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ABSTRACT

We study two topics in enumerative geometry. The first one is the definition,
in all genera, of reduced Gromov–Witten invariants of complete intersections
in projective space. This definition is based on the blow-up of a stack along a
coherent sheaf.

The second topic is the relation between Gromov–Witten and quasimap invari-
ants of toric varieties. We construct a contraction morphism between stable
maps and stable quasimaps to a toric variety. The main tool is the notion of
degree of a quasimap at a basepoint, which we introduce and use to under-
stand the functoriality of quasimaps along closed embeddings.
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Gromov–Witten theory

Enumerative algebraic geometry is the branch of algebraic geometry that deals with
counting geometric objects. For example, there is a unique conic through 5 points in the
plane and there are 2875 lines on a generic quintic threefold. We will focus on Gromov–
Witten theory as a way to count curves inside a smooth variety X .

The main ingredient of Gromov–Witten theory is the moduli space of stable maps

Mg,n(X, β).

A point in this proper Deligne–Mumford stack corresponds to a morphism f : C → X

from a nodal curve of genus g with n marked points to X of degree f∗[C] = β ∈ H2(X,Z),
which is stable in the sense that (C, f) has finitely many automorphisms. The moduli
space comes equipped with a universal curve π : C → Mg,n(X, β), universal sections
si : Mg,n(X, β) → C of π and an evaluation morphism ev : C → X . This data recovers
the curve C, the marked points and the map f on the fibres of π. Furthermore, the moduli
space admits a virtual fundamental class

[Mg,n(X, β)]
vir,

which is necessary for intersection-theoretic computations, given thatMg,n(X, β) in gen-
eral has several irreducible components of different dimensions.

The Gromov–Witten invariants of X are defined via intersection theory. Given co-
homology classes γ1, . . . , γn ∈ H∗(X,Z) such that

∑n
i=1 deg(γi) equals the virtual dimen-

sion ofMg,n(X, β), the corresponding Gromov–Witten invariant is

⟨γ1, . . . , γn⟩Xg,n,β =

∫
[Mg,n(X,β)]vir

n∏
i=1

(ev ◦si)∗γi.

This number can be interpreted as a virtual count of curves of genus-g and degree β in X
meeting each class γi at the i-th marked point.

Despite their very interesting structure, Gromov–Witten invariants are not enumera-
tive in general, meaning that they do not agree with the correct number of curves. The
reason is that the moduli space of stable maps is a too large compactification of the moduli
space of maps from smooth curves. This is our motivation for studying other compacti-
fications and their relation to stable maps.
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Reduced Gromov–Witten invariants

The Gromov–Witten invariants of X = Pr are not enumerative in positive genus. One
of the reasons is geometric: the moduli space Mg,n(Pr, d) is not irreducible in general.
The different irreducible components appear because the source curve C of a stable map
can become reducible too. As a consequence, the genus-g Gromov–Witten invariants of
projective space have contributions from lower genus invariants. One would like to ex-
tract the “pure genus-g contribution”, called reduced genus-g Gromov–Witten invariants,
coming from the closure of the locus of stable maps with smooth source, called the main
component.

For genus one, a birational model of the main component admitting a virtual fun-
damental class was built in [VZ08]. This model can be used to define reduced Gromov–
Witten invariants. Moreover, a concrete relation between standard and reduced Gromov–
Witten invariants in genus one was proven in [Zin08]. A similar conjecture was made
in [Zin09a, HL11] for all-genus reduced Gromov–Witten invariants, see Conjecture 1.2.

In Chapter 1, we present a new definition of reduced Gromov–Witten invariants of
projective spaces and complete intersections in any genus. Our approach is similar to
that of [VZ08] in that we also build a birational model of the main component that admits
a virtual fundamental class. However, while their construction was dictated by a direct
study of the geometry of M1,n(Pr, d), and is therefore specific to genus one, ours relies
in the notion of blow-up of a stack along a sheaf and works in all genera. Proving the
conjectural relation between standard and reduced Gromov–Witten invariants in higher
genus is plausible with our definition. We give the first steps in that direction by studying
the irreducible components of the abelian cone associated to a diagonal sheaf.

Stable toric quasimaps

Another prominent curve-counting theory for a toric variety X is quasimap theory. The
starting point is the description of the functor of points in [Cox95] in terms of line bundle-
section pairs depending on the fan of X . This is a generalization of well-known fact that
a morphism C → Pr is the same information as a line bundle on C with r + 1 sections
which are not allowed to vanish simultaneously.

In [CFK10], the authors defined a proper Deligne–Mumford stack

Qg,n(X, β)
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which parametrizes stable toric quasimaps to X . It admits a virtual fundamental class,
which can be used to define quasimap invariants through intersection theory, as we did
for Gromov–Witten invariants.

A point in the moduli space Qg,n(X, β) corresponds to a prestable genus-g curve C
with n marked points together with a collection of line bundle section-pairs satisfying all
the conditions needed to define a morphism C → X except for the non-vanishing con-
ditions on the sections, which can be violated at finitely many smooth unmarked points.
As a result, a quasimap to X determines a rational morphism to X , which in general may
not be regular. As for stable maps, a quasimap is stable if it admits only finitely many
automorphisms. However, this condition is now stronger, in the sense that there exists
stable maps which are not stable as quasimaps. This makes the task of finding a natural
morphism between the moduli spacesMg,n(X, β) and Qg,n(X, β) non-trivial.

Quasimap invariants, or their generating function called I-function, are typically easier
to compute than Gromov–Witten invariants. They are also relevant for their presence in
mirror symmetry. In fact, the the definition of the moduli space in [CFK10] is motivated
by certain “toric compactifications” of the moduli space of maps P1 → X which appeared
in the proof of the mirror theorem in [Giv98].

Our work in this area is motivated by the result in [CFK17] that Gromov–Witten and
quasimap invariants of a smooth Fano toric variety are equivalent. Our purpose is to give
a more conceptual proof of this result at the level of virtual fundamental classes, based on
the geometry of the moduli spaces involved.

In Chapter 2, we construct a contraction morphism from a closed substack inMg,n(X, β)

to Qg,n(X, β) which extends the identity on the locus of stable maps which are stable as
quasimaps. Furthermore, we show that the contraction morphism is surjective if X is
Fano. This result is the first step towards a geometric comparison of Gromov–Witten and
quasimap invariants. Along the way, we introduce the notion of degree of a basepoint and
we use it to study the functoriality of quasimaps along closed embeddings.

Overview

We summarize the structure of the thesis and the main results.

In Chapter 1 we study reduced Gromov–Witten invariants of complete intersections
in projective space. In Section 1.3 we review two equivalent constructions of the blow-
up of a scheme along a sheaf. We also review the notion of diagonalization of a sheaf in
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Section 1.4. We generalize both of these constructions to stacks in Section 1.4. Using our
study of abelian cones in Section 1.6, we can use the blow-up of a stack along a sheaf to
define reduced Gromov–Witten invariants in all genera in Section 1.7, see Definition 1.117.
We expect our study of the irreducible components of an abelian cone associated to a di-
agonal sheaf in Section 1.6.3 to be useful in the future to prove Conjecture 1.2. Finally, in
Section 1.8 we compare our definition of reduced invariants to the the previous construc-
tion in genus one in [VZ08], using the description in [HL10] in local coordinates.

In Chapter 2 we study the contraction morphism between stable maps and stable
quasimaps to toric varieties. In Section 2.3 we introduce the notion of degree of a quasimap
at a basepoint, see Definition 2.24. Inspired by this notion, in Section 2.4 we study the
functoriality of quasimaps along a closed embedding ι of toric varieties, and we give a suf-
ficient condition for the morphism Q(ι) to be a closed embedding in Corollary 2.40. This
criterion is used in Section 2.5 to define a contraction morphism from a closed substack of
the moduli space of stable maps to the moduli space of stable quasimaps, see Construc-
tion 2.42. Finally, in Theorem 2.47 we show that the morphism is surjective if the target is
Fano.
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Chapter 1

Higher genus reduced Gromov-Witten
invariants

1
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The results in this chapter are joint work with Etienne Mann, Cristina Manolache and
Renata Picciotto. It appeared originally as [CRMMP23].

Abstract. Given F a coherent sheaf on a Noetherian integral algebraic stack P, we give
two constructions of stacks P̃, equipped with birational morphisms p : P̃ → P such that
p∗F is simpler: in the Rossi construction, the torsion-free part of p∗F is locally free; in
the Hu–Li diagonalization construction, the associated abelian cone C(p∗F) is a union of
vector bundles. We use these constructions to define reduced Gromov–Witten invariants
of complete intersections in all genera.

1.1 Introduction

Overview of the problem LetX be a smooth projective variety. We denote byMg,n(X, d)

the moduli space of genus g, degree d ∈ H2(X;Z) stable maps to X (see [Kon95]).
By [LT98,BF96],Mg,n(X, d) has a virtual class [Mg,n(X, d)]

vir ∈ A∗(Mg,n(X, d)). Gromov–
Witten invariants ofX are defined as intersection numbers against this virtual class. They
are related to counts of curves in X of genus g and class d, but they often encode contri-
butions from degenerate maps. These degenerate contributions can be explained by the
geometry of the moduli space of stable maps.

We have little information about moduli spaces of stable maps to a variety X , even
when X is complete intersection, but the moduli space of stable maps to projective spaces
are better understood. The space of genus zero stable maps to a projective spaceM0,n(Pr, d)
is a smooth Deligne–Mumford stack and the resulting genus zero Gromov–Witten invari-
ants are enumerative. For g > 0, the moduli space Mg,n(Pr, d) has several irreducible
components and moreover, in genus one and two, we have explicit local equations for
Mg,n(Pr, d): see [Zin09c, HL10, HLN12]. The existence of components consisting of maps
with reducible domain is reflected by Gromov–Witten invariants: these components con-
tribute in the form of lower genus stable maps.

In order to define invariants which do not have contributions from degenerate maps
with reducible domains, we need to define a virtual class on the closure of the locus of
maps with smooth domain. This is not possible directly, we need to replace this compon-
ent with a birational one which admits a virtual class. In genus one and two, there are
several such constructions [Zin09c, VZ08, HL10, RSPW19a, HLN12, BC23, HN19, HN20].
The resulting numbers are called reduced Gromov–Witten invariants.
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Main result 1.1 (See Definition 1.117). We define reduced Gromov–Witten invariants in
any genus for any complete intersection in a projective space.

In genus one and two, our reduced Gromov–Witten invariants agree with the reduced
invariants defined previously.

Genus one reduced invariants for varietes of any dimension are related to Gromov–
Witten invariants [Zin08]. For threefolds the relation is much simpler. LetX be a threefold
which is a complete intersection and let γ ∈ H∗(X)⊕n be a collection of cohomology
classes of X . Let N g

β(γ) be the genus g and degree β Gromov–Witten invariants of X with
insertions given by γ, and let rgβ(γ) be the corresponding reduced invariants.

Conjecture 1.2. [Zin09a], [HL11, Conjecture 1.1] Let X be a Calabi–Yau threefold. Then,
there are universal constants Ch(g) ∈ Q, such that for deg(β) > 2g − 2, we have

N g
β =

∑
0≤h≤g

Ch(g)r
h
β.

When X is the quintic threefold, the above formula in genus one is the formula in
[Zin09a, LZ09]

N1
d =

1

12
N0
d + r1d. (1.1)

IfX is a Fano threefold, then reduced invariants are expected to be equal to Gopakumar–
Vafa invariants. Indeed, the Gopakumar–Vafa invariants are by definition related to
Gromov–Witten invariants by a recursive formula, which takes into account degener-
ate lower genus and lower degree boundary contributions. For Fano varieties, there are
no lower degree contributions. Boundary contributions were computed by Pandhari-
pande in [Pan99]. The conjectural equality between reduced Gromov–Witten invariants
and Gopakumar–Vafa invariants (see [Pan99, Section 0.3]) for Fano threefolds gives the
following.

Conjecture 1.3. [Zin09a, Zin11] Let X be a Fano threefold and let CX
h,β(g) be defined by

the formula ∑
g≥0

CX
h,β(g)t

2g =

(
sin(t/2)

t/2

)2h−2−KX ·β

.

Then, we have the following

N g
β(γ) =

g∑
h=0

CX
h,β(g − h)rhβ(γ).
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The above should also hold in the Calabi–Yau case, where CX
h,β(g) do not depend on

X and β.

The above conjectures have been proved in genus one and two. These are the only
cases in which a definition of reduced invariants existed prior to this work.

Approach. In a first step, we use the geometry ofMg,n(Pr, d) in the following way. The
moduli space of stable maps admits a mapMg,n(Pr, d)→ Pic, where Pic denotes the stack
which parameterises genus g curves with n marked points together with a line bundle of
degree d. One important observation is thatMg,n(Pr, d) is an open substack in an abelian
cone Spec SymF, with F a sheaf on Pic (see (1.27) and (1.28)).

In a second step, we use the sheaf F to construct P̃ic (or P̃ic
HL

) together with a bira-
tional morphism p : P̃ic → Pic. By base-change, this gives M̃g,n(Pr, d) → Mg,n(Pr, d),
and M̃g,n(Pr, d) allows us to define reduced Gromov–Witten invariants.

The stack P̃ic can be constructed in two ways: using the Rossi construction (see Sec-
tion 1.3) or using the Hu–Li diagonalization construction (see Section 1.4). In both ap-
proaches we start with an atlas Ui → Pic, and then we consider Ũi as defined by Rossi
(see Section 1.3), or by Hu–Li (see Section 1.4). In the end, we glue Ũi to a global object P̃ic

(see Theorem 1.76). The resulting stack P̃ic is called the Rossi construction or the Hu–Li
construction, depending on the definition of Ũi.

In general, the Rossi construction is different from the Hu–Li construction (see 1.72).
By Example 1.133, the Rossi construction gives a new moduli space which is different
from the Vakil–Zinger blow-up. However, by Proposition 1.116 this does not change the
reduced invariants: they are the same for all birational models of Pic.

The Rossi construction for P̃ic is enough to prove the Main Result 1.1, but the Hu–Li
construction is better behaved in relation to Conjecture 1.2 and Conjecture 1.3.

Relation to previous approaches The structure of this paper is different from the ones
in [VZ08,HL10,HLN12,HN19,HN20]. In the mentioned papers, the authors have a three-
step strategy to constructing the stack M̃◦

g,n(Pr, d):

1 they find equations of local embeddings Ui ⊂Mg,n(Pr, d) in smooth spaces Vi;

2 they blow up of Ui to obtain Ũi;

3 they show that Ũi glue to a (smooth) stack M̃◦
g,n(Pr, d).
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The first step becomes involved in higher genus, due to the rather complicated geometry
ofMg,n(Pr, d). Steps 2 and 3 are done by constructing an explicit blow of Pic (or Mg,n).
Finding a candidate for this blow-up is the hardest part of the construction.

We omit Step 1 completely. For us, Step 2 is minimal in a suitable sense – it is given
by a universal property. The main ingredient in Step 3 is that the (local) constructions
proposed in Section 1.3 and in Section 1.4 commute with flat pullbacks and this allows
us to glue them. Explicit equations of the charts Ui are thus not necessary to construct
M̃◦

g,n(Pr, d). The advantage of this approach is that the gluing is conceptual and straight-
forward. This is similar to what Hu and Li do in [HL11] – our construction heavily relies
on their ideas.

Main technical result. In Sections 1–6 we work in the following, completely general
setup. Given P a stack and F a coherent sheaf on it, we want to construct P̃ with a proper
birational morphism p : P̃ → P such that p∗F is better behaved. We present two general
constructions:

1 the Rossi construction and

2 the Hu–Li diagonalization construction.

(1) Given an integral, Noetherian algebraic stack P, we construct p : P̃ → P, such
that the torsion-free part of p∗F is locally free. We show that the Rossi construction has
a universal property in Theorem 1.79. In particular, it is the minimal stack such that the
torsion-free part of p∗F is locally free. This construction does not change torsion sheaves.

(2) The Hu–Li diagonalization construction also produces a sheaf p∗F whose torsion-
free part is locally free. In addition to this, p∗F also has a well-behaved torsion in the
sense of Definition 1.46. For schemes, this is achieved by a construction of Hu and Li
[HL11]. In Theorem 1.76 we produce a global object P̃HL. In Theorem 1.82 we show
that P̃HL satisfies a universal property, and in Theorem 1.97 we show that the irreducible
components of Spec Sym p∗F are vector bundles.

Applying this construction with P = Pic, we obtain a well-behaved M̃g,n(Pr, d) as
follows. In the following we fix d > 2g − 2 (see Assumption 1.105 for details) and we
consider X a hypersurface of degree k in Pr. In Section 1.7 we define P̃ic and a proper
and birational morphism pk : P̃ic→ Pic. We define

M̃g,n(Pr, d) :=Mg,n(Pr, d)×Pic P̃ic,
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which comes equipped with a morphism p̄k : M̃g,n(Pr, d) → Mg,n(Pr, d). We denote by
M◦

g,n(Pr, d) the closure inMg,n(Pr, d) of the locus of maps with smooth domain. The con-
dition on d ensures thatM◦

g,n(Pr, d) is generically smooth and unobstructed. As before,
we consider the base-change

M̃◦
g,n(Pr, d) :=M

◦
g,n(Pr, d)×Pic P̃ic.

We have the following result in all genera.

Theorem 1.4 (See Theorem 1.124). Let M̃g,n(Pr, d) = ∪θ∈ΘM̃g,n(Pr, d)θ, with M̃g,n(Pr, d)θ

irreducible components of M̃g,n(Pr, d). Then the following statements hold:

1 The stack M̃g,n(Pr, d) admits a virtual class.

2 The morphism p̄k is proper, and we have (p̄k)∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir.

3 For any θ ∈ Θ, M̃g,n(Pr, d)θ is smooth over its image in P̃ic; in particular, M̃◦
g,n(Pr, d)

is smooth over P̃ic.

4 Let π̃θ : C̃θ → M̃g,n(Pr, d)θ denote the universal curve. Then π̃θ∗ev
∗O(k) is a loc-

ally free sheaf on M̃g,n(Pr, d)θ; in particular, π̃◦
∗ev

∗O(k) is a locally free sheaf on
M̃◦

g,n(Pr, d).

History and related works Reduced genus 1 invariants are the output of a long and im-
pressive project. Reduced invariants were defined using symplectic methods and com-
pared to Gromov–Witten invariants by Zinger [Zin08, Zin07, Zin09b, Zin09a]. Li–Zinger
showed [LZ07, LZ09] that reduced Gromov–Witten invariants are the integral of the top
Chern class of a sheaf over the main component ofMg,n(Pr, d). This is an analogue, for
reduced genus 1 invariants, of the quantum Lefschetz hyperplane property [LZ07,LZ09].
In view of [Zin09b], this also gives a proof of the formula (1.1). The algebraic definition
requires a blow-up construction for the moduli space of stable maps to projective space,
due to Vakil and Zinger [VZ08, VZ07]. See [Zin20] for a survey from the symplectic per-
spective.

Explicit local equations for the Vakil–Zinger blow-up in genus one are given in [Zin09c,
HL10] and in genus two in [HLN12]. It is expected that the methods used in low genus
could provide local equations for general moduli spaces of stable maps to projective
spaces, but the combinatorics is likely to be tedious.
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In [HL10, HLN12, HN19, HN20] the authors give a modular interpretation of reduced
invariants in terms of graphs of degenerate maps. A modular interpretation via log maps
has been given by Ranganathan, Santos-Parker and Wise [RSPW19a, RSPW19b].

Hu and Li introduce the diagonalization construction in [HL11]. They use this con-
struction to define an Euler class on the moduli space of stable maps to projective spaces.
This gives a non-intrinsic definition of reduced invariants of complete intersections. Con-
jecture 1.3 is hard to approach with this definition. In this paper, we rework their con-
struction.

In a different direction, instead of replacing the moduli space of maps with a space
which dominates M̃◦

g,n(X, d), one can construct a space dominated by M̃◦
g,n(X, d). This

has been done by moduli spaces of maps from more singular curves, such as in [BCM20,
BC23]. A modular interpretation comes for free with this approach, which makes these
constructions particularly beautiful. A relationship between reduced invariants and in-
variants from maps with cusps was established in [BCM20]. Battistella and Carocci intro-
duce a compactification of genus two maps to projective spaces [BC23]. An example of
this compactification is given in [BC22].

More recently, reduced invariants for the quintic threefold have been compared to
Gromov–Witten invariants using algebro-geometric methods by Chang and Li [CL15].
Chang–Li define reduced invariants as the integral against the top Chern class of a sheaf
but, as discussed above, this gives the same reduced invariants as [Zin09b]. The algebraic
comparison relies on the construction of maps with fields due to Chang and Li [CL12],
and on Kiem–Li’s cosection localised virtual class [KL13]. This method has been em-
ployed in [LO22, LO21] to extend the genus one relation between absolute and reduced
Gromov–Witten invariants of complete intersections. In genus two, a similar work is
done in [LLO22].

Zinger has computed reduced genus one invariants of projective hypersurfaces via
localisation [Zin09a]. The computations in [Zin09c] and [Zin08] have been extended to
complete intersections by Popa [Pop13].

Outline of the paper. In the following we give an outline of the paper and we highlight
the main results.

In Section 1.2 we fix notation and briefly recall the background notions used, such
as Fitting ideals, abelian cones, fractional ideals or the theorem of cohomology and base
change.
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In Section 1.3 we introduce the desingularization of a sheaf on a stack (Section 1.3.1)
and we review the minimal desingularization, due to Rossi (Section 1.3.2). In Section 1.3.3
we give an algebraic desingularization in terms of Fitting ideals in the affine case, due to
Oneto–Zatini and Villamayor. We show in Section 1.3.4 that the Rossi and Villamayor
constructions agree. We show several properties of the minimal desingularization of a
sheaf in Section 1.3.5.

In Section 1.4.1, we introduce the notion of diagonal sheaf (see Definition 1.49). In
Section 1.4.2 we recall Construction 1.59, due to Hu and Li, which gives the minimal
diagonalization of a sheaf. This is formalized in Section 1.4.3 via a universal property
(Theorem 1.61). In Section 1.4.4, we collect properties of the Hu–Li blow-up, such as
the existence of a morphism from the Hu–Li blow-up to the Rossi blow-up in Proposi-
tion 1.67. The two blow-ups are not isomorphic in general, as shown in Example 1.72.
In Section 1.4.5 we construct a filtration of a diagonal sheaf under certain conditions (see
Theorem 1.71). This filtration will then be used in Section 1.6 to describe the irreducible
components of the abelian cone of a diagonal sheaf. Finally, in Section 1.4.6 we collect
some remarks and examples regarding the minimality of the Hu-Li blow-up.

Section 1.6 is devoted to the study the irreducible components of the abelian cone
C(F) of a diagonal sheaf. Given a coherent sheaf F on an integral Noetherian scheme
X , we introduce the main component (Definition 1.88) C(F tf) of the abelian cone C(F) in
Section 1.6.1. General cones need not have a main component (Example 1.86). Further-
more, ifF tf is locally free, thenC(F) is a pushout of its main component, which is a vector
bundle (see Proposition 1.95 in Section 1.6.2). The remaining components are studied in
Section 1.6.3. The best result is obtained for F a diagonal sheaf: each component of C(F)
is a vector bundle over its support (Theorem 1.97).

In Section 1.5 we generalize the Hu–Li and Rossi blow-ups to Artin stacks. These
are constructed in Section 1.5.1, by first applying the Rossi and Hu–Li constructions for
schemes to an atlas and then gluing. This works because the Hu–Li and Rossi construc-
tions are local, they have a universal property, and they commute with flat base-change
by Propositions 1.41 and 1.62. We extend to stacks the results on the schematic version
of these blow-ups, such as the universal properties of desingularization in Theorem 1.79
and of diagonalization in Theorem 1.82.

In Section 1.7 we use the notion of desingularization of a sheaf on a stack to define
reduced Gromov Witten invariants in all genera: see Definition 1.117. In Section 1.7.1
we recall howMg,n(Pr, d) can be naturally embedded as an open substack in an abelian
cone over Pic following [CL12]. In Definition 1.88 we introduce the main component of



CHAPTER 1. HIGHER GENUS REDUCED GW INVARIANTS 9

Mg,n(Pr, d) and show how it is compatible with the open embedding in an abelian cone.
In Section 1.7.3 we consider a desingularization P̃ic → Pic and use it to base change
Mg,n(Pr, d) to a new space M̃g,n(Pr, d). These space is used in Section 1.7.4 to define re-
duced Gromov-Witten invariants in any genus for a hypersurface in projective space (
Definition 1.117). We also show independence of the chosen desingularization Proposi-
tion 1.116. Finally, in Section 1.7.5 we recall maps with fields and consider the analogue
of M̃g,n(Pr, d) for p-fields. These spaces can be used to compute reduced Gromov-Witten
invariants (Proposition 1.127). In Theorem 1.124 we describe the irreducible components
of the blown-up moduli spaces.

In Section 1.8 we compare the moduli spaces obtained from the Rossi desingulariz-
ation and the Vakil–Zinger blow-up. While reduced invariants are independent of the
birational model of Pic, the induced moduli spaces can be different. We study charts of
M̃g,n(Pr, d) and we show that the Rossi construction in genus one is different from the
Vakil–Zinger blow-up.

How to read this paper Sections 1.2–1.6 are self-contained and of independent interest.
The schematic version of the results in Section 1.5 are explained in Sections 1.3–1.4. The
reader interested in reduced Gromov–Witten invariants can take the results in Section 1.5
for granted and read Section 1.7 and Section 1.8 directly.

Further work Our desingularizations do not come with a modular interpretation. It
would be nice to have a modular interpretation of the resulting stack M̃g,n(Pr, d), either
in the spirit of [HL10, HLN12, HN19, HN20], or a log interpretation as in [RSPW19a].
It would be perhaps better to have a space of maps with more singular domains, as in
[BCM20, BC23].

While a modular interpretation would be very interesting from a theoretical point of
view, higher genus computations as done by Zinger in [Zin09a] are likely to be hard. The
genus two blow-up M̃g,n(Pr, d) already involves several rounds of blow-ups, and a loc-
alisation computation would inherit the complexity of the blow-up. We hope that our
construction sheds new light on this beautiful problem and will encourage more math-
ematicians to work on it.

On the positive side, we expect this construction to be enough for proving Conjec-
ture 1.3. The main difference with [HL11] is that we blow up Pic, instead of blowing up
Mg,n(Pr, d). The advantage of blowing up Pic is that now we have the ingredients used by
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Chang–Li, Lee–Oh and Lee–Li–Oh to prove Conjecture 1.3 (and therefore Conjecture 1.2)
in genus one and two. More precisely, we have fairly simple moduli spaces of maps with
fields over P̃ic, and these can be used to split the virtual class on M̃g,n(Pr, d). We hope
to be able to prove Conjecture 1.3 without having explicit equations ofMg,n(Pr, d), or a
modular interpretation of P̃ic. We will address this problem in future work.
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project started after Evgeny Shinder and Ananyo Dan pointed out to us the paper of Rossi
[Ros68]. We thank Francesca Carocci for very useful discussions and Aleksey Zinger for
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Ranganathan and Evgeny Shinder for their comments in a previous version of this draft.
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support of the French government “Investissements d’Avenir” program integrated to
France 2030, bearing the following reference ANR-11-LABX-0020-01 and the PRC ANR-
17-CE40-0014.

1.2 Background

In this section we recall several basic constructions and fix the notation used through-
out the paper.

1.2.1 The relative Grassmannian

Let X be a scheme with a fixed quasi-coherent sheaf E . The Grassmannian functor
GrX(E , r) : ((Sch)/X)op → (Set) is given on objects by

T 7→ {ET ↠ Q |Q is locally free of rank r } (1.2)

with ET := E ⊗OX
OT .

This functor is represented by a scheme GrX(E , r) over X , which is projective if E is
finitely generated. Moreover, the Grassmannian functor is compatible with base-change.
In particular,

GrX(O⊕n
X , r) ∼= Gr(n, r)×X

where Gr(n, r) is the usual Grassmannian of r-dimensional subspaces of Cn relative to
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a point. Since it represents a functor, the relative Grassmannian GrX(E , r) comes with a
universal sheaf and a universal quotient sheaf, which is locally free of rank r:

EGrX(E,r) ↠ QGrX(E,r).

As in the classical case, the relative Grassmannian admits the Plücker embedding:

λn,r : GrX(O⊕n, r)→ GrX

(
r∧
O⊕n, 1

)
∼= Pm−1

X ,

withm =
(
n
r

)
. For the last isomorphism, consider anX-scheme T . A point of GrX(O⊕m, 1)(T )

is a surjection
O⊕m
T ↠ L

with L a line bundle on T . This is a pair of a line bundle and an m-tuple of generating
sections, which is an object of Pm−1

X (T ).

1.2.2 Fitting ideals

Definition 1.5. Let M be a finitely presented R-module. Let F φ−→ G → M → 0 be a
presentation with F and G free modules and rk(G) = r. Given −1 ≤ i < ∞, the i-th
Fitting ideal Fi(M) of M is the ideal generated by all (r− i)× (r− i)-minors of the matrix
associated to φ after fixing basis of F and G. We use the convention that Fi(M) = R if
r − i ≤ 0 and F−1(M) = 0.

Intrinsically, Fi(M) is the image of the map
∧r−i F ⊗

∧r−iG∗ → R induced by

r−i∧
φ :

r−i∧
F →

r−i∧
G.

The i-th Fitting ideal is well-defined in that it does not depend on the chosen present-
ation. Since determinants can be computed expanding by rows and columns, there are
inclusions

0 = F−1(M) ⊂ F0(M) ⊂ F1(M) ⊂ . . . ⊂ Fk(M) ⊂ Fk+1(M) ⊂ . . .

It follows from the definition and right-exactness of tensor product that Fitting ideals
commute with base-change. That is, given a ring homomorphism R → S and a finitely
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presented R-module M , it holds that

Fi(M ⊗R S) = Fi(M) · S.

Similarly, for a scheme X and a quasi-coherent OX-module F of finite presentation, we
have ideal sheaves

0 = F−1(F) ⊂ F0(F) ⊂ · · · ⊂ Fn(F) ⊂ · · · ⊂ OX ,

which can be defined locally as described above. For f : Y → X a morphism of schemes,
we have that

f−1Fi(F) · OY = Fi(f
∗F).

Fitting ideals describe the locus onX where the sheaf F is locally free of some rank. More
precisely, we recall the following standard result.

Proposition 1.6. For any n, the sheaf F is locally free of rank n on the locally closed
subscheme V (Fn−1(F)) \ V (Fn(F)) of X .

Proof. See [Sta22, Tag 05P8].

1.2.3 Abelian cones

Let X be a Noetherian scheme. We recall the notions of cone and abelian cone over X
and collect some basic properties.

Definition 1.7. LetA =
⊕

d≥0Ad be a graded sheaf ofOX-algebras such that the canonical
map OX → A0 is an isomorphism and such that A is locally generated by A1 as an OX-
algebra. The cone of A is the scheme SpecX(A) equipped with the natural projection

SpecX(A)→ X.

The cone of A is abelian if the natural morphism Sym (A1)→ A is an isomorphism of OX-
algebras. A morphism of cones is a morphism over X induced by a graded morphism of
sheaves of OX-algebras.

Definition 1.8. Let F be a coherent sheaf on X . The abelian cone associated to F is

CX(F) = SpecX(Sym (F))

https://stacks.math.columbia.edu/tag/05P8
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equipped with the natural projection to X .

We will omit the subscript X in the formation of relative spectra and cones whenever
it is possible to do so without introducing ambiguity.

Definition 1.8 is related to the total space of a locally free sheaf. If E is a locally free
sheaf, then C(E) is a vector bundle, but some authors (e.g. [Ful13, B.5.5]) prefer to define
the total space of E as

Tot(E) := C(E∨) = Spec (Sym (E∨)),

so that the sheaf of sections of Tot(E) over X is (E∨)∨ ≃ E by Lemma 1.9. When working
with sheaves that may not be locally free, it is advisable to use C(F) instead of C(F∨), see
Lemma 1.9 and Example 1.10.

To an abelian cone π : C(F)→ X we can associate two natural sheaves ofOX-modules.
The sheaf of sections Sect(C(F)) of the projection π is given by

U 7→ HomU(U,C(F) |U).

The sheaf of functionals Fun(C(F)) is given by

U 7→ HomAb(C(F) |U , U × A1),

where HomAb denotes morphisms of abelian cones.

Lemma 1.9. Given a coherent sheaf F in a Noetherian scheme X , there are natural iso-
morphisms of OX-modules

1 Sect(C(F)) ≃ F∨ and

2 Fun(C(F)) ≃ F .

Proof. It is enough to prove the statements in the affine case and for global sections. Let
X = SpecR and F = M̃ for a Noetherian ring R and a coherent R-module M .

For 1, we see that

HomX(X,C(F)) = HomX(X, Spec SymF) ≃ HomR−alg(SymM,R) ≃ HomR−mod(M,R) ≃M∨.

For 2 we have that

HomAb(C(F), X × A1) = HomGrR−mod(SymR, SymM) ≃ HomR/mod(R,M) ≃M,
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where HomGrR−mod denotes morphisms of graded R-modules and where we used that
X × A1 ≃ CX(OX).

Example 1.10. Let X = Spec (R) with R = C[x] and let I = (x) be the ideal of the origin 0

and let M = R/I viewed as an R-module, that is, M is the skyscrapper sheaf supported
at 0. Then

C(M) ≃ Spec (C[x, y]/(xy)) ⊆ X × A1.

According to Lemma 1.9, C(M) has no non-zero sections because M∨ = 0, C(M). This
can be checked directly because any section must be 0 on X \ 0, thus everywhere. On the
other hand, C(M) has non-zero functionals

C(M)→ X × A1 : (x, y) 7→ (x, λy)

for any λ ∈ C. On the other hand, M∨ = 0 so C(M∨) = X , which has no non-zero sections
or functionals.

Lemma 1.11. For a cone π : C = Spec (A)→ X , the following are equivalent:

(1) C is a vector bundle over X ,

(2) C is abelian and A1 is locally free over X ,

(3) π is smooth.

Proof. The implication (1)⇒ (3) is clear and the equivalence (1) ⇐⇒ (2) is standard. The
implication (3)⇒ (1) can be found in [BF96, Lemma 1.1].

1.2.4 Fractional ideals

Let R be an integral domain and let K be its field of fractions.

Definition 1.12. A fractional ideal over R is a finitely generated R-submodule of K.

We collect some useful properties and examples of fractional ideals.

Example 1.13. Every finitely generated ideal I of R is a fractional ideal over R.

Example 1.14. Let M be a finitely presented module over R such that dimKM ⊗R K = r.
Then there is an isomorphism

r∧
M ⊗R K ≃ K (1.3)
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and the image of the composition

r∧
M →

r∧
M ⊗R K → K

is a fractional ideal over R.

Note that the isomorphism in Equation (1.3) is not canonical, but any other choice pro-
duces an isomorphic fractional ideal by Lemma 1.18 below. Therefore the isomorphism
class of the fractional ideal constructed in Example 1.14 is an invariant of M , that we call
the norm of M , following [Vil06].

Definition 1.15. Let M be a finitely presented module over R such that dimKM ⊗R K =

r. The norm of M is the isomorphism class JMK of the fractional ideal constructed in
Example 1.14.

JMK = Im

(
r∧
M → K ≃

r∧
M ⊗R K

)
. (1.4)

Lemma 1.16. Let F be a fractional ideal over R. Then there exists s ∈ R \ {0} such that
s · F is an ideal of R. Conversely, if I is a finitely generated ideal in R and s ∈ R \ {0},
then 1

s
I is a fractional ideal of R.

Proof. We have that F = Rf1+ . . .+Rfn for some fi ∈ F . Write fi = ri/si for some ri ∈ R,
si ∈ R \ {0}. Let s = s1 · sn. Then sri ∈ R for every i and s ·F = Rsr1+ . . . Rsrn is an ideal.

The converse is immediate.

Corollary 1.17. Let F be a fractional ideal over R. Then there is an isomorphism of R-
modules between F and an ideal of R.

Proof. Choose s ∈ R \ {0} as in Lemma 1.16. Then, multiplication by s is an isomorphism
between F and s · F , which is an ideal of R.

Lemma 1.18. For any two fractional ideals F1 and F2 over R,

HomR−mod(F1, F2) = {k ∈ K : k · F1 ⊆ F2}

Proof. Given k ∈ K, multiplication by k is an endomoprhism of R-modules of K which
restricts to a morphism F1 → F2 if and only if k · F1 ⊆ F2.
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Conversely, let φ : F1 → F1 be a homomorphism of R-modules. We need to find k ∈ K
such that φ(f1) = kf1 for every f1 ∈ F1. This condition implies that

k =
φ(f1)

f1
∈ K.

To conclude, we need to show that k is independent of f1 ∈ F1. Indeed, choose s ∈ R\{0}
such that s · F1 ⊆ R, which exists by Lemma 1.16. Then, given f1, f ′

1 ∈ F1 we have that

rf1φ(f
′
1) = φ(rf1f

′
1) = rf ′

1φ(f1)⇒
φ(f ′

1)

f ′
1

=
φ(f1)

f1
.

Corollary 1.19. Let I and J be ideals in R which are isomorphic as fractional ideals and
let X = Spec (R). Then

BlIX = BlJX

Proof. By Lemma 1.18, an isomorphism between I and J as fractional ideals is the same
as an element k ∈ K such that k · I = J . Let k = r/s with r ∈ R and s ∈ R \ {0}. Then
(r)I = (s)J . To conclude, observe that BlIX = Bl(r)IX because they satisfy the same
universal property.

Definition 1.20. Let F be a fractional ideal over R and let X = Spec (R). The blow-up of X
along F is

BlFX := BlIX

for any ideal I ⊆ R such that I ∼= F as fractional ideals.

In Section 1.3.3 we will study the particular case of Definition 1.20 where F = JMK is
the norm of a moduule M and we will study its universal property Theorem 1.34.

1.2.5 Cohomology and base change

In Section 1.7 we will make extensive use of the so-called cohomology and basechange
theorem. This is a result about the commutativity between cohomology and restriction to
fibres. The two main references are [Har77, Theorem 12.11] and [Mum70, Section 5]. In
this subsection, we recall the result following [Mum70].

The set-up is as follows. Let f : X → Y be a proper morphism between Noetherian
schemes and letF be a coherent sheaf onX which is flat over Y . For y ∈ Y , let k(y) denote
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the residue field of y, let Xy = X ×Y Spec (k(y)), so that we have a Cartesian diagram

Xy X

Spec k(y) Y,

f

and let Fy = F ⊗OY
k(y).

With the previous notations, there is a natural morphism

φi(y) : Rif∗(F)⊗ k(y)→ H i(Xy,Fy).

We also consider the following functions Y → Z:

hi(y,F) = dimk(y)H
i(Xy,Fy)

and
χ(Fy) =

∑
i≥0

(−1)i dimk(y)H
i(Xy,Fy).

Proposition 1.21. (Cohomology and Base Change [Mum70, Section 5]) Let f : X → Y be a
proper morphism between Noetherian schemes and let F be a coherent sheaf onX which
is flat over Y . The following holds

1 For each i ≥ 0, the function y 7→ hi(y,F) is upper semicontinuous on Y .

2 The function y 7→ χ(Fy) is locally constant on Y .

3 If, furthermore, Y is reduced and connected, the following are equivalent

(a) the function y 7→ hi(y,F) is constant,

(b) the sheaf Rif∗F is locally free on on Y and φi(y) is an isomorphism for all
y ∈ Y ,

and, in case that (a) and (b) hold, then φi−1(y) is an isomoprhism for all i.

1.3 Desingularizations of coherent sheaves

In this section we introduce several constructions which “desingularize” a coherent
sheaf F on a base scheme X .
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1.3.1 Definition of desingularizations on stacks

We define our notion of desingularization and prove that it behaves well with com-
position. This part can be formulated directly for algebraic stacks instead of schemes,
which will be useful later.

Definition 1.22. Let F be a coherent sheaf on an integral algebraic stack X. A desingulariz-
ation of F is a morphism p : X̃→ X such that

1 X̃ is integral,

2 p is birational and proper,

3 (p∗F)tf is a locally free sheaf.

Let us explain why a morphism as in Definition 1.22 deserves to be called a desingu-
larization. The surjection F → Ftf induces a closed embedding C(Ftf) ↪→ C(F) of abelian
cones over X. By Lemma 1.11, the morphism C(Ftf) → X is smooth if and only if Ftf is
locally free. Therefore, Item 3 in Definition 1.22 es equivalent to saying that the morphism
CX̃((p

∗F)tf)→ X̃ is smooth.

Remark 1.23. If X is a scheme and F is a non-zero coherent ideal sheaf, the usual blow-up
of X at the closed subscheme defined by F is a desingularization of F.

Lemma 1.24. Let X be an integral algebraic stack and F a coherent sheaf on X . Let p :

X̃ → X be a desingularization of F and let q : Y → X̃ be a proper birational morphism.
Then, the composition p ◦ q : Y→ X is a desingularization of F.

Proof. The composition r := p ◦ q is birational and proper, so all we need to prove is that
(r∗F)tf is locally free. In the following, we show that

(r∗F)tf ≃ q∗((p∗F)tf).

We have a commutative diagram of sheaves on Y

0 // K1
//

��

q∗p∗F //

��

q∗((p∗F)tf) //

��

0

0 // K2
// q∗p∗F // (q∗p∗F)tf // 0
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where the map q∗p∗F→ q∗((p∗F)tf) is the pullback of the surjective map

p∗F→ (p∗F)tf ,

K1 and K2 are the corresponding kernels and the solid vertical map is the identity. Since
the image of the composition K1 → (q∗p∗F)tf is generically zero and X is irreducible, we
have that the morphism K1 → (q∗p∗F)tf is zero. This induces the left vertical map in the
diagram, and therefore also the right vertical map. We have that K1 and K2 are torsion
sheaves. Let K3 be the cokernel of K1 → K2. By the Snake Lemma, we have an exact
sequence

0→ K3 → q∗((p∗F)tf)→ (r∗F)tf → 0.

By assumption (p∗F)tf is locally free, so q∗((p∗F)tf) is locally free. Since X is irreducible
and K3 is a torsion sheaf, we get that K3 = 0. This proves the claim.

1.3.2 Rossi’s construction for affine schemes

In the following, we describe the desingularization construction proposed by Rossi in
the analytic setup in [Ros68], which is very geometric in nature. The same construction
was studied by Oneto and Zatini in the algebraic setup in [OZ91], under the name of
Nash transformation. It gives a way of desingularizing coherent sheaves on integral No-
etherian schemes by taking the closure of a graph into a Grassmannian. We present here
Rossi’s construction for affine schemes. A much more general gluing will be presented in
Section 1.5. Our gluing recovers Rossi’s original construction for schemes.

We have seen in Lemma 1.24 that desingularizations are not unique. The following
construction is the minimal one in the sense of the universal property in Theorem 1.34.

Let X = Spec (R) be an integral affine Noetherian scheme and F = M̃ be the coherent
sheaf associated to a coherent R-module M . This is a finitely generated module such that
the kernel of any morphism R⊕n → M is finitely generated. Over the unique generic
point 0 ∈ X , the sheaf F|0 is locally-free of rank r. We define the generic rank of F :

rk(F) := rk(F|0) = r.

Note that if F is non-zero, there exists a non-empty open subscheme U ⊂ X such that
F |U is locally free, for example by taking U to be the complement of the subscheme cut
out by the smallest non-zero Fitting ideal of F . For any such U , the rank of F |U equals
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the generic rank of F .

Since R is affine, we can find for some n a surjective morphism of sheaves

f : O⊕n
X ↠ F . (1.5)

Restricted to a non-empty open subscheme U where F is locally free, f gives a U -point of
GrU(O⊕n

U , r), which is a morphism

Γf : U → GrU(O⊕n
U , r)

such that the composition of Γf with the structure map Gr(O⊕n
U , r)→ U is idU . Moreover,

under this isomorphism, the locally-free sheaf F|U is identified with the restriction to
Γf (U) of the universal quotient sheaf QGrU (O⊕n

U ,r). This is automatic from the description
of the relative Grassmannian as the fine moduli scheme of the functor in (1.2).

By compatibility of the relative Grassmannian with base-change we have an open em-
bedding GrU(O⊕n

U , r) ⊂ GrX(O⊕n
X , r). We give the following definition.

Definition 1.25. The blow-up of X at the coherent sheaf F is the schematic closure of Γf (U)
in GrX(O⊕n

X , r), equipped with the morphism

p : BlF(X) = Γf (U)→ X

obtained by restricting the natural projection GrX(O⊕n
X , r) → X . Note that, since U is

integral, BlFX can also be described as the topological closure of Γf (U) with the reduced
induced structure (see [Sta22, Lemma 056B])

Remark 1.26. In the proof of Lemma 1.39, we will show that if F is a non-zero coherent
ideal sheaf onX , then BlF(X) is the usual blow-up and the above recovers its construction
as the closure of a graph in the relative projective space.

Another classical example is the Nash blow-up of X , which is the particular case
F = Ω1

X . This case is related to resolution of singularities, see [Spi20]. The general case
appeared in [OZ91] under the name of Nash transform.

Proposition 1.27. [cf. [Ros68, Theorem 3.5]] The blow-up BlF(X) above is well-defined.
Moreover,

p : BlF(X)→ X
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is a projective birational morphism such that the torsion-free part of p∗F ,

(p∗F)tf = p∗F/Tors(p∗F)

is locally-free of rank r. That is, p is a desingularization of F .

Proof. Observe that p : BlF(X) → X is a projective morphism, since GrX(O⊕n
X , r) is a

projective variety. It is also clear by construction that

Γf (U) BlF(X)

U X

∼= p

is Cartesian, in particular p is birational. To show that (p∗F)tf is locally-free of rank r we
show that it is the restriction of the universal quotient bundle on the Grassmannian.

We denote the restriction of the universal sub-bundle and quotient on GrX(O⊕n
X , r) by

S, respectively Q, and the kernel of the map O⊕n
BlF (X) → (p∗F)tf by K. We now consider

the following diagram of sheaves on BlF(X):

0 // S //

��

O⊕n
BlF (X)

//

��

Q //

��

0

0 // K // O⊕n
BlF (X)

// (p∗F)tf // 0.

Since the composition S → (p∗F)tf is zero, we get a map S → K and thus a map θ : Q →
(p∗F)tf . By the construction of BlF(X), θ is an isomorphism on Γf (U). Since Q is locally
free, the kernel of θ cannot be a torsion sheaf, and thus it has to be zero. This shows that
θ is injective. On the other hand, the Snake Lemma shows that θ is surjective. This gives
that

(p∗F)tf = QGrX(O⊕n
X ,r)|BlF (X).

To check that the above construction is well-defined, we need to check that it is in-
dependent of the choice of f and n in equation (1.5). Indeed, suppose we have another
surjection

f ′ : O⊕n′

X ↠ F .
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Since O⊕n
X is free, we can find a morphism γ such the following diagram commutes

O⊕n′

X O⊕n
X

F .

f ′

γ

f

Then γ induces an isomorphism

γ̃ : O⊕n
X ⊕O

⊕n′

X → O⊕n
X ⊕O

⊕n′

X

(u, v) 7→ (u+ γ(v), v).

For h : O⊕(n+n′)
X → O⊕n

X the composition of γ̃ with the projection in the first n factors and
g : O⊕(n+n′)

X ↠ F the sum of f and f , we have a commutative diagram

O⊕(n+n′)
X F

O⊕n
X .

g

h
f

The morphism h induces a morphism Gr(h) of Grassmannians such that the following
diagram commutes

U GrX(O⊕n
X , r)

GrX(O⊕(n+n′)
X , r).

Γf

Γg
Gr(h)

Moreover, Gr(h) is an isomorphism onto its image. Then Gr(h) induces an isomorphism
on the closures of Γf (U) and Γg(U). Similarly, we have an isomorphism between the
closures of Γf ′(U) and Γg(U). So we obtain an isomorphism Γf (U) ∼= Γf ′(U) as required.

Proposition 1.28. Let L be a line bundle on X . Then we have a unique isomorphism

BlF(X)
∃!ϕ̃

//

p
##

BlF⊗L(X)

q
zz

X

which makes the diagram commute.
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Proof. Let f : O⊕n
X → F be a surjective morphism, let S denote the kernel of f and let U

be an open subset of X where S is a vector bundle. We thus obtain a short exact sequence

0→ S ⊗ L|U → O⊕n
U ⊗ L|U

f⊗id→ F ⊗L|U → 0.

By possibly shrinking U we may assume we have an isomorphism g : L|U ≃ OU . We thus
obtain a commutative diagram

Γf //

��

GrX(O⊕n
X , r)

��

Γf⊗id // GrX(O⊕n
X , r)

where the right vertical arrow is induced by g. This gives a morphism ϕ̃ : Γf → Γf⊗id and
proves the claim.

1.3.3 Villamayor’s construction

We now present another construction of the blow-up BlFX introduced in section 1.3.2
in terms of Fitting ideals of the sheaf F . Most of these ideas first appeared in [OZ91]. We
follow the exposition in [Vil06]. In Section 1.3.4 we show that this construction is equival-
ent to Rossi’s construction.

Fitting ideals (see Section 1.2.2) are related to ranks of modules and flatness. Indeed,
the local rank of M at a prime ideal P of R is k if and only if F−1(M) ⊆ F0(M) ⊆ . . . ⊆
Fk−1(M) ⊆ P but Fk(M) ̸⊂ P . As a corollary, if R is a domain then the generic rank of M
is k if and only if Fk(M) is the first non-zero Fitting ideal, and moreover M is flat if and
only if it is free, if and only if Fk(M) = R.

The relationship between Fitting ideals and local freeness of the torsion-free part comes
from Lipman’s theorem.

Theorem 1.29 (cf. [Lip69, Lemma 1]). Let R be a local ring. Given a finitely presented
module M and a non-negative integer r, the following are equivalent:

1 F0(M) = . . . = Fr−1(M) = 0 and Fr(M) is invertible.

2 M has projective dimension at most one and M/tor(M) is free of rank r.
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It follows from Theorem 1.29 that blowing up the first non-trivial Fitting ideal of M
will make (p∗M)tf locally free (with p the blow-up morphism). However, it is possible
that M tf is already locally free on SpecR even though its first non-trivial Fitting ideal is
not principal, see Remark 1.35. In order to find a minimal transformation of Spec (R) on
which M tf is locally free, Villamayor proposes in [Vil06] the following construction.

Construction 1.30 ( [Vil06, Remark 2.1]). LetR be a domain and letM be a finitely presen-
ted R-module or rank r. Choose generators m1, . . . ,mN for M . Then there is a short exact
sequence

0→ P → RN →M → 0.

SinceM has rank r, there are elements p1, . . . , pN−r in P which induce a morphismRN−r →
RN of rank N − r. Let P1 ≃ RN−r be the free module generated by p1, . . . , pN−r and let
M1 = RN/P1, that is, the following is exact

0→ P1 → RN →M1 → 0.

Then M1 has projective dimension at most 1, rk(M1) = rk(M), there is a natural surjection
M1 →M and M1/tor(M) =M/tor(M).

Recall that we have introduced fractional ideals in Section 1.2.4. In particular, we
have defined the notion of blow-up of an affine scheme along a fractional ideal in Defini-
tion 1.20.

Definition 1.31. LetR be a Noetherian integral ring, letX = SpecR and letM be a finitely
presented R-module of generic rank r. The blow-up of X along M is

p : BlMR := BlJMKR→ R,

where JMK is the norm of M from Definition 1.15.

Lemma 1.32. Under the assumptions of Definition 1.31, letM1 be theR-module associated
to M in Construction 1.30. Then Fr(M1) and JMK are isomorphic as fractional ideals over
R. In particular, by Definition 1.20,

BlJMKX = BlFr(M1)X.

Proof. See [Vil06, Proposition 2.5].

Remark 1.33. As explained in [Vil06], the same ideas apply to any (Noetherian) ring R if
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we restrict to finitely presentedR-modulesM such thatM⊗RQ(R) is a freeQ(R)-module,
where Q(R) is the total quotient ring of R.

Theorem 1.34. [Universal property of blow-up, affine case, [Vil06, Theorem 3.3]] Let R be
an integral Noetherian ring, let M be a finitely presented R-module of generic rank r and
let X = Spec (R). The blow-up p : BlMX → X satisfies the following properties:

1 The sheaf p∗M/tor(p∗M) is locally free of rank r on BlMX and

2 for any morphism q : Y → X from a scheme Y for which q∗M/tor(q∗M) is locally
free of rank r on Y , there is a unique morphism q′ : Y → BlMX such that p ◦ q′ = q.

Proof. The fractional ideal JMK is isomorphic to some ideal I of R. Let BlMX = BlIX be
the blow-up of X along I , which is independent of the choice of I . Since q∗M/tor(q∗M) =

q∗M1/tor(q
∗M1) for any morphism q : Y → X , we can replace M by M1, which has pro-

jective dimension at most one. Conclude by Theorem 1.29 and the universal property of
(the usual) blow-up.

Remark 1.35. In general, BlMX is not obtained by blowing up the first non-zero Fitting
ideal of M . Indeed, let I ⊂ R be an ideal and M = R/I . On the one hand, M tf = 0 is
locally free of rank 0, which is the rank of M , so BlMX = X . On the other hand, the first
non-zero Fitting ideal ofM is F0(M) = I , so BlF0(M)X = BlMX if and only if I is principal.

However, ifM has generic rank r and projective dimension≤ 1, then BlMX = BlFr(M)X .

1.3.4 Equivalence of the two constructions

We find it useful here to give a constructive comparison of the two approaches, which
we find clarifies both.

Proposition 1.36 (Equivalence of Rossi constructions). Let X = Spec (R) be an affine,
integral Noetherian scheme and F = M̃ be a coherent sheaf. Then

BlFX = BlMX,

where the first is defined in Definition 1.25 and the second in Definition 1.31.

The rest of Section 1.3.4 is devoted to the proof of Proposition 1.36, which is delayed
until the end. The first observation we make is that both constructions only depend on∧rM , where r is the generic rank. We suppose here that r ̸= 0. Otherwise, the sheaf is
already locally free up to torsion, so no blow-ups are necessary.
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Lemma 1.37. Let X , M as above and r = rkM > 0, we have canonical isomorphisms

BlFX = Bl∧r FX (1.6)

and
BlMX = Bl∧rMX. (1.7)

Proof. For (1.6), fix a surjection f : O⊕n
X ↠ F . Then ∧rf :

∧rO⊕n
X ↠

∧r F defines an
embedding

Γ∧rf : U → Pm−1
U ⊂ Pm−1

X

of the generic open, where m =
(
n
r

)
. With the definition of the Plücker embedding from

Section 1.2.1, we have the following commutative diagram

U GrX(O⊕n, r)

Pm−1
X .

Γf

Γ∧rf
λn,r

Since λn,r is a closed embedding, it commutes with taking closures. Hence, it gives the
required isomorphism.

For (1.7), recall the definition of the norm (1.4):

JMK = Im(
r∧
M →

r∧
M ⊗R K ∼= K).

From this, it is clear that the Villamayor blow-up only depends on the top exterior power
of M .

For the Rossi construction, we reduce from rank 1 sheaves to ideal sheaves using the
following lemma. Note that the Villamayor construction is already a usual blow-up at a
(fractional) ideal JMK.

Lemma 1.38. Let F and X as in Proposition 1.36. If F has rank 1, then there is an ideal
sheaf I on X such that

BlFX = BlIX.

Moreover, I is the ideal sheaf associated to an ideal I ∼= JMK as fractional ideals.

Proof. Let K = K̃(R). Since BlFX only depends on F |U and since F and F tf are iso-
morphic over U , we can assume that F is torsion-free. In that case, we can replace F by
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its image in F ⊗OX
K ≃ K and we can find a section g of K such that g · F ≃ I is an ideal

sheaf.

Remember that BlFX = Γg(U) where Γg : U → Pn−1
U is induced by a surjection f :

O⊕n
X ↠ F . Since g determines a section of OX over U , we have another surjection

g |U ·f |U : O⊕n
U ↠ I.

By construction, Γg·f = Γf , therefore BlFX = BlIX follows. Let I = Γ(I), then I is by
construction equivalent to JMK as fractional ideals, since I is equivalent to the image of
M →M ⊗R K.

Lemma 1.39. Let X an affine integral and noetherian scheme and let F = Ĩ be an ideal
sheaf. Then

BlFX = BlIX.

Proof. The right-hand side is the Villamayor blow-up of JIK. As fractional ideals JIK = I ,
so BlIX is the usual blow-up of X along the ideal I . The left-hand side is the closure of
the graph Γf : U → Pn−1

U inside Pn−1
X where f : O⊕n

X → F → 0 is a choice of generators of
the ideal sheaf F and U is the generic point of X . The lemma follows from the standard
fact that the usual blow-up can be obtained as closure of a graph in projective space,
see [EH99, Proposition IV-22].

Proof of Proposition 1.36. Combining Lemmas 1.37 and 1.38 we have that BlFX is the usual
blow-up BlIX for an ideal sheaf I = Ĩ such that I ∼= J

∧rMK as fractional ideals. On the
other hand,

BlMX = Bl∧rM ,

by Lemma 1.37, and this equals the usual blow-up of X along any ideal isomorphic as a
fractional ideal to J

∧rMK by Lemma 1.32.

1.3.5 Properties of the Rossi blow-up

In light of Proposition 1.36, from now on we will identify the Rossi and Villamayor
blow-ups of a coherent sheaf F on an integral Noetherian scheme X , and we will denote
the common scheme by BlFX . In this section, we collect some properties of the blow-up
BlFX .
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Due to the universal property Theorem 1.34 and compatibility with flat pullback (see
Proposition 1.41) the blow-up BlFX generalizes to integral Noetherian schemes X , and it
inherits the universal property in Theorem 1.34. We will further generalize these results
to Artin stacks in Section 1.5.

Proposition 1.40 (Universal property of blowing up). Let X be a Noetherian integral
scheme and F be a coherent sheaf of generic rank r. There exists a blow-up p : BlFX → X

which satisfies

1 The sheaf (p∗F)tf = p∗F/tor(p∗F) is locally free of rank r on BlFX and

2 for any morphism f : Y → X from an scheme Y for which f ∗F/tor(f ∗F) is locally
free of rank r on Y , there is a unique morphism f ′ : Y → BlFX such that p ◦ f ′ = f .

Y BlF(X)

X

f

∃!f ′

p

Proof. The scheme BlFX can be constructed following the construction of the stack BlFX

in Section 1.5 and properties 1 and 2 can be deduced from Theorem 1.34 as we will do in
Theorem 1.79 for BlFX.

Proposition 1.41. Let f : Y → X be a morphism of Noetherian integral schemes and let
F be a coherent sheaf on X of generic rank r. If f ∗F has generic rank r then there is a
unique morphism

Blf∗F(Y ) BlF(X)

Y X

∃!f̃

f

making the diagram commute. If, moreover, f is flat, then the square is Cartesian.

Proof. A unique morphism f̃ making the diagram commute exists by the universal prop-
erty of BlF(X), which is Proposition 1.40. To show that the diagram is Cartesian, we
use [Sta22, Lemma 0805], which is the analogous result for blow-ups along ideal sheaves.
This requires checking that f−1JFK · OY = Jf ∗FK, which holds since F and f ∗F have the
same rank and the norm J·K is a determinantal ideal.

Indeed, we can work locally. Then we have X = Spec (A), Y = Spec (B), a ring
homomorphism f# : A → B and F = M̃ for some finitely presented A-module M . To
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compute JFK, we take a presentation

Am An M 0,
Γ

we choose a submatrix Γ′ of Γ consisting of n−r columns of Γ and then JFK is represented
by the ideal generated by all the minors ∆i(Γ

′) of size (n− r)× (n− r) of Γ′. The choice of
Γ′ must be so that this ideal is non-zero and such a choice exists because rk(F) = r. Then
f−1JFK ·B is the ideal in B generated by f#(∆i(Γ

′)) for all i. On the other hand, tensoring
by ⊗AB we get a presentation

Bm Bn M ⊗A B 0.
f∗Γ

Since f ∗F = M̃ ⊗A B and since rk(f ∗F) = r, we can compute Jf ∗FK in the same manner,
i.e., taking all the minors of size (n − r) × (n − r) of a submatrix (f ∗Γ)′′ consisting of
n− r columns of f ∗Γ. This means that Jf ∗FK is generated by ∆i((f

#Γ)′′). We can actually
choose Γ′ and (f ∗Γ)′′ so that they consist of the same columns, and in that case we are
done because f# is a ring homomorphism.

Proposition 1.42. Let X be a Noetherian integral scheme and E , F and G be coherent
OX-modules. Assume that we have an exact sequence 0→ E → F → G → 0.

1 If the sequence is locally split and E is locally free, then there is an isomorphism
BlFX ≃ BlGX .

2 If G is locally free, then there is an isomorphism BlFX ≃ BlEX .

Proof. It is enough to prove the statements locally. Indeed, if pF : BlFX → X and pG : BlGX →
X are the natural projections, then BlFX ≃ BlGX if and only if (p∗FG)tf and (p∗GF)tf are loc-
ally free, and these are local statements.

Therefore, we may assume that we have F ≃ E ⊕ G. With this, we have that

∧topF = ∧topE ⊗ ∧topG. (1.8)

By Lemma 1.37 we have that BlGX ≃ Bl∧topGX and BlFX ≃ Bl∧topFX ≃ Bl∧topE⊗∧topGX

using Equation (1.8). Suppose now that E is locally free, then ∧topE is a line bundle and
we conclude that BlFX ≃ BlGX by Proposition 1.28.

If G is locally free, the sequence is locally split and a similar argument to the one above
shows that BlFX ≃ BlEX .
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In the following we discuss a more general situation, when we have an open U ⊂ X

such that 0→ EU → FU → GU → 0, with EU locally free.

Proposition 1.43. Let F and G sheaves of ranks r + a and r on an integral scheme X and
On+a → F and On → G surjective morphisms. Suppose there exists U ⊂ X an open
subset and a commutative diagram

0 0

OnU G|U 0

On+aU F|U 0

OaU EU

0 0

i f

h

with the columns split short exact sequences and h an isomorphism. Then, we get an
induced morphism

BlGX → BlFX.

In particular, BlGX is a desingularisation of F .

Proof. The diagram in the hypothesis gives a commutative diagram

U //

��

X ×Gr(n, r)

��

U // X ×Gr(n+ a, r + a)

where the vertical map Gr(n, r)→ Gr(n+ a, r + a) is

(V ↠ Q) 7→ (V ⊕W ↠ Q⊕ h(W )).

Here we denoted the fiber of the vector bundle OaU by W and (by a slight abuse of nota-
tion) the induced map by h. This gives a morphism between the closures BlGX → BlFX .
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Corollary 1.44. Let F and G sheaves of ranks r + a and r on an integral scheme X and
On → F and On+a → G surjective morphisms. Suppose there exists U ⊂ X an open
subset and a commutative diagram

0 0

0 G∨|U OnU

0 F∨|U On+aU

E∨U OaU

0 0

g q

h

with the columns split short exact sequences and h an isomorphism. Then, we get an
induced morphism

BlGX → BlFX.

In particular, BlGX is a desingularisation of F .

Proof. This follows by dualising the statement in Proposition 1.43. Note that g is not the
dual of f , but of its inverse.

Alternatively, one can copy the proof above. The only difference is that a map Gr(r, n)→
Gr(r + a, n+ a) is

(S ↪→ V ) 7→ (g(S)⊕W ↪→ V ⊕ h(W )).

Remark 1.45. In general, BlFX is not isomorphic to BlF∨X . For example, let X be a
normal scheme and F an ideal sheaf. Then F∨ is reflexive and it has rank one, so it
is an invertible sheaf. This shows that BlF∨X ≃ X . If F is not locally free (see e.g.
Example 1.99), then we have BlFX ̸= X .

1.4 Diagonalization

The diagonalization process for certain coherent sheaves is introduced by Hu and Li
in [HL11]. A coherent sheaf F on an integral Noetherian scheme X can locally be written
as the cokernel of a morphism of locally free sheaves φ : E−1 → E0. Blowing up all the
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Fitting ideals of F desingularizes both F and the kernel of φ, and makes the morphism φ

diagonalizable (see Definition 1.46). We summarize the construction for schemes and its
universal property and explore the possibility of finding a minimal blow-up which also
desingularizes all the components of the abelian cone associated to F . Applied to the
moduli space of maps, this construction will be used in Section 1.7 to desingularize all
the components ofMg,n(Pr, d). All schemes are assumed to be Noetherian and integral in
this section.

1.4.1 Diagonalizable morphisms and diagonal sheaves

We recall the notion of diagonalizable morphism of locally free sheaves from [HL11]
and introduce the notion of diagonal sheaf. We show that these two notions are equival-
ent in Proposition 1.51, in the sense that a morphism is diagonalizable if and only if its
cokernel is diagonal.

Definition 1.46 (Diagonalizable morphism [HL11, Definition 3.2]). Let X be a scheme. A
morphism φ : O⊕p

X → O
⊕q
X is diagonalizable if there are direct sum decompositions by free

sheaves

O⊕p
X = G0 ⊕

ℓ⊕
i=1

Gi and O⊕q
X = H0 ⊕

ℓ⊕
i=1

Hi (1.9)

with φ(Gi) ⊆ Hi for 0 ≤ i ≤ ℓ such that

1 φ |G0= 0;

2 for every 1 ≤ i ≤ ℓ, there is an isomorphism Ii : Gi → Hi;

3 the morphism φ |Gi
: Gi → Hi is given by fiIi for some 0 ̸= fi ∈ Γ(OX);

4 (fi+1) ⫋ (fi).

More generally, a morphism φ : E−1 → E0 of locally free sheaves on X is locally diagon-
alizable if X admits an open cover which trivializes E−1 and E0 simultaneously and on
which φ is diagonalizable.

Example 1.47. If X = Spec (R) for a principal ideal domain R, then every morphism
φ : Rp → Rq is diagonalizable in the sense of Definition 1.46 and the diagonal form asso-
ciated to φ is called the Smith normal form of φ.
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We will be interested in the coherent sheaves arising as kernels and cokernels of such
diagonalizable morphisms.

Proposition 1.48. LetX be a Noetherian integral scheme and let φ : E−1 → E0 be a locally
diagonalizable morphism between locally free sheaves on X . Then ker(φ) is locally free.

Proof. The question is local, so we can assume that E−1 = O⊕p
X and E0 = O⊕q

X , and that
they admit decompositions as in Equation (1.9). Then ker(φ) = G0 is free.

Definition 1.49. We say that a coherent sheaf F on a scheme X is diagonal if all the Fitting
ideal sheaves Fi(F) are locally principal.

Remark 1.50. By Theorem 1.29, if F is diagonal then F tf = F/(tor(F)) is locally free and
F has tor-dimension at most 1.

Proposition 1.51. A morphism φ : E−1 → E0 of locally free sheaves is locally diagonaliz-
able if and only if the coherent sheaf Coker(φ) is diagonal.

Proof. This result is contained in the proof of [HL11, Proposition 3.13]. Observe that the
Fitting ideals Fi(F) are just the determinantal ideals ∆(q−i)×(q−i)(φ), where q = rk(E0). If
φ is locally diagonalizable, take an open where it is of the form (1.9). Then the Fitting
ideals of F are generated by products of the fi’s, so are principal in this open.

On the other hand, if F is diagonal, we can cover X by affine opens where all Fi(F)
are principal and where the Ei’s are simultaneously trivialized. We quickly sketch how
[HL11, Proposition 3.13] produces a decomposition as in (1.9), by possibly further restrict-
ing. The morphism φ is given by

Γ = (ai,j)

i ∈ {1, . . . , p}, j ∈ {1, . . . , q}. The Fitting ideal Fq−1(F) = ∆1×1(Γ) is principal if and only
if, after further localization, there is an entry ai0,j0 which divides every other entry ai,j . In
that case, one can perform row and column operations to put Γ in the following form

ai0,j0 0 . . . 0

0
... Γ′

0


with Γ′ a matrix of smaller size. The same argument works recursively since the remain-
ing Fitting ideals of F and those of Γ′ differ by the principal ideal (ai0,j0).
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Example 1.52. Any smooth curveX can be covered by affine open subschemes of the form
Spec (R) with R a principal ideal domain. Therefore every coherent sheaf on X is locally
diagonal and every morphism of locally free sheaves on X is locally diagonalizable.

We are interested in morphisms that transform a given coherent sheaf in a diagonal
sheaf.

Definition 1.53. 1 Given a scheme X and a coherent sheaf F , a diagonalization of F is
a morphism f : X̃ → X such that f ∗F is diagonal.

2 Given a scheme X and a morphism of locally-free sheaves φ : E−1 → E0, a diagon-
alization of φ is a morphism f : X̃ → X such that f ∗φ is locally diagonalizable and
rk(Coker(φ)) = rk(f ∗Coker(φ)).

Remark 1.54. From Proposition 1.51, we see that diagonalizing a coherent sheafF is equi-
valent to diagonalizing any presentation E−1 → E0 ↠ F by locally free sheaves.

Remark 1.55. If φ : E−1 → E0 is a locally diagonalizable morphism on a scheme X ,
and f : Y → X is any morphism of Noetherian schemes, f ∗φ is locally diagonalizable.
Similarly, if F is diagonal, f ∗F is diagonal. Note that the generic ranks of F and f ∗F will
be different in general for non-dominant morphisms.

1.4.2 Construction of the Hu-Li blow-up

We recall the construction of the minimal diagonalization of a sheaf, introduced in
[HL11], which we call the Hu-Li blow-up of a scheme along a sheaf.

Definition 1.56 (Maximal rank). LetX be an integral Noetherian scheme andF a coherent
sheaf of generic rank r. The maximal rank mrk(F) is

mrk(F) = max
p∈X
{rk(F|p)} ≥ r

which is the maximum rank of F when restricted to a closed point of p ∈ X . Equivalently,
mrk(F) is such that the Fitting ideals Fmrk(F)(F) is OX and Fmrk(F)−1(F) ̸= OX , with the
convention that F−1(F) = 0.

Remark 1.57. The above mrk(F) is finite. Indeed, the ascending chain condition on the
Fitting ideals

F−1(F) ⊂ F0(F) ⊂ · · · ⊂ Fn(F)
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guarantees that there is some mrk(F) such that Fmrk(F)(F) = Fmrk(F)+1(F) = . . . .

Moreover, for any affine open U ⊂ X , the ascending chain of Fitting ideals stabilizes at
OU , since F|U = M̃ for a finitely generated module M . So the chain above must stabilize
at OX .

Remark 1.58. There is a closed point q ∈ X such that rk(F|q) = mrk(F), and such that we
have a resolution

O⊕p
q → O⊕mrk(F)

q → F|q → 0.

However, F may not be generated globally by mrk(F) sections. Indeed, it may not be
globally generated at all!

Construction 1.59 (Hu–Li blow-up). Let X be an integral Noetherian scheme and F a
coherent sheaf of general rank r and maximal rank r2. Recall from Section 1.3.3 that the
Fitting ideals of F satisfy a chain of inclusions F−1(F) ⊆ F0(F) ⊆ . . ., that Fr2(F) = OX
and that F0(F) = . . . = Fr−1(F) = 0 because F has rank r.

Let
BlHLF X = BlFr(F)·...·Fr2−1(F)X,

with the convention that BlHLF X = X if r = r2. By [Sta22, Lemma 080A], BlHLF X can also
be constructed by successively blowing up X along (the total transforms of) the Fitting
ideals of F , that is

BlHLF X = Xr . . . Xr2−2 Xr2−1 X
pr pr2−2 pr2−1

where

• Xr2−1 = BlFr2−1(F)X ,

• Xr2−2 = BlFr2−2(p∗r2−1F)Xr2−1 = Blp−1
r2−1Fr2−2(F)OXr2−1

Xr2−1 and

• Xi = BlFi(p∗i p
∗
i+1...p

∗
r2−1F)Xi+1 for all i with r ≤ i ≤ r2 − 2.

Each pi is the natural morphism coming from the blow-up construction and we denote by
p the composition pr2−1 ◦ . . . ◦ pr.

1.4.3 The universal property of the Hu-Li blow-up

We are now ready to state the minimality properties for Construction 1.59. We can
formulate a universal property for the morphism φ or, in light of Remark 1.54, we can
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formulate it to only depend on the cokernel sheaf F .

Theorem 1.60 (Universal property of BlHLF X [HL11]). Let X be a Noetherian integral
scheme andF a coherent sheaf onX of generic rank r. The natural projection p : BlHLF X →
X satisfies that

1 the sheaf p∗F has generic rank r and

2 the Fitting ideal Fi(p∗F) is locally principal for all i.

Moreover, p : BlHLF X → X satisfies the following universal property: for any morphism
f : Y → X of Noetherian integral schemes such that

1 the sheaf f ∗F has generic rank r and

2 the Fitting ideal Fi(f ∗F) is locally principal for all i,

there is a unique morphism f ′ : Y → BlHLF X factoring f .

Y BlHLF X

X

f

∃!f ′

p

Proof. Let r2 denote the maximal rank of F . Then r = r2 if and only if F is locally free, in
which case BlHLF X = X clearly has this property.

Otherwise, we must have r2 ≥ r, so BlHLF X is defined by the sequence of blow-ups in
Construction 1.59. By construction, p is dominant and each Fitting ideal of p∗F is locally
principal. The universality follows from the universal property of the usual blow-up as
in [Har77, Proposition 7.14], using that Fi(f ∗F) is non-zero for all r ≤ i ≤ r2, which holds
by the assumption that f ∗F and F have the same generic rank.

Theorem 1.61 (Universal property of diagonalization [HL11]). Let φ : E−1 → E0 be a
morphism of locally-free sheaves on a Noetherian integral scheme X . Let F = Coker(φ)

and let BlHLF X as in Construction 1.59. Then, the natural projection p : BlHLF X → X is
a diagonalization of φ. Moreover, p satisfies the following universal property: for any
morphism f : Y → X such that f ∗φ is locally diagonalizable and rk(f ∗F) = rk(F), there
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is a unique morphism f ′ : Y → BlHLF X factoring f .

Y BlHLF X

X

f

∃!f ′

p

Proof. Follows immediately from Theorem 1.60 and Proposition 1.51.

1.4.4 Properties of the Hu–Li blow up.

We collect properties of BlHLF X .

Proposition 1.62. Let f : Y → X be a morphism of Noetherian integral schemes and let
F be a coherent sheaf on X of generic rank r. If f ∗F has generic rank r then there is a
unique morphism

BlHLf∗FY BlHLF X

Y X

∃!f̃

f

making the diagram commute. If, moreover, f is flat, then the square is Cartesian.

Proof. A unique morphism f̃ making the diagram commute exists by the universal prop-
erty, Theorem 1.61. To see that the diagram is Cartesian, we apply [Sta22, Lemma 0805]
to each of the blow-ups defining BlHLF X , using that the formation of Fitting ideals is com-
patible with pullbacks.

Proposition 1.63. Let X be a Noetherian integral scheme, let F a coherent sheaf on X and
let L be a line bundle on X . Then there is a unique isomorphism

BlHLF (X)
∃!ϕ̃

//

p
$$

BlHLF⊗L(X)

q
zz

X

which makes the diagram commute.

Proof. By Theorem 1.60, a unique factorization ϕ̃ of p through q exists if and only if
Fi(p

∗(F ⊗L)) is locally principal for all i, and this holds because Fi(p∗F) is locally free for
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all i. Indeed, choose an open cover of X trivializing L. The preimage by p of this cover in-
duces a cover of BlF(X) where p∗(F⊗L) ≃ p∗F . This shows that Fi(p∗(F⊗L)) ≃ Fi(p

∗F)
locally, so ϕ̃ exists. The same argument shows there is a unique factorization of q through
p, which must be the inverse of ϕ̃ by uniqueness.

Proposition 1.64. Let X be a Noetherian integral scheme and E , F and G be coherent
OX-modules. Assume that we have an exact sequence 0→ E → F → G → 0.

1 If the sequence is locally split and E is locally free, then there is an isomorphism
BlHLF X ≃ BlHLG X .

2 If G is locally free, then there is an isomorphism BlHLF X ≃ BlHLE X .

Proof. It is enough to prove the statement locally, so we may assume that we have F ≃
E ⊕ G. With this, we have that

Fℓ(E ⊕ G) =
∑

k+k′=ℓ

Fk(E)Fk′(G) (1.10)

by [Sta22, Lemma 07ZA]. If G is locally free, the sequence is locally split, therefore by
symmetry it is enough to show one of the statements.

Without loss of generality, suppose that G is locally free, therefore

1 Fk′(G) = 0 for all k′ < rk(G) and

2 Fk′(G) = OX for all k′ ≥ rk(G)

by [Sta22, Lemma 07ZD]. Combining Item 1 with Equation (1.10), if ℓ < rk(G) then
Fℓ(F) = 0 because in the sum k + k′ = ℓ we always have 0 ≤ k′ ≤ ℓ < rk(G). On the
other hand, for ℓ ≥ rk(G) we combine Equation (1.10), Items 1 and 2 and the chain of
inclusions F0(E) ⊆ F1(E) ⊆ . . . to deduce that

Fℓ(F) = Fℓ(E ⊕ G) =
∑

k+k′=ℓ

Fk(E)Fk′(G) =
∑

0≤k≤ℓ−rk(G)

Fk(E) OX = Fℓ−rk(G)(E).

To sum up, we have shown that

Fℓ(F) = Fℓ(E ⊕ G) =

0 if ℓ < rk(G)

Fℓ−rk(G)(E) if ℓ ≥ rk(G).

This means that the collection of Fitting ideals of F and E agree, so BlHLF X ≃ BlHLE X .
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Proposition 1.65. Let X be a Noetherian integral scheme and F a coherent OX-module.
Then for every positive integer n

BlHLF X = BlHLF⊕nX.

Proof. There is a natural morphism BlHLF X → BlHLF⊕nX overX . To see this, let p : BlHLF X →
X be the natural projection. Then p∗F is diagonal and it follows from Definition 1.46 that
p∗(F⊕n) = (p∗F)⊕n is diagonalizable too. Then apply Theorem 1.61 to get the desired
morphism.

Conversely, we show that there is a natural morphism BlHLF⊕nX → BlHLF X over X ,
which is enough to conclude the proof by the universal properties of both blow-ups. Re-
member that

BlHLF X = Bl∏
ℓ Fℓ(F)X,

where the product is over all non-trivial Fitting ideals of F , and similarly BlHLF⊕nX is the
blow-up of X along

∏
ℓ Fℓ(F⊕n). By [Moo01], it suffices to show that

∏
ℓ Fℓ(F) divides

a power of
∏

ℓ Fℓ(F⊕n) as fractional ideals. Actually, we show that every Fitting ideal
Fℓ(F⊕n) is a product of certain Fitting ideals Fk(F), with each k appearing at least once
as ℓ varies, and this is clearly enough.

By [BV88, Lemma 10.10], if A is any Q-algebra, if M = (ai,j) is any matrix with coeffi-
cients in A and if ∆i denotes the ideal generated by all minors of M of size i× i, then

∆i∆j ⊆ ∆i+1∆j−1

whenever i ≤ j − 2. From this, we can conclude that if ℓ = ds+ r with r ∈ {0, . . . , s− 1}∑
j1+...+js=ℓ

∏
i

∆ji = ∆s−r
d ∆r

d+1. (1.11)

To conclude, remember that locally F is the cokernel of a morphism φ : E−1 → E0, that
Fi(F) is the ideal ∆r2−i(φ) of minors in φ of size r2 − i, where r2 = rk(E0), and the
expression for Fitting ideals of direct sums Equation (1.10).

Example 1.66. Take n = 2 in Proposition 1.65. Then Equation (1.11) is equivalent to

Fℓ(F ⊕ F) =
∑

k+k′=ℓ

Fk(F)Fk′(F) =

F 2
r2−k if ℓ = 2k

Fr2−kFr2−k−1 if ℓ = 2k + 1

where r2 the maximal rank of F as in Construction 1.59.
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Proposition 1.67. Let X be a Noetherian integral scheme and F a coherent sheaf on X .
Then there is a natural morphism BlHLF X → BlFX .

Proof. Let π : BlHLF X → X be the natural projection and let r = rk(F). By Theorem 1.34,
it suffices to check that (π∗F)tf is locally free of rank r. This can be checked locally. If
X = Spec (R) for a local ring R, the result follows from Theorem 1.29.

1.4.5 The filtration of a diagonal sheaf

Given a diagonal sheaf F of generic rank 0, we construct a filtration F• such that
Fi/Fi−1 is locally free on a Cartier divisor Di (Construction 1.69). This filtration will be
used in Section 1.6.3 to describe the irreducible components of the abelian cone of a diag-
onal sheaf (see Theorem 1.97).

Lemma 1.68. LetF be a diagonal coherent sheaf of generic rank r on a Noetherian integral
scheme X . Then there is a short exact sequence

0→ K → F → F tf → 0

with F tf locally free of rank r on X and K a diagonal coherent sheaf of generic rank 0.

Proof. Let K = tor(F). Then F tf is locally free by Remark 1.50 and K is diagonal by the
proof of Proposition 1.64.

Construction 1.69 (c.f. [Sta22, Tag 0ESU]). Let F be a diagonal coherent sheaf of generic
rank zero and mrk(F) = n on an integral scheme X . In the following, we construct an
increasing filtration F•:

F = Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 = 0

and effective Cartier divisors Di such that for each i, the sheaf

Fi/Fi−1

is locally free of rank i on the closed locally principal subscheme defined by Di.

Our formulation differs from the one in the reference, so we present the construction
of the filtration in our context. We can work locally and assume that F has a presentation
which is diagonalizable in the sense of Definition 1.46 that is φ : O⊕n

X → O⊕n
X where φ is
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the diagonal matrix

φ = Diag

 n1︷ ︸︸ ︷
f1, . . . , f1,

n2︷ ︸︸ ︷
f2, . . . , f2, . . . ,

nk︷ ︸︸ ︷
fk, . . . , fk


with n1 + · · · + nk = n and non-zero fi’s satisfying (fi+1) ⫋ (fi). Note that locally F
may not attain its maximal rank n, but we can always choose f1 to be a unit to obtain a
presentation of the correct rank.

Since F is diagonal, it has tor dimension at most 1 by Remark 1.50, therefore it admits
a presentation by a square matrix φ.

Since we are working over a domain, (fi+1) ⊆ (fi) is equivalent to fi|fi+1. We can
define effective Cartier divisors D1, . . . , Dn by taking ratios of successive entries of φ:

Dn = Fn−1 = (f1)

Di =

(
φn−i+1,n−i+1

φn−i,n−i

)
.

In other words, Di is the ideal generated by the ratio of the entries in position n− i+1 and
n− i in φ. Note that, while the generators of the ideals are only well-defined up to a unit,
the ideals themselves are well-defined and do not depend on the chosen presentation
of φ. In fact, they can be expressed as differences of the Fitting ideals of F , which are
independent of the chosen presentation.

The divisors Di give closed locally principal subschemes of X , which are defined by
(fk+1/fk) if i = n−

∑k
j=1 nk and are empty otherwise.

We define the increasing filtration of F• as follows. We set Fn := F , and define Fn−1

as the cokernel of the morphism φ′ := φ/f1. That is,

0 0 (OX/(f1))⊕n Fn/Fn−1 0

0 O⊕n
X O⊕n

X Fn 0

0 O⊕n
X O⊕n

X Fn−1 0.

∼

φ

φ′

id f1·id

(1.12)

As OD1 = OX/(f1), the graded piece Fn/Fn−1 is locally free of rank n on Dn.
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Now, φ′ can be given by the diagonal matrix

φ′ = Diag

 n1︷ ︸︸ ︷
1, . . . , 1,

n2︷ ︸︸ ︷
f2/f1, . . . , f2/f1, . . . ,

nk︷ ︸︸ ︷
fk/f1, . . . , fk/f1

 .

We can pass to φ′′ : O⊕n−1
X → O⊕n−1

X by removing the first entry. Clearly, Fn−1 = Cokerφ′′.
Then we can iterate the construction in (1.12), factoring our multiplication by the first
entry φ′′

1 of φ′′

0 0 (OX/(φ′′
1))

⊕n−1 Fn−1/Fn−2 0

0 O⊕n−1
X O⊕n−1

X Fn−1 0

0 O⊕n−1
X O⊕n−1

X Fn−2 0.

∼

φ′′

φ′′′

id φ′′
1 ·id

This defines the next subsheaf Fn−2 in the filtration and the new morphism φ′′′. If n1 >

1, (φ′′
1) = (1), so we will have Fn−2 = Fn−1 and Dn−1 defining the empty subscheme.

Note that the sub-schemes defined by Dn−1, . . . , Dn−n1+1 are all empty, and the filtration
is constant until Fn−n1−1, which is the cokernel of

O⊕n−n1
X

ψ−−→ O⊕n−n1
X

with

ψ = Diag

 n2︷ ︸︸ ︷
1, . . . , 1,

n3︷ ︸︸ ︷
f3/f2, . . . , f3/f2, . . . ,

nk︷ ︸︸ ︷
fk/f2, . . . , fk/f2


and Dn−n1 = (f1/f2). Iterating this construction clearly provides a filtration and a collec-
tion of effective divisors which satisfy the claims in the lemma.

The divisors Di are defined globally in terms of Fitting ideals, and do not depend on
the local expression of the matrix. In fact, unpacking the argument above, we can check
that
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
F0

...
Fn−1

 =



1 2 · · · n− 1 n

1 2 · · · n− 1
. . . . . . ...

1 2

1




D1

...
Dn

 . (1.13)

Then, 
D1

...
Dn

 =



1 −2 1
. . . . . . . . .

1 −2 1

1 −2
1




F0

...
Fn−1

 . (1.14)

With the notations of Construction 1.69, the associated graded sheaf to this filtration
is

E =
⊕
i

Ei,

where Ei = Fi/Fi−1.

We present an example to illustrate Construction 1.69.

Example 1.70. Take R = C[x, y, z], X = SpecR. Let F = M̃ be the diagonal sheaf defined
by

0→ R⊕4

φ=



x 0 0 0

0 x 0 0

0 0 xy 0

0 0 0 xyz


−−−−−−−−−−−−−−−→ R⊕4 →M → 0.

The divisors from the statement of Construction 1.69 are given by the ideals

D4 = (x), D3 = (1), D2 = (y), D1 = (z).
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As a sanity check for Equation (1.13), we see that indeed

F0 = D1 + 2D2 + 3D3 + 4D4 = (x4y2z),

F1 = D2 + 2D3 + 3D4 = (x3y),

F2 = D3 + 2D4 = (x2y),

F3 = D4 = (x).

Now, all the elements of φ are divisible by D4, which is the ideal generated by the first
entry. We set F4 = F . To obtain the next step in the filtration, F3, we consider the
decomposition φ = x · φ′ below

0 R⊕4 R⊕4 M 0

0 R⊕4 R⊕4 M3 0

φ

φ′

id x·id

we set F3 = M̃3, the module defined by

φ′ =


1 0 0 0

0 1 0 0

0 0 y 0

0 0 0 yz


or equivalently as the cokernel of

R⊕3

φ′=


1 0 0

0 y 0

0 0 yz


−−−−−−−−−−−→ R⊕3.

Similarly, F2 = M̃2 will be defined by

0→ R⊕2

y 0

0 yz


−−−−−−→ R⊕2 →M2 → 0
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and F1 = M̃1 by

0→ R
(z)−→ R→M1 → 0.

Finally, M0 = 0. In conclusion, we obtain the filtration

M =M4 = (R/(x))⊕2 ⊕R/(xy)⊕R/(xyz)



0 0

0 0

x 0

0 x


←−−−−−↩ M3 = R/(y)⊕R/(yz) ∼=

∼= M2 = R/(y)⊕R/(yz)

(
0 y

)
←−−−−−↩ M1 = R/(z)← 0 =M0.

The graded pieces are

E4 = F4/F3 =
˜(R/(x))⊕4

E3 = F3/F2 = 0

E2 = F2/F1 =
˜(R/(y))⊕2

E1 = R̃/(z)

and each of the sheaves Ei is locally free of rank i on the subscheme defined by Di. Note
that, for i = 3, such subscheme is empty.

Theorem 1.71. Let F be a diagonal coherent sheaf of generic rank r and maximal rank r2
on a Noetherian integral scheme X . Then we have a filtration

F ⊃ K = Kr2−r ⊃ Kr2−r−1 ⊃ · · · ⊃ K0 = 0

such that
F tf = F/K

is locally free of rank r and
Ei = Ki/Ki−1

is locally free of rank i on the effective Cartier divisor Di.

Proof. Immediate by Lemma 1.68 and Construction 1.69.
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1.4.6 Remarks on minimality

We saw in Remark 1.35 that blowing up the first non-zero Fitting ideal of F is, in
general, not the minimal way to makeF tf locally free. Similarly, blowing up all the Fitting
ideals of F is not the minimal way to turn (F |Di

)tf into locally free sheaves for all i. This
is illustrated in the following examples.

Example 1.72. Take X = Spec (R) and F = M̃ for M = R/I with I ⊂ R a non-principal
ideal. The only non-trivial Fitting ideal of F is F0(F) = I . Note that M tf = 0 is locally free
andM |V (I) is locally free of rank 1. This means thatF already has the desired property on
X . However, blowing up all the Fitting ideals of F results in BlI(X), which is isomorphic
to X if and only if I is invertible.

This example also shows that given a coherent sheaf F on an integral scheme X , the
blow up BlF(X) from Definition 1.25 and BlHLF X are different in general. Indeed, on the
one hand, BlF(X) = BlM(X) = X because M tf = 0 is locally free. On the other hand, the
only non-trivial Fitting ideal of M is F1(M) = I , so BlHLF X = BlIX . Therefore, both blow
ups agree if and only if I is invertible.

Example 1.73. Let P be the origin in A2
x,y and consider the embedding i : A2

x,y → A3
x,y,z

given by i(x, y) = (x, y, 0). The image of i is the plane Π = {z = 0}. Let I = (x, y) be the
ideal of P in A2 and consider the module M = i∗I in A3.

Note that M has generic rank 0, M tf = 0 and that M |Π is the ideal I , which is torsion-
free. This means that M tf = 0 is already locally free, but (M |Π)tf =M |Π= I is not locally
free over Π.

To compute BlHLM A3, we start with the following resolution of M

R3 R2 M 0
Γ (1.15)

where R = C[x, y, z] and

Γ =

(
y z 0

−x 0 z

)
.

The Fitting ideals of M are

• F0(M) = z(x, y, z),

• F1(M) = (x, y, z),

• Fn(M) = R, for all n ≥ 3
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This reflects the fact that M has rank 0 on A3 \ Π, rank 1 on Π \ P and rank 2 on P , as per
Proposition 1.6. Then

BlHLM A3 = BlF0(M)·F1(M)A3 = Blz(x,y,z)2A3 = Bl(x,y,z)A3 = BlPA3

is simply the blow-up of the origin in A3. Note that BlHLM A3 is distinct from BlMA3 = A3

in this example, as the latter does not flatten (M |Π)tf .

Remark 1.74. If the sheaf F has projective dimension ≤ 1, then the Rossi construction is
equal to the blow-up of the first non-zero Fitting ideal. In this case, blowing up all the
proper non-zero ideals as in the Hu–Li construction gives a minimal resolution with the
property that (F |Di

)tf is locally free for all of the Di’s defined in terms of Fitting ideals by
(1.14). For an ideal, having projective dimension 1 is equivalent to being principal.

Remark 1.75 (Extension of sheaves). Let X be a scheme, let Y be a closed subscheme and
let FY be a coherent sheaf of rank r on Y . In order to find a minimal resolution of this
torsion sheaf, one may try to extend FY to X as a sheaf which not a torsion sheaf and
perform a repeated Rossi construction. One can find an open cover of X and blow-ups
of the charts such that on the blow-up the torsion-free part of the pullback of F is locally
free on the support. However, the blown up charts may not glue to a global construction.
Below, we explain that it is always possible to find local blow-ups.

LetX be an affine scheme and let Y be a closed subscheme. Let FY be a coherent sheaf
of rank r on Y and assume that we have an exact sequence

O⊕n−r
U∩Y

M̂−→ O⊕n
U∩Y → FU∩Y → 0,

where M̂ ∈Mn,r−n(Γ(OY )). We may assume thatU = SpecR and Y ∩U = SpecR/I , where
R is a ring and I is an ideal. Let M̂ = (f̂ij), with f̂ij ∈ R/I . We now choose fij ∈ R a lift of
f̂ij and we denote by M the matrix (fij). Then we have a morphism O⊕n−r

U

M−→ O⊕n
U and

an exact sequence
O⊕n−r
U

M−→ O⊕n
U → FU → 0,

where FU denotes the cokernel of the map induced by M . Then, we have that FU |Y = FY
and the resolution above induces a morphism

U 99K U ×Gr(r, n).

Since there is no canonical choice for the lift M , the above morphisms do not glue in
general.
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1.5 Desingularization and diagonalization on stacks

In this section, we show that the constructions introduced so far in Section 1.3 and
Section 1.4 make sense for algebraic stacks, since they are both local and they commute
with flat base-change (see respectively Proposition 1.41 and Proposition 1.62). Thus, we
define the desingularization and the diagonalization of a coherent sheaf on a Noetherian
integral Artin stack, and we establish properties of both constructions.

1.5.1 Construction of BlFP and BlHL
F P

So far, we have only constructed BlFX and BlHLF X for an affine (Noetherian integral)
scheme X. We need to generalize this construction and its universal properties to the cases
where X is a scheme and, more generally, an algebraic space before we can proceed with
Artin stacks. However, the arguments all run in the same way. So we assume below that
we have taken a presentation of an algebraic space by affine schemes and have obtained
the aforementioned results for X an algebraic space.

Denote by P a Noetherian, integral Artin stack. Consider a smooth presentation of P,
i.e. a groupoid in algebraic spaces (U0, U1, s, t,m) whose associated quotient stack [U1 ⇒

U0] is P. Here [U1 ⇒ U0] denotes the stackyfication of a category fibered in groupoids
[U1 ⇒ U0]

pre. Recall that U0, U1 are algebraic spaces m : U1 ×s t U1 → U1 is the composition
of arrows, s, t : U1 → U0 are respectively source and target morphism and they are smooth
morphisms. They satisfy some compatibility conditions that we will not use explicitly
here (see [LMB00, §(4.3)] or [Sta22, Definition 0441]).

The reader can think of P being the Picard stack Picg,n. Recall, that a S-point of Picg,n

is a couple (C,L) where C is a nodal curve of genus g with n distinct smooth marked
points and L is a line bundle over it. It is well known that Picg,n is a smooth Noetherian
Artin stack over Spec (C) which is not of finite type as we do not fix the degree of the line
bundle.

Let F be a coherent sheaf on P, i.e. we have a coherent sheaf F0 on U0 and also a
coherent sheaf F1 on U1 with two fixed isomorphisms

s∗F0 ≃ F1 ≃ t∗F0 (1.16)

that satisfy the cocycle condition on U1 ×s t U1. We refer to the article of Olsson [Ols07,
Proposition 6.12] for the equivalent definitions of coherent sheaves on an Artin stack.

https://stacks.math.columbia.edu/tag/0441
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We now proceed to use the smooth presentation of P to define a stack BlFP desin-
gularizing the coherent sheaf F. All of the following discussion holds formally identical
when we consider the procedure that diagonalises F instead. The stack we obtain with
the second procedure is denoted BlHLF P.

Later, we prove that the blow-up stacks obtained in both cases are algebraic and come
equipped with a representable (by a scheme), proper and birational morphism to P.

With the theory developed in §1.3, we can construct BlF1U1 and BlF0U0. Note that to
apply the results in that section we require U0, U1 to be integral Noetherian schemes and
not merely algebraic spaces. However, it is routine to extend the construction to algebraic
spaces, and we omit that passage here.

Since the morphisms s, t : U1 → U0 are smooth (hence flat), we apply flat base-change
for blow-up of sheaves (see Proposition 1.41) to s, t and we get s̃, t̃ : BlF1U1 → BlF0U0.
Using the fix isomorphisms (1.16), we obtain the following Cartesian diagrams

BlF1U1 BlF0U0 BlF1U1 BlF0U0

U1 U0 U1 U0.

s̃

q
⌜

p

t̃

q
⌜

p

s t

(1.17)

In addition, using Cartesian diagram on a cube, we construct a map

m̃ : BlF1U1 ×s̃ t̃
BlF1U1 → BlF1U1.

More precisely, we have

BlF1U1 ×s̃ t̃
BlF1U1 ≃

(
BlF0U0 ×p s U1

)
×
s̃ t̃

(
BlF0U0 ×p t U1

)
≃ BlF0U0 ×p s U1 ×s t U1

→ BlF0U0 ×p s U1 by applying m : U1 ×s t U1 → U1

≃ BlF1U1 by the Cartesian diagram (1.17).

We obtain a smooth groupoid in algebraic spaces

(BlF0U0,BlF1U1, s̃, t̃, m̃)

with a morphism of groupoids to (U0, U1, s, t,m). This defines a 1-morphism

p : [BlF0U0 ⇒ BlF1U1]
pre → [U0 ⇒ U1]

pre.
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Let BlFP denote the stackyfication of [BlF0U0 ⇒ BlF1U1]
pre. By universal property, the

morphism discussed above lifts to a morphism of stacks

π : BlFP→ P.

1.5.2 Properties of BlFP and BlHL
F P

We collect some properties of BlFP and BlHLF P, including those of Sections 1.3.5 and 1.4.4,
which naturally extend to stacks.

Theorem 1.76. Let [U1 ⇒ U0] → P be an integral Noetherian Artin stack and F be a
coherent sheaf on it.

1 The stacks BlFP = [BlF1U1 ⇒ BlF0U0] and BlHLF P = [BlHLF1
U1 ⇒ BlHLF0

U0] are integral
Noetherian Artin stacks.

2 The morphisms BlFP→ P and BlHLF P→ P are representable proper and birational.

Remark 1.77. Let S be a scheme and f : S → P be a flat morphism. Then we have

Blf∗FS BlFP BlHLf∗FS BlHLF P

S P S P

⌜ ⌜

f f

(1.18)

In this section, we choose to use an atlas of P to define the blow-ups on Artin stacks,
but it is also possible to use the diagram above and fppf descent to define them. Hence,
the definition above does not depend on the choice of the atlas.

Notice that as the Hu–Li diagonalization is a repeated blow-up of Fitting ideals on
schemes, so the same holds for stacks.

Proof of Theorem 1.76. Once again, we will only discuss BlFP, as the argument for BlHLF P

is identical, mutatis mutandis.

Part (2), together with the properties of the respective constructions on schemes, im-
plies part (1) of the theorem. To establish part (2), it suffices to compute the fiber U0 ×P

BlFP and show that it is BlF0U0. A priori, BlF0U0 → U0 is representable by an algebraic
space, so the morphism BlFP → P will be representable by an algebraic space [Sta22,
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Tag 045G]. However, running the argument below for a covering of an algebraic space
by schemes, one can show in two steps that the morphism is in fact representable by a
scheme. Now consider the 2-Cartesian diagram of categories fibered in groupoids

X U0

[BlF1U1 ⇒ BlF0U0]
pre [U1 ⇒ U0]

pre

⌜

p

(1.19)

where, by abuse of notation, U0 is the category fibered in sets associated to this algebraic
space. One computes (see the discussion around [Sta22, Tag 04Y4]) that the groupoid X is
given by (U ′

0, U
′
1, s

′, t′,m′) where

U ′
0 = U1 ×t,U0,p BlF0U0

U ′
1 = U1 ×t,U0,p·s BlF1U1

s′ : (x, y) 7→ (x, s̃(y))

t′ : (x, y) 7→ (m(x, p(y)), t̃(y))

By (1.17),

U ′
1 = U1 ×t,U0,p·s (U1 ×s,U0,p BlF0U0)

= (U1 ×t,U0,s U1)×t·pr2,U0,p BlF0U0

s′ : ((x, y), z) 7→ (x, z)

t′ : ((x, y), z) 7→ (y, z)

From this expression, X is a banal groupoid whose stackyfication is equivalent to the
scheme BlF0U0, as the relations s′, t′ identify all the points of the U1 factor. Then the stack-
yfication of (1.19)gives us a 2-Cartesian diagram:

BlF0U0 U0

BlFP P

π̃

⌜

π

(1.20)

This discussion proves that π is representable. Recall that a morphism of stacks is bira-
tional if there exists an isomorphism on dense open substacks on source and target (see
[CMW12]). By Proposition 1.27 we deduce that π is proper and birational.

https://stacks.math.columbia.edu/tag/045G
https://stacks.math.columbia.edu/tag/045G
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Proposition 1.78. Let F be a coherent sheaf on P.

1 For any line bundle L on P, we have BlF⊗LP = BlFP and also BlHLF⊗LP = BlHLF P.

2 Let E, F,G be coherent OP-modules. Assume that we have an exact sequence 0 →
E→ F→ G→ 0.

2.1 If the sequence is locally split and E is locally free, then there are isomorphisms
BlFX ≃ BlGX and BlHLF X ≃ BlHLG X .

2.2 If G is locally free, then there are isomorphisms BlFX ≃ BlEX and BlHLF X ≃
BlHLE X .

Proof. For the first part of 1, let p′ : BlF⊗LP → P and p : BlFP → P be the natural projec-
tions. By the Universal Property, Theorem 1.79, to show that BlF⊗LP = BlFP it suffices
to show that ((p′)∗F)tf and (p∗(F⊗ L))tf are locally free. These statements can be checked
locally and they follow from Proposition 1.28.

Similarly, all the other statements are local, so they follow from the same statements
on schemes with the two different blow-ups. For the Rossi blow-up BlFP, the schematic
statements are Propositions 1.28 and 1.42 and for the Hu–Li blow-up BlHLF P, it follows
from Propositions 1.63 and 1.64.

In Definition 1.46, we define the notion of diagonalizable morphism of sheaves on a
scheme, we can extend it directly to algebraic stacks.

Theorem 1.79 (Universal property of the Rossi desingularization). Let P be an integral
Noetherian Artin stack and F be a coherent sheaf on P of generic rank r. Let π : BlFP→ P

be the morphism constructed in Section 1.5.1. Then

1 The sheaf (π∗F)tf is locally free of generic rank r.

2 The morphism π : BlFP → P satisfies the following universal property: For any
morphism of algebraic stacks p : Y → P such that (p∗F)tf is locally-free of gen-
eric rank r, there is a unique1 morphism p′, which makes the following diagram
2-commutative

Y BlFP

P

∃!p′

p
π

1To be precise, there exists a morphism p′, unique up to a unique 2-morphism.
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Proof. The statement follows from the universal property of the Rossi blow-up for a scheme
(Proposition 1.40) and the compatibility of the Rossi blow-up with flat pullback (Propos-
ition 1.41). By invoking fppf descent and because all our stacks are quasi-separated, it
suffices to prove this for any flat morphisms from affine Noetherian integral schemes
f : S → P and T → Y.

Let T → Y be a flat morphism from an affine Noetherian integral scheme. We con-
struct a morphism

BlFP

T Y P.

pa

g

Let S be an affine integral Noetherian scheme and let f : S → P be a flat representable
morphism. Recall that we have a Cartesian diagram

Blf∗FS BlFP

S P

⌜

f

as in (1.18), coming from Proposition 1.41. Since T → Y is flat, we have that (g∗F)tf is
locally free of rank r, we define TS by the Cartesian diagram

TS S

T P.

gS

b f

g

Then
(g∗Sf

∗F)tf = (b∗g∗F)tf = b∗((g∗F)tf)

because b is flat. So (a∗f ∗F)tf is locally free of rank r. By Proposition 1.40, there is a unique
morphism aS : TS → Blf∗FS over gS .
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Blf∗FS

TS S BlFP

T P.

gS

b

aS

f

g

The result follows from fppf descent, using that the lift of aS of gS is unique.

From the beginning of Section 1.4 ( Definitions 1.46 and 1.49 and Proposition 1.51), we
can define the notion of diagonal sheaves or locally diagonalizable morphism of sheaves
on Artin stacks as follows.

Definition 1.80. • A coherent sheaf F on P is diagonal if for any scheme S and morph-
ism f : S → P, the sheaf f ∗F is diagonal, that is, its Fitting ideals Fi(f ∗F) are locally
principal.

• A diagonalization of a coherent sheaf F is a morphism π : P̃ → P such that π∗F is
diagonal.

Remark 1.81. Using the presentation of P, we could also define that F is diagonal if F0 is.

Theorem 1.82 (Universal property of the diagonalization). Let π : BlHLF P → P be as
above. Then

1 The sheaf π∗F is diagonal of the same generic rank as F.

2 The blow-up BlHLF P satisfies the universal property: For any morphism of algebraic
stacks f : Y → P such that f ∗F is diagonal of the same generic rank as F, there is a
unique morphism f ′ which makes the following diagram 2-commutative:

Y BlHLF P

P

∃!f ′

f
π

Proof. The statement follows from the universal property of the Hu-Li blow-up for schemes,
Theorem 1.60, and the compatibility of the Hu-Li blow-up with flat pullback, Proposi-
tion 1.62. The argument is the same as the proof of Theorem 1.79.
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Remark 1.83. If P has the resolution property in the sense of [Tot04], then we have that
π : BlFP → P is projective. Indeed, if P has the resolution property, then we have a
global locally free sheaf E with a surjective morphism

E→ F→ 0.

This allows us to define BlFP via the graph construction and thus the resulting stack is
projective over P. Note that projectivity is not local on the target, and thus, even though
the local construction is projective, π may not be projective. By [Tot04] stacks which are
not global quotient stacks do not have the resolution property. Many of the stacks that
we work with are not global quotients. For examples of such stacks see [Kre13].

1.6 Components of abelian cones

Let F be a diagonal sheaf on an integral Noetherian scheme X , we study the irredu-
cible components of the abelian cone C(F) = Spec (SymF) associated to F . We show that
C(F) has finitely many irreducible components, which we consider with their natural
reduced structure. Each irreducible component is a vector bundle supported on a closed
integral subscheme. All the cones in this section are taken over X , unless otherwise spe-
cified by the notation Cbase(sheaf).

1.6.1 The main component of an abelian cone

We start our study of components of cones with the main component of an abelian
cone. Our study is motivated by [AM98, Proposition 2.5], which we recall below as Pro-
position 1.85. It states that if π : C = Spec (A) → X is a cone with X integral and with A
torsion-free outside of a closed Z ⊆ X , then the closure of C \ π−1(Z) inside C is equal to
Spec (Atf).

In general, Spec (Atf) need not be irreducible, see Example 1.86. However, if the cone
is abelian, that is, if A = SymF for a coherent sheaf F , then Spec (Atf) is an irreducible
component that we call the main component of C(F) = Spec SymF . Note that (SymF)tf

and Sym (F tf) need not agree in general (see Remark 1.89), but they do if F tf is locally
free by Lemma 1.91. In particular, they agree for diagonal sheaves by Remark 1.50.

Let X be an integral Noetherian scheme, letA be anOX-algebra with the assumptions
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of Definition 1.7 and let
π : C = SpecX(A)→ X

be the cone associated to A. The natural surjection A → Atf induces a closed embedding

Spec (Atf) ↪→ Spec (A),

which we want to understand geometrically.

Notation 1.84. Let X be a scheme and let U ⊆ X be an open subscheme. We denote by
clXU the closure of U inX , with its reduced induced structure, and by clschX U the schematic
closure of U in X . If U is reduced, then clschX U = clXU by [Sta22, Lemma 056B]

The following result is proven in [AM98] in the analytic category, but the proof copies.

Proposition 1.85. ( [AM98, Proposition 2.5]) Let U ⊆ X be a non-empty open such that
A |U is torsion free. Then

SpecX(Atf) = clSpecX(A)(π
−1(U)).

Furthermore, if π−1(U) is reduced, then

SpecX(Atf) = clschSpecX(A)(π
−1(U)).

In general, SpecX(Atf) may not be irreducible, see Example 1.86.

Example 1.86. The abelian cone SpecX(Atf) may not be irreducible. For example, let
R = C[x] and let A = R[Y, Z]/(Y Z) viewed as a graded R-algebra with Y, Z in degree 1.
This is a cone over A1 = Spec (R). It is clear that A has no torsion as an R-module but
Spec (R) has two irreducible components. By Proposition 1.85, we see that

Spec (SymF)tf = clschC(F)(π
−1(U))

is the closure of an irreducible subset, therefore it is irreducible.

Now we focus on abelian cones. Firsly, we show in Proposition 1.87 that ifA = SymF ,
then SpecX(Atf) is an irreducible component of SpecX(A).

Proposition 1.87. Let X be an integral Noetherian scheme and let F be a coherent sheaf
on X . Then Spec (SymF)tf is an irreducible component of C(F) = Spec SymF .
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Proof. Let U ⊆ X be a non-empty open such that F is locally free on U . Then, for
π : C(F) → X the projection, we have that π−1(U) is a vector bundle over U , thus it is
integral. Let Z be the unique irreducible component of C(F) containing π−1(U). Then

clschC(F)(π
−1(U)) = clschZ (π−1(U)) = Z,

where the first equality follows from Lemma 1.108 and the second one is a basic property
of the Zariski topology that the closure of an irreducible open in an irreducible space is
the whole space.

Definition 1.88. Let X be an integral Noetherian scheme and let F be a coherent sheaf
on X . We say that Spec (SymF)tf is the main component of the abelian cone C(F) =

Spec SymF .

Remark 1.89. With he assumptions of Definition 1.88, it is not true in general that the main
component of C(F) = Spec SymF is equal to C(F tf) = Spec Sym (F tf). In fact, C(F tf)

need not be irreducible (see Example 1.90). The underlying reason for this discrepancy is
that Sym and torsion-free part do not commute in general (see Remark 1.92). A particular
case where C(F tf) is clearly irreducible is if F tf is locally free. In that case,

(SymF)tf = Sym (F tf).

by Lemma 1.91 and so
Spec (SymF)tf = Spec Sym (F tf). (1.21)

In particular, the equality (1.21) is true for a diagonal sheaf F by Remark 1.50.

Example 1.90. This is an example of a torsion free sheaf G on an integral Noetherian
scheme X such that Spec SymG is not irreducible. Let X = Spec (C[x, y]) be the affine
plane, let I = (x, y) be the ideal of the origin 0 and let M = I ⊕ I . Then Sym (M) ≃
C[x, y, A1, A2, B1, B2]/(yA1−xA2, yB1−xB2), soC(M) = Spec Sym (M) has two irreducible
components: one of them is V (A2B1 − A1B2, yB1 − xB2, yA1 − xA2), which is the closure
of the restriction of C(M) to X \ 0; and the other one is V (x, y), the fibre of C(M) at 0.
Both components have dimension 4.

1.6.2 Abelian cones as a pushout of their main component

We particularize our study of components of cones to an abelian cone C(F) with
F tf locally free. We first show that Sym and torsion-free part commute in that case
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(Lemma 1.91), therefore the main component is C(F tf), which is also abelian. We show
that C(F) admits a description as a pushout with C(F tf) as one of the factors (Proposi-
tion 1.95).

Lemma 1.91. Let X be a Noetherian scheme and let F be a coherent sheaf on X . If F tf is
locally free then

(SymF)tf = Sym (F tf).

Proof. We have the following commutative diagram.

0 0 0

0 tor(SymF) ker(p) ker(p′′) 0

0 tor(SymF) SymF (SymF)tf 0

0 tor(Sym (F tf)) Sym (F tf) (Sym (F tf))tf 0

0 0 0

i′

e

i

e′

i′′

p′

f

p

f ′

p′′

g g′

The last two rows are clearly exact. Moreover, since F tf is locally free, we have that
tor(Sym (F tf)) = 0 and g′ is an isomorphism. The morphism i′ is the identity on tor(SymF).
The surjective morphism p comes from applying Sym to the surjection F → F tf , because
Sym preserves surjections. The morphism p′′ is induced by p using that tor(Sym (F tf)) =

0. The first row is exact by the Snake Lemma. We want to show that ker(p′′) = 0 or,
equivalently, that e is an isomorphism.

It follows from the above that we have

0 tor(SymF) SymF Sym (F tf) 0,
f◦i′ p

which is exact except possibly at SymF . We conclude if we show exactness there. The
inclusion Im(f ◦ i′) ⊆ ker(p) is clear because p ◦ f = g ◦ p′ = 0.

To show that ker(p) ⊆ Im(f ◦ i′), we know that

tor(F)⊗ Sym n−1(F)→ Sym n(F)→ Sym n(F tf)→ 0
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is exact for all n ≥ 1 by [Sta22, Lemma 01CJ]. Note that p is a morphism of graded
algebras, therefore

ker(p) =
⊕
n

ker(Sym n(F)→ Sym n(F tf)).

It suffices to show that for each n, the morphism tor(F)⊗Sym n−1(F)→ Sym n(F) factors
through tor(Sym (F)). Locally, X = Spec (R) and F = M̃ for some R-module M . Given
λ =

∑
jm

j
1 ⊗ . . . ⊗ mj

n ∈ tor(M) ⊗ Sym n−1(M), we can choose for each j a non-zero
divisor rj ∈ R such that rjm

j
1 = 0. Then r = r1 · · · rj is a non-zero divisor and rλ = 0, so

λ ∈ tor(Sym (M)).

Remark 1.92. Note that Lemma 1.91 does not holds in general if we do not assume that
F tf is locally free. For example, letF = I be the ideal sheaf of a closed point P onX . Then
(Sym I)tf = Sym I =

⊕
n≥0 In if and only if P is regular. Another example is R = C[x, y]

and M = I ⊕ I for I = (x, y). Indeed, M is torsion-free but SymM has torsion because
x(x⊗ y − y ⊗ x) = x⊗ (xy)− (xy)⊗ x = y(x⊗ x− x⊗ x) = 0.

Lemma 1.93. Let R be a ring, I be an ideal in R and M be an R-module. If M tf is locally
free and I · tor(M) = 0 then I · tor(SymM) = 0.

Proof. Note that tor(SymM) =
⊕

n≥0 tor(Sym
nM). In the proof of Lemma 1.91 we show

that Sym n(M tf) ≃ (Sym nM)tf . The following commutative diagram is exact by [Sta22,
Lemma 01CJ].

tor(M)⊗ Sym n−1(M) Sym nM Sym n(M tf) 0

0 tor(Sym nM) Sym nM Sym n(M)tf 0

The first row is exact by [Sta22, Lemma 01CJ], and the second row is also exact. By the
Snake Lemma, tor(M)⊗Sym n−1(M) surjects onto tor(Sym nM) and the claim follows.

Lemma 1.94. Let R be a commutative ring, A be an R-algebra and I be an ideal of R. If
I · tor(A) = 0 and Atf is locally free, then the following square is Cartesian in the category
of R-algebras

A Atf

A⊗R/I Atf ⊗R/I.



60

Proof. We have the following commutative diagram

0 0 0

0 IA IAtf

0 tor(A) A Atf 0

tor(A)⊗R/I A⊗R/I Atf ⊗R/I 0

0 0 0

i

e′

i′′

p′

f

p

f ′

p′′

g g′

The three columns are exact because N ⊗R/I ≃ N/IN for any R-module N and because
I · tor(A) = 0.

Observe that g is injective. This is equivalent to Tor1(R/I,A
tf) = 0, which holds be-

cause Atf is locally free. By the Snake Lemma, the natural morphism e′ : IA → IAtf

induced by f ′ is an isomorphism.

In order to prove the lemma, one can show that the square in question is a Cartesian
square of R-modules and then check that it is also a Cartesian diagram ofR-algebras. Both
can be achieved by routine diagram chasing using the fact that e′ is an isomoprhism.

Proposition 1.95. LetX be a Noetherian scheme,F a coherent sheaf onX and let π : C(F) =
Spec (SymF) → X be the corresponding abelian cone. Let i : Z ↪→ X be a closed subs-
cheme in X with ideal sheaf IZ such that IZ ⊆ Ann(tor(F)). If F tf is locally free, then the
following is a push-out of schemes

Spec SymF = Spec (SymF tf)
⊔

Spec i∗(Sym (Ftf)|Z)

Spec i∗(Sym (F) |Z)

If, moreover, X is integral, then Spec (SymF tf) is an irreducible component of the abelian
cone Spec SymF .

Proof. Locally, X = SpecR is affine, F = M̃ for some finitely presented module M over R
such that M tf is locally free and IZ = I is an ideal with I ⊆ Ann(tor(M)). Let A = SymM .
Then I · tor(A) = 0 by Lemma 1.93, and Lemma 1.91 ensures that Atf = Sym (M tf) is
locally free. The result follows from Lemma 1.94.
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The claim about Spec (SymF tf) being irreducible follows from Proposition 1.87 and
Lemma 1.91.

Remark 1.96. Remember that the support supp (F) of a coherent sheaf F can be defined
set-theoretically by locally looking at the prime ideals where the stalk of F is non-zero.
A scheme structure on supp (F) is given by the sheaf Ann(F). Therefore, the condition
IZ ⊆ Ann(tor(A)) in Proposition 1.95 implies that the closedZ must contain supp (tor(F)).

Another natural scheme structure in supp (F) is given by F0(F), the 0-th Fitting ideal
of F . There is an inclusion F0(F) ⊆ Ann(F) by [Sta22, Lemma 07ZA], thus in Proposi-
tion 1.95 we can also take the particular case where IZ = F0(tor(F)).

1.6.3 A decomposition of the abelian cone of a diagonal sheaf

We continue our study of components of cones by further specializing to the abelian
cone of a diagonal sheaf F . The pushout description of C(F) in Proposition 1.95 is im-
proved in Theorem 1.97: C(F) is topologically a union of vector bundles.

Let F be a diagonal sheaf on an integral Noetherian scheme X . Remember that F tf is
locally free by Proposition 1.67.

First we reduce from rank r to rank 0. By Proposition 1.95 and Lemma 1.91, we have
a decomposition of C(F) as a pushout

C(F) = C(F tf)
⊔

C(ι∗Ftf |Supp(tor(F)))

C(i∗F|Supp(tor(F)))

Here all cones are taken over X and C(F tf) is an irreducible component by Proposi-
tion 1.87. Replacing F by i∗F|Supp(tor(F)), we may assyme that F has rank 0.

Let F be a rank 0 diagonal sheaf. Recall that, by Construction 1.69, F has a filtration
with quotients supported on some effective Cartier divisors Di for i = 1, . . . , n. Consider
the finite collection of closed integral subschemes {Zj

i }j , which are the irreducible com-
ponents of Di taken with reduced structure. These are in the support of F and we will see
in Lemma 1.98 that (F|Zj

i
)tf is locally free. Note that these collections are not necessarily

disjoint for different i’s. We denote the inclusion of Zj
i in X simply by ι, without keeping

track of the indices when it is not necessary.

Theorem 1.97. Let F be a diagonal sheaf of rank 0 on an integral Noetherian scheme X .
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The cone of F is topologically a union of finitely many irreducible components

C(F) =
⋃
i,j

C
(
(F |Zj

i
)tf
)
∪X

where each C
(
(F |Zj

i
)tf
)

a vector bundle supported on the integral subscheme Zj
i .

Lemma 1.98. With the previous notations and assumptions, the cone CZj
i

(
(F |Zj

i
)tf
)
→

Zj
i is a vector bundle of rank rji , where

rji = max
k
{Zj

i ⊂ Dk}.

Proof. Since tor(F|U) = tor(F)|U for U ⊂ X open, it is enough to prove it locally. We
assume that F is the cokernel of a diagonal matrix

Diag(f1, . . . , f1, f2, . . . , f2, . . . , fs),

where fk divides fk+1. Observe that, if fk |Zj
i
= 0, then fℓ |Zj

i
also vanishes for all ℓ > k.

Take rji as in the statement of the theorem: Zj
i is a component of Drji

and the latter divides
the last rji entries.

Then the matrix presentation of F on Zj
i looks like Diag(f1 |Zj

i
, . . . , ft |Zj

i
, 0, . . . , 0)

where ft |Zj
i
̸= 0. Since Zj

i is not, by assumption, a component of Z(ft) we see that the
cokernel of Diag(f1 |Zj

i
, . . . , ft |Zj

i
) is a torsion sheaf and the torsion-free part of F |Zj

i
is

locally free of rank rji .

Proof of Theorem 1.97. To check the claim set-theoretically, it suffices to argue that any
closed point of C(F) is contained in at least one of the cones. Let v ∈ C(F), the pro-
jection to X is x ∈ X . Then v is specified by some section x→ F|x. If x /∈

⋃
i,j Z

j
i , F|x = 0,

so we are done. Otherwise, we need to argue that F|x ∼= ((F|Zj
i
)tf)|x for some i, j.

Let i be such that x ∈ Zj
i for some j but x /∈ Zℓ

k for all k > i and all ℓ. Then x ∈ Di but
x /∈ Dk for any k > i.

By the construction of the Di’s, we know that supp (tor(F|Zj
i
)) ⊂

⋃
k>i,ℓ Z

ℓ
k. Then

(F tf
Zj
i

)|x = F|x, and we are done.

The morphism
⋃
i,j C((F|Zj

i
)tf) → C(F) of topological spaces, given by the universal

property of push-outs, is continuous and closed for the Zariski topology. Since we have
just checked that it is also bijective, it is a homeomorphism.
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Example 1.99. The following example of blowing up the origin in A2 is simple, but it
captures much of the essence of the decomposition in Proposition 1.95 (see (1.22) and
(1.23)). We present it with full detail.

Let R = k[x, y] and let I = (x, y) be the ideal of the origin. The sheaf F = Ĩ on A2 =

Spec (R) is torsion-free but not locally free. Since F is an ideal sheaf, BlFA2 = Bl0A2 is
just the usual blow up of A2 along the origin. Let p : Bl0A2 → A2 be the natural projection.
Then p∗F is not torsion-free, but (p∗F)tf is a line bundle. To see that, we start with the
following resolution of F .

0 R R⊕R I 0.

−y

x

 (
x y

)

Pulling back along p, we obtain a presentation of p∗F :

OBl0A2 OBl0A2 ⊕OBl0A2 p∗F 0.

−ey′

ex′

 (
ex′ ey′

)

Here e is a local coordinate for the exceptional divisorE ⊆ Bl0A2 and x′ and y′ correspond
to the strict transforms of x and y. This induces a commutative diagram

0 Coker(e)

0 OBl0A2 OBl0A2(E) Coker(e) 0

0 OBl0A2 ⊕OBl0A2 OBl0A2 ⊕OBl0A2 0 0

p∗F Coker(y′,−x′)t 0

id

·e−ey′

ex′


 y′

−x′


id

(
x′e y′e

)

Applying the Snake Lemma and using that Coker(e) ≃ OE(E) and that Coker(y′,−x′) is
the ideal sheaf generated by x′ and y′, we get a short exact sequence

0→ OE(E)→ p∗F → (x′, y′)→ 0.

It follows that tor(p∗F) ≃ OE(E) and (p∗F)tf ≃ (x′, y′). In particular, p∗F is not torsion-
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free.

We can also describe the geometry of the abelian cones Spec SymF and Spec Sym (p∗F).
We have

πF : Spec SymF = Spec (R[X, Y ]/(xY − yX))→ A2,

which is irreducible and singular.

Next we describe Spec Sym (p∗F). Let S = k[x, y, x′, y′]/(xy′ − yx′) where the variables
x′, y′ have degree 1 and x, y have degree 0. Then

Bl0A2 = Proj(k[x, y, x′, y′]/(xy′ − yx′)).

A local equation for E is given by e = x/x′ or e = y/y′, depending on the chosen chart.
Then

πp∗F : Spec Sym (p∗F) = SpecS[X, Y ]/(e(x′Y − y′X))→ Bl0A2

is reducible. It has two components:

πp∗F ,main : Cmain = V (x′Y − y′X)→ Bl0A2, (1.22)

πp∗F ,tor : Ctor = V (e)→ Bl0A2. (1.23)

The main component Cmain equals Spec Sym (p∗F)tf and it is a vector bundle of rank 1.
Meanwhile, Ctor corresponds to tor(F), it is supported over E and it is a vector bundle of
rank 2 over its support.

1.7 Application to stable maps

In this section we apply the results in Section 1.5 to construct reduced Gromov–Witten
invariants.

Given X a smooth subvariety in a projective space Pr, there is an embedding of the
moduli space of stable maps to X in the moduli space of stable maps to Pr. The modu-
li space of genus zero stable maps to a projective space Pr is a smooth irreducible DM
stack. If X is a hypersurface of degree k (or more generally a complete intersection) in
Pr, there is a locally free sheaf Ek on the moduli space of stable maps to Pr, such that the
moduli space of maps to X is cut out by the zero locus of a section of this sheaf. These
statements are not true in higher genus. In general, the moduli space of stable maps to
Pr has several irreducible components of different dimensions. We still have a natural
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sheaf Ek equipped with a section, but Ek is not locally free: its rank is different on different
irreducible components.

There are several ways to use Section 1.5 to fix the above problem (see Remark 1.123).
In this section we are concerned with finding and comparing various blow-ups the Picard
stack along certain sheaves, which fix the above problem. More precisely, we consider
P̃ic→ Pic, such that M̃g,n(Pr, d) :=Mg,n(Pr, d)×Pic P̃ic desingularizes Ek.

Under the assumption d > 2g − 2 (see Assumption 1.105), we define M̃◦
g,n(X, d) via

the following Cartesian diagram

M̃◦
g,n(X, d) M̃◦

g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d),

⌜

where M̃◦
g,n(Pr, d) is the main component of the cone M̃g,n(Pr, d) (see Definition 1.110).

We then define reduced invariants (see Definition 1.117) via an obstruction theory on
M̃◦

g,n(Pr, d) relative to P̃ick (see Theorem 1.124).

We also recall maps with fields [CL12] and then we construct a blow-up of it which
makes the resulting stack as simple as possible. The resulting stack gives an alternative
definition of reduced invariants, which is not intrinsic; the relation between these two
invariants is similar in spirit to a Quantum Lefschetz theorem. The definition we give
is more intrinsic, but working with maps with fields instead of maps is more suited to
approaching Conjecture 1.2 and Conjecture 1.3. See [CL15, LO22, LO21] for the proof of
Conjecture 1.3 in genus one and two.

1.7.1 Stable maps as open in an abelian cone

We recall how the moduli space of stable maps to projective space can be seen as an
open substack of an abelian cone, following [CL12]. This observation motivates our study
of components of cones in Section 1.6, as components of the ambient abelian cone are re-
lated to components of stable maps.

Let Mg,n denote the stack of genus g pre-stable curves with n marked points, that is,
Mg,n parametrizes connected projective at-worst-nodal curves of arithmetic genus g with
n distinct smooth marked points. Let Cg,n denote universal curve over Mg,n. Let Picg,n,d
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denote the Artin stack which parameterises genus g pre-stable curves, with n marked
points, together with a line bundle of degree d. Let Picstg,n,d denote the open subset of
Picg,n,d consisting of (C, p1 . . . pn, L) which satisfy the stability condition

L⊗3 ⊗ ωC

(
n∑
i=1

pi

)
is ample. (1.24)

Notice that Mg,n and Picg,n,d are not separated, but they are smooth (see [Sta22, Lemma
0E6W] and [CFKM14, Proposition 2.11]) and irreducible. The stack Picg,n,d is locally No-
etherian and the stack Picstg,n,d is Noetherian.

Notation 1.100. From now on, we fix g, n, d and the stability condition and we drop all
the indices.

We define C the universal curve over Pic by the Cartesian diagram (1.25). Notice that
we also have a universal line bundle L over C.

L

C C

Pic M.

π
⌜

(1.25)

We form the cone of sections of L as in Chang-Li ( [CL15], Section 2)

S(π∗L) := Spec Sym (R1π∗(L
∨ ⊗ ωC/Pic))→ Pic. (1.26)

In the following we collect a list of remarks on the cone of sections defined above.

1 In [CL12, Proposition 2.2], the authors show that S(π∗L) is the moduli stack para-
meterizing (C,L, s) with (C,L) ∈ Pic and s ∈ H0(C,L). Be aware that our S(π∗L) is
denoted by C(π∗L) in [CL12].

2 This situation is similar to the discussion in Section 1.2.3 about the total space of a
locally free sheaf. If E is a locally free sheaf over Pic, then sections of E correspond
to sections of the vector bundle Tot(E) = Spec Sym (E∨) over Pic, but the same is
not true if E is not locally free.

3 In our set-up, the sheaf R0π∗L is not locally free. However, since we work with
the universal family of curves C → Pic, sections of the sheaf R0π∗L correspond
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to sections of the abelian cone of its Serre dual R1π∗(L
∨ ⊗ ωC/Pic). This is proven

in [CL12, Proposition 2.2].

4 Note that R0π∗L does not commute with base change but R1π∗L does by cohomo-
logy and base change.

For the rest of the section, let

F := R1π∗(L
∨ ⊗ ωC/Pic). (1.27)

Note that since π is proper, we have that F is a coherent sheaf on Pic. As defined in
Section 1.2.3, we consider the stack Spec SymF, which is an abelian cone stack over Pic.

LetMg,n(Pr, d) be the moduli space of genus g, degree d stable maps, with n marked
points.

Proposition 1.101. ( [CL12, Proposition 2.7], [CFK10, Theorem 3.2.1]) The moduli space
Mg,n(Pr, d) is an open substack, cut out by the basepoint-free condition, of the stack

S(π∗L
⊕r+1) = Spec Sym (⊕ri=0F)→ Pic. (1.28)

As before, a point of this cone over (C,L) ∈ Pic is (C,L, s) with s ∈ H0(C,L)⊕r+1.
Note that

S(π∗L
⊕r+1) =

r+1 times︷ ︸︸ ︷
S(π∗L)×Pic · · · ×Pic S(π∗L)→ Pic.

We define L, C by the following Cartesian diagram

L L

C C

S(π∗L
⊕r+1) Pic.

⌜

π
⌜

π

µ

By [CL12], the complex
⊕ri=0R

•π∗L

is a dual obstruction theory for the natural projection

µ : S(π∗L
⊕r+1) = Spec Sym (⊕ri=0F)→ Pic.
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This perfect obstruction theory induces a virtual class

[Mg,n(Pr, d)]vir := µ![Pic] ∈ A∗(Mg,n(Pr, d)).

Proposition 1.102. We use Notation 1.100. For F defined in eq. (1.27), we have an iso-
morphism of sheaves

F∨ :=
(
R1π∗L

∨ ⊗ ωC/Pic

)∨ ≃ π∗L

over Pic.

Proof. Using Grothendieck duality we have

(
R•π∗L

∨ ⊗ ωC/Pic

)∨
= RHomPic(R

•π∗L
∨ ⊗ ωC/Pic,OPic)

= R•π∗RHomPic(L
∨ ⊗ ωC/Pic, ωC/Pic[1])

= R•π∗RHomC(OC,L⊗ ω∨
C/Pic ⊗ ωC/Pic[1])

= R•π∗RHomC(OC,L[1])

= R•π∗L[1]. (1.29)

On the one hand, we have that

h−1(R•π∗L[1]) = π∗L. (1.30)

In the following we look at an explicit resolution of
(
R•π∗L

∨ ⊗ ωC/Pic

)∨ and compute
its h−1. This is similar to the discussion in [CFK20], Section 3.2. By the stability condition
on Pic (see Equation (1.24)), the universal curve over Pic is projective. This ensures that
we have an ample section on C and we take A sufficiently large so that R0π∗L

∨(−A) ⊗
ωC/Pic = 0.

We now consider the exact sequence of sheaves on the universal curve over Pic

0→ L∨(−A)⊗ ωC/Pic → L∨ ⊗ ωC/Pic → L∨ ⊗ ωC/Pic|A → 0.

Pushing forward the above to Pic, we get a long exact sequence

0→ R0π∗L
∨ ⊗ ωC/Pic →R0π∗L

∨ ⊗ ωC/Pic|A →

→R1π∗L
∨(−A)⊗ ωC/Pic → R1π∗L

∨ ⊗ ωC/Pic → 0. (1.31)
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This gives

R•π∗L
∨ ⊗ ωC/Pic ≃ [R0π∗L

∨ ⊗ ωC/Pic|A → R1π∗L
∨(−A)⊗ ωC/Pic], (1.32)

with the complex on the right, being a complex of vector bundles supported in [0, 1]. This
gives

(R•π∗L
∨ ⊗ ωC/Pic)

∨ ≃ [(R1π∗L
∨(−A)⊗ ωC/Pic)

∨ → (R0π∗L
∨ ⊗ ωC/Pic|A)∨],

with the complex on the right being supported in [−1, 0].

Applying the functorHom(−,O) to (1.31) and using that it is left-exact, we get

0→
(
R1π∗L

∨ ⊗ ωC/Pic

)∨ → (R1π∗L
∨(−A)⊗ ωC/Pic)

∨ → (R0π∗L
∨ ⊗ ωC/Pic|A)∨ (1.33)

This together with eq. (1.32) shows that

h−1
((
R•π∗L

∨ ⊗ ωC/Pic

)∨)
=
(
R1π∗L

∨ ⊗ ωC/Pic

)∨
. (1.34)

Equations (1.29), (1.30) and (1.34) imply that

(
R1π∗L

∨ ⊗ ωC/Pic

)∨
= R0π∗L.

Remark 1.103. As in the proof of Proposition 1.102, we have an explicit resolution of F
(see [CFK20], Section 3.2). Let A be a sufficiently high power of a very ample section of
the morphism C→ Pic such that R1π∗L(A) = 0. Then, we have a morphism

0→ L→ L(A)→ L(A)|A → 0. (1.35)

This induces a long exact sequence

0→ R0π∗L→ R0π∗L(A)→ R0π∗L(A)|A → R1π∗L→ 0, (1.36)

which shows that [R0π∗L(A)→ R0π∗L(A)|A] is quasi-isomorphic to R•π∗L.

With our choice of A we have that R0π∗L(A) and R0π∗L(A)|A are locally free sheaves
over Pic. Sequence (1.36) together with the fact that R0π∗L(A) is a locally free sheaf over
Pic implies that R0π∗L is a torsion free sheaf on Pic.

Remark 1.104. The proof of Proposition 1.102 shows that we have a resolution of F :=

R1π∗L
∨⊗ωC/Pic to the left given by (1.31). The isomorphism in Equation (1.29) shows that
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the complex
[R0π∗L

∨ ⊗ ωC/Pic|A → R1π∗L
∨(−A)⊗ ωC/Pic]

is dual to
[R0π∗L(A)→ R0π∗L(A)|A].

We will use this duality in Section 1.8. Hu and Li work with the resolution to the right we
have in (1.36). In the previous sections we used the resolution to the left Equation (1.36).
Since dual morphisms have the same Fitting ideals, both morphisms give the same Hu–Li
blow-up.

1.7.2 The main component of stable maps to Pr

In the following we look at stable maps with a lower bound on the degree (see As-
sumption 1.105). In this situation the moduli space of stable maps has a main (irreducible)
component. We discuss this main component and its relation to the main component of
abelian cones.

We fix the following assumption from now on.

Assumption 1.105. In the following we fix d > 2g − 2. For C a smooth genus g curve, L a
line bundle of degree d, and d > 2g − 2, we have that H1(C,L) = 0. This shows that for
d > 2g− 2, the locus of stable maps with smooth domain is smooth and irreducible, so its
closure is an irreducible component ofMg,n(Pr, d).

Definition 1.106 (Main Component). Consider the Zariski closure in Mg,n(Pr, d) of the
locus where the curve is smooth of genus g. We call this component the main component
and we denote it byM◦

g,n(Pr, d).

We introduced the main component of an abelian cone in Definition 1.88. In our
next result, Proposition 1.107, we show that the main component ofMg,n(Pr, d) and the
main component of Spec Sym (⊕ri=0F) are compatible along the open embedding Propos-
ition 1.101. By the proof of proposition 1.107, onM◦

g,n(Pr, d) the universal curve is gener-
ically smooth and π∗L is generically a vector bundle.

Proposition 1.107. We have thatM◦
g,n(Pr, d) is an open substack of Spec (Sym ⊕ri=0 F)

tf .

Proof. LetMg,n(Pr, d) and Picsm denote the open substacks ofMg,n(Pr, d) and Pic where
the curve is smooth. The first step is to show that the sheaf F = R1π∗(L

∨⊗ωC/Pic) is locally
free over Picsm.
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Let πsm : Csm → Picsm denote the universal curve and Lsm the universal line bundle
on Csm. Assumption 1.105 and cohomology and base change ensure that R1πsm

∗ Lsm = 0.
Therefore, R0πsm

∗ Lsm has constant rank, so it locally free. Using Serre Duality and local
freeness of ωπsm , we see that

R1πsm
∗ (Lsm∨ ⊗ ωπsm) ≃ (R0πsm

∗ ((Lsm∨ ⊗ ωπsm)∨ ⊗ ωπsm))∨ ≃ (R0πsm
∗ Lsm)∨

is locally free. In particular, the OPic-algebra (Sym ⊕ri=0 F)
tf is locally free over Picsm.

To simplify the notation, let C = Spec Sym ⊕ri=0 F and Ctf = Spec (Sym ⊕ri=0 F)
tf . By

Proposition 1.85 and using that Picsm is generically reduced, we have that

clschC (π−1(Picsm)) = Ctf , (1.37)

where π−1(Picsm) denotes the fibre product Picsm ×Pic C, which is open in C.

We conclude by the following chain of equalities

M◦
g,n(Pr, d) = clschMg,n(Pr,d)

(π−1(Picsm)×CMg,n(Pr, d)) =

= clschC (π−1(Picsm))×CMg,n(Pr, d) =

= Ctf ×CMg,n(Pr, d).

The first equality is the definition ofM◦
g,n(Pr, d), the second one is Lemma 1.108 (applied

to Y = C andW,V reduced open subschemes ofMg,n(Pr, d) and π−1(Picsm) respectively),
and the last one is Equation (1.37).

Lemma 1.108. Let Y be a scheme, let V,W be reduced open subschemes of Y . Then

clschW (V ×Y W ) = clschY (V )×Y W

Proof. Since V andW are reduced, so is V×YW )V ∩W . This means that the schematic clos-
ure is just the topological closure with the reduced induced structure by [Sta22, Lemma
056B]. Therefore the question is purely topological, and it is straightforward using that
clschY W = clYW is the intersection of all the closed subsets C of Y that contain W .

1.7.3 Blow-ups of the moduli space of stable maps to projective spaces

In this section we consider a desingularization p : P̃ic→ Pic of F and the base change
M̃g,n(Pr, d) ofMg,n(Pr, d). By compatibility of abelian cones with pullback, M̃g,n(Pr, d) is
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an open substack ofC(⊕ri=0p
∗F). We define the main component M̃◦

g,n(Pr, d) of M̃g,n(Pr, d)
to be the closure of the smooth locus (see Definition 1.110). This definition ensures that
M̃◦

g,n(Pr, d) is open in the main component of the ambient abelian cone C(⊕ri=0p
∗F) (Pro-

position 1.107), thus it is irreducible. In general, M̃◦
g,n(Pr, d) does not agree with the pull-

back of M◦
g,n(Pr, d), which might be reducible (see Remark 1.112). Finally, we induce a

virtual fundamental class on M̃g,n(Pr, d).

We define
p : P̃ic→ Pic

to be any desingularization (as in Definition 1.22) of the sheaf F (defined in Equation (1.27)).
By theorem 1.79, we have a proper birational map

P̃ic→ BlFPic (1.38)

where BlFPic→ Pic is the Rossi blow-up. We are mainly interested in P̃ic being the Rossi
or the Hu-Li blow-up (see Section 1.5).

We define
M̃g,n(Pr, d) Mg,n(Pr, d)

P̃ic Pic.

µ̃

p

⌜
µ

p

(1.39)

Note that M̃g,n(Pr, d) is proper since p andMg,n(Pr, d) are proper. Let p : P̃ic → Pic be
the natural projection. Consider the Cartesian diagram

L̃ //

��

L

��

C̃
q
//

π̃
��

C

π

��

P̃ic
p
// Pic

where C is the universal curve over Pic and L the universal line bundle. Recall that

F = R1π∗(L
∨ ⊗ ωπ).
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Lemma 1.109. In notation as before, we have an open embedding

M̃g,n(Pr, d) ↪→ Spec Sym (⊕ri=0p
∗F) ∼= Spec Sym

(
⊕ri=0R

1π̃∗(L̃
∨ ⊗ ωπ̃)

)
.

Proof. By Proposition 1.101, we have an open embeddingMg,n(Pr, d) ⊂ Spec PicSym ⊕ri=0

F. Thus, M̃g,n(Pr, d) ⊂ Spec P̃icSym p∗F⊕r+1 For the isomorphism, we see that cohomology
commutes with base change since there are no higher derived pushforwards. This gives

p∗F ∼= R1π̃∗(L̃
∨ ⊗ ωπ̃).

Definition 1.110. Consider the Zariski closure in M̃g,n(Pr, d) of the locus where the curve
is smooth of genus g. We call this component the main component and we denote it by
M̃◦

g,n(Pr, d).

Proposition 1.111. The following hold:

1 We have an open embedding

M̃◦
g,n(Pr, d) ⊂ Spec (Sym ⊕ri=0 p

∗F)tf ≃ Spec Sym
(
⊕ri=0 (p

∗F)tf
)
.

2 M̃◦
g,n(Pr, d) is proper and smooth over P̃ic.

Proof. By Lemma 1.109 we get M̃◦
g,n(Pr, d) ↪→ Spec (Sym ⊕ri=0 p

∗F)tf is an open embed-
ding. By cohomology and base change we have p∗F ≃ R1π̃∗(L̃

∨ ⊗ ωπ̃). The argument in
Proposition 1.107 applies to R1π̃∗(L̃

∨ ⊗ ωπ̃) and we obtain an open embedding

M̃◦
g,n(Pr, d) ↪→ Spec

(
Sym ⊕ri=0 R

1π̃∗(L̃
∨ ⊗ ωπ̃)

)tf
.

By construction (p∗F)tf is locally-free and, since the torsion-free part commutes with
direct sums, the same is true for (p∗F⊕r+1)tf . This shows that Sym ⊕ri=0 (p

∗
kF)

tf is locally
free therefore we have an isomorphism

Spec (Sym ⊕ri=0 p
∗F)tf ≃ Spec Sym

(
⊕ri=0 (p

∗F)tf
)

by Lemma 1.91.

The first part implies that M̃◦
g,n(Pr, d) is smooth over P̃ic since it is open in a vector

bundle. The properness of M̃◦
g,n(Pr, d) follows from the properness of M̃g,n(Pr, d).



74

Remark 1.112. We consider the following Cartesian diagram:

M̃◦(P) M◦
g,n(Pr, d)

P̃ic Pic.

⌜
µ

p

(1.40)

In general, M̃◦
g,n(Pr, d) ↪→ M̃◦(P) is not an isomorphism and thus the diagram below is

only commutative

M̃◦
g,n(Pr, d) M◦

g,n(Pr, d)

P̃ic Pic.

µ̃

p

µ

p

(1.41)

This observation is a reflection of the fact that torsion-free part does not commute with
pullback, see Remark 1.92. By pullback, Proposition 1.107 induces an open embedding

M̃◦(P) ⊂ Spec p∗ (Sym (⊕ri=0F))
tf ,

which in general need not factor through Spec (Sym (⊕ri=0p
∗F))tf ̸≃ Spec p∗ (Sym (⊕ri=0F))

tf .
Meanwhile, as in the proof of Proposition 1.107, we have that

M̃◦
g,n(Pr, d) = Spec (Sym (⊕ri=0p

∗F))tf ∩ M̃g,n(Pr, d).

An intuitive way to think about the discrepancy between M̃◦
g,n(Pr, d) and M̃◦(P) is that

the latter is total transform of M◦
g,n(Pr, d), while the former is the strict transform. In

particular, M̃◦
g,n(Pr, d) is always irreducible, while M̃◦(P), in general, is not.

Let π̂ : C̃ → M̃g,n(Pr, d) be the universal curve and let q̂ : C̃ → C the morphism induced
by q. The morphism µ̃ has a dual perfect obstruction theory equal to

⊕ri=0R
•π̂∗q̂

∗L.

This perfect obstruction theory induces a virtual class

[M̃g,n(Pr, d)]vir := µ̃![P̃ic] ∈ A∗(M̃g,n(Pr, d)),

where µ̃! is defined as in [Man11].

Remark 1.113. While Pic is smooth, P̃ic does not need to be smooth. This is not a prob-
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lem, all we need for a well-defined virtual class is that P̃ic has pure dimension. This is
true, since Pic has pure dimension and p is birational.

Proposition 1.114. We have the following equality

(p)∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir

Proof. Note that by cohomology and base-change we have that R•π̃∗p
∗L = p∗R•π∗L. As p

is birational and proper, we have p∗[P̃ick] = [Pic]. We now apply Costello’s Pushforward
theorem ( [HW22]) to Equation (1.39) and we get

p∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir.

1.7.4 Definition of reduced GW invariants in all genera

In this section we define reduced Gromov–Witten invariants for hypersurfaces in pro-
jective spaces under Assumption 1.105. This is less straight-forward than for projective
spaces, since we have no understanding of the geometry of moduli spaces of maps to
hypersurfaces.

Let X be a smooth hypersurface on Pr defined by the vanishing of a regular section
of s of O(k). We have that Mg,n(X, d) is cut out in Mg,n(Pr, d) by the vanishing of the
section π∗s of π∗L⊗k onMg,n(Pr, d). If π∗L⊗k is a vector bundle, we can use this to define
the virtual class of Mg,n(X, d) by virtual pullback. This generally fails for g ≥ 1, so we
will use the blow-ups we developed to ensure that the restriction of π∗L⊗k to the main
componentM◦

g,n(Pr, d) is locally free.

Construction 1.115. Let X ⊂ Pr be a smooth hypersurface as above. Let pk : P̃ick → Pic

be any desingularization of F and R0π∗L
⊗k. We define

M◦
g,n(X, d) M◦

g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d).

⌜ (1.42)

The main componentM◦
g,n(X, d) does not have a perfect obstruction theory. In order
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to define a perfect obstruction theory on it, we define

M̃◦
g,n(X, d) M̃◦

g,n(Pr, d)

M̃g,n(X, d) M̃g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d),

⌜

⌜

i

(1.43)

where M̃◦
g,n(Pr, d) and M̃g,n(Pr, d) are defined in Section 1.7.3. Proposition 1.111 implies

M̃◦
g,n(X, d) is proper.

By construction we get that (π̃∗L̃⊗k)tf is locally free on M̃g,n(Pr, d).

We define
[M̃◦

g,n(X, d)]
vir = i![M̃◦

g,n(Pr, d)]. (1.44)

Note that for any 1 ≤ i ≤ n we have morphisms

M̃g,n(Pr, d)→Mg,n(Pr, d)
evi−→ Pr

and
M̃g,n(X, d)→Mg,n(X, d)

evi−→ X.

By abuse of notation we denote both of these compositions by evi.

Notice that the definition of the reduced virtual class in (1.44) does a priori depend
on the choice of a desingularization of Pic. The following proposition shows that integ-
ration against this class does not depend on the desingularization. The proof of Proposi-
tion 1.116 is delayed, since we first proof Lemma 1.118.

Proposition 1.116. Under Assumption 1.105, let p′ : P̃ic
′
→ Pic and p′′ : P̃ic

′′
→ Pic be

birational proper maps such that ((p′)∗F)tf , ((p′′)∗F)tf , ((p′)∗(R0π∗L
⊗k))tf and ((p′′)∗(R0π∗L

⊗k))tf

are locally free. Consider M̃◦
g,n(X, d)

′ and M̃◦
g,n(X, d)

′′ defined analogously to M̃◦
g,n(X, d)

above. Then we have ∫
[M̃◦

g,n(X,d)
′]vir

∏
ev∗γi =

∫
[M̃◦

g,n(X,d)
′′]vir

∏
ev∗γi

Proposition 1.116 permits us to define the reduced Gromov–Witten invariants as they
are independent of the blowing-up of Pic.
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Definition 1.117. For d > 2g − 2, we call reduced Gromov–Witten invariants of X , the
following numbers ∫

[M̃◦
g,n(X,d)]

vir

∏
ev∗γi.

In order to prove Proposition 1.116, we first prove the following.

Lemma 1.118. Consider a commutative diagram of Artin stacks

P̂ic //

!!

P̃ic

}}

Pic

and let M̂(P) and M̃g,n(Pr, d) be the corresponding fiber products Mg,n(Pr, d) ×Pic P̂ic,
respectivelyMg,n(Pr, d)×Pic P̃ic.

1 We have a diagram with Cartesian squares

M̂(P) M̃g,n(Pr, d) Mg,n(Pr, d)

P̂ic P̃ic Pic.

⌜ ⌜

2 Suppose that P̂ic and P̃ic are desingularizations of F. Let M̂◦(P) be the main com-
ponent of M̂(P) in the sense of Definition 1.110. Under Assumption 1.105, the we
have a commutative diagram

M̂◦(P) M̃◦
g,n(Pr, d) M◦

g,n(Pr, d)

P̂ic P̃ic
′

Pic.

Proof. The first statement follows from the fact that the square on the right and the big
square are Cartesian. This shows that the square on the left is Cartesian.

For the second statement, we apply point 1 and we consider the following extended
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diagram in which all squares are Cartesian

M̂◦ M̃◦ M◦
g,n(Pr, d)

M̂(P) M̃g,n(Pr, d) Mg,n(Pr, d)

P̂ic P̃ic Pic.

⌜ ⌜

⌜ ⌜

By the definition of the main component of the moduli space of stable maps in Defini-
tion 1.106, we have solid maps in the diagram

M̂◦(P) M̃◦
g,n(Pr, d) M◦

g,n(Pr, d)

M̂◦ M̃◦ M◦
g,n(Pr, d).

The dashed arrow is the identity on maps with smooth domain. Since the map M̂◦ → M̃◦

is proper it maps closed substacks to closed substacks, and thus the identity map extends
to a map

M̂◦(P)→ M̃◦
g,n(Pr, d).

Proof of Proposition 1.116. Let P̂ic denote the closure inside the fiber product P̃ic
′
×Pic P̃ic

′′

of locus of smooth curves. We then have a commutative diagram

P̂ic P̃ic
′

P̃ic
′′

Pic.

p′

p′′

We define M̂(X) by the following Cartesian diagram

M̂(X) //

��

Mg,n(X, d)

��

P̂ic // Pic
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and similarly we define

M̃g,n(X, d)
′ Mg,n(X, d)

P̃ic
′

Pic

⌜

p′

M̃g,n(X, d)
′′ Mg,n(X, d)

P̃ic
′′

Pic

⌜

p′′

Using the notation in (1.43) and Lemma 1.118, part 2, we obtain a commutative diagram

M̂◦(X)

M̃◦
g,n(X, d)

′ M̃◦
g,n(X, d)

′′

M◦
g,n(X, d)

p̂′′p̂′

(1.45)

By Proposition 1.111 we have that p̂′ and p̂′′ are proper. In the following we show that
they are virtually birational.

Recall from Construction 1.115 that we have diagrams with Cartesian squares on the
left

M̂(X)◦ M̂(Pr)◦ P̂ic

M̃◦
g,n(X, d)

′ M̃◦
g,n(Pr, d)′ P̃ic

′

p̂′
⌜

µ̂′

r′

i′ µ′

(1.46)

and
M̂(X)◦ M̂(Pr)◦ P̂ic

M̃◦
g,n(X, d)

′′ M̃◦
g,n(Pr, d)′′ P̃ic

′′

p̂′′
⌜

µ̂′

r′′

i′′ µ′′

(1.47)

which give

[M̂(X)◦]vir = (i′)![M̂(Pr)◦] and [M̂(X)◦]vir = (i′′)![M̂(Pr)◦]. (1.48)

Since r′ and r′′ are birational and proper we have

r′∗[M̂(Pr)◦] = [M̃◦
g,n(Pr, d)′] and r′′∗ [M̂(Pr)◦] = [M̃◦

g,n(Pr, d)′′]. (1.49)
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Using (1.48), (1.49) and commutativity of pullbacks with push-forwards in eq. (1.46) and
eq. (1.47), we get

p̂′∗[M̂(X)◦]vir = [M̃◦
g,n(X, d)

′]vir and

p̂′′∗[M̂(X)◦]vir = [M̃◦
g,n(X, d)

′′]vir.
(1.50)

Intersecting both equations above with
∏
ev∗γi we get the conclusion.

In the following we discuss several ways to blow up Pic, to desingularize R0π∗L
⊗k.

Lemma 1.119. Given F , G sheaves on an integral scheme X , with G torsion free and
f : F → G a morphism, we have that f factors through

F → F tf → G.

Proof. Since X is integral and G is torsion free, we have that the composition Tor(F) →
F → G is zero. The claim now follows from the universal property of quotients.

Proposition 1.120. In notation of Section 1.7.3, we have the following:

1 An isomorphism
ψ : (p∗R0π∗L)

tf → R0π̃∗L̃.

2 BlR1π∗L⊗kPic is a desingularization of R0π∗L
⊗k, for any integer k > 0.

Proof. 1. As in Remark 1.103, let A a section of C → Pic such that R1π∗(L(A)) = 0. By
abuse of notation we denote by A the pull back of A to C̃. We have exact sequences on P̃ic

which fit into a commutative diagram

p∗R0π∗L p∗R0π∗(L(A)) p∗R0π∗(L(A)|A) p∗R1π∗L 0

0 R0π̃∗L̃ R0π̃∗(L̃(A)) R0π̃∗(L̃(A)|A) R1π̃∗L̃ 0,

where the vertical arrows are obtained by cohomology and base change and the solid ar-
rows are isomorphisms.

By Lemma 1.119, we have a morphism

ψ : (p∗R0π∗L)
tf → R0π̃∗L̃
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which sits in a commutative diagram

p∗R0π∗L // (p∗R0π∗L)
tf //

��

p∗R0π∗(L(A))

��

0 // R0π̃∗L̃ // R0π̃∗(L̃(A)).

(1.51)

Since the Image of the map (p∗R0π∗L)
tf → p∗R0π∗(L(A)) is equal to the kernel of

p∗R0π∗(L(A)) → p∗R0π∗(L(A)|A), and the Image of R0π̃∗L̃ → R0π̃∗L̃(A), is equal to the
kernel of R0π̃∗(L̃(A))→ R0π̃∗(L̃(A)|A), the isomorphisms in the diagram show that

Im
(
(p∗R0π∗L)

tf → p∗R0π∗(L(A))
)
≃ Im

(
R0π̃∗L̃→ R0π̃∗(L̃(A))

)
. (1.52)

Since p∗R0π∗L → p∗R0π∗(L(A)) and p∗R0π∗L → R0π̃∗L̃ are generically injective we
have that (p∗R0π∗L)

tf → p∗R0π∗(L(A)) and (p∗R0π∗L)
tf → R0π̃∗L̃ are injective. This to-

gether with 1.52 shows that ψ is an isomorphism.

2. Without loss of generality we assume that k = 1. Let p : BlR1π∗LPic → Pic denote
the projection. By cohomology and base change we have p∗(R1π∗L) ≃ R1π̃∗L̃. With this,
we have that (R1π̃∗L̃)

tf is locally free.

Since (
(R1π̃∗L̃)

tf
)∨
≃ (R1π̃∗L̃)

∨

and (R1π̃∗L̃)
tf is locally free, we get that (R1π̃∗L̃)

∨ is locally free.

By Proposition 1.102 we have that R0π̃∗L̃ ≃ (R1π̃∗L̃)
∨. This together with the above

shows that R0π̃∗L̃ is locally free. The claim now follows from the first part of the propos-
ition.

Proposition 1.121. In notation of Section 1.7.3, we have that BlFPic is a desingularization
of R0π∗L

⊗k.

Proof. We prove the statement for k = 1. By cohomology and base change we have
p∗R1π∗L

∨ ⊗ ωC/Pic ≃ R1π̃∗L̃
∨ ⊗ ωC̃/P̃ic. By Proposition 1.102 we have (R1π̃∗L̃

∨ ⊗ ωC̃/P̃ic)
∨ ≃

R0π̃∗L̃. By Proposition 1.120 we have R0π̃∗L̃ ≃ (p∗R0π∗L)
tf . With these we get((

p∗R1π∗L
∨ ⊗ ωC/Pic

)tf)∨ ≃ (p∗R1π∗L
∨ ⊗ ωC/Pic

)∨ ≃ (p∗R0π∗L)
tf .

This shows that
(
p∗R1π∗L

∨ ⊗ ωC/Pic

)tf is locally free implies (p∗R0π∗L)
tf is locally free.
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Notice that in general the dual does not commute with pullback, so the above argument
was needed.

In the following we show that BlR0π∗LPic is a desingularization of R0π∗L
⊗k, for any

k > 0.

Locally we choose B a section such that Lk ≃ L(B). Taking A such that R1π∗L(A) = 0,
we have a diagram

0 // R0π∗L
·A //

��

R0π∗L(A)

·B
��

0 // R0π∗L(B) // R0π∗L(A+B).

Let U be the subset of Pic, where R1π∗L = 0. Since we work under the assumption 1.105,
U is a non-empty open subset. Then on U we have the following exact sequences

0→ R0π∗L→R0π∗L(B)→ R0π∗L(B)|B → 0

0→ R0π∗L(A)→R0π∗L(A+B)→ R0π∗L(A+B)|B → 0. (1.53)

By possibly shrinking U , the section A may be chosen to avoid B. With this, we have that
multiplication with A induces an isomorphism

R0π∗L(B)|B ≃ R0π∗L(A+B)|B.

By possibly shrinking U , we may assume thatR0π∗L(A) andR0π∗L(A+B) are trivial, and
that the sequences in 1.53 are split. The claim now follows from Corollary 1.44.

In genus one, following [VZ08,HL10], one can define reduced Gromov-Witten invari-
ants of degree-k hypersurfaces on BlFPic. Below we give a direct proof of this fact. The
proof below does not generalise to higher genus.

Lemma 1.122. Let g = 1. Then for every k ≥ 1, the sheaf π̃∗ ev∗O(k) is locally free on the
main component M̃◦

1,n(Pr, d) of M̃1,n(Pr, d).

Proof. Fix k ≥ 1. By Equation (1.63), we need to show that R0π̃∗(L
⊗k) is locally free over

the image Z◦ of M̃1,n(Pr, d) in P̃ic via the forgetful morphism.

In a neighbourhood of (C̃, L̃) ∈ P̃ic1 we can choose a section A of L⊗k−1. This gives an
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exact sequence

0→ R0π̃∗L̃
·A−→ R0π̃∗(L̃

⊗k)→ R0π̃∗(L̃
⊗k|A)→ R1π̃∗L̃

·A→ R1π̃∗(L̃
⊗k)→ 0. (1.54)

If L̃ is non-negative on each component of C̃, as is the case in Z◦, we have the equality

h1(C̃, L̃) = h1(C̃, L̃⊗k)

by a Riemann-Roch computation. Since cohomology in degree 1 commutes with base
change and the map H1(C̃, L̃) → H1(C̃, L̃⊗k) is an isomorphism, we have that the last
arrow in sequence (1.54) is an isomorphism. This shows that we have a short exact se-
quence

0→ R0π̃∗L̃→ R0π̃∗(L̃
⊗k)→ R0π̃∗(L̃

⊗k|A)→ 0.

Since R0π̃∗(L
⊗k|A) is locally free and by Proposition 1.120 the sheaf R0π̃∗L̃ ≃ (R1π̃∗L̃)

∨ is
also locally on Z◦, we get that R0π̃∗(L̃

⊗k) is locally free.

Remark 1.123. Above we denoted by P̃ic any desingularization of F. We collect here
various blow-ups of interest.

1 BlFPic in the sense of Rossi (see Section 1.5.1)

2 BlHLF Pic in the sense of Hu–Li.

3 BlR1π∗L⊗kPic

4 BlR0π∗L⊗kPic

5 BlHLR1π∗L⊗kBl
HL
F Pic

We have

BlHLF Pic→ BlFPic and BlHLR1π∗L⊗kBl
HL
F Pic→ BlR1π∗L⊗kBlFPic.

By Proposition 1.121 and by proposition 1.120 we have

BlR0π∗L⊗kPic→ BlR1π∗L⊗kPic→ BlFPic.

1.7.5 Reduced invariants from stable maps with fields

Reduced invariants are conjecturally related to Gromov–Witten invariants [Zin09a],
[HL11, Conjecture 1.1]. One of the main difficulties in proving such conjectures is that
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one needs to understand how to split the virtual class of a moduli space of stable maps
among its irreducible components. What makes this task particularly difficult is that
almost nothing is known about the geometry of this moduli space of stable maps.

In genus one and two the existing algebraic proofs [CL15, LLO22, LO21, LO22] use
an additional well-behaved moduli space of maps with fields [CL12]. In view of these
conjectures, we discuss blow-ups of maps with fields and we show that the ingredients
for the low genus proof are also available in higher genus.

Given X a hypersurface (or more generally a complete intersection) in Pr, the associ-
ated moduli space of maps with fields has the following features:

1 in genus one and two it has well-understood geometry, such as local equations and
irreducible components (see [HL10, HLN12]);

2 it has a virtual class and a localised virtual class (see [KL13], Definition 3.3); the
latter is needed because the space of maps with fields is not compact;

3 the localised virtual class is supported onMg,n(X, d) and it coincides up to a sign to
the virtual class ofMg,n(X, d) (see [KL13], Theorem 1.1).

These properties allow us to work with the well-understood moduli space of stable maps
with fields instead ofMg,n(X, d), whose geometry is unavailable.

In the following we blow up the moduli space of maps with fields, to define reduced
invariants in this context. The main theorem of this section, Theorem 1.124, shows that
the blown-up moduli space of maps with fields also has the property 1 listed above. In
future work we will also investigate the (intrinsic) normal cone of the space of maps with
fields.

Review of maps with fields

We recall the construction and properties of the moduli space of maps with p-fields.
This space was introduced in [CL12] to study higher genus Gromov-Witten invariants of
the quintic threefold.

In the following we fix k ∈ Z, k > 1, and we consider the sheaf

π∗(L
⊕r+1 ⊕ (L⊗−k ⊗ ωC/Pic))
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on Pic and its corresponding abelian cone

S
(
π∗(L

⊕r+1 ⊕ (L
⊗−k ⊗ ωC/Pic)

)
= Spec SymR1π∗

((
L∨ ⊗ ωC/Pic

)⊕r+1 ⊕ L⊗k
)

µp→ Pic.

Recall that, in our notation, we have already imposed on Pic = Picstg,n,d the stability condi-
tion in Equation (1.24). Then, the moduli space of maps with p-fields is defined in [CL12, Sec-
tion 3.1] as the abelian cone

Mg,n(Pr, d)p = S
(
π∗(L

⊕r+1 ⊕ (L
⊗−k ⊗ ωC/Pic)

)
Therefore, an element ofMg,n(Pr, d)p over (C,L, s) ∈Mg,n(Pr, d) is given by a choice of a
section p ∈ H0(C,L⊗−k ⊗ ωC).

Consider the Cartesian diagram

Cp C

Mg,n(Pr, d)p Mg,n(Pr, d).

πp

νp

⌜
π (1.55)

The complex
E• := R•πp∗(⊕ri=0L ⊕ L⊗−k ⊗ ωπp)

is a dual obstruction theory for the morphism µp. The stack Mg,n(Pr, d)p is not proper,
but the perfect obstruction theory admits a cosection σ, that is, a morphism σ : h1(E∨) →
OMg,n(Pr,d)p . This data gives a cosection localised virtual class [Mg,n(Pr, d)p]vir.

For X a smooth subvariety cut out by any regular section of OPr(k), [CL20, Theorem
1.1] states that

[Mg,n(Pr, d)p]vir = (−1)(r+1)d+1−g[Mg,n(X, d)]
vir ∈ Advir(Mg,n(X,d))

(Mg,n(X, d)) (1.56)

The particular case where r = 4 and k = 5 (therefore X is a quintic threefold) was the
motivation for introducing p-fields in the first place. In [CL12, Theorem 1.1], the au-
thors proved Equation (1.56) at the level of invariants before it was upgraded to classes
in [CL20].

Blow-ups of maps with fields

In this section we discuss a non-minimal blow-up which has good properties.
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In notation as before we consider

Ek := R1π∗L
⊗k. (1.57)

We define
P̃ick := BlHLEk

BlHLF Pic. (1.58)

Similarly to Equation (1.39), we define M̃g,n(Pr, d)p as the following Cartesian dia-
gram:

M̃g,n(Pr, d)p Mg,n(Pr, d)p

P̃ick Pic.

µ̃p
⌜

µp

pk

(1.59)

This gives a virtual class and a localised virtual class [M̃g,n(Pr, d)p]vir. See [CL12, Section 3]
for details.

SinceMg,n(Pr, d) ↪→ Mg,n(Pr, d)p, we have M̃◦
g,n(Pr, d) ⊂ M̃g,n(Pr, d)p. Under the as-

sumption in 1.105, we have that R1π∗L⊗k = 0. In this case we define the main component
of M̃g,n(Pr, d)p to be M̃◦

g,n(Pr, d). From the obstruction theory, we see that under the as-
sumption 1.105, M̃◦

g,n(Pr, d) is indeed a component of M̃g,n(Pr, d)p; in fact, it agrees with
the main component of M̃g,n(Pr, d)p as an abelian cone.

Theorem 1.124. Denote by (M̃g,n(Pr, d)p,λ)λ∈Λ the irreducible components of M̃g,n(Pr, d)p

and (M̃g,n(Pr, d)θ)θ∈Θ the irreducible components of M̃g,n(Pr, d).

Let

π̂p,λ : C̃λ → M̃g,n(Pr, d)p,λ

π̃θ : C̃θ → M̃g,n(Pr, d)θ

the associated universal curves. The following statements hold.

1 The morphism p̄k is birational and proper.

2 The irreducible components M̃g,n(Pr, d)p,λ and M̃g,n(Pr, d)θ are smooth over their
image in P̃ick. In particular, M̃◦

g,n(Pr, d) is smooth over P̃ick.

3 The sheaf π̂p,λ∗ ev∗O(k) is a locally free sheaf on M̃g,n(Pr, d)p,λ, the sheaf π̃θ∗ev∗O(k) is
a locally free sheaf on M̃g,n(Pr, d)θ. In particular, π̃◦

∗ev
∗O(k) is a locally free sheaf on

M̃◦
g,n(Pr, d).
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Proof. 1. We have that pk is proper, as pk is proper.

2. Consider the following diagram

Spec Sym p∗k(F⊕ Ek) Spec SymF⊕ Ek

P̃ick Pic.

⌜

pk

(1.60)

We have that M̃g,n(Pr, d)p is an open substack of Spec Sym p∗k(Ek ⊕ ⊕ri=0F) and by The-
orem 1.97 we have that the irreducible components of the stacks

Spec Sym ⊕ri=0 F ⊕ Ek and Spec Sym ⊕ri=0 F

are smooth over their image in P̃ick.

This shows that M̃g,n(Pr, d)p,λ and M̃g,n(Pr, d)θ are smooth over their image in P̃ick.
In particular

M̃◦
g,n(Pr, d) = Spec Sym (⊕ri=0p

∗
kF)

tf is smooth over P̃ick.

3. Let µλ :Mg,n(Pr, d)p,λ → Pic be the restriction of µp. Let Zλ be the image of µλ. Let
πλ : Cλ → Zλ be the restriction of π. Let Z̃λ be the fiber product

Z̃λ Zλ

P̃ick Pic.

pλk

⌜

pk

(1.61)

Let π̃λ : C̃λ → Zλ be the restriction of π̃ and let qλk : C̃λ → Cλ be the restriction of qk. By
commutativity of proper push-forwards with base-change we have that

(pλk)
∗R•πλ∗L ≃ R•π̃λ∗ (q

λ
k )

∗L

Again, cohomology and base-change in the Cartesian diagram

C̃λ C̃λ

M̃g,n(Pr, d)λ Z̃λ.

π̂λ

νλ

⌜
π̃λ

µλ

(1.62)
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gives
R•π̂λ∗ ev

∗O(k) = (µλ)∗R•π̃λ∗L
⊗k. (1.63)

We have a short exact sequence

0→ R0π̃λ∗L
k → E0 ϕ→ E1 → R1π̃λ∗L

⊗k → 0.

By construction we have that ϕ is locally diagonal. By Equation (1.63) we have that

R•π̂λ∗ ev
∗O(k) ≃ [(µλ)∗E0 (µλ)∗ϕ−→ (µλ)∗E1].

Since (µλ)∗ϕ is locally diagonal, Proposition 1.48 implies that R0π̂λ∗ ev
∗O(k) is locally free.

A similar argument shows that π̃θ∗ev∗O(k) is a locally free sheaf on M̃g,n(Pr, d)θ and in
particular π̃◦

∗ev
∗O(k) is a locally free sheaf on M̃◦

g,n(Pr, d).

We also have the following.

Proposition 1.125. The localised invariants do not depend on the blow-up of Pic, more
precisely,

deg[M̃g,n(Pr, d)p]vir = deg[Mg,n(Pr, d)p]vir.

Proof. It follows from Equation (1.56) and Proposition 1.116.

Remark 1.126. The results of Proposition 1.116 and Proposition 1.125 can be stated at
level of virtual classes. The statement of Proposition 1.116 with virtual classes is given by
Equation (1.50).

Reduced invariants from maps with fields

Let CM̃g,n(Pr,d)p/P̃ic = ∪iCi where Ci denotes an irreducible component and let C0 denote

the component supported on the main component of M̃g,n(Pr, d)p. Let [M̃g,n(Pr, d)p]viri
denote the class corresponding to the component Ci.

Proposition 1.127. Denote by [M̃g,n(Pr, d)p]vir0 the virtual fundamental class correspond-
ing to the cone C0. We have

deg[M̃◦
g,n(X, d)]

vir = (−1)kd−g+1 deg[M̃g,n(Pr, d)p]vir0 .

Proof. This follows the lines of proof of Corollary 4.4 in [CL15]. Let

E•
1 := R•π̂p∗(⊕ri=0L), E•

2 := R•π̂p∗(L⊗−k ⊗ ωπ̂p)
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and let Ei = h1/h0(E•
i ) and E = h1/h0(E•). We have that Ei is a vector bundle stack

on M̃g,n(Pr, d)p and E ≃ E1 ⊕ E2. Let U be the open subset of the main component of
M̃g,n(Pr, d)p, with consists of maps with fields with irreducible source. On U we have
R1π̂∗f

∗O(k) = 0, and thus U is also an open subset of M̃◦
g,n(Pr, d). Using that U is smooth

and unobstructed, we see that CU/P̃ic is isomorphic to the vector bundle stack E1|U . Since
the embedding CU/P̃ic ↪→ h1/h0(E|U) is

(E1 ⊕ 0)|U ↪→ (E1 ⊕ E2)|U

and CM̃g,n(Pr,d)p/P̃ic ↪→ E is a closed embedding, we get that C0 ≃ E1. By the definition of
the localised cosection virtual class, we get

[M̃g,n(Pr, d)p]vir0 = 0!σ,loc[C0] = 0![0E2 ],

where 0E2 is the zero section of E2|M̃◦
g,n(Pr,d). By Lemma 4.3 in [CL15] with the complex

R := R•π̂p,◦∗ L⊗k and Theorem 1.124, part 3 we get

[M̃g,n(Pr, d)p]vir0 = ctop(R
1π̂p,◦∗ (L⊗−k ⊗ ωπ̂p,◦)) · [M̃◦

g,n(Pr, d)].

By Serre duality we have that

c1−g+kd(R
1π̂p,◦∗ (L⊗−k ⊗ ωπ̂p)) = (−1)1−g+kdc1−g+kd(R0π̂p∗L⊗k)

and thus
[M̃g,n(Pr, d)p]vir0 = (−1)1−g+kdc1−g+kd(R0π̂p∗L⊗k) · [M̃◦

g,n(Pr, d)].

This proves the claim.

Conjecture 1.128. Let X be a threefold which is a complete intersection in projective
space. Then

deg[M̃g,n(Pr, d)p]viri = ci deg[M̃◦
gi,n

(X, d)]vir,

for some ci ∈ Q and gi < g.

Remark 1.129. The conjecture has been proved for genus one [Zin09a, Zin09b, Zin08],
[CL15], [LO21, LO22] and genus two [LLO22].

In genus g = 1 and X a Calabi–Yau threefold, the conjecture translates into

deg[M1,n(X, d)] = deg[M̃◦
1,n(X, d)]

vir +
1

12
deg[M0,n(X, d)]

vir.
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1.8 Desingularizations in genus one

In genus one, reduced Gromov–Witten invariants were originally defined using the
desingularization constructed in [VZ08]. It consists of a sequence of blow-ups determined
by the geometry of the moduli spaceM1,n(Pr, d). In [HL10], local equations for the blow-
up are determined. We aim to compare this desingularization with the one obtained using
the Rossi blow-up BlFPic, with F as in Equation (1.27). In particular, we describe BlFPic

locally in the spirit of [HL10].

Charts

In genus one, the original definition of refined Gromov–Witten invariants comes from
[VZ08]. The main is idea is to apply a sequence of blow ups to Mg,n(Pr, d) in order to
desingularize the main component. Strictly speaking, the sequence of blow ups takes
place in the stack Mwt

1 of genus-1 prestable curves endowed with a weight. Let Θk denote
the closure of the loci in Mwt

1 of curves with k trees of rational curves attached to the core.
Then one should blow up Mwt

1 along the loci Θ1, Θ2, Θ3 and so on in order to produce a
stack M̃wt

1 . This process induces a blow-up M̃g,n(Pr, d) ofMg,n(Pr, d) via fiber product.

Given a stratum M̃g,n(Pr, d)γ corresponding to a weighted graph γ, local equations
of M̃g,n(Pr, d) and the local description of Θk in that stratum are described explicitly
in [HL10]. The purpose of this section is to summarize such local description, give co-
ordinates for the new approach locally, and compare both.

It may be helpful to keep in mind the following diagram, described below.

EV Eγ

(F = 0) (Φγ = 0) Vγ

U V Ṽ

U D1 D̃1

Mwt
1 M̃wt

1

ϕ̃

ϕ

□

□

Fix a weighted graph γ with root o. Let Ver(γ), Ver(γ)t and Ver(γ)∗ denote the vertices,
the terminal vertices (or leaves) and the non-rooted vertices of γ, respectively. We take the
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natural ordering in Ver(γ) making the root o the minimal element. We assume that the
weight in γ is non-negative on every vertex and that γ is terminally weighted, meaning
that the vertices with non-zero weights are exactly those in Ver(γ)t. Let Mwt

1 is the stack
of genus-1 prestable curves endowed with a weight. Remember that every element C
parameterised by Mwt

1 has a dual (weighted) graph γ, which can be made terminally
weighted and rooted by first declaring the root to be the (contraction of) the core of C and
then pruning along all non-terminal positively weighted nodes. We will denote by o the
root of any terminally weighted rooted tree, and by a, b, . . . the remaining vertices.

In the diagram, M̃wt
1 denotes the blow up of Mwt

1 described above and D1 is the stack
of stable pairs (C,D) with D an effective Cartier divisors supported in the smooth locus
of C. Fix a point (C,D) in D1 and a map inMg,n(Pr, d) with underlying curve C. Then U
is a small open around the fixed map inMg,n(Pr, d), V is a smooth chart around the point
(C,D) in D1 containing the image of U and EV is the total space of the sheaf ρ∗L(A)⊕n on
V .

Let Vγ =
∏

v∈Ver(γ)∗ A1 be an affine space that serves as model for local equations. We
denote by za, zb, . . . the natural coordinates in Vγ . Similarly, Eγ = Vγ ×

∏
v∈Ver(γ)t(A1)r and

the coordinates on the affine space (A1)r corresponding to a ∈ Ver(γ)t will be denoted
by wa,1, . . . , wa,r. The ideal Φγ = (Φγ,1, . . . ,Φγ,r) will be described explicitly in Equa-
tion (1.64). The smooth morphism ϕ comes from the natural coordinates on V , associated
to the smoothing of each of the disconnecting nodes in C (which are in natural bijection
with Ver(γ)∗). The map U → (F = 0) is an open embedding. Finally, ϕ̃ is induced by ϕ

and F = ϕ̃∗Φγ . It is in this sense that we can think of Φγ as the equations ofMg,n(Pr, d)γ .

Following [HL10], given a terminally weighted rooted graph γ, the ideal Φγ = (Φγ,1, . . . ,Φγ,r)

inside Vγ can be described as

Φγ,i =
∑

v∈Ver(γ)t
z[v,o]wv,i 1 ≤ i ≤ r, (1.64)

where
z[v,o] =

∏
o≺a⪯v

za.

Note that, for fixed i, the variables wa,i only appear in the i-th equation Φγ,i. Due to
the symmetry of the equations and the fact that all blow ups take place in Vγ , which has
coordinates {za}a∈Ver(γ)∗ (but not the wa,i), in the examples below we will not write down
the index i in the equations Φγ,i nor in the variables wa,i. For example, in the study of the
equations Φγ,i after blowing up, it will be clear that the index i is irrelevant, in the sense
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that the way that Φγ,i changes is independent of i.

1.8.1 Local equations of desingularizations

The local equations of the loci that must be blown up are described, following [HL10].

Firstly, we describe how to assign an ideal Iγ to any semistable terminally weighted
rooted tree γ. Here, semistability of γ means that every non-root vertex with weight zero
has at least two edges.

The trunk of γ is the maximal chain o = v0 ≺ v1 ≺ . . . ≺ vr of vertices in γ such that
each vertex vi with 1 ≤ i < r has exactly one immediate descendant and vr is called a
branch vertex if is it not terminal. Note that γ is a path tree if and only if it has no branch
vertex.

Definition 1.130. Let γ be a semistable terminally weighted rooted tree with branch vertex
v and let a1, . . . , ak be the immediate descendants of v. To γ we associate the ideal

Iγ = (za1 , . . . , zak)

in Vγ .

First, we must blow up Vγ along the ideal Iγ . To describe the remaining steps we need
to introduce the following operations.

Definition 1.131. Let γ be a terminally weighted semistable rooted tree.

• The pruning of γ along a vertex v is the new tree obtained by removing all the des-
cendants of v (and the corresponding edges) and declaring the weight of v to be the
sum of the original weight of v plus the weights of all removed vertices.

• The advancing of a vertex v with immediate ascendant v in γ is a new tree obtained
by replacing every edge (v, v′) with v′ ̸= v by an edge (v, v) and pruning along all
positively weighted non-terminal vertices as long as possible. In Section 1.8.1 we
will denote by γv the advancing of v in γ and by γ′v the same tree before pruning.

• Suppose γ has a branch vertex v. A monoidal transform of γ is a tree obtained by
advancing one of the immediate descendants of v. The set of monoidal transforms
of γ is Mon(γ).
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It turns out that the ideal Φγ behaves nicely under monoidal transforms. Indeed,
let γ be a semistable terminally weighted rooted tree with branch vertex v and let a =

a1, a2, . . . , ak be the immediate descendants of v. Let γa be the tree advancing of a in γ. Let
π : Ṽγ → Vγ be the blow-up of Vγ along the ideal Iγ = (za1 , . . . , zak). We view Ṽγ embed-
ded inside Vγ × Pk−1. There is a natural way to associate to each generator zai of Iγ one
chart of Pk−1, and thus also of Ṽγ . We denote such chart by Ṽγ,ai . Let πa : Ṽγ,a → Vγ be the
restriction of the natural projection, where a = a1. Then, by the proof of [HL10, Lemma
5.14], one of the following must hold

• either γa is a path tree, and then the zero locus of π∗
a(Φγ) has smooth components;

• or γa is not a path tree and then

π∗
a(Φγ) = Φγa . (1.65)

The whole blow-up process is summarized as follows. Fix γ. First blow up Vγ along
Iγ . The pullback of Φγ is controlled by Mon(γ). If Mon(γ) consists only of path trees, we
are done. Otherwise, for every element γ′ in Mon(γ) which is not a path tree, blow up
the chart of Ṽγ corresponding to γ′ along Iγ′ . Continue recursively. The process concludes
by [HL10, Lemma 3.12].

Now we want to describe BlFPic locally. Namely, we want to describe which loci
inside Pic we are blowing up locally. We have an exact sequence

0→ ρ∗L → ρ∗L(A)→ ρ∗L(A) |A

by Equation (1.36). The change of notation is due to the fact that Equation (1.36) was
global in Pic, but we now work locally. After a careful study of the second morphism,
[HL10, Theorem 4.16] concludes that ρ∗L is the direct sum of a trivial bundle with the
kernel of the morphism ⊕

v∈Ver(γ)t
φv : O⊕ℓ

V → OV , (1.66)

where ℓ is the cardinality of Ver(γ)t and φv =
∏

o≺v′⪯v ζv, with ζv the smoothing parameter
of the disconnecting node corresponding to the vertex v.

By Proposition 1.102, the sheaf F can be described locally as the dual of Equation (1.66).
In particular, by Remark 1.134 we have that BlFPic agrees, locally, with the blow-up along
the ideal generated by the entries (φv)v∈Ver(γ)t . In local coordinates, this ideal can be de-
scribed as follows.
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Definition 1.132. Let γ be a semistable terminally weighted rooted tree with Ver(γ)t =

{v1, . . . , vt}. To γ we associate the ideal

Jγ = (z[v1,o], . . . , z[vt,o]).

Similarly to Equation (1.65), in the same setup we have that

π∗
a(Jγ) = Jγa ,

independently of whether γa is has a branch vertex. This follows again from the proof
of [HL10, Lemma 5.14].

Examples

For two concrete trees γ, we compute the equations Φγ as well as the ideals Iγ and Jγ .
We describe the blow up process of Hu and Li and show that the result indeed desingu-
larizes the main component ofMg,n(Pr, d) locally. Furthermore, we check that the ideal
Jγ becomes locally principal in Hu–Li’s blow-up.

Example 1.133. Consider the following labelled graph:

γ = o

a b

c d

Φγ = zawa + zb(zcwc + zdwd),

Iγ = (za, zb),

Jγ = (za, zbzc, zbzd).

Let Ṽγ be the blow up along Iγ , that is the zero locus of zaz′b − zbz′a inside A4
za,zb,zc,zd

×
P1
z′a,z

′
b
. The chart associated to a is that where z′a ̸= 0. Dehomogenizing amounts to the

change of variables zb = z′bza. By doing so, we get that

π∗
a(Φγ) = za(wa + z′b(zcwc + zdwd))

and that
π∗
a(Jγ) = (za, zaz

′
bzc, zaz

′
bzd) = (za).

This means that the zero locus of π∗
a(Φγ) already has smooth components, so no further

blow-ups are needed on this chart, and that π∗
a(Jγ) is principal on this chart too.

Below are the trees γ′a obtained by advancing a without pruning, and γa obtained by
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advancing a. We know that π∗
aJγ = Jγa , but we check it in this example.

γ′a = o

a

b

c d

γa = o

a Jγa = (za).

Similarly, we now look at the chart associated to b, where z′b ̸= 0. The change of
variables is now za = zbz

′
a. It follows that

π∗
b (Φγ) = zb(z

′
awa + zcwc + zdwd)

and that
π∗
b (Jγ) = (zbz

′
a, zbzc, zbzd) = zb(z

′
a, zc, zd).

This means that we still need to blow up. This time the tree γb obtained by advancing b
in γ (no pruning is needed) is not a path tree. We also check the identities Jγa = π∗

aJγ and
π∗
b (Φγ) = Φγb .

o

b

a c d

Φγb = zb(zawa + zcwc + zdwd),

Iγb = (za, zc, zd),

Jγb = zb(za, zc, zd).

To conclude the example, we need to blow up along the ideal (za, zc, zd). We collect the
result below.

Advancing a, or equivalently looking at the chart z′a ̸= 0, we have

γ′b,a = o

b

a

c d

γ′b,a = o

b

a

π∗
aπ

∗
b (Φγ) = π∗

a(Φγb) = zazb(wa + zcwc + zdwd),

Jγb,a = (zazb).

Advancing c, or equivalently looking at the chart z′c ̸= 0, we have
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γ′b,c = o

b

c

a d

γ′b,c = o

b

c

π∗
cπ

∗
b (Φγ) = π∗

c (Φγb) = zbzc(zawa + wc + zdwd),

Jγb,c = (zbzc).

And finally, advancing d, or equivalently looking at the chart z′d ̸= 0, we have

γ′b,d = o

b

d

a c

γ′b,d = o

b

d

π∗
dπ

∗
b (Φγ) = π∗

d(Φγb) = zbzd(zawa + zcwc + wd),

Jγb,d = (zbzd).

Remark 1.134. Example 1.133 shows that the Rossi blow-up process ofMg,n(Pr, d) is not
equal to the Vakil–Zinger blow-up. This is compatible with Remark 4.4. in [HN19]. In-
deed, the Rossi blow-up around γ is given by BlJγVγ and the Vakil–Zinger one is the
iterated blow-up BlIγbBlIγVγ . We know there is a natural morphism

BlIγbBlIγVγ → BlJγVγ

over Vγ , either by Proposition 1.67 or because we checked that Jγ pulls back to a principal
ideal in BlIγbBlIγVγ . By contradiction, if there is a morphism

f : BlJγVγ → BlIγbBlIγVγ

over Vγ , then we get a morphism

f̃ : BlJγVγ → BlIγVγ

over Vγ . By [Moo01], there is a fractional ideal K in Vγ and a positive integer α such that

Iγ ·K = Jαγ .

This is not true for Iγ = (za, zb) and Jγ = (za, zbzc, zbzd) in Vγ = A4
za,zb,zc,zd

.

Example 1.135. We do a similar study for the following labelled graph γ:
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o

a

c d

b

e f

Φγ = za(zcwc + zdwd) + zb(zewe + zfwf ),

Iγ = (za, zb),

Jγ = (zazc, zazd, zbze, zbzf ).

After blowing up, there are two charts, corresponding to the advacings of a and b

respectively.

γa = o

a

c d b

e f

Φγa = za(zcwc + zdwd + zb(zewe + zfwf )),

Iγa = (zb, zc, zd),

Jγa = za(zc, zd, zbze, zbzf ).

γb = o

b

a

c d

e f

Φγb = zb(za(zcwc + zdwd) + zewe + zfwf ),

Iγb = (za, ze, zf ),

Jγb = zb(zazc, zazd, ze, zf ).

By symmetry, it is enough to understand how to proceed in one of the charts. We
choose the one corresponding to a. We get three new charts corresponding to the vertices
c, d and b.

γ′a,c = o

a

c

d b

e f

γa,c = o

a

c

π∗
cΦγa = zazc(wc + zdwd + zb(zewe + zfwf )),

Jγa,c = (zazc).
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γ′a,d = o

a

d

c b

e f

γa,d = o

a

d

π∗
dΦγa = zazd(zcwc + wd + zb(zewe + zfwf )),

Jγa,d = (zazd).

γa,b = o

a

b

c d e f

Φγa,b = zazb(zcwc + zdwd + zewe + zfwf ),

Iγa,b = (zc, zd, ze, zf ),

Jγa,b = zazb(zc, zd, ze, zf ).

To conclude, we need to blow up the last chart along Iγa,b . This produces four new
charts corresponding to c, d, e and f . We will only write down one of them since the rest
are very similar.

γ′a,b,c = o

a

b

c

d e f

γa,b,c = o

a

b

c

π∗
cΦγa,b = zazbzc(wc + zdwd + zewe + zfwf ),

Jγa,b,c = (zazbzc).

Smoothness

In genus one,M1,n(Pr, d)×Pic BlFPic has simple normal crossings following the same
argument as in [HL10, Theorem 5.24]. It is enough to show that the zero locus of the ideal
Φγ becomes a simple normal crossing in the blow-up Ṽγ of Vγ along the ideal Jγ .
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Remember that Φγ = (Φγ,1, . . . ,Φγ,r) with

Φγ,i =
∑

v∈Ver(γ)t
z[v,o]wb,i 1 ≤ i ≤ r,

where
z[v,o] =

∏
o≺a⪯v

za,

and that
Jγ = (z[v,o])v∈Ver(γ)t .

For given v′ ∈ Ver(γ)t, the pullback of the equation Φγ,i on the chart corresponding to v′

is equal to

z[v′,o]

wv′,i + ∑
v′ ̸=v∈Ver(γ)t

z[v,o]wb,i


by [HL10, Lemma 5.14]. This proves the claim.

Maps between blow-ups

By Proposition 1.67 there is a morphism from Vakil–Zinger’s blow-up to Rossi’s blow-
up. In genus one, we can check it locally: it is equivalent to the fact that the pullback of
the ideal Jγ to each chart Ṽγ of the Hu–Li blow-up of Vγ is principal. We have checked
this in Example 1.133 and Example 1.135, More generally, we can give a proof for every γ
as follows.

By Equation (1.65) if za is any of the generators of Iγ , then π∗
a(Jγ) = Jγa where γa is the

advancing of a in γ. In particular, it is enough to show that all the (natural) charts of Ṽγ
correspond to path trees, which is proven in [HL10, Lemma 3.14].
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This chapter represents work in progress, and will appear in the form of an article
when completed.

Abstract. Given X a smooth projective toric variety, we construct a morphism from a
closed substack of the moduli space of stable maps toX to the moduli space of quasimaps
to X . If X is Fano, we show that this morphism is surjective. The construction relies on
the notion of degree of a quasimap at a base-point, which we define. We show that a
quasimap is determined by its regular extension and the degree of each of its basepoints.

2.1 Introduction

2.1.1 Results

To a smooth projective toric varietyX we can associate two moduli spaces:Mg,n(X, β),
the moduli of stable maps, and Qg,n(X, β), the moduli of stable toric quasimaps. These
moduli spaces are two different compactifications of the space of maps from smooth
curves to X . We study a geometric comparison of these compactifications. Our main
result is the following.

Construction A (Construction 2.42). Let X be a smooth projective toric variety. We con-
struct a closed substack V ofMg,n(X; β) and a morphism of stacks

cX : V → Qg,n(X, β)

extending the identity on the locus of maps from a smooth source.

Our motivation comes from the comparison between Gromov–Witten and quasimap
invariants of toric Fano varieties in enumerative geometry. For X = PN , the morphism
cPN , which is defined globally, agrees with the one used in [MOP11] to compare the virtual
fundamental classes of both spaces. More generally, cX is defined globally onMg,n(X, β)

if all toric divisors in X are nef, but not otherwise. Construction A thus opens the way to
a geometric comparison in any genus. The following result makes the Fano case easier to
treat.

Theorem B (Theorem 2.47). LetX be a smooth Fano toric variety. The contraction morph-
ism

cX : V → Qg,n(X, β)

is surjective.
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Construction A relies on the contraction morphism for (products of) projective spaces.
One idea would be to use an embedding ι : X ↪→ PN and the functoriality of maps and
quasimaps. This fails because the morphism Q(ι) : Qg,n(X, β) → Qg,n(PN , ι∗β) is not a
closed embedding in general, see Example 2.30, which is due to Ciocan-Fontanine and
which first appeared in [BN21, Remark 2.3.3]. This situation motivates the following
result. Let A1(X) denote the group of 1-cycles on X modulo rational equivalence.

Theorem C (Corollary 2.40). Let ι : X → Y be a closed embedding between smooth pro-
jective toric varieties. If ι∗ : A1(X)→ A1(Y ) is injective, then the morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β)

is a closed embedding.

Theorem C leads to Construction A following the strategy previously sketched. More
precisely, we replace the embedding into projective space by an embedding ι : X ↪→ PN1×
. . . × PNs such that ι∗ is injective on curve classes (embeddings with this property are
called epic, see Proposition 2.31). Such an embedding exists by Theorem 2.35. With this
we obtain a diagram

Mg,n(X, β) Mg,n(Pn1 × . . .× Pnk , ι∗β)

Qg,n(X, β) Qg,n(Pn1 × . . .× Pnk , i∗β).

M(ι)

cX cP

Q(ι)

The dashed vertical arrow is defined on the locus V of maps in Mg,n(X, β) for which
cP ◦M(ι) factors through Qg,n(X, β).

Most of the paper relies, directly or indirectly, on the notion of degree of a basepoint.

Definition D (Definition 2.24). Let q be a quasimap to a smooth projective toric variety X
and let x be a nonsingular point of the source. We construct a class βx ∈ A1(X) called the
degree of the quasimap q at the point x.

The degree βx is constructed combinatorially in Proposition 2.21 and characterized in
Proposition 2.23. We give a geometric interpretation, under certain assumptions, in Re-
mark 2.45. It recovers (in the toric case) the notion of length of a basepoint in [CFKM14,
Definition 7.1.1], see Lemma 2.29. We show in Corollary 2.27 that a toric quasimap is de-
termined by its regular extension (Definition 2.13) and the degree of each of its basepoints.
This notion is essential in Theorem C, and in the proof of Theorem B.
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2.1.2 Context

The moduli space Qg,n(X, β) of stable toric quasimaps was introduced in [CFK10], in
relation to [Giv98,MOP11]. These constructions have been further generalized to include
quasimaps to more general GIT quotients [CFKM14], stacks [CCFK15], and a stability
parameter [CFK13, Tod11].

Quasimaps provide a compactification of the space of maps from smooth curves to X .
The advantage over other compactifications relies in the fact that quasimap invariants,
or more precisely the associated I-function, are often computable [CZ14, CFK16, KL18,
CFK20, BN21]. Quasimaps have also been successfully used to prove results concerning
Gromov–Witten invariants [LP18, FJR17, CRMS].

The contraction morphism cX from Construction A appeared in [MOP11] in the case
X = PN and in [CFK10] for moduli spaces of maps and quasimaps with one parametrized
component. A similar picture for Grassmannians appears in [PR03, Man14], where the
authors show that the natural contraction morphism does not extend to the whole moduli
space of stable maps.

The relation between Gromov–Witten invariants and quasimap invariants has been
proved in many situations: via localization for projective spaces [MOP11] and for com-
plete intersections in projective spaces [CJR17] and via wall-crossing [CFK17, CFK20].
In particular, Gromov-Witten and quasimap invariants of a smooth Fano toric variety
agree [CFK17].

Our motivation is to use Construction A to prove this statement in a more geomet-
ric way as in [Man12, Man14] and at the level of derived structures and thus extend
[KMMP22]. Besides of giving a better geometric understanding of the map quasimap
wall-crossing, we hope such a result would contribute to developing techniques to re-
late virtual classes of moduli spaces which are “virtually birational”, but not necessarily
birational.

2.1.3 Outline of the paper

We summarize the content of each section, highlighting the main results.

In Section 2.2 we review basic content of toric quasimaps and introduce our notations.

The main purpose of Section 2.3 is to define the degree of a basepoint in Defini-
tion 2.24. Before that, we construct it combinatorially in Proposition 2.21. The importance
of the definition is exhibited by its geometric characterization in Proposition 2.23. We col-
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lect basic properties of the degree of a basepoint in Proposition 2.25 and we show that it
recovers the length of a point in Lemma 2.29.

We present the main problem of Section 2.4 in Example 2.30: given a closed embed-
ding ι between smooth projective toric varieties, the induced morphism Q(ι) between
quasimap spaces may not be a closed embedding. We identify that the property of Q(ι)
being a monomorphism is related to the induced morphism ι∗ on the Chow group A1 be-
ing injective. This observation motivates the notion of epic morphism, which we discuss in
Section 2.4.2. The main result of this subsection is Theorem 2.35: every smooth projective
toric variety admits an epic closed embedding into a product of projective spaces. In Sec-
tion 2.4.3 we show that if ι is epic, then Q(ι) is a closed embedding (Corollary 2.40). The
proof is as follows: first, we show (Corollary 2.27) that a quasimap is determined by its
regular extension (introduced in Definition 2.13), and the degree of each of its basepoints;
and this is used in Theorem 2.39 to characterize the fibres of Q(ι), from which Corol-
lary 2.40 follows. Finally, we give another proof of Corollary 2.40, directly at the level of
families of quasimaps, in Section 2.4.4.

In Section 2.5, we construct a contraction morphism from a closed substack of the
moduli space Mg,n(X, β) to Qg,n(X, β) (Construction 2.42). We describe explicitly the
contraction morphism and the locus where it is defined in Proposition 2.43, at the level of
closed points.

In Section 2.6, we use the notion of degree of a basepoint (Definition 2.24) to show
that the contraction morphism is surjective for Fano targets (Theorem 2.47), and more
generally for X satisfying the condition in Remark 2.57.
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merous discussions we have had about this topic. I would also like to thank Samuel
Johnston, Jingxiang Ma, Etienne Mann, Navid Nabijou, Luis Manuel Navas Vicente and
Menelaos Zikidis for helpful discussions and Navid Nabijou, Dhruv Ranganathan and
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2.2 Background

2.2.1 Toric varieties

LetX be a toric variety, that is, a normal variety over C containing a torus T as a dense
open subset and such that the natural group action of T extends to an action of T on X .
We denote by N the character lattice of X and by M = Hom(N,Z) its co-character lattice.
We will write NX for N if there is any risk of confusion.

Every toric variety can be constructed from a fan Σ in N ⊗Z R. We denote by Σ(k)

the set of k-dimensional cones in Σ and by σ(k) the set of k-dimensional faces of a cone
σ. Elements in Σ(1) are called rays of Σ and will typically be denoted by the letter ρ. To
each ray ρ we can associate a Cartier divisor Dρ in X and an element uρ ∈ N , the unique
generator of the semigroup ρ ∩N .

Recall thatX is proper if and only if ∪σ∈Σσ = N⊗ZR, and thatX is smooth if and only
if for each cone σ ∈ Σ it holds that the set {uρ : ρ ∈ σ(1)} is a Z-basis of N . The canonical
divisor of X can be written as KX = −

∑
ρ∈Σ(1)Dρ. We say that a smooth toric variety X is

Fano if the anticanonical divisor−KX ample. If X is smooth, Fano and proper, then−KX

is very ample by [CLS11, Theorem 6.1.15]. In that case, we refer to the closed embedding
X → P(H0(−KX)) as the anticanonical embedding of X .

For a (not necessarily toric) normal variety X , we denote by Ak(X) the group of k-
dimensional cycles on X modulo rational equivalence. If X is smooth of dimension n,
intersection product induces a perfect pairing

Ak(X)× An−k(X)→ Z.

In that case, we denote Ak(X) := Ak(X). In particular, A1(X) is dual to A1(X), which
is isomorphic to the group of Cartier divisors modulo principal divisors and also iso-
morphic to the Picard group Pic (X) of isomorphisms classes of invertible sheaves on X .

Any smooth proper toric variety X can be written as an almost geometric quotient

X ≃ (AΣ(1) \ Z(Σ))//G,

where AΣ(1) = Spec (S) for S = C[zρ]ρ∈Σ(1), where G = Hom(Adim(X)−1(X),C∗) and where
Z(Σ) is the zero set of the ideal

B(Σ) =
〈
zσ̂ : σ ∈ Σ(dimX)

〉
⊂ S
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where
zσ̂ =

∏
ρ/∈σ(1)

zρ ∈ S

for each cone σ ∈ Σ. A subset P of Σ(1) is a primitive collection if P is not contained in
any cone of Σ, but each proper subset of P is contained in some cone of Σ. Then the
irreducible decomposition of Z(Σ) is

Z(Σ) =
⋃
P

V (xρ : ρ ∈ P), (2.1)

where the union is over all the primitive collections P in Σ(1).

2.2.2 Morphisms to a smooth toric variety

The functor of points of a smooth toric variety can be described in terms of line bundle-
section pairs due to [Cox95].

Let XΣ be a toric variety with fan Σ in a lattice N and let M = HomZ(N,Z).

Definition 2.1. A Σ-collection on a scheme S is a triplet

(Lρ)ρ∈Σ(1), (sρ)ρ∈Σ(1), (cm)m∈M

of line bundles Lρ on S, sections sρ ∈ H0(S, Lρ) and isomorphisms

cm : ⊗ρ∈Σ(1) L
⊗⟨m,uρ⟩
ρ ≃ OS

satisfying the following conditions:

1 compatibility: cm ⊗ cm′ = cm+m′ for all m,m′ ∈M ,

2 non-degeneracy: for each x ∈ S there is a maximal cone σ ∈ Σ such that sρ(x) ̸= 0

for all ρ ̸⊂ σ.

An equivalence between two Σ-collections on S is a collection of isomorphisms among
the line bundles that preserve the sections and trivializations.

The compatible trivializations reflect the fact that the boundary divisors (Dρ)ρ∈Σ(1)

generate Pic (XΣ), but usually not freely. The non-degeneracy condition can be thought
geometrically as follows: XΣ admits a GIT quotient presentation AΣ(1)//(C∗)s by the Cox
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construction, in which non-degeneracy at x ∈ S is equivalent to the image of x by the
induced morphism to AΣ(1) landing in the stable locus.

We can define a functor
CΣ : Schop → Set

that associates to each scheme S the collection of Σ-collections on S up to equivalence,
with morphisms naturally defined by pull-back. Then CΣ is represented byXΣ by [Cox95,
Thm 1.1], the universal family being the Σ-collection on XΣ that consists of the line
bundlesOXΣ

(Dρ) with their natural sections and trivializations cm given by the characters
χm of the dense torus in XΣ. It is in this sense that morphisms to a smooth toric variety
can be thought of as line bundle-section pairs.

2.2.3 Toric quasimaps

The previous interpretation of the functor of points of a smooth toric variety was
used in [CFK10] to define the notion of quasimaps to a toric variety, by relaxing the non-
degeneracy condition above.

Definition 2.2. Let XΣ be a smooth projective toric variety. A (prestable toric) quasimap q to
XΣ consists of

1 a connected nodal projective curve C of genus g with n distinct non-singular mark-
ings,

2 line bundles Lρ on C for ρ ∈ Σ(1),

3 sections sρ ∈ H0(C,Lρ) for ρ ∈ Σ(1) and

4 trivializations cm : ⊗ρ∈Σ(1) L
⊗⟨m,uρ⟩
ρ ≃ OC for m ∈M

subject to

1 compatibility: cm ⊗ cm′ = cm+m′ for all m,m′ ∈M ,

2 quasimap non-degeneracy: there is a finite (possible empty) set B ⊆ C of nonsingu-
lar points disjoint from the markings on C, such that for every x ∈ C \ B there is a
maximal cone σ ∈ Σ such that sρ(x) ̸= 0 for all ρ ̸⊂ σ.

Points in the set B = Bq in Definition 2.2 are called basepoints of the quasimap. A toric
quasimap defines a regular morphism C \ B → XΣ. If we view XΣ as a GIT quotient
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AΣ(1)//(C∗)s in the standard way, then a quasimap to XΣ defines a morphism to the quo-
tient stack [AΣ(1)/(C∗)s], and the basepoints are precisely the points of C mapped into the
unstable locus of the GIT stability.

Definition 2.3. The degree of a toric quasimap q = (C,Lρ, sρ, cm) is the class β = βC ∈
A1(XΣ) determined by the conditions

β ·Dρ = deg(Lρ) (2.2)

for all ρ ∈ Σ(1). Similarly, we associate a curve class βC′ = βC′,q ∈ A1(XΣ) to every
irreducible component C ′ of C by replacing deg(Lρ) with deg(Lρ |C′) in Equation (2.2).
By [CFK10, Lemma 3.1.3], βC′ is effective.

If q has no basepoints, this agrees with the usual notion of degree of a map. However,
in the presence of basepoints, the degree of a quasimap does not agree with the degree of
its associated regular map by Proposition 2.25. See Example 2.14.

2.2.4 Moduli space of stable toric quasimaps

The notion of stability for families of toric quasimaps was introduced in [CFK10].

Definition 2.4. Let XΣ be a smooth projective toric variety and let {αρ}ρ∈Σ(1) such that
L = ⊗ρOXΣ

(Dρ)
⊗αρ is a very ample line bundle on XΣ. Then a toric quasimap q =

(C,Lρ, sρ, cm) to XΣ is stable if the line bundle

ωC(p1 + . . .+ pn)⊗ Lϵ

is ample for all ϵ ∈ Q>0, where L = ⊗ρL⊗αρ
ρ and pi denote the marked points in C.

Remark 2.5. The notion of a quasimap being stable is independent of the polarization
chosen in Definition 2.4 by [CFK10, Lemma 3.1.3]. Also, stability imposes the inequality
2g − 2 + n ≥ 0, which we assume from now on.

Definition 2.6. A family of genus g stable toric quasimaps to XΣ of class β over S is

1 a flat, projective morphism π : C → S of relative dimension one,

2 sections pi : S → C of π for 1 ≤ i ≤ n,

3 line bundles Lρ on C for ρ ∈ Σ(1),
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4 sections sρ ∈ H0(C, Lρ) for ρ ∈ Σ(1) and

5 compatible trivializations cm : ⊗ρ∈Σ(1) L
⊗⟨m,uρ⟩
ρ ≃ OC for m ∈M

such that the restriction of the data to every geometric fibre of π is a stable toric quasimap
of genus g and class β.

Theorem 2.7. ( [CFK10, Theorems 3.2.1, 4.0.1]) The moduli space Qg,n(XΣ, β) of stable
quasimaps of degree β to a smooth projective toric variety XΣ from genus-g n-marked
curves is a proper Deligne–Mumford stack, of finite type over C.

The moduli space Mg,n(XΣ, β) of stable maps of degree β from genus-g n-marked
curves to a smooth projective toric variety XΣ can be recovered similarly. We define
a (prestable) map to XΣ to be a prestable toric quasimap (Definition 2.2) whose set of
basepointsB is empty. Then, we impose the following stability condition for maps, which
is different from Definition 2.4: we impose that

ωC(p1 + . . .+ pn)⊗ L2

is ample. As a result, every map is a quasimap, but stability need not be preserved.
Note that both stability conditions are defined to ensure that the objects have finitely-may
automorphisms, so that Qg,n(XΣ, β) andMg,n(XΣ, β) are Deligne-Mumford stacks.

2.2.5 Functoriality of quasimaps

We fix a (not necessarily toric) closed embedding ι : X → Y between smooth projective
toric varieties for the rest of Section 2.2.5. The goal of this subsection is to describe the
morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β)

associated to ι. We follow [BN17, Appendix B].

Notation 2.8. We denote rays in the fan ΣX of X by ρ and rays in the fan ΣY of Y by τ .
Similarly, we denote the toric boundary divisor in X corresponding to ρ by DX

ρ and the
one in Y corresponding to τ by DY

τ . Let SX denote the Cox ring on X , which is graded by
Pic (X). Recall thatX admits a quotient presentation (AΣX(1)\Z(ΣX))//Hom(Pic (X),Gm).

By [Cox95, Theorem 3.2], the morphism ι corresponds to a collection of homogeneous
polynomials Pτ ∈ SX for τ ∈ ΣY (1) of degree dτ := ι∗OY (DY

τ ) ∈ Pic (X) satisfying the
following conditions:
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1
∑

τ∈ΣY (1) βτ ⊗ uτ = 0 in Pic (Y )⊗N .

2 (Pτ (tρ)) /∈ Z(ΣY ) in AΣY (1) for every (tρ) /∈ Z(ΣX) in AΣX(1).

The relation between ι and (Pτ ) is that the morphism

ι̃ : AΣX(1) \ Z(ΣX)→ AΣY (1) \ Z(ΣY )

defined by ι̃(tρ) := (Pτ (tρ)) is a lift of ι.

For τ ∈ ΣY (1), we write the polynomial Pτ as follows:

Pτ (tρ) =
∑
a

P a
τ (tρ) =

∑
a

µa
∏

ρ∈ΣX(1)

taρρ , (2.3)

where the sum is over a finite number of indices a = (aρ) ∈ NΣX(1) and the coefficients µa
are non-zero. We choose a multi-index a apprearing in Equation (2.3) and denote it by aτ .

Construction 2.9. The morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β)

associates to a family of quasimaps

(C,Lρ, sρ, cmX
)

in Qg,n(X, β) the quasimap
(C,L′

τ , s
′
τ , c

′
mY

)

described as follows:

L′
τ =

⊗
ρ∈ΣX(1)

L
⊗aτρ
ρ , s′τ = µaτ

∏
ρ∈ΣX(1)

s
aτρ
ρ , c′mY

= cmX
, (2.4)

where mX ∈MX is uniquely determined by the conditions

⟨mX , uρ⟩ =
∑
τ

aτρ⟨mY , uτ ⟩

for every ρ ∈ Σ(1)

Remark 2.10. In Construction 2.9, the underlying curve is the same because ι is a closed
embedding, thus no stabilization is needed. The general case, where ι is not a closed
embedding, is discussed in [BN17, Appendix B].
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Remark 2.11. Let Qpre
g,n(X, β) denote the moduli stack of n-marked genus-g (prestable

toric) quasimaps to X of class β. The description of Q(ι) in Construction 2.9 in terms
of line bundle-section pairs is the same as that of the morphisms

Q(ι) : Qpre
g,n(X, β)→ Qpre

g,n(Y, ι∗β)

and
M(ι) :Mg,n(X, β)→Mg,n(Y, ι∗β).

Remark 2.12. The coefficients aτρ in Construction 2.9 satisfy the relations

ι∗[DY
τ ] =

∑
ρ∈ΣX(1)

aτρ[D
X
ρ ]

for all τ ∈ ΣY (1).

2.2.6 Quasimaps as morphisms to an ambient stack

Let X be a smooth projective toric variety. Recall (Section 2.2.1) that X admits a quo-
tient presentation

X ≃ (AΣ(1) \ Z(Σ))//G

with G = Hom(Pic (X),Gm). Consider the quotient stack

X := [AΣ(1)/G],

which is a toric stack in the sense of [GS15], that is, it is a quotient of a toric variety by a
subtorus of its torus. There is an open embedding iX : X ↪→ X, which is an isomorphism
in codimension one. In particular, Pic (X) = Pic (X).

The functor of points of a toric stack is described in [GS15, Theorem 7.7]. For example,
a morphism S → X, with S a scheme, is equivalent to a triple (Lρ, sρ, cm) on S satisfying
all the properties to be a Σ-collection (Definition 2.1) except possibly non-degeneracy. In
fact, points of S where non-degeneracy holds are exactly those maps to X ↪→ X. By his
observation, we can view families of toric quasimaps to X as morphisms C → X, with
quasimap non-degeneracy in Definition 2.2 reinterpreted as follows: each fibre of C must
factor through X ↪→ X except at finitely many smooth unmarked points.

Furthermore, given a closed embedding ι : X ↪→ Y of smooth projective toric varieties,
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there is an extension ι̃ : X→ Y making the following diagram commute

X Y

X Y.

iX

ι

iY

ι̃

To see this, note that ι is determined by the induced morphism

ι∗ : Pic (Y )→ Pic (X)

(see the argument in the proof of Corollary 2.40 in Section 2.4.4). But since Pic (X) ≃
Pic (X) and Pic (Y) ≃ Pic (Y ), we have an induced morphism

ι̃∗ : Pic (Y )→ Pic (X),

which is enough to determine a morphism ι̃ : X → Y by the same reference. One can
check that the functoriality of quasimaps described in Section 2.2.5 is simply composition
by ι̃ when families of quasimaps are viewed as morphisms to the ambient stacks X and
Y.

2.2.7 Contraction morphism for projective space

Fix N ≥ 1 and let XΣ = PN . There is a natural morphism

cPN :Mg,n(PN , β)→ Qg,n(PN , β).

The morphism cPN is called the contraction or comparison morphism for PN . It can be
described as follows: a stable map is naturally a quasimap, but it is stable as a quasimap
if and only if there are no rational tails. A rational tail T is a tree of rational components
with no marked points and such that T ∩ (C \ T ) is a singleton (necessarily a node inside
C). Let T be a rational tail of a stable map f : C → PN , let Ĉ = C \ T and let p = T∩Ĉ. One
must contract T and define L̂ρ = Lρ |Ĉ ⊗OĈ(dT,ρp) with dT,ρ = deg(Lρ |T ). Similarly, one
must take ŝρ = sρ⊗ z

dT,ρ
x , with zx a local parameter at x in Ĉ. Doing this for every rational

tail T of f produces the stable quasimap cPN (f). The description of cPN for families can be
found in [PR03, Theorem 7.1].
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2.3 The degree of a basepoint

We fix a smooth proper toric variety X with fan Σ for the rest of Section 2.3.

Every toric quasimap q : C 99K X has a degree β by Definition 2.3, which is an effective
curve class in the target X . Moreover, q admits an associated regular morphism qreg : C →
XΣ (Definition 2.13), which also has a degree βqreg . However, if q has basepoints, then
β ̸= βqreg , see Example 2.14.

In Definition 2.24, we attach an effective non-zero curve class βx to each basepoint
x of q, called the degree of q at x. We show in Proposition 2.25 that the degree βx is 0
unless x is a basepoint, and that, as x varies over all basepoints, the degrees βx explain
the discrepancy between β and βqreg , since

β − βqreg =
∑
x∈B

βx.

We show in Lemma 2.29 that the degree βx recovers (in the toric case) the length of q at x,
introduced in [CFKM14, Def. 7.1.1].

2.3.1 The regular extension of a quasimap

Definition 2.13. Let q be a quasimap to X . Then q defines a regular morphism

q : C \B → X.

Since X is proper and B consists of smooth points in C, there is a unique regular morph-
ism

qreg : C → X

extending q. We call qreg the (regular) extension of q.

Example 2.14. In general, q and qreg may have different degrees. Consider the quasimap

q : P1 → P2 : [x : y] 7→ [0 : 0 : x]

which has a unique basepoint, at the point [0 : 1]. Its extension is the constant map

qreg : P1 → P2 : [x : y] 7→ [0 : 0 : 1].
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Note that q has degree 1 but qreg has degree 0. In particular, if we add two distinct marks
to P1, distinct from [0 : 1], then q is a stable quasimap but qreg is not a stable map.

2.3.2 Definition of the degree of a basepoint

As seen in Example 2.14, the degree of a quasimap may be different from the degree of
its regular extension. We aim to assign a degree to each basepoint in order to explain this
discrepancy. Such degree will be constructed using the vanishing order of the sections at
a given basepoint.

Given a nodal curve C, a line bundle L on C, a non-zero section s ∈ H0(C,L) and a
nonsingular point x ∈ C, we denote by ordx(s) the vanishing order of s at x. Furthermore,
we declare that ordx(0) =∞ and we extend the natural operation and order on the mon-
oid Z≥0 to Z≥0 ∪ {∞} in the standard way. This means that we declare a +∞ = ∞ and
a <∞ for all a ∈ Z≥0. It follows from this definition that∞− a =∞ for every a ∈ Z≥0.

We will use the following basic result on toric geometry, whose proof we include for
completeness.

Lemma 2.15. Let σ ∈ Σ(dimX). Then the classes {[Dρ] : ρ /∈ σ(1)} form a basis of Pic (X).

Proof. The Picard group is generated by the classes [Dρ] for ρ ∈ Σ(1), see [CLS11, Thm
4.2.1]. Let n = dimX and let σ(1) = {ρ1, . . . , ρn}. Then the ray generators {uρ1 , . . . , uρn}
form a basis of the co-character lattice N by smoothness of Σ. Let {m1, . . . ,mn} be its dual
basis in the character lattice M . Then

div (χmi) =
∑
ρ∈Σ(1)

⟨mi, uρ⟩Dρ = Dρi +
∑
ρ/∈σ(1)

⟨mi, uρ⟩Dρ. (2.5)

where χm is the character corresponding to m ∈ M . Taking linear equivalence, it follows
that for i = 1, . . . , n the class [Dρi ] lies in the subgroup generated by {[Dρ] : ρ /∈ σ(1)}. We
conclude since Pic (X) is free of rank |Σ(1)| − n by smoothness of X .

Notation 2.16. Let q be a quasimap to X with underlying curve C and let x ∈ C be a
smooth point.

• We denote by Cx the irreducible component of C containing x and

• by Vx the set of rays ρ ∈ Σ(1) such that sρ vanishes identically on Cx.
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Construction 2.17. Let q be a quasimap to X with underlying curve C and let x ∈ C be a
smooth point. Given σ ∈ Σ(dimX) such that Vx ⊆ σ(1), we define the curve class β(x, σ)
by the conditions

β(x, σ) · [Dρ] = ordx(sρ |Cx) ∀ρ /∈ σ(1).

The class β(x, σ) is well-defined due to Lemma 2.15.

Similarly, to any cone σ ∈ Σ(dimX) and any a = (aρ) ∈ RΣ(1) we can associate the
unique curve class β(a, σ) ∈ A1(X) satisfying the conditions

β(a, σ) · [Dρ] = aρ ∀ρ /∈ σ(1). (2.6)

Before we use Construction 2.17, we need to prove an elementary lemma about the
classes β(a, σ).

Lemma 2.18. Let n = dimX , let σ ∈ Σ(dimX) be a cone with rays σ(1) = {ρ1, . . . , ρn} and
let {m1, . . . ,mn} be the dual basis to the ray generators {uρ1 , . . . , uρn}. Let a = (aρ) ∈ RΣ(1)

and define u =
∑

ρ∈Σ(1) aρuρ. Then for i ∈ {1, . . . , n}we have that

aρi ≥ β(a, σ) · [Dρi ] ⇐⇒ ⟨mi, u⟩ ≥ 0. (2.7)

In particular, aρi ≥ β(a, σ) · [Dρi ] for all i ∈ {1, . . . , n} if and only if u ∈ σ.

Proof. We show the equivalence in (2.7), the particular conclusion is immediate. Fix i ∈
{1, . . . , n}. By Equation (2.5), we have that

β(a, σ) · [Dρi ] = −
∑
ρ/∈σ(1)

⟨mi, uρ⟩β(a, σ) · [Dρ].

On the other hand,

⟨mi, u⟩ = ⟨mi,
∑
ρ∈Σ(1)

aρuρ⟩ = aρi +
∑
ρ/∈σ(1)

aρ⟨mi, uρ⟩.

Using Equation (2.6), we conclude that indeed

aρi +
∑
ρ/∈σ(1)

⟨mi, uρ⟩β(a, σ) · [Dρ] ≥ 0 ⇐⇒ aρi +
∑
ρ/∈σ(1)

aρ⟨mi, uρ⟩ ≥ 0.

Proposition 2.19. Let q be a quasimap toX . Given a smooth point x ∈ C such that Vx = ∅,
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there is a cone σ ∈ Σ(dimX) such that the curve class β(x, σ) satisfies

ordx(sρ |Cx) ≥ β(x, σ) · [Dρ] for all ρ ∈ Σ(1).

Proof. Let u =
∑

ρ∈Σ(1) ordx(sρ |Cx)uρ. Since Σ is complete, there is a cone σ ∈ Σ(dimX)

such that u ∈ σ. We make one such choice. Then the inequality is true for ρ /∈ σ(1) by
definition of β(x, σ) and for ρ ∈ σ(1) by Lemma 2.18 applied to (aρ) = (ordx(sρ |Cx)).

Next, we want the analogue of Proposition 2.19 without the assumption Vx = ∅.

Remark 2.20. Given a toric quasimap q with underlying curve C and a smooth point
x ∈ C, there exists a maximal cone σ such that Vx ⊆ σ(1) by generic non-degeneracy.

Proposition 2.21. Let q be a quasimap to X . Given a smooth point x ∈ C, there is a curve
class βx satisfying

ordx(sρ |Cx) ≥ βx · [Dρ] for all ρ ∈ Σ(1). (2.8)

Moreover, we can choose βx satisfying the following two extra conditions:

1 there is a cone σ ∈ Σ(dimX) with Vx ⊆ σ(1) and

2 ordx(sρ |Cx) = βx · [Dρ] for all ρ /∈ σ(1).

Proof. By Lemma 2.18, it is enough to take βx = β(a, σ) for certain integers (aρ)ρ∈Σ(1)

satisfying

(i) there is σ ∈ Σ(dimX) with Vx ⊆ σ(1) and such that u =
∑

ρ∈Σ(1) aρuρ ∈ σ,

(ii) if ρ /∈ Vx then aρ = ordx(sρ |Cx).

If Vx = ∅ it is enough to let aρ = ordx(sρ |Cx) for all ρ ∈ Σ(1) and proceed as in Proposi-
tion 2.19.

In general, let τ be the cone generated by the rays in Vx, which lies in Σ. Denote by Nτ

the sublattice of N generated by τ ∩N and let N(τ) = N/Nτ . Let

u0 =
∑
ρ/∈Vx

ordx(sρ |Cx)uρ

and let [u0] denote its class in N(τ). Since XΣ is complete, so is the closure V (τ) of the
orbit corresponding to τ , which is a toric variety with fan the star of τ . It follows that
there is a cone σ ∈ Σ(dimX) which contains τ as a face and such that [u0] ∈ [σ] in N(τ).
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It is enough to choose (aρ)ρ∈Vx in such a way that u ∈ N is a lift of [u0] ∈ N(τ) satisfying
u ∈ σ.

Next we show that the class βx from Proposition 2.21 is independent of the choice of
σ ∈ Σ used to define it.

Remark 2.22. Given a curve class β ∈ A1(X), we have that∑
ρ∈Σ(1)

β · [Dρ] uρ = 0.

Therefore, for each smooth point x ∈ C there is a natural isomorphism

ψm,x,β : OC(
∑
ρ∈Σ(1)

β · [Dρ] ⟨m,uρ⟩ x) = OC(⟨m,
∑
ρ∈Σ(1)

β · [Dρ] uρ⟩ x)→ OC .

For fixed x and β, these isomorphisms satisfy the compatibility

ψm+m′,x,β = ψm,x,β ⊗ ψm′,x,β.

Proposition 2.23. Let q = (C,Lρ, sρ, cm) be a quasimap to X , let x ∈ C be a smooth point
and let z be a local coordinate at x. There is a unique curve class βx ∈ A1(X) such that the
following data defines a quasimap to X of which x is not a basepoint:

q′ = (C,L′
ρ, s

′
ρ, c

′
m)

with

L′
ρ := Lρ ⊗OC(−βx · [Dρ] x),

s′ρ := sρ ⊗ z−βx·[Dρ],

c′m = cm ⊗ ψ−m,x,βx ,

where ψm,x,βx denotes the isomorphism constructed in Remark 2.22

Proof. Firstly, we have that

⊗
ρ

L′⊗⟨m,uρ⟩
ρ =

(⊗
ρ

L⊗⟨m,uρ⟩
ρ

)
⊗OC(−

∑
ρ

(βx · [Dρ]) ⟨m,uρ⟩ x).

The first term is isomorphic to OC via cm and the second one via ψ−m,x,βx .
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Secondly, the function s′ρ is a regular section of the line bundle L′
ρ if and only if

ordx(sρ |Cx) ≥ βx · [Dρ] ∀ρ ∈ Σ(1). (2.9)

Therefore, q′ is a quasimap if and only if βx satisfies Equation (2.8).

Similarly to Notation 2.16, let V ′
x be the set of rays ρ such that s′ρ vanishes identically

on Cx. Note that Vx = V ′
x

One can check that that x is not a basepoint of q′ if and only if there exists a cone σ ∈ Σ

such that the collection of rays ρ ∈ Σ(1) satisfying s′ρ(x) = 0 is contained in σ. Therefore,
x is not a basepoint of q′ if and only if we take βx with the extra conditions appearing in
Proposition 2.21 that there is a cone σ ∈ Σ(dimX) with V ′

x ⊆ σ(1) and

ordx(sρ |Cx) = βx · [Dρ] for all ρ /∈ σ(1),

To conclude, we show that βx is unique. By the previous discussion, it suffices to check
that if we have two cones σ, σ′ ∈ Σ(dimX) with Vx ⊆ σ(1) and Vx ⊆ σ′(1), then the curve
classes β := β(x, σ) and β′ := β(x, σ′) defined in Construction 2.17 agree. By construction,
we have that

ordx(sρ |Cx) ≥ β′ · [Dρ] for all ρ ∈ Σ(1) and

ordx(sρ |Cx) = β · [Dρ] for all ρ /∈ σ(1).

It follows that
(β − β′) ·Dρ ≥ ordx(sρ |Cx)− ordx(sρ |Cx) = 0

for all ρ /∈ σ(1). This uses that fact that, since Vx ⊆ σ(1), we have that ordx(sρ |Cx) is finite
for all ρ /∈ σ(1).

Since every ample line bundle L on XΣ can be written with non-negative coefficients
in the basis {[Dρ] : ρ /∈ σ(1)} of Pic (XΣ), we see that β − β′ is non-negative on the ample
cone, therefore also on the nef cone. This means that β−β′ lies in the dual of the nef cone,
so it is effective. The same applies to β′ − β, so we must have β = β′.

Note that q′ might not be stable quasimap even if q is, see Example 2.14.

Definition 2.24. In the setting of Proposition 2.23, we say that the class βx = βx,q ∈ A1(X)

is the degree of the quasimap q at the point x. For a nodal point x, we define βx = 0.

In Remark 2.45 we give a more geometric reformulation of βx in terms of the contrac-
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tion morphism under certain assumptions. The importance of this notion will become
clear in Section 2.3.3. We strongly recommend Example 2.30 to understand how it can be
useful.

2.3.3 Properties of the degree of a basepoint

Proposition 2.25. Let q be a quasimap to X of degree β with underlying curve C and
basepoints B. For each smooth point x ∈ C, let βx denote the degree of x. Let βreg denote
the degree of qreg, the regular extension of q. The following holds

1 βx = 0 if and only if x /∈ B,

2 βx is effective for all x ∈ C,

3 β = βreg +
∑

x∈B βx.

Proof. 1 Follows from Proposition 2.23.

2 The classes {[Dρ] : ρ ∈ Σ(1)} generate the effective cone by [CLS11, Lemma 15.1.8].
We know that βx = β(x, σ) for some cone σ. By construction, the classes β(x, σ) lie
in the dual of the effective cone, therefore also on the dual of the nef cone, so they
must be effective.

3 Follows from applying Proposition 2.23 successively to each basepoint. The result is
a quasimap without basepoints, which must then be the regular extension qreg.

The following property is an immediate corollary of Proposition 2.23.

Corollary 2.26. Let q = (C,Lρ, sρ, cm) be a quasimap to X and let B denote the set of
basepoints of q. For x ∈ B, let zx denote a local coordinate at x. Then the regular extension
qreg of q is given by

(C,L′
ρ, s

′
ρ, c

′
m)

with

L′
ρ := Lρ ⊗OC(−

∑
x∈B

βx · [Dρ] x)

s′ρ := sρ ⊗
∏
x∈B

z−βx·[Dρ]
x ,

c′m = cm ⊗

(⊗
x∈B

ψ−m,x,βx

)
.
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Corollary 2.27. Let q1, q2 be quasimaps toX with the same underlying curve. Then q1 = q2

if and only if the following conditions hold

1 q1,reg = q2,reg

2 Bq1 = Bq2 and

3 βp,q1 = βp,q2 for all x ∈ Bq1 = Bq2 .

Proof. It follows from Corollary 2.26.

Using the description of Q(ι) in Construction 2.9, we get the following compatibility
with the degree of a basepoint.

Lemma 2.28. LetQ(ι) : Qpre
g,n(X, β)→ Qpre

g,n(Y, ι∗β) , let q be a quasimap to X of class β with
underlying curve C. Then for every point x ∈ C we have the following equality in A1(Y ):

ι∗(βx,q) = βx,Q(ι)(q).

Proof. If x is not smooth, both terms are 0 by definition. If x is smooth, one can check,
using the explicit descriptions in Proposition 2.23, Remark 2.12 and Equation (2.4), that
first twisting q by βp,q at x as in Proposition 2.23 and then applying Q(ι) is the same as
twisting Q(ι)(q) by ι∗βx,q at x. Therefore, both ι∗βx,q and βx,Q(ι)(q) satisfy the uniqueness
in Proposition 2.23 applied to Q(ι)(q).

2.3.4 The relation between degree and length

Given a prestable and not necessarily toric quasimap q with underlying curve C, in
[CFKM14, Def. 7.1.1], the authors assign to every point x ∈ C a number ℓ(x), called the
length of the quasimap q at the point x, as follows.

Given X = W//G with W = Spec (A), a character θ on G and a quasimap q = (C,P, u)

with P a principal G-bundle on C and u a section of the fibre bundle P ×GW → C, let

ℓ(x) := min

{
ordx(u

∗s)

m
: s ∈ H0(W,Lmθ)

G, u∗s ̸= 0,m > 0

}
. (2.10)

If the character θ is chosen such that H0(W,Lθ)
G generated ⊕m≥0H

0(W,Lmθ)
G as an al-

gebra over AG, then we can replace ordx(u
∗s)/m by ordx(u

∗s). Note that

{
s : s ∈ H0(W,Lmθ)

G,m > 0
}
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is the ideal inside A cutting out the scheme theoretic unstable locus W us inside W .

Toric varieties have a natural GIT presentation, whose unstable locus can be described
combinatorially. We use this fact to show that, for toric quasimaps, the degree βx recovers
the length ℓ(x).

Lemma 2.29. Let q be a quasimap to X with underlying curve C. For every x ∈ C, the
length ℓ(x) of q at x can be recovered combinatorially from the degree βx of q at x as
follows:

ℓ(x) = min

 ∑
ρ/∈σ(1)

βx · [Dρ] : σ ∈ Σmax, Vx ⊆ σ(1)

 . (2.11)

Proof. If x is singular, then βx = 0 by definition and ℓ(x) = 0 because x is not a basepoint.
Therefore, we can assume that x is smooth, so that βx is defined by the conditions in
Proposition 2.23.

The toric variety XΣ has a GIT presentation AΣ(1)//G. Let AΣ(1) = Spec (S), with S =

C[zρ]ρ∈Σ(1). For each cone σ ∈ Σ, let

zσ̂ =
∏
ρ/∈σ(1)

zρ ∈ S.

If we choose a character θ on G = Hom(Adim(X)−1(X),C∗) coming from an ample divisor
class, then the unstable locus Z(Σ) inside AΣ(1) is cut out by the ideal

B(Σ) =
〈
zσ̂ : σ ∈ Σmax

〉
⊂ S.

We can then rewrite (2.10) for a prestable quasimap (C,Lρ, sρ, cm) to a toric variety XΣ as

ℓ(x) = min{ordx(sσ̂ |Cx) : σ ∈ Σmax, s
σ̂ |Cx ̸= 0} (2.12)

where
sσ̂ =

∏
ρ/∈σ(1)

sρ ∈ H0(C,⊗ρ/∈σ(1)Lρ). (2.13)

Note that the section sσ̂ vanishes identically on Cx if and only if for some ρ /∈ σ(1) the
section sρ vanishes identically on Cx. It follows that

sσ̂ |Cx ̸= 0 ⇐⇒ Vx ⊆ σ(1). (2.14)
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Using Equations (2.12) to (2.14), we have that

ℓ(x) = min

 ∑
ρ/∈σ(1)

ordx(sρ) : σ ∈ Σmax, Vx ⊆ σ(1)

 . (2.15)

To conclude, we need to show that Equation (2.15) equals the right hand side in Equa-
tion (2.11). One inequality follows immediately from Equation (2.9). On the other hand,
in Equation (2.15) we can replace ordx(sρ) by β(x, σ) · [Dρ] by the definition of β(x, σ) in
Construction 2.17. This finishes the proof since we saw in the proof of Proposition 2.23
that the degree βx equals β(x, σ) for some σ ∈ Σmax with Vx ⊆ σ(1).

2.4 Embeddings of toric varieties and quasimap spaces

A morphism ι : X → Y between smooth projective varieties induces a morphism

M(ι) :Mg,n(X, β)→Mg,n(Y, ι∗β),

via composition, which is a closed embedding when ι is. Similarly, if X and Y are toric, ι
induces a morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β).

See Construction 2.9. However, Q(ι) may not be a closed embedding, even if ι is, see
Example 2.30. Motivated by this example, we introduce a class of morphisms, that we
call epic, in Section 2.4.2. We show that Q(ι) is a closed embedding if ι is an epic closed
embedding Corollary 2.40, and that every smooth projective toric variety admits an epic
embedding into a product of projective spaces (Definition 2.34). Since our first proof of
Corollary 2.40 is based on the degree of a basepoint, we work with quasimaps rather than
families of them. Instead, we give another proof at the level of families in Section 2.4.4.

2.4.1 Quasimaps do not embed along closed embeddings

Let ι : X ↪→ Y be a closed embedding between smooth projective toric varieties. The
induced morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β)

is not a closed embedding in general. Here is an example.
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Example 2.30. Let s : P1 × P1 ↪→ P3 be the Segre embedding, given in coordinates by

s([x : y], [z : w]) = [xz : xw : yz : yw].

Note that s is a toric closed embedding. Consider the following two quasimaps from P1,
with homogeneous coordinates [s : t], to P1 × P1 of degree (2, 2)

q1([s : t]) = [s2 : st], [st : t2], q2([s : t]) = [st : t2], [s2 : st].

Both of them have the same image under Q(s)

Q(s)(q1)([s : t]) = Q(s)(q2)([s : t]) = [s3t : s2t2 : s2t2 : st3],

which is a quasimap to P3 of degree 4. This means that Q(s) is not a monomorphism,
therefore it is not a closed embedding. Note that the quasimaps above are not stable, but
the same conclusion holds if we add marked points. This example appeared in [BN21,
Remark 2.3.3], where it is attributed to Ciocan-Fontanine.

Our contribution is the following: we can use the degree of a basepoint (see Defin-
ition 2.24) to explain why Q(s) is not a monomorphism. Both q1 and q2 have the same
regular extension qreg, namely, the diagonal embedding of P1 in P1 × P1,

qreg([s : t]) = [s : t], [s : t].

Let 0 = [1: 0] and let ∞ = [0: 1]. Then q1 and q2 both have the same basepoints Bq1 =

Bq2 = {0,∞}, but we can still distinguish q1 from q2 because the degrees at the basepoints
differ:

β0,q1 = (0, 1), β∞,q1 = (1, 0),

β0,q2 = (1, 0), β∞,q2 = (0, 1).

Here, we identify A1(P1 × P1) with Z2 in the natural way. After applying Q(s), both
quasimaps still have the same regular extension and the same set of basepoints. Moreover,

β0,Q(s)(q1) = β∞,Q(s)(q1) = β0,Q(s)(q2) = β∞,Q(s)(q2) = 1 ∈ A1(P3). (2.16)

Therefore, we can no longer distinguish them by Corollary 2.27. Note that, by Lemma 2.28,
the degree of a basepoint is compatible with Q(s) and s∗, in the sense that βx,Q(s)(qi) =

s∗βx,qi ; therefore, the equalities in Equation (2.16) come from the fact that s∗(1, 0) = s∗(0, 1) =



124

1.

Example 2.30 suggests that the reason why Q(s) is not a monomorphism (and there-
fore the reason why it is not a closed embedding, since it is proper) is that s∗ : A1(P1 ×
P1) → A1(P3) is not injective. This observation motivates Theorem 2.39 and Corol-
lary 2.40.

2.4.2 Epic morphisms

Motivated by Example 2.30, we introduce the following class of morphisms

Proposition 2.31. Let X and Y be smooth projective varieties whose Picard group is free
of finite rank and let f : X → Y . The following are equivalent:

1 f ∗ : Pic (Y )→ Pic (X) is surjective,

2 f ∗ : A1(Y )→ A1(X) is surjective,

3 f∗ : A1(X)→ A1(Y ) is injective.

If, furthermore, X and Y are toric and X, Y denote their ambient toric stacks (as in Sec-
tion 2.2.6), the above conditions are also equivalent to

4 f̃ ∗ : Pic (Y)→ Pic (X) is surjective,

Proof. The equivalence between Item 1 and Item 2 holds because for a smooth variety Pic

and A1 are isomorphic. Similarly, since the open embedding X ↪→ X is an isomorphism
in codimension 1, we have that Pic (X) = Pic (X) and the equivalence between Item 1
and Item 4 follows. Finally, Item 2 and Item 3 follows from the assumption that the
Picard groups are free of finite rank, because both maps are transpose to each other by
the projection formula.

Definition 2.32. A morphism f : X → Y of smooth projective varieties whose Picard
group is free of finite rank is epic if it satisfies any of the equivalent conditions in Propos-
ition 2.31. The name is motivated by Item 1 in Proposition 2.31: epic morphisms induce
an epimorphism on Picard groups.

We are particularly interested in varieties that admit an epic closed embedding in a
product of projective spaces.
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Proposition 2.33. Let X be a smooth projective variety such that Pic (X) is free of finite
rank. The following are equivalent:

1 there exist k, n1, . . . , nk ≥ 1 and an epic closed embedding X ↪→ Pn1 × . . .× Pnk ,

2 X admits a generating set of Pic (X) consisting of basepoint free divisors.

Proof. The implication Item 1⇒ Item 2 is clear.

Conversely, let S be a generating set S of Pic (X) whose elements are basepoint free,
let [A] ∈ Pic (X) be a very ample class and let S ′ = S ∪ {[A]}. Consider the induced
morphism

ι : X → P :=
∏

[D]∈S′

P(H0(OX(D)))

associated to the complete linear systems |D|, for [D] ∈ S ′. Then ι∗ is surjective on Picard
groups because S ′ is a generating set. Finally, the diagonal arrow in the following diagram
is a closed embedding, which implies that so is ι.

X P

P(H0(OX(A)))

ι

|A|
πA

Definition 2.34. A smooth projective variety whose Picard group is free of finite rank is
called projectively epic if it satisfies any of the equivalenc conditions in Proposition 2.33.

Theorem 2.35. Every smooth projective toric variety is projectively epic.

Proof. The nef and Mori cones of a smooth projective toric variety X are dual strongly
convex rational polyhedral cones of full dimension by [CLS11, Theorem 6.3.12]. In par-
ticular, the semigroup of divisor classes which are nef admits a finite generating set S by
Gordan’s lemma, which also generated Pic (X). Furthermore, the elements of S are are
basepoint free by [CLS11, Theorem 6.3.12], therefore X is projectively epic.

Example 2.36. Let X = Bl0P2 be the blow-up of P2 at the origin, which is a toric variety
whose fan is pictured in Figure 2.1. Let π : X → P2 be the natural projection and let H be
the hyperplane class in Pic (P2). The group Pic (X) is generated by L := π∗H and the class
E of the exceptional divisor. Let S = L− E, which is the class of the strict transform of a
line in P2. Then the nef cone of X is generated by S and L.
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There are four toric boundary divisors in X , which we denote by Di = Dρi , with the
conventions in Figure 2.1. They satisfy that

[D0] = L, [D1] = [D2] = S, [D3] = E.

Using this, together with the description of global sections of toric line bundles, one can
easily describe in coordinates the following closed embeddings of X into products of
projective spaces induced by complete linear systems. Such morphisms will be written
using the ring C[x0, x1, x2, x3] of homogeneous coordinates on X , with xi corresponding
to ρi.

The set {S, L} generates the nef cone of X . Although none of the two classes is ample,
the morphism

ι : X ↪→ P(H0(OX(L))× P(H0(OX(S)) = P2 × P1

is an epic closed embedding. One way to see that ι is indeed a closed embedding is
to realize that this is the usual description of X as a closed subvariety of P2 × P1. Its
expression in coordinates is

ι(x0, x1, x2, x3) = [x0 : x1x3 : x2x3], [x1 : x2], (2.17)

Note that none of S or L are ample.

The set {S, S + L} also generates Pic (X), both classes are nef and S + L is ample
(thus very ample). This choice produces a closed embedding which could appear with
the argument in the proof of Theorem 2.35

i : X ↪→ P(H0(OX(S))× P(H0(OX(S + L)) = P1 × P4

with
i(x0, x1, x2, x3) = [x1 : x2], [x0x2 : x0x1 : x

2
2x3 : x1x2x3 : x

2
1x3].

Similarly, one could take the set {S + L,L}, which also generates Pic (X), with L nef
and S + L ample. The corresponding closed embedding is

j : X ↪→ P(H0(OX(S + L))× P(H0(OX(L)) = P4 × P2

with
j(x0, x1, x2, x3) = [x0x2 : x0x1 : x

2
2x3 : x1x2x3 : x

2
1x3], [x0, x2x3, x1x3].
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ρ3

ρ1

ρ2

ρ0

Figure 2.1: The fan of Bl0P2.

2.4.3 A criterion for quasimaps to embed along an embedding

We fix a closed embedding ι : X ↪→ Y between smooth projective toric varieties for the
rest of Section 2.4.3 and we study the morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β)

on closed points. We firstly prove some lemmas which apply more generally to (prestable)
toric quasimaps, see Remark 2.11.

Recall that we denote by Bq the set of basepoints of q (see Definition 2.2). In Defin-
ition 2.13, we introduced the notion of regular extension qreg of a quasimap q to X . In
this section, we denote qreg by rX(q). Similarly, rY (q′) denotes the regular extension of a
quasimap q′ to Y .

Lemma 2.37. For every quasimap q to X , we have that

rY (Q(ι)q) =M(ι)(rXq).

Proof. The two maps have the same underlying curveC by Remark 2.10 and they are both
extensions of the map ι ◦ (q |C\B) from the dense open C \B to C, so they must agree.

Lemma 2.38. For every quasimap q to X , we have that

Bq = BQ(ι)(q).

Proof. Follows from Lemma 2.28 and proposition 2.25 because the pushforward along a
closed embedding of an effective non-zero class is a non-zero class.
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Theorem 2.39. Let β ∈ A1(X) be an effective non-zero curve class and let q be an n-
marked genus-g quasimap to Y of class ι∗β with underlying curve C. Consider the
morphism induced by ι on prestable quasimaps

Q(ι) : Qpre
g,n(X, β)→ Qpre

g,n(Y, ι∗β).

Then the fibre Q(ι)−1(q) of q along Q(ι) is non-empty if and only if

1 there exists a morphism f : C → X such that qreg = ι ◦ f and

2 there exist effective non-zero classes (βx)x∈Bq in A1(X) such that

2.1 ι∗(β
x) = βx,q for all x ∈ Bq,

2.2 β = βf +
∑

x∈Bq
βx and

2.3 ordx(tρ) + βx ·Dρ ≥ 0 for every ρ ∈ ΣX(1) and every x ∈ Bq

with {tρ}ρ∈ΣX(1) the underlying sections of f .

Furthermore, the fibre Q(ι)−1(q) is in one-to-one correspondence with the (finite) set
of effective non-zero classes (βx)x∈Bq in A1(X) satisfying Items 2.1 to 2.3.

If, moreover, q is stable, then so is every element in Q(ι)−1(q).

Proof. Firstly, let q1 be a quasimap to X of class β such that Q(ι)q1 = q. By Lemma 2.37,

M(ι)(rXq1) = rY (Q(ι)q1) = rY (q).

This means that rY (q) = qreg factors through X and we can take f := rX(q1) = q1,reg.
Using Lemma 2.38, the classes βx := βx,q1 , for x ∈ Bq, satisfy the desired conditions.
Indeed, Item 2.1 follows from Lemma 2.28, Item 2.2 from Proposition 2.25 and Item 2.3
from Corollary 2.26, since

ordx(tρ) + βx,q1 ·Dρ = ordx(s
(1)
ρ ) ≥ 0,

where s(1)ρ denote the sections of q1.

Conversely, let q be a quasimap to Y of class ι∗β and let f and βx, for x ∈ Bq, be as in
the statement. SinceM(ι) is a closed embedding, the morphism f is determined uniquely
by the condition qreg = ι ◦ f . We show how to use the data in Item 2 to construct a unique
quasimap q1 to X of class β such that Q(ι)q1 = q. We fix that q1,reg = f , and then we twist
the line bundle-section pairs associated to f at each basepoint x ∈ Bq as in Corollary 2.26,
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but changing the minus sign by a plus sign. This makes x a basepoint of q1,reg with class
βx for every x ∈ Bq. By Corollary 2.27, the previous construction clearly determines a
quasimap q1 uniquely.

Finally, we show that if q is stable, then so is q1. This follows from the fact that q and
q1 have the same curve (and marks) and the fact that components contracted by q1 are
also contracted by q. Indeed, if a component C ′ of the underlying curve of q and q1 has
degree βC′,q1 = 0 with respect to q1, then by Proposition 2.25 and Lemma 2.28 we have
that βC′,q = i∗βC′,q1 = 0. But then stability of q ensures that C ′ must have enough special
points.

Corollary 2.40. Let ι : X ↪→ Y be an epic closed embedding. Then the morphism

Q(ι) : Qg,n(X, β)→ Qg,n(Y, ι∗β)

induced by ι is a closed embedding over C.

Proof. The morphismQ(ι) is proper over Spec (C) by [Sta22, Lemma 01W6] becauseQ(X, β)
is proper and Q(Y, ι∗β) is separated, both over Spec (C). By [Sta22, Lemma 04XV], it is
enough to show that Q(ι) is also a monomorphism.

Since Qg,n(X, β) is locally of finite type over Spec (C), so is the morphism Q(ι) by
[Sta22, Lemma 01T8]. Furthermore, the assumption that ι∗ is injective on curve classes
ensures, by Theorem 2.39, that for every (geometric) point s in Qg,n(Y, ι∗β), the natural
morphism Qg,n(X, β)s → s induced by Q(ι) is an isomorphism. This ensures that Q(ι) is
a monomorphism by [Sta22, Lemma 05VH].

2.4.4 Another proof of Corollary 2.40

We give another, more direct proof of Corollary 2.40, which we find more elegant since
it works for families of quasimaps directly.

Another proof of Corollary 2.40. All we need to show is thatQ(ι) is a monomorphism, since
it is clearly proper.

Let q = (C,Lρ, sρ, cm) and q′ = (C ′,L′
ρ, s

′
ρ, c

′
m) be two S-families of quasimaps toX such

that Q(ι)(q) ≃ Q(ι)(q′). The first observation is that C and C ′ are isomorphic S-families.
This holds because Q(ι) preserves the underlying family of curves when ι is a closed
embedding.
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Let X and Y denote the ambient stacks of X and Y as in Section 2.2.6. Since ι is epic,
we have that ι̃∗ : Pic (Y) → Pic (X) is surjective by Proposition 2.31. With notations as in
Section 2.2.6, we can view q and q′ as morphisms

q, q′ : C → X. (2.18)

Composition with ι̃, q and q′ give morphisms

Pic(Y) Pic(X) Pic(C)ι̃∗
q∗

(q′)∗

The assumption that Q(ι)(q) ≃ Q(ι)(q′) implies that

q∗ ◦ ι̃∗ = (Q(ι)(q))∗ = (Q(ι)(q′))∗ = (q′)∗ ◦ ι̃∗.

Since ι̃∗ is surjective, we deduce that q∗ = (q′)∗. It follows that

(Lρ, sρ) ≃ q∗(OP(Dρ), tρ) = (q′)∗(OP(Dρ), tρ) ≃ (L′
ρ, s

′
ρ).

So it remains to show that cm ≃ c′m for all m ∈M . Note that the isomorphism

cm : ⊗ρ L⊗⟨m,uρ⟩
ρ → OC

is determined by gm := c−1
m (1) ∈ H0(C,⊗ρL⊗⟨m,uρ⟩

ρ ). Similiarly, c′m is determined by g′m :=

(c′m)
−1(1) and the universal cχm on X are determined by χm. As before, we get that

(⊗ρL⊗⟨m,uρ⟩
ρ , gm) = q∗(⊗ρOP(Dρ)

⊗⟨m,uρ⟩, χm),

(⊗ρL⊗⟨m,uρ⟩
ρ , g′m) = (q′)∗(⊗ρOP(Dρ)

⊗⟨m,uρ⟩, χm),

so they agree.

2.5 The contraction morphism for smooth projective toric

varieties

We fix a smooth projective toric variety X for the rest of Section 2.5.
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2.5.1 Construction of the contraction morphism

We construct a morphism of stacks

c = cX : V → Qg,n(X, β),

with V a closed substack ofMg,n(X, β). The morphism cX , called the contraction morphism
of X , will be a generalization of the contraction morphism cPN described in Section 2.2.7
and it extends the identity on the locus of stable maps which are stable as quasimaps. The
construction of cX relies on results from Section 2.4 and cPN .

Remark 2.41. In Section 2.2.7 we have reviewed the morphism cPN . One can check that
a similar construction defines a (global) contraction morphism for products of projective
spaces.

Construction 2.42. Let β ∈ A1(X) be an effective curve class. Choose an epic closed
embedding

ι : X ↪→ P := Pn1 × . . .× Pnk .

Such an embedding always exists by Theorem 2.35. From Corollary 2.40 it follows that

Q(ι) : Qg,n(X, β) ↪→ Qg,n(P, ι∗β)

is a closed embedding. Let

cP :Mg,n(P, ι∗β)→ Qg,n(P, ι∗β)

denote the contraction morphism for P. Then cP fits in the following diagram.

Mg,n(X, β) Mg,n(P, ι∗β)

Qg,n(X, β) Qg,n(P, ι∗β)

M(ι)

cP

Q(ι)

(2.19)

We define the stack V by the following Cartesian diagram

V Mg,n(X, β)

Qg,n(X, β) Qg,n(P, ι∗β)

j

cX cP◦M(ι)

Q(ι)
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and we call the induced morphism

cX : V → Qg,n(X, β)

the contraction morphism of X .

Note that j : V →Mg,n(X, β) is a closed embedding and cX : V → Qg,n(X, β) is locally
of finite type.

We suspect that the morphism cX : V → Qg,n(X, β) from Construction 2.42 is inde-
pendent of the chosen closed embedding ι : X ↪→ P, as long as it is epic. For example, in
Section 2.5.2 we describe the closed points of V (as a closed substack ofMg,n(X, β)) and
show that these are independent of the chosen epic embedding ι (see Proposition 2.43).
Independence of the chosen epic embedding reduces to showing that, given a family of
quasimaps q ∈ Qg,n(X, β), if there is an epic closed embedding ι into products of project-
ive spaces P such that cP ◦M(ι)(q) factors throughQ(ι), then the same holds for any other
epic embedding into a product of projective spaces. We will study this question in future
work.

2.5.2 Description of contraction on points

We describe the closed substack V insideMg,n(X, β) and the morphism cX from Con-
struction 2.42 in terms of line bundle-section pairs. We use the notations introduced in
Sections 2.2.5 and 2.5.1.

Proposition 2.43. Let (C,Lρ, sρ, cm) be the Σ-collection corresponding to an n-marked
genus-g stable map f : C → X . Let T1, . . . , Tℓ be the rational tails of f , let C̃ be the curve
obtained by contracting all the rational tails inC, viewed as a subcurve ofC. For 1 ≤ i ≤ ℓ,
let xi = Ti ∩ (C \ Ti) and let zi denote a local coordinate at xi inside C̃. Then

(i) The map (C,Lρ, sρ, cmX
) belongs to V if and only if

ordxi(sρ |C̃) + βTi ·Dρ ≥ 0

for every ρ ∈ ΣX(1) and every 1 ≤ i ≤ ℓ.

(ii) If (C,Lρ, sρ, cmX
) lies in V then its image under cX is the quasimap (C̃, L̃ρ, s̃ρ, c̃mX

)
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where

L̃ρ = Lρ |C̃ ⊗OC̃

(
ℓ∑
i=1

(βTi ·Dρ)xi

)
,

s̃ρ = sρ |C̃ ⊗
ℓ∏
i=1

z
βTi ·Dρ

i ,

c̃mX
= cmX

|C̃ ⊗(⊗
ℓ
i=1ψmY ,xi,βTi

),

where the isomorphisms ψmX ,xi,βTi
are constructed in Remark 2.22.

Proof. The proof of Item (ii) follows from a careful study of the morphisms in Diagram
(2.19). The morphism cP is a generalization of the morphism cPN , which is described in
terms of line bundle-section pairs in Section 2.2.7. Similarly, M(ι) is described in Con-
struction 2.9 (see Remark 2.11). These descriptions imply Item (ii).

For completeness, we spell out the details. Let us write

(cP ◦M(ι))(C,Lρ, sρ, cmX
) = (Ĉ, L̂τ , ŝτ , ĉmY

),

Q(ι)(C̃, L̃ρ, s̃ρ, c̃mX
) = (C̃, Lτ , sτ , cmY

).

It suffices to show the equality

(Ĉ, L̂τ , ŝτ , ĉmY
) = (C̃, Lτ , sτ , cmY

).

Furthermore, in that case it follows that (C̃, L̃ρ, s̃ρ, c̃mX
) is generically non-degenerate, be-

cause (C̃, Lτ , sτ , cmY
) is, by Lemma 2.38.

The equality Ĉ = C̃ follows from the description of cP and the fact that ι is a closed
embedding, soM(ι) and Q(ι) preserve the underlying curve.

For the line bundles, we have that

L̂τ =
⊗
ρ

L
aτρ
ρ |C̃ ⊗

(
ℓ⊗
i=1

OC̃(ι∗(βTi) ·Dτ xi)

)
,

Lτ =
⊗
ρ

L
aτρ
ρ |C̃ ⊗

(
ℓ⊗
i=1

OC̃(βTi · (
∑
ρ

aτρDρ) xi)

)
.
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The desired equality follows from the projection formula and Remark 2.12, since

ι∗(βTi) ·Dτ = βTi · ι∗(Dτ ) = βTi · (
∑
τ

aρρDρ).

For the sections, we have that

ŝτ = µaτ
∏
ρ

s
aτρ
ρ |C̃

ℓ∏
i=1

z
ι∗(βTi )·Dτ

i

sτ = µaτ
∏
ρ

s
aτρ
ρ |C̃

ℓ∏
i=1

z
βTi ·(

∑
ρ a

τ
ρDτ )

i ,

and we conclude by the same argument.

Finally, for the isomorphisms we have that

ĉmY
= cmX

⊗

(⊗
i

ψmY ,xi,ι∗(βTi )

)

cmY
= cmX

⊗

(⊗
i

ψmX ,xi,βTi

)

where mX ∈MX is uniquely determined by the conditions

⟨mX , uρ⟩ =
∑
τ

aτρ⟨mY , uτ ⟩

for every ρ ∈ Σ(1). One can check that this conditions implies the equality ψmY ,xi,ι∗(βTi )
=

ψmX ,xi,βTi
for each i.

To conclude the proof, we show Item (i). By construction of V , we need to find under
what conditions the quasimap q = (cP ◦ M(ι))(f) factors through the image of Q(ι), for
which we use Theorem 2.39. It suffices to rewrite Items 1 and 2 in Theorem 2.39 for q in
terms of f itself.

Item 1 in Theorem 2.39 is automatic here. Indeed, qreg = (cP(ι ◦ f))reg and ι ◦ (f |C̃)
are maps which agree on a dense open in C̃, therefore they must agree everywhere. This
implies that qreg factors through X .

Let us conclude with Item 2 in Theorem 2.39. By the proof of Theorem 2.39, if q =

Q(ι)q1 for some quasimap q1 to X , then βxi = βxi,q1 . Combining this with Item 2.1 and
the equality βxi,q = ι∗(βTi,f ), it follows ι∗(βxi) = ι∗(βTi,f ), and therefore βxi = βTi,f since ι∗
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is injective. This is the only possible choice for the class βxi . Therefore, f lies in V if and
only if Items 2.2 and 2.3 hold for this choice of βxi . Item 2.2 says

βf = βf |C̃ +
ℓ∑
i=1

βTi,f ,

which is immediate. Thus, the only non-trivial condition for f to lie in V is Item 2.3, which
says that

ordxi(sρ |C̃) + βTi,f ·Dρ ≥ 0

for every ρ ∈ Σ(1) and every 1 ≤ i ≤ ℓ.

Note that, if X has the property that all the toric boundary divisors Dρ are nef, then cX
is defined on the whole ofMg,n(X, β) since the condition in Item (i) in Proposition 2.43
holds trivially.

Example 2.44. In order to illustrate the content of Proposition 2.43, we construct a family
of stable maps whose special fibre lies in V but whose general fibre lies outside V .

Let X = Bl0P2 be the blow-up of P2 at the origin, whose fan is pictured in Figure 2.1.
We will use the curve classes L, S,E ∈ A1(Bl0P2) introduced in Example 2.36. By [Cox95],
a morphism to Bl0P2 is given by line bundle-section pairs (Li, si) for i = 0, . . . , 3 satisfying
the following conditions

1 L0 ≃ L1 ⊗ L3 and L1 ≃ L2,

2 s0 and s3 do not vanish simultaneously and

3 s1 and s2 do not vanish simultaneously.

Such a map has degree β if β ·Di = deg(Li). For example, (L ·Di) = (1, 1, 1, 0), (S ·Di) =

(1, 0, 0, 1) and (E ·Di) = (0, 1, 1,−1).

Let C1 = P1 with homogeneous coordinates [x0 : x1] and let C2 = P1 with homogen-
eous coordinates [y0 : y1]. We follow the convention that 0 = [1: 0]. Let C be the rational
nodal curve obtained by gluing of C1 and C2 along the origins. By abuse of notation, we
denote the node by 0.

Consider the affine line A1 with coordinate t and let W = C × A1, which we view as
a trivial family of nodal curves over A1. We denote by Wt and 0t the fibre and the node
over t ∈ A1, respectively. Furthermore, we choose disjoint two sections of the projection
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W → A1 with the condition that they factor through (C1 \ 0) × A1. These will be our
marked points.

Consider the following morphism f : W → Bl0P2, whose components we denote by
s0, . . . , s3;

1 f restricted to C1 × A1 is given by

f([x0 : x1], t) = [x20 : 0 : 2 : x
2
1 − tx1x0]

2 and f restricted to C2 × A1 is given by

f([y0 : y1], t) = [y20 : y1y0 : y
2
1 − 3y1y0 + 2y20 : 0]

One can check that the two descriptions glue along 0×A1 and satisfy non-degeneracy, so
f is a family inM0,2(Bl0P2, 2L) which restricts to a family of degree 2S on C1 ×A1 and of
degree 2E on C2 × A1.

For each t, Proposition 2.43 says that the morphism ft : Wt → Bl0P2 lies in the closed
substack V ofM0,2(Bl0P2, 2L) where cBl0P2 is defined if and only if

ord0t(s3 |C1×{t}) ≥ −βC1×{t} ·D3 = −2 E · E = 2.

Since s3 = x21 − tx1x0, the condition is satisfied if and only if t = 0. Therefore, f is indeed
a family of stable maps whose general fibre does not lie in V but whose special fibre lies
in V .

As a sanity check for Proposition 2.43, we show that f0 is indeed the only fibre that lies
in V using Equation (2.19) directly. For that, we choose the closed embedding ι : Bl0P2 ↪→
P2×P1 described in Example 2.36 and show that cP◦M(ι)(ft) lies in the image ofQ0,2(Bl0P2, 2L)

if and only if t = 0.

Following the definition of ι in Equation (2.17), we have the following description of
M(ι)(f):

1 on C1 × A1

M(ι)(f)([x0 : x1], t) = [x20 : 0 : 2(x
2
1 − tx1x0)], [0 : 2]

2 and, on C2 × A1,

M(ι)(f)([y0 : y1], t) = [y20 : 0 : 0], [y1y0 : y
2
1 − 3y1y0 + 2y20]
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Next, we apply cP, where P = P2 × P1. This means we contract C2 × A1 and twist by
ι∗(2E) = (0, 2). The result is the morphism

g = cP ◦M(ι)(f) : C1 × A1 → Bl0P2

given by
g([x0 : x1], t) = [x20 : 0 : 2(x

2
1 − tx1x0)], [0 : 2x21].

Observe that if we choose coordinates [z0 : z1 : z2] on P2 and [w0 : w1] on P1, then the im-
age of ι (see Equation (2.17)) is the closed with equation z1w1 − z2w0. The same equations
determine if a stable map to P2×P1 factors through Bl0P2, but the situation is different for
quasimaps. In fact, the sections defining g satisfy this equation, but we argue next that gt
lies in the image of Q0,2(Bl0P2, 2L) if and only if t = 0.

The image of a family of quasimaps (C,Li, si, cm) along

Q(ι) : Q0,2(Bl0P2, 2L)→ Q0,2(P2 × P1, (2, 2))

can be expressed in homogeneous coordinates as

[s0 : s1s3 : s2s3], [s1 : s2].

In particular, for gt to lie in the image of Q(ι) we must have that the rational function

2(x21 − tx1x0)
2x21

is regular (and, in fact, constant) on C1 × {t}. This happens if and only if t = 0.

Remark 2.45. The following observation can be deduced from Proposition 2.43, or dir-
ectly from Construction 2.42. For every stable map f : C → X and every rational tail
T ⊂ C of f , the point x = f(T ) is a basepoint of the quasimap cX(f) of degree βx,cX(f) =

deg(f |T ). Since the notion of degree of a basepoint is instrinsic, the same must hold for
any other stable map f ′ with cX(f

′) = cX(f). In other words, we can reinterpret the de-
gree βx of a basepoint x of a quasimap q as the degree of any rational tail T of a stable map
f : C → X such that cX(f) = q and cX contracts T to x, whenever one such map exists.
For example, the existence of such f is guaranteed if X is Fano, since then cX is surjective
by Theorem 2.47.

Example 2.46. We highlight the relation, explained in Remark 2.45, between the degree
of a basepoint and the degree of rational tails contracted to it.
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Let C = P1 with homogeneous coordinates [s0 : s1], consider A1 with coordinate t and
let W = C × A1. Consider the following morphism f : W → P2

f([s0 : s1], t) = [s0 : ts0 : s1].

Then f induces a morphism f̃ : W \W0 → Bl0P2, which extends to a family of quasimaps
q on W ,

q([s0 : s1], t) = [s0 : ts0 : s1 : 1]),

with a basepoint at the point t = s1 = 0, the origin in W0.

On the other hand, f̃ can also be extended to a morphism

f̃ : W̃ = Bls=t=0W → Bl0P2,

which we view as a family of maps over A1. If we view W̃ as the closed subvariety cut-out
by u1t− s1u0 inside C × A1 × P1

[u0 : u1]
, then the expression of f̃ is

f̃([s0 : s1], t, [u0 : u1]) = [u1s0 : u0s0 : u1 : u1s1].

The special fibre W̃0 has two components T = V (s1) and C̃ = V (u0). The restriction of
f̃ to each of them is

f̃ |T ([u0 : u1]) = [u1 : u0 : u1 : 0],

of degree E, and
f̃ |C̃ ([s0 : s1]) = [s0 : 0 : 1 : s1],

of degree S.

Remark 2.45 tells us that we can read that deg(f̃ |T ) = E directly from q, by checking
that βx = βx,q0 = E, where x is the point s = t = 0 in W . We check the claim in this
particular example.

For that, we need to compute βx following Proposition 2.21. Firstly,

q0([s0 : s1]) = [s0 : 0 : s1 : 1])

has the following orders of vanishing at x: (ordx(si)) = (0,∞, 1, 0), and Vx = {ρ1}. Let σi,j
denote the cone in Figure 2.1 spanned by ρi and ρj . The only cones σ ∈ Σ(2) such that
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Vx ⊆ σ are σ0,1 and σ1,3. The former cone gives

β(x, σ0,1) ·D2 = 1,

β(x, σ0,1) ·D3 = 0.

Therefore β(x, σ0,1) = L, but it does not satisfy the condition in Proposition 2.21 because

0 = ordx(s0) ̸≥ β(x, σ0,1) ·D0 = L · L = 1.

Instead, we must take σ1,3, which gives

β(x, σ1,3) ·D0 = 0,

β(x, σ1,3) ·D2 = 1.

Therefore β(x, σ1,3) = E, and one easily checks that

∞ = ordx(s1) ≥ β(x, σ1,3) ·D1 = E · S = 1,

0 = ordx(s3) ≥ β(x, σ1,3) ·D3 = E · E = −1.

So βx = β(x, σ0,1) = E, as claimed.

2.6 Surjectivity for Fano targets

We have introduced contraction morphism cX between stable maps and stable quasimaps
for smooth projective toric varieties in Construction 2.42. In this section, we prove that cX
is surjective if the target X is Fano.

Theorem 2.47. Let X be a smooth Fano toric variety. The contraction morphism

cX : V → Qg,n(X, β)

defined in Construction 2.42 is surjective.

The proof of Theorem 2.47 is delayed until Section 2.6.3. Before that, we introduce
some terminology about the monoid of effective curve classes in Section 2.6.1 and an im-
portant construction in Section 2.6.2.
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2.6.1 Factorizations of curve classes

We fix a smooth toric Fano variety X for the rest of Section 2.6.

Definition 2.48. Let β be a non-zero effective curve class in X . A factorization of β is an
expression β = β1 + . . . + βk such that βi is non-zero and effective for every i and k ≥ 2.
We say that β is irreducible if it does not admit any factorization.

Definition 2.49. The length of a curve class β ∈ A1(X) is

λ(β) = deg(ι∗β) = β · (−KX) =
∑
ρ∈Σ(1)

β ·Dρ,

with ι : X ↪→ PN the anticanonical embedding.

Remark 2.50. The length λ defines a morphism of semigroups with unit λ : A1(X) → Z.
Moreover,

1 if β is effective then λ(β) ≥ 0 with equality if and only if β = 0 and

2 if β is non-zero effective and β = β1 + . . . + βk is a factorization, then λ(β) > λ(βi)

for all i.

2.6.2 Grafting trees on to quasimaps

We explain how to replace a basepoint of a quasimap with a rational curve and how
to extend the quasimap there given certain extra data. This construction is fundamental
for the proof of Theorem 2.47.

Construction 2.51. Let q = (C,Lρ, sρ, cm) be a quasimap to X of degree β. Suppose for
simplicity that q has a unique basepoint x and let βx be the degree of q at x. Let qreg =

(C,L′
ρ, s

′
ρ, c

′
m) denote the regular extension of q, constructed in Definition 2.13.

Given a rational irreducible curve T ≃ P1, a point xT ∈ T and sections tρ ∈ H0(T,OT (βx·
[Dρ])) such that tρ(xT ) = s′ρ(x) for all ρ ∈ Σ(1), we can construct a new quasimap

qgr = (C̃, L̃ρ, s̃ρ, c̃m),

of class β by grafting T on to q at x as follows:

• The curve C̃ is obtained by gluing C and T along x ∈ C and xT ∈ T . By abuse of
notation, we denote the resulting node in C̃ also by x.
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• For each ρ ∈ ΣX(1), the line bundle L̃ρ on C̃ is obtained by gluing the line bundle
L′
ρ on C and the line bundle OT (βx · [Dρ]) on T .

• The sections s̃ρ of L̃ρ are obtained by gluing the sections tρ and s′ρ.

• Finally, for each m ∈ M , the isomorphisms c̃m on C̃ are obtained by gluing the iso-
morphisms c′m : ⊗ρ∈Σ(1)L

′⊗⟨m,uρ⟩
ρ ≃ OC and the isomorphisms ψm,βx : OT (

∑
ρ∈Σ(1) βx ·

[Dρ] ⟨m,uρ⟩) ≃ OT analogous to those constructed in Remark 2.22.

The defining data of qgr automatically satisfies generically non-degeneracy. This is clear
on C, while on T it follows from the fact that qreg is non-degenerate at x.

Remark 2.52. With the notations of Construction 2.51, the regular extension qreg of a
quasimap q has the following property: a section sρ is identically zero on an irreducible
component C ′ of C if and only if s′ρ is identically zero on C ′.

It follows that, for each basepoint x of q, we can find sections tρ satisfying the assump-
tions of Construction 2.51. Indeed, we can choose tρ as follows

• if βx · [Dρ] < 0, we must take tρ = 0 and the gluing condition holds because s′ρ(x) = 0

by Corollary 2.26,

• if βx · [Dρ] = 0 then we must take tρ constant with value s′ρ(x) and

• if βx · [Dρ] > 0 then we can choose any section tρ ∈ H0(T,OT (βx · [Dρ])) with tρ(xT ) =
s′ρ(x).

Remark 2.53. Grafting can be undone. With the notations of Construction 2.51, we can
recover q from qgr by contracting T , restricting the rest of the data to C and twisting with
the degree βT of qgr on T analogously to Proposition 2.43. In that case, we say that q is
obtained by pruning qgr along T . By Proposition 2.43, pruning all the rational tails of a
stable map f : C → X we recover the quasimap cX(f).

Remark 2.54. Construction 2.51 can be extended to quasimaps q with more than one
basepoints. The grafting of T on to q at a basepoint x, is obtained by replacing in Construc-
tion 2.51 the map qreg by the quasimap obtained by extending q only at x. The description
of such quasimap can be obtained using Corollary 2.26, replacing B in the formulas by
the singleton {x}. Note that if we graft a quasimap q along all its basepoints x1, . . . , xℓ, the
basepoints of the resulting quasimap qgr must lie on the grafted rational curves T1, . . . , Tℓ.
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2.6.3 Proof of surjectivity

Proof of theorem 2.47. The morphism cX : V → Qg,n(X, β) is locally of finite type, therefore
by [Sta22, Lemma 0487] it is enough to show that cX is surjective on closed points.

Let q = (C,Lρ, sρ, cm) be a stable quasimap to X in Qg,n(X, β). We show by induction
on λ(β) (see Definition 2.49) that there exists a stable map f to X in Mg,n(X, β) with
cX(f) = q.

If λ(β) = 0, then there are no basepoints by Proposition 2.25. This means that q is itself
a stable map and there is nothing to show.

IfC has basepoints x1, . . . , xℓ, grafting an irreducible rational curve Ti at each basepoint
xi induces an equality of curve classes

β =
ℓ∑
i=1

βxi + (β −
ℓ∑
i=1

βxi), (2.20)

where βxi ̸= 0 for all i by Proposition 2.25. If ℓ ≥ 2, Equation (2.20) is a factorization, and
we can use Remark 2.50 to conclude by induction.

Therefore, we can restrict to the case that λ(β) > 0 and C has only one basepoint
x. Furthermore, by restricting ourselves to the irreducible component containing the
basepoint x, we can assume that C is irreducible. Let qgr be obtained by grafting an irre-
ducible rational curve T1 to q at x. Then we get an expression

β = βx + (β − βx)

with βx ̸= 0. If β − βx is also non-zero, we conclude by induction on λ. Thus, we can
assume that β = βx.

In other words, we only need to deal with the particular case that on the new curve
C ∪ T1 the degree is 0 on C and β on T1. The strategy is to continue grafting irreducible
rational curves to qgr at the new basepoints, which necessarily lie on T1 (see Remark 2.54).
Again, the only problematic case is if there is a unique basepoint x1 of qgr on T1 such that
βx1 = β, because we could enter a loop and end up with an infinite chain of P1’s. To rule
this out, we use Lemma 2.55 as follows: when grafting T1 to q, we are allowed to choose
the sections tρ on T1 (satisfying the conditions in Construction 2.51). If we show that we
can choose the sections tρ with the property that

there is tρ ̸= 0 such that ordx1(tρ) < β ·Dρ, (2.21)
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then Lemma 2.55 (see also Remark 2.53), applied to C1 = C ∪T1 and C2 = T2, ensures that
when we graft T2 we cannot have βT1 = 0 and βT2 = β, and so we conclude by induction.

To get (2.21) for a specific class β, it suffices to show one of the following:

there exists ρ ∈ Σ(1) such that sρ(x) = 0, sρ ̸= 0 and β ·Dρ ≥ 2, (2.22)

or

there exist ρ ̸= ρ′ ∈ Σ(1) such that β ·Dρ = β ·Dρ′ = 1 and at most one is 0 on Cx. (2.23)

In both cases, it is clear we can choose tρ on T1 to have simple disjoint zeroes, which
ensures (2.21).

To apply this strategy, we distinguish two cases, depending on whether β is irredu-
cible or not. In the latter case we shall use that X is Fano, which is not needed in the
former case.

Firstly, we assume that C is irreducible and has a unique basepoint x, that β is irredu-
cible with λ(β) > 0 and that βx = β. Since β is irreducible, it can be represented by the
closure of the toric orbit associated to a wall τ ∈ Σ; that is, β = [V (τ)]. By [CLS11, Propos-
ition 6.4.4], there exist two distinct rays ρ1, ρ2 ∈ Σ(1) such that β ·Dρi = 1 for i = 1, 2. By
Lemma 2.56, there is ρ ∈ Σ(1) such that sρ(x) = 0, sρ ̸= 0 and β ·Dρ > 0. If β ·Dρ ≥ 2, we
are done by (2.22). Otherwise, either {ρ, ρ1} or {ρ, ρ2} satisfy (2.23).

Finally, we deal with the case where β is not irreducible. We also assume, as before,
that λ(β) > 0, that C is irreducible, that there is a unique basepoint x ∈ C and that β = βx.

By Lemma 2.56, there is ρ ∈ Σ(1) such that sρ(x) = 0, sρ ̸= 0 and β ·Dρ > 0.

We number the rays in Σ(1) as ρ = ρ1, ρ2, . . . , ρr. Since X is Fano, the anticanonical
divisor −KX =

∑r
i=1Dρi is very ample (by [CLS11, Theorem 6.1.15]). Let ι : XΣ ↪→ PN

be the corresponding closed embedding. Since β is not irreducible, let β = β1 + β2 be a
factorization. Then

r∑
i=1

β ·Dρi = deg(ι∗β) = deg(ι∗β1) + deg(ι∗β2) ≥ 2. (2.24)

It follows that either β ·Dρ ≥ 2, and then we conclude by (2.22), or there is i ̸= 1 such that
β ·Dρ1 ≥ 1, and then {ρ, ρi} satisfy (2.23).

As a result of the induction argument, we end up with a prestable map f to X whose
contraction is the original quasimap q. If f is not stable, we can stabilize it (by contract-
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ing its irreducible components of degree 0 with no marks). The result is a stable map f

which lies in V by construction. More precisely, one only needs to check the condition in
Proposition 2.43, and it follows from the following observation: in Construction 2.51, we
have that

ordx(s̃ρ |C) + βTi · [Dρ] = ordx(s
′
ρ |C) + βx · [Dρ] = ordx(sρ) ≥ 0.

It is also clear that f has degree β since the total curve class is preserved by grafting.

We conclude with two lemmas used in the proof of Theorem 2.47.

Lemma 2.55. Let q be a quasimap with underlying curve C consisting of two irreducible
components C1 and C2 glued along a point x. Suppose C2 has genus 0. Let q1 and q2 be
the restrictions of q to C1 and C2 respectively. Assume βC1 = 0 and βC2 ̸= 0. Let q′ be the
quasimap obtained by pruning q along C2. Then for every ρ ∈ Σ(1) such that s′ρ ̸= 0, or
equivalently such that sρ |C1 ̸= 0, the following holds

ordx(s
′
ρ) = βC2 ·Dρ = β′ ·Dρ.

Proof. By definition,
s′ρ = sρ |C1 ·zβC2

·Dρ ,

with z a local coordinate at x inside C1. Therefore, s′ρ = 0 if and only if sρ |C1= 0. Fur-
thermore, if sρ |C1 ̸= 0 then ordx(sρ |C1) = 0 because βC1 = 0, and ordx(s

′
ρ) = βC2 · Dρ =

β′ ·Dρ.

Lemma 2.56. Let q = (C,Lρ, sρ, cm) be a stable quasimap to X of degree β with C irre-
ducible and let x be a basepoint of q. Then there exists ρ ∈ Σ(1) such that sρ(x) = 0 but
sρ ̸= 0. In particular, β ·Dρ > 0.

Proof. Since x is a basepoint, by Equation (2.1) there is a primitive collection P ⊆ Σ(1)

such that sρ(x) = 0 for all ρ ∈ P . By generic non-degeneracy, there exists ρ ∈ P such that
sρ is not identically 0. The existence of sρ ensures that β ·Dρ = deg(Lρ) > 0.

Remark 2.57. In Theorem 2.47, we can replace the condition that X is Fano by the follow-
ing property: for each effective non-irreducible non-zero curve class β ∈ A1(X) such that
there exists ρ ∈ Σ(1) with β ·Dρ = 1, there exists ρ′ ̸= ρ such that β ·Dρ′ > 0.

This condition is true if X is Fano by the argument involving Equation (2.24).
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A way to control this condition is to look at∑
ρ∈Σ(1)

βḊρ = β · (−KX).

For example, the above condition holds if KX · β ≥ 2 for every effective non-zero curve
class β ∈ A1(X). But this implies that−KX is very ample by [CLS11, Theorems 6.1.15 and
6.3.22], so X is Fano.
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[CFK16] Ionuţ Ciocan-Fontanine and Bumsig Kim. Big i-functions. In Development of
moduli theory—Kyoto 2013, volume 69, pages 323–348. Mathematical Society
of Japan, 2016.

[CFK17] Ionuţ Ciocan-Fontanine and Bumsig Kim. Higher genus quasimap wall-
crossing for semipositive targets. Journal of the European Mathematical Society,
19(7):2051–2102, 2017.
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