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Abstract

Nowadays, cloth simulation is widely applied in 3D entertainment and fashion design. It also

has been popular in computer graphics for decades and various simulation methods have been

proposed. In both applications and research, cloth simulation realism is an important concern.

Among the existing cloth simulation methods, physics-based cloth simulation methods inte-

grate physical laws to explicitly model cloths’ physics and govern cloths’ mechanical behaviors.

Compared with the other existing methods, they can simulate visually more pleasing and me-

chanically more accurate cloths. Moreover, they are capable of synthesizing various cloths made

from different materials by using different cloth physical parameters. However, a physics-based

cloth simulator’s simulation realism may be restricted by its coarse cloth physical model and

inaccurate cloth physical parameters. To pursue higher simulation realism, this research intro-

duces more fine-grained cloth physical models and accurate cloth physical parameter estimation

methods. In our first and second works, we propose two differentiable cloth simulators with

more fine-grained cloth physical models that can capture cloth yarn-level mechanical behaviors

and model cloth material heterogeneity. By using our novel fully-differentiable physical models,

they can leverage gradient-based optimization methods to accurately estimate cloth physical

parameters and then reproduce the observed cloths. In our third work, we introduce a cloth

simulator that can simulate cloth time-dependent persistent wrinkles by integrating our novel

time-dependent friction and plastic model. Through exhaustive experiments, we demonstrate

our differentiable cloth simulators are accurate in estimating cloth physical parameters and re-

producing the observed cloths. We also demonstrate our third simulator can plausibly simulate

cloth time-dependent persistent wrinkles. Through these three works, we gain a significant

improvement in cloth simulation realism.
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Chapter 1

Introduction

Narrowing the real-virtual gap is a persistent goal that stimulates computer graphics research

to pursue a more realistic simulation (Marschner and Shirley 2015). Cloths are so indispensable

in our daily lives that can be seen in various scenarios for different usages, e.g., garments,

furniture, buildings. Likewise, in animations and games, cloths are also ubiquitous and their

simulation fidelity can usually determine the overall simulation plausibility. However, simulating

cloth is challenging because real cloths have complex physical properties, such as nonlinearity

and heterogeneity, and tend to exhibit more complicated mechanical behaviors, e.g., folds and

wrinkles. Thanks to the admirable efforts that have been made on cloth simulation, modern

cloth simulators can produce visually pleasing virtual cloths and, nowadays, are widely applied

in 3D entertainment and fashion design (Stuyck 2022). The development process of cloth

simulation during the last three decades essentially witnesses the history of improving the

simulation realism. Along this way, various simulation methods have been proposed.

Conventionally, the cloth simulation methods can be classified into three groups: geometry-

based method, physics-based method, and data-driven method (Choi and Ko 2005). As the

simplest approach, the geometry-based method is the first one adopted by computer graphics

to do cloth simulation. It shapes cloth static geometries or drives its dynamic motions according

to pre-defined rules which are usually specified by mathematical equations (Weil 1986). De-

spite its simplicity, designing the rules to achieve a realistic simulation is difficult. Conversely,

due to the lack of physics, the cloths simulated by this method usually look unnatural and

counterintuitive. To address this shortcoming, the physics-based method was introduced and

it substitutes physical laws for the pre-defined rules. Not only does this method avoid labori-

1



1.1. Motivations Chapter 1. Introduction

ously defining the rules, but it also shows a superiority in the simulation realism and is good

at handling extremely complex simulation scenarios, e.g., cloths in intensive collisions. Since

the introduction of the first physics-based cloth simulator, this method has been dominating

in the applications requiring high-fidelity cloth simulations. Nevertheless, to further improve

the simulation realism, more fine-grained physical laws usually need to be integrated, which

inevitably complicates and slows down simulators. Some research leverages the CPU and GPU

parallel computing to mitigate this problem (Tang et al. 2013; Wang 2021). As another way to

speed up the simulation, the data-driven method simulates cloths by replaying cloth motions

that are learned from the given training data. Without solving the physical equations at the

run time, the data-driven cloth simulators are intrinsically faster and can even achieve inter-

active simulation speed. Thus, they are more feasible in efficiency-demanding applications like

virtual try-on (Santesteban et al. 2019; Vidaurre et al. 2020). Nevertheless, compared with the

physics-based method, it sacrifices flexibility and generalization ability. For instance, the sim-

ulation fidelity tends to dramatically drop when the simulation settings are out of the training

data (Wang 2021). Hence, each of these three methods has its advantages and disadvantages,

and which method is more feasible should be determined by the simulation requirements and

goals. When the priority is positioned on the simulation realism, it is widely acknowledged that

the physics-based method is the best (Volino and Magnenat-Thalmann 2000; Stuyck 2022). Ad-

mittedly, the state-of-the-art physics-based cloth simulators can produce impressive simulation

results, but there is still room for further improvement due to coarse cloth physical models and

inaccurate cloth physical parameters.

1.1 Motivations

To a physics-based cloth simulator, two of the major factors that jointly determine the sim-

ulation realism are: the cloth physical model and the simulation parameters. The cloth phys-

ical model defines the relationship between the cloth deformation and response force. For a

physics-based cloth simulator, the integrated cloth physical model decides the cloth’s mechan-

ical properties can be embedded and the cloth behaviors can be simulated. A coarse cloth

physical model usually overlooks many mechanical properties and behaviors that exist in real

cloths and finally makes the simulated cloth look unnatural. Real cloths usually exhibit complex

mechanical behaviors and properties due to their mechanical structures at the micro-level. For

2



Chapter 1. Introduction 1.1. Motivations

example, woven and knitted cloths are common in our daily lives and, at the micro-level, they

are made from interwoven yarns each of which is a bundle of fibers (or filaments). Due to this

structure, cloth deformation essentially consists of two parts: the relative motion between yarns

(or fibers) and the deformation of yarns (Lin et al. 2012). Thus, there are two kinds of internal

forces which respectively derive from the relative motion between yarns and the deformation of

yarns. Either kind of force is indispensable to cloth mechanical behaviors. For instance, yarns

resist elongation when being stretched such that a piece of cloth can keep its rest length when

being used. In addition, cloths’ internal friction prohibits the relative sliding motion between

the contacting yarns. On the one hand, the friction between the contact yarns prevents a cloth

from unraveling. On the other hand, it is one of the important reasons for cloth hysteresis

and persistent deformations (Ngo and Boivin 2004). Omitting the internal friction will miss

these cloth mechanical behaviors in the simulated cloth and restrict the simulation realism.

Conversely, modeling cloth micro-mechanics enables cloth simulators to simulate the cloth me-

chanical behaviors at the yarn-level and to produce high-fidelity simulations (Cirio et al. 2014;

Cirio et al. 2015; Cirio et al. 2017). In addition, a cloth’s physical properties are jointly decided

by every yarn and the interactions between yarns. For instance, real cloth physical proper-

ties exhibit random variations across its geometry because a cloth micro-level (yarn-level or

fiber-level) structure may randomly change in production and use. Consequently, two same-size

cloths that are made from the same material are likely to behave differently even in the same

motion because cloth physical properties usually vary randomly across its geometry. Thus, real

cloths are more like heterogeneous materials rather than homogeneous materials (Wang et al.

2008). Unfortunately, even in state-of-the-art cloth simulators, cloth micro-level structure and

stochastic physical properties are usually overlooked. Consequently, the coarse cloth physical

models restrict the simulation realism.

Apart from the cloth physical model, cloth physical parameters also determine the simulation

realism. To simulate a specific kind of cloth in a physics-based cloth simulator, the conventional

way requires numerous times of trial-and-errors to tune the cloth’s physical parameters, which

is prohibitively time- and labor-consuming. To avoid this, many studies leverage the numerical

optimization and machine (or deep) learning methods to estimate these parameters (Wang et al.

2011; Ju and Choi 2020). However, the former requires a very long optimization time and the

latter relies on a huge amount of training data. Recently, differentiable physics has been thriv-

ing in objects’ physical parameter estimation due to its outstanding convergent speed, sample

3
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efficiency, and parameter estimation accuracy (Belbute-Peres et al. 2018; Hu et al. 2020; Hu

et al. 2019). Its application in cloth physical parameter estimation also exhibits a superior

performance than the other methods (Liang et al. 2019; Li et al. 2022a). However, cloth phys-

ical models and simulation parameters jointly determine the simulation realism because the

underlying cloth physical models of differentiable cloth simulators decide what cloth physical

parameters can be estimated. To our best knowledge, the available differentiable cloth simula-

tors are built on coarse sheet-level cloth physical models which ignore cloths’ micro-mechanical

behaviors and heterogeneous material properties. A differentiable cloth simulator built on a

coarse cloth physical model can hardly reproduce an observed cloth no matter how it tries to

optimize the cloth physical parameters. Consequently, the simulation realism is still restricted

by the underlying coarse cloth physical models. Thus, to improve cloth simulation realism,

using more fine-grained cloth physical models to embed real cloth mechanical properties and

accurately measuring cloth physical parameters must be carried out at the same time.

This research project aims at improving physics-based cloth simulation realism

by modelling more fine-scaled physics in real cloths and more accurately estimate

cloth physical parameters. To achieve this objective, we propose two differentiable cloth

simulators based on more fine-grained differentiable cloth physical models for accurate param-

eter estimation and a physics-based cloth simulator for realistically simulating cloth persistent

wrinkles due to cloth micro-mechanics.

1.2 Contributions

The first work introduces a fine-grained differentiable cloth simulator for estimating cloth physi-

cal parameters. By modeling cloths as interlaced yarns, the underlying cloth physical model can

capture the cloth micro-mechanical interactions between yarns, easily encode different woven

patterns, and simulate blend woven by mixing different yarns. The simulator is equipped with

our novel differentiable physical models to simulate various yarn-level internal forces such that

it can conduct gradient-based optimization to estimate cloth physical parameters. Compared

with a previous differentiable cloth simulator which models cloths as continuum sheets (Liang

et al. 2019), our fine-grained differentiable cloth simulator can more accurately fit the observed

cloth dynamics and the estimated cloth physical parameters are more explainable.

The second work introduces a Bayesian differentiable cloth simulator for estimating cloth phys-

4



Chapter 1. Introduction 1.2. Contributions

ical parameters from the images captured by a textile standard testing method: the Cusick

drape testing (Cusick 1961). The machine learning methods tend to adopt more flexible ways

to estimate cloth physical properties in a casual experiment setting such that can avoid using

expensive apparatuses and rigid standards (Bhat et al. 2003; Yang et al. 2017). Even if these

methods can work decently, they sacrifice the parameter estimation accuracy and the inaccurate

parameters would in turn degrade the simulation realism. By contrast, the Cusick testing is

required to be conducted in a rigidly controlled environment while following the widely acknowl-

edged standards in the textile community. In this way, it can eliminate the noise that may affect

parameter estimation accuracy. To this end, this work proposes a new Cusick drape dataset. In

addition, the cloths cut from the same fabric usually show randomly varied drape shapes because

of the random variation of cloth physical properties across its geometry at the micro-level. To

model this randomness, this work proposes a Bayesian differentiable cloth simulator that mod-

els cloths as stochastic heterogeneous materials. Instead of using a uniform physical parameter

globally, it randomly samples cloth’s local physical properties from probability distributions.

It is also fully differentiable such that can adopt gradient-based optimization methods to es-

timate cloth physical parameters. Through experiments, we demonstrate that: (1) compared

with the homogeneous differentiable cloth simulator, our Bayesian differentiable cloth simulator

can more closely fit the observations; (2) compared with the deterministic model, our Bayesian

differentiable cloth simulator model can account for and learn the randomness observed in the

Cusick testing.

The third work proposes a physics-based cloth simulator that is integrated with fine-grained

cloth physical models for simulating cloth with persistent wrinkles. Persistent wrinkles com-

monly appear on clothes (e.g., the knee area on the trousers). Compared with cloth overall

dynamics, the wrinkles are secondary cloth mechanical behaviors. The formation of persistent

wrinkles is an important feature that makes cloth distinctive from elastic membranes. It is a

deformation history-dependent behavior that is determined by the deformations that a cloth

has experienced. Moreover, these wrinkles on garments can imply the habits of the person who

wears them and greatly affect the simulation realism (Bridson et al. 2003). At the micro-level,

the persistent wrinkles are a joint effect of the cloth yarn relative sliding motions and yarn per-

sistent deformation (Prevorsek et al. 1975). However, the cloth simulators in computer graphics

have only used either internal friction or plastic deformation to simulate the persistent wrinkles,

but have never combined them together (Narain et al. 2013; Miguel et al. 2013; Wong et al.
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2013). In addition, it has been observed that cloth persistent wrinkles usually exhibit a time-

dependence: the longer the deformations that cause the persistent wrinkles are kept, the more

obvious the wrinkles would look (Levison et al. 1962). However, to our best knowledge, very few

cloth simulators in computer graphics can simulate this phenomenon. To gain a more realistic

simulation, we propose a novel time-dependent friction model and plastic model where the for-

mer is responsible for simulating the wrinkles caused by the yarn relative sliding and the latter

is designated to simulate yarn permanent deformations. Through experiments, we demonstrate

that both our friction model and plastic model can simulate time-dependent wrinkles. Mean-

while, by combining them, our cloth simulator can naturally simulate the persistent wrinkles

caused by different deformations. In addition, compared with the previous friction model and

plastic model, only our model can additionally simulate the time-dependent wrinkles.

In short, our research makes contributions to improving cloth simulation realism by introduc-

ing more fine-grained cloth physical models and more accurate physical parameters estimation

methods in three sub-works:

• A fully differentiable yarn-level cloth simulator that models cloth micro-level inter and

intra-yarn mechanics, and can estimate cloth physical parameters to accurately reproduce

the observed cloth dynamics.

• A Bayesian differentiable cloth simulator for learning cloth stochastic and heterogeneous

physical parameters from images that are captured by a strictly controlled textile testing

protocol: the Cusick Drape testing.

• A novel time-dependent friction model and plastic model that can naturally simulate cloth

persistent wrinkles which are affected by deformation duration.

1.3 Overview

This writing showcases our works with the following arrangement.

• Chapter 2 gives an inclusive literature review about cloth simulation and cloth simulation

parameter estimation. It provides a relevant background and introduces the problems that

are studied in these fields.

• Chapter 3 introduces our fine-grained yarn-level differentiable cloth simulator and demon-
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strates the improvement in simulation realism by estimating cloth simulation parameters

with modeling cloth micro-mechanics.

• Chapter 4 shows our Bayesian differentiable cloth simulator for estimating cloth physical

parameter probability distributions with a textile standard testing protocol: the Cusick

drape testing. The results demonstrate that modeling cloth material heterogeneity and

stochasticity improves the differentiable cloth simulator’s ability to learn real cloth random

mechanical behaviors and, in turn, increases the simulation realism.

• Chapter 5 presents our cloth persistent wrinkles simulation method which is realized by

using our time-dependent friction and plastic model. This work shows that, on the one

hand, combining the cloth internal friction and material plasticity makes the simulated

wrinkles look more natural. On the other hand, including time-dependence makes the

formation of wrinkles follow our daily observations.

• Chapter 6 summarizes the thesis with a discussion about the works’ limitations and the

plan for future research.

In addition, since cloth is employed as an application in this thesis, we use the terms “cloth”

and “fabric” interchangeably.
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Chapter 2

Related Work

This chapter starts with Section 2.1 for reviewing cloth simulation methods in computer graph-

ics which include geometry-based methods, physics-based methods, and data-driven methods.

With a broad review of the development of cloth simulation, this section will illustrate the path

along which people keep pursuing a higher simulation realism and highlight the advantages of

physics-based methods in high-fidelity cloth simulation. By the end of this section, it will be

clear that cloth micro-mechanics is important to cloth mechanical properties and behaviors,

and realistic cloth simulation. Apart from cloth physical models, cloth physical parameters also

determine the simulation realism of physics-based cloth simulation methods. The following sec-

tion summarizes the works about cloth parameter estimation, and compares the advantages and

disadvantages of different estimation methods. It will highlight the advantages of differentiable

cloth simulation in learning accuracy, sample efficiency, and convergent speed.

2.1 Cloth Simulation

The cloth simulation methods can be broadly grouped into three categories: geometry-based

method, physics-based method, and data-driven method (Ng and Grimsdale 1996; Choi and

Ko 2005; Hu et al. 2009; Santesteban et al. 2019). The geometry-based method is the earliest

approach adopted by computer graphics to do cloth simulation. It is straightforward and relies

on hard-coded rules to determine cloth geometry, so the simulated realism is almost fully decided

by the rationality of the rules. It is almost impossible to handle various simulation scenarios with

one group of rigid rules, so its flexibility is low. In addition, as this method embeds no physics,
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it may simulate the cloths that are impossible in the real world. To alleviate this problem,

the first physics-based cloth simulator was introduced sooner after that (Feynman 1986). By

integrating physics laws, it achieves a higher simulation realism and avoids the tedious labor

work of defining the rules. However, a realistic physics-based cloth simulator usually needs

to integrate complex physical laws and use more memory to encode geometrical information,

e.g., using a cloth mesh with a higher resolution. This inevitably slows down the simulation

speed, increases memory consumption, and makes the physics-based method infeasible in speed-

demanding applications, e.g., real-time simulation and virtual try-on. The data-driven method

provides a solution to this problem by replaying the cloth motions learned from data. In this

way, it boosts the simulation efficiency to a very high level with sacrificing some flexibility, i.e.,

generalize poorly to the simulation scenarios out of train data. All of these three methods have

unique advantages and shortcomings, and are playing irreplaceable roles in different application

scenarios. Section 2.1.1, Section 2.1.2, and Section 2.1.3 will summarize the academic works

that study these methods, respectively. Moreover, we refer the reader to the review papers (Ng

and Grimsdale 1996; Choi and Ko 2005; Volino et al. 2005; Nealen et al. 2006; Thomaszewski

et al. 2007; Hu et al. 2009) and books (Volino and Magnenat-Thalmann 2000; Stuyck 2022) for

more in-depth introductions of the cloth simulation methods and their implementations.

2.1.1 Geometry-based Method

Geometry-based methods use manually defined rules to determine cloth static geometries or

dynamic motions. Weil (1986) proposes a geometry-based cloth simulator (which is usually

taken as the first cloth simulator in graphics) for simulating the static shape of a piece of

rectangular cloth hung by constraint points. It models a cloth as a 2D grid with 3D geometry

and introduces a two-stage simulation strategy (an approximation stage followed by a relaxation

stage) to generate the cloth’s surface. In the approximation stage, it approximates the cloth

surface by the curves that are defined by all the pairs of the constraint points. It proposes

a catenary equation for defining a curve’s geometry. In the relaxation stage, it searches for

a compromise cloth geometry that can satisfy all the curves by using iterative optimization.

This simulator can reflect the simulated cloth’s material by adjusting the coefficients of the

catenary equation. However, those coefficients encode no physical information and adjusting

them is equivalent to directly manipulating the simulated cloth’s shape. As a result, it is usually

difficult to tune the coefficients to simulate an expected cloth. Additionally, only simulating a
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hung cloth is not useful in practice and, as a geometry-based method, it lacks flexibility and can

only handle this single simulation scenario. By contrast, Hinds and McCartney (1990) develop

a more practical cloth simulator for garment design which can simulate a garment that fits the

top part of a mannequin. It can assist tailors in designing the sewing patterns before making

a physical garment. This simulator adopts the real garment making routine and models a

garment by sewing multiple cloth panels at their edges. Given the position of the panels’ edges,

the simulator positions the panels around the mannequin by using an interpolation method that

can fit the garment to the geometry of the mannequin and also ensure a natural smoothness

on the sewing edges. In addition, to simulate a garment’s drapes and folds, the application

adopts a harmonic function to generate a fine-scaled geometrical offset which is superimposed

on the garment. However, for simplicity, the garments simulated by this simulator do not

include sleeves. By contrast, Ng (1995) focus on simulating the folds on the cylindrical cloths

that cover a cylindrical object, e.g., a sleeve on an arm. It assumes that the cloth and the

underlying flesh are represented by the meshes with the same topology such that their vertices

can be mapped one by one. It also assumes that the folds tend to appear on the slack area of

cloth which are selected by measuring the distance between the mapped vertices. To simulate

fine-scaled geometries on the sleeve, it uses the quadratic sinc function and parabola function

to model folds.

In general, geometry-based methods are simple, but they lack the flexibility for handling various

simulation scenarios and requires sophisticated designing experience to define the rules. Since

the introduction of physics-based methods and data-driven methods, they gradually play a

secondary role in modern cloth simulators. For instance, geometry-based methods are more

commonly used in combination with these methods for simulating fine-scaled geometries. Kang

et al. (2001) use geometry-based simulation to add wrinkles on the cloth simulated by a low-

resolution mass-spring physical model. Concretely, when the two adjacent mass points are closer

than a threshold, the simulator uses sin function to generate waves which are superimposed

onto the cloth for introducing fine-scaled wrinkles on the coarse mesh. Apart from simulating

wrinkles, the geometry-based method is also used to synthesis a cloth’s yarn-level geometry.

Admittedly, simulating the cloth mechanical behaviors at the yarn-level purely by physics-based

methods can bring about a higher simulation realism, but it is also computationally expensive.

Instead, Sperl et al. (2021) use the geometry-based method to add yarn-level geometrical details

on a mesh simulated by the sheet-level physics-based cloth simulator. It first allocates the yarn-
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level geometry to the triangles in the mesh when the cloth is in its rest shape. When the

simulation starts, the cloth dynamics are governed by a sheet-level cloth simulator. The yarn-

level geometries are updated according to the mesh deformation during the simulation. In this

way, this simulator is as efficient as a coarse sheet-level cloth simulator and, meanwhile, can

generate fine-scaled yarn-level geometrical details.

2.1.2 Physics-based Method

Physics-based cloth simulators use physical laws to model cloth mechanical behaviors. Owing

to this, they are flexible and can handle diverse simulation scenarios. In addition, through

modeling cloth physics, they can naturally simulate various cloths made from different materials

by adjusting cloth physical parameters. Furthermore, the simulated cloths can maintain physical

constancy and correctness no matter how complex the involved mechanical behaviors are. These

advantages collectively determine their dominating role in modern cloth simulators for producing

realistic simulations. In a physics-based cloth simulator, the underlying cloth physical model

determines the physical laws that can be integrated, and the physical laws decide the mechanical

properties and behaviors that can be embedded in the simulated cloth. Therefore, the cloth

physical model and the integrated physical laws have a great influence on simulation realism.

Since the introduction of the first physics-based cloth simulator in computer graphics, various

cloth physical models and laws have been proposed to pursue a higher simulation realism by more

accurately simulating cloth mechanical behaviors. Among them, yarn-level cloth simulators

model a cloth as interlaced yarns and can achieve the state-of-the-art simulation realism in

computer graphics. They can naturally integrate various physical laws to realistically simulate

real cloth mechanical properties due to cloth yarn-level mechanics (e.g., nonlinear elasticity,

plasticity).

Cloth Physical Models

Generally, according to the cloth physical model, physics-based cloth simulation methods can be

further classified into mass-spring methods, particle-based methods, and shell (or plate) meth-

ods. The physical models determine what physical laws can be integrated to simulate cloth

mechanical behaviors. Mass-spring methods model a piece of cloth as the material points which

are connected by massless springs where the material points’ spatial positions collectively define

cloth geometry. The topology of the spring connections is determined by the embedded cloth

11



2.1. Cloth Simulation Chapter 2. Related Work

internal forces. Hooke’s law is commonly adopted to model elastic cloths where the internal

forces derive from the elongation or compression of the springs and tend to keep cloths in their

rest shapes, i.e., all springs are in their rest length. A cloth’s physical properties are defined by

the material points’ weight and springs’ stiffness parameters (Provot 1995; Choi and Ko 2002;

Liu et al. 2013). This modeling method is easy to implement and enables fast simulation thanks

to the simple physics, but springs are too coarse to integrate real cloths’ physical properties

for accurately simulating cloth mechanical behaviors (e.g., nonlinearity, viscosity). In addition,

it is difficult to arrange springs to model real cloth mechanics. By contrast, the particle-based

methods model cloth as a collection of particles which define the spatial positions of the cloth

cross over between yarns. A cross over refers to the intersection between two contact yarns. To

model cloth internal forces, they define various potential energy functions of adjacent particles’

position and velocity where they can embed cloth nonlinear elastic material properties (Breen

et al. 1992; Breen et al. 1994a; Breen et al. 1994b). However, the cross overs are dense in real

cloth. As a result, compared with the mass-spring methods, simulating cloths by particle-based

methods need more computational resources and is usually much slower. Mass-spring methods

and particle-based methods are usually referred to as discrete methods as they both treat the

simulated cloths as a collection of discrete elements, i.e., material points or particles. By con-

trast, shell methods, which derives from continuum mechanics, model the simulated cloths as

a continuum objects such that the mass and internal energy of a piece of simulated cloth are

evenly distributed across its geometry. In continuum mechanics, an object’s mechanical behav-

iors are defined by constitutive laws which specify the strain-stress, i.e., average deformation

and force, relationship (Chaves 2013). To conduct simulation on computers, these methods

needs to do spatial discretization (by finite element or finite difference method) such that the

continuous geometry can be approximated by many smaller simple elements. Compared with

mass-spring methods and particle-based methods, they can adopt various sophisticated constitu-

tive laws to accurate model the mechanical behaviors observed in real cloths, e.g., nonlinearity,

viscosity, and plasticity (Volino and Magnenat-Thalmann 2000), and can achieve a superior sim-

ulation realism. However, they are more complicated to implement because strain and stress

have more complex definitions. In addition, the extra spatial discretization needs to careful

implementations.

Apart from these three conventional methods, some recently proposed cloth physical simulators

model simulate at the yarn-level. They model a piece of simulated cloth as interlaced inex-
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tensible or elastic splines for representing woven or knitted cloth’s yarns. In this way, they

can explicitly simulate the mechanical behaviors of each individual yarn (Kaldor et al. 2008;

Cirio et al. 2014; Cirio et al. 2017). In the simulated cloths, the internal forces consist of the

intra- and inter-yarn forces where the former are defined by the deformation of a spline and

the latter are defined by the interactions between the splines. In this way, these cloth mod-

els can naturally simulate cloth micro-mechanical behaviors which decide cloth nonlinear or

non-elastic mechanical properties, such as viscosity and hysteresis. The hysteresis refers to the

energy consumption in the cloth deformation process commonly observed in real cloths and

is usually attributed to cloth internal frictions (Wong et al. 2013). By contrast, although the

particle-based methods (Breen et al. 1992; Breen et al. 1994a; Breen et al. 1994b) model cloths’

cross overs, they do not model the frictional contact between the yarns and cannot simulate

hysteresis. Therefore, yarn-level cloth simulators can achieve a far higher simulation realism

than the others.

Cloth Physical Laws

In a physics-based cloth simulator, the integrated cloth physical laws determine the mechanical

properties and behaviors that can be seen in the simulated cloth. As real cloths can exhibit com-

plicated mechanical behaviors (e.g., nonlinear elastic, non-elastic, plasticity, hysteresis) other

than simple elastic sheets, various cloth physical laws have proposed to reproduce real cloths’

mechanical behaviors and pursue a higher simulation realism.

Linear Elastic Mechanics The early cloth simulators usually model cloths as linear elastic

materials. Feynman (1986) proposes the first physics-based cloth simulator for simulating cloth

static drapes. It adopts the shell method to model a simulated cloth as an elastic plane which is

discretizated into a grid of points. In addition, it decouples a cloth’s deformation into in-plane

deformation (i.e., tensile or stretching) and out-of-plane deformation (i.e., bending). It defines a

linear elastic stretching and bending energy to model the cloth’s internal forces: stretching force

and bending force, which tend to keep the simulated cloth in its rest shape. To simulate a cloth’s

static drape, this simulator searches for the cloth shape with minimum total energy which is the

sum of the cloth’s internal stretching and bending energy, and external gravity potential energy.

However, it is unable to simulate cloth motions and has a very restricted utility. By contrast,

to simulate cloth dynamics, Terzopoulos et al. (1987) adopt the Lagrange equation to build the
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cloth motion equation which is an ordinary differentiable equation (ODE). To solve the ODE,

it uses the numerical integration method which is equivalent to approximating the ODE by

multiple linear equations (usually referred to as time discretization in cloth simulation). To

model cloth physics, it takes a piece of cloth as a continuum elastic 2D surface and defines the

surface’s deformation energy density functions to model the cloth’s internal forces. To do spatial

discretization, it adopts the finite difference method to approximate the continuous surface by a

grid of points. Whereas this simulator can only simulate simple cloths, like tablecloths or flags.

In our daily lives, cloths also commonly appear as on-body garments. Simulating a garment that

can move with the underlying body is a practical application for 3D animations and fashion

designs. When making a real garment, a tailor needs to sew multiple cloth panels together.

The garment simulator proposed by Carignan et al. (1992) mimics this real garment workflow

in simulation. It also sews multiple virtual cloth panels together and each cloth panel’s physics

is governed by the cloth physical model proposed by Terzopoulos et al. (1987). Considering the

numerous collisions between the body and the on-body garment, it adopts the conservation of

momentum law to define the motions of the elements in the collision. In this way, it avoids

the bouncing artifacts that would appear when using the conventional potential energy method

(i.e., introducing a repulsive force to push elements in contact apart). Even if simply modeling

cloths as linear elastic material can simulate visually pleasing results, real cloths usually exhibit

nonlinear elastic or non-elastic mechanical behaviors. Since seminal studies introduced above,

many works have been proposed to improve the cloth simulation realism by more accurately

modeling real cloth mechanical behaviors.

Biphasic Mechanics by Strain Limiting When modeling cloths an elastic materials, the

simulated cloths tend to exhibit the super-elasticity artifacts where the simulated cloths’ stretch-

ing deformation concentrates on the areas that are under high stresses. For instance, a piece

of simulated hung cloth would exhibit a local over-elongation around its two top corners for

pinning the cloth. However, real cloths rarely have large local stretching deformations and, con-

sequently, the super-elasticity artifacts make the simulated cloths look more like rubber (Provot

1995). A straightforward approach to this problem is using high-stiffness parameters. However,

when adopting this method, the simulation time step size has to be reduced to guarantee the

stability of numerical time integration, which will degrade the simulation efficiency (Hauth et

al. 2003). By contrast, Provot (1995) introduces the first strain limiting method to address
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the super-elasticity artifacts. Concretely, the work integrates the strain limiting method into a

mass-spring cloth simulator to restrict the maximum local elongation and compression of the

springs by hard-coded rules (only 10% elongation and compression are allowed). In this way,

the simulator can effectively eliminate the super-elasticity artifacts and, instead, the stretch-

ing deformation can naturally propagate to the entire cloth without altering cloth stiffness

parameters. This simple and effective strain limiting approach is widely adopted in the later

works (Desbrun et al. 1999; Meyer et al. 2001). Essentially, it simply manipulates cloth ge-

ometry by post-processing. Therefore, before correcting the artifacts, this method first needs

to allow the over-stretching to occur and then adjusts cloth geometry to enforce the restric-

tions. By contrast, Vassilev et al. (2001) enforce the restrictions by limiting cloth deformation

variation rate (i.e., material points’ velocities in a mass-spring model). In this way, the over-

stretching can never occur in every simulation step. However, directly correcting cloth geometry

may cause self-intersection artifacts and greatly degrade the simulation realism. To resolve this

problem, Bridson et al. (2002) introduce a robust collision handling method that adopts the

continuous collision detection (CCD), and combines the impulse method and geometry method

to do collision response. This collision-handling method can cooperate with strain limiting to

avoid the super-elasticity without suffering from self-intersection artifacts. Additionally, strain

limiting method in their work also simultaneously enforces restrictions on the deformation and

deformation rate.

The strain limiting methods introduced above are local strain limiting methods because the

deformation restrictions are only enforced onto the elements that exceed the given threshold.

In the implementation, the local restrictions are usually enforced in an iterative manner: first

running forward simulation and then correcting the local deformations to enforce the restric-

tions. When correcting cloth deformations, the simulated cloth physics is ignored. Therefore,

the simulated cloth will not be stable until all elements satisfy the restrictions after a forward

simulation. Consequently, it may need prohibitively many iterations to converge and even fail

to converge especially when simulating an inextensible cloth in high deformation scenarios, e.g.,

tightly stretching all the boundaries of a cloth. Instead, Goldenthal et al. (2007) adopt the

augmented Lagrangian equation to model a cloth’s constrained motion equations where the

constraints embed the strain limits. As such, in every simulation step, the simulator can take

into account the simulated cloth global physics and enforces the deformation restrictions at

the same time. Consequently, it achieves a higher convergence performance than the iterative
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methods. In addition, to accelerate the optimization speed of the augmented Lagrangian equa-

tion, it introduces a step and projection method that starts with a forward simulation without

considering the restrictions to compute the cloth next state. (In a cloth simulator, a cloth’s

state refers to the cloth deformation and deformation rate or a cloth’s mesh vertices’ position

and velocity after discretization.) In the next simulation step, it projects the cloth new state on

the manifold defined by the deformation restrictions. Although this method is efficient, it tends

to cause numerical damping artifacts because the projection operation will delete the normal

component of cloth velocity and cause energy dissipation. To alleviate this problem, English

and Bridson (2008) use the second-order backward Euler method (Choi and Ko 2002) to do nu-

merical integration rather than the commonly used first-order backward Euler method (Baraff

and Witkin 1998). In this way, more cloth dynamics information is used in simulation and

therefore more energy can be kept after the projecting operation.

Due to the cloths’ structure, they behave like anisotropic materials that are stiffer along the

directions of the yarns, e.g., the perpendicular warp and weft directions in woven cloths, and

are relatively softer along the other directions. Thus, an accurately simulated cloth should re-

flect this anisotropy. To embed this anisotropy by strain limiting, the works introduced above

need to model a piece of cloth as a perpendicular mass-spring grid or quadrilateral mesh where

the springs or mesh edges are along the same directions as the yarns. In this way, they can

embed cloth anisotropy by limiting the springs or mesh edges elongation. Compared with shell

methods, mass-spring methods are coarser due to the simpler physical models. In addition,

arranging the springs to accurately model cloth internal forces is difficult. When adopting shell

methods, quadrilateral meshes are infeasible when modeling cloth with non-straight bound-

aries or using adaptive meshes. To simulate anisotropic cloths without restricting cloth mesh

topologies, Thomaszewski et al. (2009) introduce the Continuum-based Strain Limiting (CSL)

method that can enforce deformation restrictions onto the principle components of the strain

and strain rate tensors which represent cloth deformation and deformation rate along the warp

and weft directions. In this way, it does not have to use quadrilateral mesh for embedding

anisotropy and can be easily integrated into shell cloth simulators. In shell cloth simulators,

the mesh resolution of a simulated cloth also determines the simulation realism. For instance,

only high-resolution meshes can embed cloth fine-scaled geometrical details, e.g., wrinkles (Selle

et al. 2008). However, when using high-resolution cloth meshes, the dimension of motion equa-

tion would be so high that could require a prohibitive longer time to converge with enforcing
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deformation restrictions. To alleviate this problem, Wang et al. (2010b) propose a multiple-

resolution approach for accelerating convergence when using high-resolution meshes. It realizes

this by introducing a downsampling and upsampling function. Concretely, it first downsamples

the original mesh resolution to a low-resolution coarse mesh and enforces the restrictions on

the coarse mesh through an iterative method. Then, the corrected coarse mesh is gradually

upsampled with enforcing the restrictions onto the finer mesh. This upsampling is repeated

until the mesh returns to its original resolution. In this way, compared with directly enforcing

restrictions on the high-resolution mesh, it achieves a faster convergence speed. In addition,

Narain et al. (2012) observe that using an iterative manner to implement the strain limiting

is infeasible when using irregular mesh that consists of faces in different size. For instance,

manipulating a mesh face’s vertices positions to enforce the deformation restrictions may overly

change the geometry of the adjacent smaller faces, which makes convergence difficult. There-

fore, to cooperate with their adaptive remeshing method for cloth simulation, they adopt the

Augmented Lagrangian method to enforce deformation restrictions (Nocedal and Wright 2006)

because it considers a cloth’s global geometry in optimization.

Nonlinear Elastic Mechanics Essentially, cloths’ inextensibility is a natural result of the

cloth nonlinear mechanical property where a piece of cloth is usually soft in small deformation

and becomes dramatically stiffer as the deformation increases. The strain limiting method

models cloth as a biphasic material that becomes infinitely stiff when the deformation exceeds

the threshold and this essentially is a simple nonlinear mechanical model. However, it has been

observed that the nonlinearity exhibited in cloth mechanical behaviors is far more complex than

a biphasic material. In general, a cloth’s force-deformation process can be roughly separated

into three regions: a region of initial resistance to deformation, a region of low deformation,

and a region of high deformation (Breen et al. 1994b). In the region of low deformation,

cloths’ mechanical behaviors are close to a linear elastic material. In the other two regions,

the nonlinearity becomes obvious. Therefore, simply modeling cloth as an elastic material or

biphasic material usually does not cause obvious artifacts when only simulating limited kinds of

cloth within the small deformations. However, this coarse modeling method cannot guarantee

simulation realism when simulating a cloth that is under large deformation or simulating cloths

that can exhibit more complex nonlinear mechanical behaviors.

To pursue a higher simulation realism, cloth simulators introduce mechanically more accurate
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physical laws to embed cloth nonlinear mechanical properties. Three well-known methods to

model cloth nonlinear mechanics are using piecewise linear model, introducing cloth internal fric-

tion, and using hyper-elastic constitutive laws. The piecewise linear model is a numerical fitting

method that approximates a complicated nonlinear force-deformation curve by multiple linear

(or simple nonlinear) functions. For instance, Wang et al. (2011) use a piecewise linear model

to approximate cloth nonlinear (and anisotropic) stretching and bending mechanical behaviors.

The model consists of 24 stretching stiffness parameters and 15 bending stiffness parameters

which split the cloth nonlinear stretching and bending load-deformation curves into multiple

linear pieces. To reproduce real cloth mechanical behaviors, it adopts numerical optimization

to estimate these parameters by minimizing the geometrical difference between observed real

cloths and simulations. In the simulation stage, every cloth mesh element’s stretching and

bending stiffness parameters can vary and are interpolated according to the element’s defor-

mation such that the simulated cloth can exhibit real cloth nonlinear mechanical behaviors.

By contrast, to reproduce real cloth static drape, Breen et al. (1994b) use piecewise linear

and quadratic functions to fit the nonlinear force-deformation curves of real cloth measured by

the Kawabata Evaluation System (Kawabata 1980). In this way, it can realistically simulate

cloth static drape shapes which can reflect the visually distinctive features that can indicate the

cloth material. Eberhardt et al. (1996) further improve this work by allowing cloth dynamics

simulation, introducing air resistance, and additionally considering the hysteresis effect.

In the textile, the hysteresis effect is commonly attributed to cloth internal friction which refers

to the contact friction between yarns and fibers. Cloth internal friction is also a reason for

the cloth nonlinear mechanical properties. For example, Ngo and Boivin (2004) integrates an

enhanced version of Dahl’s friction model (additionally embeds the Stribeck effect) to their

cloth simulator to simulate cloth nonlinear stretching, shearing, and bending behaviors. By

using numerical optimization, their simulator can estimate the cloth physical parameters to

fit the force-deformation curves measured in the Kawabata Evaluation System (KES-F). With

the estimated parameters, it accurately reflects the nonlinear properties of the real cloth in

simulation. In KES-F force-deformation curves, a cloth’s reaction force usually dramatically

increases as deformation becomes large. One plausible reason for this phenomenon is that, as

a cloth gradually deforms, the inter-yarn friction forces increase because the normal contact

forces between the yarns increase. However, Dahl’s friction model adopted by Ngo and Boivin

(2004) cannot simulate this phenomenon. Miguel et al. (2013) introduce a strain-dependent
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Dahl’s friction model where the friction force is a function of strain such that the friction force

strength can increase with deformation. After integrating this friction model, their simulator

can more accurately simulate cloth non-linear mechanical behaviors.

In continuum mechanics, nonlinear mechanics has been studied for a long time and there are var-

ious hyper-elastic constitutive laws to account for the nonlinear mechanical behaviors observed

in different real-world materials. Eischen et al. (1996) use the nonlinear shell theory (Libai

and Simmonds 1983) to simulate cloth which is accurate, but is computationally too expen-

sive. The Saint-Venant-Kirchhoff (StVK) model is one of the constitutive laws for modeling

nonlinear elastic materials. To embed cloth mechanical nonlinearity with acceptable simula-

tion efficiency, Volino et al. (2009) introduce a simplified (anisotropic) StVK model to a shell

cloth simulator. Through experiments, this work demonstrates that this model can simulate

a force-displacement curve similar to the real measurements. Moreover, this model’s simula-

tion accuracy is further demonstrated in a later work (Miguel et al. 2012) that uses the StVK

model to fit the force-displacement curves measured on real fabrics. In addition, Clyde et al.

(2017) adopt the Kirchhoff-Love thin shell model from the continuum mechanics to simulate

cloth physics and introduces a hyper-elastic constitutive law, which is similar to the Ogden

model (Ogden and Hill 1972), to simulate cloth nonlinear elastic mechanical behaviors.

Non-elastic Mechanics Apart from the nonlinear elasticity, real cloths also usually exhibit

non-elastic mechanical behaviors. For example, cloths have history-dependent mechanical be-

haviors where a cloth cannot return to its original rest shape after experiencing an extremely

large deformation, such as permanent elongations and persistent wrinkles. This mechanical

characteristic is indispensable to real cloth, and must to considered in cloth production and

fashion design. For instance, on the one hand, it can be leveraged to shape cloths for design;

on the other hand, this property is usually undesired in the high quality and durable cloths. In

material engineering, this irreversible deformations are usually referred to as plastic deforma-

tions and this material property is usually referred to as plasticity. In textile, cloth plasticity

is taken as the combinational effect of cloth internal friction and the persistent deformations of

yarns and fibers (Prevorsek et al. 1975). To model cloth plasticity, a cloth’s deformation should

be decoupled into an elastic part and plastic part. Cloth (either linear or nonlinear) elastic

mechanical behavior is only determined by the elastic deformation. The plastic deformation

varies only when the elastic deformation exceeds a predefined threshold, usually referred to as
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yield strain. In computer graphics, O’Brien et al. (2002) adopt the perfect plastic model to

simulate plastic deformation which assumes that the deformation exceeding the yield strain is

immediately converted to plastic deformation. However, the perfect plasticity is uncommon

in real materials. In practice, plastic deformation usually involves hardening (or aging) effects

where, after experiencing plastic deformations, the material becomes difficult to have more plas-

tic deformations. Therefore, Grinspun (2008) adopts the hardening plastic model to achieve a

higher simulation realism. This hardening plastic model is then integrated into the simulator

proposed by Narain et al. (2013) to simulate the persistent wrinkles of cloths and papers.

In addition, cloths also exhibit deformation rate dependent mechanical properties, i.e., viscos-

ity (Sun and Hu 2020), where cloths’ reaction forces are proportional to cloths deformation

rate. Essentially, viscosity is widely used in cloth simulators for stabilizing simulation and

has another more popular name, i.e., damping (Volino and Magnenat-Thalmann 2005). Ter-

zopoulos and Fleischer (1988) extend their previous elastic model (Terzopoulos et al. 1987) by

integrating a plastic model and introducing a viscosity model which consists of a sequentially

connected Maxwell model and Voigt model to simulate nonelastic mechanical behaviors in soft

bodies (including cloths). In a more recent research, Jung et al. (2016) analyze the cloth non-

elastic mechanical behaviors in cloth stretching deformations. Based on the observations, they

decouple cloth non-elastic stretching deformations into three components: immediate elastic

deformation, viscoelastic deformation, and permanent deformation. The formation process of a

cloth’s persistent elongation involves both viscoelastic deformation and permanent deformation

such that cloth stretching plastic deformation is time-dependent, i.e., creeping effect (the cloth

can constantly extend when applying a constant stretching force). It adopts the Kelvin model

to simulate this creeping behavior. Through experiments, it demonstrates their simulator can

realistically simulate real cloth creeping mechanical behaviors. In addition, cloth hysteresis is

also an important history-dependent deformation. As mentioned above, it is usually modeled

by cloth internal friction which can also cause cloth plastic deformations and play the same role

as damping in a cloth simulator. For example, Miguel et al. (2013) demonstrate their Dahl’s

friction model can also simulate cloth persistent deformations. Wong et al. (2013) introduce a

cloth bending force model, which embeds cloth internal friction, can simulate cloth permanent

wrinkles and stable the simulated cloth motions as the damping force.
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Yarn-level Cloth Simulation

Cloth macro-level nonlinear elastic and non-elastic properties are the natural results of cloth

micro-mechanics. However, mass-spring and shell cloth simulation methods only focus on cloth

macro-level behaviors. As such, these models can only mimic the nonlinear elastic and non-

elastic mechanical behaviors exhibited at the macro-level by using numerical methods (e.g.,

piecewise linear) or more feasible constitutive laws. The approximated cloth physics inevitably

overlooks real cloth fine-grained mechanical behaviors and restricts the simulation realism.

Breen et al. (1992), Breen et al. (1994a), and Breen et al. (1994b) start the early works that con-

sider cloth micro-mechanics in simulation and introduce a particle-based cloth simulator which

uses particles to denote the cross overs between the contacted yarns. Nevertheless, this cloth

physical model cannot embed woven or knitted patterns (yarns’ arrangement). In addition,

these simulators are only designed for simulating woven cloth. However, the widely used real

cloths are usually classified into woven cloth, knitted cloth, and non-woven cloth. They usually

exhibit very distinctive mechanical characteristics due to their different yarn arrangement. For

example, woven cloths (are usually used to make tablecloths and curtains) are inextensible. By

contrast, owing to the looser yarn arrangement, knitted cloths (usually used to make t-shirts

and socks) can be stretched very much and exhibit more obvious mechanical nonlinearity while

being stretched. For example, a piece of knitted cloth can stretched easily at the beginning

where the major deformations are caused by yarns’ relative movement. As the cloth being

stretched, it will be more difficult when yarns tightly contact with each other and the major de-

formations derives from yarns’ deformations. In addition, compared with woven cloths, knitted

cloths usually exhibit a more obvious Poisson effect: stretching one direction affects the orthog-

onal direction. However, most of the cloth simulators are designed for simulating inextensible

woven cloths. Consequently, when simulating knitted cloths, these simulator tend to produce

unrealistic simulation results.

Kaldor et al. (2008) introduce the first yarn-level cloth simulator for simulating knitted cloths.

It models cloths as interlocked yarns each of which is modeled as (inextensible) B-splines and

introduces a penalty energy to push the contact yarns toward opposite sides for handling the

yarn contacts at cross overs. This work points out that the knitted cloth’s nonlinear mechan-

ical behaviors exhibited when being stretched are jointly caused by the inter-yarn structure

variation and intra-yarns deformation. It demonstrates this argument through experiments: by
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simulating the interactions between yarns and each yarn’s deformation at the micro-level, the

simulator can naturally simulate cloth macro-level nonlinear mechanical behaviors. In addition,

by modeling the loose knitted patterns (the yarns arrangement in knitted cloths), it can real-

istically reproduce real knitted cloths’ mechanical characteristics: more stretchy and obvious

Poisson effect. However, handling yarn contacts is the main efficiency bottleneck of this sim-

ulator. In every simulation step, the simulator needs to iterate through all the cross overs to

calculate the penalty energy (by integrating its energy density function over the length of yarn)

and then compute the energy’s derivatives (w.r.t, cross overs’ spatial position) to acquire the

contact force. Although this work tries to reduce the computational consumption by narrowing

the integration interval (integrate over a short segment around the cross over rather than the

entire yarn) when computing the energy, the simulator still would become prohibitively slow

when simulating a large knitted cloth. Therefore, its subsequent work proposes a contact force

approximation algorithm (Kaldor et al. 2010) which can speed up the yarn-yarn contact han-

dling by 7-9 times. Consequently, it becomes capable of simulating much larger cloths, e.g.,

on-body garments. Generally, the algorithm calculates contact forces in one simulation step

with saving the cloth state as a reference state. In the subsequent simulation steps, instead of

integrating the penalty energy and calculating contact forces again (which is computationally

expensive), it uses a linear function to approximate the contact forces according to the saved

reference state and the cloth’s current state. As long as the difference between the cloth cur-

rent state and the reference state is greater than a given threshold during the simulation, the

contact force will be calculated again and also the reference state will be updated. Although

this method can effectively accelerate the yarn-yarn contact handling, explicitly simulating the

collisions between yarns is still too expensive.

Instead, Cirio et al. (2014) assume the yarns are constantly in contact with each other at cross

overs such that it can avoid explicitly handling the yarn-yarn collisions and gain a higher simu-

lation efficiency. To simulate the constant contact yarns, it models yarns as highly constrained

strands that can only slide through the spatial positions of the cross overs. To model a yarn’s

constrained motion, it adopts the Lagrangian-on-Eulerian method (Sueda et al. 2011) to define

cross overs’ spatial positions in the (3-dimensional) Lagrangian coordinate system and simulate

contact yarns relative sliding motions in the (2-dimensional) Eulerian coordinate system. The

cross overs’ 3D spatial positions encode the simulated cloth geometry. By contrast, the 2D

Eulerian coordinate system is used for modeling yarns’ sliding motion. This work is designed
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for simulating woven cloths. It discretizes the piece of simulated cloth’s perpendicular warp

and weft yarns into segments, and each segment is delimited by two adjacent cross overs in the

same yarn. To further accelerate the simulation speed, this simulator leverages GPU parallel

computing and finally can simulate a cloth that consists of over 2K yarns at about 2 minutes

per frame. In addition, by explicitly modeling cloth micro-mechanics at the yarn-level, this

simulator gains a higher simulation realism, and can naturally simulate woven cloth nonlinear

elastic and non-elastic mechanical behaviors. Concretely, by modeling shearing lock (King et al.

2005) and shearing friction, this simulator can simulate cloth nonlinear elastic shear behaviors

and shear wrinkles which are commonly observed in real cloths. Cirio et al. (2015) further

apply this constant contact assumption to knitted cloth simulation. Moreover, it decouples

the knitted cloth elastic energy into the yarn bending energy and wrapping energy where the

former tends to keep each yarn in its rest shape (i.e., keep a yarn straight) and the latter is

used for keeping the angle between the two wrapping yarns at the rest angle (i.e., keep a cloth

flat). In addition, it also demonstrates that simulating cloth at the yarn-level can naturally

simulate cloth nonlinear mechanical behaviors and modeling the sliding friction between yarns

can simulate cloth persistent plastic deformations. However, this simulator only supports a few

kinds of knitted cloths with simple stitches (i.e., knit and purl) that only have two contact

points between every two contact yarns. Its subsequent work (Cirio et al. 2017) enriches the

supported stitch types and can model the stitches consisting of multiple yarns such that can

simulate more diverse knitted cloths.

In addition, based on the work proposed by Kaldor et al. (2008), Leaf et al. (2018) introduce a

yarn-level woven (or knitted) pattern design tool that allows users to view a cloth’s relaxation

at the yarn-level on the fly with adjusting the woven patterns at the same time. Compared

with sheet-level cloth simulators (which adopt the mass-spring or shell simulation methods),

yarn-level cloth simulators can explicitly encode cloth woven patterns by allocating the yarn’s

relative position in the cloth. As woven patterns have a significant influence on cloth mechanical

properties and appearance, designing woven patterns is important in textile engineering and

fabric design. To achieve real-time simulation speeds, this tool represents yarn-level cloth as

repetitive and periodic tiles which connected on their edges to compose an entire cloth. It

assumes the mechanical behaviors (e.g., internal energies and inter-yarn collision) of all the tiles

are identical such that it only needs to calculate the physics of a partition of the cloth. To

ensure the geometry consistency between the adjacent tiles, it enforces a boundary condition to
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connect the tiles’ edges. In addition, with a GPU implementation for parallel computing, the

tool finally can simulate yarn-level cloth relaxation at an interactive rate.

Since the introduction of these efficient yarn-level cloth simulators, many works have been

proposed to optimize the physical model for pursuing a higher simulation realism. Sánchez-

Banderas and Otaduy (2017) introduce a velocity-based dissipation potential energy that can

be integrated into the yarn-level woven cloth simulator proposed by Cirio et al. (2014). In this

way, the simulator not only can damp cloth motions to stabilize the simulation but also can

simulate cloth viscosity mechanical behaviors to increase simulation realism.

In addition, Pizana et al. (2020) optimize the bending model used in the simulator proposed

by Cirio et al. (2014) and resolves the undefined bending force direction problem. In the

simulator proposed by Cirio et al. (2014), the bending energy is proportional to the bending

angle between two neighbor yarn segments. To calculate the bending force, the simulator needs

to compute the derivatives of the bending energy w.r.t. cross overs’ spatial positions. However,

when the bending angle is equal or close to zero, the bending model suffers from undefined

derivatives: the derivative of the zero bending angle is zero and therefore the bending force

direction is undefined. Owing to this flaw, this bending model may incur flipped bending

artifacts when simulating yarns with non-zero rest bending angles, which are usually used to

simulate predefined persistent wrinkles. Pizana et al. (2020) resolve this problem by calculating

and saving the normals (at the cross overs) which are perpendicular to the surface of the cloth

at its rest shape. When a bending angle is equal or close to zero, the bending force direction is

set to the pre-computed normal direction. In addition, this method can also decouple a bending

angle into an out-of-plane bending angle and an in-plane bending angle where the former is along

the pre-computed normal direction and the latter is along the bi-normal direction. In this way,

the simulator is allowed to use different stiffness parameters for the in-plane and out-of-plane

bending deformations such that can simulate yarns’ anisotropic bending behaviors.

Apart from the bending model, the yarn stretching energy in the simulator proposed by Cirio et

al. (2014) may become extremely large when the two end nodes of a yarn segment are very close

and this would degrade the simulation stability. To alleviate this problem, Cirio et al. (2014)

define a penalty energy to repulse the parallel yarns apart to avoid this situation. However, when

simulating tightly woven fabrics where the distance between every two parallel yarns is small, the

simulation stability still cannot be guaranteed by this method. Instead, Sánchez-Banderas et al.

24



Chapter 2. Related Work 2.1. Cloth Simulation

(2020) solve this problem by adopting a more robust discretization method through introducing

a new node into Eulerian-on-Lagrangian coordinate: Eulerian with Interpolation Lagrangian

node (EIL node). Concretely, when the two end nodes of a segment are closer than a given

threshold, one of the end nodes is converted to an EIL node. Its 3D spatial position in the

Lagrangian coordinate is given up and instead is linearly interpolated by the opposite end node

in this segment and the other end node of the adjacent segment along the same yarn. In every

simulation step, the simulator checks all the segment’s end nodes sequentially and the EIL node

is ignored when computing the stretching energy such that the simulator can avoid the great

stretching forces and improve the simulation stability.

Optimize Efficiency

Compared with geometry-based cloth simulators, physics-based cloth simulators are usually

slower due to the complicated physical equations and numerical integration for dynamic simula-

tion. Apart from simulation realism, simulation efficiency is also an important consideration in

computer graphics applications. Even if physics-based cloth simulators gain a higher simulation

realism, an overly slow simulation speed is still unacceptable. Therefore, speeding up physics-

based cloth simulators is another important research direction. Many works have proposed and

some representative efficiency optimization methods are commonly adopted in modern physics-

based cloth simulators.

When using the explicit (forward) Euler method to do numerical integration, the simulation

time step size must be carefully limited to avoid unstable simulation which especially tends

to occur when an overly large force appears. However, this would slow down the simulation

efficiency because, for example, simulating a 1-minute cloth animation may need thousands of

forward simulation steps. To alleviate this problem, Baraff and Witkin (1998) introduce the

implicit (backward) Euler method into the field of cloth simulation to allow large simulation

step size without breaking the simulation stability. Moreover, it uses an adaptive time step

size which reduces time step size as long as it detects overly large forces. When adopting the

implicit Euler method, the cloth motion equations become a system of nonlinear equations that

usually need to be solved by the Newton method. As the Newton method needs the second-

order derivatives, i.e., Hessian matrices of the forces, which are expensive to compute, using the

implicit Euler method still slows down simulation speed. Essentially, solving the implicit Euler

cloth motion equations is equivalent to solving a nonlinear optimization problem for minimizing
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cloth total potential energy (Martin et al. 2011). To speed up the optimization, Bouaziz et al.

(2014) decouple the objective function (i.e., cloth total energy) into a linear part and nonlinear

part, and proposes a local-global optimization algorithm, called Projective Dynamics (PD), to

replace the Newton method. Concretely, it conducts optimization by projecting the cloth’s

current state on a constrained manifold where the cloth’s total energy is zero. Therefore, the

constrained manifold is designed for modeling the cloth’s internal and external forces. In the

local step, PD independently projects the cloth’s current state onto every manifold defined by

one force. In the global step, PD finds the compromised state that can to the greatest extent

satisfy all the projected states. Compared with the Newton method, PD can run multiple

local steps in parallel because projection operations are independent. In addition, PD avoids

calculating the expensive Hessian Matrix. As a result, PD gains a significant improvement in the

simulation efficiency with an acceptable sacrifice on the numerical accuracy. Later, this solver

is adopted by Ly et al. (2020) who integrate the Signorini-Coulomb law (Daviet et al. 2011) into

their PD-based cloth simulator to accurately simulate the cloth frictional contacts (including

cloth self-contacts and the contacts with other objects). Apart from cloth physical models and

physical laws, cloth mesh resolution also affects simulation realism because it determines the

minimum details that can be encoded in cloth’s geometry. In real cloths, dynamic wrinkles

commonly appear and disappear with cloth motions. The quality of simulated cloth wrinkles

dramatically affects the overall simulation plausibility. As wrinkles are fine-scaled geometries, a

coarse-resolution mesh will restrict the simulated wrinkles’ fidelity. However, globally increasing

cloth mesh resolution will introduce extra memory consumption and slow down the simulation

speed. By contrast, Narain et al. (2012) introduce an adaptive remeshing algorithm that can

dynamically adjust cloth mesh topology according to the cloth deformation. Concretely, it

reduces mesh resolution in the areas where the geometry is simple, i.e., flat and smooth, by

merging the vertices and, conversely, increases mesh resolution in the areas that have complex

geometry, e.g., wrinkles and folds, by splitting mesh edges. In this way, this simulator can keep

fine geometrical details without dramatically slowing down the simulator.

Müller et al. (2007) introduce a new simulation paradigm referred to as position-based dynamics

(PBD) which is not only efficient but also stable. Different from the classical force-based

simulation methods that first calculate the forces impulsed on the simulated object’s physical

system and then evaluate positions through Newton’s second law and numerical integration,

PBD directly manipulates positions by solving a quasi-static problem in which the simulator
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searches for an equilibrium state of the simulated object’s that can satisfy the physically inspired

geometric constraints (Bender et al. 2014b). Most PBD simulators adopt the Gausi-Seidel

fashion to iteratively enforce constraints such that they are efficient. As the simulated object’s

state must satisfy the physically inspired constraints, the object’s state must be physically valid

in every simulation step and PBD is unconditionally stable. In addition, apart from efficiency

and unconditional stability, PBD is also simple to implement and easy to control because

it avoids the velocity and acceleration layer, and directly manipulates an object’s geometry.

Since the work of Müller et al. (2007), many improvements have been proposed. The later

work of Müller (2008) introduces a hierarchy structure and solver which are based on the

Multigrid method (McCormick 1987) so that it can define the object’s state and constraints in

different levels from coarse to fine. This work enables their PBD-based simulator to enforce

the constraints in a coarse-to-fine manner and leverage the Multigrid method to improve the

convergence performance. Müller et al. (2015) apply geometric constraints on the deformations

defined by rotation invariant Green-St Venant strain, widely used in continuum mechanics, to

easily simulate cloth anisotropic behaviors: large stretching stiffness in warp and weft direction,

but low stretching stiffness in the diagonal direction, i.e., shearing stiffness. Moreover, Bender et

al. (2014a) integrate continuum mechanics into PBS by using Venant-Kirchhof or Neo-Hookean

constitutive models to define energy-based constraints. In this way, their PBS cloth simulator

can handle complex isotropic and anisotropic elastic behaviors, embed elastoplastic material

properties, and also simulate lateral contraction. Nowadays, PDB can simulate various materials

including rigid bodies (Deul et al. 2016), elastic rods (Umetani et al. 2015), fluid (Macklin and

Müller 2013), and the interactions between different materials (Macklin et al. 2014; Shao et al.

2018). It has been widely used in games, movies, virtual reality, and popular simulation engines,

e.g. PhyX (Nvidia 2024), Bullet (Coumans and Bai 2016). However, PBD is a physically

inaccurate simulation method because the user-defined material stiffnesses are affected by the

time step size and number of solvers iterations. Concretely, as the time step size decreases

or the number of iterations increases, the simulated material becomes stiffer (Bender et al.

2015). XPDB (Macklin et al. 2016) mitigates this problem by newly formulating the constraints

to model material elastic potentials so that the constraints be enforced in a time step size

and iteration count independent manner. Quan et al. (2020) further improve XPDB in cloth

simulation and address the over-stretching problem by reducing time step size. Another long-

standing problem in PDB is that the simulation does not converge to a certain solution with
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mesh refinement and using adaptive mesh in PBD is still an open problem. In summary,

PDB is especially suitable for interaction applications that need to produce visually plausible

simulations at a real-time speed. Compared with the force-based simulation methods, PBD is

less feasible for pursuing the high simulation realism.

Although the yarn-level cloth simulation brings about a higher simulation realism, it also re-

duces the simulation speed. No matter what optimization method is taken, compared with

sheet-level cloth simulators, yarn-level cloth simulator inevitably need a much higher space and

time complexity because of the more fine-grained geometrical discretization and more complex

physical laws. However, the simulated cloth does not necessarily always exhibit very complicated

mechanical behaviors that cannot be simulated by a sheet-level cloth simulator. Sometimes,

simulating a cloth’s yarns-level mechanical behaviors does not gain any simulation realism im-

provement, but wastes computational resources. Casafranca et al. (2020) propose a hybrid

method which mixes sheet-level and yarn-level cloth models. It introduces a kinematic filter

for designating the yarn-level cloth model to simulate the complex mechanics that cannot be

handled by the sheet-level cloth model. However, the dramatic variation of the discretization

resolution in the yarn-level cloth model and sheet-level cloth model (where the vertices in the

former are far more sparse than those of the latter) tends to incur convergence problems and

drastic simulation artifacts. To resolve these problems, it adopts the modified preconditioned

conjugate gradient solver (Ascher and Boxerman 2003) and introduces a specially designed pre-

conditioner for cooperating with their hybrid cloth simulation method to solve cloth motion

equation. In this way, this simulation method gains a higher simulation efficiency by letting

a faster sheet-level cloth model simulate the areas with simple mechanical behaviors. Com-

pared with fully yarn-level cloth simulators, it gains a significant improvement in the simulation

efficiency without sacrificing the simulation fidelity derived from cloth yarn-level mechanics

(nonlinearity, internal friction, and plasticity).

This subsection reviews the development of physics-based cloth simulators that gradually im-

prove the cloth simulation realism by accurately modeling real cloth mechanical behaviors.

However, pursuing a higher simulation realism inevitably introduces more complex physical

models and laws into cloth simulators. As a result, physics-based cloth simulators become

slower and more computationally expensive. Thanks to the fast growth of parallel computing

(especially GPU parallel computing), many cloth simulator can simulate high-fidelity clothes
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with an acceptable speed (Tang et al. 2013; Li et al. 2020; Wang 2021). Section 2.1.3 will

introduce another paradigm for increasing simulation efficiency: data-driven cloth simulation.

Collision Handling

Before introducing the data-driven method, this subsection ends with a short review of collision

handling which is an indispensable component in physics-based cloth simulators, even if it is not

closely related to the contributions of this work. Collision handling is responsible for simulating

the interactions between the objects and avoiding penetration errors. Cloth is so soft and highly

deformable that it tends to exhibit complex geometries in motions. As a result, compared with

rigid bodies, cloths not only can contact other objects in the environment but also may collide

with itself (Carignan et al. 1992). Collision handling is usually achieved by the cooperation of

collision detection and collision response: the former is responsible for detecting the geometry in

proximity; the latter is designated to rectify cloth geometry to eliminate penetrations (Moore

and Wilhelms 1988). Continuous collision detection (CCD) is commonly adopted for robust

collision checking (Provot 1997; Brochu et al. 2012; Wang 2014). To guarantee collision response

produces a piece of collision-free cloth, the works proposed by Bridson et al. (2002) and Harmon

et al. (2008) uses both repulsive impulse method (Baraff 1994; Sifakis et al. 2008) and geometric

method (Volino et al. 1995). Moreover, collision handling is usually the simulation bottleneck.

To alleviate this problem, the collision handling methods proposed by Zhang and Kim (2014),

Tang et al. (2011), Tang et al. (2018b), and Tang et al. (2018a) leverage CPU and GPU parallel

computing to boost efficiency.

2.1.3 Data-driven Method

Different from physics-based methods, data-driven methods do not rely on physical laws to

determine cloth motions. Instead, they learn the natural cloth dynamics from real or simulated

data such that they do not need to calculate forces, do numerical integration, and solve motion

equations at the run time. Generally, the rationale behind data-driven methods is equivalent

to selecting and playing back the cloth dynamics in the training dataset. Therefore, compared

with physics-based methods, data-driven methods have intrinsic advantages in the simulation

efficiency. They are usually preferred in applications that demand the simulation speed (e.g.,

gaming, real-time virtual try-on). Additionally, they are also widely used to add fine-scaled de-

tails on the coarse mesh such that physics-based cloth simulators can use low-resolution meshes
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without losing the simulation fidelity. Generally, data-driven cloth simulation methods can

classified into pre-computing methods, machine learning methods, and self-supervise learning

methods.

Pre-computing Method

The early data-driven cloth simulators usually adopt the pre-computing paradigm which first

builds a database that stores various cloth dynamics that are simulated in advance. Then,

the simulators only need to make a selection in the database when running a simulation. For

instance, James and Fatahalian (2003b) propose a data-driven simulator for simulating soft

bodies. The pre-computed object dynamic database consists of an object’s motions each of

which is represented by a temporal sequence of the object’s states. Each state sequence is de-

noted by a matrix and each column of this matrix encodes the object’s mesh vertices positional

displacement from vertices’ initial positions. To control the storage consumption, it adopts

the principle component analysis (PCA) method to compress the matrices in the database. In

the simulation stage, the simulator only needs to play a cloth motion saved in the database

or switch to another motion when an impulse force is exerted on the simulated object. There

is no complex computation in the simulation stage, so it can achieve the real-time simulation

speed. However, this model is only applied in three simple simulation scenarios: a dinosaur

on a moving car dashboard, a plant in a moving pot, and a piece of cloth on a moving door,

where the pre-computed motions have a very low degree of freedom (DoF) and the database

is sparse. For example, the moving door only has three angular velocities: {ω, 0,−ω}. Conse-

quently, it can only be applied in very restricted simulation scenarios. By contrast, Cordier and

Magnenat-Thalmann (2005) introduce a more flexible data-driven cloth simulator for interac-

tively simulating on-body garments. It is capable of simulating the garments made from different

materials and the garment’s geometry on the bodies with various poses. However, rather than

simulating a piece of cloth’s overall dynamics by data-driven methods, this simulator uses data-

driven methods to assist a (mass-spring) physics-based cloth simulator which is only responsible

for simulating cloth gross motions with very coarse mesh resolutions. Concretely, it separates

a coarse garment mesh into tight regions and float regions according to the distance between

the garment and the body. A tight region is close to the body, so its deformation is almost

determined by the underlying body motion. The simulator uses data-driven methods to sim-

ulate tight regions by using optimization methods to search for the closest cloth geometry in
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the pre-computed database. By contrast, a float region is relatively far from the body, so it

is difficult to predict this region’s deformation according to the body’s motion. Therefore, the

simulator uses physics-based methods to handle float regions. In addition, data-driven methods

are also responsible for correcting and refining the geometries of the coarse meshes by weighted

blending the pre-computed high-resolution garment geometries. The weights are the Euclidian

distances between the garment’s coarse mesh and pre-computed fine mesh. This simulator can

also run at a real-time speed because most of the time-consuming fine-scaled simulations have

been shifted to the pre-computing stage. Instead of assisting a physics-based simulator, Kim and

Vendrovsky (2008) introduce a data-driven cloth simulator that can independently interpolate

an on-body garment shape according to a given body pose. This simulator first selects multiple

body-garment pairs in a pre-computed database according to the Euclidian distances between

the given body pose and the body poses in the database. Then, it merges the corresponding

garments of the selected body poses with the weights that are calculated by using a quadratic

programming algorithm to solve an constrained optimization problem. The objective function

in the optimization problem measures the Euclidian distance between the merged body poses

and the given body pose. The constraints limit the range of the weights, i.e., within [0, 1]. This

simulator was applied in the production of the 3D animation Alvin and the Chipmunks (Alter

2008).

Instead of using the naive Euclidian distance to determine the blending weights, Feng et al.

(2010) build a database consisting of coarse-fine garment mesh pairs, and train two regression

models to blend and add fine-scaled geometry. They notice that, after removing the fine-scaled

details on a garment (e.g., wrinkles), the garment’s deformations are coherent in the local

regions such that its geometry can be approximated by low-resolution patches. Therefore, it

uses a physics-based simulator to conduct simulations with a low-resolution garment mesh. In

every simulation step, the simulated garment geometry from the physics-based simulator is

corrected by one of the trained regression models to fit the pre-computed coarse mesh. Next,

this corrected mesh is taken as input of the other regression model which is responsible for

adding fine-scaled wrinkles from the pre-computed high-resolution garment database. Instead

of adding fine-scaled wrinkles on an entire garment, Wang et al. (2010a) propose a real-time data-

driven cloth simulator that only adds wrinkles around the joint areas of an on-body garment.

This work assumes that the wrinkles on on-body garments mainly result from the motions of

body joints and a joint’s motions only locally determine the wrinkles on the garment’s nearby
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areas. Based on this assumption, in the pre-computing stage, it independently simulates the

wrinkles around the nine selected joints where wrinkles tend to appear by sampling multiple

joint rotation angles. In the simulation stage, the simulator interpolates the wrinkles for each

joint according to the joint’s rotation angle by sampling from the pre-computed database and

then blending the wrinkles with a distance-based weighting function. Next, the merged wrinkles

are transferred to the coarse mesh whose motion is simulated by a simple physics-based cloth

simulator. Even though this simulator can produce visually pleasing garments with interactive

simulation speed, it tends to exhibit artifacts when simulating loose garments where wrinkles

may be affected by non-local body motions. Moreover, the pre-computed database in this work

is too sparse because of the few sampling rotation angles (only uniformly samples 15 degrees for

each joint’s rotational DoF). Xu et al. (2014) resolve the first problem by using the sensitivity

analysis-based optimization method, and simultaneously considering the influence of a body’s

local and remote bonds on the wrinkles. Sensitivity analysis is used for evaluating the output of a

function with a perturbation of the input (Tortorelli and Michaleris 1994). This work adopts the

sensitivity analysis to evaluate the garment geometry variation resulting from the small changes

in the body pose (bonds position). Thus, through solving an optimization problem, it can

determine the motions of the non-local bones that considerably affect the simulated garment’s

geometry. In addition, this work alleviates the second problem by adopting a stochastic (Monte

Carlo Markov Chain) and greedy sampling strategy to build a much richer database. In this

way, this simulator gains an improvement in the simulation realism. In addition, this work

also demonstrates that the simulation realism and generalization ability of the pre-computing

data-driven cloth simulators are decided by the diversity of samples in the database.

In general, simulation realism and generalization ability can be improved by introducing more

diverse samples into the database. However, arbitrarily increasing samples will make the pre-

computing stage prohibitively long and cause an intractably large storage consumption. There-

fore, for controlling the database size, data-driven cloth simulators usually have to restrict the

simulation scenarios. Furthermore, they usually ignore cloth dynamics, i.e., velocity and ac-

celeration, and assume cloth deformations are repetitive, e.g., the wrinkles on a garment are

always the same when they are on the bodies with the same pose. However, due to the body’s

motions, real garment deformations are not necessarily the same. To pursue a higher simulation

realism, Kim et al. (2013) additionally consider garment’s dynamics in their data-driven cloth

simulator and studies cloth deformations’ bifurcations, where two same garments can exhibit
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different geometries when they are worn on the bodies with the same pose. Concretely, it uses

two graphics, a primary graph and a secondary cloth motion graph, to denote the movements

of the body and the garment, respectively. Each note in the graph denotes the state of the

pose-garment and each edge represents a movement of the pose-garment in the database. To

simulate cloth deformations’ bifurcations, each node in the primary graph is allowed to have

multiple corresponding nodes in the secondary cloth motion graph. The simulator selects the

garment deformation node according to the body movement embedded in the primary graph

(i.e., the path from the first node to the current node in the primary graph). To simulate as

many as possible cloth deformations in a pose, it does exhaustively sampling and simulation in

the pre-computing stage. Thanks to the dense samples in their database and the additional dy-

namic information, this simulator can almost reach a physics-based cloth simulator’s simulation

fidelity and realistically simulate cloth deformations’ bifurcations.

Machine Learning Method

The pre-computing data-driven cloth simulation method must be bound to a database from

which a simulator selects the needed cloth deformations in the simulation stage. To guarantee

the simulation realism and generalization ability, the database needs to include many samples

and, consequently, consume a considerable amount of storage. By contrast, learning-based meth-

ods only use a database for training machine learning models which no longer need a database

in the simulation stage. Kavan et al. (2011) use a physics-based simulator to build a cloth

database consisting of coarse-fine mesh pairs. It trains a linear regression model for upsampling

a coarse mesh to a fine mesh. In the simulation stage, it uses the physics-based cloth simulator

to simulate with a coarse cloth mesh which is then refined by the trained upsampling linear

regression model. Moreover, it introduces a regularization method (referred to as harmonic

regularization) to avoid overfitting and gain a decent generalization ability. However, geomet-

rically, this regularization method plays a role like a filter which is responsible for smoothing

the overly fine-scale geometries in the training samples. As a result, this regularization method

tends to make the simulated cloths look smoother than expectations. This simulation flaw is

especially obvious when simulating a cloth under constant forces, e.g., a cloth in the wind.

To resolve this problem in this particular simulation scenario, it also introduces a wave prop-

agation method for adding fine-scaled geometries to the upsampled fine meshes. In addition,

De Aguiar et al. (2010) observe that the motions of the different facets of on-body garments
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are not independent. Therefore, it is possible to compress the garment geometry information,

encoded by all vertices’ spatial positions, such that simulations can more efficiently run in a

low-dimensional space. Therefore, this work adopts the PCA method to compress the garment

and body geometrical information. Before compressing, the body and garment geometries are

moved to a canonical space by rotation and translation through a pre-processing operation

such that the bias caused by the global rigid rotation and translation can be eliminated. This

can help the trained model gain a higher generalization ability. It trains a linear regression

model to match the garment and body pairs in the low-dimensional space (after compressing by

PCA). The linear regression model takes as input the body static geometry, garment dynam-

ics information (garment geometry in the current and two previous simulation steps), and the

global rigid movement (rigid rotation and translation) information (which has been removed

in the pre-processing stage). The trained linear regression model outputs the garment’s future

geometry. Moreover, instead of using synthesis training data simulated by physics-based cloth

simulators, it uses real-world captured on-body garment motions as training data such that its

simulation realism is not restricted by the physics-based cloth simulator. Compared with the

pre-computing data-driven method, apart from getting rid of the large databases, it shows a

stronger generalization ability and performs well when simulating non-skintight cloths.

However, the works mentioned above only fit the simulated garments to different poses. A

realistic on-body garment not only needs to deform with the wearer’s motion but also needs to

fit different body shapes. For example, a virtual try-on application should be able to wear the

virtual garments on customers with various body shapes and also need to interactively deform

the garments to follow the customers’ motion. The previous works cannot be applied in these

scenarios because they use the same body shape in their training database. However, a database

that consists of both various motions and body shapes can be prohibitively large: the Cartesian

product of the sampled motions and body shapes. Instead, Guan et al. (2012) decouple a

garment’s deformation into the deformations caused by the body shape and the deformations

caused by the body motion. In this way, the training database needs much fewer samples:

the summation of the sampled motions and body shapes. To learn the garment deformations

caused by these two factors, this work trains two linear regression models for adjusting a garment

geometry to motions and different body shapes respectively. Similar to (De Aguiar et al. 2010),

it also adopts the PCA method to reduce the dimension of the cloth geometrical information

and considers cloth dynamics to fit body motions (takes as input the garments geometry in two
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previous steps). The two linear regression models take as input the body shape and motion

information respectively. They output two deformation matrices which can be multiply with

a vector that embeds a template garment geometry (a garment in its initial rest shape) to

calculate the garment geometry that can fit a given body (with a specific pose and motion).

As such, this data-driven cloth simulator can realistically simulate garments on the bodies with

different poses (motions) and shapes with real-time simulation speed.

However, the linear regression model is too coarse to account for the body-garment relation-

ship which usually exhibits a complicated nonlinearity and therefore tends to incur simulation

artifacts. To model the nonlinearity, Santesteban et al. (2019) use a neural network (NN),

which is nonlinear, to fit garments to various body shapes and motions. The same as the

work proposed by Guan et al. (2012), this work also factorizes an on-body garment’s deforma-

tions into body-shape-dependent deformations and body-motion-dependent deformations. It

adopts a multilayer perceptron (MLP) NN to model the body-shape-dependent deformations

and a Gated Recurrent Units (GRU)-based recurrent neural network (RNN) to handle the

body-motion-dependent deformations. Compared with the linear regression models, these non-

linear NNs can more accurately learn the nonlinearities that are exhibited in the body-garment

data samples. In addition, unlike the works proposed by Guan et al. (2012) and De Aguiar

et al. (2010) which consider cloth dynamics by simply including garment geometries in the two

previous steps, the GRU-based RNN can learn the needed number of the previous simulation

steps, and is usually more accurate and robust in handling temporal data (Chung et al. 2014).

Compared with the linear regression model, this simulator produces fewer artifacts caused by

ignoring nonlinearity. Thanks to the RNN, it can retain more cloth history-dependent deforma-

tions, e.g., wrinkles. Moreover, it exhibits a stronger generalization ability that can generalize

to body shapes and motions that have not been seen in the training data. Further, through

GPU implementation, this data-driven simulator can achieve interactive simulation speed and

suit real-time virtual try-on applications.

All of the data-driven cloth simulators introduced above need to append a post-processing step

for handling collision and removing cloth-body penetration artifacts, which is slow and breaks

the overall differentiability. Instead, GarNet (Gundogdu et al. 2019) handles collisions by in-

troducing a penalty term in the loss function for repulsing the wrong geometrical intersections

apart. In this way, the outputs from their trained data-driven cloth simulators must be free
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from the penetration artifacts and the slow post-processing step is no longer needed. Moreover,

it also introduces a physical term in the loss function: a bending loss to penalize the bending

deformations that are different from the train data. In addition, it argues that an on-body gar-

ment geometry is jointly determined by the global body geometry and the local body-garment

interactions. Therefore, it factorizes a garment’s geometrical features into three kinds: local

point-wise features, local patch-wise features, and global features. To extract these features

from a garment’s geometry, it introduces a novel NN model that integrates a mesh convolution

NN (Verma et al. 2018) into the PointNet (Qi et al. 2017). The mesh convolution NN acquires

the patch-wise features, and the PointNet can supply the point-wise and global features. Then,

to fit the garment onto a body, these features are merged with the body features that are

extracted by an MLP NN in the parallel stream (therefore, the GarNet is a two-stream NN).

However, GarNet tends to smooth garments and loses fine-scale geometries, like wrinkles and

folds. This drawback is also observed in the previous data-driven cloth simulators (Guan et al.

2012; Santesteban et al. 2019). The research group alleviates this problem in its subsequent

work, GarNet++ (Gundogdu et al. 2022) uses the Rayleigh quotient (Strang 2012) to extract

a garment’s geometrical curvature information and defines a curvature loss term for learning

the fine-scaled deformations. The experiments demonstrate that this curvature enables the

simulator to more accurately simulate the garment’s geometrical details. Apart from the body

pose and shape, a garment’s style, e.g., a garment’s geometry or size, also affects its on-body

appearance. TailorNet (Patel et al. 2020) is the first data-driven cloth simulator that considers

these three factors at the same time. This work observes that the simulated garments can keep

the fine-scaled geometrical details if the data-driven cloth simulator’s NN model is trained with

fixing body shape and garment style factors. Conversely, if training the model by mixing the

three factors, the simulated garments look unnaturally smooth and unrealistic. It hypothesizes

that mixing the fine-scaled deformations caused by the different factors tends to average the

deformations and flatten the fine-scaled geometries. Therefore, TailorNet decouples a garment’s

deformation into a low-frequency part (i.e., garment gross deformation) and high-frequency (i.e.,

fine-scaled) part, and learns them separately by using two sub-networks. In this way, TailorNet

can retain more high-frequency geometrical details than the previous works. Most data-driven

cloth simulators usually take the simulated garments’ mesh topologies as a prior. This limits

the simulators’ flexibility and generalization ability, i.e., cannot handle the garments out of the

training data. Bertiche et al. (2021a) introduce a more flexible data-driven cloth simulator,
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DeepPSD, that can deform a garment to fit a body without the garment topology prior. Com-

pared with the works mentioned above, it can more realistically simulate the garments that have

not been unseen in the training data. Moreover, the loss function introduces an unsupervised

loss term for handling collision and guaranteeing the garment’s physical consistency: enforcing

the inextensibility to simulate the stretching force and smoothing the geometry to mimic the

bending force. Therefore, it mixes supervised learning and unsupervised learning where the

former is responsible for turning the NN model’s parameters to fit training samples and the

latter is designated to enforce cloth physical consistency. In this way, the cloths simulated by

DeepPSD look more realistic and natural.

Apart from virtual try-on, fashion design applications also need a fast cloth simulator for inter-

actively viewing and editing the designed on-body garments. To this end, Wang et al. (2018)

introduce a data-driven cloth simulator that can convert a 2D garment sketch to a 3D on-body

garment mesh and its sewing pattern. It realizes this by training a multiple encoder-decoder NN

model which can embed the information of 2D sketch, garment material parameters, garment

sewing pattern parameters, body geometry, and 3D garment geometry into a shared latent

space. In this space, given the other parameters or altering the garment by editing the 2D

sketch, the model can interactively respond to the changes and simulate the corresponding 3D

on-body garment. In addition, this shared latent space provides a common metric that can be

used for evaluating the difference between different parameters. For instance, there is no way to

directly compare the difference between a 2D sketch and a 3D garment mesh. However, given

the shared latent space, two different kinds of parameters can be compared by evaluating their

distance in this space. With this feature, this simulator can retarget a garment to different

body shapes without affecting the garment’s style from the perspective of fashion design. It

minimizes the difference between the variation of the 2D sketch and the variation of the 3D

garment after retargeting the garment to a new body. Further, this data-driven simulator is

fast and allows designers to view and alter the garments on the fly.

Most data-driven cloth simulators introduced above are applied in one restricted simulation

scenario: on-body garment simulation, and impose strong restrictions on cloths’ and obstacles’

mesh topology. However, the simulation scenarios in practice are usually more diverse. Whether

the data-driven cloth simulators can be applied in other simulation scenarios has not been

demonstrated. To fill this research blank area, Li et al. (2022b) evaluate their new data-driven
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cloth simulator in more a flexible simulation scenario: a cloth collides with a rigid body, and

does not use any prior on their mesh topologies. It also handles cloth-obstacle collision and

cloth self-collision by using a penalty term in the loss function. Moreover, this simulator can

efficiently handle high-resolution meshes and complex geometries by using an encoder-decoder

NN such that the cloth-obstacle interactions can be processed in a smaller latent space. As a

data-driven simulator, it also inherits the outstanding simulation efficiency and can achieve a

real-time simulation speed.

Simulating cloth micro-mechanics at the yarn-level brings about not only a higher mechanical

accuracy, but also impressive visual results, i.e., render yarn-level cloth geometry (Kaldor et al.

2008; Cirio et al. 2014; Cirio et al. 2017). Till now, the lowest level that can simulated by state of

the art physical cloth simulators is the yarn-level. However, in real cloths, each yarn is usually

a bundle of fibers and these fibers also affect a cloth’s macro-level appearance. Simulating

the mechanical behaviors of all the fibers in a cloth is computationally intractable. Instead,

Montazeri et al. (2021) use a data-driven method to synthesize the fiber-level appearance for

adding finer visual details on the yarn-level physics-based cloth simulation results. It realizes

this by training an NN model for mapping a yarn’s deformations to its fiber geometry. In

this way, the simulator only needs to conduct physics-based cloth simulation at the yarn-level

and the NN model can efficiently generate the fiber-level geometries according to the yarns’

deformations.

Self-supervised Learning Method

Although machine learning methods get rid of the large pre-computed database, they still need

a huge amount of training data for conducting supervised learning. On the one hand, building

such a training dataset is time- and storage-consuming. On the other hand, machine learning

models’ generalization ability is usually restricted by the dataset. To get rid of these limitations,

Bertiche et al. (2021b) propose the first self-supervised learning model, PBNS, for simulating a

garment’s static drape on a body. Concretely, the model consists of 4 fully-connected layers, i.e.,

MPL, for mapping a template garment to a garment that can fit a given body. To learn in a self-

supervised way, the model defines a physically inspired loss function which consists of four terms:

cloth loss, collision loss, gravity loss, and pin loss. The cloth loss measures cloth stretching and

bending energy. The collision loss penalizes incorrect geometry intersections. The gravity loss

is equivalent to the cloth gravity potential. Last but not least, the pin loss is used for fixing
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the simulated garment in a given spatial position. Therefore, minimizing this loss function

is equivalent to searching for the garment’s stable state (where the garment has the minimum

internal and external potential energy) and also correcting the penetration artifacts. In this way,

PBNS not only does not rely on any huge training dataset but also can always simulate physically

constant garments thanks to the physically inspired loss function. However, this model can only

simulate static on-body garments because it overlooks the dynamics information. By contrast,

Bertiche et al. (2022) additionally consider cloth dynamics by introducing an RNN into the

model to handle the temporal information and adding an inertia term into the loss function

to measure garment kinetic energy. By additionally learning garment dynamics, this simulator

gains a higher simulation realism than PBNS.

In summary, the data-driven method is an effective way to dramatically improve cloth simulation

efficiency. Its development process witnesses an improvement in the simulation realism and

flexibility. Compared with physics-based cloth simulators, data-driven cloth simulators are more

feasible for real-time simulation applications, e.g., virtual try-ons and video games. Nevertheless,

their simulation results may still include penetration artifacts and, unfortunately, there is still

no effective way to fully solve this problem. Moreover, they are less flexible than physics-based

cloth simulators. For instance, even a state-of-the-art data-driven cloth simulator is still unable

to handle scenarios that are too different from the training samples. Thus, physics-based cloth

simulation methods are the best choice when pursuing high simulation realism.

2.2 Parameter Estimation

Cloth physical parameter estimation starts in textile engineering and aims at measuring cloth

mechanical properties for standardizing the productions (Hu 2008). There are various testing

apparatuses and the corresponding international or local standards (e.g., KES-F) for evaluat-

ing cloth different physical properties. The testing apparatuses are expensive and require the

manipulators to have sophisticated expertise in the testing. Moreover, taking the tested cloth

physical parameters as the simulation parameters of a physics-based cloth simulator usually

cannot reproduce the real cloth in simulation because a cloth physical model is only an ap-

proximation of actual physics in real cloths and there is no simple map from the textile-tested

parameters to the simulation parameters (Kuijpers et al. 2020). Additionally, the textile testing

usually only measures cloth static mechanical properties and overlooks cloth dynamics physical
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properties which, however, are also important to cloth behaviors. For simplicity, we refer to the

cloth physical parameters used by physics-based cloth simulators as cloth physical parameters

(which are different from the cloth physical parameters defined in textile).

Apart from cloth physical models, cloth physical parameters used in physics-based cloth simula-

tors also determine the simulation realism because they determine whether the simulated cloth

looks like a specific real cloth. Manually tuning these parameters is tediously time-consuming

and laborious. To alleviate this problem and gain a higher simulation realism, many works have

been proposed for estimating cloth physical parameters. Estimating cloth physical parameters

can be taken as an extending application of the data-driven cloth simulation. Rather than

learning cloth global geometries or local wrinkles, it only learns cloth physical parameters from

training data to reproduce the observed cloths. Generally, cloth physical parameter estimation

methods can be classified into: black-box methods and white-box methods. This section will

show the works that adopt black-box methods and white-box methods in and . It will highlight

the advantages of white-box methods (especially the differentiable physics simulation) in sample

efficiency, learning accuracy, and convergence speed.

2.2.1 Black-box Method

Black-box methods directly map observed cloth dynamics to cloth physical parameters with-

out explicitly modeling the underlying physics. Bouman et al. (2013) conduct a novel human

perceptual experiment and the result shows that the cloth area weight and bending stiffness

are the two most significant cloth physical parameters that determine people’s feelings about a

cloth’s material when they observe its motion. Based on this conclusion, they train a regression

model to predict cloth area weight and bending stiffness. As a machine learning method, it

can only learn from the pre-defined features which must be carefully designed to guarantee the

learning accuracy. It adopts the optical flow (Liu 2009) to extract cloth motion information

from video and uses robust statistical features (Portilla and Simoncelli 2000) such that the

model can handle diverse training data: unknown light settings and various external forces.

By contrast, deep learning methods are more flexible and can identify the features from raw

training data. Therefore, it is more feasible to learn cloth parameters from more random and

noisy training samples, such as a cloth motion captured in a complicated environment including

various unrelated objects. Yang et al. (2017) train a Long Short-Term Memory (LSTM) Neural

Network + Convolution Neural Network (CNN) model, which is similar to Long-term Recurrent
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Convolutional Network or LRCN (Donahue et al. 2017), for estimating cloth physical parame-

ters from videos of wind-blown cloth dynamics. Compared with machine learning methods, it

does not require the manually defined features and can learn cloth parameters from videos with

unpredictably complex backgrounds. However, this work discretizes continuous cloth physical

parameters into discrete material types and essentially converts a continuous regression prob-

lem into a much simpler classification problem. Nevertheless, the experiments demonstrate that

even if the model is trained by simulated data, it can accurately classify cloth materials from

both simulated data and real data. Moreover, compared with the work proposed by Bouman

et al. (2013), it achieves a higher material classification accuracy. Instead of doing classification,

Ju and Choi (2020) aim at estimating the cloth physical parameters (regression) that determine

a simulated cloth static Cusick drape in the physics-based cloth simulator, CLO3D (CLOTH3D

2018). It introduces a boundary vector for encoding cloth drape shape and its entries consist

of the 3D positions of the points which are sampled on the boundary of a drape cloth. In addi-

tion, through a correlation analysis, it demonstrates that, in CLO3D, the simulated cloth static

Cusick drapes are mainly determined by the bending stiffness parameters and shearing stiffness

parameters. It also observes that the correlation between bending stiffness and shearing stiffness

is weak. Based on this observation, it introduces a two-stream CNN where both streams take as

input cloth drape boundary vectors, but one of the streams predicts the bending stiffness param-

eters, and the other outputs the shearing stiffness parameters. To build the training dataset, it

uses CLO3D to synthesize cloth static Cusick drapes. Nevertheless, the trained model is capa-

ble of estimating the cloth physical parameters from real-world captured data and reproducing

the observed drape cloths. In their subsequent work (Ju et al. 2022), the NN is modified by

exchanging its input and output: taking as input the simulation parameters and output cloth

static drape, such that it is converted into a data-driven cloth simulator. By wrapping this

NN with a user interface, it allows fashion designers to view a cloth’s static drape on the fly

with tuning its physical parameters and avoids the long waiting time when using physics-based

simulators. However, compressing a drape cloth geometry by using the boundary vector would

inevitably lose some geometrical information and degrade the parameter estimation accuracy.

Moreover, cloth nonlinear mechanical property is not considered in these parameter estimation

methods.

To alleviate these problems, Feng et al. (2022) use multi-view depth images as training input

such that cloth geometrical information can be fully captured. In addition, it introduces a non-
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linear anisotropic bending model for embedding cloth nonlinear mechanical properties. Apart

from cloth internal physical parameters, the parameters of external forces also affect a cloth’s

motions and therefore should also be accurately estimated. Rasheed et al. (2020) train a LRCN

for estimating the static friction coefficient between the cloth and a surface. The trained net-

work can map a video clip of a dragged cloth sliding on a surface to an estimated static friction

coefficient between the cloth and the surface. Even though it is trained by the synthesized

data generated by a physics-based cloth simulator (Li et al. 2018), the trained model exhibits

a decent generalization ability to real data. Apart from friction, Runia et al. (2020) estimate

cloth internal physical parameters and external wind speed velocity from the motion of a cloth

in wind, i.e., a flag blown by wind. However, different from the research mentioned above, the

NN proposed by this work (called Spectral Decomposition Network) only plays a role like an

embedding function and is only designated to extract cloth physically related features from im-

ages or video frames. The cloth physical parameters and wind speed velocity are estimated by

using Bayesian Optimization or, for short, BO (Frazier 2018). The optimization is performed in

a simulation-in-loop manner: the BO algorithm repeatedly samples cloth physical parameters

which are then given to the physics-based cloth simulator (Narain et al. 2012) to conduct simu-

lation whose result is then compared with the ground truth to determine if the optimization has

converged. Even if this work needs a large training dataset to train the NN, this work explicitly

models cloth physics and it is similar to the white-box methods to be introduced below.

2.2.2 White-box Method

White-box methods explicitly model cloth physics and search for feasible cloth physical param-

eters by minimizing the difference between the simulation results and the given observations.

Compared with black-box methods, white-box methods do not rely on a huge amount of train-

ing data. Instead, they are usually much more sample efficient and only need one cloth static

geometry or dynamic motion to search for the cloth physical parameters that can enable the

underlying physics-based cloth simulator to closely reproduce them. Jojic and Huang (1997)

estimate cloth physical parameters from both the simulated and real cloth static drape range

(the boundary of a static drape cloth on a 2D image). It uses Powell’s method (Powell 1971) to

optimize cloth physical parameters by adjusting the simulation results toward the given cloth

drape range. The experiment results show that this model can accurately reproduce observed

drape cloths. However, a cloth’s physics properties are not only indicated by its static ge-
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ometry but also reflected in its dynamic motion. Bhat et al. (2003) additionally learn from

the dynamics of a hung cloth (video clips). It adopts the simulated annealing optimization

method (Bertsimas and Tsitsiklis 1993) to estimate four real cloth static and dynamic physi-

cal parameters by narrowing the difference between the simulation and the given video clips.

The experiments demonstrate that their model can accurately reproduce the four distinctive

kinds of real cloth’s static geometries and dynamic motions. Moreover, the results also show

that this method has a great temporal and spatial generalization ability. The former allows

the simulator to predict cloth future states that are unseen in the training data. The latter

enables the simulator to simulate the cloths with the other topologies out of the training data.

e.g., learning cloth physical parameters on squared cloth samples and simulating a skirt made

from this kind of cloth. In a white-box method, its underlying cloth physical model determines

the best achievable parameter estimation accuracy. A coarse cloth physical model that cannot

simulate the real cloth’s complicated behaviors can never simulate the observed cloths no mat-

ter how the simulation parameters are optimized. For instance, Jojic and Huang (1997) take

cloth as a linear isotropic elastic model so that it cannot learn the nonlinear and anisotropic

mechanical properties that are shown in the training data. By contrast, Wang et al. (2011)

introduce a piecewise linear model for simulating cloth nonlinear and anisotropic mechanical

behaviors in stretching and bending deformations. Concretely, this model splits the (stretching

and bending) load-deformation process into multiple segments and cloth physical parameters

have different values in each segment. Meanwhile, it also proposes a simple and economical

apparatus which can cooperate with computer vision methods for testing real cloth stretching

and bending deformations under different loads. By using BFGS optimization (Nocedal and

Wright 2006), it adjusts the cloth physical parameters to fit the measured results. With the

estimated parameters, the simulator can realistically simulate the mechanical behaviors of the

corresponding real cloths. However, this work assumes that a cloth deforms uniformly in the

deformation process and uses the average strain to approximate the cloth’s real deformation. As

real cloths usually exhibit non-uniform deformations, this approximation inevitably introduces

parameter estimation and simulation errors. To more accurately measure cloth non-uniform

deformations, Miguel et al. (2012) introduce an apparatus that can reconstruct cloth 3D geom-

etry while manipulating the tested cloth by accurately controlled forces (generated by 8 linear

actuators). In this way, it can accurately capture a cloth’s non-uniform deformations. When

estimating cloth physical parameters, the model can adjust the cloth simulation parameters
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by minimizing the geometry difference (i.e., the L2 distance between the position of vertices

in the simulation and reconstructed 3D geometry) rather than using the coarse average strain.

Additionally, to model more diverse nonlinear mechanical behaviors, instead of using a fixed

number of linear segments to approximate the nonlinearity, this work gradually increases the

number of segments before the difference between the simulation and measurement becomes

smaller than a threshold.

However, none of the work mentioned above models and evaluates the cloth history-dependent

behaviors, e.g., hysteresis and plastic deformation. By contrast, Miguel et al. (2013) use cloth

internal friction to account for hysteresis and adds Dahl’s model (Dahl 1968) into an elastic

cloth physical model to simulate it. In addition, this work observes that cloth hysteresis usually

grows as cloth deformation increases, which cannot be modeled by the original Dahl’s model.

To fit this observation, it modifies the original Dahl’s model by reparameterization to make the

frictional stress strain-dependent. Moreover, it also introduces a simple apparatus (similar to

the apparatus created by Wang et al. (2011)) for measuring cloth force-deformation relation-

ships and uses the trust-region reflective algorithm (Matlab build-in optimization algorithm)

to optimize cloth physical parameters: elastic parameters and frictional parameters. Through

experiments, this work demonstrates this friction model can simulate the cloth hysteresis effect

and persistent deformations. However, the persistent deformations simulated by their Dahl’s

model are visually trivial and are easy to undo. By contrast, Jung et al. (2016) use the plastic

model to simulate cloth persistent stretching deformations. In addition, real clothes usually

exhibit creeping behaviors in the stretching deformation where a cloth’s response force gradu-

ally reduces over time while keeping its stretching deformation. This work introduces a Kelvin

plastic model to learn and simulate cloth creeping behaviors.

These cloth parameter estimation methods model a cloth as a continuum sheet which are too

coarse to embed cloth micro-mechanics at the yarn-level. As demonstrated in the yarn-level

cloth simulation research (Cirio et al. 2014; Cirio et al. 2017), cloths’ micro-mechanics have

a significant influence on their macro-level behaviors and modeling cloths at the yarn-level

can naturally embed cloth material nonlinearity and anisotropy. Therefore, estimating cloth

parameters at the yarn-level can more accurately measure the cloth’s physical properties. Ad-

ditionally, the estimated parameters can taken as input by a yarn-level cloth simulator which

can simulate more realistic and visually pleasing results than a sheet-level one. Whereas real-
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world textile testing is usually conducted at the swatch-level. To the yarn-level cloth simulation

and parameter estimation, each cloth swatch is so large that tracking and simulating the me-

chanical behaviors of all the yarns are computationally intractable. To estimate cloth physical

parameters at the yarn-level, Sperl et al. (2022) insert an intermediate sheet-level cloth phys-

ical simulator between the real-world cloth testing results and the yarn-level cloth simulator.

This sheet-level cloth simulator first fits the real-world testing results by optimizing its cloth

physical parameters. Then, cloth’s geometry simulated by the sheet-level cloth simulator is

approximated by the periodic tilting yarn-level cloth model where the entire cloth is modeled

as connected yarn-level cloth patches (Sperl et al. 2020). Next, to estimate cloth yarn-level

physical parameters, the yarn-level simulator adjusts its parameters to fit the sheet-level cloth

geometry.

Recently, differentiable physics simulation is thriving in solving inverse problems. It relies

on fully differentiable physical models to conduct gradient-based optimization, e.g., gradient-

descent, and adjust the simulated object’s physical parameters. Compared with the conventional

machine learning methods, the same as white-box methods, they exhibit outstanding sample ef-

ficiency as well. Moreover, compared with gradient-free optimization (such as Powell’s method

and BO), they exhibit much faster convergence speed and learning accuracy. However, it is

usually more difficult to implement because of the requirements on the physical model’s differ-

entiability. In addition, physics-based cloth simulators usually involve many non-differentiable

functions. For example, differentiable collision handling is one the most challenging problems in

differentiable physics because collisions involve instant variations of position and velocity where

the gradients are usually undefined (Zhong et al. 2022). Liang et al. (2019) introduce the first

differentiable cloth simulator and propose a differentiable collision handling algorithm. This

algorithm models the collision response as a constrained optimization problem for correcting

the invalid geometrical intersections with a minimum adjustment on the cloth mesh vertices

position. To keep the gradient information in this optimization operation, it introduces an

efficient differentiable Quadratic Programming method to solve this constrained optimization

problem (Amos and Kolter 2017). Compared with the work of Wang et al. (2011), this differen-

tiable cloth simulator shows a superior parameter estimation accuracy and can learn multiple

parameters (density, stretching, and bending) in one motion rather than optimizing the param-

eters individually from isolated deformations. However, this work does not model the stick-slip

friction behaviors at the contact points. Li et al. (2022a) use the Signorini-Coulomb friction
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model to simulate the stick-slip friction and converts a PD-based physics-based cloth simula-

tor (Ly et al. 2020) to a differentiable cloth simulator. However, the Signorini-Coulomb friction

uses a jump function to model stick-slip friction and therefore is non-smooth at the stick-slip

transition point where the gradients are undefined. However, this work empirically validates

that ignoring the gradients does not stop the differentiable cloth simulator from learning pa-

rameters. Moreover, compared with the work of Liang et al. (2019), it can more realistically

simulate the frictional behaviors at the contact areas. Nevertheless, the potential of encounter-

ing undefined gradients makes this model suspicious. Furthermore, the PD-based physics-based

cloth simulation method essentially sacrifices the simulation mechanical accuracy for efficiency.

This feature becomes a drawback in differentiable physics for accurately estimating cloth physi-

cal parameters. In addition, the methods introduced by Liang et al. (2019) and Li et al. (2022a)

need to learn from the precise cloth 3D geometries which is not widely available and difficult to

capture in the real world due to the occlusions and 3D reconstruction errors. Instead, Jataval-

labhula et al. (2021) append differentiable rendering models to differentiable cloth simulators

such that the gradients can propagate from the difference between the rendered images and the

captured 2D images to optimize the cloth physical parameters. In this way, this differentiable

physics model can learn from 2D images or videos which are cheap and easy to capture.

This section has shown the black methods and white-box methods for cloth physical parameter

estimation and highlighted that accurately estimating cloth physical parameters is important

to realistic cloth simulations. The black-box methods directly map the observed cloths to the

physical parameter without modeling any cloth physics. They usually rely on huge training

datasets which are expensive to build. By contrast, the white-box methods are far more data

efficient through explicitly modeling cloth physics. In addition, differentiable cloth simulations,

a white-box method, are built on fully differentiable cloth physical models so that can leverage

gradient-based optimization. Compared with the other white-box methods, it is more accurate

and can converge more quickly.
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Chapter 3

Fine-grained Differentiable Physics:

A Yarn-level Model for Fabrics

Differentiable physics modeling combines physics models with gradient-based learning to pro-

vide model explicability and data efficiency. It has been used to learn dynamics, solve inverse

problems and facilitate design, and is at its inception of impact. Current successes have con-

centrated on general physics models such as rigid bodies, continuum deformable sheets, etc,

assuming relatively simple structures and forces. Their granularity is intrinsically coarse and

therefore incapable of modelling complex physical phenomena. Fine-grained models are still

to be developed to incorporate sophisticated material structures and force interactions with

gradient-based learning. Following this motivation, we propose a new differentiable model for

cloths, where we dive into the granularity of yarns and model individual yarn physics and yarn-

to-yarn interactions. To this end, we propose several differentiable forces, whose counterparts in

empirical physics are indifferentiable, to facilitate gradient-based learning. Through comprehen-

sive evaluation and comparison, we demonstrate our model’s explicability in learning meaningful

physical parameters, versatility in incorporating complex physical structures and heterogeneous

materials, data-efficiency in learning, and high-fidelity in capturing subtle dynamics. Code is

available in: Fine-grained Differentiable Physics1.

1https://github.com/realcrane/Fine-grained-Differentiable-Physics-A-Yarn-level-Model-for-Fabrics.git
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3.1 Introduction

Differentiable physics models (DPMs) have recently spiked interests, e.g., rigid bodies (Heiden

et al. 2020), cloth (Liang et al. 2019), and soft bodies (Hu et al. 2019). The essence of DPMs

is making physics models differentiable, so that gradient-based learning can be used to make

systems adhere strictly to physical dynamics. This is realized via back-propagation through a

series of observed actions, where the system can quickly learn the underlying dynamics. While

enjoying neural networks’ capability of modeling arbitrary non-linearity, DPMs also improve the

model explicability as the learnable model parameters bear physical meanings. As a result, such

models provide a new avenue for many applications such as inverse problems, e.g., estimating

the mass of a moving rigid body (Belbute-Peres et al. 2018), and control, e.g., learning to shake

a bottle to shape the fluid in it (Li et al. 2019).

Early research attempted to model simple and general physical systems such as rigid bod-

ies (Belbute-Peres et al. 2018), followed by a range of systems including deformable objects (Li

et al. 2019), cloth (Liang et al. 2019), contacts (Zhong et al. 2021). However, existing mod-

els are only generally-purposed which do not consider complex structures/topologies and force

interactions. Taking cloth (i.e., fabrics) as an example, existing models (Liang et al. 2019; Li

et al. 2019) can learn general cloth dynamics, but only when the cloth is relative simple and

homogeneous. Recent research (Wang et al. 2020) has started to explore articulated systems

but the model capacity is insufficient to capture the full dynamics of complex systems such as

fabrics. Since real-world physical systems (e.g., materials in engineering) often have sophisti-

cated structures and consist of heterogeneous materials, we argue that it is crucial to design

fine-grained DPMs, for differentiable physics to be truly applicable and meaningful to real-world

applications.

This work focuses on fabrics which are composite materials consisting of basic slim units ar-

ranged in different patterns. A common example in fabrics is woven cloth which is made from

yarns of different materials (e.g., silk, cotton, nylon) interlaced in various patterns (e.g., plain,

satin, twill). Fabrics present new challenges in differentiable modeling. First, the dynamics het-

erogeneity caused by material and structural diversity needs to be incorporated into modeling,

which is especially crucial for solving inverse problems where the physical properties are learned

from data. General DPMs without sufficient granularity can only approximate the dynamics

and are unable to learn meaningful parameters. Second, certain forces that are essential for
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fabrics dynamics are indifferentiable. One such example is friction. The standard Coulomb

model for rigid bodies has been made differentiable recently (Belbute-Peres et al. 2018; Zhong

et al. 2021). However, it is overly simplified for fabrics because the yarn-to-yarn friction shows

richer dynamics (Zhou et al. 2019) that is beyond the capacity of existing methods. Further,

the contact modeling together with friction requires new treatments that previous methods did

not have to consider.

To overcome these challenges, we propose a new DPM for fabrics at a more fine-grained level

and apply it to cloth modeling. Unlike general DPMs, we start with a fine-grained yarn-level

model. By modeling each yarn individually, we provide the capacity of modeling fabrics with

mixed yarns and different woven patterns, which could not be handled previously. To facilitate

gradient-based learning, we propose new differentiable forces on/between yarns, including con-

tact, friction and shear. Finally, we incorporate implicit Euler and implicit differentiation to

compute gradients induced by an optimization problem embedded in the simulation.

To our best knowledge, our model is the first differentiable physics model which provides suffi-

cient granularity for heterogeneous materials such as fabrics. We comprehensively evaluate its

learning capability, data efficiency and fidelity. Since there is no similar model, we compare

our model with the most similar work (Liang et al. 2019), which, however, simply models cloth

as continuum elastic sheet, and traditional Bayesian optimization on inverse problems. We

also compare our work on control learning with popular Reinforcement Learning methods. We

show that our model is more explicable, has higher data efficiency, generates more accurate

predictions in inverse problem and control learning respectively.

3.2 Related work

Differentiable physics simulator. A differentiable simulator integrates differentiable physics

engine into the forward and backward propagation of learning. As a strong inductive bias, these

simulation engines increase data efficiency and learning accuracy over gradient-free models. Due

to these advantages, differentiable simulation demonstrates superiority in a number of problem

domains such as inverse problem, robot control and motion planning. The early works fo-

cused initially on simple rigid bodies (Belbute-Peres et al. 2018; Degrave et al. 2019) and later

simulation of high degrees of freedom systems, such as fluids (Schenck and Fox 2018), elas-

tic bodies (Hu et al. 2019; Huang et al. 2021), and cloth (Liang et al. 2019). More recently,
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Jatavallabhula et al. (2021) introduced an end-to-end differentiable simulator that can learn

from images by combining differentiable rendering and differentiable simulation. Compara-

tively, we explore fine-grained DPMs for composite materials, which leads to new challenges in

differentiable modeling.

Cloth simulation. Cloth simulation initially appeared in textile engineering and was then

introduced to computer graphics (Long et al. 2011). Cloth has been modeled as particle sys-

tems (Breen et al. 1992), mass-spring systems (Provot 1995), and continuum (Narain et al.

2012). Kaldor et al. (2008) proposed a yarn-level knit cloth simulator and found that cloth mi-

crostructures have a considerable influence on cloth dynamics. Since then the cloth simulation

community has shifted the focus to yarn-level cloth simulation. Based on the objectives, the

recent research can be classified to increasing efficiency (Kaldor et al. 2010; Cirio et al. 2017),

combining continuum models and yarn-level models, (Casafranca et al. 2020; Sperl et al. 2020)

introducing woven cloth simulation (Cirio et al. 2014), and optimizations (Pizana et al. 2020;

Sánchez-Banderas et al. 2020). Our work is orthogonal to these papers in that we introduce a

new methodology to incorporate differentiable physics into yarn-level models.

Machine learning and cloth simulation. Machine learning was initially introduced to

cloth simulation to make data-driven simulators, which have inherent advantages in simulation

efficiency over physical-based methods (James and Fatahalian 2003a; Kim and Vendrovsky

2008), and can help improve fidelity (Lähner et al. 2018). In parallel, machine learning has

been applied to discover the physical properties from visual information. Bouman et al. (2013)

proposed a linear regression model for evaluating cloth density and stiffness from the dynamics

of wind-blown cloth. Yang et al. (2017) introduced a neural network for classifying cloths based

on how their dynamics are affected by stretching and bending stiffness. Rasheed et al. (2020)

proposed a model for estimating the friction coefficient between cloth and other objects. By

combining physically-based cloth simulators and neural networks, Runia et al. (2020) estimated

cloth parameters by training neural networks to adjust a simulator’s parameters so that the

simulated cloth mimics the observed one in videos. Different from these gradient-free models,

Liang et al. (2019) and Li et al. (2022a) proposed sheet-level differentiable cloth models that

can be used to estimate cloth parameters. In this work, we dive into fine-grained physics and

propose a new yarn-level differentiable fabrics model which can be embedded into deep neural

networks as a layer.
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Figure 3.1: Blue and red rods denote warps and wefts respectively. qs are the crossing nodes.

Figure 3.2: (1) Blue and red rods denote warps and wefts respectively. q0 denotes the highlighted
crossing node’s position in the Eulerian-on-Lagrangian coordinate. (2) u0 in q0 varies when the
weft slides. (3) x0 in q0 changes when the cross over moves in space, i.e., the simulated cloth
deforms.

3.3 Methodology

We first explain the cloth representation (Section 3.3.1) and the (physics) system equation for

simulation (Section 3.3.2). Then we present the cloth force models (Section 3.3.3), and how we

solve the system equation to enable back-propagation (Section 3.3.4).

3.3.1 Cloth representation

Similar to the simulator proposed by Cirio et al. (2014), our cloth consists of two perpendicular

groups of parallel yarns named warps and wefts. Every pair of warp and weft are in contact with

each other at one crossing node (Fig. 3.1), with a persisting contact. We employ an Eulerian-

on-Lagrangian discretization (Sueda et al. 2011), and denote the Degrees of Freedom (DoFs) of

every crossing node as qi ≡ (xi, ui, vi). xi ∈ R3 is the Lagrangian coordinates indicating spatial

locations and (ui, vi) is the Eulerian coordinates indicating sliding movements between yarns,

as shown in Fig. 3.2. The end points of yarns do not contact with other yarns and hence they

are treated as special crossing nodes that have no Eulerian terms, i.e., qj ≡ xi. Therefore, on
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a r(rows) × c(columns) cloth, there are (r − 2) × (c − 2) crossing nodes with five DoFs and

2r+2c− 4 crossing nodes with three DoFs. Every two neighboring crossing nodes on the same

warp/weft delimit a warp/weft segment. A warp segment with end points q0 and q1 is denoted

as [q0,q1] and its position is (x0,x1, u0, u1), as shown in Fig. 3.1. This way, a woven cloth is

discretized into crossing nodes and segments which are the primitive units of the cloth. Every

segment is assumed to be straight so that linear interpolation can be employed on the segment,

i.e., the spatial location of a point in the segment [q0,q1] is x(u) =
u−u0
∆u x0+

u1−u
∆u x1, where u is

the point’s position in Eulerian coordinates and ∆u = u1 − u0 is the crossing nodes distance in

Eulerian coordinates. We use L to denote the rest length of the yarn segment and R to denote

the yarn radius.

3.3.2 System equation for simulation

A cloth’s state at time t, S(t) = {Q(t), Q̇(t)}, includes all the crossing node DoFs Q = {qi|i =

1, 2, . . . , N} and their velocities Q̇ = {q̇i|i = 1, 2, . . . , N}, where N is the number of crossing

nodes. Knowing the state, we can calculate the internal and external forces:

F = Mq̈ =
∂T

∂q
− ∂V

∂q
− Ṁq̇ (3.1)

where q, q̇, and q̈ are the general position, velocity, and acceleration respectively, with a

dimension l = 3 × r × c + 2 × (r − 2) × (c − 2). M ∈ Rl×l is the general mass matrix. The

model assumes mass is distributed homogeneously in one segment, so the mass matrix of a warp

segment [q0,q1] is

M0,1 =
1

6
∆uρ



2I3 I3 −2w −w

I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w

−w⊤ −2w⊤ w⊤w 2w⊤w


(3.2)

where w = x1−x0
∆u , and ρ is yarn density. T and V are the kinetic and potential energy. The

right hand terms in Eq. (3.1) are positional derivatives of kinetic energy, conservative forces,

and part of the time derivative of Mq̇. Non-conservative forces are added to the right side of the

equation. Section 3.3.3 gives the details of all the forces considered in our model. To simulate

a cloth’s motion, the simulator needs to recurrently predicting its future state S(t+1) given the
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current state S(t):

q(t+1) = q(t) + hq̇(t) (3.3)

q̇(t+1) = q̇(t) + hq̈(t) (3.4)

where h is the time step size (time lapse between every two consecutive states) and the subscript

in brackets t indicates the associate variable at time t. To gain high simulation stability, implicit

Euler method (Baraff and Witkin 1998) is commonly used:

q(t+1) = q(t) + hq̇(t+1) (3.5)

q̇(t+1) = q̇(t) + hq̈(t+1) = q̇(t) + hM−1F(t+1) (3.6)

Although F(t+1) is unknown without knowing the future state S(t+1), it can be approximated

by Taylor expansion:

F(t+1) = F(t) +
∂F

∂q
∆q+

∂F

∂q̇
∆q̇ (3.7)

Then,Eq. (3.5) and Eq. (3.6) are converted to the governing equation of the physical system:

(
M−

∂F(t)

∂q
h2 −

∂F(t)

∂q̇
h

)
q̇(t+1) = h

(
F(t) −

∂F(t)

∂q̇
q̇(t)

)
+Mq̇(t) (3.8)

which needs to be solved to calculate q̇(t+1) and update the cloth’s state:

q̇(t+1) = q̇(t) +∆q̇ (3.9)

q(t+1) = q(t) + hq̇(t+1) (3.10)

3.3.3 Force models

To simulate cloth, we need to compute Ṁq̇, the positional derivatives of kinetic energy (i.e.,

∂T
∂q ), internal and external forces in Eq. (3.8). This section starts from the derivatives of mass

matrix M. To the mass matrix of a warp segment [q0,q1] defined in Eq. (3.2), its partial

derivatives with respect to nodes’ position is

(
∂M0,1

∂x0

∂M0,1

∂x1

∂M0,1

∂u0

∂M0,1

∂u1

)⊤
(3.11)
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As x0 and x1 are vectors:

∂M0,1

∂x0
=


∂M0,1

∂x
(1)
0

∂M0,1

∂x
(2)
0

∂M0,1

∂x
(3)
0

 and
∂M0,1

∂x1
=


∂M0,1

∂x
(1)
1

∂M0,1

∂x
(2)
1

∂M0,1

∂x
(3)
1

 (3.12)

The component
∂M0,1

∂x
(1)
0

is

∂M0,1

∂x
(1)
0

=
1

6
∆uρ



0 0 −2 ∂w

∂x
(1)
0

− ∂w

∂x
(1)
0

0 0 − ∂w

∂x
(1)
0

−2 ∂w

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

2∂w⊤w

∂x
(1)
0

∂w⊤w

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

∂w⊤w

∂x
(1)
0

2∂w⊤w

∂x
(1)
0



and
∂M0,1

∂x
(2)
0

,
∂M0,1

∂x
(3)
0

,
∂M0,1

∂x
(1)
1

,
∂M0,1

∂x
(2)
1

and
∂M0,1

∂x
(3)
1

are in a similar form as
∂M0,1

∂x
(1)
0

. In each term, we have:

∂w

∂x
(1)
0

= −


1
∆u

0

0

 ,
∂w

∂x
(2)
0

= −


0

1
∆u

0

 , and
∂w

∂x
(3)
0

= −


0

0

1
∆u



∂w

∂x
(1)
1

=


1
∆u

0

0

 ,
∂w

∂x
(2)
1

=


0

1
∆u

0

 , and
∂w

∂x
(3)
1

=


0

0

1
∆u


∂w⊤w

∂x
(1)
0

=
∂w⊤

∂x
(1)
0

w +w⊤ ∂w

∂x
(1)
0

= −2x
(1)
1 − x

(1)
0

∆u2

where ∂w⊤w

∂x
(2)
0

, ∂w⊤w

∂x
(3)
0

, ∂w⊤w

∂x
(1)
1

, ∂w⊤w

∂x
(2)
1

and ∂w⊤w

∂x
(3)
1

have a similar form as ∂w⊤w

∂x
(1)
0

.

Unsurprisingly, we can find that

∂M0,1

∂x
(1)
0

= −∂M0,1

∂x
(1)
1

,
∂M0,1

∂x
(2)
0

= −∂M0,1

∂x
(2)
1

and
∂M0,1

∂x
(3)
0

= −∂M0,1

∂x
(3)
1

After deriving the partial derivatives of M0,1 with respect to the Lagrangian coordinates, we
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give its partial derivatives with respect to Eulerian coordinates:

∂M0,1

∂u0
=− 1

6
ρ



2I3 I3 −2w −w

I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w

−w⊤ −2w⊤ w⊤w 2w⊤w



+
1

6
∆uρ



0 0 −2 ∂w
∂u0

− ∂w
∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0


(3.13)

where
∂M0,1

∂u1
has a similar form as

∂M0,1

∂u0
and:

∂w

∂u0
=

x1 − x0

∆u2
=

w

∆u
and

∂w

∂u1
= −x1 − x0

∆u2
= − w

∆u

∂w⊤w

∂u0
=

∂w⊤

∂u0
w +w⊤ ∂w

∂u0
= 2

w⊤w

∆u

∂w⊤w

∂u1
=

∂w⊤

∂u1
w +w⊤ ∂w

∂u1
= −2w

⊤w

∆u

Likewise, we can find

∂M0,1

∂u0
= −∂M0,1

∂u1

So far, we have given the full details of M0,1’ s partial derivatives with respect to positions in
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Eq. (3.11). Now we give its time derivative:

Ṁ0,1 =
1

6
ρ(u̇1 − u̇0)



2I3 I3 −2w −w

I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w

−w⊤ −2w⊤ w⊤w 2w⊤w



+
1

6
ρ∆u



0 0 −2∂w
∂t −∂w

∂t

0 0 −∂w
∂t −2∂w

∂t

−2∂w⊤

∂t −∂w⊤

∂t 2∂w⊤w
∂t

∂w⊤w
∂t

−∂w⊤

∂t −2∂w⊤

∂t
∂w⊤w

∂t 2∂w⊤w
∂t


(3.14)

where

∂w

∂t
=

∂

∂t

x1 − x0

∆u
=

(ẋ1 − ẋ0)∆u− (x1 − x0)(u̇1 − u̇0)

∆u2

∂w⊤w

∂t
=

∂w⊤

∂t
w +w⊤∂w

∂t

In addition, the derivatives of Ṁ0,1q̇0,1 with respect to the nodes’ positions are:

∂Ṁ0,1q̇0,1

∂x0
=


∂Ṁ0,1

∂x
(1)
0

q̇0,1

∂Ṁ0,1

∂x
(2)
0

q̇0,1

∂Ṁ0,1

∂x
(3)
0

q̇0,1

 ,
∂Ṁ0,1q̇0,1

∂x1
=


∂Ṁ0,1

∂x
(1)
1

q̇0,1

∂Ṁ0,1

∂x
(2)
1

q̇0,1

∂Ṁ0,1

∂x
(3)
1

q̇0,1


∂Ṁ0,1q̇0,1

∂u0
=

∂Ṁ0,1

∂u0
q̇0,1,

∂Ṁ0,1q̇0,1

∂u1
=

∂Ṁ0,1

∂u1
q̇0,1 (3.15)
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The components in Eq. (3.15) are:

∂Ṁ0,1

∂x
(1)
0

=
1

6
ρ(u̇1 − u̇0)



0 0 −2 ∂w

∂x
(1)
0

− ∂w

∂x
(1)
0

0 0 − ∂w

∂x
(1)
0

−2 ∂w

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

2∂w⊤w

∂x
(1)
0

∂w⊤w

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

∂w⊤w

∂x
(1)
0

2∂w⊤w

∂x
(1)
0



+
1

6
ρ∆u



0 0 −2 ∂2w

∂t∂x
(1)
0

− ∂2w

∂t∂x
(1)
0

0 0 − ∂2w

∂t∂x
(1)
0

−2 ∂2w

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0


and

∂Ṁ0,1

∂u0
=

1

6
ρ(u̇1 − u̇0)



0 0 −2 ∂w
∂u0

− ∂w
∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0



− 1

6
ρ



0 0 −2∂w
∂t −∂w

∂t

0 0 −∂w
∂t −2∂w

∂t

−2∂w⊤

∂t −∂w⊤

∂t 2∂w⊤w
∂t

∂w⊤w
∂t

−∂w⊤

∂t −2∂w⊤

∂t
∂w⊤w

∂t 2∂w⊤w
∂t



+
1

6
∆uρ



0 0 −2 ∂2w
∂t∂u0

− ∂2w
∂t∂u0

0 0 − ∂2w
∂t∂u0

−2 ∂2w
∂t∂u0

−2∂2w⊤

∂t∂u0
−∂2w⊤

∂t∂u0
2∂2w⊤w

∂t∂u0

∂2w⊤w
∂t∂u0

−∂2w⊤

∂t∂u0
−2∂2w⊤

∂t∂u0

∂2w⊤w
∂t∂u0

2∂2w⊤w
∂t∂u0



where

∂2w

∂t∂x
(1)
0

=


u̇1−u̇0
∆u2

0

0

 ,
∂2w

∂t∂x
(2)
0

=


0

u̇1−u̇0
∆u2

0

 , and
∂2w

∂t∂x
(2)
0

=


0

0

u̇1−u̇0
∆u2


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∂2w

∂t∂x
(1)
1

= −


u̇1−u̇0
∆u2

0

0

 ,
∂2w

∂t∂x
(2)
1

= −


0

u̇1−u̇0
∆u2

0

 , and
∂2w

∂t∂x
(2)
1

= −


0

0

u̇1−u̇0
∆u2



∂2w

∂t∂u0
=

ẋ1 − ẋ1

(u1 − u0)2
− 2(x1 − x0)(u̇1 − u̇0)

(u1 − u0)3

∂2w

∂t∂u1
= − ẋ1 − ẋ1

(u1 − u0)2
+

2(x1 − x0)(u̇1 − u̇0)

(u1 − u0)3

∂2w⊤w

∂t∂x
(1)
0

=
∂w⊤

∂x
(1)
1

∂w

∂t
+w⊤ ∂2w

∂t∂x
(1)
1

+
∂2w⊤

∂t∂x
(1)
1

w +
∂w⊤

∂t

∂w

∂x
(1)
1

∂2w⊤w

∂t∂u0
=

∂w⊤

∂u0

∂w

∂t
+w⊤ ∂2w

∂t∂u0
+

∂2w⊤

∂t∂u0
w +

∂w⊤

∂t

∂w

∂u0

The derivatives of Ṁ0,1q̇0,1 with respect to the nodes’ velocities are:

∂Ṁ0,1q̇0,1

∂ẋ0
=


∂Ṁ0,1q̇0,1

∂ẋ
(1)
0

∂Ṁ0,1q̇0,1

∂ẋ
(2)
0

∂Ṁ0,1q̇0,1

∂ẋ
(3)
0

 =


∂Ṁ0,1

∂ẋ
(1)
0

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(1)
0

∂Ṁ0,1

∂ẋ
(2)
0

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(2)
0

∂Ṁ0,1

∂ẋ
(3)
0

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(3)
0



∂Ṁ0,1q̇0,1

∂ẋ1
=


∂Ṁ0,1q̇0,1

∂ẋ
(1)
1

∂Ṁ0,1q̇0,1

∂ẋ
(2)
1

∂Ṁ0,1q̇0,1

∂ẋ
(3)
1

 =


∂Ṁ0,1

∂ẋ
(1)
1

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(1)
1

∂Ṁ0,1

∂ẋ
(2)
1

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(2)
1

∂Ṁ0,1

∂ẋ
(3)
1

q̇0,1 + Ṁ0,1
∂q̇0,1

∂ẋ
(3)
1



∂Ṁ0,1q̇0,1

∂u̇0
=

∂Ṁ0,1

∂u̇0
q̇0,1 + Ṁ0,1

∂q̇0,1

∂u̇0

∂Ṁ0,1q̇0,1

∂u̇1
=

∂Ṁ0,1

∂u̇1
q̇0,1 + Ṁ0,1

∂q̇0,1

∂u̇1
(3.16)
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where

∂Ṁ0,1

∂ẋ
(1)
1

=
1

6
∆uρ



0 0 −2 ∂2w

∂t∂x
(1)
0

− ∂2w

∂t∂x
(1)
0

0 0 − ∂2w

∂t∂x
(1)
0

−2 ∂2w

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

− ∂2w⊤

∂t∂x
(1)
0

−2 ∂2w⊤

∂t∂x
(1)
0

∂2w⊤w

∂t∂x
(1)
0

2∂2w⊤w

∂t∂x
(1)
0



∂Ṁ0,1

∂u̇0
= −1

6
ρ



2I3 I3 −2w −w

I3 2I3 −w −2w

−2w⊤ −w⊤ 2w⊤w w⊤w

−w⊤ −2w⊤ w⊤w 2w⊤w



+
1

6
∆uρ



0 0 −2 ∂2w
∂t∂u̇0

− ∂2w
∂t∂u̇0

0 0 − ∂2w
∂t∂u̇0

−2 ∂2w
∂t∂u̇0

−2∂2w⊤

∂t∂u̇0
−∂2w⊤

∂t∂u̇0
2∂2w⊤w

∂t∂u̇0

∂2w⊤w
∂t∂u̇0

−∂2w⊤

∂t∂u̇0
−2∂2w⊤

∂t∂u̇0

∂2w⊤w
∂t∂u̇0

2∂2w⊤w
∂t∂u̇0



∂q̇0,1

∂ẋ
(1)
0

=



1

0

0

0

0

0

0

0



and
∂q̇0,1

∂u0
=



0

0

0

1

0

0

0

0


Kinetic energy is computed segment-wise, e.g., for a segment [q0,q1]:

T0,1 =
1

2
q̇⊤
0,1M0,1q̇0,1 =

1

2

(
ẋ⊤
0 ẋ⊤

1 u̇0 u̇1

)
M0,1



ẋ0

ẋ1

u̇0

u̇1


(3.17)
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Its derivative with respect to each node’s position is:

∂T0,1

∂q0,1
=



F
(k)
x0

F
(k)
x1

F
(k)
u0

F
(k)
u1


(3.18)

F
(k)
x0 =

∂T0,1

∂x0
=

1

2
q̇⊤
0,1

∂M0,1

∂x0
q̇0,1

F
(k)
x1 =

∂T0,1

∂x1
=

1

2
q̇⊤
0,1

∂M0,1

∂x1
q̇0,1

F (k)
u0

=
∂T0,1

∂u0
=

1

2
q̇⊤
0,1

∂M0,1

∂u0
q̇0,1

F (k)
u1

=
∂T0,1

∂u1
=

1

2
q̇⊤
0,1

∂M0,1

∂u1
q̇0,1

where F
(k)
x0 and F

(k)
u0 are the inertia of q0 in Lagrangian and Eulerian coordinates respectively.

Similarly, F
(k)
x1 and F

(k)
u1 are the inertia of q1.The derivative of the forces with respect to positions

are:

∂2T0,1

∂q0,1∂q0,1
=



∂F
(k)
x0

∂x0

∂F
(k)
x0

∂x1

∂F
(k)
x0

∂u0

∂F
(k)
x0

∂u1

∂F
(k)
x1

∂x0

∂F
(k)
x1

∂x1

∂F
(k)
x1

∂u0

∂F
(k)
x1

∂u1

∂F
(k)
u0

∂x0

∂F
(k)
u0

∂x1

∂F
(k)
u0

∂u0

∂F
(k)
u0

∂u1

∂F
(k)
u1

∂x0

∂F
(k)
u1

∂x1

∂F
(k)
u1

∂u0

∂F
(k)
u1

∂u1


(3.19)

The derivative of the force in Lagrangian coordinates with respect to Lagrangian coordinates is

∂F
(k)
x0

∂x0
=

1

2
q̇⊤
0,1

∂2M0,1

∂x0∂x0
q̇0,1

=
1

2


q̇⊤
0,1

∂2M0,1

∂x
(1)
0 ∂x

(1)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(1)
0 ∂x

(2)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(1)
0 ∂x

(3)
0

q̇0,1

q̇⊤
0,1

∂2M0,1

∂x
(2)
0 ∂x

(1)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(2)
0 ∂x

(2)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(2)
0 ∂x

(3)
0

q̇0,1

q̇⊤
0,1

∂2M0,1

∂x
(3)
0 ∂x

(1)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(3)
0 ∂x

(2)
0

q̇0,1 q̇⊤
0,1

∂2M0,1

∂x
(3)
0 ∂x

(3)
0

q̇0,1


∂F

(k)
x0

∂x1
,
∂F

(k)
x1

∂x0
and

∂F
(k)
x1

∂x1
are in similar forms as

∂F
(k)
x0

∂x0
. Also, the derivative of the force in Lagrangian

coordinate with respect to Eulerian coordinates is:

∂F
(k)
x0

∂u0
=

1

2
q̇⊤
0,1

∂2M0,1

∂x0∂u0
q̇0,1
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∂F
(k)
x0

∂u1
,
∂F

(k)
x1

∂u0
and

∂F
(k)
x1

∂u1
are in similar forms as

∂Fx0
∂u0

. Correspondingly, the derivative of the force

in Eulerian coordinates with respect to Lagrangian coordinates is:

∂F
(k)
u0

∂x0
=

1

2
q̇⊤
0,1

∂2M0,1

∂u0∂x0
q̇0,1

∂F
(k)
u0

∂x1
,

∂F
(k)
u1

∂x0
and

∂F
(k)
u1

∂x1
are in similar forms as

∂F
(k)
u0

∂x0
. The derivative of the force in Eulerian

coordinates with respect to Eulerian coordinates is:

∂F
(k)
u0

∂u0
=

1

2
q̇⊤
0,1

∂2M0,1

∂u0∂u0
q̇0,1

∂F
(k)
u0

∂u1
,
∂F

(k)
u1

∂u0
and

∂F
(k)
u1

∂u1
are in similar forms as

∂F
(k)
u0

∂u0
.

Specially, the entries in
∂F

(k)
x0

∂x0
are:

∂2M0,1

∂x
(1)
0 ∂x

(1)
0

=
1

6
∆uρ



0 0 0 0

0 0 0 0

0 0 2 ∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

0 0 ∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

2 ∂2w⊤w

∂x
(1)
0 ∂x

(1)
0



∂2M0,1

∂x
(2)
0 ∂x

(2)
0

=
1

6
∆uρ



0 0 0 0

0 0 0 0

0 0 2 ∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

0 0 ∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

2 ∂2w⊤w

∂x
(2)
0 ∂x

(2)
0



∂2M0,1

∂x
(3)
0 ∂x

(3)
0

=
1

6
∆uρ



0 0 0 0

0 0 0 0

0 0 2 ∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

0 0 ∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

2 ∂2w⊤w

∂x
(3)
0 ∂x

(3)
0


where

∂2w⊤w

∂x
(1)
0 ∂x

(1)
0

=
2

∆u2
,

∂2w⊤w

∂x
(2)
0 ∂x

(2)
0

=
2

∆u2
,and

∂2w⊤w

∂x
(3)
0 ∂x

(3)
0

=
2

∆u2

The other components are

∂2M0,1

∂x
(1)
0 ∂x

(2)
0

=
∂2M0,1

∂x
(1)
0 ∂x

(3)
0

= 0
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∂2M0,1

∂x
(2)
0 ∂x

(1)
0

=
∂2M0,1

∂x
(2)
0 ∂x

(3)
0

= 0

∂2M0,1

∂x
(3)
0 ∂x

(1)
0

=
∂2M0,1

∂x
(3)
0 ∂x

(2)
0

= 0

Moreover, as

∂2w⊤w

∂x
(1)
0 ∂x

(1)
1

= − 2

∆u2
,

∂2w⊤w

∂x
(2)
0 ∂x

(2)
1

= − 2

∆u2
,and

∂2w⊤w

∂x
(3)
0 ∂x

(3)
1

= − 2

∆u2

∂2M0,1

∂x
(1)
0 ∂x

(2)
1

=
∂2M0,1

∂x
(1)
0 ∂x

(3)
1

= 0

∂2M0,1

∂x
(2)
0 ∂x

(1)
1

=
∂2M0,1

∂x
(2)
0 ∂x

(3)
1

= 0

∂2M0,1

∂x
(3)
0 ∂x

(1)
1

=
∂2M0,1

∂x
(3)
0 ∂x

(2)
1

= 0

We can find that

∂2M0,1

∂x
(1)
0 ∂x

(1)
0

= − ∂2M0,1

∂x
(1)
0 ∂x

(1)
1

∂2M0,1

∂x
(2)
0 ∂x

(2)
0

= − ∂2M0,1

∂x
(2)
0 ∂x

(2)
1

∂2M0,1

∂x
(3)
0 ∂x

(3)
0

= − ∂2M0,1

∂x
(3)
0 ∂x

(3)
1

Therefore,

∂F
(k)
x0

∂x0
= −∂F

(k)
x0

∂x1

∂F
(k)
x1

∂x1
= −∂F

(k)
x1

∂x0
=

∂F
(k)
x0

∂x0

To compute the derivatives of the forces in Lagrangian coordinates with respect to Eulerian

coordinates, we need to compute:

∂2M0,1

∂x0∂u0
=


∂2M0,1

∂x
(1)
0 ∂u0

∂2M0,1

∂x
(2)
0 ∂u0

∂2M0,1

∂x
(3)
0 ∂u0

 and
∂2M0,1

∂x0∂u1
=


∂2M0,1

∂x
(1)
0 ∂u1

∂2M0,1

∂x
(2)
0 ∂u1

∂2M0,1

∂x
(3)
0 ∂u1


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∂2M0,1

∂x1∂u0
=


∂2M0,1

∂x
(1)
1 ∂u0

∂2M0,1

∂x
(2)
1 ∂u0

∂2M0,1

∂x
(3)
1 ∂u0

 and
∂2M0,1

∂x1∂u1
=


∂2M0,1

∂x
(1)
1 ∂u1

∂2M0,1

∂x
(2)
1 ∂u1

∂2M0,1

∂x
(3)
1 ∂u1


Take one component

∂2M0,1

∂x
(1)
0 ∂u0

as example:

∂2M0,1

∂x
(1)
0 ∂u0

= −1

6



0 0 −2 ∂w

∂x
(1)
0

− ∂w

∂x
(1)
0

0 0 − ∂w

∂x
(1)
0

−2 ∂w

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

2∂w⊤w

∂x
(1)
0

∂w⊤w

∂x
(1)
0

− ∂w⊤

∂x
(1)
0

−2 ∂w⊤

∂x
(1)
0

∂w⊤w

∂x
(1)
0

2∂w⊤w

∂x
(1)
0



+
1

6
∆uρ



0 0 −2 ∂2w

∂x
(1)
0 ∂u0

− ∂2w

∂x
(1)
0 ∂u0

0 0 − ∂2w

∂x
(1)
0 ∂u0

−2 ∂2w

∂x
(1)
0 ∂u0

−2 ∂2w⊤

∂x
(1)
0 ∂u0

− ∂2w⊤

∂x
(1)
0 ∂u0

2 ∂2w⊤w

∂x
(1)
0 ∂u0

∂2w⊤w

∂x
(1)
0 ∂u0

− ∂2w⊤

∂x
(1)
0 ∂u0

−2 ∂2w⊤

∂x
(1)
0 ∂u0

∂2w⊤w

∂x
(1)
0 ∂u0

2 ∂2w⊤w

∂x
(1)
0 ∂u0


in which

∂2w

∂x
(1)
0 ∂u0

= −


1

∆u2

0

0

 ,
∂2w

∂x
(2)
0 ∂u0

= −


0

1
∆u2

0

 ,
∂2w

∂x
(3)
0 ∂u0

= −


0

0

1
∆u2



∂2w

∂x
(1)
0 ∂u1

=


1

∆u2

0

0

 ,
∂2w

∂x
(2)
0 ∂u1

=


0

1
∆u2

0

 ,
∂2w

∂x
(3)
0 ∂u1

=


0

0

1
∆u2



∂2w

∂x
(1)
1 ∂u0

= −


1

∆u2

0

0

 ,
∂2w

∂x
(2)
1 ∂u0

= −


0

1
∆u2

0

 ,
∂2w

∂x
(3)
1 ∂u0

= −


0

0

1
∆u2


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∂2w

∂x
(1)
1 ∂u0

=


1

∆u2

0

0

 ,
∂2w

∂x
(2)
1 ∂u0

=


0

1
∆u2

0

 ,
∂2w

∂x
(3)
1 ∂u0

=


0

0

1
∆u2


It should be easy to compute

∂2M0,1

∂x0∂u0
,

∂2M0,1

∂x0∂u1
,

∂2M0,1

∂x1∂u0
,

∂2M0,1

∂x1∂u1
and then compute

∂F
(k)
x0

∂u0
,

∂F
(k)
x0

∂u1
,

∂F
(k)
x1

∂u0
,

∂F
(k)
x1

∂u1
. The derivatives of the forces in Eulerain coordinates with respect to Lagrangian

coordinates are the transpose of the forces in Lagrangian coordinates with respect to Eulerian

coordinates:

∂F
(k)
u0

∂x0
=

(
∂F

(k)
x0

∂u0

)⊤
∂F

(k)
u0

∂x1
=

(
∂F

(k)
x1

∂u0

)⊤

∂F
(k)
u1

∂x0
=

(
∂F

(k)
x0

∂u1

)⊤
∂F

(k)
u1

∂x1
=

(
∂F

(k)
x1

∂u1

)⊤

To compute the derivatives of the forces in Eluerian coordinates with respect to Eulerian coor-

dinates, we need to compute:
∂2M0,1

∂u0∂u0
,
∂2M0,1

∂u0∂u1
,
∂2M0,1

∂u1∂u0
, and

∂2M0,1

∂u1∂u1
. For example,

∂2M0,1

∂u0∂u0
=− 1

6
ρ



0 0 −2 ∂w
∂u0

− ∂w
∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0



− 1

6
ρ



0 0 −2 ∂w
∂u0

− ∂w
∂u0

0 0 − ∂w
∂u0

−2 ∂w
∂u0

−2∂w⊤

∂u0
−∂w⊤

∂u0
2∂w⊤w

∂u0

∂w⊤w
∂u0

−∂w⊤

∂u0
−2∂w⊤

∂u0

∂w⊤w
∂u0

2∂w⊤w
∂u0



+
1

6
∆uρ



0 0 −2 ∂2w
∂u0∂u0

− ∂2w
∂u0∂u0

0 0 − ∂2w
∂u0∂u0

−2 ∂2w
∂u0∂u0

−2 ∂2w⊤

∂u0∂u0
− ∂2w⊤

∂u0∂u0
2∂2w⊤w
∂u0∂u0

∂2w⊤w
∂u0∂u0

− ∂2w⊤

∂u0∂u0
−2 ∂2w⊤

∂u0∂u0

∂2w⊤w
∂u0∂u0

2∂2w⊤w
∂u0∂u0


in which

∂2w

∂u0∂u0
= 2

w

∆u2
and

∂2w⊤w

∂u0∂u0
= 6

w⊤w

∆u2
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Similarly, we can compute

∂2w

∂u0∂u1
= −2 w

∆u2
∂2w⊤w

∂u0∂u1
= −6w

⊤w

∆u2

∂2w

∂u1∂u0
= −2 w

∆u2
∂2w⊤w

∂u1∂u0
= −6w

⊤w

∆u2

∂2w

∂u1∂u1
= 2

w

∆u2
∂2w⊤w

∂u1∂u1
= 6

w⊤w

∆u2

to compute
∂2M0,1

∂u0∂u1
,

∂2M0,1

∂u1∂u0
, and

∂2M0,1

∂u1∂u1
. The derivatives of the inertia with respect to nodes’

velocities are:

∂F
(k)
x0

∂ẋ0
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
0

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(1)
0

1
2

∂q̇⊤
0,1

∂ẋ
(2)
0

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(2)
0

1
2

∂q̇⊤
0,1

∂ẋ
(3)
0

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(3)
0



∂F
(k)
x0

∂ẋ1
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
1

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(1)
1

1
2

∂q̇⊤
0,1

∂ẋ
(2)
1

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(2)
1

1
2

∂q̇⊤
0,1

∂ẋ
(3)
1

∂M0,1

∂x0
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂ẋ
(3)
1



∂F
(k)
x1

∂ẋ0
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
0

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(1)
0

1
2

∂q̇⊤
0,1

∂ẋ
(2)
0

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(2)
0

1
2

∂q̇⊤
0,1

∂ẋ
(3)
0

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(3)
0



∂F
(k)
x1

∂ẋ1
=


1
2

∂q̇⊤
0,1

∂ẋ
(1)
1

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(1)
1

1
2

∂q̇⊤
0,1

∂ẋ
(2)
1

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(2)
1

1
2

∂q̇⊤
0,1

∂ẋ
(3)
1

∂M0,1

∂x1
q̇0,1 +

1
2 q̇

⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂ẋ
(3)
1


∂F

(k)
x0

∂u̇0
=

1

2

∂q̇⊤
0,1

∂u̇0

∂M0,1

∂x0
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂u̇0

∂F
(k)
x1

∂u̇0
=

1

2

∂q̇⊤
0,1

∂u̇0

∂M0,1

∂x1
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂u̇0
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∂F
(k)
x0

∂u̇1
=

1

2

∂q̇⊤
0,1

∂u̇1

∂M0,1

∂x0
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x0

∂q̇0,1

∂u̇1

∂F
(k)
x1

∂u̇1
=

1

2

∂q̇⊤
0,1

∂u̇1

∂M0,1

∂x1
q̇0,1 +

1

2
q̇⊤
0,1

∂M0,1

∂x1

∂q̇0,1

∂u̇1

As woven cloths are interlaced yarns, the internal forces can be further classified into 1) forces

caused by yarn deformation and 2) forces resulting from yarn-to-yarn interactions. We treat each

yarn as an elastic rod that can generate elastic energy, including stretching and bending (Jawed

et al. 2018), ignoring the twisting due to its triviality in cloth dynamics (Cirio et al. 2014). The

elastic energy is V elastic = V (stretch) + V (bend), where V (stretch) and V (bend) are the stretching

and bending energy respectively.

Stretch force resists length changes of segments (with the rest length ∥w∥ = 1). Therefore, the

stretching energy is generated when the length changes. We compute the energy of segment

[q0,q1], in a similar way as (Loock et al. 2001; Spillmann and Teschner 2007):

V
(stretch)
0,1 =

1

2
Y πR2∆u(∥w∥ − 1)2 (3.20)

where Y is yarn’s elastic modulus and R is yarns’ radius. The stretching forces at the two nodes

are:

F(stretch)
x1

= −F(stretch)
x0

= −∂V0,1

∂x1
= −Y πR2(∥w∥ − 1)d0,1 (3.21)

F (stretch)
u1

= −F (stretch)
u0

= −∂V0,1

∂u1
=

1

2
Y πR2(∥w∥2 − 1) (3.22)

where d0,1 is the unit vector points from q0 to q1, d0,1 = x1−x0
∥x1−x0∥ . The derivatives of the

stretching forces with respect to nodes’ positions are:

∂F
(stretch)
x1

∂x1
=

∂F
(stretch)
x0

∂x0
= −∂F

(stretch)
x1

∂x0
= −∂F

(stretch)
x0

∂x1
= Y πR2(

1

l1
P0,1 −

1

∆u
I) (3.23)

∂F
(stretch)
u1

∂u1
=

∂F
(stretch)
u0

∂u0
= −∂F

(stretch)
u1

∂u0
= −∂F

(stretch)
u0

∂u1
= −Y πR2 ∥w∥2

∆u
(3.24)

∂F
(stretch)
x1

∂u1
=

∂F
(stretch)
x0

∂u0
= −∂F

(stretch)
x1

∂u0
= −∂F

(stretch)
x0

∂u1
= Y πR2 ∥w∥2

∆u
d0,1 (3.25)

∂F
(stretch)
u1

∂x1
=

∂F
(stretch)
u0

∂x0
= −∂F

(stretch)
u1

∂x0
= −∂F

(stretch)
u0

∂x1
=

Y πR2

∆u
w⊤ (3.26)

where P0,1 = I3 − d0,1d
⊤
0,1.
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Bending energy is defined as the integration of bending energy density along the two segments.

The bending energy on the two connected warp segments [q2,q0] and [q0,q1] is

V
(bend)
2,0,1 = BπR2 θ2

u1 − u2
(3.27)

where B is yarn bending modulus and θ = arcsin(−d⊤
0,1d0,2) is the angle between the two

segments. Its derivatives with respective to the node position are the bending forces:

F
(bend)
x1 = − 2BπR2θ

l1(u1 − u2) sin θ
P0,1d0,2 (3.28)

F
(bend)
x2 = − (2BπR2θ)

l2(u1 − u2) sin θ
P0,2d0,1 (3.29)

F
(bend)
x0 = −(F(bend)

x1 + F
(bend)
x2 ) (3.30)

F (bend)
u1

= −F (bend)
u2

=
2BπR2θ2

(u1 − u2)2
(3.31)

F (bend)
u0

= 0 (3.32)

The derivatives of the bending forces with respected to the nodes’ position are

∂F
(bend)
x1

∂x1
=

2BπR2

l21(u1 − u0) sin θ

(
θ

(
P0,1d0,2d

⊤
0,1 +

cos θ

sin2 θ
P0,1d0,2d

⊤
0,2P0,1 + cos θP0,1

+ d0,1d
⊤
0,2P0,1

)
− 1

sin θ
P0,1d0,2d

⊤
0,2P0,1

)
(3.33)

∂F
(bend)
x2

∂x2
=

2BπR2

l22(u1 − u0) sin θ

(
θ

(
P0,2d0,1d

⊤
0,2 +

cos θ

sin2 θ
P0,2d0,1d

⊤
0,1P0,2 + cos θP0,2

+ d0,2d
⊤
0,1P0,2

)
− 1

sin θ
P0,2d0,1d

⊤
0,1P0,2

)
(3.34)

∂F
(bend)
x1

∂x2
= − 2BπR2

l2l1(u1 − u2) sin θ

(
θ

(
P0,1−

cos θ

sin2 θ
P0,1d0,2d

⊤
0,1

)
+

1

sin θ
P0,1d0,2d

⊤
0,1

)
P0,2 (3.35)

∂F
(bend)
x2

∂x1
= − 2BπR2

l1l2(u1 − u2) sin θ

(
θ

(
P0,2−

cos θ

sin2 θ
P0,2d0,1d

⊤
0,2

)
+

1

sin θ
P0,2d0,1d

⊤
0,2

)
P0,1 (3.36)

∂F
(bend)
x1

∂x0
= −

(
∂F

(bend)
x1

∂x1
+

∂F
(bend)
x1

∂x2

)
(3.37)

67



3.3. Methodology Chapter 3. Fine-grained Differentiable Physics

Figure 3.3: Compression force on q0 along normal n at q0.

∂F
(bend)
x2

∂x0
= −

(
∂F

(bend)
x2

∂x1
+

∂F
(bend)
x2

∂x2

)
(3.38)

∂F
(bend)
x0

∂x1
= −

(
∂F

(bend)
x1

∂x1
+

∂F
(bend)
x2

∂x1

)
(3.39)

∂F
(bend)
x0

∂x2
= −

(
∂F

(bend)
x1

∂x2
+

∂F
(bend)
x2

∂x2

)
(3.40)

∂F
(bend)
x0

∂x0
= −

(
∂F

(bend)
x1

∂x0
+

∂F
(bend)
x2

∂x0

)
(3.41)

∂F
(bend)
u1

∂u1
=

∂F
(bend)
u2

∂u2
=

∂F
(bend)
u1

∂u2
=

∂F
(bend)
u2

∂u1
= − 2BπR2θ2

(u1 − u2)2
(3.42)

∂F
(bend)
x1

∂u1
= −∂F

(bend)
x1

∂u2
=

2BπR2θ

l1(u1 − u2)2 sin θ
P0,1d0,2 (3.43)

∂F
(bend)
x2

∂u1
= −∂F

(bend)
x2

∂u2
=

2BπR2θ

l2(u1 − u2)2 sin θ
P0,2d0,1 (3.44)

∂F
(bend)
x0

∂u1
= −∂F

(bend)
x0

∂u2
= −

(
∂F

(bend)
x1

∂u1
+

∂F
(bend)
x2

∂u1

)
(3.45)

∂F
(bend)
u1

∂x1
= −∂F

(bend)
u2

∂x1
=

2BπR2θ

l1(u1 − u2)2 sin θ
d⊤
0,2P0,1 (3.46)

∂F
(bend)
u1

∂x2
= −∂F

(bend)
u2

∂x2
=

2BπR2θ

l2(u1 − u2)2 sin θ
d⊤
0,1P0,2 (3.47)

∂F
(bend)
u1

∂x0
= −∂F

(bend)
u2

∂x0
= −

(
∂F

(bend)
u1

∂x1
+

∂F
(bend)
u1

∂x2

)
(3.48)

The yarn-to-yarn interaction forces include friction, shear, and parallel yarn collisions.

Yarn-to-yarn contact. While the aforementioned forces are differentiable, the yarn-to-yarn
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forces are not. Existing differentiable contact models mainly correct after-contact positions

and velocities (Belbute-Peres et al. 2018; Liang et al. 2019; Zhong et al. 2021) via (multiple)

optimization solves, which is too simplistic for fabrics. Yarn-to-yarn contact has its unique

features. It is relatively sticky and often has small relative velocities. We need a contact model

that reflects this and leads to a differentiable contact force which affects the friction/shear. The

contact force is a combination of the stretching F(stretch) and bending forces F(bend) at every

crossing node along the contact normal n. We assume no-slip contact and compute the contact

force by:

Fn = ReLU(
1

2
n⊤(F(stretch)

u + F(bend)
u − F(stretch)

v − F(bend)
v )) (3.49)

where u and v represent the forces from warp and weft segments. The rectified linear unit

(ReLU) ensures the non-negativity of the contact force. The normal n, from warp to weft yarn

(Fig. 3.3), is approximated by the normal of the best-fit plane of q0-q4.

Friction. The friction between warps and wefts prohibits relative movements, which is crucial

to the overall dynamics of the fabric. In differentiable physics, contacts under simple settings

have been modeled, such as the standard Coulomb model for kinetic friction (Zhong et al. 2021).

But this is insufficient for our purpose for two reasons. First, the static friction plays a key

role in stick-slip behaviours of yarns (Zhou et al. 2019) and needs to be modeled. Second, the

standard Coulomb friction model is a piece-wise function, which is intrinsically indifferentiable

at the static-to-kinetic transition point. Therefore, we need a new differentiable friction model.

The low relative speed between yarns is a special situation where the static-to-kinetic transition

could actually be continuous (as opposed to the Coulomb model), experimentally shown by

Stribeck (Stribeck 1902). This indicates that a continuous and differentiable model has the

potential to be more accurate for yarns than the widely used Coulomb model. Further, the

breakaway force causing the static-to-kinetic transition depends on the rate of the external

force (Johannes et al. 1973), and the nonlinear stick-slip behavior is related to self-excited

vibrations before transition (Awrejcewicz 1988). Inspired by the above research, we propose a

new differentiable yarn-to-yarn friction model (Fig. 3.4):

FSlide = −
(kfδu−K(δu)µFn

2
K(µFn − Fu) +

kfδu+K(δu)µFn

2

)
− df u̇0 (3.50)

where δu = u0 − ū0 and K(x) = tanh(px). ū0 is the anchor position when there is no relative
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movement between the warp and the weft segment, µ is the friction coefficient, and Fu is the

external force. We introduce a hyperparameter p to control the conversion speed between

static and kinetic friction. To understand Eq. (3.50), there are three situations: Fu = 0 (no

external force), 0 ≤ Fu ≤ µFn (static friction), and Fu > µFn (kinetic friction). When Fu = 0,

δu = 0, K(µFn − Fu) = 1 and the speed u̇0 = 0, so FSlide = 0; when 0 ≤ Fu ≤ µFn, we

allow a small displacement δu to mimic the self-excited vibration in static friction, governed

by a Hooke’s spring kfδu with stiffness kf . When Fu is small, i.e., K(µFn − Fu) is close to 1,

FSlide ≈ −kfδu−df u̇0 where df is a damping coefficient. FSlide is mainly the static friction minus

a small damping term (as u̇0 is small). Due to the time discretization in simulation, the spring

force has a delayed response which causes small-range vibrations. When K(µFn−Fu) starts to

decrease to 0 and the breakaway force is achieved Fu = µFn, FSlide = −kf δu+K(δu)µFn

2 − df u̇0

and
kf δu+K(δu)µFn

2 is the average of the spring force and the maximum static friction. Finally

when Fu > µFn, K(µFn − Fu) quickly becomes -1 and K(δu) becomes 1 as δu increases.

Then FSlide = −µFn − df u̇0, which is the kinetic friction minus damping. Fig. 3.4 shows

our friction can closely approximate the Stribeck effect while maintaining differentiability, as

opposed to the indifferentiable Coulomb model. Also, it incorporates self-excited vibrations

within FSlide ∈ [−Fk, Fk] which is when 0 ≤ Fu ≤ µFn. The derivative of friction force with

respect to node position in Eulerian coordinate is

∂FSlide

∂u0
=−

kf − ((1− tanh2 δu)µFn + tanh δuµ∂Fn
∂u0

)

2
tanh (µFn − Fu)

−
kfδu− tanh δuµFn

2
(1− tanh2 (µFn − Fu))

(
∂Fu

∂u0
− µ

∂Fn

∂u0

)
−

kf + (1− tanh2 δu)µFn + tanh δuµ∂Fn
∂u0

2
(3.51)

The derivative of friction force with respect to node velocity in Eulerian coordinate is

∂FSlide

∂u̇0
=

kfδu− tanh δuµFn

2
(1− tanh2(µFn − Fu))

∂Fu

∂u̇0
− df (3.52)

Shear. A shear force is generated when there is relative rotation between a warp and a weft

at a crossing node (Parsons et al. 2010), which increases non-linearly when the shear angle

increases (Mohammed et al. 2000; Peng et al. 2004; Cao et al. 2008). Previous differential

models do not consider this type of forces. Therefore, we propose a new differentiable shear
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Figure 3.4: Fk and Ft are the static and kinetic friction. Coulomb model (left) is an indiffer-
entiable multi-value function. Stribeck effect (middle) is empirically observed (Stribeck 1902).
Our model (right) incorporates the Stribeck effect and also simulates self-excited vibrations
around v = 0.

Figure 3.5: Shear force strength vs shear angle ϕ̄− ϕ, (left) and graphical illustration (right).

model. There are different stages when the shear angle increases (King et al. 2005). The shear

force first grows almost linearly initially, then ‘shear lock’ is triggered (Wang et al. 1999) when

the angle passes a threshold and the shear force starts to increase exponentially as the angle

increases, producing highly non-linear behaviors. We therefore define the shear energy as a

function of the shear angle ϕ̄− ϕ (Fig. 3.5): 1
2ksL(ϕ− ϕ̄)2, where ϕ̄ = π

2 is the rest shear angle.

ks = SπR2(1+Fn) is the shear stiffness and S is the shear modulus. We embed the ‘shear lock’

by boosting ks exponentially with γ = (
√
2L2 − 2 sin ϕ

2L)/R as long as it stays smaller than

the lock threshold ϕl = 2arcsin R
L : ks equals to SπR2(1 + Fn) if ϕ > ϕl; and SπR2(1 + Fn)γ

c

otherwise, where c controls the increase rate of ks with respect to ϕ when ‘shear lock’ occurs.

Although ks has discontinuities within [0, ϕ2 ], our new shear stiffness can be defined as:

ks =
1

2
(Fn + 1)SπR2

(
(1 + γc) + (1− γc) tanh

(
ϕ̄5(ϕ− ϕl)

(ϕ(ϕ− ϕl)(ϕ− ϕ̄))2 + ϕ̄4σ2

))
(3.53)

where σ governs the transition smoothness between lock and no-lock. The smaller the σ is, the
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smoother the transition is. The shear forces at those crossing nodes are

F
(shear)
x1 = −

∂V
(shear)
1,0,3

∂x1
= −1

2

∂ks
∂x1

L(ϕ− ϕ̄)2 +
ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3 (3.54)

F
(shear)
x3 = −

∂V
(shear)
1,0,3

∂x3
= −1

2

∂ks
∂x3

L(ϕ− ϕ̄)2 +
ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1 (3.55)

F
(shear)
x0 = −(Fx1 + Fx3) (3.56)

For the sake of simplicity, we define:

g(ϕ) =
ϕ̄5(ϕ− ϕl)

(ϕ(ϕ− ϕl)(ϕ− ϕ̄))2 + ϕ̄4σ2

f(ϕ) = tanh g(ϕ)

The numerator and denominator of g(ϕ) are

gnum(ϕ) = ϕ̄5(ϕ− ϕl)

and

gden(ϕ) = (ϕ(ϕ− ϕl)(ϕ− ϕ̄))2 + ϕ̄4σ2

Then, we have:

∂ks
∂x3

=
1

2
(Fn + 1)SR2

(
cγc−1 ∂γ

∂x3
− cγc−1 ∂γ

∂x3
f(ϕ) + (1− γc)(1− f(ϕ)2)

∂g(ϕ)

∂x3

)

∂ks
∂x1

=
1

2
(Fn + 1)SR2

(
cγc−1 ∂γ

∂x1
− cγc−1 ∂γ

∂x1
f(ϕ) + (1− γc)(1− f(ϕ)2)

∂g(ϕ)

∂x1

)
where

∂γ

∂x1
= −L

R
cos

ϕ

2

∂ϕ

∂x1
,
∂γ

∂x3
= −L

R
cos

ϕ

2

∂ϕ

∂x3
,

∂g(ϕ)

∂x1
=

∂gnum(ϕ)
∂x1

gden(ϕ)− gnum(ϕ)∂gden(ϕ)∂x1

g2den(ϕ)
,

∂g(ϕ)

∂x3
=

∂gnum(ϕ)
∂x3

gden(ϕ)− gnum(ϕ)∂gden(ϕ)∂x3

g2den(ϕ)
.
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The terms ∂gnum(ϕ)
∂x1

, ∂gden(ϕ)
∂x1

, ∂gnum(ϕ)
∂x3

, and ∂gden(ϕ)
∂x3

are:

∂gnum(ϕ)

∂x1
= ϕ̄5 ∂ϕ

∂x1
= −ϕ̄5P0,1d0,3

l1 sinϕ

∂gnum(ϕ)

∂x3
= ϕ̄5 ∂ϕ

∂x3
= −ϕ̄5P0,3d0,1

l3 sinϕ

∂gden(ϕ)

∂x1
= 2(ϕ(ϕ− ϕl)(ϕ− ϕ̄))

(
∂ϕ

∂x1
(ϕ− ϕl)(ϕ− ϕ̄) + ϕ

∂ϕ

∂x1
(ϕ− ϕ̄) + ϕ(ϕ− ϕl)

∂ϕ

∂x1

)
∂gden(ϕ)

∂x3
= 2(ϕ(ϕ− ϕl)(ϕ− ϕ̄))

(
∂(ϕ)

∂x3
(ϕ− ϕl)(ϕ− ϕ̄) + ϕ

∂ϕ

∂x3
(ϕ− ϕ̄) + ϕ(ϕ− ϕl)

∂ϕ

∂x3

)
The derivatives of the shear forces with respect to the nodes’ positions in Lagrangian coordinate

are:

∂Fx1

∂x1
= −1

2

∂2ks
∂x1x1

L(ϕ− ϕ̄)2 − L(ϕ− ϕ̄)
∂ks
∂x1

∂ϕ

∂x1
+

∂

∂x1

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3

∂Fx3

∂x3
= −1

2

∂2ks
∂x3x3

L(ϕ− ϕ̄)2 − L(ϕ− ϕ̄)
∂ks
∂x3

∂ϕ

∂x3
+

∂

∂x3

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1

∂Fx1

∂x3
= −1

2

∂2ks
∂x1x3

L(ϕ− ϕ̄)2 −L(ϕ− ϕ̄)
∂ks
∂x1

∂ϕ

∂x3
−L(ϕ− ϕ̄)

∂ϕ

∂x1

∂ks
∂x3

+
∂

∂x3

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3

∂Fx3

∂x1
= −1

2

∂2ks
∂x3x1

L(ϕ− ϕ̄)2 −L(ϕ− ϕ̄)
∂ks
∂x3

∂ϕ

∂x1
−L(ϕ− ϕ̄)

∂ϕ

∂x3

∂ks
∂x1

+
∂

∂x1

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1

where

∂

∂x1

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3 =

ksL

l21 sinϕ

((
ϕ− ϕ̄

)(
−P0,1d0,3d

⊤
0,1 +

cosϕ

sin2 ϕ
P0,1d0,3d

⊤
0,3P0,1

− cosϕP0,1 − d0,1d
⊤
0,3P0,1

)
− 1

sinϕ
P0,1d0,3d

⊤
0,3P0,1

)

∂

∂x3

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1 =

ksL

l23 sinϕ

((
ϕ− ϕ̄

)(
−P0,3d0,1d

⊤
0,3 +

cosϕ

sin2 ϕ
P0,3d0,1d

⊤
0,1P0,3

− cosϕP0,3 − d0,3d
⊤
0,1P0,3

)
− 1

sinϕ
P0,3d0,1d

⊤
0,1P0,3

)

∂

∂x3

ksL(ϕ− ϕ̄)

l1 sinϕ
P0,1d0,3 =

ksL

l3l1 sinϕ

((
ϕ− ϕ̄

)( cosϕ

sin2 ϕ
P0,1d0,3d

⊤
0,1P0,3 +P0,1P0,3

)
− 1

sinϕ
P0,1d0,3d

⊤
0,1P0,3

)
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∂

∂x1

ksL(ϕ− ϕ̄)

l3 sinϕ
P0,3d0,1 =

ksL

l1l3 sinϕ

((
ϕ− ϕ̄

)( cosϕ

sin2 ϕ
P0,3d0,1d

⊤
0,3P0,1 +P0,3P0,1

)
− 1

sinϕ
P0,3d0,1d

⊤
0,3P0,1

)

Moreover, the other terms are

∂Fx1

∂x0
= −

(
∂Fx1

∂x1
+

∂Fx1

∂x3

)
,
∂Fx3

∂x0
= −

(
∂Fx3

∂x1
+

∂Fx3

∂x3

)

∂Fx0

∂x1
= −

(
∂Fx1

∂x1
+

∂Fx3

∂x1

)
,
∂Fx0

∂x3
= −

(
∂Fx1

∂x3
+

∂Fx3

∂x3

)
∂Fx0

∂x0
= −

(
∂Fx1

∂x0
+

∂Fx3

∂x0

)

Yarn-to-yarn collision. The last internal force is the yarn-to-yarn collisions between parallel

yarns. Although it is theoretically possible to use an existing approach (Belbute-Peres et al.

2018; Liang et al. 2019), it would require forming an optimization for all segments and therefore

become prohibitively slow. Therefore, we introduce a new penalty energy, defined as a function

of the nodes’ distance in Eulerian coordinates for a warp segment [q0,q1] (similar for a weft

segment):

V
(collision)
0,1 =

1

2
kcL(ReLU(d−∆u))2 (3.57)

where d = 4R or 2R and kc defines collision stiffness. The yarn-to-yarn collision forces are:

Fu0 = −∂V0,1

∂u0
= kcL(∆u− d) (3.58)

Fu1 = −∂V0,1

∂u1
= −kcL(∆u− d) (3.59)

The derivatives of the forces with respect to the nodes’ position in Eulerian coordiates:

∂Fu0

∂u0
=

∂Fu1

∂u1
= −∂Fu0

∂u1
= −∂Fu1

∂u0
= −kcL (3.60)

External forces and collisions. Without loss of generality, we consider two external forces:

gravity and wind force. Their impacts can be modeled by defining proper potential energies.

We define a gravitational energy which is computed segment-wise. To a warp segment [q0,q1],

74



Chapter 3. Fine-grained Differentiable Physics 3.3. Methodology

Figure 3.6: Treat a square hold in 4 segments as two triangles.

it gravitational energy is defined as

V
(gravity)
0,1 = ρ∆ug⊤x0 + x1

2
(3.61)

where g ∈ R3 is the gravity of earth which is approximately set to (0, 0, 9.8)m/s2. The gravity

at the nodes are

F
(gravity)
x0 = −

∂V
(gravity)
0,1

∂x0
= −1

2
ρg∆u (3.62)

F
(gravity)
x1 = −

∂V
(gravity)
0,1

∂x1
= −1

2
ρg∆u (3.63)

F (gravity)
u0

= −
∂V

(gravity)
0,1

∂u0
=

1

2
ρg⊤(x1 + x0) (3.64)

F (gravity)
u1

= −
∂V

(gravity)
0,1

∂u1
= −1

2
ρg⊤(x1 + x0) (3.65)

The derivative of the force with respect to the nodes’ position are:

∂F
(gravity)
x0

∂u0
=

1

2
ρg

∂F
(gravity)
x0

∂u1
= −1

2
ρg (3.66)

∂F
(gravity)
x1

∂u0
=

1

2
ρg

∂F
(gravity)
x1

∂u1
= −1

2
ρg (3.67)

∂F
(gravity)
u0

∂x1
=

1

2
ρg⊤ ∂F

(gravity)
u0

∂x0
=

1

2
ρg⊤ (3.68)

∂F
(gravity)
u1

∂x1
= −1

2
ρg⊤ ∂F

(gravity)
u1

∂x0
= −1

2
ρg⊤ (3.69)

To apply wind force to the surface of the cloth, we need to compute an area-based force. Every

square composed of four segments can be split into two triangles when computing wind force
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(shown in Fig. 3.6). The wind force has three properties affecting its influence on the cloth:

wind velocity vw, density ρw, and drag dw. In this work, we set vw = (0, 5, 0), ρw = 2, and

dw = 0.5. The wind force imposed on a triangle face [q0,q1,q3] is defined as:

F(wind) = ρwa|vn|vnnf + dwvt (3.70)

where a is the face area, nf is the face normal, and wind velocity along the face’s normal

direction and tangential direction respectively are

vn = nf

(
vw −

ẋ0 + ẋ1 + ẋ3

3

)
,

vt =
ẋ0 + ẋ1 + ẋ3

3
− vnnf .

The force is evenly imposed on the three nodes:

F
(wind)
x0 = F

(wind)
x1 = F

(wind)
x3 =

1

3
F(wind). (3.71)

Finally, after calculating all forces, the resultant force at every crossing node is the combined

force of all segments that connect to that node. The cloth is simulated by solving Eq. (3.8). We

adopt a collision handling method originally designed for triangular meshes stored in bounding

volume hierarchy (Tang et al. 2010) where continuous collision detection (CCD) can detect

edge-edge and vertex-face collision. The detected vertices, edges, and faces are grouped into

non-rigid impact zones (Harmon et al. 2008) for computing collision response. We treat collision

response as a constrained optimization problem to prevent penetrations (Liang et al. 2019):

minimize
(xcolli−x)

1

2
(xcolli − x)⊤W(xcolli − x)

subject to Gxcolli + h ≤ 0

where W is a weight matrix, x is the Lagrangian part of q, xcolli is the updated x where no

collision can be detected. G and h are constraint parameters. We assume neither self-collision

nor cloth-object collision can generate considerable yarn-sliding motions, so we exclude the

Eulerian terms.
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3.3.4 Derivatives of the simulator

Now we have a fully differentiable simulator with parameters ω. The ω is the cloth physical

parameters (stretching, bending, shearing, etc) when solving inverse problems, or the to be

learned external forces in control experiments. Given a loss function L, its gradient with respect

to the parameters ∂L
∂ω can help learn the right physics parameters via back-propagation. For

simplicity, we use Aq̇ = b to represent Eq. (3.8). The differential of Aq̇ = b is (Magnus and

Neudecker 2019):

Adq̇ = db− dAq̇ (3.72)

We can form the Jacobians of q̇ with respect to A or b with Eq. (3.72). For example, to

compute the ∂q̇
∂A , we need to set dA = I and db = 0, then solve the equation and the result is

∂q̇
∂A . As pointed out by (Amos and Kolter 2017), it is unnecessary to explicitly compute these

Jacobians in back-propagation. We want to compute the product of the vector passed from

back-propagation, ∂L
∂q̇ , and the Jacobians of q̇, i.e.,∂L∂q̇

∂q̇
∂A and ∂L

∂q̇
∂q̇
∂b . Assume A ∈ R3×3, q̇ ∈ R3,

and b ∈ R3, then

∂L
∂b

=
∂L
∂q̇

∂q̇

∂b
=


(

∂L
∂q̇1

∂L
∂q̇2

∂L
∂q̇3

)
∂q̇1

∂b1

∂q̇1

∂b2

∂q̇1

∂b3

∂q̇2

∂b1

∂q̇2

∂b2

∂q̇2

∂b3

∂q̇3

∂b1

∂q̇3

∂b2

∂q̇3

∂b3




⊤

(3.73)

As

∂q̇1

∂b1
=

∂ (A−1)1,1b1 + (A−1)1,1b2 + (A−1)1,1b3

∂b1
= A−1

1,1

and similarly for ∂q̇i

∂bj
, Eq. (3.73) can be represented as:


(

∂L
∂q̇1

∂L
∂q̇2

∂L
∂q̇3

)
(A−1)1,1 (A−1)1,2 (A−1)1,3

(A−1)2,1 (A−1)2,2 (A−1)2,3

(A−1)3,1 (A−1)3,2 (A−1)3,3




⊤

= (A−1)⊤
∂L
∂q̇

(3.74)

After computing ∂L
∂b , we need to compute ∂L

∂A . The b in Eq. (3.72) can be set to 0 because it is

irrelevant when computing ∂L
∂A . Then we have

Adq̇ = −dAq̇ (3.75)
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The derivative of q̇ with respect to Ai,j , the entry in the ith row and jth column of the matrix

A, is

∂q̇

∂Ai,j
= A−1


0

−q̇j

0

 (3.76)

According to chain rule,

∂L
∂Ai,j

=
∂L
∂q̇

∂q̇

∂Ai,j
=

∂L
∂b

⊤
AA−1


0

−q̇j

0

 = −
(
∂L
∂b

)
i

q̇j (3.77)

The more general form is

∂L
∂A

= −∂L
∂b

q̇⊤ (3.78)

By using chain rule, we have ∂L
∂ω = ∂L

∂A
∂A
∂ω and ∂L

∂ω = ∂L
∂b

∂b
∂ω . Finally, we define the loss function:

L(q, q̂) = 1
NT

∑N
n=1

∑T
t=1 ∥qn,t− q̂n,t∥22, where qn,t and q̂n,t are the ground-truth and predicted

general position. N and T are the total number of nodes and simulation steps respectively. We

use Stochastic Gradient Descent and run 70 epochs for training.

Underconstrainedness Mitigation. Learning physical parameters via solving an inverse

problem is intrinsically under-constrained, leading to multiple solutions or implausible parame-

ter values when fitting data, e.g., unconstrained learning leads to negative density. We mitigate

this issue by incorporating prior knowledge. Instead of directly learning parameters ω, we set

ω = a × sigmoid(y) + b where a and b are tunable scalars, and we learn y instead. a and b

essentially limit the range of ω. We can induce prior knowledge of parameter ranges such as

yarn density ranges, because although the exact value is to be learned and not known a priori,

their ranges are available in practice. Our experiments demonstrate that this strategy effectively

mitigates the multi-solution issue.

3.4 Experiments

We employ a traditional indifferentiable yarn-level simulator (Cirio et al. 2014) to generate the

ground-truth data, and build a dataset of fabrics with three types of yarns and three types of

woven patterns. The yarns vary in density, elastic modulus, and bending modulus (Table 3.1).
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Figure 3.7: Woven patterns. Left-to-right: plain, satin, and twill. Teal and coral indicate
different yarns.

Table 3.1: Ground-truth parameters of three yarns.

Parameter/Yarn Yarn1 Yarn2 Yarn3

Density(kg/m) 0.0020 0.0025 0.0024
Stretch modulus(N/m) 500000 170000 120000
Bending modulus(N/m) 0.00014 0.00011 0.00009

The three woven patterns include plain, twill and satin. We use hybrid fabrics made from two

types of yarns, and exhaustively combine three yarns with three woven patterns (Fig. 3.7) to

generate 9 types of fabrics. We denote them as XXX-(X, X) where the prefix is the woven

pattern and the numbers in the brackets are the yarns, e.g., Plain-(1, 2) means a plain pattern

woven with Yarn1 and Yarn2. In our ground-truth data, we use a square piece of cloth hanging

at its two corners and blown by wind with a constant magnitude. The simulation is conducted

for 500 steps with h = 0.001s. Training details are in Appendix A.

3.4.1 Learning physical parameters

We first demonstrate our model’s effectiveness in learning meaningful physical parameters, under

various model sizes and different amounts of training data.

Learning capacity. We first test whether meaningful physical parameters can be learned from

cloths of different sizes. Small-size cloths tend to show low-frequency features, e.g., the general

shape, as opposed to high-frequency features, such as wrinkles and buckling. We test our model

on simulation data with sizes: 5×5, 10×10, 17×17 and 25×25, trained on the first 25 frames.

Table 3.2 shows that our model can effectively estimate yarn parameters with underlying physics

models of different sizes. This has several implications. First, although cloth size does affect the

overall dynamics of the motion in the ground-truth data (e.g., larger cloths have more wrinkles),
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it does not affect our model’s learning capability. Second, since our model can reliably learn

the yarn parameters on a small fraction of a cloth, it saves the computation of learning from

large cloths, which improves the learning scalability. We can learn from small cloths and then

scale to simulate large cloths. Further, inter-yarn parameters including shear S and friction

coefficient µ are highly correlated so that the model can easily end up learning only plausible

parameter values rather than the true values. This is where we expect our model to suffer from

the under-constrainedness problem as (Liang et al. 2019). Surprisingly, our model can learn the

right parameters under different sizes. By introducing prior knowledge as aforementioned, the

learned parameters are restricted within valid ranges.

Table 3.2: Inter/intra parameters learned on Plain-(1, 2), with ground-truth S = 1000Pa,
µ = 0.5.

Size Shear S Friction µ Yarn Density Stretch Bend

5× 5 949 0.437
1 2.028× 10−3 479523 1.387× 10−4

2 2.450× 10−3 172928 1.112× 10−4

10× 10 932 0.455
1 1.991× 10−3 484719 1.325× 10−4

2 2.448× 10−3 173843 1.026× 10−4

17× 17 947 0.402
1 1.969× 10−3 505421 1.323× 10−4

2 2.440× 10−3 171304 1.034× 10−4

25× 25 913 0.380
1 2.069× 10−3 510215 1.488× 10−4

2 2.443× 10−3 173920 1.201× 10−4

Data efficiency. Data efficiency is crucial as obtaining the ground-truth data can be expensive.

Precise 3D geometry capture of real cloths is difficult and time-consuming, while simulation of

high-res cloths is prohibitively slow. We further investigate the data efficiency by varying the

amount of training data. We gradually increase the training data from the first 5 frames to the

first 25 frames. Table 3.3 shows that our model has high data efficiency. It can learn reasonably

well from as few as the first 5 frames. The benefits are two-fold. First, our model needs just a few

frames to train, making it highly applicable. The second benefit is bigger but less obvious. The

first 5 frames (from a static pose) normally contains little dynamics as the cloth just starts to

move. This indicates that our model only requires a few frames of low-dynamics motions. This

eases real-world measurements on cloth because no large motions are needed. This also saves

time if simulation data is used, as small time step size is usually demanded in high-dynamic

motion simulations.

All simulations can be found in the supplementary video. We also include simulations with

collisions and simulations on large cloths using parameters learnt on small cloths. More results
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Table 3.3: Plain-(1,2) learnt parameters on different training data. Left: Yarn1, Right:Yarn2.

Frames Density Stretch Bend Density Stretch Bend

5 2.030× 10−3 494301 1.357× 10−4 2.450× 10−3 169597 1.130× 10−4

10 2.037× 10−3 491717 1.379× 10−4 2.443× 10−3 169543 1.130× 10−4

25 2.038× 10−3 491873 1.367× 10−4 2.447× 10−3 167217 1.096× 10−4

Table 3.4: Testing errors (×10−6) of our model (left) and (Liang et al. 2019) (middle) and BO
(right) trained on 5, 10 and 25 frames generated by yarn-level simulator (Cirio et al. 2014).

Fabrics/Frames 5 25 5 25 5 25

Plain-(1,2) 1.152× 10−4 3.962× 10−5 1.461 0.4124 0.512 0.109
Plain-(1,3) 1.516× 10−4 3.555× 10−5 1.608 0.4567 1.280 0.738
Plain-(2,3) 5.233× 10−4 2.117× 10−5 1.952 0.2294 28.19 18.16

and details are in Appendix A.

3.4.2 Comparisons

Prediction & Data Efficiency

To our best knowledge, there is no similar fine-grained DPM in the literature. The closest

method is a general sheet model (Liang et al. 2019), so we compare our model with theirs. We

employ their settings, and use a 17×17 model and 50 frames simulation data, with 5, 10 and 25

frames for training and the whole 50 for testing. Since the two methods model cloths at differ-

ent levels of granularity, their physical parameters are not directly comparable. We therefore

compare their Mean Squared Error (MSE). We also include a traditional parameter estimation

method based on Bayesian Optimization (Snoek et al. 2012) combined with a yarn-level simula-

tor (Cirio et al. 2014) as another baseline. For simplicity, we refer Bayesian Optimization as to

BO. In BO, we randomly select 5 initial points and use the expected improvement (Jones et al.

1998) as the acquisition function. As the learning process of differentiable simulation consists of

forward simulation and backward simulation, training 70 epochs can be considered as running

140 simulations. Therefore, we run 140 iterations when using BO. Moreover, we impose the

same parameter ranges in the BO as we did in our model.

From Table 3.4, our model uses data more efficiently than (Liang et al. 2019) and BO. From

training on 5 frames to 25 frames, our model reduces the error by as much as 96% on Plain-

(2, 3), while the largest improvements by the sheet-level model and BO optimization are 88%

on Plain-(2, 3) and 78% on Plain-(1,2) respectively. Moreover, as shown in Fig. 3.8 left, our
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Figure 3.8: Simulation errors: data efficiency (left), long (middle) and big cloths simulation
(right).

error on 5 frames is already several magnitudes smaller than the baselines. Further reducing it

requires the model to be able to learn subtle dynamics very well. (Liang et al. 2019) essentially

treats fabrics as a sheet. Since the simulation is from a yarn-level simulator (Cirio et al. 2014)

which contains rich dynamics, the sheet model cannot precisely capture the subtle dynamics

caused by individual yarns and their interactions. Further, the model granularity difference has

more profound impact than just prediction. Being able to learn yarn parameters has immediate

benefits for manufacturing and design, in terms of providing guidance on the choices of yarns

and woven patterns. In addition, although BO can sometimes perform slightly better than the

sheet model benefiting from a yarn-level simulator, its optimization process is not as efficient as

ours. We only show results on Plain here and refer the reader to Appendix A for Satin, Twill,

and video comparisons.

Error significance. The MSE errors in Table 3.4 seem to be small, this is because the cloth is

small and only simulated for a short period of time. But the results suggest errors in parameter

estimation, which are amplified when the cloth is larger and simulated for a longer time. To

demonstrate this, first, we run forward simulations for 2000 steps with parameters learned by

our model and BO. Second, we show the compound influence using the parameters estimated by

our model, (Liang et al. 2019), and BO, and simulate a 17×17 cloth for 500 steps in the original

size, 2 times size, and 4 times size. Fig. 3.8 middle-right show both results, which demonstrates

the importance of accurate parameter estimation. The errors of BO and (Liang et al. 2019)

quickly become several times higher than our model when we scale the size and simulation

time. We also show a visual comparison in Fig. 3.9 and refer the reader to Appendix A for more

results.
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Figure 3.9: Simulation snapshots of the same step. The parameters estimated by our model is
visually closest to the ground truth.

Figure 3.10: The MSE errors against epochs. Our approach learns faster than PPO.
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Control Learning

We also show that our model can facilitate control learning. We design a task with a cloth

placed on a table and aims to learn forces applied onto the four corners of the cloth to throw

it into a box next to the table. The forces are only applied in the first 5 frames. We use our

model to learn a sequence of forces which can throw the cloth into the box and compare it with

a reinforcement learning baseline model: PPO (Schulman et al. 2017). In addition, we also

present a variant of our model by appending two fully-connected layers after our model output

(Ours + FC). We use the center of the box’s bottom as the target location. When training our

model, we use the l2 distance between the cloth center of mass and the target position as the

loss. When training PPO, we use the same l2 distance for the reward.

The result shows both our model and Ours+FC can quickly learn the forces to throw the cloth

into the box. By contrast, PPO is model-free and much slower because it needs to sample in a

huge action space. By contrast, the full differentiability of our model enables a quicker search

for effective control forces. More details can be found in Appendix A.

In a broader context, there are also model-free methods (Yang et al. 2017; Pfaff et al. 2021) which

can also learn physics. The differences between our model and theirs are: 1. model explicability.

The parameters that our model learns are interpretable and have physical meanings, so that

it can guide manufacturing and design. 2. data efficiency. The data efficiency is much higher

in our method. Our model can use as few as 5 frames for learning while model-free methods

typically require hundreds to thousands.

3.5 Discussion and Conclusion

Our method is model-based, which requires domain knowledge and cannot simply ‘plug and

play’ on data as model-free methods (Pfaff et al. 2021). However, strong inductive biases from

domain knowledge are necessary for differentiable physics to be applied in applications, be-

cause the model behaviour needs to be explainable in such applications, and cannot be merely

black-box regression. Representative application domains include fabric manufacture/design

and computer graphics, where both simulation and inverse problems need to be solved. Albeit

focused on cloth, our model can be readily extended to general composite materials with mesh

structures, e.g., from metal/plastic nets to buildings. In addition, our model can be embedded
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as a layer into a neural network, which helps learning control policies for cloth manipulation.

Further, our model potentially enables a synergy between empirical physics modeling and deep

learning, where our model can serve as a deterministic physics layer and other layers can incor-

porate non-linearity such as high-frequency dynamics in the system (Shen et al. 2021). Finally,

our modeling of general forces such as friction and shear contributes to differentiable physical

modeling in a wider range, given the universal presence of such forces in the real world.

To our best knowledge, we proposed the first yarn-level differentiable fabric simulator, in the

pursuit of fine-grained DPMs capable of incorporating domain knowledge. Through comprehen-

sive evaluation, our model can effectively solve inverse problems, provide high data efficiency

and facilitate control. We investigated differentiable modeling of common forces such as friction

and shear, which provides a foundation for future attempts on fine-grained differentiable physics

modeling. Running efficiency and memory optimization are not included in the main objectives

of this work. In future, we will leverage GPU parallel and optimize memory consumption to

enable differentiable cloth simulator to handle cloths with higher DoFs.

85



Chapter 4

Bayesian Differentiable Physics for

Fabric Parameter Estimation

(a) Training Data: Cotton Blue (b) Training Data: Cotton Pink

Ground
Truth

Trained Ground
Truth

Predicted
Ground
Truth

Trained Ground
Truth

Predicted

Ground Truth Trained

(c) Training Cotton Blue

Ground Truth Predicted

(d) Testing Cotton Blue

Ground Truth Trained

(e) Training Cotton Pink

Ground Truth Predicted

(f) Testing Cotton Pink

Figure 4.1: Our Bayesian Differentiable Physical (BDP) model can effectively learn the proba-
bilistic distribution of fabric physical parameters from limited Cusick drape data. By learning
from Cusick drape silhouettes (a and b), our model shows a strong data-fitting capacity, in re-
producing training data (c and e), and also a superior prediction capability in predicting testing
fabric drapes (d and f).

We propose a new method to estimate physical properties of fabrics through images. Unlike

the previous methods which learn through meshes/videos/images captured under relatively ca-

sual settings/simulations, we propose to learn from data collected in strictly tested measuring

protocols, to enable more accurate capture of fabric physical properties and potentially tighter

integration with application domains such as textile and fabric design. To this end, we create

a new Cusick drape dataset. Coupled with the new data, we also propose a new Bayesian

differentiable fabrics model for physical property estimation. It can provide highly plausible
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estimation on the physical properties of fabrics from very limited data samples. Through ex-

haustive evaluations and comparisons, we show our method is accurate in physical property

estimation, efficient in learning from limited data samples, and general in capturing physical

property variations both within and across samples. Code and data are available in https://

github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization.

4.1 Introduction

Understanding physics through deep learning has achieved great successes recently (Wu et al.

2015; Wu et al. 2016; Bear et al. 2022). One challenge in this domain is to infer fabric physical

properties from images/videos/meshes (Sanchez-Gonzalez et al. 2020) because fabrics, unlike

rigid bodies, are highly deformable and often show strong material heterogeneity in dynamics.

Given that estimating fabric physical parameters is a key task in a variety of areas, the recent

attempt to employ deep learning has spiked huge interest (Bouman et al. 2013; Xiao and

Wang 2019; Rasheed et al. 2020), because it can potentially bypass the existing fabric testing

protocols, e.g., KES-F (Kawabata 1980) and FAST (Minazio 1995) which are expensive, slow

and laborious, and therefore revolutionize several industries such as textile and fashion.

Despite the initial successes, there is a notable difference between the data collection processes in

current deep learning methods and the aforementioned industries. Compared with the widely

employed measuring protocols in textile where various variables are strictly controlled, e.g.,

temperature, air moisture, current deep learning methods mainly learn from the data captured

in less-controlled settings (Bouman et al. 2013; Wang et al. 2011). Admittedly, this enables

simpler data collection, but the learned results are merely sufficient for general motion predic-

tion/simulation (Yang et al. 2017; Narain et al. 2012), and are far from accurate for detailed

simulation, manufacturing, design, etc (Gao and Chen 2021; Delavari and Dabiryan 2021; Luible

and Magnenat-Thalmann 2008).

We aim to fill this gap by proposing a new method that can incorporate data from widely

employed textile testing protocols and accurately infer the physical parameters of fabrics. For

data, we use Cusick drape testing under the British Standard (British Standards Institute 2008)

which has been proven to be highly rigorous. At a high-level, Cusick drape testing captures

the silhouette of a static draping fabric sample in an image and uses this image as features to

evaluate fabric’s drapability. Therefore, it is a vision-based approach which is machine-learning
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friendly and has been proven effective in describing the fabric physical properties (Chu et al.

1950; Cusick 1961; Cusick 1965; Cusick 1968; Collier 1991; Collier et al. 1989; Jeong 1998;

Jeong and D. G. 1998).

However, adapting the existing methods (Sanchez-Gonzalez et al. 2020; Liang et al. 2019; Gong

et al. 2022; Li et al. 2022a) for Cusick drape data is difficult. First, the existing methods often

overly simplify the material, e.g., assuming homogeneous materials or/and negligible cross-

sample material variations (Liang et al. 2019; Gong et al. 2022). In reality, not only does the

material of fabric samples of the same type show variations, but the mechanical heterogeneity

in different parts of the same sample is also obvious. Learning homogeneous material natu-

rally leads to inaccurate parameter estimation. Further, most existing methods often need a

large amount of training data, especially black-box approaches (Sanchez-Gonzalez et al. 2020).

Collecting such data is prohibitively time-consuming and labour intensive for the Cusick drape

test. Compared with hours of videos used by existing methods, there are few public datasets

of Cusick drape. So we collect our own data, but the dataset is not even remotely as large as

videos (Runia et al. 2020). Finally, a particular challenge we face is that a standard Cusick

drape meter only provides the final image of a fabric drape, i.e., no 3D geometry or motion is

captured, ruling out the methods (Sanchez-Gonzalez et al. 2020; Runia et al. 2020) that require

such observations.

To overcome these challenges, we propose a new Bayesian learning scheme. Starting from the

joint probability of the observed Cusick drape images and the initial states of fabric samples,

we first introduce latent variables to represent the probabilistic fabric state transitions during

draping and the underlying fabric physical properties. Due to the limited data (i.e., one image

per drape), inferring the latent variables is a formidable task. Therefore, we propose to replace

the probabilistic state transitions with a deterministic mapping which is enabled by our new

differentiable heterogeneous fabrics model. Owning to its high sample efficiency, this model can

already learn the heterogeneous material from extremely limited data (i.e., merely one image)

of a draping sample. Further, to account for the cross-sample material variations, we impose

learnable priors over the material parameters, leading to a new Bayesian differentiable fabrics

model, which can learn the probabilistic distributions of type-specific physical parameters.

Through exhaustive evaluations, we show that our method is accurate in inferring highly plausi-

ble physical parameters, efficient in training with limited data, and general in capturing physical
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(a) Tester (b) Initial State (c) Drape State (d) Capturing (e) Raw Photo (f) Silhouette

Figure 4.2: Cusick drape testing. The Cusick drape meter has an inner support panel (blue),
an outer support panel (red) and a frosted glass lid (green). A round cloth is first laid flat
on the support panels (light blue in Initial State). Then the outer support panel is lowered to
allow the cloth to naturally drape (Drape State). Next, the glass lid is closed so that the light
source at the bottom can project the cloth to the lid which is recorded by a camera at the top
(Capturing). Finally, the cloth Silhouette is extracted from the Raw Photo. The whole Tester
is in a black chamber so the testing process is not observable.

parameter variations across fabric samples. Since there is no existing deep learning method de-

signed for similar tasks, we compare our method with possible alternative solutions including

different fabric models and optimization methods. Formally, our contributions include:

• a new method for fabric material parameter estimation based on limited Cusick drape

data.

• a new Bayesian differentiable fabric model to enable accurate physical parameter estima-

tion.

• a new dataset collected from the standard Cusick drape testing.

4.2 Related Work

Fabric Drape Measurement and Simulation. Drapability is an important fabric char-

acteristic (El Messiry and El-Tarfawy 2020). Since the first drapability measurement (Peirce

1930), many methods have been proposed, among which the Cusick drape test (Chu et al. 1950;

Cusick 1965; Cusick 1965; Cusick 1968) is the most widely acknowledged one (British Standards

Institute 1973; British Standards Institute 2008; British Standards Institute 1998). Refer to the

works proposed by Sanad et al. (2012) and Sanad et al. (2013) for more details. Further, stud-

ies have shown strong correlations between fabric physical properties and drapability (Treloar

1965; Collier 1991; Lojen and Jevsnik 2007), which inspires the design of simulators (Breen et al.

1994b) and the models for drape prediction (Ghith et al. 2015; Stylios et al. 2002). Recently,

there are some attempts in estimating the fabric physical parameters from Cusick drape (Kim

2011; Kenkare et al. 2008; Pandurangan et al. 2008; Ju and Choi 2020; Ju et al. 2022). However,
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their fabric models cannot account for two commonly observed phenomena in Cusick drape test-

ing: asymmetric draped shapes and cross-sample variation in draped shapes. Al-Gaadi et al.

(2012) attribute the asymmetry to hysteresis caused by fabric internal frictions and adds a vis-

coelastic model to simulate it. However, capturing cross-sample drape shapes variation is still

an open problem. Our model aims to capture such variation.

Cloth Parameter Inference. Machine learning has been used to estimate cloth physical

parameters and the methods falls into three types: black-box models, physics-based models,

and white-box models. Black-box models map observed cloth dynamics (e.g., from videos or

simulations) to parameters without explicitly representing the underlying physics (Yang et al.

2017; Rasheed et al. 2020; Ju and Choi 2020; Ju et al. 2022). Physics-based models incor-

porate physical cloth simulators and search for feasible simulation parameters by minimizing

the difference between the simulation results and training data (Runia et al. 2020). Finally,

white-box models explicitly model the underlying physics. Wang et al. (2011) propose a non-

linear anisotropic cloth model and use optimization to estimate cloth simulation parameters. In

contrast, Liang et al. (2019) propose the first fully differentiable cloth simulator for estimating

cloth parameters. More recently, Li et al. (2022a) introduce a differentiable cloth simulator

to simulate the Stick-Slip contact friction. Jatavallabhula et al. (2021) append differentiable

rendering modules to various physical simulators to learn parameters from video. However,

these methods cannot be applied to the standard Cusick drape data. Black-box models do not

include physical parameters at all and need large amounts of data to train. Both physics-based

and white-box models can learn physical parameters, but they require dynamics information.

By contrast, our model estimates fabric physical parameters from a small number of standard

Cusick drape images.

Physics-based Deep Learning. Our research can be seen as a part of recent attempts in

leveraging deep learning to solve differential equations, which has spiked research interests to

address issues such as noise modeling, finite element mesh generation and high dimensional-

ity (Karniadakis et al. 2021; Lu et al. 2021; Beck et al. 2023). Deep Neural Networks (DNNs)

can learn to generate Finite Element meshes for steady state problems (Zhang et al. 2020; Zhang

et al. 2021). Also, they can be part of Partial Differential Equations (PDEs) for purposes such as

reduced-order modeling (Shen et al. 2021; Han et al. 2018), noise estimation (Yang et al. 2021)

and differentiable simulation (Gong et al. 2022; Holl et al. 2020). Further, DNNs can replace

90



Chapter 4. Bayesian Differentiable Physics 4.3. Methodology

PDEs completely in physics-informed neural networks (Raissi et al. 2019) where the process

of solving PDEs is replaced by inference on trained DNNs. Different from existing work, we

propose a Bayesian differentiable physics model for fabrics to explicitly learn the stochasticity

of the fabric physical parameters.

4.3 Methodology

We first illustrate our Cusick Drape testing workflow Section 4.3.1. Then, we introduce our

Bayesian Differentiable Physics model Section 4.3.2 and the inference method for learning from

our Cusick Drape testing results Section 4.3.4. Finally, Section 4.3.5 ends this section by an

introduction to our implementation.

4.3.1 Cusick Drape Test

Our Cusick Drape meter comes with a chamber within which there are two support panels and

one frosted glass lid (Fig. 4.2a). During testing, we first cut a fabric sample into a round shape

(Fig. 4.3 (a)) and pin its center to the center of the blue panel in Fig. 4.2a (diameter is 18cm),

shown in Fig. 4.2b. Then we lower the transparent panel (the red panel in Fig. 4.2a) and let the

fabric naturally drape until the transparent panel does not contact with the fabric (Fig. 4.2c).

Finally, an image I ∈ {pix ∈ Z : 0 ≤ pix ≤ 255}L×L (Fig. 4.2e) is taken by a DSLR camera

from the top (Fig. 4.2d). To minimize possible external perturbations, the chamber is closed

when capturing.

4.3.2 A Bayesian Model for Cusick Drape

We discretize a fabric sample’s geometry into a triangular mesh with v vertices (Fig. 4.3(b)).

Then we define the sample’s state as St = {xt, ẋt} where xt ∈ R3×v and ẋt ∈ R3×v are the

vertices position and velocity respectively at time t. Therefore, a draping motion with discretized

time is S0:n = {St : t ∈ Z+; t ≤ n}, with a time step size h. Since we only observe the final

image I and the initial state S0, their joint probability is:

p(I,S0) =
∫
· · ·
∫

p(I|Sn, τ)
n−1∏
i=0

p(Si+1|Si, τ)p(τ)dS1:ndτ (4.1)

where we introduce two sets of latent variables, τ and S1:n. S1:n is the intermediate states of

the draping motion which we cannot directly observe. Since the draping is a physical process,
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30cm

(a)

(b)

Figure 4.3: (a) A circular (diameter=30cm) fabric sample for Cusick drape test. (b) Fabric
sample mesh generated in FreeFEM++(Hecht 2012) by Delaunay triangulation which has 2699
vertices, 7924 edges (7754 bending edges), and 5226 faces. A bending edge (highlighted in
orange) is shared between two adjacent triangles, so the edges highlighted in blue (the boundary)
are not bending edges.

Figure 4.4: (a) The Probabilistic Graphical Model (PGM) of our Bayesian Differentiable
Simulator. (b) Model overview. The physical parameters (stretching stiffness, bending stiff-
ness) are first drawn from their learnable priors. Then the parameters and the cloth initial state
are fed to a differentiable cloth simulator to run and predict cloth’s final state Sn = {xn, ẋn}.
The cloth in the final state is passed to a differentiable renderer. The rendered cloth silhouette
is compared with the ground truth to compute the loss for back-propagation to update the
parameters in the priors.

it is reasonable to assume St is only affected by St−1 and τ (Markov assumption). Additionally,

the captured image I is only decided by the final state Sn.

Eq. (4.1) is not easy to estimate due to two challenges. First, unlike the prior works which

depend on dense observations on the intermediate state transitions (Yang et al. 2017) to estimate

p(Si+1|Si, τ), Cusick drape testing does not capture the fabric sample’s motion. Also, we do

not observe the full Sn, but only its (simplified) 2D representation I.

To this end, we assume two deterministic mappings can be established for p(Si+1|Si, τ) and

p(I|Sn, τ). The determinism assumptions are reasonable as p(Si+1|Si, τ) can be seen as a quasi-

deterministic physical process, subject to minor system stochasticity which are largely mitigated
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by the rigorous control of Cusick settings. p(I|Sn, τ) can be seen as a rendering process studied

in computer graphics, where we are mainly interested in the silhouette. Therefore, we replace

p(Si+1|Si, τ) with a state transition function Si+1 = s(Si, τ) where s is a deterministic function

then p(Si+1|Si, τ) = p(s(Si, τ)|Si, τ) = 1. Similarly, p(I|Sn, τ) = p(r(Sn)|Sn, τ) = 1 where r is

a rendering function. Therefore, Eq. (4.1) is transformed to:

p(I,S0) =
∫

p(r(s . . . s︸ ︷︷ ︸
n

(S0, τ)))p(τ)dτ (4.2)

Given an initial state S0 and the observations D = {I1, , I2, , . . . }, we maximize p(I,S0) which

is equivalent to finding the posterior distribution of fabric material parameters: p(τ |D) ∝

p(D|τ)p(τ) = p(D|r ◦ s ◦ s . . . s(S0, τ))p(τ) = p(D|Î)p(τ) where the composite function Î =

r ◦ s ◦ s . . . s(S0, τ) is deterministic. Overall, the corresponding Probabilistic Graphical Model

(PGM) is illustrated in Fig. 4.4(a).

4.3.3 Model Specification

To infer p(τ |D), we need to instantiate s and r. For r, we use differentiable renderer DIR-B

(Chen et al. 2019). Given a fabric sample’s final draped state Sn which is a 3D mesh and

the virtual camera pose, DIR-B converts it to a 2D image. We set up the virtual camera pose

(relative to the fabric drape) according to the real camera in our Cusick drape meter, so that the

images captured in the Cusick drape test can be directly used as training data. Additionally, we

only use drape silhouettes and ignore other information such as textures because it is irrelevant

to fabric drapability (Cusick 1961; Cusick 1965; Cusick 1968).

A Bayesian Differentiable Fabrics Model

The instantiation of s is more complex than r. We propose to use a differentiable fabric model

for s so that we can use back-propagation for learning. However, there are only a few differen-

tiable fabric models (Liang et al. 2019; Li et al. 2022a; Jatavallabhula et al. 2021; Gong et al.

2022) which, unfortunately, are unsuitable. Black-box models (Ju and Choi 2020) require large

amounts of data. White-box models(Liang et al. 2019; Li et al. 2022a; Gong et al. 2022) usu-

ally model fabrics as homogeneous materials that cannot capture fabrics’ complex non-linear

anisotropic deformation in Cusick drape. Further, since their models do not consider material

stochasticity (neither within-sample nor cross-sample), fitting one model across different images
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Figure 4.5: Left: cloth weft and warp directions (or course and wale directions in knitted fabrics)
and three strain directions in a triangle. Middle: bending force between two adjacent triangles.
Right: triangle mass and gravity.

essentially equivalents to finding an average material. Therefore, we build a stochastic hetero-

geneous model, where we coin the term Bayesian differentiable fabrics model. We give the key

equations below.

A physics-based fabric simulator aims to simulate a fabric motion by recurrently predicting its

future state St+1 = {xt+1, ẋt+1} given the current state St = {xt, ẋt}:

xt+1 = xt + hẋt (4.3)

ẋt+1 = ẋt + hẍt (4.4)

where h is the time step size (time lapse between every two consecutive states) and the second-

order time derivative, ẍt, is vertices acceleration. To gain high simulation stability, implicit

Euler method (Baraff and Witkin 1998) is commonly used:

xt+1 = xt + hẋt+1 (4.5)

ẋt+1 = ẋt + hẍt+1 (4.6)

According to Newton’s Second law, we have

F = Ma = Mẍ (4.7)

where M is the general mass matrix and F is the resultant force which is the combination of

internal and external forces. In our differentiable fabric simulator, these forces are decided by
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fabric sample’s current state, so we can define:

Ft = f(St) = f(xt, ẋt) (4.8)

where f denotes a general function, which must be differentiable, takes as input the current

state, St, and outputs the resultant force. Through Taylor approximation (Baraff and Witkin

1998), Eq. (4.5) and Eq. (4.6) are converted to the governing equation of the physical system:

(
M− h

∂f

∂ẋ
− h2

∂f

∂x

)
∆ẋ = h

(
Ft + h

∂f

∂x
ẋt

)
(4.9)

which needs to be solved to calculate ∆ẋ and update the fabric sample’s state:

ẋt+1 = ẋt +∆ẋ (4.10)

xt+1 = xt + hẋt+1 (4.11)

In our differentiable fabric simulator, the resultant force consists of all the internal forces and

external forces: F = Fgravity + Fhandle + Fstretch + Fbend. The Fgravity is simply gravity and

Fhandle is the force for pinning and supporting a fabric sample, i.e., simulating the inner support

panel (Fig. 4.2a). The gravity, Fgravity, is calculated on every face and evenly divided by its

three vertices. Therefore, the gravity on the kth vertex is

F
(k)
gravity = m(k)g =

n
(k)
j∑

j=0

1

3
ρ(j)A(j)g (4.12)

where ρ(j) is the j th face’s area density and g = [0.0, 0.0,−9.8]⊤m/s2. n
(k)
j is number of the

adjacent faces of vertex k (Fig. 4.5 Right). The handle force, Fhandle, is used to pin and support

a fabric sample, i.e., simulating the inner support panel. To each vertex whose distance to the

center of the fabric is smaller than 9cm, the handle force is computed as:

F
(k)
handles = khI3(x

(k) − x̄(k)) (4.13)

where x̄(k) denotes the kth vertex’s anchor position where the vertex should be fixed and kh is

the handle stiffness , and I3 denotes a 3-by-3 identity matrix.

Unlike previous methods (Liang et al. 2019; Gong et al. 2022), we model a material variation
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across the mesh which is discretized by finite elements. This allows us to localize the learning

to each element, i.e., making the learning of Fstretch and Fbend dependent on local deformation.

The stretching force (Volino et al. 2009) on a face j is:

F
(j)
stretch = −A(j)

 ∑
m∈(uu,vv,uv)

σ(j)
m

(
∂ε

(j)
m

∂xi

) (4.14)

where ε
(j)
m denotes stretching strain and the xi are the three vertices of the face. The stretching

stresses σ
(j)
m is 

σ
(j)
uu

σ
(j)
vv

σ
(j)
uv

 =


c
(j)
11 c

(j)
12 0

c
(j)
12 c

(j)
22 0

0 0 c
(j)
33



ε
(j)
uu

ε
(j)
vv

ε
(j)
uv

 = C(j)ε(j) (4.15)

where c
(j)
11 , c

(j)
12 , c

(j)
22 , and c

(j)
33 are the stretching stiffness in weft/course direction, the stretching

stiffness in warp/wale direction, Poisson’s ratio, and shearing stiffness. The subscripts uu, vv,

and uv denote fabrics weft/course, warp/wale, and diagonal directions respectively (Fig. 4.5

Left). ε = [ε
(j)
uu , ε

(j)
vv , ε

(j)
uv ] is the Voige form strain tensor. The bending force around a bending

edge w is defined as

F
(w)
bend = B(w) |e(w)|

h
(w)
1 + h

(w)
2

sin(
γ(w)

2
− γ̄(w)

2
)ui (4.16)

where B(w) is the bending edge w’s bending stiffness, |e(w)| is bending edge’s rest length, h
(w)
1

and h
(w)
2 are the heights of the two adjacent triangular face, γ(w) and ¯γ(w) are the current and

predefined rest dihedral angles between the edge’s two adjacent faces (Fig. 4.5 Middle). Refer

to work proposed by Bridson et al. (2003) for the u’s.

Material non-linearity means the material stiffness changes with deformation magnitude non-

linearly. Anisotropy refers to the varied material stiffness in different deformation directions.

To encode fabric material non-linearity and anisotropy, our model adopts the piecewise linear

physical models in the work proposed by Wang et al. (2011) where the stretching stiffness and

bending stiffness are defined as two high-dimensional matrices: C ∈ R6×4 and B ∈ R3×5. Then,

local stretching stiffness and bending stiffness are sampled fromC andB according to the mesh’s

local deformation and geometry. Wang et al. (2011) model fabrics as continuum elastic shells

so a stretching deformation can be described by the Green-Lagrangian strain tensor (Bonet and
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weft

warp

weft

warp

β1 β2

Figure 4.6: The bending bias angles, β1 and β2, of the two bending edges (blue).

Wood 2008), which can be re-parameterized by Eigen Decomposition:

2

ε(j)uu ε
(j)
uv

ε
(j)
uv ε

(j)
vv

 = (R(j)
φ )⊤

(λ(j)
max + 1)2 − 1 0

0 (λ
(j)
min + 1)2 − 1

R(j)
φ (4.17)

where the eigenvalues indicate the stretching deformation magnitude and R
(j)
φ is a rotation

matrix that indicates the direction of the stretching deformation. λ
(j)
min can be ignored because

they find it has less influence on the stretching stiffness. The rotation matrix is decided by the

bias angle, φ, between a fabric sample’s rest warp-weft coordinate system and its deformed local

coordinate system (Peng and Cao 2005). This way, the stretching non-linearity and anisotropy

can be encoded as the stiffness which changes with parameters in the 2D space spanned by

λ
(j)
max and φ. As in the cloth simulator proposed by Wang et al. (2011), we sample 6 data points

(the 6 rows in the matrix C) in the polar space spanned by λmax and φ where each data point

contains c11, c12, c22, and c33 which compose the 4 columns in the matrix C. (We ignore the

face index superscript, (j), to denote the general form.)

To model non-linear bending stiffness, the variables in Eq. (4.16) can represent the bending

deformation so we define a parameter α:

α(w) =
sin(γ

(w)

2 −
γ̄(w)

2 )

h
(w)
1 + h

(w)
2

(4.18)

which is related to the curvature. To model the bending anisotropy, we define another parameter

called bending bias angle, i.e., the angle between a bending edge and fabric warp-weft coordinate

system’s axes, which indicates bending deformation direction (shown in Fig. 4.6). Therefore,

the bending non-linearity and anisotropy can be encoded as the stiffness which changes with

the parameter in a polar space spanned by α and bending bias angle. We sample 5 α’s and

3 bending bias angles (0◦, 45◦, and 90◦) which are the 5 columns and the 3 rows of bending

stiffness matrix B.
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Finally, to model the material heterogeneity, each mesh face and bending edge are associated

with a C and B. Therefore, for a fabric consisting of f faces and e bending edges, the learnable

parameters are f stretching matrices and e bending stiffness matrices (the HETER model in

our experiments). To our Bayesian differentiable fabric simulator, each C and B are sampled

from the variational distribution qθ(τ). Its learnable parameter is the distribution parameter

θ of qθ(τ). As we assume qθ(τ) is distributed as a Gaussian, θ consists of the means and the

variances of the stretching stiffness and bending stiffness: 2× 4× 6 + 2× 3× 5 = 78 learnable

parameters.

Now we replace the deterministic mapping s in Eq. (4.2) by solving Eq. (4.9) forward in time,

so that Eq. (4.2) considers physical parameter within-sample variation. But it still cannot learn

cross-sample variations. Therefore, a prior p(τ) (Eq. (4.2)) is used as a belief of the parameter

distribution and a posterior p(τ |D) is learned through inference.

4.3.4 Model Inference

Directly estimating p(τ |D) is computationally intractable. We adopt variational inference (Hoff-

man et al. 2013) to seek an variational distribution qθ(τ) parameterized by θ, to approximate

the true posterior p(τ |D) by minimizing the Kullback-Leibler divergence between them:

θ = argmin
θ

DKL(qθ(τ)∥p(τ |D))

= argmin
θ

Eqθ(τ)

[
log qθ(τ)− log

(
p(D|τ)p(τ)

p(D)

)]
= argmin

θ
Eqθ(τ)[log qθ(τ)− log p(D|τ)p(τ)] + log p(D)︸ ︷︷ ︸

const

≡ argmin
θ

Eqθ(τ)[log qθ(τ)− log p(D|τ)p(τ)]︸ ︷︷ ︸
L(θ|D,τ)

(4.19)

Calculating L(θ|D, τ), negative evidence lower bound, is computationally prohibitive. So we

approximate it by Monte Carlo sampling:

L(θ|D, τ) ≈
m∑
i=1

(
log qθ(τi)− log p(D|τi)p(τi)︸ ︷︷ ︸

l(θ,τ)

)
(4.20)

where τi denotes the ith Monte Carlo sample from the variational posterior distribution qθ(τ).

Moreover, we assume that the fabric physical parameters are distributed as a Gaussian τ ∼

98



Chapter 4. Bayesian Differentiable Physics 4.3. Methodology

Algorithm 1 Bayesian Differentiable Physics (BDP) cloth parameter estimation

1: Input: initialize θ1 ← (µ, η)
2: for e← 0, num epochs do
3: for s← 0, num samples do
4: Initialization S0 = {x0, ẋ0}
5: Sample ϵ ∼ N (0, I)
6: τ = µ+ log(1 + exp(η))⊙ ϵ
7: for t← 1, n do
8: Simulation St = SIM(St−1, τ)
9: end for

10: Is = DIB-R(xT )
11: ls = log q(τ |θ)− log p(τ)− log p(Is|τ)
12: end for
13: L =

∑
ls

14: Calculate gradient ∂L
∂θ

15: Update θe = Adam(θe−1,
∂L
∂θ )

16: end for
17: Output: θe

N (µ,Σ) where Σ is a diagonal matrix. To enable stochastic gradient back-propagation, we adopt

the re-parameterization trick(Blundell et al. 2015; Kingma and Welling 2022) to sample physical

parameters τ = t(ϵ, θ) by shifting a stochastic parameter-free noise ϵ ∼ N (0, I) through the

deterministic function t(ϵ, θ) = µ+log (1 + exp(η))⊙ϵ where variational parameters θ = {µ, η}.

Consequently, the variational distribution qθ is sought within the Gaussian family and the

prior p(τ) is an isotropic Gaussian distribution with fixed parameters. Additionally, the output

distribution is also a GaussianN (µI , σ
2) whose mean depends on predicted image Î, i.e., µI = Î.

The variance, σ2, is fixed and used to control the tolerance to residual error. Therefore, the

negative log likelihood − log p(D|τ) is:

−
L∑
i=1

L∑
j=1

log

[(
1

2πσ2

) 1
2

e−
1

2σ2 (Iij−Îij)2
]

(4.21)

which is essentially proportional to the Mean Squared Error (MSE). In back-propagation, the

gradients of the variational distribution parameters are calculated by (Blundell et al. 2015):

∂l(θ, τ)

∂µ
=

∂l(θ, τ)

∂τ
+

∂l(θ, τ)

∂µ
(4.22)

∂l(θ, τ)

∂η
=

∂l(θ, τ)

∂τ

ϵ

1 + e−η
+

∂l(θ, τ)

∂η
(4.23)

The whole inference process is shown in Algorithm 1.
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Figure 4.7: The average thickness of a cloth sample is the mean thicknesses measured in the
five areas indicated in the figure: T1-5.

4.3.5 Implementation

Our differentiable fabric simulator is implemented in Pytorch’s C++ frontend (Paszke et al.

2019). We exploit vectorization and CUDA GPU parallel computing for fast simulation and

learning. We use Eigen’s sparse solver (Guennebaud, Jacob, et al. 2010) to solve the governing

equations Eq. (4.9). To reduce the memory consumption, we use sparse matrices whenever

possible. Moreover, we do in-place gradient update for every time step for back-propagation, so

our memory usage does not increase with simulation steps (Chen et al. 2016). We use Kaolin

differentiable rendering package (Jatavallabhula et al. 2019) for image rendering.

4.4 Data Collection

The Cusick drape data is collected with following the BS EN ISO 9073-9:2008 (British Standards

Institute 2008). In every test, fabric samples warp/wale and weft/course directions are aligned

across samples to ensure the same initial condition. In addition, we also reconstruct the 3D

meshes of fabric drapes. However, the 3D data are mainly for evaluation and the silhouette

images are for learning. This is because not every Cusick drape meter can reconstruct 3D

meshes out of fabric drapes. Being able to learn from the 2D silhouette images only is crucial in
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making our method applicable in real-world settings. In addition, we also measure the sample

weight and calculate the average area density ρ = (
∑i=1

i<13mi)/(12πR
2) where mi denotes the

measured weight of fabric sample i and R = 0.15m. We also measure the average thickness

which is the mean thickness of the five areas (shown in Fig. 4.7) in one fabric sample.

Our current Cusick drape dataset includes 25 types of common fabrics, each of which with

multiple samples. As listed in the table in Appendix B, these fabrics are different in material,

woven pattern, area density (ρ), and average thickness. In our Cusick drape test, they also

show distinctive drape shapes. We test the sample’s two sides multiple times. In every test, our

Cusick drape meter captures a drape image and reconstructs its 3D mesh. It took approximately

more than 15 working days to do the textile testing. At the end, there are 660 drape images

and meshes in our current dataset which will be released with our paper.

The lack of training data is the deciding factor that hinders the application of deep learning in

textile. To our best knowledge, the only open source cloth drape dataset was proposed in (Feng

et al. 2022) very recently. Compared with their dataset, our new dataset has multiples advan-

tages. First, our dataset includes 25 types of common fabrics and has more training samples,

which comprehensively covers a wide range of fabrics, with accurate description of the materi-

als. The number of types of fabrics and details are unclear in their data. Second, their data

only provides the estimated material parameters tied to their estimation methods, which might

make it difficult to transfer them to a different cloth model. In contrast, not only do we provide

the raw Cusick drape testing data (i.e., images and meshes), we also provide the estimated pa-

rameters. Furthermore, their parameters have specific values while ours are distributions that

capture cloth material heterogeneity and dynamics stochasticity. Last but not the least, our

Cusick drape testing rigidly follows the British standards and the textile measurements (e.g.,

measuring area density and thickness) are conducted in a rigorously controlled environment so

that they are more accurate and easier to be reproduced/verified in future research. By contrast,

their drape testing is measured by customized apparatus under a less controlled setting.

4.5 Experiments

In our experiments, we use 5 representative type of fabrics (each with 12 samples) that show

visually distinguishable drapability. For convenience, we name fabrics as “material color”, e.g.,

Cotton Blue, Cotton Pink. Fabric 1-5 in the table in Appendix B are used in our experiments
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(a) An example of draping radius

(b) Clustered drape radius

Figure 4.8: a: an drape radius-angle graph illustrates the varied radius of an draped fabric
sample’s boundary w.r.t. angle (Kim 2011). b: the ground truth from five real fabric sample
(top) and the simulated 500 samples from our BDP (bottom) for the corresponding samples.
It demonstrates our trained BDP models can distinguish different fabrics and are not overly
generalized.

which are the Cotton White, Cotton Blue, Viscose White, Cotton Pink, and Wool Red respec-

tively. During learning, we run 100 steps (n = 100) for the forward simulation, with time step

size h = 0.05s and the total time lapse is 5s. We employ several metrics for evaluation and

comparison. For examining prediction accuracy, we use MSE between the predicted and the

ground truth draped images as one metric. In addition, we also use Hausdorff distance (H.Dis)

between the predicted 3D mesh and the ground-truth (GT) reconstructed mesh as another met-

ric. Further, we use radius-angle graph (Fig. 4.8a) as another metric which is widely adopted for

describing Cusick drape waves (Kim 2011) and comparing drape shapes Fig. 4.8a. In addition,

https://youtu.be/ProN0y1bURY provides more visual results.

4.5.1 Bayesian Differentiable Fabric Model

Within a fabric type, we randomly select 5 out of 12 samples for training and the rest for testing

(Fig. 4.1 (a) and (b) ). We use L(θ|D, τ) in Eq. (4.20) as the loss function. After training, we

draw parameters from the learned parameter distributions for 500 times and run simulations.
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Table 4.1: The average evaluation MSE and H. Dis of HOMO, HETER and our BDP which
demonstrate our BDP outperforms HOMO and HETER in generalization.

Metrics HOMO HETER BDP

Avg MSE 5.68× 10−2 5.54× 10−2 5.38× 10−2

Avg H. Dis 3.32× 10−2 3.31× 10−2 2.49× 10−2

Fig. 4.1 shows the best simulated drape on one training and one testing sample. Visually, our

method not only can accurately reproduce the training draped shape (Fig. 4.1 (c) and (e)),

but can also predict unseen fabrics well across multiple samples (Fig. 4.1 (d) and (f)). The

results demonstrate that our model can captures cross-sample variations. Moreover, the radius-

variation (Fig. 4.8b) demonstrates the trained Bayesian models are not overly generalized and

remains to be discriminative in different fabric types. In Fig. 4.8b, the top figure shows that

the five real fabric samples have distinctive drape shapes. The bottom figure shows the drape

shapes of samples from our BDP which largely follows the same patterns as the ground truth.

For example, Wool Red is obviously stiffer than Viscose White, shown in the ground-truth.

Likewise, it is also observed in our BDP’s simulation at the bottom.

4.5.2 Comparison

Alternative Fabric Models To our best knowledge, there is no similar method designed

for exactly the same setting as ours, we therefore adopt the closest methods as baselines. We

adopt (Liang et al. 2019) because their method can also learn fabric physical parameters, albeit

only taking simulated motion as input. Since they only model homogeneous material, we refer

to their model as HOMO. Further, we augment their model by making the fabric physical

parameter learning element-wise so as to enable learning heterogeneous physical parameters.

We call this model HETER for short. Both HOMO and HETER are deterministic models. So

we use MSE as the loss function: L(τ) =
∑L

i=1

∑L
j=1(Îij−Iij)2, to learn the physical parameters

from one single silhouette.

For comparison, we train HOMO and HETER with the same data (5 for training and the rest 7

for testing) as BDP. However, as in (Liang et al. 2019), HOMO and HETER can only fit data,

but cannot predict on unseen data. We use their simulation results averaged over all 5 training

samples as prediction for the rest 7 testing samples. For BDP, we sample the parameters and

run multiple simulations, then select the best result to calculate the average MSE and H. Dis.

As shown in Table 4.1, our BDP is better than the HOMO and HETER in generalization.
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Figure 4.9: We select the most similar silhouettes (minimal MSE) and meshes (minimal H. Dis)
to a testing fabric sample learned by HOMO, HETER, and BDP. In the figure, it is obvious
that the BDP outperforms the HOMO and HETER

In addition, Fig. 4.9 also shows that only our BDP can simulate the drape shapes that are

closer to the testing samples. This is not surprising because HOMO and HETER lack in the

capacity to generalize to unseen samples, even when the testing samples are from the same type

of fabrics. To further show the importance of modeling material heterogeneity across the same

fabric sample, we compare HETER with HOMO in Fig. 4.10. It highlights that HETER can

fit data much better than HOMO and demonstrates the necessity of modeling fabric material

heterogeneity in learning from fabric Cusick drape.

Alternative Learning Methods While our method is built on differentiable physics models

for learning, i.e., derivative-based optimization, the traditional methods widely used in material

science and physics are usually based on derivative-free optimization. So we also compare

different learning strategies.

Bayesian Optimization (BO) is a representative derivative-free optimizer which usually uses

Gaussian Process to approximate an unknown optimized objective function (Brochu et al. 2010;

Frazier 2018). However, the performance of vanilla BO drops drastically when the number of

parameters are above 20 (Eriksson and Jankowiak 2021; Letham et al. 2020). There are over
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Figure 4.10: The first three rows show the ground truth silhouettes , the silhouettes learned
by the HOMO and HETER respectively. The three rows below show the corresponding 3D
meshes. It is obvious the learned drape by the HETER is closer to the ground truth across
different fabrics.

200,000 parameters in our fabric model. So we employ Random Embedding Bayesian Opti-

mization (Wang et al. 2016) and Hashing-enhanced Subspace Bayesian Optimization (Nayebi

et al. 2019) as baselines. For short, we refer them as to REMBO and HeSBO, respectively.

We use BoTorch’s (Balandat et al. 2020) REMBO and HeSBO implementation and compare

them with our method. Given the same drape silhouette, we run our method 100 epochs, and

the REMOB and HeSBO for 500 trials. Table 4.2 shows that, our derivative-based method is

better with fewer optimization steps. Fig. 4.11 also illustrates the drape shapes learned by our

derivative-based method are closer to the ground truth.
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Figure 4.11: Comparison of ground truth draped shape and the simulated drape shapes learned
by ours(b)(derivative-based), REMBO(c)and HeSBO(d)(derivative-free) optimization.

4.5.3 Material Heterogeneity

Our model attributes the within-sample shape variation to fabric material heterogeneity. To

demonstrate it, we use the HETER (deterministic heterogeneous model) to learn the drape

shapes of six samples (three from Cotton Blue and three from Viscose White). The ground-

truth (GT) rows in Fig. 4.12 and Fig. 4.13 show that samples from the same fabric are obvi-

ously different. The learned (LR) rows in Fig. 4.12 and Fig. 4.13 demonstrate that the HETER

can accurately learn from the different drape shapes. The heat maps in the last row illus-

trate the learned distributions of the fabric physical parameters across the meshes. This result

demonstrates that within-sample drape shape variation can be accounted for by fabric material

heterogeneity and varied physical parameter distributed across the mesh in different samples.
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Table 4.2: The average MSE and H. Dis of ours, REMBO, and HeSBO optimizer. The results
shows that our gradient-based optimization achieves better results.

Metrics Ours REMBO HeSBO

Avg MSE 3.27× 10−2 5.40× 10−2 5.46× 10−2

Avg H. Dis 1.55× 10−2 3.15× 10−2 3.32× 10−2

Table 4.3: Comparing the run time between (Liang et al. 2019) (collision handling off) and our
model in forward simulation and backward gradient computation. Our implementation is much
faster.

Test (sec/step) Mesh 1 Mesh 2 Mesh 3

(Liang et al. 2019) Forward 0.643 2.793 3.861
(Liang et al. 2019) Backward 1.400 7.379 26.212
Ours Forward 0.038 0.073 0.178
Ours Backward 0.062 0.228 0.660

4.5.4 Performance

Our implementation of the differentiable fabric model is highly inspired by (Liang et al. 2019).

But ours is more GPU-friendly, and there runs fast. We compare the forward simulation and

the backward gradient computation, which are two major time-consuming operations for dif-

ferentiable physics models, between our implementation and (Liang et al. 2019). We use three

meshes with different resolutions, consisting of 279, 1205, and 2699 vertices respectively. Ta-

ble 4.3 shows the significant performance gain by our vectorization and GPU parallel computing.

The test is conducted on a PC with an Intel Xeon E5-1650 v4 3.60GHz CPU and an NVIDIA

TITAN Xp GPU.

4.5.5 Stretching in Cusick Drapes

Although the dominant deformation in Cusick drape is bending, the stretching also significantly

affects the drape shapes (Petrak et al. 2021). To demonstrate the influence of stretching, we

show simulation results of three fabric samples with different stretching stiffness: C1, C2, and

C3. Fig. 4.14 shows that fabric drape shapes are obviously different even if the only difference

is their stretching stiffness C. Therefore, C can be reflected in Cusick drape shapes and should

be included in the trained parameters.
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4.6 Discussion and Conclusion

We have proposed a new method for estimating detailed fabrics physical properties. To our

best knowledge, this is the first Bayesian differentiable fabric model which can work seamlessly

with standard Cusick drape data. Our model has been proven to be highly accurate and

generalizable. Compared with black-box deep learning methods, our limitation is that it requires

prior knowledge of the underlying physics and cannot simply plug and play on data. However, we

argue that this is a reasonable trade-off when the model needs to be explainable for applications

like parameter estimation. In future, we will capture more diversified data via Cusick drape

testing and establish a larger benchmark dataset. Also, we will explore fabric dynamic drape

and garment drape. Apart from the parameter randomness across geometries, we will study

other types of uncertainties in fabric mechanical behaviors.
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Figure 4.12: Learning from drape shapes of the 3 samples cut from fabric Cotton Blue. The GT
rows show the within-sample variations in drape shapes. The LR rows show the HETER model
accurately learns these different drape shapes. The heat maps (bottom) show distributions the
per-element bending stiffness B over the mesh.
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Figure 4.13: Learning from drape shapes of the 3 samples cut from fabric Viscose White. The
GT rows show the within-sample varied draped shapes. The LR rows show the HETER model
accurately learns these different drape shapes. The heat maps (bottom) show distributions the
per-element stretching stiffness C over the mesh.
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Figure 4.14: The drape shapes simulated by our differentiable physical fabric simulator with
different stretching stiffness C1, C2, and C3. The other fabric physical parameters are the
same. The result demonstrates that stretching stiffness plays a key role and affect the drape
shape image.
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Chapter 5

Time-dependent Persistent Wrinkles

for Cloth Simulation

Apart from cloth yarn-level mechanical behaviors and material heterogeneity, cloth fine-grained

physics also affects cloth persistent wrinkles which are essentially a combinational effect of

the frictional behaviors between contacted yarns and fibers, and the yarns’ and fibers’ plastic

deformations. Persistent wrinkles are often observed on garments when they are crumpled

for some time, e.g., the wrinkles around the knees after sitting for a while. Such wrinkles

can sometimes be easily recovered while being persistent at other times. Since they are vital

to the visual realism of cloth animation, we aim to simulate realistic persistent wrinkles. To

this end, we present a physically-based fine-grained wrinkle model. Different from existing

methods, we recognize the importance of the interplay between internal friction and plasticity

during wrinkle formation. Furthermore, we take into full consideration the time-dependence

of persistent wrinkles. Our model is capable of not only simulating realistic wrinkle patterns

as a result of deformation but also their time-dependent changes according to how long the

deformation is maintained. Through extensive experiments, we show that our model is effective

in simulating realistic spatial and temporal varying wrinkles, versatile in simulating different

materials, and capable of generating more fine-grained wrinkles than the state-of-the-art.
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Figure 5.1: Wrinkles with time-dependency. After sitting for different duration (short: x-1;
long: x-2), the wrinkles appear on the trousers made from three types of fabrics: Cotton (a-x),
Polyester (b-x), and Tannin(c-x). Cotton is soft and thin. Sitting causes small wrinkles (a-1)
which are more obvious after sitting for a long time (a-2). Polyester has little plasticity and
rarely generates hard wrinkles. Therefore, the wrinkles on the grey polyester trousers are less
noticeable (b-1 & b-2). Tannin is stiff and thick. Sitting causes big folds (c-1) which becomes
more obvious after sitting for a long time (c-2).

5.1 Introduction

High-fidelity cloth simulation has been actively studied in many fields (Volino and Magnenat-

Thalmann 2000). Within computer graphics, a core research topic is to generate physically valid

and visually realistic cloth geometries and motions, which are required in animation, fashion

design, games, etc. (Stuyck 2022). In this work, we investigate a key aspect of cloth simulation:

the formation and time evolvement of wrinkles. Wrinkles at times can be seen as secondary

geometries to the overall cloth dynamics, but significantly affect the visual realism (Bridson et

al. 2003). Despite decades of research in cloth simulation in graphics, their underlying physics

are still under-explored.

Existing methods for wrinkle simulation can be broadly divided into three categories: rule-

based, data-driven and physics-based. Early attempts focus on designing rules that can map

deformations into wrinkle geometries (Cutler et al. 2005). However, to achieve visual realism,

it needs a lengthy trial-and-error process, heavily relying on the user experience and manual

labor. Later, data-driven methods are proposed (Wang et al. 2010a) to generate wrinkles from

data. While this alleviates the manual labor, it is hard to synthesize physically-valid wrinkles
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outside the distribution of the data, which is particularly problematic if further simulation is

needed. As an alternative solution, physics-based methods investigate the underlying physics

of wrinkle formation (Rohmer et al. 2010), which provides a promising avenue for capturing the

complex underlying dynamics of wrinkles.

Existing physics-based methods tend to attribute wrinkles to either plasticity or internal fric-

tion. When treating cloth as a continuum elastoplastic membrane, wrinkles can be seen as a

consequence of material plasticity (Narain et al. 2013) where large deformations cause perma-

nent material changes hence the geometric change. But this simplification neglects the impact

of the internal friction between the micro-level yarns/fibers, which prevents cloths from unrav-

eling and also leads to wrinkles (Skelton 1968). The relative sliding between yarns and the

internal friction have been proven crucial in the overall dynamics (Cirio et al. 2014; Ngo and

Boivin 2004). Further as argued in (Miguel et al. 2013), relative sliding is easy to happen than

yarns/fiber plastic deformation, which is demonstrated to also contribute to wrinkles.

While being in favor of physics-based methods for wrinkle simulation, we argue that existing

methods both simplify its formation process and completely overlook its time-dependence. In

the formation process, the interplay between the internal friction and the plasticity plays a key

role in wrinkles (Prevorsek et al. 1975). The former prevents the cloth from recovering after

deformation, while the latter causes permanent material property changes (especially in large

deformations). Intuitively, wrinkles caused by the internal friction are softer than the ones

caused by plasticity, but they are not independent factors in wrinkle formation. Instead, the

internal friction and the plasticity jointly affect the wrinkle formation, with their individual

dominance dynamically changing as the deformation magnitude changes. This dictates that

both factors need to be considered, which previous research has largely neglected. The Dahl’s

model (Ngo and Boivin 2004; Miguel et al. 2013) cannot simulate wrinkles due to the lack

of stick friction and does not consider plasticity, while plasticity-based wrinkles (Narain et al.

2013) do not consider the internal friction.

Furthermore, wrinkles are time-dependent, i.e., the longer the deformation is kept, the more

obvious the wrinkles tend to be (Levison et al. 1962). An intuitive real-world example is a

crumbled shirt being pressed for a long time tends to form firm wrinkles with sharp edges. This

suggests that there is a process that is similar to solidification when wrinkles are formed, which

needs to be modeled in the plasticity and the internal friction especially for persistent wrinkles.
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This time-dependence has not been studied in existing work, to our best knowledge.

To fill the research gap, we propose a new cloth simulator that is capable of generating high-

fidelity wrinkles. It captures the interplay between the internal friction and the plasticity

during wrinkle formation, and also explicitly models its time-dependence. While the friction

model is designed to simulate wrinkles in small deformation caused by the inter-yarn sliding,

the plasticity model accounts for the wrinkles caused by large deformation. Together, inten-

sifying deformation causes wrinkles to change from friction-dominance, to mixed friction and

plasticity, then finally to plasticity-dominance. Furthermore, both models are designed to be

time-dependent, so that longer deformation duration causes sharper, more persistent and hard-

to-recover wrinkles. Through thorough experiments, we first demonstrate that our simulator

can simulate different wrinkles generated in small/large deformations by combining the friction

and the plastic model. Next, we also simulate and compare the wrinkles generated with different

deformation duration. The results show our simulator can generate time-dependent wrinkles,

which is visually realistic as the wrinkles evolve in time. Further, we show our simulator can

simulate a wide range of cloth types, from materials that are prone to hard and firm wrinkles

in space and time, to materials that resist them. Finally, we demonstrate that our simulator is

ready for applications by simulating wrinkles on garments caused by body motions. Through

comparisons with previous work, we demonstrate that our simulator can generate more visually

plausible wrinkles, with the key time-dependence that is commonly observed in daily life but

largely missed by current research.

Formally, our contributions can be summarized as below:

• We propose the first cloth simulator that can generate complex persistent wrinkles with

time-dependence, to our best knowledge.

• We propose a new physics model that considers both the internal friction and plasticity

for simulating cloth persistent wrinkles.

• We propose a new time-dependent friction model for cloth simulation.

• We propose a new time-dependent plasticity model for cloth simulation.
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5.2 Related Work

Wrinkle Simulation Wrinkles are a natural result of cloth deformation and therefore have

been implicitly considered in the material modeling in the aforementioned research. However,

since it greatly affects visual realism but is hard to simulate (e.g., due to mesh resolution,

material properties, etc.), dedicated effort has been made towards generating realistic wrinkles.

Wrinkles can be separated into dynamic wrinkles and static/persistent wrinkles (Larboulette

and Cani 2004). The former refers to the fine geometrical details and the folds dynamically

appear with the cloth’s motions. Conversely, the latter refers to the permanent deformations

with which the cloth can no longer return to its original shape after releasing external forces.

The dynamic wrinkle simulation method can be categorized into: rule-based method, data-

driven method, and physics-based method. The rule-based method allows users to determine

when and where wrinkles should appear on a cloth according to its deformation. Hadap et

al. (1999) propose a wrinkling algorithm for merging multiple user-defined wrinkle patterns

and then attaching the merged pattern to the cloth mesh. (Cutler et al. 2005)’s method is

additionally able to interpolate and animate the varying garment wrinkles with limited artist-

defined wrinkle patterns on the given reference poses. (Müller and Chentanez 2010) adopts a

coarse-fine mesh paradigm where the coarse mesh is used to simulate cloth dynamics and the

fine mesh encodes the wrinkles. The wrinkles on the fine mesh are generated by the predefined

rule with considering the coarse geometry. Although it is flexible and simple, it is extremely

unintuitive and labor-intensive to find appropriate rules for realistic wrinkles as it is not directly

based on physics but geometry, which then requires a large number of iterations of trial-and-

error. Alternatively, wrinkles can be pre-computed by simulation or modelers then a model can

learn to generate similar wrinkles by learning a mapping between the underlying deformation

to wrinkles (Wang et al. 2010a). Instead of adding wrinkles by altering geometry, Lähner et al.

(2018) train a Generative Adversarial Network(GAN) by capturing real data to generate normal

maps for visually adding wrinkles in the rendering pipeline.This method can be seen as a data-

driven mesh refinement of low-resolution simulation. Although the data-driven method avoids

defining the rules manually, it usually performs poorly when simulating wrinkles outside of the

distribution of the training data, as it is difficult to gather wrinkle data to cover all possible

underlying deformation. Finally, building on the physical laws, the physics-based methods

exhibit superior realism and flexibility in wrinkle simulation, where the formation of wrinkles is
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a natural result of the relevant material property (e.g., bending properties) explicitly modeled in

the physics model. The early work (Kunii and Gotoda 1990) leverages the singularity theory to

define the cloth wrinkle formation process in cloth motions. Kang et al. (2001) use their wrinkled

cubic spline curve to simulate detailed wrinkles with smoothing cloth geometry. Bridson et al.

(2003) propose a post-processing method to keep the wrinkles around the areas of collision.

Moreover, its bending model allows artists to design persistent wrinkles by setting a non-zero

rest bending angle. Compared with other two method, the physics-based method normally

increases the computation time, but with modern hardware for parallel computing, the extra

computation load can be largely mitigated (Wang 2021).

By contrast, the works about the formation of cloth static/persistent wrinkles are sparse. Narain

et al. (2013) and Guo et al. (2018) use plastic deformation to account for persistent wrinkles

and adopts the hardening plastic model (Grinspun 2008) to simulate them. Kim et al. (2011)

simulate permanent wrinkles by changing cloth rest shape and material stiffness parameters

with deformations. However, they cannot simulate time-dependent wrinkles (observed in real

cloths (Levison et al. 1962)) and ignore another important reason for cloth wrinkles: internal

friction.

Cloth Internal Friction Internal friction is an important cloth mechanical property which

causes many uniquely physical behaviors in clothes. For example, it is widely used to account

for the energy loss (hysteresis) observed in cloth load-deformation curves (Lahey 2002). On the

other hand, it is an important reason for cloth persistent wrinkles (Chapman and Hearle 1972;

Brenner and Chen 1964; Prevorsek et al. 1975; Chapman 1975). In graphics research, Ngo and

Boivin (2004) use the Dahl’s friction model to fit the load-deformation curves measured in the

real cloths. Miguel et al. (2013) re-parameterize Dahl’s friction model to make it more feasible

for cloth simulation and shows that internal friction can also simulate wrinkles. Wong et al.

(2013) introduce a mathematical model to simulate cloth internal friction and fit cloth bending

hysteresis behaviors. Likewise, their friction model can also simulate persistent wrinkles. In

the yarn-level cloth simulators (Cirio et al. 2014), the internal friction force is modeled as the

sliding friction force between contacted yarns at the cross-overs which prevents cloths from un-

raveling and the shearing friction force which can simulate shearing wrinkles. However, none of

these internal friction models are time-dependent. In addition, as discovered by Prevorsek et al.

(1975), cloth persistent wrinkles are collectively caused by: (1) frictional fabric bending; (2)
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Table 5.1: Notations

Symbol Mean

St State at time step t
v Number of mesh vertices
xt Nodal position at time step t
ẋt Nodal velocity at time step t
M Mass matrix
Ft Global net force vector at time step t
h Time step size
Ws Stretching Energy (scalar)
Ks Stretching stiffness (matrix)
kb Bending stiffness (scalar)
εs Stretching strain (vector)
σs Stretching stress (vector)
fs Local stretching force (vector R9)
Wb Bending Energy (scalar)
εb Bending strain (scalar)
σb Bending stress (scalar)
θ Bending Dihedral angle
θ̄ Rest bending Dihedral angle
fb Local bending force (vector R12)
As The rest area of a mesh face
Ab The rest area associated with a bending edge
kh Handle stiffness (scalar)
fh Local handle force (vector R3)

friction yarn bending, and (3) permanent bending of filaments (can be modeled by plastic de-

formations). However, in graphics, simulating cloth’s persistent wrinkles by combining internal

friction and plasticity has been rarely explored so far.

5.3 Basic Formulation

Notations are given in Table 5.1. The cloth is discretized into a triangle mesh, whose state

is represented by the positions and velocities of mesh vertices. Specially, given a cloth mesh

with v vertices, we denote its state at time t by St = {xt, ẋt}, where x ∈ R3v and ẋ ∈ R3v

denote the nodal position and velocity vector respectively. Given the initial state S0, the cloth

motion is governed by Newton’s second law, F = Mẍ, where M ∈ R3v×3v is the lumped

mass matrix (Logan 2022) and F ∈ R3v is the net force vector: the combined force of the

internal and the external forces at vertices. To solve F = Mẍ, we employ an implicit Euler

formulation (Baraff and Witkin 1998) for stability under large time steps and the governing
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equation: (
M− h2

∂F

∂x
− h

∂F

∂ẋ

)
∆ẋt = h

(
Ft−1 + h

∂F

∂x
ẋt−1

)
(5.1)

which can be solved by an iterative solver, e.g., Conjugate Gradient (Shewchuk 1994).

In linear elasticity, the internal force is determined by a linear relationship between strain, ε,

(average deformation) and stress, σ, (average response force): σ = kε where k is the material

stiffness. When applied to cloth simulation, a cloth, modelled as a thin shell, deformations

mainly consist of in-plane stretching and out-of-plane bending, generating the stretching and

the bending force respectively, where these internal forces tend to keep the cloth in its rest

state. Under a triangular mesh discretization, the stretching and the bending strain/stress

are calculated per triangle and every two adjacent triangles (as illustrated in Fig. 4.5 Left

and Middle). For stretching, we adopt the Green-Lagrange strain tensor to define the triangle

deformation and, in Voigt Notation, it can be denoted by the vector εs = (εuu, εvv, εuv). Cloths,

e.g., woven fabrics, usually exhibit distinctive stretching mechanical properties in the warp and

the weft direction, and they are usually modeled as orthotropic materials (Boisse et al. 2001).

Therefore, εuu, εvv, and εuv represent the tensile strains along the warp, the weft, and the

diagonal direction (shearing strain), respectively. The stretching constitutive equation is:

σs =


σuu

σvv

σuv

 =


k11 k12 0

k12 k22 0

0 0 k33



εuu

εvv

εuv

 = Ksεs (5.2)

where Ks is the stretching stiffness matrix in which k11, k22, k33, and k12 are the warp/weft/s-

hear stretching stiffness and Poisson’s ratio (Wang et al. 2011). The nodal stretching force is

the partial derivative of the stretching energy w.r.t. the vertex position:

Ws = As

∫
σsdεs =

1

2
Asσsεs (5.3)

fs = −
∂Ws

∂xs
=

1

2
Asσs

∂εs
∂xs

(5.4)

where Ws is the stretching energy, As is the rest area of a triangle and xs ∈ R9 is the position

vector of the triangle’s vertices. Please refer to work proposed by Volino et al. (2009) for ∂εs
∂xs

and the force Jacobians.
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For bending, we adopt the method in the work proposed by Grinspun et al. (2003) which uses

the mean-curvature to define the bending strain: εb = 3 θ−θ̄
e where θ is the Dihedral angle

between two adjacent triangles and θ̄ is the rest Dihedral angle. e is the average height of

the two triangles. Therefore, the elastic bending stress is σb = Kbεb where Kb is the bending

stiffness. Similarly, the nodal bending force is the partial derivative of the bending energy w.r.t.

the vertex position:

Wb = Ab

∫
σbdεb =

1

2
Abσbεb (5.5)

fb = −
∂Wb

∂xb
= −1

2
Abσb

∂εb
∂xb

= −3

2

Abσb
e

∂θ

∂xb
(5.6)

where Wb is the bending energy, Ab =
1
3 le where l is the rest length of the common edge shared

by the two triangles. xb ∈ R12 is the vertex position vector of the two triangles. Please refer

to (Tamstorf and Grinspun 2013) for the derivatives and the Jacobians of θ.

Other than the internal forces, we also consider external forces which include gravity, collision,

external friction, and handle force. Gravity is a body force and is applied to all lump masses.

In addition, we adopt (Bridson et al. 2002) to handle collision detection and collision response.

In every simulation step, it uses boundary volume hierarchies (BVH) and continues collision

detection (CCD) to detect edge-edge and vertex-face collisions which are then merged into rigid

impact zones. The collision response combines repulsion force method and geometric method

to avoid the wrong intersections. The repulsion force method adds repulsive force to push the

edge-edge and vertex-face in collisions apart when the distance between two edges or a vertex

and a face is smaller than a given threshold. The repulsion force method may fail when, for

example, the cloth geometry changes extremely fast. In this case, the geometric method will

correct the penetrations by directly altering vertices positions. Moreover, if there is relative

sliding between elements, external friction forces are introduced to prohibit relative motions.

We refer the reader to the original paper for more details. Finally, the handle force is intended

for controlling the cloth and derives from a penalty-based method to pin vertices at specified

locations:

fh = kh(x− xh) (5.7)

where kh is the handle stiffness and xh specifies the anchor positions in space.
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5.3.1 Wrinkles

Wrinkle formation is mainly dictated by the bending deformation (Wong et al. 2013; Wong

2014; Fan and Hunter 2009). Given a flat undeformed cloth, all the Dihedral angles are θ̄ = π

which are the rest angles. As shown in Eq. (5.6), the bending force always tends to keep

a Dihedral angle at its rest angle θ̄. However, when wrinkles are formed due to forces that

counter-balance this bending force, there are two sources of such impact: (1) another force

preventing the cloth from recovering to the rest angle θ̄; or/and (2) the θ̄ being changed after

deformation so that the cloth cannot return to the initial rest angle without external forces.

These two sources correspond the internal friction and the plasticity respectively. The wrinkles

that are mainly caused by the internal friction are usually soft and easy to recover (e.g., after

stretching), while the ones that are mainly caused by the plasticity are often firm, persistent

and even unrecoverable. For simplicity, we refer to the former as friction wrinkles and the latter

as plastic wrinkles. Note the names here are for simplicity rather than suggesting wrinkles are

dictated by a single factor.

5.3.2 Internal Friction Model

Shifting Anchor Friction Friction forces can prevent relative sliding between two contact-

ing objects, which in cloth is the relative sliding between contacting yarns/fibers. The internal

friction can cause wrinkles because, at the microscopic level, a bending causes both the yarns/-

fibers deformation and the relative sliding between yarns/fibers (Lin et al. 2012). So when the

internal bending force tends to recover the cloth to its rest state, it causes the opposite relative

sliding and the internal friction prevents this relative sliding. We model this friction by the

variation of the bending strain, εb:

σfriction = Kfriction∆εb (5.8)

where Kfriction is the friction coefficient. ∆εb is the bending strain variation that measures the

difference between the current bending strain and an anchor bending strain ε̄b.

∆εb = εb − ε̄b (5.9)
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While σfriction is proportional to ∆εb, it cannot grow unbounded as ε̄b is not fixed. This is

because when the bending deformation becomes larger, the internal friction can merely counter-

balance the bending force up to a threshold before sliding happens, as observed in stick-slip

friction (Al-Bender et al. 2004). To model this, we update ε̄b when ∆εb is greater than a

predefined stick-slip transition threshold, εthres:

ε̄b =


ε̄b , if |εb − ε̄b| < εthres

ε̄b + (εb − εthres) , otherwise

(5.10)

When stick friction happens (ε̄b not updated), the friction keeps the cloth around the anchor

bending strain; otherwise the slide friction occurs (ε̄b updated), the friction prevents relative

motions and the anchor bending strain will move toward the current strain until |εb−ε̄b| < εthres.

Then, it reverts back to the stick friction and keeps the cloth around the new anchor bending

strain. Overall, this allows the internal friction to generate small and large wrinkles, while

allowing these wrinkles to recover under external forces, e.g., flatten the cloth by stretching.

Time dependence One common but under-explored phenomenon in cloth internal friction is

the dwell effect: the longer the stick friction state is maintained, the more difficult it is for slide

friction to happen (Al-Bender et al. 2004). To this end, we propose a new friction component

to make wrinkles time-dependent. As the duration of a friction wrinkle increases, the wrinkle

becomes more difficult to recover.

As εthres delimits the stick-slip transition, our friction model varies this threshold with time to

simulate this time-dependent behavior:

tstick =


tstick + h, if |εb − ε̄b| < εthres

0, otherwise

where εthres = εinf − (εinf − ε0)× e
− tstick

τf (5.11)

where we introduce a variable tstick for the duration of the stick state such that εthres can vary

within the inteval [ε0, εinf ]. Concretely, in every step, tstick increases by the time step size h

if slip friction does not occur (|εb − ε̄b| < εthres). In turn, this will increase εthres toward εinf ,

and consequently the slip friction becomes more difficult to happen. On the other hand, if slip
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friction occurs, tstick is reset to zero and εthres is then reduced to ε0. As a result, the slip friction

resets the dwell effect. In addition, the parameter τf allows users to control the increase rate

of εthres with tstick.

Stribeck and Varying Break-away Forces In addition to the time-dependence, the relative

sliding can frequently happen which corresponds to frequent transitions between the stick state

and the slip state, which is also crucial for wrinkle formation. Therefore, we also introduce a

stick-slip transition model for Kfriction in Eq. (5.8).

In the simplified Coulomb’s models, Kfriction is assumed to be a constant or to vary slightly

between stick and slip friction (Pennestr̀ı et al. 2016). However, it has been observed this is

a massive simplification and there is a non-linear relation between the stick and slip friction

known as the Stribeck effect and varying break-away force (De Wit et al. 1995; Swevers et al.

2000; Gong et al. 2022).

Stribeck effect refers to the phenomena that the friction stress decreases as the friction transits

to the slip state from the stick state (Armstrong-Helouvry 2012). Moreover, increasing the

slip velocity further decreases the slip friction stress. To simulate the Stribeck effect, we vary

Kfriction with an anchor strain variation rate ε̇.

Kfriction = Kc + (Ks −Kc)e
−| ˙̄εb|/εs (5.12)

where Ks and Kc denote the stick and the slip friction stiffness respectively. εs denotes the

threshold from which the Kfriction starts to change from Ks to Kc as ˙̄εb increases. As the stick

friction stress is usually greater than the slip friction stress, Kc is smaller than Ks. In this way,

Kfriction = Ks in the stick state where ˙̄εb = 0. By contrast, in the slip state where ˙̄εb ̸= 0,

Kfriction is smaller than Ks. As ˙̄εb increases, Kfriction will further deceases toward Kc.

Break-away force refers to the needed force for switching from stick friction to slip friction. The

varying break-away force is the phenomenon that the higher the increase rate of the applied

force is, the smaller the break-away force tends to be (Richardson and Nolle 1976). In cloth

simulation, a high force increase rate means a large force increase between two consecutive

steps, i.e., |Ft| − |Ft−1|. This leads to a large ∆ẋ (Eq. (4.6)) and a large strain variation rate.

Therefore, our friction model realizes the varying break-away effect by varying the stick friction
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stiffness Ks with the strain variation rate ε̇:

Ks = C0 + C1e
−C2|ε̇b| (5.13)

where C0 is the minimal stick friction stiffness. The parameters C1 and C2 control the additional

stick stiffness and how fast Ks decreases as ε̇b increases. Therefore, the higher ε̇b is, the smaller

Ks is, which leads to a smaller break-away force Ksεthres.

Deriving the Friction Force Having defined all the components needed, we derive the nodal

force due to the internal friction. Similarly to Eq. (5.6), we first define a friction energy on the

bending edge:

W = Ab

∫ ε

ε̄
σfrictiondεb = Ab

∫ ε

ε̄
Kfriction∆εbdεb

= Ab(
1

2
Kfrictionε

2
b −Kfrictionε̄bεb)|εε̄ (5.14)

Therefore, the corresponding friction forces on the four vertices around the bending edge are:

F = −∂W

∂x
= −∂W

∂εb

∂εb
∂x

= −AbKfriction(εb − ε̄b)
∂εb
∂x

(5.15)

To solve Eq. (5.1), we need the force Jacobian w.r.t the vertex positions:

∂F

∂x
= −AbKfriction

(
∂2εb
∂x2

+
∂εb
∂x

∂εb
∂x

⊤
)

(5.16)

where the bending strain’s second-order derivative, ∂2εb
∂x2 = 0. We also need the force Jacobian

w.r.t. the velocity:

∂F

∂ẋ
= −Ab(εb − ε̄b)

∂Kfriction

∂ẋ

∂εb
∂x

⊤

= −Ab(εb − ε̄b)

(
∂KS

∂ẋ
e−| ˙̄εb|/εs

)
∂εb
∂x

⊤

= Absign(ε̇b)(εb − ε̄b)C1C2e
−C2|ε̇b|−| ˙̄εb|/εs ∂ε̇b

∂ẋ

∂εb
∂x

⊤
(5.17)

Looking closely, Eq. (5.17) is often dominated by e−| ˙̄εb|/εs as it is very small. This is because

the difference between KS and KC is usually small as observed in Stribeck. Empirically, we find

no visible changes when setting ∂F
∂ẋ = 0. Note the time-dependence, the Stribeck and varying
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breaking-way forces are still largely maintained by Eq. (5.16). Therefore, we safely remove ∂F
∂ẋ

in our experiments. The overall algorithm for the internal friction is shown in Algorithm 2.

Algorithm 2 Time-dependent Friction

1: procedure Friction(εn, εn−1, ε̄)
2: ε̇← εn−εn−1

h

3: εthres = εinf − (εinf − ε0)e
−tstick/τf

4: ∆ε = εn − ε̄
5: if |∆ε| > εthres then ▷ Slip Friction
6: ε̄← ε̄+ sign(∆ε) ∗ (|∆ε| − εthres) ▷ Eq.5.10
7: | ˙̄εb| = (|∆ε| − εthres)/h
8: Ks = C0 + C1e

−C2|ε̇b| ▷ Eq.5.13
9: Kfriction = Kc + (Ks −Kc)e

−| ˙̄εb|/εs ▷ Eq.5.12
10: Compute F, ∂F∂x (Eq. 5.15 and 5.16)
11: else ▷ Stick Friction
12: F = 0, ∂F∂x = 0
13: end if
14: return F, ∂F∂x
15: end procedure

5.3.3 Plastic Model

An intuitive way of modeling plastic wrinkles is through the change of the rest Dihedral angles.

When a large deformation happens and is maintained for long duration, the rest Dihedral

angle changes hence the change of the cloth rest state, so that the internal bending stress

does not attempt to recover the cloth to the previous rest state. To this end, we employ an

elastoplastic constitutive law so the bending strain can be decoupled to an elastic part and a

plastic part (O’Brien et al. 2002):

εb = εe + εp (5.18)

and the bending stress is proportional to the elastic part

σ = Kbεe = Kb(εb − εp). (5.19)

Given a flat wrinkle-free cloth with no plastic strain (εp = 0), the bending stress tends to keep

it wrinkle-free. Otherwise, its rest shape is changed to εb − εp = 0. In this case, the bending

stress tends to keep the cloth in its new rest shape which is no longer flat such that plastic

wrinkles appear.

Since a plastic deformation does not occur until the deformation reaches a certain threshold,

e.g., a large bending deformation exceeding certain threshold, which is usually referred to as
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yield strain (we denote it by εY ). The simplest plastic model is what is called the perfect plastic

model where all of the elastic strain εe that exceeds εY is treated as the plastic strain (Chaves

2013):

εp =


εe − εY , if εe > εY

εp, otherwise

(5.20)

However, this simplified plastic model does not capture the time-dependence nature observed

on real cloths (Marchesi et al. 2012). In reality, there is a hardening process which is dependent

on time (Benusiglio et al. 2012). To this end, we let the plastic deformation gradually increase

with time so that plastic wrinkles can become sharper by keeping a plastic deformation for a

long period. We introduce a time-dependent hardening plastic model which can alter the yield

strain, εY , with time so that the plastic strain εp = εe − εY becomes time-dependent. Further,

we also assume that this dependence on time is related to the material, i.e., some cloths quickly

form plastic wrinkles while others take longer time, which is empirically observed. To our best

knowledge, there is no generally accepted parameteric form to describe this relation for various

materials. But we do notice there is an overall decelerated hardening along with time across

different materials (Benusiglio et al. 2012). This inspires us to propose the following model.

When plasticity occurs, i.e., εe > εY , it changes according to:

Kh = Kh0(1− g(1− e(−tplastic/τp))) (5.21)

εhp ← εhp +
Kb

Kb +Kh
(|εe| − εY ) (5.22)

εp ← εp + sign(εe)
Kb

Kb +Kh
(|εe| − εY ) (5.23)

εY = εY 0 + εhp
Kh

Kb
(5.24)

where Kh and Kh0 are the hardening parameter and initial hardening parameter respectively.

g ∈ (0, 1) controls the lower bound of the hardening parameters and τp decides Kh variation

rate. The variable tplastic times how long the plastic deformation has been kept. In every
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simulation step, it is updated according to

tplastic =


tplastic + h , if sign(εe) = sign(εp) and εe > εY

0 , otherwise

(5.25)

Therefore, tplastic is increased by h in every step if the plastic deformation flows to the overall

deformation, or otherwise reduced to zero. εhp denotes hardening plastic strain which is used

for accumulating the plastic deformation and controlling the plastic hardening effect. Also, εp

denotes the actual plastic deformation that is used in Eq. (5.19). To simulate plastic hardening,

the yield strain εY is affected by the plastic deformation and it can increase from a given initial

yield strain εY 0.

To further understand how hardening is simulated by Eq.5.21-5.25, we describe a scenario where

a plastic deformation first appears and then develops with time. When a plastic deformation

first appears, tplastic is increased which decreases Kh (Eq. (5.21)). This hardens the cloth as εhp

is increased (Eq. (5.22)), and so does the yield strain εY eventually (Eq. (5.24)). Moreover, only

part of the bending strain that exceeds the yield strain is treated as plastic strain. If the current

deformation is kept, tplastic will gradually increases and Kh reduces from Kh0 toward Kh0(1−g).

Consequently, εhp and εY further increase, and cloth is hardened. Meanwhile, the plastic strain

εp also gradually accounts more for the over all strain/stress so that the elastic strain/stress

εe = ε− εp reduces. This procedure is repeated as the simulation runs until εe ≤ εY . Overall,

the longer the deformation is maintained, the larger the plastic strain is and also the more

obvious the plastic wrinkles are. The algorithm of our time-dependent hardening plastic model

is shown in Algorithm 3.

After integrating the plastic model, the bending nodal force defined in Eq. (5.6) becomes

fb = −
1

2
Abσb

∂εb
∂x

= −1

2
AbKb(εb − εp)

∂(εb − εp)

∂x
(5.26)

The plastic hardening is usually very slow which can take minutes or even hours to observe

noticeable changes. As one simulation step which is usually between 0.01s and 0.001s for

stability, the plastic strain variation is usually small so that we can approximate
∂εp
∂x ≈ 0 and

bending nodal force is

fb = −
1

2
AbKb(εb − εp)

∂εb
∂x

(5.27)
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Algorithm 3 Time-dependent Hardening Plastic Model

1: procedure PLASTIC BENDING(εn, εp, εY )
2: εe = εn − εp
3: if |εe| > εY then ▷ Plastic Deformation
4: if sign(εe) = sign(εp) then
5: tplastic ← tplastic + h
6: else
7: tplastic ← 0
8: end if
9: Kh = Kh0(1− g(1− e(−tplastic/τp))) ▷ Eq. 5.21

10: εhp ← εhp +
Kb

Kb+Kh
(|εe| − εY ) ▷ Eq. 5.22

11: εp ← εp + sign(εe)
Kb

Kb+Kh
(|εe| − εY ) ▷ Eq. 5.23

12: εY = εY 0 + εhp
Kh
Kb

▷ Eq. 5.24
13: εe ← εY
14: end if
15: Compute F, ∂F∂x (Eq.5.6 and (Grinspun et al. 2003))

16: return F, ∂F∂x
17: end procedure

where we avoid computing complex derivatives and do not observe any negative impact on the

simulation stability in practice.

5.4 Friction and Plasticity in Tensile

Internal friction and plastic deformation also exist in cloth in-plane tensile deformations. The

internal friction prevents a stretched cloth from returning to its rest length. Overly stretching

a cloth can cause plastic tensile deformations so a new rest state (longer than the original one)

is established and the cloth can only recover to its new rest length.

Our friction and plastic model can also be applied to model cloth tensile internal friction and

plasticity. Similarly to the elastic tensile model, the tensile internal friction is also orthotropic.

Therefore, the tensile friction stress of a mesh triangle is:

σfri =


σfri−uu

σfri−vv

σfri−uv

 =


K11 0 0

0 K22 0

0 0 K33



∆εfri−uu

∆εfri−vv

∆εfri−uv

 (5.28)

where K11, K22, and K33 are the internal friction stiffness along the warp, the weft, and the di-

agonal direction respectively. The tensile internal friction strains/stresses along these directions

are independent and their internal friction stiffness are updated independently in the same way
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as introduced in Section 5.3.2.

Similarly, the tensile plastic strains in the three directions are independent as well:


εuu

εvv

εuv

 =


εe uu

εe vv

εe uv

+


εp uu

εp vv

εp uv

 (5.29)

and their plastic hardening effects are also updated independently following Section 5.3.3.

5.5 Implementation

Our implementation is in MSVC(10.0.19041.0) C++ with OpenMP for CPU parallel computing.

We use the Eigen library (Guennebaud, Jacob, et al. 2010) for matrix calculation and solving the

governing equation. Our experiments are conducted on a PC with an Intel i7-12700H 2.3GHz

CPU and 16GB 4800MHz RAM.

In addition, we use the Dihedral angle θ to define the slide friction threshold εthres and the

yield strain εY , rather than the bending strain εb. This is because εb is affected by specific

discretization, e.g., the size of triangles. εb = 3 θ−θ̄
e where the average height e = As1+As2

4l is

decided by two adjacent triangles’ rest areas, As1 and As2, and the bending edge’s rest length l.

When tuning the parameters, it is counter-intuitive if the slide friction thresholds εthres and εY

vary according to the cloth mesh discretization. As the bending strain εb essentially is a scaled

θ, we use θ as a surrogate to measure deformation, and define the εthres and εY accordingly.

Consequently, using the Dihedral angle to define the thresholds is more intuitive for users.

The parameters τf and τp allow us to define the variation rate of εthres and Kh with respect to

the deformation duration. Remember εthres and Kh control the friction dwell effect and plastic

hardening effect respectively which further decide how fast the friction/plastic wrinkles appear

in time. To show the time-dependence, theoretically our simulator can run for a long time

to simulate e.g., slow hardening processes. However, this might not be ideal in applications.

Therefore, we tune the parameters given a fixed deformation duration (i.e., how long a defor-

mation is kept) for different materials. In particular, given the same deformation duration, the

smaller the τ ’s are, the more obvious the wrinkles tend to be. Therefore, we can flexibly de-

termine a deformation duration that is long enough for the friction/plastic wrinkles to develop,
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Figure 5.2: The friction (top) and the plastic (bottom) wrinkles separately simulated by the
internal friction model and the plastic model. After the initial bending (a-1, b-1), we either
immediately release it (a-2, b-2) or keep it for a while (a-4, b-4), after which we stretch the
cloth trying to reverse the wrinkle (a-3, a-5, b-3, b-5). The wrinkles tend to be more recoverable
after the immediate release (b, e) than being kept for a while (c, f). Also, plastic wrinkles are
harder to recover than friction wrinkles.

as long as that duration is much greater than the τ ’s. In our experiments, we set the τ ’s to

30 seconds and the long deformation duration to 500 seconds which is sufficient to observe the

wrinkle time-dependence. In addition, we can increase tstick and tplastic by larger time steps to

avoid running the simulation for too long. For instance, in our experiments, we increase tstick

and tplastic by 10 seconds in every simulation step when keeping the cloth’s deformation. This

enables us to only run 50 steps before tstick and tplastic reach 500 seconds.

5.6 Experiments

5.6.1 Ablation Study

Friction/Plastic Wrinkles To verify that both the internal friction and the plasticity can

cause wrinkles, we show them separately by disabling one factor and simulate cloth using the

other. We design a simple one-wrinkle experiment shown in Fig. 5.2, where a small deformation

(Fig. 5.2 a-1) is used to generate a pure friction wrinkle. After the deformation, we release it

either immediately or after keeping the deformation for a long period. After releasing it, we

slightly stretch the cloth by pulling the left and the right side in opposite directions, to attempt

to flatten the cloth (testing if the wrinkle is reversible). With the immediate release (Fig. 5.2

a-2 and a-3), the wrinkle is largely reversible; while if the deformation is kept for a while, it is

less so (Fig. 5.2 a-4 and a-5).
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We also show the same experiment when only plasticity is considered. A large initial deformation

(Fig. 5.2 b-1) is followed by an immediate release (Fig. 5.2 b-2 and b-3) or a delayed release

(Fig. 5.2 b-4 and b-5). Similar to the friction wrinkle, the wrinkle under the immediate release

tends to be more reversible. Moreover, when comparing the friction wrinkle and the plastic

wrinkle, it is easy to see that the plastic wrinkle is more persistent in all situations. This

experiment demonstrates that our model can successfully generate time-dependent friction and

plastic wrinkles, and the high-fidelity is also shown in the varying reversibility of the wrinkles

according to their causes and duration. In addition, we refer the reader to the appended video

for viewing cloth dynamics.

5.6.2 Tensile Internal Friction and Plasticity

In addition to bending induced wrinkles, our model can also simulate wrinkles caused by tensile

deformation (Section 5.4). We design an experiment where mainly in-plane elongation is in-

duced. We fix the four edges of a cloth and press the central area downwards to cause small and

large deformation (Fig. 5.3 (a) and (b)). Again, we then either release it immediately (Fig. 5.3

(c, d)) or keep the deformation for a while (Fig. 5.3 (e, f)), then compare the wrinkles.

With small deformation, the wrinkles are mainly caused by the friction; otherwise the plasticity.

Again, the friction wrinkles (Fig. 5.3 (c, e)) are not as sharp as the plastic wrinkles (Fig. 5.3

(d, e)), regardless whether the deformation is kept or not. Furthermore, within each type of

wrinkles, the longer the deformation is kept, the harder it is for the wrinkles to recover (Fig. 5.3

(g, h)). This experiment demonstrates that our simulator is also effective in simulating wrinkles

induced by tensile deformation.

5.6.3 Stribeck and Varying Break-away Force

As we explicitly model the Stribeck and the varying break-away force/stress phenomena, our

friction model can simulate them by varying the friction stiffness Kfriction according to the

strain variation rate. We demonstrate this by applying our friction model to simulate the

tensile internal friction (plastic model is switched off). As shown in Fig. 5.4 (a) and (b), we

apply a gradually increasing force to drag the top edge of a square cloth along its weft direction

(up in the figure) while fixing the bottom edge. The experiments are conducted twice with the

stretching force increasing at two different rates.
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Figure 5.3: We press a square area of two cloths, whose edges are fixed, to different depth
(shown in (a) and (b)). The cloths are persistently stretched due to the stretching friction and
plastic deformation (shown in (c-f)). Moreover, (g) and (h) show that pressing the cloth for a
long time makes the persistent stretching deformation more obvious

Figure 5.4: A square cloth (a) is stretched along its weft direction by an external force whose
magnitude gradually increases (b). (c) comparing the stress-strain variation rate curve (ε̇vv-
σfri vv) when the magnitude of the dragging force increases at two different rates.

Fig. 5.4 (c) shows two curves where the vertical axis is the friction stress and the horizontal

axis is the stretching strain variation rate. First, the two curves share the overall dynamics in

common. Both curves first linearly go up (where mainly elasticity happens) until they peak. The

peaks are where the stick-slip transaction occurs when the friction stress reaches the maximum

stick friction stress, i.e., break-away stress. After the transition, the friction stress starts to fall

after the slip friction takes place until it starts to slightly increase again. This is the well-known

Stribeck effect.

When comparing the two curves, the major difference is the two forces increases at different

rates: 500N/sec (blue) and 1000N/sec (orange). As a result, the peak of the blue curve is

higher than that of the orange one, hence the varying break-away forces. This shows that our
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Figure 5.5: The scenarios for simulating friction and plastic wrinkles on cloth. (a) An originally
wrinkleless rectangle cloth falls into a cylindrical container due to its self-weight; (b) The cloth
is folded moderately due to collision; (c) To cause extreme deformations, we compress the cloth
after it falls on the ground.

simulator can simulate varying break-away forces based on the force increase rate: the larger

the increase rate is, the smaller the break-away force is, which is widely observed (Richardson

and Nolle 1976).

5.6.4 Combined Friction and Plasticity

Combining internal friction and plasticity model allows our simulator to simulate different soft-

/sharp wrinkles in small/large deformation. We design an experiment of crumbled cloths. We

first drop a wrinkleless cloth into a cylindrical container (Fig. 5.5 (a)) and let the cloth to fold

by gravity and collision (Fig. 5.5 (b)). Then our experiment bifurcates into two scenarios. In

the first scenario, we remove the container and lift the cloth by picking up its two corners. In

the second scenario, we remove the container then add a heavy weight (the transparent object

in Fig. 5.5 (c)) and let it fall onto the cloth. Within each scenario, to show the time-dependency,

we either immediately lift the cloth or keep it for a while before lifting. After lifting, the cloth

will be hung only under the influence of its weight. The experiment aims to mimic everyday

scenarios e.g., clothes dropped onto a sofa and left there, sometimes with people sitting on

them.

We show the results in Fig. 5.6. First, even under self weight, we notice all scenarios generate

wrinkles that are not reversible by gravity. Looking closely and comparing the four results,

Fig. 5.6 (c, d) generate sharper wrinkles than Fig. 5.6 (a, b). This is understandable and
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Figure 5.6: The wrinkles on the cloth after lifting it. (a) Immediately lift the cloth after
folding moderately; (b)Lift the cloth after keeping the moderate deformation for a long time;
(c) Immediately lift the cloth after being compressed by the heavy weight; (d) Lift the cloth
after compressing it for a long time.

intuitive because there is no heavy weight placed on the cloth for Fig. 5.6 (a, b). The weight

forces larger deformation and therefore makes plasticity prominent in the wrinkle formation.

However, the effect of friction is also visible in all cases by soft wrinkles. Overall, combining the

internal friction and the plasticity gives a visually realistic combination of both soft and hard

wrinkles.

Time-dependence Next, within each scenario (with and without weight), we can clearly see

the time-dependency. When there is no weight and the cloth is immediately lifted ( Fig. 5.6

(a)), the deformation does not leave many wrinkles as the process of lifting and hanging leads to

stretching under self weight, which can reverse some of the soft wrinkles caused by the internal

friction. Comparatively, when the cloth is left for a while Fig. 5.6 (b)), the friction wrinkles start

to harden under self weight. Wrinkles become more visible and resist recovery. Note that most

of the hardened wrinkles here are still friction wrinkles. Similarly, when there is a weight, even

for a short period of time, plastic wrinkles are still formed (Fig. 5.6 (c)). But since the time is

short, some of the wrinkles are partially recovered after lifting before they harden completely. If

the weight is left for a while, then sharp and irreversible wrinkles appear (Fig. 5.6 (d)). Overall,

this experiment shows both the internal friction and the plasticity, when combined, are still
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Table 5.2: Simulation parameters of simulate cotton (plain woven), tannin (cotton twill), and
polyester cloths.

Cloth ρ kb k11 k22 k12 k33 C0 C1 C2

Cotton 0.1 1e-6 200.0 200.0 0.2 20.0 3e-6 3e-6 0.8
Tannin 0.2 3e-5 200.0 200.0 0.2 150.0 6e-6 3e-5 0.8
Polyester 0.15 1e-6 100.0 100.0 0.2 20.0 1e-6 1e-6 0.8

Cloth kc ε0 εinf εs τf Kh0 g τp εY 0

Cotton 3e-6 0.1 1.2 0.1 30.0 1e-6 0.99 30.0 1.5
Tannin 5e-5 0.2 1.2 0.1 30.0 3e-5 0.99 30.0 1.2
Polyester 5e-7 0.1 0.1 0.1 30.0 1e-6 0.99 30.0 3.1

time-dependent and can generate highly plausible wrinkles.

Friction vs Plasticity Comparing Fig. 5.6 (b) and (c), we see obvious wrinkles in both

scenarios. But looking closely, there are steeply sharp wrinkles with high curvature at the peak

of the wrinkle ridges in Fig. 5.6 (c) which are not presented in Fig. 5.6 (b). This suggests that

the internal friction, even after dwell, is less likely to form wrinkles as sharp as plastic wrinkles.

This is physically correct and visually intuitive. The combination of the internal friction and

the plasticity enables the simulator to respond to all kinds of deformation and external forces

realistically.

5.6.5 Model Versatility

Cloths made from different materials usually exhibit distinctive wrinkles even after the same

deformation, due to different material properties, e.g., bending stiffness, inter-yarns/fibers fric-

tion, and plasticity (Fan and Hunter 2009). Our model comes with parameters governing the

material properties, which can simulate a wide range of materials when set properly. Below, we

show three types of materials: Cotton (plain woven), Tannin (twill cotton) and Polyester. We

choose these types as they are typical fabrics and common in clothes. Also, they can generate

visually distinguishable wrinkles. Finally, we do not claim that they are truly the cotton, tan-

nin and polyester material from the perspective of physics, as not all parameters we use can be

easily measured in experiments, hence no direct verification. We refer to them mainly based on

their visual appearances.

The parameters are shown in Table 5.2. Cotton cloths are used to make table cloths. It is soft

(low bending stiffness), but difficult to be elongated by stretching (large stretching stiffness).
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Figure 5.7: Wrinkles on the twisted cloths made from different materials: (a) Cotton; (b)
Tannin; (c) Polyester. Cotton and Tannin are more likely to generate wrinkles than Polyester.
Moreover, keeping the cloths in the twisted state (e) makes the wrinkles more obvious than
those on the cloths that are released immediately (d).

Wrinkles are likely to appear on plain woven cotton, so we give this cloth a low εthres and εY .

Tannin is thick, solid and durable, and is usually used to make jeans. It has high bending

stiffness and density because it is usually thick and heavy. Wrinkles also commonly appear on

heavily used tannin cloths. We also give this cloth a low εthres and εY . Conversely, polyester

is a very light material and commonly used to make sports outfits because it can be deformed

extremely without wrinkles. It exhibits good wrinkle recovery and is difficult to have plastic

deformations. Therefore, we give this cloth a small density/bending stiffness/stretching stiffness.

To simulate good wrinkle recovery, we give polyester a low ε0 and εinf . Also, we set its εY 0

high so that it almost cannot have plastic wrinkles.

As stretching and bending have been shown before, we use twisting in this experiment. The
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Table 5.3: Consumed time per simulation step (seconds/step) when using different resolution
mesh. Turning on our friction and plastic model only trivially slow down the simulation.

Model 2K Mesh 7K Mesh 27K Mesh

Friction/Plastic on 0.279 1.319 12.064
Friction/Plastic off 0.256 1.286 11.518

cloths are made into cylinders. We twist the top of every cloth by 0.25π in the clockwise

direction (from the top view) along its central axis with its bottom fixed. Then, we twist in the

counter-clockwise direction by 0.25π to return its initial state and observe the wrinkles caused

by the deformation. The results are shown in Fig. 5.7. As expected, Cotton gives the most

obvious wrinkles and Polyester gives the least. Moreover, keeping the deformation for a long

time makes the wrinkles more obvious, which is shown in both Cotton and Tannin. Polyester is

less affected by deformation duration as there is little internal friction and plasticity. Overall,

our simulator is capable of simulating high-fidelity wrinkles that reflect cloth materials. We

refer the reader to the appended video for viewing cloth dynamics.

5.6.6 Performance

We use the twisting experiments to show the performance of our simulator. This is to mainly

measure the time needed for the internal friction and the plasticity, in the absence of other

factors such as collisions and external frictions. Table 5.3 shows the time per simulation step

when the cloth mesh has different resolutions: approximately 2K vertices, 7K vertices, and 27K

vertices. Note our implementation is not optimized particularly for speed, hardware or parallel

computing. The result demonstrates our friction and plastic models only cause a trivial addition

to the computing and therefore they can be incorporated easily in simulation applications.

5.6.7 Wrinkles on Garments

Finally, we demonstrate that our simulator can be used for garment simulation under complex

human motions, which is crucial for many applications, from fashion design to animation.

We simulate trousers with 20k vertices on a human body (Fig. 5.8 (a)), under deformation

caused by two motions: lifting the left leg (Fig. 5.8 (b)) and sitting down (Fig. 5.8 (c)). Both

motions are commonly seen in daily life. Lifting leg is a good example of moderate deformations

asymmetrically distributed between two legs, while sitting down involves multiple regions of

large deformations around the pelvis and knees.
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Figure 5.8: Trousers simulation. (a) The trousers on A-pose human body does not have wrin-
kles; (b) Lifting a leg will deform the trousers moderately; (c) Sitting down will cause larger
deformations.

We first show results in Tannin trousers in Fig. 5.10. In each motion, we keep the lifting or

sitting for a short and a long period of time. The leg lifting mainly causes wrinkles behind

the left knee, with some mild wrinkles behind the bottom. As expected, the wrinkles after

long deformation (Fig. 5.10 (b)) are sharper behind the knee and the bottom than (Fig. 5.10

(a)). Since leg lifting causes moderate wrinkles, the visual difference between short and long

deformation is visible but subtle. Comparatively, the difference is more visible in Sitting where

more sharp wrinkles are formed in Fig. 5.10 (d) than (Fig. 5.10 (c). The differences are especially

noticeable not only in the areas behind the bottom and around the knees, but also near the

crotch.

Next, we also show the trousers without the human body in Fig. 5.10 (e-h). This is to show

some wrinkles are generated and maintained mainly due to the collisions between the body and

the trousers. Without the human body, the trousers are more stretched under gravity and some

wrinkles disappear. However, these disappeared wrinkles tend to be the ones that are soft and

mainly caused by the internal friction. These wrinkles are more easily reversible. Finally, we

show trousers made from different materials from behind when draping in Fig. 4.1, and from

the front when body-cloth collisions are present in Fig. 5.9. We also show another example of

a T-shirt from T-pose to arm-bending (Fig. 5.11), with short and long duration of deformation

(Fig. 5.12).
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Figure 5.9: Front view of sitting where trousers are made from different fabrics.

5.6.8 Comparison Experiments

To our best knowledge, there is no cloth simulator that combines internal friction and plasticity.

Further, there is no cloth simulator that models wrinkle time-dependence. So we choose two

baseline methods that are closest to ours. One considers the internal friction only based on

Dahl’s Model (Miguel et al. 2013). The other considers plasticity only (Narain et al. 2013;

Grinspun 2008). Note neither models time-dependence. We refer the reader to the appended

video for viewing cloth dynamics.

Compare with Dahl’s Model

Dahl’s friction to is used to model cloth internal friction in (Miguel et al. 2013). Their experi-

ments show that the friction model can also form cloth wrinkles. However, without considering

the dwell effect, it cannot simulate time-dependent friction wrinkles. We use the simulation

scenario in Fig. 5.5 (b) (without weight) and use Dahl’s friction model to simulate the fric-

tion wrinkles. Fig. 5.13 (a) and (b) show, when using Dahl’s friction model, the wrinkles are

identical even though their deformation duration is different. Therefore, Dahl’s friction model

cannot simulate time-dependent friction wrinkles. In addition, due to the lack of stick friction,

Dahl’s friction model is not feasible for simulating wrinkles. To simulate the obvious wrinkles

as shown in Fig. 5.13, we have to follow (Miguel et al. 2013)’s suggestion: using large friction

force, slowing down the motion, and even frequently set velocity to zero to prevent wrinkles
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Figure 5.10: (a-d) and (e-h) are with and without human body. The wrinkles caused by sitting
(a,b,e,f) are more obvious that those caused by lifting leg (c,d,g,h) because sitting causes larger
deformations. Moreover, the wrinkles on (b, d, f, h) are sharper and deeper than those on (a,
c, e, h). Therefore, keeping deformations for a long time makes the wrinkles more obvious.
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Figure 5.11: Top garment simulation.(a)The top on a T-pose human body does not have wrin-
kles; (b) Bending the arm folds the elbow areas and the underarm area of the sleeves.

Figure 5.12: The wrinkles on the top garment after returning to the initial t-pose. Keeping
the pose of a long time makes the wrinkles(b) more obvious that the wrinkles which formed by
immediate returning to the t-pose(a).
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from disappearing. Otherwise, wrinkles would look very subtle. We refer the reader to the

appended video for viewing cloth dynamics.

Figure 5.13: The friction wrinkles simulated by the Dahl’s friction model (Miguel et al. 2013)
with different deformation duration: (a-1) lift immediately; (a-2) lift after long-time keeping.
Due to the lack of time-dependency, the simulated wrinkles simulated by the Dahl’s model do
not vary with time. By contrast, our simulator can simulate time-dependent wrinkles(b-1:lift
immediately; b-2:lift after long-time keeping).

Compare with Hardening Plastic Model.

Plastic models are commonly used for simulating cloth wrinkles in graphics. We choose the

hardening plastic model as the baseline which has been used in (Narain et al. 2013; Grinspun

2008). We twist the two edges of a rectangular cloth to cause plastic deformation (Fig. 5.14

(a-b)). Our model and the baseline use the same yield strain, εY . As shown in Fig. 5.14 (c) and

(d), keeping the deformation for different duration affects the wrinkles when using our model.

Conversely, as shown in Fig. 5.14(e) and (f), the wrinkles simulated by the baseline method

are identical no matter how long the deformation is kept. Moreover, due to the lack of internal

friction, the cloths in Fig. 5.14 (e) and (f) have much fewer wrinkles because plastic wrinkles

only appears in large deformations. We refer the reader to the appended video for viewing cloth

dynamics.
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Figure 5.14: We twist the two edges of a initially flat rectangular cloth (a) in opposite direction
by π

2 to cause wrinkles (b). After flattening the twisted cloth, the wrinkles simulated by our
model (pink) and the hardening plastic model (blue) (Narain et al. 2013) with different defor-
mation duration: (c, d) Immediately flattened after twisting; (e, f) Twisted for a while before
flattening.

5.7 Discussion and Conclusion

We have introduced a new cloth simulator that is capable of generating realistic wrinkles. To

our best knowledge, our method is the first one that investigates the temporal aspect of wrinkle

formation. To this end, we proposed a new physics model combining time-dependent inter-

nal friction and plasticity. Through experiments, we have demonstrated our method achieves

high visual fidelity by introducing more complicated cloth wrinkle mechanics: (1) the interplay

between internal friction and plastic deformation; (2) time-dependence.

In this work, our simulator is not optimized for speed in comparison with the state-of-art (e.g.,

real-time). In future, we will refactor our algorithms to leverage the parallel computing capabil-

ity of GPUs, so it becomes performance ready for applications such as games and virtual try-on.

In addition, our friction and plastic models inevitably introduce more simulation parameters

which further increases the difficulty of the parameter tuning. We plan to introduce a differ-

entiable cloth simulation based on this work so that it can estimate the simulation parameters

from data in our future work. Finally, theoretically, our friction model and plastic model can

be used in a plug-and-play manner and transferred to other cloth simulators, e.g., yarn-level

cloth simulators. We will explore how to integrate them into various cloth simulators.
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Conclusion

This thesis has reported our three works on improving physics-based cloth simulation realism by

diving into the fine-grained physics in cloth and accurately estimating cloth physical parameters.

By modeling cloth micro-mechanics at yarn-level, our first work (Chapter 3) introduces a new

differentiable cloth simulator that captures individual yarns’ mechanical behaviors and their

interactions. Thanks to our novel friction and shear force models, our simulator is fully differ-

entiable so that can conduct gradient-based optimization to estimate cloth physical parameters

with outstanding sample efficiency. Compared with an existing sheet-level differentiable cloth

simulator, it can more accurately estimate cloth physical parameters and then more realistically

reproduce the observed cloth dynamics. Moreover, it can also naturally embed woven patterns

and handle blend woven cloth. In addition, cloth micro-mechanics determines its macro-level

physical properties: Cloths usually exhibit material heterogeneity where a cloth’s physical prop-

erties randomly vary across its geometry. This results from the uneven physical properties at

their micro-level, e.g., yarns cannot be perfectly identical because of production errors. Our

second work (Chapter 4) proposes a Bayesian differentiable cloth simulator which models cloth

physical parameters as probability distributions such that is can encode cloth material hetero-

geneity. We apply our simulator to estimate cloth physical properties from Cusick drape testing

because it is accurate, widely acknowledged, and reproduciable. More importantly, it can ob-

viously reflects cloth material heterogeneity, i.e., varied drape shapes of cloth samples from

the same fabric and asymmetric drape shape. This work also releases a Cusick drape dataset

consists of 660 samples which includes both 2D cloth drape silhouettes and reconstructed 3D

meshes. Compared with homogeneous cloth models, our Bayesian differentiable cloth simula-
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tor can more accurately estimate cloth physical properties and then more realistically simulate

cloths with reflecting material heterogeneity. Furthermore, cloth fine-grained physics also has

a significant influence on cloth persistent wrinkles which are the combinational effect of the

friction between yarns and fibers, and yarns’ and fibers’ plastic deformations. Our third work

(Chapter 5) proposes our novel time-dependent friction model and plastic model, and integrates

them into our physics-based cloth simulator to simulate cloth persistent wrinkles. Compared

with previous works, our simulator not only can more realistically simulate the differentiable

wrinkles due to internal friction or plasticity according to cloth deformation, but can also natu-

rally simulate time-dependent persistent wrinkles. In conclusion, the results demonstrate that

fine-grained physics is indispensable to realistic cloth simulation and would be an important

trend of further research in pursuing cloth simulation realism.

Nevertheless, there is still room for further improvement in our current work. First, simulat-

ing cloth micro-mechanics is computationally expensive. In computer graphics, the simulation

efficiency is also an important concern. Our current implementations mainly rely on the sin-

gle machine CPU parallel to speed up the simulation and the differentiable simulation. Their

running speeds are acceptable in our experiment settings but would slow down when simulat-

ing more complicated scenarios or integrating finer cloth mechanics. To gain a more efficient

implementation, it would be more feasible to leverage the GPU(s) parallel, mix CPU/GPU, or

distribute the simulation to a cluster. Second, the same as most of the state-of-the-art differen-

tiable cloth simulators, our differentiable cloth simulators are implemented by PyTorch’s (Paszke

et al. 2019) C++ extension to leverage its automatic gradient computation functionality and

well-implemented gradient-based optimizers. However, as PyTorch is mainly designed for build-

ing machine/deep learning models, its efficiency will dramatically degrade when being applied

to implement differentiable cloth simulators because the vectorization is usually broken. In ad-

dition, increasing the number of simulation steps will complicate the gradient graph and makes

back-propagation intractable. Unfortunately, there is no automatic differentiation framework

designed for the differentiable cloth simulation. Therefore, developing a new framework for

differentiable cloth simulation would be a promoting research direction in the future. Third,

it is laborious, costly, and time-consuming to test real cloths and build a cloth database. The

number of samples in our Cusick drape database is not very great. In theory, our Bayesian

differentiable cloth simulator would achieve better results if there were more training samples.

Currently, there is rare public real cloth dataset, and building a benchmark database would be
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a great contribution to the cloth simulation community. Last but not least, our time-dependent

friction model and plastic model introduce more simulation parameters for simulating persistent

wrinkles. Tuning these parameters to realistically simulate the observed cloth by trial and error

is tedious and slow. As these models involve indifferentiable functions, they cannot be simply

converted into a differentiable cloth simulator by integrating automatic differentiation.

We plan to resolve these problems in the future work. An efficient and user-friendly coding

framework for the differentiable cloth simulation would be a solid base for implementing new

ideas and demonstrating hypotheses. Our next work is going to build a differentiable cloth

simulation framework that can leverage CPU/GPU to efficiently run simulation and conduct

gradient optimization. In addition, a real cloth dataset is indispensable to the research on

cloth parameter estimation and cloth simulation. We am going to build a benchmark database

that contains comprehensive textile measurements of various daily used cloths. Finally, we will

introduce a differentiable version of the internal friction model and plastic model such that our

persistent cloth wrinkles simulator can be converted into a differentiable cloth simulation and

estimate the simulation parameters by observing the target cloths.
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and Durand, Frédo (2020). “DiffTaichi: Differentiable Programming for Physical Simulation”.

160

https://doi.org/10.1007/s00371-003-0206-2
https://doi.org/10.1007/s00371-003-0206-2
https://doi.org/10.1007/s00371-003-0206-2
https://freefem.org/
http://arxiv.org/abs/1905.10706
http://arxiv.org/abs/1905.10706
https://doi.org/10.1007/BF01901066
https://doi.org/10.1007/BF01901066
https://doi.org/10.1007/BF01901066
https://doi.org/10.48550/arXiv.1206.7051
https://arxiv.org/abs/1206.7051
https://doi.org/10.48550/arXiv.1206.7051
https://montrealrobotics.ca/diffcvgp/assets/papers/3.pdf
https://www.sciencedirect.com/book/9781845692971/fabric-testing
https://www.sciencedirect.com/book/9781845692971/fabric-testing
https://doi.org/10.1109/CCCM.2009.5267684
https://doi.org/10.1109/CCCM.2009.5267684


REFERENCES REFERENCES

In: arXiv preprint arXiv:1910.00935. doi: 10 . 48550 / arXiv . 1910 . 00935. url: https :

//doi.org/10.48550/arXiv.1910.00935.

Hu, Yuanming, Liu, Jiancheng, Spielberg, Andrew, Tenenbaum, Joshua B., Freeman, William

T., Wu, Jiajun, Rus, Daniela, and Matusik, Wojciech (2019). “ChainQueen: A Real-Time

Differentiable Physical Simulator for Soft Robotics”. In: 2019 International Conference on

Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE Press, pp. 6265–6271. doi:

10.1109/ICRA.2019.8794333. url: https://doi.org/10.1109/ICRA.2019.8794333.

Huang, Zhiao, Hu, Yuanming, Du, Tao, Zhou, Siyuan, Su, Hao, Tenenbaum, Joshua B., and

Gan, Chuang (2021). PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable

Physics. doi: 10.48550/arXiv.2104.03311. arXiv: 2104.03311 [cs.LG]. url: https:

//doi.org/10.48550/arXiv.2104.03311.

James, Doug L. and Fatahalian, Kayvon (July 2003a). “Precomputing Interactive Dynamic

Deformable Scenes”. In: ACM Trans. Graph. 22.3, pp. 879–887. issn: 0730-0301. doi: 10.

1145/882262.882359. url: https://doi.org/10.1145/882262.882359.

James, Doug L. and Fatahalian, Kayvon (July 2003b). “Precomputing interactive dynamic

deformable scenes”. In: ACM Trans. Graph. 22.3, pp. 879–887. issn: 0730-0301. doi: 10.

1145/882262.882359. url: https://doi.org/10.1145/882262.882359.

Jatavallabhula, Krishna Murthy, Macklin, Miles, Golemo, Florian, Voleti, Vikram, Petrini,

Linda, Weiss, Martin, Considine, Breandan, Parent-Levesque, Jerome, Xie, Kevin, Erleben,

Kenny, Paull, Liam, Shkurti, Florian, Nowrouzezahrai, Derek, and Fidler, Sanja (2021).

“gradSim: Differentiable simulation for system identification and visuomotor control”. In:

arXiv preprint. doi: 10.48550/arXiv.2104.02646. arXiv: 2104.02646 [cs.CV]. url:

https://doi.org/10.48550/arXiv.2104.02646.

Jatavallabhula, Krishna Murthy, Smith, Edward, Lafleche, Jean-Francois, Tsang, Clement Fuji,

Rozantsev, Artem, Chen, Wenzheng, Xiang, Tommy, Lebaredian, Rev, and Fidler, Sanja

(2019). “Kaolin: A pytorch library for accelerating 3d deep learning research”. In: arXiv

preprint arXiv:1911.05063. doi: 10.48550/arXiv.1911.05063. url: https://doi.org/10.

48550/arXiv.1911.05063.

161

https://doi.org/10.48550/arXiv.1910.00935
https://doi.org/10.48550/arXiv.1910.00935
https://doi.org/10.48550/arXiv.1910.00935
https://doi.org/10.1109/ICRA.2019.8794333
https://doi.org/10.1109/ICRA.2019.8794333
https://doi.org/10.48550/arXiv.2104.03311
https://arxiv.org/abs/2104.03311
https://doi.org/10.48550/arXiv.2104.03311
https://doi.org/10.48550/arXiv.2104.03311
https://doi.org/10.1145/882262.882359
https://doi.org/10.1145/882262.882359
https://doi.org/10.1145/882262.882359
https://doi.org/10.1145/882262.882359
https://doi.org/10.1145/882262.882359
https://doi.org/10.1145/882262.882359
https://doi.org/10.48550/arXiv.2104.02646
https://arxiv.org/abs/2104.02646
https://doi.org/10.48550/arXiv.2104.02646
https://doi.org/10.48550/arXiv.1911.05063
https://doi.org/10.48550/arXiv.1911.05063
https://doi.org/10.48550/arXiv.1911.05063


REFERENCES REFERENCES

Jawed, M Khalid, Novelia, Alyssa, and O’Reilly, Oliver M (2018). A primer on the kinematics

of discrete elastic rods. Springer. doi: 10.1007/978-3-319-76965-3. url: https://doi.

org/10.1007/978-3-319-76965-3.

Jeong, Y. J. (1998). “A Study of Fabric-drape Behaviour with Image Analysis Part I: Measure-

ment, Characterisation, and Instability”. In: The Journal of The Textile Institute 89.1, pp. 59–

69. doi: 10.1080/00405009808658597. url: https://doi.org/10.1080/00405009808658597.

Jeong, Y. J. and D. G., Phillips (1998). “A Study of Fabric-drape Behaviour with Image Anal-

ysis. Part II: The Effects of Fabric Structure and Mechanical Properties on Fabric Drape”.

In: The Journal of The Textile Institute 89.1, pp. 70–79. doi: 10.1080/00405009808658598.

url: https://doi.org/10.1080/00405009808658598.

Johannes, V. I., Green, M. A., and Brockley, C. A. (June 1973). “The role of the rate of

application of the tangential force in determining the static friction coefficient”. en. In:

Wear 24.3, pp. 381–385. issn: 0043-1648. doi: 10.1016/0043- 1648(73)90166- X. url:

https://www.sciencedirect.com/science/article/pii/004316487390166X (visited on

04/22/2021).

Jojic, Nebojsa and Huang, Thomas S. (Jan. 1997). “Estimating Cloth Draping Parameters from

Range Data”. In: International Workshop on Synthetic-Natural Hybrid Coding and 3-D Imag-

ing. url: https://citeseerx.ist.psu.edu/pdf/25e99a6c0ecac9f40f428b44bec4023015e75e25.

Jones, Donald R, Schonlau, Matthias, and Welch, William J (1998). “Efficient global optimiza-

tion of expensive black-box functions”. In: Journal of Global optimization 13.4, pp. 455–492.

issn: 1573-2916. doi: 10.1023/A:1008306431147. url: https://doi.org/10.1023/A:

1008306431147.

Ju, Eunjung and Choi, Myung Geol (2020). “Estimating Cloth Simulation Parameters From a

Static Drape Using Neural Networks”. In: IEEE Access 8, pp. 195113–195121. issn: 2169-

3536. doi: 10.1109/ACCESS.2020.3033765. url: https://doi.org/10.1109/ACCESS.

2020.3033765.

Ju, Eunjung, Kim, Kwang-yun, Lee, Jaehoon, Yoon, Sungjin, and Choi, Myung Geol (2022).

“Interactive exploration of drapes by simulation parameters”. In: Computer Animation and

162

https://doi.org/10.1007/978-3-319-76965-3
https://doi.org/10.1007/978-3-319-76965-3
https://doi.org/10.1007/978-3-319-76965-3
https://doi.org/10.1080/00405009808658597
https://doi.org/10.1080/00405009808658597
https://doi.org/10.1080/00405009808658598
https://doi.org/10.1080/00405009808658598
https://doi.org/10.1016/0043-1648(73)90166-X
https://www.sciencedirect.com/science/article/pii/004316487390166X
https://citeseerx.ist.psu.edu/pdf/25e99a6c0ecac9f40f428b44bec4023015e75e25
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/ACCESS.2020.3033765
https://doi.org/10.1109/ACCESS.2020.3033765
https://doi.org/10.1109/ACCESS.2020.3033765


REFERENCES REFERENCES

Virtual Worlds 33.3-4, e2058. doi: 10.1002/cav.2058. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/cav.2058.

Jung, Il-Hoe, Lee, Sang-Bin, Kim, Jong-Jun, Ryu, Han-Na, and Ko, Hyeong-Seok (2016). “Mod-

eling the non-elastic stretch deformation of cloth based on creep analysis”. In: Textile Research

Journal 86.3, pp. 245–255. doi: 10.1177/0040517515588268. url: https://doi.org/10.

1177/0040517515588268.

Kaldor, Jonathan M., James, Doug L., and Marschner, Steve (2008). “Simulating knitted cloth

at the yarn level”. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH ’08. Los Angeles, Cali-

fornia: Association for Computing Machinery. isbn: 9781450301121. doi: 10.1145/1399504.

1360664. url: https://doi.org/10.1145/1399504.1360664.

Kaldor, Jonathan M., James, Doug L., and Marschner, Steve (July 2010). “Efficient yarn-based

cloth with adaptive contact linearization”. In: ACM Trans. Graph. 29.4. issn: 0730-0301. doi:

10.1145/1778765.1778842. url: https://doi.org/10.1145/1778765.1778842.

Kang, Young-Min, Choi, Jeong-Hyeon, Cho, Hwan-Gue, and Lee, Do-Hoon (2001). “An efficient

animation of wrinkled cloth with approximate implicit integration”. In: The Visual Computer

17, pp. 147–157. issn: 1432-231. doi: 10.1007/s003710100103. url: https://doi.org/10.

1007/s003710100103.

Karniadakis, George Em, Kevrekidis, Ioannis G., Lu, Lu, Perdikaris, Paris, Wang, Sifan, and

Yang, Liu (2021). “Physics-informed machine learning”. In:Nature Reviews Physics 3, pp. 422–

440. issn: 2522-5820. doi: 10.1038/s42254-021-00314-5. url: https://doi.org/10.

1038/s42254-021-00314-5.

Kavan, Ladislav, Gerszewski, Dan, Bargteil, Adam W., and Sloan, Peter-Pike (2011). “Physics-

inspired upsampling for cloth simulation in games”. In: ACM SIGGRAPH 2011 Papers. SIG-

GRAPH ’11. Vancouver, British Columbia, Canada: Association for Computing Machinery.

isbn: 9781450309431. doi: 10.1145/1964921.1964988. url: https://doi.org/10.1145/

1964921.1964988.

Kawabata, Sueo (1980). “The Standardization and Analysis of Hand Evaluation”. In: The Tex-

tile Machinery Society Japan.

163

https://doi.org/10.1002/cav.2058
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.2058
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.2058
https://doi.org/10.1177/0040517515588268
https://doi.org/10.1177/0040517515588268
https://doi.org/10.1177/0040517515588268
https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1778765.1778842
https://doi.org/10.1145/1778765.1778842
https://doi.org/10.1007/s003710100103
https://doi.org/10.1007/s003710100103
https://doi.org/10.1007/s003710100103
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1145/1964921.1964988
https://doi.org/10.1145/1964921.1964988
https://doi.org/10.1145/1964921.1964988


REFERENCES REFERENCES

Kenkare, Narahari, Lamar, Traci A. M., Pandurangan, Pradeep, and Eischen, Jeffrey (2008).

“Enhancing accuracy of drape simulation. Part I: Investigation of drape variability via 3D

scanning”. In: The Journal of The Textile Institute 99.3, pp. 211–218. doi: 10 . 1080 /

00405000701489222. url: https://doi.org/10.1080/00405000701489222.

Kim, Byung-Cheol, Oh, Seungwoo, and Wohn, Kwangyun (Jan. 2011). “Persistent Wrinkles

and Folds of Clothes”. In: International Journal of Virtual Reality 10.1, pp. 61–66. doi:

10.20870/IJVR.2011.10.1.2803. url: https://ijvr.eu/article/view/2803.

Kim, Doyub, Koh, Woojong, Narain, Rahul, Fatahalian, Kayvon, Treuille, Adrien, and O’Brien,

James F. (July 2013). “Near-exhaustive precomputation of secondary cloth effects”. In: ACM

Trans. Graph. 32.4. issn: 0730-0301. doi: 10.1145/2461912.2462020. url: https://doi.

org/10.1145/2461912.2462020.

Kim, Sungmin (2011). “Determination of fabric physical properties for the simulation of Cusick

drapemeter”. In: Fibers and Polymers 12.1, pp. 132–136. issn: 1875-0052. doi: 10.1007/

s12221-011-0132-2. url: https://doi.org/10.1007/s12221-011-0132-2.

Kim, Tae-Yong and Vendrovsky, Eugene (2008). “DrivenShape: a data-driven approach for shape

deformation”. In: ACM SIGGRAPH 2008 Talks. SIGGRAPH ’08. Los Angeles, California: As-

sociation for Computing Machinery. isbn: 9781605583433. doi: 10.1145/1401032.1401121.

url: https://doi.org/10.1145/1401032.1401121.

King, Michael James, Jearanaisilawong, Petch, and Socrate, Simona (2005). “A continuum

constitutive model for the mechanical behavior of woven fabrics”. In: International Jour-

nal of Solids and Structures 42.13, pp. 3867–3896. issn: 0020-7683. doi: 10 . 1016 / j .

ijsolstr.2004.10.030. url: https://www.sciencedirect.com/science/article/

pii/S0020768304006225.

Kingma, Diederik P and Welling, Max (2022). Auto-Encoding Variational Bayes. doi: 10.

48550/arXiv.1312.6114. arXiv: 1312.6114 [stat.ML]. url: https://doi.org/10.48550/

arXiv.1312.6114.

Kuijpers, Sandra, LuibleTBär, Christiane, and Gong, Hugh (2020). “THE MEASUREMENT

OF FABRIC PROPERTIES FOR VIRTUAL SIMULATION—A CRITICAL REVIEW”. En-

164

https://doi.org/10.1080/00405000701489222
https://doi.org/10.1080/00405000701489222
https://doi.org/10.1080/00405000701489222
https://doi.org/10.20870/IJVR.2011.10.1.2803
https://ijvr.eu/article/view/2803
https://doi.org/10.1145/2461912.2462020
https://doi.org/10.1145/2461912.2462020
https://doi.org/10.1145/2461912.2462020
https://doi.org/10.1007/s12221-011-0132-2
https://doi.org/10.1007/s12221-011-0132-2
https://doi.org/10.1007/s12221-011-0132-2
https://doi.org/10.1145/1401032.1401121
https://doi.org/10.1145/1401032.1401121
https://doi.org/10.1016/j.ijsolstr.2004.10.030
https://doi.org/10.1016/j.ijsolstr.2004.10.030
https://www.sciencedirect.com/science/article/pii/S0020768304006225
https://www.sciencedirect.com/science/article/pii/S0020768304006225
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114


REFERENCES REFERENCES

glish. In: IEEE Standards Association, Industry Connections Report, pp. 1–43. url: https:

/ / standards . ieee . org / wp - content / uploads / import / governance / iccom / 3DBP -

Measurement_Fabric_Properties-Virtual_Simulation.pdf.

Kunii, Tosiyasu L. and Gotoda, Hironobu (1990). “Modeling and Animation of Garment Wrinkle

Formation Processes”. In: Computer Animation ’90. Ed. by Nadia Magnenat-Thalmann and

Daniel Thalmann. Tokyo: Springer Japan, pp. 131–147. isbn: 978-4-431-68296-7.

Lahey, Timothy (2002). “Modelling hysteresis in the bending of fabrics”. MA thesis. University

of Waterloo. url: http://hdl.handle.net/10012/941.

Lähner, Zorah, Cremers, Daniel, and Tung, Tony (2018). “DeepWrinkles: Accurate and Realistic

Clothing Modeling”. In: Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari, Martial

Hebert, Cristian Sminchisescu, and Yair Weiss. Cham: Springer International Publishing,

pp. 698–715. isbn: 978-3-030-01225-0.

Larboulette, C. and Cani, M.-P. (2004). “Real-time dynamic wrinkles”. In: Proceedings Com-

puter Graphics International, 2004. Pp. 522–525. doi: 10.1109/CGI.2004.1309258. url:

https://doi.org/10.1109/CGI.2004.1309258.

Leaf, Jonathan, Wu, Rundong, Schweickart, Eston, James, Doug L., and Marschner, Steve (Dec.

2018). “Interactive design of periodic yarn-level cloth patterns”. In: ACM Trans. Graph. 37.6.

issn: 0730-0301. doi: 10.1145/3272127.3275105. url: https://doi.org/10.1145/

3272127.3275105.

Letham, Ben, Calandra, Roberto, Rai, Akshara, and Bakshy, Eytan (2020). “Re-examining

linear embeddings for high-dimensional Bayesian optimization”. In: Advances in neural in-

formation processing systems 33, pp. 1546–1558. doi: https://doi.org/10.48550/arXiv.

2001.11659. url: 10.48550/arXiv.2001.11659.

Levison, R., C. Bostwick, B. Behre, and Kärrholm, M. (1962). “SOME FUNDAMENTAL THE-
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Appendix A

Appendix One: Yarn-level

Differentiable Cloth Simulator

All simulations are available in the accompanied videos:https://youtu.be/pCB8AD9R4Dk

A.1 Training Details

Our ground-truth data is simulated with a piece of cloth hanging at its two corners, blown by a

wind with a constant magnitude ( Fig. A.1). The simulation is conducted with a time step h =

0.001. In all experiments, we use Stochastic Gradient Descent and run 70 epochs for training,

except in XXX-(1,3) where we trained our model for 90 epochs. The training is conducted

on a machine with Intel(R) Xeon(R) Silver 4216 CPU, 187G memory, NVIDIA TITAN RTX

graphics card on Linux. The main factors of training speed are the cloth size and the training

data size. In our experiments, the training takes approximately 68, 133, and 328 seconds per

epoch on a 17 × 17 cloth with training data containing 5, 10, and 25 frames respectively. The

training per epoch takes approximately 13, 106, 328, and 1310 seconds with 25 training frames,

on a 5× 5, 10× 10, 17× 17, and 25× 25 cloth respectively.

Additional experiments. Further, we also conduct comparisons on the data simulated under

the same settings by a sheet-level simulator (Narain et al. 2012), which tends to be stiffer.

This is to compare the performance when the ground-truth does not contain the same level

of subtle dynamics. Since there is no Eulerian coordinates in the sheet-level simulation, we

only use Lagragian coordinates in the loss function. The visual comparison is in Fig. A.2 and
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Figure A.1: A piece of square cloth blown by constant magnitude wind.

the prediction errors are shown in Table A.1. Our model can learn comparable results on 5

frames, and better results on 10 and 25 frames. The slightly worse 5-frame result is mainly

because the first 5 frames contain small dynamics and therefore is insufficient for our model to

learn the overall stiffness of the cloth. However, when 10 and 25 frames are given, the learning

is significantly improved and even outperforms (Liang et al. 2019). Also, since there is no

woven pattern information in the ground truth, we examine our model across the three woven

patterns, all giving more accurate predictions. Overall, the comparisons show our model has

higher prediction accuracy regardless the granularity of the underlying physics model.

Parameters. We induce prior knowledge to limit the parameter learning within valid ranges,

so that the multi-solution problem, also met by existing methods, can be mitigated. All cloths

we used are made of two types of yarns. We use the same range, d ∈ [0.001, 0.003], b ∈

[0.00005, 0.00018], S ∈ [0, 1200] and µ ∈ [0, 1.0] for both yarns, where d, b, S and µ are the

density, bending modulus, shear modulus and friction coefficient respectively. We use s1 ∈

[0, 800000] and s2 ∈ [0, 300000] for the stretching for both yarns. For other coefficients, we use

kf = 1000 and df = 1000 in the friction force, c = 3 and σ = 0.6 in the shear force, kc = 1 in
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Figure A.2: The visual learning results of the differentiable sheet-level simulator (Liang et al.
2019) and our model learns on the data generate by (Narain et al. 2012)

Table A.1: Testing errors (×10−6) of our model and (Liang et al. 2019) trained on 5, 10 and 25
frames generated by (Narain et al. 2012).

fabrics/frames 5 10 25

Plain-(1,2) 6.702 1.167 0.496
Satin-(1,2) 7.972 1.225 0.624
Twill-(1,2) 8.218 1.772 0.776

(Liang et al. 2019) 4.098 4.752 1.716

yarn-to-yarn collision in all experiments.

When training our model on the data generated by a sheet-level cloth simulator (Narain et al.

2012), we use a pure woven cloth made of one type of yarn. This is because it is not possible to

specify multiple yarn behaviors in a sheet simulator, so we use a pure yarn cloth for generating

the ground truth. The cloth parameters are from the ‘white-dots-on-black’ cloth in the work

proposed by Wang et al. (2011) which is 100 percent polyester. To learn from it, we employ all

three woven patterns in our model as there is no prior knowledge about the woven pattern of the

‘white-dots-on-black’ cloth. We also fix the friction coefficient µ = 0.5 and impose the ranges on

parameters shown in Table A.5. Finally, we would like to point it out in real-world applications,

information such as woven patterns and yarn materials are easily available so that the ranges

of parameter values such as density, bending and stretching can be obtained. Although the

knowledge of shearing and friction cannot be easily acquired, the ranges we use are general

enough.

Note that in all experiments, the prior knowledge we induce is only a weak prior, i.e. using

the same general ranges for multiple experiments across different woven patterns, so that the

learning success still lies in our model’s ability to infer the right parameter values.
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Table A.2: Learning cloth parameters with different initial values (part one).

Size Shear S Friction µ

5× 5 1011.79± 6.12 0.39± 0.08
10× 10 983.41± 6.84 0.44± 0.03
17× 17 962.29± 8.99 0.47± 0.06

Table A.3: Learning cloth parameters with different initial values (part two).

Size Yarn Density Stretch Bend

5× 5
1 1.98× 10−3±3.00× 10−5 498595± 8862 1.37× 10−4±1.41× 10−6

2 2.45× 10−3±4.81× 10−5 186710± 3776 1.11× 10−4±4.78× 10−6

10× 10
1 2.03× 10−3±5.04× 10−5 542375± 7099 1.44× 10−4±2.08× 10−6

2 2.47× 10−3±4.73× 10−5 180032± 1848 1.05× 10−4±8.18× 10−6

17× 17
1 2.00× 10−3±6.66× 10−5 519993± 3175 1.43× 10−4±5.55× 10−6

2 2.45× 10−3±5.04× 10−5 176232± 1514 1.19× 10−4±6.50× 10−6

Parameter Initialization. The material estimation results are affected by initialization. To

test if our model can learn stably, we report the mean and the standard deviation of multiple

experiments with different parameter initial values. The initial values of the physical parameters

are randomly selected from a range of ±10% of the average of the two yarns. For instance, in

learning the stretch in Plain-(1,2), we only know the ranges of the stretching parameters Y1

and Y2 of Yarn1 and Yarn2 but not the exact values. Therefore, when initializing Y1 and Y2,

we randomly sample values from a range of ±10% of the mean stretch stiffness of the Yarn1

and Yarn2, [mean(Y1, Y2) × 0.9,mean(Y1, Y2) × 1.1] for initialization. The results of the 5

repetitions are shown Table A.2 and Table A.3. Given that the standard deviations are small,

it shows that our model can stably learn reasonable parameter values.

Different Force Magnitude. To evaluate the influence of the wind force, we conduct ex-

periments using 5N, 10N, and 15N wind force to blow a piece of 17× 17 Plain-(1,2) cloth. The

learning result is shown in the Table A.4 which demonstrate wind force strength has ignorable

influence on the learned parameters.

Influence of Woven Patterns. The investigation on different woven patterns is crucial as

they affect the cloth dynamics significantly. To show this, we conducted simulations of three

pieces of cloths with the same parameters, but with different woven patterns. We shear three

pieces of cloth then release them. The Fig. A.3 shows three pieces of cloth in the initial state

and 10 steps later. There are obvious differences after merely 10 steps. This demonstrates
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Table A.4: Learning cloth physical parameters with different wind force.

Wind Shear S Friction µ Yarn Density Stretch Bend

5 947 0.402
1 1.969× 10−3 505421 1.323× 10−4

2 2.440× 10−3 171304 1.034× 10−4

10 942 0.520
1 2.026× 10−3 494109 1.311× 10−4

2 2.441× 10−3 168267 1.049× 10−4

15 934 0.586
1 2.029× 10−3 487918 1.341× 10−4

2 2.437× 10−3 167601 1.066× 10−4

Figure A.3: Three pieces of cloth woven in different patterns show different dynamics.

woven patterns have considerable influences on the overall mechanical properties.

A.2 Visual results

Here we show some snapshots of our model on cloths of different sizes in Fig. A.4. As expected,

small cloths tend to show low dynamics and appear to be more ‘rigid’. Bigger cloths tend to

have more subtle dynamics such as wrinkles, even under the same external impact, i.e. gravity

Table A.5: Cloth parameters’ initial values and ranges when ground-truth generated by sheet-
level cloth simulator(Narain et al. 2012)

Name Density(kg/m) Stretch(N/m) Bend(N/m) Shear(N/m)

Initial Value 0.004 1e6 0.0001 20000
Upper limit 0.008 2e6 0.0002 30000
Lower limit 0.001 0 0 0
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Table A.6: Testing errors (×10−6) of our model (left) and (Liang et al. 2019) (right) trained on
5, 10 and 25 frames. Ground-truth generated by a yarn-level simulator (Cirio et al. 2014).

fabrics/frames 5 10 25 5 10 25

Plain-(1,2) 1.152× 10−4 1.068× 10−4 3.962× 10−5 1.462 0.7375 0.4124
Plain-(1,3) 1.516× 10−4 1.268× 10−4 3.555× 10−5 1.608 0.7906 0.4567
Plain-(2,3) 5.233× 10−4 1.291× 10−4 2.117× 10−5 1.952 0.5999 0.2294

Satin-(1,2) 1.134× 10−4 1.070× 10−4 4.285× 10−5 1.466 0.7405 0.4146
Satin-(1,3) 1.551× 10−4 1.355× 10−4 4.362× 10−5 1.624 0.8004 0.4445
Satin-(2,3) 6.254× 10−4 1.355× 10−4 4.413× 10−5 2.128 0.5949 0.2265

Twill-(1,2) 1.130× 10−4 1.068× 10−4 4.208× 10−5 1.472 0.7451 0.4160
Twill-(1,3) 1.550× 10−4 1.349× 10−4 4.200× 10−5 1.633 0.8059 0.4577
Twill-(2,3) 6.470× 10−4 1.352× 10−4 4.938× 10−5 2.181 0.5994 0.2278

Figure A.4: The visual results of our model learning on different cloth sizes. From left to right:
5× 5, 10× 10, 17× 17 and 25× 25.

and wind with a constant magnitude. More visual results can be found in the supplementary

video.

A.3 Yarn-level versus Sheet-level

A full comparison between our model and the model proposed by Liang et al. (2019) is shown in

Table A.6, where a yarn-level simulator (Cirio et al. 2014) is used to generate the ground-truth.

Table A.7: Learned parameters by Bayesian Optimization on different kinds of fabrics.

Frames Density Stretch Bend Density Stretch Bend

5 2.483× 10−3 647270 0.636× 10−4 2.125× 10−3 270641 1.576× 10−4

10 2.176× 10−3 577235 0.798× 10−4 2.264× 10−3 217144 1.542× 10−4

25 2.328× 10−3 537434 1.687× 10−4 2.097× 10−3 249896 0.976× 10−4

5 2.202× 10−3 605289 1.403× 10−4 2.349× 10−3 272153 0.868× 10−4

10 1.669× 10−3 257877 1.582× 10−4 2.635× 10−3 268451 0.529× 10−4

25 1.454× 10−3 315715 1.213× 10−4 2.950× 10−3 23702 1.656× 10−4

5 2.514× 10−3 250093 1.611× 10−4 2.363× 10−3 20371 0.985× 10−4

10 2.964× 10−3 164021 0.524× 10−4 2.255× 10−3 49648 1.225× 10−4

25 2.414× 10−3 73734 0.890× 10−4 2.436× 10−3 267452 1.113× 10−4
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Figure A.5: The visual results of Plain-(1, 2) ground-truth, our model, and sheet-level model
trained with different number of frames. The snapshots are the 133th frame of the simulations
after learning.
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Figure A.6: Prediction error logarithm vs training data.

We exhaustively conduct comparisons using all combinations of yarns and woven patterns. We

can see that our model is consistently better than the model of Liang et al. (2019) by large

margins. Visually, we show snapshots in Fig. A.5. The sheet model results are in general more

rigid and do not contain as much subtle dynamics as ours do, across different training frame

numbers. Since 5, 10 and 25 frames contain different amounts of information on (subtle) motion

dynamics, Fig. A.5 shows that there is a lack of granularity in the sheet model when capturing

subtle dynamics compared with ours.

Further, we also show the plots on the data efficiency in Fig. A.6, under all 9 yarn-woven pattern

combinations, across different amounts of training data. In all settings, our data efficiency is
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significantly higher. By extrapolation, it would take a large number of extra training frames for

the sheet-level model to achieve similar accuracy. More comparisons are also available in the

supplementary video.

A.4 Our model versus Bayesian Optimization

Table A.8 shows the testing errors of the Bayesian Optimization. Although the MSE errors are

small, the learned parameters are far from the ground truth (shown in the Table A.7), which is

somewhat surprising. After examining the results, we find that Bayesian Optimization suffers

from the multi-solution problem so that it merely gives a set of working parameters instead of

the true parameters. In other words, although the prediction error is low, physically speaking,

the learned parameters are far from the true materials. This happens even when we use the

same parameter ranges as in our model. This is an intrinsic property of Bayesian optimization

which is based on sampling, and therefore difficult to avoid during learning.

Table A.8: Testing error (×10−6) of Bayesian Optimization with yarn-level simulator (Cirio
et al. 2014) learned on 5, 10, and 25 frames.

Fabrics/Frames 5 10 25

Plain-(1,2) 0.512 0.176 0.109
Plain-(1,3) 1.280 1.269 0.738
Plain-(2,3) 28.19 19.22 18.16

A.5 Control Experiment Setting

The control experiment scenario is illustrated in the Fig. A.7.

A.6 Significant Error in Visual

We discussed the significance of the small error in physics-based simulation. Fig. A.8 and

Fig. A.9 visually prove our explanations in the main paper: the error accumulates over time

and increases with increasing cloth size.
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Figure A.7: A square cloth is thrown from the table into the black box by four forces applied
on the four corners of the cloth.

Figure A.8: Visual differences in long simulations. The grey cloth is ground truth. The blue
cloth and the red cloth are simulated with the parameters learned by our model and BO. The
blue cloth shows smaller visual differences than the red one.
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Figure A.9: Visual differences on larger cloths and long simulation (500 steps). The grey cloth
is ground truth. The blue cloth and the red cloth are simulated with the parameters learned
by our model and BO. The blue cloth shows smaller differences than the red one.

196



Appendix B

Appendix Two: Bayesian

Differentiable Physics for Fabric

Parameter Estimation

B.1 Cusick Drape Dataset

Our current Cusick drape dataset includes 25 types of common fabrics, each of which with

multiple samples. Table B.1 lists these fabrics’ material, woven pattern, area density (multiple

samples), and average thickness (multiple samples), which are obviously different. In our Cusick

drape test, they also show distinctive drape shapes. We test the two sides of each sample twice.

In every test, our Cusick drape meter captures a drape image and reconstructs its 3D mesh.

Therefore, there are 660 drape images and meshes in our current dataset. Fabric 1-5 are used

in our experiments which are the Cotton White, Cotton Blue, Viscose White, Cotton Pink, and

Wool Red respectively.
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