 0%, 1% and 3% incline but not at 5% incline 

(Table 12, Figure 58).  Meaning the amount of SP benefit achieved between 

and within each incline was similar.   

 

 

Figure 57: Spectral Purity (SP) benefit/ penalty.  The difference between SP in the VFN% and the JAZ 

divided by the SP in JAZ, times 100 to give the SP percentage benefit of the VFN%.  The individual grey 

lines are for each participant, with the thick black line being the mean for all participants. 
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Table 12: Results for Spectral Purity (SP) benefit or penalty for the VFN% over 0%, 1%, 3% and 5% 

incline, including the N, mean and S.D. 

Gender Incline (%) N Mean (%) S.D. (%) 
Male 0 17 -1.09 6.81 

1 17 1.49 4.25 
3 17 0.67 5.55 
5 17 1.58 7.44 

Female 0 6 -2.68 4.87 
1 6 -1.03 7.27 
3 6 -0.13 1.53 
5 6 3.11 6.77 

Both 0 23 -1.61 6.33 
1 23 0.79 5.38 
3 23 0.27 4.86 
5 23 1.66 7.11 

 

 

Figure 58: Spectral Purity (SP) expressed as the percentage benefit or penalty between the VFN% and 

the JAZ running shoes, where the mean difference of all participant data (black line) showing S.E., bars, 

SP difference for the females (orange dashed line) and male data (blue dashed line) over all inclines 

tested.  
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RUNNING ECONOMY (RE) AND SPECTRAL PURITY (SP) 

A Pearson correlation coefficient was computed to determine the relationship 

between the percentage difference between the VFN% and the JAZ for 

variables SP and RE across inclines 0%, 1%, 3% and 5%.   

At 0%, the males and the females had a strong positive relationship between 

SP VFN% and SP JAZ, [r(16) = .908, P < .001], [r(6) = .971, P = .001], 

respectively.  At 1% incline, the males had a moderate, positive relationship 

between SP VFN% and SP JAZ, [r(14) = .792, P < .001].  The females had a 

strong, positive relationship between SP VFN% and SP JAZ, [r(5) = .954, P = 

.012].  At 3% incline, the males and the females had a strong positive 

relationship between SP VFN% and SP JAZ, [r(15) = .915, P < .001] and [r(5) 

= .999, P < .001], respectively.  At 5% incline, the males and females had a 

strong, positive relationship between SP VFN% and SP JAZ, [r(15) = .830, P 

< .001] and [r(5) = .908, p =.033], respectively.  The females demonstrated a 

strong negative relationship between SP JAZ and RE JAZ, [r(5) = -.902, P = 

.036] (Figure 59).   
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Figure 59: Females treadmill running at 5% incline; gross  𝑉̇O2 uptake (ml/kg/min) vs SP (Hz) for JAZ 

running shoes.  A statistically significant strong, negative relationship, where when gross 𝑉̇O2 uptake 

increases, SP decreases.  

 

Overall, due to the lack of consensus in the data, it was not possible to model 

SP benefit as conducted for RE in the previous chapter.  However, the data 

for SP benefit (Figure 60) has been superimposed with the RE benefit and RE 

exponential decay fit modelled data to provide a qualitative understanding of 

how these data may be interpreted together.   
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Figure 60: Running Economy (RE) benefit versus Spectral Purity (SP) benefit imposed over VFN% 

exponential decay modelled data for RE benefit.  The difference between SP in the VFN% and the JAZ 

divided by the SP in JAZ to give the percentage benefit of the SP in the VFN% (Equation 23).  The black 

line is the exponential decay fitted data, the blue dots are the mean RE benefit and the grey squares are 

the superimposed mean SP benefit.  

 

SP benefit does not parallel RE benefit as well as FF benefit (Figure 60) and 

due to having very limited statistically significant information, a direct 

relationship cannot be drawn.  Regardless, there appears to be potential for 

developing a novel solution for predicting gait quality using accelerometry 

data.  Here, lower SP scores would equate to cleaner FFT movement waves, 

thus a general loss of higher frequency components at increasing inclines, with 

a link between better performing runners yet to be established.   
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4.4. DISCUSSION 

4.4.1. HYPOTHESIS ONE; FOR MALES AND FEMALES THE VFN% WILL 

PRODUCE A LOWER FUNDAMENTAL FREQUENCY (FF) THAN THE 

JAZ OVER ALL INCLINES, THUS LOWER STRIDE FREQUENCY (SF).   

For hypothesis one, we predicted that for both genders, the VFN% would 

produce a lower FF than the JAZ over all inclines, thus lower SF based on the 

work of Hoogkamer et al., (2018); Barnes and Kilding, (2019); Hoogkamer, 

Kipp and Kram, (2019).  We accepted hypothesis one as the VFN% FF was 

lower than the JAZ FF for both males and females over all inclines (Table 9).  

This translated to VFN% facilitating a lower SF than the JAZ over all inclines.   

This study demonstrated a reduction in VFN% FF as incline increased, 

therefore, because speed was constant, SL must have increased to 

compensate whilst wearing the VFN% than when wearing the JAZ (Hunter et 

al., 2022).  Our study evidenced the VFN% provided a small but significant 

decrease in SF of 0.03 Hz,  which supports the finding of Ortega et al., (2021), 

who noted that running shoes containing a carbon-fibre midsole plate, known 

to increase LBS and decrease SF.  Yet, in a different study it was reported that 

there was no statistically significant difference in SL whilst running over 

various inclines in a running shoe containing a carbon-fibre midsole plate 

(Hunter et al., 2022).  

A lower SF is associated with a more energy-efficient running pattern as longer 

contact times during each stride allow the muscles and tendons to cycle 

energy more efficiently, potentially reducing the metabolic cost of running.  A 

longer SL at the same SF implies a greater horizontal displacement per stride.  
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This can result in a more effective conversion of PE into forward motion, 

contributing to improved running economy (Cavanagh and Williams, 1982; 

Snyder and Farley, 2011; Snyder, Kram and Gottschall, 2012).   

The females received a larger FF benefit compared to the males at every 

incline (Table 10, Figure 52).  It is unclear why there is an additional FF benefit 

at 1% incline, however, it is possibly due to the composition of the VFN%, 

where the ZoomX foam and carbon fibre footplate work more effectively at 1% 

incline that at any other incline tested.  These gender differences in FF benefit 

could be attributed to variations in biomechanics between genders.  Females 

often exhibit different running mechanics, including differences in joint 

kinematics and muscle activation patterns which may lead to differing 

responses to certain shoe features, resulting in a more pronounced FF benefit 

for females.  Further analysis of the VFN% running shoe design and its 

interaction with incline-specific demands may provide a deeper understanding.  

 

4.4.2. HYPOTHESIS TWO; FOR MALES AND FEMALES FUNDAMENTAL 

FREQUENCY (FF) WILL INCREASE WITH INCREASING INCLINE IN 

BOTH RUNNING SHOES.   

For hypothesis two, we predicted that for both genders, FF would increase 

with increasing incline in both running shoes (Snyder and Farley, 2011; 

Snyder, Kram and Gottschall, 2012; Whiting, Hoogkamer and Kram, 2022).  

We accepted hypothesis two, where FF values increased with increasing 

incline (Table 9, Figure 50).  These findings are in line with the current 

literature, with reference to Padulo et al., (2013) who observed a 2.0% 
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increase in SF between 0% and 2% incline, and a 4.8% increase in SF 

between 0% and 7% incline, with similar relative decreases in SL.  The 

statistically significant interaction for incline and FF implied each incline had a 

different effect on FF, with 5% incline having a distinct impact over the other 

inclines.  Steeper inclines require greater muscular work and may necessitate 

a more significant adjustment in SF to maintain running velocity, specifically 

when treadmill running.  The 5% incline appeared to pose a unique challenge, 

forcing significant alterations in FF.  Additionally, there was a statistically 

significant difference found between the FF of the JAZ and the VFN% at 1% 

incline (Figure 50), however, it is not understood why this incline is different to 

the others.  When using percentage benefit to contextualise the data, a 

meaningful difference for FF benefit at 1% incline for both genders was also 

present.  Despite the lack of statistical significance, the mean differences in 

FF benefit between VFN% and JAZ suggest a consistent FF benefit rather 

than a penalty across all inclines.  The VFN% running shoe design, such as 

cushioning and stiffness, could play a role in how runners regulate FF on an 

incline.  Further investigation into the interaction between the VF series 

midsole components and incline specific adaptations may provide a deeper 

insight.  
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4.4.3. HYPOTHESIS THREE; FOR MALES AND FEMALES LOWER 

RUNNING ECONOMY (RE) VALUES WILL BE ASSOCIATED WITH 

LOWER FUNDAMENTAL FREQUENCY (FF) VALUES.   

For hypothesis three, we predicted that runners who have lower RE values will 

be associated with lower FF values.  We accepted hypothesis three for the 

males only at 0% incline, with the females displaying the inverse relationship 

at 0% and 5% incline.   

The positive relationship in the male data suggests that, at 0% incline, higher 

FF values in the JAZ are associated with better RE, implying that, for males, 

a slightly higher SF in JAZ is correlated with a more economical running 

pattern.  Conversely, the negative relationship in female data indicated that 

lower FF values in both the JAZ and VFN% are associated with better RE at 

0% incline.  This suggests that females select lower SFs to achieve an 

improvement in RE regardless of running shoe at moderate inclines, however, 

at higher inclines, females benefit from even lower SFs, specifically in the JAZ, 

to achieve an improvement in RE.   

The different relationships between the males and females for the FF vs RE 

shows that the more economical females (those with a better RE thus lower 

mean V̇O2 uptake) increased their FF to accommodate, meaning they would 

have had to reduce their SL to maintain the same speed.  However, the male 

participants behaved on the contrary, where the more economical runners 

decreased their FF, thus having to increase their SL to maintain the same 

speed.  The current literature shows that male athletes increase SL in VFN% 

when running at a fixed speed (Hoogkamer et al., 2018; Barnes and Kilding, 
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2019), interestingly there is not current evidence to support the case in female 

athletes.  At the time of this thesis, female athletes are yet to be studied in the 

VF research and this warrants further investigation.   

Existing literature indicates that RE is not impacted when shortening SL by up 

to 3 % compared to the preferred SL, however, deviations greater than 6 % 

negatively affected RE (Moore, 2016).  The female participants derived greater 

benefits from the shortening of SL, in contrast to the male participants in our 

study.  Our findings highlight the adaptability of runners, who dynamically 

adjust their SL and SF in response to exertion intensity, with a multitude of 

potential combinations, highlighting the emergence of personal gait features 

(Cavanagh and Williams, 1982; Inman et al., 2006).  There should be particular 

attention paid to gender differences as highlighted by our study findings.  

 

4.4.4. HYPOTHESIS FOUR; FOR MALES AND FEMALES THE VFN% WILL 

PRODUCE LOWER SPECTRAL PURITY (SP) LEVELS THAN THE JAZ, 

ERGO HAVE BETTER GAIT QUALITY.  

For hypothesis four, we predicted that the VFN% would produce lower SP 

values than the JAZ.  We accepted this hypothesis for both males and females 

as the VFN% had significantly lower SP, thus superior gait quality over the 

JAZ over almost all inclines (Table 11).  The males received a larger SP benefit 

compared to the females over incline 0%, 1% and 3% incline but not at 5% 

incline (Table 12, Figure 58).  It is unclear why there is an additional SP benefit 

for the JAZ at 0% incline for both genders and additionally at 1% and 3% 

incline for females. 
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It is well known that increased effort leads to elements of physiological and 

neurological fatigue, where runners become less competent in the positioning 

of the foot and leg at foot-strike.  More experienced runners have an improved 

capacity to delay the effects of increased muscular effort and peripheral 

fatigue associated with increased step frequency.  Therefore, experienced 

runners can maintain a consistent locomotion pattern for longer, leading to 

higher levels of gait symmetry (Seminati et al., 2013).  In relation to our 

research, the more experience runners would demonstrate a cleaner FFT, 

leading to lower SP values, hence higher gait quality compared to the 

inexperienced runners.  This may clarify why the phenomenon where 

increases in FF lead to increases in SP can be associated with more 

experienced runners.  Clark (2017) also demonstrated statistically significant 

differences in movement quality in young children between motor competence 

classifications, thus, for our research, the runners who were classified as 

better performers should have achieved higher levels of gait quality through 

having advanced neural control.  However, we determined no statistically 

significant differences for those who could and could not perform 10 km in £40 

minutes.  By deduction, this means the VFN% must have an independent 

effect on RE regardless of experience level.  We postulated that the VFN% 

facilitated a delay in the onset of neurological fatigue, thus providing more time 

for economical running, ergo additional RE benefit.  Fatigue would be an 

interesting addition to this work, including exploring the relationship between 

fatigue and GaiT.   
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4.4.5. HYPOTHESIS FIVE; FOR MALES AND FEMALES HIGHER 

SPECTRAL PURITY (SP) VALUES WILL BE SEEN WITH INCREASING 

INCLINE.  

For hypothesis five, we predicted that higher SP values will be seen with 

increasing incline, meaning gait quality will diminish.  We rejected hypothesis 

five because SP improved with incline (Table 11).  These results may have 

been due to the large number of experienced athletes within the sample, 

where running experience is an important elements of gait symmetry (Seminati 

et al., 2013).  Running on an incline requires greater activation of the triceps 

surae, hamstrings and gluteal muscles, contributing to a more comprehensive 

and efficient distribution of workload, potentially enhancing overall gait quality 

(Seminati et al., 2013).     

There was a statistically significant difference between the SP values at 1% 

and 3% incline (P = .012), indicating that running on a 1% incline compared to 

a 3% incline had different effect on gait quality (Figure 56).  Regardless of 

overall significance, SP has a negative relationship with incline; where 

increasing incline yields decreasing SP until reaching a plateau.  This implies 

that the complexity of the harmonic components within the FFT decrease as 

incline increases, thus, running gait quality increases with incline.   

The current literature has evidenced the VFN% during uphill running 

attenuates shock by having a lower GRF and shorter GCT than other 

comparative running shoes (Fuller et al., 2015; Hoogkamer et al., 2018; 

Whiting, Hoogkamer and Kram, 2022).  Therefore, as the VFN% lower GRFs 

with increasing incline this would ultimately reduce the quantity and magnitude 
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of higher frequency components recorded within the accelerometery running 

wave, which are ultimately expressed in the FFT.   

Therefore, we propose a plausible connection between GaiT; FF and the 

improved RE benefits facilitated by the VFN% compared to conventional 

running shoes (Hoogkamer et al., 2018).  Our study contributes novel 

evidence, endorsing the use of accelerometer-based gait analysis which 

aligns with the VFN% RE literature, allowing for a quantitative evaluation of 

running performance, thus fulfilling the central premise of this thesis.  While 

the current data may not support comprehensive modelling and understanding 

of these research findings, the observed enhancement in gait quality during 

incline running merits further exploration for its potential application to 

quantitively asses running performance.  This invites validation of GaiT; FF 

and SP for accelerometer-based gait analysis within and beyond laboratory 

confines. 

 

4.4.6. HYPOTHESIS SIX; FOR MALES AND FEMALES LOWER RUNNING 

ECONOMY (RE) VALUES WILL BE ASSOCIATED WITH LOWER 

SPECTRAL PURITY (SP) VALUES.   

For hypothesis six, we predicted that for males and females lower RE values 

would be associated with lower SP values.  We accepted hypothesis six for 

the females at a 5% incline only as they demonstrated a negative relationship 

between RE and SP.  This means that the more efficient female runners had 

lower SP values, meaning those with lower RE values (better performers) had 

better quality gait.  This concept was discussed earlier in this chapter, where 
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better performers demonstrate an improved capacity to maintain movement 

patterns (Jenner et al., no date; Barnes, 2017; Clark, 2017).   

Thus, as V̇O2 uptake increased, the SP value decreased, meaning the 

movement wave was cleaner and running gait quality higher.  Additionally, 

these results show that SP of the VFN% and JAZ behave in the same way.  

The distinction is that the VFN% consistently demonstrated a lower SP value, 

providing better gait quality than the JAZ over all inclines (Figure 59).   

The VFN% during uphill running consistently demonstrated a higher RE 

benefit, lower GRF and shorter GCT than other comparative running shoes 

(Hoogkamer et al., 2018).  These RE benefits are thought to be due to the 

increased ZoomX foam and increased LBS from the carbon fibre plate .  We 

are postulating that the construction of the VFN% may be providing the 

foundation for improved movement quality via a smoother heel-to-toe 

transition.  This transition could occur due to altered biomechanics at the foot, 

reducing movement variability, thus fulfilling our definition of improved gait 

quality through reduced SP values (Padulo et al., 2013; Hoogkamer et al., 

2018; Healey and Hoogkamer, 2021; Ortega et al., 2021; Hunter et al., 2022; 

Whiting, Hoogkamer and Kram, 2022).   

 

4.5. CONCLUSION AND NEXT STEPS 

4.5.1. SUMMARY OF FINDINGS 

This study investigated the feasibility of the calibration and analytical 

processing techniques to produce a novel gait analysis tool (GaiT) applicable 
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over various inclines to contextualise running data from accelerometry.  The 

GaiT used FF and SP to identify gait variations between the Nike® Vaporfly 

ZoomX NEXT% (VFN%) and a conventional running shoe the Saucony® 

ProGrid Jazz 12 (JAZ) using runners of various abilities.  In addition to 

predicting performance using accelerometry, the intersection of GaiT; FF and 

SP data, with RE data was explored.  18 participants; n=6 females and n=12 

males volunteered in the cardiopulmonary exercise testing protocol and 23 

participants; n=6 females and n=17 males volunteered in the accelerometry 

protocol. 

Hypothesis one was accepted as the GaiT measure FF decreased with 

increasing incline meaning SF increased at a fixed speed.  Hypothesis two 

was accepted as the VFN% FF was lower than the JAZ FF over all inclines 

leading to an increase in SL at a fixed speed.  Hypothesis three was accepted 

for males, with lower RE values being associated with lower FF values, ergo, 

lower SF values equated to increased SL to maintain the same speed.  The 

females displayed the inverse behaviour, where the better performers had 

higher FF values and a shorter SL.  Hypothesis four was accepted as the 

VFN% produced lower SP values than the JAZ, meaning the VFN% had 

superior gait quality (fewer high frequency harmonics) for almost all inclines.  

Hypothesis five was rejected as the GaiT measure SP decreased in value with 

increasing incline, meaning gait quality improved with incline.    Hypothesis six 

was accepted for the females where a negative relationship existed between 

RE and SP, meaning better performers (lower RE values) had better gait 

quality with increasing incline.    
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For the most part, FF benefit parallels RE benefit which provides a novel 

solution for predicting performance from accelerometry data; lower FF values 

equate to more economical performances (lower RE), ergo better performance 

times, whilst treadmill running at a fixed speed up to a 5% incline.  SP benefit 

does not parallel RE benefit so clearly.  

In summary, the GaiT for FF, calculated from the FFT frequency-domain 

analytics, has the potential to bridge the gap between quality and quantity 

measures for gait analysis.  Ultimately, we have provided a novel method to 

quantitate running gait and provided a solid foundation toward understanding 

the use of FF from accelerometry to predict RE from CPET.  We are providing 

an inexpensive, portable and accurate method to calculate treadmill running 

gait quality and performance over various inclines within the laboratory.  We 

believe with further testing and optimisation, GaiT will be a beneficial tool for 

all runners to understand their gait quality and predict performance outside of 

the laboratory.   

 

4.5.2. FUTURE WORK 

To strengthen the data, the randomisation and grouping procedures need to 

be balanced.  Additionally, only one speed and one attempt at each incline 

was tested, even though this method is frequently conducted throughout the 

literature.  It is understood that test-retest methods at two to five days to reduce 

fatigue and minimises within-subject RE variation by 90–98% respectively, 

thus this method could be repeated two to three times effectively (Roy and 

Stefanyshyn, 2006).  Avoiding convenience samples and balancing participant 
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characteristics may influence the results, although the current literature 

rationalises gender differences for RE with females exhibiting higher V̇O2 

uptake (Barnes and Kilding, 2015).   
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CHAPTER FIVE 
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5. GENERAL DISCUSSION  

5.1. PROJECT AIM  

The aim of this thesis was to bridge the gap between laboratory and real-

world gait analysis by addressing the critical need for a portable and 

quantitative method for running gait analysis.  Using a series of studies within 

the controlled laboratory environment, a research grade wearable 

accelerometry device was validated as sensitive enough to capture robust 

running gait data.  A collection of data processing techniques yielded several 

running gait variables which were able to quantitatively capture running gait 

quality, particularly the frequency of a runner’s foot strike as measured by the 

Fourier transform of an acceleration-time wave.  These data processing 

techniques were used to contextualise the acceleration-time wave data, 

unveiling a relationship between these gait variables and running 

performance. 

 

5.2. CHAPTER 1: GENERAL INTRODUCTION 

Traditionally, quantitative running gait analysis has been confined to 

laboratories that have specialised measurement equipment.  Motion capture 

(MC), the best objective method for gait analysis, requiring a considerable 

level of expertise and proficiency in equipment operation and data analysis 

(Jenner et al., no date; Norris, Anderson and Kenny, 2014; Barnes, 2017; 

Caldas et al., 2017; Anwary, Yu and Vassallo, 2018).  Most research focused 

on understanding gait variables in their isolated form, particularly within 
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clinical populations where gait patterns were compromised.  There were few 

studies (Jenner et al., no date; Barnes, 2017;  Clark, 2017) investigating gait 

in a global sense where specific analytical techniques were used to 

contextualise gait parameters, much like statistical analyses.   

This project set out to assess whether a wearable device had a sufficiently 

sensitive accelerometer to capture high-quality, unprocessed accelerometer-

time wave running data.  Using these data a series of robust data processing 

techniques were developed to quantitatively measure running gait quality.  

This work was driven by the distinct need for a portable solution to make 

quantitative gait analysis more accessible outside of traditional laboratory 

testing options. 

 

5.3. CHAPTER 2: FORMULATION AND OPTIMISATION OF GENERAL 

METHODS 

Chapter two formulated and investigated the suitability of the data processing 

method and analytical techniques selected to move from a simple 

accelerometer-time wave to quantifiable measures of running gait.  The 

specifically selected and optimised calibration techniques successfully 

maintained the detail required, enabling for the differentiation of protocol 

events within the movement wave (Analogue Devices, 2015; Barnes, 2017; 

Kieron et al., 2018).  Prior to analysis of the data, the calibration process 

consisted of; amending the sampling frequency of one device (blue) to match 

the other (red), adjusting for sensitivity and bias in both devices, applying a 

high and low pass filter (0.5 Hz/ 20 Hz) to all acquired data, and implementing 
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a rotation matrix to correct for misalignment of the devices when fitting them 

to the participant’s limb (Barnes, 2017; Clark, 2017).  Hence, the wearable 

devices were shown to be reliable at collecting treadmill running data from a 

participant, whilst treadmill running up to 16 km/h during repeated trials. 

The formulation and optimisation of the analytical tool; the Global gait 

analysis Tool (GaiT) was iterative and evolved based on the findings of the 

several studies reported throughout the chapter.  This novel analytical tool 

contained three measures; the fast Fourier transformation (FFT) of the 

accelerometer-time data to the frequency domain established the 

Fundamental Frequency (FF) of the runner’s foot strike; the cumulative 

distribution function (CDF) of the FFT established Spectral Purity (SP); and 

the cross-correlation function (CCF) and auto-correlation function (ACF) of 

the accelerometer-time waves calculated gait symmetry using a symmetry 

index (SI).  These measures previously contextualised physical activity in 

young children, highlighting skill level as a measure of performance (Barnes, 

2017; Clark, 2017), and as a tool to objectify the return to sport from injury 

(Jenner et al., no date).  Contextualising running gait quality using 

accelerometer-time waves was a novel aspect of this project.  The strict fitting 

protocol plus two GaiT measures (FFT and CDF) developed in this chapter 

were shown to have the potential for measuring running gait on a treadmill at 

speeds of up to 16 km/h, however, further optimisation and benchmarking 

against quantified levels of running performance were needed to validate 

these measures.   

This novel approach has the potential to be developed into a running gait 

quality feedback tool, appealing to coaches, runners and researchers alike.  
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From a clinical perspective this objective tool could be used in healthcare, 

rehabilitation and monitoring to gather a global perspective on lifestyle data 

where treatment can be adapted accordingly.   

 

5.4. CHAPTER 3: NIKE® VAPORFLY ZOOMX NEXT% RUNNING 

SHOES HAVE RUNNING ECONOMY BENEFITS OVER VARIOUS 

INCLINES COMPARED TO CONVENTIONAL RUNNING SHOES 

Chapter three established that Nike® Vaporfly ZoomX NEXT% running shoes 

have running economy benefits over various inclines compared to 

conventional running shoes, using cardiopulmonary exercise testing (CPET) 

in synchronisation with accelerometry.  The interval protocol tested runners on 

several treadmill inclines (from 0 – 5 %) at 12 km/h whilst wearing the Nike® 

Vaporfly ZoomX Next% (VFN%) and when wearing a conventional running 

shoe, the Saucony® ProGrid Jazz 12 (JAZ).  At 0% incline, the VFN% 

achieved a 4.37% RE benefit over the JAZ in line with the 4.01% previously 

reported by Hoogkamer et al., (2018) and the 3.83% reported by Whiting, 

Hoogkamer and Kram, (2022).  At 3% incline the VFN% achieved a 2.75% RE 

benefit and at 5% incline a 2.70% RE benefit, in line with the 2.82% measured 

by Whiting, Hoogkamer and Kram, (2022) when compared to conventional 

running shoes.  The novel element of this chapter was establishing the VFN% 

had an exponential decay of RE benefit on an incline rather than a linear 

decline of RE benefit as suggested by Whiting, Hoogkamer and Kram, (2022).  

In addition, fitting of RE benefit against incline to an exponential decay model 

we isolated the mass benefit from the midsole benefit.  No further meaningful 
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decline of RE benefit was seen after 16% incline, leaving a fixed 2.28% RE 

benefit thereafter.  Translation of these benefits into race gains was illustrated 

by taking the incline profile of the New York Marathon course and applying an 

average 3.8% RE benefit across the course to suggest that  more than 7-

minutes could be saved by wearing the Nike® Vaporfly ZoomX NEXT% 

compared to wearing a conventional running shoe.   

These novel findings could influence the consumer fitness market increasing 

interest in the Nike® Vaporfly running shoe series and other similar 

performance-enhancing footwear.  strategically directing awareness of the 

research generated from this project could potentially influence public health 

by encouraging more people to try running, specifically through the interest in 

testing some performance enhancing footwear.  Additionally, the attention 

directed toward the research generated from this project has the potential to 

influence other footwear manufacturers to invest further in their technological 

research and even adapt their current running shoe offering.  Finally, 

researchers may be interested in continuing this line of inquiry to understand 

more around the limitations of these performance enhancing running shoes 

and incline.  
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5.5. CHAPTER 4: THE GLOBAL GAIT ANALYSIS TOOL (GAIT) FOR THE 

QUANTIFICATION OF PERFORMANCE DIFFERENCES BETWEEN 

RUNNING WEARING VFN% AND JAZ SHOES USING 

ACCELEROMETRY 

Chapter four explored the validation of GaiT using running accelerometry data 

acquired alongside the RE data whilst wearing the VFN% and JAZ running 

shoes during cardiopulmonary exercise testing (CPET) over various treadmill 

inclines (Chapter 3).  GaiT measures, FF and SP, identified movement 

variations within and between runners whilst wearing the VFN% and JAZ 

running shoes.  The GaiT measure FF increased with increasing incline, thus 

stride frequency (SF) increased (as expected for incline running), thus SL had 

to decrease as a consequence.  SP decreased in value with increasing incline, 

suggesting gait quality improved.  The VFN% running shoe had consistently 

lower FF values when compared to the JAZ, thus facilitating a longer stride 

length (SL), over all inclines.  The VFN% running shoes produced consistently 

lower SP values, suggesting these running shoes have superior gait quality, 

when compared to the JAZ running shoe, over almost all inclines.   

These novel findings cannot be directly equated to the RE benefits measured 

in this chapter but a qualitative comparison suggests that FF benefit follows 

the same profile as RE benefit of the VFN%.  This enabled a parallel to be 

drawn between RE and FF as a predictor of physiological performance, even 

though this differed between genders.  Barnes, (2017) reported a positive 

relationship between higher skill level, as measured by SP, to better 

performance, whereas the SP data from runners wearing the VFN% and JAZ 
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shoes requires more participants before a clear link to RE benefit can be 

identified.   

For males, a negative relationship existed between RE and FF, and RE and 

SP, indicated that better performers had lower SF and better gait quality.  The 

females displayed the inverse of this relationship for RE and FF but the same 

relationship for RE and SP.  These findings support those reported by Clark, 

(2017); Hoogkamer et al., (2018) and Barnes and Kilding, (2019).   

A novel solution for predicting treadmill running performance was established 

between GaiT’s FF benefit by its parallel relationship to RE benefit.  GaiT 

therefore has the potential to bridge the gap between quality and quantity 

measures for gait analysis by being able to predict performance based on FF 

inside of the laboratory when running at a fixed speed.  With further testing of 

running at a fixed speed when fresh and when fatigued, there is the potential 

for development and application outside of the laboratory where running speed 

is not fixed, such as seen in Hunter et al., (2022).  This novel analytical tool 

therefore has the potential to provide access to affordable and objective 

performance prediction based on gait measures in real-world athletic 

experiences.  

The impact of this evidence on the sport of running could be significant, with 

the novel ability to assess and improve running performance through the 

utilisation of a wearable device is astounding and could change the face of 

laboratory based biomechanical gait analysis globally.  From a healthcare and 

rehabilitation perspective, formulating an app housing the GaiT feature that 
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could contextualise return to wellness would allow clinicians to easily monitor 

and update patient rehabilitation programmes.   

 

5.6. PHILOSOPHICAL AND SPECULATIVE IMPACTS 

5.6.1. REVOLUTIONISING SPORTS AND ATHLETIC TRAINING 

Beyond Performance, these research findings could lead to a new era in 

athletic training where data-driven insights that are not just about 

understanding the individual aspects of the biomechanics of movement but 

about looking at the human body in a global perspective and taking a novel 

understanding of how to enhance performance.  This could foster a deeper 

connection between athletes and their bodies, promoting a more mindful 

approach to training.   

Democratising elite training by making advanced gait analysis tools accessible 

to athletes at all levels, not just elites.  This democratisation could provide an 

opportunity for more athletes to reach their full potential. 

 

5.6.2. TRANSFORMING HEALTHCARE AND REHABILITATION 

Portable gait analysis tools could become integral in preventive healthcare, 

where regular gait analysis could help detect early signs of musculoskeletal 

issues or other health problems, enabling early intervention and even 

promoting preventative healthcare.  
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A wearable device with the addition of an app containing the GaiT tool could 

contribute to personalised medicine by providing detailed data that could be 

used to tailor rehabilitation programs to individual needs, enhancing recovery 

outcomes. 

 

5.6.3. CONSUMER FITNESS MARKET 

GaiT if integrated into an app can be seamlessly utilised by many types of  

fitness trackers or even mobile phones, thus can be integrating seamlessly 

into daily life and providing continuous feedback to help individuals maintain 

optimal physical health using a unique wellness score.  Additionally, by 

incorporating gamification elements, GaiT could make fitness more engaging 

and fun, encouraging more people to stay active and healthy. 

 

5.6.4. PUBLIC HEALTH INITIATIVES 

On a larger scale, aggregated GaiT data from populations could be used to 

monitor public health trends and inform public health policies.  This data could 

help identify areas with high incidences of gait-related issues and target 

interventions more effectively. 

If marketed correctly, GaiT integrated into an app could influence public health 

campaigns, where insights from this global gait analysis could be used to 

promote active lifestyles, reducing the prevalence of sedentary-related health 

problems. 
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5.6.5. SCIENTIFIC RESEARCH AND TECHNOLOGICAL ADVANCEMENTS 

The novel method in addition to GaiT produced from this research could open 

new research avenues in biomechanics, sports science and even cognitive 

science, as gait can reflect neurological health.  The large datasets generated 

by these devices could be used to train AI models, leading to advancements 

in predictive analytics and personalised recommendations for both athletes 

and the general public. 

5.6.6. PRODUCT DEVELOPMENT AND INNOVATION 

Shoe and sports equipment manufacturers could use gait analysis data to 

design products tailored to individual needs, enhancing performance and 

reducing injury risks. 

The development of new wearable technologies could provide more detailed 

insights into running performance and gait.  Potentially integrating other 

physiological measures like heart rate variability and muscle activity could 

provide a more holistic view to gait quality and performance.  

 

5.6.7. CONCLUSION 

This evidence has the potential to impact not only the academic field but also 

various aspects of daily life, healthcare and technology.  Speculating on these 

broader impacts highlights the far-reaching implications of the applicability of 
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this evidence and emphasises its significance beyond the confines of the 

laboratory. 
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5.7. LIMITATIONS  

Although all care was taken to minimise the bias and errors within this 

research, there will always be further optimisation required to better the 

method.  Additionally, further validation of the findings is necessary and will 

need development.  The limitations of this work are discussed throughout this 

thesis, however several overarching limitations need to be acknowledged and 

addressing these limitations in future work will strengthen the validity and 

applicability of the findings. 

5.7.1. SAMPLES SIZE AND REPRESENTATION 

The study would benefit from a more powerful and balanced sample size that 

accurately represents the running community at all experience levels.  The 

current sample may not adequately capture the diversity within the running 

population, which could limit the generalisability of the results.  Future 

research should aim to include a broader and more representative sample to 

enhance the robustness of the conclusions. 

 

5.7.2. RANDOMISATION PROCESS 

Ensuring a balanced randomisation process, particularly in terms of the order 

of running shoe testing, is crucial.  Although the imbalance seen in some of 

the studies throughout this thesis were not significant.  Future studies should 

implement a more stringent randomisation protocol to minimise potential 

biases related to testing order. 
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5.7.3. GENDER DIFFERENCES 

The current research has highlighted the need to explore gender differences 

more thoroughly.  Examining gender groups separately and in combination is 

essential to uncover any variations in the results.  Future work should focus 

on stratifying data by gender to provide more detailed insights and ensure that 

findings are applicable to both male and female runners. 

 

5.7.4. METHODOLOGICAL CONSTRAINTS 

The research design and methodologies used in this thesis have their inherent 

limitations.  For instance, the reliance on specific data collection techniques 

(e.g., laboratory-based treadmill testing) may introduce biases or limitations in 

the type of data collected.  Future research could benefit from employing a 

mixed-method approaches such as including subjective data on participation 

experience or incorporating additional data sources such as incorporating a 

systematic review to provide a more comprehensive understanding of the 

phenomena studied. 

 

5.7.5. TECHNOLOGICAL AND INSTRUMENTATION LIMITATIONS 

The tools and technologies used for data collection and analysis, such as 

CPET and accelerometry, have limitations regarding accuracy, reliability and 

sensitivity.  These limitations could impact the validity of the findings.  Future 

work could involve the use of more advanced or alternative technologies to 



 206 

enhance data accuracy and reliability such as live data streaming and the use 

of AI with its advanced predictive capacity.  

 

5.7.6. LONGITUDINAL CONSIDERATIONS 

The cross-sectional nature of the current study limits the ability to infer causal 

relationships.  Longitudinal studies, which follow participants over time, would 

provide more robust insights into the long-term effects and causal 

relationships within the studied variables.  In this project, it is important to 

understand the long-term implications of GaiT and how the data collected 

using this tool may be effective at supporting runners in the future.  Future 

research should consider longitudinal designs to address this limitation.  With 

injury being an important aspect of health, wellness and longevity within the 

running community.   

By addressing these areas, future research can build on the findings of this 

thesis, offering more comprehensive and generalisable insights into the 

factors influencing running performance, running shoe effectiveness.  The 

links with this research and injury are significant and has great research 

importance with causal relationships posing a significant global influence on 

the sport of running, the wearable technology industry, and injury prevention 

and rehabilitation.  

 

5.8. FUTURE WORK  

Due to the impact of COVID on this project, additional data were collected but 

time restraints meant they could not be included within this body of work.  The 
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logical next step would be to fully process and analyse the data collected from 

this additional work: Study 6: The impact of fatigue on GaiT. 

CIBA Foundation Symposium (1981) (Moldover and Borg-Stein, 1994) defined 

fatigue as the moment when a participant is unable to maintain the required 

muscle contraction or performed workload.  Fatigue affects biomechanical gait 

variables by; altering neuromuscular function, slowing muscle reaction times, 

reducing energy transfer between concentric and eccentric muscle 

contractions (Dierks, Davis and Hamill, 2010), increasing/ decreasing stride 

length, decreasing/ increasing stride frequency (Verbitsky et al., 1998; Barnes 

and Kilding, 2015), and attenuating peak dynamic loads and acceleration 

patterns (Verbitsky et al., 1998; García-Pérez et al., 2014).  Fatigue is a known 

risk factor for injury, where the prolonged accumulation of these sub-optimal 

biomechanics can lead to overuse injuries (McGrath et al., 2017; Martens et 

al., 2018).  Martens et al., (2018) demonstrated that running biomechanics 

alter shortly before exhaustion, specifically the heterogenous nature of stride 

biomechanics during test-retest intervals.   

We believe that GaiT, the bespoke quantitative analytical tool, can identify the 

development of fatigue in treadmill running data.  A fatigue inducing protocol 

was conducted (n=12) to establish if the accelerometry running data recorded 

on the wearable devices was sensitive enough to identify gait changes during 

the development of fatigue.  The data would be analysed as in the previous 

chapter using GaiT with the hypothesis that FF will increase and SP will 

decrease with the onset of fatigue due to the breakdown of the participants 

movement pattern (Jenner et al., no date; Clark, 2017).  Processing this 

sample of data would enable for the exploration of any possible significance 
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or relationship between fatigue and GaiT and would provide another step 

towards validating the tool for testing outdoor running performance.  

Additionally, future work could investigate a longitudinal data collection to 

provide a fatigue data set big enough to identify the onset of injury.  The data 

processed with GaiT would provide a relationship between FF and fatigue, 

thus aiming to quantity the level of fatigue responsible for the onset of overuse 

injuries.  There is an excellent opportunity here to produce a live feedback 

system to a coach or runner, where objective information regarding an 

athlete’s fatigue status and injury likelihood score is available during a training 

session.  Such a novel system has the potential to eliminate the subjectivity 

behind some of the current methods of injury prevention.  

The next step for developing this technique as a tool to be used outside of the 

laboratory could be achieved by using a protocol, similar to that of the test-

retest repeatability study (Protocol 2.12) but conducted on a running track with 

a pacing watch to control for speed variability.  To validate GaiT outdoors with 

this protocol, 25 participants would be needed to detect a statistical 

significance at P = 0.05.     

This information would be incredibly useful for coaches and athletes, where 

reducing the likelihood of injury will have a global impact on time away from 

sport at every level, improving mental health, improving long term athletic 

career prospects, improving national/ global ranking through athlete retention, 

plus other positive benefits associated with reduced injury.  A tool like this 

could change the face of sport. 
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5.9. CONCLUSION 

In conclusion running in the Nike® Vaporfly ZoomX NEXT% (VFN%) running 

shoe was shown here to produce more economical running by lowering RE  

by up to 4 % than when running in a conventional running shoe and this benefit 

declined as incline increased.  There appeared to be no further meaningful RE 

penalty below 2.8 % incline or above a 16% incline.  We were able to isolate 

the mass benefit from the midsole benefit due to the carbon fibre plate and 

ZoomX foam in the VFN% running shoe.  The Global gait analysis Tool (GaiT) 

highlighted Fundamental Frequency (FF) of the Fourier transformed 

accelerometry-time wave acquired during running as an indicator of RE whilst 

treadmill running at 12 km/h over various inclines.  However, Spectral Purity 

(SP) of the Fourier transformed accelerometry wave needs further exploration 

with additional cardiopulmonary exercise data to identify any solid 

relationships.  There is the potential to use GaiT to identify fatigue in running 

data and with longitudinal data collection to investigate the link with overuse 

injuries.  

We are confident that GaiT can be explored for its potential for predicting 

performance from running accelerometry data and to investigate a potential  

link with injury, however, there needs to be further data collection to conclude 

its suitability for use outside of the laboratory.   
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APPENDICES 

Appendix A: Participant PAR-Q 

 

 

PAR-Q Form 

(Physical Activity Readiness Questionnaire) 
 

Forename:__________________  Surname:_________________________ 

For most people physical activity should not pose any problem or hazard. 
PAR-Q is designed to identify the small number of adults for whom physical 
activity might be inappropriate or those who should have medical advice 
concerning the type of activity most suitable for them.  
Please read the questions below carefully  
Has your doctor ever said that you have a heart condition OR a family history 
of heart disease OR high blood pressure OR high cholesterol OR diabetes/ 
prediabetes OR elevated cholesterol? 

1) Do you feel pain in your chest at rest, during your daily activities of 
living, OR when you do physical activity? 

2) Do you lose balance because of dizziness OR have you lost 
consciousness in the last 12 months? Please answer NO if your 
dizziness was associated with over-breathing (including during 
vigorous exercise). 

3) Have you ever been diagnosed with another chronic medical condition 
(other than heart disease or high blood pressure)? 

4) Are you currently taking prescribed medications for a medical 
condition? 

5) Do you have a bone or joint problem that could be made worse by 
becoming more physically active? Please answer NO if you had a joint 
problem in the past, but it does not limit your current ability to be 
physically active. For example, knee, ankle, shoulder or other. 

Has your doctor ever said that you should only do medically supervised 
physical activity? 
 
If any one or more of the above applies, please check the box:  
 
DECLARATION AND AUTHORISATION 
I confirm that the information given is a true and accurate statement. I 
understand that if I have declared any of the conditions listed, further 
information may be requested and I will not be able to participate in this study. 
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Please be aware that it is your responsibility to inform us if there is a change 
to any of your answers on the PAR-Q. 
  

Signature:                                                                     Date: 

 

 

Signature:                                                                     Date: 
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Appendix B: Pre-visit COVID questionnaire 

 

 

 

School of Biomedical Sciences 
FACULTY OF BIOLOGICAL SCIENCES 

 
Pre-visit COVID-19 Participant Screening Questionnaire 

 
Prior to any research visit to the university, please complete this questionnaire 
and bring a copy with you.  
 
If you answer ‘YES’ to any of the questions below please contact a 
member of the research team before you leave your home to attend the 
scheduled session. Please circle your responses below.   
 
1. Would you classify yourself as being ‘vulnerable’ in relation to COVID-19 

risk? 
 

YES     NO 
 

2. Is anyone in your household or social bubble classified as vulnerable in 
relation to COVID-19 risk?  
 

YES     NO 
 
3. Have you in the last 14-days had any (even if mild) COVID-19 symptoms: 
 

A. A new continuous cough: 
 

YES     NO 
 

B. A high temperature – you feel hot to touch on your chest or back: 
YES     NO 

 
C. A loss or change to your sense of smell or taste: 
 

YES     NO 
 
4. To your knowledge, have you had any contact with anyone (both within 

and outside your household or social bubble) who has had any COVID-19 
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symptoms (even if mild) in the last 14-days (see question 3 A, B, C for 
details of COVID-19 symptoms): 

 

YES     NO 
 
5. To your knowledge, have you been in contact with anyone who has 

tested positive for COVID-19 in the last 14-days: 
 

YES     NO 
 
6. Have you been contacted by NHS track-and-track and told to self-isolate 

in the last 14-days: 
 

YES     NO 
 
7. If you have been to the lab before, has there been any change in your 

health status since you last visited the lab?   
 

YES     NO 
 
Note to researcher: Please insert participant SID below, and attach to the 
datasheet for today’s experiment.  

 
Participant SID:      Date:      
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Appendix C: Ethical clearance 

 

 
 

University Research Ethics Committee - application for ethical 
review 

 
Please email your completed application form along with any relevant 
supporting documents to ResearchEthics@leeds.ac.uk (or to 
FMHUniEthics@leeds.ac.uk if you are based in the Faculty of Medicine and 
Health) at least 6 weeks before the research/ fieldwork is due to start. Dentistry 
and Psychology applicants should follow their School’s procedures for 
submitting an application.    
 

Ethics reference 
(leave blank if 
unknown) 

Student number (if 
a student 
application) 

Grant reference 
(if externally 
funded) 

Module code (if 
applicable) 

    

Faculty or School 
Research Ethics 
Committee to 
review the 
application (put a 
‘X’ next to your 
choice) 

 Arts, Humanities and Cultures (PVAR) 

x Biological Science (BIOSCI) 

 ESSL, Environment and LUBS (AREA) 

 MaPS and Engineering (MEEC) 

 School of Dentistry (DREC) 

 School of Healthcare (SHREC) 

 School of Medicine (SoMREC) 

 School of Psychology (SoPREC) 

Indicate what 
type of ethical 
review you are 
applying for:  

x Student project (PhD, Masters or Undergraduate) 

 Staff project (externally or internally funded) 



 215 

SECTION 1: BASIC PROJECT DETAILS 

1.1 Research 
title 

Accelerometer-based gait analysis for quantitative 
assessment of physical activity outside the laboratory 

1.2 Research 
start date 
(dd/mm/yy) 

Proposed fieldwork 
start date 
(dd/mm/yy) 

Proposed fieldwork 
end date 
(dd/mm/yy) 

Research end 
date (dd/mm/yy) 

07/01/19 01/04/19 30/06/2022 30/09/2022 

Ye
s 

No  

x  1.3 I confirm that I have read and understood the current version of 
the University of Leeds Research Ethics Policy.  
The Policy is available at 
http://ris.leeds.ac.uk/ResearchEthicsPolicies.  

x  1.4 I confirm that I have read and understood the current version of 
the University of Leeds Research Data Management Policy. 
The policy is available at 
https://library.leeds.ac.uk/info/14062/research_data_manage 
ment/68/research_data_management_policy.  

x  1.5 I confirm that I have read and understood the current version of 
the University of Leeds Information Protection Policy.  
The policy is available at 
http://it.leeds.ac.uk/info/116/policies/249/information_protection_po
licy  

x  1.6 I confirm that NHS ethical review is not required for this project.  
Refer to http://ris.leeds.ac.uk/NHSethicalreview for guidance in 
identifying circumstances which require NHS review 

 x 1.7 Will the research involve NHS staff recruited as potential 
research participants (by virtue of their professional role) or NHS 
premises/ facilities? 
Please note: If yes, NHS R&D management permission or local 
management permission may also be needed. Refer to 
http://ris.leeds.ac.uk/NHSethicalreview.  
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SECTION 2: CONTACT DETAILS 

2.1 Name of 
applicant 

Dr Graham Askew 

2.2 Position (eg PI, 
Co-I, RA, student) 

PI 

2.3 Department/ 
School 

School of Biomedical Sciences 

2.4 Faculty Faculty of Biological Sciences 

2.5 Work address 
(usually at the 
University of Leeds) 

School of Biomedical Sciences 
Faculty of Biological Sciences 
University of Leeds 
Leeds  
LS2 9JT 

2.6 Telephone 
number 

01133432897 

2.7 University of 
Leeds email 
address 

g.n.askew@leeds.ac.uk 

SECTION 3: SUMMARY OF THE RESEARCH  

3.1 In plain English provide a brief summary of the aims and objectives of the 
research.  
(max 300 words). The summary should briefly describe 

• the background to the research and why it is important, 
• the questions it will answer and potential benefits, 
• the study design and what is involved for participants. 

Your answers should be easily understood by someone who is not 
experienced in the field you are researching, (eg a member of the public) - 
otherwise it may be returned to you. Where technical terms are used they 
should be explained. Any acronyms not generally known should be described 
in full.  

Running economy accounts for a large proportion of variation in distance 
running performance, and is linked to a variety of factors including the 
biomechanical characteristics of the runner’s gait. In injured runners, 
rehabilitation state is also characterised by gait. Gait can be readily measured 
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in the laboratory using multi-camera motion capture systems. However, such 
systems are expensive and tend to be limited to specialist laboratories; the 
activities that can be quantified tend to be limited to steady state conditions 
(such as constant velocity treadmill locomotion); laboratory setups may result 
in unnatural gait; and setup and processing time means that the approach is 
unsuitable for assessing large numbers of individuals. These limitations 
mean that the rehabilitation state of runners is largely assessed by 
observation and palpation. Commercially available inertial measurement 
units (IMUs), that measure body accelerations for example, could provide a 
cheaper solution to characterising movement that can be deployed in an 
everyday setting. However, a major limitation of these devices is that the 
outputs represent an average over a specific time period and much of the 
information available in the raw acceleration wave is irretrievably lost. Thus, 
these devices are unable to give detailed information about activity levels 
over short timescales (sub-second) and are inadequate to describe the 
quality of activity, an area that is of growing interest in the sport and exercise 
science arena. We have developed a customised device and analytical 
approach that that allows gait to be quantified in the appropriate time and 
frequency domains and offers the potential of providing meaningful meta-
analysis for activity levels of large populations as well as of individuals.  
 
The main aim of this project is to derive a series of robust measures from 
accelerometry, validated in the laboratory against 3D movement data, that 
can give accurate information of an individual’s physical activity and 
metabolic energy expenditure. This will be done in healthy and rehabilitating 
endurance runners. Once validated in the laboratory, we will assess the 
devices under field-based conditions.  
 
The following methods will be used: 

(1) Motion capture. Anatomical markers will be placed bilaterally on 
anatomical landmark positions and their 3D position captured using a 
twelve-camera Qualisys system. These data will be used to compute 
the 3D trajectory of the body centre of mass (represented as a 
Lissajous plot) and the dynamical symmetry indices of locomotion in 
the three spatial axes computed.  

(2) Accelerometry. Custom-built IMUs will be attached to the test 
subject. Raw signals will be processed using Fast Fourier 
Transforms, and auto and cross-correlations to extract a range of 
gait parameters and determine an index of gait symmetry. The 
extracted values from the IMU will be validated against the motion 
capture data. 

(3) Electromyography. In some participants, lower-limb muscle activity 
patterns will be recorded using surface electromyography. 

(4) Energy Cost Measurement. In some participants, oxygen 
consumption will be measured using mask respirometry to measure 
metabolic cost of transport or running economy (i.e. the oxygen 
consumed to move 1 kg of body mass 1 m distance). The duration of 
the exercise bouts will be dictated by the time taken for oxygen 
consumption and carbon dioxide production to reach a steady level 
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(typically five minutes). 
 
Laboratory studies: subjects will attend the laboratory, usually on up to two 
occasions, for 1-2 hours per session.  Subjects will be asked to complete one 
of a number of possible protocols (when participants are recruited, it will be 
for testing under a specific protocol). For example:  

(1) Treadmill running at a range of speeds. Runners will have markers 
and IMUs attached to the body and their gait recorded using motion 
capture. Heart rate will be recorded. In some runners, (a) metabolic 
energy expenditure will be determined using respirometry, or (b) 
muscle activity patterns will be determined using electromyography. 
The aim is to determine whether running performance (assessed by 
measuring running economy) is related to gait and whether differences 
in running economy are related to muscle activation patterns.  
 
Speeds will cover the range 10-18 km/h (2 km/h increments) and are 
expected to elicit <90% max. heart rate); for the metabolic 
measurements speeds will not exceed those at which respiratory 
exchange ratio >1. The protocol duration will be approximately 15 
mins (without respirometry) – 60 mins (with respirometry), excluding 
warm-up/cool-down.  
 

(2) Treadmill running at a range of speeds with asymmetrical limb loading. 
As in (1), but runners will additionally wear a load on one limb (either 
upper or lower limb) to induce gait asymmetry. Loads will not exceed 
5% (foot/ shank) or 10% (thigh) of body mass. The aim is to determine 
whether gait asymmetries that will be quantified using motion capture 
can be detected using the IMUs. The selected speeds are likely to 
induce 80-85% max. heart rate. 
 
The protocol duration will be approximately 15 mins, excluding warm-
up/cool-down. 
 

(3) Incremental treadmill running to induce fatigue. As in (1), but the 
running protocol will involve incremental increases in speed until the 
subject reaches voluntary exhaustion. This protocol is likely to elicit a 
heart rate close to maximum by the end of the test, but will be of 
relatively short duration (>90% max. heart rate for ~5 mins). The aim 
is to determine whether fatigue affects gait (especially gait symmetry) 
that can be detected using the IMU.  
 
Speeds will cover the range 10-18 km/h. The protocol duration will be 
approximately 30 mins, excluding warm-up/cool-down. 

  
 
Field studies: subjects will be asked to attend an athletics track on up to two 
occasions for approximately 1 hour.  Subjects will be asked to complete one 
of a number of possible protocols. For example: 
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(1) Gait analysis during track running. Runners will have IMUs attached 
to the body. They will run at a specified pace for approximately 1.2-1.6 
km. In some runners, metabolic energy expenditure will be determined 
using respirometry. The aim is to determine whether running 
performance (assessed by measuring running economy) is related to 
gait as detected using an IMU in the field. The selected speeds are 
likely to induce 80-85% max. heart rate. 
 
The protocol duration will be approximately 6 mins, excluding warm-
up/cool-down. 
 

(2) Interval session. Runners will have IMUs attached to the body and will 
perform an interval session as per their normal training routine (i.e. we 
will not dictate the session, however, we may target specific types of 
session by liaising with the runners’ coaches). The aim is to determine 
whether fatigue during an interval session affects gait (especially gait 
symmetry) that can be detected using an IMU in the field. 

 
 

3.2 Where will the 
research be 
undertaken? 

Laboratory research will be carried out at the 
University of Leeds.  
Field work will be carried out in a variety of locations, 
usually athletics tracks (e.g. Leeds Beckett 
University, University Academy Keighley). 

3.3 Who is funding the 
research? 

University of Leeds studentship.  

NB: If this research will be financially supported by the US Department of 
Health and Human Services or any of its divisions, agencies or programmes 
please ensure the additional funder requirements are complied with. Further 
guidance is available at http://ris.leeds.ac.uk/FWAcompliance and you may 
also contact your FRIO for advice. 

SECTION 4: RESEARCH DATA AND IMPACT 

You may find the following guidance helpful: 
• Research data management guidance 
• Advice on planning your research project 
• Dealing with issues relating to confidentiality and anonymisation 
• Funder requirements and University of Leeds Research Data 

Management Policy  

4.1 What is the data source? (Indicate with an ‘X’ all that apply) 

x New data collected for this research 
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x Data previously collected for other research 

 Data previously collected for non-research purposes 

 Data already in the public domain 

 Other, please state: 
_______________________________________________.  

4.2 How will the data be collected? (Indicate with an ‘X) 

 Through one-to-one research interviews 

 Through focus groups 

x Self-completion (e.g. questionnaires, diaries) 

 Through observation 

 Through autoethnographic research 

x Through experiments/ user-testing involving participants 

 From external research collaborators 

 Other, please state: 
_______________________________________________. 

4.3 How will you make your research data available to others in line with: the 
University’s, funding bodies’ and publishers’ policies on making the results of 
publicly funded research publicly available (in compliance with UK data 
protection legislation)? (max 200 words)  

The project will generate anatomical, physiological and biomechanical data 
on each subject, including locomotor energetics, patterns of muscle activity 
and 3D kinematics of the body. These data, the metadata that describe these 
data and the parameters derived from the data that are used in subsequent 
analyses will be collected and managed in accordance with the University of 
Leeds policy on Good Research Practice. These comply with the Joint Code 
of Practice on Research. All original data will be retained for at least 10 years 
and will remain the property of the University of Leeds. All data will be 
managed in accordance with the current UK data protection policy. Electronic 
data also being backed up and archived at the University of Leeds.  
 
These data have many potential uses in biomechanics. Accordingly, data will 
be made available to colleagues and interested parties upon request 
(anonymised raw and analysed data as appropriate) but normally after 
publication or presentation at conferences via talks and poster presentations. 
Publications will be announced, made available through specific web sites 
(such as the repository) and within journals as appropriate. Supplementary 
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files associated with publications will be used wherever possible to ensure 
critical data and analysis can be best shared. 

4.4 How do you intend to share the research data, both within and outside 
the research team? (Indicate with an ‘X) 

x Depositing in a specialist data centre or archive 

x Submitting to a journal to support a publication 

x Depositing in a self-archiving system or an institutional repository 

 Dissemination via a project or institutional website 

 Informal peer-to-peer exchange 

 No plans to report or disseminate the data 

 Other, please state: 
_______________________________________________. 

4.5 How do you intend to report and disseminate the results of the study? 
(Indicate with an ‘X) 

x Peer reviewed journals 

x Internal report 

x Conference presentation 

x Publication on website 

 Other publication 

 Submission to regulatory authorities 

 No plans to report or disseminate the results 

x Other, please state: _potential patent application or IP 
protection_________________. 

4.6 Give details of the expected impact of the research. Further guidance is 
available at https://www.ukri.org/innovation/excellence-with-impact. (max 
words 200) 
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Development of a tool that allows gait quality to be assessed in the field will 
be of interest to athletic coaches and recreational runners. The research may 
also lead to improved assessment of rehabilitation status of injured runners. 
The research will also be of interest to those involved in health care with an 
interest in assessing and rehabilitating gait – e.g. prosthetists working with 
lower-limb amputees, stroke patients, etc. The research will be used to 
inspire audiences to take an interest in science by informing people about 
technological advances in science and the applications of biological 
research. We will engage with the people through open source publication, 
local and national media and open lectures. We will remain aware of the 
possibilities of patenting our research findings by making use of the Research 
and Innovation Service, a facility set up specifically to identify and secure 
potential technology transfer in research output. They deal with patents, 
licensing, and spinout companies, and provide staff with support in these 
endeavours.  If either a potential patent application or IP protection was 
required, the appropriate internal reports will be filed.   

SECTION 5: PROTOCOLS 

Which protocols will be 
complied with? (Indicate 
with an ‘X’).  
There may be 
circumstances where it 
makes sense not to comply 
with a protocol, this is fine 
but should be clarified in 
your application. 

x Data protection, anonymisation and 
storage and sharing of research data 

x Informed consent 

 Verbal consent 

 Reimbursement of research 
participants 

 Low risk observation 

SECTION 6: ADDITIONAL ETHICAL ISSUES 

6.1 Indicate with an ‘X’ in the left-hand column whether the research involves 
any of the following:  

 Discussion of sensitive topics, or topics that could be considered 
sensitive 

 Prolonged or frequent participant involvement 

 Potential for adverse environmental impact 

x The possibility of harm to participants or others (including the 
researcher(s)) 
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 Participants taking part in the research without their knowledge 
and consent (eg covert observation of people in non-public places) 

 The use of drugs, placebos or invasive, intrusive or potentially 
harmful procedures of any kind 

 Food substances or drinks being given to participants (other than 
refreshments) 

 Vitamins or any related substances being given to participants 

 Acellular blood, urine or tissue samples obtained from participants 
(ie no NHS requirement) 

x Members of the public in a research capacity (participant 
research) 

 Participants who are particularly vulnerable (eg children, people 
with learning disabilities, offenders) 

 People who are unable to give their own informed consent 

 Researcher(s) in a position of authority over participants, eg as 
employers, lecturers, teachers or family members 

 Financial inducements (other than reasonable expenses and 
compensation for time) being offered to participants 

 Cooperation of an intermediary to gain access to research 
participants or material (eg head teachers, prison governors, chief 
executives) 

 Potential conflicts of interest 

 Internet participants or other visual/ vocal methods where 
participants may be identified 

 Scope for incidental findings, ie unplanned additional findings or 
concerns for the safety or wellbeing of participants.  

 The sharing of data or confidential information beyond the initial 
consent given 

 Translators or interpreters 

 Research conducted outside the UK 

 An international collaborator 

 The transfer of data outside the European Economic Area 
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 Third parties collecting data 

 Other ethical clearances or permissions 

6.2 For the ethical issues indicated in 6.1 provide details of any additional 
ethical issues the research may involve and explain how these issues will be 
addressed. (max 200 words) 

Potential harm to the participants 
A risk assessment has been completed for the type of testing to be carried 
out (covers the potential risks to the both participants and the researchers). 
A summary of the following potential hazards has been identified:  

1. Treadmill operation. Hazards are: (i) tripping/falling as a result of 
sudden acceleration/ deceleration; (ii) injuries resulting from the high-
speed running belt. Controls are: (i) use of safety equipment (e.g. 
harness, emergency stop cord), (ii) briefing participants on safety; (iii) 
proper equipment training and supervision of users; (iv) wearing of 
covered shoes; (v) observers not standing too close to moving belt. 
 

2. Respirometry (analysis of exhaled gases). Hazards are: (i) exchange 
of biological fluids and the transmission of disease (e.g. COVID-19). 
Controls are: (i) soaking and thorough disinfection of face masks, 
breathing tubes and mouth pieces; (ii) limiting the period where 
participant and experimenter are <2 m to <15 mins; (iii) experimenter 
and participant to wear PPE (experimenter to wear FFP3 facemask, 
visor, gloves, apron; participant to wear facemask until respirometry 
equipment must be attached); (iv) storage of contaminated equipment 
in bag prior to disinfection/sterilisation). 
 

3. Exercise testing. Hazards are overexertion leading to nausea, sprains, 
muscle pulls, cardiac arrest, exertional heat illness etc. Controls are: 
(i) subjects will be briefed on pre-exercise preparation (e.g. no food); 
(ii) participants will properly warm up/ cool down; (iii) subjects will 
complete a pre-exercise questionnaire (e.g. PAR-Q) that will allow 
researchers to assess the subject’s ability to participate in the physical 
activity; (iv) heart rate will be monitored as an index of exercise 
intensity; (v) CPR trained person will be present during test. 
 

4. General laboratory access. Hazards are: (i) bruising, fractures, 
concussion, etc resulting from slips, trips or falls. Controls are: (i) 
thoroughfares through area to be clearly identified; (ii) thoroughfare 
routes to not have cables laid across them (or to be laid in cable 
protectors); (iii) spills to be cleaned up immediately; (iv) reporting of 
damaged flooring; (v) wearing of suitable footwear. 
 

5. Outdoor testing. Hazards are: (i) exposure to adverse environmental 
conditions; (ii) bruising, fractures, concussion, etc resulting from slips, 
trips or falls; (iii) injury from handling equipment; (v) injury from 
vehicles. Controls are: (i) consultation of weather forecast, wearing 
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suitable clothing, carrying water and use of suncream, insect repellent 
as appropriate; (ii) wearing suitable footwear, use of lit paths; 
researchers undertake manual handling training, equipment carried in 
stages. 
 

6. Electromyography. Hazards are: (i) irritation and (ii) transmission of 
disease. Controls are: (i) use of hypoallergenic electrodes; (ii) use of 
PPE during electrode attachment (experimenter to wear FFP3 
facemask, visor, gloves, apron; participant to wear facemask); (iii) 
limiting the period where participant and experimenter are <2 m to <15 
mins. 
 

7. COVID-19 Transmission. Hazards are: (i) transmission of disease. 
Controls are: (i) access to lab booked via ARIA; (ii) pre-testing 
questionnaire; (iii) avoidance of public transport; (iv) wearing of PPE 
(experimenter to wear FFP3 facemask, visor, gloves, apron; 
participant to wear facemask); (v) limiting the period where participant 
and experimenter are <2 m to <15 mins; (vi) storage of contaminated 
equipment in bag prior to disinfection/sterilisation). 

SECTION 7: RECRUITMENT AND CONSENT PROCESS  

For guidance refer to http://ris.leeds.ac.uk/InvolvingResearchParticipants 
and the research ethics protocols.  

7.1 State approximately how much data and/ or how many participants are 
going to be involved. 

The number of participants will vary for the different experiment types. For all 
participants, anthropomorphic data and running history will be collected. For 
the laboratory-based measurements we anticipate a sample size of up to 25 
individuals. Each individual will have their whole-body biomechanics 
assessed by measuring the 3D movements of their body segments; some 
will additionally have metabolic and muscle activity recorded. These data will 
be collected at a range of walking and running speeds. For each of the field-
based measurements we anticipate collecting data on approximately 100 
individuals. These data will consist of acceleration recordings, running speed 
and in some instances metabolic, motion or EMG data or video recordings.  

7.2 How was that number of participants decided upon? (max 200 words) 
Please note: The number of participants should be sufficient to achieve 
worthwhile results but should not be so high as to involve unnecessary 
recruitment and burdens for participants. This is especially pertinent in 
research which involves an element of risk. Describe here how many 
participants will be recruited, and whether this will be enough to answer the 
research question. If you have received formal statistical advice then please 
indicate so here, and describe that advice. 
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In the experiments aimed at quantifying 3D body kinematics, our experiments 
are designed to detect a 10% difference with a 5% significance level and a 
statistical power of 90%. The sample size calculation is based on data on the 
symmetry indices from Seminati et al. (2013) who reported a standard 
deviation of 5-8%: we will therefore require approximately 16 participants.  
 
Where the principal outcome is metabolic energy expenditure. Our 
experiments are designed to detect a 10% difference with a 5% significance 
level and a statistical power of 90%. Our sample size calculation is based on 
data from Askew et al. (2011: doi:10.1098/rspb.2011.0816) who reported a 
standard deviation of 10% for walking metabolic rate: we will therefore require 
approximately 22 participants. A sample of 25 subjects will be used with a 
buffer of 15% to account for incomplete measures.  Since accelerometry will 
be performed simultaneously with the metabolic data, the group size exceeds 
the minimum needed for the accelerometry data set.  
 
Insufficient data are currently available to calculate sample size for either the 
laboratory- or field-based accelerometry measurements. However, based on 
the work of Barnes (2018) we expect that the sample size noted above will 
suffice (note that accelerometry data are collected simultaneously with 
metabolic/ kinematics data). For the population profiling study (field-based) 
we expect to use approximately 100 participants based on the number used 
by Barnes et al. (2016), which was 103. There simply are not any suitable 
data to enable us to assess this in a more precise manner. The number will 
be reviewed throughout the study as we collect and analyse the data, at 
which time we will have a better understanding of the likely variation in our 
measurements.  

7.3 How are the participants and/ or data going to be selected? List the 
inclusion and exclusion criterial. (max 200 words)  

Recruitment could occur in a variety of forms including the use of emails and 
advertisements (flyers distributed in appropriate locations around the 
University) or via local contacts (e.g. through running club coaches and/or 
committee members). Recruitment materials will inform participants that they 
will be participating in a research study. A general description of the purpose 
of the study will be given together with an outline of what participation in the 
study will entail written in lay language. Details of how to enrol will be given 
as well as inclusion/ exclusion criteria (if appropriate).   
 
Inclusion criteria:  
(i) informed consent must have been obtained; 
(ii) must complete a pre-exercise questionnaire and be fit to undertake 
exercise; 
(iii)  must be capable of running at a predetermined pace for a 
predetermined distance 
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(iv)  must be an experienced runner, familiar with endurance running 
training and racing. 
 
Exclusion criteria: 
(i) unable to provide informed consent (e.g. individuals who do not have 
a good understanding and command of English); 
(ii) participant’s pre-exercise questionnaire highlights areas of concern. 

7.4 For each type of methodology, describe the process by which you will 
obtain and document freely given informed consent for the collection, use 
and reuse of the research data. Explain the storage arrangements for the 
signed consent forms.  
Guidance is available at http://ris.leeds.ac.uk/InvolvingResearchParticipants. 
The relevant documents (information sheet and consent form) need to be 
attached to the end of this application. If you are not using an information 
sheet and/ or seeking written consent, please provide an explanation.  

Participants will initially be given an information sheet explaining the purpose 
of the study and what participation in it will involve. They will be given at least 
48 hours before the study commences.  A member of the research team will 
then talk to them about taking part. At this stage they will be given an 
overview of the research process and any questions they have will be 
answered. Once the volunteer fully understands what is expected of them, 
they will be asked to sign a form to indicate they give their informed consent 
to take part in the study. Consent will be given by the participant signing the 
consent form in the presence of a member of the research team and counter-
signed by a member of the research team in the presence of the participant 
(see submitted consent form). 
 
Signed consent forms will be archived in a lockable room with controlled 
access, or kept in a locked filing cabinet, or kept in a locked drawer.  These 
documents will be scanned in so can be stored electronically within a 
password protected computer/ archive, with controlled access, at the 
University of Leeds. All documentation will be treated in accordance with the 
appropriate data protection act and GDPR policy. All applicable information 
will be discarded after 10 years.  

7.5 Describe the arrangements for withdrawal from participation and 
withdrawal of data/ tissue. Please note: It should be made clear to 
participants in advance if there is a point after which they will not be able to 
withdraw their data. See also 
http://ris.leeds.ac.uk/ResearchDataManagement. (max 200 words) 

The “informed consent’ form will explain to the participant that their 
involvement in the study is voluntary and without any specific benefits and 
that they are free to withdraw from the study at any time until their 
anonymised data is pooled for analysis, at which point it will not be possible 
to withdraw their data from the study. 



 228 

7.6 Provide details of any incentives you are going to use and explain their 
purpose. (max 200 words) 
Please note: Payment of participants should be ethically justified. The FREC 
will wish to be reassured that research participants are not being paid for 
taking risks or that payments are set at a level which would unduly influence 
participants. A clear statement should be included in the participant 
information sheet setting out the position on reimbursement of any expense 
incurred. 

N/A 

SECTION 8: DATA PROTECTION, CONFIDENTIALITY AND 

ANONYMISATION 

Guidance is available at http://ris.leeds.ac.uk/ConfidentialityAnonymisation 

8.1 How identifiable will the participants be? (Indicate with an ‘X’). 

 Fully identifiable 

x Identity of subject protected by code numbers/ pseudonyms 

 Fully anonymised 

x Anonymised but potentially identifiable 

 Data only in aggregated form 

 Other 

8.2 Describe the measures you will take to deal with issues of anonymity. 
(max 200 words)  

Confidentiality will be maintained by keeping research data anonymous. All 
personal data will be accessible only to those who need it (i.e. PI and the 
research team). Sensitive data will be kept in a lockable room with controlled 
access, or kept in a locked filing cabinet, or kept in a locked drawer, or stored 
on password-protected computers with controlled access. Personal data will 
be kept separate from the research data. All research data will be 
anonymised by attributing a subject code (e.g. subject 1, subject 2, subject A 
etc) to all data collected of the participants, and data will be stored on a 
password-protected computer with controlled access. Video recordings and 
images from which participants could be visually identified will only be 
accessible to those who need it (i.e. PI and the research team).  

8.3 Describe the measures you will take to deal with issues of confidentiality, 
including any limits to confidentiality. (Please note that research data which 
appears in reports or other publications is not confidential, even if it is fully 
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anonymised. For a fuller explanation see 
http://ris.leeds.ac.uk/ConfidentialityAnonymisation). (max 300 words) 

All personal data will be accessible only to those who need it (i.e. PI and the 
research team). Sensitive data will be kept in a lockable room with controlled 
access, or kept in a locked filing cabinet, or kept in a locked drawer, or stored 
on password-protected computers with controlled access. Personal data will 
be kept separate from the research data. All research data will be 
anonymised by attributing a subject code (e.g. subject 1, subject 2, subject A 
etc.) for each participant, and data will be stored on a password-protected 
computer with controlled access. Video files containing images from which 
participants could be identified made during the research study will only be 
accessible to those who need it (i.e. PI and the research team).  

8.4 Who will have access to the research data apart from the research team 
(e.g. translators, authorities)? (max 100 words) 

No one apart from the research team. Data may be made available upon 
request, however will be anonymised and coded to protect participants 
identity in accordance with the University of Leeds’s confidentiality and 
anonymisation policy.  

8.5 Describe the process you will use to ensure the compliance of third 
parties with ethical standards. (max 100 words) 

N/A.  

8.6 Where and in what format(s) will research data, consent forms and 
administrative records be retained? (max 200 words) 
Please note: Mention hard copies as well as electronic data. Electronic data 
should be stored securely and appropriately and in accordance with the 
University of Leeds Data Protection Policy available at 
http://www.leeds.ac.uk/secretariat/data_protection_code_of_practice.html.  

Research data will be in the following formats: 
(i) hardcopies (e.g. consent forms, lab books) 
(ii) electronic copies (e.g. 3D positional data, metabolic data, muscle 

activity data, video recordings)  
 
Hard copies will be stored in a lockable room with controlled access, or kept 
in a locked filing cabinet, or kept in a locked drawer, or stored on password-
protected computers with controlled access, as outlined in the Universities 
Data Protection Policy. Electronic copies of data will be stored (temporarily) 
on password-protected, encrypted laptops during data collection in the 
laboratory and field. Electronic copies of data, the metadata that describe 
these data and the parameters derived from the data that are used in 
subsequent analyses will be backed up electronically on our laboratory 
computers, which are mirrored every 2 hours onto multiple disc systems in 
separate locations on campus. Our University computing networks are 
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protected from viruses and data piracy by various virus checkers and 
firewalls. This will help to ensure the security of the data held on project PCs.  
 

8.7 If online surveys are to be used, where will the responses be stored? 
(max 200 words) 
Refer to: 
http://it.leeds.ac.uk/info/173/database_and_subscription_services/206/bristo
l_online_survey_accounts  and http://ris.leeds.ac.uk/SecuringResearchData 
for guidance.  

N/A.  

8.8 Give details and outline the measures you will take to assess and to 
mitigate any foreseeable risks (other than those already mentioned) to the 
participants, the researchers, the University of Leeds or anyone else involved 
in the research? (max 300 words) 

The risks to the participants are those associated with participating in the 
study (covered in risk assessment and in section 6.2). Risks to the 
researchers are those associated with carrying out the research (covered in 
section 6.2). The risks to the University are the potential for harm resulting 
from someone’s negligence. The following statement will be added to the 
“Information Sheet”: 
“If you are harmed by taking part in this research project, there are no special 
compensation arrangements. If you are harmed due to someone’s 
negligence then you may have grounds for legal action, but you may have to 
pay for it. Regardless of this, if you have any concerns about any aspect of 
the way in which you have been approached or treated during the course of 
this study, you may complain to the University Secretary.” 

SECTION 9: OTHER ETHICAL ISSUES 

Yes No (Indicate with an ‘X’) 

x  

9.1 Is a health and safety risk assessment required for 
the project?  
Please note: Risk assessments are a University 
requirement for all fieldwork taking place off campus. 
The risk assessment forms and further guidance on 
planning for fieldwork in a variety of settings can be 
found on the University’s Health & Safety website 
along with further information about risk assessment: 
http://www.leeds.ac.uk/safety/fieldwork/index.htm. 
Contact your Faculty Health and Safety Manager for 
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further advice. See also 
http://ris.leeds.ac.uk/HealthAndSafetyAdvice. 

 x 

9.2 Is a Disclosure and Barring Service check required 
for the researcher?  
Please note: It is the researcher’s responsibility to 
check whether a DBS check is required and to obtain 
one if it is needed.  

9.3 Any other relevant information 

Risk assessments covering this research are provided with this form. 
Questionnaires and a PAR-Q that will be used to pre-screen participants and 
researchers for underlying health problems or COVID-19 are provided.  

9.4 Provide details of any ethical issues on which you would like to ask the 
Committee's advice. 

 

SECTION 10: FURTHER DETAILS FOR STUDENT PROJECTS (COMPLETE 

IF APPLICABLE) 

Your supervisor is required to provide email confirmation that they have read, 
edited and agree with the form above. It is a good idea to involve your 
supervisor as much as possible with your application. If you are unsure how 
to answer any of the questions do ask your supervisors for advice. 

10.1 Qualification working towards (indicate with an ‘X’) 

x Bachelor’s degree Module code:  SPSC3061; 
SPSC3389 

x Master’s degree (including PgCert, PgDip) 

x Research degree (i.e. PhD) 

10.2 Primary supervisor’s contact details 

Name (title, first name, last 
name) 

Dr. Graham Askew 

Department/ School/ Institute School of Biomedical Sciences, University 
of Leeds 

Telephone number 0113-34-32897 
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University of Leeds email 
address 

G.N.Askew@leeds.ac.uk 

10.3 Second supervisor’s contact details 

Name (title, first name, last 
name) 

Dr. Andy Brown 

Department/ School/ Institute School of Chemical & Process 
Engineering, University of Leeds 

Telephone number 0113-34-32382 

University of Leeds email 
address 

A.P.Brown@leeds.ac.uk 

Yes No 10.4 To be completed by the student’s supervisor 

X  The topic merits further research 

X  I believe that the student has the skills to carry out the 
research 

SECTION 11: OTHER MEMBERS OF THE RESEARCH TEAM 

(COMPLETE IF APPLICABLE) 

Name (title, first name, last 
name) 

Danielle Charles 

Role (eg PI, Co-I) PhD student 

Department/ School/ Institute School of Biomedical Sciences, University of 
Leeds 

Telephone number  

University of Leeds email 
address 

bsdc@leeds.ac.uk 

 

Name (title, first name, last 
name) 

 

Role (eg PI, Co-I)  

Department/ School/ Institute  
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Telephone number  

University email address  

 

Name (title, first name, last 
name) 

 

Role (eg PI, Co-I)  

Department/ School/ Institute  

Telephone number  

University of Leeds email 
address 

 

SECTION 12: SUPPORTING DOCUMENTS 

Indicate with an ‘X’ which 
supporting documents have 
been included with your 
application.  
 
Wherever possible the 
research title on consent 
forms, information sheets, 
other supporting 
documentation and this 
application should be 
consistent. The title should 
make clear (where 
appropriate) what the research 
is about. There may be 
instances where a different title 
is desirable on information to 
participants (for example – in 
projects which necessarily 
involve an element of 
deception or if giving the title 
might skew the results of the 
research). It is not imperative 
that the titles are consistent, or 
detailed, but where possible 
then they should be.  

x Information sheet(s)  
 
Please note: Include different versions for 
different groups of participants eg for 
children and adults if applicable. Refer to 
http://ris.leeds.ac.uk/InvolvingResearchP
articipants for guidance in producing 
participant information sheets. 

x Consent form(s) 
 
Please note: Include different versions for 
different groups of participants eg for 
children and adults if applicable. Refer to 
http://ris.leeds.ac.uk/InvolvingResearchP
articipants for guidance in producing 
participant consent forms. 

 Recruitment materials 
 
Please note: Eg poster, email etc used to 
invite people to participate in your 
research project. 

x Letter/ email seeking permission from 
host/ gatekeeper 



 234 

 
Supporting documents should 
be saved with a meaningful file 
name and version control, eg 
'Participant_Info_Sheet_v1' or 
'Parent_Consent_From_v2'. 
Refer to the examples 
at http://ris.leeds.ac.uk/Involvi
ngResearchParticipants.  

 Questionnaire/ interview questions 

x Health and safety risk assessment  
 
Please note: Risk assessments are a 
University requirement for all fieldwork 
taking place off campus. The risk 
assessment forms and further guidance 
on planning for fieldwork in a variety of 
settings can be found on the University’s 
Health & Safety website along with further 
information about risk assessment: 
http://www.leeds.ac.uk/safety/fieldwork/in
dex.htm. Contact your Faculty Health and 
Safety Manager for further advice. Also 
refer to  
http://ris.leeds.ac.uk/HealthAndSafetyAd
vice. 

 Data management plan 
Refer to 
https://library.leeds.ac.uk/info/14062/rese
arch_data_management/62/data_manag
ement_planning  

SECTION 13: SHARING INFORMATION FOR TRAINING PURPOSES 

Ye
s No (Indicate with an ‘X’) 

x  

I would be content for information in the application to be used 
for research ethics and research data management training 
purposes within the University of Leeds. All personal identifiers 
and references to researchers, funders and research units 
would be removed. 

SECTION 14: DECLARATION 

1. The information in this form is accurate to the best of my knowledge 
and belief and I take full responsibility for it. 

2. I undertake to abide by the University's ethical and health & safety 
policies and guidelines, and the ethical principles underlying good 
practice guidelines appropriate to my discipline. 
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3. If the research is approved I undertake to adhere to the study 
protocol, the terms of this application and any conditions set out by 
the Research Ethics Committee. 

4. I undertake to ensure that all members of the research team are 
aware of the ethical issues and the contents of this application form. 

5. I undertake to seek an ethical opinion from the REC before 
implementing any amendments to the protocol. 

6. I undertake to submit progress/ end of project reports if required. 
7. I am aware of my responsibility to be up to date and comply with the 

requirements of the law and relevant guidelines relating to security 
and confidentiality of personal data. 

8. I understand that research records/ data may be subject to 
inspection for audit purposes if required in future. 

9. I understand that personal data about me as a researcher in this 
application will be held by the relevant FRECs and that this will be 
managed according to the principles established in the Data 
Protection Act. 

 Applicant Student’s supervisor (if 
applicable) 

Signature 

 

 

Name Dr Graham Askew  

Date 30th November 2020  
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Appendix D: Additional COVID measures 

 

COVID-19 SAFE WORKING PROTOCOL: Miall 4.08 (Lab 4B) (Biomechanics 
Lab) 
 
Use of the biomechanics lab will be by booking only (via the ARIA system). If 
more than one participant is to be tested at the same time, arrival times will be 
staggered to minimise risk of multiple people in the lab corridor at the same 
time. The timing of participant arrival will be scheduled to avoid times when 
large numbers of students may be entering or leaving the building – i.e. avoid 
the period 10 minutes before and after the hour. Testing performed in these 
labs cannot be done following social distancing guidelines. This protocol has 
also been written assuming that exercise and associated measures are 
aerosol generating procedures (AGPs), therefore full PPE will be required, 
with a station to put this on set up inside the lab. Depending upon the testing 
to be completed, there will be up to four experimenters (this can be anybody: 
staff, technician, postdoc, PhD, Undergrad, where appropriate) in the room 
along with the participant (maximum of 5 people in each lab in total). A member 
of staff who is ILS trained will also need to be on site, and close by (e.g. in a 
nearby office), or alternative arrangements made with the H&S team (e.g. 
notifying an identified H&S contact on site by phone when we start and then 
finish testing).  
 
All experimenters and participants will be asked to complete a COVID-19 
symptoms screening questionnaire before leaving home to travel to the lab (in 
the 24 hr before) the first visit to the labs to confirm the absence of any COVID-
19 symptoms (see attached). They will then be asked to confirm prior to each 
subsequent visit before leaving to travel to the lab (in the preceding 24 hr) that 
there has been no change in the details submitted (e.g. no change in personal 
symptom status, or symptom status of people in their household). If any 
symptoms are reported, the individual will be advised to stay home, and to get 
a test as soon as possible.  
https://www.nhs.uk/conditions/coronavirus-covid-19/testing-and-tracing/get-
a-test-to-check-if-you-have-coronavirus/) 
Anyone reporting COVID-19 symptoms will initiate our protocol as described 
in the section below. 
 
All experimenters and participants will download and activate the NHS COVID-
19 app and have their mobile phones turned on during the testing and follow 
advice from the NHS if alerted. 
 
Experimenters will arrive before the participant to set up the lab area. Before 
entering the lab, experimenters will use hand sanitising gel and then put on a 
mask (FFP3). Once inside the lab they will additionally use hand sanitising gel 
and put on a visor and gloves at the PPE station. Experimenters will set up as 
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much of the equipment as can be done in advance. Experimenters will arrange 
to meet participants at a specific time at the Miall building entrance on level 4 
(off Clarendon Way). When leaving the lab to meet the participant at this time, 
the experimenter will remove their gloves in the lab (but keep their mask and 
visor on), they will then leave the lab, sanitise their hands and exit the building. 
Participants will be asked to wear a mask to the university, and keep this on 
until the start of testing. Participants will be asked to arrive dressed in suitable 
clothing for the testing, and advised that no shower facilities will be available 
after testing at the present time. Participants will also be asked to bring as little 
of their personal belongings as possible with them, but to bring a water bottle 
so they have access to drinking water. Once the experimenter has met the 
participant at the Miall level 4 entrance, they will be invited to leave any 
personal belongings in a locker (situated outside the laboratory on Miall level 
4) and sanitise their hands before entering the lab. They will be invited to take 
a seat within the lab while the experimenter follows behind, sanitising their 
hands, and putting on the necessary PPE at the PPE station (i.e. gloves and 
apron). Once the experimenters and participant are all in the lab, the sign 
indicating that testing is taking place will be put on the door. All doors have to 
remain closed as they are fire doors.   
 
There are three main steps in the experiment. The first involves the attachment 
of devices (e.g. motion capture markers, respirometry equipment and 
accelerometers) to the participant and/or respirometry equipment (mask and 
portable analyser). This would require the experimenter and participant to be 
closer than 1 m for a period up to 30-35 minutes (attaching accelerometers 
takes approximately 2-3 minutes; attaching motion capture markers 
approximately 25 minutes, respirometry equipment approximately 5 minutes). 
However, to reduce the risk of COVID-19 infection, the participant will be 
asked to attach the markers themselves, demonstrated by one of the 
experimenters at a distance of >2 m. Once this has been completed, the 
experimenter will check the marker placement, adjusting positioning where 
necessary, and attach the accelerometers in a period not longer than 15 
minutes. Accelerometers will be attached by the experimenter. During this 
step, both the participant and experimenters will wear PPE (FFP3 mask, visor 
and apron for the researcher and facemask and visor for participant). In tests 
where respirometry is performed, the participant will remove their facemask 
and visor prior to attachment of the respirometry mask – this will always be the 
last step before testing commences; the experimenter will continue to wear 
(FFP3 mask, visor and apron. The experimenter will attach the respirometry 
mask. Once devices have been attached, the second step is the testing/data 
collection (including warm up and cool down). Testing will be undertaken as 
normal using all the standard equipment (e.g. motion capture reflective 
markers, exercise testing with ECG/EMG, accelerometers, respirometry). 
During the exercise test, participants will be asked to remove their mask and 
visor (placing this on a trolley) just prior to starting, after which the test will 
proceed as normal. During this step the experimenters and participant 
maintain social distancing > 2 m and the experimenters will continue to wear 
PPE. In the third step, following completion of the test, the participant will be 
helped off the treadmill, invited to wash their hands, and asked that as soon 
as they feel comfortable to put their mask back on. Any attached research 
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equipment (accelerometers, reflective markers, respirometry equipment etc) 
will then be removed. Accelerometers and markers will be removed first by the 
experimenter (this takes ~1 min). When used, the respirometry mask will be 
removed last by the experimenter and immediately placed inside a single use 
plastic bag, taking care not to contaminate the outside of the bag. The 
experimenter will then remove their gloves, sanitise their hands and apply new 
gloves. Equipment removal requires the experimenter and participant to be 
closer than 1 m for a period up to 5 minutes. Once the participant feels fully 
recovered, they will be allowed to leave. The participant will be asked to use 
the hand-sanitiser as they leave the lab, exiting via the Miall level 4 entrance.  
 
Once the participant has left, experimenters will remove PPE. During removal, 
the outside of PPE will be considered to be contaminated and immediately 
placed in clinical waste bags. The experimenters will then sanitise their hands, 
lock the lab and leave a red sign on the door to highlight that the area is 
currently ‘contaminated’. They will then return after 1 hour to disinfect the lab, 
all lab equipment and the lab door handles. When leaving the lab after 
cleaning, the red ‘contaminated’ sign will be changed to a green ‘clean’ sign 
on the door. Respirometry equipment and visor will be disinfected during the 
1hr the lab is left empty, and then sterilised (e.g. using ethylene oxide). The 
bag used to transport the contaminated respirometry equipment will be 
disposed of in clinical waste. 
 
General  
1. Experimenters will have read and understood the relevant sections of the 

general guidelines around interaction during the COVID-19 pandemic at 
https://www.gov.uk/guidance/working-safely-during-coronavirus-covid-
19/labs-and-research-facilities, and this SWP to ensure they understand 
the protocol for work in this area.  

2. Experimenters will confirm they are not considered clinically extremely 
vulnerable and that members of their family units they live with do not fall 
into this category (as detailed under point 2 in the above guidelines) 

3. Experimenters will consider their symptom status, and check that of the 
participant before either leave home to travel to the lab. 

4. Experimenters will inform their PI (Graham Askew/ Andy Brown) or Jackie 
Goodall if their PI cannot be reached immediately if they have any COVID-
19 symptoms including a high temperature, a new, continuous cough and/ 
or a loss or change to sense of smell or taste. As described above, this 
will be recorded for each visit to the lab 
(https://www.nhs.uk/conditions/coronavirus-covid-19/check-if-you-have-
coronavirus-symptoms/) 
 

Arriving at and leaving University 
1. Experimenters will only be in the lab area when necessary. All work that 

can be done from home will be done from home.  
2. All lab visits will be booked in using the ARIA booking system.  
3. On arrival, the first person will wipe down communal areas in the lab 

corridor (e.g. door handles). The green ‘clean’ sign on the door will confirm 
that the lab area is clean.   
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4. Any security and H&S issues will be reported to the PI.  
5. Before setting up the lab, a precautionary clean of the area will be 

conducted. 
6. When testing is finished the lab and all equipment will be cleaned using 

the appropriate solutions (e.g. commercial anti-viral cleaning sprays) and 
green signs indicating the labs are clean will be put on the doors so this is 
clear to other users of the area. 

7. We will clean the lab areas ourselves. This will minimise the number of 
users entering the space, and ensure that our Green and Red sign system 
works. Any rubbish (clinical and domestic waste) will be put in a 
designated spot for pick-up.  

8. Respirometry equipment and visor will be disinfected during the 1hr the 
lab is left empty, and then sterilised (e.g. using ethylene oxide). Any 
rubbish (clinical and domestic waste) will be put in a designated spot for 
pick-up. 
 

Protocol for when notified of positive COVID-19 symptoms 
If any symptoms are reported testing will be cancelled, the individual reporting 
symptoms (experimenter/ researcher or participant) will be advised to get a 
test as soon as possible and stay home until the results of this test are known.  
Participant (prior to visit 1): If symptoms are reported or the participant tested 
positive for COVID-19 prior to the first test, the experiment will be cancelled. 
The participant will be advised that they must stay at home and follow the 
government advice to book a test through the NHS Test and Wave service. If 
this is prior to the first visit, no further action will be taken. The participant will 
be allowed to take part if more than 14-days have passed since the onset of 
symptoms and/ or positive test result, and they are fit to do so.  
Participant (if test positive after first visit): If a participant tests positive, they 
will be advised to follow NHS guidance and self-isolate for 14-days. The 
researcher (or PI) will also inform all participants who have been involved in 
the lab testing in the previous 14-days that there has been a positive COVID-
19 test in those that have used the facility, but testing within the labs will be 
allowed to continue. The participant who tested positive will be allowed to 
restart/continue the study if more than more than 14-days have passed since 
the positive test result, and they are fit to do so.  
Experimenter/ Researcher: A researcher who is self isolating or tests positive 
for COVID-19, must inform the University of Leeds in the following ways: (i) 
inform their line manager (PI (Graham Askew/ Andy Brown/ Jackie Goodall); 
(ii) report the positive test to the University via the website 
(https://coronavirus.leeds.ac.uk/) email (reportcovid@leeds.ac.uk) or phone 
(0113 343 8777); (iii) The Faculty H&S manager (Katherine Wilson 
k.m.wilson1@leeds.ac.uk). The individual must not attend campus if they 
have any symptoms or tested positive for COVID-19. They must stay at home 
and follow the government advice to book a test through the NHS Test and 
Wave service. If the researcher received a negative test result for COVID-19, 
they should advise their line manager/PI and discuss the circumstances with 
them. If they experienced symptoms, took a covid test and received a negative 
result, then they will be free to return to work when they feel well enough to do 
so. But if the researcher was required to self-isolate as a close contact of a 
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person who had tested positive, then a negative test result does not change 
the self-isolation period and they must continue to self-isolate. The researcher 
(or PI) will also inform all participants who have been involved in the lab testing 
in the previous 14-days that there has been a positive COVID-19 test in those 
that have used the facility, but testing within the labs will be allowed to 
continue. 
 
While working at University 
1. Typically, there will be no lone working. However, the following procedures 

will be followed to cover both lone, and small group working:  
a. When 2 or more users are in the building users will check the 

wellbeing of their colleagues at least hourly (typically 
researchers will be working together, so this is not a concern). 

b. When only 1 user is in the building they will contact their PI, or 
another delegated person, on a regular basis (hourly) to confirm 
all is well.  

2. Miall Level 4 has 2 communal toilets in close proximity, all users of this 
facility will observe strict hygiene procedures at all times. 

3. Experimenters will bring in their own drinking water and snacks/food, and 
will consume this in the office area (Garstang 5.61) while observing a safe 
distance of at least 2 m. Users of this space must ensure that occupancy 
does not exceed the agreed capacity.  

4. Equipment in labs will be used at the same time by multiple people, but 
while in the lab researchers will wear gloves and a mask.  

5. As a general principle, standard government hygiene guidelines will be 
followed while in the university: wash hands regularly for 20 s with soap, 
coughs and sneezes should be into a tissue (or elbow), followed by 
handwashing. Hands will also be washed when taking off gloves before 
leaving the lab.  

6. Face coverings will be worn in lab areas, but is not at present required 
when working inside buildings on University campus – social distancing 
guidelines will be followed. Experimenters can, however, wear a mask if 
they choose.   

7. Levels of hand sanitiser, hand wash etc. will be monitored, and reported 
to building services if levels fall too low.  

8. All standard emergency procedures will be followed – e.g. in case of the 
fire alarm going off, standard procedures to leave immediately will be 
followed, along with social distancing where possible. We will ask 
experimenters to carry a small bottle of hand sanitiser with them, so that if 
they have to leave immediately, they will still have the ability to sanitise 
their hands.  

9. All first aid facilities (e.g. first aid box, automatic defibrillator, oxygen) 
remain in place, along with the standard protocols – for emergencies, dial 
9-999 (if dialling from a university phone) for an ambulance followed by 
32222 to inform security.  

10. If there are any concerns about safety, everyone is encouraged to discuss 
there with: the designated area PI, HR contact, or a member of the Health 
and Safety Team (safety@leeds.ac.uk). 

 



 241 

Ordering and receiving goods 
1. Orders will be placed from home. 

 
2. Consumables will be delivered to FBS Goods Inwards is opened ALL 

deliveries will be arranged for Goods Inwards, Level 5 Roger Stephens 
Building. Social Distancing guidelines will be followed when picking up 
orders. 

Any physical problems with Building / Infrastructure / Fire / First Aid:  
Contact security 0113 343 2222, Security@Leeds.ac.uk 

Any problems with equipment, ordering, lab issues etc: 
Contact PI 

Any other problems: 
Contact Graham Askew: 07904 165783, 

g.n.askew@leeds.ac.uk 
 
Area specific details 
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Appendix E: Participant information sheet 

 

Participant Information Sheet 
Accelerometer-based gait analysis 

 
You are being invited to take part in a research project. Before you decide to 
participate, it is important for you to understand why the research is being done 
and what it will involve. Please take time to read the following information 
carefully and discuss it with others if you wish. Ask a member of the research 
team if there is anything that is not clear or if you would like more information. 
Take time to decide whether or not you wish to take part. 
 
What is the purpose of the project? 
To understand how wearable activity monitors, known as inertial measurement 
units (IMU) can be used to characterise gait during running. By doing so, we 
hope to provide a tool that can help with training and rehabilitation of runners.  
 
Why have I been chosen? 
You have been chosen because you are healthy and have not been advised 
against participating in physical activity. You are willing and able to participate 
in our study and are an experienced runner. 
 
What do I have to do? 
Prior to visiting the laboratory, you are asked to maintain your usual diet and 
activity level and refrain from drinking alcohol. You should bring with you 
appropriate clothing in which to exercise. Females participants will need to 
wear tight-fitting shorts and a vest/ crop top; male participants, tight-fitting 
shorts and running vest/ tight-fitting top (male participants may elect to run 
without a top). Note that tight-fitting shorts are required to prevent obstruction 
of markers that will be attached to your body – see below. You can also bring 
something warm to wear after the study. You will need to wear your usual 
clean running shoes. Note that changing and showering facilities are available 
at the laboratory. 
You will be asked to visit the Biomechanics Laboratory (Miall Building) at the 
University of Leeds at a pre-arranged time, on up to two occasions, for 1-2 
hours per session. A member of the research team will attach an activity 
monitor to each ankle, light-weight markers to your body (e.g. ankles, knee, 
hip, shoulder, etc) using double sided tape and a heart rate monitor. The 
member of the research team may be male or female – if you do not wish the 
member of the research team to attach the activity monitor or markers to your 
body, you may withdraw from the study and there will not be any negative 
consequences. Your movements will be recorded using a motion capture 
system and activity monitor; a video camera may also be used.  
*Optional statements that may be included for some participants: 
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Whilst you are exercising, you will wear a mask which will be used to collect 
your expired air for analysis.  
The activity of some of your leg muscles will be recorded using electrodes 
attached to your skin. To attach the electrodes we may shave hair at the 
electrode attachment site and cleanse the skin.  
Weights will be attached to one of your ankles or thigh. 
**One of the following two statements will be included: 
You will run on a treadmill at a range of speeds, covering the range 10-18 
km/h; the speeds will be presented in a random order. At each speed you will 
run for up to, approximately, 5 minutes with recovery periods in between each 
speed.  
You will run on a treadmill at incrementally increasing speeds until you reach 
voluntary exhaustion.  
 
What are the possible disadvantages and risks of taking part? 
There is a small chance that you could trip or fall or of over-exertion during the 
exercise testing. There is a small chance that you may experience an injury, 
such as a muscle pull, sprain, tendonitis or post-exercise muscle soreness. 
There is also a small risk of cardiac arrest or sudden death (0.54 incidents per 
100,000 participants in long distance running races). To minimise this risk, we 
will ask you to complete a pre-exercise questionnaire to assess your suitability 
to participate in the study. We will also give you time to familiarise yourself with 
running on the treadmill. We will ask you to perform warm-up and cooling-
down exercises at the start and end of the tasks. At least one person trained 
in resuscitation (CPR) will be present during each test, and an automated 
external defibrillator will be available. 
If you are harmed by taking part in this research project, there are no special 
compensation arrangements. If you are harmed due to someone’s negligence 
then you may have grounds for legal action, but you may have to pay for it. 
Regardless of this, if you have any concerns about any aspect of the way in 
which you have been approached or treated during the course of this study, 
you may complain to the University Secretary. 
 
What are the possible benefits of taking part? 
Whilst there are no immediate benefits for those people participating in the 
project, it is hoped that this work will lead to the development of a tool that 
allows gait quality to be assessed in the field, and will be of interest to athletic 
coaches and runners.  
 
Do I have to take part? 
It is up to you to decide whether or not to take part. If you do decide to take 
part you will be given this information sheet to keep and be asked to sign a 
consent form. You can still withdraw at any time and you do not have to give 
a reason. If you do decide to withdraw or not participate in the study, there will 
not be any negative consequences, however, once your anonymised data are 
pooled for analysis it will not be possible to withdraw your data from the study.  
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Your participation in this study is entirely voluntary and without any specific 
benefits. 
 
Will my taking part in this project be kept confidential? 
If it is possible to identify you from the data, either directly or indirectly, the 
data is classified as personal data.  This means the storage and use of your 
data will be handled in accordance with the Data Protection Act (2018), 
General Data Protection Regulation (GDPR), the Human Rights Act (1998), 
and the University's Code of Practice and Data Protection policies.  
All of your data will be anonymised, which means that you will not be 
identifiable in any reports or publications. Some images and video recordings 
may be used to publicise the research (e.g. scientific publication, internal 
reports, at scientific conferences, on University website or for use by the 
media). In these recordings it may be possible to identify you, however, it will 
not be possible to link you with the specific research data that relates to you. 
 
Research participants privacy notice 
For more information on how and why the University uses personal data for 
research – see https://dataprotection.leeds.ac.uk/wp- 
content/uploads/sites/48/2019/02/Research-Privacy-Notice.pdf  
 
Ethics 
This study has been reviewed and given a favourable opinion by BIOSCI 
Faculty Research Ethics Committee on 27.06.2019, ethics reference BIOSCI 
18-016.  
 
Contact for further information 
If you would like further information about the study and what is being asked 
of you, please contact a member of the research team: 
 
Danielle Charles 
Faculty of Biological Sciences, University of Leeds, LS2 9JT, 
email: bsdc@leeds.ac.uk   
 
Dr. Graham Askew 
Faculty of Biological Sciences, University of Leeds, LS2 9JT, 
email: g.n.askew@leeds.ac.uk, tel: 0113-343-2897 
 

Thank you for taking the time to read through this information 
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Appendix F: Participant consent form 

 

 

Consent to take part in Accelerometer-based gait analysis for 
quantitative assessment of physical activity outside the 
laboratory 
 

Add your 
initials next to 
the statement 
if you agree 

I confirm that I have read and understand the information sheet 
dated explaining the above research project and I have had the 
opportunity to ask questions about the project. 

 

I understand that my participation is voluntary and that I am 
free to withdraw** at any time without giving any reason and 
without there being any negative consequences. In addition, 
should I not wish to answer any question(s) I am free to decline.  

 

I give permission for members of the research team to have 
access to my anonymised responses. I understand that my 
name will not be linked with the research materials, and I will 
not be identified or identifiable in the report or reports that result 
from the research.   
I understand that my responses will be kept strictly confidential.  

 

I agree for the data (including motion capture/ video data) 
collected from me to be stored and used in relevant future 
research in an anonymised form.  All data collected may be 
used for different purposes in the future. 

 

I understand that from the video data and images it may be 
possible to identify me, however, it will not be possible to link 
me with my specific research data.   

 

I agree that images and video recordings may be used to 
publicise the research (e.g., in scientific publication, internal 
reports, at scientific conferences, on the University website or 
for use by the media)  

 

I understand that other genuine researchers will have access 
to this data only if they agree to preserve the confidentiality of 
the information as requested in this form. 

 

I understand that relevant sections of the data collected during 
the study, may be looked at by auditors from the University of 
Leeds where it is relevant to my taking part in this research. I 
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give permission for these individuals to have access to my 
records. 

I agree to take part in the above research project and will inform 
the lead researcher should my contact details change during 
the project and, if necessary, afterwards. 

 

Name of participant  

Participant’s signature  

Date  

Name of lead researcher 
[or person taking consent]  

Signature  

Date*  

Ethics Committee 
Reference BIOSCI-18-016 approved on 27.06.2019 

 
*To be signed and dated in the presence of the participant.  
** Should you choose to withdraw from the study, data not yet pooled for analysis will not be used. If 
any further information is needed, please contact Danielle Charles (bsdc@leeds.ac.uk). 
Once this has been signed by all parties the participant should receive a copy of the signed and dated 
participant consent form, the letter/ pre-written script/ information sheet and any other written information 
provided to the participants. A copy of the signed and dated consent form should be kept with the 
project’s main documents which must be kept in a secure location.  
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Appendix G: Full Igor code for accelerometry processing 
Igor v8 script for accelerometry data.   

#pragma TextEncoding = "UTF-8" 
#pragma rtGlobals=3  // Use modern global access method 
and strict wave access. 
 
 
//Load waves LL 
macro load_data_Acc_LL() 
•Print date() 
•Rename Acc_x,Acc_x_LL; Rename Acc_y,Acc_y_LL; Rename 
Acc_z,Acc_z_LL; Rename 
Time_dd_hh_mm_ss_sss,Time_dd_hh_mm_ss_sss_Acc_LL;  
•SetScale/P x 0,0.025,"", 
Acc_z_LL,Acc_x_LL,Acc_y_LL,Time_dd_hh_mm_ss_sss_Acc_LL 
end 
 
//Load waves RL 
macro load_data_Acc_RL() 
•Print date() 
•Rename Acc_x,Acc_x_RL; Rename Acc_y,Acc_y_RL; Rename 
Acc_z,Acc_z_RL; Rename 
Time_dd_hh_mm_ss_sss,Time_dd_hh_mm_ss_sss_Acc_RL;  
•SetScale/P x 0,0.025,"", 
Acc_z_RL,Acc_x_RL,Acc_y_RL,Time_dd_hh_mm_ss_sss_Acc_RL 
•Display Acc_z_LL,Acc_x_LL,Acc_y_LL, Acc_z_RL,Acc_x_RL,Acc_y_RL as 
"Full Wave for acc xyz axes waves from the left leg (LL) (blue) and 
right leg (RL) (red)" 
•ModifyGraph lsize=0.25,rgb(Acc_x_RL)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_RL)=(32792,65535,1);DelayUpdate 
•ModifyGraph lsize=0.25,rgb(Acc_x_LL)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_LL)=(32792,65535,1);DelayUpdate 
•Label bottom "Time (s)"; DelayUpdate 
•Label left "Radial (x axis) acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
end 
 
//Segment – Full wave LL (MUST BE PRECISE ON THE END OF THE WAVE 
PLACEMENT DUE TO LL/RL DIFFERENCES) 
macro Segment_Fullwave_LL () 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL Acc_x_LL_Fullwave; 
DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL Acc_y_LL_Fullwave; 
DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL Acc_z_LL_Fullwave; 
DelayUpdate 
end 
 
//Segment – Full wave RL 
macro Segment_Fullwave_RL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL Acc_x_RL_Fullwave; 
DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL Acc_y_RL_Fullwave; 
DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL Acc_z_RL_Fullwave; 
DelayUpdate 
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•Display Acc_x_LL_Fullwave,Acc_y_LL_Fullwave,Acc_z_LL_Fullwave as 
"Fullwave segment for acc xyz axes waves from the left leg (LL) 
(blue) and right leg (RL) (red)"; DelayUpdate 
•AppendToGraph Acc_x_RL_Fullwave, Acc_y_RL_Fullwave, 
Acc_z_RL_Fullwave; DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_LL_Fullwave)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_RL_Fullwave)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_LL_Fullwave)=(32792,65535,1);DelayUpdate 
•ModifyGraph rgb(Acc_y_RL_Fullwave)=(32792,65535,1);DelayUpdate 
•Label bottom "Time (s)";DelayUpdate 
•Label left "Acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
end 
 
//Set start point and scaling LL Blue & INTERPOLATE 
//change number of points and scaling for LL 
macro Set_start_point_scaling_interpolate_LL_blue() 
•Print date() 
•SetScale/P x 0,0.025,"", 
Acc_x_RL_Fullwave,Acc_y_RL_Fullwave,Acc_z_RL_Fullwave; Delayupdate 
SetScale/P x 0,0.0249776521,"", 
Acc_x_LL_Fullwave,Acc_y_LL_Fullwave,Acc_z_LL_Fullwave 
 
//Interpolate points LL Blue 
//The number needs to be filled in here at exactly the same start 
and last points i.e. fit the LL (longer wave) into the RL wave 
length (shorter wave) 
//Put in number points of RL wave 
MACRO Interpolate_LL_Fullwave() 
•Interpolate2/T=1/N=384478/Y=Acc_x_LL_Fullwave_I Acc_x_LL_Fullwave; 
Delayupdate 
•Interpolate2/T=1/N=384478/Y=Acc_y_LL_Fullwave_I Acc_y_LL_Fullwave; 
Delayupdate 
•Interpolate2/T=1/N=384478/Y=Acc_z_LL_Fullwave_I Acc_z_LL_Fullwave; 
Delayupdate 
DeletePoints 384478,1, 
Acc_x_RL_Fullwave,Acc_y_RL_Fullwave,Acc_z_RL_Fullwave 
•Display Acc_x_LL_Fullwave_I, Acc_y_LL_Fullwave_I, 
Acc_z_LL_Fullwave_I, Acc_x_RL_Fullwave, Acc_y_RL_Fullwave, 
Acc_z_RL_Fullwave as "Fullwave segment interpolated for acc xyz 
axes waves from the left leg (LL) (blue) and right leg (RL) (red)" 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_LL_Fullwave_I)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_RL_Fullwave)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_LL_Fullwave_I)=(32792,65535,1);DelayUpdate 
•ModifyGraph rgb(Acc_y_RL_Fullwave)=(32792,65535,1);DelayUpdate 
•Label bottom "Time (s)"; DelayUpdate 
•Label left "Acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
//Fullwave Segment tables to transfer into Matlab 
•Edit/K=0 root:Acc_x_LL_Fullwave_I, root:Acc_y_LL_Fullwave_I, 
root:Acc_z_LL_Fullwave_I, root:Acc_x_RL_Fullwave, 
root:Acc_y_RL_Fullwave, root:Acc_z_RL_Fullwave 
end 
 
//Static Segment LL Blue – average section to paste into Matlab 
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macro Segment_Static_LLRL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Fullwave_I 
Acc_x_LL_STATIC;Delayupdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Fullwave_I 
Acc_y_LL_STATIC;Delayupdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Fullwave_I 
Acc_z_LL_STATIC;Delayupdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Fullwave 
Acc_x_RL_STATIC;Delayupdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Fullwave 
Acc_y_RL_STATIC;Delayupdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Fullwave 
Acc_z_RL_STATIC;Delayupdate 
Display 
Acc_x_RL_STATIC,Acc_y_RL_STATIC,Acc_z_RL_STATIC,Acc_x_LL_STATIC,Acc
_y_LL_STATIC,Acc_z_LL_STATIC as "Static segment for acc xyz axes 
waves from the left leg (LL) (blue) and right leg (RL) 
(red)";Delayupdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_LL_STATIC)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_RL_STATIC)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_LL_STATIC)=(32792,65535,1);DelayUpdate 
•ModifyGraph rgb(Acc_y_RL_STATIC)=(32792,65535,1);DelayUpdate 
•Label bottom "Time (s)";DelayUpdate 
•Label left "Acceleration (g)";DelayUpdate 
•Legend/C/N=text0/A=MC 
•Edit/K=0  Acc_x_RL_STATIC, Acc_y_RL_STATIC, Acc_z_RL_STATIC, 
Acc_x_LL_STATIC, Acc_y_LL_STATIC, Acc_z_LL_STATIC 
end 
 
//Rescale waves from matlab - name them Acc_x_LL_Rotated, etc.  
macro Rescale_filter_rotated_waves_from_matlab() 
•Print date() 
•SetScale/P x 0,0.025,"", Acc_x_RL_Rotated, Acc_y_RL_Rotated, 
Acc_z_RL_Rotated,Acc_x_LL_Rotated, Acc_y_LL_Rotated, 
Acc_z_LL_Rotated; Delayupdate 
 
//IIR (direct from I) filter 3rd order low pass (20 Hz) and high 
pass (1 Hz) AO 19/06/23 
//IIR (direct from I) filter 3rd order low pass (20 Hz) and high 
pass (0.5 Hz) AO 02/05/23 
//Filter 1st order high and low pass AO 250123 
//1st order low pass being 20Hz (Nyquist frequency), high pass 
being 0.5 Hz (0.05 smallest detecatable frequency using 40Hz) 
•Duplicate/O Acc_x_LL_Rotated, Acc_x_LL_Filtered; DelayUpdate 
•Duplicate/O Acc_y_LL_Rotated, Acc_y_LL_Filtered; DelayUpdate 
•Duplicate/O Acc_z_LL_Rotated, Acc_z_LL_Filtered; DelayUpdate 
•Duplicate/O Acc_x_RL_Rotated, Acc_x_RL_Filtered; DelayUpdate 
•Duplicate/O Acc_y_RL_Rotated, Acc_y_RL_Filtered; DelayUpdate 
•Duplicate/O Acc_z_RL_Rotated, Acc_z_RL_Filtered; DelayUpdate 
•FilterIIR/LO=0.5/HI=0.0249766/ORD=3 Acc_x_LL_Filtered 
•FilterIIR/LO=0.5/HI=0.0249766/ORD=3 Acc_y_LL_Filtered 
•FilterIIR/LO=0.5/HI=0.0249766/ORD=3 Acc_z_LL_Filtered 
•FilterIIR/LO=0.5/HI=0.0249766/ORD=3 Acc_x_RL_Filtered 
•FilterIIR/LO=0.5/HI=0.0249766/ORD=3 Acc_y_RL_Filtered 
•FilterIIR/LO=0.5/HI=0.0249766/ORD=3 Acc_z_RL_Filtered 
•Display Acc_x_LL_Filtered, Acc_y_LL_Filtered, Acc_z_LL_Filtered, 
Acc_x_RL_Filtered, Acc_y_RL_Filtered, Acc_z_RL_Filtered as "Full 
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Wave filtered for acc xyz axes waves from the left leg (LL) (blue) 
and right leg (RL) (red)" 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_LL_Filtered)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_RL_Filtered)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_RL_Filtered)=(32792,65535,1);DelayUpdate 
•ModifyGraph rgb(Acc_y_LL_Filtered)=(32792,65535,1);DelayUpdate 
•Label bottom "Time (s)";DelayUpdate 
•Label left "Acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
end 
 
 
//SPLIT FILTERED WAVES 
MACRO Split_filtered_wave_LL() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Filtered 
Acc_x_LL_Filtered1; DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Filtered 
Acc_y_LL_Filtered1; DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Filtered 
Acc_z_LL_Filtered1; DelayUpdate 
END 
 
MACRO Split_filtered_wave_RL() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Filtered 
Acc_x_RL_Filtered1; DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Filtered 
Acc_y_RL_Filtered1; DelayUpdate 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Filtered 
Acc_z_RL_Filtered1; DelayUpdate 
•Display Acc_x_LL_Filtered1,Acc_y_LL_Filtered1,Acc_z_LL_Filtered1 
as "Filtered segment for acc xyz axes waves from the left leg (LL) 
(blue) and right leg (RL) (red)"; DelayUpdate 
•AppendToGraph Acc_x_RL_Filtered1, Acc_y_RL_Filtered1, 
Acc_z_RL_Filtered1; DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_LL_Filtered1)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
lsize=0.25,rgb(Acc_x_RL_Filtered1)=(1,16019,65535);DelayUpdate 
•ModifyGraph rgb(Acc_y_LL_Filtered1)=(32792,65535,1);DelayUpdate 
•ModifyGraph rgb(Acc_y_RL_Filtered1)=(32792,65535,1);DelayUpdate 
•Label bottom "Time (s)";DelayUpdate 
•Label left "Acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
END 
 
//Delete ...filtered waves 
 
//Rename and rescale filtered waves from filtered 1 > filtered to 
the code works again 
MACRO Rename_and_rescale_filtered1_waves() 
Rename Acc_x_LL_Filtered1,Acc_x_LL_Filtered 
Rename Acc_y_LL_Filtered1,Acc_y_LL_Filtered 
Rename Acc_z_LL_Filtered1,Acc_z_LL_Filtered 
Rename Acc_x_RL_Filtered1,Acc_x_RL_Filtered 
Rename Acc_y_RL_Filtered1,Acc_y_RL_Filtered 
Rename Acc_z_RL_Filtered1,Acc_z_RL_Filtered 
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SetScale/P x 0,0.025,"", 
Acc_x_LL_Filtered,Acc_y_LL_Filtered,Acc_z_LL_Filtered 
SetScale/P x 0,0.025,"", 
Acc_x_RL_Filtered,Acc_y_RL_Filtered,Acc_z_RL_Filtered 
END 
 
 
 
//ANALYSIS 
//INCLINE_1_16kmh 
//Segment and rename waves VF 1% incline testing LL and RL 
macro INC_1_16kmh_segment_LLRL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Filtered 
Acc_x_LL_INC_1_16kmh 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Filtered 
Acc_y_LL_INC_1_16kmh 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Filtered 
Acc_z_LL_INC_1_16kmh 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Filtered 
Acc_x_RL_INC_1_16kmh 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Filtered 
Acc_y_RL_INC_1_16kmh 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Filtered 
Acc_z_RL_INC_1_16kmh 
•SetScale/P x 0,0.025,"", 
Acc_x_RL_INC_1_16kmh,Acc_y_RL_INC_1_16kmh,Acc_z_RL_INC_1_16kmh, 
Acc_x_LL_INC_1_16kmh,Acc_y_LL_INC_1_16kmh,Acc_z_LL_INC_1_16kmh 
•Display Acc_x_LL_INC_1_16kmh, Acc_x_RL_INC_1_16kmh as "VF 1% 
incline testing at 16 km/h for acc x axis wave from the left leg 
(LL) (blue) and right leg (RL) (red)" 
•ModifyGraph rgb(Acc_x_LL_INC_1_16kmh)=(1,16019,65535) 
•Label bottom "Time (s)" 
•Label left "Radial (x axis) acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo  
 
//FFT of VF 1% incline testing left leg (LL) and right leg (RL) - 
must be an even number of rows selected i.e. 0-3999 
MACRO INC_1_16kmh_FFT_INT_acc_x_LLRL() 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_RL_INC_1_16kmh 
Acc_x_RL_INC_1_16kmh;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_RL_INC_1_16kmh 
Acc_y_RL_INC_1_16kmh;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_RL_INC_1_16kmh 
Acc_z_RL_INC_1_16kmh;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_LL_INC_1_16kmh 
Acc_x_LL_INC_1_16kmh;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_LL_INC_1_16kmh 
Acc_y_LL_INC_1_16kmh;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_LL_INC_1_16kmh 
Acc_z_LL_INC_1_16kmh;DelayUpdate 
•Display FFT_Acc_x_LL_INC_1_16kmh as "Fast Fourier Transform (FFT) 
of the VF 1% incline testing at 16 km/h for acc x axis waves from 
the left leg (LL) (blue) and right leg (RL) (red)" 
•Appendtograph FFT_Acc_x_RL_INC_1_16kmh 
•ModifyGraph rgb(FFT_Acc_x_LL_INC_1_16kmh)=(1,16019,65535) 
•ModifyGraph lstyle(FFT_Acc_x_LL_INC_1_16kmh)=2 
•Label bottom "Frequency (Hz)" 
•Label left "Cumulative Magnitude (g)" 
•Legend/C/N=text0/A=MC 
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•ShowInfo 
 
//Run multipeak fitting 
 
//Integration of the FFT for VF 1% incline testing at 16 km/h.  
•Integrate 
FFT_Acc_x_LL_INC_1_16kmh/D=FFT_Acc_x_LL_INC_1_16kmh_CDF;DelayUpdate 
•Integrate 
FFT_Acc_x_RL_INC_1_16kmh/D=FFT_Acc_x_RL_INC_1_16kmh_CDF;DelayUpdate 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_LL_INC_1_16kmh_CDF /D 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_RL_INC_1_16kmh_CDF /D 
•Display FFT_Acc_x_LL_INC_1_16kmh_CDF, 
FFT_Acc_x_RL_INC_1_16kmh_CDF, fit_FFT_Acc_x_LL_INC_1_16kmh_CDF, 
fit_FFT_Acc_x_RL_INC_1_16kmh_CDF as "CDF of the FFT for VF 1% 
incline testing at 16 km/h for acc x axis wave from the left leg 
(LL) (blue) and right leg (RL) (red)";DelayUpdate 
•ModifyGraph 
rgb(FFT_Acc_x_RL_INC_1_16kmh_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_RL_INC_1_16kmh_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(FFT_Acc_x_LL_INC_1_16kmh_CDF)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_LL_INC_1_16kmh_CDF)=(1,16019,65535);DelayUpdate 
•Label bottom "Frequency (Hz)" 
•Label left "Cumulative Magnitude (g)" 
•Legend/C/N=text0/A=MC 
 
//Find CDF level at 25% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_1_16kmh_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_1_16kmh_CDF)*.25) 
•findLevel fit_FFT_Acc_x_RL_INC_1_16kmh_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_1_16kmh_CDF)*.25) 
 
//Find CDF level at 50% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_1_16kmh_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_1_16kmh_CDF)*.5) 
•findLevel fit_FFT_Acc_x_RL_INC_1_16kmh_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_1_16kmh_CDF)*.5) 
 
//Find CDF level at 75% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_1_16kmh_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_1_16kmh_CDF)*.75) 
•findLevel fit_FFT_Acc_x_RL_INC_1_16kmh_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_1_16kmh_CDF)*.75) 
 
//Run multipeakfit2 
 
//Show table from multipeakfit2 
macro Table_multipeakfit2() 
•Edit/K=0 
root:Packages:MultiPeakFit2:MPF_SetFolder_1:W_AutoPeakInfo 
end 
 
//ANALYSIS 
//INCLINE_0 
//Segment and rename waves VF 0% incline testing LL and RL 
macro INC_0_segment_LLRL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Filtered Acc_x_LL_INC_0 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Filtered Acc_y_LL_INC_0 
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•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Filtered Acc_z_LL_INC_0 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Filtered Acc_x_RL_INC_0 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Filtered Acc_y_RL_INC_0 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Filtered Acc_z_RL_INC_0 
•SetScale/P x 0,0.025,"", 
Acc_x_RL_INC_0,Acc_y_RL_INC_0,Acc_z_RL_INC_0, 
Acc_x_LL_INC_0,Acc_y_LL_INC_0,Acc_z_LL_INC_0 
•Display Acc_x_LL_INC_0, Acc_x_RL_INC_0 as "VF 0% incline testing 
at 12 km/h for acc x axis wave from the left leg (LL) (blue) and 
right leg (RL) (red)" 
•ModifyGraph rgb(Acc_x_LL_INC_0)=(1,16019,65535) 
•Label bottom "Time (s)" 
•Label left "Radial (x axis) acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo  
 
//FFT of VF 0% incline testing left leg (LL) and right leg (RL) - 
must be an even number of rows selected i.e. 0-3999 
//INC_0_FFT_INT_acc_x_LLRL() 
•Print date() 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_RL_INC_0 
Acc_x_RL_INC_0;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_RL_INC_0 
Acc_y_RL_INC_0;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_RL_INC_0 
Acc_z_RL_INC_0;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_LL_INC_0 
Acc_x_LL_INC_0;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_LL_INC_0 
Acc_y_LL_INC_0;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_LL_INC_0 
Acc_z_LL_INC_0;DelayUpdate 
•Display FFT_Acc_x_LL_INC_0 as "Fast Fourier Transform (FFT) of the 
VF 0% incline testing at 12 km/h for acc x axis waves from the left 
leg (LL) (blue) and right leg (RL) (red)" 
•Appendtograph FFT_Acc_x_RL_INC_0 
•ModifyGraph rgb(FFT_Acc_x_LL_INC_0)=(1,16019,65535) 
•ModifyGraph lstyle(FFT_Acc_x_LL_INC_0)=2 
•Label bottom "Frequency (Hz)" 
•Label left "Magnitude (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
 
//Run Analysis> multipeak fitting 
 
//Integration of the FFT for VF 0% incline testing at 12 km/h.  
MACRO INT_0() 
•Print date() 
•Integrate FFT_Acc_x_LL_INC_0/D=FFT_Acc_x_LL_INC_0_CDF;DelayUpdate 
•Integrate FFT_Acc_x_RL_INC_0/D=FFT_Acc_x_RL_INC_0_CDF;DelayUpdate 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_LL_INC_0_CDF /D 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_RL_INC_0_CDF /D 
•Display FFT_Acc_x_LL_INC_0_CDF, FFT_Acc_x_RL_INC_0_CDF, 
fit_FFT_Acc_x_RL_INC_0_CDF, fit_FFT_Acc_x_LL_INC_0_CDF as "CDF of 
the FFT for VF 0% incline testing at 12 km/h for acc x axis wave 
from the left leg (LL) (blue) and right leg (RL) (red)";DelayUpdate 
•ModifyGraph rgb(FFT_Acc_x_RL_INC_0_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_RL_INC_0_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(FFT_Acc_x_LL_INC_0_CDF)=(1,16019,65535);DelayUpdate 
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•ModifyGraph 
rgb(fit_FFT_Acc_x_LL_INC_0_CDF)=(1,16019,65535);DelayUpdate 
•Label bottom "Frequency (Hz)" 
•Label left "Cumulative Magnitude (g)" 
•Legend/C/N=text0/A=MC 
 
//Find CDF level at 25% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_0_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_0_CDF)*.25) 
•findLevel fit_FFT_Acc_x_RL_INC_0_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_0_CDF)*.25) 
 
//Find CDF level at 50% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_0_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_0_CDF)*.5) 
•findLevel fit_FFT_Acc_x_RL_INC_0_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_0_CDF)*.5) 
 
//Find CDF level at 75% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_0_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_0_CDF)*.75) 
•findLevel fit_FFT_Acc_x_RL_INC_0_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_0_CDF)*.75) 
 
//Print area under CDF LL 
•Print area(fit_FFT_Acc_x_LL_INC_0_CDF) 
//Print area under CDF RL 
•Print area(fit_FFT_Acc_x_RL_INC_0_CDF) 
end  
 
//Run multipeakfit2 
 
//Show table from multipeakfit2 
//Table_multipeakfit2_0() 
//•Edit/K=0 
root:Packages:MultiPeakFit2:MPF_SetFolder_1:W_AutoPeakInfo 
 
 
//ANALYSIS 
//INCLINE_1 
//Segment and rename waves VF 1% incline testing LL and RL 
macro INC_1_segment_LLRL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Filtered Acc_x_LL_INC_1 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Filtered Acc_y_LL_INC_1 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Filtered Acc_z_LL_INC_1 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Filtered Acc_x_RL_INC_1 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Filtered Acc_y_RL_INC_1 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Filtered Acc_z_RL_INC_1 
•SetScale/P x 0,0.025,"", 
Acc_x_RL_INC_1,Acc_y_RL_INC_1,Acc_z_RL_INC_1, 
Acc_x_LL_INC_1,Acc_y_LL_INC_1,Acc_z_LL_INC_1 
•Display Acc_x_LL_INC_1, Acc_x_RL_INC_1 as "VF 1% incline testing 
at 12 km/h for acc x axis wave from the left leg (LL) (blue) and 
right leg (RL) (red)" 
•ModifyGraph rgb(Acc_x_LL_INC_1)=(1,16019,65535) 
•Label bottom "Time (s)" 
•Label left "Radial (x axis) acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo  
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//FFT of VF 1% incline testing left leg (LL) and right leg (RL) - 
must be an even number of rows selected i.e. 0-3999 
//INC_1_FFT_INT_acc_x_LLRL() 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_RL_INC_1 
Acc_x_RL_INC_1;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_RL_INC_1 
Acc_y_RL_INC_1;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_RL_INC_1 
Acc_z_RL_INC_1;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_LL_INC_1 
Acc_x_LL_INC_1;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_LL_INC_1 
Acc_y_LL_INC_1;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_LL_INC_1 
Acc_z_LL_INC_1;DelayUpdate 
•Display FFT_Acc_x_LL_INC_1 as "Fast Fourier Transform (FFT) of the 
VF 1% incline testing at 12 km/h for acc x axis waves from the left 
leg (LL) (blue) and right leg (RL) (red)" 
•Appendtograph FFT_Acc_x_RL_INC_1 
•ModifyGraph rgb(FFT_Acc_x_LL_INC_1)=(1,16019,65535) 
•ModifyGraph lstyle(FFT_Acc_x_LL_INC_1)=2 
•Label bottom "Frequency (Hz)" 
•Label left "Magnitude (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
 
//Integration of the FFT for VF 1% incline testing at 12 km/h.  
macro INT_1() 
•Print date() 
•Integrate FFT_Acc_x_LL_INC_1/D=FFT_Acc_x_LL_INC_1_CDF;DelayUpdate 
•Integrate FFT_Acc_x_RL_INC_1/D=FFT_Acc_x_RL_INC_1_CDF;DelayUpdate 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_LL_INC_1_CDF /D 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_RL_INC_1_CDF /D 
•Display FFT_Acc_x_LL_INC_1_CDF, FFT_Acc_x_RL_INC_1_CDF, 
fit_FFT_Acc_x_LL_INC_1_CDF, fit_FFT_Acc_x_RL_INC_1_CDF  as "CDF of 
the FFT for VF 1% incline testing at 12 km/h for acc x axis wave 
from the left leg (LL) (blue) and right leg (RL) (red)";DelayUpdate 
•ModifyGraph rgb(FFT_Acc_x_RL_INC_1_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_RL_INC_1_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(FFT_Acc_x_LL_INC_1_CDF)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_LL_INC_1_CDF)=(1,16019,65535);DelayUpdate 
•Label bottom "Frequency (Hz)" 
•Label left "Cumulative Magnitude (g)" 
•Legend/C/N=text0/A=MC 
 
 
//Find CDF level at 25% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_1_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_1_CDF)*.25) 
•findLevel fit_FFT_Acc_x_RL_INC_1_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_1_CDF)*.25) 
 
//Find CDF level at 50% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_1_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_1_CDF)*.5) 
•findLevel fit_FFT_Acc_x_RL_INC_1_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_1_CDF)*.5) 
 



 256 

//Find CDF level at 75% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_1_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_1_CDF)*.75) 
•findLevel fit_FFT_Acc_x_RL_INC_1_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_1_CDF)*.75) 
 
//Print area under CDF LL 
•Print area(fit_FFT_Acc_x_LL_INC_1_CDF) 
//Print area under CDF RL 
•Print area(fit_FFT_Acc_x_RL_INC_1_CDF) 
end  
//Run multipeakfit2 
 
//Show table from multipeakfit2 
macro Table_multipeakfit2_1() 
•Edit/K=0 
root:Packages:MultiPeakFit2:MPF_SetFolder_1:W_AutoPeakInfo 
end 
 
//ANALYSIS 
//INCLINE_3 
//Segment and rename waves VF 3% incline testing LL and RL 
macro INC_3_segment_LLRL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Filtered Acc_x_LL_INC_3 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Filtered Acc_y_LL_INC_3 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Filtered Acc_z_LL_INC_3 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Filtered Acc_x_RL_INC_3 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Filtered Acc_y_RL_INC_3 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Filtered Acc_z_RL_INC_3 
•SetScale/P x 0,0.025,"", 
Acc_x_RL_INC_3,Acc_y_RL_INC_3,Acc_z_RL_INC_3, 
Acc_x_LL_INC_3,Acc_y_LL_INC_3,Acc_z_LL_INC_3 
•Display Acc_x_LL_INC_3, Acc_x_RL_INC_3 as "VF 3% incline testing 
at 12 km/h for acc x axis wave from the left leg (LL) (blue) and 
right leg (RL) (red)" 
•ModifyGraph rgb(Acc_x_LL_INC_3)=(1,16019,65535) 
•Label bottom "Time (s)" 
•Label left "Radial (x axis) acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo  
 
//FFT of VF 3% incline testing left leg (LL) and right leg (RL) - 
must be an even number of rows selected i.e. 0-3999 
//INC_3_FFT_INT_acc_x_LLRL() 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_RL_INC_3 
Acc_x_RL_INC_3;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_RL_INC_3 
Acc_y_RL_INC_3;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_RL_INC_3 
Acc_z_RL_INC_3;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_LL_INC_3 
Acc_x_LL_INC_3;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_LL_INC_3 
Acc_y_LL_INC_3;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_LL_INC_3 
Acc_z_LL_INC_3;DelayUpdate 
•Display FFT_Acc_x_LL_INC_3 as "Fast Fourier Transform (FFT) of the 
VF 3% incline testing at 12 km/h for acc x axis waves from the left 
leg (LL) (blue) and right leg (RL) (red)" 
•Appendtograph FFT_Acc_x_RL_INC_3 
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•ModifyGraph rgb(FFT_Acc_x_LL_INC_3)=(1,16019,65535) 
•ModifyGraph lstyle(FFT_Acc_x_LL_INC_3)=2 
•Label bottom "Frequency (Hz)" 
•Label left "Magnitude (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
 
//Integration of the FFT for VF 3% incline testing at 12 km/h.  
macro INT_3() 
•Print date() 
•Integrate FFT_Acc_x_LL_INC_3/D=FFT_Acc_x_LL_INC_3_CDF;DelayUpdate 
•Integrate FFT_Acc_x_RL_INC_3/D=FFT_Acc_x_RL_INC_3_CDF;DelayUpdate 
•Display FFT_Acc_x_LL_INC_3_CDF, FFT_Acc_x_RL_INC_3_CDF as "CDF of 
the FFT for VF 3% incline testing at 12 km/h for acc x axis wave 
from the left leg (LL) (blue) and right leg (RL) (red)";DelayUpdate 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_LL_INC_3_CDF /D 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_RL_INC_3_CDF /D 
•ModifyGraph rgb(FFT_Acc_x_RL_INC_3_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_RL_INC_3_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(FFT_Acc_x_LL_INC_3_CDF)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_LL_INC_3_CDF)=(1,16019,65535);DelayUpdate 
•Label bottom "Frequency (Hz)" 
•Label left "Cumulative Magnitude (g)" 
•Legend/C/N=text0/A=MC 
 
 
//Find CDF level at 25% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_3_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_3_CDF)*.25) 
•findLevel fit_FFT_Acc_x_RL_INC_3_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_3_CDF)*.25) 
 
//Find CDF level at 50% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_3_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_3_CDF)*.5) 
•findLevel fit_FFT_Acc_x_RL_INC_3_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_3_CDF)*.5) 
 
//Find CDF level at 75% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_3_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_3_CDF)*.75) 
•findLevel fit_FFT_Acc_x_RL_INC_3_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_3_CDF)*.75) 
 
//Print area under CDF LL 
•Print area(fit_FFT_Acc_x_LL_INC_3_CDF) 
//Print area under CDF RL 
•Print area(fit_FFT_Acc_x_RL_INC_3_CDF) 
end  
//Run multipeakfit2 
 
//Show table from multipeakfit2 
macro Table_multipeakfit2_3() 
•Edit/K=0 
root:Packages:MultiPeakFit2:MPF_SetFolder_1:W_AutoPeakInfo 
end 
 
//ANALYSIS 
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//INCLINE_5 
//Segment and rename waves VF 5% incline testing LL and RL 
macro INC_5_segment_LLRL() 
•Print date() 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_LL_Filtered Acc_x_LL_INC_5 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_LL_Filtered Acc_y_LL_INC_5 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_LL_Filtered Acc_z_LL_INC_5 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_x_RL_Filtered Acc_x_RL_INC_5 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_y_RL_Filtered Acc_y_RL_INC_5 
•Duplicate/R=[pcsr(A),pcsr(B)] Acc_z_RL_Filtered Acc_z_RL_INC_5 
•SetScale/P x 0,0.025,"", 
Acc_x_RL_INC_5,Acc_y_RL_INC_5,Acc_z_RL_INC_5, 
Acc_x_LL_INC_5,Acc_y_LL_INC_5,Acc_z_LL_INC_5 
•Display Acc_x_LL_INC_5, Acc_x_RL_INC_5 as "VF 5% incline testing 
at 12 km/h for acc x axis wave from the left leg (LL) (blue) and 
right leg (RL) (red)" 
•ModifyGraph rgb(Acc_x_LL_INC_5)=(1,16019,65535) 
•Label bottom "Time (s)" 
•Label left "Radial (x axis) acceleration (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo  
 
//FFT of VF 5% incline testing left leg (LL) and right leg (RL) - 
must be an even number of rows selected i.e. 0-3999 
//INC_5_FFT_INT_acc_x_LLRL() 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_RL_INC_5 
Acc_x_RL_INC_5;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_RL_INC_5 
Acc_y_RL_INC_5;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_RL_INC_5 
Acc_z_RL_INC_5;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_x_LL_INC_5 
Acc_x_LL_INC_5;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_y_LL_INC_5 
Acc_y_LL_INC_5;DelayUpdate 
•FFT/OUT=3/RP=[0,3999]/DEST=FFT_Acc_z_LL_INC_5 
Acc_z_LL_INC_5;DelayUpdate 
•Display FFT_Acc_x_LL_INC_5 as "Fast Fourier Transform (FFT) of the 
VF 5% incline testing at 12 km/h for acc x axis waves from the left 
leg (LL) (blue) and right leg (RL) (red)" 
•Appendtograph FFT_Acc_x_RL_INC_5 
•ModifyGraph rgb(FFT_Acc_x_LL_INC_5)=(1,16019,65535) 
•ModifyGraph lstyle(FFT_Acc_x_LL_INC_5)=2 
•Label bottom "Frequency (Hz)" 
•Label left "Magnitude (g)" 
•Legend/C/N=text0/A=MC 
•ShowInfo 
 
//Integration of the FFT for VF 5% incline testing at 12 km/h.  
macro INT_5() 
•Print date() 
•Integrate FFT_Acc_x_LL_INC_5/D=FFT_Acc_x_LL_INC_5_CDF;DelayUpdate 
•Integrate FFT_Acc_x_RL_INC_5/D=FFT_Acc_x_RL_INC_5_CDF;DelayUpdate 
•Display FFT_Acc_x_LL_INC_5_CDF, FFT_Acc_x_RL_INC_5_CDF as "CDF of 
the FFT for VF 5% incline testing at 12 km/h for acc x axis wave 
from the left leg (LL) (blue) and right leg (RL) (red)";DelayUpdate 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_LL_INC_5_CDF /D 
•CurveFit/TBOX=1017 Sigmoid FFT_Acc_x_RL_INC_5_CDF /D 
•ModifyGraph rgb(FFT_Acc_x_RL_INC_5_CDF)=(65535,0,0);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_RL_INC_5_CDF)=(65535,0,0);DelayUpdate 
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•ModifyGraph 
rgb(FFT_Acc_x_LL_INC_5_CDF)=(1,16019,65535);DelayUpdate 
•ModifyGraph 
rgb(fit_FFT_Acc_x_LL_INC_5_CDF)=(1,16019,65535);DelayUpdate 
•Label bottom "Frequency (Hz)" 
•Label left "Cumulative Magnitude (g)" 
•Legend/C/N=text0/A=MC 
 
 
//Find CDF level at 25% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_5_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_5_CDF)*.25) 
•findLevel fit_FFT_Acc_x_RL_INC_5_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_5_CDF)*.25) 
 
//Find CDF level at 50% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_5_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_5_CDF)*.5) 
•findLevel fit_FFT_Acc_x_RL_INC_5_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_5_CDF)*.5) 
 
//Find CDF level at 75% LL/RL 
•findLevel fit_FFT_Acc_x_LL_INC_5_CDF, 
(Wavemax(fit_FFT_Acc_x_LL_INC_5_CDF)*.75) 
•findLevel fit_FFT_Acc_x_RL_INC_5_CDF, 
(Wavemax(fit_FFT_Acc_x_RL_INC_5_CDF)*.75) 
 
//Print area under CDF LL 
•Print area(fit_FFT_Acc_x_LL_INC_5_CDF) 
//Print area under CDF RL 
•Print area(fit_FFT_Acc_x_RL_INC_5_CDF) 
end  
 
//Run multipeakfit2 
 
//Show table from multipeakfit2 
macro Table_multipeakfit2_5() 
•Edit/K=0 
root:Packages:MultiPeakFit2:MPF_SetFolder_1:W_AutoPeakInfo 
end 
 
 
 
 
 

  



 260 

Appendix H: Summary of the data processing and analytical techniques. 

1. Load raw accelerometry waves into Igor Pro v8 as .txt files.  

2. Segment the entire wave into clean activity epochs. 

3. Synchronise starting point on both the red and blue wearable device 

waves. 

4. Change wave scaling and start point on the blue device to match the red 

device. 

5. Interpolate the number of points on the blue device to match that of the 

red device by deleting points.   

6. Segment a 10 second static wave epoch and record the average x, y 

and z wave reading. 

7. Export the full x, y and z waves as .txt files. 

8. Load waves into MATLAB. 

9. Enter the static data average into the MATLAB code. 

10. Perform a sensitivity and bias offset calibration on the raw x, y and z 

waves. 

11. Rotate the three waves. 

12. Export waves as .txt files.  

13. Load waves into Igor Pro v8 as .txt files.  

14. Re-set the wave scaling and the starting point.  

15. Run the filter. 

16. Run the analytical processing script in Igor; 

16.1. Fast Fourier Transform (FFT), 

16.2. Cumulative Distribution Function (CDF), 

16.3. Cross- and auto-correlation (CCF & ACF).    
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Appendix I: Custom MATLAB calibration script for sensitivity, bias 

adjustment, coordinate correction and rotation. 

A custom script was produced in MATLAB R2019a (The MathWorks, Inc., 

Natick, Massachusetts, USA) which was used to apply the pitch 𝑅:	(ρ)	 and 

𝑅,	(ψ) rotation equations, translating the vector angles from the static data when 

it was re-orientate it to 1, 0, 0 and us this to ed these angles to re-orientate the 

dynamic accelerometry data whilst fitted on the shank collected during running.   

[filenames,pathnames]=uigetfile('*.txt','Select txt file'); 
load(fullfile(pathnames,filenames)); 
 
i=1; 
%Using a static section to rotate the data to form 1, 0 , 0.  From 
here the Final angles will be applied to the dynamic data using the 
loop below.  
AccelCoordStaticLL = [0.922693798 0.164624478 0.112014727]; 
AccelCoordStaticRL = [0.952107378 0.228172796 0.149110598]; 
BiasLL = [0.0017852162 0.0572094130 -0.0320330048]; 
BiasRL = [-0.0145921833 0.0209972119 0.0701501689]; 
SensitivityLL = [0.9788961978 1.0183770637 1.0106186978]; 
SensitivityRL = [0.9638366628 1.0006589858 1.0363233118]; 
AccelCoordStaticLL(i,1) = (AccelCoordStaticLL(i,1)-
BiasLL(1))/SensitivityLL(1); 
AccelCoordStaticLL(i,2) = (AccelCoordStaticLL(i,2)-
BiasLL(2))/SensitivityLL(2); 
AccelCoordStaticLL(i,3) = (AccelCoordStaticLL(i,3)-
BiasLL(3))/SensitivityLL(3); 
AccelCoordStaticRL(i,1) = (AccelCoordStaticRL(i,1)-
BiasRL(1))/SensitivityRL(1); 
AccelCoordStaticRL(i,2) = (AccelCoordStaticRL(i,2)-
BiasRL(2))/SensitivityRL(2); 
AccelCoordStaticRL(i,3) = (AccelCoordStaticRL(i,3)-
BiasRL(3))/SensitivityRL(3); 
 
%Gives new z and x values (zeroes out z) LL 
ZaboutYangleLL = -
atan(AccelCoordStaticLL(i,3)/AccelCoordStaticLL(i,1)); 
ZaboutYLL = [cos(ZaboutYangleLL) 0 sin(ZaboutYangleLL); 0 1 0; -
sin(ZaboutYangleLL) 0 cos(ZaboutYangleLL)]; 
CorrectedZangleLL = AccelCoordStaticLL*ZaboutYLL; 
 
%Gives new z and x values (zeroes out z) RL 
ZaboutYangleRL = -
atan(AccelCoordStaticRL(i,3)/AccelCoordStaticRL(i,1)); 
ZaboutYRL = [cos(ZaboutYangleRL) 0 sin(ZaboutYangleRL); 0 1 0; -
sin(ZaboutYangleRL) 0 cos(ZaboutYangleRL)]; 
CorrectedZangleRL = AccelCoordStaticRL*ZaboutYRL; 
 
%Gives new y and x (zeroes out y) LL 
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YaboutZangleLL = 
atan(CorrectedZangleLL(i,2)/CorrectedZangleLL(i,1)); 
YaboutZLL = [cos(YaboutZangleLL) -sin(YaboutZangleLL) 0; 
sin(YaboutZangleLL) cos(YaboutZangleLL) 0; 0 0 1]; 
 
%Gives new y and x (zeroes out y) RL 
YaboutZangleRL = 
atan(CorrectedZangleRL(i,2)/CorrectedZangleRL(i,1)); 
YaboutZRL = [cos(YaboutZangleRL) -sin(YaboutZangleRL) 0; 
sin(YaboutZangleRL) cos(YaboutZangleRL) 0; 0 0 1]; 
 
%Gives x = 1, y = 0, z = 0 for static data LL 
Corrected_Coordinates_LL = 
AccelCoordStaticLL(i,:)*ZaboutYLL*YaboutZLL; 
 
%Gives x = 1, y = 0, z = 0 for static data RL 
Corrected_Coordinates_RL = 
AccelCoordStaticRL(i,:)*ZaboutYRL*YaboutZRL; 
 
 
%Rotate Data  
RotatedDataLL = (DYNAMIC_FILENAME) (:,1:3); 
RotatedDataRL = (DYNAMIC_FILENAME) (:,4:6); 
 
%This produces a new data set which is a copy of itself 
"RotatedData" is the new object and "Data" is the original that is 
being copied into 
 
%RotatedData 
% length(RotatedData) is the total number of data points, so this 
will apply to all data - 1:length = from 1 to all data points in 
table 
 
%For loop LL/RL 
for i = 1:length(RotatedDataLL) 
    RotatedDataLL(i,:) = RotatedDataLL(i,:)*ZaboutYLL*YaboutZLL; 
      RotatedDataRL(i,:) = RotatedDataRL(i,:)*ZaboutYRL*YaboutZRL; 
end 
 
%save files and rename Acc_x_LL_Rotated Acc_y_LL_Rotated 
Acc_z_LL_Rotated, Acc_x_RL_Rotated, Acc_y_RL_Rotated, 
Acc_z_RL_Rotated 
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Appendix J: Table for gross metabolic usage of oxygen uptake (ml/kg/min) between the VF and the JAZ over 0, 1, 3 and 5% 

incline.  

Gross metabolic usage of oxygen uptake (ml/kg/min) of the Nike® Vaporfly NEXT% (VFN%) and Saucony® ProGrid Jazz 12 

(JAZ) running shoe over inclines 0%, 1%, 3% and 5% whilst running on a treadmill at 12 km/h. The DIFF being the absolute 

difference between the VFN% and JAZ oxygen uptake (ml/kg/min) and % DIFF being calculated using (Equation 23). This 

table also displays the mean oxygen uptake (ml/kg/min), S.D. = standard deviation, CoV = coefficient of variation and S.E. = 

standard error of the mean.  

Trainer JAZ GROSS (𝐕̇O2 ml/kg/min) VFN% GROSS 𝐕̇O2 (𝐕̇O2 
ml/kg/min) 

Difference GROSS (𝐕̇O2 
ml/kg/min) 

Difference (%) 

Incline (%) 0 1 3 5 0 1 3 5 0 1 3 5 0 1 3 5 

Pa
rt

ic
ip

an
t n

o.
 

 

1  43.06 46.68 50.45  38.64 46.63 50.14  4.42 0.05 0.31  10.26 0.11 0.62 

2 36.78 41.90 46.22 51.27 34.91 36.28 41.66 49.16 1.87 5.62 4.56 2.11 5.09 13.40 9.86 4.12 

3 37.26 40.56 44.59 51.64 35.99 37.23 44.21 53.05 1.27 3.33 0.38 -1.41 3.40 8.21 0.85 -2.73 

4 36.78 38.57 44.05 50.47 35.13 38.49 43.36 47.73 1.65 0.08 0.69 2.74 4.48 0.21 1.56 5.43 

5 34.46 37.01 42.39 47.65 34.00 38.21 40.53 47.93 0.47 -1.20 1.85 -0.28 1.35 -3.24 4.37 -0.59 

6 42.93 45.14 49.59 54.70 40.65 45.40 49.06 54.49 2.28 -0.26 0.53 0.21 5.31 -0.58 1.07 0.38 

7 43.73 46.51 51.68 57.11 44.19 44.25 52.04 55.15 -0.47 2.26 -0.35 1.97 -1.07 4.85 -0.69 3.45 
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8 45.52 45.64 52.81 57.35 42.27 41.95 49.99 55.18 3.25 3.70 2.82 2.16 7.13 8.10 5.34 3.77 

9 42.60 40.56 46.17 54.78 40.58 41.56 48.47 53.16 2.02 -1.00 -2.30 1.63 4.73 -2.48 -4.99 2.97 

10 38.06 40.53 46.15 51.06 37.51 38.11 43.55 49.19 0.55 2.42 2.61 1.87 1.45 5.97 5.65 3.66 

11 41.83 40.67 47.53 51.81 36.32 38.23 44.78 49.45 5.51 2.44 2.75 2.36 13.16 6.00 5.78 4.56 

12 37.64 42.61 45.81  37.53 39.45 42.57  0.11 3.16 3.24  0.30 7.41 7.07  

13  44.96 50.14 54.05  43.74 50.00 50.54  1.22 0.14 3.51  2.72 0.28 6.50 

14 38.97 40.22 45.10 52.04 36.16 39.65 44.99 50.98 2.81 0.57 0.11 1.07 7.21 1.42 0.25 2.05 

15 41.63 45.89 49.92 50.77 38.99 42.70 48.14 49.09 2.64 3.19 1.79 1.68 6.34 6.94 3.58 3.31 

Participant 
no. 

16 41.98 44.22 51.04 55.81 41.62 43.97 48.96 53.76 0.36 0.26 2.08 2.04 0.86 0.58 4.08 3.66 

17 41.57 39.84 46.33 51.65 38.94 40.42 46.30 50.01 2.63 -0.58 0.03 1.65 6.33 -1.45 0.06 3.19 

18 43.19 45.26 49.79 53.59 41.52 44.04 47.16 52.72 1.68 1.22 2.62 0.88 3.88 2.69 5.27 1.64 

Mean 40.31 42.40 47.56 52.72 38.52 40.68 46.25 51.28 1.79* 1.71* 1.31* 1.44* 4.37* 3.95* 2.75* 2.70* 

S.D. 3.16 2.81 2.90 2.61 3.03 2.81 3.23 2.50 1.47 1.97 1.66 1.20 3.46 4.68 3.52 2.28 

CoV 0.08 0.07 0.06 0.05 0.08 0.07 0.07 0.05 0.82 1.15 1.27 0.83 0.79 1.19 1.28 0.84 

S.E. 0.79 0.66 0.68 0.63 0.76 0.66 0.76 0.61 0.37 0.47 0.39 0.29 0.87 1.10 0.83 0.55 
 * Significance to p=0.01. 
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Appendix K: RE benefit (%) predicted from the exponential decay equation.   

RE benefit (%) predicted from the exponential decay equation shown from 

inclines 1 to 15 with a split data table to incline 46 showing the asymptote of 

2.2781% rounded up to 2.28% which depicts the fixed effect of the VFN% 

running shoe.  

Incline (%) Actual 
results (%) 

Weight 
adjusted RE 
benefit (%) 

Exponential 
decay RE 

benefit (%) 

Weight 
adjusted RE 
benefit (%) 

0 4.37 2.37 4.45 3.45 
1 3.95 1.95 3.76 2.76 
2   3.29 2.29 
3 2.75 0.75 2.97 1.97 
4   2.75 1.75 
5 2.70 0.70 2.60 1.60 
6   2.50 1.50 
7   2.43 1.43 
8   2.38 1.38 
9   2.35 1.35 
10   2.33 1.33 
11   2.31 1.31 
12   2.30 1.30 
13   2.29 1.29 
14   2.29 1.29 
15   2.29 1.29 
16   2.28 1.28 

50   2.28 1.28 
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Appendix L: Testing results for n = 23 participants for analytical measures 

calculated from the wearable device accelerometry wave.  The table shows 

the mean, standard deviation (S.D.) and standard error (S.E.) for each result. 

 

M
al

e 

Trainer Analytical 
measure Peak no. Incline 

(%) Mean S.E. S.D. 
JAZ FF 

  
  

1  

0 

1.35 0.02 0.08 

2 2.71 0.04 0.15 

3 4.06 0.06 0.23 

4 5.46 0.11 0.41 

1 

1 

1.36 0.02 0.09 

2 2.73 0.04 0.17 

3 4.10 0.06 0.26 

4 5.46 0.08 0.34 

1 

3 

1.37 0.02 0.09 

2 2.75 0.05 0.18 

3 4.12 0.07 0.28 

4 5.50 0.10 0.38 

1 

5 

1.39 0.02 0.09 

2 2.78 0.05 0.18 

3 4.16 0.07 0.27 

4 5.60 0.12 0.50 
SP 
  
  
  

  0 6.76 0.18 0.72 

  1 6.83 0.17 0.71 

  3 6.53 0.22 0.88 

  5 6.55 0.20 0.80 
VFN% FF  1 

0 

1.34 0.01 0.05 

2 2.69 0.03 0.10 

3 4.03 0.04 0.16 

4 5.38 0.06 0.22 

1 

1 

1.35 0.02 0.08 

2 2.70 0.04 0.16 

3 4.06 0.06 0.24 

4 5.41 0.08 0.32 

1 

3 

1.36 0.02 0.09 

2 2.73 0.04 0.17 

3 4.09 0.06 0.26 

4 5.49 0.09 0.36 
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1 

5 

1.37 0.02 0.08 

2 2.75 0.04 0.17 

3 4.12 0.07 0.25 

4 5.50 0.09 0.34 
SP 
  
  
  

  0 6.83 0.18 0.69 

  1 6.73 0.17 0.67 

  3 6.48 0.19 0.74 

  5 6.45 0.20 0.77 
Difference 
(%) 

FF  1 

0 

-0.03 0.56 2.09 

2 -0.07 0.54 2.03 

3 -0.07 0.55 2.06 

4 0.72 1.03 3.85 

1 

1 

0.49 0.48 1.91 

2 0.39 0.44 1.76 

3 0.38 0.46 1.84 

4 0.43 0.45 1.80 

1 

3 

0.19 0.44 1.71 

2 0.18 0.44 1.70 

3 0.21 0.44 1.70 

4 -0.64 0.95 3.68 

1 

5 

0.25 0.32 1.23 

2 0.20 0.32 1.25 

3 0.22 0.33 1.28 

4 0.97 0.77 2.97 
SP    0 -0.49 1.82 6.81 

  1 2.04 1.06 4.26 

  3 0.55 1.43 5.53 

  5 1.61 1.92 7.44 

Fe
m

al
e  

JAZ FF 
  

1 

0 

1.39 0.04 0.09 

2 2.77 0.08 0.17 

3 4.16 0.12 0.26 

4 5.55 0.15 0.34 
FF 
  
  
  

1 

1 

1.40 0.03 0.08 

2 2.79 0.07 0.17 

3 4.19 0.10 0.25 

4 5.58 0.14 0.34 
FF 
  
  
  

1 

3 

1.41 0.04 0.08 

2 2.82 0.08 0.17 

3 4.23 0.11 0.25 
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4 5.64 0.15 0.34 
FF 
  
  
  

1 

5 

1.42 0.04 0.10 

2 2.84 0.09 0.20 

3 4.26 0.13 0.29 

4 5.69 0.17 0.39 
SP 
  
  
  

  0 7.18 0.49 1.09 

  1 6.91 0.55 1.34 

  3 6.86 0.62 1.38 

  5 7.10 0.56 1.25 
VFN% FF 

  
  
  

1 

0 

1.37 0.04 0.09 

2 2.75 0.08 0.18 

3 4.12 0.12 0.27 

4 5.49 0.16 0.36 
FF 
  
  
  

1 

1 

1.37 0.04 0.09 

2 2.73 0.07 0.17 

3 4.10 0.11 0.26 

4 5.46 0.14 0.35 
FF 
  
  
  

1 

3 

1.39 0.03 0.08 

2 2.78 0.07 0.16 

3 4.17 0.10 0.24 

4 5.56 0.13 0.32 
FF 
  
  
  

1 

5 

1.41 0.03 0.08 

2 2.81 0.06 0.15 

3 4.22 0.09 0.22 

4 5.62 0.12 0.30 
SP 
  
  
  

  0 7.37 0.44 0.99 

  1 6.98 0.42 1.02 

  3 6.86 0.49 1.21 

  5 6.88 0.45 1.11 
Difference 
between (%) 

FF 
  
  
  

1 

0 

1.27 0.65 1.29 

2 0.97 0.55 1.22 

3 0.97 0.51 1.13 

4 1.00 0.55 1.22 
FF 
  
  
  

1 

1 

2.14 0.48 1.18 

2 2.10 0.47 1.14 

3 2.08 0.47 1.14 

4 2.10 0.49 1.20 
FF 
  
  

1 
3 

0.53 0.83 1.85 

2 0.37 0.85 1.91 
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  3 0.33 0.84 1.87 

4 0.34 0.82 1.82 
FF 
  
  
  

1 

5 

0.03 1.24 2.78 

2 0.04 1.23 2.76 

3 -0.02 1.22 2.73 

4 0.08 1.22 2.72 
SP 
 
  

  0 -3.02 2.17 4.86 

  1 -2.03 2.96 7.26 

  3 -0.92 0.69 1.55 

  5 2.30 3.04 6.79 
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