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Abstract

Mathematical models are widely used in cancer drug development to aid understanding the

mechanism of action by simulating administration, distribution, metabolism, elimination,

and beneficial and adverse effects. In pharmacometrics, ordinary differential equations

are commonly used. However, this approach can have limitations when it comes to sim-

ulating heterogeneity, spatial distribution, and stochasticity. For example, in oncology

understanding the spatial distribution and heterogeneity of the cells is crucial for success-

ful treatment. Therefore, in this thesis different methods such as agent-based models and

stochastic models and their combination with ordinary differential equation, and partial

differential equations are explored and applied to model heterogeneity of cancer cell pop-

ulations, the effect of different therapeutic options such as mono and combination therapy

and the tumour immune cell interaction. In addition, the reinforcement algorithm is em-

ployed to optimise a complex system and to find an optimal treatment given a specific

tumour with its parameters and immune micro-environment.
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Chapter 1

Introduction

1.1 Context

Dose prediction and optimisation have a rich historical background. In 1847 in England,

Buchanan conducted calculations on the inhalation, exhalation, and retention of the short-

acting anesthetic ether during induction (Buchanan 1847). In 1913, Michaelis and Menten

described enzyme kinetics in Germany. Their equation, known as the Michaelis-Menten

equation, is widely used in pharmacokinetics to model the elimination kinetics of different

drugs (Michaelis, Menten et al. 1913). Significant contributions continued in the early 20th

century. In 1924, Widmark and Tandberg published equations about the accumulation of

drug in a one-compartment system (Widmark and Tandberg 1924). Later, in 1937, Teorell

presented two papers on a two-compartment model (Teorel 1937; Teorell 1937).

A pivotal figure in the advancement of pharmacokinetics was Friedrich Hartmut Dost,

a German pediatrician who utilised mathematical calculations to optimise drug doses in

children. In 1953, he introduced the term “pharmacokinetics” in his book, ‘Der Blut-

spiegel: Kinetik der Konzentrationsablaufe in der Kreislaufflussigkeit’ (Gladtke 1985).

According to Gibaldi and Levy (Levy and Gibaldi 1972), the term is defined as follows:

Pharmacokinetics is concerned with the study and characterization of the time

course of drug absorption, distribution, metabolism, and excretion, and with

the relationship of these processes to the intensity and time course of thera-

peutic and adverse effects of drugs. It involves the application of mathemat-

ical and biochemical techniques in a physiologic and pharmacologie context.

Pharmacokinetic information can provide a reasonable basis for the design of
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1. INTRODUCTION

dosage regimens; it can indicate if dosage adjustment may be necessary in renal

impairment, and it may also provide preliminary indications of the likelihood

and types of drug interactions that may be encountered.

Between 1950 and 1970, significant progress occurred in the field of pharmacokinetics,

primarily driven by advancements in bioanalytical techniques used to analyze drug con-

centrations in plasma, urine, and other tissues. Several notable researchers made valuable

contributions during this period. Among them were Sidney Riegelman, Bernard B. Brodie,

Eino Nelson, Gerhard Levy, and John Wagner from the United States, as well as Ekke-

hard Kruger-Thiemer, E.J. Ariens, and Jacques van Rossum from Europe (Paalzow 1995).

During this time, the concept of pharmacokinetics/pharmacodynamics (PK/PD) emerged,

connecting measured drug exposure data from laboratory experiments to the steady-state

pharmacological responses. This linkage provided insights into the relationship between

drug concentration and its effects (pharmacodynamics or PD).

In the subsequent decade, the field witnessed the development of econometric and

biometric methods, along with the introduction of mixed effect modelling, which aided

in quantifying patterns observed in observational data. Lewis Sheiner and Stuart Beal

played a significant role in this period by creating the NONMEM software system, which

enabled population pharmacokinetic studies (Sheiner and Beal 1983). They are widely

regarded as the pioneers of pharmacometrics, a scientific discipline that aims to interpret

and describe pharmacology in a quantitative manner (Usman et al. 2023; Gobburu 2010;

Ette and Williams 2007). During the period of 1980-1990, regulatory agencies began en-

dorsing the utilization of pharmacometrics in practice. The United States Food and Drug

Administration (FDA) specifically called for pharmacological screening of drugs intended

for use in elderly patients, aiming to understand the various sources of variability. In

1999, regulatory guidance was issued regarding population analysis, followed by another

guidance in 2003 focusing on exposure-response relationships. Those guidelines can be

found on www.fda.gov. Due to these milestones, pharmacometrics has a high-level impact

on decision-making processes related to clinical trial design, drug development, approval,

labeling, and the design of drug dosage regimens, and therefore enhance the rationalization

of pharmacotherapy in clinical settings. At this point in time, labeling statements related

to intrinsic and extrinsic factors started to gain support from pharmacometric analyses

(Gobburu 2010).
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A classical PK model typically consists of a central compartment representing plasma,

which is connected to one or more peripheral compartments through rate constants. The

model parameters, when expressed in terms of rate constants, generally lack physiolo-

gical significance. However, they can be transformed to more interpretable PK descriptors

such as clearance and volume of distribution. Clearance refers to the volume of plasma

from which the drug is eliminated per unit time through metabolic or excretion processes.

Volume of distribution is defined as the volume of plasma required to contain the total

amount of drug in the body at the observed concentration in the plasma. Both clearance

and volume of distribution are used to calculate the effective half-life of a drug. These

PK models offer a concise and standardised representation of both preclinical and clin-

ical experimental findings. In preclinical settings, PK parameters derived from various

in vivo studies serve multiple purposes. They can aid in the ranking of compounds for

further investigation and be linked to physicochemical, in vitro, or structural properties

to optimise the PK characteristics of new compounds. In clinical settings, a comparison

of PK parameters among different subjects can potentially reveal correlations with demo-

graphic characteristics. In addition, PK parameters obtained from one study design can

be employed to simulate plasma concentrations for different doses or dosing regimens.

Population PK models are frequently employed to describe the variability in drug con-

centrations and PK parameters within the target patient population. These models play

a crucial role in guiding initial dose selection and personalised dosing for specific patient

subgroups. Demographic and physiological variables, such as body weight and metabolic

functions, are often considered as covariates due to their influence on dose-concentration

relationships (Rowland and Tozer 2005).

However, it is important to note that these empirical approaches have limitations

in fully incorporating all available prior information regarding the drug and physiology.

Consequently, their ability to predict PK for a similar drugs or extrapolate the PK to

different physiological conditions may be limited. In more recent times, physiologically-

based pharmacokinetic (PBPK) models have emerged as a complement to PKPD models.

These models utilise a similar mathematical framework but are parameterised based on

known physiology, incorporating a larger number of compartments that represent various

organs or tissues in the body. These compartments are interconnected by flow rates that

mimic the circulation of blood. Similar to empirical models, PBPK models estimate

common PK parameters, e.g., clearance, volume of distribution, and effective half-life.
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Due to the more detailed physiological representation, PBPK models offer a quantitative

mechanistic framework that enables the prediction of plasma and tissue concentration-time

profiles for new drugs after intravenous or oral administration. This is achieved by utilizing

scaled drug-specific parameters through in vitro-in vivo extrapolation techniques. Another

advantage of PBPK models is their ability to extrapolate doses from healthy volunteers

to individuals in disease populations, provided the relevant physiological properties of the

target population are available. For instance, if data reveals reduced cytochrome P450

expression in patients with chronic kidney disease, such information can be incorporated

into a PBPK model, along with other affected parameters. This allows to predict dose

adjustments for a drug in a special population relative to that in healthy volunteers (H.

Jones and Rowland-Yeo 2013).

Due to decline in productivity in pharmaceutical research and development, there is

a need to enhance the characterisation, understanding, and prediction pharmacological

modulation of biological targets in a quantitative manner (Graaf 2012). This is em-

phasised in a White Paper by the National Institutes of Health Quantitative Systems

Pharmacology workshop group, which highlights the increasing interest in Systems Phar-

macology among academic, regulatory, and industrial researchers (Sorger et al. 2011).

Quantitative Systems Pharmacology (QSP) aims to integrate comprehensive knowledge

of biological processes into pharmacokinetic/pharmacodynamic and physiologically-based

pharmacokinetic models. By applying concepts from systems engineering, computational

modelling, and mathematical modelling to describe the dynamic interactions among vari-

ous components of a biological system, QSP establishes the interface between Pharma-

cometrics and Systems Biology. QSP models provide a mechanistically-oriented form of

drug and disease modelling by integrating features of the drug (dose, dosing regimen, ex-

posure or concentration at target site, potency, or a full pharmacokinetic sub-model) with

target biology, downstream effectors at molecular, cellular and pathophysiological levels,

and possibly functional effector(s) of interest, such as a physiologically-based pharmaco-

dynamic study endpoint. QSP models are often used to generate hypotheses and support

a quantitative understanding of novel compound mechanism(s) of action, in a specific tis-

sue, disease, non-clinical experimental or clinical patient population context. QSP may

further be used in optimizing doses and dosing regimens, or in support of dose sequencing

decisions for drug combinations, given a QSP model typically contains multiple effectors

and at least one PD marker of interest – often the PD endpoint in a given study – down-
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stream of the drug or compound target. By understanding the behavior of the system as

a whole, rather than focusing solely on individual constituents, it is a holistic approach

rather than a reductionist one (Graaf 2012; Knight-Schrijver et al. 2016; Helmlinger et al.

2019). As Anderson suggest in this paper ’More is Different’ (P. W. Anderson 1972), a

complex system might show behaviour that cannot be explained by the law that governs

its microscopic components. This indicates that in complex systems emergent behaviour

exist. Hence, even if a theory could explain all microscopic interactions, additional insights

are required to understand the macroscopic level.

Cancer progression and treatment modelling present significant challenges due to the

complexities of neoplastic disease. The hallmarks of cancer, such as sustained proliferative

signalling, resistance to growth suppressors, evasion of cell death, replicative immortality,

angiogenesis, and invasion/metastasis, genome instability, resulting heterogeneity, repro-

gramming of energy metabolism and inflammation, provides cancer cells the ability to

evade immune surveillance and archieve resistance to drug treatment. In addition to can-

cer cells, tumours consist of a diverse array of recruited normal cells that contribute to the

tumour micro environment (Hanahan and Weinberg 2011). Available models to describe

cancer growth are the exponential model, the Mendelsohn model, the logistic model, the

linear model, the surface model, the Gompertz model and the Bartalanffy model (Murphy

et al. 2016; Tabassum et al. 2019). Those models consist of an ordinary differential equa-

tion (ODE) describing the change in tumour population size V with different terms for

example for growth, growth limitation and death. The exponential model provides the

description of a cancer cell splitting into two daughter cells with a growth depending pro-

portionally on the cancer population size. The Mendelsohn model is a generalization of

the exponential model with the growth term being proportional to a power of the pop-

ulation size. The logistic model has the addition of growth being limited by a carrying

capacity. The Gompertz model is able to describe the decrease of tumour growth rate once

the cancer size has increased by being a generalisation of logistic model with a sigmodial

curve. In contrast, the Bertalanffy model relates the tumour volume and growth and cell

death to the surface area (Murphy et al. 2016; Tabassum et al. 2019).

All those models generalise the tumour development by only describing the size of the

cancer mass but exclude complex processes for example interaction with the tumour mi-

cro environment (TME), immune system, intracellular processes, or interplay of different

therapies. The emergence of immunotherapies, such as cytotoxic T-lymphocyte-associated
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Model name Equation

Exponential model dV
dt = aV

Mendelsohn model dV
dt = aV b

Logistic model dV
dt = aV (1− V

b )

Linear model dV
dt = aV

V+b

Surface model dV
dt = aV

(V+b)
1
3

Gompertz model dV
dt = aV ln b

(V+c)

Bertalanffy model dV
dt = aV

2
3 − bV

Table 1.1: ODE based cancer growth models (Murphy et al. 2016; Tabassum et al. 2019)

protein 4, programmed cell death protein 1 (PD-1), or programmed death-ligand 1 (PD-L1)

immune checkpoint inhibitors, has introduced additional mechanistic challenges. These

therapies involve multiple immune biology events occurring at molecular and cellular levels,

interacting dynamically with tumour biology and growth in various bodily compartments,

including tumour tissue. Additionally, there are numerous potential targets in immune bio-

logy that can potentially induce anti tumour effects. The complex and dynamic nature of

these interactions creates a highly dynamic, multi compartment, multi scale environment,

making immuno-oncology an attractive field for QSP modelling. A systems approach is

necessary to address critical questions regarding dosage, scheduling, and sequencing of

treatments, particularly in combination therapies. Furthermore, predicting anti tumour

responses, both through indirect (immune mediated) and direct tumour cell killing, and

identifying drug combinations that can overcome intrinsic or acquired treatment resistance

are crucial challenges in this context (Helmlinger et al. 2019). To address those challenges,

various immuno-oncology QSP models exist which usually consist of a system of ODEs

with a large number of equations. Examples are the following: The model by Coletti et

al describes prostate cancer therapy with the tumour, key components of immune system,

and seven treatment options included. 19 ODEs are employed to simulate the dynamics

of 14 variables related to the tumour and the immune system, and 5 treatment-related

variables (Coletti et al. 2020). Ma et al developeda a QSP model exploring the efficacy

of combination therapy with an anti-PD-L1 monoclonal antibody and bispecific T cell

engagers in patients with colorectal cancer. The model contain cancer cells, T cells, im-

mune checkpoints, antibody pharmacokinetics, antigen presentation and T cell engagers.

Several compartments are included: the central (blood), peripheral (other tissues and or-

gans), tumour and tumour-draining lymph node compartments. 73 ordinary differential
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equations and 105 algebraic equations were used to model the biological processes (Ma

et al. 2020). A transcriptome-informed QSP model of metastatic triple-negative breast

cancer to identify predictive biomarkers for PD-1 inhibition was build by Arulraj et al.

The QSP model is composed of 641 equations and 737 parameters to represent the central,

peripheral, primary tumour and primary tumour-draining lymph node, metastatic tumour

and associated lymph node compartments (Arulraj et al. 2023).

In summary, QSP modelling offers a novel in silico approach to build a more detailed

representation of underlying biological processes with the goal to gain a better under-

standing of the disease mechanism and effects of drug treatments (Lemaire et al. 2023).

But often a large system of equations is needed for a detailed description.

1.2 Objectives of this thesis

Cancer, as a complex and heterogeneous disease, encompasses multiple scales of biological

organization, ranging from intracellular molecular pathways to interactions between cells

and organ and tissues scales. As shown in the previous section, traditional approaches in

pharmacometrics and QSP often employ ODE models, which assume a homogeneous cell

population and model the time-course of biological measurements continuously.

However, these models overlook crucial aspects of cancer, such as its heterogeneity,

spatial characteristics, and the presence of random events like mutations or emergent

behavior. Furthermore, modelling the interactions between cancer cells and the TME,

including immune cells in space requires large number of parameters and compartments in

the ODE approach. To address these limitations, this thesis aims to introduce alternative

approaches for modelling the complexity of tumours and their response to drug treatments

and combine them with existing PKPD and PBPK frameworks. By exploring alternative

modelling strategies, this research seeks to enhance our understanding of tumour behavior

and improve the design and optimization of cancer treatments as mono and combination

therapy. It acknowledges the need to capture the dynamic nature of cancer and its micro

environment, accounting for the inherent complexity and heterogeneity observed in cancer

biology.

In chapter two, the aim is to introduce the mathematical and computational concepts

employed in our research. To meet this objective, we
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• explore the concept of agent based models (ABMs) and their programming, high-

lighting the underlying Markov process and the Gillespie algorithm,

• introduce ordinary and partial differential equations,

• delve into reinforcement learning, including the Finite Markov process, Bellman

equation, the underlying algorithm involving the discount factor, learning rate, dis-

covery rate, epsilon greedy algorithm, and reward formula,

• explore principle component analysis and kmeans clustering algorithm as tools to

analyse outcomes of the ABM.

The third chapter has the purpose to introduce and compare an ODE based model

and an ABM simulating cancer growth during drug treatment. Hence, in this chapter we

• conduct a case study focused on MEK inhibitors within the Ras-Raf-MEK-ERK

pathway,

• implement a PKPD model for the MEK inhibitor cobimetinib,

• examine the treatment of cancer cells using both ODE and ABM approaches,

• investigate single and multiple dose treatments, analyzing individual cell fate, their

elimination by the drug, division, and mutation within the population,

• highlight the differences, strengths, and weaknesses of both methods by comparing

them.

The objective of chapter four is to present stochastic equations as a bridge connecting

ODE models and ABMs. Therefore, we

• simplify the model introduced in chapter three,

• describe how it allows for a stochastic description of a single cell’s fate under con-

tinuous drug treatment,

• extend this approach to model a population of heterogeneous cells,

• calculate the survival probability of each cell and the whole population to obtain the

time to population extinction,

• identify a relation between the population size and time to extinction,
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• simulate multiple dose treatments, considering cell recovery and division between

cycles,

• identify critical division and death rates for uncontrolled growth and successful treat-

ment.

The fifth chapter aims to apply the learning from the previous chapters by combining

the advantages of ABMs, ODEs, and partial differential equations (PDEs) in a hybrid

model to study the effects of mono and combination treatments on tumour-immune inter-

actions. Hence, we

• simulate tumour and immune cells using an ABM incorporating rules governing

interactions, emergence of behavior, and spatial heterogeneity with simplification of

the immune system, considering effector and suppressor cells, PD1-PDL1 interaction,

and effector cell exhaustion,

• explore detailed insights into PD1 antibody treatment by using a PBPK model,

accounting for drug distribution through different physiological compartments,

• simulate chemotherapy and DNA damage response inhibitors using an ODE based

PKPD model,

• incorporate a PDE to simulate diffusion and the concentration level of oxygen and

drug in the 3D space,

• include oxygen gradients driven tumour cell behavior, including active division, qui-

escence, and the presence of a necrotic core,

• model oxygen supply and its impact on radiation treatment, employing a modified

linear square model,

• incorporate cell cycle phase specific respond to treatment,

• simulate radiation mediated infiltration of immune cells, PDL1 mutation, and sub-

sequent immune effector exhaustion,

• analyze the effects of different treatments on the interactions between various cell

types.

The chapter six has the objective to explore the application of reinforcement learning

as a method to automate the optimization of combination treatment schedules. Thus, we
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• employ Q learning, where a learning algorithm aims to find the optimal action based

on the previous state by collecting rewards and avoiding punishments,

• define the state space by considering the amount of infiltrated immune cells and the

presence of cancer cells in specific cell cycle phases,

• allow various treatment options and combinations are considered as possible actions,

• define rewards and punishment as the number of eliminated cancer cells and immune

cells,

• set constraints such as toxicity levels and treatment schedules are taken into account

during the optimization process,

• train the algorithm during the learning phase, where the environment is randomly

explored to discover the most effective strategies.
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Chapter 2

Mathematical background

This chapter provides a background of the mathematical and computational methods and

statistical techniques which will be used in this thesis. Here I will introduce probability

theory and stochastic processes, reinforcement learning, agent based modelling, differ-

ence equations, ordinary and partial differential equations as well as principal component

analysis and the kmeans clustering algorithm.

2.1 Probability theory

The definitions below are based on the works by Allen et al. (L. J. Allen 2010), Kotz et

al. (Kotz and Nadarajah 2000) and Pinsky et al. (Pinsky and Karlin 2010).

The sample space is the set S which contains all possible outcomes of a random

experiment. A simple experiment is tossing a coin. In this case the sample space is S

={H,T} where H and T stand for heads and tails. Next, A is the collection of subsets of

S called events, and probability is a function P : A → [0, 1] defined on A: for any a ∈ A,

P (a) ∈ [0, 1].

If B1 and B2 are two events which are elements of A, then the conditional probability

of the event B1 given event B2, is denoted as P (B1|B2) and defined as

P (B1|B2) =
P (B1 ∩B2)

P (B2)
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given that P (B2) > 0. Similarly,

P (B2|B1) =
P (B1 ∩B2)

P (B1)
,

given that P (B1) > 0.

2.1.1 Random variables

A random variable X is a real-valued function defined on the sample space S,X : S →

R = −∞,∞. We define P as an associated probability on S. Further, let R be the

range of X, Rx = {x|X(s) = x, s ∈ S}. We write P (X ≤ x) as an abbreviation for

P (ω ∈ S : X(ω) ≤ x). The cumulative distribution function (cdf) of a random variable X,

denoted by FX(x), is

FX(x) = P (X ≤ x), −∞ < x < +∞.

There are two important types of random variable: discrete and continuous.

A discrete random variable has a countable range (commonly a subset of the integers)

whereas a continuous random variable has an uncountable range (often all positive real

numbers). For a discrete random variable X, the probability mass function (pmf) describes

the probability that X takes a specific value in its range Rx:

fX(x) = P (X = x),

and the expectation E[X] is a sum:

E[X] =
∑
x∈Rx

xfX(x).

For a continuous random variable Y with the cdf FY (y), the probability density

function (pdf) is a non-negative, integrable function fY : R→ [0,∞) such that

FY (y) =

∫ x

−∞
fY (y)dy;
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the expectation value is an integral:

E[Y ] =

∫ ∞

−∞
yfY (y)dy. (2.1)

The variance Var(X) of a random variable X, of either type, is defined as

Var(X) = E(X − E[X]2).

The variance quantifies how much the values deviate from the expected value. The stand-

ard deviation of X, σ =
√

Var(X), is easier to interpret because it has the same units as

the random variable itself.

Exponential distribution

The exponential distribution (see Figure 2.1) is used in this thesis due to its memoryless

property. This means that the time until the next event is independent from how much

time has already passed. An addditional benefits of the exponential distributions is that

it allows for simplified calculations and mathematical tractability, related to its memory-

less properties. A non-negative continuous random variable Y follows the exponential

distribution with parameter λ > 0 if its probability density function is

fY (y) =


λe−λy y ≥ 0,

0 y < 0.

(2.2)

Figure 2.1: The probability density function of the exponential distribution, (see equation
2.2), with λ = 1.
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Uniform distribution

The uniform distribution (see Figure 2.2) is applied when all values within a specific range

are equally likely to occur. If a continous random variable follows the uniform distribution

with parameters −∞ < a < b < +∞, its probability density function is

fY (y) =


1

b− a
y ∈ [a, b],

0 otherwise.

Figure 2.2: The probability density function of the uniform distribution with a = 0 and
b = 1.

Gumbel distribution

The Gumbel distribution (see Figure 2.3) is applied to simulate the occurrence of extreme

values (minimum or maximum). The cumulative distribution function is

FY (y, a, b) = e−e−(y−a)/b
y ∈ R,

with −∞ < a < +∞ and b > 0. For the standard Gumbel distribution, a = 0 and b = 1.

This gives us the cumulative distribution function

FY (y, 0, 1) = e−e−y
,

and the probability density function

fY (y) = e−(y+e−y).
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Figure 2.3: The probability density function of the standard Gumbel distribution.

2.2 Stochastic processes

A stochastic process is used to describe the evolution of a system or a phenomenon over

time in a probabilistic or random manner. It is a collection of random variables indexed

by time, where each random variable represents the state of the system at a specific time

point. To explain this concept further we use definitions from Allen (L. J. Allen 2010).

A stochastic process is a collection of random variables {X(t) : t ∈ T}. T is an index

set and S is the common sample space of the random variables. For each fixed t,X(t)

denotes a single random variable defined on S. For each fixed s ∈ S,X(t) corresponds

to a function defined on T which is called a realisation of the process. In this thesis, the

index set T , used to denote time, which is typically continuous so that T = [0,+∞). The

state space Sx is a set of possible values for the process. Even though the index set is

continuous, many of the stochastic processes described in this thesis have a discrete state

space, Sx.

A stochastic process {X(t) : t ∈ [0,∞)}, defined on the state space Sx is a continuous

time Markov chain (CTMC) if it satisfies the following condition:

For any sequence of real numbers satisfying 0 ≤ t0 ≤ t1 ≤ ... ≤ tn ≤ tn+1,

P(X(tn+1) =xn+1|X(t0) = x0, X(t1) = x1, ..., X(tn) = xn)

=P(X(tn+1) = xn+1|X(tn) = xn),

for any x0, x1, ..., xn+1 ∈ Sx. This is known as the Markov or ‘memoryless’ property. The

next state xn+1 which the Markov process transitions to depends only on the current state

xn at the most recent time tn of the process and not on previous states or history of the
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process.

2.2.1 Transition probabilities

A CTMC X = {X(t) : t ∈ [0,∞)} has a probability pi(t) associated with the random

variable X(t) being in a certain state i.

pi(t) = P(X(t) = i), i ∈ Sx.

The transition probability defines the relation between the random variables X(t) and

X(s),

pji(s, t) = P(X(t) = j|X(s) = i), s < t,

for i, j ∈ Sx. If the transition probabilities only depend on the time interval t− s and not

explicitly on the times s and t, then the resulting CTMC is said to be time-homogeneous

with homogeneous probabilities.

pji(t− s) = P(X(t) = j|X(s) = i) = P(X(t− s) = j|X(0) = i),

for s < t. The transition probabilities may be arranged in a square matrix,

P(t) = (pji(t))j,i∈SX
.

The entries in each row sum up to 1 as in the time interval [0, t] the process must travel

from state i to another state j ∈ Sx or remain in the same state.

The forward Kolmogorov differential equations are a system of equations that de-

scribes the rate of change of the transition probabilities pji(t).

dpji(t)

dt
=

∑
k∈Sx

qjkpki(t) ∀i, j ∈ Sx,

where qjk are the transition rates.

2.2.2 Interevent times

To calculate sample paths of a continuous Markov chain it is necessary to know the dis-

tribution of the time between successive events or the “interevent time”. The random

variable Tn = Wn+1 −Wn ≥ 0 describes the time between changes of state (interevent
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time) where Wn is the time at which there is a nth jump with state space Sx. Let N(t)

be the population size at time t. We assume that at jump n there is state i such that

N(Wn) = i where i ∈ Sx. Then probability to leave state i for the small period of ∆t is

∑
j ̸=i

pji(∆t) = α(i)∆t +O(∆t),

where α(i) is the total propensity calculated from the sum of the rates qji for all j to leave

the state i. The probability to remain in the same state is

pii(∆t) = 1− α(i)∆t +O(∆t).

The probability Gn(t) that N(Wn) remains in state i for some time t in terms of the

interevent time is

Gn(t) = P (t + Wn < Wn+1) = P (t < Tn).

There is a positive probability of moving to another state if the state i is not an absorbing

state. Then at t=0, Gn(0) = P (Tn > 0) = 1. For ∆t sufficiently small,

Gn(t + ∆t) = Gn(t)pii(∆t) = Gn(t)(1− α(i)∆t +O(∆t)). (2.3)

Subtraction of Gn(t) and division by ∆t and taking the limit as ∆t → 0 leads to the

following ordinary differential equation:

dGn(t)

dt
= −α(i)Gn(t)

which is a first-order and homogeneous differential equation with initial condition Gn(0) =

1. The solution is

Gn(t) = P (Tn > t) = e−α(i)t. (2.4)

This means that

P (Tn ≤ t) = 1−Gn(t) = 1− e−α(i)t = Fn(t), t ≥ 0.

The function Fn(t) is the cumulative distribution for the time Tn that corresponds to an

exponential random variable with parameter α(i). The waiting time between one event

N(Wn) = i until another event N(Wn+1 = i + 1) is an exponential random variable with
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the parameter α(i) and the mean of

E(Tn) =
1

α(i)

with the variance of

V ar(Tn) =
1

[α(i)]2
.

Equation (2.3) can be rewritten as

P (Tn ≥ t + ∆t) = P (Tn ≥ t)P (Tn ≥ ∆t),

which is equivalent to

P (Tn ≥ t + ∆t | Tn ≥ ∆t) =
P (Tn ≥ t + ∆t)

P (Tn ≥ ∆t)

=
1− (1− exp (α(i) (t + ∆t)))

1− (1− exp (α(i) (∆t)))

= exp (−α(i)t)

= P (Tn ≥ t).

Using the conditional probability and the exponential distribution, the latter shows that

the change of state only depends on the current state and not on the previous state. This

is known as memory-less property of exponential distributions.

Now let U be a uniform random variable defined on [0, 1] and let T be a continuous

random variable on [0,∞). Then

T = F−1(U),

where F is the cumulative distribution of the random variable T (L. J. Allen 2010, Theorem

5.5).

For an exponential random variable T ∼ Exp(α), the function F−1(U) is found by

solving F (T ) = 1− exp(−αT ) = U for U :

T = F−1(U) = − log(1− U)

α
.

Since U is a uniform random variable on [0,1], so is also 1− U . Now the inter-event time
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can be expressed in terms of the uniform random variable U as follows:

T = − log(U)

α
.

Now given a particular state of the process N(Wn) = i the inter-event time Tn is expo-

nentially distributed with rate α(i). Thus,

Tn = − log(U)

α(i)
.

Hence the inter-event time can be drawn from a uniform distribution for Gillespie simu-

lations.

2.2.3 Pure death process

The random variable N(t) denotes the population size at time t which decays with cell

death in a pure death process. This process is being visualised in a transition diagram in

Figure 2.4. To simulate this process with a continuous Markov chain (CTMC), we define

{N(t) : t ∈ [0,∞)]}. The initial population size is N(0) = N0, the state space is finite

Sx = {0, 1, 2...N0}.

0 1 2 · · · N0 − 1 N0

µ1 µ2 µ3 µn−1 µn

Figure 2.4: Transition diagram of the pure death process simulated as a continuous time
Markov chain

Transition probabilities

For a sufficient small ∆t, the population size either decreases by 1 or stays at the same

size. The transition probabilities satisfy

P (N(t + ∆t) = j|N(t) = i) =



µi∆t +O(∆t), if j = i− 1

1− µi∆t +O(∆t), if j = i

O(∆t), otherwise.

(2.5)
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Equation (2.5) can be used to derive the forward Kolmogorov differential equations for

pji.

pji(t + ∆t) = pj+1,i(t)[µj+1∆t +O(∆t)] + pji(t)[1− µj∆t +O(∆t)]

+
∑

k ̸=−1,0,1

pj+k,i(t)O(∆t)

= pj+1,i(t)µj+1∆t + pji[1− µj∆t] +O(∆t). (2.6)

Subtracting pji(t) from equation (2.6), dividing by ∆t and taking the limit as ∆t → 0,

yields the forward Kolmogorow differential equation for the death process:

dpji(t)

dt
= µj+1pj+1,i(t).

2.2.4 Birth and death process

The random variable N(t) represents the population size at time t which grows with divi-

sion of cells and decays with cell death. This process is simulated with a continuous time

Markov chain (CTMC) {N(t) : t ∈ [0,∞)]}. The state space is infinite Sx = {0, 1, 2...}.

0 1 2 · · · n− 1 n n+ 1 · · ·

λ0

µ1 µ2

λ1

µ3

λ2

µn−1

λn−2 λn−1

µn

λn

µn+1

λn+1

µn+2

Figure 2.5: Transition diagram of the birth and death process simulated as a continuous
time Markov chain

The possible transitions in this stochastic process are depicted in Figure 2.5 where

λi and µi represent the birth and death rate of the population at size N(t) = i. If one

considers λ0 = 0 then 0 is an absorbing state so that the cell population does not re-grow

after extinction.
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Transition probabilities

The transition probabilities are defined as

pji(∆t) = P (N(t + ∆t) = j|N(t) = i) =

λi∆t +O(∆t), if j = i + 1

µi∆t +O(∆t), if j = i− 1

1− (λi + µi)∆t +O(∆t), if j = i

O(∆t), otherwise,

(2.7)

where O(∆t) is the Landau order symbol.

The forward Kolmogorov differential equations for pji can be derived directly from

the assumption in equation (2.7). For ∆t sufficiently small, we consider the transition

probability pji(t + ∆t):

pji(t + ∆t) = pj−1,i(t)[λj−1∆t +O(∆t)]

+ pj+1,i(t)[µj+1∆t +O(∆t)]

+ pji(t)[1− (λj + µj)∆t +O(∆t)]

+
∑

k ̸=−1,0,1

pj+k,i(t)O(∆t)

= pj−1,i(t)λj−1∆t

+ pj+1,i(t)µj+1∆t

+ pji(t)[1− (λj + µj)∆t]

+O(∆t), (2.8)

which holds for all i and j in the state space with the exception of j = 0. If j = 0 then

p0i(t + ∆t) = p1i(t)µ1∆t + p0i(t)[1− λ0∆t] +O(∆t). (2.9)

Subtracting pji(t), p0i(t) from Equations (2.8) and (2.9), dividing by ∆t and taking

the limit as ∆t→ 0, yields the forward Kolmogorow differential equation for the birth and
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death process of the cell population. Assuming that λ0 = 0 we obtain:

dpji(t)

dt
= λj−1pj−1,i(t)− (λj + µj)pji(t) + µj+1pj+1,i(t),

dp0i(t)

dt
= µ1p1i(t).

2.2.5 Generator matrix

We use the transition probabilities pji to derive the transition rates qji which form the

infinitesimal generator matrix Q. This matrix Q defines the relationship between the rate

of change of the transition probabilities. We assume that the transition probabilities pji(t)

are continuous and differentiable for t ≥ 0 and satisfy

pji(0) = 0, j ̸= i, and pii(0) = 1.

We define

qji = lim
∆t→0+

pji(∆t)− pji(0)

∆t
= lim

∆t→0+

pji(∆t)

∆t
, i ̸= j.

We note that qji ≥ 0 because pji(∆t) ≥ 0. Further, we define

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
.

Since in most cases, the transition probabilities have the following properties:

pji(t) ≥ 0 and

∞∑
j=0

pji(t) = 1, t ≥ 0,

it follows that

1− pii(∆t) =

∞∑
j=0,j ̸=i

pji(∆t) =

∞∑
j=0,j ̸=i

[qji∆t + o(∆t)].

Since the sum of each row of the transition probability matrix is one, we can show that

qii = lim
∆t→0+

−
∑∞

j=0,j ̸=i[qji∆t + o(∆t)]

∆t
= −

∞∑
j=0,j ̸=i

qji.
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The transition rates can be represented by the infinitesimal generator matrix Q = (qji)

Q =



q00 q01 q02 . . .

q10 q11 q12 . . .

q20 q21 q22 . . .

q30 q31 q32 . . .

...
...

...
...



=



−
∑∞

i=1 qi0 q01 q02 . . .

q10 −
∑∞

i=0,i ̸=1 qi1 q12 . . .

q20 q21 −
∑∞

i=0,i ̸=2 qi2 . . .

...
...

...
...


.

The matrix Q has the property that each column sum is zero and the ith diagonal element

is the negative of the sum of the off-diagonal elements in that column.

The infinitesimal generator matrix Q for the birth and death process has the following

structure

Q =



0 µ1 0 0 . . .

0 −λ1 − µ1 µ2 0 . . .

0 λ1 −λ2 − µ2 µ3 . . .

0 0 λ2 −λ3 − µ3 . . .

...
...

...
...


.

2.2.6 Gillespie algorithm

The Gillespie algorithm generates numerical realisations of the birth and death process.

In this direct method two uniform random variables are needed per iteration. The first

one is used to simulate the time to the next event and the second uniform random variable

chooses the event. The direct method works well on small population sizes (population

size in the order of thousands). Depending on computational power and the rates, an

alternative method is required for larger populations because the time between events

becomes so small that each sample path takes a long time to compute. For large samples

a more efficient but approximate method is the tau-leaping (Fu et al. 2013).
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The Gillespie algorithm is executed as follows:

Initialise the system with the initial conditions t = 0, maximum time T , and i = N0.

Then, while t < Tmax:

1. Sample two random numbers u1, u2 from the uniform distribution on [0, 1).

2. Calculate the total propensity α(i):

α(i) = µi + λi.

3. Compute the time when the next event takes place: t + dt where dt is given by

dt =
− log(u1)

α(i)
.

4. Using the second random number u2 to choose a reaction that occurs at time t+ dt.

Let

P (Division) =
λi

λi + µi
(2.10)

and P (Death) = 1 − P (Division). Choose the division reaction if u2 < P (Divison),

i → i + 1 otherwise choose death reaction, i → i − 1. In other words, the division

range is from 0 to P (Division) and the death range is from P (Division) to 1.

2.2.7 Time to extinction

Here, the time until the process reaches a certain state is studied. We consider a population

with size a that reaches size b in a certain time which is referred as the first passage time,

Tb,a. We define Ti+1,i to be the random variable for the time that it takes to go from state

i to i+1. From the derivation for the inter-event time (see Equation (2.4)), we obtain that

the pdf of the inter-event time has an exponential distribution with parameter λi + µi:

fi(t) = (λi + µi)e
−(λi+µi)t.

Due to the characteristics of the exponential distribution, the average transition time

from state i to i+1 or i−1, is 1/(λi+µi) which is the mean of the exponential distribution.

With the birth probability λi/(λi + µi) the process jumps from state i to state i + 1 and

to state i− 1 with the death probability µi/(λi + µi).
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If a < b, then the time needed to jump from state a to b is

Tb,a = Ta+1,a + Ta+2,a+1 + ... + Tb,b−1.

The expected time to go from state a to b is

E(Tb,a) = E(Ta+1,a) + E(Ta+2,a+1) + ... + E(Tb,b−1).

This is called mean first passage time. Let’s consider the time it takes for the process to

reach 0, i.e. for a population with size m to become extinct. We need to consider that the

process can jump to i + 1 and i− 1:

E(Ti−1,i) =
µi

λi + µi

(
1

λi + µi

)
+

λi

λi + µi

(
1

λi + µi
+ E(Ti,i+1) + E(Ti−1,i)

)
=

1

µi
+

λi

µi
E(Ti,i+1).

Hence, time to extinction is calculated as follows:

E(T0,m) =

[
1

µ1
+

λ1

µ1µ2
+

λ1λ2

µ1µ2µ3
+ ...

]
+

[
1

µ2
+

λ2

µ2µ3
+

λ2λ3

µ2µ3µ4
+ ...

]
+[

1

µ3
+

λ3

µ3µ4
+

λ3λ4

µ3µ4µ5
+ ...

]
+

[
1

µm
+

λm

µmµm+1
+

λmλm+1

µmµm+1µm+2
+ ...

]
(2.11)

For the pure death process, this simplifies as follows

E(T0,m) =
1

µ1
+

1

µ2
+

1

µ3
+

1

µ4
+ ... +

1

µm
.

If µi = µi, we obtain

E(T0,m) =

m∑
r=1

1

µ

1

r
.

2.3 Reinforcement learning

This section introduces the reinforcement learning algorithm and its mathematical and

computational framework. The definitions given are from Sutton et al (Sutton and Barto

2018).

Reinforcement learning is an algorithm that maps situations to actions with the goal
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to maximise a numerical reward signal. The learning algorithm is not being provided

instructions what to do; instead it needs to discover which actions yield the largest reward

by trial and error. Delayed reward is a characteristic: The aim is not to maximise the im-

mediate reward but to choose actions in a way that all subsequent rewards are considered.

Therefore, the algorithm considers the whole problem with the aim to optimise the long

term reward.

2.3.1 Finite Markov decision process

Markov decision processes (MDPs) are an extension of Markov chains. Actions and re-

wards are added to allow choice and encouragement. If only one action exists for a state

and all rewards are the same, then a Markov decision process reduces to a Markov chain.

Reinforcement learning uses finite MDPs where the transition probabilities or rewards are

unknown. This process consists of a set of states, actions and rewards (S,A,R) with finite

elements. In the finite MDP, the learner interacts with the environment in a sequence of

discrete time steps t = 0, 1, 2, 3.... At each time step t, the learner perceives the state of

the environment St ∈ S and selects an action At ∈ A(St). As the consequence, the learner

receives a reward Rt+1 ∈ R ⊂ R in the next state St+1.

In a finite MDP, the random variables Rt and St have discrete probability distributions

depending only on the previous state and action. The probability that those random

variables take values s′ ∈ S and r ∈ R, respectively, at time t, given the preceding state

and action, can be defined as the conditional probability:

p(s′, r|s, a) = P{St = s′, Rt = r|St−1 = s,At−1 = a}

for all s′, s ∈ S, r ∈ R, a ∈ A(s).

The function p : S × R × S × A →[0,1) is an ordinary deterministic function of four

arguments. p specifies a probability distribution for each choice of s and a:

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1 for all s ∈ S, a ∈ A(s).

From this we can define other functions.

The state-transition probabilities, a three argument function p : S ×S ×A → [0,1] is
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defined as

p(s′|s, a) = P{St = s′|St−1 = s,At−1 = a} =
∑
r∈R

p(s′, r|s, a).

The expected rewards for the state-action pairs is a two argument function r : S ×A → R

and is defined as

r(s, a) = E[Rt|St−1 = s,At−1 = a] =
∑
s′∈S

r
∑
r∈R

p(s′, r|s, a).

The time t is omitted from the notation of r(s, a) as after a large number of iterations,

the obtained reward for a state-action pair r(s, a) is constant. The expected rewards for

the state-action-next-state triples are a three argument function r : S ×A× S → R. It is

defined as

r(s, a, s′) = E[Rt|St−1 = s,At−1 = a, St = s′] =
∑
r∈R

r
p(s′, r|s, a)

p(s′|s, a)
.

2.3.2 Return

The rewards that are received after each time step are denoted as

Rt+1, Rt+2, Rt+3, Rt+4, . . .

The return may simply be defined as the sum of the rewards Gt. However, to assign the

rewards different importance, the discount factor 0 ≤ γ ≤ 1 is used:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·

=
∞∑
k=0

γkRt+k+1.

The discount factor represents the importance of future rewards compared to immediate

rewards. If it is close to 0, the agent is myopic and tries to maximise immediate rewards.

On the other hand, with a large γ the return objective takes future rewards into account

more strongly and may be called farsighted.

2.3.3 Policy

A policy maps the states to probabilities of selecting each action. If the learning algorithm

follows the policy π at time t, then π(a|s) describes the probability that At = a if St = s

for a ∈ A(s) and s ∈ S.
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2.3.4 Value functions

The value of the state s, denoted as vπ(s), is the expected return in state s following the

policy π. It is defined as:

vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S.

Eπ[·] is the expected value of a random variable if the learning algorithm follows policy π,

and t is any time step. This function is the state-value function for policy π.

The value of taking an action a in the state s under policy π, denoted as qπ(s, a), is

the expected return in state s taking the action a following the policy π. It is defined as:

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
,

for all s ∈ S, a ∈ A(s).

This function is called the action-value function for policy π.

2.3.5 Bellmann equation

From this, the Bellmann equation can be derived which shows the relationship between

the value of a state and its successor states.

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] for all s ∈ S.

2.3.6 Temporal difference method

The temporal difference method updates the value of a state V (st) by using the immedi-

ately observed reward Rt+1 when the algorithm moves to state st+1,

V (st)← V (st) + α[Rt+1 + γV (st+1)− V (st)],

where α is the learning rate.
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2.3.7 Dynamic programming

To search for the optimal policy dynamic programming is employed. Through iterative

evaluation, the value of a state V (s) is found.

Algorithm 1 Value iteration

Initialise array V (s) = 0, for all s ∈ S
Repeat

For each s ∈ S:
v ← V (s)
V (s) =

∑
a π(a|s)

∑
s′,r p(s′, r|s, a)[r + γvπ(s′)]

∆← |v − V (s)|
until ∆ < θ (a small positive number)
Output V ≈ vπ

Firstly, arbitrary values are being assigned to the value function of a state V (s).

Then a loop is started where the previous value of a state V (s) is saved as v. The

reinforcement learning algorithm acts in the environment and collects a new reward r

which is used to calculate a new value for V (s) according to the Bellmann equation V (s) =∑
a π(a|s)

∑
s′,r p(s′, r|s, a)[r+ γvπ(s′)]. Now ∆ is assigned to be the difference of the new

and old value for a state V (s), see Algorithm 1. This algorithm is repeated until the value

for a certain state is stable and the difference of the old and updated value (∆← |v−V (s)|)

is smaller than a small threshold θ.

2.3.8 Epsilon greedy algorithm

The balance between exploration and exploitation is important in reinforcement learning.

While exploring the environment the learning algorithm collects rewards for certain ac-

tions. To maximise the collected rewards, the learning algorithm must prefer actions that

were effective producing rewards in the past. But to gain further rewards and learn about

more favourable actions, the environment has to be explored at the cost of obtaining a

low reward. Neither exploration or exploitation alone will lead to a successful learning.

The algorithm must try various actions and progressively favor those which lead to a more

favourable state and long term reward. In addition on a stochastic task, each action must

be executed many times to obtain a reliable estimate of its expected reward.

To balance the choice of either exploitation or exploration, the epsilon greedy al-

gorithm can be employed (Sutton and Barto 2018). The epsilon value states the likeli-

hood of taking a random action or exploit the learned information about the environment.

Depending on the environment and the gained knowledge the value of epsilon can be

29



2. MATHEMATICAL BACKGROUND

adjusted.

2.4 Agent based modelling

Agent based models consist of one or a set of different agents that have attributes and act

autonomously in an environment according to rules that they follow during the simulation.

To apply this concept to PKPD modelling and simulation of cancer growth, individual cells

or a group of cells can be represented as agents (Metzcar et al. 2019). They interact in an

environment which can consist of different conditions i.e. different spatial location, con-

centration of drugs, nutrient, receptors, or other agents. Interactions with the environment

and neighbouring agents are based on internal decision-making rules. An agent undergoes

growth, quiescence, apoptosis or necrosis as a response to surrounding environmental con-

ditions or interaction with other agents (Zhihui Wang et al. 2015). Additionally, agents

can have memory, where they store information about past interactions or environmental

conditions. Overall, this modelling technique is a bottom-up method without central co-

ordination and simple activities at the microscopic scale lead to complex behavior on the

macroscopic scale (Seel 2011; Bonabeau 2002; Cosgrove et al. 2015).

Agents

Figure 2.6: Overview of cell-based modelling methods (Figure taken from Metzcar et
al. (Metzcar et al. 2019) under the Creative Commons Attribution License (CC BY)
permission)

To model the cells as agents, there are two main paradigms: lattice-based models that

contain cells along a rigid grid, and off-lattice models without this restriction (Metzcar
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et al. 2019). To create a lattice-based model, regular structured grids (e.g. Cartesian [2D

or 3D], docecahedral [3D]) or unstructured grids are used (Rejniak and A. R. Anderson

2011; Metzcar et al. 2019). Lattice-based methods can be further classified by their spatial

resolution (Metzcar et al. 2019). Cellular automaton models contain a single cell in one

lattice site. Discrete lattice-based rules are used to update a single cell at every time step.

To reduce grid artifacts, lattice sites are updated in random order. A cell can remain, move

to a unoccupied adjacent lattice site (randomly, or following a directional stimulus such

as chemo- or haptotaxis), die and vacate a lattice site, or divide and allocate a progenitor

cell in a neighbouring site. The number of neighbour cells depends on the shape of a

grid. For example, in a square lattice, cells have either four or eight neighbours (von

Neumann or Moore neighbourhood) whereas cells can be surrounded by six symmetrically

located cells in a hexagonal grid (Rejniak and A. R. Anderson 2011; Metzcar et al. 2019).

Lattice gas cellular automaton models contain multiple cells in one lattice. Instead of

tracking every single cell, this model traces a group of cells that moves through channels

from individual lattice sites (Metzcar et al. 2019). Cellular Potts models utilise multiple

lattice sites to simulate one cell. An individual cell can occupy multiple pixels (2D) or

voxels (3D). This is an advantage when the resolution of individual cell morphologies is

required. Changes in cell shape and direct cell-cell interaction are directed by the concept

of Monte Carlo simulations and energy minimalization. A disadvantage of this method is

the computational intensity and the challenge of calibration from Monte Carlo steps to

physical time (Rejniak and A. R. Anderson 2011; Metzcar et al. 2019). Off-lattice methods

may be considered more realistic because cells can take arbitrary relative positions and

freedom to move in any direction instead of being ordered on a grid. However, this

comes with the disadvantage of higher computational cost because special algorithms are

necessary to efficiently handle cell-cell neighbourhoods. During movement cell collisions

need to be avoided which can be challenging in densely packed areas or populations. After

division, the placement of daughter cells need to be determined to avoid overlapping with

other cells or mutually exclusive cell areas. In addition, chemical values of the environment

are usually computed on regular grids and interpolation techniques need to be applied to

transfer values between the cellular off-lattice individuals and the chemical fields (Rejniak

and A. R. Anderson 2011). Off-lattice models can be categorised into ‘centre based’

models that focus on cell volumes (or masses) and boundary-based methods. Further

classification is by the level of morphological detail (Metzcar et al. 2019). ‘Centre based’
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methods can be divided into three approaches: ‘centre based’ models, sub-cellular element

model, and clusters. ‘centre based’ models simulate each cell’s centre of mass or volume by

using one agent per cell. Cell positions are updated after exchanges of adhesive, repulsive,

locomotive, and drag-like forces between cell centres (Metzcar et al. 2019). Cells can be

represented with different shapes. Spheres simulate cells as single points with a predefined

minimum distance. Deformable ellipsoids have two axes with different lengths forming an

elliptical shape. This allows for a definition of cell orientation and polarization (Rejniak

and A. R. Anderson 2011). Another ‘centre based’ method is the sub-cellular element

model. In this model, cell morphology is displayed in greater detail by having multiple

agents for sub-cellular elements of each cell. Agents interact with adhesive and repulsive

forces. A benefit of this model is a better approximation of cell bio-mechanics but this

comes with higher computational cost. A different option is clusters. An agent simulates

a cluster of cells or functional units (e.g. breast glands or colon crypts). Agents interact

by mechanical forces or alternative rule-based motion. This technique can incorporate

heterogeneous details into cell clusters with less computational cost. Boundary-tracking

methods include vertex-based models or immersed boundary methods (a front tracking

method). They are computationally intensive however, they are useful for describing

detailed cell mechanics to fluid and solid tissue mechanics. In vertex-based models cells

are polygons (2D) or polyhedra (3D). Forces on the vertices are computed which is useful in

modelling confluent tissues. Front-tracking methods such as immersed boundary method

can be used for greater spatial resolution (Metzcar et al. 2019).

Environment

To model the environment and the interaction of agents in the environment agent based

models are embedded in multi-scale models. Multi-scale modelling aims to include various

spatio-temporal scales from atomic to molecular, cellular, multi-cellular, organ, and up to

multi-organ systems. On the molecular scale, interactions (i.e. receptor-ligand interac-

tions, consumption and production of oxygen, nutrient, and cell-cell signalling molecule

concentration) are described with ordinary differential equations. Levels of those molecular

entities are part of the environment and can cause changes in cell behaviour. For example

signalling molecules such as growth factors can initiate cascades that lead to proliferation.

Interaction between cells occurs on the microscopic scale. Cells are simulated with agent

based modelling. Biological rules imposed by the modeller determine cell interaction with
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the environment or other cells. Agents can interact with each other, influence the micro

environment and enter quiescence or undergo apoptosis or necrosis. Local conditions and

environmental changes are described using partial differential equations. For example, the

availability of resources such as oxygen, nutrient, and hormonal distribution are modeled

through diffusion from molecularly rich regions (i.e. blood vessels, tumour edge). Macro-

scopic scale modelling covers the entire tumour tissue and comprises many agents. This

scale includes the general pattern of growth, total cell number, the extent of metastasis,

tumour morphology and vascularization. Tumour tissue pH, nutrient availability, diffusion

of oxygen and signalling molecules are modeled across the entire tumour by using partial

differential equations.

A hybrid multi-scale approach can be used for simulation of cancer development. Cells

on the micro-scale are modeled as agents while effects that can be approximated using a

continuum description are studied with PDEs or ODEs and solved for the entire tumour

instead for each agent individually. Part of the model is discretised to study the effect

of mutation-induced, more aggressive phenotypes on metastasis or cell and extracellular

matrix interaction. Discrete modelling is needed to simulate the multi-step process of

changes at the cellular level that leads to tumour growth and metastasis. The hybridiza-

tion of a discrete model in continuum environment provides a more complete description

of the tumour morphology, higher accuracy of model predictions, lower computational

costs (Zhihui Wang et al. 2015).

Programming of agent based models

Agent based models can be implemented in object oriented programming languages such

as Python, Java, C, or C++. Differences between those languages are user friendliness,

speed and available libraries. Python is beginner friendly and has a rich environment

of standard libraries whereas Java, C and C++ are computationally faster (Macal and

North 2010; J. A. Baggio and R. Baggio 2020). An advantage of coding the model is that

the researcher has control over all aspects of the model, additional features can be easily

implemented or changed. Disadvantages are time-consuming programming and the need

for programming skills (Heppenstall et al. 2011; Gilbert 2019). Since many models use the

same or similar building blocks with small variations, libraries for different programming

languages are available which provides conceptual frameworks and templates that allow

the user to design a customised model. Examples are MASON for Java, SWARM for Java,
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Objected C, Repast for Java, C++, and MESA for Python. A benefit is the reduced model

construction time. Disadvantages are the time needed to learn the programming language,

and the complexity of the toolkit, which means that it can take some time before one can

take full advantage of the wide range of features. In addition, the desired function might

not be available (Heppenstall et al. 2011; Gilbert 2019). More suitable for beginners are

software packages like Netlogo, which provides complete systems in which models can be

created and executed, and the results visualised. Such packages are easier to learn and

useful for rapid development of basic or prototype models. However, the researcher has less

flexibility, is restricted to the design framework supported by the corresponding software,

and extension or integration of additional tools might not be possible. In addition, the

speed of execution can be slower (Heppenstall et al. 2011; Gilbert 2019).

2.5 Difference and differential equations

Biological processes are often expressed with difference or differential equations, as in those

processes changes happen depending on time, space or stage of development. Difference

equations are applied to model discrete time steps while differential equations describe

a change over continuous time. If only temporal changes are modelled, then ordinary

difference or differential equations are used. If in addition space or age is of interest, then

partial difference or differential equations are needed. The definitions in this section are

from Allen (L. Allen 2007).

2.5.1 Ordinary difference equations

A difference equation of order k has the form

f(xt+k, xt+k−1, ...xt+1, xt, t) = 0, t = 0, 1, ...,

where f is a real-valued function of the real variables xt, xt+1, ..., xt+k−1, xt+k and t. f

must depend on xt and xt+k, so that the order is k. An autonomous difference equation

does not depend explicitly on t while a non-autonomous one does.

A common form of a difference equation is

xt+k + a1xt+k−1 + ... + ak−1xt+1 + akxt = bt, t = 0, 1, ... .
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If ak ̸= 0, then the order of the difference equation is k. The coefficients are assumed to be

real and the function to be real valued. The coefficients aj , j = 1, ..., k, can be functions

of t and xi for i = t, ..., t + k − 1. On the right hand side of the equation, the function bt

can depend on t but not on the state variables.

The difference equation is said to be linear if the coefficients aj , j = 1, ...k are constant

or depend on t but not on the state variables, otherwise it is said to be non-linear. The

difference equation is homogeneous if the equation is linear and bt = 0 for all t, otherwise

it is non-homogeneous.

A system of k first-order equations can be expressed as

xi(t + 1) = fi(x1(t), x2(t), ...xk(t), t), i = 1, 2, ..., k

and in a matrix notation as

X(t + 1) = A(t)X(t) + B(t),

where vector X(t) = (x1(t), x2(t), ...xk(t))T , A is a square matrix with dimension k A(t) =

(aij(t))
k
i,j−1 and vector B(t) = (b1(t), ..., bk(t))T

A solution to a difference equation is a function xt, t = 0, 1, 2, .. such that when sub-

stituted into the equation makes it a true statement. For a system of difference equations

the solution is a set of functions xi(t), i = 1, 2, .., k, that when substituted into the systems

of equations makes each of them a true statement.

2.5.2 Ordinary differential equations

A differential equation of order n has the form

f(x, dx/dt, d2x/dt2, ..., dnx/dtn, t) = 0.

An autonomous differential equation does not depend explicitly on t, otherwise it is non-

autonomous. Typically, a differential equation of order n has the form

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ ... + an−1(t)

dx

dt
+ an(t)x = g(t).
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A differential equation is linear if the coefficients ai, i = 1, ..., n, and g are either constant

or functions of t but not functions of x or any of its derivatives. Otherwise, the differential

equation is said to be non-linear. The linear differential equation is homogeneous if g(t) = 0

and otherwise non-homogeneous.

A first-order system of differential equations can be expressed as

dX

dt
= F (X(t), t),

where the vector X(t) = (x1(t), x2(t), ...xn(t))T , F = (f1, f2, ..., fn)T and fi = fi(x1(t), x2(t), ...xn(t), t).

The system of differential equations is autonomous if the right side does not depend ex-

plicitly on t, otherwise it is non-autonomous.

A first-order system is linear if it can be expressed as

dxi
dt

=
n∑

j=1

aij(t)xj + gi(t),

i = 1, ..., n. Otherwise it is said to be non-linear. The system is homogeneous if it is linear

and g(t) = 0, otherwise it is non-homogeneous.

A solution of a differential equation or system of differential equation is a scalar

function x(t) or a vector function X(t) which makes the differential equation or system

an identity if substituted into it.

2.5.3 Partial differential equations

When change of entities over time and space needs to be considered, partial differential

equations are applied. Here, as an example, we derive the diffusion equation from first

principles. The diffusion equation is written as follows

∂U

∂t
= D

∂2U

∂x2
(2.12)

where t ∈ [0,∞) and x ∈ R. To obtain the derivative of Equation (2.12), the spatial

domain R is divided into intervals of length ∆x and the time domain into intervals of

length ∆t. U(t, x) is a concentration at time t and position x. Let λr be the probability to

move to the right a distance of ∆x and λl be the probability to move to the left a distance

of ∆x during the time period ∆t, 0 ≤ λl + λr ≤ 1. As a result, the concentration in a
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time period ∆t at time t and position x is

U(t, x) = (1− λr − λl)U(t−∆t, x) + λlU(t−∆t, x + ∆x) + λrU(t−∆t, x−∆x).

The first term on the right side describes the proportion of the concentration that remains

in position x, the second term refers to the proportion that moves to the left (from x+∆x

to x) and the third term is the proportion of the concentration that moves to the right

(from x−∆x to x). If it is equally likely to move to both directions, then λr = 1/2 = λl

and

U(t, x) =
1

2
U(t−∆t, x + ∆x) +

1

2
U(t−∆t, x−∆x).

By subtracting U(t−∆t, x) from both sides and dividing by ∆t, we obtain

U(t, x)− U(t−∆t, x)

∆t
=

(∆x)2

2∆t

[
U(t−∆t, x + ∆x)− 2U(t−∆t, x) + U(t−∆t, x−∆x)

(∆x)2

]

The term on the left side is a difference equation approximation to ∂U/∂t, and the ex-

pression on the right side in the square brackets is the difference equation approximation

to ∂2U/∂x2. Hence, if ∆t → 0,∆x → 0, and (∆x)2/(2∆t) → D = constant, then the

diffusion Equation (2.12) is derived. D is the diffusion constant with the dimensions

(distance)2/time.

The diffusion equation with three spatial dimensions, U(t, x, y, z), is as follows:

∂2U

∂t2
= D

(
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

)
= D∆U,

where ∆ = ∇2 is the Laplace operator. Moreover, this can be rewritten as

∂tU = ∇2U = (∂xx + ∂yy + ∂zz)U.

This can be discretised using a forward Euler in time and a second-order central finite

difference, such that

Un+1
i,j,k − Un

i,j,k

∆t
=

Un
i−1,j,k − 2Un

i,j,k + Un
i+1,j,k

(∆x)2

+
Un
i,j−1,k − 2Un

i,j,k + Un
i,j+1,k

(∆y)2
+

Un
i,j,k−1 − 2Un

i,j,k + Un
i,j,k+1

(∆z)2
,

37



2. MATHEMATICAL BACKGROUND

which implies that

Un+1
i,j,k = Un

i,j,k + ∆t
(Un

i−1,j,k − 2Un
i,j,k + Un

i+1,j,k

(∆x)2

+
Un
i,j−1,k − 2Un

i,j,k + Un
i,j+1,k

(∆y)2
+

Un
i,j,k−1 − 2Un

i,j,k + Un
i,j,k+1

(∆z)2

)
.

2.6 Data analysis

In this section, the principal component analysis (PCA) technique and the k-means clus-

tering algorithm are explained based on Chatfield et al (Chatfield 2018), Sinaga et al

(Sinaga and M.-S. Yang 2020), and Syakur et al (Syakur et al. 2018). We are using those

techniques to analyse the data produced by the agent based model in order to understand

the behaviour of the different kinds of agents. Those data sets are multi-dimensional and

by using PCA, the first two principal components can be identified. In comparison to the

initial data set those principal components can describe the variation in the data set with

fewer dimensions making the data set more interpretable and easier to visualise. After

applying PCA, we plot the data in two dimensions and use the k-means clustering al-

gorithm to identify clusters of data points that are closely related, to further classify and

understand the data set.

2.6.1 Principal component analysis

This technique is applied to summarise, visualise and reduce the dimensions of a of a multi-

dimensional, highly correlated data set. Those are data sets that consist of a large number

of dimensions or features for each observation. The goal is to group a p-dimensional data

set into p principal components (PCs). This is accomplished by linear transformation of

the data into a new coordinate system. By applying this method, it can be found that

only a few PCs hold more variability than any single original variable. As a result, those

PCs become the focus to further analyse the data.

The linear transformation of the data set is as follows: Let X = [X1, .., Xp] be a

p-dimensional data set with mean µ and covariance matrix α. To transform the data set

into uncorrelated p principal components Y1, ..., Yp with decreasing variance, each Yj needs

to be a linear combination of X’s.

Yj = a1jX1 + a2jX2 + ... + apjXp

= aTj X,
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with aTj = [a1j , ...apj ] being a vector of constants. For the first PC, the constants aT1 in

Y1 = aT1 X must be found so that V ar(aT1 X) is maximal. To ensure that the variance

doesn’t become unbound, the constrain aTj aj = 1 is used. By applying the method of

Lagrange multipliers, we obtain that a1 is the eigenvector of the sample covariance matrix

α, corresponding to the largest eigenvalue. Similarly for the other PCs, for the kth PC

Yk = aTkX, aTk is the eigenvector of the sample covariance matrix corresponding to the kth

largest eigenvalue.

2.6.2 k-means clustering algorithm

k-means clustering is an unsupervised learning algorithm where data points are assigned

to a cluster based on their distance to the centre of that cluster.

The algorithm starts with randomly determining cluster centres to the data set. Using

the Euclidean distance each data point is then assigned to the nearest cluster centre. This

process is repeated in order to optimise the k-means objective function, until the stopping

criterion is reached, for example ending at the maximum number of iterations.

In detail, the algorithm is as follows: Let X = {x1, .., xn} be a data set in a d-

dimensional Euclidian space Rd. We define A = {a1, .., ac} as the c cluster centres and

z = [zij ]n×c where zij is a binary variable (i.e. zij ∈ {0, 1}) indicating whether the data

point xi is in the jth cluster, j = 1, ..., c. The k-means objective function is

J(z,A) =

n∑
i=1

c∑
j=1

zij ||xi − aj ||2.

The k-means algorithm is repetitively applied to minimise the k-means objective function

J(z,A) and updates the cluster centres and membership function aj and zij , as follows:

aj =

∑n
i=1 zijxi∑n
i=1 zij

zij =


1, if ||xi − aj ||2= min1≤j≤c||xi − aj ||2

0, otherwise.

where ||xi−aj || is the Euclidian distance between the data point xi and the cluster centre

aj .
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Figure 2.7: Using equation 2.13 the cost for each cluster number is calculated. The cost
is plotted against the number of cluster which creates an elbow shape. The elbow point
is used to estimate the optimal number of clusters.

Elbow method

Different approaches exist to determine the number of clusters needed for a given data

set. The Elbow method calculates the cost function for each value of K as the WCSS

(Within-Cluster Sum of Squares) which is the sum of the squared distance between each

point and the centroid in a cluster:

WCSS =
c∑

k=1

∑
xi∈Sk

||xi − ak||2, (2.13)

where xi is a point and ak is the centre of cluster Sk. The plot of K versus the cost

function (Equation 2.13) looks like an elbow (see Figure 2.7). With an increased number

of clusters, the cost function will decrease as the points are closer to their centroid. At

K = 1 the cost function is the largest. Figure 2.7 shows that the graph rapidly changes

at a point and therefore creates an elbow shape. After that point, the graph is almost

parallel to the horizontal axis. The corresponding K value at that point is the optimal

number of clusters.
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Chapter 3

Step-by-step comparison of

ordinary differential equation and

agent based approaches to

pharmacokinetic-

pharmacodynamic models

3.1 Introduction

Molecular targeted therapy is a valuable approach in the treatment of tumours, offering

benefits such as selective binding to both extracellular and intracellular targets due to its

small size, superior performance over cytotoxic chemotherapy, and minimal side effects. A

majority of these therapies focus on inhibiting kinases responsible for regulating cell prolif-

eration, metabolism, and immune modulation (Y. Song et al. 2023). The cellular pathway

RAS–RAF–MEK–ERK is a chain of proteins that transmits extracellular signals to specific

intracellular targets. ERK regulates a wide array of substrates related to cell prolifera-

tion, differentiation, and metabolism. RAS mutations are present in approximately 33%

of human cancers, with B-RAF mutations observed in 8%. The abnormal activation of

this signaling pathway contributes significantly to tumour development. Consequently,

various inhibitors have been developed to target this pathway, significantly altering cancer

treatment strategies (Y. Song et al. 2023).
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The MAPK signaling pathway (shown in Figure 3.1) is initiated by binding of growth

factors, cytokines, and extracellular mitogens which lead to dimerization, activation,

and transphosphorylation of receptor tyrosine kinases (RTKs), such as epidermal growth

factor receptor (EGFR), HER kinase, mesenchymal to epithelial transition factor (MET),

and fibroblast-growth factor receptor. Then the activated growth factor receptors inter-

act with a series of adaptor proteins, such as growth factor receptor-bound protein 2

(GRB2). As a consequence, guanine nucleotide exchange factors (GEFs) are recruited to

the plasma membrane. GEFs activate membrane-bound RAS small guanosine triphos-

phate (GTP)ases (H-RAS, N-RAS, and K-RAS). These small GTPases are intrinsically

stagnant and have the role of a guanosine diphosphate (GDP)/GTP-regulated switcher by

catalyzation of the conversion of inactive GDP-bound RAS to active GTP-bound RAS.

Next, the active GTP-bound RAS recruits RAF serine/threonine kinases to the plasma

membrane, triggering a complex series of events involving phosphorylation, dimerization,

and protein-protein interactions that activate the RAF serine/threonine kinases. The

RAF serine/threonine kinases are RAF family members (A-RAF, B-RAF, and C-RAF)

and MAP kinase kinase kinases (MAPKKK). They use RAS proteins as common upstream

activators and activate MEK1 and MEK2, which are kinase effectors MAP kinase kinases

(MAPKKs), through phosphorylation. As the next step, the tyrosine and serine/threonine

dual-specificity kinases MEK1 and MEK2 catalyze activation via phosphorylation effector

MAP kinases ERK1 and ERK2 as their substrates.

Even though they are considered to be functionally equivalent, MEK1/2 are regu-

lated differentially and non-interchangeably during a variety of cellular events, including

epidermal hyperplasia and tumourigenesis. Whereas RAF and MEK are very substrate-

specific, the ERK1/2 phosphorylate a multitude of nuclear and cytoplasmic targets (more

than 600) including transcription factors, kinases, phosphatases, and cytoskeletal proteins.

This leads to diverse cellular responses such as cell proliferation, survival, differentiation,

motility, metabolism, programmed cell death, embryogenesis, and angiogenesis (Y. Li et

al. 2019).

In physiological conditions, MAPK signaling is evolutionarily conserved and tightly

controlled by feedback loops at multiple levels. However, the RAS-RAF-MEK-ERK sig-

naling cascade is one of the most potent signaling pathways that dominate carcinogenesis.

Although mutations in MEK and ERK-encoding genes are rare gain-of-function mutations

in RAS-encoding genes and alteration in gens of the RAF family members are frequently
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observed in human cancer. As a consequence of the overactivation, an autocrine/paracrine

loop is established that supplies proliferative signals and stimulates cell growth. Addi-

tionally, the expression of cell cycle regulators is changed. This leads to premature cell

cycle arrest and inhibits progression. Pro-apoptotic proteins are repressed, and anti ap-

optotic proteins are activated. Up-regulation of telomerase stimulates senescence evasion.

Epithelial-to-mesenchymal transition (EMT) is increased. Cell invasiveness and motility

are elevated. Interactions between cancerous and stromal cells are impaired. This affects

angiogenesis and detection of cancer cells by the immune system (Y. Li et al. 2019).

These findings motivate the development of small-molecule inhibitors targeting the

kinases of the MAPK pathway. The narrow substrate specificity, low mutation rate, and

the unique structural characteristics of MEK1/2 make it an ideal target for therapeutic

development. Contrary to other kinase inhibitors, MEK inhibitors provide high specificity

by binding to a hydrophobic pocket adjacent to but not overlapping with the adenosine

triphosphate (ATP)-binding site. This binding freezes the conformation of MEK and

hinders interaction with ERK activation loops. Therefore, MEK inhibition is directly

proportional to the degree of activation of the MAPK pathway in RAS, RAF or EGFR-

mutant tumours (Y. Li et al. 2019).

One example for a MEK inhibitor is cobimetinib (also known as GDC-0973). It is

a potent, selective MEK1 inhibitor with a half maximal inhibitory concentration (IC50)

estimate of 4.2 nmol/L in an in vitro biochemical assay against purified MEK1 enzyme.

This value is a measurement of potency and describes how much drug is needed to inhibit

a biological process by half (Aykul and Martinez-Hackert 2016). Cobimetinib is more

than 100-fold selective for MEK1 over MEK2 and showed no significant inhibition when

tested against a panel of more than 100 of serine-threonine and tyrosine kinases (Wong

et al. 2012). By inhibiting the MEK enzyme (see Figure 3.1), it decreases phosphorylated

ERK (pERK) and as a consequence decrease cell proliferation and cell survival. Drug

resistance significantly undermines the effectiveness of various treatments for human can-

cers, including targeted therapy. The approved MEK inhibitors offer advantages such as

high selectivity, initial effectiveness, and low side effects. However, clinical responses to

these inhibitors vary greatly among patients, and resistance tends to develop within a

year without additional intervention (Y. Song et al. 2023). The mechanisms behind this

resistance include the reactivation of the MAPK pathway, leading to subsequent react-

ivation of ERK. This reactivation is triggered by alterations or mutations in molecules
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upstream of ERK within the MAPK pathway, such as RAS, RAF, NF1, or MEK. MEK

mutations can result in either overactivation of MEK or render inhibitors ineffective in

binding to MEK. Another significant consequence of MEK inhibitors is the reactivation

of multiple receptor tyrosine kinases upstream of the MAPK pathway, which initiates a

signaling cascade that drives cellular growth and proliferation, contributing to adaptive

resistance. Receptor tyrosine kinases have diverse pathways through which they promote

cell signaling, and the reactivation of receptor tyrosine kinases following MEK inhibition

stimulates cellular growth via these multiple pathways. In addition to the MAPK path-

way, there are parallel pathways that promote cell proliferation and growth, such as the

PI3K, STAT, and Hippo signaling pathways. When the MAPK pathway is blocked, cancer

cells may resort to these alternative pathways to acquire the necessary signals for growth,

leading to resistance against MEK inhibitors. Another possible mechanism of resistance

involves tumour cells altering their phenotypes and rewiring metabolic pathways, leading

to a different feedback mechanism and subsequent MAPK activation after MEK inhibitor

treatment (Kun et al. 2021).

Figure 3.1: The simplified schematic of the intercellular RAS-RAF-MEK-ERK signaling
pathway shows the involved enzymes, occurance of mutations and drug target sites. Re-
printed with permission from Cancer Biology & Medicine. Copyright (2023) by Cancer
Biology & Medicine

(Y. Li et al. 2019)

To improve therapy it is crucial to understand the behaviour of the cell population

and consequences of treatment. Therefore, in this chapter we introduce models to simulate
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a cancer cell population undergoing MEK inhibitor treatment. Another objective of this

chapter is to introduce agent based modelling (ABM), a widely employed methodology

in both social sciences and systems biology (Bianchi and Squazzoni 2015; Gary An et al.

2009) and compare it to the widely used models based on ODEs. The chapter provides a

simple example, utilizing a PKPD-ABM for studying the effects of the MEK inhibitor cobi-

metinib in anti cancer treatment. In this ABM, tumour cells are simulated as individual

agents during the treatment with cobimetinib, with the drug’s time course and impact

serving as the environmental factors. In order to maintain simplicity, the model does not

incorporate cell location. Cell death and division take place at the microscopic scale, and

a summary of cell behavior is used to determine the total number of tumour cells at the

macroscopic level. The model’s implementation is carried out using the Python program-

ming language, and the code is available at https://github.com/VanThuyTruong/Tutorial

. The cobimetinib concentration time-course and ERK phosphorylation are simulated us-

ing a PKPD model previously published by Wong et al (Wong et al. 2012). This model

serves as an illustrative example and is implemented in accordance with the original refer-

ence, for the sole purpose of numerical simulation. To accommodate pharmacokinetics, a

hybrid approach is adopted, integrating PK through an ODE system, coupled with a tu-

mour ABM to analyze cell interactions under varying drug concentrations. A comparison

is made between the behavior of the hybrid PKPD-ABM tumour model and a PKPD-

ODE tumour model. This comparative analysis aims to highlight the distinct advantages

and limitations inherent in each method.

3.2 Example: PKPD-ABM and PKPD-ODE model for sim-

ulating anti cancer treatment with cobimetinib

3.2.1 PK model

The PK of the drug was characterised by an ODE model that links dose taken orally to a

plasma compartment and a tumour micro environment compartment (see part A in Figure

3.2). The PK in the tumour compartment induces a reduction of phosphorylation of the

ERK pathway that is used as the driving force to implement the PKPD model, either as

a full ODE model (part C1 in Figure 3.2) or as an hybrid ODE-ABM (part C2 in Figure

3.2).

We use the model by Wong et al. (Wong et al. 2012) to describe kinetics of drug
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Figure 3.2: Model structure. A) The PK model describes tumour disposition of cobimet-
inib. B) The PKPD model links the percentage pERK decrease, d(t), to the amount of
cobimetinib inside the tumour compartment. Phosphorylated ERK plays an important
role in cell division. Therefore, pERK could be seen as a biomarker of tumour growth
and a decrease of pERK causes a decrease in cell division. C1) The ODE model simulates
the effect of the pERK decrease on the number of tumour cells in the population. k(t) is
the pERK value inside one population. In the simulation cases in this chapter, we model
different populations with a different pERK value. The mean number of cells increases
with the birth rate λ and decreases with death rate µ. A high pERK value favors birth,
a low value favors decay over growth. C2) An ABM, where tumour cell death or division
is driven by the percentage pERK decrease caused by the amount of cobimetinib inside
the tumour compartment, d(t), and the individual pERK value of each tumour cell, ki(t).
A,B,C1) together result in a PKPD-ODE and A,B,C2) together result in a PKPD-ABM.
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concentration in oral (X0), plasma (Xp) and tumour (Xt) compartments after a weight-

based oral dose of cobimetinib. The ODEs are linear, with absorption rate k0 from the oral

to the plasma compartment, elimination rate β from the plasma and inter-compartmental

rate γ from the plasma to the tumour compartment. Transfer from the tumour to the

plasmas is included, with the inter-compartmental rate α. Because the drug is a small

molecule, it is assumed that drug excess is high and loss due to target binding, catabolism,

or elimination in the tumour compartment is negligible. Therefore, no elimination rate is

introduced in the tumour compartment. The time courses follow the following ODEs:

dX0

dt
= −k0X0,

dXp

dt
= k0X0 + αXt − γXp − βXp,

dXt

dt
= γXp − αXt.

(3.1)

(3.2)

(3.3)

The initial condition X0(0) is the given dose (1 or 3 mg/kg of body weight) converted

to µmoles/kg where the molecular weight of cobimetinib is 531.3 g/mol. Both the initial

drug amount in the plasma compartment Xp(0) and the drug amount in the tumour

compartment Xt(0) are equal to zero. Our parameter values are based on those of Wong

et al. (Wong et al. 2012).

3.2.2 PD model

The PD model (N. H. Holford and Sheiner 1982) describes the effect of the anti cancer

drug by the following relationship between Xt(t) and the percentage pERK decrease, d(t):

d(t) =
Xt(t)

h

ICh
50 + Xt(t)h

Imax, (3.4)

where IA50 is the cobimetinib amount in the tumour compartment at which the percentage

pERK decrease is half of Imax, the maximum percentage pERK decrease, and h is the Hill

coefficient (Wong et al. 2012).

Depending on the initial pERK value, k(0), and the percentage pERK decrease caused

by the drug d(t) at time t, the pERK value is:

k(t) =
100− d(t)

100
k(0). (3.5)
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In Figure 3.2, we illustrate the two types of tumour model, based on Equation (3.5), that

we will consider: agent based (C2) and population based (C1). In the agent based model,

we assign a different initial value ki(0) to each tumour cell, drawn uniformly in the range

(0, kmax). Values of ki(0) greater than 100 represent cells that have activating mutations in

B-RAF resulting in higher activation of MEK. Individual values of ki(t) evolve according

to Equation (3.5). In the population based model, a single value k(t) represents the

average pERK status of one population of tumour cells. In the simulation cases below

we model different populations of tumour cells with the ODE model, which have different

average pERK values (different starting k(0)). That is, cell-to-cell variability is introduced

in the agent based model; the total number of cells is an integer that depends on time

because individual cells may die or divide. The population-based model, on the other

hand, is a set of ODEs where one value of k(t) represents the influence of the drug on the

population of tumour cells. The population size is also governed by an ODE, which we

now introduce.

3.2.3 PKPD-ODE

The population-based model is the PKPD-ODE model shown as C1 in Figure 3.2. A

single pERK value k(t) ∈ (0, kmax) characterises the tumour cell population and is updated

according to Equation (3.5). The size of the tumour cell population at time t, T (t), obeys:

dT

dt
= λT −

(
1− k(t)

kmax

)
µT. (3.6)

The tumour population grows with the exponential term λT and shrinks depending on the

k(t) and kmax value. The constant λ > 0 represents the division rate. Death is modelled

as a decreasing function of k(t). In this chapter, we make the choice µ = 2λ, which means

that division and death balance when k(t) = 1
2kmax. There is more than one possible pair

of µ and λ. We use the value λ = 0.0828 day−1 of Wong et al. (Wong et al. 2012) for

comparability. As we will see, this choice also facilitates comparison with the ABM.

3.2.4 PKPD-ABM

In the ABM, each tumour cell is impacted by the pERK decrease individually according to

Equation 3.5. One agent is a tumour cell i with a value ki(t) as an attribute, representing

its degree of intra-cellular phosphorylation of ERK, determined by the amount of drug in

48



3.2 Example: PKPD-ABM and PKPD-ODE model for simulating anti cancer treatment with
cobimetinib

the tumour compartment Xt(t) according to Equation (3.3) from the PK model. As the

drug concentration lowers, the cell’s pERK value recovers back to its initial value ki(0),

unless the cell dies according to the decision-making algorithm.

Decision-making algorithm

The fate of a cell is governed by a set of rules depending on its ERK phosphorylation level

(see Figure 3.2 part C2). pERK thresholds determine the behaviour of the cells. A cell

whose pERK value is above the division threshold is said to be in the division pool (in

this chapter the division threshold is set as 1
2 , see Equation 3.7); a pERK value below the

death threshold consigns the cell to the death pool (in this chapter the death threshold is

set as 1
4 , see Equation 3.8). Inside the division or death pool, a division or death event

happens with a certain probability per unit time. In between these thresholds, a cell

remains quiescent.

The ABM is a Markov process that can be summarised as follows. At time t, the

number of tumour cells is N(t), each cell with its pERK value. The probability that cell

i divides in the interval (t, t + ∆t) is λi(t)∆t where

λi(t) = λmax

{
ki(t)−

1

2
kmax, 0

}
. (3.7)

As seen in Equation 3.7, a cell has a certain division rate depending on its current pERK

value (ki(t)) when its current pERK value (ki(t)) is above the division threshold of 1
2 .

Otherwise, the division rate is zero.

Similarly, the probability that cell i dies in the interval (t, t + ∆t) is µi(t)∆t where

µi(t) = µmax

{
1

4
kmax − ki(t), 0

}
. (3.8)

As Equation 3.8 shows, a cell as a certain death rate depending on its current pERK value

(ki(t)) when its current pERK value (ki(t)) is below the death threshold of 1
4 . Otherwise,

the death rate is zero.

At the cellular level there are birth and death events. The probability that event j is

the first event is

P (j first ) =
rate of event j

sum of all rates
.
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The probability that the event is a division event is

P (division) =

N(t)∑
a=1

λa(t)

N(t)∑
a=1

µa(t) +

N(t)∑
a=1

λa(t)

,

where N(t) is the number of cells at timepoint t. And the probability for the death event

is

P (death) =

N(t)∑
a=1

µa(t)

N(t)∑
a=1

µa(t) +

N(t)∑
a=1

λa(t)

.

If the event is a birth event, then the probability that, of all the N(t) possible cells, it is

cell a that divides, is

P (cell a divides | event is a division) =
λa(t)

N(t)∑
a=1

λa(t)

. (3.9)

Similarly, if the event is a death event, then the probability that, of all the N(t)

possible cells, it is cell a that dies, is

P (cell a dies | event is a death) =
µa(t)

N(t)∑
a=1

µa(t)

. (3.10)

A cell is more likely to be chosen to proliferate and produce one daughter cell when

the pERK value is high. The initial pERK value of the parent cell will be inherited to the

offspring. A low pERK value will make a tumour cell more likely to die.

Markov process

The macroscopic scale of the agent based model shows the tumour population with the

overall cell number. The random variable N(t) represents the tumour population size at

time t, which grows with division of tumour cells and decays with cell death. This process is

simulated with a continuous time Markov chain (CTMC) {N(t) : t ∈ [0,∞)} with infinite

state space and therefore the tumour growth is unlimited. To limit the tumour growth
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a finite state space with and absorbing state with the maximum number of tumour cells

can be applied. Here, we use a infinite state space as for our modelling purposes, the

cancer population will shrink due to the drug treatment hence no limits are required.f The

Markov process can be used because the change of state in our simulation only depends

on the current state and not the history of the tumour cells.

0 1 2 · · · n− 1 n n+ 1 · · ·

λ0 = 0

µ1 µ2

λ1

µ3

λ2

µn−1

λn−2 λn−1

µn

λn

µn+1

λn+1

µn+2

Figure 3.3: The transition diagram of the Markov process shows the population scale with
the number of cells and birth and death rates

The possible transitions in this stochastic process are depicted in Figure 3.3 where λt

and µt represent the birth and death rate of the population at size N(t) = k. The rates

are defined as:

λt =

k∑
a=1

λa(t),

µt =
k∑

a=1

µa(t).

(3.11)

(3.12)

State 0 with λ0 = 0 is an absorbing state because the tumour cell population does not

re-grow after extinction.

Gillespie algorithm

We use the Gillespie algorithm, which is a well-established method for designating which

of these 2N(t) possible events is the first, after t, to occur. We construct the following

sums:

Λ(t) =

N(t)∑
a=1

λa(t) and M(t) =

N(t)∑
a=1

µa(t). (3.13)

We decide which type of event occurs, then decide which cell it happens to. At each update,

the current values of µi(t) and λi(t) are used to construct the sums Λ(t) and M(t). With

probability Λ(t)/(M(t)+Λ(t)), the first event after time t is a division event. In that case,

the probability that, of the N(t) possible cells, it is cell i that divides, is λi(t)/Λ(t). With

probability M(t)/(M(t) + Λ(t)), the first event after time t is a death event. In that case,

the probability that cell i dies is µi(t)/M(t). The initial pERK value of the parent cell at

the time of division is inherited by the daughter cells. The time increment corresponding

to each update is also a random variable, exponentially-distributed with mean equal to
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(M(t)+Λ(t))−1. To complete one step of the algorithm, each cell’s pERK value is updated

based on the current drug amount Xt(t).

3.2.5 Example of the decision making algorithm

A simple example, starting with two cells, is shown in Figure 3.4. A treatment with a

single dose of 3mg/kg of cobimetinib is given. In this simulation case, the death threshold

is set at 50% and the division threshold at 100 %. More parameters are displayed in Table

3.1. One cell has an initial pERK value equal to 11%. That is, it is in the death pool.

The blue cross at bottom left indicates the death of this cell. The second cell, with an

initial pERK value equal to 195% of the pERK division threshold, is in the division pool.

The early-time effect of the drug is to decrease its pERK value. Division events, the first

of which occurs shortly after 50 hours, are indicated by crosses. A division event is the

creation of a new cell, whose initial pERK value is the pERK value of the mother cell at

the time of division. Figure 3.4 shows that the original cell, displayed with a turquoise

line, gave birth to a daughter cell, displayed with an orange line. The drug affects the

daughter cell, hence its pERK value decreases from its inherited value of 125% right after

division. At times greater than 250 hours, the drug is largely eliminated from the tumour

tissue and each tumour cell regains its initial pERK value.

Figure 3.4: pERK values and behaviour of a population starting with two cells with a
pERK value of approximately 11% and 195% pERK
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Parameter Value

Pharmacokinetic model

Initial dose 1 mg/kg or 3 mg/kg

k0 1.08 h−1 (Wong et al. 2012)

β 3.13 h−1 (Wong et al. 2012)

γ 1.74 h−1 (Wong et al. 2012)

α 0.04 h−1 (Wong et al. 2012)

Pharmacodynamic model

IA50 0.78 µmol/kg (Wong et al. 2012)

Imax(%) 97 (Wong et al. 2012)

h 1 (Wong et al. 2012)

ODE

Initial pERK value varied, depending on simulation scenario

Initial cell number 100 Cells [assumed]

kmax 200% [assumed]

λ 0.0828 days−1 (Wong et al. 2012)

µ 0.1656 days−1 [assumed]

ABM

Initial pERK value varied, depending on simulation scenario

Initial cell number 100 Cells [assumed]

Death threshold varied, depending on simulation scenario

Division threshold varied, depending on simulation scenario

λ 0.0828 days−1 (Wong et al. 2012)

µ 0.0828 days−1 [assumed]

Table 3.1: Parameters for the simulations
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3.3 Simulation outcomes

Different simulation scenarios were explored with both models. The drug dose and the

distribution of initial pERK were varied for each simulation. The ODE model shows the

behaviour at the population level with the overall cell number (see for example Figure

3.5d where each blue line represents one tumour population) and the homogeneous pERK

value of each population (see for example Figure 3.5b where each purple line describes the

pERK value inside one population). The ABM gives further insight into each cell of the

population with the pERK value of each cell over time (see for example Figure 3.5c where

each colour represents one cell) and the number of cells in the division, quiescence, and

death pool (see for example Figure 3.6b ). It is possible to track the pERK value of each cell

inside the population over time as in Figure 3.5c, where each coloured line represents one

cell which can die and cause the line to end or give birth to an offspring which creates a new

line starting from the time-point of birth (marked with a cross). The crosses describe the

discrete time-points for events caused by the Gillespie algorithm. The scatter plots show

each cell inside the population with its pERK value at specific time-points (see Figures

3.6c-3.6f) and videos at https://github.com/VanThuyTruong/Tutorial/tree/main/videos

show the behaviour of the cells in the scatter-plots with cell birth and death over the

simulation period.

Single dose treatment with 3 mg/kg

First, a treatment with a single dose was simulated with 3 mg/kg of drug per body weight

(see Figure 3.5 and 3.6). The initial pERK values for the ODE model and ABM were

sampled from a uniform distribution in the range 0 − 200. 100 is assumed to be the

average pERK value, while cells with a pERK value higher than 100 are assumed to have

acquired a mutation which allows them to divide faster by having a higher pERK value.

The ODE model simulates 100 tumour cell populations with different initial pERK (see

Figure 3.5b) while the ABM follows the fate of 100 tumour cells for a given patient (see

Figure 3.5c). In both models exposure-driven pERK reduction induces tumour shrinkage

followed by regrowth as the drug level falls (see Figures 3.5b-3.5e). A difference is that

the ABM is able to track cell death and division of each cell (Figure 3.5c).

Simulating 100 times with the ABM (Figure 3.5e) yields 100 different population

histories because the initial pERK distribution in each trial is different, and due to the
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stochasticity of the Gillespie algorithm. We observe that the total number of cells in the

population may be higher in comparison to the ODE model, because the cells with a

higher pERK values are more likely to survive and divide (see Figures 3.5d and 3.5e).

Figures 3.5c and 3.6a-3.6f provide a closer look into one population. We see that the

pERK value of a majority of cells falls under the death threshold quickly after treatment

start at 0 hours (see Figure 3.6d), those cells go into the death pool (see Figure 3.6b)

and therefore can die, which decreases the number of cells (see Figure 3.6a). When the

drug level falls, the cells recover and the pERK value increases (see Figure 3.6e). After

approximately 70 h, the drug concentration is low enough for the cells to gain a pERK value

above the division threshold and enter the division pool, those cells cause a population

growth (see Figure 3.6a, 3.6b, 3.6f). This simulation shows that cells with a low pERK

level which are assumed not being mutated are most affected by the drug while drug

treatment leads to an evolution of a population consisting of mutated cells with a high

pERK value.

Bimodal distribution of pERK values

The next example aims to recapitulate a tumour where cells have a distribution of pERK

levels based on two given phenotypes. We construct bimodal distributions from two normal

distributions where 50 cells in the ABM or 50 populations in the ODE model have a pERK

value with a mean of 60% while 50 cells in the ABM or 50 populations in the ODE model

have a pERK value with a mean of 190%. The standard deviations are 10% in both

distributions. A single dose of 3 mg/kg was chosen, hence the PKPD model of the drug

treatment of the examples in Figures 3.5 till 3.8 are identical. The ODE model shows

distinct behaviour for populations with different pERK values (see Figure 3.7c). While

the ABM does not display the bi-modality on the population level (Figure 3.7d). In the

ABM the heterogeneity is shown on the microscopic level (Figure 3.7b) and the cell number

is summed up for the macroscopic level (population level). Therefore, the bimodality is

only seen at the microscopic level. Taking a closer look into the example, we see that

for the ABM, the number of tumour cells initially falls (Figure 3.8a). This is caused by

the cells of the population with the mean pERK of 60% which are either in the death or

quiescence pool (see Figures 3.8b, 3.8c). They die out or remain in the quiescence pool and

therefore are not able to contribute to the population growth (see Figures 3.7b, 3.8c-3.8f).

The cells with high pERK value around 190 % are resilient to the drug treatment, because
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the decrease of active pERK caused by the drug is not enough to bring those cells under

the death threshold. Then, the drug amount in the tumour compartment decreases and

these tumour cells leave the quiescence pool and enter the division pool where they can

divide again and cause an increase of the total cell number (see Figures 3.7b, 3.8c-3.8f).

The tumour cells start dividing and pass their pERK value at the division time-point

to the daughter cells. Looking at Figure 3.7b, we see that the offsprings have initially

lower pERK values than the parent cell, because the pERK decrease caused by the drug

immediately affects them. During the time course of the simulation, their pERK value

increases until they regain their inherited pERK values (Figures 3.7b, 3.8f). Because of

the heritage of the pERK value, a typical pattern evolves and in the time course of the

simulation there will be a tumour population with a high metabolic phosphorylation pool

(compare Figures 3.8c and 3.8f). The overall population growth is driven by the cells with

a high pERK value. Therefore, comparing the overall cell number of 100 simulations with

a uniform pERK distribution (Figure 3.5e) and the bimodal distribution (Figure 3.7d)

we see similar behaviour with a constant population growth after a slight decrease until

approximately 50h. This simulation emphasises that tumour growth is driven by selection

of cells with a high pERK value. Due to the heterogeneity of pERK values, the tumour

cell population survives.

Higher division threshold

The effect of changing division and death thresholds was explored in Figure 3.9. The

parameters are the same as in Figure 3.5 except for the division threshold of 150% pERK,

instead of 100% pERK. This was compared to an ODE model (Figures 3.5b, 3.5d) and an

ABM with the division threshold of 100% pERK (see Figures 3.5c, 3.5e). A treatment of

a single dose of 3mg/kg was given.

The higher division and death thresholds lead to a longer residence of the tumour cells

in the quiescence pool (see Figures 3.9d-3.9h). As the Figures show, the drug suppressed

quickly the majority of cells into the death pool (Figure 3.9f) where cells die. Although

the drug amount in the tumour compartment decreases at 93 hours, the majority of cells

are not able to reach the division pool (Figure 3.9g). Division starts at a later time than

in the example with a lower division threshold (compare Figures 3.9h and 3.6f). This leads

to a lower growth of the tumour population (compare Figures 3.9b, 3.5e).

56



3.3 Simulation outcomes

Multiple treatment cycles

A treatment of 1mg/kg administered every 24 hours with 10 cycles was simulated in Figure

3.10. The pERK value in the PKPD-ODE model and the PKPD-ABM varies according

to the treatment cycle (Figures 3.10b, 3.10c). The pERK-time course in the ABM has

less regular onset-offset due to the time steps of the Gillespie algorithm (Figure 3.10c).

The time points are sparse because the time steps in the Gillespie algorithm depend on

the number of cells in the death and division pools which are lower because most of the

cells are trapped in the quiescence pool (see Figure 3.11b). Overall, the ODE and ABM

show similar behaviour. Due to the constant presence of drug, Figure 3.11b shows almost

no division of cells, while cells oscillate between division and quiescence pools (Figures

3.11c-3.11f). This results in a decrease of cell number. There is a peak every 24 hours in

the division pool, followed by a peak in the death pool (see time points every 24 hours in

Figure 3.11b). While the treatment cycles continue, the drug accumulates, which causes

the pERK decrease to be high enough to keep the cells outside of the division pool, so

that the total cell number slowly decreases (Figures 3.11b, 3.11a). After approximately

200 hours, the cells in the death pool go extinct while some cells with initially high pERK

values remain dormant in the quiescence pool (see Figure 3.11b). This resembles drug

resistance of mutated cells with a high pERK values.
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(a) PKPD model: Drug amounts in the plasma
and tumour compartment (PK, left-hand scale)
and percentage pERK decrease (PD, right-hand
scale)

(b) ODE: Individual pERK value of every
cell population

(c) ABM: Each line is the pERK value of one
cell in one realisation

(d) ODE: Overall cell number of 100 tumour
cell populations

(e) ABM model: Overall tumour cell num-
bers in 100 realisations

Figure 3.5: Simulation of the ODE model and ABM with a single oral dose of 3 mg/kg.
pERK values are initially uniformly distributed. The parameter values are given in Table
3.1. Figure 3.5a shows the PKPD model (model A,B in Figure 3.2), common to the ODE
model and ABM. Figures 3.5b and 3.5d show multiple trajectories of the PKPD-ODE
model (model C1 in Figure 3.2), each with the same initial cell population size but a
different initial pERK value. Figure 3.5c shows individual pERK values in one realisation
of the ABM (model C2 in Figure 3.2). Here, each cell has a different initial pERK value,
chosen from the uniform distribution in (0, 200). Figure 3.5e shows the total cell numbers
in 100 such realisations of the ABM.
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(a) ABM: Overall number of tumour cells in
one realisation

(b) ABM: Number of cells inside the divi-
sion, death and quiescence pools over time
in one population

(c) ABM: pERK value of each cell in one
population at 0 hours

(d) ABM: pERK value of each cell at 10.5
hours in one population

(e) ABM: pERK value of each cell at 61.3
hours in one population

(f) ABM: pERK value of each cell at 253.1
hours in one population

Figure 3.6: One realisation of the ABM. In Figures 3.6c – 3.6f, one dot represents the
pERK value of one cell at one timepoint. The ABM may provide a more realistic
model because it captures heterogeneity, different scales and emergent behaviour. On
the other hand, ODE based models are suitable for modelling well-mixed compartments
with mass transfer and simple interactions at one scale level. A video of the scatter plots
can be found at https://github.com/VanThuyTruong/Tutorial/blob/main/videos/3mgkg
%20single%20dose%20uniform%20distribution.mp4
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(a) ODE: pERK values. Each line corres-
ponds to a different initial condition.

(b) ABM: pERK values of individual cells in
one realisation

(c) ODE: tumour cell numbers in 100 tu-
mour cell populations.

(d) ABM model: Overall tumour cell num-
ber in 100 realisations

Figure 3.7: Simulation of a single dose of 3 mg/kg. pERK values are initially bimod-
ally distributed. In the PKPD-ODE model the bimodal distribution is on the pop-
ulation level. 50 populations have a high pERK starting value and 50 populations
have a low pERK starting value. In the PKPD-ABM the bimodal distribution is in
the cellular level. Inside one population 50 cells have a high pERK starting value
and 50 cells have a low pERK starting value. Figures 3.7a, 3.7c show the PKPD-
ODE (model C1 in Figure 3.2), Figures 3.7b and 3.7d show the PKPD-ABM (model
C2 in Figure 3.2) as comparison. A video of the scatter plots can be found at ht-
tps://github.com/VanThuyTruong/Tutorial/blob/main/videos/bimodal%20pERK.mp4
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(a) ABM: Overall number of cells in one real-
isation

(b) ABM: Number of cells inside the divi-
sion, death and quiescence pool over time in
one population

(c) ABM: pERK value of each cell in one
population at 0 hours

(d) ABM: pERK value of each cell at 0.9
hours in one population

(e) ABM: pERK value of each cell at 85.9
hours in one population

(f) ABM: pERK value of each cell at 243.9
hours in one population

Figure 3.8: Figures 3.8a – 3.8f show the behaviour of one population in the PKPD-
ABM (model C2 in Figure 3.2). A video of the scatter plots can be found at ht-
tps://github.com/VanThuyTruong/Tutorial/blob/main/videos/bimodal%20pERK.mp4
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(a) ABM: pERK value of each cell in one
population with with a division threshold of
150% and a death threshold of 100%

(b) ABM model: Overall tumour cell num-
ber of 100 realisations with a division
threshold of 150% and a death threshold of
100%

(c) ABM: Overall number of tumour cells
within one realisation

(d) ABM: Number of cells inside the divi-
sion, death and quiescence pool over time in
one population

(e) ABM: pERK value of each cell in one
population at 0 hours

(f) ABM: pERK value of each cell at 12.6
hours in one population

(g) ABM: pERK value of each cell at 93.0
hours in one population

(h) ABM: pERK value of each cell at 253.7
hours in one population

Figure 3.9: Simulation of a single dose of 3 mg/kg. pERK values are initially
uniformly distributed. Figures 3.9a and 3.9b show the PKPD-ABM with a di-
vision threshold of 150% pERK, (model C2 in Figure 3.2) as comparison. Fig-
ures 3.9c – 3.9d show the behaviour of one population in the PKPD-ABM
(model C2 in Figure 3.2). A video of the scatter plots can be found at ht-
tps://github.com/VanThuyTruong/Tutorial/blob/main/videos/150%20division%20threshold.mp4
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(a) PKPD model: Drug amount in the plasma
and tumour compartment (PD, left-hand scale)
and percentage pERK decrease (PD, right-hand
scale) with a multiple dose treatment of 1 mg/kg
daily

(b) ODE: Individual pERK value of every
cell population

(c) ABM: Each line is the pERK value of one
cell in one realisation

(d) ODE: Overall cell number of 100 tumour
cell populations

(e) ABM model: Overall tumour cell number
of 100 realisations

Figure 3.10: Simulation of a multiple treatment cycles of 1 mg/kg every 24 hours.
pERK values are initially uniformly distributed. Figure 3.10a shows the PKPD
model (model A,B in Figure 3.2), Figures 3.10b, 3.10d show the PKPD-ODE model
(model C1 in Figure 3.2), Figures 3.10c and 3.10e show the PKPD-ABM (model
C2 in Figure 3.2) as comparison. A video of the scatter plots can be found at ht-
tps://github.com/VanThuyTruong/Tutorial/blob/main/videos/multiple%20cycles%201mgkg.mp4
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(a) ABM: Overall number of tumour cells
within one realisation

(b) ABM: Number of cells inside the divi-
sion, death and quiescence pool over time in
one population

(c) ABM: pERK value of each cell in one
population at 0 hours

(d) ABM: pERK value of each cell at 9.7
hours in one population

(e) ABM: pERK value of each cell at 70.9
hours in one population

(f) ABM: pERK value of each cell at 74.1
hours in one population

Figure 3.11: Figures 3.11a – 3.11f show the behaviour of one population in the
PKPD-ABM (model C2 in Figure 3.2). A video of the scatter plots can be found at ht-
tps://github.com/VanThuyTruong/Tutorial/blob/main/videos/multiple%20cycles%201mgkg.mp4
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3.4 Discussion and conclusions

In this chapter, we present four simulation examples based on two types of models. Table

3.2 shows a head-to-head comparison of ABM and ODE based models based on their

key properties (scale, dynamics of interactions, population, space, memory, stochasticity),

strengths and limitations, and implementation general principles (model building and

qualification, communication and applicability).

3.4.1 Model properties

A key feature of ABMs is their ability to incorporate heterogeneity and autonomy at

the cellular/microscopic level. Agents can have different attributes, which leads to a

heterogeneous population. There is no central coordination that determines the agent’s

behaviour. An behaviour of the biological system is simulated depending on individual

attributes and rules that collectively result in an emergent behaviour. Local phenomena

driven by discrete decision and interaction between individual agents on the microscopic

scale lead to emergence of patterns on the macroscopic scale. Adaptation of the agents

due to environmental changes is possible with rules set by the modeller, enabling memory

to be stored to modify future behaviours depending on past stages. The incorporation

of spatial component in ABMs enables to locate single agents geographically in the bio-

logical system on top of chronological information on their past and future fate (Milling

and Schieritz 2003; Bauer et al. 2009; Solovyev et al. 2013; Figueredo et al. 2014). In our

anti cancer treatment example, the agents are tumour cells with different levels of pERK

and, depending on this attribute, show different behaviour (death, quiescence, or divi-

sion). The tumour cells with high pERK values divide and pass their pERK values on to

their offspring, while the cells with a lower pERK value die or stay quiescent. The pERK

value decreases with high drug level but after lowering of drug amount in the tumour

compartment the cells regain their inherited pERK value. Consequently, a population

with high pERK values over time arises which could be a biologically plausible way of

modelling treatment resistance. The variability is defined as an implicit feature of each

agent and is governed by stochastic processes (Gillespie algorithm in this model). There

are other examples in the literature which took advantage of the ABM properties. Cockrell

and Axelrod (C. Cockrell and Axelrod 2019) use the ABM technique for simulating the

heterogeneous cell types and their proliferation kinetics inside human colon crypts where

quiescent stem cells are at the bottom of the crypt, proliferating cells are close to the bot-
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tom third, and differentiated cells are placed in the top two thirds. Proliferating cells are

killed by cytotoxic drugs while quiescent stem cells are resistant to cytotoxic drugs due to

their low probability of dividing (C. Cockrell and Axelrod 2019). Due to their properties,

ABMs are suitable to simulate the highly diverse tumour microenvironment where inter-

action of different cell types plays a critical role in cancer development, progression, and

control. Kather et al created a two dimensional on-lattice ABM containing tumour cells,

active and exhausted lymphocytes, stroma, and necrosis. This ABM was used to predict

survival in an independent patient cohort, and guide new strategies for immunotherapy

in colorectal cancer (Kather, Poleszczuk et al. 2017). Based on that model, Kather et al

further developed a 3D on-lattice ABM of human solid tumour tissue including tumour

cells, fibroblasts, and myeloid and lymphoid immune cells which reproduces key features

of the tissue architecture of human colorectal cancer. Effects of chemotherapy, immuno-

therapies, and cell migration inhibitors alone and in combination were simulated (Kather,

Charoentong et al. 2018).

In comparison, ODEs are typically used to represent a subset of patients’ outcomes

following therapeutic interventions at the macro-level (in this chapter, tumour burden for

the PD measurement). Patients belong to an underlying homogeneous population and

individuals inside a population behave independently (Solovyev et al. 2013; Figueredo et

al. 2014). Individuals and interaction between individuals are not explicitly considered.

Instead, macro-level outputs are driven by mass transfer dictated by stoichiometric equi-

librium and compartmentalization of the system (e.g, blood and tumour compartments).

The stochastic model is implemented by assuming parameter probability distributions at

the individual level (between-subject variability) and in the measurement noise (residual

variability).

Additionally, adaptation of the behaviour to changing circumstances such as environ-

mental factors is limited unless pre-specified in the parameter settings and initial condi-

tions. In most circumstances, ODEs do not have inherent memory features (Milling and

Schieritz 2003; Figueredo et al. 2014). In the ODE model, all the cells in the population

have the same pERK and death of one cell or division of one cell cannot be tracked indi-

vidually. Space is not typically implemented and PDEs are required to model alterations

in time and space. However, the use of PDEs can be complicated and computationally

challenging (Bauer et al. 2009).
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3.4.2 Model building and model qualification

Model construction in ABMs can happen in two ways based on hypothesis-testing and

data calibration. First, ABMs can use model assumptions from empirically observed phe-

nomena, and simulate previously unknown collective behaviours (micro-known to produce

macro-unknown). In this way, predictions are made using validated theories of agent

behaviours. Second, when data for a phenomena are not observable, an ABM can be

built by using hypothetical model assumptions to reproduce empirically observed collect-

ive behaviour by simulation (micro-unknown to reproduce macro-known) (Sayama 2015).

Model calibration is challenging when ABMs require a large number of parameters from

single cell data (in vivo/in vitro) (Bauer et al. 2009) and small increases in agent based

model complexity can lead to large increases in required calibration data (Srikrishnan

and Keller 2021). In addition to the initial pERK distribution, death and birth rate in

the ODE example, the ABM required death and birth thresholds for the decision-making

algorithm. Consequently, there is the risk of overfitting and non-identifiability. When

parameter values determine behaviour that is directly observable in experiments, those

values can be calibrated from data. An example is the lattice-based multiscalar cellular

automaton model of Delgado-SanMartin et al. where a modelling platform is used to

obtain model parameters from multiple in-vitro assays (Delgado-SanMartin et al. 2017).

Another example is the tumour micro-environment ABM from Kather et al which can be

calibrated in a patient-specific way by using immuno-histochemical data (Kather, Char-

oentong et al. 2018). Analytical methods are required when parameters do not represent

directly observable quantities. In that case, statistical estimation techniques such as max-

imum likelihood estimation or the method of moments are applied to a given dataset to

select appropriate values. If analytical methods are not suitable for a given ABM, methods

involving the generation of simulated data need to be considered. Those methods can be

classified in frequentist approaches and Bayesian approaches. Frequentist approaches are

distance-based or likelihood-based (e.g. the simulated minimum distance method or the

methods of simulated moments) (Platt 2020). One example for calibration of ABMs using

machine learning would be the work from Lamperti et al (Lamperti et al. 2018).

In contrast, the ODE model provides a robust statistical framework with model selec-

tion based on data-driven decision metrics. Algorithms for numerical solutions of ODEs

are widely available and understood, as are methods of data fitting and calibration against

observed data (Tornøe et al. 2004; Dartois et al. 2007). Data are needed from the macro
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or population level. This method is often used for data fitting and it is calibrated against

observed data with goodness-of-fit graphical analysis of residuals and predictions, distribu-

tion of the residual errors and random-effects parameters and simulation-based diagnostic

tools such as visual predictive check (Tornøe et al. 2004). ODE models can have a descript-

ive purpose or predictive and descriptive purposes. ODEs have the advantage of being

simple and, often, requiring fewer parameters from experiments than ABMs, but this

comes with the risk of oversimplification. ODE models provide an approximation of bio-

logical processes that rely on stochasticity not being important at a whole organism level.

Resulting from this limitation, there is a risk that this method leads to inadequate repres-

entation and spurious results when not used appropriately (Bauer et al. 2009). In principle,

ODE models are based on population-level assumptions and data, whereas ABMs are con-

structed from understanding at the level of individual agents. For example, in vitro assays

(Delgado-SanMartin et al. 2017) or immunohistochemical data (Kather, Charoentong et

al. 2018) may inform a model. When data for macroscopic phenomena are not available,

an ABM can be built as a hypothesis-testing device, where assumptions lead to observable

collective behavior via simulation (Sayama 2015).

3.4.3 Strengths and limitations

One major strength of ABMs is the establishment of emergent behaviour not directly

imposed by the modeller. As such, ABMs can simulate previously unknown collective

behaviours (micro-known to produce macro-unknown) (Sayama 2015). This level of flex-

ibility provides valuable information to provide biologically plausible hypothesis to explain

macro-level phenomenon such as treatment resistance. Our example showed that the single

dose drug treatment of 3 mg/kg is not enough to supress all cells into the death pool. In-

stead only cells with a low pERK value are erradicated by the drug treatment while the

mutated cells with a high pERK value survive. The surviving cells will divide and inherit

their high pERK value to the offspring. This leads to a more aggressive mutated tumour

population with high pERK values. The simulation with bimodal distributed pERK values

emphasised this hypothesis. Another hypothesis drawn from the multiple dose simulation

is that cells with a high pERK value remain dormant in the quiescent pool during drug

treatment. After the drug therapy is finished or paused they will return to the division

pool, divide, and pass their high pERK value to their offsprings which causes a more

aggressive mutated tumour population. Conversely, it is difficult to discriminate between
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competing ABMs. Additionally, there is the risk of overparameterization. Due to their

theoretical considerations and to the limited empirical data available for calibration, val-

idation of agent based simulations can be difficult. In contrast, ODE based models have a

more robust framework to evaluate their major assumptions with likelihood ratio tests and

data-driven approach to discriminate between hierarchical model candidates. The model

qualification is also well-established with simulation-based diagnostics (visual predictive

checks) and goodness-of-fit criteria relating to the empirical data available. One limitation

of ODE based models is the oversimplification of the biological system unless numerous

differential equations are implemented (see Milberg et al (Milberg et al. 2019)) and its

rigid framework given its inability to generate emerging behaviours in sub-scale systems.

3.4.4 Computational resources

ABMs can be computationally challenging, depending on their complexity and the chosen

model paradigm (Metzcar et al. 2019). In the cellular potts models, changes in cell shape

and direct cell-cell interaction are directed by Monte Carlo simulations and energy minim-

alization. Off-lattice methods bring the benefit of a more realistic simulation because cells

can have various positions with respect to each other and freedom to move in any direction

instead of being ordered on a grid. However, this comes with the disadvantage of higher

computational cost, because special algorithms are necessary to efficiently handle cell-cell

neighbourhoods. During movement, cell collisions need to be avoided, which can be chal-

lenging in densely packed areas or populations. After division, the placement of daughter

cells needs to be determined to ensure non-overlapping with other cells or mutually exclus-

ive cell areas. In addition, chemical values of the environment are usually computed on

regular grids and interpolation techniques need to be applied to transfer values between

the cellular off-lattice individuals and the chemical fields. Sub cellular element models

have the benefit of a better approximation of cell bio-mechanics, but this comes with

higher computational cost. Boundary-tracking methods are useful for describing detailed

cell mechanics to fluid and solid tissue mechanics but are as well highly computational

intensive (Metzcar et al. 2019; Rejniak and A. R. Anderson 2011). ODE based models, in

contrast, require less computational resources due to their simple structure.
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3.4.5 Model comparison and communication

When it comes to model communication and comparison, a strength of ABMs is the use

of biological rules which makes communication of the model assumptions, and outputs,

easier and more intuitive for a non-modelling audience. Components of two ABMs can

be combined in a modular fashion to create meta-models. This modelling approach is

currently less popular in the PKPD modelling community, but it has a lot of potential

for simulating biological processes. One risk and important weakness of using ABMs lies

in the context of sharing and comparing results. Each ABM can have different rules and

outcomes vary in each run. This makes comparison between different models challenging.

On the other hand, advantages of ODE-based models are the simplicity of implement-

ation, the direct interpretability of model parameters, their ability to combine different

sub-models into one meta-model, and its applicability to fit experimental data in a stat-

istically robust manner with clear decision rules for model selection and well-established

tools for model qualification. Model comparison is less complicated due to similar model

structure. Communication of the model with non-modelling audiences can be challenging

because mass transfer and binding kinetics are less intuitive to communicate than a set of

biological processes and rules relating to biological phenomena. All that being said, this

modelling approach is commonly used in the PKPD community and numerous examples

exist.

3.4.6 Applicability

The comparison between the two modelling approaches shows that ABMs are an object-

oriented, rule-based, discrete-event computational models with heterogeneous agents in

which the behaviour of individual agents, and pattern formation is crucial (Solovyev et al.

2013). The simulations are more intuitive and easier to interpret since they recapitulate

processes closer to the biology. Granularity is high, for example direct information of cell

behaviour dynamics in the tumour micro-environment is provided on the microscopic scale

which can be summarised to the macroscopic scale to provide a tissue-specific overview.

Therefore, ABMs are suitable to simulate complex biological systems with sub-scale com-

ponents (molecular, cellular, tissue, organism) and inherent emerging behaviour. These

model features are very relevant for developing quantitative solutions in research questions

and clinical problems relating to system biology and quantitative clinical pharmacology.
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On the other hand, systems of ODEs are well-suited for simulating processes that

can be approximated as homogeneous, well-mixed systems with central coordination and

would be best suited for traditional pharmacometrics analyses with sufficient data (pop-

ulation PK and PD models, PBPK models), or for simplistic theoretical PKPD models

with limited binding interactions between model components. For quantitative clinical

pharmacology models, ODE could also be implemented to recapitulate complex biological

systems but would rely on extensive model assumptions, including parameter distributions

(Milberg et al. 2019). Simulations are limited to one scale, and entities that are entered

in the model do not have sub-scale inner ability. ODE-based models only account for

variability at the observable level but not at the sub-scale level like ABM. Hence, ODEs

are appropriate to simulate well-mixed compartments with mass transfer and simple in-

teractions at one scale level.

3.4.7 Hybrid multi-scale models

To take advantage of both methods, hybrid multi-scale models can be employed. Multi-

scale modelling aims to include various spatio-temporal scales from atomic to molecular,

cellular, multi-cellular, organ, and up to multi-organ systems. On the cellular level, part of

the model can be discretised using an ABM to study phenomena that are heterogeneous

with emergent behaviour. Those phenomena can be for example effects of mutation-

induced, more aggressive phenotypes on metastasis or cell and extracellular matrix inter-

action. Discrete modelling simulates the multi-step emergent process of changes of cell

agents that leads to tumour growth and metastasis. Macroscopic scale modelling cov-

ers the entire tumour tissue and comprises many agents. This scale includes the general

pattern of growth, total cell number, the extent of metastasis, tumour morphology and

vascularization. When explicit representation of individuals is not needed, such as for

homogenous entities, a continuous description with PDEs or ODEs can be used. On the

molecular scale, molecular interactions (e.g. receptor-ligand interactions, consumption

and production of oxygen, nutrient, and cell-cell signalling molecule concentration) can be

described with ODEs. To model local conditions and environmental changes such as avail-

ability of oxygen, nutrient, and hormonal distribution through diffusion from molecularly

rich regions (e.g. blood vessels, tumour edge), PDEs can be used. Solutions are provided

for the entire scale i.e. the tumour tissue instead for each agent individually. Using ODEs

or PDEs provides an easy way to implement the simulation with lower computational

71



3. STEP-BY-STEP COMPARISON OF ORDINARY DIFFERENTIAL EQUATION AND
AGENT BASED APPROACHES TO PHARMACOKINETIC-PHARMACODYNAMIC
MODELS

cost in comparison to ABMs. Levels of molecular entities solved by ODEs and PDEs are

part of the environment and can cause changes in cell behaviour of the corresponding

ABM. For example, signalling molecules such as growth factors can initiate cascades that

lead to proliferation. The hybridization of a discrete model in a continuum environment

provides a more complete description of the tumour morphology, higher accuracy of model

predictions, and lower computational costs (Zhihui Wang et al. 2015).

Comparing hybrid multi-scale ABMs to a multi-scale ODE model as in the work

of Milberg et al (Milberg et al. 2019), we can see additional differences between those

methods. Their physiology-based quantitative pharmacology model predicts how the in-

teraction of the immune system and the tumour micro-environment in a patient affects the

efficacies of checkpoint blockade therapies administered as mono-, combo- and sequential

therapies. The model accounts for tumour draining lymph node priming and activation

of näıve T cells into effector cells in the presence of mature antigen presenting cells and

regulatory T cells, the subsequent migration of the effector cells to the tumour through

systemic circulation, interaction in the tumour micro-environment which includes regulat-

ory T cells and myeloid-derived suppressor cells, and cancer cells, the release of tumour-

associated or tumour-specific antigens by the cancer cells by natural death and killing, the

uptake of the tumour-associated or tumour-specific antigens by antigen-presenting cells,

their maturation and subsequent migration back to the draining lymph node compartment

for presentation to naive effector T cells for their priming and activation, which starts the

cycle again. In contrast to the ABM technique, here space for local interactions are ac-

counted for by separate compartments such as lymph node, blood, tumour, lung, GI tract,

spleen, and liver, and the peripheral compartment. Instead of rules for interaction, the

model consists of 282 ODEs and 218 algebraic equations to describe for example binding

reaction, interaction between cells, and trafficking of cells with rates. Heterogeneity is

represented in the percent expression of each immune checkpoint in the cancer cells as an

input into the model (Milberg et al. 2019). In contrast, an ABM-based implementation

of this model would require only six agents (with attributes in parentheses): Antigen,

antigen presenting cells (resident, mature, and CTLA4 expression), CD8+ T-cells (näıve,

primed, activated, CTLA4, and PD-1), Tregs (CTLA4 and PD1), myeloid derived sup-

pressive cells, and tumour cells (proliferating and PD-L1). The behavior of these agents

is then controlled by a total of 16 interaction rules, with each cell type making use of a

subset of these. In principle, this could be much more efficiently implemented and easily

72



3.4 Discussion and conclusions

adapted should further interactions or cell types be required.

There are various of examples for hybrid multi-scale ABMs in the literature. Oduola

and Li modeled cancer growth during drug therapy with lapatinib using a multi-scale

model with a stochastic hybrid system (Oduola and X. Li 2018). Similar to our example,

this model also uses a combination of ODE and ABM. Concentration of proteins and gene

expression levels are represented with ODEs at the molecular level as homogenous entities.

A PKPD model describes the relationship between drug concentration and the effect on

protein expression, which is associated with cell proliferation. The cellular level contains

a cellular automata model on a 2D grid. Each cell is modelled individually. A Markov

chain determines cell fate (proliferation, decay, or quiescence). Transition probabilities are

influenced by the downstream gene expression as levels modulated by the drug therapy and

the conditions of the tumour micro-environment. At the multi-cellular level, the behaviour

of the cell population leads the structure of the tumour tissue. Drug treatment can cause

a progressive degree of cellular decay from the surface to the tumour core. (Oduola and

X. Li 2018)

A multi-scale ABM of tumour angiogenesis is provided by Olsen et al. (Olsen and

Siegelmann 2013). This model includes the molecular level (VEGF, diffusion), cellular

level (genetic control, space), and tissue level (cells, blood vessels, angiogenesis). Single

tissue and cancer cells are modeled with an agent in a three-dimensional grid. Tumour

cell proliferates according to a spheroid cluster pattern, with growth limited by available

oxygen. The agent’s behaviour is determined by a ’life protocol’ based on Hanahan and

Weinberg’s hallmarks of cancer (Hanahan and Weinberg 2000). This includes proliferation

(including rate parameters, generation potential, and space restrictions), proliferation sup-

pression mechanisms, self-testing at a checkpoint before the replication decision, repairing

damage, and apoptosis (self-death) (Olsen and Siegelmann 2013).

Chaplain and Powathil developed two hybrid multi-scale models that study the ef-

fects of intra-cellular heterogeneity in cancer treatment (Chaplain and Powathil 2016).

These models incorporate multiple interactions involved in the sub-cellular, cellular and

micro environmental levels. The micro-environment contains the concentration of oxygen

modeled with a PDE. At the subcellular level, the cell-cycle depends on concentration of

Cdk-cyclin B complex, the APC-Cdh1 complex, the active form of the p55cdc-APC com-

plex, the total p55cdc-APC complex, the active form of Plk1 protein and the mass of the

73



3. STEP-BY-STEP COMPARISON OF ORDINARY DIFFERENTIAL EQUATION AND
AGENT BASED APPROACHES TO PHARMACOKINETIC-PHARMACODYNAMIC
MODELS

cell. These concentrations are described with ODEs. Cell-cycle, phase-specific chemother-

apy drug concentration is simulated using PDEs. Lastly, cellular automaton and cellular

potts model simulate the cellular level (Chaplain and Powathil 2016).

Another hybrid multi-scale model of Chaplain, Adamson, and Powathil studies the

effect of the combination of radiation and chemotherapy (Powathil et al. 2013). In this

model, cell cycle regulation and oxygenation status are incorporated into the model, since

both critically affects radiation sensitivity. At the cellular level, a cellular automaton is

modeled in a two-dimensional grid. The subcellular level contains cell cycle dynamics

which are modeled by a system of ODEs. The micro-environment includes oxygen, which

is supplied by randomly distributed blood vessels. The local oxygen concentration and

the chemotherapeutic drug concentrations are modeled by a system of PDEs. A modified

linear quadratic model studies the effects of radiation therapy. This includes radiation

damage, effects of hypoxia, and cell-cycle in determining the cell-cycle phase-specific radio-

sensitivity. (Powathil et al. 2013)

The multi-scale compartment model by Gong et al. (Gong, Milberg et al. 2017) de-

scribes the biological processes involved in tumour development and anti tumour immune

response. Cytotoxic T lymphocytes and cancer cells are modelled as agents in a three-

dimensional space. Rules for division, migration, cytotoxic killing, and immune evasion

are set. An ABM simulates the cellular-tissue scale (tumour micro-environment hetero-

geneity and immuno-architecture). PDEs describe the molecular scale (IL-2 secretion and

transport).

Cess and Finley created a multi-scale agent based model of macrophages and T cells

within the tumour micro-environment (Cess and Finley 2020). Tumour cells, M1 and

M2 macrophages, and T cells are modelled as agents on a two dimensional lattice while

diffusible factors such as IL-4 and IFN-γ are simulated with PDEs. To increase the bio-

logical detail, macrophages contain a mechanistic ODE model of intracellular signaling in

response to IL-4 and IFN-γ which allows to predict the effects of specifically inhibiting

a part of the intracellular signaling pathway. To improve computation time, neural net-

works are employed to reduce the mechanistic model into a simple input/output model.

This modelling framework was used to study the cell-cell interaction in the micro envir-

onment such as the impact of immunosuppressive macrophages on T cell function, and

how macrophage-based immunotherapies can reduce immunosuppression (Cess and Finley
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2020).

3.4.8 Outlook

To sum up, ABMs can provide more detailed insights into complex biological systems and

it can be complemented with ODEs in hybrid multi scale models. ABMs can be used as an

implementation of mechanistic reasoning for hypothesis-testing and guide new experiments

driven by the model. But to take this approach further, not only cell behaviour inside

a tissue or organism could be simulated but virtual patient trials could be defined and

calibrated with clinical data. One example is an ABM from Cockrell and An (R. C.

Cockrell and Gary An 2018) which simulates the innate immune response and possible

treatments for systemic inflammatory response syndrome. The ABM was used to simulate

various treatment options with different dosing regimens and drug combination options

to evaluate response of anti cytokine therapies (R. C. Cockrell and Gary An 2018). In

anti cancer treatment modelling, ABMs could be calibrated with tumour size longitudinal

data. This can then serve to optimise treatment protocol (e.g. by informing tumour biopsy

sampling scheme, or pre-specify a patient enrichment strategy with inclusion/exclusion).

3.4.9 Conclusion

The comparison in this chapter shows that both methods have their strengths and weak-

nesses. Depending on modelling purpose, ABMs are suitable to simulate complex biological

systems with sub-scale components (molecular, cellular, tissue, organism) and inherent

emerging behaviour while ODEs are appropriate to simulate well-mixed compartments

with mass transfer and simple interactions at one scale level. Both methods can com-

plement each other in hybrid multi-scale models. With the advent of more single-cell

experiments, spatial transcriptomics, and other technological advances in imaging, we an-

ticipate that the use of ABMs in biology will increase with direct applications in PKPD

and pharmacometrics to guide drug development of novel drugs in oncology and other

therapeutic areas.

Comparator ODE based model ABM
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Scale
• Macroscopic
• Mean behavior at system level

• Microscopic
• Individual behaviors at cellu-

lar level driving emergent be-
havior at the system level

Dynamics of in-
teraction

Mass transfer dictated by stoi-
chiometric equilibrium and com-
partmentalization of the system

Rule-based individual agent interac-
tion and stochasticity

Individuals in-
side a popula-
tion

Homogenous Heterogenous

Space Not typically implemented Typically implemented

Memory Not typically implemented Typically implemented

Stochasticity

• Between subject variability
and residual unexplained vari-
ability

• Implemented at the popula-
tion level by assuming para-
meter probabilistic distribu-
tions

• Implicit feature of single agent
and governed by stochasticity

• No distributional assumption

Model building
• Rigorous statistical frame-

work for model selection
• Data-driven

• Hypothesis generation and
hypothesis-testing iterative
learning

• Simulation-based and/or data
calibration depending on em-
pirical evidence

Model qualific-
ation

• Simulation-based diagnostic
(visual predictive check)

• Data-based model qualifica-
tion (goodness of fit)

• Model calibration based on
single cell data (in vivo/ in
vitro/ex vivo experiments) or
any data source of relevance
for the biological system of in-
terest (micro-or macro-level)

Limitation

• Oversimplification
• Structural rigidity (e.g., com-

partmentalization)
• Scalability

• Overparameterization
• Model discrimination
• Uncertainty in outcome
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Strengths
• Well established modeling

framework
• Simple implementation

• Emergent behavior to find
plausible mechanisms for un-
foreseen outcomes (e.g., resist-
ance or necrosis)

• Easier to scale

Computational
resources

Typically not a limitation unless
large number of differential equa-
tions required

Complex ABMs demand high com-
putational power and cause long
running times

Model compar-
ison

Straightforward due to similar
model structure and model discrim-
ination criteria

More complicated than ODE due to
multiplicity of rules, choice of attrib-
utes and stochasticity driving emer-
gent behaviours

Communication
with audience

• Challenging due to abstract
concept with mass transfer
and binding kinetics (math-
ematical knowledge required)

• Familiar concept with large
example pool

• Well established with regulat-
ory agencies

• Easier to communicate with
non-modeler audience as more
biologically interpretable

• Not extensively used by
PKPD modelers and regulat-
ors

• More challenging to defend as
assumption-rich and less data-
driven due to paucity of data
at the subscale level

Applicability

• Modelling of well-mixed com-
partments with mass transfer
and simple interactions at one
scale level

• PK models, PD models, and
traditional pharmacometric
models of exposure-response

• Quantitative system pharma-
cology models with known
or observable macro-level out-
comes

• Simulation of complex biolo-
gical systems with sub-scale
components (molecular, cellu-
lar, tissue, organism) and in-
herent emerging behaviour

• System biology models and
quantitative system pharma-
cology models with limited
empirical data and most rel-
evant to elucidate unexpec-
ted behaviors (micro-known
to produce macro-unknown)

Table 3.2: Comparison between ODE based model and ABM features and implementation
principles for the model-based approach used to characterize PK and PKPD properties
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Chapter 4

Stochastic pharmacodynamics:

elimination of a heterogeneous

population

4.1 Introduction

Cancer displays a dynamic nature, with genetic diversity driven by genomic instability

contributing to the generation of tumour heterogeneity. Throughout the course of the

disease, cancers tend to become more diverse. At a broader level, tumour heterogeneity

can be categorised into intertumoural and intratumoural heterogeneity. Intertumoural

heterogeneity pertains to variations between patients with the same type of tumour and is

attributed to patient-specific factors like genetic variations, mutation profiles, and environ-

mental influences. On the other hand, the understanding of intratumoural heterogeneity

has grown with genomic medicine, referring to differences among tumour cells within a

single patient. This can manifest as spatial heterogeneity, involving diverse subpopula-

tions unevenly distributed across sites, or temporal heterogeneity, reflecting dynamic shifts

in a tumour’s genetic diversity over time (Dagogo-Jack and Shaw 2018). As cancers are

exposed to treatments, they tend to become more diverse and complex. Resistance to

treatment can develop due to the expansion of pre-existing subclonal populations or the

emergence of drug-tolerant cells. Consequently, subsequent lines of therapy often yield

less robust responses compared to initial treatments (Dagogo-Jack and Shaw 2018). In

the context of intertumour heterogeneity, oncogenic mutations often guide treatment de-
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cisions. Two scenarios arise: mutations can predict treatment ineffectiveness, as seen in

metastatic colorectal cancer where anti-EGFR therapy works for KRAS wild-type but not

KRAS-mutant tumours. Alternatively, certain tumours depend on oncogenic mutations

and targeting these has proven beneficial, such as BRAF-mutant melanomas respond-

ing to a BRAF inhibitor (Melo et al. 2013). Leveraging intratumoural heterogeneity for

therapeutic gain is a possibility. The idea of ”evolutionary double-blind therapy” involves

sequentially administering two treatments that prompt tumour cells to adapt in ways that

make them vulnerable to the second treatment. While not yet applied clinically, this

concept highlights the potential of understanding intratumoural heterogeneity in advan-

cing medical oncology. (Fisher et al. 2013). Heterogeneity is essential not only in the field

of oncology but also in various other domains. For instance, the expression of proteins

differs among individual cells, and bacteria exhibit varying susceptibility to antibiotics

(Gefen and Balaban 2009).

Agent based models naturally encompass this diversity and lend themselves well to

computational investigations. However, converting these models into simple formulas is

often a challenge (An et al. 2017; Truong et al. 2022). In this context, we present and

analyze stochastic models involving a heterogeneous population of cancer cells subjected

to drug influence. Our focus in this chapter is on a drug’s impact designed to eliminate

a group of tumour cells. Our models incorporate the concept of cell-to-cell variability,

wherein each tumour cell possesses a unique attribute termed the ‘regulator value’, intric-

ately linked with cell viability. Once the drug effectively reduces a cell’s regulator value

below a certain threshold, the cell enters the ‘death pool’, signifying its susceptibility

to demise. Our model is inspired from an agent based model in which the regulator is

phosphorolated ERK in vivo, but can also be applied to pharmacodynamics in vitro. We

have in mind the reduction of phosphorolation of the ERK pathway by oral dose of the

MEK inhibitor cobimetinib. The PD effect is modelled by a single variable that represents

cellular pERK, as in the population-based PKPD model of Wong et al. (Wong et al. 2012)

(used to fit tumour concentrations and pERK data) and the agent based model in chapter

3 and published in Truong et al (Truong et al. 2022). Our model resembles some of the

simplest pharmacodynamic models in that a cell’s regulator value decreases exponentially,

with rate δ, when the drug is present. The key stochastic aspect of this system is the

random death of cells whose regulator value is sufficiently small. An advantage of this

stochastic approach is its inherent extinction point: the eradication of the last tumour
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cell. The probability distribution of this ’extinction time’ can be computed numerically

and, in simpler models, even analytically. When utilizing ODEs, estimating the mean

extinction time is only possible by tracking when a trajectory reaches a suitable lower

bound. Thus, our question revolves around determining the time until the drug-induced

elimination of all tumour cells.

4.2 Single sustained dose, no cell division

4.2.1 Single cell behaviour

To simulate a heterogenous tumour cell population, we define:

• The number of tumour cells is an integer that may reach zero in finite time.

• Each cell has a regulator value at any time t, scaled to the interval (0, 1).

• We use the uniform distribution on the interval (0,1) as the initial condition for the

regulator value of each cell.

• The action of the drug on an individual cell’s regulator value is given by a determ-

inistic relationship.

• 1/δ describes the exponential decay rate of k caused by the drug.

• 1/µ is the mean time for cells to die once their k value is below 0.25 and they arrive

in the death pool

• A cell i has regulator value ki(t) at time t.

• The probability that this cell is alive at time t and dies before t + ∆t is w(ki(t))∆t.

Thus, w(ki(t)) is its death rate.

The probability that a cell, that is alive at time 0 with regulator value k, is still alive

at time t is found using the hazard-rate formula (N. Holford 2013)

s(t, k) = P (cell survives to time t|ki(0) = k) = exp

(
−
∫ t

0
w(ki(s))ds

)
. (4.1)

Using (4.1), we calculate S(t), the probability that a tumour cell chosen at random from

the initial population, is still alive at time t.

We assume that the regulator value ki(t) of a cell i decreases exponentially if a constant
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4.2 Single sustained dose, no cell division

drug dose is administered.

ki(t) = ki(0) exp(−δt), (4.2)

and that cells with ki(t) < 0.25 are in the death pool. In the simplest case, the death rate

of any cell in the death pool is equal to a constant µ, so that w(ki(t)) = µ. Cells with

ki(0) > 0.25 are not initially in the death pool but enter the pool when their regulator value

has decreased to 0.25. Figure 4.1 is a small-scale illustration of the resulting dynamics:

the ten cells initially present die, one by one, as their regulator values decline under the

influence of the drug, taking them into the death pool.

Figure 4.1: Illustrating the drug effect on a population of 10 cells. Each blue line is the
regulator attribute of one cell as a function of time. Lines terminate in blue dots that
indicate the death of a cell. The cells have different initial regulator values and enter the
death pool (green shaded area) once the drug has decreased their regulator value below
0.25. The parameter values are δ = 0.2 and µ = 1.

To calculate the time a cell with the initial regulator value ki(0) = k enters the death

pool tk, we can use Equation (4.2). By setting k(tk) = 0.25, one gets

tk = inf{t ≥ 0 : ki(t) ≤ 0.25 | ki(0) = k} =


0 0 ≤ k ≤ 1

4

1

δ
log(4k) 1

4 < k ≤ 1.

(4.3)

This time is shown on the LHS in Figure 4.2. If the regulator value ki(t) is already

equal or below 0.25, the tk is zero, otherwise the time to enter the death pool increases

logarithmically with k. On the RHS of Figure 4.2, two possible functions w(k) are shown,

a constant and non-constant k dependent death rate. For a constant death rate w0(k), we

consider that the death rate is a constant value µ if the regulator value of a cell is 0.25 or
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lower, meaning that the cell has entered the death pool. Otherwise, the death rate is set

to be 0:

w0(k) =


0 k > 1

4

µ k < 1
4 .

(4.4)

For a non-constant death rate we use (4.1) with

wnc(k) = max{µ(1− 4k), 0}. (4.5)

This is shown in the blue graph on the LHS of Figure 4.2. The death rate in the

non-constant case is zero until the regulator value decreases below 0.25. Then the death

rate increases linearly with the decrease of k and is the highest at k = 0.

0 0.25 1
0

1

1
δ log 4

k

t k

0 0.25 0.5 0.75 1
0

µ

k

w
(k

)

w0
wnc

Figure 4.2: Left: The time, tk, at which a cell enters the death pool is shown as a function
of the cell’s initial scaled regulator value k. Right: two functions: a constant death rate
w0(k) and a k dependent death rate wnc(k).

Survival and death of individual cells with a constant death rate

Now we consider the case of a constant death rate. We consider a cell chosen at random

from a population with initial regulator values uniformly distributed between 0 and 1.

By integrating over 0− 1, we obtain the average survival probability s(t, k) value of that

population. Therefore, the probability that it survives to t is obtained by integrating (4.1):

S(t) = P (randomly-chosen cell survives to time t) =

∫ 1

0
s(t, k)dk. (4.6)

To compute the probability that the cell i with initial regulator value ki(0) = k

survives to time t, we need to consider the time until that cell arrives into the death pool.
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4.2 Single sustained dose, no cell division

To do so, we evaluate the integral in (4.1) using (4.4):

s(t, k) = P (cell survives to time t|ki(0) = k) =


1 t ≤ tk

e−µ(t−tk) t > tk.

(4.7)

Figure 4.3 shows s(t, k) as a function of t using four values of k (upper) and as a function

of k using four values of t (lower). It can been seen in the upper graph that for k values

bigger than 0.25, the cell has initially a constant survival probability of 1 which decreases

exponentially with e−µ(t−tk) once the cell has entered the death pool after the time span

tk.

0 5

0.5

1

t

s(
t,
k
)

k =0.25
k =0.50
k =0.75
k =1.00

0 0.25 1

0.5

1

k

s(
t,
k
)

t =1
t =2
t =3
t =4

Figure 4.3: Upper: s(t, k) is the probability that a cell, whose initial regulator value ki(0)
is equal to k, is still alive at time t when w(k) = w0(k). If k is fixed then s(t, k) is a
decreasing function of t. Lower: The probability that a cell, whose initial regulator value
is k, is still alive. If t is fixed then s(t, k) is an increasing function of k. The formula used
is (4.7), with µ = 1 and δ = 0.5.

In the lower panel of Figure 4.3 we can see the survival probability of a cell at different

time points as a function of its regulator value k. We can see that for a k value in

(0, 0.25), the survival probability is constant. We assign that probability the function

S1(t). Additionally, we can see that the survival probability depends on k for cells with

a k value from 0.25 till k = etkδ

4 . We assign that survival probability the function S2(t).

When t ≤ tk some cells are still outside the death pool and have the survival probability

of 1 with their k value in ( e
tkδ

4 , 1). We assign those cells the survival probability function

S3(t). At times t ≥ tk, all cells have reached the death pool, but cells with a k value in

(0.25, 1) have a different survival probability than cells which had a k value below 0.25 at
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t = 0. For those cells we assign the survival probability S4(t).

The cells which already have a k ≤ 0.25 value at t = 0 and are in the death pool and

remain there. For those cells we need to evaluate the integral in (4.6) as follows:

S1(t) =

∫ 1
4

0
s(t, k)dk =

∫ 1
4

0
e−µ(t−tk)dk =

1

4
e−µt.

Since tk = 0 for a k ≤ 0.25, this leaves us with the term 1
4e−µt.

Now we are looking into the case when t < tk and not every cell’s regulator value has

reached the death threshold if we chose a cell at random from a population with initial

regulator values uniformly distributed between 0 and 1. This can be seen in the blue

and red line in the lower panel in Figure 4.3. Apart from the cells with k ≤ 0.25, we

are evaluating the integral in two parts: one part contains the cells that have a survival

probability of 1 and the other part has a decreasing survival probability as they have

already reached the death pool at that given time point. The critical k value for entering

the death pool at a given time can be deducted from Equation 4.3 which gives us

tk =
1

δ
log 4k

tkδ = log 4k

etkδ = 4k

k =
eδtk

4
.

Therefore, we integrate from 0.25 till eδtk
4 and from eδtk

4 till 1.

S2(t) =

∫ eδtk
4

0.25
e−µ(t−tk)dk =

∫ eδtk
4

0.25
e
−µ(t−

1

δ
log(4k))

dk = e−µt

∫ eδtk
4

0.25
(4k)δ/µdk

S3(t) =

∫ 1

eδtk
4

1dk = 1− 1

4
eδt.

At times t ≥ tk, all cells have reached the death pool and we consider only the integral

from 0.25 till 1 which gives us

S4(t) =

∫ 1

0.25
e−µ(t−tk)dk =

∫ 1

0.25
e
−µ(t−

1

δ
log(4k))

dk = e−µt

∫ 1

1
4

(4k)δ/µdk.
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To summarise the partial integrals from above, the survival probability of a cell chosen

at random from a population with initial regulator values uniformly distributed between

0 and 1 is as follows:

S(t) =
1

4
e−µt +

∫ 1

1
4

s(t, k)dk

=
1

4
e−µt +


S2(t) + S3(t), if δt < log 4

S4(t), if δt ≥ log 4.

=
1

4
e−µt +


e−µt

∫ 1
4
eδtk

1
4

(4k)µ/δdk + 1− 1

4
eδt, if δt < log 4

e−µt

∫ 1

1
4

(4k)δ/µdk, if δt ≥ log 4.

(4.8)

Note that, if k > 1
4 then eµtk = (4k)µ/δ as tk = 1/δ log(4k). On the RHS in (4.8), the

term 1
4e−µt corresponds to cells that are in the death pool at t = 0 (and remain there).

The term 1 − 1
4eδt is the fraction of cells that are not in the death pool. Solving the

integrals yields,

S(t) =


1− µ

4

eδt − e−µt

δ + µ
, if δt ≤ log 4

Ae−µt, if δt ≥ log 4,

(4.9)

where

A =

∫ 1

0
eµtkdk =

4µ/δ + 1
4
µ
δ

1 + µ
δ

. (4.10)

The factor A describes the delay time for the drug to act and is an increasing function of

the ratio µ/δ, with A = 1 when µ/δ = 0. In the limit µ/δ → 0, the action of the drug is

fast compared to the typical survival time of a cell in the death pool and there is no delay

time for the drug to take effect.

The cumulative distribution function for the death times is F (t) = 1− S(t).

The probability density of single-cell death times, shown as the top panel in Figure 4.6,
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is obtained from the derivative of F (t):

f(t) = F ′(t) = 1− S′(t) =



µδeδt − µ2e−µt

4(δ + µ)
, if δt ≤ log 4

µAe−µt, if δt ≥ log 4.

(4.11)

The mean time to death of a randomly chosen single cell will be denoted IE(τ1). It is equal

to the sum of the mean time to arrive in the death pool plus the mean time to die once

in the death pool:

IE(τ1) =

∫ 1

1
4

tkdk +
1

µ
=

1

δ
(log 4− 3

4
) +

1

µ
. (4.12)

The mean time to arrive in the death pool is the average of all cells that are not in the

death pool at t = 0, hence we integrate over 0.25 till 1. Once the cells are in the death

pool, the time to die follows the exponential distribution with mean 1
µ .

The variance of τ1 is equal to
1

µ2
. In other words, the variability of the mean time to

death of a single cell is a function only of the time the cells take to die once they arrive in

the death pool as in the death pool all the cells have the same probability to die.

Survival and death of individual cells with a non-constant death rate

For a non-constant death rate we use Equation (4.1) with

wnc(k) = max{µ(1− 4k), 0}. (4.13)

The death rate is 0 if the cell’s regulator value is 0.25 or above. Otherwise it will

increase with a decreasing ki(t) value. Thus a cell’s survival probability (as seen in Figure

4.4) is a function of its initial regulator value, given by

snc(t, k) = exp

(
−µ

∫ t

tk

(1− 4k0(s))ds

)
= exp

(
−µ(t− tk −

4k0
δ

(1 + e−δ(t−tk)))

)
,

(4.14)

with tk = 0 if ki(0) ≤ 0.25.

86



4.2 Single sustained dose, no cell division
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Figure 4.4: Upper: snc(t, k) is the probability that a cell, whose initial regulator value
ki(0) is equal to k, is still alive at time t. Lower: The probability that a cell, whose initial
regulator value is k, is still alive at time t. The formula used is (4.14), with µ = 1 and
δ = 0.5.

As δt→∞,

snc(t, k)→


e−µte4kµ/δ, if k ≤ 1

4 ,

e−µt(4k)µ/δeµ/δ, if k > 1
4 .

Now we only consider large times when t > tk. This gives us

Snc(t) =P (randomly-chosen cell survives to time t)

=

∫ 1

0
s1(t, k)dk → Ance

−µt as δt→∞, (4.15)

where

Anc = eµ/δ
4µ/δ − 1

4

1 + µ
δ

+
δ

4µ
(eµ/δ − 1). (4.16)
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4.2.2 Extinction of a cohort of n tumour cells

Suppose there are n tumour cells at t = 0, with regulator values uniformly distributed in

(0, 1). How long until all n cells die? An example realisation, with n = 100, calculated

using the single sustained dose model described in Section 4.2, is shown in Figure 4.5.

That is, the blue line is a number of cells surviving to time t when each, independently, is

assigned an initial regulator value in (0, 1) and, under the action of the drug, enters the

death pool.

Figure 4.5: Blue: The number of surviving cells as a function of time in one realisation.
Also shown is the smooth function obtained by averaging over many realisations, equal to
the survival function S(t) from Equation (4.9) multiplied by the initial number of cells.
The vertical dotted line indicates t = log 4/δ. Here n = 100, δ = 1 and µ = 0.2.

We define the random variable Nt to be the number of cells alive at time t, with

N0 = n. Let τn be the first time that Nt = 0. Inspecting (4.9), we see that the single-

cell survival probability has a simple exponential form as long as δt > log 4. The form

is taken if an individual lifetime is the sum of a fixed time of duration logA/µ and an

exponentially-distributed time with mean 1/µ. Each individual has a life time which is a

constant plus a exponential distributed random variable. This simplifies to a pure death

process.

The exponential random T ∼ Exp(µ) variable has the following cumulative function:

P (T ≤ t) = 1− e−µt

Our modified variable considering one cell dies before time t is

P (T ≤ t) =


0, if t < tk,

1− e−µ(t−tk), if t ≥ tk,
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which we derivative to get probability density function:

f(t) = µeµtke−µt.

This is for one fixed value of tk, to average over all values of k, we use A:

A =

∫ 1

0
eµtkdk

The constant for the delay is A which describes the time the drug needs to take effect

and suppress the cells into the death pool. The delay time for the drug effect is logA
µ

and the extinction time for the death process is 1
µ

(
1 + ... + 1

n

)
. Using the harmonic series

∞∑
n=1

=
1

1
+

1

2
+

1

3
+

1

4
+ ... +

1

n
≃ log n + γ, where γ = 0.577 . . ., this can be simplified.

Therefore, the time to extinction of n such individuals is given by (Renshaw 2011, Chapter

2.2.1)

IE(τn) =
1

µ

(
logA + 1 +

1

2
+

1

3
+ · · ·+ 1

n

)
≃ 1

µ
(log nA + γ) . (4.17)

For the variance of the time to extinction, the delay for the drug effect is not import-

ant. Hence, the variation can be described as 1
(nµ)2

+ 1
((n−1)µ)2

+ .... For a large n, it can

be simplified using the Basel problem which states that
∞∑
n=1

1

n2
≃ π6

6
. This gives us

var(τn) =
1

µ2

(
1 +

1

4
+

1

9
+ · · ·+ 1

n2

)
≃ 1

µ2

π2

6
.

As can be seen in Figures 4.5 and 4.6, a considerable simplification arises because typical

values of τn are large compared to 1/δ. When δt > log 4, P (randomly-chosen cell dies before time t) =

1−Ae−µt, and we are able to derive the probability density of τn explicitly.

Because each cell is independent, when t is larger than log 4/δ,

P (τn < t) = P (n cells all die before t) = (1−Ae−µt)n, (4.18)

and to obtain the probability density of τn we derive Equation (4.18)

fn(t) = µnAe−µt
(
1−Ae−µt

)n−1
, (4.19)

which attains its maximum value when nAe−µt = 1. Figure 4.6 shows the probability
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Figure 4.6: Probability density of extinction times, with n = 1, 10, 100 and 1000. The
solid red lines are the exact results and the blue histograms are compiled from 10000
numerical realisations. The same horizontal scale is used in each case, with µ = 0.2 and
δ = 1. Analytical solutions are shown in red, histograms from numerical simulation in
blue. Top: n = 1. The maximum is at t = 1

δ log 4, after which all cells are in the death
pool. In each of the lower three panels, the vertical dotted line is tmax = 1

µ log(nA). The
ratio µ/δ determines the prefactor A.

density function, with different choices of n. The maximum of the density is at tmax =

1
µ log nA. It is striking, in Figure 4.6, that increasing n while keeping µ constant shifts the

distribution to the right, maintaining its shape. To understand this, consider (4.18) when

t is close to tmax and n is large so that Ae−µt ≪ 1 and log(1−Ae−µt)n = n log(1−Ae−µt) ≃

−nAe−µt. Since log(1) = 0 and we take the exponential, Equation (4.18) simplifies to

P (τn < t) = exp(−nAe−µt) as n→∞. (4.20)

Now we define

T = µ(t− tmax) = µ

(
t− 1

µ
log(nA)

)
= µt− log(nA)

log(nA) = µt− T

nA = eµt−T . (4.21)

Inserting Equation (4.21) into Equation (4.20) gives us

P (τn < t) = exp(−nAe−µt) = exp(−eµt−T e−µt) = exp(−e−T ).
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4.2 Single sustained dose, no cell division

The derivation gives us

fn(t) = µ exp
(
−T − e−T

)
as n→∞ (4.22)

which is the probability density function of the Gumbel distribution. We can use this

result in various ways. Firstly, it means that the random variable Tn = µ(τn − tmax) has

the Gumbel distribution (Gumbel 1935) as n→∞.

Tn = µ(τn − tmax)

Tn

µ
= τn − tmax

τn = tmax +
Tn

µ
=

log(nA)

µ
+

Tn

µ
we define Tn = − log(− logU)

τn = tmax −
log(− logU)

µ

The form (4.20) is convenient for generating random variables that have the same

distribution as that of the extinction time: if U is uniformly distributed in (0, 1) then

the random variable (− log(− logU) + log(nA)) /µ is a sample from the distribution. Re-

arranging (4.20), we find the following.

If P (τn < t) = p

p = e−nAe−µt

1

p
= enAe−µt

log
1

p
= nAe−µt

log

(
log

1

p

)
= log(nA)− µt

1

µ
log

(
log

1

p

)
+ t =

log(nA)

µ

1

µ
log

(
log

1

p

)
+ t = tmax

then t = tmax −
1

µ
log(log(1/p)). (4.23)

In Figure 4.7 we display the cumulative distribution of the extinction time τ1000. The

Figure also indicates t1, t50 and t99, defined as the values of t such that P (τn < t) is equal

to 0.01, 0.50 and 0.99, calculated using (4.23). The constant A is calculated using the

same parameter values as in Figure 4.6.
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formula number

single-cell time to reach the death pool tk
1

δ
log(4k) (4.3)

single-cell survival e−µ(t−tk) (4.7)

fraction of single cells surviving Ae−µt (4.9)

drug effect A
4µ/δ + 1

4
µ
δ

1 + µ
δ

(4.10)

single-cell mean time to extinction 1
δ (log 4− 3

4) + 1
µ (4.12)

single-cell variance time to extinction
1

µ2

fraction of population surviving (Ae−µt)n

population mean extinction time 1
µ (log nA + γ) (4.17)

population variance extinction time 1
µ2

π2

6

Table 4.1: Main formulas for sustained single dose. The time tk is given by equation (4.3),
A is a function of µ/δ given by equation (4.10) and γ = 0.577 . . .
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t1 t50 50 t99 70
0

1

t
P

(τ
n
<

t)

Figure 4.7: The cumulative density function of the extinction time of a cohort of n = 1000
cells. The meaning of the notation on the x axis is: the probability of the extinction time
less than t100p is p. Using equation (4.23), t1 = tmax − 1.50/µ, t50 = tmax + 0.37/µ and
t99 = tmax + 4.6/µ, where tmax = 1

µ log nA.

4.3 Multiple-dose treatment with cell division

In Section 4.3, we consider a model where cells with sufficiently large regulator values

may divide. Under the influence of repeated drug doses and recovery periods, whether

extinction is the ultimate fate of the population depends on the balance between cell death

and division. That balance, in turn, depends on the distribution of regulator values in the

surviving cell population, which becomes biased towards larger values.

In multiple-dose treatment, the drug is given in doses of duration Td each, followed

by a recovery period of duration T − Td. Thus, one cycle takes time T . In the example of

Figure 4.9, the recovery period is twice the dose duration.

Let examine how each cell’s regulator value changes. While a dose is being admin-

istered, the drug’s effect is similar to that described by (4.2):

ki(t) = k0e
−δt 0 ≤ t ≤ Td.

During recovery periods, on the other hand, a cell’s regulator value increases towards its

natural value k0 with rate α. In the first recovery period

k1(t) = k0 − (k0 − k1(Td))e−α(t−Td) Td < t < T.

The term (k0 − k1(Td)) describes the decrease of the k value after the treatment period.

e−α(t−Td) decreases as times becomes larger, hence the whole term (k0 − k1(Td))e−α(t−Td)

becomes close to zero and the cell regains its initial value.
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Figure 4.8: Illustrating the effect of multiple cycles of drug dose and recovery on a small
cell population. Blue lines represent cells that die before the end of the third cycle and
read lines represent cells that survive to the end of the third cycle. Blue dots indicate the
death of a cell, which happens with rate µ to cells with regulator values smaller than 0.25
(green shading). Red dots indicate cell division, which happens with rate λ to cells with
regulator values greater than 0.5 (red shading). In the initial cell population, regulator
values are uniformly distributed between 0 and 1. After three rounds of dose and recovery,
all remaining cells are descended from an initial cell with initial regulator value close to
1. The parameter values are µ = 1, λ = 0.4, δ = 2.5, α = 2, T = 3 and Td = 1.

In general, during the nth dose,

ki(t) = kne−δ(t−nT ) nT < t < nT + Td.

In the nth recovery period

ki(t) = k0 − (k0 − ki(nT + Td))e−α(t−nT−Td) nT + Td < t < (n + 1)T.

0 Td T T + Td 2T 2T + Td

k0
k1

k2

t

k(t)

Figure 4.9: The regulator value of an individual cell under multiple-dose treatment. Drug
doses are administered for time Td (indicated by green shading) followed by a recovery
period. The total cycle time is T . The nth peak value is given by (4.25).

As shown in Figure 4.9, we denote the nth peak regulator value by kn. That is,
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4.3 Multiple-dose treatment with cell division

kn = ki(nT ). Then

k1 = k0(1− e−α(T−Td)) + k0e
−δTde−α(T−Td).

Given n ≥ 1, we find that kn+1 depends on kn and k0 as follows:

kn+1 = Ak0 + Bkn, (4.24)

where A = 1 − e−α(T−Td) and B = e−δTde−α(T−Td). We solve this difference equation by

repetitive substitution. The solution of (4.24) is

kn = K + (k0 −K)Bn where K =
A

1−B
k0. (4.25)

As n → ∞, kn → K. We observe that the asymptotic peak value, K, is a function of T

and Td, δ and α, that depends on the dosing duration and effectiveness, and on the extent

of recovery after each dose.

Now we consider the effect of multiple doses on the size of the cell population. Recall

that cells with ki(t) < 0.5 divide with rate λ and cells with ki(t) < 0.25 dies with rate

µ. Thus, regulator values increase, and the number of cells may increase, in the recovery

intervals between doses. In the examples shown in Figure 4.10, T = 3Td.

If the drug-induced death rate µ is sufficiently large, the increase in cell numbers

during recovery periods is not sufficient to make up, on average, for the loss of cells during

the preceding doses. Then, all cells will eventually be killed. However, the number of

doses for complete extinction varies from realisation to realisation, as illustrated in the

lower part of Figure 4.10. In the Figure, extinction of the cell population (indicated by

a red dot) occurs before the end of the tenth dose in two of the realisations shown. On

the other hand, if µ is smaller than a threshold, the population of cells will increase in the

long run because more cells divide during the recovery periods that are killed during the

doses. This is the situation illustrated in the upper part of Figure 4.10. In this parameter

range, it is possible to observe temporary decrease of average regulator values, and even

extinction of the population, in some realisations.

Can we calculate the threshold value of µ that defines ultimate extinction? We begin

by noting that an individual cell’s fate depends on its initial regulator value. Firstly,
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Figure 4.10: Number of cells as a function of time. Red lines are individual realisations
and the ensemble average is shown in blue. The intervals when the drug is applied are
shaded green. Red dots indicate extinction times. µ = 1 and δ = 2.5, T = 3 and Td = 1.
Top: λ = 0.4. Bottom: λ = 0.25. The initial population of 100 cells has regulator values
chosen uniformly in [0, 1].
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cells with higher ki(0) spend less time in the death pool. Secondly, cells ‘remember’ their

initial regulator value in the sense that ki(t) relaxes towards ki(0) in each recovery phase.

A dramatic example of this is seen in Figure 4.8 where, after three cycles, all surviving cells

are descended from the initial cell with highest regulator value. We provide an estimate

of the threshold in the next section.

symbol dimensions interpretation

µ T−1 cell death

λ T−1 cell division

δ T−1 drug action

α T−1 relaxation

T T cycle time

Td T dose time

Table 4.2: Parameters for multiple-dose treatment.

The distribution of regulator values in the population of cells before the first dose is

uniform in (0, 1). Each cycle of dose and recovery favours cells with larger regulator values

(that spend less time in the death pool and more time in the division pool). This selection

effect is an adaptation of the population akin to the development of drug resistance (even

though it remains true that the drug can, given enough time, kill all cells). Indeed, we

may observe in the lower figure of Figure 4.10 that the first few drug doses do reduce the

cell population significantly, but the cell population that survives is able to recover.

4.4 Estimate of critical value

Given λ, T and Td, what is the minimum value of µ, noted here as µc, necessary to guar-

antee eventual extinction? Figure 4.11 summarises numerical results at different values of

µ. Blue dots represent the mean number of cells still alive after 100 cycles of dose and

recovery. If µ is sufficently large then the mean number of cells is small (and all cells

are eliminated in some realisations). At smaller values of µ, the population grows in the

long run. In a deterministic model, there is a sharp transition between behaviours in the

late-time limit. In a stochastic model, the probability of extinction is non-zero even when
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µ is below the threshold. In both cases, the greater the number of doses, the sharper the

transition appears.

Figure 4.11: Each dot represents the mean number of cells still alive after 100 doses.
The dashed vertical lines are the approximation (4.26). Each dot represents the average
over 10000 realisations. The initial number of cells is 100 and the parameter values are
λ = 0.25, α = 2, δ = 2.5, T = 3 and Td = 1.

With these caveats, it is useful to calculate an approximation for the critical value of

µ and examine its parameter dependence. We may estimate the critical value from the

relation

µ×mean time spent in death pool = λ×mean time spent in division pool.

Applying this relation is not straightforward because it requires knowledge of the distri-

bution of regulator values after many cycles of dose and recovery. We obtain an estimate

of µc by considering the times T1, T2, T3 and T4 that characterise entry to and exit from

the death and divison pools, as shown in Figure 4.12. Using the approximations given in

Figure 4.12, we estimate that the critical value, µc, satisfies the condition

µc(T3 − T2) = λ(T1 + T − T4) (4.26)

The time durations for the dosing process can be estimated as follows: T1 is the time from

treatment start until the cell has reached a k value of 0.5. T2 is the time when the k value

is 0.5. T3 is the time when the cell leaves the death pool and its k value is 0.25. T4 is the

time the recovering cell reaches the k value of 0.5.

µc =
λ(T1 + T − T4)

T3 − T4
+

λ(1/δlog2− Td − 1/δlog2 + T )

Td + 1/αlog(4/3)− 1/δlog6

We note, firstly, that µc is proportional to λ, the division rate of cells when they are in the

division pool. Next, we observe that µc is a decreasing function of δ and of Td/T . That
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is, faster-acting drugs, and drugs that are applied for a longer fraction of the total cycle

time, kill cancer cells more rapidly. The dependence on the parameter α that describes the

rate of relaxation of regulator values in the recovery periods, is more complicated because

speed of recovery affects times spent in both death and division pools.

0 T1 T2 T3T4 T

0.25
0.5

1

t

ki(t)

Figure 4.12: Constructing the approximation. Dotted line: k = 0.5. Dashed line: k = 0.25.
We use the following approximations: T1 = 1

δ log 2, T2 = 1
δ log 4, T3 = Td + 1

α log 4
3 ,

T4 = Td + 1
α log 2.
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4.5 Discussion

The effect of a drug on tumour cells can be described using ODEs or agent based mod-

els. While ODEs often have the advantage of easy implementation and analysis, they do

not naturally capture stochasticity or heterogeneity. Agent based models overcome those

shortcomings in computational models where agents and their interactions are governed by

stochastic rules, perhaps requiring high computational power and running times (Truong

et al. 2022). Here, based on a published agent based model (Truong et al. 2022) where

a heterogeneous cancer cell population is treated with a MEK inhibitor decreasing phos-

phorylated ERK and causing cell death, we use stochastic modelling and analysis as a

bridge between different types of models. We summarise the dynamics in simple math-

ematical expressions. A summary of the formulas can be found in Table 4.1. With the

advance of molecular biology and the development of therapies that target intracellular

signalling pathways (Felten et al. 2023; St Clair 2009; Tsimberidou 2015), it becomes more

important to consider heterogeneity of target cells (Dewachter et al. 2019).

Our model allows us to describe the fate of a single cell under a continuous drug

treatment and can be extended to a heterogeneous population of cells. Heterogeneity

originates in the initial conditions: each cell’s starting k value is chosen randomly between

0 and 1. The effect of the drug is to decrease each cell’s k with timescale 1/δ. As the

population changes in size and distribution, cells with k < 0.25 are in the death pool,

with death rate µ. Cells with k > 0.5 are in the division pool, with division rate λ.

The threshold of the division and death can is adjustable according to the pathway of

interest. 1/δ describes the potency of the drug and can be measured by the activity of

the targeted protein. For example to detect phosphorylated ERK, cancer cell culture were

grown with and without drug treatment and immunoblots of those cultures were created

incubated with antibodies to activated phosphorylated ERK1 and ERK2 and total ERK1

and ERK2. Antibodies are quantifiable with the appropriate anti-mouse or anti-rabbit

horseradish peroxidase–conjugated secondary antibody by enhanced chemiluminescence

(Yeh et al. 2009). The death and division rate can be obtained from tumour cell cultures

under drug treatment in different concentration and without. For example, Yang et al

(J. Yang et al. 2021) used time-resolved microscopy to track the temporal change of the

number of live and dead tumor cells in vitro. Another option are xenograph models where

tumour cells are injected subcutaneoulys or in the same organ as the tumour’s origin .
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The change in tumour size can be measured by surgically removing the tumour for ex vivo

weighing, in vivo tumor volume measurement using calipers, within internal organs by

employing magnetic resonance imaging, computed tomography, or ultrasound (Bonato

et al. 2024). Additionally, organoids can be employed to measure longitudinal changes in

tumour size (Bonato et al. 2024).

The survival probability of each cell and the whole population can be calculated to

obtain the time of population extinction. We identified a relation between the population

size and time to extinction. This helps to predict the required treatment duration for

a given cell population and their size. The cumulative density of extinction times was

obtained which indicates how long to treat until probability of extinction reaches certain

number. In addition, we simulated a multiple dose treatment where the cells are allowed

to recover between the cycles and divide. We found a formula describing how the regulator

value changes over time depending on treatment duration and the drug potency δ. This

provides a tool to predict how adjusting the treatment duration and chosing drugs with

different potencies influences treatment success. Using the method, characteristics of the

population such as a critical division rate for uncontrolled growth or a successful treatment

can be identified. This gives insight into what death rate is needed to drive a population

into extinction depending on the birth rate of that population and treatment duration.

Given a tumour cell population with a certain birth rate, adjustments of the death rate

or treatment duration can be done for a successful treatment.

Stochastic PKPD models are important to describe small populations (for example,

the small residual cancer cell population after effective immunotherapy, or the small initial

population early in infection). Because the dynamics in every individual is partly driven

by random fluctuations, the same set of parameter values and initial conditions leads to

multiple different outcomes. Change over time is dependent on a series of consecutive

probabilistic events. Stochastic models are also applicable in vitro because drug effects

are complex and probabilistic at the single-cell level. Even genetically identical cells in

a uniform environment differ in their response to drugs due to stochasticity in gene ex-

pression levels and other biochemical phenomena (R. Wang et al. 2017). Mutation-based

categorization incompletely recapitulates the complexity and diversity of cancer subtypes,

and sub-classification of tumours based on gene expression profiles potentially improves

clinical decisions (Melo et al. 2013).
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Chapter 5

A hybrid PKPD agent based

model of the tumour immune

interaction and effects of anti

cancer combination therapy

5.1 Introduction

The generation of a potent anti tumour immune reaction is a multiple step process. First,

antigen presenting cells, eg., dendritic cells, capture tumour antigens and process them

with the major histocompatibility complex (MHC) class I and II pathway. The result-

ing peptide epitopes are displayed on the cell surface to stimulate CD8+ and CD4+ T

cells. Usually this process, called priming, happens in the regional lymph node. Then,

tumour specific T cells differentiate into effector cells by receiving a combination of signals

from the T cell receptor which establishes specificity and several costimulatory molecules.

The T cell receptor and associated CD4 or CD8 molecules bind MHC-peptide complexes

presented on dentritic cells. Transmembrane proteins of the B7 and tumour necrosis factor

receptor (TNFR) families, and also receptors for some cytokines, such as interleukin-12

(IL-12), receive costimulatory signals. This includes the costimulatory molecule CD28,

which binds B7-1 (also known as CD80) and B7-2 (also known as CD86) on dentritic

cells, and activating receptors like 4-1BB (also known as CD137 and TNFRSF9), OX40

(also known as TNFRSF4), and glucocorticoid induced TNFR related protein (GITR;
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also known as TNFRSF18) (Vanneman and Dranoff 2012). After activation, cytotoxic T

cells can use two mechanisms for killing the targeted cell: granule exocytosis and death

ligands. The granule exocytosis pathway is initiated by secreting perforin which makes the

tumour plasma membrane permeable for granzymes. Once entered, the cancer cell gran-

zymes cleave critical intracellular substrates controlling cell death and survival. Death

ligands are proteins expressed by cytotoxic lymphocytes on the cell surface or secreted to

exosomes and trigger target cell death via death receptors (Mart́ınez-Lostao et al. 2015).

To maintain an active immune response, T cells must avoid negative regulatory signals

that trigger their inactivation or induce tolerance programs such as anergy or exhaustion.

Major negative costimulatory receptors expressed on the T cell surface are CTLA4 and pro-

grammed death 1 (PD1). Immunosuppressive networks within the tumour micro environ-

ment consist of soluble factors and regulatory cell populations. Myeloid-derived suppressor

cells (MDSCs) expand during cancer, inflammation and infection, and have an ability to

suppress T-cell responses by using soluble factors such as IL-10 and TGFβ and induction

of regulatory T cells (Treg) (Gabrilovich and Nagaraj 2009). Tumour-associated mac-

rophages (TAMs) cause immunosuppression by producing cytokines, chemokines, growth

factors, and triggering the inhibitory immune checkpoint proteins release in T cells (Lin et

al. 2019). One important cell type for regulating and suppressing the immune system are

regulatory T (Treg) cells, a sub-population of T cells. They are crucial for peripheral toler-

ance, preventing autoimmunity, and limiting chronic inflammatory diseases. However, they

can also suppress desired immune reaction i.e. anti tumour immunity. Regulatory T cells

use multiple mechanisms for suppressive effects: suppression by inhibitory cytokines, sup-

pression by cytolysis, suppression by metabolic disruption and suppression by modulation

of dendritic-cell (DC) maturation or function. Treg cells can secrete inhibitory cytokines

such as interleukin-10 (IL-10), transforming growth factor-β (TGF β), and IL-35. Another

mechanism is to mediate cytolysis via granzyme A and/or granzyme B and perforin. Tar-

geted cells can also be killed or suppressed by metabolic disruption. Rapid consumption

of IL-2 by CD25+ Treg cells lead to cytokine-deprivation-mediated apoptosis. In addition

regulatory T cells can generate adenosine pericellular and transfer cyclic AMP intracel-

lularly through membrane gap junctions which expose the target cell to two potently

inhibitory molecules. Suppression can also happen via modulation of DC maturation or

function. Interaction with the cytotoxic T-lymphocyte antigen 4 (CTLA4)–CD80/CD86

induce the release of a potent regulatory molecule, indoleamine 2,3-dioxygenase (IDO).
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Figure 5.1: Immune response against tumour cells (Figure taken from (Leibold et al. 2019)
with permission of the author).

This causes the catabolism of tryptophan into pro-apoptotic metabolites. DC maturation

and function is inhibited by lymphocyte-activation gene 3 (LAG3) binding to MHC class

II molecules. The modulation of dendritic cell co-stimulation also reduces the CD8+ T

cell proliferation (Vignali et al. 2008; Dowling et al. 2018).

Tumour survival and escape depend on various factors, including the immune re-

sponse, concentration gradients (for example, those of oxygen and drug in the tumour

micro environment, TME), and on tumour cell characteristics (such as the location, cell-

cycle phase and PDL1 expression status). In healthy tissue, the PD1 receptor and its

ligand PDL1 prevent excessive immune activity and serve as an immune checkpoint path-

way to maintain ‘self’ tolerance. Under prolonged immune stress, PDL1 expression can

be induced on cancer cells and other cells in the TME, producing an immunosuppress-

ive environment (Han et al. 2020). Cell death due to radiotherapy can be induced by

a combination of direct radiation-mediated cytotoxicity and the stimulation of an anti

tumour immune response. Immune effector cells and suppressor cells can be subject to

radiation-mediated cytotoxicity but more can be attracted by radiotherapy-induced can-

cer cell death (Alfonso et al. 2021). In addition, radiotherapy-induced cancer cell death

can cause PDL1 overexpression (Sato et al. 2019). Furthermore, the efficacy of radio-

therapy depends on the oxygenation status of the tumour cells as hypoxic cells are less
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radiosensitive. Cell-cycle regulation also plays an important role. For example, the G2-M

phase is more sensitive to radiation than the G1 phase. Radiation can activate cell repair

mechanisms such as the intracellular p53 and p21 pathways which results in cell cycle

delay, accumulation in the G1 or G2 phase, and synchronisation (Powathil et al. 2013).

DNA damage response inhibitors counteract these repair mechanisms by inhibiting ataxia

telangiectasia mutated and rad3-related kinase (Checkley et al. 2015).

Similarly to radiotherapy, the cell cycle plays a critical role in chemotherapy efficacy.

For example, the drugs paclitaxel and docetaxel cause cells to accumulate at the G2-M

phase, while flavopiridol treatment results in G1 and G2 phase accumulation (Powathil

et al. 2013; Nehme et al. 2001). Additionally, chemotherapy causes higher immunogenicity

by increasing the potential for cancer cells debris to be recognised by the immune system

but can also lead to an immunosuppressive TME by overexpression of PDL1 on cancer

cells and immune cell death (Fabian et al. 2021; Ng et al. 2018). PDL1 or PD1 anti-

bodies such as pembrolizumab block the interaction between PD1 and its ligands, PDL1

and PDL2. This blockade prevents effector cell exhaustion and facilitates tumuor killing

and immune-mediated rejection (Lindauer et al. 2017). Considering the characteristics

of each treatment option, synergism could be identified. For example, radiation-induced

cell cycle delay can help various cell cycle phase-specific drugs to induce a higher cell kill,

DNA damaging treatments such as radiotherapy or chemotherapy could be combined with

DNA damage response inhibitors, and administration of PD1 antibodies can improve the

immune response after radiation or chemotherapy treatment.

Therefore, with the increasing complexity of mono and combination therapies, it is

critical to understand those interactions, the heterogeneity of the tumour, the emergent

behaviour in the TME, and the therapeutic effect of drug dose and schedule on a given

tumour. Pharmacokinetic and pharmacodynamic models are used to predict dose and

scheduling. However, those ordinary differential equation models often require many states

and an even larger number of parameters to capture the complex behaviour of many cell

types. Additionally, spatial temporal dynamics, heterogeneity, emergent behaviour are

often not incorporated into standard ODE PK-PD modelling approaches (Truong et al.

2022). Therefore, in this chapter, we developed a multiscale hybrid agent based PDE ODE

model that incorporates tumour immune cell interaction which can be easily extended with

different treatment modules such as radiotherapy, PD1 antibody, chemotherapy and DNA

damage response inhibitor treatment.
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5.2 Model structure

The hybrid multiscale immuno-oncology model consists of an agent based modeldescribing

the interaction between cancer cells and immune cells which is extended with ODEs and

PDEs that simulate the oxygen distribution in the TME and different treatment modalities

such as PD1 antibody treatment, radiotherapy, chemotherapy, and DNA damage response

inhibitor.

5.2.1 Agent based model

The ABM consists of cancer cells, immune effector and suppressor cells as agents. The

behaviour of each agent and interaction with each other and the environment is governed

by a set of rules and attributes. Each cell has its location on a square 3D grid with

(x,y,z) coordinates as attributes (see Figure 5.2). In order to avoid long running times,

the number of cells is scaled, so that one cell in the simulation refers to 106 cells in reality.

We assume that the tumour doesn’t include extracellular structures such as fibroblast,

vessels, or other cells, and that the tumour mass is densely packed without void space.

Therefore, we can consider that a 0.1 cm3 tumour would be 108 cells in reality or 100 cells

in the simulation (Del Monte 2009). A 1 cm3 tumour would be 1000 cells in the simulation

and a 100 cm3 tumour would be 10 000 cells in the simulation. The minimum detectable

size in clinical conditions depends on various factors such as the tumour to background

ratio, location of the tumour, imaging isotope and can range from 0.2-2 cm3 (Erdi 2012).

The lethal size is defined as a 1000 cm3 tumour which would be 106 cells in the simulation

(Norton 1988; Brunton and Wheldon 1980). The immune cell cancer cell proportion in

the TME is 1:100 (Gong, Milberg et al. 2017).

Cancer cells

Attributes of cancer cells are the PDL1 expression status, cell cycle phase, and time to

division. They can consume oxygen, mutate, divide, become quiescent, necrotic, and die

due to natural death or due to therapy. A cancer cell ages and goes through the cell cycle

phases. After birth a cell is in the G1 phase for 11h, then it passes through the phases for a

certain time span: S phase for 8h, G2 phase for 4h, and M phase for 1h. Once a cancer cell

is in the M phase, it is ready for division. After division, the cell cycle starts again (Cooper

2000). If the oxygen level is below a threshold or if there is no space next to a cancer cell

for division, it goes into the quiescent/resting phase (G0 phase) until the environmental
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Figure 5.2: Schematic representation of the ABM and the attributes and actions of each
cell type involved.

condition has changed. Oxygen levels can be increased and space can become available

due to cells being eliminated by immune cell killing, radiotherapy, chemotherapy, DNA

damage response inhibitor treatment, necrosis due to low oxygen levels, or natural death.

When division happens, a cell which is ready for division will be randomly chosen, and the

daughter cell will be randomly placed in one of the free positions next to the mother cell.

In a square grid 3D environment there are 26 possible places as there a 3x3 cube with the

tumour cell in the middle. The PDL1 status of the mother cell will be inherited by the

daughter cell. The simulation starts with PDL1-negative cancer cells, and in the course of

the simulation, cancer cells can be randomly chosen to become PDL1-positive. The rates

are calculated using the Gillespie algorithm. The oxygen levels in the environment are

driving the cell behaviour. Cancer cells consume oxygen at a certain rate. Quiescent cells

consume less oxygen than dividing cells.

Immune cells

To simplify the immune reaction, immune cells are summarised as effector and suppressor

cells, that either act as cytotoxic cells which eliminates cancer cells or regulatory cells

which suppresses the immune response. Attributes of immune cells are a certain lifetime

(age), time to division, division count, and exhaustion status for effector cells. Actions

include infiltration into the TME, moving, dividing, ageing, death, and for the effector cells
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exhaustion and killing of cancer cells. In addition, immune suppressor cells can exhaust

immune effector cells. Immune cells randomly infiltrate a free space in the environment.

After infiltration, the division count, time to division, and age start at 0. While being

in the TME, immune cells can move to one of 26 free possible locations next to them.

Immune effector cells are attracted by cancer cells, and they are more likely to move

to a location which is closer to a cancer cell. Immune suppressor cells have the goal to

exhaust immune effector cells and are more likely to move closer to an effector cell position.

Exhaustion happens with a certain rate determined by the Gillespie algorithm when an

immune effector cell is next to a PDL1+ cancer cell or an immune suppressor cell. After

exhaustion, the effector cell becomes inactive and is not able to move, kill, or divide. The

exhausted cells will be cleared from the environment once the lifespan is reached. Effector

cells can kill cancer cells when they are next to a cancer cell. The kill rate is determined

by the Gillespie algorithm. Immune cells age with the time in the simulation. They

die and get cleared from the system when their age is above the lifetime or due to cell

death because of radiation or chemotherapy. Immune cell division happens at a certain

rate when the time to division is reached and the division count is not exhausted. The

daughter cell will be placed randomly in one of the free 26 possible locations next to the

mother cell. The division count and time to division of the mother cell will be updated

after the division event and the daughter cell inherits the division count, and starts the

time to division, and lifespan at 0 (Gong, Milberg et al. 2017).

5.2.2 Gillespie algorithm and rates

The actions are chosen by the Gillespie algorithm (Truong et al. 2022) and the probab-

ilities for an event depend on the reaction rates and cell numbers. Cancer cell division

happens at a rate equal to the division rate per cell (called c div rate in the code be-

low) times the number of existing cancer cells in the environment (len all c cells in the

code below), which makes division more likely the higher the cancer cells numbers are.

A PDL1 expression event is more likely when more cancer cells are being eliminated by

effector cells, chemotherapy or radiotherapy (see c mutate in the code below). The cancer

killing probability increases with the number of effector cells, while the natural cancer cell

death rate depends on the number of cancer cells (see c killed by eff cells and c death in

the code below). The immune effector infiltration rate increases with the number of cancer

cells, immune effector cells in the TME and eliminated cancer cells by the immune reaction
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(see eff infiltrate in the code below) while the suppressor infiltration rate depends on

the number of tumour cells that have been killed by effector cells (see sup infiltrate in

the code below). Immune cell division and moving rates are higher with a larger number

of immune cells (see eff divide in the code below). The effector exhaustion rate depends

on the number of suppressor cells, PDL1+ cancer cells and the receptor occupancy with

the antibody (see eff exhaust in the code below). Those rates and their dependencies

can be changed to account for different tumour types. More details about the parameter

values can be found in the table A.1 in the appendix.

#cancer c e l l

c d i v i d e=c d i v r a t e ∗ i n t ( l e n a l l c c e l l s [ −1])

c mutate=( l . k i l l c o u n t+l . IR count+l . chemo count )∗ c mutate ra te

c k i l l e d b y e f f c e l l s=c k i l l e d r a t e ∗ i n t ( l e n e f f c e l l s [ −1)

c death=death ra t e ∗ i n t ( l e n a l l c c e l l s [ −1])

#suppre s so r c e l l

sup move=i n t ( l e n s u p c e l l s [ −1])∗ sup move rate

s u p i n f i l t r a t e=l . k i l l c o u n t ∗ s u p i n f i l r a t e

sup d iv ide=i n t ( l e n s u p c e l l s [ −1])∗ sup d iv

#e f f e c t o r c e l l

e f f e x h a u s t =( i n t ( l e n s u p c e l l s [−1])+ len PDL1 pos [ −1])

∗ e f f e x h a u s t r a t e ∗p . e x h a u s t p o s s i b l e ∗(100−R0 L [ −1])/10000

e f f move=i n t ( l e n e f f c e l l s [ −1])∗ e f f m o v e r a t e

e f f i n f i l t r a t e=i n t ( l e n a l l c c e l l s [−1]+ l e n e f f c e l l s [ −1]

+l . k i l l c o u n t /2)∗ e f f i n f i l r a t e

e f f d i v i d e=i n t ( l e n e f f c e l l s [ −1])∗ e f f d i v

Oxygen in the environment

The oxygen concentration in the TME is modelled with a PDE, where (x, y, z) are the

spatial coordinates in a three dimensional environment, t is the temporal variable, D is

the diffusion coefficient of oxygen, and U describes the oxygen level in the environment

∂U

∂t
= D

(
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

)
,

109



5. A HYBRID PKPD AGENT BASED MODEL OF THE TUMOUR IMMUNE
INTERACTION AND EFFECTS OF ANTI CANCER COMBINATION THERAPY

which can be written as

∂tU = D∇2U = D (∂xx + ∂yy + ∂zz)U.

This can be discretised using a forward Euler in time and a second-order central finite

difference (Özişik et al. 2017), such that

Un+1
i,j,k − Un

i,j,k

∆t
=D

(Un
i−1,j,k − 2Un

i,j,k + Un
i+1,j,k

(∆x)2
+

Un
i,j−1,k − 2Un

i,j,k + Un
i,j+1,k

(∆y)2

+
Un
i,j,k−1 − 2Un

i,j,k + Un
i,j,k+1

(∆z)2

)
,

which implies that

Un+1
i,j,k =Un

i,j,k + D∆t
(Un

i−1,j,k − 2Un
i,j,k + Un

i+1,j,k

(∆x)2
+

Un
i,j−1,k − 2Un

i,j,k + Un
i,j+1,k

(∆y)2

+
Un
i,j,k−1 − 2Un

i,j,k + Un
i,j,k+1

(∆z)2

)
.

.

Here, n denotes the step for the difference of the time, i denotes the step for the

difference in the x coordinate, j denotes the step for the difference in the y coordinate,

and k denotes the step for the difference in the z coordinate.

We are simulating the oxygen diffusion with the python code below.

de f d i f f u s i o n ( u0 , dt ,D, dg ) :

’ ’ ’ one s tep o f d i f f u s i o n equat ion ’ ’ ’

u = u0 . copy ( )

u [1 : −1 , 1: −1 , 1: −1] = u0 [1 : −1 , 1: −1 , 1: −1] + D ∗ dt ∗ (

( u0 [ 2 : , 1: −1 , 1: −1] − 2∗u0 [1 : −1 , 1: −1 , 1: −1]

+ u0 [ : −2 , 1: −1 , 1 : −1 ] )/( dg∗dg )

+ ( u0 [1 : −1 , 2 : , 1: −1] − 2∗u0 [1 : −1 , 1: −1 , 1: −1]

+ u0 [1 : −1 , : −2 , 1 : −1 ] )/( dg∗dg )

+ ( u0 [1 : −1 , 1: −1 , 2 : ] − 2∗u0 [1 : −1 , 1: −1 , 1: −1]

+ u0 [1 : −1 , 1: −1 , : −2 ] )/( dg∗dg )
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)

re turn u

u0[1:-1, 1:-1, 1:-1] simulates the amount of oxygen in the environment which diffuses in

the 3D grid depending on the diffusion rate D and time step dt. The 3D grid is simulated

with the expression in the brackets after D*dt. Each of the terms simulate the diffusion

along the x, y or z axis. The term (u0[2:, 1:-1, 1:-1] - 2*u0[1:-1, 1:-1, 1:-1] + u0[:-2, 1:-1,

1:-1])/(dg*dg) describes the diffusion along the x axis, (u0[1:-1, 2:, 1:-1] - 2*u0[1:-1, 1:-1,

1:-1] + u0[1:-1, :-2, 1:-1])/(dg*dg) describes the diffusion along the y axis, and (u0[1:-1,

1:-1, 2:] - 2*u0[1:-1, 1:-1, 1:-1] + u0[1:-1, 1:-1, :-2])/(dg*dg) describes the diffusion along

the z axis.

Active dividing cancer cells consume oxygen with the consumption rate ko while

the oxygen consumption of quiescent cells is less by a factor of qc. The parameters are

assumed and can be changed to simulate different degrees of oxygenation in the tumour

micro environment and oxygen consumption rates of the cancer cells. We set the initial

condition of oxygen as 1 and measure the concentration of oxygen in the TME relative

to its initial condition. Cancer cells go into the division, quiescent, and necrotic stage

according to the available oxygen level in the TME. Table 5.1 shows the parameters for

the oxygen diffusion and consumption model.

Parameter Value

Diffusion coefficient D 1 [µm2/d]

Division range 100− 50%

Quiescence range 50− 30%

Death range 30− 0%

Oxygen consumption rate for dividing cancer cells ko 0.001 [%/d]

Factor for oxygen consumption of quiescent cells qc 0.01

Table 5.1: Parameters of the oxygen diffusion and consumption.

5.2.3 Treatment

PD1 antibody

The PD1 antibody treatment module is implemented with a PKPD model from the lit-

erature (Elassaiss-Schaap et al. 2017), where a system of ODEs is used to calculate the

receptor occupancy of the PD1 antibody pembrolizumab on the PD1 effector cell receptor
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which will determine the effector cell exhaustion rate.

The monoclonal PD1 antibody is administrated i.v. into the central (blood) compart-

ment as the concentration C1(t), where it can be distributed to the periphere compartment

as the concentration C2(t) and redistributed to the central compartment with rates K12,

K21. The concentrations in this model are in the units nmol/l. Elimination from the cent-

ral compartment can be linear with the rate K or as a nonlinear saturable rate with the

Michaelis-Menten kinetic Vmax
KM+C1

. Inside the central compartment, the antibody can bind

to the PD1 receptors in the blood (e.g on immune effector cells) denoted with CPD1b(t)

which leads to the bound drug-receptor complex PD1b. Binding and detaching rates are

KonPD1 and KoffPD1. The complex can be degraded with rate Kdeg. The tumour plasma

flow transports the unbound antibody to the tumour compartment at the rate PLQ. The

tumour compartment consists of the vasculature, the endosomal layer and the intersti-

tium. The monoclonal antibody inside the vasculature (Cvs(t)) is transported from the

tumour vasculature to the interstitium via the neonatal fragment crystallizable-receptor

(FcRn) salvage pathway (Ryman and Meibohm 2017). The antibody will be engulfed

and released by the endosomal cell through pinocytosis with rate CLup. The unbound

drug (Cub(t)) binds to the FcRn receptor with rate KonFcRn, and dissociates with rate

KoffFcRn. Unbound proteins or unbound antibodies will be degraded with rate Kdeg,

while the the FcRn receptor antibody complex will not be degraded by lysosomes and a

fraction of the bound drug (Cb(t)) on the FcRn receptor will be released by the vesicle to

either the vascular side, as Cvs(t), with rate FR ∗CLup, or the interstitial side, as Cis(t),

with rate (1−FR) ∗CLup. Pinocytosis can also transport the antibody from the intersti-

tium (Cis(t)) with rate CLup to the endosomal compartment. In addition, the lymph flow

can transfer the drug from the tumour vasculature (Cvs(t)) to the tumour interstitium

(Cis(t)) with rate (1− vref) ∗L. The lymph flow can further eliminate the drug from the

vascular compartment with rate L or from the interstitium with rate (1−vref)∗L. Inside

the interstitial tumour compartment, the antibody concentration Cis(t) binds to the PD1

receptor on immune effector cells (CPD1t) with rate KonPD1 and dissociates KoffPD1.

The bound drug-receptor complex PD1t can initiate hyperbolic feedback and cause a re-

ceptor upregulation (MPD1t(t)) on the immune effector cell. The receptor occupancy

of the drug in the tumour compartment is calculated with the relation of antibody-drug

complex (PD1t(t)) to the concentration of unoccupied receptors (CPD1t(t)). The sub-

script t in PD1t, CPD1t, and MPD1t(t) denotes that those receptors are in the tumour
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Figure 5.3: Schematic of the PKPD model for pembrolizumab

intestitium. Figure 5.3 shows the schematic of the PKPD model for pembrolizumab.

The model consist of the following ODEs:

• Central compartment:

V1
dC1

dt
= −K(C1V1)−

Vmax

KM + C1
C1 − PLQC1 + PLQCvs −K12C1V1

+ K21C2V2 −KonPD1(CPD1b − PD1b) + KoffPD1PD1bV1,

• Peripheral compartment:

V2
dC2

dt
= K12C1V1 −K21C2V2,
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• Vascular space tumour:

Vvs
dCvs

dt
= PLQC1 − (PLQ− L)Cvs − (1− vref)LCvs

− CLupCvs + CLupFRCb,

• Endosomal space monoclonal antibody (mAb) unbound to FcRn:

dCub

dt
=

CLup

Ves
(Cvs + Cis)−KonFcRnCubFcRn + KoffFcRnCb −KdegCub,

• Endosomal space mAb bound to FcRn:

dCb

dt
= −CLup

Ves
Cvs + KonFcRnCubFcRn−KoffFcRnCb,

• Endosomal FcRn:

dFcRn

dt
=

CLup

Ves
Cvs −KonFcRnCubFcRn + KoffFcRnCb,

• Interstitial compartment:

Vis
dCis

dt
= (1− vref)LCvs − (1− vref)LCis − CLupCis

+ CLup(1− FR)Cb −KonPD1CisVis(CPD1t − PD1t) + KoffPD1PD1tVis,

• Drug receptor binding in the tumour:

dPD1t
dt

= KonPD1Cis(CPD1t − PD1t)−KoffPD1PD1t −KdegPD1PD1t,

• Drug receptor binding in blood:

dPD1b
dt

= KonPD1C1(CPD1b − PD1b)−KoffPD1PD1b −KdegPD1PD1b,

• Tumour PD-1 receptor upregulation and elimination (amount):

dMPD1t
dt

= kin

(
1 + Emaxtp

PD1t
EC50tp + PD1t

)
− koutMPD1t,

114



5.2 Model structure

• Receptor occupancy:

R0tumour = 100 ∗ PD1t
CPD1t

.

Radiotherapy

In the radiotherapy module, the survival probability of each cell is simulated with a mod-

ified linear square model and oxygen modification factor (OMF) according to Powathil et

al (Powathil et al. 2013).

OMF =
OER(pO2)

OERm
=

1

OERm

OERmpO2(l) + Km

pO2(l) + Km

Here, pO2(x) describes the oxygen concentration at location l(x, z, y). The ratio of

the radiation doses needed for the same cell kill under anoxic and oxic conditions is OER,

the oxygen enhancement ratio. OERm = 3 is the maximum ratio, where m denotes the

maximum. Km = 3mm Hg is defined as the pO2 at half the increase from 1 to OERm.

The modified linear square model is used to calculate the survival probability of each

cell:

S(d) = exp[γ(−αOMFd− β(OMFd)2)]

S(d) describes the survival probability of a cell which has a certain oxygen modification

factor due to its position and receives a radiation dose d. α and β are sensitivity para-

meters. The sensitivity parameter γ reflects the different susceptibility of each cell kind

and cancer cell cycle phase. In particular:

γ =



1, for cancer cells in S-G2-M phase (Powathil et al. 2013),

0.5, for cancer cells in the G1 phase (Powathil et al. 2013),

0.25, for cancer cells in the G0 phase (Powathil et al. 2013),

1, for immune effector cells [assumed],

0.6, for immune suppressor cells [assumed].
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The sensitivity parameter γ ranges from 0 to 1. The S, G2, and M phases are the

most radiosensitive phases with γ = 1, while the resting phase G0 is the least affected

phase by radiation with γ = 0.25. The G1 phase has a γ value of 0.5. Immune effector

cells are more radiosensitive than immune suppressor cells (Liu et al. 2015). Hence, it is

assumed that γ is 1 for effector cells and 0.6 for suppressor cells.

Considering that damage caused by low-dose radiation (less than 5 Gy), can be re-

paired within hours, a modified linear square model is used (Powathil et al. 2013). This

leads to a modified survival probability:

S∗(d) =


S, d > 5,

S + (1− S)× 0.5, d ≤ 5.

The cell cycle delay in the G1 and G2 phase after radiation is drawn from a uniform

distribution between 1-9h (Powathil et al. 2013). A cell survives if a random number drawn

from a uniform distribution in (0-1) is smaller than the modified survival probability S∗(d)

and dies otherwise.

Immune cell infiltration is modelled deterministically according to Alfonso et al (Alf-

onso et al. 2021) and depends on the number of radiotherapy doses NRT , time of irradiation

tj , number of cancer cells killed by the irradiation KTj , a stimulation decay c, and immune

cell recruitment factors δE for immune effector cells Ei and δS for suppressor cells Si.

Ei =

NRT∑
j=1

KTj(δEe
−c(ti−tj)) (5.1)

Si =

NRT∑
j=1

KTj(δSe
−c(ti−tj)) (5.2)

Each radiation dose NRT cause the death of a certain cell number KTj . The more

cells are being killed by radiation, the more debris will be created which attracts more

immune cells. Additionally, the time point of radiation tj is important. Immediately after

time point tj , the immune cells attraction is the highest and decrease with the increase of

time as it is being modelled with an exponential decay e−c(ti−tj). The recruitment factors

δE and δS and the stimulation decay c can be used to modify the immune cell infiltration
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after radiation.

Chemotherapy

For the chemotherapy module, we simulated treatment with docetaxel with a kinetic/phar-

macodynamic (K/PD) model from Frances et al (Frances et al. 2011). In particular, we

consider

dD

dt
= −kdD + uD(t)D(0)

where D(t) describes the docetaxel amount in g at time t, kD the ’biological constant’

describing the elimination of the drug out of the body to control the dose history profiles,

uD(t) the dosing schedule, and D(0) the initial dose. To take into consideration that the

drug distribution differs throughout the 3D lattice, the drug concentration is scaled based

on the predicted oxygen gradient. To take emerging resistance into account, the killing

rate fD(t) depends on the time t, the amount of drug in the system D(t), the efficacy rate

pD, and the resistance parameter rD:

fD(t) = pDe
−rDtD(t).

The chemotherapy will affect immune cells and cancer cells in the G2 and M phases. The

death probability is calculated by the killing rate fD(t) divided by the maximum killing

rate. A random number is drawn from a uniform distribution in (0,1), if it is smaller than

the survival probability, the cell will die and survive otherwise.

DNA damage response inhibitor

The DNA damage response inhibitor treatment module is based on a PKPD model from

Terranova et al (Terranova et al. 2021):

dCEN

dt
= −(q + cl)

CEN

v1
+ q

PER

v2

dPER

dt
= q(

CEN

v1
− PER

v2
)

where CEN is the drug amount in mg/m2 given i.v. with a body surface area of 1.82

m2, resulting in a drug amount in mg in the central compartment. From there the drug

amount can be distributed and redistributed to the periphere compartment with rate q

where it will be the drug amount PER. The drug is cleared from the body with rate
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cl. v1 is the volume of the central compartment and v2 is the volume of the periphere

compartment. To take into account that the drug that reaches the cancer cells depends

on the location, the drug amount predicted by the PK ODE model is scaled based on

the predicted oxygen gradient. The drug effect E(l, t) at time t and at a certain location

l(x, y, z) is modelled by using the Emax model

E(l, t) = Emax
CEN(l, t)h

ECh
50 + CEN(l, t)h

where Emax denotes the maximal drug effect. Emax is 1 when the repair inhibition

is complete. EC50 is the drug concentration that achieves half of the maximal drug effect

(0.5*Emax) and h is the Hill coefficient.

The drug only affects cancer cells in the S phase. A random number is drawn and

compared with survival probability E(l,t). If that number is bigger than E(l,t), the cell

dies.

5.3 Results

We simulate different tumours with their parameters with and without treatment. The

python code can be found at https://github.com/VanThuyTruong/ABM PKPD.

5.3.1 Tumour immune cell interaction without treatment

Simulating a tumour starting with 100 cancer cells without treatment intervention, we

can see that the cancer grows and attracts immune cells (Figure 5.4a-5.4b). Effector cells

eliminate some cancer cells and as a result, the cancer will express PDL1. Interactions

between immune effector cells and PDL1+ cancer cells and infiltrated suppressor cells

cause effector cell exhaustion (Figures 5.4c-5.4f). Over time the TME becomes more and

more immunosuppressive (see Figures 5.4c-5.4f and Figures 5.5a-5.5c). At the end of sim-

ulation, the exhausted effector cells are gathered around the tumour as a ’protective’ layer

which prevents the active effector cells to come close enough to the tumour to eliminate

cells (Figures 5.5c-5.5d). Overall, an exponential growth can be seen (Figure 5.5e).
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(a) TME at t=0.8d (b) TME at t=20d

(c) TME at t=48d (d) TME at t=97d

(e) TME at t=154d (f) TME at t=190d

Figure 5.4: Figures 5.4a – 5.4f show the interaction of tumour and immune cells over time.
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(a) TME at t=214d (b) TME at t=248d

(c) TME at t=300d (d) Slice through the tumour at end of sim-
ulation

(e) Cell count over time

Figure 5.5: Figures 5.5a – 5.5d show the interaction of the tumour cells with the immune
system over time and at the end of the simulation. Figure 5.5e shows the cell count over
time.
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Analysis of the cell cell interaction without treatment

We use PCA and kmeans to analyse the data produced by the agent based model to

understand the behaviour of the different kinds of agents. The model is run without

treatment. For each cancer cell, we collect information about their position, status (active

dividing, quiescent, cell cycle phase, death due to necrosis or being eliminated by immune

effector cells), their time to division, PDL1 status, and their effector cell and suppressor

cell encounter. The collected information about the effector cells are their current position,

their initial position in the tumour microenvironment, their distance and number of times

they have moved, their age, time to division, division count, the number of encounters with

cancer cells and suppressor cells and their status (exhausted, alive, dead). The suppressor

cells were not analysed as their number is low in comparison to the cancer and effector

cells. Hence, they are assumed to have a similar pattern of behaviour. The collected data

set is multi-dimensional and we identify the first two principal components by using PCA.

Those two principal components describe the variation in the data set with dimensions

thus making the data set easier to visualise. After utilizing PCA, we plot the data in two

dimensions and use the k-means clustering algorithm to identify clusters of data points

that are closely related, to further classify and understand the data set.

We simulated different numbers of clusters (K) for the cancer cell population and

plotted them against the cost (see Figure 5.6a). By extending the downwards slope from

K = 1 and putting a tangent on the cost function for larger K values we create a point

of intersection which gives us 7 as the optimal number of clusters for the cancer cell

population. Those clusters contain cancer cells that are similar in their behaviour and

attributes (for example, their position, status, and encounter with other cells). Those

cancer cell subgroups are shown in different colours in Figure 5.6b. The same method was

applied to the immune effector cells. The results show that the optimal number of clusters

for the effector cells population is 6 (see Figures 5.7a and 5.7b). If we simulate those

interactions with a system of ODEs, 7 equations for the different cancer cell subgroups, 6

equations for the effector cell subgroups and 1 equation for the suppressor cells would be

required. Additionally, more equations might be needed to capture different compartments

for the interaction of cells in different locations of the tumour micro environment. To

sum up, this analysis shows that ABM is suitable to simulate the complex behaviour of

different kinds of cells with a rules and attributes. Instead of having equations for each

subtyp of cancer and effector cell, they are characterised with attributes in the ABM.
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Rules determine actions such as mutation of cancer cells, exhaustion of effector cells or

the movement of cells to a certain location. The cells have (x, y, z) coordinates as an

attribute for their position instead of having a large number of compartments for different

locations in the tumour micro environment. Additionally, unexpected emerging behaviour

can occur due to the interaction of the different kinds of cells and the stochasticity in the

underlying Gillespie algorithm.

(a) The Elbow method shows that the op-
timal number of clusters for the cancer cell
population is 7.

(b) Visualisation of the cancer cell subgroups
after reduction to two dimensions with PCA
and grouping them in 7 clusters with the
kmeans algorithm, shown here with differ-
ent colouring

Figure 5.6: The analysis of the cancer cell behaviour show that they can be divided in 7
subgroups.

(a) The Elbow method shows that the op-
timal number of clusters for the effector cell
population is 6.

(b) Visualisation of the effector cell sub-
groups after reduction to two dimensions
with PCA and grouping them in 6 clusters
with the kmeans algorithm, shown here with
different colouring

Figure 5.7: The analysis of the effector cell behaviour show that they can be divided in 6
subgroups.
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5.3.2 PD1 antibody treatment

A PD1 antibody treatment with a dose of 2 mg/kg Q3W is simulated. The pharma-

cokinetics of the antibody, including the drug distribution in the central and peripheral

compartment, tumour vasculature, endosomal space, intestinal compartment and the drug

PD1 complex, can be seen in 5.8a. This treatment schedule leads to almost 100% receptor

occupancy (see Figure 5.8b) which prevents immune effector cell exhaustion. To show the

importance of the immune cell infiltration, a tumour parameter set with a slow immune

cell infiltration is chosen. Starting treatment at day 100 with 105 infiltrated effector cells

and 1.5% PDL1 mutated cancer cells, the cancer cell growth decreases by 51% in the first

two months and tumour extinction happens at day 535 (Figure 5.8c). Starting at day 200

day with the same treatment and 100% mutated cancer cells, 1400 exhausted effector cells,

and 310 effector cells, extinction happens at day 345 (Figure 5.8e). This simulation shows

the importance of immune effector cell infiltration. The treatment is more effective at a

later time point despite the larger cancer cell and exhausted effector cell count because

more immune effector cells are in the TME at that time which can contribute to tumour

cell elimination. Figures 5.8d and 5.8f, which are snapshots of the TME taken at the

same time point, but with different treatment start times, emphasise this. In the case of

early PD1 treatment (Figure 5.8d) less immune effector cells have infiltrated the TME.

Therefore, even though immune cell exhaustion does not happen since the PD1 receptor

is blocked before the majority of cancer cells become PDL1 positive, the time to tumour

extinction is longer (after 535 days) in comparison to the case of a later treatment starting

at 200 days (extinction happens at day 345). In addition, by keeping the tumour small less

tumour antigen is produced and therefore less immune effector cells are being attracted

into the tumour micro environment.
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(a) PK model (drug concentration in differ-
ent compartments)

(b) PD model (receptor occupancy over
time)

(c) Cell count over time with a treatment of
2 mg/kg Q3W starting at day 100

(d) TME at t=300d with a treatment of 2
mg/kg Q3W starting at day 100

(e) Cell count over time with a treatment of
2 mg/kg Q3W starting at day 200

(f) TME at t=300d with a treatment of 2
mg/kg Q3W starting at day 200

Figure 5.8: Figures 5.8a – 5.8f show the PKPD of a PD1 antibody treatment and the
interaction of tumour and immune cells over time with different treatment schedules.
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5.3.3 Radiotherapy

Investigating radiotherapy also shows the importance of the immune reaction. The radi-

ation causes cancer cell death and creates debris which increases the immune effector cell

infiltration. Radiotherapy is given as a treatment of 2.5 Gy 5 days a week for 7 cycles.

Starting at day 50, less immune effector cells have infiltrated the TME. Therefore, even

with the increased immune response after radiation the tumour cell population reaches a

steady state during treatment and growth is continuing after end of treatment (see Fig.

5.9a). In comparison, at day 100 more immune effector cells are in the TME. The combina-

tion of radiotherapy induced cytotoxicity and immune cell infiltration decreases the tumour

cell count by around 96% at the end of treatment (Figure 5.9c). Due to radiation and

cancer cell elimination by immune cells, PDL1 positive mutants emerge and cause effector

cell exhaustion. Despite this decrease the tumour population can recover and increases

exponential after the treatment finishes. Those simulations also show that radiotherapy

affects the cell cycle phases differently and causes cell cycle delays and redistribution (see

Figures 5.9b, 5.9d).
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(a) Starting radiation at day 50, the tumour
cell population reaches a steady state during
the treatment period and regrows after end
of treatment. The radiation mediated im-
mune cell infiltration is not high enough to
have a significant contribution to decrease
the tumour cell count.

(b) Cell cycle phases over time with a radi-
ation treatment of 2.5 Gy 5 days/week for 6
weeks starting at day 50

(c) Starting radiation at day 100, the tu-
mour cell population decreases due a com-
bination of direct radiation-mediated cyto-
toxicity and the stimulation of an anti tu-
mour immune response which is stronger
than in the case of an early treatment start
as more immune cells have infiltrated the tu-
mour microenvironment at day 100.

(d) Cell cycle phases over time with a radi-
ation treatment of 2.5 Gy 5 days/week for 6
weeks starting at day 100

Figure 5.9: Figures 5.9a – 5.9d show the effect of radiotherapy with a weekly dose of 2.5
Gy/day for 5 days and 7 cycles starting at day 50 and day 100.
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5.3.4 Chemotherapy

Looking into chemotherapy with docetaxel 0.132g Q3W we can see that the time point

for starting the treatment and the tumour size is crucial. The administration of 0.132g

docetaxel Q3W with its concentration over time is shown in Figure 5.10a. This causes a kill

rate which decreases over time due to the emerging resistance of the cells (Figure 5.10b).

Starting the treatment at day 0 initially decreases the cell count, and causes a plateau in

the cancer cell count until resistance emerges and the tumour can grow exponentially to

around 600 cells at the end of the simulation (Figure 5.10c). Starting treatment at day

50, a sharp decrease after the initial dose emerges as docetaxel cause cell death of cancer

cells in the drug-sensitive G2 and M phase. The cancer cell number decreases steadily

until resistance emerges around day 220 and the tumour grows again until over 500 cells

at the end of the simulation (Figure 5.10d). The same treatment beginning at day 100

has a bigger impact on the cancer cell number. Initially, there is a sharp decline in the

cell number after the first dose which follows a time span of approximately 20 days with

an almost constant cell number and then a sharp decline again (Figure 5.10e). Looking

at the plots with the cell cycle phases over time, we can see that after the initial cell kill

of cells in the G2 and M phase, the cells in the dormant state become active again as the

cell death frees up space and oxygen supply can increase. Dormant cells can enter the cell

cycle and increase the cells in the G2 and M phases which are susceptible by chemotherapy

(Figure 5.10f).
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(a) Docetaxel concentration over time (b) Docetaxel kill rate over time including
emerging resistance

(c) Cell count over time with a treatment of
0.132g docetaxel Q3W starting at day 0

(d) Cell count over time with a treatment of
0.132g docetaxel Q3W starting at day 50

(e) Cell count over time with a treatment of
0.132g docetaxel Q3W starting at day 100

(f) Cell cycle phases over time with a treat-
ment of 0.132g docetaxel Q3W starting at
day 100

Figure 5.10: Figures 5.10a – 5.10f show the chemotherapy treatment with 0.132g docetaxel
Q3W with the resulting drug concentration, kill rate, cell count and cell cycle phases.
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5.3.5 DNA damage response inhibitor

Investigating the DNA damage response inhibitor treatment we can see the drug concen-

tration in different compartments from a weekly dose administration of 210 mg/m2 (Figure

5.11a) and the resulting DNA repair inhibition (Figure 5.11b). Figure 5.11c shows that

treatment starting at day 100 causes a decline in the cell count from around 1400 cells

to a steady state of around 500 cells. We can see in Figure 5.11d that after treatment

start at day 100, the cell number in the S phase oscillate as the treatment affects this cell

cycle phase. But due to the weekly treatment schedule, cells from the G1 phase enter the

S phase. This causes an increase which will lower once the treatment is given. Figure

5.12a displays not only a decline in cancer cell numbers after the start of treatment at day

200 but also shows a decrease in exhausted effector cells. The plot with the rates (Figure

5.12c) emphasises this by showing that the effector cells exhaustion decreases after treat-

ment initiation at day 200. The cancer cell count reaches a steady state of around 500 cells.

Looking at Figures 5.11c and 5.12a we can see that the DNA damage response inhibitor

treatment only suppresses the cancer growth but does not eliminate the tumour because

it only lowers the exhaustion rate but does not increase immune effector cell infiltration

(see Figure 5.12c for the rates). Comparing the plot of the TME (Figure 5.12d) with the

TME during PD1 antibody treatment (Figures 5.8d and 5.8f) we can see that there is not

a sufficient number of immune effector cells to eliminate the cancer.

129



5. A HYBRID PKPD AGENT BASED MODEL OF THE TUMOUR IMMUNE
INTERACTION AND EFFECTS OF ANTI CANCER COMBINATION THERAPY

(a) DNA damage response inhibitor concen-
tration over time in different compartments

(b) Drug effect (DNA repair inhibition) over
time

(c) Cell count over time with a treatment of
weekly 210 mg/m2 DNA damage response
inhibitor starting at day 100

(d) Cell cycle phases over time with a weekly
treatment of 210 mg/m2 DNA damage re-
sponse inhibitor starting at day 200

Figure 5.11: Figures 5.11a – 5.12d show the DNA damage response inhibitor treatment
with weekly 210 mg/m2 with the resulting pharmacokinetic and pharmacodynamic, cell
count, rates of cell interaction, and the TME.
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(a) Cell count over time with a treatment of
weekly 210 mg/m2 DNA damage response
inhibitor starting at day 200

(b) Cell cycle phase distribution over time
with a treatment of weekly 210 mg/m2 DNA
damage response inhibitor starting at day
100

(c) Cell interaction rates over time with a
treatment of weekly 210 mg/m2 DNA dam-
age response inhibitor starting at day 200

(d) Tumour micro environment at the end
of simulation with a treatment of weekly
210 mg/m2 DNA damage response inhibitor
starting at day 200

Figure 5.12: Figures 5.11a – 5.12d show the DNA damage response inhibitor treatment
with weekly 210 mg/m2 with the resulting pharmacokinetic and pharmacodynamic, cell
count, rates of cell interaction, and the TME.
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5.3.6 Combination therapy

To understand interactions between different treatment options, we simulate combination

treatment. Looking at the combination of PD1 antibody with radiotherapy, we see that

the right schedule is important. To introduce the subsequent analysis, the PD1 antibody

treatment is given prior to radiotherapy. In Figure 5.13a we can see that the outcome of the

combination therapy with 2 mg/kg PD1 antibody Q3W starting at day 20 with radiation

of 2.5 Gy 5 d/week starting at day 50 for 6 weeks is similar to the case of radiation mono

therapy with the same schedule (see 5.9a for comparison). In contrast, combining PD1

antibody with a later radiation treatment starting at day 100 causes tumour extinction

(see Figure 5.13b). This is caused by the higher immune cell infiltration at the later time.

In addition, radiotherapy causes debris which attracts immune effector cells to the tumour

micro environment. Therefore, the cancer population extinction is caused by a combined

effect of radio toxicity and immunogenetic cancer cell elimination. This example shows

that an established immune response to cancer is crucial to aid treatment success. More

information about adapting radiotherapy to the immune response can be found in the

review article of Galluzzi et al. (Galluzzi et al. 2023).

The combination of a DNA damage response inhibitor with radiotherapy demon-

strates the importance of finding the optimal schedule. The simulation shows that treat-

ment with weekly 210 mg/m2 DNA damage response inhibitor starting from day 100 and

2.5 Gy radiation for 5 days a week starting from day 150 for 6 weeks is detrimental. When

starting the DNA damage response inhibitor early at day 100, the immune response has

not been established and only a low number of immune effector cells have infiltrated the

TME (Figure 5.13c). Decreasing the cancer cell count with the DNA damage response

inhibitor lowers the antigenicity and immune cell infiltration as in this model the immune

effector cell infiltration rate depends on the number of cancer cells in the TME. When

the radiation starts at day 150, immune cells and cancer cells are eliminated due to radio-

toxicity. Radiation-induced cancer cell death leads to an increase in PDL1 expression. This

causes a higher immune effector cell exhaustion rate (see Figure 5.13e). In combination

with the decreased immune effector cell count and the increased immune cell exhaustion,

the equilibrium of cancer growth and elimination by the immune system is disturbed and

the tumour can grow. This cause a peak in the number of exhausted effector cells around

190 days and a peak in the cancer cell count around day 210. The increased immune cell

infiltration due to the cancer cell debris caused by radiotherapy between day 150 and 200
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decreases the cancer cell count after the peak around day 210 and leads to an equilibrium

again from approximately day 225. Figure 5.13d shows the impact of treatment on the

cell cycle phases. DNA damage response inhibitor treatment decreases the cells in the S

phase in an oscillating manner as it is given weekly. Between 150-200 days, radiotherapy

decreases the cell count in all phases.

Looking at the combination of 0.132g Q3W docetaxel treatment starting at day 0

with 2.5 Gy 5 days a week radiation starting at day 100 for 6 weeks, we can see that the

effect of radiation is negligible. Until the end of radiation, approximately 50 cancer cells

have died due to the radiotherapy (Figure 5.13f). Once resistance to the chemotherapy

emerges the cancer grows exponentially to around 600 cells at the end of the simulation.

In contrast, radiation alone with the same administration schedule is able to decrease

the cancer cell number by around 96% (see Figure 5.9c). This example demonstrates the

important contribution of the immune system to tumour extinction. Because ongoing

chemotherapy has eliminated immune cells, radiation is less effective.

133



5. A HYBRID PKPD AGENT BASED MODEL OF THE TUMOUR IMMUNE
INTERACTION AND EFFECTS OF ANTI CANCER COMBINATION THERAPY

(a) Combination of 2mg/kg Q3W PD1 anti-
body treatment starting at day 20 with ra-
diation of 2.5 Gy 5 days a week starting at
day 50 for 6 weeks

(b) Combination of 2mg/kg Q3W PD1 anti-
body treatment starting at day 80 with ra-
diation of 2.5 Gy 5 days a week starting at
day 100 for 6 week

(c) Combination therapy with 210 mg/m2

DNA damage response inhibitor starting
from day 100 and radiation of 2.5 Gy 5 days
a week starting at day 150 for 6 weeks

(d) Reaction rates of the ABM for the treat-
ment case in Figure 5.13c

(e) Treatment with daily 50 mg/kg DNA
damage response inhibitor starting from day
100 and 2.5 Gy radiation for 5 days a weeks
starting from day 150 for 6 weeks

(f) Combination therapy with 0.132g do-
cetaxel Q3W starting from day 0 and radi-
ation of 2.5 Gy 5 days a week starting at day
100 for 6 weeks

Figure 5.13: Figures 5.13a – 5.13f show different options for combination treatment and
their impact on the cell count and cell interaction rates over time.
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5.4 Discussion

We have developed a three dimensional hybrid multi scale agent based ODE PDE model in-

cluding tumour immune interaction, cell cycle phases, oxygen and drug diffusion dynamics,

the pharmacodynamics of chemotherapy, targeted therapies, immunotherapy, radiother-

apy and the respective systemic exposure levels of pharmacological treatments (described

by pharmacokinetic modelling). The aim of this model is to support a more detailed

understanding of the spatial-temporal dynamic interactions between cancer cells, the rel-

evant immune cells, and especially targeted therapies’ molecular moieties, which are all

expected to interact simultaneously in the tumour microenvironment. This interaction can

then be further investigated in the context of combination therapies, thus making some

inroads in the mechanistic understanding of positive and negative synergies when multiple

therapies are administered within this complex system. The key scientific question this

work addresses is the role of temporal sequencing in combination therapies, which require

the simultaneous modelling of many relevant components of the system to be properly

understood.

For the chosen parameter sets, we have simulated the trajectories of tumours without

therapy and with monotherapy or combination therapy. The simulations show the inter-

play between the cell types and which components are contributing to tumour extinction

and their time dependency. The agent-based framework has the advantage of providing

spatial interaction and being a rule-based stochastic bottom up method. Heterogeneity

can be easily simulated. Therefore, emerging behaviour from the interplay between the dif-

ferent cell types and the consequences of the therapy can be observed and provide plausible

mechanisms for unforeseen outcomes (e.g.treatment failure and spatial distribution of im-

mune cells). This makes the framework suitable for simulating complex biological systems

with sub-scale components (molecular, cellular, tissue, organism) and inherent emerging

behaviour with limited empirical data and most relevant to elucidate unexpected behaviors

(micro-known to produce macro-unknown).

Adjustments were made to simplify the model and aid in easier interpretation of the

results: The cells are on a lattice set-up, immune cells are simplified and the vasculature

was omitted. This could come with some limitations: having a lattice constrains the size

of cells. One lattice can only accommodate a certain number of cells while in reality

cancer cells could make clusters with different sizes. In addition, scaling the number of
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cells in the simulation versus the number of cells in reality could cause inaccuracies in the

cell-cell interaction. Further, in our simulation moving and placing daughter cells after

division is only possible on discrete lattice points while in reality immune cells could move

at a continuous distance. Off-lattice models could be used but those require additional

computational power as collision and overlapping placements of cells need to be avoided.

In this model immune cells are modelled as either suppressor or effector cells while in

reality the TME consists of different types of cells such as CD8+ T cells, natural killer

cells, regulatory T cells, and myeloid-derived suppressor cells (Y. Xing et al. 2021). The

immune response is further simplified by omitting T-cell priming, trafficking, recruitment

to the TME, and cytokines. Furthermore, the tumour vasculature is not simulated in

the examples as immune effector cells can randomly enter the TME at a free location

on the lattice. This could be addressed in future by limiting the entry points to certain

locations of the grid. Despite these simplifications, the model can capture characteristics of

cancers such as growth, PDL1 expresssion rate, antigenicity, and consequences of different

treatment options on the TME and cell-cell interaction and provides insight in emerging

behaviour.

Despite the limitations, our model captures experimental observations from the lit-

erature. Our simulations indicate that high immune cell infiltration improves the success

of PD1 antibody treatments. In the model infiltrating immune effector cells cause PDL1

positive mutated cancer cells which drives immune effector cells exhaustion. Once the

PD1-PDL1 exhaustion mechanism is counteracted by the PD1 antibody, in tumour sim-

ulations with a high immune effector cell infiltration, the immune system can erradicate

the tumour. In their study Kitano et al (Kitano et al. 2017) found that expression of

PD-L1 and PD-1 in early breast cancer is associated with higher number of tumour infilt-

rating lymphocytes and pathological complete response. Additionally, PD-L1 expression

in cancer cells and PD-1 expression in tumour infiltrating lymphocytes were significantly

correlated. While data show that PD-L1 and PD-1 are associated with poor clinicopatho-

logical features, paradoxically they are indicators of good prognosis, higher tumour infilt-

rating lymphocyte expression and pathological complete response (Kitano et al. 2017).

Topalian et al. (Topalian et al. 2016) noted that PD-L1 can be driven by oncogenes or

adaptive immune responses and that PD-L1 testing can guide treatment sequencing for

cancers. FDA approval of a PD-L1 IHC test for pembrolizumab in NSCLC was based on

a study showing higher response rates in PD-L1 positive tumors (Topalian et al. 2016).
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Factors like tumor mutational burden and CD8+ T cell density relate to PD-L1 expression

and might serve as easier-to-detect biomarkers. Multi-factor biomarker panels may offer

better predictive value than single markers (Topalian et al. 2016). Obeid et al. (Obeid

et al. 2016) took tissue microarrays of metastatic melanoma samples from 147 patients

and quantified them for CD8C, CD45, CD4C, CD3, CD163, CD20, CD138, FoxP3, PD-1,

PD-L1 and PD-L2 markers by immunohistochemistry. Xing et al (X. Xing et al. 2018)

found that gastric carcinoma patients with high levels of PD-L1 expression had better

survival rates. Those with higher T cell infiltration also showed increased levels of PD-L1,

PD-L2, and PD-1 expression, which correlated with favorable outcomes, suggesting the

presence of an adaptive immune resistance mechanism. Conversely, patients with low-

density CD3 T cell infiltration and no PD-L1 expression in tumor cells had the worst

outcomes across different pathological tumor node metastasis stages, indicating a possibly

inactive immune status. These findings underscore the importance of assessing PD-L1

expression in all tumor contexts and thoroughly characterizing the immune microenvir-

onment in gastric cancer. Studies on NSCLC (Hu-Lieskovan et al. 2019) found PD-L1,

tumour mutational burden, and CD8+ T cells are associated with positive responses to

PD-1 blockade, with PD-L1 being the strongest predictor of overall survival. Ott et al.

(Ott et al. 2019) demonstrated that a T-cell–inflamed gene-expression profile, PD-L1, and

TMB predict responses to pembrolizumab across various tumors, highlighting that com-

bined biomarkers can identify patients more likely to respond to anti-PD-1 therapies. This

comprehensive review of PD-L1 testing emphasises its importance in guiding treatment

decisions and improving patient outcomes in multiple cancer types.

Similar to PD1 antibody treatment, our simulations demonstrate that the immune

system is crucial for the success of radiotherapy, which is supported by existing literature.

Host immune status plays a critical role in determining the effectiveness of radiation

treatment. Radiation triggers the release of danger signals and chemokines that attract

inflammatory cells to the tumor microenvironment, including antigen-presenting cells that

activate cytotoxic T-cell function. Conversely, radiation can also draw immunosuppressive

cells into the tumor microenvironment (Weichselbaum et al. 2017).

A study by Stone et al. (Slone et al. 1979) in a mouse fibrosarcoma model estab-

lished that the host’s immune status affects the efficacy of radiation-induced antitumor

effects. Subsequent research by Lee et al. (Y. Lee et al. 2009) showed that T cells are

essential for tumor regression following high-dose radiation (15–20 Gy). In their study,
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mouse melanoma B16 tumors in immunocompetent hosts responded to high-dose radi-

ation, while tumors in nude mice (without T cells and some B cells) or in wild-type hosts

with depleted cytotoxic CD8+ T cells did not respond to ionizing radiation (Y. Lee et al.

2009). Additionally, radiation promoted antigen-specific T-cell priming. This effect could

be suppressed chemotherapy such with paclitaxel or dacarbazine, indicating the need to

carefully consider the timing and type of chemotherapy used in combination with radiation

to avoid immunosuppressive effects (Y. Lee et al. 2009; Weichselbaum et al. 2017). An

analysis of The Cancer Genome Atlas data (Weinstein et al. 2013) across seven cancers

by Wen et al (Wen et al. 2020) revealed complex associations between immune infiltration

and radiotherapy outcomes. A prognostic model based on immune infiltration status was

developed. Overall, immune infiltration was found to be highly relevant to radiotherapy

outcomes, highlighting the importance of understanding tumor-associated immune cell

infiltration for identifying biomarkers and therapeutic targets (Wen et al. 2020).

Future work could involve calibrating the model to specific cancer types and patients

to generate predictions for clinical hypothesis testing. Emerging technologies, such as mul-

tiregion sequencing, single-cell sequencing, analysis of autopsy samples, and longitudinal

liquid biopsy analysis, offer potential methods to gain insight into the complex architecture

of cancers (Dagogo-Jack and Shaw 2018). For instance, Topalian et al. (Topalian et al.

2016) characterised melanoma, gastric carcinoma, and breast carcinoma with PDL1+ tu-

mor cells, with and without immune cell infiltration, using immunohistochemistry. Obeid

et al. selected metastatic melanoma samples from 183 resections obtained from 147 pa-

tients, utilizing ample clinical follow-up and surgical pathology material to obtain core

samples from at least 3–4 tumor regions for tissue microarray construction. They quanti-

fied those tissue microarrays for CD8, CD45, CD4, CD3, CD163, CD20, CD138, FoxP3,

PD-1, PDL1, and PDL2 markers using immunohistochemistry. Similarly, Xing et al. (X.

Xing et al. 2018) performed immunohistochemistry on a tissue microarray of 1,014 gastric

carcinoma specimens using PD1, PDL1, and PDL2 antibodies, along with T cell markers

CD3 and CD8, quantified through automated image analysis.

The immune response to radiotherapy can be measured using various imaging meth-

ods, such as MRI, single-photon emission CT, and PET, which enable visualization of

the distributions and dynamics of immune cell populations (Grassberger et al. 2019).

Candidate immune-based biomarkers of response to radiotherapy include: clinical blood

count measurements (e.g., lymphocyte, neutrophil count), circulating immune cell sub-
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populations (e.g., T cell subtypes, myeloid-derived suppressor cells, tumor-antigen-specific

lymphocytes), cell surface markers (e.g., PD-1, PDL1, FAS ligand, tumor-antigen-specific

cytotoxic T lymphocytes), functional assays of lymphocyte activity (e.g., in vitro anti-

gen stimulation, response to vaccine challenge, natural killer cell activity assay), tumour-

infiltrating lymphocytes (e.g., CD8+ tumor-infiltrating lymphocytes, CD8+PD-1+ TILs,

tumor-antigen-specific TILs), circulating inflammatory markers (e.g., C-reactive protein,

lactate dehydrogenase), circulating cytokines (e.g., interleukins, TGFβ), and humoral

markers (Grassberger et al. 2019).

Due to the explicit spatial setup in our ABM, pathological images from tumor biopsies

and model outputs can be compared. Patient data can serve as initial conditions for simu-

lations, as well as for calibration and validation purposes. Detected objects, such as cancer

cells and immune cells, can be mapped with corresponding agents in the model (Gong,

Anders et al. 2019).

Future work could involve adjusting parameter values to fit the model to specific tumor

types and simulating the tumor microenvironment architecture in greater detail, such as

including vasculature. Additionally, the process of finding the optimal treatment for a

given tumor could be automated using artificial intelligence methods, such as reinforcement

learning.
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Chapter 6

Combining a hybrid PKPD agent

based model with a reinforcement

learning algorithm to optimise

cancer combination treatment

6.1 Introduction

Combination therapy is a regimen that combines two or more therapeutic agents. The

rationale behind using this approach includes several factors. Firstly, some treatments

may have complementary mechanisms of action, leading to enhanced therapeutic effects

when used together. The combined effect of multiple agents can be greater than the sum

of their individual effects. For example, research in cancer therapy became focused on

investigating combination therapies that target different pathways to create an enhanced

effect. Secondly, using a single medication can lead to the development of resistance as the

constant exposure to a single compound induces cancer cells to initiate alternative salvage

pathways. By using a combination of drugs that act through different mechanisms, it is

possible to produce an effective treatment response in fewer cycles and therefore minimise

the development of resistance. Thirdly, due to additive effects of multiple drugs, a lower

dose is required. This can have a reduced toxicity as lower doses of multiple drugs can be

better tolerated than higher dose of a single medication. Lastly, by combining multiple

drugs, a broader spectrum of mechanism of actions can be archived. Targeting multiple as-
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pects simultaneously can be useful in diseases with a complex pathophysiology or potential

evasion mechanism (Mokhtari et al. 2017). While combination therapy can be highly effect-

ive, therapies such as cancer treatment involving drugs with narrow therapeutic windows,

high inter-individual variability, or combination of interacting drugs require a schedule

that considers the effects of multiple drugs. Treatment schedules need to be accounted

for altering status such as mutation caused by previous treatment or changing immune

cell infiltration. Further, different sensitivity to drugs for example due to location or cell

cycle phase have to be considered. Currently in oncology clinical trials drugs are often

given simultaneously without considering how effects of the individual drug on the tumour

cells and tumour micro environment might enhance or decrease treatment outcome. For

example in the KEYNOTE trial pembrolizumab was administered for up to 35 cycles and

chemotherapy for the first 4 cycles (Paz-Ares et al. 2018). Or the DNA damage response

inhibitor berzosertib is combined with different chemotherapeutic from day 1 (Terranova

et al. 2021). Reinforcement learning has the potential to improve combination therapy

dosing by incorporating interacting components in a flexible manner and enhance the full

potential of drug combinations (Ribba et al. 2022). Instead of a concurrent treatment

regime, the algorithm can analyse interactions of the drug and tumour micro environment

and suggest the best time point for administration of multiple drugs.

Reinforcement Learning belongs to the class of Artificial Intelligence decision-making

algorithms and is closely related to optimal control theory. It imitates learning by interac-

tion with the environment with the aim of identifying the best action in a given situation

to maximise the long-term reward (Sutton and Barto 2018). This algorithm differs from

supervised learning techniques by focusing on immediate feedback from the environment

instead of correcting input/output pairs or direct instruction on what to achieve, thus

being able to find unexpected solution. During the learning phase the learner explores

the environment by taking random actions and collects resulting rewards. It also exploits

the learned knowledge and chooses the best action. The aim is to find a balance between

exploration and exploitation (Ribba et al. 2022; Jalalimanesh et al. 2017). The foundation

of Reinforcement Learning is built upon a Markov decision process, comprising four crucial

components: States (S), Actions (A), Transition Probability, and Reward function (R).

Transition probability represents the likelihood of moving from the current state to the

next state, while the reward function provides the gain upon taking action in the current

state (S × A → R) (Ziyan Wang et al. 2020). The decision for a future action only de-
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pends on the current state as this state alone holds sufficient information to determine the

optimal sequence of actions that maximise long-term rewards. Hence a Markov process is

applied (Ribba et al. 2022).

The solution to the Markov decision process is a policy (π) that outlines the best

actions for the agent to take in each state, along with their corresponding real values (V).

If the transition probabilities and rewards are unknown, the Markov decision process

problem becomes a reinforcement learning problem. Reinforcement learning falls under

the realm of machine learning, involving an agent that optimises decision-making through

trials within a fixed environment with reward functions (Ziyan Wang et al. 2020). The

primary goal in reinforcement learning is to maximise the value function for a controller

or agent to direct the state of the environment (system) towards a target. Controller ac-

tions that lead to appropriate changes in the system receive rewards, while inappropriate

actions are penalised, and these experiences accumulate in the value function. Reinforce-

ment learning concepts can be applied to clinical decision processes in precision medicine,

where medical professionals act as controllers, patients or patient populations represent

the system, treatment decisions serve as actions, disease states or biomarkers as states,

and the reward function denotes clinical utility (McComb et al. 2022). The algorithm’s

aim is to determine an optimal policy, which is a sequence of state-action pairs generating

the highest cumulative reward. It is insufficient to focus solely on maximizing rewards

at each step; instead, the emphasis lies on the long-term cumulative reward. An optimal

policy might involve actions that do not lead to the highest instantaneous reward but

ultimately maximise rewards in subsequent actions. This concept can be linked to a ten-

nis player intentionally losing a game on the opponent’s service to conserve energy and

perform better in the following game, where they serve for the set.

Reinforcement learning problems are often solved using value (or action-value) func-

tions, commonly known as ”Q” which represents the expected cumulative reward from a

specific state or state-action pair (Ribba et al. 2022). Once the Q values are known, the

algorithm selects the action with the highest Q value for a given state. If the Q value

is unknown, it is learned through experience. The algorithm undergoes a training period

where it explores the environment randomly and collects rewards for the chosen actions.

The epsilon-greedy algorithm is used to balance out exploration and exploitation, allowing

the system to randomly explore the environment to collect unknown rewards or punish-
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ments while also exploiting the known best Q values (Sutton and Barto 2018). Agent

based models often involve stochastic simulations with a large number of states, making it

challenging to extract a finite Markov decision process. Consequently, model-free reinforce-

ment learning algorithms like Q-learning are well-suited for optimization. In Q-learning,

we define a set of state spaces (S), a set of possible actions (A), and a reward function R:

S × A → R (Jalalimanesh et al. 2017). After each iteration of the algorithm, the system

selects an action (A’), leading to a new state (S’). The value of the new state determines

the reward (R) of the action (A) in the current state (S). Running the algorithm involves

filling the Q(S,A) matrix by aggregating the rewards for all state-action pairs. Ultimately,

the algorithm converges to the best policy, represented by the maximum elements in the

Q(S,A) rows (Jalalimanesh et al. 2017). The algorithm uses the Bellmann equation to

update the Q values during the learning process.

Q(S,A) = Q(S,A) + α(R + γmaxQ(S′, A′)−Q(S,A)) (6.1)

Q(S,A) is the Q-value for taking action A in state S. It represents the expected cu-

mulative reward when starting in state S, taking action A, and then following the optimal

policy thereafter. α is the learning rate, which determines the weight of the new informa-

tion when updating the Q-value. R is the immediate reward received after taking action A

in state S. γ is the discount factor, which controls the importance of future rewards com-

pared to immediate rewards. It is a value between 0 and 1. The key idea in Q-learning is

to iteratively update the Q-values based on the Bellmann equation. The algorithm starts

with arbitrary Q-values and then interacts with the environment by taking actions and

observing rewards. After each action, the Q-value for the state-action pair is updated

using the Bellmann equation, incorporating the observed reward and the estimated value

of the next state (obtained by taking the maximum Q-value over all possible actions in the

next state). Through repeated interactions and updates, the Q-values gradually converge

towards the optimal Q-values, which represent the maximum expected cumulative reward

achievable from each state-action pair. As the algorithm continues to explore and exploit

the environment, the Q-values get refined, allowing the algorithm to make better decisions

and follow an optimal policy that maximises long-term rewards.

Many examples using reinforcement learning to optimise treatment can be found in

literature. Moodie et al applied Q-learning to estimate optimal dynamic treatment rules
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from observational data (Moodie et al. 2012). Krakow and colleagues used this method to

find personalised treatment recommendations from cohort and registry data (Krakow et al.

2017). Radiotherapy was optimised with Q learning by Jalalimanesh et al (Jalalimanesh

et al. 2017). Escandell-Montero et al. optimised of anemia treatment in hemodialysis

patients via reinforcement learning (Escandell-Montero et al. 2014). Gaweda et al. indi-

vidualised anemia management using reinforcement learning (Gaweda et al. 2005). Moore

and colleagues showed how reinforcement learning can be used in propofol anesthesia

(Moore et al. 2014). Zhao et al use this method to discover individualised treatment regi-

mens. The optimal policy is learned from a single training set of finite longitudinal patient

trajectories (Zhao et al. 2009). This is the first report describing the integration of an

agent based system pharmacology model with reinforcement learning methods. Given the

mechanistic nature of the model, insights into tumour immune cell interaction and effects

of combination treatment is provided while the reinforcement algorithm is used to find the

optimal treatment schedule for a given cancer with its parameters.

6.2 Methods

We use the tumour immune interaction model from our previous chapter where an agent-

based model is used to simulate tumour and immune effector and suppressor cells. The

behaviour of each agent and interaction with each other and the environment is governed

by a set of rules and attributes. Cancer cells can divide and attract immune effector and

suppressor cells into the tumour micro environment. Immune effector cells can eliminate

cancer cells which causes a higher mutation rate from the PDL1 negative phenotype to

the PDL1 positive cancer cells. PD1-PDL1 interaction leads to immune cell exhaustion.

The PD1 antibody treatment is implemented with a PBPK model (Elassaiss-Schaap et al.

2017) . The survival probability of each cell after radiation is simulated with a modified

linear square model and the cell cycle delay after radiation and immune cell infiltration are

considered (Powathil et al. 2013; Alfonso et al. 2021). We simulated docetaxel treatment

with a K/PD model including an efficacy rate and a resistance parameter (Frances et al.

2011). Chemotherapy affects immune cells and cancer cells in the G2 and M phases. The

DNA damage response inhibitor treatment only affects cancer cells in the S phase and is

based on a PKPD model (Terranova et al. 2021). To take into account that the drug that

reaches the cancer cells depends on the location, the drug amount predicted by the PK

ODE models is scaled based on the oxygen gradient PDE.
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Figure 6.1: Schematic representation of the integration of PKPD, PBPK, modified linear
squared model and ABM with the reinforcement learning algorithm

The underlying PKPD agent based model and the reinforcement algorithm are pro-

grammed in Python 3.8. To find the optimal combination therapy we firstly set up a Q

table and define the relevant states. Number of cancer cells, immune effector and sup-

pressor cells are important factors for the tumour immune architecture contributing to

the dynamic interaction. Further, the percentage of cancer cells in the drug and radiation

sensitive G2, M and S phase needs to be considered. To limit the number of states, we

define the number of states for the cancer cells (c cells in the code snippet below) as 100.

The cancer cell number is counted in steps of 1000 cells. So, the first state contains 0-1000

cancer cells, the second has 1001-2000 cells and the last state consist of 100,000 or more

cells. There are 100 states for each of the immune cells types (sup and eff in the code

snippet below). They are counted in steps of 50 cells. The first state has 0-50 cells, the

second one contains 51-100 cells and the state with the highest immune cell count consist

of 500 or more cells. The percentage of cancer cells in the susceptible cell phase G2, M

and S phase are summarised in 10% steps (states S and G2M).

Therefore, we set up the Q table as follows:

c c e l l s = 100

S= 10

G2M=10

sup=100
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e f f =100

a c t i o n i n=7

q va lue s = np . z e r o s ( ( c c e l l s , S ,G2M, sup , e f f , a c t i o n i n ) )

The Q table q values is a six dimensional table filled with zeros initially and will be

updated with the Q values Q(S,A) during the runs. We set the number of actions that

the algorithm can choose to 7. Therefore, the action row in the Q table has 7 columns.

Possible actions are:

1. Radiation of 2.5 Gy/day (limitation: 5 days/week for a maximum of 30 doses all

together)

2. Radiation and PD1 antibody 2 mg/kg (limitation Q3W)

3. Radiation and DDRi 210 mg/m2 (limitation Q1W)

4. No action

5. DDRi 210 mg/m2 (limitation Q1W)

6. Docetaxel 0.132 g (limitation Q3W)

7. PD1 antibody 2 mg/kg (limitation Q3W)

Due to toxicity we have constrains regarding the schedule. Radiation is given as 2.5

Gy/day with the limitation of 5 days/week for a maximum of 30 times all together during

the simulation period. PD1 antibody is given as a dose of 2 mg/kg with a minimum break

of 3 weeks until the next dose. DNA damage response inhibitor is dose at 210 mg/m2 with

a minimum break of 1 week between the doses. The treatment actions are chosen based

on current therapeutic regimes. It is easily possible to modify the doses, schedules or add

more treatment options depending on the interest of the user. The running time needs to

be taken into consideration. With an increases number of treatment options (actions) the

running time to learn from the environment and to fill the Q table will get larger.

After an action is chosen, a reward based on the number of eliminated cancer cells

in that time step (cancer cells being eliminated by effector cells (cancer.kill by eff in

the code snippet below), by radiation (cancer.IR kill), by DNA damage response in-

hibitor (cancer.DDRi kill), by natural death (cancer.natural death), by chemotherapy

(cancer.chemo kill)) and immune effector cells (being eliminated by radiation (eff.IR kill),

by chemotherapy (eff.chemo kill)) at that time point is calculated. The reward will be
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higher if cancer cells are being killed by treatment or by immune effector cells. The reward

takes delayed killing into account which can happen when immune effector cells need to be

attracted into the environment by previous actions. Toxicity of treatment is discouraged

by decreasing the reward by the number of eliminated immune effector cells by the treat-

ment. The factors rx and ry can be used to encourage the algorithm to take a less toxic

approach by increasing ry or a more aggressive treatment by increasing rx. The ultimate

goal is to eradicate the cancer, therefore the reward for cancer elimination is set as 10000.

reward=rx ∗( cancer . k i l l b y e f f+cancer . I R k i l l+cancer . DDRi ki l l

+cancer . na tura l dea th+cancer . chemo k i l l )

−ry ∗( e f f . I R k i l l+e f f . chemo k i l l )

i f cancer number==0:

reward+=reward+10000

Since we set rx and ry as 1, the reward can range from the maximum number of

cancer cells possible in the simulation (this number is set to 106 cells) as the maximum

and the minimum is set by how many immune effector cells can be eliminated. Since the

ratio between immune cells and cancer cells is 1:100, the minimum is −104.

We use the epsilon greedy algorithm which is a strategy to determine whether the Q

learning algorithm should explore the environment randomly or choose the action from the

Q table with the highest return. It works as follows: The function draws a random number.

If that number is smaller than epsilon, the most favourable possible action in that state

will be chosen, otherwise a random action will be chosen. The function get next action in

the code snippet below shows how this is being coded. The value for epsilon depends on

the environment. A small epsilon encourages exploration over exploitation of the known

rewards. With a larger number of possible actions and outcomes the epsilon value can

be smaller. Therefore, during the initial phase of the training with unknown outcomes

the epsilon value can be smaller and increase with larger experience. In our example, the

epsilon value starts at 0.0001 for the first run and increases in steps of 0.0001 to 1 for the

last run.

de f g e t n e x t a c t i o n ( c q1 , S q1 , G q1 , sup q1 , e f f q 1 , ep s i l on ,

q va lues , a c t i o n i n ) :

#i f a randomly chosen value between 0 and 1 i s l e s s than eps i l on ,

#then choose the most promis ing value from the Q−t a b l e f o r t h i s s t a t e .
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i f np . random . random ( ) < e p s i l o n :

r e turn np . argmax ( q va lue s [ c q1 , S q1 , G2M q1 , sup q1 , e f f q 1 ] )

e l s e : #choose a random act i on

return np . random . rand int ( a c t i o n i n )

After each action the reward is used to update the Q table according to the Bellmann

equation (Equation 6.1). Firstly, as seen in the code snipped below the old Q value Q(S,A)

is located in the Q table with the state S and action A. The state contains a certain cancer

cell number (c q1), percentage of cancer cells in the S phase (S q1), percentage of cancer

cells in the G2 and M phase (G2M 1), the number of immune suppressor cells (sup q1),

immune effector cells (eff q1). The action is described with the action index. The temporal

difference is the difference between the current estimate for a Q-value for a state-action

pair and the updated Q-value. The temporal difference consist of the immediate reward,

the maximum reward in the future state times the discount factor. The discount factor

is a value between 0 and 1 that represents the importance of future rewards compared

to immediate rewards. If it close to 0, the agent becomes myopic and tries to maximise

immediate rewards. The new Q value is updated using the old Q value, the learning rate

and the temporal difference. The learning rate scales the impact of the new information

relative to the current Q-value. A high learning rate means the algorithm adapts quickly

to new experiences but may forget older information, while a low learning rate makes the

algorithm slower to adapt but more resistant to changes in the environment. It is essential

to balance the learning rate to ensure the algorithm converges to an optimal policy. A

too high learning rate can lead to oscillations or divergence, while a low learning rate can

result in slow learning and potentially getting stuck in suboptimal policies.

o l d q v a l u e=q va lue s [ c q1 , S q1 , G2M q1 , sup q1 , e f f q 1 , a c t i o n i n d e x ]

t e m p o r a l d i f f e r e n c e = reward

+ d i s c o u n t f a c t o r ∗ np . max( q va lue s [ c q2 , S q2 , G2M q2 , sup q2 , e f f q 2 ] )

− o l d q v a l u e

new q value = o l d q v a l u e + ( l e a r n i n g r a t e ∗ t e m p o r a l d i f f e r e n c e )

q va lue s [ c q1 , S q1 , G q1 , sup q1 , e f f q 1 , a c t i o n i n d e x ] = new q value

A run starts at day 0 and ends at day 400 or earlier when the tumour has gone

extinct. The algorithm is run for a large number of iteration, for example 10000 runs.

This provides the opportunity to collect enough experience about the environment and

148



6.3 Results

beneficial actions. The epsilon value increases with every run, hence exploration is more

favoured at the beginning and during the later runs exploitation of the collected experience

is dominating. After a large number of runs, the algorithm finds an optimal solution and

rewards are less negative and the chosen treatments are similar as exploitation of the

collected knowledge is preferred over random exploration of the environment.

6.3 Results

We simulated a treatment starting at 50 days and 100 days to mimic an early tumour

detection treatment paradigm, starting later when a more developed tumour environment

exists to understand potential differentiation of treatment needed. After 50 days the

tumour grows to a size of 150-350 cells in the different runs as the agent-based model

is stochastic and each run is slightly different. After 100 days the tumour mass reaches

a size of 800-1800 cells. 10000 runs take approximately 24h. During the simulation the

epsilon values increases so that in the first runs the algorithm is encouraged to explore the

environment and learn about the consequences of the different treatment options on the

tumour immune interaction while during the later runs the algorithm is more likely to use

the experience from previous runs and choose the optimal action for a long term reward.

We display the results and behaviour of selected runs for a treatment starting at day 50 in

Figures 6.2 to 6.5. We can see during the runs 2-18, that all 4 possible treatment options are

chosen (see Figure 6.2). In some cases the tumour goes extinct, but in other cases despite

the treatment the tumour grows to approximately 780 cells from 350 cells at the beginning

of treatment in run 5 or to approximately 800 cells from about 400 cells at day 50 in run

18. The rewards that the algorithm received after an action can vary from approximately

-24 till 146. During the runs 3833-3881 the epsilon value has increased to approximately

0.38. The algorithm has a high likelihood to explore the environment but sometimes base

its action on the previous learning. We can see in Figure 6.3 that the algorithm has learned

to control the tumour growth and in no case the cancer cell number increases over the

number at 50 days. In the simulations 7744-7767 (Figure 6.4) we can see that with an

epsilon of approximately 0.77 the algorithm has learned to control the tumour growth and

how to obtain tumour extinction. In comparison to the previous runs the rewards are less

negative. The lowest reward is -6 instead of -10 in the runs with an epsilon around 0.3

or -24 in the initial runs. It can be observed that an early radiotherapy with our given

tumour parameter set is disadvantageous: in the run 7745 radiation leads to a peak in the
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Figure 6.2: Training runs 1-18 for a treatment starting at day 50

Figure 6.3: Training runs 3833-3881 for a treatment starting at day 50
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Figure 6.4: Training runs 7744-7767 for a treatment starting at day 50

Figure 6.5: Training runs 9622-10000 for a treatment starting at day 50
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Figure 6.6: Summary of the given rewards for run 1-10000 with a treatment starting at
day 50

Figure 6.7: Summary of the cancer cell numbers and simulation time for run 1-10000 with
a treatment starting at day 50
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Figure 6.8: Training runs 1-36 for a treatment starting at day 100

Figure 6.9: Training runs 3871-3934 for a treatment starting at day 100
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Figure 6.10: Training runs 7277-7380 for a treatment starting at day 100

Figure 6.11: Training runs 9955-9999 for a treatment starting at day 100
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Figure 6.12: Summary of the given rewards for run 1-10000 with a treatment starting at
day 100

Figure 6.13: Summary of the cancer cell numbers and simulation time for run 1-10000
with a treatment starting at day 100
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cancer cell number at approximately day 150 and in the run 7758 radiotherapy causes an

increase in the cancer cell number and a peak around day 170. Radiotherapy treatment

failure can have multiple reasons: Due to the dose limitations and tumour size, there

are cells left after the end of radiotherapy so that the tumour can regrow (Recht et al.

1988). In addition, radiotherapy causes PDL1+ mutation and eliminates immune effector

cells (Sato et al. 2019). This can cause a disbalance between cancer cell elimination by

the immune system due to the reduced number of immune effector cells and effector cell

exhaustion. Further, the cancer repopulation rate could be an important factor as the

number of infiltrated immune effector cells after radiation might not be large enough to

eradicate a large tumour (Begg 2012). In the later runs from 9622-10000 with an epsilon of

0.96-1, we can see that for the given tumour parameters a combination of chemotherapy,

DNA damage response inhibitor and PD1 antibody is preferred. Each run is different due

to the stochasticity of the agent-based model, but a trend can be observed. Chemotherapy

is given first to decrease the cancer cell number, DNA damage response inhibitor is given

as a maintenance therapy and PD1 antibody is given from around day 80. In one case

radiotherapy is given as two isolated doses to decrease the cancer cell count. Looking at

all plots for the treatment start at day 50 in the second row, we can see that in successful

cases with tumour cell extinction, either chemotherapy or DNA damage response inhibitor

therapy are the main driver of cell death. When reviewing the summary plots in Figure

6.6 and 6.7, it shows that in the course of the simulations, the minimum and mean rewards

increases while the maximum rewards decreases. The maximum cancer cell number, cancer

cell number at the end of simulation and simulation time decreases.

When treatment starts at day 100, more immune cells have infiltrated the tumour

micro environment. Looking through the plots (Figures 6.8-6.11), we can see similar

patterns as in the case of an earlier treatment at day 50. Here, an early start of radiation

is also disadvantageous. As the dose of 2.5 Gy is not high enough to kill all the cancer

cells, the consequences are a regrowth and PDL1 mutation (see runs 8, 17, 32, 36 in Figure

6.8, and runs 3886, 3900, 3934 in Figure 6.9). Similarly, to the treatment start at day 50,

it can be observed that radiation is more advantageous as isolated doses when the tumour

cell count is already low (see Figure 6.10 runs 7279, 7296, Figure 6.11 runs 9982, 9994,

9999). Another similarity is that in the successful treatment schedules, chemotherapy is

given at treatment start to decrease the cell count and DNA damage response inhibitor is

used as a maintenance therapy. Differences are that PD1 antibody is given in almost all
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successful treatment schedules at treatment start and that the main driver of cancer cell

elimination is the DNA damage response inhibitor (see second rows in Figures 6.8-6.11).

Those simulations also show that, while radiotherapy increases the immune cell infiltration,

in combination with chemotherapy it causes toxicity and immune cell kill can be higher

than the cancer cell elimination (see Figure 6.8 runs 17, 32, 36. Figure 6.9 runs 3886, 3900,

3934). When reviewing the summary plots in Figure 6.12 and 6.13, we can see similar

patterns as in the treatment case starting at day 50. Since the number of cancer cells are

larger than in the other treatment case, the numbers for the rewards and cells are higher.

But in the course of the simulations a similar pattern can be observed: the minimum and

mean rewards increase while the maximum rewards decrease. The maximum cancer cell

number, cancer cell number at the end of simulation and simulation time decreases.

The Q table reflects the rewards for the actions in each state. Advantageous actions

will have a high Q value and hence are more likely to be chosen when the algorithm is in

the exploitation phase where it choose its actions based on the learned experience from

the environment.

6.4 Discussion

This is the first report describing the integration of an agent based system pharmacology

model with reinforcement learning methods. As such, it provides a novel approach for

optimizing treatment combinations based on a combination of tumour and micro envir-

onment characteristics, therapeutic profiles, and mechanisms of action. This approach

allows for the determination of optimal treatment regimens that balance efficacy and tox-

icity, taking into account various factors that impact treatment outcomes.

One notable strength of this approach is its flexibility. The ability to extend the

model to accommodate different doses for each treatment type or a variety of therapeutic

interventions enhances its applicability across diverse clinical scenarios. Additionally, the

adaptability of the model to account for variations in tumour immune composition, such

as ’cold’ or ’hot’ tumours, further enhances its potential clinical relevance. Further PK

parameters could be adjusted to specific patient populations. This adaptability under-

scores the importance of tailoring treatments to immunological profiles and interaction of

combined drugs.

This approach shows that there are multiple solutions to treatment optimization,
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and that multiple treatment regimens can be optimal and also differ substantially among

themselves. Solutions to the therapeutic regimen optimization problem can be found in a

reasonable amount of time and require a relatively small number of assumptions. To train

the algorithm, a small positive number is set as a threshold and the algorithm is repeated

until the Q value for the states is stable and the difference of the old and updated value is

smaller than that small threshold (see section 2.3.7). In our example, we run the algorithm

with 10000 repetitions each to find the solutions for two cases. In the first case the

treatment is started at day 50 mimicking an early tumour detection treatment paradigm

with a low immune cell infiltration into the tumour micro environment. We can see that for

the given tumour parameters the algorithm favours a combination of chemotherapy, DNA

damage response inhibitor and PD1 antibody. Chemotherapy is given first to decrease

the cancer cell number, DNA damage response inhibitor is administered as a maintenance

therapy and PD1 antibody is given from around day 80 when more immune cells have

infiltrated the tumour micro environment. Looking through the simulations, it can be seen

that either chemotherapy or DNA damage response inhibitor therapy are the main driver

of cell death. In the second case we have simulated treatment starting at day 100 where

a more developed tumour micro environment with immune cell infiltration exist. The

algorithm favours a similar treatment pattern as in the first case. Chemotherapy is given

at treatment start to decrease the cell count and DNA damage response inhibitor is used

as a maintenance therapy. Differences are that PD1 antibody is given at treatment start

to maintain immune function as immune cells have already infiltrated the tumour micro

environment. An additional difference is that the main driver of cancer cell elimination is

the DNA damage response inhibitor.

A limitation of this method is the speed of execution. With an increased number of

actions (for example multiple treatment options or multiple dosing regimen for a treatment

option) or an increased number of states (for example considering multiple attributes for

the tumour population such as location, vasculature, different mutations) the Q table will

get large and training time will increase. Depending on available computational resources,

a range of actions and states has to be considered. To increase the speed of execution, the

training runs could be paralleled while updating the same Q table.

With future improvements in imaging tumours and their micro environment this

model can aid in treatment individualisation where the algorithm finds the best treatment

combination and schedule a given patient. Importantly, this work challenges the com-
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6.4 Discussion

mon perception that artificial intelligence techniques exclusively rely on large datasets for

training. While artificial intelligence techniques often require large data sets, for example

observational data was used by Moodie et al for their Q-learning algorithm (Moodie et al.

2012) or Krakow and colleagues used cohort and registry data (Krakow et al. 2017), we

have shown that reinforcement learning can also be combined with a mechanistic model.

The approach generates its own data, enabling the algorithm to learn and make recom-

mendations. This mechanism-driven data generation not only enhances interpretability

but also creates a feedback loop wherein treatment recommendations can be simulated

within the mechanistic model, fostering a deeper understanding of the intricate interplay

between different components. This provides mechanistic insight into the AI ML black

box.
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Chapter 7

Concluding remarks

In this thesis, mathematical and computational methods have been used to study cancer

development, their characteristics, interactions with the tumour micro environment and ef-

fects of mono and combination therapy. The interplay between those different components

are important to understand for a successful treatment outcome. Cancer is a complex and

heterogeneous disease, encompassing multiple scales of biological organization, ranging

from intracellular molecular pathways to interactions between cells and organ and tissues

scales. Therefore, mathematical models can help to understand the disease mechanism

to design better treatment schedules and to avoid treatment failure or toxicity. However,

currently widely used models in pharmacometrics are based on ODEs. Those often assume

a homogeneous cell population and model the time-course of biological measurements con-

tinuously. Crucial aspects of cancer, such as its heterogeneity, spatial characteristics, and

the presence of random events like mutations or emergent behavior are difficult to capture

with ODEs. Furthermore, a large number of parameters and compartments are required

to model the interactions between cancer cells and the TME, including immune cells in

space. To address these limitations, this thesis has introduced alternative approaches for

modelling the complexity of tumours and their response to drug treatments and combined

them with existing PKPD and PBPK frameworks.

Therefore, in chapter three, agent based modelling was introduced with a case study

focused on MEK inhibitors within the Ras-Raf-MEK-ERK pathway. A PKPD model for

the MEK inhibitor cobimetinib was implemented. The treatment of cancer cells using

both ODE and ABM approaches was simulated. Single and multiple dose treatments

were investigated, individual cell fate, their elimination by the drug, division, and muta-
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tion within the population was analysed. The simulation results and the comparison of

the two models showed us their differences, strengths, and weaknesses. We learned that

ODE models provide insights at the population level, and are well-suited for simulating

processes that can be approximated as homogeneous, well-mixed systems with central co-

ordination. ABMs on the other hand offer a deeper understanding of cellular-level behavior

and the rules driving it. ABMs are suitable for simulating complex biological systems with

heterogeneity, sub-scale components (molecular, cellular, tissue, organism) and inherent

emerging behaviour. To take advantage of both model types, we can combine them in

hybrid multi scale models, where parts of the model are discretised by using a ABM to

study heterogeneity and emergent behaviour. This could be cancer cells that are hetero-

geneous in their response to treatment, their location, or their mutation status. ODEs and

PDEs can be applied to simulate parts of the model that are assumed to be homogeneous

without the need for individual representation of entities. Those could be concentration

time profiles of drugs or nutrients and their distribution in space.

Chapter four is centered around stochastic equations as a bridge connecting ODE

models and ABMs. A simplification of the model in the previous chapter was used to

develop a stochastic description of a single cell’s fate under continuous drug treatment.

That approach was extended to model a population of heterogeneous cells. We analysed

the survival probability of each cell, the time to population extinction and its relation

with population size. Additionally, multiple dose treatments considering cell recovery and

division between cycles were investigated to identify critical division and death rates for un-

controlled growth and successful treatment. This chapter shows us that while stochastic

equations lack detailed insight into component interactions, they offer simplified math-

ematical expressions to summarise dynamics. This can be used to run fast analysis to

determine whether a more detailed model such as an agent based model is needed. Fur-

ther, it could help to run more targeted agent based simulations to gain insight into the

situations of interest.

Based on the comparison in chapter three, we developed a hybrid model that combines

the advantages of ABMs, ODEs, and PDEs to study the effects of mono and combination

treatments on tumour-immune interactions in chapter five. The ABM is used to simulate

tumour and immune cells incorporating rules governing their interaction, emergence of

behavior, and spatial heterogeneity. Each cancer cell has its cell cycle phase and the

different sensitivity to treatment included. For example, docetaxel specifically targets the
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G2 and M phases. The most radiosensitive phases are the S, G2, and M phases, whereas

the resting phase G0 is less affected by radiotherapy. Additionally, the model incorporates

the higher radiosensitivity of immune effector cells in comparison to immune suppressor

cells. Effects of different treatment regimen are considered. For example, radiotherapy

has not only an effect on the tumour cell population but also changes the behaviour

of immune cells. After radiation the infiltration of immune cells increases while also

PDL1 mutation in cancer cells are promoted, which subsequently causes immune effector

exhaustion. Further treatment options and environmental conditions are explored with

ODEs or PDEs: A PBPK model gives insights into PD1 antibody treatment, accounting

for drug distribution through different physiological compartments. An ODE based KPD

and PKPD model simulates chemotherapy and DNA damage response inhibitors. To

consider diffusion and the concentration level of oxygen and drug in the 3D space, we

incorporated a PDE. The oxygen gradients drive tumour cell behavior, such as active

division, quiescence, and the presence of a necrotic core. Additionally, oxygen supply

impacts radiation treatment, which is modelled with a modified linear square model. By

incorporating these mechanism into our hybrid model, we are able to gain a detailed

understanding of the complex interactions between tumours and the immune system. We

have analyzed the effects of different treatments on the interactions between various cell

types. As a result, we gained insight in the improved effect and and antagonism when

multiple treatment modalities are administered within a complex system. This enables us

to improve the combination and scheduling of different therapies. Additionally, we used

PCA and the kmeans algorithm to analyse the behaviour of cancer and immune effector

cells. The result confirmed that ABM is a suitable method to simulate the complex tumour

immune interaction in our model. Due to the large number of subgroups in the cancer

and immune effector cell population and their attributes, a large system of ODEs would

be required whereas the ABM can capture those dynamics with a smaller set of rules and

attributes.

To automatise the optimization of combination treatment schedules we explored the

application of reinforcement learning in chapter six. Q learning was employed, where a

learning algorithm has the goal to find the best treatment policy by collecting rewards,

avoiding punishments and considering the long term outcome. Rewards were defined as

the number eliminated cancer cells, while punishments were applied when immune cells

were eliminated. Hence, constraints such as toxicity levels and treatment schedule re-
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strictions were taken into account during the optimization process. Decisions were taken

considering the amount of infiltrated immune cells and the presence of cancer cells in spe-

cific cell cycle phases. Various treatment options and combinations are possible actions

for the algorithm to choose from. The algorithm explores the environment by randomly

choosing actions during the learning phase to collect information about the effect of differ-

ent therapies and their combination on the tumour immune interaction. This allows the

identification of optimal treatment schedules that balance objectives of eliminating cancer

cells while minimizing harm to the immune system. The combination of the reinforcement

learning algorithm with a mechanistic model consisting of an ABM and drug treatment

models based on PKPD, PBPK, ODE and PDE models allows us to gain insight into

the interaction of cells and the mechanism of the combination treatment. By feeding the

results of the reinforcement learning algorithm back into the model, we can understand

the mechanism for a successful treatment combination. This approach also offers the flex-

ibility of extending the model with more treatment options or adjusting the parameters

for a given cancer or patient. This chapter shows that through the use of reinforcement

learning, we can harness the potential of artificial intelligence to enhance cancer treatment

decision-making and improve patient outcomes.

In summary, in this thesis alternative modelling strategies are explored to enhance

our understanding of tumour behavior and improve the design and optimization of can-

cer treatments as mono and combination therapy. It shows that stochastic equations,

ABMs and artificial intelligence algorithms such as reinforcement learning can complement

currently-used approaches to provide a more detailed insight into disease mechanisms and

treatment combinations.
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Gumbel, Emil Julius (1935). “Les valeurs extrêmes des distributions statistiques”. In: 5.2,

pp. 115–158.

Han, Yanyan, Liu, Dandan and Li, Lianhong (2020). “PD-1/PD-L1 pathway: current re-

searches in cancer”. In: American journal of cancer research 10.3, p. 727.

Hanahan, Douglas and Weinberg, Robert A (2000). “The hallmarks of cancer”. In: cell

100.1, pp. 57–70.

– (2011). “Hallmarks of cancer: the next generation”. In: cell 144.5, pp. 646–674.

Helmlinger, Gabriel, Sokolov, Victor, Peskov, Kirill, Hallow, Karen M, Kosinsky, Yuri,

Voronova, Veronika, Chu, Lulu, Yakovleva, Tatiana, Azarov, Ivan, Kaschek, Daniel et

al. (2019). “Quantitative systems pharmacology: an exemplar model-building workflow

with applications in cardiovascular, metabolic, and oncology drug development”. In:

CPT: pharmacometrics & systems pharmacology 8.6, pp. 380–395.

Heppenstall, Alison J, Crooks, Andrew T, See, Linda M and Batty, Michael (2011). Agent-

based models of geographical systems. Springer Science & Business Media.

169



REFERENCES

Holford, Nicholas HG and Sheiner, Lewis B (1982). “Kinetics of pharmacologic response”.

In: Pharmacology & therapeutics 16.2, pp. 143–166.

Holford, Nick (2013). “A time to event tutorial for pharmacometricians”. In: CPT: phar-

macometrics & systems pharmacology 2.5, pp. 1–8.

Jalalimanesh, Ammar, Haghighi, Hamidreza Shahabi, Ahmadi, Abbas, Hejazian, Hossein

and Soltani, Madjid (2017). “Multi-objective optimization of radiotherapy: distributed

Q-learning and agent-based simulation”. In: Journal of Experimental & Theoretical ar-

tificial intelligence 29.5, pp. 1071–1086.

Jones, HM and Rowland-Yeo, Karen (2013). “Basic concepts in physiologically based phar-

macokinetic modeling in drug discovery and development”. In: CPT: pharmacometrics

& systems pharmacology 2.8, pp. 1–12.

Kather, Jakob Nikolas, Charoentong, Pornpimol, Suarez-Carmona, Meggy, Herpel, Es-

ther, Klupp, Fee, Ulrich, Alexis, Schneider, Martin, Zoernig, Inka, Luedde, Tom, Jaeger,

Dirk et al. (2018). “High-throughput screening of combinatorial immunotherapies with

patient-specific in silico models of metastatic colorectal cancer”. In: Cancer Research

78.17, pp. 5155–5163.

Kather, Jakob Nikolas, Poleszczuk, Jan, Suarez-Carmona, Meggy, Krisam, Johannes, Char-

oentong, Pornpimol, Valous, Nektarios A, Weis, Cleo-Aron, Tavernar, Luca, Leiss, Florian,

Herpel, Esther et al. (2017). “In silico modeling of immunotherapy and stroma-targeting

therapies in human colorectal cancer”. In: Cancer research 77.22, pp. 6442–6452.

Kitano, Atsuko, Ono, Makiko, Yoshida, Masayuki, Noguchi, Emi, Shimomura, Akihiko,

Shimoi, Tatsunori, Kodaira, Makoto, Yunokawa, Mayu, Yonemori, Kan, Shimizu, Chi-

kako et al. (2017). “Tumour-infiltrating lymphocytes are correlated with higher expres-

sion levels of PD-1 and PD-L1 in early breast cancer”. In: ESMO open 2.2, e000150.

Knight-Schrijver, VR, Chelliah, V, Cucurull-Sanchez, L and Le Novère, N (2016). “The

promises of quantitative systems pharmacology modelling for drug development”. In:

Computational and structural biotechnology journal 14, pp. 363–370.

Kotz, Samuel and Nadarajah, Saralees (2000). Extreme value distributions: theory and

applications. world scientific.

170



REFERENCES

Krakow, Elizabeth F, Hemmer, Michael, Wang, Tao, Logan, Brent, Arora, Mukta, Spell-

man, Stephen, Couriel, Daniel, Alousi, Amin, Pidala, Joseph, Last, Michael et al. (2017).

“Tools for the precision medicine era: how to develop highly personalized treatment re-

commendations from cohort and registry data using Q-learning”. In: American journal

of epidemiology 186.2, pp. 160–172.

Kun, E, Tsang, YTM, Ng, CW, Gershenson, DM and Wong, KK (2021). “MEK inhib-

itor resistance mechanisms and recent developments in combination trials”. In: Cancer

treatment reviews 92, p. 102137.

Lamperti, Francesco, Roventini, Andrea and Sani, Amir (2018). “Agent-based model cal-

ibration using machine learning surrogates”. In: Journal of Economic Dynamics and

Control 90, pp. 366–389.

Lee, Youjin, Auh, Sogyong L, Wang, Yugang, Burnette, Byron, Wang, Yang, Meng, Yuru,

Beckett, Michael, Sharma, Rohit, Chin, Robert, Tu, Tony et al. (2009). “Therapeutic

effects of ablative radiation on local tumor require CD8+ T cells: changing strategies

for cancer treatment”. In: Blood, The Journal of the American Society of Hematology

114.3, pp. 589–595.

Leibold, Adam T, Monaco, Gina N and Dey, Mahua (2019). “The role of the immune

system in brain metastasis”. In: Current neurobiology 10.2, p. 33.

Lemaire, Vincent, Bassen, David, Reed, Mike, Song, Roy, Khalili, Samira, Lien, Yi Ting,

Huang, Lu, Singh, Aman P, Stamatelos, Spyros, Bottino, Dean et al. (2023). “From cold

to hot: changing perceptions and future opportunities for quantitative systems pharma-

cology modeling in cancer immunotherapy”. In: Clinical Pharmacology & Therapeutics

113.5, pp. 963–972.

Levy, Gerhard and Gibaldi, Milo (1972). “Pharmacokinetics of drug action”. In: Annual

Review of Pharmacology 12.1, pp. 85–98.

Li, Yanan, Dong, Qingrong and Cui, Yukun (2019). “Synergistic inhibition of MEK and re-

ciprocal feedback networks for targeted intervention in malignancy”. In: Cancer Biology

& Medicine 16.3, p. 415.

171



REFERENCES

Hu-Lieskovan, Siwen, Lisberg, Aaron, Zaretsky, Jesse M, Grogan, Tristan R, Rizvi, Hira,

Wells, Daniel K, Carroll, James, Cummings, Amy, Madrigal, John, Jones, Benjamin

et al. (2019). “Tumor characteristics associated with benefit from pembrolizumab in

advanced non–small cell lung cancer”. In: Clinical cancer research 25.16, pp. 5061–

5068.

Lin, Yuxin, Xu, Jianxin and Lan, Huiyin (2019). “Tumor-associated macrophages in tu-

mor metastasis: biological roles and clinical therapeutic applications”. In: Journal of

hematology & oncology 12.1, p. 76.

Lindauer, A, Valiathan, CR, Mehta, K, Sriram, V, De Greef, R, Elassaiss-Schaap, J and

De Alwis, DP (2017). “Translational pharmacokinetic/pharmacodynamic modeling of

tumor growth inhibition supports dose-range selection of the anti–PD-1 antibody pem-

brolizumab”. In: CPT: pharmacometrics & systems pharmacology 6.1, pp. 11–20.

Liu, Shu, Sun, Xiangdong, Luo, Jinhua, Zhu, Hongcheng, Yang, Xi, Guo, Qing, Song, Yaqi

and Sun, Xinchen (2015). “Effects of radiation on T regulatory cells in normal states and

cancer: mechanisms and clinical implications”. In: American journal of cancer research

5.11, p. 3276.
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Appendix A

Model parameters of the tumour

immune interaction hybrid PKPD

agent based model

Parameter Value Units Source

Reaction rates (Gillespie
algorithm)

Cancer cell division rate 0.01 assumed

Cancer cell mutation rate 0.01 assumed

Cancer cell kill rate 0.01 assumed

Cancer cell death rate 0.01 assumed

Suppressor cell moving rate 0.01 assumed

Suppressor cell division rate 0.01 assumed

Suppressor cell infiltration
rate

0.01 assumed

Effector cell exhaustion rate 0.01 assumed

Effector cell moving rate 0.01 assumed

Effector cell division rate 0.01 assumed

Effector cell infiltration rate 0.01 assumed

Cell attributes

Cancer cells

Initial number 100 assumed

Time to division 24 h assumed

Suppressor cells
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Initial number 1 assumed

Time to division 8 h assumed

Division count 8 assumed

Lifespan 3*24 h assumed

Effector cells

Initial number 1 assumed

Time to division 8 h
(Gong, Mil-
berg et al.
2017)

Division count 8
(Gong, Mil-
berg et al.
2017)

Lifespan 3*24 h
(Gong, Mil-
berg et al.
2017)

Oxygen PDE

Diffusion coefficient D 1 µm2/d assumed

Division range 100-50 % assumed

Quiescence range 50-30 % assumed

Death range 30-0 % assumed

Oxygen consumption rate for
dividing cancer cells ko

0.001 %/d assumed

Factor for oxygen consump-
tion of quiescent cells qc

0.01 assumed

PD1 antibody treatment

Molecular weight 149000 g/mol
(Lindauer
et al. 2017)

V1 2877/1000 l
(Lindauer
et al. 2017)

V2 2854/1000 l
(Lindauer
et al. 2017)

W0=V tot 170/1000000 l
(Lindauer
et al. 2017)

V max 114/(MW)*1e3 nmol/h
(Lindauer
et al. 2017)

V es 0.005*V tot l
(Lindauer
et al. 2017)

V is 0.55*V tot l
(Lindauer
et al. 2017)

K M 0.078/(MW)*1e6 nmol/l
(Lindauer
et al. 2017)
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A. MODEL PARAMETERS OF THE TUMOUR IMMUNE INTERACTION HYBRID
PKPD AGENT BASED MODEL

PLQ 12.7*V vs l/h/l
(Lindauer
et al. 2017)

L 0.002*PLQ*V vs l/h/l
(Lindauer
et al. 2017)

Q 384/(1000*24) l/h
(Lindauer
et al. 2017)

K 12 Q/V 1 1/h
(Lindauer
et al. 2017)

K 21 Q/V 2 1/h
(Lindauer
et al. 2017)

K off PD1 0.144 1/h
(Lindauer
et al. 2017)

Kon PD1 iv 2880e6/1e9 1/M/h
(Lindauer
et al. 2017)

K IVIV 1
(Lindauer
et al. 2017)

K on PD1=
Kon PD1 iv/K IVIV

1/nM/h
(Lindauer
et al. 2017)

CL 167/(1000*24) l/h
(Lindauer
et al. 2017)

K CL/V 1 1/h
(Lindauer
et al. 2017)

N Tcell 1000
number of
T cells per
µl blood

(Lindauer
et al. 2017)

T multi 4.3

initial ratio
target con-
centration
in tumour
vs blood

(Lindauer
et al. 2017)

V blood 1400 µl
(Lindauer
et al. 2017)

N PD1 TC 10000

number of
PD1 re-
ceptor per
T cell

(Lindauer
et al. 2017)

N PD1 b
N PD1 TC * N Tcell *
V blood

number
of PD1 in
blood

(Lindauer
et al. 2017)

M PD1 b N PD1 b/AV*1e9

PD1
amount
in nmoles
in blood

(Lindauer
et al. 2017)

C PD1b M PD1 b/V 1 nmol/l
(Lindauer
et al. 2017)
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C PD1t T multi*C PD1b nmol/l
(Lindauer
et al. 2017)

vref 0.842
(Lindauer
et al. 2017)

vref is 0.2
(Lindauer
et al. 2017)

CL up 0.0366*V es l/h/l
(Lindauer
et al. 2017)

FR 0.715
(Lindauer
et al. 2017)

K on FcRn 792e6/(1e9) 1/nM/h
(Lindauer
et al. 2017)

K off FcRn 23.9 1/h
(Lindauer
et al. 2017)

K deg 42.9 1/h
(Lindauer
et al. 2017)

K deg PD1 0.00249 1/h
(Lindauer
et al. 2017)

BW (human) 80 kg
(Lindauer
et al. 2017)

Dose 2 mg/kg
(Lindauer
et al. 2017)

Initial conditions

C 1 0 D[nmol]/V 1 nmol/l
(Lindauer
et al. 2017)

C 2 0 0 nmol/l
(Lindauer
et al. 2017)

C vs 0 0 nmol/l
(Lindauer
et al. 2017)

C ub 0 0 nmol/l
(Lindauer
et al. 2017)

C b 0 0 nmol/l
(Lindauer
et al. 2017)

FcRn 0 49.8*1000 nmol/l
(Lindauer
et al. 2017)

C is 0 0 nmol/l
(Lindauer
et al. 2017)

PD1 t 0 0 nmol/l
(Lindauer
et al. 2017)

PD1 b 0 0 nmol/l
(Lindauer
et al. 2017)

R0t 0 0 %
(Lindauer
et al. 2017)
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A. MODEL PARAMETERS OF THE TUMOUR IMMUNE INTERACTION HYBRID
PKPD AGENT BASED MODEL

M PD1 t 0 C PD1b*T multi*V is in nmol
(Lindauer
et al. 2017)

EMAXTP 94.7 %
(Lindauer
et al. 2017)

EC50TP 1.46 nM
(Lindauer
et al. 2017)

kout K deg PD1 1/h
(Lindauer
et al. 2017)

kin M PD1 t 0 * kout nmol/h
(Lindauer
et al. 2017)

Radiotherapy

OER m 3
(Powathil
et al. 2013)

Km 3
(Powathil
et al. 2013)

d 2.5 Gy
(Powathil
et al. 2013)

α 0.3
(Powathil
et al. 2013)

β 0.3
(Powathil
et al. 2013)

Immune cell infiltration

δE 0.05 1/h
(Alfonso et
al. 2021)

δS 0.01 1/h
(Alfonso et
al. 2021)

c 0.05 1/h
(Alfonso et
al. 2021)

Chemotherapy

kd 0.0285 1/day
(Frances et
al. 2011)

D(0) 0.132 g
(Frances et
al. 2011)

pD 0.047714
(Frances et
al. 2011)

rD 0.01251
(Frances et
al. 2011)

DNA damage response in-
hibitor

q 295 l/h
(Terranova
et al. 2021)

cl 65 l/h
(Terranova
et al. 2021)

184



v1 118 l
(Terranova
et al. 2021)

v2 1030 l
(Terranova
et al. 2021)

Emax 1 assumed

h 1 assumed

EC50 100.84 mg
(Terranova
et al. 2021)

Table A.1: Model parameters of the tumour immune interaction hybrid PKPD agent based
model
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