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Layout Optimization of Aerospace Components with Minimum Frequency

Constraints Suitable for Additive Manufacturing

by Stephen John Salt

The art of aerospace engineering is producing the highest performing component whilst

meeting: stringent rules on safety; material strength and temperature capabilities; com-

ponent and product weight; frequency requirements; and meeting cost targets. Auto-

mated optimization techniques are necessary to ensure that the best product can be

achieved to meet these criteria. Optimization tools have long been used, these have

tended towards size and shape optimization, however the advent of high powered com-

puting and modern manufacturing techniques has allowed generative design methods

to come to the fore. Topology optimization is widely employed in the demonstration of

optimization for engineering design, though it is not without its detractors. Truss layout

optimization, familiar in the field of civil engineering, has been little used in aerospace.

This thesis looks at the optimization methods used in aerospace. A comparison is drawn

between topology and truss layout optimization, following the end-to-end design process

for each before drawing conclusions that both offer substantial weight savings but truss

layout optimization does so in shorter timescales. A new bespoke tool for optimizing

components using truss based layout optimization with constraints on natural frequency

has been developed and its success is demonstrated via a diverse range of numerical

examples. This is then extended to frame structures, which contain rigid joints and

more closely represent an additively manufactured component. A second bespoke tool is

presented to treat frame structures with frequency constraints and its capability is once

again demonstrated via numerical examples.
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Symbols

This section lists the symbols used in this thesis. The symbols are divided by alphabet

(Latin/Greek); Latin letters are further divided by case, then by style.

Latin, Upper Case, Italic

Description Units

B Base width of a beam L

E Young’s Modulus N m−2

FT Total fuel consumed kg

H Height of a beam L

I Second moment of area L4

L Unit of measure

P Applied point load N

V Volume L3

W Virtual work N

Latin, Upper Case, Bold

Description Units

B Equilibrium matrix

Ki Element stiffness matrix in global coordinates

K̄i Element stiffness coefficient matrix in global coordinates

Mi Element mass matrix in global coordinates

M̄i Element mass coefficient matrix in global coordinates

T Transposition matrix

Latin, Lower Case, Italic

Description Units

aE Empty area of I-section beam L2

ai Area of an individual element L2

aT Total area of I-section beam L2

b Width of I-section beam minus web thickness (b = B − t) L

c Cosine directional vector

f Frequency for a given mode Hz

fmin Minimum frequency Hz

fF Frequency of a frame structure Hz

fT Frequency of a truss structure Hz

xiii



Symbols xiv

h Height between I-section flanges L

i Identifier for an individual element

k Ratio between occupied and empty space in an Isection beam

li Length of an individual element L

m Number of elements within a design domain

n Number of nodes within a design domain

qi Force within an individual element N

s Sine directional vector

t Thickness of I-section beam web L

u Element force in axial direction N

v Element force perpendicular to its axis N

Latin, Lower Case, Bold

Description Units

a Vector of element areas L2

d Vector of element displacements L

ki Element stiffness matrix in local coordinates

l Vector of element lengths L

mi Element mass matrix in local coordinates

p Vector of applied forces N

q Vector of element forces N

Greek

Description Units

β Coefficient for fuel consumption vs CO2 emissions

δ Delta of two scalars

ϵ Virtual strain

θ Angle of elements from major axis ◦

λ Frequency Hz

ν Poisson’s ratio

ρ Density kg m−2

σ Stress MPa

Φ Mode of vibration

ϕ Moment rotation N m

ω Angular frequency rad s−1
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Chapter 1

Introduction

There is a spark of creativity & ingenuity of design evident even in the earliest human ac-

tivity and oldest remaining structures. From the first humble shelters to more advanced

infrastructure such as roads and bridges, the field of engineering was born, enabling the

growth of civilisations & empires. In ancient times there was not the available modern

computing power that we as engineers enjoy today; instead the methods of verifying

and validating a design were largely to build it and see if it worked. Many did, and

there are a number of impressive structures from the ancient world, such as the Pont du

Gard, Figure 1.1, still standing today due to the ingenuity and skill in design of those

engineers. To support ever-growing & increasingly sophisticated societies, engineering

evolved into the highly complex field it is today, as did the rigour required to ensure

that the products, objects, and structures performed as designed.

Figure 1.1: The Pont du Gard in southern France, completed in 40-60 AD, is 48.8 m
tall and carried 200 000 m3 of water per day over its 275 m length, it is largely built of

limestone and is predominantly mortar-less (Song, 2014, Accessed June 2016).

Material utilisation costs and the economic climate no longer allow the luxury of a ‘trial

and error’ approach, meaning that design and verification activities need to happen

1
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virtually, in a low cost electronic environment. Since the middle of the twentieth century,

ongoing developments in the fields of Information Technology (IT) and software have

allowed engineers unprecedented access to the power and resources required to repeatedly

design and test structures and components before any material needs to be cut. This

gives todays engineers access to structural and mechanical optimization tools that enable

them to repeatedly analyse a system to yield the desired results (whether it be stress,

compliance or response), whilst utilising the minimum amount of material possible,

thereby costing the least amount of money.

There are a multitude of different methods for optimizing a structure or a component.

Many of these are based on the same basic principle: that the material utilized must

be capable of withstanding the applied loading. The approaches that different methods

take, however, can vary wildly by application. For example, a tool that is designed to

aid an architect to determine the most appropriate positions for load-bearing members

in a building may only take this as a frame of reference, and then design the structure

around this framework to achieve the customer’s visual requirements. Conversely, a

mechanical engineer may use a more visual Computer Aided Design (CAD) geometry

to fully conceptualize the optimum component and the stresses within the part down to

a resolution of only a few microns to verify the part meets its capability criterion. Both

will give an optimized solution based upon the customer’s requirements, but because

there may be aesthetic considerations or manufacturing constraints to be applied, it

may be the case that the true optimum cannot be achieved in the real world.

It is important to ensure that though there may be process or aesthetic requirements

to consider, it is crucial that the starting point be as optimal as possible before any

variation is made. In addition, the resulting design should have sufficient capacity such

that variances in the manufacturing process or the applied loading will not lead to failure,

this is referred to a ‘robust design’. There have been many different tools created to assist

in the design and optimization of mechanical components, usually embedded within

proprietary software packages. These generally rely on a pre-determined knowledge

of the component’s form and operate on continuum structures and geometry based

optimization tools.

The field of aeronautical engineering, and more specifically, the components of aerospace

gas turbines are chosen in this study to demonstrate real-world applications of these new

tools and design methods. The environment of a gas turbine is challenging from a design

perspective: there is a constant drive to ensure a component’s mass is at the minimum to

reduce fuel burn; the engine has a wide variation in temperature from −65 ◦C to 1800 ◦C;

and there are constant sources of vibration to be considered in the design of the part for

longevity in service. There is also a need for components installed in a gas turbine engine
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to be designed to avoid excitation by ground sources of vibration, i.e. the component

itself should not amplify any vibration it experiences. It is therefore necessary to ensure

that this factor can be incorporated into a design during optimization with other factors

such as component weight and cost.

1.1 The design process: concept to manufacture

Most commonly represented as a spiral, Figure 1.2, the design engineering process con-

tinually revisits a number of specific areas to develop an idea into a final design. At

its outset the idea is in the concept stage where a number of potential designs will be

considered and once a viable design has been found, it will be progressed to preliminary

design. The concept is now refined, and may be redesigned to solve certain problems,

prior to moving forwards to the detailed design stage where all the work to make the

part ready for manufacture is completed. A number of iterations may take place in

the design process due to the highly complex nature of many mechanical, automotive

or aeronautical design requirements. Though computational analysis is fairly common

in modern design organisations, it should be noted that in the majority of cases the

analysis has no direct effect on the geometry of parts (Keane and Nair, 2005); instead,

experienced designers are generally required to interpret the results and adapt the design

accordingly.

Figure 1.2: The design spiral.

The same experienced designers will dominate the decision making process in the early

design phase, using their knowledge of previous designs and evidence to indicate success

or failure. In the early design stages, few analysis tools will be used; instead previous

designs will be assessed and traded on a variety of variables to formulate the requirements

for the new product. The most advanced analytical tool that may be employed at this

stage is a spreadsheet.
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Once the preliminary design phase is reached, the design tasks may be split between

different teams. Computational analyses start to be utilized at this point to further

develop the concepts, and it is generally here that they will have the biggest impact.

Due to the effort required to set-up, run, and interpret the results of the analysis it

may be the case that the design gets frozen early in the process. This is to avoid the

additional cost and resource that would be consumed through re-analysis, which may

outweigh the benefit of the re-design. It is generally considered that the decisions made

in this early design phase have a much bigger impact on the overall product than all the

decisions that come in later stages, Figure 1.3.

Effort

Impact

Concept Preliminary Detailed

Time

Figure 1.3: The impact that decisions have on the product reduces as the design
progresses through the spiral.

A number of analysis tools are available for preliminary structural design, the most

dominant being Finite Element Analysis (FEA). In preparation for FEA, the structure

or component is broken up into many nodes and connecting elements, referred to as a

mesh, and has a number of loads and boundary conditions applied. When submitted to

the solver, the FEA uses a set of governing equations to determine the displacement of

each nodal point in the domain, based on the deformation of each element. FEA can

be performed at varying levels of fidelity; simple structures may be represented by 1D

elements, such as an aircraft wing represented by a cantilever, or a full discretized 3D

model which is assessed for strength, impact resistance, or excitation frequency. The

level of fidelity utilized during preliminary design must be selected in order to sufficiently

model the situation within an acceptable time frame.

Finally, the detailed design stage is reached. At this stage the design is finalised and

prepared for manufacture and entry into service. The component(s) will be fully detailed
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in Computer Aided Design (CAD) to ensure that they can be produced and inspected to

ensure product compliance. To ensure safety the final design must once again be verified

by FEA; however because the CAD models are now more complex there may be some

idealisation required to be able to perform the FEA in a reasonable timescale. Iterations

arising form the analysis results will usually be small in comparison with those made at

earlier design stages, as there can be significant impact on other components within the

product if one component’s design is significantly altered; this correlates with Figure 1.3,

where decisions made in the detailed design stage have lesser impact on the product.

The concept of taking decisive action earlier in the design phase is a major motivation

to ensure that any preliminary work done is both efficient and effective at making these

major decisions which will influence the success of the product. It is for this reason

that it is essential that tools which facilitate multiple, efficient iterations, performed

automatically, be investigated and made available to engineers.

1.2 Motivation and objectives

This study will determine the suitability of automated optimization techniques to design

components which can be both capable of reacting any structural loading placed upon

them, and also reside outside of certain frequencies to avoid failures due to excitation.

These two criteria must be met by structures which exhibit the least possible compo-

nent weight in order to reduce fuel burn and resulting CO2 emissions whilst in service

in an aircraft. A comparison will be drawn between the capability of both topology

optimization and layout optimization techniques in achieving the preconceived require-

ments for mass, whilst also proving to be computationally efficient, before moving on to

vibration analysis. Up to now there has been no capability for directly optimizing for

vibration with truss optimization, and therefore an efficient method to augment layout

optimization with frequency constraints is developed in this study to fill this capability

gap.

In summary the content of this thesis shall cover:

a) The determination, through literature review, of the available capabilities of math-

ematical optimization and its application to automated optimization tools and

techniques. These shall be reviewed for their suitability for use in aerospace de-

sign. Areas for improvement shall be identified.

b) A comparison shall be drawn of the effectiveness of both topology optimization and

layout optimization in achieving the structural requirements for specific aerospace
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case study examples. The focus of these studies shall be on quantifiable achieve-

ments made in the reduction of both component mass and CO2 emissions, addi-

tionally the increase in computational efficiency and subsequent reduction of the

burden on the analyst shall be discussed.

c) A method shall be proposed for existing layout optimization tools to be augmented

with constraints on natural frequency. This will initially be focused on pin-jointed

truss structures ensuring that a defined component is outside of any ranges of

vibratory excitation. Any such tool should be computationally efficient enough to

run on a standard engineering desktop PC.

d) Further develop the techniques created for pin-jointed truss structures and apply

them to rigid frames with the same loading and vibrational constraints, the results

should be representative of a continuum component which may be produced by

Additive Manufacturing (AM).

1.3 Structure of the thesis

This thesis is structured around three papers which have been produced for publication

in appropriate journals. Their content is underpinned by a preceding Literature Review

and further developed with relevant critique and potential applications in the final three

chapters.

a) Chapter 1: Introduction chapter.

b) Chapter 2: Begins with a literature review of structural elements which are ex-

plored through the current study. Detailing mathematical optimization techniques,

such as truss and topology optimization, how they may be applied to the design

processes in the aerospace industry, and what benefit may be obtained through

their routine application. Background information is also provided concerning the

field of aerospace design and additive manufacture.

c) Chapter 3: With two major approaches to optimization considered, a comparison is

made between topology and truss optimization to judge how efficient each process

is in the optimization itself, and subsequent utilisation of the results in preparation

for AM. Two case studies are assessed based on aerospace components to determine

which optimizer is of the greatest benefit to reduce the weight of the components,

reducing fuel burn and emission of CO2 into the atmosphere, in a computationally

efficient manner.
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d) Chapter 4: Defines the problem of component resonance as a result of excitation

frequencies, and a novel solution to optimize away from these frequencies is pro-

posed using a member adding algorithm and a semi-definite programming solver

adding an additional constraint to the traditional layout optimization problem.

The process is outlined and numerical examples provided to show the effectiveness

of the optimizer in both 2D and 3D.

e) Chapter 5: Building on the previous chapter, a proposal is made to further develop

the optimization techniques for application to frame structures, which will act in a

more similar way to continuum bodies than pin-jointed structures. An algorithm is

proposed to perform layout optimization with semidefinite frequency constraints

on problems utilising fully-connected ground-structures. The capability of the

algorithm is explored to understand convergence characteristics and the size of

problem that can be solved. The results of the algorithm are demonstrated via 2D

numerical examples.

f) Chapter 6: Implications of the findings of the previous chapters are discussed and

additional information not entirely within the scope of the proposed papers has

been included. Points that must be considered in the application of the proposed

techniques are also explored. This chapter considers how the suggested methods

may be applied to real-world scenarios.

g) Chapter 7: The achievements, contributions and conclusions of this work are sum-

marised.

h) Chapter 8: Proposals are made concerning the recommended direction of future

work in this field.



Chapter 2

Literature review and background

to study

This study considers the application of numerical optimization techniques and their

applicability to the design of aerospace components, and so needs to begin with an

introduction to existing optimization techniques and the complexities of engineering

practice in aerospace. This chapter provides such an introduction to design optimization

(Section 2.1) in order to provide a framework for the text to follow. Background on the

types of structural elements will then be presented (Section 2.2) followed by an overview

of the mathematical techniques used in optimization (Sections 2.3 to 2.5). How those

techniques are applied in practice (Sections 2.1 and 2.8) are then considered, and an

introduction to additive manufacturing is given (Section 2.12). How all this relates to

the design process in the aerospace industry (Section 2.13) is then assessed, including

the importance of determining a structure’s natural frequencies (Section 2.13.2). Finally,

remaining challenges are identified, and proposals made for how these may be addressed.

2.1 Design optimization

Dieter (2000) states that “generally there is more than one solution to a design problem,

and the first solution is not necessarily the best”. This is true of almost every attempt

to design any product. Different designers with varying backgrounds will invariably

approach a problem from slightly different perspectives, generating multiple design so-

lutions. It may even be true of a single designer who may have many ways of solving

a particular problem when faced with a highly variable design space with hundreds, or

sometimes thousands, of different solutions. In order to avoid this time consuming and

8
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sometimes misleading process, Dieter argues that “the need for design optimization is

inherent in the design process”.

It is paramount that the customer be involved in all aspects of the optimization but

most critically at the beginning when the focus is on identifying the requirements that

will ultimately influence the product’s design. In most cases, a product is optimized to

suit the requirements of the customer; however it may not be clear how the design of

the product directly affects these without further analysis. The ultimate goal of any

optimization attempt is to achieve the correct balance between the requirements given,

for example a component will have a healthy balance between weight, durability, cost

and producibility; this is known as a ‘robust design’.

Robustness in a component or system design context is defined as the lack of sensitivity

to external influences or noises and not, as the word generally implies, a bigger, heavier,

or stronger component. A robust design can only be achieved when the designer fully

understands all of the potential variations in the design space. At this point there will be

a clear line where a design will become infeasible, i.e. it is not suited to the requirements

and any design point falling the wrong side of that line may be disregarded. Ideally, the

chosen final design would be at the global optimum point of the design space (Section

2.3.1); however this is often close to, or exactly located on the feasible/infeasible line,

meaning that there would be some occasions where the component may have variation

that takes it outside of the feasible zone. Robust design seeks to ensure that a chosen

design point will remain within the feasible region under all sources of variation (Figure

2.1).

Optimum Design
Point

Initial Design
Point

Constraint Boundary

Robust
Design
Point

Function Variable x1

F
u
n
ct
io
n
V
a
ri
ab

le
x
2

Feasible
(safe)

Infeasible
(failed)

Figure 2.1: Concept of robust optimization to ensure that any sources of variation
do not take the design beyond the feasible limit.
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One of the major obstacles with optimization is that it is often tempting to try to

over-optimize; i.e. to have too many goals using too many parameters. This is highly

inefficient because the optimum solution cannot be guaranteed because the optimizer

may have focused on the wrong target or parameters. In order to remedy this, it is

generally necessary to focus the optimization only on certain features of the component.

This can be done purely on common sense or experience of the engineer; however it is

much more productive to begin as if the component were completely novel and start

right from the beginning with a structured approach.

2.2 Structural elements

This thesis focuses primarily on the optimization of truss structures, both as simplistic

pin-jointed arrangements, and with rigid joints to create frames. Truss structures have

been chosen for their elegant efficiency in material utilisation and optimization. It is

therefore necessary to introduce these elements to ensure a good understanding of their

makeup and how each individual element contributes to a structure as a whole. An

individual truss is shown in Figure 2.2(a) with a worked example to demonstrate how

it contributes to the overall mass and stiffness matrices required for vibrational analysis

later in this chapter. Subsequently, with the addition of a few terms in the matrices, we

can adapt these trusses into more rigid frames, suitable for manufacturing via additive

methods.

2.2.1 Trusses

Trusses are widely used in structural engineering solutions due to their elegant simplicity;

a truss structure is comprized of one or more straight bars design to react an axial force

along its length, such that deformation is only observed in the axial direction. Due to this

simplistic nature, the actual cross-sectional shape of the truss is of little importance but

in general the cross-sectional area will be much smaller than the length. When referring

to a system of trusses, each individual truss is referred to as an element. Trusses may be

categorised as either planar (2D), where the nodal coordinates are described by x and

y dimensions only, and space trusses where there is also a z component, creating a 3D

structure. Typically a truss structure will be pin jointed, therefore limiting transmission

between elements to forces and not moments.

When applied to layout optimization, the solution is considered optimal when the ele-

ments within a truss structure are fully stressed in the reaction of the applied forces.

This is known as being in equilibrium. However, for the determination of the structure’s
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natural frequency of vibration it is necessary to derive the stiffness and mass matrices

for the individual elements and the system as a whole. Figure 2.2(a) shows an individual

truss of length li with a uniform cross-section a, and is bounded by two nodes j and

k; Figure 2.2(b) shows a simple three element truss structure to illustrate the method

for deriving the global mass and stiffness matrices; Table 2.1 gives the length and cross-

section for each element as well as directional cosines, c, s, and mechanical properties

for Young’s Modulus, E, and density ρ. In the interests of brevity this is restricted to

a planar truss system; a space truss will have additional degrees of freedom to account

for the z direction.

uj

uk

d2j−1

d2j

d2k−1

d2k

x

y

j

k

li

θ

(a)

1

2

31

2 3

d1

d2

d3

d4

d5

d6

x

y

1

1

√
l1 × l2

(b)

Figure 2.2: (a) A typical truss element arrangement with nodes and degrees of free-
dom, and (b) an example structure used in the assemblage of the global mass and

stiffness matrices. Unless otherwise stated all dimensions are in metres.

Table 2.1: Geometric properties of the example truss structure defined in Figure
2.2(b).

Element
i

l
(m)

a
(m2)

c s
E

(GPa)
ρ

kgm−3

1 1

0.1

1 0

110 27102 1 0 1

3
√

2 −1/
√

2 1/
√

2

When considering the structure shown in Figure 2.2(b) the first operation is to determine

the stiffness and mass matrices in local coordinates. This is achieved using Eq. (2.3a)

for stiffness (ki) and Eq. (2.3b) for mass (mi). To mathematically model the mass and

stiffness of the overall structure, these must be transposed into global coordinates using

Eq. (2.1) for stiffness and Eq. (2.2) for mass, where T is the transposition matrix for a

truss Eq. (2.3c); c = cos θ; and s = sin θ. The resulting mass matrix Mi is symmetric

positive definite, and the stiffness matrix Ki is symmetric and either positive or positive

semi-definite.
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Ki = TTkiT (2.1)

Mi = TTmiT (2.2)

ki =
aiE

li

[ uj uk

1 −1 uj

−1 1 uk

]
(2.3a)

mi =
ρaili

6

[ uj uk

1 0 uj

0 1 uk

]
(2.3b)

T =

[
cjk sjk 0 0

0 0 cjk sjk

]
(2.3c)

For a simple planar truss system, the stiffness and mass matrices may be simplified

to single equations (2.4a) and (2.4b) by pre-multiplying the standard form and the

transposed form of the matrix T. Each entry into both the local and global element

matrices represents a single degree of freedom of that element: 2 nodes with 2 degrees

of freedom each.

Ki = TTkiT =
aiE

li




d2j−1 d2j d2k−1 d2k

c2jk csjk −c2jk −csjk d2j−1

csjk s2jk −csjk −s2jk d2j

−c2jk −csjk c2jk csjk d2k−1

−csjk −s2jk csjk s2jk d2k




(2.4a)

Mi = TTmiT =
ρaili

6




d2j−1 d2j d2k−1 d2k

2c2jk 2cjk c2jk csjk d2j−1

2csjk 2s2jk csjk s2jk d2j

c2jk csjk 2c2jk 2csjk d2k−1

csjk s2jk 2csjk 2s2jk d2k




(2.4b)

Once the individual element matrices have been determined in global coordinates, they

are assembled into 2n×2n matrices, where n is the total number of nodes in the structure,
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for stiffness K and mass M by populating the appropriate degrees of freedom from the

local matrices. To illustrate this process the element stiffness matrices Eqs. (2.5a),

(2.5b), and (2.5c) are determined and assembled into the structural stiffness matrix Eq.

(2.6) with each contribution highlighted for clarity: red for element 1 Eq. (2.5a), blue

for element 2 Eq. (2.5b) and teal for element 3 Eq. (2.5c).

K1 = TTk1T =
aiE

li




d1 d2 d5 d6

1 0 −1 0 d1

0 0 0 0 d2

−1 0 1 0 d5

0 0 0 0 d6




(2.5a)

K2 = TTk2T =
aiE

li




d1 d2 d3 d4

0 0 0 0 d1

0 1 0 −1 d2

0 0 0 0 d3

0 −1 0 1 d4




(2.5b)

K3 = TTk3T =
aiE

li




d3 d4 d5 d6

0.5 −0.5 −0.5 0.5 d3

−0.5 0.5 0.5 −0.5 d4

−0.5 0.5 0.5 −0.5 d5

0.5 −0.5 −0.5 0.5 d6




(2.5c)

K =
m∑

i=1

Ki =




d1 d2 d3 d4 d5 d6

11.0 0 0 0 −11.0 0 d1

0 11.0 0 −11.0 0 0 d2

0 0 3.89 −3.89 −3.89 3.89 d3

0 −11.0 −3.89 14.9 3.89 −3.89 d4

−11.0 0 −3.89 3.89 14.9 −3.89 d5

0 0 3.89 −3.89 −3.89 3.89 d6




× 109 (2.6)

Once assembled, the supported degrees of freedom (d1, d2 & d3) are removed from the

matrix as they have no effect on its solving.
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K =




d4 d5 d6

14.9 3.89 −3.89 d4

3.89 14.9 −3.89 d5

−3.89 −3.89 3.89 d6


 (2.7)

The structural mass matrix is assembled following the same procedure.

2.2.2 Beams

A beam element, Figure 2.3(a), is similar to a truss element in that it is a straight

bar with a uniform cross-section; however it deforms only in a direction perpendicular

to its axis, and therefore the load carried by the beam is said to be transverse and

not axial. Typically beams will be welded together instead of pinned or hinged, and

therefore moments are transmitted from one beam to another via what is known as a

rigid joint. All beam elements considered here are based upon the Euler-Bernoulli beam

theory, applicable to thin beams. The element stiffness and mass matrices are presented

in (2.8a) and (2.8b) respectively. Transposition of the local matrices into the global

matrices is theoretically possible with beam elements; however where two beams are

connected with different orientations the structure is more commonly referred to as a

frame and is therefore analysed as such.

ki =




d1 d2 d3 d4

12EI
l3

6EI
l2

−12EI
l3

6EI
l2

d1

6EI
l2

4EI
l −6EI

l2
2EI
l d2

−12EI
l3

−6EI
l2

12EI
l3

−6EI
l2

d3

6EI
l2

2EI
l −6EI

l2
4EI
l d4




(2.8a)

mi =
ρal

420




d1 d2 d3 d4

156 22l 54 −13l d1

22l 4l2 13l −3l2 d2

54 13l 156 −22l d3

−13l −3l2 −22l 4l2 d4




(2.8b)

2.2.3 Frames

Frame elements in Figure 2.3(b) are considered as a combination of both truss and beam

elements as they can deform in directions both in line with, and perpendicular to, the
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central axis and carry axial and transverse forces and moments. Frame structures are

very common outside of theoretical analysis as real-world loading would be a combination

of axial and transverse forces. Similar to trusses, frame structures can be either planar

or space frames; however all of the joints will be rigidly fixed, enabling both forces and

moments to be transferred between elements.

d1 = vj

d3 = vk

x

y

j

k

li

d2 = φj

d4 = φk

(a)

ujvj

uk
vk

d2j−1

d2j

d2k−1

d2k

x

y

j

k

li

φ3j

φ3k

θ

(b)

Figure 2.3: (a) A single beam element arrangement with nodes and degrees of freedom
and (b) a frame element. Note that the frame element is a combination of the truss in

Figure 2.2(a) beam in Figure 2.3(a).

The stiffness and mass matrices are similarly treated as a combination of those for trusses

and beams. In this latter case, each consists of six degrees of freedom (three at each

node) for uj,k, vj,k and rotation ϕj,k. The element matrices for trusses and beams are

expanded to 6 degrees of freedom, Eqs. (2.9a) and (2.9b) respectively and then combined

into a single frame stiffness matrix kframe
i Eq. (2.9c).
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ktruss
i =




d3j−2 d3j−1 d3j d3k−2 d3k−1 d3k

aE
l 0 0 −aE

l 0 0 d3j−2

0 0 0 0 0 0 d3j−1

0 0 0 0 0 0 d3j

−aE
l 0 0 aE

l 0 0 d3k−2

0 0 0 0 0 0 d3k−1

0 0 0 0 0 0 d3k




(2.9a)

kbeam
i =




d3j−2 d3j−1 ϕ3j d3k−2 d3k−1 ϕ3k

0 0 0 0 0 0 d3j−2

0 12EI
l3

6EI
l2

0 −12EI
l3

6EI
l2

ϕ3j−1

0 6EI
l2

4EI
l 0 −6EI

l2
2EI
l d3j

0 0 0 0 0 0 d3k−2

0 −12EI
l3

−6EI
l2

0 12EI
l3

−6EI
l2

d3k−1

0 6EI
l2

2EI
l 0 −6EI

l2
4EI
l ϕ3k




(2.9b)

kframe
i =




d3j−2 d3j−1 ϕ3j d3k−2 d3k−1 ϕ3k

aE
l 0 0 −aE

l 0 0 d3j−2

0 12EI
l3

6EI
l2

0 −12EI
l3

6EI
l2

ϕ3j−1

0 6EI
l2

4EI
l 0 −6EI

l2
2EI
l d3j

−aE
l 0 0 aE

l 0 0 d3k−2

0 −12EI
l3

−6EI
l2

0 12EI
l3

−6EI
l2

d3k−1

0 6EI
l2

2EI
l 0 −6EI

l2
4EI
l ϕ3k




(2.9c)

the element mass matrix for a frame is thus:

mi =
ρal

420




d3j−2 d3j−1 ϕ3j d3k−2 d3k−1 ϕ3k

140 0 0 70 0 0 d3j−2

0 156 22l 0 54 −13l d3j−1

0 22l 4l2 0 13l −3l2 ϕ3j

70 0 0 140 0 0 d3k−2

0 54 13l 0 156 −22l d3k−1

0 −13l −3l2 0 −22l 4l2 ϕ3k




(2.9d)

2.2.4 Eigenvalue analysis

The definition of eigenvalues and eigenvectors in mathematical terms can be expressed

geometrically from the symmetrical stiffness matrices shown in the previous section. The
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stiffness matrices relate displacements, d, to forces, p, at the same coordinates of the

structure

Kd = p (2.10)

where p is a vector of applied forces and d a vector of resulting displacements. If the

geometric vectors {x} and K{x} point in the same direction, then the vector {x} is

referred to as an eigenvector of K. Associated with this is the ratio between vector

K{x} and vector {x} and is called the eigenvalue, λ, of K, paired with eigenvector {x}.

The standard eigenvalue problem is thus:

K{x} = λ{x} (2.11)

Frequency optimization falls within the realm of eigenvalue optimization, a field exten-

sively studied by the mathematical programming community. Researchers have explored

various approaches to tackle the underlying semidefinite programming (SDP) problem.

For instance, Fox and Kapoor (1970) adopted a feasibility-based approach, Grandhi and

Venkayya (1988) and Khot (1985) utilized the optimality criteria method. And Kaveh

and Ghazaan (2016) employed non-smooth optimization techniques to size existing truss

structures, ensuring they meet specific frequency requirements, Achtziger and Kočvara

(2007) also leveraged semidefinite programming to address similar problems. Aroztegui

et al. (2011) developed a feasible direction SDP algorithm specifically aimed at maxi-

mizing fundamental frequencies in simple fully-connected ground-structure problems.

Consider a structure consisting of m elements, connecting a pre-determined set of n

nodes. A large external force P is applied to a specific node, with internal forces trans-

mitted through the structure, resulting in small displacements at each node. This may

be considered to be a static problem. To take account of the vibration characteristics

of the structure, it is necessary to consider the following dynamic problem derived from

the equation for motion:

K{u} + M{ü} = 0, (2.12)

where K and M represent the global stiffness and mass matrices respectively. The mass

and stiffness matrices are represented as symmetric 2n × 2n matrices when modelling

a two-dimensional truss structure and 3n × 3n matrices for a three-dimensional truss

structure. The size of these global matrices will be reduced by the number of supported

degrees of freedom, since there are no displacements at these locations. Given that the
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displacement vector is harmonic, Eq. (2.12) may be restructured into the generalized

eigenvalue problem:

Kϕj = λj(M + M0)ϕj , (2.13)

where M refers to the global mass matrix for the structure’s elements; M0 refers to the

additional mass of the nodes connecting each element; and λj represents the eigenvalue

for a given mode of vibration ϕj , (j = 1, 2, 3 . . . ). The free vibrations of a structure are

equal to the square root of the eigenvalues ω2
j = λj in rad s−1, and thus the natural

frequencies and normal modes of vibration for the structure may be determined.

2.3 Mathematical optimization

Mathematical programming is the study of optimization problems where the minimi-

sation or maximisation is sought of a real function of real or integer variables, subject

to constraints on the variables. If the basic descriptions involved take the form of lin-

ear algebraic equations, the technique is described as ‘linear programming’. If more

complex forms are required, the term ‘nonlinear programming’ is applied. Boyd and

Vandenberghe (2004) presents this in its basic form as:

minimize f0(x) (2.14a)

subject to fi(x) ≤ bi, i = 1, . . . ,m (2.14b)

where x = (x1, . . . ,xn) is a vector of unknown variables; f0 : Rn → R is the objective

function and here, as in much of this work the objective is to minimize the values of

x; fi : Rn → R, i = 1, . . . ,m are the constraint functions which must not be violated

in the minimisation of x, in this case an inequality constraint and bi is the limit to the

constraint. A value of x may be considered optimal if fi(x) ≤ bi for all constraints i; if

no optimal point is found then the problem is considered infeasible.

2.3.1 Convexity and local/global optima

Different types of mathematical programming problems can result in different kinds of

optimal solutions. In general these are referred to as local and global optima: a local

optimum is a point that has a lower value of the objective function than all feasible
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neighbouring points, whereas a global optimum will represent the minimum value for

the function over the whole of the domain. Thus a global optimum point will also be

a local optimum; however it is not necessarily the case that a local optimum will be

the global solution. This is an important consideration in mathematical optimization to

ensure that there is no better solution available at another point in the solution space.

Figure 2.4 shows the definition and results of convex and non-convex (concave) optimiza-

tion and highlights the potential differences between local and global optimal solution

points. Figures 2.4(a) and 2.4(b) show examples of convex and non-convex constraints

respectively; it is clear that in convex optimization any local optimum will also be the

global optimum. To aid in the definition of a convex set, as in Figure 2.4(c), if all the

points on the line segment A − B are within a set S then S is a convex set; however

S can be said to be a non-convex set when there are points on the line segment A− B

which are outside of S, Figure 2.4(d). For this reason convex problems are generally

preferred in optimization as they are significantly easier to solve; also, if the problem can

be formulated as a linear program, then the computational costs in solving the problem

are relatively small.

x

f (x)

A

B

(a)

x

f (x)

A

B

(b)

A

B

(c)

A B

(d)

Figure 2.4: Examples of convex and non-convex problems: (a) a convex problem
demonstrating a local optimum to also be the global optimum, and (b) a non-convex
problem highlighting a local optimum where a better solution exists elsewhere. Also
(c) a well defined convex problem where all points reside within the solution space as

opposed to a non-convex problem (d) with the potential for isolated local optima.
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2.4 Linear programming

The problem defined by (2.14) is considered linear if all the functions f are linear in

the optimization variables; every linear programming problem is convex and therefore

the solution will always be the global optimum. Owing to the more simplistic form,

linear programs will solve more quickly than nonlinear problems (Section 2.5). Linear

programming formulations have been presented in a number of forms over time, one

such example is given by Vanderbei (2001):

minimize cTx (2.15a)

subject to Ax ≤ b (2.15b)

x ≥ 0 (2.15c)

where x is a vector containing the optimization variable; c contains the objective coef-

ficients, A the coefficients for the constraints, and b = [b1, b2, . . . , bm]T are the constant

parts of the constraint. This formulation is also referred to as the primal-form of a linear

program.

There currently exist three widely used approaches for solving linear programming prob-

lems:

Graphical methods of linear programming solve problems by finding the highest or

lowest point of intersection between the objective function line and the solution space

on a graph (Figure 2.5). The solution space (shaded) is formed by lines representing the

constraints on the problem, and additional lines representing the objective function are

superimposed on top. This method is generally limited to two variables to reduce the

complexity of the solution space.

Simplex method introduced by Dantzig (1949) solves linear programming problems by

reviewing a series of solutions and iteratively improving upon the previous results, with

each new iteration improving the objective function. It is determined that when no

further iterations are possible then the optimal solution has been identified.

Interior Point method is considered superior to the simplex method due to its ability

to solve large scale problems in a short time. Originally proposed by Karmarkar (1984)

it is different to the simplex method where the problem is solved in steps along the

boundary as the interior point method moves through the interior of the solution space.

An interior point algorithm will generally combine different optimal points in a convex

fashion equally to find the ultimate global optimum.
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x2

x1

Figure 2.5: Example graphical approach to solve a linear program Eq. (2.15). The
grey area is the search region, solid lines represent the constraints, dashed lines represent
the contour lines of the objective function, and the green circle the optimum value for

a maximisation objective.

2.4.1 Duality theory

Duality theory (Nocedal and Wright, 2006; Vanderbei, 2001) states that every linear

programming problem has its dual-form, Eq. (2.16), formulation which is generally

solved alongside the primal-form, Eq. (2.15). A bound on the objective function of each

form can be gained from a feasible, but not necessarily optimal, solution of one or the

other. The dual-form may be presented as:

minimize bTy (2.16a)

subject to ATy ≥ c (2.16b)

y ≥ 0 (2.16c)

where b, A and c are as given for the primal problem in Eq. (2.15), and y is the vector

containing the dual optimization variables. The duality theorem states that the optimal

solutions of the primal problem and dual problem are equal. For linear problems, this

holds in all cases where an optimal solution exists (Vanderbei, 2001).

2.5 Nonlinear programming

A non-linear programming (NLP) problem arises in mathematical programming models

when the objective function, Eq. (2.14), incorporates non-linear functions and/or the

feasible region is defined by constraints involving non-linear equalities or inequalities. In

contrast to linear programming, where the objective function and constraints are linear,
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NLP deals with more complex functions that can be convex, concave, or have multiple

local optima. Broadly, non-linear optimization may be categorized into gradient-based

methods and direct search methods.

Gradient-based methods iteratively adjust design variables based on the gradient of

the objective function. Minimisation is achieved by seeking the area on a curve with

the steepest descent, this may be referred to as a first derivative approach. A second

derivatives approach augments the gradient method with Hessian matrices to guide the

optimization process. This approach will often converge more quickly than those em-

ploying gradient alone but require additional computational burden, examples are: the

sequential quadratic programming (SQP) method (Wilson, 1963), the augmented La-

grangian method (Hestenes, 1969) and the non-linear interior point method (Fiacco,

1969). Whilst the interior point method may be used to solve these types of problems

it is likely that a local optimum will be identified if the problem is non-convex. These

local optima lie within the feasible region and have no better feasible solutions in their

immediate neighbourhood. However, they cannot be improved by considering nearby

configurations. NLP solvers converge to a local optimal point, but additional local op-

tima may exist beyond the immediate neighbourhood. These distant optima could have

better objective values than the local optimum determined by the NLP solver. Achieving

a globally optimal solution to a non-linear program is generally computationally expen-

sive (Horst and Tuy, 1995), which is why for many practical applications mathematically

based methods have been replaced with meta-heuristic methods, these techniques aim

to find a local optimal solution or a good approximation to the global optimal solution.

Conversely, direct search methods do not use derivative information and as a result gen-

erally converge more slowly. Examples of solvers developed to treat non-linear programs

include: Genetic Algorithms (Holland, 1992), which uses the theory of genetic evolution,

a generational approach combining the strongest of the previous generation to produce a

population of potential solutions; or Particle Swarm Optimization (Kennedy and Eber-

hart, 1995) techniques, which are generally based in the natural movement of many

creatures including bees, ants or fireflies. Regardless, the premise is based upon the

position of agents within a solution space, moving at a velocity towards their individual,

and, if possible, best positions.

As stated in Section 2.3.1, a convex optimization problem will generally avoid the issue of

local optimum points being identified, and usually a globally optimum solution is found.

Often formulations can be shown to be convex, including some in conic optimization

(MOSEK ApS, 2017). Boyd and Vandenberghe (2004) state that formulating a problem

as convex essentially solves the problem.
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2.5.1 Semidefinite programming

Semidefinite programming (SDP) is a subfield within mathematical optimization with

this aim of optimizing a linear objective function subject to linear equality constraints,

also, an additional constraint that a specific matrix formed by the decision variables is

positive semidefinite is included. Positive semidefiniteness is a generalization of positive

definiteness for symmetric matrices, meaning that all its eigenvalues are non-negative.

The distinctive feature of SDP is the requirement that a specific matrix (often denoted

as X ) formed by the decision variables is positive semidefinite. Mathematically the

symmetric matrix X is positive semidefinite if xTX ≥ 0 for all vectors of x. This

constraint adds significant complexity to the optimization problem.

Previously, SDP has found application in optimizing truss structures, notably: Ben-Tal

and Nemirovski (1997) and later Kanno (2018) employed SDP to design robust structures

resilient to uncertainties in loading, while Giniünaité (2015) utilized SDP for identifying

minimum mass structures. Various solvers, both commercial and open-source, capable

of handling semidefinite problems of different complexities are available, such as fminsdp

(Thore, 2018); MOSEK (v8+) (MOSEK ApS, 2017); PENLAB (Fiala et al., 2013) and

CVX (Grant and Boyd, 2014). Similar to linear programming, SDP also has a dual

problem associated with it, referred to as the duality gap. The difference between the

optimal values of the primal and dual problems is measured, and when the difference is

zero the primal problem is feasible and bound.

To optimize for the natural frequencies of a structure, a novel constraint equation derived

from the generalized eigenvalue problem Eq. (2.13) is used. After determining the

coefficient matrices for stiffness and mass, a precautionary measure is taken to prevent

the optimization from yielding a structure prone to low-frequency vibrations. This is

achieved by setting a threshold, ensuring that the smallest eigenvalue from Eq. (2.13)

is greater than or equal to a predefined minimum value. Thus Eq. (2.13) may be

transformed into the following constraint:

K(a) − λ(M(a) + M0) ≽ 0, (2.17)

where K(a) =
∑m

i=1 aiKi and M(a) =
∑m

i=1 aiMi are the global stiffness and mass

matrices respectively; ai refers to the cross-sectional area of member i; λ is the eigen-

value derived from the minimum specified natural frequency (ω1) for the specified mode

of vibration ϕj ; and ≽ indicates that the matrix to its left is symmetric and positive

semidefinite. For the purposes of this contribution, the connecting nodes are not con-

sidered and therefore the mass associated with joints M0 = 0.
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In order to demonstrate the viability of Eq. (2.17), it is incorporated into a basic

layout optimization algorithm, Eq. (2.18), and applied to the example structure in

Figure 2.6. It comprises a simple six bar truss design with a load applied at the right

most node 5 . Elements 1 , 3 , 4 & 6 have a length l = 100m with elements

2 and 5 having a length equal to
√

2l2. The material has a Young’s Modulus E =

205 × 109N m−2 and a density ρ = 7800kg m−3. The example proves that specifying a

minimum natural frequency, in Hz, for the first mode will modify the element areas to

achieve this minimum. Each element has a minimum initial area of 0.1m2.
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1000N
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Figure 2.6: Problem definition for the six bar truss

The results of the study in Table 2.2 indicate that the SDP algorithm has successfully

optimized each member’s area to obtain a first natural frequency (f1) for the structure

greater than the minimum initially supplied. It should be noted that the results for

a minimum frequency of 7Hz indicate that the current member arrangement may be

sub-optimal, and therefore an alternative layout may be better suited.

Table 2.2: Results obtained from initial scoping study into SDP algorithm effective-
ness

fmin
(Hz)

a1
(m2)

a2
(m2)

a3
(m2)

a4
(m2)

a5
(m2)

a6
(m2)

f1
(Hz)

V
(m3)

2 0.100 0.100 0.100 0.100 0.100 0.100 2.73 64.142

3 0.100 0.142 0.111 0.100 0.100 0.100 3.006 69.442

4 0.132 0.369 0.271 0.100 0.100 0.100 4.007 111.32

5 0.323 0.986 0.663 0.126 0.100 0.100 5.011 233.99

6 0.772 3.121 1.839 0.224 0.100 0.100 6.017 619.74

7 2.484 15.14 7.069 0.485 0.100 0.100 7.027 2541.7
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2.6 Elastic & plastic design

Building on these mathematical programming techniques, some sound engineering design

fundamentals are now included in structural optimization. The most critical of these

concerns fundamental to a number of studies is how a material will behave when put

under load; more specifically the relationship that the material has between strain and

stress. With reference to the example stress-strain curve shown in Figure 2.7(a) it can

be seen that as a load is applied, the material will go through two main phases of

deformation: elastic and plastic. In the elastic phase stress and strain have a linear

relationship, the slope of the line being the Young’s Modulus E of the material. It is in

this phase that the material may return to its original state when the load is removed.

In the plastic deformation stage, where deformation in the material becomes permanent,

the relationship between stress and strain is no longer linear up to the point where the

material will fail.

Strain Hardening Necking

Perfect Plastic

Yield Strength

Ultimate Strength

Fracture

Strain, ε

Stress, σ

Elastic Plastic

σy

(a)

1

E

Strain, ε

Stress, σ

(b)

Strain, ε

Stress, σ

σmax

(c)

Figure 2.7: Stress-strain relationship: (a) the stress-strain curve for a typical material
showing the different stages involved; (b) the elastic stress-strain relationship; (c) and

the rigid-plastic relationship.

The plastic deformation stage is then sub-divided into two further stages: strain harden-

ing and necking. Strain hardening begins, in certain materials, with the perfect plastic

stage where stress is maintained at the same level as strain increases, resulting in the

formation of Lüders bands, before proceeding on to a region where the stress increases

as the material elongates. Once the Ultimate Tensile Strength (UTS) of the material
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is reached, the necking stage begins where stress decreases as the strain increases. In a

typical tensile test bar, the material will locally reduce in cross-section up to the point

of rupture. Thus a typical stress-strain curve is non-linear and non-convex, leading to

significant computational difficulty when subjected to analysis.

An engineering design will generally strive to ensure that any deformation in the part

occurs only in the elastic region thus, not accounting for fatigue, the part returns to its

original state. As long as no part of the entire structure reaches the yielding stress, then

the loading capacity of this structure is considered to be achieved. However, the elastic

phase of the stress-strain curve shown in Figure 2.7(a) is relatively short, which can lead

to a considerable waste of material. Alternatively, a rigid-plastic model is used which

assumes that the stress-strain relationship is always perfect plastic, ensuring that the

material’s plastic capacity is also employed. In reality, a material which exhibits a rigid-

plastic stress-strain relationship doesn’t exist, but for ductile materials with a plastic

deformation phase much larger than the elastic phase this model applies (Nielsen and

Hoang, 2011) and simplifies an optimization calculation by removing the non-linearity.

2.7 Continuum & discrete representations

Two main approaches to the representation of geometry exist in optimization tools:

Discrete representations, such as those used in layout optimization (Section 2.10), begin

with a predefined arrangement of members, commonly forming trusses, in a set con-

figuration. Layout optimization was performed as a size optimization on all potential

connections present in the ground-structure until Pearson (1958) observed that some of

the connections would disappear completely. To remedy this Dorn et al. (1964) proposed

the ground-structure method, connecting every node in the domain to every other node

with potential connections, with these potential connections providing every possible

load path required to react an applied force. The most optimal load path was then iden-

tified through optimization to yield the most efficient layout and material utilisation;

i.e. the least amount of material required.

Continuum representations are now highly popular and are used extensively in topology

optimization (Section 2.11). Such representations may assign material to the entirety

of a design domain and through an iterative optimization process reduce the density

of the material in specific areas where the strain energy is lower (Bendsøe, 1989), thus

indicating where material is not required in the final design. Originally the results of

topology optimization using continuum based representations were difficult to realize

in real-world applications, with the highly complex results being challenging, if not
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impossible, to produce through traditional manufacturing methods. However, more

recently additive manufacturing techniques have enabled these forms to be produced. A

disadvantage of continuum representations is their inefficiency at low volume fractions

(the volume of the material in the optimized component relative to the original volume

of the design domain). Bendsøe and Haber (1993) demonstrated that when applied to

the perforated plate problem, a continuum approach would result in a form very similar

to one of Michell’s least-weight trusses (Michell, 1904).

2.8 Programming applied to structural optimization

The purpose of structural topology optimization, as per the publication of the seminal

paper by Australian engineer Anthony George Maldon Michell (1904), is to ensure that

for a given design domain the material contained within is distributed in the most opti-

mal manner for a given set of functional requirements. Today, the optimal distribution

is often achieved through a combination of a defined initial domain, a set of boundary

conditions (loads and supports), and a Finite Element Analysis (FEA). Key to success-

ful structural optimization is a clear objective to which the distribution of the material

will be driven. Commonly this is defined as minimising the mass of a structure or max-

imising its stiffness, subject to one or more associated constraints. Sadly, perhaps due

to its highly mathematical nature, this field of study went largely ignored for fifty years

until the advent of computers capable of fully exploring the potential of the theories

that Michell had presented.

Structural optimization either falls into one of three distinct categories, or be a combi-

nation of two or more of these: size, geometry/shape and topology/layout optimization.

Figure 2.8 shows the differences between these three categories. The terms ‘geome-

try’ and ‘layout’ are commonly used where discrete representations are concerned, and

‘shape’ and ‘topology’ are commonly used for continuum structures.

In accordance with Moore’s Law (Moore, 1965), computing power has been increasing

rapidly over recent decades, such that an engineer has a computer on their desk that

contains an ever increasing number of transistors on a chip of the same size. This

increase in computing power has opened up the potential to create ever more elaborate

models in CAD and larger FEA files. Such complexity increases the effort required for

loops of re-design activity in the early phases of product development. To counter this,

a number of methods have been developed to automate the process of multi-disciplinary

optimization, allowing the engineer to be away from the machine, performing other tasks

(or even sleeping!) whilst the computer generates, analyses, and ranks many thousands

of different design iterations.



Chapter 2. Literature review & background 28

Sizing

optimization

(a)

Geometry

optimization

Shape

optimization

(b)

?
Layout

optimization ?
Topology

optimization

(c)

Figure 2.8: Types of optimization with examples: (a) size optimization where existing
geometry is modified in size until the objective is reached, all elements will remain part
of the final solution; (b) Geometry and shape optimization, where the size and position
of elements/material is changes to suit the objective; and (c) Layout and topology
optimization where material inside the domain is free to change in size, shape and

geometry in order to meet the objective.

A summary of the most notable optimization methods (categorized as geometry, topol-

ogy, and layout) is presented below, followed by an example of their usage applied to the

well known Michell cantilever problem (with the exception of geometry optimization).

The problem definition for the cantilever is shown in Figure 2.9. Where applicable the

following parameters will be used: The prescribed volume fraction Vfrac = 0.5, penali-

sation p = 3 and the filter radius rmin = 1.2.

x

y

P

2

1

Figure 2.9: Problem definition for Michell cantilever from Wu and Tseng (2010).
Load (P ) = 1, Young’s Modulus (E) = 1, Poisson’s ratio (ν) = 0.3 and thickness = 1.

2.9 Geometry optimization

The original and simplest structural optimization technique is that of size and/or shape

optimization. Shape optimization is generally performed on continuous structures by
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modifying pre-defined variables that describe the boundaries of the design domain.

Shape and size optimization routines can be used separately or together to achieve the

same goal because shape optimization may be defined as the search for the optimal de-

sign by modifying size vectors such as the cross-sectional areas of trusses or the thickness

of plates. Unless a simple 2D structure is defined, most shape optimization will contain

variables for the third dimension, thereby producing a combined result. Originally this

process occurred manually, with an engineer iterating by hand or producing prototypes,

and then changing the design to address failures, a time consuming and costly process.

The advent of desktop computers has made this process much quicker, automating hand

calculations used in analysis and the use of CAD to generate new geometries. It is now

possible to review several thousands of design iterations every minute, where it may have

taken hours or days for a single one using manual approaches. The ability to use greater

numbers of processing cores, more memory and storage means that the complexity of

analysis models is now so far advanced that a component may be broken down into

elements of less than 1mm per side and optimized.

2.10 Layout optimization

Following on from the original theories of Maxwell (1864), Michell (1904) determined

criteria concerning the optimal topology of trusses. More specifically Michell sought the

optimal layout which would react a given single load case whilst exhibiting the minimum

possible volume, or mass. This optimality criterion was proposed thusly:

“A frame therefore attains the limit of economy of material possible in any

frame-structure under the same applied forces, if the space occupied by it can

be subjected to an appropriate small deformation, such that the strains in all

the bars of the frame are increased by equal fractions of their length, not less

than the fractional change of length of any element of the space.”

Michell then went on to demonstrate this premise on a number of cases, many of which

are now benchmark problems in layout optimization. For example, the cantilever prob-

lem shown in Figure 2.9 may have the solution shown in Figure 2.10. One of the guiding

principles from Michell’s studies is that for near-optimality the members in tension and

compression should cross each other at close to 90◦, something that features heavily in

other Michell structures that meet the optimality criterion.
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Figure 2.10: Layout optimization solution to the Michell cantilever beam problem
shown in Figure 2.9.

2.10.1 Ground-structure method

Numerical layout optimization stands out as a highly efficient method for precisely de-

termining the minimum volume for truss geometry under specific boundary conditions.

The foundational approach, known as the ’ground-structure’ procedure, was first intro-

duced by Dorn et al. (1964). It was initially applied to single load case problems with an

assumption of a plastic material model, however over time this method has evolved and

been augmented. The fundamental formulation for a plastic layout optimization prob-

lem involving n nodes and m members is expressed in Eq. (2.18) and can be effectively

addressed using a Linear Programming (LP) solver.

minimize V = lTa (2.18a)

subject to Bq = p (2.18b)

− σ−ai ≤ qi ≤ σ+ai, ∀i (2.18c)

ai ≥ 0, ∀i (2.18d)

where V is the total volume of the structure; l is a vector of individual element lengths

{l1, l2, . . . , lm}; a is a vector containing element cross-sectional areas {a1, a2, . . . , am}; B

is a suitable (2n × m or 3n × m) equilibrium matrix containing direction cosines (for 2D

or 3D problems); q is a vector of element axial forces, q = {q1, q2, ..., qm}, where qi is the

force in element i; p is a vector of applied loads and p = {px1 , py1, pz1, px2 , py2, pz2, . . . , pzn}
where pxj , p

y
j , p

z
j are the x, y and z direction components of the load applied to node

j (j = 1, . . . , n). Finally σ+ and σ− are, respectively, the limiting tensile and compressive

stresses that can be sustained by the material. Problems of this nature may be solved

using linear programming.



Chapter 2. Literature review & background 31

The variables in Eq. (2.18) are area a, and axial force q, and the goal is to react the

axial forces with the minimum possible amount of material. This will lead to elements

being reduced in size until some are very close to an area of zero, thus an optimal subset

of elements can be determined to be the optimum.

P

(a)

P

(b)

P

(c)

P

(d)

Figure 2.11: Steps in layout optimization: (a) the domain is created and populated
with equally spaced nodes; (b) each node is connected to every other node in the domain
to form a fully-connected ground-structure, alternatively (c) each node is connected only
to neighbouring nodes to form a minimally-connected ground-structure and member-
adding employed, the resulting optimized layout is the same either way; and (d) the
rationalized structure following geometry optimization. Note that red and blue bars

indicate those in tension and compression respectively.

In order to begin a design study using layout optimization it is essential to understand the

domain in which the potential structure will reside; positions of supports are required as

well as the location and magnitude of any applied loads, Figure 2.11(a). The compressive

and tensile strength capability of the material will be used in the optimization to balance

member areas with axial forces. Once the domain is defined, the ground-structure may

be generated. The size and detail of the ground-structure is dependent upon the level

of granularity required in the analysis; if a more accurate result is required then more

nodes should be added to the domain. The designer must be cautious as this increase in

nodes will lead to a rapid increase in computational time, as exemplified in Table 2.3.

These example results were obtained from multiple runs of the cantilever beam shown

in Figure 2.9 using MATLAB 2022b on a desktop PC with an Intel Core i5 processor.

2.10.2 Hemp’s theory

The work of both Michell and Dorn was then combined by Hemp (1973), who applied

duality to the ground-structure approach yielding the following formulation:
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Table 2.3: Computational times for increasing numbers of potential connections in a
full ground-structure. Note the steep increase in CPU cost once 1000000 connections

is reached.
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91 4095 0.311

435 94395 1.113

1035 535095 9.822

1891 1786995 47.271

3003 4507503 145.813

4371 9550635 337.751

5151 13263825 594.182

maximize W =
n∑

j=1

Pjuj/σϵ (2.19a)

subject to σ+|ϵ|/σ + σ−|ϵi|/σ ≤ ϵ (2.19b)

where W is the total virtual work; Pj , uj are the external forces and displacements

respectively at node j; ϵi is the strain of member i; and σ and ϵ are constants of a

Lagrangian multiplier.

Referring back to duality theory, Section 2.4.1, when volume, V , in Eq. (2.18) is at a

minimum then virtual work, W , in Eq. (2.19a) must be at a maximum, with the strain

in each member satisfying Eq. (2.19b). When considering Michell’s optimality criterion,

Hemp suggests that all members meeting constraint (2.20) will be active in the structure

and those which satisfy constraint (2.21) will not be active members.

σ+|ϵ|/σ + σ−|ϵi|/σ = ϵ (2.20)

σ+|ϵ|/σ + σ−|ϵi|/σ < ϵ (2.21)

The following optimality criteria were proposed by Hemp:

1. Any generated structure should be capable of successfully carrying its alternative

system of forces.
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2. Each member should be fully stressed to either its tensile limit σ+ or its compres-

sive limit σ−.

3. A virtual displacement is allowed at the structures nodes, producing non-negative

strains in members loaded to stress σ+, non-positive strains in members loaded to

a stress σ−, and zero strains in members not stressed to these limits.

4. Strains of members that exist in the optimal topology must satisfy constraint

(2.20).

5. Strains in all members (including those not present in the optimum structure),

corresponding to the virtual displacement of criteria 3, must satisfy constraint

(2.19b).

It should be noted that criteria 4 and 5 above can be used to govern whether or not

there is an advantage in including a prescribed member in the optimal truss, connecting

Michell’s optimality criterion and Dorn’s ground-structure approach.

2.10.3 Efficiency improvement

The full ground-structure as used by Dorn et al. (1964) spreads the nodes equally

throughout the domain and then joins each one with a potential connection, Figure

2.11(b), so that if necessary every node could be connected to every other node in the

domain. This method will lead to a total of n(n − 1)/2 potential connections for a 2D

or 3D domain, where n is the total number of nodes in the domain. Though thorough,

this level of detail cannot be sustained for larger problems as the number of potential

connections can quickly exceed 100,000,000. The majority of these connections will have

an area equal or close to zero following the optimization and so do not contribute to the

final structure.

Despite advances in computer technology and increasingly efficient algorithms there are

still limitations on the size of problem that can be solved with a full ground-structure, a

problem that is even more pronounced when attempting to optimize in 3D. To address

the limitations of the original methodology, a new technique was proposed by Gilbert

and Tyas (2003) to make the algorithm more efficient with the incorporation of a cus-

tomized column generation based ‘member-adding’ process as part of the overall solving

mechanism. With this method, nodes in the initial ground-structure are only connected

to their immediate neighbours, Figure 2.11(c), instead of to every other node in the

domain, Figure 2.11(b). An iterative process is then used, with elements added to the

current ground-structure from the list of potential connections. Newly-added elements
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are introduced into the solution using the Michell-Hemp criterion Eq. (2.22) developed

from Eq. (2.19b), which specifies limits on the virtual strain (ϵi) experienced by each

potential element (i), given a prescribed limiting stress (σ):

− 1

σ− ≤ ϵi ≤
1

σ+
, i = 1, . . . ,m. (2.22)

Gilbert and Tyas (2003) not only proved that improvements in efficiency were possi-

ble using the ‘member-adding’ method, reducing total CPU time to just 8% of the

time taken with a full-connected ground structure, they also demonstrated how differ-

ent arrangement for initial connectivity may influence the time taken and numbers of

iterations required. It was proven that for a problem containing 353,330 potential mem-

bers the ‘member-adding’ algorithm obtained results which were identical in volume and

structure using 5 different initial connectivity states as well as a full-connected ground

structure. The most efficient being an initial connectivity state where each node was

connected only to its adjacent neighbour.

2.10.4 Geometry rationalisation

When applied to layout optimization, the addition of member-adding has been proven

to provide an improvement in computational efficiency for solving large problems. How-

ever, as the size of the problem increases the complexity of the result also increases, often

containing a large number of crossing members. These crossing members can make the

resulting structure impossible to manufacture; thus He and Gilbert (2015) proposed an

additional step to reduce the complexity of the structure through a post-optimization ge-

ometry rationalisation step. To achieve this, the nodes connecting the resulting members

are reviewed and those adjacent to one another within a certain radius are combined,

additionally combining the members into fewer bars; further optimization allows the

positions of the nodes to be shifted.

A non-linear, non-convex algorithm is employed to achieve this and, as this stage of

the processes is applied to a sub-set of the original ground-structure, the computational

burden is minimal. This form of geometry optimization has been shown to improve

upon the original results for the layout optimization (He and Gilbert, 2015; He et al.,

2019a). Therefore it is proven possible to define a structure using layout optimization

and geometry rationalisation, with minimal additional computational cost, which may

then be suitable for manufacture.
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2.11 Topology optimization

Two main topology optimization methodologies have emerged over the years, though

there are others: Evolutionary Structural Optimization (ESO), and Solid Isotropic Ma-

terial with Penalisation (SIMP). Both are iterative processes that operate on the princi-

ple that any material within the structure which carries only a small load can be deemed

to be inefficient and may therefore be removed.

2.11.1 Evolutionary structural optimization

The ESO method (Xie and Steven, 1993) is an iterative type of optimization based upon

the FE analysis conducted within a design space. At the beginning of the analysis the

entire design space is filled with a pre-determined number of elements, connecting the

load to the supports. Standard FEA is then carried out to determine the level of Von

Mises stress in each element. Those with the lowest stress are removed prior to the next

iteration in order to achieve a reasonably uniform stress distribution across the design

space. Chu et al. (1996) went on to modify the pre-existing techniques by introducing a

means of maximising the stiffness of the structure whilst maintaining a defined volume

constraint. More impactful was the introduction of the BESO (Bi-Directional ESO)

(Querin et al., 1998), whereby elements can be both added and removed from the design

space in a single iteration. The primary advantage of this method is the time-saving

offered due to the structure growing from a small initial state rather than reducing it

from a much larger design space.

In general two varieties of BESO algorithms are in use: The ‘soft-kill’ method assigns

a very low Young’s Modulus to each element to be removed from the design domain,

thereby making their effect on the structure negligible, and the ‘hard-kill’ method which

removes the elements entirely. Due to its relative simplicity and efficiency, BESO has

been implemented in a number of commercial packages which claim to offer the abil-

ity to produce the optimum design to solve a given problem. It has also been subject

to a number of improvements and alterations in the near twenty years since its incep-

tion. Figure 2.12 demonstrates the form achieved by a BESO algorithm for the Michell

cantilever benchmark1.

One such improvement was an initial attempt to make the optimization routine ‘pro-

cess aware’ (Brackett et al., 2011) with additive manufacturing being the focus. Some

success was had with examples that had been optimized in 2D. After each iteration the

1Produced using the soft-kill BESO program introduced in Huang and Xie (2010) and available from
http://www.rmit.edu.au

http://www.rmit.edu.au/research/research-institutes-centres-and-groups/research-centres/centre-for-innovative-structures-and-materials/software/


Chapter 2. Literature review & background 36

Figure 2.12: Michell cantilever beam optimized using BESO with 100 × 50 elements
resulting in a compliance of 64.26

downward facing edges were identified and their angle in relation to the x axis measured.

Using a penalty function, those faces that violated the self supporting requirements were

highlighted for the consideration of the analyst during post-processing. This interesting

modification to the BESO algorithm can be considered a building block towards a fully

process-aware automated optimization.

One of the key failings of the BESO method lies in the fact that it is not necessarily

a tool that will provide the analyst with the ‘global optimum’. In any optimization

problem, the global optimum is the point at which the analysis has produced a design

that is closer to the required compliance than any other point in the design domain.

Without additional knowledge and input from the analyst, there is a danger that a

‘local optimum’ will be produced, which is only optimum when compared with its direct

neighbours. This is illustrated in Figure 2.4 and discussed in greater detail in Rozvany

(2009) and Aremu et al. (2010).

A secondary concern of the BESO method is its propensity to generate structures that

contain either ‘stair-casing’ or ‘checker-boarding’. A great deal of work has been con-

ducted to address these failings, resulting in smoothing mechanisms which assess the

structure in the current iteration and filter out the numerical instabilities which lead to

checker-boarding (Fujii and Kikuchi, 2000; Sigmund and Petersson, 1998).

2.11.2 Solid isotropic material with penalisation

The SIMP method, as originally discussed by Bendsøe (1989), is perceived to have

advantages over BESO algorithms due to a key difference between the two methods:

Though both use FEA to determine the ideal material distribution for a given problem,

SIMP uses a ‘relative density’ that is characterised by an integer from 0 to 1, whereas

BESO simply applies values of 0 or 1 to each element to denote its density. The term
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used to govern the relative density in the SIMP method is ‘penalization’. The Young’s

Modulus of the material is interpolated using the penalisation value arrived at using

Eq. (2.23). Figure 2.13 illustrates this concept: the BESO method, Figure 2.13(b),

identifies which elements in the design space are active or inactive by assigning a 1 or

0 respectively, the SIMP method, Figure 2.13(c), gives the elements an integer between

1 and 0 based upon the penalized Young’s Modulus. The analyst is free to define the

cut-off where elements will be removed from the domain, typically this is 0.5.
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Figure 2.13: Comparison of how different approaches apply density to elements in a
small area of a typical topology optimization: (a) a typical resulting structure; (b) the
BESO method identifies which elements in the design space are active or inactive by
assigning a 0 or 1 respectively, and (c) the SIMP method assigns the elements a value

between 0 and 1 based upon the penalized Young’s Modulus.

E = E0ρ
p p > 1 (2.23)

Where E is the new interpolated Young’s Modulus of the material, E0 is the origi-

nal Young’s Modulus of the material, ρ is the material density (0 to 1) and p is the

penalisation factor.

There currently exist a number of additional mechanisms which can be applied to SIMP

problems. By far the most commonly used is the Optimality Criteria (OC) method

(Zhou and Rozvany, 1991), which utilizes the strain energy of each element to deter-

mine whether that element’s density should be increased or decreased at the next itera-

tion. Using the objective function and the applied constraints, a Lagrangian function is

formed which is then solved to find the appropriate multiplier for the updated density

value. As is common with the BESO algorithm, a filter is applied to the results to pre-

vent numerical instabilities (Sigmund and Petersson, 1998) by averaging the elemental

sensitivities within a user defined radius (usually defined rmin).

More recently this method has been applied to 3D problems, for example by Liu and

Tovar (2014), who have successfully created a MATLAB program to optimize 3D topolo-

gies in just 169 lines of code. This code has the option to add a number of different

filters to the algorithm to produce a concept that would be closer to a working design.



Chapter 2. Literature review & background 38

The code can make use of an iterative solver to analyse problems of a larger scale on

relatively low-powered PCs or laptops, and also output a Standard Triangle Language

(STL) file of the resulting structure. This output, however, consists purely of cuboid

elements and does not constitute a final design.

Figure 2.14 shows the benchmark problem solved using a SIMP algorithm2. It is clear

that the elements on the very edges of the structure exhibit a wider density distribution

than the simple binary as evidenced by the BESO method (Figure 2.12). The shading

of the elements from white to black begins from a density threshold of 0.5.

Figure 2.14: Michell cantilever beam optimized using SIMP with 100 × 50 elements
resulting in a compliance of 63.897

Rozvany (2009) and Huang and Xie (2010) draw comparisons and highlight the relative

advantages and disadvantages between of the BESO and SIMP methodologies; the con-

clusion that can be drawn is that over the time since their inception each method has

been adapted and updated, and today the two have similarities. As previously discussed,

the fundamental difference remains in the way each method deals with the density of the

elements in the problem. The SIMP approach is arguably likely to produce results which

are closer to the mathematical optimum than the rather blunt on/off methodology of

BESO. With this in mind, it is critical to remember that neither method will guarantee

the global-optimum and that both methods are capable of providing very similar results

in a similar number of iterations, as shown in Figures 2.12 and 2.14.

2.11.3 Applications of topology optimization

There have been several instances of topology optimization being applied to aerospace

structures in academic literature, unfortunately these have yet to be employed in pas-

senger carrying applications, a few notable studies are provided below for context.

2Produced using the 99 line topology optimization program as detailed by Sigmund (2001) and
available from http://www.topopt.dtu.dk

http://www.topopt.dtu.dk
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Zhu et al. (2016) explored the application of density-based topology optimization to mul-

tiple examples of aerospace components, where light-weighting was the primary objective

whilst maintaining structural load capacity. This study included: a single component

which was optimized to generate a materially efficient design for casting; a complex

structural pylon which a very high load capacity; and multiple examples where several

component are arranged efficiently to form a larger assembly. The conclusion was drawn

that while topology optimization proves itself to be a powerful tool, there are still limi-

tations observed when addressing more demanding applications and suggests that more

innovative algorithms should be created. Satya Hanush and Manjaiah (2022) provided a

study of an engineering bracket which has been optimized using topological methods, the

motivation being the reduction in material used at the manufacturing stage and hence

cites the use of additive manufacturing as a production method. The analysis of the

part identified that a 45% weight reduction could be achieved whilst still maintaining

a suitable safety factor. No comment is given as to the process by which the analysis

results were converted back to a CAD model suitable for manufacture, however conclu-

sions have been drawn to understand the best orientation to ‘print’ the part. Finally

Karabiyik et al. (2022) presented a topology optimization methodology that accounts

for the natural frequency constraint in a compliance minimization process to address

the challenge of optimizing for both strength and avoidance of excitation. This is suc-

cessfully demonstrated on two aerospace examples, the ‘GE Bracket’ which has become

synonymous with topology optimization problems as well as a satellite bracket. This

study does provides details concerning the translation of the geometry from analysis to

CAD, and highlights that current capability for NURBs based tools are limited to over-

laying new geometry onto the optimization results following the designers ‘instinctive

decisions’. However, no details concerning the time taken on this step are provided.

2.12 Additive manufacturing

For over 30 years additive manufacturing (or ‘3D printing’) has been used for the rapid

prototyping of components as part of the design process, whether this is to demonstrate

components fitting into an assembly, or for non-destructive or destructive testing. There

are many forms of manufacture under the umbrella of AM: StereoLithogrAphy (SLA),

Fused Deposition Modelling (FDM), and Selective Laser Sintering (SLS) are among

the most widely used. All AM methods follow a similar process: a multi-axis machine

head follows a pre-defined route whilst simultaneously melting and fusing material in

order to form a three dimensional structure; however the melting technique and material

deposition method varies. In a Direct Laser Deposition (DLD) or Electron Beam Melting

(EBM) process the energy is directed towards a bed of powder material and follows the
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pre-defined path. It simultaneously melts and fuses the powder to the build plate or the

preceding layers to generate the three dimensional form. Once the build is completed the

un-sintered powder is removed to reveal the finished component. In an FDM process,

the material is passed directly to the head, where it is melted, and then pushed out of

a nozzle following the pre-defined pattern devised by the engineer or software. Once

completed it is a simple case of detaching the part from the build plate and removing

any support material. Regardless of the method used to build the part, the form of the

component originates in a 3D CAD model.

Figure 2.15: Typical workflow for a laser powder bed AM process: (a) generation of
CAD data and slice file; (b) first layer of powder is laid into the build chamber; (c) the
laser scans the outer profile of the part followed by the infill; (d) the platform lowers
and the next layer of powder is added (e); (f) stages (c) - (e) are repeated until the
full height of the part is reached; (g) the excess powder is removed from the built part
to be recycled; and (h) the completed as-built part ready for post-processing. Image

adapted from similar by EOS GmbH.

Due to the fact that AM is a layer-by-layer process, parts may be designed with signifi-

cantly greater complexity than those that could be produced by traditional subtractive

methods (turning, milling, drilling etc.) without having a significant impact upon the

overall cost of manufacture (Brackett et al., 2011). This inherent complexity that comes

seemingly for free allows the engineer a greater freedom when designing the part, and

may allow parts to be physically realized closer to the optimum design than ever before.

AM is not without its limitations. Application of the technology is fairly new and so its

process parameters are not yet full understood, meaning that there may be unforeseen

problems with the manufacture of parts, sometimes leading to defects that cannot be

seen with the naked eye. It is therefore critical that the designer be provided with the

correct tools to identify where the optimum point in the design space is whilst also being

robust enough to accommodate variables in the manufacturing process.

Additive manufacturing is an umbrella term which covers many technologies, sum-

marised below:

Material Extrusion: Undoubtedly the widest known AM technology, material ex-

trusion has the capability to produce components on a wide variety of scales, from
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micro-electronics to large-scale construction. The primary material of an extrusion pro-

cess is a thermoplastic that is laid down from a nozzle in beads ranging from 0.1-4.0mm

in thickness depending on the machine and the application. The mechanical properties

of the part are governed by the fundamentals of the process, ensuring that the next

layer is successfully bonded to the previous one, however due to this directionality the

final parts are generally anisotropic without further processing. As this is a wholly net

process, i.e. there is no powder bed, supports must be provided for all features that

overhang the previous layer to avoid unnecessary distortion. In more modern machines,

the support process is improved by the use of multi-material feeds enabling supports

that easily snap off or can be dissolved away in a solution subsequent to the build. Some

materials may be further processed after the build to improve the surface finish, such as

mechanical or vapour polishing. These technologies are useful for prototype work but

the inherent anisotropy of the built component significantly limits their performance,

something which should be considered in the orientation of the part.

Powder Bed: Powder bed fusion processes come under many different names, however

they all follow the same basic principal of operation. Each can build parts of highly

complex geometry in a wide range of materials, though typically limited to those ma-

terials that are suited to casting. Components produced by powder bed process often

achieve theoretically 100% density of material with a layer resolution down to around

0.02mm. However, the processing that occurs in the build chamber induces significant

temperature gradients which can result in residual stresses in the part, thus it is nec-

essary to consider part orientation as well as the proposed scan pattern to ensure that

these stresses are limited. It is usual that the component will have a post-build heat

treatment applied before it is separated from the build plate. Though a powder bed

process can provide some level of support, overhanging features usually still require sup-

ports which will need to be initiated from the build plate or an adjacent surface of the

component. It is possible to build overhanging features of a few millimetres in length,

enabling the construction of lattice structures. A notable exception to this is Selective

Laser Sintering (SLS) of polymers, where support structures are not required at all. One

limitation, due to the inherent nature of the powder bed, is that the supports must be

of the same material as the component itself, necessitating their removal by mechani-

cal means following build and post-build heat treatment. It is also often necessary to

improve the surface finish of the component due to stress/life requirements or the need

to interface with other components in the assembly. This may be accomplished by a

number of methods, machining being the most common.

Vat Photopolymerisation: More commonly known as StereoLithogrAphy (SLA), this

process involves exposing a layer of photo-curable liquid to a scanning laser, UV light

source, or a high resolution projected image. Exposure of the liquid initiates a chemical
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reaction which transforms it into a cross-linked solid. Machines are available capable

of producing parts in the millimetre and meter scales therefore photopolymerisation is

suitable for the production of prototype components, models for presentation purposes,

short-run tooling as well as some medical devices. It has been successfully used to pro-

duce a number of parts for development programmes where the cost of mould tooling for

polymer parts would be prohibitive. Parts produced via photopolymerisation usually re-

quire a post-build curing to ensure that the part has the required mechanical properties;

this then gives the part isotropic qualities. As with many AM processes photopolymeri-

sation requires supports as part of the build for overhanging features, adding to the cost

of the material utilisation as well as the post-processing time. In its favour the surface

finish of this process can be much better quality than other AM processes, requiring a

minimal amount of polishing. A wide range of materials are available depending upon

the chemical make-up. In addition to polymers which may be elastic or rigid, it is pos-

sible to infuse the resin with metal or ceramic compounds which may be consolidated

by post-build sintering.

2.12.1 Additive manufacturing benefits

Rapid Prototyping/Manufacture: The adoption of AM technologies has been preva-

lent in the conceptual design phase; the ability to define a CAD model of a part and

produce a physical model can be invaluable in iterative problem solving. This ability

has evolved more recently to incorporate the use of AM in the production of tooling

for low volume components (prevalent in the aerospace sector). The parts themselves

may also be produced from AM technologies negating the need for tooling completely.

Such advances encourage continuous improvement in designs, improving performance

and lowering cost and weight (Singamneni et al., 2019).

Part Complexity: An oft-quoted maxim for AM is ‘complexity for free’ (Kirchheim

et al., 2018) and when compared with traditional machining methods it is true: AM

has the ability to produce functional part designs which are no longer constrained by

traversing a cutting tool through limiting cartesian coordinates. Advantages may be

taken from this complexity: multiple parts in an assembly may be consolidated together

removing the requirement for welding or fabrication processes, pipework may be routed

in a manner which reduces the losses in the system or advanced cooling passages may

be incorporated into parts, Figure 2.16. Significant weight reductions may be achieved

through the use of optimization techniques, most prominently topology optimization.

Further light-weighting may be achieved through the use of lattice or honeycomb struc-

tures in places which would traditionally have been solid metal; such structures can

be multi-functional and used for heat dissipation as well as structural purposes. When
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combined with the rapidity of AM, these complex designs can be produced, built, and

tested in very short timescales improving the overall design process.

Figure 2.16: AM has unlocked the ability to produce complex cooling passages in
engine environment hotter then the melting point of the material used. Image courtesy

of Rolls-Royce Plc.

Sustainability: When compared with traditional methods of manufacture, where a

component may be machined from a much larger bar or forging, AM is a near net

solution, the final component being machined from a much smaller starting point. In

aerospace this is referred to as the ‘buy-to-fly’ ratio, commonly in the region of 15-20

for conventional machining (15-20 times the final component mass is required at the

initial blank stage) whereas AM can have a buy-to-fly ratio as little as 1. This has

multiple benefits: less machining needs to be carried out, reducing both tool wear and

processing time; less material is wasted compared with conventional machining; and

reduced overall costs through processing and shipping of smaller components. Specific

to a powder bed process, any un-melted powder can be collected and reused repeatedly

in subsequent builds leading to an estimated 90% reduction in material wastage and

this has a direct impact upon the cost of the component. Aerospace materials are

very expensive, with the market reportedly worth US$21b in 2020 projected to rise to

US$32b by 2027 (Global Aerospace Materials Industry, 2022). Additive manufacturing

can also be used in cases where product tooling may no longer be available or the cost

to reproduce it is prohibitively expensive. Instead the component may be produced to

drawing directly, or with minimal post-processing machining.

2.12.2 Additive manufacturing challenges

Whilst there are many benefits to additive manufacturing, there are also several chal-

lenges which remain and should be addressed to build confidence in the technology for

demanding environments or industries with stringent safety regulations:

Design for AM: Though there have been a great number of contributions in the field

of design for additive manufacture (DfAM) (Tomlin and Meyer (2011), Reddy K et al.



Chapter 2. Literature review & background 44

(2016) and Shi et al. (2020) e.g.), there are still a number of challenges. AM offers a

level of complexity in part production which can be difficult for the tool generally in

use in traditional manufacturing methods. Geometry creation tools require the ability

to accurately and efficiently model highly complex components, often containing thou-

sands of features, whilst also having in-built knowledge of the limitations of the AM

process such as orientation and surface overhangs; build simulation also offers the abil-

ity to predict residual stresses, minimising thermally induced distortion, with the goal

of reducing the number of supports required during the build. Such complex design

and simulation requires highly skilled engineers, computational power, and well defined

material databases to be effective. Lack of maturity at the conceptual stages of the de-

sign can lead to non-optimal load paths or designs which are ‘over engineered’ and have

unnecessarily high safety margins. Such components will often be overweight, having an

impact upon fuel efficiency. The challenge in design is to catch up with the ever evolving

technology at the forefront of AM production.

Certification: The components used for aerospace applications are subject to stringent

regulations from the certifying authorities (EASA, FAA e.g.) before they can be proven

suitable for flight. This process requires that every aspect of the component, from

its design and analysis, to the manufacturing process, be scrutinised and shown to be

consistent and repeatable to the certification authorities. Development of a product to

meet the safety rules requires that the Original Equipment Manufacturer (OEM) gains

the knowledge and proves that every process involved in the production of a component

has a level of risk that is ‘As Low As Reasonably Practicable’ (ALARP). Limitations

associated with dimensional non-conformance, process limitations, poor surface finish,

lack of part-to-part repeatability are some of the challenges in the certification of AM

parts. Certification standards are developing all the time, especially in fast moving fields

such as AM. The report by the AIA Additive Manufacturing Group (2020) details some

of the current industry best practices covering: development of materials and processes;

destructive and non-destructive verification techniques; part and system qualification;

and different means of compliance to applicable regulations. This report concludes that

the part qualification and its certification can successfully be achieved using the proven

established methodologies as a baseline, supplemented with additional focus on issues

which are specific to AM.

Structural Integrity: Traditionally manufactured aerospace components are routinely

subjected to a number of dynamic loading types, such as Low Cycle Fatigue (LCF),

High Cycle Fatigue (HCF), thermal cycling, and loads associated with acceleration and

deceleration. These are well understood, and the components designed to react such

loading within their predicted life. Once the life limit has been reached, it is possible

for the component to fail. Additively manufactured parts, however, do not have the
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decades of knowledge and materials data behind them to predict lives for LCF and HCF

as easily. This lack of knowledge is compounded by inherent defects which may occur in

the part through the manufacturing process such as porosity, residual stresses, and poor

surface finish. Recent work by Gupta et al. (2022) has endeavoured to fill this gap by

producing sample components and test bars to generate HCF lifing data for Ti-6Al-4V,

however it will take time before this data is in regular use in industry.

2.13 Aerospace design

Aerospace engineering covers all aspects of the aerospace sector including but not exclu-

sive to: civil aircraft (large airliners and business jets), military aircraft, space launch

systems, satellites, and missile systems. It has been a traditionally lucrative sector, how-

ever a decline in aircraft flying hours have been seen as a result of the SARs COVID-19

pandemic, and growing awareness of the impact of flight on climate change. Despite this,

however, the sector is predicted to grow to a revenue of US$430b by 2025 (Blakey-Milner

et al., 2021) driven by committed long-term orders for large aircraft, global military ex-

penditure, and adoption of sustainable aviation fuels.

Design of products in the aerospace sector is subject to stringent regulations from the

FAA/EASA (Hiemenz, 2020) however with the requirements for weight and fuel burn

becoming ever more challenging the products are becoming more complex and there is

a greater drive towards lightweight components. To facilitate this desire for lightweight

parts, the aerospace sector has been a rapid adopter of additive manufacturing for not

only end use parts but also tooling, testing equipment, and design aids. AM is enabling

the aerospace sector to become more agile in reducing costs and lead-times for products

with tight timescales (Hiemenz, 2020; Singamneni et al., 2019); as a result there has

been significant research and investment in AM over the last 10 years (Blakey-Milner

et al., 2021; Singamneni et al., 2019). There are currently more than 20,000 medium-

large commercial aircraft in operation worldwide, and a further 15,000 small business

jets. With fleet sizes expected to double over the next 20 years there is a strong case for

the greater exploitation of AM technologies in the improvement of aerospace products.

Due to the very high level of complexity of aerospace design, specifically in the design of

turbo-machinery, there are very few manufacturers who are certified for the production

and maintenance of aircraft. Typically the design of any component would be subject

to the following requirements:

Safety: The number one design aspect considered is always safety. Aerospace compo-

nents operate in a harsh environment with temperatures ranging from −65 ◦C outside
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the aircraft to 1800 ◦C in the combustion chamber of the engine, G-force loading, vibra-

tion, and a mixture of fuel and oils, all of which must be considered in the design of the

products to ensure the safety of those on board and also on the ground.

Fit, Form & Function: Aircraft production is a highly complex and highly skilled

process and therefore it is essential that all parts brought to the build-line are designed

to be as accurate as possible. Careful attention must be paid to the interfaces of the

parts to ensure that they can be assembled correctly. The form of the component should

be robust enough to be tolerant to small amounts of damage that may occur during its

operational life, whilst not being overly large or heavy. And the function of the product

must be met, often through the build up of several smaller parts in to highly complex

assemblies.

Certification: As noted above, all components that go into an aircraft system are

subject to the requirements laid down by the governing aerospace bodies, the FAA and

EASA. There are different levels of criticality that the parts will need to meet based

upon their function. The regulators need to ensure that the products introduced into

service are well designed and may be repeatably produced to the same high level of

accuracy to ensure safety over the operational life.

Cost and Lead-time: Two factors that are important, but are sometimes at odds

with the other requirements. Whilst it may be a requirement to design a highly complex

part, it would not be acceptable for that part to consume 90% of the budget! Careful

management of the cost of the part is maintained through the design process. The time

it takes to manufacture the part must be considered: with timescales for introducing

new products to the market becoming ever tighter, it is essential that unnecessary delays

or lengthly processes are reduced to a minimum.

Sustainability: Fuel burn is a critical criterion in aerospace and most, if not all, designs

will be evaluated against it in some way, be it a direct impact on aircraft drag or simply

the weight of a component. Traditionally, this was evaluated based on the cost of the

fuel burned, however more recently this has changed to the quantity of fuel burned

and the associated emissions. Light-weighting has always been a mainstay of aerospace

design with all unnecessary mass reduced from a part (to a defined factor of safety). The

buy-to-fly ratio is a key consideration, the difference between the mass of the finished

part vs. the block of material it is produced from, and a good deal of work is performed

to ensure that the minimum amount of material should be wasted during production.

This results in a part that not only requires less fuel to lift it into the air, but also less

energy expended during its production, and all material ‘swarfed off’ in production will

be recycled. It is estimated that every kilogram of weight reduced from an aircraft will
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save around US$3000 worth of fuel and the associated emissions per aircraft per year

(Singamneni et al., 2019).

There is a high degree of both harmony and conflict between these requirements which

often leads to a compromise in one requirement to ensure that another is satisfied. These

decisions are usually taken using a knowledge-driven approach to justify the choices

made. This is not only sound engineering process, but a requirement for certification of

the design. Ultimately the final part will be the optimal compromise between all of the

laid out requirements.

2.13.1 Design for weight and CO2 reduction

The convergence of Design for Additive Manufacturing (DfAM) and sustainability under-

scores the demand for lightweight components. A significant advantage of this approach

is the potential to curtail fuel consumption in aircraft, contributing to environmental

benefits. Currently, burning of 1 kg of aviation fuel (JET-A) results in the emission of

3.2 kg of CO2 into the atmosphere. In 2019, the aviation industry consumed approxi-

mately 250 million metric tonnes of JET-A, leading to over 800 million metric tonnes

of CO2 emissions annually (RAeS, (2022)). Therefore, any reduction in material weight

from a component translates into a substantial decrease in CO2 emissions throughout

the product’s lifespan, typically 20-30 years.

To diminish the specific fuel consumption and, consequently, CO2 emissions of a typical

wide-body aircraft by 1%, a weight reduction of approximately 907 kg is required. For

instance, a Boeing 787-8 Dreamliner powered by Rolls-Royce Trent 1000, covering the

distance between London Heathrow and São Paulo3 (5155 nm), consumes 19 010 kg of

fuel, emitting 60 832 kg of CO2. Reducing the aircraft weight by 907 kg results in a

1% fuel consumption reduction, saving 608 kg of CO2 on each flight. The relationship

between a decrease in component mass and a corresponding reduction in CO2 emissions

can be expressed by the following formula:

∆CO2 = 3.2(β.∆w) (2.24)

where β = 0.01Ft/907, Ft is the total fuel consumed for the flight prior to re-design

and ∆w is the weight reduction achieved from the re-design activity. It should be

noted that this formula assumes that the component(s) modified have no effect upon

the aerodynamic performance of the aircraft. Additionally, this formula determines

the reduction in CO2 per flight where in practice a large civil airliner may make in

3Aircraft Commerce, Issue 121, Dec 2018/Jan 2019
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excess of 50,000 flights in its lifetime. In addition to the highly important reduction in

CO2, reduced fuel burn also has an economic impact. Revisiting the flight from London

Heathrow and São Paulo and with the average price for JET-A1 predicted to be $0.85/kg

over 20234 if a 1% reduction in fuel burn can be achieved through weight reduction this

equates to a saving of $162 per flight for the operator; a seemingly small amount per

flight but equates to $8.1m over the life of the aircraft, not accounting for fluctuations

in fuel price.

2.13.2 Frequency analysis for damage prevention

In the design of modern engineering components many considerations need to be taken

into account including safety, cost, weight, and manufacturability. The most prominent

of these is safety, taking account of the regime of applied stresses to be sustained over the

life of the component. Safety is influenced by the properties of the material employed,

which may change as the design evolves. When considering structures that include

slender elements in compression, it is necessary to check for buckling instability to ensure

safety is maintained. Another key parameter in the aerospace sector is the harmonic

frequency of a structure, which should lie outside of the frequency bands of surrounding

components. Should a fundamental frequency of one component (e.g. a bracket) overlap

with those of its attached neighbours, then resonance in the component may occur, also

referred to as forced vibration. Forced vibration and resonance can then lead to HCF in

the component, affecting its serviceable life and reducing its time to failure. It should be

noted that a component may exhibit multiple resonant frequencies, each corresponding

to a mode of vibration, and repeated exposure to these frequencies may reduce the life

of the component.

In turbo-machinery the primary source of vibration arises from the interaction of air

flowing between static and rotating stages of blades and vanes. This interaction is re-

ferred to as Engine Order (EO). Analyses are conducted to fully understand the numbers

and frequencies of each EO for the machine, and the resulting values are plotted on a

Campbell Diagram, Figure 2.17. The diagram plots frequencies against engine speed.

The engine orders emanate from the origin of the diagram in a series of spokes, shown

dashed, and each one corresponds with a potential source of resonance excitation. Inter-

polated frequencies for various modes of vibration for the component being analysed are

superimposed on this diagram, shown blue-solid, and anywhere that there is an inter-

action with an engine order is highlighted, ⃝. In cases where these circled interactions

occur at a dwell speed for the machine, such as max take-off or cruise for an aero engine,

then a re-design will be necessary to ensure that no HCF related hazards can occur.

4Data from: https://jet-a1-fuel.com/forecast
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Figure 2.17: An example Campbell Diagram showing engine orders, dashed, as
sources of resonance. Interpolated natural frequencies are laid on top of the engine

order lines to determine where resonance may occur.

There have been numerous recorded HCF-related incidents. A notable example led to

the loss of British Midland flight #92 in 1989 (Cooper, 1989). This was initiated by

the failure of a fan blade on one of the two CFM International S.A. CFM56-3 turbofan

engines. A single blade failed due to a coupling of torsional-flexural transient and non-

synchronous oscillation, leading to rapid reduction of the HCF life of the blade. The

blade was subsequently released, causing high levels of vibration in the engine and

aircraft, contributing to the loss of the aircraft upon attempting an emergency landing

at East Midlands Airport in the UK.

2.14 Conclusions

The review of available literature has discussed a number of topics and existing re-

search relevant to this thesis and the following conclusions have been drawn; identified

shortcomings will be addressed in the following chapters:

a) There have been numerous studies into the application of topology optimization to

aerospace engineering problems (section 2.11.3); however in many cases there has

been little demonstration of the remodelling work that is required to move from the

numerical results to a fully formed CAD geometry. Furthermore, there are few real-

world examples of truss layout optimization being applied to complex engineering

problems as a competing technology to topology optimization, and therefore the
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salient advantages and disadvantages are not widely known. Previous studies

relating to either optimization technique have not fully considered the impact that

available weight reduction may have on climate change.

b) Whilst a number of studies have endeavoured to use automated optimization to

control the natural frequency of a truss structure, many have employed heuristic

approaches to pre-defined structural forms, for example size optimization of an

existing component. Where techniques similar to layout optimization have been

used the results have often taken a long time to solve, little evidence has been

shown that any have taken advantage of the efficiency improvements available

through use of the ‘member-adding’ algorithm.

c) The influence of the initial form of the layout optimization ground-structure has

been studied by Gilbert and Tyas (2003) in terms of computational efficiency

for problems solvable via linear programming; however no such study exists for

more complex problems requiring semi-definite programming methods, the use of

which would make solving problems such as those involving eigenvalues, much

more efficient.

d) Whilst there have been several examples of both layout and topology optimization

being applied to truss structures with both compliance and frequency constraints

there have been no studies conducted concerning the automated optimization by

semidefinite programming of frames using a ground-structure based layout opti-

mization. Frames provide a more appropriate representation of continuum struc-

tures indicative of components that may be produced by AM methods and their

viability should be assessed.
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A comparison of truss and

topology optimization as effective

tools for reducing mass and CO2

emissions of aerospace

components for production by

AM
1

The climate crisis is driving sectors such as aerospace to take steps to reduce their CO2

emissions. As well as opportunities to replace kerosene with a more Sustainable Aviation

Fuel (SAF) or hydrogen, there is an immediately achievable approach: weight reduc-

tion of the component parts of an aeroplane, as this directly correlates with a decrease

in CO2 emissions. Additive manufacturing (AM) is a key technology that can poten-

tially be used to unlock large weight reductions; therefore choosing an appropriate AM

component design tool is critical. Topology optimization has long been considered as

the tool to identify the lowest weight additive designs; however there remain challenges

in transitioning from raw optimization results to usable CAD models for manufacture.

Where design freedom is significant, truss layout optimization provides an alternative

means of optimizing parts, allowing a final geometry to be generated as part of a simple

workflow, reducing the time required to remodel raw numerical solutions by approx.

1The content of this chapter has been prepared for a journal paper: S. J. Salt, M. Gilbert. A
comparison of truss and topology optimization as effective tools for reducing mass and CO2 emissions
of aerospace components for production by AM. Additive Manufacturing, in review.
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70%. This contribution compares the use of topology optimization and truss optimiza-

tion for two aerospace component case studies, highlighting the benefits and challenges

associated with each. It is demonstrated that although each approach can be used to

reduce weight, and hence CO2 emissions, there are differences in the computational costs

and remodelling times involved.

3.1 Introduction

An aerospace component has the required level of structural integrity when the part

is sound and unimpaired such that it can provide the desired level of structural safety,

performance, durability and supportability (MIL-STD-1530D, 2016). Robust structural

optimization tools provide a designer with the ability to generate lightweight designs that

still meet structural performance requirements. The most common technique employed

to date is continuum topology optimization, perhaps most notably the solid isotropic

material with penalisation (SIMP) approach (Bendsøe, 1989), which has been incorpo-

rated into a number of commercial FEA packages (e.g. Altair OptiStruct and Siemens

NX). Consequently various examples of successful usage of this optimization approach

are described in the literature, e.g. Tomlin and Meyer (2011), Shi et al. (2020), and

Reddy K et al. (2016). For example, in the case of the RUAG satellite antenna bracket

(Figure 3.1), the use of optimization is reported to have reduced component weight by

40% (EOS GmbH).

Figure 3.1: Example aerospace component: RUAG antenna bracket for the Sentinel
satellite system. A weight reduction of 40% was reportedly achieved through use of
topology optimization whilst maintaining strength and launch vibration requirements.

Image courtesy of EOS GmbH.

However, while topology optimization can be an effective tool, there are a number of is-

sues that have limited the extent to which it has been embraced by designers in industry.

These include the need to specify in advance the desired volume fraction (the proportion

of the original design domain that will be occupied by material), which will generally
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require a number of iterations to establish. Also there can be difficulties associated with

moving from the mesh solution obtained to a usable CAD geometry.

Continuum topology optimization begins with a fully occupied design space, i.e. a solid

block of material, which is then progressively reduced in size in line with the specified

optimization criteria until a solution is found. In many cases this solution will exhibit

similarities with an open truss structure, particularly if the degree of design freedom

is high (i.e. if the target volume fraction is low). Thus in some cases it may be more

efficient to instead use a method that seeks to identify truss structures directly from the

outset. Hence, building on the early work of Michell (1904), Dorn et al. (1964) proposed

a numerical layout optimization procedure for truss structures. With modern computers

this procedure can now be used to produce highly accurate solutions in a short amount

of time. This technique is very useful to identify both the optimal means of transmitting

forces through a structure, and the associated volume of material required. However,

the approach unfortunately often generates extremely complex structures that would be

prohibitively costly to produce, or which simply cannot be manufactured via traditional

manufacturing methods.

Fortunately, the latter limitation is greatly alleviated by using Additive Manufacturing

(AM) techniques. The primary appeal of AM in the aerospace sector is the ability to

produce lightweight geometry that, although potentially highly complex in form, possess

the high levels of structural integrity required. AM parts can be categorised by the degree

to which they deviate in form from a traditional non-AM part, and the concomitant risk:

a) Substitution: A part is made via AM to the same shape and specification as the

original and is therefore interchangeable.

b) Enhanced Substitution: Additional performance is gained from the use of AM,

e.g. lightweighting, cost reduction, yet the part still remains interchangeable with

the original.

c) Exclusive Choice: The extent of the changes made through the introduction of

AM render the original component obsolete, or there are sufficient changes to the

surrounding component interfaces that it is no longer interchangeable.

It is partially due to the level of risk, and the level of scrutiny that aerospace products

receive, that many parts designed for AM to date have similar forms to those designed

to be produced via conventional casting or machining techniques. However, using AM

potentially allows us to realize the considerable advantages of truss layout optimization:

the ability to produce structures where the optimum solution may only consume a small
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fraction of the initial design domain, whereas in contrast topology optimization meth-

ods may require use of a minimum volume fraction of approx. 10% in order to generate

reasonable outcomes (Aage et al., 2013). A number of studies (e.g. Allaire and Bogosel

2018; Leary et al. 2014; Weber et al. 2021) have been made into the design of additively

manufactured components that can be produced with minimal or zero supports in the

build. Though desirable, this additional constraint is not considered in this contribu-

tion as it’s introduction constraining the minimum angle of structural members, has the

potential to limit design freedom and move us away from truly minimum volume solu-

tions. For aerospace applications, where volume or mass reduction is usually the main

goal, it may therefore often be more appropriate to spend additional time in production

removing supports with the knowledge that the lightest possible component has been

produced.

This contribution is designed to compare the effectiveness of two optimization techniques

that can be used to reduce material usage and hence CO2 emissions by applying them

to two example aerospace gas turbine components. The contribution is organized as

follows: Section 3.2 provides greater detail pertaining to the optimization methods to

be applied to the case studies; Section 3.3 discusses the various methods and challenges

involved in translating the results of optimizations into CAD data; and Section 3.4 ap-

plies these optimization methods and remodelling activities to two aerospace component

case studies, the results of which are discussed in Section 3.5.

3.2 Optimization techniques

This contribution focuses on application of optimization methods that can be employed

to reduce the volume and hence weight of a component. This has a significant knock on

effect on CO2 emissions; see Section 3.6 for further details. Such optimized forms can

potentially be produced via the use of AM techniques, though for the purposes of the

present study manufacturing considerations are not considered in the optimization for

the reasons outlined in the previous section.

3.2.1 Layout optimization

The objective of ground-structure-based truss layout optimization is to arrive at a min-

imum volume, and hence weight, structure whilst maintaining structural integrity. It

begins by defining a design domain, which is the volume in which the optimized struc-

ture can reside. Boundary conditions and material properties are also defined to fully

describe the problem; see Figure 3.2(a). Using a Cartesian grid, the design domain is
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populated with a predefined number of nodes (n) in the x and y directions (also in

the z direction for 3D problems). It is then joined with potential connections (m), or

elements, such that each node is connected to every other node in the domain to form a

fully-connected ‘ground-structure’, Figure 3.2(b). The fully-connected ground-structure

is assumed to contain all possible constituent elements of the optimal solution. Con-

straints are introduced to ensure equilibrium is enforced at nodes, and to ensure that the

cross-sectional area of each element is both a positive number and is sufficiently large

to carry the internal forces, given the limiting stress of the material. The plastic single

load case formulation can be written as follows (after Dorn et al. 1964):

minimize V = lTa

subject to





Bq = p,

− σ−ai ≤ qi ≤ σ+ai, ∀i
ai ≥ 0, ∀i,

(3.1)

where V is the total volume of the structure; l is a vector of individual element lengths

{l1, l2, . . . , lm}; a is a vector containing element cross-sectional areas {a1, a2, . . . , am}; B

is a suitable (2n × m) equilibrium matrix containing direction cosines (for 2D problems);

q is a vector of element axial forces, q = {q1, q2, ..., qm}, where qi is the force in element

i; p is a vector of applied loads and p = {px1 , py1, pz1, px2 , py2, pz2, . . . , pzm} where pxj , p
y
j , p

z
j

are the x, y and z direction components of the load applied to node j (j = 1, . . . , n).

Finally σ+ and σ− are, respectively, the limiting tensile and compressive stresses that

can be sustained by the material. Problems of this nature can be solved using linear

programming (LP).

When a fully-connected ground-structure is used problems become computationally ex-

pensive to solve when a large number of nodes are involved, since the problem comprises

n(n− 1)/2 potential connections, where n is the total number of nodes. Once the opti-

mization is complete, the majority of these connections will have an area equal or close to

zero, and therefore do not contribute strongly to the final structure. To address this, an

adaptive ‘member adding’ method was proposed by Gilbert and Tyas (2003), which is a

customized column generation technique and can be shown to reduce the computational

burden significantly in the case of large problems. In this approach, the initial nodes

of the ground structure establish connections solely with their immediate neighbours,

as depicted in Figure 3.2(c). This contrasts with the scenario in Figure 3.2(b), where

every node is connected to all other nodes within the domain. Subsequently, elements

are incrementally introduced into the existing ground structure from a list of potential

connections. The decision to admit newly added elements to the solution aligns with



Chapter 3. A comparison of truss and topology optimization 56

the Michell-Hemp criteria. Eq. (3.2), which specifies limits on the virtual strain (ϵi)

experienced by each potential element (i), given a prescribed limiting stress (σ):

− 1

σ− ≤ ϵi ≤
1

σ+
, i = 1, . . . ,m. (3.2)

When utilizing column generation methods (Gondzio and Sarkissian (1996), Desrosiers

and Lübbecke (2005), and Gondzio et al. (2013)), new ‘columns’ (problem variables) are

added to the LP constraint matrix B in (3.1). Once an iteration in the optimization has

completed potential connections are ranked, and those most violating the criteria added

for use in the next iteration. When no potential connections violating the criteria remain,

the algorithm terminates. The solution obtained shown in Figure 3.2(c) is provably

optimal, with the computed volume the same as that obtainable using a fully-connected

ground-structure from the outset. An extra step, introduced by He and Gilbert (2015),

may be performed to rationalize the optimized geometry further, to aid downstream

processing and component production; see Figure 3.2(d).

P

(a)

P

(b)

P

(c)

P

(d)

Figure 3.2: Steps in truss layout optimization: (a) design domain populated with
equally spaced nodes; (b) each node connected to every other node in the domain to
form a fully-connected ground-structure; (c) alternatively, each node is connected only
to neighbouring nodes to form a minimally-connected ground-structure, with member
adding employed to identify the optimized layout; (d) rationalized structure following
geometry optimization step. Note that red and blue bars indicate those in tension and

compression respectively.

Truss layout optimization may be used to generate 3D forms by introducing additional

nodes in the z direction. However, as this increases the number of potential connections

in the problem the use of member adding becomes essential to keep the computational

burden manageable.

To undertake the 3D truss optimization studies described herein the software Limit-

State:FORM version 3.5.0, (2019) is used. Using the truss layout optimization techniques

described above, the software automatically identifies the most efficient arrangement of

structural members for a specified objective. The adopted discrete representation of

the problem differs from the continuum representation used in the more widely adopted

topology optimization approach. After the initial layout optimization step is completed,

https://limitstate3d.com/
https://limitstate3d.com/
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a secondary geometry optimization may be performed to further improve the solution by

adjusting the positions of nodes leading to a cleaner layout, and also a small reduction

in overall volume. Following these two optimization steps, the resulting structure can

be converted into a monolithic body and then exported to other platforms for further

refinement and/or manufacturing constraints. Due to the ease with which the geome-

try can be united and exported, this approach is particularly well suited to AM as it

becomes possible to take full advantage of the ability of AM to fabricate complex parts.

3.2.2 Topology optimization

In contrast to truss layout optimization, where members are added to the structure as

needed, topology optimization generally begins with a solid domain lying between loads

and supports and then iteratively removes material where it is not needed. The umbrella

term, topology optimization, today covers many different iterative techniques including:

a) Evolutionary structural optimization (ESO) introduced by Xie and Steven (1993)

is a design method that gradually removes inefficient material from a structure

during the design process; the goal is to gradually evolve the structure toward

the optimum shape. Initially the design domain is divided into finite elements,

standard finite element analysis (FEA) is then used to calculate the Von Mises

stress in each element. Elements with the lowest stress are systematically removed

in each iteration. The overall aim of the process is to achieve a uniform stress

distribution across the entire design space. The method was modified by Chu

et al. (1996) who introduced a means of maximising the stiffness of the structure

whilst maintaining a defined volume constraint.

b) Bi-directional ESO (BESO) introduced by (Querin et al., 1998) allows for both

element removal and addition within the design space during a single iteration.

The key advantage lies in the time saving that is gained: the structure can evolve

from a compact initial state rather than being reduced from a much larger design

space. Due to its simplicity and efficiency, BESO has been incorporated into sev-

eral commercial software packages, promising optimal design solutions for various

problems.

c) The Solid Isotropic Material with Penalisation (SIMP) method (Bendsøe, 1989)

differs from ESO/BESO algorithms due to a key differentiator. Though both

use FEA to determine the ideal material distribution for a given problem, SIMP

assigns a relative value that is characterized by an integer from 0 to 1, whereas

BESO simply applies values of 0 or 1 to each element to denote its density. Figure

3.3 illustrates this concept: in the case of SIMP, Figure (c), the designer is free
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to define the cut-off where elements will be removed from the domain. The term

‘penalization’ is used to govern the relative density in the SIMP method. The

Young’s Modulus of the material is interpolated using the following penalization

relation:

E = E0ρ
p p > 1 (3.3)

where E is the new interpolated Young’s Modulus of the material, E0 is the original

Young’s Modulus of the material, ρ is the material density (0 to 1) and p is the

penalisation factor.
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Figure 3.3: Comparison of how different topology optimization approaches apply
density to elements: (a) typical topology optimization result; (b) the BESO method
identifies which elements in the design space are active or inactive by assigning a 0 or 1
respectively; (c) the SIMP method assigns the elements a value between 0 and 1 based

upon the penalized Young’s Modulus.

3.3 Remodelling of optimization results and workflow

Optimization is just one part of the overall workflow that must be undertaken to generate

a component design from the domain stage to being ready for fabrication via additive

manufacture. A certain amount of remodelling is usually required in order to achieve a

final design, the amount depending upon the optimization method employed. Below is a

description of what is involved in moving to a final form. A breakdown of the process for

both truss and topology optimization methods highlights the steps required and draws

comparisons. This basic workflow is followed in Section 3.4.

3.3.1 Remodelling truss layout optimization results

The raw output from truss layout optimization is a collection of 1D elements that must

be converted into a 3D continuum prior to manufacture via AM. For demonstration

purposes it shall be assumed that these are converted into cylindrical members, though
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more complex forms could be used. The process used in the LimitState:FORM appli-

cation has been previously documented in detail (Smith et al., 2016), but to provide

a comparison with Section 3.3.2 a brief overview is provided here. Once the optimum

solution is identified, and the designer is satisfied that it represents an efficient structure

following geometry optimization, the process begins. The first stage in translation to

CAD is to create a cylindrical surface along the length of each element, the diameter of

which directly corresponds to the area identified at the layout optimization stage, Figure

3.4(a). At this stage, it is convenient to generate a sphere at each node that is sized to

accommodate the largest member intersecting that node, Figure 3.4(b). An additional

lofting operation is then completed that further smooths the transition between each

member at the joint, reducing the risk of high joint stresses, Figure 3.4(c). From this

point, the body may be converted to a solid allowing further boolean operations to be

completed, and the part may be freely exported as a NURBS file for use in further FEA

validation processes, or preparation for an AM build. This process is highly automated

and therefore takes little time and effort for the designer. Furthermore, since the result-

ing geometry represents very accurately the values obtained in the optimization routine,

minimal errors are generated.

(a) (b) (c)

Figure 3.4: Translation of layout optimization results to CAD, after Smith et al.
(2016): (a) surfaces are wrapped around each line element, representing the optimized
cross-sectional area; (b) nodes are created at each end based upon the size of the largest
intersecting member; (c) nodes are expanded and smooth transitions added, giving rise
to a that may be exported e.g. via STL/STEP/IGES files to other software or directly

to an AM machine.

3.3.2 Remodelling topology optimization results

As outlined previously, the outcome from a topology optimization study is generally

mesh-based. Therefore additional operations must be completed to transform this mesh

into a manufacturable geometry. This is complicated by the propensity for topology

optimized structures to have a very organic appearance, comprising ligaments that may

be curved and/or vary in area non-linearly along their length. This can make the

structures very challenging to accurately represent, and challenging to inspect following

manufacture. To remedy this a number of commercial packages have made available
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processes which aim to convert mesh geometries into solids, ranging from simple sketch

and boolean operations, conformal surfaces that seek to drape themselves over the mesh,

to implicit modelling methods that generate models using a system of mathematical

formulae. For the purposes of this contribution a method of forming surfaces over the

mesh will be used.

PolyNURBS is a tool that has been created to partially satisfy the need to convert

geometry resulting from a topology optimization into a fully united continuum that is

ready for FEA and/or AM build preparation. In practice, it allows the engineer to wrap

a surface around the mesh geometry using a series of algorithms to accurately construct

the new surface over an undulating mesh. The action of smoothing out the elements

means that some will lie within any new outer surface and others outside; therefore care

must be taken to ensure that the structure remains intact and rational. The tool used

as part of this contribution allows for NURBS surfaces to be stretched over a continuous

length of a ligament; however it is not possible to automatically form joints at the

intersections, something that remains a manual process for the designer to complete.

Though the automatic creation of some of the surfaces goes a long way to reduce the

burden of remodelling the optimized mesh, there is still considerable work to be done

before a manifold solid can be produced ready for downstream processes. Unfortunately,

once all the surfaces have been applied and united to create a solid, the ability to further

edit the PolyNURBS is lost; thus if any changes are required the process must begin

again from the mesh stage. This is not an issue when using the truss layout optimization

workflow.

3.3.3 Workflow comparison

The major operations required when using a truss layout optimization workflow will now

be compared with those required when using a topology optimization workflow (after

Cervantes Herrera 2015); see also Figure 3.5.

Firstly, there are some operations that are common to both workflows, such as prepara-

tion of the models for optimization. Once the design domain, boundary conditions and

material properties are defined, the optimization may be set up in the respective soft-

ware packages. At this stage differences in the workflows become evident, with topology

optimization generally requiring a number of initial runs to be performed in order to

ascertain a suitable volume fraction to be employed; this step is not required when using

truss layout optimization.

With both workflows a number of runs may then be undertaken, with the operator mak-

ing changes e.g. to the design domain or material properties to gain an understanding
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of the parameters influencing the outcome. At the end of this stage, in the truss lay-

out optimization workflow the designer will be presented with a solution that satisfies

the loading criteria and possesses the minimum possible volume, which will typically be

near-globally optimal for the problem considered.

Once the initial optimization is completed, the design can then be refined to clean up

the proposed geometry. At this stage, it may be necessary to change the design domain

used in the topology optimization to ensure that material does not impede access to

tooling or fastener access locations. This can be achieved directly in CAD by simply

removing those ligaments, or by removing areas where material is not desired from the

design domain entirely. In truss optimization a geometry optimization step is completed

directly following the initial layout optimization step and has the effect of simplifying

the structure, reducing the numbers of members and joints. Additionally, a level of

manual intervention can be performed to select crossing members and create new joints,

or delete any members crossing tooling/fastener access areas. The optimal layout for

the members is then automatically recalculated following the user’s edits. Remodelling

of the geometry is carried out as detailed in Section 3.3, and the resulting bodies may be

used in stress verification to assess elastic stress/strain and also prepare the components

for an AM build.

It may be concluded that there are a greater number of steps to be taken when performing

topology optimization when compared with truss optimization, but may also be noted

that a number of operations in the latter are performed automatically.

3.4 Aerospace optimization case studies

In order to better illustrate the two optimization workflows discussed previously, two case

studies have been chosen, each case has the entire design process, from initial concept

to AM ready part, presented. For each case the components are designed with minimal

manipulation following optimization, with fixed features and/or bolt holes added to the

automatically generated design. Both case studies are optimized using the same toolset:

topology optimization carried out using OptiStruct (included in Altair HyperWorks

version 2022, (2022)); and 3D truss optimization carried out using LimitState:FORM

version 3.5.0, (2019). Modelling of the design space and remodelling of the optimized

results is conducted in Siemens NX version 1973, (2020). The optimizations were carried

out on a 64bit Windows 11 desktop PC equipped with an Intel i5 3.7GHz processor and

32Gb RAM.
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Figure 3.5: Flowchart of major operations conducted as part of workflows for topology
and truss optimization. Note that the operations in the dashed box are fully automated

in truss optimization.

Aerospace applications have been selected specifically as there are significant benefits in

employing optimization techniques in order to ‘lightweight’ components, which may be

realized physically via additive manufacturing. In the studies undertaken a minimum

radius of 1.6 mm (cross-sectional area of 8 mm2) has been assumed in each optimization.

The objective of each optimization is to identify a distribution of material which yields

a minimum mass solution whilst providing restraint against the applied load(s). For

topology optimization this means that a result with minimum compliance is sought using

a specified volume fraction, calculated on the designated percentage of weight reduction,

to bound the objective. Truss optimization will seek a minimum volume solution with

stress limits placed upon the procedure to ensure that each resulting element in the

structure is maximally stressed.
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Table 3.1: Material properties used in the two case studies for all optimization studies.
Case study 1 (CS1) materials data at room temperature for LPBF Ti-6Al-4V from
Gupta et al. (2022) and case study 2 (CS2) material properties for LBPF Inco718 at

400 ◦C.

CS1
Gear Box
Bracket

CS2
Inlet

Mount

Tensile Strength
(σ, MPa)

1020 943

Yield Strength
(σY , MPa)

971 639

Young’s Modulus
(E, GPa)

110 170

Poisson’s Ratio
(ν)

0.31 0.28

Shear Modulus
(G, GPa)

41.9 66.4

Density
(ρ, kg/m3)

4429 8080

3.4.1 Case Study 1 - Gear Box Bracket

The first case study supports a gear box attached to a small business jet engine. It

is an interesting case as due to the available mounting location, the load acts on a

position forwards of the mountings at a 45 degree angle, Figure 3.6(b). The bracket is

attached to a flange at the forward support, and to the outer skin of the casing at the

rearwards end. Due to the direction of the applied load, both of the mounting positions

are required. The single load of 110 kN is applied via a tie rod terminating in a clevis

at the forward end of the bracket. For the purposes of both optimization methods, the

clevis is treated as rigid and therefore is outside of the design domain, shown shaded in

Figure 3.6(b). The tie rod and clevis arrangement allows for movement in the tangential,

Z, direction, and rotation on the Z axis accounts for movement of the gear box in the

axial X direction; therefore the loading applied to the components comes in the radial,

Y , direction as shown.

The existing component is produced from a forged billet of Ti64 which is extensively

machined to produce the final form. This is a costly and wasteful process, which can

be improved upon via AM (Allen, 2006). In addition, the existing part does not satisfy

its mass target, being overweight by 30% (0.21 kg). A new part has been proposed

to be produced from LBPF (Laser Powder Bed Fusion) Ti64 following optimization to

define a part that has the required structural capability whilst reducing both mass and

cost; material properties for the laser powder bed fusion (LPBF) Ti64 material used are

detailed in Table 3.1.
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(a) V = 162 506mm3,M = 0.720 kg (b)

Figure 3.6: Gear box bracket case study: (a) original part to be redesigned via
optimization to reduce its weight; (b) problem definition, showing the overall size of
the part and boundary conditions; the hatched area highlights the design domain, which
is subject to optimization. Unless otherwise stated all dimensions are in mm and loads

in kN.

3.4.1.1 Topology optimization workflow

Detailed descriptions of the steps to be followed when setting up a topology optimization

in OptiStruct are available elsewhere2 so the process will not be documented in detail

herein; however specific steps relevant to this particular study will be outlined. Firstly,

in common with all traditional topology optimization studies, the target volume fraction

first has to specified in advance. The aim in this case study is to reduce mass by approx.

30%; however the clevis and the support regions will not be changed as a result of

the re-design, and thus the reduction must come entirely from within the design space.

The current part has a total volume Vi = 162 506 mm3 and the static features have a

combined volume Vs = 74 369 mm3; therefore the target volume for the optimization

was Vt = 0.7(Vi − Vs) = 61 695 mm3. The target for the optimization is expressed as a

percentage of the design space that has volume Vds = 424 819 mm3; dividing Vt by Vds

yields a volume fraction target Vfrac = 14.5%. An element size of 1 mm was applied to

both design and non-design domains, supports were added to the mating faces of the

part, and the load was divided between the two sides of the clevis; see Figure 3.7(a).

The OptiStruct solver completed in 25 minutes and consumed 1.5Gb of memory. The

result of the optimization is shown in Figure 3.7(c) and consists of the raw mesh elements

that remain once all excess material has been removed. It would not be possible or

appropriate to manufacture the part in this state, nor is it convenient to analyse this

further until the solution has been translated into NURB (Non-Uniform Rationalized

B-spline) surfaces in CAD. In the case of this example, remodelling was carried out by

sketching and extruding the structure using the topology optimized results as a guide,

2Altair OptiStruct 2022 manual available at www.help.altair.com.

https://2021.help.altair.com/2021/hwsolvers/os/topics/solvers/os/user_guide_os_c.htm
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taking the engineer undertaking the work 5.5 hours to complete. The final form shown

in Figure 3.7(e) has a volume of 124 369 mm3, including the non-design features and

a mass of 0.551 kg, equating to a total weight reduction of 23.4%. Although this is a

significant reduction, it is below the original 30% target.

3.4.1.2 Truss layout optimization workflow

In order to maintain commonality between the truss and topology optimization work-

flows, the same design space geometry was reused; however the way in which the

design/non-design domains are handled differs slightly. The version of LimitState:FORM

used models non-design domain features as rigid bodies, such that any loading applied

to these will move them without deformation, and with limits on stresses not considered.

In addition, in this workflow it is possible to take advantage of symmetry to reduce com-

putational effort, by adding a mirror plane along the central axis to split the domain

in half. The load was applied at the centre of a bar through the holes in the clevis,

spreading it to both sides equally, and the supports were added to the same faces as

in the topology optimization. The model setup used in the truss layout optimization

workflow is shown in Figure 3.7(b).

As previously discussed, truss layout optimization does not require a target volume

fraction to be specified in advance, and the form and extent of the generated structure

depends on the specified allowable stress limits for the material. In this case the solution

obtained will possess the minimum possible mass when the constituent elements are

stressed to the maximum allowable stress limit. To ensure longevity of the component,

a factor of safety of 2 is applied during the optimization, ensuring that each element only

reaches half the maximum allowable stress, prolonging its life and ensuring the safety

of the aircraft. Although not specified in the optimization as a constraint, the volume

fraction can be calculated after undertaking an initial optimization; thus the volume

of the optimized component was found to be Vt = 113 754 mm3, which is 27% of the

original design space and 70% of the volume of the existing part.

A layout optimization was then undertaken using a fine nodal density, followed by a

geometry optimization rationalization step, generating the structure shown in Figure

3.7(d), shown with members unioned together to form a continuum. As a solid body

has at this point been created, it is a straightforward operation to also connect the

design to the flange plates in CAD, as shown in Figure 3.7(f); this step consumed just

1 hour of engineering time. The final volume of the part comes to 104 734 mm3, and

a mass of 0.464 kg, which represents a reduction in weight of 35.5%. The optimization

took 10 minutes when using a fine nodal density and consumed a maximum of 807Mb
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of memory. In comparison with the topology optimization result, the truss problem was

solved in 40% of the time and consumed 46% less memory, yet achieved a greater weight

reduction.

3.4.2 Case Study 2 - Inlet Mounting

The second example is a unit mount for the gas turbine engine of a large civil aviation

aeroplane. The mount is located on the exterior of a hot casing and supports an inlet for

a cooling system. The current design consists of four individual brackets formed from

sheet metal and joined together using mechanical fasteners upon engine assembly. The

existing parts are produced from pre-formed sheets of Inconel 625. As this grade is not

available in powder form, Inconel 718 shall be used for the LPBF process. Mechanical

properties at the environment’s temperature of 400 ◦C are listed in Table 3.1.

The objectives of this design and optimization exercise are four-fold:

1. To consolidate all four of the existing parts into a single component in order to

reduce build and assembly time. The design space will therefore be defined as a

large block instead of four smaller ones;

2. To include multiple load paths, to ensure safety in the event of failure of a single

path;

3. To maintain existing mounting points, though not all points need to be used if the

design/optimization shows that the required level of performance can be achieved

using fewer points;

4. To support the mass of the payload F1 = 75 N and also retain the inlet during any

off-design event, such as a core blade-off event. For this latter case a shock load of

20G is to be assumed, resulting in a load on the part of F2 = 197 N for each load

case. Refer to Table 3.2 for a full list of load cases.

3.4.2.1 Topology optimization workflow

As with case study 1, the inlet mounting was optimized using OptiStruct. Initially, the

design space was defined to fully enclose just the original parts; however it was noted that

this left a large amount of unoccupied space surrounding the domain. The design space

was therefore enlarged to provide greater design freedom for the optimization. The topol-

ogy optimization workflow used in the previous case study was adopted, though given
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* *

F1/2
F1/2

(a) F1 = 110 kN

F1

(b) F1 = 110 kN

(c) (d)

(e) V = 124 369mm3,M = 0.551 kg (f) V = 104 734mm3,M = 0.464 kg

Figure 3.7: Gear box bracket case study - stages and results for topology optimization
(left) and truss layout optimization (right) workflows: (a) topology optimization model
setup within Altair HyperWorks, showing support conditions and loading spread evenly
to 1D rigid nodes at the centres of clevis holes; (c) raw topology optimization results; (e)
final form of the component following CAD remodelling, with the flanges and bolting
arrangement from the original part merged in; (b) truss layout optimization model
setup in LimitState:FORM, showing support conditions and loading applied to the
centre of a bar through the clevis holes; (d) result of layout optimization and geometry
optimization rationalization, with members unioned together to form a continuum; (f)
final form of the component, with the original flanges added in CAD in preparation for
manufacture. Note that in (a) and (b) the dark area indicates the design domain and

the lighter areas rigid, non-design, regions.
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Table 3.2: Inlet mounting case study: Load cases applied to optimization procedures,
to be read in conjunction with the boundary condition diagram, Figure 3.8(b). Note
that the payload, F1, will always be applied at the 180◦ direction as viewed, however
the shock load, F2, will be applied at the directions indicated; 0◦ at top dead centre

and progressing clockwise.

Load Case Load(s)
F2

Direction

LC1 F1 —

LC2 F1 + F2 0◦

LC3 F1 + F2 45◦

LC4 F1 + F2 90◦

LC5 F1 + F2 135◦

LC6 F1 + F2 180◦

LC7 F1 + F2 225◦

LC8 F1 + F2 270◦

LC9 F1 + F2 315◦

(a) V = 97 017mm3,M = 0.784 kg (b)

Figure 3.8: Inlet mounting case study: (a) the original part to be redesigned via
optimization to reduce its weight and (b) the design space including boundary condi-
tions. Note that in (b) loads F1 and F2 originate at the payloads centre of gravity
and are translated to holes A via bodies assumed to be rigid, the part is supported in
all direction at holes B. Off-design events may occur in any direction, therefore shock
load F2 applies in multiple directions whereas mass load F1 applied radially towards

the engine centreline.

the larger volume of design space, the mesh element size was set to a maximum of 3mm

to ensure the optimization could be run on a desktop PC. Once again a target volume

fraction was defined by reducing the volume of the current components (97 017 mm3) by

30%, hence targeting a 30% reduction in overall mass (Vt = 66 735 mm3,Mt = 0.539 kg).

To translate this into the optimization routine this target volume was expressed as a

percentage of the total design space volume as a constraint Vfrac = 5%. Material prop-

erties (Table 3.1) and boundary conditions were applied and the optimization was solved

in 30 iterations, taking 68 minutes and consuming 5.2 Gb of memory. The outcome of

the optimization is shown in Figure 3.9(c). Similar to the result at this stage for case
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study 1, the geometry is element based and though it is generally a continuum structure

there are areas where the ligaments thin down to almost nothing; the part also has a

very rough surface due to the faceted nature of the tetrahedral mesh employed. Thus

CAD remodelling was at this point required.

As this is a much more complex shape than the raw structure obtained in the previous

case study, in this case PolyNURBS were used. Despite this approach being quicker than

sketching around the mesh and then creating multiple solids to form a body, application

of PolyNURBS and blending the structure still took around 20 hours to complete to

the point where it was considered suitable for the next stages (i.e. analysis and then

manufacture). In its final form the component has a volume of 67 450 mm3 and a mass

of Mt = 0.545 kg.

3.4.2.2 Truss layout optimization workflow

As with the previous case study, in the interests of comparability the truss layout opti-

mization workflow employed the same design space as the topology optimization work-

flow, with the problem divided in two and a mirror plane added. The load was applied

to the clevises within the design domain and the values applied accordingly for each

load case. Again, it was not necessary to specify a target volume in advance of the opti-

mization, though it is intended that a volume of Vt = 66 735 mm3, 70% of the combined

volume of the existing parts could be achieved. A factor of safety of 2 was also specified

in the optimization setup.

The same nodal density was used as per case study 1, and the resulting structure is

shown in Figure 3.9(d). Once relatively trivial CAD operations were completed, the

final part, Figure 3.9(f), was ready for build preparation. The final volume of this part

is 60 117 mm3, and its mass is 0.486 kg, which represents a weight reduction of 28.9%.

The layout optimization solution was identified in 19 iterations, after which a geometry

optimization rationalization step was completed. The total elapsed time was 60 minutes,

with a maximum of 3 Gb of memory consumed.
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Figure 3.9: Inlet mounting case study - stages and results for topology optimization
(left) and truss layout optimization (right) workflows: (a) topology optimization model
setup within Altair HyperWorks, showing support conditions and loading; (c) raw topol-
ogy optimization result; (e) remodelled component in CAD, with flanges connected with
the optimized model; (b) truss layout optimization model setup in LimitState:FORM,
showing support and loading conditions; (d) result of layout optimization and geometry
optimization rationalization, with members unioned to form a continuum; (f) final form
of the component, with geometry refined in CAD to make the part ready for manu-
facture. Note that in (a) and (b) the dark area indicates the design domain and the

lighter areas the rigid, non-design, regions.
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Figure 3.10: Case study results: comparison of the time taken to complete model
setup, optimization and remodelling of the gear box bracket (CS1) and inlet mount
(CS2). † Refers to operations that do not fit into the preceding categories, such as

model import/export, loading/saving of files etc.

3.5 Comparison of topology optimization and truss layout

optimization workflows

3.5.1 Required engineering time

It is clear from the results shown in Figures 3.7 & 3.9 and Table 3.3, that both topology

and truss layout optimization workflows can be used to provide significant reductions

in volume, and hence mass, to an aerospace component, although for case study 1 the

topology optimization result fell a little short of the target set. Given this, it is of interest

to compare the two approaches in terms of the time taken to generate the end result.

Thus Figure 3.10 shows that the truss layout optimization workflow offers a substantial

reduction in the engineering time required to generate a solution. This can be largely

attributed to the much shorter time required to transform the result of the optimization

into a continuum structure in CAD.

Table 3.3: Case study results: numerical results for mass and CO2 reductions achieved
for topology and truss layout optimization workflows for the gear box bracket (CS1)

and the inlet mount (CS2). Unless stated otherwise all values are in kg.

Topology Truss

Mass (kg) CS1 CS2 CS1 CS2

Initial 0.720 0.770 0.720 0.770

Final 0.551 0.545 0.464 0.486

Delta 0.169 0.225 0.256 0.284

Delta (%) 23.43 28.88 35.55 36.94

CO2 (Flight ∆) 0.443 0.584 0.671 0.747

CO2 (Life ∆)† 22,125 29,183 33,567 37,333

†assumes 50,000 flights service life.
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3.5.2 Quality of results obtained

It is also of significant interest to check the quality of the results obtained when using the

two workflows. This is here validated via FEA using Siemens NX version 1973, (2020)

simulation. To verify the results, a static analysis has been conducted on each structure

using the same load cases and boundary conditions as used in the optimization runs.

The goal is to ensure that the maximum Von Mises stress for the critical case (where

the peak stress is the greatest) is below the yield strength of the material (Table 3.1),

with a reserve factor (RF) greater than 1; contour plots from the analysis results for all

cases are shown in Figure 3.11.

It is clear that all results from the case studies are below the yield strength of the

material, giving reserve factors ranging from 1.1 to 4.5. The components would therefore

be deemed suitable to be considered for entry into service. The results indicate that the

highest stresses are at the interfaces between the optimized geometry and the rigid/non-

design bodies; further work in these locations may be necessary to ensure smoother

transitions, and thereby reduced stresses.

The results for the gear box bracket, Figures 3.11(a) & 3.11(b), have reserve factors of

1.2 and 1.1 respectively, indicating that the material is being used efficiently and there is

little room for improvement in overall mass. The results for LC9 of the inlet mounting,

Figures 3.11(c) & 3.11(d), show much larger reserve factors of 3.6 and 4.5 respectively.

For the truss optimized version this is a result of the minimum area constraint being

applied, which has resulted in some members being larger than the true optimal solution

would require; the topology optimized version still has some members much larger than

the 8 mm2 minimum. However, the aim of this study was to follow the topology opti-

mization result as closely as possible; therefore there may still be some improvements

that could be made if a secondary optimization is conducted. There is potential for

buckling of elements to occur during off-design events, this has not been considered in

this study but could be factored in as a post-processing step in future optimizations.

3.5.3 Assessment of optimized load path

It has been demonstrated that both topology and truss optimization are capable of

achieving suitable results for a given specific load case and can successfully be transferred

back into a CAD environment for further analysis. However, further examination of

the topologically optimized structure for case study 1 (Section 3.4.1.1) shows that the

material forming the lower load path is curved; see Figure 3.12(a). However, when the

load is applied through a curved member, bending moments will be induced, suggesting
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Figure 3.11: FEA results for case studies: (a) topology optimized gear box bracket
model; (b) optimized truss gear box bracket model; (c) topology optimized inlet mount-
ing model; (d) optimized truss inlet mounting model. Reserve factors (RF) indicated;

colour fringes indicate Von Mises stress in MPa.

that the form is suboptimal, Figure 3.12(b). A more efficient solution is to use a series

of straight elements that carry the load directly along their axes, Figure 3.12(c). This

holds true whether the elements are in tension or compression.

This more efficient way to transmit the load is likely one of the reasons why, for this case

study, the structure optimized using truss layout optimization was found to be lighter

than its topologically optimized counterpart, where additional mass is required in the

elements to carry induced bending moments.

3.6 Impact on CO2 emissions

A prime benefit to aerospace of ‘strong yet light’ components is the associated reduction

in fuel burn. Currently for every 1 kg of aviation fuel (JET-A) that is burned, 3.2 kg

of CO2 is emitted into the atmosphere; in 2019 some 250m metric tonnes of JET-A

was consumed in aviation, equating to just over 800m metric tonnes of CO2 per annum

(RAeS, (2022)). Thus for every kg of material that can be removed from a component

there is a substantial reduction in CO2 emissions over the life of the product (typically

20-30 years).
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Figure 3.12: Assessment of optimized load path: (a) topology optimized result for
case study 1 with the boundary conditions superimposed; (b) load applied directly to a
curved member; (c) the same location defined using truss elements that carry the load

axially to minimize bending.

In order to reduce the specific fuel consumption, and therefore CO2 emissions, of a

typical wide-body aircraft by 1%, a weight reduction of around 907 kg must be achieved.

For example, a Rolls-Royce Trent 1000 powered Boeing 787-8 Dreamliner will consume

19 010 kg of fuel over the 5155 nm distance between London Heathrow and São Paulo3,

releasing 60 832 kg of CO2 into the atmosphere. Reducing the aircraft weight by 907 kg

reduces fuel consumption by 1% and will therefore save 608 kg of CO2 on each flight. A

formula equating reduction in component mass to a reduction in CO2 emissions is thus:

∆CO2 = 3.2(β.∆w) (3.4)

where β = 0.01Ft/907, Ft is the total fuel consumed for the flight prior to a re-design

and ∆w is the weight reduction achieved from the re-design activity. It should be

noted that this formula assumes that the component(s) modified have no effect upon

the aerodynamic performance of the aircraft. Additionally, this formula determines

the reduction in CO2 per flight where in practice a large civil airliner may make in

excess of 50,000 flights in its lifetime. In addition to the highly important reduction in

CO2, reduced fuel burn also has an economic impact. Revisiting the flight from London

Heathrow and São Paulo and with the average price for JET-A1 predicted to be $0.85/kg

over 20234 if a 1% reduction in fuel burn can be achieved through weight reduction this

equates to a saving of $162 per flight for the operator; although a seemingly small amount

3Aircraft Commerce, Issue 121, Dec 2018/Jan 2019
4Data from: https://jet-a1-fuel.com/forecast
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per flight, this equates to $8.1m over the lifetime of the aircraft, neglecting fluctuations

in fuel price.

3.7 Conclusions

There is a significant and demonstrable need for the aerospace industry to take advantage

of additive manufacturing (AM) to reduce the weight of components, benefiting both

manufacturers and the planet. However, design of these components can be challenging.

Topology and truss layout optimization workflows have been considered in this contri-

bution, with both proving valuable when seeking to design lightweight components. The

main conclusions are as follows:

a) The two case studies examined illustrate the benefits that can be achieved in terms

of weight reductions, with reductions of up to 37% leading to fuel burn reductions

and hence reductions of tens of thousands of kg of CO2 emissions over their ser-

vice lifetime. This clearly demonstrates the importance of these technologies to

aerospace in the light of the climate crisis, strongly suggesting that they should

be exploited more widely. Furthermore, FEA verification of each component de-

signed has demonstrated that the optimization methods are appropriate for finding

solutions to engineering problems of this nature, with acceptable reserve factors.

b) The truss layout optimization workflow was found to lead to greater weight re-

duction levels than the topology optimization workflow; in the case of the inlet

mounting case study a near 37% weight reduction was achieved in the former case,

equating to lifetime reductions in CO2 over 37 000 kg and $9800 in fuel costs. This

is clearly significant, especially given that the weight reduction was just 284g.

c) Translation of structures generated via topology optimization into CAD was found

to be time consuming, and for this method to be more widely employed in industry

there needs to be further work to ensure that parts can be remodelled in a more

time efficient manner. In contrast it was found that structures generated via truss

layout optimization could be rapidly translated into usable CAD models, being

ready for production in around one fifth of the time. This increase in efficiency also

gives designers greater freedom to explore the design problem, and, for example,

to identify opportunities for part consolidation.

Future investigations of this nature should consider the extent to which truss optimiza-

tion techniques can be more widely used in industry when designing aerospace com-

ponents; the rapid transition from line model to usable CAD geometry is a significant
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advantage of this approach. In addition to considering member stresses, the truss layout

optimization workflow should be extended to consider the effect of stresses at interfaces

with rigid bodies, to further reduce remodelling time. A further development could be

the ability to export a parametric model suitable for subsequent manipulation, instead

of a conventional CAD geometry. Recent releases of topology optimization software used

in industry have the capability to include constraints on natural frequencies as part of

the optimization parameters. This is of considerable importance in aerospace design

and is therefore something that should be considered in future releases of truss layout

optimization software, to ensure the technology is more fully exploited.



Chapter 4

Layout optimization of

pin-jointed truss structures with

minimum frequency constraints
1

Controlling the frequency response of an engineering component or structure is impor-

tant in the aerospace and automotive sectors and is a key consideration when seeking

a new, more efficient, design for a given component. In this contribution, the standard

truss layout optimization procedure is modified to incorporate semidefinite constraints to

limit the minimum value of the first natural frequency. Since this increases the computa-

tional expense, and reduces the scale of problem that can be solved, a bespoke algorithm

incorporating an adaptive ‘member-adding’ procedure is proposed and applied to a num-

ber of benchmark example problems. It is demonstrated that this allows problems to

be solved with relatively fine numerical discretisation, allowing modified structures with

an acceptable minimum first natural frequency response to be successfully identified.

4.1 Introduction

In the design of modern engineering components many considerations need to be taken

into account, including safety, cost, weight, and manufacturability. The most prominent

of these is safety, taking account of the regime of applied stresses to be sustained over the

life of the component. Safety is influenced by the properties of the material employed,

which may change as the design evolves. Additionally, when considering structures that

1The content of this chapter has been previously published in the journal paper: S. J. Salt, A.
G. Weldeyesus, M. Gilbert, and J. Gondzio. Layout optimization of pin-jointed truss structures with
minimum frequency constraints. Engineering Optimization, 2022. A copy of the in-print version is
included in Appendix D.
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include slender elements in compression, it is necessary to check for buckling instability

to ensure safety is maintained. Another key parameter in the aerospace sector is the

harmonic frequency of a structure; this should lie outside of the frequency bands of

surrounding components. Should a fundamental frequency of one component (e.g. a

bracket) overlap with those of its attached neighbours, then resonance in the component

may occur, also referred to as forced vibration. Forced vibration and resonance can then

lead to High Cycle Fatigue (HCF) in the component, affecting its serviceable life and

reducing its time to failure. It should be noted that a component may exhibit multi-

ple resonant frequencies, each corresponding to a mode of vibration; repeated exposure

to any one of these frequencies may reduce the life of the component. However, this

phenomenon is beyond the scope of the current contribution. Considering component

manufacture, it is important to note that traditional manufacturing methods may limit

the design freedom available; however in the present contribution it is assumed that Ad-

ditive Manufacturing (AM) methods are available. The use of AM means that complex

truss forms can potentially be fabricated, beyond the scope of traditional subtractive

manufacturing methods.

There have been numerous recorded HCF related incidents. A notable example led to

the loss of British Midland flight #92 in 1989 (Cooper, 1989). This was initiated by

the failure of a fan blade on one of the two CFM International S.A. CFM56-3 turbofan

engines. A single blade failed due to a coupling of torsional-flexural transient and non-

synchronous oscillation, leading to rapid reduction of the HCF life of the blade. The

blade was subsequently released, causing high levels of vibration in the engine and

aircraft, contributing to the loss of the aircraft upon attempting an emergency landing

at East Midlands Airport in the UK.

Given the potentially catastrophic consequences of failure, the design optimization of

components with stress and frequency constraints has been of interest for many years.

Forced vibration problems can be avoided by (a) redesign of the component being anal-

ysed; (b) redesign of the stimuli to change its frequency characteristics; and/or (c)

introduction of a damping mechanism into the system. The most straightforward of

these options is often (a) redesigning a component to move its fundamental frequencies

away from those where resonance may occur. This may be achieved, for example, by

adding stiffening ribs to the part, or strategically increasing the volume of material.

Computer aided methods have been employed to treat such problems, largely focused

upon the use of topology optimization in works such as Bendsøe and Sigmund (2003)

where links can be formed between discrete and continuum structures (Achtziger, 1999).

Additionally Du and Olhoff (2007) formulated simple and multiple eigenfrequency opti-

mization techniques for linear elastic structures without damping. This contribution will
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focus upon the design of truss structures, which are attractive when there is significant

available design freedom. In practice it is rare that the available design freedom is fully

exploited, usually due to limitations associated with the manufacturing method involved.

However, AM allows the available design freedom to be exploited to a much greater ex-

tent than when traditional subtractive manufacturing methods are employed. Since the

ground-structure method was first introduced by Dorn et al. (1964) to solve plastic truss

design problems, layout optimization has provided an effective means of identifying the

most efficient arrangement of elements (also referred to herein as ‘members’ or ‘bars’)

to form a truss structure. This methodology has been well used to identify minimum

volume truss structures (Dorn et al. (1964), Hemp (1973), Gilbert and Tyas (2003),

Smith et al. (2016)), using linear programming (LP) and member-adding (column gen-

eration) to solve single load case problems efficiently. These methods have been further

extended by Pritchard et al. (2005) and Sokó l (2014) to include application to multiple

load cases. To keep the underlying layout optimization problem formulation reasonably

simple, this contribution will focus on single load case problems with a single specified

minimum frequency, usually chosen so as to lie away from the frequencies of any sources

of excitation. However, frequency analysis is a non-linear problem and so semidefinite

programming (SDP) must be used to treat the constraints.

SDP is a subset of convex optimization and aims to minimize a linear function subject to

the constraint that an affine combination of symmetric matrices is positive semidefinite.

SDP has previously been applied to the optimization of truss structures: Ben-Tal and

Nemirovski (1997) and later Kanno (2018) used SDP to produce structures which were

robust against uncertainty in the loading, and Giniünaité (2015) applied SDP to identify

minimum mass structures. A number of solvers are available which are capable of

treating semidefinite problems of varying complexity: fminsdp (Thore, 2018); MOSEK

(v8+) (MOSEK ApS, 2017); PENLAB (Fiala et al., 2013) and CVX (Grant and Boyd,

2014) are a few examples. However, a bespoke approach is required when combining

generative truss design with optimization for frequency constraints.

Frequency optimization belongs to the field of eigenvalue optimization in mathemat-

ics, which has been studied extensively by the mathematical programming community:

Fox and Kapoor (1970) adopted a feasibility approach to solve the underlying semidef-

inite programming problem, Grandhi and Venkayya (1988) and Khot (1985) used the

optimality criteria method and Kaveh and Ghazaan (2016) used non-smooth optimiza-

tion to perform size optimization of existing truss structures to meet certain frequency

requirements. Additionally, Achtziger and Kočvara (2007) used semidefinite program-

ming to solve similar problems, and Aroztegui et al. (2011) developed a feasible direction

algorithm for semidefinite programming in order to maximize the fundamental frequen-

cies based upon simple fully-connected ground-structures. Considering optimization of
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frequency in isolation, Azad et al. (2018) assessed the simultaneous size and geome-

try optimization of steel structures under excitation using the ‘big bang - big crunch’

algorithm, with mixed results when considering the optimum solutions, whilst Taheri

and Jalili (2016) and Tejani et al. (2018) used other meta-heuristic methods to impose

frequency constraints in truss optimization problems.

In many of these studies, the design variable was treated as continuous, but the number

and arrangement of the variables were assumed to be finite and arrived at by utilis-

ing the most efficient members from a pre-defined ground-structure. In contrast, here

an alternative methodology is proposed in which standard equilibrium constraints are

supplemented by semidefinite constraints to enable problems involving both frequency

and strength considerations to be tackled. The ground-structure method is employed

to provide a large search space, with an adaptive member-adding algorithm used to

significantly reduce the associated computational burden. In the interests of simplicity,

buckling instability and other issues are not explicitly considered in this contribution,

though members susceptible to buckling would need to be checked for prior to e.g., usage

in a qualified aerospace application.

This contribution is organized as follows: Section 4.2 describes the basic formulations

relevant to the frequency problem at hand, with examples used to illustrate limitations;

Section 4.3 then proposes a new formulation that is significantly more computationally

efficient; the new formulation is then applied to various example problems in Section

4.4; and conclusions are drawn in Section 4.5.

4.2 Basic formulations

4.2.1 Truss layout optimization formulation

Ground-structure-based layout optimization begins with the definition of a design do-

main, the volume of space in which the optimized structure can reside, with materials,

loads and supports then also prescribed to fully describe the problem, see Figure 4.1(a).

The objective is to arrive at a structure of minimum volume, and hence mass, whilst

maintaining structural integrity. With a Cartesian grid, the design domain is populated

with a predefined n number of nodes in the x and y directions (also in the z direction

for 3D problems). It is then joined with m potential connections, or elements, such that

each node is connected to every other node in the domain to form a ground-structure,

as in Figures 4.1(b) and 4.1(c). Herein, each example will employ a number of nodes ex-

pressed in terms of number of nodal divisions, e.g. referring to Figure 4.1(b), the domain

has 4× 2 nodal divisions, with 4 divisions and 5 nodes in the x direction and 2 divisions
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and 3 nodes in the y direction, giving 15 nodes in total. Constraints are introduced

to ensure equilibrium is enforced at nodes, and to ensure that the cross-sectional area

of each element is both a positive number and is sufficiently large to carry the internal

forces, given the limiting stress of the material. The plastic single load case formulation

can be written (after Dorn et al. 1964):

min
a,q

V = lTa

s.t.





Bq = p,

− σ−ai ≤ qi ≤ σ+ai, ∀i
ai ≥ 0, ∀i,

(4.1)

where V is the total volume of the structure; l is a vector of individual element lengths

{l1, l2, . . . , lm}; a is a vector containing element cross-sectional areas {a1, a2, . . . , am}; B

is a suitable (2n × m or 3n × m) equilibrium matrix containing direction cosines (for 2D

or 3D problems); q is a vector of element axial forces, q = {q1, q2, ..., qm}, where qi is the

force in element i; p is a vector of applied loads and p = {px1 , py1, pz1, px2 , py2, pz2, . . . , pzn}
where pxj , p

y
j , p

z
j are the x, y and z direction components of the load applied to node

j (j = 1, . . . , n). Finally σ+ and σ− are, respectively, the limiting tensile and compressive

stresses that can be sustained by the material. Problems of this nature may be solved

using linear programming.

Employing a fully-connected ground-structure of this type is computationally expensive,

with the problem comprising n(n− 1)/2 potential connections for a domain, where n is

the total number of nodes. The majority of the connections will have an area equal or

close to zero following the optimization and so do not contribute to the final structure.

This issue may be alleviated by applying the adaptive ‘member-adding’ method proposed

by Gilbert and Tyas (2003) which is a customized column generation technique. With

this method, nodes in the initial ground-structure are only connected to their immediate

neighbours, Figure 4.1(d), instead of to every other node in the domain, Figure 4.1(c).

An iterative process is then used, with elements added to the current ground-structure

from the list of potential connections. Newly added elements are introduced into the

solution using the Michell-Hemp criterion Eq. (4.2), which specifies limits on the virtual

strain (ϵi) experienced by each potential element (i), given a prescribed limiting stress

(σ):

− 1

σ− ≤ ϵi ≤
1

σ+
, i = 1, . . . ,m. (4.2)

In the parlance of column generation method (Gondzio and Sarkissian (1996), Desrosiers

and Lübbecke (2005), Gondzio et al. (2013)), new columns are added to the LP constraint
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matrix B in Eq. (4.1). At the end of each iteration, potential connections are ranked,

with those most violating the criteria then added for use in the next iteration. Once there

are no potential connections violating the criteria remaining, the algorithm terminates.

The solution obtained shown in Figure 4.1(e) is provably optimal, with the computed

volume the same as that obtained using a fully-connected ground-structure.

P

(a)

P

(b)

P

(c)

P

(d)

P

(e)

Figure 4.1: Steps in layout optimization: (a) definition of the problem domain and
boundary conditions; (b) domain populated with equally spaced nodes; (c) each node is
connected to every other node in the domain to form a fully-connected ground-structure,
or (d) each node is connected only to neighbouring nodes to form a minimally-connected
ground-structure; and (e) the resulting optimized layout using a member-adding algo-

rithm (red and blue bars indicate those in tension and compression respectively).

4.2.2 General eigenvalue equation

Consider a truss structure consisting of m elements, connecting a pre-determined set

of n nodes. A large external force P is applied to a specific node, with internal forces

transmitted through the structure, resulting in small displacements at each node; this

may be considered to be a static problem. To take account of the vibration characteristics

of the structure, it is necessary to consider the following dynamic problem derived from

the equation for motion:

K{u} + M{ü} = 0, (4.3)
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where K and M represent the global stiffness and mass matrices respectively. The mass

and stiffness matrices are represented as symmetric 2n × 2n matrices when modelling

a two-dimensional truss structure and 3n × 3n matrices for a three-dimensional truss

structure. The size of these global matrices will be reduced by the number of supported

degrees of freedom, since there are no displacements at these locations. Given that the

displacement vector is harmonic, Eq. (4.3) may be restructured into the generalized

eigenvalue problem:

Kϕj = λj(M + M0)Φj , (4.4)

where: M refers to the global mass matrix for the structures bar elements; M0 refers

to the additional mass of the nodes connecting each element; and λj represents the

eigenvalue for a given mode of vibration Φj , (j = 1, 2, 3 . . . ). The free vibrations of a

structure are equal to the square root of the eigenvalues ω2
j = λj in rad/s, and thus the

natural frequencies and normal modes of vibration for the structure may be determined.

4.2.3 Frequency formulation

4.2.3.1 Determine the reference frequencies

To determine conformance with the original design problem, it is necessary to calculate

the natural frequencies of the structure. If a candidate design has been obtained via

layout optimization then this can be performed using the connectivity and member cross-

sectional areas generated in the optimization. The areas for each element are multiplied

by the corresponding mass and stiffness coefficients before being assembled into the

global matrices (K and M) at the row/column index corresponding with the degrees of

freedom associated with the member end nodes, with rows and columns related to the

supported degrees of freedom omitted. The eigenvalues can be extracted e.g. using the

built-in MATLAB eigs functionality. Previous studies (e.g. Du and Olhoff (2007)) have

considered multiple eigenfrequencies, however this contribution will concentrate on just

the first natural frequency in Hz for the structure to ensure it will not resonate when

exposed to a source of excitation.

4.2.3.2 Semidefinite constraint

In order to perform an optimization targeting the natural frequencies of the structure,

a new constraint equation must be derived from the generalized eigenvalue problem

Eq. (4.4). Once the coefficient matrices for stiffness and mass are determined, in order
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to avoid the optimization generating a structure prone to low frequency vibration, a

threshold can be set such that the smallest eigenvalue from Eq. (4.4) is greater than

or equal to a defined minimum value. Thus Eq. (4.4) may be transformed into the

following constraint:

K(a) − λ(M(a) + M0) ≽ 0, (4.5)

where K(a) =
∑m

i=1 aiKi and M(a) =
∑m

i=1 aiMi are the global stiffness and mass

matrices respectively; ai refers to the cross-sectional area of member i; λ is the eigen-

value derived from the minimum specified natural frequency (ω1) for the specified mode

of vibration Φj and ≽ indicates that the matrix to its left is symmetric and positive

semidefinite. For the purposes of this contribution, the connecting nodes are not con-

sidered, and therefore the mass associated with joints M0 = 0.

Thus when incorporated into the layout optimization formulation, Eq. (4.1) the problem

may be written as:

min
a,q

V = lTa

s.t.





Bq = p,

K(a) − λ0M(a) ≽ 0

− σ−ai ≤ qi ≤ σ+ai, ∀i
ai ≥ 0, ∀i,

(4.6)

Fixing the smallest eigenvalue (λ0) to be greater than or equal to the minimum specified

frequency ensures that the areas of the elements are adjusted as part of the optimization

until the inequality constraint is achieved. Incorporation of the semidefinite constraint

means that a semidefinite programming solver is now required to solve the problem. Note

that SDP problems are convex, enabling a globally optimal solution to be obtained, but

are considerably more computationally demanding to solve than their LP counterparts.

4.2.4 Short cantilever example

Two means of optimizing a short cantilever structure based on a prescribed minimum

first natural frequency will now be outlined, using the example problem defined in Figure

4.2 to illustrate salient points. For this problem P = 1 × 103N; E = 210 × 109N m−2;

ρ = 8050kg m−3 and the limiting tensile and compressive stresses σ = 350× 106Pa. The

prescribed constraint on the fundamental natural frequency is f1 ≥ 425Hz. All numerical
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examples in this contribution were run on a 64bit Windows 10 desktop PC equipped

with an Intel i5 3.7GHz processor and 32Gb RAM, using a script programmed using

MATLAB 2020b. A number of semidefinite solvers are available and are compared

by Tyburec and Zeman (2017). This contribution will initially employ the MOSEK

ApS (2017) v8.1 solver using the Java Fusion MATLAB interface. It should be noted

that unless otherwise specified all layouts presented in the figures are filtered to only

include elements with areas greater than 1 × 10−6m2. This may occasionally result

in elements which appear to be disconnected from the overall structure. Additionally,

to facilitate comparison with other published works, non-dimensional volumes V are

presented throughout the paper, with scaled volumes V (P/σ) in m3 also included in

accompanying tables for completeness.

x

y

P

2

1

Figure 4.2: Short cantilever example: design domain, loading and support details.
All dimensions in metres.

4.2.4.1 Two phase optimization approach

Since SDP problems are computationally expensive to solve, initially the efficacy of a

two phase optimization approach is evaluated. With this approach a traditional layout

optimization is first undertaken, without considering frequency constraints; if prescribed

frequency requirements are not met by the generated design then a size optimization

is subsequently performed to ensure that these are met, modifying only the subset of

elements present in the optimal structure; i.e. in this second phase the areas of each

element ai are adjusted to ensure the semidefinite constraint Eq. (4.5) is met. In the

interests of computational efficiency only those elements that have an area greater than

a predetermined minimum (taken as 1×10−6m2) are included in the optimization; these

elements will henceforth be referred to as members.

Considering first the example problem defined in Figure 4.2, an initial layout optimiza-

tion is carried out to provide reference values for the volume and first natural frequency

of the structure; see Table 4.1 and Figure 4.3(a). The structure shown is similar to that

obtained by He et al. (2019b).
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However the reference structure contains many members so, for the first phase of the

proposed two phase procedure, a domain with fewer nodes is used to enable a more

practical layout to be generated, containing fewer ‘fibrous’ elements. This is achieved by

both reducing the number of nodes and introducing a joint penalty, after Parkes (1975).

This results in the structure shown in Figure 4.3(b), which has fewer joints and elements

than the benchmark, but which has a similar volume.

In the second phase, the structure from the first phase is re-optimized using the modified

formulation that includes frequency constraints Eq. (4.6) to revize member sizes ensur-

ing the frequency is not less than 425Hz. In the re-optimization, it is found that the

areas of diagonal members radiating from the support line, along with some members

interconnecting these, need to be modified (resized members are highlighted in green in

Figure 4.3(c) in the online version of the paper).

It is evident that the solver has been successful in achieving the desired minimum natural

frequency, at minimal CPU cost; however this has, in this case, come at a relatively high

cost in terms of increase in volume (8.7%). This suggests that changing the size of the

elements alone may not lead to the most efficient solution, and a better one may be

available if a wider solution space was made available.

(a) V = 7.030, f1 = 403Hz (b) V = 7.095, f1 = 410Hz

(c) V = 7.436, f1 = 425Hz (d) V = 7.134, f1 = 425Hz

Figure 4.3: Short cantilever example: (a) reference LP solution achieved using layout
optimization using 120 × 60 nodal divisions; (b) more practical LP layout, achieved by
reducing the nodal divisions to 40 × 20 and penalising joints; (c) outcome of the SDP
frequency optimization performed on the practical layout from (b); (d) layout generated
using SDP optimization of the full ground-structure, incl. frequency constraint using
12 × 6 nodal divisions. (Key: red = tension; blue = compression; green = members in
(c) whose areas have been modified compared with (b); grey = members whose areas

are as per the layout in (b)).
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Next consider the classical half-wheel problem shown in Figure 4.4, as originally studied

by Michell (1904). The problem involves a central point load P = 1 × 103N applied

at midspan between statically determinate supports, limiting tensile and compressive

stresses σ = 350 × 106Pa, and in common with the other presented examples E =

210 × 109N m−2 and ρ = 8050kg m−3. The optimal solution obtained when using 16 ×
8 nodal divisions is shown in Figure 4.4(b) and has a non-dimensional volume V =

3.191. This includes a short vertical member above each of the supports, leading to a

structure that is in unstable equilibrium with the applied loading. This arises because

only equilibrium (and strength) constraints are enforced in phase one. A byproduct of

this is that subsequently adjusting the sizes of structural members alone in the second

phase, with a view to achieving a natural frequency of, for example, f1 = 200Hz will

fail due to the inherent instability in the problem. This highlights a further limitation

of the two phase optimization approach.

x

y

P

2

1

(a) (b)

Figure 4.4: Half wheel example: (a) problem definition; (b) optimal structure ob-
tained after phase one of the two phase method (i.e. not considering frequency con-

straints). All dimensions in metres

4.2.4.2 Holistic optimization

Although the two phase approach described in the preceding section is computationally

efficient for problems where it can obtain viable solutions, if the increase in volume in the

second phase is large, then the question arises as to whether a more materially efficient

design exists.

This can be checked by applying the formulation, including an SDP frequency constraint,

to the full ground-structure. The associated computational expense means that only a

coarse nodal grid (12×6) can be used in this case. For the short cantilever example, the

solution obtained using the finest nodal density achievable with the available memory

is shown in Figure 4.3(d). When compared with a reference structure consisting of the

same size it demonstrates that a modified design enables the target frequency to be met

with little impact on the overall volume of the structure. The optimum point where the
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equilibrium and frequency constraints are satisfied requires a different layout to that of

the structural optimization alone. However, it must be noted that the largest problem

that could be solved with a fully-connected ground-structure is much smaller than the

one that could be solved using the two phase approach.

Table 4.1: Short cantilever example: linear programming (LP) and semidefinite pro-
gramming (SDP) results (target frequency for SDP problem = 425Hz).

Fig. Model Nodal V V (P/σ) f1 Time
Divisions (10−5m3) (Hz) (s)

4.3(a) LP (fine ref.) 120 × 60 7.030 2.009 403 146
4.3(b) LP 40 × 20 7.095 2.027 410 26
4.3(c) SDP (size only) . . . 7.436 2.125 425 3

. . . LP (coarse ref.) 12 × 6 7.116 2.033 407 9
4.3(d) SDP (full) 12 × 6 7.134 2.038 425 1472

4.3 Semidefinite programming formulation with member-

adding

To solve complex problems of this nature with a large initial ground-structure efficiently,

a special-purpose solver based on the Mehrota-type primal-dual interior point method

(Fujisawa et al. 2000) was developed. The approach and its implementation follows

Weldeyesus et al. (2019), which describes the optimization of truss structures with con-

straints on global stability modelled via semidefinite programming. In Weldeyesus et al.

(2019), the proposed method is capable of obtaining solutions to relatively large prob-

lems that could not otherwise have been solved. Due to similarities in the mathematical

properties of the optimization problem considered in this paper, and the problem dis-

cussed in Weldeyesus et al. (2019), only the member-adding method is explained here in

detail. Issues such as exploiting sparsity and low rank property of the element stiffness

matrices Ki and mass matrices Mi when forming the linear systems arising in the inte-

rior point algorithm for SDP are not repeated here, but play a crucial role in the overall

efficiency of the approach. As outlined in Section 4.2.1, the adaptive member-adding

approach (which is based on column generation technique, see Gondzio and Sarkissian

(1996), Desrosiers and Lübbecke (2005), Gondzio et al. (2013)) is an iterative process

originally proposed in Gilbert and Tyas (2003), and also applied to other problems by

e.g. Sokó l and Rozvany (2013), Weldeyesus. and Gondzio (2018), who employed lin-

ear programming to obtain solutions. The method was extended to treat semidefinite

programming problems by Weldeyesus et al. (2019). The procedure starts by solving

a minimum connectivity ground-structure problem (Figure 4.1(d)), and proceeds by
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adding elements from a potential connection list until a solution that satisfies the orig-

inal fully-connected ground-structure problem is obtained. This approach enables the

method to obtain the solution using a small fraction of the large number of potential

connections: see Gilbert and Tyas (2003) and Weldeyesus et al. (2019) for supporting

numerical results.

4.3.1 Details of the SDP member-adding algorithm

Here, a mathematical description of the member-adding procedure akin to that described

in Section 4 of Weldeyesus et al. (2019) is presented. The primal problem Eq. (4.6) has

an associated dual problem Eq. (4.7) where u ∈ Rn and X ∈ Sn+ (i.e. X is symmetric

and positive semidefinite) are the Lagrange multipliers for the equilibrium equation and

the matrix inequality constraints in Eq. (4.6), respectively. Note that in some literature,

for example Wolkowicz et al. (2000), the primal formulation Eq. (4.6) is stated as dual

and the dual problem formulation Eq. (4.7) as primal.

maximize
u,X

pTu

subject to − 1

σ− (li − (Ki − λMi) •X) ≤ (BTu)i,

∀i

(BTu)i ≤
1

σ+
(li − (Ki − λMi) •X),

∀i
X ⪰ 0.

(4.7)

After solving, the dual violations can be obtained using only the variables u and X in

Eq. (4.7). The process is as follows:

For any variable corresponding to member i to be dual feasible, formulation Eq. (4.7)

implies that the relation

− 1

σ− ≤ 1

li − (Ki − λMi) •X
(BTu)i ≤

1

σ+ (4.8)

is satisfied. Now suppose that I0 ⊂ {1, . . . ,m} is a set of indices of members for which

the primal problem Eq. (4.6) and its dual Eq. (4.7) are currently solved. After solving

problem Eq. (4.6), and obtaining dual values corresponding to Eq. (4.7), for all members

with indices in I0, condition Eq. (4.8) can be used for all i ∈ {1, ...,m0}\I0 to generate

a set I of member indices to be added, given by
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I =

{
i ∈ {1, · · · ,m0}\I0|

1

li − (Ki − λMi) •X∗ (σ−ε−i + σ+ε+i ) ≥ 1 + β

}
,

(4.9)

where virtual strains are ε+i = max{(BTu∗)i, 0} and ε−i = max{−(BTu∗)i, 0} with u∗

and X∗ being optimal points of the preceding subprogram, and β > 0 is an allowed

tolerance decided by the user. If I = ∅ the member-adding procedure terminates;

otherwise, members with indices in I are added to the subsequent problem, filtering

these using the heuristic techniques described in Weldeyesus. and Gondzio (2018) if

necessary to avoid problem size growing too rapidly.

4.3.2 Revisiting the short cantilever and half-wheel examples

In order to establish the gains in efficiency from utilising the new member-adding-based

SDP algorithm, the problem given in Figure 4.2 will be revisited, initially replicating the

problem in Figure 4.3(d) to demonstrate the efficiency gains of using the member-adding

algorithm.

Table 4.2: Short cantilever example: fully-connected ground-structure and member-
adding approaches (target frequency = 425Hz).

Fig. Model Nodal V V (P/σ) Time Speed Memory
Divisions (10−5m3) (s) Up (Mb)

4.3(d) SDP (full) 12 × 6 7.134 2.038 1472 . . . 16,081
4.5(a) SDP (mem. add.) 12 × 6 7.134 2.038 8 ×183 5

Results for coarse nodal grids are presented in Table 4.2 and in Figure 4.5(a). It is

evident that the optimal volumes are identical irrespective of whether a fully-connected

ground-structure or member-adding is employed, and the optimal truss solutions shown

in Figure 4.3(d) and 4.5(a) are also virtually identical. Most significantly, it is also

evident that the proposed member-adding algorithm can obtain a solution over two or-

ders of magnitude quicker than when a fully-connected ground-structure is used, with

the memory requirements reduced by three orders of magnitude. These efficiency im-

provements mean that problems involving relatively fine nodal grids can now be tackled,

which was not possible before. Thus revisiting the problem shown in Figure 4.3(a), a

new solution obtained via member-adding is presented in Figure 4.5(b), with additional

solutions presented for higher minimum target frequencies in Figures 4.5(c-d). Corre-

sponding computational details are shown in Table 4.3. This shows that relatively fine

grid problems can be tackled, and that the geometry of the optimal structure changes

when higher target frequencies are specified, with the overall volume also increasing.
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(a) V = 7.134, f1 = 425Hz (b) V = 7.064, f1 = 425Hz

(c) V = 7.129, f1 = 450Hz (d) V = 7.597, f1 = 480Hz

Figure 4.5: Short cantilever example: results obtained using the SDP member-adding
method for a range of minimum frequencies. A total of 12 × 6 nodal divisions are used

in case (a) and 40 × 20 in cases (b)-(d).

Table 4.3: Short cantilever example: results from SDP member-adding algorithm.

Fig. Nodal V ∆V † V (P/σ) f1 Time
Divisions (%) (10−5m3) (Hz) (s)

4.5(b) 40 × 20 7.064 +0.5 2.018 425 4915
4.5(c) 40 × 20 7.129 +1.4 2.037 450 11655
4.5(d) 40 × 20 7.597 +8.0 2.171 480 17671

†Percentage change compared with the volume of the reference structure shown in Figure 4.3(a).

Now revisiting the half wheel example: by applying the procedure proposed in this

contribution, a structure that satisfies both equilibrium and frequency constraints can

be generated. For a target frequency of 200Hz the generated solution is negligibly

higher in non-dimensional volume (now V = 3.193, just 0.05% greater than before); see

Figure 4.6. Significantly, to satisfy the frequency constraint, it is evident that additional

stabilizing members have been added - although in this case some of these are very

thin, with some radial members below the filter cut-off (in this case area = 6× 10−8m2)

omitted.

4.3.3 Influence of initial member arrangement on computation

It has been demonstrated that the inclusion of a member-adding step in the optimiza-

tion reduces the memory burden and enables problems of significant size to be tackled.

To further understand the performance of the member-adding method, the examples

originally considered by Gilbert and Tyas (2003) are used to investigate the influence
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Figure 4.6: Half wheel example: structure obtained using combined equilibrium and
frequency constraints for a target frequency of 200Hz (dashed lines indicate members

added to satisfy the frequency constraint, also helping to stabilize the structure).

of the chosen initial nodal connectivity on the solution, the computational time, and

the required memory footprint. A 28 × 28 nodal division square domain is used; in this

contribution overlapping connections are omitted as they can lead to instability in the

frequency calculations due to multiple members coexisting in the same space. Due to the

significant memory requirements of the fully-connected ground-structure example (circa

400Gb), an additional set of results is obtained using a domain comprising a reduced

number of 14 × 14 nodal divisions.

Applying the same physical parameters as the example shown in Figure 4.2, the original

optimal truss structure from Gilbert and Tyas (2003) was assessed and found to have a

first natural frequency of f1 = 945Hz; therefore an initial frequency target of f1 = 950Hz

was considered appropriate for the starting problem as it is close to the original yet

includes an active frequency constraint. The target frequency was then increased by

10% to help verify the extent to which the influence of the initial member connectivity

is common across a range of target frequencies.

Table 4.4 shows the four initial ground-structures considered, (a) - (d), together with

results for the two target frequencies for each of the two nodal division discretisations;

note that to maintain a basis for comparison, all presented volumes are non-dimensional.

The resulting volumes for all the cases are within 1% of those provided in the original

paper, demonstrating that in this case the frequency constraint does not come at a high

cost in terms of structural efficiency, however CPU times are markedly increased. In

contrast to the findings in the original paper by Gilbert and Tyas (2003), here it is also

clear that the most efficient initial ground-structure in terms of CPU time comprizes a

ground-structure with the supports directly connected to the load (case (c)); this leads

to a lower number of peak LP variables, indicating a reduced memory burden. Figure 4.7

shows the outcome of the initial iteration for each of the three initial ground-structures

investigated when using the member-adding scheme for the 14 × 14 nodal division case.

It is evident that although the supports are in each case connected to the load, in the

case of (c) this is predominantly achieved through the use of just two diagonal elements

that directly connect the load with the supports.
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Table 4.4: Influence of initial member connectivity on efficiency of member-adding
scheme:

(a) adjacent nodes connected (right to left upward diagonals in all cells);
(b) minimally-connected ground-structure, comprising nearest neighbour connectivity;
(c) minimally-connected ground-structure plus connections between boundary and

loaded nodes;
(d) traditional fully-connected ground-structure (without overlapping bars).

(a) (b) (c) (d)

28
×

28

f 1
=

95
0H

z

Volume, V 2.432 2.432 2.432 -
No. of iterations 9 6 7 -
Initial No. of bars 2408 3192 3221 -
Peak No. of bars 36151 8000 5881 -
Time to 1.001×V (s) 63875.1 2209.9 804 -
CPU Time (s) 182738.9 3811.6 2102.8 -

f 1
=

10
45

H
z

Volume, V 2.441 2.441 2.441 -
No. of iterations 12 7 8 -
Initial No. of bars 2408 3192 3221 -
Peak No. of bars 33964 10710 7005 -
Time to 1.001×V (s) 192161.2 4054.9 992 -
CPU Time (s) 289679.8 8555.2 2852.6 -

14
×

14

f 1
=

95
0
H

z

Volume, V 2.435 2.435 2.435 2.437
No. of iterations 9 6 6 -
Initial No. of bars 616 812 827 15556
Peak No. of bars 4239 1982 1197 15556
Time to 1.001×V (s) 660.2 69.9 29.1 -
CPU Time (s) 1379.1 116.7 51.2 5501.3

f 1
=

1
04

5H
z

Volume, V 2.443 2.443 2.443 2.448
No. of iterations 9 6 5 -
Initial No. of bars 616 812 827 15556
Peak No. of bars 3365 1936 1265 15556
Time to 1.001×V (s) 346 67.4 33.8 -
CPU Time (s) 748.1 134.8 45.5 5089.7
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(a) (b) (c) (d)

Figure 4.7: Influence of initial connectivity in member-adding scheme: (a) adjacent
nodes connected (right to left upward diagonals in all units), iteration 1; (b) minimally-
connected ground-structure with nearest neighbour nodes connected, iteration 1; (c)
minimally-connected ground-structure plus boundary/loaded nodes connected, itera-

tion 1; (d) final optimized structural form common to all starting points.

It should be noted that when member-adding is used, ground-structure (a) has the

longest associated CPU time, and also the greatest number of LP variables at the end of

the optimization process. Ground-structure (c) has the shortest associated CPU time,

the fewest LP variables, and hence also the lowest memory consumption. For the sake

of simplicity, initial ground-structure (b) will be used for all subsequent examples in this

contribution. Finally, it should also be noted that although the optimized volume ob-

tained when using a fully-connected ground-structure from the outset, (d), is marginally

higher than obtained in the other three cases, this is likely due to the contribution to

the volume of a large number of elements with areas very close to zero.

4.4 Numerical examples

A wider range of examples are now considered to further investigate the efficacy of the

presented SDP member-adding algorithm when used to optimize a component, con-

sidering simultaneously equilibrium, strength, and first natural frequency constraints.

Classical Hemp cantilever and MBB beam examples are first considered. A 3D cantilever

designed to carry a point load is then considered, with different minimum specified nat-

ural frequencies used to show the resulting variation in form and associated volume.

Each example begins with a minimum connectivity ground-structure.

4.4.1 Hemp cantilever example

The initial example considered was first studied by Hemp (1973) and consists of a square

domain with single point load located at mid-height between two supports, as shown in

Figure 4.8(a). Hemp determined the non-dimensional analytical volume to be approx-

imately 4.34; later He and Gilbert (2015) applied more precise methods and geometry
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rationalisation further reducing the optimum volume to 4.3228. Here a nodal grid com-

prising 72 × 72 nodal divisions and the following material properties P = 1 × 103N;

E = 210 × 109N m−2; ρ = 8050kg m−3 and the limiting tensile and compressive stresses

σ = 350 × 106Pa were used to obtain a reference LP solution with a volume V = 4.332,

within 0.5% of the improved optimum figure. The associated structure is shown in Fig-

ure 4.8(b). The first natural frequency of this reference structure was computed to be

f1 = 616Hz.

In order to generate solutions in a reasonable timescale for the SDP analyses the nodal

density was reduced to 48×48. An additional LP reference was obtained at this density

which has negligible impact on volume but changes the first frequency to 686Hz. SDP

analyses were conducted with target first natural frequencies of f1 = 700Hz and 1000Hz

to identify changes in the generated structure. Results of the associated optimization

runs are presented in Table 4.5 and Figures 4.8(c) and 4.8(d) respectively.

In the first case, the impact on the resulting generated structure and associated volume

is small, with the increase in volume being less than 1% and little difference in overall

layout. In the second case, increasing the minimum frequency to f1 = 1000Hz can be

observed to have a much more significant impact, with the overall structural depth and

complexity of the result both reduced.

Table 4.5: Hemp cantilever example: results obtained from equilibrium optimization
and with inclusion of the frequency constraints.

Fig. Model Nodal V ∆V V (P/σ) f1 Time
Divisions (%) (10−5m3) (Hz) (s)

4.8(b) REF 72 × 72 4.332 . . . 1.238 616 194
. . . LP 48 × 48 4.339 +0.01% 1.240 623 17

4.8(c) SDP 48 × 48 4.340 +0.01% 1.240 700 42676
4.8(d) SDP 48 × 48 4.794 +10.6% 1.370 1000 75004

4.4.2 MBB beam example

The Messerschmidt-Bölkow-Blohm (MBB) beam is attributed to the German aircraft

company of the same name, and can still be found in an Airbus passenger aircraft.

Though the real-world problem includes a number of design constraints, in the litera-

ture a simpler problem is normally considered, involving simple loading and boundary

conditions, and usually targeting minimum volume or compliance. The exact analytical

layout for the MBB structure with stress constraints was derived by Rozvany (1998),

with the optimal non-dimensional volume V = 13.597 for a beam length of 3. As the

beam is symmetrical only the right half is shown in Figure 4.9(a). An optimization was
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(a) (b) V = 4.332, f1 = 616Hz

(c) V = 4.350, f1 = 700Hz (d) V = 4.794, f1 = 1000Hz

Figure 4.8: Hemp cantilever example: (a) problem definition with dimensions in
metres; (b) reference LP solution, obtained with 72 × 72 nodal divisions; (c) SDP
member-adding solution obtained for a target frequency of 700Hz; (d) SDP member-
adding solution obtained for a target frequency of 1000Hz. Note that both (c) and (d)

have 48 × 48 nodal divisions.

carried out with nodes directly along the symmetry plane free to move vertically whilst

the bottom right corner was fixed in the vertical direction and free to move horizon-

tally. The example assumes aerospace grade aluminium is used with P = 1 × 103N,

σ = 90 × 106Pa, E = 68.9 × 109N m−2 and ρ = 2770kg m−3.

An initial LP optimization was carried out to obtain a reference volume and frequency

for the structure, using 60 × 20 nodal divisions to provide a balance between accuracy

and computational efficiency (Figure 4.9(b)). SDP solutions were then sought for two

minimum target frequencies; the solutions obtained (Table 4.6 and Figures 4.9(c) and

4.9(d)) demonstrate that the introduction of a frequency constraint has enabled mini-

mum volume structures satisfying a given minimum frequency to be obtained, with very

little impact on overall volume. However, it is evident that the time required to complete

a frequency optimization is clearly considerably longer than that required for a basic LP

optimization.
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Table 4.6: MBB beam example: SDP member-adding algorithm results.

Fig. Model Nodal V ∆V V (P/σ) f1 Time
Divisions (%) (10−4m3) (Hz) (s)

4.9(b) LP 60 × 20 14.136 . . . 1.571 374 8
4.9(c) SDP 60 × 20 14.238 +0.72% 1.582 400 31781
4.9(d) SDP 60 × 20 14.631 +3.5% 1.626 425 46317

x

y

P
3

1

(a) (b) V = 14.136, f1 = 374Hz

(c) V = 14.237, f1 = 400Hz (d) V = 14.631, f1 = 425Hz

Figure 4.9: MBB beam example: (a) problem definition with dimensions in metres;
(b) reference solution obtained for this example with the determined first natural fre-
quency; (c) SDP member-adding solution obtained for a target frequency of 400Hz; (d)

a target of 425Hz.

4.4.3 3D cantilever example

The third example is a simple 3D cantilever beam, as shown in Figure 4.10(a). To

improve the clarity of the results, and to minimize the additional computational burden

associated with solving 3D problems, the number of nodal divisions has been reduced to

6 × 2 × 2 to ensure solutions are obtained in a manageable time-frame. The properties

for this example are as follows: P = 1 × 103N; E = 210 × 109N m−2; ρ = 8050kg m−3

and maximum tensile and compressive stresses σ = 350 × 106Pa. Various target first

natural frequencies are used to demonstrate the change in structural form that results

from including a frequency constraint.

Full results for this example are shown in Table 4.7. Figure 4.10(b) shows the layout

of the optimal structure based solely upon equilibrium and strength considerations,

with the natural frequency of the resulting structure being found to be 57Hz. When a

frequency constraint f1 = 100Hz is introduced (Figure 4.10(c)), the structure begins to

change, with new members added to the structure. Similar to the 2D examples, these

additional elements brace the structure, adding stiffness and therefore increasing the
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frequency; however the use of member-adding has allowed this to happen in a short

amount of time and with limited impact on the overall volume of the structure. As the

target frequency is increased further to 150Hz and 200Hz as shown in Figures 4.10(d)

and 4.10(e) respectively, a more dramatic change begins to take place, with the members

that are primarily taking the load and providing structural stiffness becoming longer and

growing in cross-section.

Table 4.7: 3D cantilever example: SDP member-adding algorithm results.

Fig. Model Cons V ∆V V (P/σ) f1 Time
(%) (10−5m3) (Hz) (s)

4.10(b) LP 474 30.676 . . . 8.765 57 5.8
4.10(c) SDP 566 30.883 +0.6 8.824 100 9.9
4.10(d) SDP 633 33.233 +8.3 9.495 150 12.6
4.10(e) SDP 582 38.111 +24.2 10.889 200 13.3

4.5 Conclusions

Numerical layout optimization provides an efficient means of generating optimal truss

structures for a given set of design requirements. However, traditional linear programming-

based formulations are limited, and cannot, for example, accommodate frequency con-

straints. In this contribution, extended semi-definite programming-based formulations

are considered that allow the minimum first natural frequency of a structure to be spec-

ified. The main conclusions are as follows:

a) The use of a two phase approach, in which the traditional LP layout optimization

formulation is used in the first phase and an SDP size optimization is used in the

second phase, provides a computationally efficient means of generating solutions

satisfying a specified frequency constraint. However, the solutions obtained are

likely to be sub-optimal, with the resulting structures having higher than necessary

volume.

b) Alternatively, a constraint on frequency can be introduced in the optimization di-

rectly, furnishing layouts that satisfy both structural performance and first natural

frequency requirements. However, when using a fully-connected ground-structure

and a standard SDP solver, the computational cost and memory requirements have

been found to be high, severely limiting the scale of problem that can be tackled.

c) The use of a bespoke solver and an adaptive member-adding solution strategy,

which involves starting with a sparsely connected ground-structure and only adding
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(a)

(b) V = 30.676, f1 = 57Hz (c) V = 30.883, f1 = 100Hz

(d) V = 33.233, f1 = 150Hz (e) V = 38.111, f1 = 200Hz

Figure 4.10: 3D cantilever example: (a) problem definition with dimensions in metres;
(b) LP solution (no frequency constraint); (c) SDP member-adding solution for a target
frequency of 100Hz; (d) a target of 150Hz; (e) a target of 200Hz. All cases employ

6 × 2 × 2 nodal divisions.
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members as required until the optimal solution is found, allows solutions to be

obtained in a much shorter time-frame (183 times quicker in the case of one of the

examples considered), and with much lower memory consumption. This approach

has been successfully applied to a range of 2D and 3D problems in this paper.

In future studies, the influence of joints on vibration characteristics will be considered in

more detail with, for example, differences in optimal layout and volume being evaluated

when rigid-joints as opposed to pin-joints are assumed. In addition, consideration will

be given to limiting the number and arrangement of members within a final design, to

ensure the resulting component is readily manufacturable.



Chapter 5

Layout optimization of rigid

frame structures with

semidefinite frequency constraints

The ability to target the frequency response of an engineering component or structure

is critical in the aerospace and automotive sectors, and is therefore a key considera-

tion when seeking any new, more efficient, design. This contribution demonstrates that

structurally efficient frame structures can be identified using layout optimization, tar-

geting constraints on both limiting stresses and first natural frequency, using an iterative

solution procedure involving successive application of semidefinite programming (SDP).

The proposed optimization algorithm uses a fully-connected ground-structure, which

provides significant design freedom, to arrive at the arrangement of structural mem-

bers minimizing structural volume. In each step of the iterative procedure described,

the second moment of area is assumed to vary linearly with the area of each member.

The efficacy of the method is demonstrated via application to a number of benchmark

problems, showing that acceptable minimum first natural frequency responses can suc-

cessfully be identified. Details of a parameter study focusing on assessing the influence

of nodal resolution on the solutions obtained and computational time are also presented.

5.1 Introduction

Structural topology and layout optimization methods have received considerable atten-

tion over the years, with both heuristic (e.g. Xie and Steven (1993); Querin et al. (1998)),

and gradient-based (e.g. Bendsøe and Sigmund (2003); Rozvany and Lewiński (2014))

approaches proposed. Although heuristic optimization methods are versatile in terms

101



Chapter 5. Layout optimization of rigid frame structures 102

of the number and variety of different problems that can be solved, they are usually

inefficient due to the lack of an underpinning mathematical framework. On the other

hand, gradient-based methodologies are generally much more computationally efficient,

though require some mathematically-derived information to be available before a solu-

tion can be found. For the problem considered here, this information is readily available

and thus the present contribution focuses on the application of gradient-based meth-

ods to component design problems involving strength and minimum natural frequency

constraints.

The ground-structure method, initially introduced by Dorn et al. (1964), has been in-

strumental in solving plastic truss design problems. Layout optimization, based on this

methodology, aims to identify the most efficient arrangement of elements within a truss

structure. Researchers have widely used this approach to find minimum volume truss

structures. Notable studies by Hemp (1973), Gilbert and Tyas (2003), Smith et al.

(2016), have explored this topic, initially using linear programming (LP) and later in-

corporating an adaptive ‘member-adding’ (column generation) technique for efficient

solutions in single load case problems. Extensions by Pritchard et al. (2005) and Sokó l

(2014) allow for solving multiple load case problems. In terms of computational ef-

ficiency, the focus remains on single load case scenarios, where a specified minimum

frequency is chosen to avoid interference with other excitation frequencies. Frequency

analysis involves matrix constraints, necessitating the use of semidefinite programming

(SDP) rather than LP. SDP has previously been applied to truss structure optimization

by Ben-Tal and Nemirovski (1997) and later Giniünaité (2015) where the goal was to

achieve minimum mass structures. Soon after Kanno (2018) proposed an algorithm to

address cases where lack of certainty in the applied loading required the derivation of

structures which were robust against variation. SDP has been developed into a num-

ber open source and commercially available solver packages: fminsdp (Thore, 2018);

MOSEK (v8+) (MOSEK ApS, 2017); PENLAB (Fiala et al., 2013) and CVX (Grant

and Boyd, 2014) are a few examples.

The optimization of a component or systems natural frequency is part of eigenvalue anal-

ysis, a distinct field of mathematics, and has been extensively studied by the mathemat-

ical programming community. An initial approach by Fox and Kapoor (1970) addressed

the underlying SDP problem by adopting a feasibility approach. This was then further

augmented using the optimility criterion method by Grandhi and Venkayya (1988) and

Khot (1985). Later, Kaveh and Ghazaan (2016) performed size optimization on existing

truss structures through the employment of non-smooth optimization, to drive them to

meet specific frequency requirements; similar problems were also addressed using SDP

by Achtziger and Kočvara (2007). Aroztegui et al. (2011) then developed a feasible di-

rection SDP algorithm capable of maximizing fundamental frequencies when applied to



Chapter 5. Layout optimization of rigid frame structures 103

relatively simple full-connected ground-structure problems. When considering frequency

optimization in isolation, Azad et al. (2018) assessed simultaneous size and geometry

optimization for steel structures subjected to external excitation using the ‘big bang

- big crunch’ algorithm. However, their results were mixed when compared to known

optimal solutions. Meanwhile, Taheri and Jalili (2016) and Tejani et al. (2018) explored

alternative meta-heuristic methods to impose frequency constraints in truss optimization

problems. Recently, Salt et al. (2022) proposed a customized SDP-based truss layout

optimization procedure. Their approach capitalizes on an adaptive ‘member-adding’

strategy, effectively addressing optimization problems related to eigenvalue frequency

constraints.

Although Salt et al. (2022) were able to successfully optimize pin-jointed truss structures

with constraints on natural frequency, there are a limited number of practical applica-

tion areas for such structures. This is because such structures or components will, more

commonly, possess fully rigid joints. This rigidity is usually the result of the chosen

manufacturing method which may include fabrication by welding or riveting, machining

from solid or by AM techniques. This contribution will focus on identifying frame struc-

tures incorporating rigid joints with constraints on natural frequency produced by AM.

Targeting AM as a production method increases the available design freedom, which

can therefore be exploited to a much greater extent than when traditional subtractive

manufacturing methods are employed, opening up greater opportunities to realize least-

weight structures. Specifically, use of AM allows the considerable benefits of layout

optimization to be realized in practice, i.e. the ability of the optimization procedure

to identify structures where the optimal solution may consume only a small fraction

of the specified design domain. In contrast, other optimization methods such contin-

uum topology optimization based methods, may typically require the use of a volume

fraction of at least 10% of the design domain (Aage et al., 2013) in order to be manu-

facturable. SDP calculations for frame layout optimization with frequency constraints

were put forward by Kanno and Ohsaki (2007), and demonstrated to work for prob-

lems with minimally-connected ground-structures comprising a small number of nodes

(7 × 7 nodes). Ye et al. (2017) also focused on the design of frame structures via layout

optimization, integrating the proposed approach in the Rhino-Grasshopper parametric

modelling software and citing a 30% reduction in material usage for the demonstrated

case study. Larsen et al. (2018) proposed a novel method to obtain near-optimal frame

structures generated from homogenization-based topology optimization results, focus-

ing on bending stiffness and solving problems in relatively short time-frames. Finally,

Zakian (2021) applied the heuristic ‘adaptive charged system search’ algorithm to the

optimal design of steel frame structures in the presence of frequency constraints.
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Here the focus is on the development and application of an iterative SDP-based layout

optimization procedure to identify minimum volume frames in the presence of frequency

constraints. Specifically, in this contribution the constituent material is assumed to

operate in the elastic phase for the imposed frequency constraints, with maximum stress

constraints also present to ensure a suitable margin of safety exists against overloading.

All frequencies quoted are undamped natural frequencies. The contribution is organized

as follows: Section 5.2 describes the basic formulations relevant to the frequency problem

at hand; Section 5.3 then proposes a new analysis tool for the layout optimization of

frame structures with frequency constraints; the new tool is then applied to various

example problems in Section 5.4; Section 5.5 provides a study on the impact of using a

fully-connected ground-structure on computational efficiency, compared with a ‘member-

adding’ alternative; finally conclusions are drawn in Section 5.6.

5.2 Truss layout optimization

5.2.1 Minimum volume with stress constraints formulation

The solving of any truss optimization based on the ground-structure method begins

with the definition of the design domain, it is within this space that the final resulting

structure will be generated once key parameters governing material, loads and supports

has been applied to fully describe the problem, see Figure 5.1(a). In general layout

optimization will seek to obtain the lowest volume/mass/weight solution whilst main-

taining the overall integrity of the structure, i.e. remaining below the stress threshold

of the material. The design domain is discretised with a predefined number of nodes

(n) in the x and y directions, Figure 5.1(b), and are then linked with potential con-

nections (m), connecting each node to every other node in the domain, Figure 5.1(c),

this is referred to as a fully-connected ground-structure. Alternatively, each node may

be connected only to its closest adjacent neighbour only to form a minimally-connected

ground-structure, Figure 5.1(d) which has been proven to be more computationally ef-

ficient when compared with full-connected ground-structures (Gilbert and Tyas, 2003).

Herein, each example will employ a number of nodes expressed in terms of number of

nodal divisions, e.g. referring to Figure 5.1(b), the domain has 4 × 2 nodal divisions,

with 4 divisions (and 5 nodes) in the x direction and 2 divisions (and 3 nodes) in the y

direction (giving 15 nodes in total).

The basic truss layout optimization formulation, Eq. (5.1), provides a highly efficient

means of identifying a minimum volume truss geometry for any given set of boundary

and loading conditions. Constraints are introduced to ensure equilibrium is enforced
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P

(a)

P

(b)

P

(c)

P

(d)

Figure 5.1: Steps in the truss layout optimization procedure: (a) design domain,
load and support conditions; (b) design domain populated with nodes; (c) each node
connected to every other node to form a fully-connected ground-structure; (d) alterna-
tively each node connected only to neighbouring nodes to form a minimally-connected
ground-structure, with additional connections added as necessary via ‘member-adding’
algorithm to obtain the optimal structure (comprising members shown in red and blue,

indicating respectively elements in tension and compression).

at nodes, and to ensure that the cross-sectional area of each element is both a positive

number and is sufficiently large to carry the internal forces, given the limiting stress

that can be sustained by the material employed. The formulation for a single load case

plastic truss layout optimization problem comprising n nodes and m members may be

solved using a Linear Programming (LP) solver:

minimize V = lTa

subject to





Bq = p,

− σ−ai ≤ qi ≤ σ+ai, ∀i
ai ≥ 0, ∀i,

(5.1)

where V is the total volume of the structure; l is a vector of individual element lengths

{l1, l2, . . . , lm}; a is a vector containing element cross-sectional areas {a1, a2, . . . , am}; B

is a suitable (2n × m) equilibrium matrix containing direction cosines (for 2D problems);

q is a vector of element axial forces, q = {q1, q2, ..., qm}, where qi is the force in element

i; p is a vector of applied loads and p = {px1 , py1, pz1, px2 , py2, pz2, . . . , pzm}, where pxj , p
y
j , p

z
j

are the x, y and z direction components of the load applied to node j (j = 1, . . . , n).

Finally σ+ and σ− are, respectively, the limiting tensile and compressive stresses that

can be sustained by the material.

5.2.2 Semidefinite frequency constraint

Salt et al. (2022) revized formulation Eq. (5.1) to allow inclusion of frequency con-

straints; the resulting formulation Eq. (5.2) allows layout optimization of truss struc-

tures with constraints on both limiting stress and frequency:
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min
a,q

V = lTa

s.t.





Bq = p,

K(a) − λ0M(a) ≽ 0

− σ−ai ≤ qi ≤ σ+ai, ∀i
ai ≥ 0, ∀i,

(5.2)

where K(a) =
∑m

i=1Kiai and M(a) =
∑m

i=1Miai are the global stiffness and mass ma-

trices respectively; ai refers to the cross-sectional area of member i; λ is the eigenvalue

derived from the minimum specified natural frequency (ω1) for the specified mode of

vibration ϕj ; and ≽ denotes the matrix to its left is symmetric and positive semidef-

inite. All remaining terms are as per formulation Eq. (5.1). For the purposes of this

contribution, the connecting nodes are not considered and therefore the mass associated

with the joint M0 = 0.

Note that Eq. (5.2) includes semidefinite constraints and was solved by Salt et al. (2022)

using a bespoke solver based on the Mehrota primal-dual interior point method (Fujisawa

et al. 2000). The basic approach and its implementation followed that proposed by

Weldeyesus et al. (2019), where the focus was on treating truss layout optimization

problems involving constraints on global stability, solved via semidefinite programming.

Also, to reduce the computational burden associated with problems containing a large

number of potential connections, an adaptive ‘member-adding’ routine was employed.

This is based on the column generation technique (see Gondzio and Sarkissian (1996),

Desrosiers and Lübbecke (2005), Gondzio et al. (2013)) and was originally proposed for

basic truss optimization problems by Gilbert and Tyas (2003), and later also employed

by workers such as Sokó l and Rozvany (2013), Weldeyesus. and Gondzio (2018).

5.3 Frame layout optimization

A typical truss structure will be pin-jointed, therefore limiting transmission between

elements to axial forces and not moments or shear forces. Whereas a beam element,

though similar to a truss in that it is usually a straight element of uniform cross-section,

deforms only in a direction perpendicular to its axis, such that the load carried by the

beam is transverse and not axial. A frame element can be considered as a combination

of both a truss and a beam element, as they can deform in directions both in line

with, and perpendicular to, the central axis and carry axial and transverse forces and

moments. Frame structures are common in practice as real-world loading typically

imparts a combination of axial and transverse forces. As with trusses, a frame structure



Chapter 5. Layout optimization of rigid frame structures 107

can be either planar or be a space frame; however all joints may be rigidly fixed to enable

axial and shear forces, and also moments to be transferred between elements.
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Figure 5.2: Comparison of the degrees of freedom in local coordinates u, v & ϕ and
global coordinates di for the following element types: (a) truss; (b) beam; and (c)

frame.

5.3.1 Stiffness and mass matrices for frames

In the study conducted by Salt et al. (2022), the stiffness and mass matrices for each

individual truss element were constructed with the variable for area, a, outside of the

matrix and constants for E, ρ, and l contained within; these were termed coefficient

matrices, K̄i and M̄i. This enabled the matrix for each element to be multiplied by

the design variable, area ai, at each iteration in the optimization, until the solution

was found. However, as noted above, in a frame both axial forces and shear forces /

bending moments contribute to the overall structural performance; the stiffness matrix

Eq. (5.3a) for a frame element combines these effects:

ki =




d3j−2 d3j−1 ϕ3j d3k−2 d3k−1 ϕ3k

aE
l 0 0 −aE

l 0 0 d3j−2

0 12EI
l3

6EI
l2

0 −12EI
l3

6EI
l2

ϕ3j−1

0 6EI
l2

4EI
l 0 −6EI

l2
2EI
l d3j

−aE
l 0 0 aE

l 0 0 d3k−2

0 −12EI
l3

−6EI
l2

0 12EI
l3

−6EI
l2

d3k−1

0 6EI
l2

2EI
l 0 −6EI

l2
4EI
l ϕ3k




(5.3a)
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where E is the Young’s modulus of the material and I is the second moment of area

of element i. Note that the terms in the matrix that refer to axial force effects are

taken from the stiffness matrix of a truss, whilst the remaining terms are taken from the

stiffness matrix of a beam. Similarly the mass matrix for a frame element Eq. (5.3b)

combines terms from trusses and beams as follows:

mi =
ρal

420




d3j−2 d3j−1 ϕ3j d3k−2 d3k−1 ϕ3k

140 0 0 70 0 0 d3j−2

0 156 22l 0 54 −13l d3j−1

0 22l 4l2 0 13l −3l2 ϕ3j

70 0 0 140 0 0 d3k−2

0 54 13l 0 156 −22l d3k−1

0 −13l −3l2 0 −22l 4l2 ϕ3k




(5.3b)

where ρ is the density of material.

It must be noted that in the case of a frame structure, the stiffness matrix now includes

terms for the second moment of area, Ii, which is not directly proportional to the cross-

sectional area ai meaning the matrix in its current form cannot be multiplied by area,

a; the consequences of this are considered further in the next section.

5.3.2 Relationship between cross-sectional area & second moment of

area

The relationship between the area ai and second moment of area Ii of a cross-section

depends on the type of cross-section used, and the way in which it is allowed to vary -

see Table A.1 in the Appendix, which provides the formulae used to calculate I for a

range of cross-section geometries.

Although not usually directly proportional, in the case of some cross-section geometries

the relationship between ai, and Ii is near-linear. Table 5.1 shows values for cross-

sectional areas ai, and second moments of area Ii, calculated using the formulae in

Table A.1; these values are also plotted in Figure 5.3. The plot shows that there is a

linear relationship between area and second moment of area for the I-section beam when

only the widths of the web and flanges are changed (B in Table A.1); this is also observed

when the height h of the rectangular cross-section is kept constant and only the width

b is modified to change the area. Conversely, there is a near-linear relationship between

area and second moment of area for the rhombus and circular cross-sections. Thus, by

linearizing the relationship between Ii and ai it is still possible for ai to remain as the
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main design variable, and to use this as a multiplier of the stiffness and mass coefficient

matrices, K̄i and M̄i.

Table 5.1: Second moment of area calculated for a selection of element cross-sections
(also plotted in Figure 5.3). Images indicate how each cross-section is assumed to
vary with change in area; dark shading indicates original form, light shading indicates

growth.

Area a
(mm2)

Second moment of area Ixx (mm4)

I-Section Rhombus Circle Rectangle

1.873 7.841 0.292 0.279 4.214

2.05 8.672 0.35 0.334 4.613

2.346 10.061 0.459 0.438 5.279

2.961 12.943 0.731 0.698 6.662

5.004 22.518 2.087 1.993 11.259

5.782 26.164 2.786 2.66 13.009

7.077 32.234 4.173 3.985 15.922

7.772 35.492 5.033 4.806 17.486

8.176 37.389 5.571 5.32 18.397

8.386 38.372 5.86 5.596 18.868

11.05 50.858 10.175 9.716 24.862

11.724 54.020 11.455 10.939 26.380

12.779 58.963 13.608 12.995 28.752

5.3.2.1 Solid rectangular cross-section of fixed height

Through rearrangement of expression (A.7) (see Appendix A), I can be made a constant

in the stiffness matrix Ki and dependent upon the design variable a:

Ixx =
BH3

12
= ai

H2

12
(5.4)

where B = ai/H, whilst H is fixed. The terms for I in Eq. (5.3a) can be replaced with

H2/12. The entirety of Ki can then be multiplied by ai in the optimization iterations,

and therefore I is treated correctly. It should be noted that for sake of simplicity herein,

H has been assumed to be constant for every element in the structure, though this could

easily be changed in future studies.
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Figure 5.3: Second moment of area for the four cross-sections considered plotted
against cross-sectional area (data from Table 5.1). Note that both the I-section and
rectangular forms have a linear relationship when the geometry is controlled; also the
curves for the rhombus and circular cross-sections are near-linear, and could potentially

be accurately approximated using a series of linear segments.

5.3.2.2 I-section beam with fixed height

For the I-section beam shown in Figure 5.4, where the heights H and h are fixed, Eq.

(A.8) in Appendix A can be rearranged in terms of area (ai), assuming that only the

widths of the flanges and web can vary. The following values pertaining to the geometric

form of the beam must be set: 1) a ratio between the cross-sectional area of the beam ai

and the total occupied area aT , Eq. (5.5a); and 2) a further ratio to control the breadth

of the flanges and the web thickness, Eq. (5.5b), which is also proportional to ai. Thus

the total area that the beam occupies, aT = BH, and the empty void area between the

flanges, lightly shaded in Figure 5.4, aE = 2bh, each may be expressed as a ratio to one

another, and ai; aE will always be smaller than aT

k1 =
aT0

a0
(5.5a)

k2 =
aT0

aE0
(5.5b)

where aE0 = aT0 − a0. The resulting equation for Ixx is therefore:

Ixx =
BH3 − 2bh3

12
=

[
(
aT,iH

2

12
) − (

aE,ih
2

12
)

]
= ai

[
(
k1H

2

12
) − (

k2h
2

12
)

]
(5.6)
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where aT,i = aik1, and aE,i = aT,i − ai. Applying the terms within square brackets in

Eq. (5.6), which are now constant, to the element stiffness matrix Ki enables the matrix

to be multiplied by ai, and the correct values for Ixx used in the optimization.

H h

B

b

Figure 5.4: Example I-section beam with fixed height: dark grey shading indicates
the cross-sectional area of the beam, ai; light grey shading indicates the empty void
area between the flanges, aE ; the sum of the two shaded areas is the total enclosed area

of the beam cross-section, aT = ai + aE .

5.3.3 Iterative solution procedure for frame layout optimization with

frequency constraints

5.3.3.1 Overview

Here the goal is to develop a tool that is capable of finding optimal, minimum volume,

frame layouts with constraints on natural frequency. Using the proposed tool, three steps

are carried out: (i) layout optimization; (ii) frequency solver; and (iii) solution refine-

ment; each step is discussed and then demonstrated via the simple numerical example

described below.

Thus a 10-bar cantilever structure is shown in Figure 5.5(a). It has pinned supports at

the top and bottom of the left edge and carries a single point load at the top right. For

this example l = 100mm; P = 1 × 103N; E = 64 × 109N m−2; ρ = 2711kg m−3; and the

limiting tensile and compressive stresses σ = 275MPa. Note that for sake of simplicity in

this worked example, only the elements specified in Figure 5.5(a) are assumed to exist;

i.e. no additional connections can be added.

5.3.3.2 Frame layout optimization

The first step of the proposed procedure is frame layout optimization, comprising the

operations shown in Figure 5.6. This is where the size and shape of the domain is set,
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(b) V = 2909mm3, f1 = 78Hz (c) V = 2911mm3, f1 = 100Hz

(d) V = 3040mm3, f1 = 150Hz (e) V = 5922mm3, f1 = 200Hz

Figure 5.5: 10 bar frame example: (a) problem domain, ground-structure and bound-
ary conditions; (b) results from an LP optimization (ignoring frequency constraints);
(c) results from SDP optimization targeting 100Hz; (d) 150Hz; (e) 200Hz. (Key: red
= tension; blue = compression; line thicknesses are shown in proportion to element

areas).

the mechanical properties of the chosen material are input, the cross-sectional shape

used to form the elements is chosen, and any predefined geometric constants for the

cross-section are selected. The nodal density of the domain is also chosen, dictating

how many potential connections will be present in the fully-connected ground-structure.

The number of nodes specified will also dictate the quantity of memory consumed in any

subsequent SDP optimization. The coefficient matrices for stiffness K̄i and mass M̄i are

then generated using Eq. (5.4) or (5.6). For this numerical example, an I-section beam

with of overall height H = 5mm, and distance between the flanges h = 3mm has been

chosen. The fully-connected ground-structure is shown in Figure 5.5(a).

An initial layout optimization using formulation Eq. (5.1) is then carried out, assuming

at this stage that the optimal structure will take the form of a pin-jointed truss, as
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shown in Figure 5.5(b). This step is computationally efficient to perform and provides

an ideal layout for the minimum material condition. Using the coefficient matrices,

the frequency is then calculated assuming rigid frame conditions (f1). At this point, a

decision may be made concerning the frame frequency. If the value is acceptable for the

given design problem, the optimization procedure can be ended at this point; however,

if the frequency is below the minimum required for a frame structure, the optimization

procedure can be progressed to the next step, involving the use of a frequency solver.

For the 10-bar frame currently under consideration, it is assumed that the designer

is looking to identify a structure with an increased minimum frequency, and therefore

progresses to the next step. It should be noted that some of the elements fall below the

threshold cross-sectional area (1 × 10−6mm2) and are excluded from the visualisations.

However, their contribution to the frequency, although small, is still included in the

calculations.

Figure 5.6: Layout optimization step of the iterative solution procedure.
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5.3.3.3 Frequency solver

The second step of the proposed procedure is application of the frequency solver, com-

prising the operations shown in Figure 5.7. Here a minimum volume solution satisfying

stress and frequency constraints is sought. The problem variables are the cross-sectional

areas of each element in the ground-structure, which are used as multipliers on the

element stiffness K̄i and mass M̄i coefficient matrices, that in turn contribute to the

global K and M matrices respectively. The domain, ground-structure, and coefficient

information used in the layout optimization step are reused. A value of the minimum

acceptable frequency, fmin, is also input at this point. In the case of the 10-bar structure

considered here, the desired minimum frequencies have been set as: 100Hz, 150Hz, and

200Hz.

The SDP problem is solved using formulation Eq. (5.2), though now using global matri-

ces K and M that include frame rather than truss terms. Once completed, the calculated

areas are used to verify the frequency, ensuring that it meets the criteria f1 ≥ fmin. A

decision can then be made on the volume of the structure compared with the reference

volume obtained from the initial layout optimization step, Vref , and the quality of the

structural form, e.g. that shown in Figure 5.10(d). If there is a large difference be-

tween the optimized and reference volume values, then the predefined value selected for

the height of the cross-section (H) may not be appropriate, or there may exist another

cross-section shape that would yield a lower volume.

Tables 5.2 and 5.3 show cross-sectional area values, a, and second moments of area, i,

respectively for the members present in this example. It is evident that the areas of the

elements change as the frequency target is increased. As a result of the areas changing,

some elements that previously had areas below the threshold (1 × 10−6mm2) have now

increased so as to influence the frequency of the structure. The SDP optimizations

targeting 100Hz and 150Hz have achieved the objective with a modest increase in volume;

however when targeting 200Hz, the volume more than doubles, indicating there may be

an alternative solution available through further refinement.

5.3.3.4 Solution refinement

The third and final step of the proposed procedure is solution refinement, comprising

the operations shown in Figure 5.8. In this step, an assessment is undertaken of how

the height, H, of the elements affects the resulting volume. New heights can be input

into the solver, either as a single value or as a range of heights to run iteratively. The

coefficient matrices for stiffness K̄i and mass M̄i are recalculated with the new values
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Figure 5.7: Frequency solver step of the iterative solution procedure.

Table 5.2: 10 bar frame example: LP and frequency optimization results, targeting
frequencies of 100Hz, 150Hz, and 200Hz (see also Figure 5.5). An additional result is
included for the 200Hz case following refinement of the solution. The resulting volumes
are quoted in mm3 and the area of each bar quoted in mm2; the ‘—’ entry is used where

the element area is less than 1 × 10−6mm2.

f1 V a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

LP 2909 7.273 — 5.143 3.636 — — 5.143 — 3.636 —

100Hz 2911 7.252 0.029 5.114 3.657 0.020 — 5.143 — 3.636 —

150Hz 3040 5.963 1.852 3.291 4.946 — 1.309 3.291 1.852 2.327 1.309

200Hz 5922 9.075 5.196 5.194 9.176 7.341 3.611 2.516 2.627 3.588 4.462

Following refinement:

200Hz 3097 5.440 2.591 2.551 5.469 — 1.832 2.551 2.591 1.804 1.882

Table 5.3: 10 bar frame example: Corresponding second moment of area values for
the results presented in Table 5.2. Values are quoted in mm4.

f1 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

LP 27.272 - 19.284 13.636 - - 19.284 - 19.284 -

100Hz 27.196 0.1083 19.176 13.712 0.0765 - 19.284 - 13.636 -

150Hz 22.362 6.9435 12.341 18.546 - 4.9097 12.341 6.9435 8.7265 4.9097

200Hz 34.032 19.485 19.476 34.411 27.527 13.539 9.435 9.8497 13.454 16.731

Following refinement:

200Hz 49.258 23.464 23.098 49.516 - 16.591 23.098 23.464 16.333 17.044
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for element height prior to the SDP problem being re-submitted to the frequency solver.

The results will be a range of optimized structures with varying volumes, which can be

expressed as a ratio of Vref . The designer is then free to choose which structure and

volume is suitable.

It should be noted that if multiple element heights are specified, since an SDP solver

run is required for each one, the time required to complete all runs can be considerable,

particularly if a nodally-dense domain is being used. In the iterative case of the structure

shown in Figure 5.5(e) to determine if a lower volume was available, increasing the height

in 0.1mm increments identified that increasing the beam height to 7.3mm was sufficient

to bring the volume of the structure down to V = 3097 mm3, an increase of 6.4% from

Vref , whilst maintaining the target of 200Hz. The resulting structure resembles that

shown in Figure 5.5(d); modified areas are shown in Table 5.2.

Figure 5.8: Solution refinement step of the iterative solution procedure.

5.4 Numerical examples

Now that details of the proposed iterative solution procedure for frame layout optimiza-

tion have been outlined, it will now be applied to a series of more demanding numer-

ical examples. All numerical examples were run on a 64bit Windows 11 desktop PC

equipped with an Intel i5 3.7GHz processor and 32Gb RAM, using scripts programmed
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in MATLAB 2022a and solved using the MOSEK ApS (2022) v10 solver. Unless other-

wise stated, all examples use 6061-T6 Aluminium with the following assumed material

properties: E = 64 × 109N m−2; ρ = 2711kg m−3; and limiting tensile and compressive

stresses σ = 275MPa.

5.4.1 Simply-supported cantilever

Figure 5.9(a) shows details of the problem definition for a classical simply-supported

cantilever with a single point load, P = 1 × 103N. An initial design for the structure

is performed using the basic truss layout optimization formulation, Eq. (5.1), providing

reference values of the volume, V , and truss and frame structure frequencies, fT and

fF respectively, see Figure 5.9(b). In this case, a rectangular cross-section has been

selected for elements, adopting a fixed height, H, for every element in the domain;

here H = 3mm has been selected. This problem has been defined with a relatively

sparse nodal density comprising 15 nodes and 74 potential connections. Note that in

the interests of simplicity, the stress limits computed in the frequency optimization are

calculated assuming purely axial transmission of forces through elements, corresponding

to the plastic design case.

x

y

P

100

50

(a) (b) V = 3136mm3, fT = 681Hz, fF = 393Hz

Figure 5.9: Simply supported cantilever: (a) problem definition - design domain,
loading, and support details; (b) solution from reference LP optimization. All dimen-

sions are in mm.

5.4.1.1 Optimize frame frequency whilst maintaining section depth

The problem is now optimized with the semidefinite constraint on frequency Eq. (5.2)

to obtain new member areas, satisfying the need for a frame structure to have a defined

minimum frequency.

Figure 5.10 shows the resulting structures obtained when running the SDP solver with

targets of 400Hz, 450Hz, 500Hz, and 600Hz; each was solved in less than 1 second of CPU

time. Whilst the overall layout of the majority of the member elements has not changed,
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(a) V = 3136mm3, fF = 412Hz (b) V = 3138mm3, fF = 450Hz

(c) V = 3207mm3, fF = 500Hz (d) V = 3793mm3, fF = 600Hz

Figure 5.10: Simply supported cantilever - results obtained for target first natural
frequencies of: (a) 400Hz; (b) 450Hz, (c) 500Hz; and (d) 600Hz. Note that the number
and layout of members with an area greater than the filter has changed with the fre-

quency target.

there are some members which have been increased in area to meet the frequency targets

and which now form part of the final structure. Whilst there is no volume increase to

meet the frequency target of 400Hz in Figure 5.10(a), when the target frequency is

further increased, so does the resulting structural volume. The increase in volume is

relatively small for the 450Hz and 500Hz cases, being ≤1% and 2.2% respectively, but

when targeting 600Hz the volume increases by 21% and, as may be seen from Figure

5.10(d), the quality of the overall structure appears to deteriorate.

This sharp increase in volume and apparent deterioration in form may be attributed to

the selected height of the beam no longer being sufficient to provide a structure that has

the correct frequency capability. In this instance, an improved result may be obtained

using a beam with a modified value of h.

5.4.1.2 Refinement by modifying section depth

A further iterative optimization of the structure targeting 600Hz is now conducted, with

the height of the beams modified at each iteration; in this case the problem is solved with

the same optimization algorithm as employed in the previous step. The results shown

in Figure 5.11 indicate that by increasing the height of the beams, the overall volume of

the structure reduces, though this improvement is bounded by a minimum feasible beam

width. Additional points have been plotted on Figure 5.11 to show the total volume
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of material required if the beam width is prevented from dropping below the feasible

minimum width; in such cases the beam widths are increased to the minimum width

as a post-processing step. In a number of cases this penalization increases the volume

considerably; however it can be seen that there are three instances where the points

closely align with the original curve, at beam heights of 4.2mm, 7.5mm, and 9.3mm;

the lowest volume of 3355 mm2 corresponds to a beam height of 9.3mm. Whether

this increase in height can be accommodated in practice will depend on the specific

application involved.
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Figure 5.11: Simply supported cantilever example: solid line shows the effect of
increasing beam height h has on the volume of the optimized structure. The volumes
of structures where the widths of all elements have been increased to bmin = 0.8mm as
a post-processing step are also shown as discrete points. (Target frequency = 600Hz.)

It may also be the case that the initial ground-structure does not contain enough po-

tential connections to solve the frequency problem with a lower volume; addition of

more potential connections in a computationally-efficient manner would therefore be

advantageous.

5.4.1.3 Increasing nodal density

Considering a target frequency target of 500Hz, the number of nodes in the domain is

now increased to assess the influence of this on the results obtained, see Figure 5.12.

Each of the results has the same constraint on the height of the rectangular cross-section

employed, and all structures successfully attain the target frequency.

It is clear as the nodal density is increased, reasonably significant reductions in overall

structural volume can be obtained. This, however, comes at the cost of computational
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time; the structure shown in Figure 5.12(c) has a 7% lower volume than the structure

shown in Figure 5.12(a), but took 54 times as long to solve.

(a) V = 3207mm3 (b) V = 3012mm3 (c) V = 2976mm3

Figure 5.12: Simply supported cantilever - effects of increasing nodal density: (a)
15 nodes and 74 potential connections, solved in 0.3 seconds; (b) 45 nodes and 632
potential connections, solved in 85 seconds; and (c) 91 nodes and 2542 potential con-
nections, solved in 4634 seconds. A further example with 153 nodes and 7180 potential
connections exceeded the 32Gb of available memory on the PC. (Target frequency =

500Hz.)

5.4.2 L-shaped bracket

Figure 5.13(a) shows details of the problem definition for an L-shaped bracket with a

single point load, P = 1 × 103N. This problem is discretized using 27 nodes and 188

potential connections. Once again, an initial design for the structure is performed using

the basic truss layout optimization formulation, Eq. (5.1), providing reference values

of the volume, V , and truss and frame structure frequencies, fT and fF respectively,

see Figure 5.13(b). A rectangular cross-section has been selected with a fixed height

h = 2.5 mm for every element in the domain.

Figures 5.13(c) - 5.13(f) show the resulting structures obtained when running the SDP

solver with targets of 50Hz, 70Hz, 90Hz and 100Hz; each was solved in less than 6

seconds of CPU time. Again, the figure shows that there is little change to members

that are providing the bulk of the strength, whilst additional connections have been

included to augment the structure to satisfy changes in frequency requirements. The

change in volume is much reduced for this example, the largest being an increase of ≤1%

from the baseline value. This may be attributed to the greater design freedom available

in this domain compared with the previous example. Because of this, and because there

is no appreciable deterioration in the quality of the solutions, there is no need to perform

a further optimization with variable cross-section heights.

Optimal designs of this nature may be taken forwards into manufacture, with the meth-

ods that can be utilized varying depending upon the complexity of the result. Figure

5.14 shows what the optimal result for the L-shaped bracket targeting a minimum fre-

quency 50Hz might look like if it was cut from a sheet of metal. The height of each beam

may be cut to the set height uniformly, and the width of each member milled to the
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(a) (b) V = 5520mm3, fT = 213Hz, fF = 43Hz

(c) V = 5522mm3, fF = 50Hz (d) V = 5531mm3, fF = 70Hz

(e) V = 5546mm3, fF = 90Hz (f) V = 5555mm3, fF = 100Hz

Figure 5.13: L-shaped bracket: (a) problem definition - design domain, loading, and
support details; (b) LP reference solution; (c) 50Hz solution; (d) 70Hz solution; (e)

90Hz solution; (f) 100Hz solution. All dimensions are in mm.
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necessary dimension on each side. Material at the nodes has been expanded to ensure

that the elements meet each other completely, and radii have been added to smooth out

tight corners and to accurately represent the capability of the cutters.

Figure 5.14: L-shaped bracket: representation of manufactured optimal design tar-
geting 50Hz minimum frequency. Bracket produced from sheet metal following the
beam widths derived from optimal element areas. Note, elements with an area below
1 × 10−6 mm2 are omitted. (Only in-plane vibrations are considered in the analysis of

this representation).

5.5 Discussion

The examples presented to date have primarily involved relatively sparse nodal densities.

To better highlight the computational cost associated with the SDP computations, a fur-

ther study has been conducted on truss domains of increasing nodal densities, containing

between 36 and 7260 nodal connections. For this example, a more powerful machine was

employed; this was a Windows 10 workstation PC equipped with an Intel i9 5GHz pro-

cessor and 64Gb RAM using scripts programmed in MATLAB 2022a and solved using

the MOSEK ApS (2022) v10 solver. In all instances the target frequency for the SDP

solver was set to 450Hz. The results obtained, shown in Figure 5.15 and Table 5.4, con-

firm that reduced volume structures can be identified if the nodal density is increased,

but that this comes at significant cost in terms of CPU time; memory consumption was

also observed to increase rapidly. The volume reductions achievable diminish as nodal

density is increased, indicating that there is a point at which in practice it no longer

makes sense to keep adding more nodes. Figure 5.15(j) shows a plot of CPU time against

the number of potential connections when using both a full ground-structure, and when

using an adaptive ‘member-adding’ truss algorithm; in both cases SDP frequency con-

straints are present. Clearly there is a significant advantage in utilising ‘member-adding’

to treat cases where a problem must be solved with an SDP constraint.
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Further rationalisation of the geometry obtained from the solver would offer the ability

to reduce complexity, and address issues with intersecting members. For planar truss

optimization, members that intersect away from a node are likely to have little effect on

the overall strength of the structure. However when frequency constraints are involved,

intersections change the allocation of mass and stiffness contributions in the correspond-

ing matrices, so that performing a post-processing step that adds in new nodes prior to

performing a new optimization should be considered.

Table 5.4: Nodal refinement study: problem definition (left) and results (right) for
SDP optimization based on fully-connected ground-structures with increasing numbers
of potential connections. CPU costs expressed in seconds. Tabulated results to be read

in conjunction with Figure 5.15.

x

y

Figure
No. of
Nodes

Potential
Cons.

V
(mm3)

CPU Cost
(s)

5.15(a) 9 36 1265 0.020

5.15(b) 16 120 1185 0.139

5.15(c) 25 300 1151 0.727

5.15(d) 36 630 1145 5.618

5.15(e) 49 1176 1143 27.66

5.15(f) 64 2016 1143 115

5.15(g) 81 3240 1142 543

5.15(h) 100 4950 1139 1896

5.15(i) 121 7260 1139 71236

5.6 Conclusions

An iterative solution procedure designed to tackle frame layout optimization problems

involving constraints on stress and minimum natural frequency has been developed and

demonstrated. The three-step procedure uses semidefinite programming (SDP) to im-

pose frequency constraints when seeking minimum volume frame structures. The results

obtained have been found to be repeatable and applicable to a range of frequency targets,

for a range of nodal densities. Key conclusions are as follows:

a) Examples have been used to demonstrate that a minimum volume frame struc-

ture with a specified minimum frequency constraint can be obtained using the

ground-structure based layout optimization approach employed, using a modern

SDP solver to obtain solutions.

b) In the proposed procedure, the second moment of areas I of the beam elements

employed are linearized with respect to cross-sectional area by fixing the heights

(H,h) of these elements, with the element widths (B, b) allowed to vary.
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(a) V = 1265mm3 (b) V = 1185mm3 (c) V = 1151mm3

(d) V = 1145mm3 (e) V = 1143mm3 (f) V = 1143mm3

(g) V = 1142mm3 (h) V = 1139mm3 (i) V = 1139mm3
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Figure 5.15: Nodal refinement study: (a)-(i) optimal structural layouts for domains
containing increasing numbers of nodes and potential connections, as detailed in Table
5.4; (j) CPU cost for each domain, for optimizations conducted using fully-connected

ground-structure (squares), and adaptive ‘member-adding’ methods (triangles).
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c) To obtain improved solutions, the values of H,h can then be modified, with the

problem then solved again using the SDP solver, as part of an iterative solution

procedure. For the example described in Section 5.4.1 of this contribution, the

overall volume of the structure was reduced from 20% to 9% above the reference

value using this method, in this case employing a single value of H,h for all ele-

ments. However, the computations involved as part of this iterative procedure will

be time-consuming for problems containing large numbers of nodes and potential

connections, and therefore may not be practicable in all scenarios.

In future it would be significant to implement the adaptive ‘member-adding’ algorithm

to reduce computational time and memory footprint. This is likely to be especially

important should the proposed procedure be applied to 3D frames, which generally

contain considerably more ground-structure connections than their 2D counterparts.

Similarly, when the iterative solution procedure is adopted, the use of the ‘member-

adding’ algorithm becomes particularly attractive due to the computational expense

involved. The iterative solution procedure can also be enhanced by using a different H

value for each element.



Chapter 6

Discussion and potential

applications

The research objective of this thesis has been to determine whether automated optimiza-

tion techniques such as layout optimization and topology optimization are suitable for

use on representative aerospace case study components. Furthermore, it endeavoured to

discover if layout optimization can be augmented to include constraints on natural fre-

quency in order to generate optimized components for aerospace applications in efficient

timescales. This scope included applying the frequency constraints to both truss and

frame structures to faithfully model real-world production of the optimized geometry.

Following a review of current research in the field to date (Chapters 1 and 2), Chapter

3 compared the use of layout optimization and topology optimization for the generation

of designs for aerospace components. It was successfully proven that while both offer

the ability to reduce the mass of components, and consequently the CO2 emissions

arising from fuel burn, layout optimization has the capability to provide greater weight

reduction opportunities. Layout optimization of truss and frame structures has proven

to be a powerful tool for identifying the most efficient use of material leading to minimum

weight structures. Chapter 4 extended the use of layout optimization to target design

problems with specific constraints on natural frequencies, creating and testing the use of

a bespoke tool for computationally efficient analysis. This innovative tool was applied

to a number of design problems that were solved in an efficient manner due to the

use of a member-adding algorithm in the iterative process. This chapter went on to

investigate the implementation of the member-adding algorithm into the frequency SDP

solver, and compared the results with those achieved by Gilbert and Tyas (2003), with

correlation in terms of volume achieved to within 1%. Chapter 5 took this work further

and applied the SDP constraint on frequency to frames, a continuum structure more akin

126
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to products made by AM. A second new tool which is capable of optimizing a frame

structure with a frequency constraint based on a fully-connected ground-structure was

successfully developed and demonstrated on a number of examples. Along with these

successes, a number of challenges were also encountered through this research and are

discussed further in this chapter to aid future work in this field.

6.1 Application of generative design in aerospace

Both the topology and layout optimization techniques discussed in this thesis fall into the

category of generative design. Generative design may be considered to be any computer-

aided semi-autonomous design exploration process that generates a set of component

design solutions that meet a given set of constraints and parameters (such as materials,

size, weight, strength, manufacturing methods and cost). This is in contrast to tra-

ditional design, which may begin with a model based on a previous component or an

engineer’s knowledge. Conventional parametric design and optimization provides a valu-

able approach to explore a problem, but the potential solutions are constrained by the

topology, which is in turn defined by the parametrisation. Significant design decision-

making, engineering judgment, and modelling effort are required by the designer to build

the parametric model. Generative design eliminates parametric restrictions and enables

the topological freedom that can generate more radical design solutions that the designer

may not have considered.

Chapter 3 looked at two example aerospace components optimized using generative

design tools and concluded that both offered advantages when it came to optimizing a

component for a specific set of objectives and constraints. However, it was shown that

truss layout optimization holds an advantage over topology optimization in translation of

the part from the analysis tool to traditional CAD for post-processing and manufacture.

6.1.1 Topology optimization

Topology optimization is recommended as a key enabler for high-performing, multi-

functional and lightweight components; the technology is capable of novel design so-

lutions that a designer may not be able to configure manually. These algorithms can

generate complex and/or freeform design solutions that unleash the potential of addi-

tive manufacturing. Whilst it remains true that topology optimization has been used in

aerospace on a few select examples, it has not yet been fully exploited as the efficient

concept design tool it claims to be and is therefore not in regular use. Similarly, AM

has not yet achieved its full potential, and where it has been used, in aerospace, more



Chapter 6. Discussion & potential applications 128

traditional design techniques have been employed. For topology optimization and AM

to reach their full potential they must be developed and paired to fully unlock the advan-

tages that each can offer. Through the research conducted during in preparation of this

thesis several factors were identified which may account for the delay in exploitation.

It was observed in Chapter 3 that there are some difficulties when it comes to translating

the optimized design into a manufacturable CAD model. The effort to translate the

mesh, which is often the result of generative design, into a continuum structure can be

quite time consuming, see Figure 3.10, and is open to interpretation if not governed by

a fixed set of rules and procedures. For application to aerospace this time would need

to be significantly reduced to enable rapid iterations to be produced at each stage of

the design spiral, Figure 1.2, whilst new topology optimization algorithms and software

are addressing this shortfall, there is significant effort required to prove confidence in

the results for certified components. Additionally, the material added to the optimized

mesh for smoothing or to satisfy manufacturing constraints may add further weight to

the final part (Gu, 2013) driving the need for further iterations to meet the component

requirements.

One additional aspect which was out of scope for Chapter 3 concerns the processes which

follow on from the AM build of the optimized component. When a more organic or

freeform geometry is produced, it becomes far more complex to inspect to a point where

traditional CMM inspection is impossible through the sheer complexity in geometry or

as-built areas having poorer surface finish. This directs the manufacturer towards more

expensive 3D scanning technologies to validate their production, as a consequence there

are limits on the supply chain blocking the routine production of topology optimized

AM components.

Finally, it should be noted that design, analysis, and manufacturing are traditionally

separate engineering functions, with their own specialisms and associated expertise. A

generative design approach requires the analyst to be conversant in all of these disciplines

for the best outcomes. Whilst growing, there is limited availability of these multi-skilled

engineers. It is hoped that this study, along with associated further work, will help to

grow this field and its interdisciplinary engineering knowledge base.

6.1.2 Opportunities for layout optimization

Beyond optimization of truss structures, layout optimization has further potential ap-

plications in aerospace that may be enabled by AM or traditional machining techniques.

Consider the structure shown in Figure 6.1(a): an isogrid is a partially hollowed-out

structure usually formed from a single metal sheet that is machined to reveal pockets
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and stiffening ribs; typically an isogrid will comprise a repeating pattern of triangles or

other forms. They provide structural stiffness for a component, allowing the remainder

of the plate to be relatively thin compared to the stiffening ribs. The use of layout

optimization techniques offers the ability to define bespoke patterns of stiffeners onto

the skin of the component in order to react load(s) or pressures put upon the structure.

Such a structure could be machined from a thick metal plate, applied additively to the

surface of the skin by blown powder or wire deposition AM, or could be produced in a

single piece through casting or hot isostatic pressure powder forming.

There is a concern that least-weight truss or frame structures in an aerospace application

may get damaged through handling or in service Foreign Object Damage (FOD) events.

Damage tolerance is a critical factor in the design of parts for aerospace applications, and

often goes hand in hand with the theories of robust design. By their very definition, an

optimized truss/frame structure offers the least-weight solution to the specified design

problem, therefore there is typically limited capability in the individual elements to offer

a reserve factor to account for damage without increasing their size. An alternative would

be to utilize layout optimization to define frame structures which could be used on the

inside of components, hollowing out the bulk of the material and offering strength and

support, Figure 6.1(b). A similar approach is used in a number of AM design packages,

using the complexity that the manufacturing process affords to replace solid material

with lattices, reducing the mass of components. A number of lattices are applied in

design packages as unit cells, reducing the density of material in specific regions to offer

a weight reduction whilst maintaining an element of virtual strain (similar to topology

optimization). Layout optimization has the advantage that solutions can be generated

efficiently, in short timescales and can be tailored to suit constraints on frequency as

discussed in Chapters 4 and 5, or buckling as described by Weldeyesus et al. (2020).

(a) (b)

Figure 6.1: Opportunities for layout optimization in aerospace: (a) a traditionally
designed geometric isogrid with each pocket defined identically; and (b) typical hollow-
ing of an AM part using standard lattice forms. Each could be optimized further with

layout optimization.
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6.2 Methods for geometry rationalisation of truss and frame

structures

A number of results have been obtained through layout optimization formulations for a

variety of truss and frame structures, and these have been proven to be acceptable out-

comes based upon the defined input parameters. It was found there are some instances

where these structures require further refinement prior to being suitable for further

analysis, e.g. frequency analysis, verification by FEA, or for manufacturing preparation.

In the studies described in Chapters 4 and 5, a number of issues associated with ill-

conditioned stiffness matrices were experienced. The stiffness matrix in global coordi-

nates, K, is assembled from the stiffness matrix of each element in local coordinates, ki,

multiplied by the transformation matrix, T :

K =
m∑

i=1

Ki (6.1)

where Ki = TT
i kiTi. Considering an element with non-zero stiffness connecting Degree

of Freedom (DoF) i with DoF j (for a 1 DoF system), then kii, kjj , and kij = kji are

all non-zero, consequently K is a symmetric matrix with few non-zero entries per row.

The stiffness matrix K can, however, become ill-conditioned when its columns are nearly

linearly dependent for the following reasons:

1. The structure has one or more pairs or tuples of DoFs that do not have sufficient

connectivity with the rest of the structure, or

2. Certain DoFs have stiffnesses disproportionate with the rest of the structure.

It is possible for reason 1 to occur when elements do not have sufficient connectivity,

e.g. where there is no restraint on rotation at a node, creating a mechanism and leading

to a singular matrix. Reason 2 may occur due to a badly scaled matrix resulting from

collinear members being split in one or more locations along their length. In order to

avoid ill-conditioned matrices it is necessary to treat the structure; rectifying the error

can be a case of fixing the unconstrained DoF, for example achieved by rationalising the

structure to reduce its complexity.

The following sections discuss the rationalisation that is required in such cases and how

this may be achieved.
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6.2.1 Reducing the number of elements

When applied to layout optimization, the addition of member-adding has been proven

to provide an improvement in computational efficiency for solving large problems. How-

ever, as the size of the problem increases, the complexity of the result also increases,

often leading to a large number of crossing members. These crossing members can make

the optimized structure impossible to manufacture, so He and Gilbert (2015) proposed

an additional step to reduce the complexity of the structure through a post-optimization

geometry rationalisation step. To achieve this, the nodes connecting the resulting mem-

bers are reviewed and those adjacent to one another within a certain radius are combined,

additionally amalgamating the members into fewer bars. Further optimization allows

the positions of the nodes to be shifted, Figure 6.2.

A non-linear, non-convex algorithm is employed to achieve this and, as this stage of

the processes is applied to a sub-set of the original ground-structure, the computational

burden is minimal. This form of geometry optimization has been shown to improve

upon the original results for the layout optimization (He and Gilbert, 2015; He et al.,

2019a). It is therefore possible to generate a structure using layout optimization and

geometry rationalisation, with minimal additional computational cost, which may then

be suitable for manufacture.

Application of this strategy to frames and truss structures, such as those obtained in

Chapters 4 and 5, would result in geometric forms with fewer members. This reduction

in complexity not only makes translation of the structure to a CAD environment easier,

but also paves the way for the components to be manufactured via both traditional or

additive manufacturing technologies.

(a) V = 65.665 (b) V = 65.300

Figure 6.2: Geometry rationalisation for truss and frame structures: (a) Hemp can-
tilever optimized using layout optimization; and (b) the same problem following geom-
etry rationalisation. Note that the volume, V , of the rationalized version has reduced
compared with the original result. Produced using the LayOpt web app available at

http://www.layopt.com and detailed in Fairclough et al. (2021).

http://www.layopt.com
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6.2.2 Collinear and intersecting elements

Though rigorous, the ground-structure approach to frequency layout optimization has

a tendency to lead to complex solutions, potentially containing many thousands of ele-

ments.

Collinear elements, those which have the same cross-sectional area but are not con-

nected to any other elements but each other, should be consolidated into a single el-

ement. Though they do not directly impact on the result of the structural analysis,

they introduce additional degrees of freedom into the mass and stiffness matrices used

for frequency assessment. Consolidating collinear elements into single elements removes

these additional terms and thus reduces the computational burden and potential for

numerical instability.

Once all the collinear elements have been found and combined, any elements that in-

tersect away from a pre-existing node should then be identified. Intersection of ele-

ments is acceptable when it occurs at a pre-existing node; however the nature of the

ground-structure method, which involves connecting each node to every other node, will

invariably lead to intersections that occur away from nodes. For planar truss problems

this has very little effect on the resulting strength of the structure, but for frequency

analysis it fundamentally changes the allocation of mass and stiffness contributions in

the corresponding matrices and may also lead to numerical instabilities.

To address these arising geometric issues in the structure following layout optimiza-

tion, such as the one shown in Figure 6.3(a), the following procedure could usefully be

completed as a post-processing stage:

a) The elements that are above the threshold for area, the ‘members’ of the solu-

tion, should be isolated from the redundant ground-structure. This will reduce

the computational burden on the following steps and also begin to provide a struc-

ture suitable for manufacture, Figure 6.3(b). If calculation of the frequency of

the structure is required, the member nodes and elements should be renumbered

consecutively starting from the Cartesian coordinate origin. This ensures that

the stiffness and mass matrices are as small as possible, reducing the memory

requirements for the problem.

b) Elements that are collinear and have the same cross-sectional area should be com-

bined as in reality they would be produced as a single element, Figure 6.3(c).

Additionally, similar to point 1, this operation reduces the size of the mass and

stiffness matrices by removing unnecessary degrees of freedom.
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c) Any elements that intersect away from an existing node should be identified, a new

node added at the intersection, and the existing elements split to meet at the new

node, Figure 6.3(d). This more accurately represents the form of the structure in

the mass and stiffness matrices.

d) Reducing the number of elements, combining collinear elements, and adding nodes

at intersections will impact on the geometric form of the structure and the contri-

butions to the mass and stiffness matrices. This refined structure should then be

re-submitted to the solver to ensure that it still meets the objective(s) with the

geometrical changes.

P

(a)

A

B

C

D
P

(b)

E

F

G

P

(c)

E

F

G

H

I

J

K

P

(d)

Figure 6.3: Rationalisation of a solution generated via layout optimization: (a) the
results of the layout optimization, elements in red are below the cross-section area
threshold; (b) the members of the structure with areas for rationalisation highlighted,
elements A & B, and C & D are collinear, share the same cross-sectional area and may
be combined; (c) collinear elements have been combined to form elements E and F,
however they intersect element F away from existing nodes; (d) new nodes are added at
the intersections of E,G and F,G and the elements are split at these new nodal locations

forming 4 new elements, H, I, J & K, elements E, F & G are shortened accordingly.

It should be noted that simply adding the new nodes to the end of the list will lead to

the contributions from the connected members being in the wrong locations in the mass

and stiffness matrices, causing numerical instabilities. Any new node that is added to
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the list should therefore be inserted at the correct degrees of freedom based on its x and

y coordinates from the origin. When the search is completed, all the nodes should be

numbered consecutively from 1 to n. This ensures that the elemental contributions are

applied to the correct locations in the mass and stiffness matrices, avoiding the risk of

the stiffness matrix being ill-conditioned.

A bespoke MATLAB code to identify intersecting elements, add a new node at the

intersection point, and to split the existing elements is provided in Appendix B.1.

6.3 Element transitions for 3D trusses and frames

In Chapter 3 truss optimization in 3D was performed on two aerospace case studies to

arrive at a fully united solid body suitable for manufacture. Each of these was further

scrutinized by FEA to confirm the suitability of each design and that the maximum

stress in the parts was below the yield stress as per the optimization targets. One of the

outcomes of this study was that the highest stress regions occurred at locations where

key elements met one another, or where they met the non-design rigid bodies in the

model, Figure 6.4. High stresses in locations such as those where there is a transition

between geometries, Figure 6.4, is considered a potential crack initiation site; a small

crack may form due to the stresses and spread rapidly into the surrounding material. It

is therefore imperative that stress concentrations such as these are removed to prevent

product failure.

(a) (b)

Figure 6.4: Transitions between each element and rigid bodies: (a) high stresses
observed at nodal locations; and (b) high stresses between the optimized geometry and

the rigid (non-design) bodies.

Overcoming these high stresses requires manual intervention in the CAD model to

smooth the geometry between the applicable areas. This can be completed in one of

the following ways: 1) by the application of fillets; 2) increasing the diameter of the

elements along the whole length or; 3) increasing the diameter of the elements local to

the concentration, forming a cone. A level of iteration is necessary to increase the size of
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the fillets, reapply the mesh to the part, and rerun the FEA until the high stress levels

are reduced.

It is recommended that for future development of the truss optimization tool, the focus

is on ensuring that the transition between design and non-design geometry is as smooth

as possible, potentially performing FEA as part of the process to generate transitions

between geometries.

6.4 AM build of optimized structures

One of the major challenges for generative design is that the freeform geometries created

by such tools are often not suitably designed for manufacture or inspection. Though AM

offers considerable design freedom, there are still manufacturing considerations, such as

overhang angles, that must be met to ensure parts can be manufactured successfully.

Awareness of these considerations at the design stage reduces the risk of issues arising

during manufacturing and eases inspection demands. When twinned with AM, ‘process-

aware’ generative design can deliver high-performance, low-weight, novel solutions also

capable of reducing the manufacturing cost for complex components reducing: part

count, assembly costs, tooling costs, and machining operations. It is very important to

note, however, that generative design is not limited exclusively to AM applications and

the freeform designs can be realized through casting.

To highlight the importance of process awareness, the two case studies conducted in

Chapter 3 have subsequently undergone preparation for production via AM. For each

case, both the truss and topologically optimized structures have been imported into

Materialise Magics to obtain the most appropriate orientation of the part in the build

chamber, and supports have been applied to overhanging features. EOSPrint, the soft-

ware which accompanies the AM hardware, has been used to obtain estimates for build

time and cost. The parts in their as-built state are shown in Figure 6.5; material utili-

sation, costs and build times are presented in Table 6.1.

These results in Table 6.1 are indicative of components that, through the respective

optimization routines, are reasonably well suited to the AM build process. There are

still opportunities to improve upon the designs by ensuring that more of each component

is self-supporting, i.e. no additional material is required to hold the elements in place

during the build. This would reduce the buy-to-fly ratio for the components. It is clear

that the components produced by truss optimization have lower ratios for buy-to-fly and

as a consequence lower costs, demonstrating that truss optimization should be pursued

further in aerospace engineering, though with an increased focus on manufacturability.
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(a) (b)

(c) (d)

Figure 6.5: AM build preparation for aerospace case studies: (a) the topology op-
timized gear box bracket; (b) the truss optimized gear box bracket; (c) the topology
optimized inlet mounting; and (d) the truss optimized inlet mounting. Each has been
prepared for AM build with Materialise Magics and EOSPrint for the EOS M290 plat-
form, the gear box bracket is produced from Ti-6Al-4V and the inlet mounting is

Inco718.

Table 6.1: AM build preparation for aerospace case studies: numerical metrics con-
cerning the efficiency of the case study results for AM build. Note that costs are for

the material and build of the part and do not include heat treatments.

Topology Truss

Gear Box
Bracket

Inlet
Mounting

Gear Box
Bracket

Inlet
Mounting

Part Volume (mm3) 124369 67450 104734 60117

Support Volume (mm3) 6692 5619 3292 2980

Buy-to-Fly Ratio 1.11:1 1.14:1 1.08:1 1.10:1

Build Time (hrs) 50.2 60.5 42.7 38.5

Cost (£) 950 1293 831 947
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6.5 An outline for a frame structure with frequency toolkit

Whilst the method for optimization presented in Chapter 5 can be used to yield results

for a frame with constraints on eigenfrequency, there are still a number of assumptions,

such as the linearisation of I, and some manual intervention required in refining the

process to arrive at a satisfactory result. To remedy this, a more numerically-pure

method is here proposed based upon a number of existing, but not currently connected,

tools.

In order to cope with larger scale problems, solving those with more nodes and potential

connections in a computationally efficient manner, it is proposed that the formulae

for the treatment of frame structures with semidefinite constraints on eigenvalues be

combined with a bespoke SDP solver. This brings together a number of capabilities

which can be employed in the optimization of frame structures with constraints on

specific natural frequencies, or where other non-linear constraints may be required. A

proposed algorithm encompassing this is presented in Figure 6.6.

Figure 6.6: Proposed algorithm for an SDP frame tool: the ‘building blocks’ of the
tool that should be used in its construction are at the top, the major processes the
tool should be able to carry out are within the shaded box, and will run sequentially.
The outputs from the toolkit are at the bottom and would be performed in existing

commercial packages.
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6.5.1 Further linearisation of I for frame analysis

Kanno and Ohsaki (2007) proposed a methodology to separate the terms of the stiffness

matrix, isolating the contributions from truss and beam elements. As per Section 5.3.1,

and Euler-Bernoulli beam theory, we express the stiffness matrix contribution to the

SDP constraint:

K(a) − λ(M(a) + M0) ≽ 0, (6.2)

as:

K =
m∑

i=1

Ktruss
i ai +

m∑

i=1

Kbeam
i Ii (6.3)

where Ktruss
i and Kbeam

i are constant and positive semidefinite matrices, and ai and Ii

are variables dependent on one another. The contribution of the mass matrix remains

unchanged and is still directly linear with the design variable a:

M =
m∑

i=1

Miai (6.4)

where Mi(i = 1, 2, . . . ,m) is constant and a positive semidefinite matrix. Use of Eq.

(6.3) in the semidefinite eigenvalue constraint is dependent upon the geometric cross-

section of the beams, and the way in which the design variable a is used in the opti-

mization. When considering applicability to engineering components, two cross-sections

that may be produced by additive manufacturing are detailed below:

Solid circular beams

For a frame structure consisting of beams with solid circular cross-sections of radius

ri, both area and second moment of inertia can be expressed as:

ai = πr2i , Ii =
πr4i
4

(6.5)

Using Eqs. (6.2) - (6.5), the SDP formulation for bars with a circular cross-section may

be defined as:
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m∑

i=1

(A
(2)
i a2i + A

(1)
i ai) − ω(

m∑

i=1

B
(1)
i ai + M0) ≽ 0 (6.6)

where A
(2)
i = 1

4πK
beam
i , A

(1)
i = Ktruss

i , B
(1)
i = Mi. M0 is the mass matrix for

non-structural mass, for the purposes of this thesis it has been considered to be zero,

the inclusion of non-structural mass will, however, more accurately model the behaviour

of the structure.

Rhomboid cross-section with equal width and height

A rhomboid cross-section where width (bi) and height (hi) are equal is treated in a

similar manner to the circular solid beams with area (ai) and second moment on inertia

defined:

ai =
bihi

2
, Ii =

bih
3
i

48
=

a2i
12

(6.7)

and incorporated into Eq. (6.6) in the same manner, keeping all terms the same with

the exception of A
(2)
i which is now expressed as A

(2)
i = 1

12K
beam
i .

Rectangular cross-section with fixed width

In contrast to the scenarios presented in Chapter 5, Kanno and Ohsaki (2007) sug-

gest that the width bi of the beam should be fixed and the optimization design variable

be changed to the height hi of the beam instead of the area ai. They proposed the

following equations contributing to the semidefinite constraint:

ai = bihi, Ii =
bih

3
i

12
(6.8)

m∑

i=1

(A
(3)
i h3i + A

(4)
i hi) − ω(

m∑

i=1

B
(2)
i hi + M0) ≽ 0 (6.9)

where A
(3)
i = bi

12K
beam
i , A

(4)
i = biK

truss
i , B

(2)
i = biMi.

While this method still requires some forethought on the width to use, there is reduced

potential for malformed beams as a minimum value can be applied for hi in the op-

timization algorithm. From a practical stance the width may be determined by the
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availability of sheet metal, and the minimum height derived according to the capability

of the process involved to cut the form of the structure.

6.5.2 SDP frame solver

The SDP calculations put forward by Kanno and Ohsaki (2007) have been proven to

work on layout-optimized structures with a limited nodal density, comprising 7×7 nodes,

and with a minimally-connected ground-structure. If these formulations are embedded

within the bespoke tool and framework devised by Salt et al. (2022) there is the potential

to utilize the member-adding capability to optimize for minimum volume using greater

nodal densities, with constraints on equilibrium and natural frequency.

The member-adding procedure begins by solving a minimum connectivity ground-structure

problem (such as in Figure 5.1(d)). Once completed, elements are added from a list of

potential connections until a solution that satisfies the original fully-connected ground-

structure problem is obtained. This approach obtains the solution using only a small

fraction of the much greater number of potential connections; see Gilbert and Tyas

(2003) and Weldeyesus et al. (2019) for supporting numerical results. The advantage

of this approach is that there will be reduced computational burden arising from the

quantity of matrix calculations required for a large fully-connected ground-structure. It

may also be possible to obtain solutions with a lower overall volume by considering a

greater number of potential connections overall.

To improve manufacturability of the resulting components, AM process knowledge should

if possible be included as an input to the solver, thereby ensuring that any solution

found by the tool can be produced with the minimum of intervention from the engi-

neer. Such knowledge should include the orientation of the resulting component in the

build, and consequently the allowable overhang for the members, to ensure that zero

or little support material will be required. Such knowledge will assist in the selection

of the appropriate form of the members (e.g. rhombus, rectangle, circular etc). A tool

that is “additive-aware” should consider the effect that build orientation may have upon

material anisotropy (different properties in the xy and z direction) in the optimization

studies. Anisotropy may result in the material being weaker in the z direction than in

the xy plane, this can lead to weakness of the final component if not properly accounted

for in the analysis.

As discussed in Section 6.2.2, to accurately model the structure and avoid numerical

instability, it is important to ensure that a new node is added at locations where members

intersect. It is recommended that rationalisation of the geometry be conducted following

the initial optimization, and then a further verification or optimization performed on
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just those elements with an area above a certain threshold to ensure that all of the initial

constraints are still met.

Finally, it is essential to ensure that any optimized output can be realized in a traditional

CAD package, and then be processed for AM build preparation or further validation

via FEA. A method for translating the results of layout optimization was proposed

by Smith et al. (2016) and incorporated into the LimitState:FORM software package.

This method is suited to circular members; however further study will be required to

understand how this method may apply to more complex forms. Ideally the output from

the tool should be a NURBS (Non-Uniform Rational B-Splines) model so that it can be

easily manipulated, if necessary, in CAD to modify the element-element transitions and

union them with any other geometry as required.



Chapter 7

Conclusions

The objective of this thesis has been to investigate design optimization of aerospace

components via layout optimization, with specific emphasis on optimization scenarios

involving frequency constraints. Elements of the work have gone on to look at how

these optimized components may be produced via additive manufacturing. The major

achievements from this research are as follows:

a) The research conducted and reported in this thesis has demonstrated that nu-

merical optimization techniques can be successfully applied to complex aerospace

problems with the goal of reducing both mass and CO2 emissions. Truss opti-

mization was successfully shown to achieve these targets with structural loading

in efficient timescales.

b) Layout optimization can be effectively augmented with frequency constraints to

drive the resulting structure to have a natural frequency equal to or greater than

a pre-determined minimum. Research conducted in the preparation of this thesis

has further developed this theory and combined it with member-adding to solve

non-linear frequency problems in efficient timescales.

c) A method has been proposed to further develop frequency layout optimization

and apply it to frame structures which would be fully representative of continuum

structures produced via AM. To achieve this a method is proposed where the

second moment of area may be made linear to area to reduce the computational

burden.

The conclusions already provided in each individual chapter are summarised below:

Chapter 3: A review of generative design methods was conducted, focusing on topology

and truss layout optimization algorithms on 3D aerospace components, with the goal of
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providing weight reductions that are not possible without the use of these automated

tools. Two case studies were addressed: a gear box bracket and an inlet mounting.

Each were optimized and it was found that truss optimization provided the largest

weight reduction (37% for the inlet mounting study, which gives an additional benefit of

saving US$9800 in fuel costs over the service lifetime and reduces CO2 emissions by over

37 000 kg). This offers a huge potential to aerospace, if truss optimization techniques can

be further explored and validated for flight-worth applications. It was also concluded

from this chapter that translation of analysis data from a topology optimized solution

took significantly longer to achieve than for truss layout optimization, by a factor of

almost five times.

Chapter 4: An investigation was conducted into the application of truss layout op-

timization to problems involving constraints on natural frequency. Whilst computa-

tionally efficient, a two phase approach to frequency optimization of pin-jointed truss

structures was found to produce outcomes that were likely sub-optimal, exhibiting re-

sults with greater than expected volumes. With the semidefinite constraint on frequency

included directly into the optimization formulation, more optimal results were achiev-

able on fully-connected ground-structures. This, however, could not be applied to larger

and more nodally-dense domains due to the additional computational burden of the

non-linear frequency constraint. A new bespoke tool was introduced which included a

member-adding algorithm, enabling the optimization to begin with a minimally con-

nected ground-structure and with elements added as required. This approach dramat-

ically reduced the computational burden and elapsed time to achieve a result. It was

proven to modify the first natural frequency of truss structures for a range of 2D and

3D examples, with limited impact upon the overall volume of the structure.

Chapter 5: Further developed the work conducted in Chapter 4 to apply a similar

method for frequency optimization with semidefinite constraints to frame structures.

It was identified that to apply a similar optimization algorithm, where area, a, is the

design variable, the relationship with the second moment of area, I, had to made linear;

techniques for linearising this were presented. A tool was devised which can treat prob-

lems where frequency constraints are applicable to frame structures and demonstrated

initially via a 10 bar ground-structure before applying it to more complex numerical

examples. This tool utilized a fully-connected ground-structure for the basis of the opti-

mization, leading to a high computational burden when using nodally dense domains. It

was demonstrated that similar size problems can be rapidly treated with member-adding.

Chapter 5 concludes by recommending that the tool be developed further to incorpo-

rate member-adding and geometry rationalisation techniques to provide the capability

to design and optimize a part ready for manufacture.
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Chapter 6: Discussed a number of opportunities that remain in the field of layout

optimization in the presence of frequency constraints. The currently available tools

for topology and layout optimization have some, albeit limited, AM process-awareness,

which may lead to cases where a support structure needs to be over-engineered in order

to reliably produce the components. Having process-awareness included so that build

orientation of the component and overhanging angles can be considered as part of the

optimization would be of significant benefit to industry, as well as embedding materials

data to account for anisotropy and spatial variation in density.



Chapter 8

Recommended future work

Areas which may benefit from further work in this field of research are:

a) The benefits of design optimization methods have been demonstrated and dis-

cussed as part of this thesis, looking at both truss and topological methods. One

key finding was that moving the numerical solution to a CAD model for further

processing was not a streamlined process. It is recommended that further attention

be given to methods for transferring a truss or frame structure from the layout

optimization environment to a CAD tool in a manner where it may be altered

parametrically, instead of being simply exported as a body. This will enhance the

workflow by providing geometry that can easily be manipulated, e.g. for FEA

activities or AM build preparation. Greater freedom to manipulate the geometry

would reduce the potential for stress concentrations to arise.

b) It has been proven in this thesis with numerical demonstrations that it is possible

to optimize truss and frame structures with constraints on frequency. It it recom-

mended that further case study examples are considered, with these then produced

physically via AM and subjected to vibrational analysis to better understand the

real-world problem. Further work should then refine the numerical model to repre-

sent the real-world findings, with a ‘digital-twin’ of the physical component being

the objective.

c) The proposed frame structure optimization with frequency constraints procedure

developed has scope for improvement, particularly via inclusion of a member-

adding algorithm to reduce the computational burden associated with the number

of SDP variables involved in large ground-structures. This would enable domains

with a greater number of nodes to be solved in shorter timescales. It would also
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allow for a greater number of iterations to be assessed and provide an allowance

for changes that often occur in the normal course of the design process.

d) The SDP frame solver outlined in Section 6.5 should be developed to provide a more

streamlined workflow for the generation of frame structures with constraints on

frequency. Once combined with a member-adding method, AM process awareness,

geometry rationalisation, and smooth transition to CAD, a complete toolkit for the

automated optimization and design of AM components with frequency constraints

may be realized. This will bring significant benefits to industries such as the

aerospace industry, where automated and reliable tools for optimization may be

employed on components with frequency constraints. Such a tool may not only

provide benefit in terms of engineering efficiency but also help to reduce CO2

emissions and the impact of aviation on climate change, something that is a matter

of ever-increasing urgency for our planet.



Appendix A

Second Moment of Area

A.1 Second moment of area formulae for various bar forms

Table A.1: Sample of bar forms with method for calculating second moment of area
Ix.

Shape Figure Ix Formula

Circle x

y r

Ix =
πr4

4
(A.5)

Rhombus x

y

H

B

Ix =
BH3

48
(A.6)

Rectangle x

y

H

B

Ix =
BH3

12
(A.7)

I-section x

y

H

B

t
s

Ix =
BH3 − (B − s)(H − 2t)3

12
(A.8)
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Appendix B

Bespoke MATLAB codes

B.1 Identify member intersections and add new nodes

The procedure below can be used to identify the coordinates of a new node required at

the intersection of two elements. The node is added and each element is divided in two

at the new node. The newly split elements are added to the list of elements so that they

can be assessed again in cases of multiple intersections on the same element.

1 function [nodes ,elements ,forces] = ...
intersections(nodes ,elements ,material ,forces)

2

3 %===============================%

4 % Structural & Frequency Truss Structure Optimization Element Intersection ...
Detection Script

5 % S.J.Salt - 24 September 2018

6 % (C) Rolls -Royce Plc and University of Sheffield

7 %===============================%

8

9 %% Identify crossing elements and generate new nodes

10

11 elements (:,5:end) = [];

12

13 n_nodes = size(nodes ,1); %Number of nodes at initialisation

14 n_elements = size(elements ,1); %Number of elements at initialisation

15

16 sf = 6;

17

18 count = 0;

19 i=1;

20 %for i = 1: n_elements -1

21 while i < n_elements

22 line1 = [nodes(elements(i,2) ,2:3) ; nodes(elements(i,3) ,2:3)];

23 for j = i+1: n_elements

24 line2 = [nodes(elements(j,2) ,2:3) ; nodes(elements(j,3) ,2:3)];

25

26 slope = @(line) (line (2,2) - line (1,2))/(line (2,1) - line (1,1));

27 m1 = slope(line1);

28 m2 = slope(line2);

29

30 intercept = @(line ,m) line (1,2) - m*line (1,1);

31 b1 = intercept(line1 ,m1);

32 b2 = intercept(line2 ,m2);
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33 xintersect = (b2 -b1)/(m1-m2);

34 yintersect = m1*xintersect + b1;

35

36 isPointInside = @(xint ,myline) ...

37 (xint ≥ myline (1,1) && xint ≤ myline (2,1)) || ...

38 (xint ≥ myline (2,1) && xint ≤ myline (1,1));

39 inside = isPointInside(xintersect ,line1) && ...

40 isPointInside(xintersect ,line2);

41

42 if inside == 1

43 if ismember ([ round(xintersect ,sf) ...
round(yintersect ,sf)],[round(nodes(elements (:,2) ,[2 3]),sf); ...
round(nodes(elements (:,3) ,[2 3]),sf)],'rows') == 0

44 count = count +1;

45 ints(count ,:) = [elements(i,1) elements(j,1) ...
round(xintersect ,sf) round(yintersect ,sf) n_nodes+count ];

46

47 elements(end+1,:) = [elements(end ,1)+1 elements(i,3) ...
ints(count ,5) elements(i,4)];

48 elements(i,3) = ints(count ,5);

49

50 elements(end+1,:) = [elements(end ,1)+1 elements(j,3) ...
ints(count ,5) elements(j,4)];

51 elements(j,3) = ints(count ,5);

52

53 forces(end+1,1) = forces(i,1);

54 forces(end+1,1) = forces(j,1);

55 n_elements = n_elements +2;

56

57 nodes(end +1 ,1:3) = [n_nodes+count round(xintersect ,sf) ...
round(yintersect ,sf)];

58 end

59 end

60 end

61 i = i+1;

62 end

63

64 % Member lengths for full connectivity list

65 elements (:,5) = sqrt((nodes(elements (:,2) ,2)-nodes(elements (:,3) ,2)).^2+...

66 (nodes(elements (:,2) ,3)-nodes(elements (:,3) ,3)).^2);

67

68 % Add cosines to element list (cols 6&7)

69 elements (:,[6 7]) = ...
[(nodes(elements (:,3) ,2)-nodes(elements (:,2) ,2))./elements (:,5)...

70 (nodes(elements (:,3) ,3)-nodes(elements (:,2) ,3))./elements (:,5)];

71

72 % Replace material constant data

73 elements (:,9) = material.E./elements (:,5);

74 elements (:,10) = (material.rho.*elements (:,5))/3;

75

76 end
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Frequency Constrained Truss Structures
Steve Salt - steve.salt@sheffield.ac.uk

The design of modern engineering components is based upon several key attributes; most prominent are
cost, weight, and manufacturability. Each of these attributes are linked through the properties of the
component’s material and a change in one can have an impact upon another. For many applications,
specifically those in the aerospace sector, the harmonic frequencies of a component are a critical
design constraint to ensure that they do not lie within an undesirable band. Avoidance of overlapping
frequencies is essential as a component with the same natural frequency as an input excitation frequency
may resonate with disastrous consequences.
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1. Introduction

The purpose of this research is to develop an algorithm with processes that enable the automatic
generation of a stress and frequency constrained component with the minimal possible volume, ideally
suitable for additive manufacture. Truss structures and additive manufacture have been selected to
provide a level of complexity and weight saving not available with conventional manufacturing.

• Develop a layout optimization programme to generate the domain and store the problem metrics
in an efficient manner.

• Calculate the geometry dependent matrices required for generation of the global mass (M) and
stiffness (K) matrices.

• Optimize the rationalised structure to ensure that the minimum natural frequency ω1 is greater
than or equal to a prescribed minimum value.

• Perform rationalisation on the optimized geometry to obtain a practical structure. This simplifi-
cation should only marginally impinge upon the overall volume.

• Expand into 3D structures and investigate whether the same principles can be applied to rigid-
jointed frames.

Aims & Objectives

2. Research Themes

Based upon the objectives, the algorithm for optimization consists of four major operations as per the
layout below. At the end of the frequency analysis if the resulting volume is outside the allowable
increase the process begins again.

Reference
Optimization

Geometric
Coefficients

Optimize Layout
& Frequency

Geometry
Rationalisation

Layout Optimization:
Use a combination of linear programming with a member adding algorithm to assess structures with
a fine nodal density. This is used as a reference point for the overall volume.

Geometric Coefficients:
Values are calculated which contain all the required information, except for area, to assemble the
mass and stiffness matrices. Each matrix is multiplied by area later as this is a variable in the
optimization problem.

Layout & Frequency Optimization:
The design domain and boundary conditions are submitted to a semi-definite programming solver
with member adding to perform the optimization considering stress and natural frequency. The
target is to minimise the volume of the structure.

Geometry Rationalisation:
Using the results of the previous step, members with an area above a preset minimum are extracted
and assessed. Where members intersect new nodes are added and the frequency of the structure
checked again.

3. Optimization Algorithm

A derivation of the equation for motion, termed the generalised eigenvalue problem (1), is used to
evaluate the natural frequencies of a body. In this case it is assumed that the body being evaluated has
no internal or applied damping.

Kφj = λj(M + M0)φj (1)

Expanding on (1) a non-linear constraint may be derived for an optimization routine targeting minimum
volume. It is possible to use the relationship between frequency and eigenvalue to impose a minimum
frequency upon the structure. The optimization problem is as per (2) below.

minimise V =

m∑

i=1

lai

subject to





K(a) − λ(M(a) + M0) < 0

a ≥ 0

λ = ω2
1

(2)

4. Optimizing the Frequency

The Role of λ

λ in the above equation denotes the eigenvalue of the matrices. Specifying this figure in

advance drives the area variable (a) to ensure that the frequency constraint equals 0.

The example Michell cantilever below shows how this process can be used to generate a structure, make
it practical for further analysis, and then optimized to ensure that the first natural frequency is greater
than or equal to the specified minimum of 400Hz.

The prescribed domain has been optimized for layout tar-
geting minimum volume. However, it can be seen that the
structure is impractical with over 169,000 elements.
V = 7.116, f1 = 375Hz, t = 471.9s, M = 6Gb

Layout Optimization

Using a commercial off the shelf SDP solver the layout of
the structure can be optimized with an additional constraint
on frequency as described above, however it is very slow to
compute and consumes a lot of memory, therefore fewer bars
may be included in the problem.
V = 7.116, f1 = 407Hz, t = 1628s, M = 21Gb

COTS SDP Solver

Coupling the problem domain and frequency constraint to a
bespoke SDP solver has yielded a structure both optimized
for layout and for the first natural frequency but with less
memory consumed. Practicality to be addressed.
V = 7.051, f1 = 400Hz, t = 1791s, M = 1.2Gb

Bespoke SDP Solver

5. Process Example

Since its outset this research has explored the role that optimization plays in the design of components
for additive manufacture, identified a focus of optimizing for frequencies, and determined a suitable
method for application.

• Layout optimization yields a globally optimum structure of minimum volume/mass without pre-
determining the fraction. This value may be treated as a mathematically pure reference volume.

• The natural frequency of the structure can be tailored to suit a minimum constraint by modifying
the areas and layout of the structural members.

• A semi-definite programming algorithm is required instead of linear programming to assess the
non-linear constraints of the mass and stiffness matrices. Use of this solver has proven that truss
structures can be optimized for frequency. Use of this algorithm has shown a significant decrease
in CPU time and memory consumption.

Conclusions

The next phase of this research will transition from pin-jointed frames to rigid-jointed, more accurately
representing an additively manufactured aerospace component. This will utilise beam elements in a
frame configuration and require a K matrix capable of accommodating reactionary moments.
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ABSTRACT
Controlling the frequency response of an engineering component or struc-
ture is important in the aerospace and automotive sectors and is a key
consideration when seeking a new and more efficient design for a given
component. In this contribution, the standard truss layout optimization
procedure is modified to incorporate semidefinite constraints to limit the
minimum value of the first natural frequency. Since this increases the com-
putational expense and reduces the scale of the problem that can be
solved, a bespoke algorithm incorporating an adaptive ‘member adding’
procedure is proposed and applied to a number of benchmark example
problems. It is demonstrated that this allows problems to be solved with
relatively fine numerical discretization, allowing modified structures with
an acceptable minimum first natural frequency response to be successfully
identified.
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1. Introduction

In the design ofmodern engineering components, many considerations need to be taken into account
including safety, cost, weight and manufacturability. The most prominent of these is safety, taking
account of the regime of applied stresses to be sustained over the life of the component. Safety is
in!uenced by the properties of thematerial employed, whichmay change as the design evolves. Addi-
tionally, when considering structures that include slender elements in compression, it is necessary to
check for buckling instability to ensure safety is maintained. Another key parameter in the aerospace
sector is the harmonic frequency of a structure. This should lie outside the frequency bands of sur-
rounding components. Should a fundamental frequency of one component (e.g. a bracket) overlap
with those of its attached neighbours, then resonance in the component may occur, also referred to
as forced vibration. Forced vibration and resonance can then lead to High Cycle Fatigue (HCF) in
the component, a"ecting its serviceable life and reducing its time to failure. It should be noted that
a component may exhibit multiple resonant frequencies, each corresponding to a mode of vibration;
repeated exposure to these frequencies may reduce the life of the component. However, this phe-
nomenon is beyond the scope of the current contribution. Considering component manufacture, it
is important to note that traditional manufacturing methods may limit the design freedom avail-
able; however, in the present contribution, it is assumed that Additive Layer Manufacturing (ALM)
methods are available. The use of ALMmeans that complex truss forms can potentially be fabricated,
beyond the scope of traditional subtractive manufacturing methods.

CONTACT M. Gilbert m.gilbert@sheffield.ac.uk

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
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There have been numerous recorded HCF related incidents. A notable example led to the loss of
BritishMidland!ight #92 in 1989 (Cooper 1989). Thiswas initiated by the failure of a fan blade on one
of the two CFM International S.A. CFM56-3 turbofan engines. A single blade failed owing to the cou-
pling of a torsional–!exural transient and a non-synchronous oscillation, leading to rapid reduction
of the HCF life of the blade. The blade was subsequently released, causing high levels of vibration in
the engine and aircraft, contributing to the loss of the aircraft upon attempting an emergency landing
at East Midlands Airport in the UK.

Given the potentially catastrophic consequences of failure, the design optimization of components
with stress and frequency constraints has been of interest for many years. Forced vibration problems
can be avoided by (a) redesigning the component being analysed, (b) redesigning the stimuli to change
its frequency characteristics, and/or (c) introducing a dampingmechanism into the system. Themost
straightforward of these options is often (a), redesigning a component to move its fundamental fre-
quencies away from those where resonance may occur. This may be achieved, for example, by adding
sti"ening ribs to the part or strategically increasing the volume of material.

Computer aided methods have been employed to treat such problems, largely focusing upon
the use of topology optimization in works such as Bendsøe and Sigmund (2003), where links
can be formed between discrete and continuum structures (Achtziger 1999). Additionally, Du and
Olho" (2007) formulated simple and multiple eigenfrequency optimization techniques for linear
elastic structures without damping. The present contribution will focus upon the design of truss
structures that are attractive when there is signi#cant available design freedom. In practice, it is
rare that the available design freedom is fully exploited, usually due to limitations associated with
the manufacturing method involved. However, ALM allows the available design freedom to be
exploited to a much greater extent than when traditional subtractive manufacturing methods are
employed. Since the ground structure method was #rst introduced by Dorn, Gomory, and Green-
berg (1964) to solve plastic truss design problems, layout optimizationhas provided an e"ectivemeans
of identifying the most e$cient arrangement of elements (also referred to herein as ‘members’ or
‘bars’) to form a truss structure. This methodology has been well used to identify minimum volume
truss structures (Dorn, Gomory, and Greenberg 1964; Hemp 1973; Gilbert and Tyas 2003; Smith et
al. 2016) using Linear Programming (LP) and member adding (column generation) to solve single
load case problems e$ciently. These methods have been further extended by Pritchard, Gilbert, and
Tyas (2005) and Sokół (2014) to include application to multiple load cases; to keep the underlying
layout optimization problem formulation reasonably simple, the present contribution will focus on
single load case problems with a single speci#edminimum frequency, usually chosen so as to lie away
from the frequencies of any sources of excitation. However, frequency analysis is a nonlinear problem
and so semide#nite programming (SDP) must be used to treat the constraints.

SDP is a subset of convex optimization and aims to minimize a linear function subject to
the constraint that an a$ne combination of symmetric matrices is positive semide#nite. SDP has
been applied to the optimization of truss structures previously by Ben-Tal and Nemirovski (1997),
and later Kanno (2018) used SDP to produce structures that were robust against uncertainty in
the loading, and Giniünaité (2015) applied SDP to identify minimum mass structures. A number
of solvers are available that are capable of treating semide#nite problems of varying complex-
ity: fminsdp (Thore 2018); MOSEK (v8+) (MOSEK ApS 2017); PENLAB (Fiala, Kočvara, and
Stingl 2013) and CVX (Grant and Boyd 2014) are a few examples. However, a bespoke approach
is required when combining generative truss design with optimization for frequency constraints.

Frequency optimization belongs to the #eld of eigenvalue optimization in mathematics, which
has been studied extensively by the mathematical programming community: Fox and Kapoor (1970)
adopted a feasibility approach to solve the underlying semide#nite programming problem, Grandhi
and Venkayya (1988) and Khot (1985) used the optimality criteria method and Kaveh and Ghaz-
aan (2016) used non-smooth optimization to perform size optimization of existing truss structures
to meet certain frequency requirements. Additionally, Achtziger and Kočvara (2007) used SDP to
solve similar problems, and Aroztegui et al. (2011) developed a feasible direction algorithm for SDP
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in order to maximize the fundamental frequencies based upon simple fully connected ground struc-
tures. Considering optimization of frequency in isolation,Azad et al. (2018) assessed the simultaneous
size and geometry optimization of steel structures under excitation using the ‘big bang–big crunch’
algorithm,withmixed results when considering the optimum solutions, whilst Taheri and Jalili (2016)
and Tejani et al. (2018) used other meta-heuristic methods to impose frequency constraints in truss
optimization problems.

In many of these studies, the design variable was treated as continuous but the number and
arrangement of the variables were assumed to be #nite and arrived at by utilizing the most e$-
cient members from a pre-de#ned ground structure. By contrast, in the present article an alternative
methodology is proposed in which standard equilibrium constraints are supplemented by semidef-
inite constraints to enable problems involving both frequency and strength considerations to be
tackled. The ground structure method is employed to provide a large search space, with an adap-
tive member adding algorithm used to reduce the associated computational burden signi#cantly. In
the interests of simplicity, buckling instability and other issues are not considered explicitly in this
contribution, though would need to be checked prior to, for example, usage in a quali#ed aerospace
application.

This article is organized as follows: Section 2 describes the basic formulations relevant to the fre-
quency problem at hand, with examples used to illustrate limitations; Section 3 then proposes a new
formulation that is signi#cantly more computationally e$cient; the new formulation is then applied
to various example problems in Section 4; and conclusions are drawn in Section 5.

2. Basic formulations

2.1. Truss layout optimization formulation

Ground structure-based layout optimization begins with the de#nition of a design domain, the vol-
ume of space in which the optimized structure can reside, with materials, loads and supports then
also prescribed to describe the problem fully, see Figure 1(a). The objective is to arrive at a structure
of minimum volume, and hence mass, whilst maintaining structural integrity. With a Cartesian grid,
the design domain is populated with a prede#ned number of nodes n in the x- and y-directions (also
in the z-direction for 3D problems). It is then joined withm potential connections, or elements, such
that each node is connected to every other node in the domain to form a ground structure, as in Fig-
ures 1(b) and 1(c). Herein, each example will employ a number of nodes expressed in terms of the
number of nodal divisions, e.g. referring to Figure 1(b), the domain has 4 × 2 nodal divisions, with
4 divisions and 5 nodes in the x-direction and 2 divisions and 3 nodes in the y-direction, giving 15
nodes in total. Constraints are introduced to ensure equilibrium is enforced at nodes, and to ensure
that the cross-sectional area of each element is both a positive number and is su$ciently large to carry
the internal forces, given the limiting stress of the material. The plastic single load case formulation
can be written as (after Dorn, Gomory, and Greenberg 1964):

min
a,q

V = lTa

s.t.






Bq = p,
−σ−ai ≤ qi ≤ σ+ai, ∀ i
ai ≥ 0, ∀ i,

(1)

where V is the total volume of the structure; l is a vector of individual element lengths {l1, l2, . . . , lm};
a is a vector containing element cross-sectional areas {a1, a2, . . . , am};B is a suitable (2n × m or 3n ×
m) equilibriummatrix containing direction cosines (for 2D or 3D problems); q is a vector of element
axial forces, q = {q1, q2, . . . , qm}, where qi is the force in element i; p is a vector of applied loads and
p = {px1, p

y
1, p

z
1, p

x
2, p

y
2, p

z
2, . . . , pzn} where pxj , p

y
j , p

z
j are the x-, y- and z-direction components of the

load applied to node j (j = 1, . . . , n). Finally σ+ and σ− are, respectively, the limiting tensile and
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Figure 1. Steps in layout optimization: (a) definition of the problem domain and boundary conditions; (b) domain populated with
equally spaced nodes; (c) each node is connected to every other node in the domain to form a fully connected ground structure
or (d) each node is connected only to neighbouring nodes to form a minimally connected ground structure; and (e) the resulting
optimized layout using a member adding algorithm (red and blue bars indicate those in tension and compression, respectively
[online only]).

compressive stresses that can be sustained by the material. Problems of this nature may be solved
using linear programming.

Employing a fully connected ground structure of this type is computationally expensive, with the
problem comprising n(n − 1)/2 potential connections for a domain, where n is the total number of
nodes. The majority of the connections will have an area equal or close to zero following the opti-
mization and so do not contribute to the #nal structure. This issue may be alleviated by applying
the adaptive ‘member adding’ method proposed by Gilbert and Tyas (2003), which is a customized
column generation technique. With this method, nodes in the initial ground structure are only con-
nected to their immediate neighbours, Figure 1(d), instead of to every other node in the domain,
Figure 1(c). An iterative process is then used, with elements added to the current ground structure
from the list of potential connections. Newly added elements are introduced into the solution using
the Michell–Hemp criterion (2), which speci#es limits on the virtual strain (εi) experienced by each
potential element (i), given a prescribed limiting stress (σ ):

− 1
σ− ≤ εi ≤ 1

σ+ , i = 1, . . . ,m. (2)
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In the parlance of the column generation method (Gondzio and Sarkissian 1996; Desrosiers and
Lübbecke 2005; Gondzio, González-Brevis, and Munari 2013), new columns are added to the LP
constraint matrix B in (1). At the end of each iteration, potential connections are ranked, with those
most violating the criteria then added for use in the next iteration. Once there are no potential con-
nections violating the criteria remaining, the algorithm terminates. The solution obtained shown in
Figure 1(e) is provably optimal, with the computed volume the same as that obtained using a fully
connected ground structure.

2.2. General eigenvalue equation

Consider a truss structure consisting of m elements connecting a pre-determined set of n nodes. A
large external force P is applied to a speci#c node, with internal forces transmitted through the struc-
ture, resulting in small displacements at each node; this may be considered to be a static problem. To
take account of the vibration characteristics of the structure, it is necessary to consider the following
dynamic problem derived from the equation of motion:

K{u} + M{ü} = 0, (3)

where K and M represent the global sti"ness and mass matrices, respectively. The mass and sti"-
ness matrices are represented as symmetric 2n × 2n matrices when modelling a two-dimensional
truss structure and 3n × 3nmatrices for a three-dimensional truss structure. The size of these global
matrices will be reduced by the number of supported degrees of freedom, since there are no displace-
ments at these locations. Given that the displacement vector is harmonic, (3) may be restructured
into the generalized eigenvalue problem:

Kφj = λj(M + M0)φj, (4)

whereM refers to the global mass matrix for the structure’s bar elements,M0 refers to the additional
mass of the nodes connecting each element and λj represents the eigenvalue for a given mode of
vibration φj (j = 1, 2, 3, . . . ). The free vibrations of a structure are equal to the square root of the
eigenvalues ω2

j = λj in radians per second, and thus the natural frequencies and normal modes of
vibration for the structure may be determined.

2.3. Frequency formulation

2.3.1. Determine the reference frequencies
To determine conformance with the original design problem, it is necessary to calculate the natural
frequencies of the structure. If a candidate design has been obtained via layout optimization, then this
can be performed using the connectivity andmember cross-sectional areas generated in the optimiza-
tion. The areas for each element are multiplied by the corresponding mass and sti"ness coe$cients
before being assembled into the global matrices (K andM) at the row/column index corresponding
to the degrees of freedom associated with the member end nodes, with rows and columns related to
the supported degrees of freedom omitted. The eigenvalues can be extracted e.g. using the built-in
MATLAB® eigs functionality. Previous studies, e.g.Du and Olho" (2007), have consideredmultiple
eigenfrequencies; however, this contribution will concentrate on just the #rst natural frequency in
hertz for the structure to ensure it will not resonate when exposed to a source of excitation.

2.3.2. Semidefinite constraint
In order to perform an optimization targeting the natural frequencies of the structure, a new con-
straint equation must be derived from the generalized eigenvalue problem (4). Once the coe$cient
matrices for sti"ness and mass are determined, in order to avoid the optimization generating a struc-
ture prone to low frequency vibration, a threshold can be set such that the smallest eigenvalue from (4)
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is greater than or equal to a de#ned minimum value. Thus (4) may be transformed into the following
constraint:

K(a) − λ(M(a) + M0) ! 0, (5)
where K(a) =

∑m
i=1 aiKi andM(a) =

∑m
i=1 aiMi are the global sti"ness and mass matrices, respec-

tively, ai refers to the cross-sectional area of member i, λ is the eigenvalue derived from theminimum
speci#ed natural frequency (ω1) for the speci#edmode of vibrationφj and ! indicates that thematrix
to its left is symmetric and positive semide#nite. For the purposes of this contribution, the connecting
nodes are not considered and therefore the mass associated with jointsM0 = 0.

Thus, when incorporated into the layout optimization formulation (1), the problemmay bewritten
as

min
a,q

V = lTa

s.t.






Bq = p,
K(a) − λ0M(a) ! 0
−σ−ai ≤ qi ≤ σ+ai, ∀ i
ai ≥ 0, ∀ i.

(6)

Fixing the smallest eigenvalue (λ0) to be greater than or equal to the minimum speci#ed frequency
ensures that the areas of the elements are adjusted as part of the optimization until the inequality
constraint is achieved. Incorporation of the semide#nite constraint means that an SDP solver is now
required to solve the problem. Note that SDP problems are convex, enabling a globally optimal solu-
tion to be obtained, but are considerably more computationally demanding to solve than their LP
counterparts.

2.4. Short cantilever example

Two means of optimizing a short cantilever structure based on a prescribed minimum #rst natural
frequency will now be outlined, using the example problem de#ned in Figure 2 to illustrate salient
points. For this problem: P = 1 × 103 N; E = 210 × 109 Nm−2; ρ = 8050 kgm−3; and the limiting
tensile and compressive stresses σ = 350 × 106 Pa. The prescribed constraint on the fundamental
natural frequency is f1 ≥ 425Hz. All numerical examples in this contribution were run on a 64 bit
Windows® 10 desktop PC equipped with an Intel® i5 3.7GHz processor and 32GB of RAM, using
a script programmed using MATLAB 2020b. A number of semide#nite solvers are available and
are compared by Tyburec and Zeman (2017). This contribution will initially employ the MOSEK
ApS (2017) v8.1 solver using the Java Fusion MATLAB interface. It should be noted that unless oth-
erwise speci#ed all layouts presented in the #gures are #ltered to include only elements with areas
greater than 1 × 10−6 m2. This may occasionally result in elements that appear to be disconnected
from the overall structure. Additionally, to facilitate comparison with other published work, non-
dimensional volumes V are presented throughout the article, with scaled volumes V(P/σ ) in cubic
metres also included in accompanying tables for completeness.

2.4.1. Two phase optimization approach
Since SDP problems are computationally expensive to solve, initially the e$cacy of a two phase
optimization approach is evaluated. With this approach, a traditional layout optimization is #rst
undertaken without considering frequency constraints; if prescribed frequency requirements are not
met by the generated design, then a size optimization is subsequently performed to ensure that these
are met, modifying only the subset of elements present in the optimal structure; i.e. in this second
phase the areas of each element ai are adjusted to ensure the semide#nite constraint (5) is met. In
the interests of computational e$ciency, only those elements that have an area greater than a pre-
determined minimum (taken as 1 × 10−6 m2) are included in the optimization; these elements will
henceforth be referred to as members.
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Figure 2. Short cantilever example: design domain, loading and support details. All dimensions are in metres.

Figure 3. Short cantilever example: (a) reference LP solution achievedusing layout optimizationusing 120 × 60nodal divisions; (b)
morepractical LP layout, achievedby reducing thenodal divisions to 40 × 20andpenalising joints; (c) outcomeof the SDP frequency
optimization performed on the practical layout from (b); (d) layout generated using SDP optimization of the full ground structure,
including frequency constraint using 12 × 6 nodal divisions. (Key: red = tension; blue = compression; green = members in (c)
whose areas have been modified compared with (b); grey = members whose areas are as per the layout in (b) [online only]. (For
(a) V = 7.030, f1 = 403 Hz. (b) V = 7.095, f1 = 410 Hz. (c) V = 7.436, f1 = 425 Hz and (d) V = 7.134, f1 = 425 Hz.)

Table 1. Short cantilever example: LP and SDP results (target frequency for the SDP problem= 425 Hz).

Nodal V(P/σ ) f1 Time
Figure Model divisions V (×10−5m3) (Hz) (s)

3(a) LP (fine ref.) 120 × 60 7.030 2.009 403 146
3(b) LP 40 × 20 7.095 2.027 410 26
3(c) SDP (size only) . . . 7.436 2.125 425 3
. . . LP (coarse ref.) 12 × 6 7.116 2.033 407 9
3(d) SDP (full) 12 × 6 7.134 2.038 425 1472

Considering #rst the example problem de#ned in Figure 2, an initial layout optimization is carried
out to provide reference values for the volume and #rst natural frequency of the structure; see Table 1
and Figure 3(a). The structure shown is similar to that obtained by He, Gilbert, and Song (2019).

However, the reference structure contains many members, so for the #rst phase of the proposed
two phase procedure a domain with fewer nodes is used to enable a more practical layout to be gener-
ated, containing fewer ‘#brous’ elements. This is achieved by both reducing the number of nodes and
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Figure 4. Half wheel example: (a) problem definition; (b) optimal structure obtained after phase one of the two phasemethod (i.e.
not considering frequency constraints). All dimensions are in metres.

introducing a joint penalty, after Parkes (1975). This results in the structure shown in Figure 3(b),
which has fewer joints and elements than the benchmark but which has a similar volume.

In the second phase, the structure from the #rst phase is re-optimized using themodi#ed formula-
tion that includes frequency constraints (6) to revise member sizes ensuring the frequency is not less
than 425Hz. In the re-optimization it is found that the areas of diagonal members radiating from the
support line, along with somemembers interconnecting these, need to bemodi#ed (resizedmembers
are highlighted in green in Figure 3(c) in the online version of the paper).

It is evident that the solver has been successful in achieving the desired minimum natural fre-
quency, at minimal CPU cost; however, this has in this case come at a relatively high cost in terms
of increased volume (8.7%). This suggests that changing the size of the elements alone may not lead
to the most e$cient solution, and a better one may be available if a wider solution space were to be
made available.

Next consider the classical half-wheel problem shown in Figure 4, as originally studied
by Michell (1904). The problem involves a central point load P = 1 × 103 N applied at midspan
between statically determinate supports, limiting tensile and compressive stresses σ = 350 × 106 Pa
and, in common with the other presented examples, E = 210 × 109 Nm−2 and ρ = 8050 kgm−3.
The optimal solution obtained when using 16 × 8 nodal divisions is shown in Figure 4(b) and has a
non-dimensional volume V = 3.191. This includes a short vertical member above each of the sup-
ports, leading to a structure that is in unstable equilibrium with the applied loading. This arises
because only equilibrium (and strength) constraints are enforced in phase one. However, a byproduct
of this is that subsequently adjusting the sizes of structural members alone in the second phase, with a
view to achieving a natural frequency of for example f1 = 200Hz,will fail owing to inherent instability
in the problem. This highlights a further limitation of the two phase optimization approach.

2.4.2. Holistic optimization
Although the two phase approach described in the preceding section is computationally e$cient for
problems where it can obtain viable solutions, if the increase in volume in the second phase is large
then the question arises as to whether a more materially e$cient design exists.

This can be checked by applying the formulation including an SDP frequency constraint to the
full ground structure. The associated computational expense means that only a coarse nodal grid
(12 × 6) can be used in this case. For the short cantilever example, the solution obtained using the
#nest nodal density achievable with the available memory is shown in Figure 3(d). When compared
with a reference structure consisting of the same size, it demonstrates that a modi#ed design enables
the target frequency to be met with little impact on the overall volume of the structure. The optimum
point where the equilibrium and frequency constraints are satis#ed requires a layout di"erent from
that of the structural optimization alone. However, it must be noted that the largest problem that
could be solved with a fully connected ground structure is much smaller than the one that could be
solved using the two phase approach.
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3. SDP formulation withmember adding

To solve complex problems of this nature with a large initial ground structure e$ciently, a special
purpose solver based on the Mehrota-type primal–dual interior point method (Fujisawa et al. 2000)
was developed. The approach and its implementation closely follow Weldeyesus et al. (2019), which
describes the optimization of truss structures with constraints on global stability modelled via SDP.
In Weldeyesus et al. (2019), the proposed method is capable of obtaining solutions to relatively
large problems that could not otherwise have been solved. Owing to similarities between the math-
ematical properties of the optimization problem considered in this article and those of the problem
discussed in Weldeyesus et al. (2019), only the member adding method is explained here in detail.
Issues such as exploiting sparsity and the low rank property of the element sti"ness matrices Ki
and mass matrices Mi when forming the linear systems arising in the interior point algorithm for
SDP are not repeated here, but play a crucial role in the overall e$ciency of the approach. As
outlined in Section 2.1, the adaptive member adding approach—which is based on the column gen-
eration technique, see Gondzio and Sarkissian (1996), Desrosiers and Lübbecke (2005) and Gondzio,
González-Brevis, and Munari (2013)—is an iterative process originally proposed in Gilbert and
Tyas (2003), and also applied to other problems by e.g. Sokół and Rozvany (2013) and Weldeyesus
and Gondzio (2018), who also employed linear programming to obtain solutions. The method was
extended to treat SDP problems by Weldeyesus et al. (2019). The procedure starts by solving a min-
imum connectivity ground structure problem (Figure 1(d)), and proceeds by adding elements from
a potential connection list until a solution that satis#es the original fully connected ground structure
problem is obtained. This approach enables the method to obtain a solution using a small fraction of
the large number of potential connections: see Gilbert and Tyas (2003) and Weldeyesus et al. (2019)
for supporting numerical results.

3.1. Details of the SDPmember adding algorithm

Here, amathematical description of themember adding procedure akin to that described in Section 4
of Weldeyesus et al. (2019) is presented. The primal problem (6) has an associated dual problem (7),
where u ∈ Rn andX ∈ Sn

+ (i.e.X is symmetric and positive semide#nite) are the Lagrangemultipliers
for the equilibrium equation and the matrix inequality constraints in (6), respectively. Note that, in
some literature, for exampleWolkowicz, Saigal, andVandenberghe (2000), the primal formulation (6)
is stated as dual and the dual problem formulation (7) as primal.

maximize
u,X

pTu

subject to − 1
σ− (li − (Ki − λMi) • X) ≤ (BTu)i, ∀ i

(BTu)i ≤ 1
σ+ (li − (Ki − λMi) • X), ∀ i

X ' 0.

(7)

After solving, the dual violations can be obtained using only the variables u and X in (7). The process
is as follows.

For any variable corresponding to member i to be dual feasible, formulation (7) implies that the
relation

− 1
σ− ≤ 1

li − (Ki − λMi) • X
(BTu)i ≤ 1

σ+ (8)

is satis#ed. Now suppose that I0 ⊂ {1, . . . ,m} is a set of indices of members for which the primal
problem (6) and its dual (7) are currently solved. After solving problem (6), and obtaining dual
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Table 2. Short cantilever example: fully connected ground structure and member adding approaches (target frequency =
425 Hz).

Nodal V(P/σ ) Time Speed Memory
Figure Model divisions V (×10−5 m3) (s) up (MB)

3(d) SDP (full) 12 × 6 7.134 2.038 1,472 . . . 16,081
5(a) SDP (mem. add.) 12 × 6 7.134 2.038 8 ×183 5

Table 3. Short cantilever example: results from the SDP member adding algorithm.

Nodal &Va V(P/σ ) f1 Time
Figure divisions V (%) (×10−5m3) (Hz) (s)

5(b) 40 × 20 7.064 +0.5 2.018 425 4,915
5(c) 40 × 20 7.129 +1.4 2.037 450 11,655
5(d) 40 × 20 7.597 +8.0 2.171 480 17,671
aPercentage change compared with the volume of the reference structure shown in Figure 3(a).

values corresponding to (7), for all members with indices in I0, condition (8) can be used for all
i ∈ {1, . . . ,m0}\I0 to generate a set I of member indices to be added, given by

I =
{
i ∈ {1, . . . ,m0}\I0

∣∣∣∣
1

li − (Ki − λMi) • X∗ (σ−ε−
i + σ+ε+

i ) ≥ 1 + β

}
, (9)

where the virtual strains are ε+
i = max{(BTu∗)i, 0} and ε−

i = max{−(BTu∗)i, 0} with u∗ and X∗

being optimal points of the preceding subprogram and β > 0 is an allowed tolerance decided by
the user. If I = ∅ the member adding procedure terminates; otherwise, members with indices in
I are added to the subsequent problem, #ltering these using the heuristic techniques described
in Weldeyesus and Gondzio (2018) if necessary to avoid problem size growing too rapidly.

3.2. Revisiting the short cantilever and half-wheel examples

In order to establish the gains in e$ciency from utilising the new member adding-based SDP
algorithm, the problem given in Figure 2 will be revisited, initially replicating the problem in
Figure 3(d) to demonstrate the e$ciency gains of using the member adding algorithm.

Results for coarse nodal grids are presented in Table 2 and Figure 5(a). It is evident that the optimal
volumes are identical irrespective of whether a fully connected ground structure ormember adding is
employed, and the optimal truss solutions shown in Figures 3(d) and 5(a) are also virtually identical.
Most signi#cantly, it is also evident that the proposedmember adding algorithm can obtain a solution
over two orders of magnitude more quickly than when a fully connected ground structure is used,
with thememory requirements reduced by three orders ofmagnitude. These e$ciency improvements
mean that problems involving relatively #ne nodal grids can now be tackled, which was not possi-
ble before. Thus, revisiting the problem shown in Figure 3(a), a new solution obtained via member
adding is presented in Figure 5(b), with additional solutions presented for higher minimum target
frequencies in Figures 5(c) and 5(d). Corresponding computational details are shown in Table 3. This
shows that relatively #ne grid problems can be tackled, and that the geometry of the optimal structure
changes when higher target frequencies are speci#ed, with the overall volume also increasing.

Now revisiting the half wheel example, by applying the procedure proposed in this contribution
a structure that satis#es both equilibrium and frequency constraints can be generated. For a target
frequency of 200Hz, the generated solution is negligibly higher in non-dimensional volume (now
V = 3.193, just 0.05% greater than before); see Figure 6. Signi#cantly, to satisfy the frequency con-
straint, it is evident that additional stabilizing members have been added—although in this case
some of these are very thin, with some radial members below the #lter cut-o" (in this case area =
6 × 10−8m2) omitted.
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Figure 5. Short cantilever example: results obtained using the SDPmember addingmethod for a range ofminimum frequencies. A
total of 12 × 6 nodal divisions are used in case (a) and 40 × 20 in cases (b)–(d). (For (a) V = 7.134, f1 = 425 Hz. (b) V = 7.064, f1 =
425 Hz. (c) V = 7.129, f1 = 450 Hz and (d) V = 7.597, f1 = 480 Hz.)

Figure 6. Half wheel example: structure obtained using combined equilibrium and frequency constraints for a target frequency of
200 Hz (dashed lines indicate members added to satisfy the frequency constraint, also helping to stabilize the structure).

3.3. In!uence of initial member arrangement on computation

It has been demonstrated that the inclusion of a member adding step in the optimization reduces
the memory burden and enables problems of signi#cant size to be tackled. To understand the per-
formance of the member adding method further, the examples originally considered by Gilbert and
Tyas (2003) are used to investigate the in!uence of the chosen initial nodal connectivity on the solu-
tion, the computational time and the required memory footprint. A 28 × 28 nodal division square
domain is used; however, in this contribution overlapping connections are omitted as they can lead
to instability in the frequency calculations due to multiple members coexisting in the same space.
In addition, due to the signi#cant memory requirements of the fully connected ground structure
example (circa 400GB), an additional set of results is obtained using a domain comprising a reduced
number of 14 × 14 nodal divisions.

Applying the same physical parameters as in the example shown in Figure 2, the original optimal
truss structure from Gilbert and Tyas (2003) was assessed and found to have a #rst natural frequency
of f1 = 945Hz; therefore, an initial frequency target of f1 = 950Hz was considered appropriate for
the starting problem as it is close to the original yet includes an active frequency constraint. The
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Figure 7. Influence of initial connectivity inmember adding scheme: (a) adjacent nodes connected (right to left upward diagonals
in all units), iteration 1; (b)minimally connectedground structurewith nearest neighbour nodes connected, iteration 1; (c)minimally
connected ground structure plus boundary/loaded nodes connected, iteration 1; (d) final optimized structural form common to all
starting points.

target frequency was then increased by 10% to help verify the extent to which the in!uence of the
initial member connectivity is common across a range of target frequencies.

Table 4 shows the four initial ground structures considered, (a)–(d), together with results for the
two target frequencies for each of the two nodal division discretizations; note that, to maintain a basis
for comparison, all presented volumes are non-dimensional. The resulting volumes for all the cases
are within 1% of those provided in the original article, demonstrating that in this case the frequency
constraint does not come at a high cost in terms of structural e$ciency; however, CPU times are
markedly increased. In contrast to the #ndings in the original article by Gilbert and Tyas (2003), here
it is also clear that themost e$cient initial ground structure in terms of CPU time comprises a ground
structure with the supports directly connected to the load (case (c)); in addition, this leads to a lower
number of peak LP variables, indicating a reduced memory burden. Figure 7 shows the outcome of
the initial iteration for each of the three initial ground structures investigated when using themember
adding scheme for the 14×14 nodal division case. It is evident that, although the supports are in each
case connected to the load, in the case of (c) this is predominantly achieved through the use of just
two diagonal elements, which directly connect the load with the supports.

It should be noted that, when member adding is used, ground structure (a) has the longest associ-
ated CPU time, and also the greatest number of LP variables at the end of the optimization process.
Ground structure (c) has the shortest associated CPU time, the fewest LP variables, and hence also the
lowest memory consumption. However, for the sake of simplicity, initial ground structure (b) will be
used for all subsequent examples in this contribution. Finally, it should also be noted that, although
the optimized volume obtained when using a fully connected ground structure from the outset, (d), is
marginally higher than that obtained in the other three cases, this is probably due to the contribution
to the volume of a large number of elements with areas very close to zero.

4. Numerical examples

Awider range of examples are now considered to investigate the e$cacy of the presented SDPmember
adding algorithm further when used to optimize a component, considering simultaneously equilib-
rium, strength and #rst natural frequency constraints. The classical Hemp cantilever and MBB beam
examples are #rst considered. A 3D cantilever designed to carry a point load is then considered, with
di"erent minimum speci#ed natural frequencies used to show the resulting variation in form and
associated volume. Each example begins with a minimum connectivity ground structure.

4.1. Hemp cantilever example

The initial example considered was #rst studied by Hemp (1973) and consists of a square domain
with single point load located at mid-height between two supports, as shown in Figure 8(a).
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Table 4. Influence of initial member connectivity on efficiency of member adding scheme: (a) adjacent nodes connected (right to
left upward diagonals in all cells); (b) minimally connected ground structure, comprising nearest neighbour connectivity; (c) min-
imally connected ground structure plus connections between boundary and loaded nodes; (d) traditional fully connected ground
structure (without overlapping bars).

Grid f1 (Hz)

28 × 28 950 Volume, V 2.432 2.432 2.432 –
No. of iterations 9 6 7 –
Initial no. of bars 2,408 3,192 3,221 –
Peak no. of bars 36,151 8,000 5,881 –
Time to 1.001V (s) 63,875.1 2,209.9 804 –
CPU time (s) 182,738.9 3,811.6 2,102.8 –

1,045 Volume, V 2.441 2.441 2.441 –
No. of iterations 12 7 8 –
Initial no. of bars 2,408 3,192 3,221 –
Peak no. of bars 33,964 10,710 7,005 –
Time to 1.001V (s) 192,161.2 4,054.9 992 –
CPU time (s) 289,679.8 8,555.2 2,852.6 –

14 × 14 950 Volume, V 2.435 2.435 2.435 2.437
No. of iterations 9 6 6 –
Initial no. of bars 616 812 827 15,556
Peak no. of bars 4,239 1,982 1,197 15,556
Time to 1.001V (s) 660.2 69.9 29.1 –
CPU time (s) 1,379.1 116.7 51.2 5,501.3

1,045 Volume, V 2.443 2.443 2.443 2.448
No. of iterations 9 6 5 –
Initial no. of bars 616 812 827 15,556
Peak no. of bars 3,365 1,936 1,265 15,556
Time to 1.001V (s) 346 67.4 33.8 –
CPU time (s) 748.1 134.8 45.5 5,089.7

Table 5. Hemp cantilever example: results obtained from equilibrium optimization and with inclusion of the
frequency constraints.

Nodal &V V(P/σ ) f1 Time
Figure Model divisions V (%) (×10−5m3) (Hz) (s)

8(b) REF 72 × 72 4.332 . . . 1.238 616 194
. . . LP 48 × 48 4.339 +0.01 1.240 623 17
8(c) SDP 48 × 48 4.340 +0.01 1.240 700 42,676
8(d) SDP 48 × 48 4.794 +10.6 1.370 1,000 75,004

Hemp determined the non-dimensional analytical volume to be approximately 4.34; later, He and
Gilbert (2015) applied more precise methods and geometry rationalization, further reducing the
optimum volume to 4.3228. Here, a nodal grid comprising 72 × 72 nodal divisions and the mate-
rial properties P = 1 × 103 N, E = 210 × 109 Nm−2, ρ = 8050 kgm−3 and the limiting tensile and
compressive stresses σ = 350 × 106 Pa were used to obtain a reference LP solution with a volume
V = 4.332, within 0.5% of the improved optimum #gure. The associated structure is shown in
Figure 8(b). The #rst natural frequency of this reference structure was computed to be f1 = 616Hz.

In order to generate solutions in a reasonable timescale for the SDP analyses, the nodal density was
reduced to 48 × 48. An additional LP reference was obtained at this density that has negligible impact
on volume but changes the #rst frequency to 686Hz. SDP analyses were conducted with target #rst
natural frequencies of f1 = 700 and 1000Hz to identify changes in the generated structure. Results of
the associated optimization runs are presented in Table 5 and Figures 8(c) and 8(d), respectively.

In the #rst case, the impact on the resulting generated structure and associated volume is small,
with the increase in volumebeing less than 1%and little di"erence in overall layout. In the second case,
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Figure 8. Hemp cantilever example: (a) problem definition with dimensions in metres; (b) reference LP solution, obtained with
72 × 72nodal divisions; (c) SDPmember adding solution obtained for a target frequency of 700 Hz; (d) SDPmember adding solution
obtained for a target frequency of 1000 Hz. Note that both (c) and (d) have 48 × 48 nodal divisions. (For (b) V = 4.332, f1 = 616 Hz.
(c) V = 4.350, f1 = 700 Hz and (d) V = 4.794, f1 = 1000 Hz.)

increasing the minimum frequency to f1 = 1000Hz can be observed to have a muchmore signi#cant
impact, with the overall structural depth and complexity of the result both reduced.

4.2. MBB beam example

The Messerschmidt–Bölkow–Blohm (MBB) beam is attributed to the German aircraft company of
the same name, and can still be found in Airbus passenger aircraft. Though the real-world problem
includes a number of design constraints, in the literature a simpler problem is normally consid-
ered, involving simple loading and boundary conditions and usually targeting minimum volume or
compliance. The exact analytical layout for the MBB structure with stress constraints was derived
by Rozvany (1998), with the optimal non-dimensional volume V = 13.597 for a beam length of
three. As the beam is symmetrical, only the right half is shown in Figure 9(a). An optimization was
carried out with nodes directly along the symmetry plane free to move vertically whilst the bottom
right corner was #xed in the vertical direction and free to move horizontally. The example assumes
aerospace grade aluminium is used with P = 1 × 103 N, σ = 90 × 106 Pa, E = 68.9 × 109 Nm−2

and ρ = 2770 kgm−3.
An initial LP optimization was carried out to obtain a reference volume and frequency for the

structure, using 60 × 20 nodal divisions to provide a balance between accuracy and computational
e$ciency (Figure 9(b)). SDP solutions were then sought for two minimum target frequencies; the
solutions obtained (Table 6 and Figures 9(c) and 9(d)) demonstrate that the introduction of a fre-
quency constraint has enabled minimum volume structures satisfying a given minimum frequency
to be obtained, with very little impact on overall volume. However, it is evident that the time required
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Figure 9. MBB beam example: (a) problem definition with dimensions in metres; (b) reference solution obtained for this example
with the determined first natural frequency; (c) SDPmember adding solution obtained for a target frequency of 400 Hz; (d) a target
of 425 Hz. (For (b) V = 14.136, f1 = 374 Hz. (c) V = 14.237, f1 = 400 Hz and (d) V = 14.631, f1 = 425 Hz.)

Table 6. MBB beam example: SDP member adding algorithm results.

Nodal &V V(P/σ ) f1 Time
Figure Model divisions V (%) (×10−4m3) (Hz) (s)

9(b) LP 60 × 20 14.136 . . . 1.571 374 8
9(c) SDP 60 × 20 14.238 +0.72 1.582 400 31,781
9(d) SDP 60 × 20 14.631 +3.5 1.626 425 46,317

to complete a frequency optimization is clearly considerably longer than that required for a basic LP
optimization.

4.3. 3D cantilever example

The third example is a simple 3D cantilever beam, as shown in Figure 10(a). To improve the clar-
ity of the results and to minimize the additional computational burden associated with solving 3D
problems, the number of nodal divisions has been reduced to 6 × 2 × 2 to ensure solutions are
obtained in a manageable time-frame. The properties for this example are as follows: P = 1 × 103 N;
E = 210 × 109 Nm−2; ρ = 8050 kgm−3; and the maximum tensile and compressive stresses are
σ = 350 × 106 Pa. Various target #rst natural frequencies are used to demonstrate the change in
structural form that results from including a frequency constraint.

Full results for this example are shown in Table 7. Figure 10(b) shows the layout of the optimal
structure based solely upon equilibrium and strength considerations, with the natural frequency of
the resulting structure being found to be 57Hz. When a frequency constraint f1 = 100Hz is intro-
duced (Figure 10(c)) the structure begins to change, with new members added to the structure.
Similar to the 2D examples, these additional elements brace the structure, adding sti"ness and there-
fore increasing the frequency; however, the use of member adding has allowed this to happen in a
short amount of time and with limited impact on the overall volume of the structure. As the target
frequency is increased further to 150 and 200Hz as shown in Figures 10(d) and 10(e), respectively, a
more dramatic change begins to take place, with the members that are primarily taking the load and
providing structural sti"ness becoming longer and growing in cross section.
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Figure 10. 3D cantilever example: (a) problem definition with dimensions in metres; (b) LP solution (no frequency constraint); (c)
SDP member adding solution for a target frequency of 100 Hz; (d) target of 150 Hz; (e) target of 200 Hz. All cases employ 6 × 2 × 2
nodal divisions. (For (b) V = 30.676, f1 = 57 Hz. (c) V = 30.883, f1 = 100 Hz. (d) V = 33.233, f1 = 150 Hz and (e) V = 38.111, f1 =
200 Hz.)
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Table 7. 3D cantilever example: SDP member adding algorithm results.

&V V(P/σ ) f1 Time
Figure Model Cons V (%) (×10−5m3) (Hz) (s)

10(b) LP 474 30.676 . . . 8.765 57 5.8
10(c) SDP 566 30.883 +0.6 8.824 100 9.9
10(d) SDP 633 33.233 +8.3 9.495 150 12.6
10(e) SDP 582 38.111 +24.2 10.889 200 13.3

5. Conclusions

Numerical layout optimization provides an e$cient means of generating optimal truss structures for
a given set of design requirements. However, traditional linear programming-based formulations are
limited, and cannot for example accommodate frequency constraints. In this contribution, extended
semi-de#nite programming-based formulations are considered that allow the minimum #rst natural
frequency of a structure to be speci#ed. The main conclusions are as follows.

• The use of a two phase approach, in which the traditional LP layout optimization formulation
is used in the #rst phase and an SDP size optimization is used in the second phase, provides a
computationally e$cientmeans of generating solutions satisfying a speci#ed frequency constraint.
However, the solutions obtained are likely to be sub-optimal, with the resulting structures having
higher than necessary volume.

• Alternatively, a constraint on frequency can be introduced in the optimization directly, furnishing
layouts that satisfy both structural performance and #rst natural frequency requirements. How-
ever, when using a fully connected ground structure and a standard SDP solver, the computational
cost and memory requirements have been found to be high, severely limiting the scale of problem
that can be tackled.

• The use of a bespoke solver and an adaptive member adding solution strategy, which involves
starting with a sparsely connected ground structure and only adding members as required until
the optimal solution is found, allows solutions to be obtained in a much shorter time-frame (183
times quicker in the case of one of the examples considered), and with much lower memory con-
sumption. This approach has been successfully applied to a range of 2D and 3D problems in this
article.

In future studies, the in!uence of joints on vibration characteristics will be considered in more
detail, with for example di"erences in optimal layout and volume being evaluated when rigid-joints
as opposed to pin-joints are assumed. In addition, consideration will be given to limiting the num-
ber and arrangement of members within a #nal design, to ensure the resulting component is readily
manufacturable.

Acknowledgments
The assistance of Dr Linwei He in producing the graphics for Figures 10(b)–10(e) is gratefully acknowledged.

Data availability statement
Details of the formulation employed are provided in the article and the supplied electronic supplementary information
includes details of all inputs and the results obtained for the Hemp cantilever andMBB beam examples described. Link:
https://doi.org/10.15131/shef.data.14837913

Disclosure statement
No potential con!ict of interest was reported by the author(s).

Appendix D. Layout optimization with minimum frequency constraints 169



1420 S. J. SALT ET AL.

Funding
The #nancial support provided by Rolls-Royce plc is gratefully acknowledged. Thework ofM.Gilbert, A.G.Weldeyesus
and J. Gondzio was #nancially supported by EPSRC [grant references EP/N023471/1 and EP/N019652/1].

ORCID IDs
S. J. Salt https://orcid.org/0000-0002-5724-1628
A. G. Weldeyesus http://orcid.org/0000-0001-8696-8255
M. Gilbert https://orcid.org/0000-0003-4633-2839
J. Gondzio https://orcid.org/0000-0002-6270-4666

References
Achtziger, W. 1999. “Local Stability of Trusses in the Context of Topology Optimization—Part I: Exact Modelling.”

Structural Optimization 17 (4): 235–246.
Achtziger,W., andM.Kočvara. 2007. “On theMaximization of the Fundamental Eigenvalue inTopologyOptimization.”

Structural and Multidisciplinary Optimization 34 (3): 181–195.
Aroztegui, M., J. C. A. Costa Jr, A. Canelas, and J. Herskovits. 2011. “Maximising the Fundamental Frequency of Truss

Structures.” In Proceedings of the 21st International Congress of Mechanical Engineering (COBEM 2011). Rio de
Janeiro: Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM).

Azad, S. K., M. Bybordiani, S. K. Azad, and F. Jawad. 2018. “Simultaneous Size and Geometry Optimization of Steel
Trusses Under Dynamic Excitations.” Structural and Multidisciplinary Optimization 58 (6): 2545–2563.

Ben-Tal, A., and A. Nemirovski. 1997. “Robust Truss Topology Design Via Semide#nite Programming.” SIAM Journal
on Optimization 7 (4): 991–1016.

Bendsøe, M. P., and O. Sigmund. 2003. Topology Optimization: Theory, Methods and Applications. Engineering Online
Library. Berlin: Springer-Verlag. doi:10.1007/978-3-662-05086-6.

Cooper, D. A. 1989. “Report on the Accident to Boeing 737-400 G-OBME Near Kegworth Leicestershire on 8 Jan-
uary 1989.” Technical Report. London, UK: Department of Transport. Air Accidents Investigation Branch; 1990.
http://link.rbkc.gov.uk/portal/Report-on-the-accident-to-Boeing-737-400-G-OBME/9Yld5TQuZ7o/.

Desrosiers, J., and M. E. Lübbecke. 2005. A Primer in Column Generation, 1–32. Boston, MA: Springer US.
Dorn,W. S., R. E.Gomory, andH. J. Greenberg. 1964. “AutomaticDesign ofOptimal Structures.” Journal deMechanique

3: 25–52.
Du, J., and N. Olho". 2007. “Topological Design of Freely Vibrating Continuum Structures for Maximum Values of

Simple and Multiple Eigenfrequencies and Frequency Gaps.” Structural and Multidisciplinary Optimization 34 (2):
91–110.

Fiala, J., M. Kočvara, and M. Stingl. 2013. “PENLAB: A MATLAB Solver for Nonlinear Semide#nite Optimization.”
ArXiv e-print, https://arxiv.org/pdf/1311.5240.pdf.

Fox, R. L., and M. P. Kapoor. 1970. “Structural Optimization in the Dynamics Response Regime—A Computational
Approach.” AIAA Journal 8 (10): 1798–1804.

Fujisawa, K., M. Fukuda, M. Kojima, and K. Nakata. 2000. Numerical Evaluation of SDPA (Semide!nite Programming
Algorithm), 267–301. Boston, MA: Springer US.

Gilbert, M., and A. Tyas. 2003. “Layout Optimization of Large-Scale Pin-Jointed Frames.” Engineering Computations
20 (8): 1044–1064.

Giniünaité, R. 2015. “Application of Semide#nite Programming to Truss Design Optimization.” Science—Future of
Lithuania 7 (3): 280–284.

Gondzio, J., P. González-Brevis, and P. Munari. 2013. “New Developments in the Primal–Dual Column Generation
Technique.” European Journal of Operational Research 224: 41–51.

Gondzio, J., and R. Sarkissian. 1996. Column Generation with the Primal–Dual Method. Technical Report 1996.4. CH-
1211. Geneva, Switzerland: Logilab, University of Geneva.

Grandhi, R. V., and V. B. Venkayya. 1988. “Structural Optimization with Frequency Constraints.” AIAA Journal 26 (7):
858–866.

Grant, M., and S. Boyd. 2014. “CVX: Matlab Software for Disciplined Convex Programming, Version 2.1.”
http://cvxr.com/cvx.

He, L., and M. Gilbert. 2015. “Rationalization of Trusses Generated Via Layout Optimization.” Structural and
Multidisciplinary Optimization 52 (4): 677–694.

He, L., M. Gilbert, and X. Song. 2019. “A Python Script for Adaptive Layout Optimization of Trusses.” Structural and
Multidisciplinary Optimization 60 (2): 835–847.

Hemp, W. S. 1973. Optimum Structures. Oxford, UK: Clarendon Press.

Appendix D. Layout optimization with minimum frequency constraints 170



ENGINEERING OPTIMIZATION 1421

Kanno, Y. 2018. “Robust Truss Topology Optimization Via Semide#nite Programming with Complementarity Con-
straints: A Di"erence-of-Convex Programming Approach.” Computational Optimization and Applications 71 (2):
403–433.

Kaveh, A., and M. Ilchi Ghazaan. 2016. “Optimal Design of Dome Truss Structures with Dynamic Frequency
Constraints.” Structural and Multidisciplinary Optimization 53 (3): 605–621.

Khot, N. S. 1985. “Optimization of Structures with Multiple Frequency Constraints.” Computers & Structures 20 (5):
869–876.

Michell, A. G. M. 1904. “The Limits of Economy of Material in Frame-Structures.” Philosophical Magazine Series 6, 8
(47): 589–597. doi:10.1080/14786440409463229.

MOSEK ApS. 2017.MOSEK MATLAB Documentation Release 8.1.0.24.
Parkes, E. W. 1975. “Joints in Optimum Frameworks.” International Journal of Solids and Structures 11 (9): 1017–1022.
Pritchard, T. J., M. Gilbert, and A. Tyas. 2005. “Plastic Layout Optimization of Large-Scale Frameworks Subject to

Multiple Load Cases,Member Self-Weight and with Joint Length Penalties.” In Proceedings of the 6thWorld Congress
on Structural and Multidisciplinary Optimization, Rio de Janeiro, 1–10. https://www.researchgate.net/publication/
237133804.

Rozvany, G. I. N. 1998. “Exact Analytical Solutions for Some Popular Benchmark Problems in TopologyOptimization.”
Structural Optimization 15 (1): 42–48.

Smith, C. J., M. Gilbert, I. Todd, and F. Derguti. 2016. “Application of Layout Optimization to the Design of Additively
Manufactured Metallic Components.” Structural and Multidisciplinary Optimization 54 (5): 1297–1313.

Sokół, T. 2014. “Multi-Load Truss Topology Optimization Using the Adaptive Ground Structure Approach.” In Recent
Advances in Computational Mechanics, edited by T. Łodygowski, J. Rakowski, and P. Litewka, 9–16. Boca Raton, FL:
CRC Press.

Sokół, T., and G. I. N. Rozvany. 2013. “On the Adaptive Ground Structure Approach for Multi-Load Truss Topology
Optimization.” In Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization, Florida,
1–10. https://mae.u!.edu/mdo/Papers/5428.pdf.

Taheri, Seyed Heja Seyed, and Shahin Jalili. 2016. “Enhanced Biogeography-Based Optimization: A New Method for
Size and Shape Optimization of Truss Structures with Natural Frequency Constraints.” Latin American Journal of
Solids and Structures 13: 1406–1430.

Tejani, Ghanshyam G., Vimal J. Savsani, Vivek K. Patel, and Seyedali Mirjalili. 2018. “Truss Optimization with Natural
Frequency Bounds Using Improved Symbiotic Organisms Search.” Knowledge-Based Systems 143: 162–178.

Thore, C.-J. 2018. “FMINSDP—A Code for Solving Non-Linear Optimization Problems with Matrix Inequality
Constraints.” https://www.mathworks.com/matlabcentral/#leexchange/43643-fminsdp.

Tyburec,M., and J. Zeman. 2017. “Comparison of Semide#nite Solvers for TopologyOptimization of Cantilever Trusses
Subject to Fundamental Eigenvalue Constraint.” Advanced Materials Research 1144: 172–177.

Weldeyesus, A. G., and J. Gondzio. 2018. “A Specialized Primal–Dual Interior PointMethod for the Plastic Truss Layout
Optimization.” Computational Optimization and Applications 71 (3): 613–640.

Weldeyesus, A. G., J. Gondzio, L. He, M. Gilbert, P. Shepherd, and A. Tyas. 2019. “Adaptive Solution of Truss Layout
Optimization Problems with Global Stability Constraints.” Structural and Multidisciplinary Optimization 60 (5):
2093–2111.

Wolkowicz, H., R. Saigal, and L. Vandenberghe. 2000.Handbook of Semide!nite Programming. Theory, Algorithms, and
Applications. Dordrecht, The Netherlands: Kluwer Academic.

Appendix D. Layout optimization with minimum frequency constraints 171



References

N. Aage, M. Nobel-Jørgensen, C.S. Andreasen, and O. Sigmund. Interactive topology

optimization on hand-held devices. Structural and Multidisciplinary Optimization, 47

(1):1–6, 2013.

W. Achtziger. Local stability of trusses in the context of topology optimization part I:

Exact modelling. Structural optimization, 17(4):235–246, 1999.
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