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Abstract

The ability of autonomous vehicles to explore and navigate their environments has improved

greatly in recent years. However, many challenges remain to be overcome and many environ-

ments exist that present unique challenges to the problem of autonomous navigation. One such

environment is subterranean pipe networks, such as sewers. There is a necessity to inspect these

environments for maintenance purposes and, due to the difficult and time consuming nature of

manual inspections, a desire to automate the process with mobile robots. As such, the challenges

presented by subterranean pipe networks to autonomous navigation must be overcome.

This thesis contains a review of the existing research on SLAM algorithms with a focus on

their use in pipe networks. The review aims to understand the state of the art approaches to

solving the SLAM problem and how those approaches may be applied to pipe networks. The

included review also highlights the specific properties of pipe networks that present additional

challenges to SLAM algorithms that may not be encountered in more general environments.

Of those presented in the review section, the principle challenges this thesis is concerned with

stem from the relatively featureless and uniform pipe walls and the lack of communication with

external systems. These characteristics make the feature detection and matching used by most

visual SLAM algorithms difficult and the positional correction provided by systems such as GPS

impossible.

This work attempts to overcome these challenges by exploiting the predictability of land-

marks within pipe environments and the ability to know or create maps of those landmarks

prior to navigation within the pipes themselves. This is presented in two publications, the first

of which details a method of visually recognising joints and manholes and associating them

with their known locations in a prior map to perform odometry. This approach has lead to a

navigational system able to achieve a Mean Absolute Error up to 6 times lower than a state of

the art algorithm in the same environment and which is capable of operating in environments
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where the state of the art algorithm fails entirely.

The second publication presents a system of further robustification in full networks by rep-

resenting the results of an odometry system as a particle filter loosely constrained to a simple

map. The system accounts for uncertainty in the path taken by the agent within the map by

instantiating multiple particle filters representing different hypotheses and then assessing their

probability of being the true trajectory based on the odometry outputs and the map. This allows

the system to recover from failure and also improves the mean position and heading errors of

the original odometry system by an order of magnitude and the final positional error by three

orders of magnitude.

These publications represent a step toward the autonomous inspection of pipe networks and

demonstrate the effectiveness of taking non standard and more specialised approaches over more

commonly used and generalised methods when attempting autonomous navigation in uniquely

challenging environments.
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Chapter 1

Introduction

1.1 Background and Motivation

Water infrastructure receives a significant amount of investment and research (Government

Office for Science, 2012) and the inspection of buried pipe networks is an important part of

maintaining that infrastructure (Rizzo, 2010). A shadowing of water company employees re-

vealed that, currently, pipes are inspected using tethered vehicles (WRC Infrastructure, 2020)

mounted with cameras and the footage is manually searched for damage and blockages. This is

a time consuming process, requiring multiple workers to visit the entirety of a network in order

to perform a complete inspection (Wirahadikusumah et al., 1998). Advances in mobile robotics,

detailed in chapter 2, have presented an opportunity to replace these manual inspections with

continuous observation of pipe networks by autonomous robots. This opportunity, however, is

not a trivial one to take. Pipe networks present many challenges that make autonomously navi-

gating in them difficult even for algorithms that show impressive results in other environments,

such as those developed for road vehicles (Aitken et al., 2021).

Two of the major challenges to the autonomous navigation of pipe networks are a lack of

environmental features, with those features that do exist exhibiting low visual diversity, and no

or limited communication with the surface (Aitken et al., 2021). However, pipe networks also

possess some exploitable aspects, such as a somewhat predictable environment with stringent

constraints on where a vehicle within the network can move (Twort et al., 2009 and Butler

et al., 2019). Despite only manholes being visible on the surface, the predictability of pipe

networks makes mapping them from above ground feasible (Yatim et al., 2014). It was found
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CHAPTER 1. INTRODUCTION 2

during the course of this research that the connections between manholes can be modelled as

one dimensional paths and the networks are designed to allow pipe contents to flow in one

direction towards a single point, a collection of identified manholes can be represented as a

directed tree graph with its edges representing pipes, this is similar to map representations for

pipe localisation used in (Worley et al. 2019 and Worley et al. 2020). The exploitation of a pipe

networks ability to be represented in this way, along with the predictability of its landmarks,

forms the basis for the work undertaken for this thesis.

1.2 Aims and Objectives

The research presented in the following chapters aims to develop autonomous visual odometry

methods for pipe network navigation by leveraging prior knowledge of the environment and

exploiting the environmental features that cause conventional methods to under perform or fail.

To do this the following objectives must be met:

• Creating a representation of the environment from existing or gathered data that can be

used as a map by an autonomous agent (chapters 3, 4 and 5).

• Developing a method of identifying predictable landmarks from camera footage (chapter

3).

• Automatically reconciling detected landmarks with those held in the prior map in order

to locate the agent relative to those landmarks (chapter 3).

• Determining a path between the identified landmarks that accounts for the constraints

placed on movement by the environment whilst also allowing for errors in both the prior

map and the landmark detections (chapter 3 and 4).

• Robustifying the process so that an agent can reliably navigate a network of interconnected

pipes where there is uncertainty surrounding the path taken when multiple are available

(chapter 4).

1.2.1 Thesis structure

Chapter 2 presents a literature review of the wider aspects of robot localisation and mapping

for sewer and water pipes (Aitken et al., 2021).
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Chapter 3 presents the research conducted on the detection of pipe joints and manholes from

below ground using camera data and the use of those detections for odometry. This chapter

includes a summary of research conducted followed by a journal publication (Edwards et al.,

2023).

Chapter 4 presents the reconciliation of odometry data with a map prior using multiple hy-

pothesis particle filtering. This chapter includes a summary of research followed by a conference

publication (Edwards et al., 2021).

Chapter 5 contains a reflection on the work included in chapters 2 and 3 as well as a brief

outline of possible continuations of this research.

1.3 Contributions arising from the thesis

1.3.1 First author publications

1. Edwards S, Zhang R, Worley R, Mihaylova L, Aitken J and Anderson SR (2023) A robust

method for approximate visual robot localization in feature-sparse sewer pipes. Front.

Robot. AI 10:1150508. doi: 10.3389/frobt.2023.1150508

2. Edwards, S., Mihaylova, L., Aitken, J.M., Anderson, S. (2021). Toward Robust Visual

Odometry Using Prior 2D Map Information and Multiple Hypothesis Particle Filtering.

In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds)

Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Sci-

ence, vol 13054. Springer, Cham. https://doi.org/10.1007/978-3-030-89177-0 19

1.3.2 Publication contributions

1. J. M. Aitken et al., ”Simultaneous Localization and Mapping for Inspection Robots in

Water and Sewer Pipe Networks: A Review,” in IEEE Access, vol. 9, pp. 140173-140198,

2021, doi: 10.1109/ACCESS.2021.3115981.

2. R. Zhang, R. Worley, S. Edwards, J. Aitken, S. R. Anderson and L. Mihaylova, ”Visual

Simultaneous Localization and Mapping for Sewer Pipe Networks Leveraging Cylindrical

Regularity,” in IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3406-3413, June

2023, doi: 10.1109/LRA.2023.3268013.



Chapter 2

Review of SLAM for Pipe Inspection

Robots

2.1 Summary of Research

During the initial stages of this project, a literature survey was conducted to review existing

research on the problem of autonomous pipe inspection as well as exploring relevant research in

surrounding fields and determining the current state of the art. This information was collated

into the publication below which constitutes a review of the literature relevant to this thesis.

The publication begins by motivating the need for autonomous robotic inspection of pipe

networks and giving a broad overview of the existing research on the SLAM (simultaneous lo-

calisation and mapping) problem in pipe networks. It then details the challenges faced when

attempting to perform SLAM in pipe networks and explores the general requirements of the wa-

ter industry and translates those requirements into technical requirements any proposed SLAM

system must meet in order to operate in pipe networks. The review asserts that future inspec-

tion of buried pipe networks will be carried out by small autonomous robots. It finds that,

in addition to the general difficulties of performing SLAM, buried pipe networks suffer from a

lack of external communication and erroneous prior information, as well as being dark, narrow,

difficult to traverse, and lacking much of the visual and environmental information used in more

generalised SLAM algorithms.

The publication then provides multiple sections constituting a detailed review of existing

research related to the problem. This begins with an overview of SLAM methods and is followed
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by a review of map representation methods and their applicability to pipe networks then an

exploration of how different sensors can be used for SLAM in pipes.

In brief, these sections find that a variety of approaches to SLAM exist and are well explored,

however they are generally too computationally expensive to be able to be performed on robots

meeting the size constraints highlighted earlier in the review. It posits that robots in pipes will

likely perform only localisation using existing maps and will perform full SLAM only occasionally.

It is also, however, found that existing pipe network maps are frequently inaccurate or incomplete

and are intended to be read by humans. A number of ways are representing maps are discussed

in the review, and maps that contain a spatial representation of explicitly classified features

(semantic maps) are highlighted as potentially suitable for pipe networks due to them containing

many already classified landmarks. The map section concludes by suggesting a hybrid map

representation that utilises differing scales and levels of abstraction based on the task being

performed may be ideal for use by autonomous robots in pipes.

Finally, the review of sensor methods outlines that the power and size restrictions imposed

by the operating environment will limit the type and number of sensors able to be used by robots

in pipe networks. The review suggests that cameras are an effective method of localising via the

detection of landmarks but highlights their dependence on light, the source of which must be

carried on the robot in pipe networks. Laser scanners and Lidar do not require light, however

their increased size and expense over cameras as well as the lack of features used by range based

pose estimation algorithms is stated as a concern. Additionally, acoustic sensing is highlighted

as being well suited for pipe environments, however its need for a fixed source of sound would

limit the mobility of the robot. Similarly to the findings on map representations, the review

posits that the use of multiple types of sensors will likely be the ideal approach to performing

SLAM in pipe networks.

The review concludes by highlighting the unsolved challenges surrounding the problem of

autonomous inspection of pipe networks, outlining the need for any solutions to be robust and

trustworthy, highlighting the lack of research into the use of prior map information in SLAM,

and detailing the potential usage of active SLAM and multi-robot SLAM in pipe networks, both

of which were found to not yet have been researched for this purpose.

The author of this thesis contributed material throughout the publication and particularly

relating to visual SLAM loop closing (section IV-B 2), visual odometry (section VI-B) and the
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use of prior maps (section VII-B).

2.2 Publication
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ABSTRACT At the present time, water and sewer pipe networks are predominantly inspected manually.
In the near future, smart cities will perform intelligent autonomous monitoring of buried pipe networks,
using teams of small robots. These robots, equipped with all necessary computational facilities and sensors
(optical, acoustic, inertial, thermal, pressure and others) will be able to inspect pipes whilst navigating, self-
localising and communicating information about the pipe condition and faults such as leaks or blockages
to human operators for monitoring and decision support. The predominantly manual inspection of pipe
networks will be replaced with teams of autonomous inspection robots that can operate for long periods
of time over a large spatial scale. Reliable autonomous navigation and reporting of faults at this scale
requires effective localization andmapping, which is the estimation of the robot’s position and its surrounding
environment. This survey presents an overview of state-of-the-art works on robot simultaneous localization
and mapping (SLAM) with a focus on water and sewer pipe networks. It considers various aspects of
the SLAM problem in pipes, from the motivation, to the water industry requirements, modern SLAM
methods, map-types and sensors suited to pipes. Future challenges such as robustness for long term robot
operation in pipes are discussed, including how making use of prior knowledge, e.g. geographic information
systems (GIS) can be used to build map estimates, and improve multi-robot SLAM in the pipe environment.

INDEX TERMS Water, sewer, network, pipe networks, robots, SLAM, data fusion, Bayesian estimation,
visual odometry, laser and lidar scanning.

I. INTRODUCTION
Water is one of our most precious natural resources. Pipe net-
works transport water between sources and destinations, and
similarly, sewer and drainage pipes transport waste products
away from the customer to processing plants. Inspection and
maintenance of water pipe networks [1] is crucial for main-
taining a robust water supply and conserving the resource,
and in the case of wastewater preventing contamination from
leaking sewer pipes and removing blockages. In the UK,
the buried pipe network for water and wastewater is around
0.8 million kilometres in combined length [2], whilst the

The associate editor coordinating the review of this manuscript and

approving it for publication was Saeid Nahavandi .

USA has 1.2 million miles of water supply mains and a simi-
lar amount of sewer pipes [3]. Investment in water and waste
infrastructure is correspondingly large: over £250 billion is
invested in UKwater infrastructure [4], whilst the USA Envi-
ronmental ProtectionAgency estimates that $271 billionmust
be invested over the next 20 years for wastewater/storm-water
upgrades and $384 billion for drinking water upgrades [5].
Failure in pipe networks, in terms of a pipe leak, burst or
blockage, can lead to severe disruption, including loss of
water supply and road closures whilst the damage is repaired.
It is estimated that over 3000 million litres of water is lost to
leaks every day in the UK [6], and about 900 billion gallons
of untreated sewage is discharged into USA waterways each
year [7]. Therefore, continuous inspection, monitoring of
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deterioration, and detection and localization of damage in
water and sewer pipes is of utmost importance.
Currently, there is no mobile robot technology in real

world use in industry that can autonomously monitor pipes
to detect and localise defects over a large spatial scale and
a long time duration. Industry methods used to monitor the
pipes tend to be manually operated, tethered systems, such
as in-pipe closed-circuit television (CCTV) inspection for
sewer pipes [8] and above-ground technologies including
ground penetrating radar [9], [10] and electromagnetic loca-
tion (EML) [11] for both water and sewer pipes (and other
underground infrastructure) [12].
Robotic devices have been developed in industry for water

pipe inspection. Sahara [13], which is a tethered device and
Smartball [14] are some of the most popular ones. Smartball
is a newer, untethered technology that relies on a free-flowing
(rolling) inspection. However, these two robotic technologies
tend to be limited to specific short sections of pipe for one-off
inspections.
Previous surveys focus on inspection in water

pipes [15], [16], sewer pipes [17], small diameter pipes [18],
and briefly on mapping for underground pipes [19], but the
main emphasis is on the types of sensors and surveying
technologies depending on the types of pipelines. There is a
gap for a focused survey on state-of-the-art robot localization
and mapping in water and sewer pipe networks, which is
addressed here.
Robot mapping and localization methods are usually based

on simultaneous localization and mapping (SLAM), where
raw sensor data is processed in a front-end for feature extrac-
tion, data association and loop closing, and robot location and
map estimates are produced by a back-end optimization algo-
rithm. SLAM is useful for both robot control and navigation,
as well as in the context discussed here of mapping the pipe
network and localizing defects. The SLAM problem and its
classical solution methods are well reviewed in [20], [21] and
more recent approaches and future challenges are presented
in [22]. The aim of this paper is to survey the state of the art
in SLAM in pipe networks. The focus is on water and sewer
pipes but we also refer to other pipes (e.g. gas) where relevant
work has been done.
The remainder of the paper is structured as follows.

In section II we describe the particular challenges of the
pipe environment for SLAM. In section III we describe the
high-level requirements of the water industry and relate this
to technical requirements for SLAM in pipes. In section IV
we provide an overview of methods for SLAM. Section V
reviewsmap representations and discusses their suitability for
pipes. Section VI reviews different sensors used for SLAM
in pipes. Future challenges are considered in section VII.
Finally, conclusions are given in section VIII.

II. CHALLENGES FOR SLAM IN WATER AND SEWER
PIPES NETWORKS
SLAM is fundamentally a difficult problem to solve because
to estimate a map you need a good estimate of your location,

and to estimate your location you need a good estimate of the
map. Odometry methods can be used to estimate location but
the estimate drifts over time. SLAM is particularly challeng-
ing therefore when exploring new areas, or areas that lack
discriminative features used to recognise places to correct
odometry drift. To function reliably, a SLAM system should
be robust in all of its components - front-end sensing (where
it is generally thought that the use of multiple sensor-types
improves robustness), landmark recognition, and back-end
optimization algorithms that produce the location and map
estimates. These are general challenges for SLAM but there
are a number of specific challenges for SLAM in water and
sewer pipes that are described in this section (and summarised
in Table 1).
Water and sewer pipes are typically buried underground,

meaning that robots in these pipes cannot receive GPS signals
to estimate their location. GPS is one of the most popular
and standard methods of localization, and is also commonly
used for drift correction of dead reckoning sensors such as
those based on odometry and inertial sensing. The lack of
GPS signals makes the problem of SLAM in pipes far more
challenging than typical outdoor scenarios.
Water and sewer pipes are often relatively small in diame-

ter, with the majority of water pipes worldwide in the region
of 100-150 mm in diameter, and the majority of sewer pipes
in the UK of 300 mm or less in diameter (see section III for
more details). This limits the size of a robot, particularly its
sensor payload, computational hardware and batteries. This
means that a typical pipe robot is likely to be limited to a small
number of sensors and that certain types of sensor might be
unsuited to the environment, for instance those that are not
readily miniaturised or consume large amounts of power.
The inside of water and sewer pipes are difficult environ-

ments to navigate through: they are dark, water-filled (always
in water distribution pipes and with time-varying levels of
waste-water in sewer pipes), with possible occlusions of sen-
sors occurring in sewers from waste products. This partic-
ularly complicates SLAM based on vision, because a light
source is needed. The possibility of the dirty environment
fouling the sensors also raises the possibility of sensor failure,
so robustness in sensing and navigation, and failure-aware
robotics is a critical issue.
Mobility also presents a challenge because water pipes

are pressurised and it may be difficult for a robot to move
against the flow, whilst sewer pipes move flow down the
gradient and consequently connections in manholes can often
have significant drops in height at the inlet pipe, from the
centimetre scale up to metres. So, for both water and sewer
pipes it is easier to move in one direction (with flow, or down
the gradient respectively), which can impact active SLAM
methods, where the goal is to actively explore and map the
environment.
An additional challenge is the lack of accurate maps of

pipe networks. Whilst water utilities do usually possess pipe
network maps, in the form of top down, 2D line drawings (see
Fig. 1), they can often contain errors, due to:

140174 VOLUME 9, 2021
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TABLE 1. Specific challenges for SLAM in water and sewer pipes beyond general challenges for SLAM.

FIGURE 1. An example of a typical water distribution map for a UK town.
The scale is approximately 2 km from top to bottom.

1) discrepancies arising between planned replacement
(upon which maps are usually based) and actual instal-
lation on-site,

2) loss of records (pipes can be tens of years old),
3) lack of precise record keeping.

Errors in a map can be misleading to a SLAM system,
potentially causing incorrect data associations, that can in
turn affect a fragile back-end estimation algorithm causing
the whole system to fail. Therefore, a key challenge is to how
to incorporate prior map knowledge into the system in ways
that will be both beneficial and robust.
SLAM algorithms usually rely on reducing uncertainty

in the map and robot location by taking successive mea-
surements of the same (static) map features from different
positions. However, the robot movement in pipes is restricted
to predominantly one dimensional (1D) movements along
the pipe, whilst the pipe network itself exists in a three

dimensional (3D) space. This restricted movement means
that the same map features cannot be observed from many
perspectives to help reduce map and localization uncertainty.
The inside of a pipe tends to be a feature sparse envi-

ronment, lacking distinctive landmarks that can be reliably
and repeatedly detected. This is a particular problem for
sensors that observe the external world, like cameras and laser
scanners, although sensors based on internalmeasurements of
motion such as inertial measurements and wheel odometry
are unaffected by this problem. For instance cameras are
often used for feature-based visual odometry, where features
common to successive image frames are used to estimate the
robot pose. Insufficient features can cause such an algorithm
to fail.
Loop closing is an important component of a SLAM sys-

tem,which refers to recognising placeswhen the robot returns
to a previously visited location. Loop closure enables drift
errors to be corrected and so improves the accuracy of a
SLAM system. Loop closing is likely to be more challenging
in pipes because it is a highly homogeneous environment
with little variation in visual features, and similar types of
structure and geometry repeated throughout the network,
i.e. the cylindrical shape of pipes and the standard shapes of
e.g. pipe joints, junctions and manholes. The pipe environ-
ment is therefore prone to perceptual aliasing, where differ-
ent places in the environment generate a similar perceptual
footprint. This is a challenge for SLAM in pipes because the
robot might be prone to false positives in loop closure, where
the robot mistakenly recognises a place and closes a loop,
and false negatives, where the robot fails to recognise that
it has returned to a previously visited location, preventing
successful loop closures.
Finally, it is worth noting that amongst the various chal-

lenges for SLAM in pipes, there are also some advantages

VOLUME 9, 2021 140175
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TABLE 2. Accuracy levels designated in the British Standards Institution PAS128: Specification for underground utility detection, verification and location.

TABLE 3. Utility detection quality levels as defined by the American Society of Civil Engineers.

as well. For instance, it is typically the case that sewer pipes
are laid in straight lines and that changes of direction occur
at points such as manholes, which should help avoid drift
in heading estimates. Also, manholes for sewers, and fire
hydrants for water pipes, occur relatively frequently (approx-
imately tens of metres apart) and can be accurately mapped
from above-ground, which then provides known reference
points when correctly recognised and data associated from
within the pipe. Therefore, there are some aspects of the
environment that can be exploited to simplify the SLAM
problem.

III. WATER INDUSTRY REQUIREMENTS FOR PIPE
NETWORK MAPPING AND DEFECT LOCALIZATION
In this section we consider water industry requirements and
technical requirements for robot mapping and localization in
pipe networks. Specifications quoted in the following section
of high-level and low-level requirements are guided by pub-
lished literature (discussed in the next sections) and interac-
tions with key stakeholders through personal correspondence
and knowledge sharing events. These stakeholders include
water utilities’ representatives and water industry technology
companies, which in turn interact, and are guided by, other
stakeholders such as the customers, regulatory bodies and the
government.
The regulatory body for the UK, the Water Services Regu-

lation Authority or OFWAT, has published requirements that
lists resilience, and in particular, operational resilience, as a
key requirement [23]. Operational resilience means reducing
the probability of water supply interruptions and wastewater
flooding, as well as mitigating the impact of any disruption
through efficient handling, good communication and quick
recovery.
The requirement of operational resilience in the water

industry has many different contributing factors but the focus
of this survey is primarily on two key aspects that robot map-
ping and localization can aid with: 1. pipe network mapping,
so that the water utilities know where their assets are located
and 2. defect localization, so that water utilities know where

to target repairs, especially when this incurs the cost and
disruption of excavating in the street.

A. PIPE NETWORK MAPPING
The locations of buried pipes are usually not fully known by
thewater and sewer companies responsible formanaging pipe
networks. This can be due to a number of reasons, such as the
pipe locations not being recorded during installation, or the
information not being recorded accurately, or the information
being lost over time. Therefore pipe network mapping is
an essential task for robot inspection systems so that water
utilities know where their assets are located.
A pipe network map can be described using a few key

variables:

1) pipes coordinates in 3 dimensions, i.e. X , Y , Z
positions,

2) pipe diameter d ,
3) pipe gradient, g.

Surveys for existing methods already have designated
accuracy levels that in-pipe robots will have to compete
with. For instance the British Standards Institution (BSI)
has produced the publicly available specification (PAS) PAS
128 [12], for underground utility detection, verification and
location, which has the accuracy levels specified in Table 2.
Similarly, the American Society of Civil Engineers (ASCE)
has produced the Standard Guideline for the Collection and
Depiction of Existing Subsurface Utility Data [24], which
gives four utility detection quality levels, shown in Table 3.

B. PIPE DEFECT LOCALIZATION
There are two main type of defects that need to be localised
in pipe networks:

1) minor defects - knowing their location is important to
monitor the defect over time,

2) major defects - finding their location is essential for the
repair process - either conventionally by excavation or
using trenchless technologies.

140176 VOLUME 9, 2021
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TABLE 4. Water distribution pipe diameters for typical city/urban/rural environments from the UK, South East Asia and the USA (Data obtained from
Table 13.1 in [25]).

Excavation size should be kept to a minimum to reduce
costs (including reinstatement), minimise disruption and limit
the potential to damage adjacent buried utilities. Discussions
with water utilities suggest a sub-0.5 metre accuracy is desir-
able for locating defects, to guide excavation, which defines
an accuracy requirement for a robot SLAM system. One key
point though, emphasised by industry, is that there is a prefer-
ence for excavating in the correct location at the first attempt -
i.e. a single larger excavation would generally be preferred to
excavating multiple smaller holes at incorrect locations. This
means that the SLAM system should correctly characterise
its location uncertainty via probabilistic methods.
The time-scale of reporting defects and subsequent repair

varies depending on the type of fault and the associated
severity. Mapping the pipe network can be dealt with over
a long time-scale (months or years) and will be continually
ongoing. Blockages in sewer pipes and small leaks in water
pipes can be dealt with also over amedium time-scale (weeks-
months). Bursts in water pipes need to be dealt with in a short
time-scale (days).

C. SIZE, WEIGHT, POWER, AND COST (SWaP-C)
REQUIREMENTS
The size, weight, power and cost (SWaP-C) requirements of
robotic systems for water and sewer pipe networks are an
important consideration, and pertain to mapping and local-
ization with regard to a number of issues. Size restrictions for
robots, and sensors in particular, in small diameter pipes, limit
the type of technology that can be used for SLAM. Power is
restricted because the mobile robots will be untethered, and
will have to travel between charging stations whilst mapping
a network; it is essential they do not lose power between these
points and become lost in the network, creating a blockage
and additional cost of recovery. The cost of robot solutions
for inspection and maintenance needs to be competitive with
existing manual solutions, for example a 2 person crew with
a manually operated CCTV inspection system.
The size of water and sewer pipes varies greatly. The

majority of water distribution pipe diameters across the world
tend to be in the range of 100-150 mm (see Table 4 for more
details) [25], whilst very large trunk mains can be metres
wide. Sewer pipes also vary greatly in size, with around 70%
of sewers in the UK having a diameter less than 300 mm,

whilst only 9% have a diameter of 900mm or greater [26].
Therefore robots for either water distribution or sewer pipes
will need to be relatively small to ensure coverage of a pipe
network, or different sizes of robot will need developing.
Small size robots will in turn necessitate small sensor pay-
loads, batteries and computational hardware.
A crucial further detail is that the size of the entry point

to the pipe network is a hard constraint on the robot size.
In water distribution pipes fire hydrants provide natural
access points, which would be attractive to use because they
avoid costs associated with creating special access points for
robots. New style through-bore hydrants in the UK have a
pipe diameter of only 80mm, which gives an upper limit on
robot size if these were to be used (although many older
hydrants in the UK have sharp bends and restrictive valves
which would make the insertion of a robot more difficult).
Sewer pipes to a large extent avoid concerns over size for
entry because they can be accessed by large manholes.
Power requirements relate mainly to actuators, sensors

and computational hardware. Modern machine learning tech-
niques that might be used in visual navigation algorithms,
for instance based on deep learning [27], [28], might require
relatively high power specialist computing devices (based
on embedded general purpose graphics processing units
GPGPUs). The power requirements, in terms of Watt-hours
of operation, should also be considered in conjunction with
the aim that these robots should ultimately perform long
term inspection of the pipe network, over months and years.
This means that the robots will require recharging, and hence
there will need to be recharging points specially added to
the pipe network. The question about power really becomes
one of time and distance between charging, and the cost of
infrastructure associated with installing charging points.

D. REQUIREMENTS SPECIFIC TO WATER DISTRIBUTION
Water is a unique commodity in pipes in that, unlike sewer-
age, oil, and gas (monitoring of pipes transporting the latter
two has been reviewed elsewhere [29]), the water must be fit
for human consumption. The use of robots must not degrade
the safety of water, which creates two main issues in the robot
design:

1) avoiding water contamination from introducing foreign
bodies into the pipe network,
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FIGURE 2. Typical SLAM system. The sensors transmit raw data to a ‘front-end’, which processes the raw data, extracts
features and performs data association. The front-end transmits the processed data to the ‘back-end’, which estimates the
robot pose (robot location and orientation) and the map. The back-end typically uses a standard method such as an extended
Kalman filter, particle filter or smoothing method to perform the estimation. The back-end can provide feedback to the
front-end for loop closure detection. (Redrawn and modified from [22]).

2) avoiding dislodging material from the pipe wall that
will appear in the customer’s taps.

Whilst these requirements pertain more to mechanical design
of the robot and the robot insertion device they are worth
noting here due to their importance.

IV. OVERVIEW OF SLAM
The SLAM problem is usually thought of in two parts: the
front-end and the back-end (see Fig. 2). The front-end pro-
cesses raw sensor data to extract features and perform data
association, i.e. feature tracking in the short term as a robot
moves around an object and loop closure in the long-term
when a robot returns to, and recognises, a location previously
visited. The back-end part estimates the robot pose (its loca-
tion and orientation in 2D or 3D space) and the map, using
the information extracted by the front-end.

A. PRELIMINARIES
The typical SLAM problem is formulated by representing the
history of robot poses X1:k , up to the current time-step k ,
together with the mapm, as the joint probability distribution

p (X1:k ,m|Z1:k ,U1:k , x0) , (1)

where x0 is the initial robot pose, U1:k is the history of control
inputs (or odometry measurements) and Z1:k is the set of all
observed map landmarks, respectively

X1:k = {x1, . . . , xk}, (2)

Z1:k = {z1, . . . , zk}, (3)

U1:k = {u1, . . . ,uk}. (4)

The robot pose xk can be defined in 3D space as

xk = (Xk ,Yk ,Zk , θk , φk , ψk)T , (5)

where (Xk ,Yk ,Zk ) defines the location of the robot in 3D
space in the world coordinate frame and (θk , φk , ψk ) defines
the orientation in terms of pitch, yaw, and roll, also in the
world coordinate frame.

The map, m, can be specified by the spatial locations of
recognisable features or landmarks detected in the world,
where

m =
(
l1, . . . , lnm

)T (6)

and li =
(
li,x , li,y, li,z

)T is the location of the ith landmark
in the world coordinate frame, and nm is the number of map
features. The map can also be represented in a more dense
form, e.g. as a grid map. We assume the map to be static
throughout this paper, therefore m is not a function of the
time-step k , in contrast to the robot pose.
We assume that the robot state can be updated via

p(xk |xk−1,uk )⇐⇒ xk = f (xk−1,uk )+ wk , (7)

where the f (.) function defines the state transition, uk is an
input to the robot (or odometry measurement), andwk is state
noisewe assume to beGaussian, zero-mean, white noise, with
covariance Qk , i.e. wk ∼ N (0,Qk ).
Next, we assume that an observation zk of a map feature

can be related to the state via the measurement function h(.),

p(zk |xk ,m)⇐⇒ zk = h(xk ,m)+ vk , (8)

where vk is observation noise that we assume to be
Gaussian, zero-mean, white noise, with covariance Rk ,
i.e. wk ∼ N (0,Rk ).

B. THE SLAM FRONT-END: FEATURE EXTRACTION, DATA
ASSOCIATION, AND LOOP CLOSING
A variety of sensors are used in robotics, which produce
different types of raw data. For instance cameras produce
pixel data, whilst laser scanners produce range and bear-
ing data. The SLAM front-end performs feature extraction
initially, processing these differing types of raw data into
a measurement format zk (the features) that can be used
directly in the back-end estimation process. The front-end
also performs data association, where a feature in the map
m is found which is most likely to be associated with the
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measurement zk , which allows us to write the measurement
equation above in (8).
Data association has two aspects:
1) short term data association, which handles the data

association of consecutive sensor measurements;
2) long term data association, i.e. loop closing, where a

robot recognises a place previously visited by asso-
ciating current measurements to previously mapped
landmarks.

Data association can have two main types of error:
1) false positives, where there is an incorrect association

made between an observation and the map - this can
lead to catastrophic failure in the back-end algorithm;

2) false negatives, where an observation is rejected as
spurious - this leads to reduced data for the back-
end, which can reduce the estimation accuracy but is
arguably less serious than a false positive.

1) DATA ASSOCIATION METHODS
Data association can be performed using simple statistical
validation gating, as used in target tracking [30]. The idea
of a validation gate is that any previously mapped landmarks
in the map have to fall within a region defined by the gate
to be considered valid for association with the current mea-
surement of a landmark. To clarify this point, consider a set
of hypotheses H = {j1, . . . , jnm} each of which associates
one measurement zi with one landmark lji ; the measurement
equation from (8) under hypothesisH is therefore

zH = hH(xk ,mH)+ v, (9)

where hH = (h1j1 , . . . , hmjm ) is the collection of independent
measurement models andmH =

(
l1j1 , . . . , lnmjm

)T is the vec-
tor of map landmarks corresponding to zH = (z1, . . . , znm )

T .
We can obtain a measure of distance between actual and
predicted measurements under hypothesis H by using the
Mahalanobis distance,

D2
H =

(
zH − hH(x̂k , m̂H)

)T S−1H
(
zH − hH(x̂k , m̂H)

)
(10)

where x̂k is the estimated robot pose, SH = HHPHHT
H + R

is the innovation covariance, PH is the estimated covariance
of robot pose and landmarks, and HH is the Jacobian asso-
ciated with the measurement function hH. For a measure-
ment/landmark pairing to be considered acceptable (or jointly
compatible), the Mahalanobis distance D2

H should lie within
the validation gate based on the chi-squared distribution,

D2
H ≤ χ

2
d,α (11)

where d = dim(hH) is the dimension of the measurement
function and α is the confidence level.
The gating method avoids unlikely data associations but

a further problem is that multiple landmarks might fall into
the gated region defined by (11), in which case there must
be some additional method of data association. One of the
simplest methods is to associate the measurement with the

nearest mapped landmark within the gate, i.e. a nearest neigh-
bour approach, known as individual compatibility nearest
neighbour (ICNN) [31].
The early implementations of SLAM used the nearest

neighbour approach, e.g. [32], however, this method is prone
to error when used with more than just a few landmarks [21].
Later approaches were developed that considered data associ-
ation in a more robust batch mode, such as joint compatibility
branch and bound (JCBB) [31]. JCBB has also been extended
to handling 2D lidar scans where the measurements points are
numerous and correlated [33].
Multiple hypothesis methods have also been used in data

association for SLAM since very early work [34], to modern
systems that e.g. extend JCBB toMHJCBB (multiple hypoth-
esis JCBB) [35]. These methods have the potential to be
more robust but also tend to be much more computationally
intensive.

2) LOOP CLOSING BASED ON APPEARANCE RECOGNITION
Loop closing is often based on appearance recognition. This
can be done using various sensors such as cameras and laser
scanners. The fast appearance-based mapping (FAB-MAP)
algorithm [36] developed a visual appearance recognition
algorithm using a bag-of-words (BOW) approach modified
from speech recognition - the idea is to build a database
of images stored as numerical vectors in the BOW space.
To construct the BOW, visual features are extracted from
images of places to create visual words, using methods such
as SIFT [37] or SURF [38], then each place is represented by
a histogram, which is the frequency of occurrences of each
visual word in the image. This approach was made more effi-
cient in FAB-MAP2 enabling loop closures for much larger
environments [39]. Appearance-based recognition using the
BOW method has also been extended and made more robust
by adding a fast geometrical check to the image matching
procedure [40].
FAB-MAP only uses a single image to perform appearance

recognition, which can be sensitive to variation in appearance,
due to e.g. changing light conditions, seasonal changes, view-
point variations and dynamic objects. Therefore, SeqSLAM
was developed [41], which uses a sequence of images to
perform appearance recognition and tends to be a more
robust approach. SeqSLAM uses a sum-of-absolute differ-
ences (SAD) to match image sequences between the recent
observations and a database. SeqSLAM has received various
updates, such as more efficient versions that avoid exhaustive
search and instead use efficient tree searching with nearest
neighbours [42]. A review of these types of appearance-based
recognition methods such as FAB-MAP and SeqSLAM can
be found in [43].
Deep learning methods have now also been applied

to the problem of visual appearance-based recognition,
where initial approaches used deep convolutional neural net-
works (DCNNs) pre-trained for image recognition [44], [45]:
the idea is to use the inner layers of the DCNN as auto-
matically generated features rather than the ‘hand-crafted’
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features typically used in appearance recognition such as
SIFT or SURF. The development of NetVLAD improved
the use of the basic DCNN by taking the DCNN features
and passing them through a vector of locally aggregated
descriptors (VLAD) module, specifically designed for image
retrieval [46]. Subsequently, [47] introduced a large-scale
dataset for purpose-specific training of DCNNs for visual
place recognition, which demonstrated improvements on just
using re-purposed image recognition DCNNs. Recent work
has demonstrated that both traditional image processing fea-
tures, histogram of oriented gradients (HOG), and DCNN
features can give robust performance when using image
sequences and maintaining multiple hypotheses for match-
ing [48]. To combine advantages across the methods men-
tioned above, SAD, HOG and DCNN features have been
fused to give state of the art performance [49].
Range data, often from laser scanners or lidar (light detec-

tion and ranging), can also be used to perform loop clos-
ing from appearance recognition either in 2D [50], [51] or
3D [52], [53]. The use of range data overcomes the sensi-
tivity of cameras to different lighting conditions. Similarly
to visual appearance recognition, deep learning has also been
applied in recent years to the problem of range based 3D lidar
appearance recognition [54].

C. THE SLAM BACK-END: ROBOT POSE AND MAP
ESTIMATION
SLAM back-end estimation algorithms to obtain the robot
pose, xk , and map, m, fall broadly into one of two classes
of algorithm:
1) Filter-based algorithms: these algorithms recursively

estimate the current robot pose and map, i.e. they
produce the estimate x̂k , and are usually formu-
lated as a Bayesian filtering problem. The main
approaches are based on the extended Kalman filter
(EKF), (i.e. EKF-SLAM, as used in early pioneering
work [55]–[57] and then latterly with more rigor-
ous convergence analysis [58]), the sparse extended
information filter (SEIF) [59], the particle filter (PF)
(e.g. DP-SLAM [60]), and the Rao-Blackwellised par-
ticle filter (RBPF), (e.g. FastSLAM [61], [62] and
variants [63]).

2) Smoother/optimization-based algorithms: these algo-
rithms estimate the history of robot poses and map
using all the data in a batch mode, i.e. they pro-
duce the estimate X̂1:k , and are usually formulated
as a sparse nonlinear least squares problem. The
main approaches are graph-based methods, such as
GraphSLAM [64], [65], smoothing and mapping
(SAM) [66] and incremental smoothing and mapping
(iSAM/iSAM2) [67], [68].

To expand on the pose/map estimation problem, firstly,
we define the following maximum a posteriori (MAP) prob-
lem following from (1),(

X̂1:k , m̂
)
= argmax

X1:k ,m

(
p (X1:k ,m|Z1:k ,U1:k , x0)

)
, (12)

where assuming that the measurements and state predic-
tions are independent and from using Bayes rule we can
say that,

p (X1:k ,m|Z1:k ,U1:k , x0)

= η

N∏
k=1

p(zk |xk ,m)
N∏
k=1

p(xk |xk−1,uk ), (13)

where η is a normalising constant. Note that to simplify the
equations, we take the common assumption that the initial
pose x0 is known with full certainty - even if this is not the
case, in an arbitrary coordinate system, x0 can be taken to be
at the origin and initialised to zero [69].
Substituting (7) and (8) into (13), which are both subject to

Gaussian noise, and noting that maximising (13) is equivalent
to minimising the negative log posterior, leads to the nonlin-
ear weighted least squares problem, similar to that defined
in [64] and [66],

J (X1:k ,m) =
N∑
k=1

1
2

∥∥xk − f (xk−1,uk )∥∥23k

+

N∑
k=1

1
2

∥∥zk − h(xk ,m)
∥∥2

6k
, (14)

where ‖a‖2P = aTPa, and where the weighting matrices
3k = Q−1k and 6k = R−1k .
The main differences in SLAM estimation algorithms lie

in how this cost function J (X1:k ,m) is minimised. As noted
above, the filter based approaches, EKF [56]–[58], SEIF [59],
PF [60] and RBPF [61], [63] use recursive algorithms to
produce the estimate of the current robot pose x̂k . The
smoothing/optimization algorithms, GraphSLAM [64], [65]
and SAM [66]–[68], by contrast, operate on a batch of data
using sparse least squares methods to produce the estimate
of the entire state history X̂1:k , where the sparse struc-
ture in the SLAM problem is exploited to make the algo-
rithms more computationally efficient. The sparse structure
arises from the fact that each landmark is only observed
from a small set of poses. A key advantage of the smooth-
ing and optimization algorithms is that they intrinsically
correct all previous robot poses when new loop closures
are made.
Many of the SLAM algorithms (EKF, SEIF, GraphSLAM

and SAM), except those based on the PF, use a linearised form
of J (X1:k ,m) to simplify the estimation procedure: for the
filtering algorithms this linearisation enables the propagation
of a Gaussian distributed state estimate. For the smoothing
and optimization algorithms the linearisation enables the use
of efficient, sparse least squares methods. In each algorithm,
the nonlinear state and observation functions are linearised
using a truncated Taylor series expansion around a linearisa-
tion point of the state, x̄k , and the map, m̄,

f (xk ,uk ) ≈ f (x̄k ,uk )+ Fk (xk − x̄k) , (15)

h(xk ,m) ≈ h(x̄k , m̄)+Hk (xk − x̄k)+Mk (m−m̄) , (16)
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where Fk andHk are respectively Jacobian matrices of partial
derivatives of f and h with respect to the state, xk , whilstMk
is the Jacobian matrix of partial derivatives of h with respect
to the map,m.
An important advantage of the smoothing and optimization

algorithms, related to this linearisation, is that they are able to
iterate the linearised problem until convergence, whereas the
filtering algorithms (EKF and SEIF) only perform a single
update, which means that the filtering methods can be more
prone to linearisation error.
As a consequence of linearisation error the EKF can

become inconsistent [69]–[71]: a filter is consistent if the
estimation error sequence, xk− x̂k , is zero-mean and the state
covariance, Pk , matches the true covariance [72],

E
[
xk − x̂k

]
= 0, (17)

E
[(
xk − x̂k

) (
xk − x̂k

)T ]
= Pk (18)

where E [.] is the mathematical expectation operation. The
inconsistency tends to arise in EKF-SLAM because the lin-
earisation of f and h do not occur at the true state [71],
and therefore the estimated state covariance, Pk , becomes
less than the true value, i.e. the filter becomes overconfident,
leading to filter divergence [69], [71]. Smoothing and opti-
mization methods tend to be less prone to this inconsistency
because the estimates are computed in a batch and are iterated
to convergence [73].
The PF and RBPF methods, by contrast, avoid the lin-

earisation of f and h: particle filters are able to fully utilise
the nonlinear model and represent the non-Gaussian state
posterior using a numerical sampling approach. However,
in SLAM where the number of map features can be large
and tends to grow without bound, sampling methods can be
computationally expensive. In FastSLAM [61], the RBPF
is used to exploit a factorisation to make the problem more
computationally tractable, where using the product rule we
re-write (1) as

p (X1:k ,m|Z1:k ,U1:k , x0)

= p (X1:k |Z1:k ,U1:k , x0)
nm∏
i=1

p (li|X0:k ,Z1:k) (19)

where the key insight to note is that the map features

m =
(
l1, . . . , lnm

)T become independent when conditioned
on the full robot trajectory X0:k [61]. The robot trajectory
posterior, p (X1:k |Z1:k ,U1:k , x0), is estimated using a particle
filter, with np particles, where each particle represents a pos-
sible instance of the robot trajectory, and each particle uses
nm EKFs to separately represent and update each landmark li
in the map. This means that each EKF is low-dimensional
because they only represent one landmark each, hence
the naive complexity of FastSLAM is O(npnm), i.e. linear
in the number of map landmarks. By contrast, in EKF-SLAM
the full covariance corresponding to all nm landmarks is used,
meaning that updates are O(n2m), i.e. EKF-SLAM updates
have quadratic complexity. Hence, the FastSLAM algorithm
is far more efficient than EKF-SLAM.

One of the problems with SLAM back-end optimization
methods is that they can be sensitive to outliers arising from
incorrect data associations and false-positive loop closure
errors. These outliers can cause the whole SLAM system to
fail because of the quadratic nature of the cost in (14), which
gives undue influence to measurements with large residual
errors. Therefore, robust loss functions that are less sensitive
to outliers, such as the Huber loss, can be used in place of the
standard quadratic loss [74]. This type of approach is used
in early work in dynamic covariance scaling [75] and related
methods such as switchable constraints [76], [77] and max
mixtures [78], which use a tunable weighting to decrease the
influence of inconsistent loop closures on the optimization.
In recent work, adaptive kernels for robust cost functions
have been developed [79]. There are also distinct methods
that check for, and exclude, inconsistent loop closures from
the optimization, such as realizing, reversing, recovering
(RRR) [80].

D. VISUAL ODOMETRY AND VISUAL SLAM
Cameras have become a dominant sensor-type for robotics,
owing to their versatility and usefulness across various tasks,
for instance mapping and localization, structure frommotion,
obstacle avoidance, object detection and recognition, scene
understanding and human-operator support. There is a corre-
sponding wide and specialist literature on the use of cameras
in SLAM, which therefore motivates its own section here.
Cameras are also often used in visual odometry (VO) in
robotics, which is the localization-only part of the SLAM
problem, i.e. pose-estimation, without map-building [81].
The full visual SLAM (vSLAM) problem can be loosely
defined as [82],

vSLAM = VO + Global Map Optimization.

where the Global Map Optimization is typically done using
loop closing and smoothing/optimization algorithms dis-
cussed above.
The vSLAM/VO problem can be solved using either stereo

[83]–[88] or monocular (single) cameras [89], [90]. Monocu-
lar camera systems tend to be simpler than stereo systems but
have the disadvantage that they do not intrinsically perform
depth perception. Therefore, monocular systems generally
require multiple overlapping views of an image, from dis-
tinct perspectives, to obtain depth perception algorithmically
(i.e. by triangulation). Even with algorithmic depth percep-
tion, mononocular systems are still subject to scale ambiguity
and scale drift.
VO algorithms are of particular interest in pipe robotics

because reconstruction of the robot path from the pose,
xk , intrinsically generates the pipe network map (because
the robot moves within the pipe, therefore the robot pose
xk defines the pipe location as well as the robot pose).
Early monocular VO estimation algorithms tended to be
based on filtering methods such as the EKF [89], [90], but
keyframe optimization methods have become more domi-
nant recently [88], [91]–[93]. Filtering methods marginalise

VOLUME 9, 2021 140181

CHAPTER 2. REVIEW OF SLAM FOR PIPE INSPECTION ROBOTS 15



J. M. Aitken et al.: SLAM for Inspection Robots in Water and Sewer Pipe Networks: A Review

FIGURE 3. An illustration of two visual SLAM algorithms, DSO and ORB-SLAM, applied to sewer pipe images. The leftmost two
images illustrate DSO, with a frame of the processed video on the left, and an estimated map of the pipe from a video sequence
on the right. The rightmost two images illustrate ORB-SLAM, with a frame of the processed video on the left, and an estimated
map of the pipe from a video sequence on the right.

out past poses and summarise historical information using
a probability distribution. Keyframe optimization methods
instead use efficient batch least squares algorithms to estimate
the pose over a small number of keyframes selected from
the recent frame history. One study concluded that keyframe
optimization methods tend to be more accurate per unit of
computing time [94]. A limitation of VO algorithms is that
they do not perform loop closure in contrast to full vSLAM
algorithms, so drift in pose estimates goes uncorrected.
Popular recent approaches to VO can be divided into

feature-based methods, which use feature extraction to
obtain image frame correspondences, such as ORB-SLAM
[88], [93], and direct methods, which operate directly on pixel
intensity, such as large scale direct SLAM (LSD-SLAM) [95]
and direct sparse odometry (DSO) [92] (where DSO and
ORB-SLAM are illustrated using our own implementations,
not published, in Figure 3).
Another important class of VO method is based on

deep learning, using convolutional neural networks [96],
deep recurrent convolutional neural networks (DeepVO/
ESP-VO) [97], [98], unsupervised deep learning
(UnDeepVO) [28], generative adversarial networks [99] and
deep networks driven by optic flow [100]–[102]. In [103]
a deep learning VO method was developed for underwater
applications, which is relevant to water distribution pipes,
and showed promise compared to standardmethods (although
the underwater environment did prove challenging for pose
estimation). Full vSLAM has also been addressed using
deep learning [104]. The deep learning methods appear to
give competitive results to other VO methods on benchmark
problems, and have the advantage that they are end-to-end
so they do not require camera calibration, feature extraction
and matching, and online optimization. They do, however,
tend to require large amounts of training data, which may be
problematic for sewer and water pipes.
VO is often fused with an inertial measurement unit (IMU),

known as visual-inertial navigation systems (VINS), or visual
inertial odometry (VIO) [105], [106]. Fusing VO with an
IMU tends to improve accuracy, is low cost, and for monoc-
ular systems helps to resolve the scaling ambiguity. Recent
popular VIO systems include MSCKF [107], ROVIO [108],
VINS-Mono [109] and Vi-DSO [110]. MSCKF is termed
a loosely coupled approach and is relatively simple to

implement and computationally inexpensive (a Kalman filter
fuses the VO pose estimate with the IMU, and potentially
other sensors as well), whilst the others are tightly coupled
(IMU data is included in the pose optimization), which tend
to be more accurate [111]. The VIO problem, like many of
the computer vision problems discussed in this review, has in
recent years been addressed using deep learning such as in
VINet [112].

E. LASER SCANNERS AND LIDAR FOR SLAM
Laser scanners and lidar (light detection and ranging) are one
of the other major sensor-types, along with cameras, used
in SLAM. Lidar sensors produce a scan of the environment
that returns the range and bearing of nearby objects at dis-
crete sample points - scans can be in 2D [113]–[115] or 3D
[116]–[119]. The lidar SLAM problem is often divided, sim-
ilarly to vision methods, into an odometry-type of problem
using sequential scans for pose estimation, and separate map
updating with loop closing [120].
A scan matching algorithm is typically used with lidar to

estimate the pose of the robot - this is where a current scan
is used with the previous scan of known pose (i.e. scan-to-
scan matching), to provide an estimate of the transformation
between the two scans - this transformation can be used to
update the pose of the robot. However, this is essentially
a type of odometry method that will drift over time. Scan
matching is usually based on iterative closest point (ICP)
type algorithms [113], [121], which involves a minimisation
of scan matching error as a function of the transformation
between scans. Scan matching error can be minimised in
terms of scan points [113], or extracted features such as
lines [122].
Loop closing can be performed with lidar using scan-to-

map matching [123]. This includes methods based on feature
extraction, which reduces computational complexity [124],
histogram-based matching [51] and machine learning [125].
Submaps can also be used in lidar scan-to-submap match-
ing [115], [126], which improves computational efficiency
and enables real-time loop closing.
Lidar can also be fused with vision to overcome problems

associated with the different methods, i.e. visual SLAM relies
on adequate visual features to function effectively, whilst
lidar can be sensitive to rapid motion (because the point cloud
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can become distorted due to the robot motion interfering with
the lidar scanning process) - fusion of vision and lidar can
alleviate these problems [119], [127]. Vision-lidar fusion is
reviewed in [128].

F. COMPARISON OF SLAM ALGORITHMS
Front-end methods for SLAM include data association and
loop closing - these will have to be robust for the pipe envi-
ronment because of the high likelihood of perceptual aliasing.
There is a wealth of data association methods developed for
mobile and manipulation robot SLAM, but data association
for robot SLAM in pipes has not been addressed. For loop
closing we would expect that vision-based appearance-based
mapping on its own will be challenging, therefore the use of
multi-sensor data fusion and prior map knowledge will be
important to improve robustness.
The key advantages and disadvantages of each back-end

SLAM algorithm lie in a number of factors. EKF methods
are relatively simple, and tends to perform well in small
to medium map problems but can be inconsistent lead-
ing to filter divergence. SEIF and FastSLAM improve on
the computational efficiency of EKF-SLAM. The smooth-
ing/optimization methods are advantageous over the filter-
based methods because they treat all data in the estimation,
which intrinsically leads to correction of older poses and
map estimates when loops are closed, and are less prone to
divergence. Hence, smoothing methods tend to be preferred
in modern SLAM implementations.
SLAM in pipes will require computationally efficient solu-

tions for relatively small robots with modest computational
resources. The methods for SLAM discussed above can be
extremely computationally intensive, even for the simplest
methods, and especially for modern techniques aimed at
robustness using multiple hypothesis methods in front-end
data association [35], and back-end pose/map estimation
using optimization/smoothing [129]. Therefore it is likely
that SLAM in pipes will assume known maps for online
localization and only perform SLAM intermittently.

V. MAPS FOR SLAM IN WATER AND SEWER PIPE
NETWORKS
The choice of representation of the map of the robot’s envi-
ronment has implications for accuracy, precision, compu-
tational efficiency, and robustness of the SLAM system.
In general, robots across different applications use a vari-
ety of descriptions of their surrounding environment, often
depending on the application. In this section, the range of
map representations used in the literature is described, and
their usefulness for robots in pipe environments is evaluated.
There are also a number of auxiliary factors that will affect

the choice of map for use for SLAM in pipes. For instance, the
representation might depend to a certain extent on the loco-
motion and sensors used by the robot. The locomotion type
can determine the space within which the robot can move,
and therefore must be localised. A variety of types of robot
locomotion have been developed for use in pipes, reviewed

in [130], which includes flying or swimming through a pipe
with six degrees of freedom,moving along the cylindrical sur-
face of the pipe with fewer degrees of freedom, and moving
along the axis of the pipe by pressing against opposite walls
giving only one degree of freedom. Therefore, the dimension
of the map representation might naturally coincide with the
degrees of freedom in the robot movement.
It is also worth noting that maps used by water utilities

of buried pipe networks, such as that shown in Figure 1,
often exist to varying degrees of accuracy. However, this type
of map cannot necessarily be used directly by a robot for
localization, and conversely a map estimated by a SLAM
algorithm would not necessarily be of a form that would
be directly useful for a human operator in a water utility
company. The remainder of this sectionwill describe different
types of map used in SLAM, as opposed to maps used by
humans.

A. FEATURE MAPS
Feature-based maps could be made using features at a variety
of scales, and could be made using features which are gen-
erally describable such as walls or doors, or using features
which depend more on the sensing mode such as notable sets
of pixels in a set of camera images. These two categories of
feature-based maps are described here.

1) POINT FEATURES
Point features can be extracted from sensor data such as
images, typically corresponding to significant points in the
environment which might be recognised and distinguished
from other points (see Fig. 4(a)). As noted elsewhere [92],
features can be sparse or dense, and direct or indirect. In this
section,methods that use some level of indirect representation
of points in the environment will be described, distinguished
from methods using direct sensor measurements such as the
distance of reflection of a lidar beam or the intensity of a pixel
in a camera image.
A number of solutions exist to this problem; the Harris

corner detector [131], SIFT [37], SURF [38], FAST [132],
BRIEF [133], and ORB [134], being some historically pop-
ular examples. These methods show an improvement in the
solution over the last two decades, with a general emphasis on
efficiency for real-time application. The solutions typically
detect salient points in a camera image based on pixel inten-
sity, and describe the point using the variation in intensity
of the nearby pixels. This descriptor can be used to find
matching points in other camera images, which can be used
for localization and mapping, where the point features make
up the map. Similar methods could be used to extract features
from data from other sensors such as sonar and lidar.

2) LARGE FEATURES
A typical robot environment might be made up of walls,
doors, furniture, and people, which can be represented as
geometric features. However, the variety of possible features
could be much larger depending on the application, and
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FIGURE 4. Illustrations of a number of a map types for the pipe environment. (a) A point cloud or point feature map. Each
point lies approximately on a cylinder defining the pipe. (b) A two-dimensional occupancy grid representation.
A three-dimensional grid would be needed for a cylindrical pipe, but would be hard to visualize. (c) A large feature map,
where each feature is a cylindrical pipe, parameterized by its position, orientation, and shape. (d) A topological map of a
large pipe network. Each node is a junction or manhole, and is connected to other nodes by pipes.

there would be considerable variation in features of each
type suggested. Early work in SLAM used simple geometric
representations such as planes, cylinders and corners [135].
Later SLAM algorithms used recognition of common fea-
tures such as walls and doors [136]–[138]. An improvement
to accuracy using these methods comes at the cost of reduced
flexibility, and environments with unusually shapedwalls and
doors will be challenging for the algorithm. Knowledge of a
pipe’s cylindrical shape has been used for localization in pipes
(Fig. 4c) [139].
Features such as walls, or pipes in this application, can

be represented in a map in a parameterised form such as
B-splines. This increases the flexibility of the map represen-
tation, and has been shown to be applied in an efficient SLAM
algorithm [140], [141].

B. DENSE MAPS: GRID MAPS AND POINT CLOUDS
1) GRID MAPS
A continuous metric space can be decomposed into a grid
of discrete, finite sized cells. In early work on this topic
these cells were relatively large and typically corresponded
to notable features in the environment [142], [143]. However,
works using a discrete representation of the space diverged:
some becoming known as topological maps, which continue
to use a more coarse representation of the map, and some
becoming metric grid localization which use a finer grid
representation [144].
In an occupancy grid map (Fig. 4b) [145], [146], each cell

has a probability of being occupied by an object, or being
empty. The occupancy probability of each cell can be updated
recursively using new sensor information. Grid mapping can
be performed in either 2D or 3D [147]. A key limitation of
grid maps is that they require large amounts of memory if
mapping over a large spatial scale at high grid resolution.
Memory efficient solutions to storing grids exist using trees
for both 2D [148] and 3D maps [149], [150].
The grid representation gives flexibility to the representa-

tion of the probability distribution of the position of features
in the map and the position of the robot. Where an occupancy
grid approach is used, the features in the map do not need to
be interpreted or undergo data association, which reduces the
requirements of the front-end perception module. However,

there is an inevitable loss in precision due to the discretisation
of the map. In order to improve precision, grid cells need to be
made small, however, as noted above this increases memory
requirements.

2) POINT CLOUDS
A point cloud representation (Fig. 4) is a set of data points
representing the position of features observed by the robot
in the environment, typically with only position data and no
further data. This might represent the observation of objects
using a lidar laser scanner, or from a stereo camera. The
small amount of information contained in each point means
that point clouds can contain a relatively large number of
individual data points. These data points are often processed
as a group, so matches might be found between a new sensor
scan and the existing cloud of points, for example. Point
clouds have been used in a number of 3D SLAM algorithms
[116], [151]. However, they do tend to be memory intensive
and may not be well suited to small robots in pipes with
limited memory capacity.

3) SURFACE REPRESENTATIONS
Dense surface representations acknowledge that the point
features detected by cameras or lidar are part of a surface
in 3D space. Surfel maps [152] (similarly named to pixel
and voxel maps) have been applied to SLAM using depth
cameras [153] and using 3D laser range data [154]. Truncated
signed distance fields have also been applied to data from
depth cameras [155].
These dense surface representations use more of the infor-

mation in the sensor data, rather than extracting discrete fea-
tures, which can give good performance even when sensing
a surface with low texture, and the use of the surface as
a concept (as opposed to point features in space) is eas-
ily applicable to the pipe environment which is made up
largely of simple surfaces. However, as with point clouds,
these representations are computationally expensive which is
detrimental to the application to small robots in pipes.

C. TOPOLOGICAL MAPS
A topological map (Fig. 4d) is an alternative to a metric rep-
resentation of the robot’s environment and state. In this case,
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themap is described as a set of discrete places defined by their
connectivity rather than necessarily their metric relationship.
A detailed review on general topological SLAM is found
in [156].
In typical mobile robot environments the environment

might be discretized into a set of rooms, for example, how-
ever, the problem of discretizing the environment has a variety
of possible solutions. This includes using gateways in the
environment such as doors [157], using the meet points of
lines equidistant from objects in the environment [158], using
a square grid of cells of a fixed size [142], and separating
places into nodes where the robot may turn and hallways
which connect these nodes [159], however it is known that
finding distinctive places in an environment can depend on
the sensor system for a given robot [160]. Without much
abstraction, a pipe network can accurately be described sim-
ilarly to nodes and hallways [159], which gives a natural
representation of the environment.
An advantage of a topological representation is the reduc-

tion in computational cost of localization and navigation in
large environments [156]. Conversely, there is an inevitable
loss of precision in the map representation, and as in many
problems, a compromise must be made between cost and
accuracy. Another advantage of a topological representation
is that the general topological structure may be known even
when precise metric information might not be available. This
is especially applicable to the pipe environment, where the
precise position of buried pipes may be unknown, but their
connectivity can be assumed if the system is functioning as
intended. Topological maps have been used in algorithms
developed for localization in pipes [161], [162].

D. SEMANTIC MAPS
Semantic maps can be described as a map which contains
both spatial information about the environment and classi-
fication of features, where further knowledge about these
classes is available for reasoning [163]. They are therefore
regarded as an enhanced map, with both geometric informa-
tion and high-level qualitative features that have semantic
meaning. Semantic SLAM methods are reviewed in [164].
Features with semantic meaning in pipes include:
• pipe lengths,
• T-junctions,
• Y-junctions,
• elbows,
• valves,
• pipe-joints,
• customer connections,
• fire hydrant connections, and
• manholes

These features are typical for clean and wastewater pipes
and have been used as landmarks in pipe robots for many
years; Infrared range sensors have been used for detecting
inlets in pipes [165], laser scanners for detecting elbows [166]
and T-junctions [167], and vision for detecting elbows and
branches (junctions) [168], [169].

One potential advantage of using semantic maps in the
pipes domain is that because existing maps held by water
utilities label certain features such as manholes and valves,
these features already have semantic meaning. Therefore, it is
natural to include and exploit these semantic labels in prior
maps of the pipe network which can then be used in semantic
SLAM.

E. HYBRID MAPS
As noted above, topological maps are well suited to pipe
networks and particularly the problems of path planning
and exploration. Metric information is also needed, gen-
erally, to more precisely localise any defects encountered.
Hybrid maps are well suited to this combination of needs,
such as hybrid metric/topological SLAM [170]–[172], hybrid
metric/semantic SLAM [173], [174] and hybrid seman-
tic/topological [175]. These types of hybrid maps, combining
topological and metric information, have been used success-
fully in mapping gas pipelines [176] and robust methods have
been proposed for localization in sewer/water pipes [162].

F. COMPARISON OF MAPS
Each of the types of map described here have advantages
and disadvantages in general robot localization. Typically
there is a trade-off between precision and computation, and
between flexibility and computation. In the application to
robots in pipes compared to the general case, computation is
limited significantly, flexibility is less necessary, and required
precision can be variable, depending on whether the robot
is trying to navigate or trying to precisely locate a fault.
Therefore an effective map representation for the pipe envi-
ronment will likely be a hybrid representation, using the
environment topology to an extent for efficient path planning
and exploration, and a metric representation to precisely map
the network and locate faults.

VI. SENSORS FOR MAPPING AND LOCALIZATION IN
WATER AND SEWER PIPES
Sensors are a key factor to consider when designing a SLAM
system. The back-end algorithms tend to be common and
interchangeable across domains, but the sensors need to be
selected to suit the environment. This section reviews differ-
ent sensors that have been used for robot navigation in pipes.

A. INERTIAL AND ODOMETRY DEAD RECKONING
SENSORS WITH DRIFT CORRECTION
The most simple methods of in-pipe localization for robots
have been based on dead-reckoning techniques, usually com-
bining an inertial measurement unit (IMU) with some form of
odometry [177], [178]. Odometry sensing has been used with
tether systems [179], which limits the distance the robot is
able to travel, and alternatively on-board wheel odometry for
untethered robots [180], which is less restrictive. The accu-
racy of IMU-odometry localization systems has recently been
analysed in [181], demonstrating that errors using a high-
grade (quasi-tactical) IMU were not more than 0.25% and

VOLUME 9, 2021 140185

CHAPTER 2. REVIEW OF SLAM FOR PIPE INSPECTION ROBOTS 19



J. M. Aitken et al.: SLAM for Inspection Robots in Water and Sewer Pipe Networks: A Review

0.1% of the pipe lengths in the horizontal and vertical direc-
tions respectively (tested pipe lengths ranged from 100 m
to 1700 m). Micro-electromechanical system (MEMS) IMUs
have also been proposed for use in small diameter pipes,
because of their reduced size, which might require improved
algorithms to compensate for their lower accuracy (e.g. use
of the cubature Kalman filter) [182].
Drift is the key problem with dead-reckoning sensors,

and so dead-reckoning has also been combined with drift
correction methods using detected landmark locations. The
landmarks can either be naturally occurring, such as pipe-
length joints [180], [183]–[185] or deliberately added to the
pipe network, such as GPS-located above ground reference
stations [186], [187]. Pipe-length joints can be detected using
magnetic flux leakage and electromagnetic acoustic trans-
ducers [180], [184], or from the vibration signal from an
accelerometer as the robot passes through the joint [183].
The use of naturally occurring landmarks for drift correc-

tion, such as pipe-length joints, adds minimal cost to the
localization solution (i.e. just the cost of the sensors), but
is only applicable to scenarios where the landmarks have
some a priori known position - e.g. this is the case in certain
pipelines where each pipe length is known with certainty.
This type of approach has been researched in water distribu-
tion pipes, combined with IMU dead-reckoning [185] and is
promising because it is low-cost and provides the needed drift
correction to dead reckoning methods. The disadvantage with
deliberately adding reference landmarks to a pipe network
is that it increases the cost and could become prohibitively
expensive when considering the hundreds of thousands of
kilometres of existing pipe networks.
Sensor motes for water distribution pipes have been pro-

posed as an alternative to conventional robots, that could
use an IMU plus additional sensing for drift correction
in localization [188]. The sensor mote is passive and car-
ried by flow through the pipe network. The key advan-
tages of these simple sensor motes, over more sophisticated
robots, is that they are likely to be more easily miniaturised,
be cheaper, consume less power and be more robust. In the
context of small diameter water pipe environments, and low
overheads in the water utilities industry preventing uptake
of expensive and complex technology, these benefits are
appealing.

B. CAMERAS
Cameras are very often included on pipe inspection robots
so that damage can be detected by visual inspection, such as
in MAKRO [189], KANTARO [190], MRINSPECT [191],
PipeTron [192] and EXPLORER [193]. Therefore, cameras
and visual information about the surroundings are a natural
choice to pursue for navigation. Early work used vision to
estimate distance travelled along the pipe only, via an image
mosaicking algorithm and a laser range finder for depth per-
ception [194]. However, modern VO systems with keyframe
optimization of the type described above tend to be used
now [139], [195], [196] .

Fisheye cameras are most often used for VO in pipes
because of the narrow structure of the environment [139],
[196]–[199] (although a panoramic camera has also been
tested [200]). In a pipe, when the camera is panned along
the pipe axis, the distant surface of the pipe in the image
suffers from projective deformations, whilst the near pipe
surface appears in peripheral regions of the images clearly.
The distant features all have a low parallax angle which
degrade triangulation in VO. Hence, use of fisheye cam-
eras tends to lead to more accurate VO estimates in
pipes.
Stereo cameras have advantages over monocular systems

because they have a fixed baseline between the two cam-
eras, which aids triangulation, and they also automatically
resolve scale ambiguity. In [195], two cameras were aligned
facing upwards toward the pipe surface, which enabled a large
amount of stereo image overlap for depth perception. By con-
trast, in [201], an axial-stereo vision system was proposed,
where the cameras faced forward along the pipe [201]. Sim-
pler, monocular systems have also been used in pipes, such as
in [139], [196], [202]. In [139] structured lightingwas used to
recover the scale factor in monocular VO by minimising the
reprojection error of two laser spots [139]. Distinct from both
stereo and monocular systems are depth (RGB-D) cameras,
which have the advantage that they can also be readily used
to detect obstacles in the pipe [203]–[205].
Many VO algorithms for pipes leverage cylindrical

information which exploits prior knowledge of the shape
of the environment to improve pose estimation accu-
racy, and to help resolve scale ambiguity for monocular
systems [196], [202], [206].
Robust methods have been developed that optimize the

map points in the optimization by enforcing cylindrical regu-
larity [139], [207]. Cylindrical regularity has also been used
as prior knowledge for local pose optimization, to further
improve accuracy [199]. One issue with using cylindrical
information, however, is that it is necessary to detect fea-
tures from the cylinder surface to match against a cylinder
model. This has not been well researched because most
papers assume clean, empty pipes - perhaps ideal for gas
pipes, but this would not necessarily be the case in sew-
ers (and even water pipes can have non-clean surfaces
where biofilms accrue [208]). One possible solution to this
problem is a method for detecting outliers proposed for
3D occupancy grid maps [209], but this is computation-
ally intensive, so not necessarily well suited to real-time
implementation.
Cameras can also be used in appearance-based SLAM

methods [36], [43] and to recognise landmark features in
pipes such as T-junctions, elbows etc. [168], [169], [176],
[210]. In sewer pipes, VO has been combined with man-
hole recognition to correct drift, which is an appealing
approach [203], [204]. Also, landmark recognition can be
used to construct a topological pipe networkmap to enable the
application of topological SLAM, and efficient topological
path planning methods [211], [212].
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C. LASER SCANNERS
Laser scanners have been used for many years for inspec-
tion in pipes [17], [213] and also for navigation in
pipes including on the robots KANTARO [214] and
MRINSPECT [215], [216].
The laser scanners on sewer robots have typically been

used to recognise landmark features in sewer pipes, such
as T-junctions, joints and elbows [167], [214], [216].
In KANTARO, the method of landmark detection is based
on using the range pattern obtained from the laser to classify
different types of landmark.
Laser scanners have also been used with cameras to

improve the detection of landmarks - in one version of
KANTARO, a stereo camera system first computes distance
to a captured image and then the laser scanner is used to
classify the landmark as a manhole or joint [217]. It was
also noted in [217] that conventional laser scanners were
too bulky at that time for sewer inspection and so they
designed a custom laser-scanner more suited to the sewer pipe
environment.

D. ACOUSTIC AND RADIO FREQUENCY
EMITTER-RECEIVER SENSING
A number of emitter-receiver methods have emerged recently
that seek to overcome the potential limitations of vision using
acoustic and radio frequency sensing.
High frequency acoustic sensing (an ultrasonic sen-

sor) [218], mid-frequency acoustic sensing (a hydrophone
sensor) [219]–[221], and radio frequency (RF) sensing [222],
[223] have all been applied to localization in pipes with the
similarity that they all using an emitter-receiver approach
to create a type of 1D spatial map along the pipe that is
continuous, and hence more feature-rich than intermittent
visual landmarks.
Low-frequency acoustic sensing (a speaker and micro-

phone) [224], [225] has been used to make absolute mea-
surements of the position of the robot in the pipe, relative
to either a fixed source in [224], and using acoustic echoes
in [225]. In either case, the absolute measurements of position
have an advantage over visual odometry, which will drift
over time.
The robot localization methods developed in [218]–[221],

[225] have the advantage that the emitter-receiver unit is
carried on-board the robot, whilst in contrast, the other acous-
tic [224] and RF [222] localization methods require the emit-
ter to be placed in a fixed location in the pipe, with the receiver
on-board the robot.
The ultrasonic sensing method developed in [218] is suited

to plastic water pipes because it uses an ultrasonic transceiver
to sense terrain profile through the plastic pipe wall. In con-
trast, the sensing methods developed in [219]–[221] use a
hydrophone to excite pipe vibration in metal pipes. The initial
work [219], [220] used an EKF and particle filtering methods
for robot localization, whilst [221] developed a GraphSLAM
method for localization.

E. ABOVE-GROUND SENSING METHODS INCLUDING
GROUND PENETRATING RADAR
Above ground methods are often used for pipe detection
and localization. This section briefly surveys some of these
methods because they can form a useful part of an in-pipe
robot SLAM system, by providing prior information and for
fusing with in-pipe map estimates to improve asset mapping.
Ground penetrating radar (GPR) uses electromagnetic

waves (typically in the MHz range) to detect and locate
below ground targets [9]. GPR has long been proposed as a
tool that can perform subsurface detection of buried utility
infrastructure, including pipes [226]. More recent reviews on
the use of GPR for locating underground utilities are given
in [10] and [227]. GPR is often combined with additional
sensors to more effectively locate targets, e.g. GPS [228],
electric fields [229] and cameras [230], [231], and also mul-
tiple sensor suites such as GPR, GPS, lidar, cameras and
encoders [232].
GPR data can also be combined with data from utility

company records [233], although such data might not always
be available or accurate. Various data fusion algorithms have
also been developed to fuse GPR with other data sources
based on Bayesian methods [234], [235] and Dempster-
Schafer methods [236], where the latter avoid the need of
the Bayesian methods to specify a probability distribution for
each data source .
Additional above ground methods have been proposed for

locating buried infrastructure, for instance in [237] where
multiple above ground sensors are fused including GPR, Pas-
sive Magnetic Fields (PMF), Magnetic Gradiometer (MG),
Low Frequency Electromagnetic Fields (LFEM) and Vibro-
Acoustics (VA). Any of these techniques have potential for
fusing with in-pipe robotics to improve detection accuracy.

F. COMPARISON OF SENSORS
The different types of sensor have various advantages and dis-
advantages for SLAM in pipes (summarised in Table 5). The
basic inertial and odometry dead reckoning sensors provide
simple localization but are subject to drift, so need to be used
with landmark recognition methods to correct drift.
Cameras are one of the most widely used and mature

localization and mapping methods in robotics, and have been
used successfully in pipes. However, cameras do have certain
disadvantages for use in pipes: the environment might lack
visual features and so present problems of perceptual alias-
ing; vision-processing is usually computationally intensive
so can require sophisticated and large computational hard-
ware (which can be power intensive); the camera lens might
become dirty and occluded by objects, particularly in sewer
pipes; and the pipe environment is dark, so a light source is
required (which consumes battery power).
Laser scanners/lidar are another popular type of sensor

for SLAM, but have only been used, it would appear, for
landmark recognition of e.g. manholes and elbow bends, not
for pose estimation along the pipe lengths (this may be due to
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TABLE 5. Advantages and disadvantages of different sensor-types for localization and SLAM in pipes.

the fact that scan-to-scan pose estimation does not work well
in pipe lengths because they tend to lack useful discriminative
features for range-based pose estimation). Lidar is advanta-
geous for pipes because it does not require a light source but
has the drawbacks that the sensors tends to be more costly
and bulky than cameras.
Acoustic sensing is appealing for pipes because acoustic

waves tend to propagate well in this environment, and they do
not require a light source. However, some acoustic methods
require a fixed sound source, which limits mobility.
Above-ground methods are potentially useful where avail-

able but they would appear to be more complex to implement
autonomously due to the fact they would need to operate in
the unstructured above-ground environment.
Therefore, it would appear that multi-sensor data fusion is

the most appealingly approach for sensor choice for SLAM
in water and sewer pipes. Visual odometry, acoustic meth-
ods and inertial sensing appear well suited to localization
along pipe lengths. Drift correction methods are critical for
odometry-type methods, using landmarks such as manholes
or potentially pipe joints if they occur at predictable locations.
Vision and laser scanners appear well suited to the problem
of landmark recognition at manholes, elbows and junctions.
A publicly available dataset incorporating multiple sensors
for localization in sewer tunnels is described in [238], includ-
ing inertial, camera and laser sensors, which will enable the
interested reader to investigate these sensors for themselves.

VII. FUTURE CHALLENGES
A. SINGLE ROBOT SLAM IN PIPES
The methods discussed so far for SLAM in water and
sewer pipes have mainly been tested in lab environments or

small scale outdoor experiments. To bridge the gap to real-
world use, a number of future challenges must be overcome.
Cadena et al. [22], in one of the most recent and compre-
hensive reviews of modern SLAM, highlights the following
areas as future general areas to address in SLAM: robust
performance, high-level understanding, resource awareness,
and task-driven inference. These are particularly true in the
domain of pipes and aspects of these are considered below.

1) LONG TERM ROBUST AUTONOMOUS OPERATION AND
SCALABILITY
SLAM for water and sewer pipe networks must be robust in
the long term. It would be unacceptable for the water industry
to take up a robotics inspection system that becomes lost in
the pipe network, adding to the problem of faults rather than
solving the problem. The review in Cadena et al. [22] con-
cludes that long term robust SLAM is not currently possible,
and much fundamental work remains to be done to solve
this problem. Recent work has addressed developing more
robust SLAM back-end optimization algorithms using multi-
ple hypothesis methods in MH-iSAM2 (multiple hypothesis
iSAM2) [129]. However, guaranteed fail-safe SLAM is still
not a solved problem.
So the question remains on how to leverage current SLAM

technology for robust operation in the domain of pipes in
the near future. One practical way to address this problem
is to modify the pipe network with locating beacons. This
approach bears similarity to the idea of using above-ground
reference stations mentioned above [186], [187] but modified
for buried water and sewer pipes networks. There is a rising
interest in developing smart monitoring for infrastructure, for
instance smart pipes [239] and smart manholes [240], with
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RFID tags that communicate with the cloud, which can be
used for autonomous pipeline monitoring [241], [242]. These
devices could be used intermittently through a pipe network
to provide recovery points for re-localization if the SLAM
system fails. Such modifications of the pipe network might
be costly, but this concern is alleviated if we consider that
some amount of modification of the pipe network would
be necessary anyway to provide communication hubs for
transmitting inspection data.
Long term operation in pipes also raises the issue of

scalability, where data storage and processing needs will
continue to grow without bound. To address the problem
of scalability, if we assume that pipe inspection robots
are small, low-powered devices and that the pipe network
map changes very slowly over time, an appealing strategy
would be to only update the map at communication hubs
by transmitting data to the cloud. This would mean robots
perform localization-only whilst travelling the pipe network,
in-between map updates whilst stationary at hubs, allevi-
ating the computational burden of performing full SLAM
during real-time navigation. This synergy between updating
the map at communication hubs, possibly via the cloud,
and robustly re-localising at hubs with full certainty would
provide a natural solution to fail-safe, scalable SLAM in pipe
networks. The challenge becomes one of minimising the cost
of modifying the pipe network with smart communication
hubs and ensuring sufficient coverage to guarantee fail-safe
operation of the SLAM system in between returns to a hub.
This implies that both the SLAM method and the smart pipe
infrastructure should be co-designed and evaluated in a single
complete framework in order to minimise costs andmaximise
robustness.

2) FAILURE-AWARE AND TRUSTWORTHY ROBOTICS
A major emerging issue across robotics and AI is the devel-
opment of trustworthy solutions [243]–[248]. In the domain
of water and sewer pipes, inspection robotics will provide key
information on whether there is a fault, the type of fault, the
severity, and also the location. In turn this will lead to human
operators making decisions on whether to effect a repair and
where to do it if so. Decisions to repair buried pipes will
lead to excavations that are costly and disruptive; if the robot
system makes errors this will severely impact the uptake of
the technology (and potentially harm the uptake of robotics
for many years).
Therefore, developing trustworthy robotic solutions for

pipe networks is a key challenge for the future. This requires
solutions able to work under different environmental changes
and provide some characterisation of the level of trust in the
solutions. It will be important to know under what conditions
the approaches are fully trustful - for instance if a camera has
become partially obscured, leading to inaccuracies in a visual
SLAM system, the robot should be aware of this and be able
to communicate the information. In general, the robot system
should be failure-aware. Thismeans, in the context of SLAM,
that the robot should be able to intelligently detect failure of

the SLAM system, if it occurs, and be able to communicate
this to human operators.
Although currently a huge effort is focused on the develop-

ment of reliable and trustworthy methods, the development of
trustworthy solutions for intelligent robot systems, especially
in pipe networks, is still lacking.

3) PATH PLANNING AND ACTIVE SLAM
The main tasks of a water/sewer pipe inspection robot are
to detect and locate faults, and also, as outlined here, map
the pipe network. In order to do this, the robot must explore
the pipe network thoroughly to map it, and also continue
to traverse the network in order to ensure complete and
consistent coverage for long-term fault detection [249]. These
primary goals of the robot link naturally to an active SLAM
framework [250], which refers to the full problem of path
planning in the context of the mission, as well as mapping
and localization.
Active SLAM has been addressed using many of the

main frameworks for back-end pose and map estimation
including EKF-SLAM [250], particle filtering SLAM [251]
and smoothing/optimization SLAM [252], [253]. The typical
formulation of the active SLAM problem consists of three
steps [251]:

1) The robot identifies possible targets to visit: frontier
targets, from the boundary of the explored region of
the robot’s map, where the boundary can be identified
by regions where the map certainty drops below a
threshold; trajectory targets, where map certainty is
high, which the robot can return to in order to reduce
location uncertainty.

2) The robot predicts the expected information gain asso-
ciated with the visiting a frontier target, along with the
risk of incorrect trajectory approximation.

3) The robot travels to the target and then decides if it is
necessary to continue or terminate the task.

Active SLAM has not been addressed in the context of
buried pipe networks but would appear to be an appeal-
ing strategy for this domain. One of the main challenges
still to address is the prediction of the expected information
gain [22], which can be computationally intensive and so
not well suited to small, low-powered pipe robots. Therefore,
computationally efficient solutions need to be found for this
problem. In addition, active SLAM in water/sewer pipes will
be complicated by the fact that it is generally easier and more
energy efficient to move in the direction of flow, which might
nuance solutions for this environment.

B. PRIOR MAP GENERATION FOR SLAM IN WATER AND
SEWER PIPES
SLAMmethods are often developed with the assumption that
there is zero prior knowledge of the environment. However,
this is far from the case for water and sewer pipe networks.
Prior information of pipe networks maps can come from a
variety of sources. A challenge for the future is to leverage
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these data sources, fuse them together and synthesise prior
maps for robot navigation and SLAM.
Geographical information systems (GIS) have been used

for many years in the water industry to capture, store, manip-
ulate, analyze, and display spatial information for water
and sewer pipe networks [254]–[256]. GIS pertaining to
water/sewer pipe networks tend to include pipe locations and
access points such as manholes and fire hydrants. Manhole
recognition from inside the sewer pipe, combined with GIS
map data, has been used to correct drift in robot localiza-
tion [204]. However, recorded locations of pipes and access
points in GIS maps might differ from what is actually present
on the ground due to errors in data collection and data
entry [255]. Therefore, the use of GIS alone would seem
insufficient for the task of synthesising prior maps for SLAM.
There is a growing literature on mapping above-ground

infrastructure using observations gathered from a variety of
sensors including GPS, in conjunction with object recogni-
tion using machine learning. In particular, manholes can be
mapped from above ground, and can also be detected below
ground, within the pipe [257], hence make ideal landmarks.
The problem of automatically mapping manholes from above
ground has been studied using cameras [258] and laser scan-
ners [259]–[261], as well as from the air using cameras
in unmanned aerial vehicles (UAVs) [262]. More recently,
DCNNs have been applied to the task of object detection and
recognition for manholes [263], [264], including localising
manholes [265]. Manhole cover detection with DCNNs has
also been used to reconstruct the likely underground pipe
locations betweenmanholes using industry rules [266], [267].
The availability of GIS maps and data-driven maps of

above-ground infrastructure raises the challenge of fusing
these sources to generate a map prior. In [268] the authors
use GIS data to improve the localization and detection of
infrastructure objects in camera images in conjunction with
a standard object detection algorithm [269]. The problem of
fusing spatial data, e.g. GIS data, with images has also been
studied in [270]. The fusion of different objects from different
data sets (GIS and data-driven) also raises the challenge of
handling uncertainty. Recent attempts have been made to
quantify uncertainty in object detection from images with
deep neural networks [271] but in general this is not a solved
problem. Bayesian data fusion has been used to fuse data both
in 2D in [234], where the focus was on GPR and GIS data,
which has more recently been extended to Bayesian fusion in
3D using a wide variety of sensors [235].
There are not many studies currently on how to effectively

incorporate priors into a SLAM system. In [272], a frame-
work was developed for using Bayesian priors for SLAM
in buildings. One issue highlighted was the care needed
in tuning the certainty associated with the map prior: too
much certainty leads to the map prior dominating the SLAM
system, even when the robot senses discrepancies in live
operation, and vice-versa. There is an opportunity, therefore,
to generalise the results from [272] to form a framework for
using prior knowledge in SLAM for pipe networks.

C. MULTI-ROBOT SLAM IN WATER AND SEWER PIPES
Cities of the future will likely have teams of robots coopera-
tively mapping water and sewer pipes. This will be essential
to ensure full coverage of the pipe network. Multi-robot
SLAM in water and sewer pipes has not yet been addressed
in the literature, and raises a number of problems beyond
single robot SLAM, regarding both the data and mapping-
localization algorithms, which are covered in this section.
Key questions on data include [273]:
1) What type of data will be shared? Will it be raw or

processed data?
2) Considering issues of limited coverage and bandwidth,

how will data be shared?
3) Where and how will data be processed? With cen-

tralised, decentralised, distributed, or hybrid architec-
tures and methods?

4) Are the methods scalable and applicable to large pipe
networks? How do we deal with missing data and data
transmitting at different sampling rates?

Regarding processing of the data, the three main
approaches to multi-robot data fusion are centralised, dis-
tributed and decentralised [274], [275]:
1) Centralised data fusion: raw sensor data from multiple

sensors are fused in a centralised processing node to
produce a state estimate.

2) Distributed data fusion: raw sensor data is processed
locally to produce a state estimate in each sensor, then
the multiple state estimates are fused in a centralised
processing node. This could be either:
a) Fusion under known data correlation.
b) Fusion under unknown data correlation. This

requires additional estimation.
3) Decentralised data fusion: raw sensor data is processed

locally and fused locally at each node.
These questions are highly relevant to the inspection of

real pipe networks due to potentially limited communication
range, bandwidth, memory and processing power for small
robots in pipes.
The centralised fusion approach is theoretically optimal

but may not be ideal in practice because it requires large
communication bandwidth, large processing capability in the
central node, and is not robust due to the possibility of cen-
tral node failure. However, if the cloud is used to perform
the centralised fusion then this can be considered robust to
failure, and we could assume that it would also have suffi-
cient bandwidth and processing capability, and is appealing
if robots have to return to communication hubs to transmit
data on mapping and fault detection above-ground.
The algorithms for multi-robot SLAM tend to be exten-

sions of the single robot SLAMalgorithms described above in
section IV, such as filtering methods based on the EKF [276],
the extended information filter [277], [278], and the particle
filter [279], and smoothing/optimization methods based on
GraphSLAM [280], SAM [281], [282] and iSAM2 [283].
There are also a number of works that specifically address
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multi-robot visual SLAM using both centralised [284], [285]
and decentralised/distributed fusion [286], [287], where the
approach in [285] specifically targets the use of the cloud
to perform centralised processing for the computationally
intensive map optimization and data storage - an appealing
approach for low-powered robots in pipes.
A key part of multi-robot SLAM is merging maps from

all robots to construct a single, global map of the environ-
ment. To merge maps, generally either the initial poses of
the robots must be known, or the robots must rendezvous to
ascertain each other’s pose, or the maps must overlap [273].
Robust methods for selecting consistent measurements for
map merging now exist to solve this problem [288]. Map
merging is likely to be simplified in the pipe environment
because it would be feasible to obtain the initial pose of each
robot by taking GPS readings of the robots at the point of
entry to the pipe network, or exploiting prior knowledge of
the location of the pipe access points - this would significantly
simplify multi-robot SLAM in pipes. Robots could also
potentially rendezvous in pipes to communicate and share
map data, which would also serve to provide line-of-sight
pose estimation. Alternatively, the robots could rendezvous
with communication hubs throughout the pipe network and
transmit their own estimated pose for centralised data-fusion
and SLAM.
Finally, it is worth noting that if the initial pose of the robot

is known in the world coordinate frame (from the point of
entry into the pipe network), and features with known loca-
tions in the above-ground world coordinate frame are used in
SLAM, such as manholes as in [203], [204] or fire hydrants,
then the mapping can be directly performed by each robot in
the world coordinate frame, which should greatly simplify the
map merging process. The main problem would therefore be
the uncertainty around multiple robots recognising common
landmarks in the pipe network onwhich to basemapmerging,
i.e. the data association problem. Robust methods would need
developing to handle this problem, possibly based on multi-
hypothesis SLAM.

VIII. CONCLUSION
This paper has presented a review of SLAM for inspec-
tion robots operating in buried water and sewer pipes. The
review focused initially on the motivation that the buried pipe
networks represent huge current and future investment and
are an ideal domain where autonomous robots can make an
important impact in future smart cities.
We reviewed the requirements of a robot system, focus-

ing on mapping the buried assets and locating defects.
We reviewed the main SLAM methods used in robotics cur-
rently (where smoothing/optimization methods tend to dom-
inate over EKF and particle filtering methods popularised
in the early days of SLAM), and brought recent reviews
up to date with a discussion of the recent impact of deep
learning in loop closing and visual odometry. We consid-
ered different map-types used in SLAM and concluded that
hybridmethods, e.g. metric/topological, metric/semantic, and

semantic/topological show promise for this environment,
where topological maps are useful over a large spatial scale
for efficient path planning, whilst metric information is
needed for e.g. localising defects. We reviewed the various
sensors-types used in SLAM and found that a wide range
of sensors have been successfully used in pipes, implying
that multi-sensor data fusion is probably the most appealing
approach to maximise robustness.
And finally, we looked at future challenges focusing on

single robots, with challenges of long term robust and scal-
able operation, trustworthy robotics, and active SLAM; the
development of prior maps using existing data with above
ground landmark mapping; and SLAM in pipes with multi-
robot teams.
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Chapter 3

Visual Odometry Using Joint and

Manholes Detections

This chapter contains a publication detailing the development and testing of an algorithm to

perform odometry in sewers using predictable landmarks. The full publication is preceded by a

summary of the research presented in the publication.

3.1 Summary of research

The visual odometry system presented here allows a robot to localise itself within a pipe network

by leveraging the predictability of the environment (pipe joint spacings) and utilising information

that can be obtained above ground prior to operation (manhole locations). While the system

cannot achieve the precision of state-of-the-art SLAM algorithms it overcomes many of the

challenges that cause those algorithms to perform poorly and often fail entirely in pipe networks

(mainly feature sparsity).

Pipe networks generally consist of sections of pipe manufactured to a regular length which

are then joined together when placed below ground. These pipes are further connected by

manholes to allow human access to the network. While the diameter of pipe sections can vary

significantly depending on the pipe locations in the network and intended function, the length

of each segment and as such the distance between joints, was found to be relatively consistent

in the early stages of research. The total length of pipes, i.e. the distance between manholes,

also varies significantly, however, the locations of the manholes can be observed from above
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ground. By detecting the joints between pipe sections, the distance travelled along a pipe can

be calculated by multiplying the number of joints detected so far by the distance between each

joint. Additionally, detecting manholes whose locations have been found prior to operation can

be used to reset the position of the robot to a known location and reduce the impact of missed

or extraneous joint detections.

The research contained within this publication is primarily concerned with reliably detecting

pipe joints in camera footage. Simple methods, such as using the Hough Transform to find circles

within each frame, were found to be incapable of identifying joints and joints alone, while initial

tests of deep learning algorithms were inconsistent and improvement would come with increased

computational complexity and diminishing returns. The primary difficulty faced when detecting

landmarks in buried pipes is the lack of distinct features. Pipe walls tend to vary between

smooth and featureless or repetitive and indistinct. This causes visual SLAM algorithms to fail

due to large sections where insufficient features can be found to operate, and when features are

detected they are difficult to match between frames due to their similarity to all other features

in the region. Detection methods fail due to the majority of each frame being near identical or

essentially noise.

The algorithm detailed below utilises the feature sparsity and regularity by recognising that

the vast majority of distinct features in pipe networks are associated with either manholes or

pipe joints. By clustering traditional feature descriptors and then analysing the structure and

consistency across frames of the ones determined to be pipe joint features, we can detect joints

in pipes with an 85% accuracy and an F1 score of 0.78. This shows a stark improvement over

the Hough transform method which was tested with a range of parameters and only able to

achieve, at most, a 58% accuracy and a 0.11 F1 score. The developed method was found to

be sufficient to perform odometry with an average error of 2.50m, significantly lower than that

of ORB-SLAM3 (Campos et al., 2021) which failed to operate in all testing environments and

achieved an average error of 11.53m when it did work.

Manholes were found to be much simpler to detect within pipes than other landmarks. The

publication below uses a support vector machine (SVM) to classify frames as having being taken

inside manholes using the same features extracted in the joint detection algorithm. This was

98.5% accurate with an F1 score of 0.98 and allowed the odometry to be further improved to an

average error of 1.76m.



CHAPTER 3. VISUAL ODOMETRY USING JOINT AND MANHOLES DETECTIONS 35

The developed algorithms were tested using footage from multiple sewer pipe networks, us-

ing experiments conducted in collaboration with the author at iCAIR (The Integrated Civil and

Infrastructure Research Centre at the University of Sheffield) and datasets made publicly avail-

able by the author at https://orda.shef.ac.uk/articles/dataset/Visual_Odometry_for_

Robot_Localisation_in_Feature-Sparse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--

_Data/21198070. The novel algorithm is compared to a state-of-the-art visual SLAM algorithm

which it was found to outperform considerably.

3.2 Publication

https://orda.shef.ac.uk/articles/dataset/Visual_Odometry_for_Robot_Localisation_in_Feature-Sparse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--_Data/21198070
https://orda.shef.ac.uk/articles/dataset/Visual_Odometry_for_Robot_Localisation_in_Feature-Sparse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--_Data/21198070
https://orda.shef.ac.uk/articles/dataset/Visual_Odometry_for_Robot_Localisation_in_Feature-Sparse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--_Data/21198070
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A robust method for approximate
visual robot localization in
feature-sparse sewer pipes

S. Edwards, R. Zhang, R. Worley, L. Mihaylova, J. Aitken and
S. R. Anderson*

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United
Kingdom

Buried sewer pipe networks present many challenges for robot localization
systems, which require non-standard solutions due to the unique nature of
these environments: they cannot receive signals from global positioning systems
(GPS) and can also lack visual features necessary for standard visual odometry
algorithms. In this paper, we exploit the fact that pipe joints are equally spaced
and develop a robot localization method based on pipe joint detection that
operates in one degree-of-freedom along the pipe length. Pipe joints are
detected in visual images from an on-board forward facing (electro-optical)
camera using a bag-of-keypoints visual categorization algorithm, which is
trained offline by unsupervised learning from images of sewer pipe joints.
We augment the pipe joint detection algorithm with drift correction using
vision-based manhole recognition. We evaluated the approach using real-
world data recorded from three sewer pipes (of lengths 30, 50 and 90 m) and
benchmarked against a standard method for visual odometry (ORB-SLAM3),
which demonstrated that our proposed method operates more robustly and
accurately in these feature-sparse pipes: ORB-SLAM3 completely failed on one
tested pipe due to a lack of visual features and gave a mean absolute error in
localization of approximately 12%–20% on the other pipes (and regularly lost
track of features, having to re-initializemultiple times), whilst ourmethodworked
successfully on all tested pipes and gave a mean absolute error in localization of
approximately 2%–4%. In summary, our results highlight an important trade-off
betweenmodern visual odometry algorithms that have potentially high precision
and estimate full six degree-of-freedom pose but are potentially fragile in feature
sparse pipes, versus simpler, approximate localization methods that operate in
one degree-of-freedom along the pipe length that are more robust and can lead
to substantial improvements in accuracy.

KEYWORDS

robot localization, sewer pipe networks, feature-sparse, visual odometry, bag-of-
keypoints, pipe joint detection

1 Introduction

Sewer networks transport waste products in buried pipes. They are an essential part
of our infrastructure but are prone to damage such as cracks, with an estimated 900
billion gallons of untreated sewage discharged into United States of America waterways
each year (American Society of Civil Engineers, 2011). Therefore, sewer pipes need regular
monitoring and inspection so that repairs can be effectively targeted and performed. The
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traditional way of performing inspection in sewer pipes is via
manually operated, tethered, CCTV rovers. There is an opportunity
to make this process more efficient via autonomous robot
inspection. One of the key challenges to overcome for this is to solve
the robot localization problem so that the location of damage is
known.

There are a number of different methods developed for robot
localization in pipes (Aitken et al., 2021; Kazeminasab et al., 2021).
The methods can be divided based on sensor type: the most simple
are dead-reckoning methods based on inertial measurement units
(IMUs) and wheel or tether odometry (Murtra and Mirats Tur,
2013; Chen et al., 2019; Al-Masri et al., 2020). The main limitation
of these methods is that they drift, and so some authors have
introduced drift correction methods based on known landmarks
including pipe joints (where accelerometers are used to detect the
vibration as the robot moves over the joint) (Sahli and El-Sheimy,
2016; Guan et al., 2018; Wu et al., 2019; Al-Masri et al., 2020), and
above-ground reference stations (Wu et al., 2015; Chowdhury and
Abdel-Hafez, 2016).

Cameras are another widely-used method of localization in
pipe robots, using monocular visual odometry (VO) (Hansen et al.,
2011a; Hansen et al., 2013; Hansen et al., 2015), visual simultaneous
localization and mapping (vSLAM) (Evans et al., 2021; Zhang et al.,
2021), stereo VO (Hansen et al., 2011b), and RGB-D cameras
(Alejo et al., 2017; Alejo et al., 2019). Laser scanners have been used
in pipes for recognising landmarks such as manholes, junctions
and elbows (Ahrary et al., 2006; Lee et al., 2016; Kim et al., 2018)
although not, it would appear, for the odometry problem. Finally,
acoustic and radio frequency (RF) signals such as ultrasonic
(Ma et al., 2015), hydrophone (Ma et al., 2017a; Ma et al., 2017b;
Worley et al., 2020a), RF (Seco et al., 2016; Rizzo et al., 2021),
low frequency acoustic (Bando et al., 2016) and acoustic-echo
(Worley et al., 2020b; Yu et al., 2023) methods have been used, but
these are still emerging technologies.

The sensor technology that is most of interest in this paper
for localization is cameras. This is because sewer pipe inspection
is often conducted using vision-based methods (Duran et al.,
2002; Myrans et al., 2018) and most pipe inspection robots
developed to date include cameras for visual inspection, e.g.,
MAKRO (Rome et al., 1999), KANTARO (Nassiraei et al., 2006),
MRINSPECT (Roh et al., 2008), PipeTron (Debenest et al., 2014),
EXPLORER (Schempf et al., 2010) and recent miniaturized pipe
inspection robots (Nguyen et al., 2022). Therefore, it is appealing to
make dual use of a camera for both inspection and localization.

The main challenge facing camera-based localization in pipes
is that standard visual odometry algorithms for localization based
on keyframe optimisation methods, e.g., Hansen et al. (2011a);
Hansen et al. (2013, 2015); Zhang et al. (2021); Evans et al. (2021)
tend to fail in environments that lack visual features, and this is
particularly the case for newer sewer pipes, although we have shown
in aged sewer pipes that sufficient features exist for these methods to
work well (Evans et al., 2021). We will go on to show in the results
that a standard feature-based keyframe optimisation method for
visual SLAM,ORB-SLAM3 (Campos et al., 2021), fails in these types
of feature-sparse sewer pipe. There is a key research gap, therefore,
in developing a visual odometry method for sewer pipes that lack
visual features, which is the problem that we address here.

In this paper, we propose a new solution to the problem of
robot localization in feature-sparse sewer pipes based on joint
and manhole detections using camera images. Joint detection can
be used for localization because joints occur at regularly spaced
intervals where the inter-joint distance can be known a priori
from installation data records, or estimated from odometry. The
robot location along a pipe length, in one-degree of freedom, can
be approximately obtained from scaling the count of pipe joints
by the inter-joint distance. This transforms the problem of robot
localization to one of pipe joint detection. Manholes can be mapped
from above-ground to serve as drift-correcting landmarks when
detected from inside the pipe to further improve the localization
system.

Joint detection in pipes has been previously addressed
using vision methods for the purpose of damage detection (not
localization), using forward facing cameras (Pan et al., 1995), omni-
directional cameras (Matsui et al., 2010; Mateos and Vincze, 2011)
and fusion of laser scanners with cameras (Kolesnik and Baratoff,
2000). For forward facing cameras, the standard approach to pipe
joint detection is to apply circle detection using theHough transform
to each image frame (Pan et al., 1995). However, in exploratory
analysis we found the Hough transform approach was unreliable,
often detecting spurious circles. Instead, here we use SURF for image
feature extraction (Bay et al., 2008), followed by feature selection for
pipe joints using a bag-of-keypoints method (Csurka et al., 2004),
followed by circle fitting to detect the joint. The key advantage
of our approach is that it enables us to train the feature selection
algorithm on representative examples of sewer pipe joints (in an
unsupervised manner), whilst the Hough transform does not have
access to this prior information that specializes the method to the
sewer pipe environment. We make our procedure even more robust
by performing joint detections across a window of frames.

A potential limitation of only using pipe joints for localization
is that detection errors can be made, such as a joint being missed (a
false negative), or counted when not present (a false positive). To
address this challenge, we develop a modular extension based on
manhole detection to correct for drift in the localization algorithm:
we assume the manhole locations are known or can be mapped
from above-ground offline, and then use a linear classifier to
detect the manholes from within the pipe. We use the same SURF
image features as input to both the joint and manhole detection
systems, making the approach more computationally efficient than
using completely separate systems. Overall, the joint detection with
manhole drift correction produces an accurate and robust method
for localization.

To test and evaluate the method, we use real sewer pipe
data taken from three different types of pipe to demonstrate
its effectiveness (Figure 1), data available at The University of
Sheffield data repository ORDA https://figshare.shef.ac.uk/articles/
dataset/Visual_Odometry_for_Robot_Localisation_in_Feature-Spa
rse_Sewer_Pipes_Using_Joint_and_Manhole_Detections_--_Data/
21198070. We benchmark against ORB-SLAM3 (Campos et al.,
2021) as a standard method for visual odometry.

In summary, the main contributions of the paper are as follows.

• A robust vision-based method for approximately localizing a
robot (to the nearest pipe joint) along the lengths of feature-
sparse sewer pipes using joint detections combined with a
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FIGURE 1
Sewer pipe environment and CCTV rovers used in testing and evaluation. (A) Aerial view of the three pipe used in testing (of diameters approximately
Pipe 1: 600 mm, Pipe 2: 300 mm and Pipe 3: 150 mm). (B–D) Example images from inside the three pipes used in testing - note the general lack of
visual features. (E,F) Example CCTV rovers used in testing. (G) Example manhole image. (H) Example manhole image viewed from above.

method for drift correction at manhole locations using vision-
based automated manhole detection.
• A method for robustly detecting joints in pipes using a bag-of-
keypoints visual categorization algorithm that is benchmarked
against a standard method for detecting pipe joints in images -
the Hough transform.
• Experimental testing and evaluation of the localization method
using real-data gathered from three live sewer pipes.
• Benchmarking of the localization method against a well-
known, state-of-the-art visual SLAM algorithm - ORB-SLAM3
(Campos et al., 2021).

The paper is structured as follows. In Section 2 we describe the
methods and particularly our new algorithm for localization using
pipe joint detections and manhole detections, as well as the dataset
for evaluation. In Section 3 we give the results of the algorithm on
real-world sewer pipe data and include a benchmark comparison to
ORB-SLAM3. In Section 4we provide a discussion and in Section 5
we summarise the main achievements of the paper.

2 Methods

In this section we describe the joint detection algorithm,
manhole detection and the experimental data collection used to

evaluate the algorithm in a real-world live sewer pipe. The link
between vision-based joint detection and robot localization along
a pipe length is described in Figures 2, 3 gives an overview of the

FIGURE 2
Diagram demonstrating how joint detection can be used to calculate
the approximate robot location along the pipe length. The focus of
this paper is on developing a robust vision-based method for detecting
pipe joints from camera images to determine the joint count Nk.
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FIGURE 3
Overview of the robot localisation algorithm using joint and manhole detection. The pipe image Ik undergoes SURF features extraction to produce the
features Zk. These features are transmitted to both the input of Algorithm 1 for joint detection and feature pre-processing in the Manhole detection
pathway. Algorithm 1 for joint detection produces the flag Jk indicating presence or absence of a joint, which is the input to the windowed joint
detection, described in Algorithm 2, which more robustly detects presence/absence of a joint from across a sliding window of individual joint
detection. Both the output of windowed joint detection Rk and manhole detection ŷk are analysed to check if a manhole is detected: if so then the
robot location is updated using the manhole location and if not the robot location X̂k is approximately updated using the most recent joint detection
information, by calculating distance travelled from the joint count and inter-joint distance.
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methods used for vision-based joint and manhole detection, and
robot localization.

2.1 Joint detection

The robot location along the pipe, X̂, i.e., in one degree of
freedom, can be obtained from joint detections because joints
occur at regularly spaced intervals, where we assume the inter-
joint distance is known a priori or we assume can be estimated.
The joint detection algorithm proposed here has a few main steps
described below: feature extraction, circle fitting andwindowed joint
detection.

The purpose of the feature extraction step in the algorithm is to
find points of interest within the current test image frame Ik at time
step k, to check for a joint. In this paper we use a method inspired
by visual categorization with bags of keypoints (Csurka et al., 2004),
because it is simple, fast and effective and therefore well suited to
small, low-powered robots for the pipe environment. The method
operates by first extracting features from a test image Ik using
speeded up robust features (SURF) (Bay et al., 2008),

Zk = {zk,1,…,zk,n} (1)

Where zk,i ∈ ℝd is a SURF feature of dimension d, and n is the total
number of SURF features found in an image.We then use a threshold
test to retain only those features sufficiently similar to keypoints
previously seen in joints in training data,

Z*
k = {zk,i:d(zk,i,kj) ≤ β} ∀i, j (2)

Where d(zk,i,kj) is a distance-metric (Euclidean in this case) of
feature zk,i from keypoint kj and β is a threshold parameter tuned
offline. The keypoints, kj, are obtained offline by using a set of
training data with a K-means clustering algorithm, similar to
(Csurka et al., 2004).The use ofmultiple clusters enables themethod
to be robust to the variation in appearance of pipe joints, whilst also
excluding non-joint features from detection. Identifying a joint does
not require a large number of features, therefore it is more important
to exclude false detections than to detect every relevant feature, so
the threshold, β for selection is tuned to be more exclusive than
inclusive. Additionally, points lying within regions of an image that

are known to not contain joints, such as the centre, can be excluded
automatically using a mask,M.

We perform the actual joint detection by fitting a circle to the
extracted features, Z*

k , to test whether the features resemble a joint.
This is justified because it is known that sewer pipes are cylindrical,
and the position of the robot’s camera is relatively central in the pipe
during normal forward motion. As such, the pipe joints will appear
close to circular in images captured by robots in pipes. Note that
we only check for a joint if the number of features in Z*

k is greater
than a threshold parameter, γ. Note also that the objective here is
to detect the pipe joint, not obtain an optimal model of a circle,
therefore we avoid computationally intensive circle fitting based on
iterative optimisation (Gander et al., 1994), and opt for a more rapid
and simple estimate: we take the average of all feature points as the
circle centre, ck, and the average distance from the centre of each
point as the radius, rk,

ck = (ū, v̄) (3)

rk =
1
N

N

∑
i

√(ui − ū)
2 + (vi − v̄)

2 (4)

where (ui,vi) is the horizontal-vertical image coordinates
corresponding to feature zk,i, ū is the mean of the u-coordinates
and v̄ is the mean of the v-coordinates. This circle fitting method
is computationally efficient but its disadvantage is that it will fit
the circle to any set of points it is given, regardless of the actual
geometry of the points (Gander et al., 1994). To compensate for this,
the joint is only detected if the centre and radius of the fitted circle
are within predefined threshold parameters δ1 and δ2 respectively.
This procedure for detecting a joint in a single image frame Ik is
described in Algorithm 1 (Figure 4).

The procedure for detecting a joint is made more robust here by
performing detections across a window of frames. This reduces the
impact of false detections, whilst also providing robustness against
multiple correct, but discontinuous, detections of a single joint. To
raise a joint detection flag, Rk = 1, the method simply requires that
the number of positive joint detections from Algorithm 1, over a
window of frames of size nw, is greater than a threshold parameter ζ
and that the variances of the centre and radius of the detected joints
are below thresholds, σ2c ≤ η1 and σ2r ≤ η2. The reverse procedure
is used to lower the joint detection flag, Rk = 0. This procedure is
described in Algorithm 2 (Figure 5).

FIGURE 4
Algorithm 1: Joint detection in a single image frame.
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FIGURE 5
Algorithm 2: Detecting a joint in a window of frames.

All parameters in Algorithms 1 and 2 were tuned using a grid
search across real sewer pipe data (except γ,δ1,δ2 and ζ that were
tuned manually). The grid search took a number of days to evaluate
because it involved a relatively long distance with a large number
of parameters (β,η1,η2,nw,λ1,λ2) and although reaching a global
optimum could not be guaranteed, as a global search method a
grid search is relatively robust to not well-distinguishable local
optima, and testing on independent validation data ensured good
generalization.

The robot location X̂k along a pipe, can be obtained relative
to a starting position by using the joint detections, Rk, to count
the number of joints detected up to the current time step, Nk,
and then taking the product of the joint count with the inter-joint
distance, L,

X̂k ≈ NkL. (5)

2.2 Manhole detection

Manhole detections can be used to correct drift in the
joint localization algorithm. Manhole locations can be known a
priori or mapped from above-ground, and then detected from
within the pipe. While many potential methods of detecting
manholes exist, we continue to rely on camera data and use a
bag-of-features image recognition system to detect manholes.
The advantage of this approach is that the same SURF features
extracted for joint detections, Zk, can be used for manhole
detection. This makes the approach more computationally
efficient than using a separate feature extraction/classification
method.

To detect manholes, we define a standard binary classification
problem of manhole versus no manhole, using a linear support
vector machine (SVM). We construct a visual vocabularly of
features offline along with clusters using K-means clustering
(Wang and Huang, 2015), and then in online operation the
SURF features, zk, extracted from image frame Ik, undergo hard
quantization by representing each local feature by the nearest

visual word, which produces the classifier input features xk.
The classifier training/validation dataset of input-output pairs is
therefore represented as

D = {(x1,y1) ,…,(xm,ym)}, (6)

where the binary output yk ∈ {+1,−1}, represents the classes
manhole and no manhole respectively. We use a standard linear
(soft margin) SVM to classify the presence of a manhole, where the
decision hyperplane is defined as

f (xk) = wTxk + b = 0, (7)

wherew and b are the parameters that define the decision hyperplane
and the classifier predicts the class label using the sign of f(xk).
Optimal parameters for the soft-margin SVM were estimated
here using sequential minimal optimization (Cervantes et al., 2020)
using a balanced dataset of sample images taken from pipes
1, 2 and 3, and performance was evaluated using 10-fold
cross-validation.

In online operation detections of manholes are windowed
similarly to joints (as in Figure 3) in order to limit the impact
of single errant frames. Finally, the robot location, X̂k, can be
determined from the any detected manhole because manhole
locations are assumed known.

2.3 Experimental data

Tests were conducted on data gathered from real-world, live,
buried sewer pipes at The Integrated Civil and Infrastructure
Research Centre (iCAIR), at The University of Sheffield, UK,
using tethered mobile CCTV platforms commonly used in pipe
inspections. As can be see in Figure 1, three different platforms were
used to allow a variety of pipes to be tested.

The pipe lengths were approximately 90 m for pipe 1, 50 m
for pipe 2 and 30 m for pipe 3. Diameters were approximately
600 mm for pipe 1, 300 mm for pipe 2 and 150 mm for
pipe 3.
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The data used to train both the joint detection and manhole
detection systems was selected in part from the data used to test the
systems, but also from data in other pipes at the same location and
collected in the same experiment.

Ground truth localization was obtained from the robot tether,
which measured distance travelled.

2.4 Testing and evaluation

The localization system proposed here was compared and
benchmarked against a standard method for visual odometry, ORB-
SLAM3. To do this, the camera intrinsics were obtained from a
standard checkerboard calibration procedure.

To evaluate the overall effectiveness of the robot localization
system using our proposed method and ORB-SLAM3 we used the
mean absolute error in localization,

MAE = 1
n

n

∑
i=1
|Xi − X̂i|, (8)

where Xi is the true robot location in terms of distance travelled
along the pipe map (as measured using the tether on the robot) and
X̂i is the estimated robot location.

We also used the percent of operating time spent with an error
below a threshold,

E% =
100
n

n

∑
i=1

g(Xi) , (9)

where

g(Xi, X̂i) =
{{{{
{{{{
{

1 |Xi − X̂i| ≤ Ethresh

0 |Xi − X̂i| > Ethresh

(10)

and where Ethresh is the known distance between each pipe joint,
which would be the maximum error if the system was performing
ideally.

To evaluate the manhole classifier and joint detections we used
the metrics accuracyA (manholes only), recall R, precision P and F1

FIGURE 6
ORB feature extraction and matching in (A–C) sewer pipes versus (D) and outdoor scene from the KITTI dataset (matched points are shown in red and
green pairs connected by yellow lines). (E) Quantification of feature matching normalised by 1000 pixels (note the logarithmic scale).
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score F1 (Powers, 2011).

A = TP+TN
TP+TN+ FP+ FN

, (11)

P = TP
TP+ FP

, (12)

R = TP
TP+ FN

, (13)

F1 = 2
P.R
P+R
, (14)

Where TP is true positive, TN is true negatives, FP is false positives
and FN is false negatives.

3 Results

3.1 Feature detection in sewer pipes vs
urban environments

In this section we analyse the nature of the sewer pipe
environment with regard to the prevalence of features and compare
to outdoor urban environments where visual odometry is often
applied. We compare ORB feature extraction and matching in
our sewer pipes to a sequence from the well-known KITTI
dataset (Geiger et al., 2013): as can be seen in Figure 6A–C versus

TABLE 1 Comparison of joint detection using the bag-of-keypoints method versus the Hough transform (where the edge threshold and sensitivity of the Hough
transform are varied systematically). Note that in certain instances the Hough transform fails to detect any circles therefore Precision and F1-score are undefined,
which is indicted with a“-”.

Joint detection with bag-of-keypoints Hough transform

EdgeThresh - 0 0.25 0 0.25 0 0.25 0 0.25

Sensitivity - 0.85 0.85 0.9 0.9 0.95 0.95 1 1

Accuracy 84.65% 57.35% 58.01% 24.67% 58.01% 5.38% 58.01% 5.77% 0.66%

Precision 0.85 0.00 - 0.08 - 0.05 - 0.06 0.01

Recall 0.73 0.00 0.00 0.16 0.00 0.14 0.00 0.16 0.02

F1-score 0.78 - - 0.11 - 0.08 - 0.08 0.01

FIGURE 7
Pipe joint detection using our proposed method based on a bag-of-keypoints feature recognition method versus the Hough transform. (A) Hough
transform: the single joint is correctly detected but there are also multiple false positive circle detections (with different radii). (B) Bag-of-keypoints
method: the single joint is correctly detected with no false positives. (C) Hough transform: there is no joint present in the frame but the Hough
transform still detects circles. (D) Bag-of-keypoints method: no joint is present in the frame, which the method correctly detects.
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Figure 6D, images frompipe interiors often contain significantly less
regions of high texture than those in outdoor environments where
visual SLAM systems are known to work well. Figure 6E shows that
the number of features matched often an order of magnitude lower
than in an outdoor environment.This causes frame by frame feature
matching algorithms to frequently fail in sewer pipes.

3.2 Joint detection

In this section, we provide the results of our proposed joint
detection algorithm (Algorithm 1 only, i.e., no windowing) along
with a comparison to the Hough transform, which is a standard
method of circle detection in images (Yuen et al., 1990), as used in
the Matlab function imfindcircles and the OpenCV function cv2.
HoughCircles. To evaluate and compare the methods we used all
image frames from pipe 2 and varied the Hough transform tuning
parameters, edge threshold and sensitivity, systematically to search
out the best performance.The results demonstrate the problemswith
using the Hough transform compared to our method (Table 1) -
the edge threshold parameter requires tuning to a value of zero to
detect any circles, which leads to a large number of false positives.
Consequently, the accuracy is generally low, approximately 25%
using theHough transform (with edge threshold zero and sensitivity

0.9), mainly due to the detection of large numbers of false positives,
compared to 85%, using our proposed method of joint detection
(Figure 7A–D).

3.3 Manhole detection

In this section we provide results of manhole detections using
using linear SVM classification. Manhole detection performed well,
with an accuracy on 10-fold cross validation of 98.5% (with precision
0.97, recall 0.99 and F1-score 0.98): Figure 8A shows examples of
pipe and manhole environments which illustrates the high visual
difference between the two, as well as the spatial distinctions which
my be exploitable by other sensors. 10-fold cross validation was
performed on a selection of images from pipes and manholes across
a variety of pipes.

Thenetwork displays a high accuracy as can be seen inFigure 8B
as well as in Figure 8C which also indicates both a high specificity
and sensitivity. The shown accuracy is sufficient for the system
to reliably detect every manhole it encounters, and a windowing
method similar to that used in the joint detection algorithmprevents
any false positives or negatives from causing the samemanhole to be
detected twice.

FIGURE 8
Manhole detection results. (A) Example images from pipes 1, 2 and 3 (left to right) respectively of the pipe image (top) versus the manhole image
(bottom). (B) Classification confusion matrix from cross-validation data. (C) ROC curve for manhole detection.
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3.4 Localization

Localization accuracy using the proposed joint detection
algorithm improved substantially over using ORB-SLAM3: the
average mean absolute error for the joint detection algorithm
was 1.8 metres, whilst for ORB-SLAM3 it was 11.5 m in pipes
1 and 2 and a complete failure in pipe 3 due to lack of
features. Joint detection, however, worked well in all pipes
tested with an F1-score of 0.72–0.95 (Table 2). It is worth also
emphasising that although ORB-SLAM3 produced a result in

pipes 1 and 2, it still frequently lost feature tracking and re-
initialised due to lack of feature matching. Figure 9 provides a
detailed illustration and comparison of localization methods in
pipe 1.

Table 2 also shows measured error metrics from the Joint
Odometry, both with and without manhole correction, and
compares them toORB-SLAM3.The localization results usingORB-
SLAM3 correspond to a mean absolute error of approximately
12%–20% on pipes 1 and 2 (failure in pipe 3), whilst our method
worked successfully on all tested pipes and gave a mean absolute

TABLE 2 Localization results from pipe joint detection versusORB-SLAM3 from three sewer pipes.

Joint detection results Localization accuracy

Pipe Recall Precision F1 Score
Mean Absolute Error (m) Time Spent Under Target Error (%)

Joint + Manhole Joint only ORB-SLAM3 Joint + Manhole Joint only ORB-SLAM3

Pipe 1 0.69 0.76 0.72 2.04 2.25 12.70 70.78 69.15 11.52

Pipe 2 1 0.80 0.89 2.11 4.23 10.36 72.90 37.30 15.38

Pipe 3 1 0.91 0.95 1.12 1.03 N/A 97.53 97.53 N/A

FIGURE 9
Localization results in Pipe 1. (A) Aerial view of pipe 1 with manhole locations highlighted as circles. (B) Example in-pipe view of a manhole, with
successful manhole detection highlighted in green. (C) Example in-pipe view of a pipe joint, with successful joint detection highlighted in green. (D)
Comparison of errors in localization using the method of joint detection with manhole correction versus ORB-SLAM3, with loss of tracking in
ORB-SLAM3 denoted as a dashed red line.
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error in localization of approximately 2%–4% across all pipes, which
was a substantial improvement.

4 Discussion

4.1 Overall performance

The aim of this paper was to develop a localization system
for feature-sparse sewer pipes based on visual joint and
manhole detection, to overcome the limitations of conventional
keyframe optimisation visual odometry systems. The results have
demonstrated that this objective was successfully achieved. While
the system lacks the precision often desired for odometry systems
due to its discrete nature, it is able to perform highly accurate
localization given relatively limited knowledge of the operating
environment. Additionally, discrete updates based on prior external
information free the system from problems such as scale ambiguity
and loss of tracking that are particularly difficult to overcome in pipe
environments. Finally, while still present in the system, errors are
accumulated every distance update rather than every frame and are
smaller relative to the update than in traditional visual odometry
systems, meaning that drift cannot accumulate quick enough to
cause system failure before manhole detection corrects the state
estimate.

The systemsmain cause of failure is lower precision and recall in
more varied pipe environments, however it should be noted that the
systems parameters can be optimised to improve performance in a
single pipe at the expense of others.

4.2 Future work

In future work, a number of improvements could be investigated
to the system presented here. The first improvement would be an
online adaptive method for adjusting the joint detection algorithm
parameters automatically while in operation, to account for minor
differences between pipes.

The second improvement would be to automatically estimate
inter-joint distances. Here we assume these distances are known a
priori, which is realistic for some pipes. However, this knowledge
might not always be available. We have found that simple odometry
methods, such as wheel odometry, may be accurate enough over the
short distances between pipe joints to derive this information during
operation. Alternatively, it should be possible to use the detection
of manholes, mapped from above-ground, to estimate the inter-
joint distances. These methods require development and testing
in future work. In addition, future work could address specific
problems where joints are irregularly spaced and pipe bends occur -
the latter problem could be addressed by combining joint detection
for measuring distance travelled with an IMU to sense changes of
direction.

Thirdly, false positives are primarily associated with manholes,
however, other predictable environmental features, such as
connecting pipes, are also known to reduce the accuracy of
the detection system. These other predictable features provide

opportunity for further improvement through their detection or
further exploitation of prior knowledge.

5 Summary

In this paper we developed a localization method for sewer
pipe inspection robots, operating in pipes with sparse visual
features. The method exploited the intrinsic characteristic of the
sewer pipe environment, that pipe joints occur at regularly spaced
intervals. Therefore the localization problem was transformed to
one of pipe joint detection. To further robustify the procedure,
manhole detectionwas also included, which enabled drift correction
based on manholes that could be mapped from above-ground.
The visual localization algorithm was evaluated on three different
real-world, live sewer pipes and then benchmarked against a
standard method for visual odometry - ORB-SLAM3. We showed
that our method substantially improved on the accuracy and
robustness of ORB-SLAM3. Whilst visual SLAM algorithms such
as ORB-SLAM3 are sophisticated, potentially very accurate and
estimate the full six degree-of-freedom robot pose compared to
our discrete, approximate localization method that only works in
one-dimension along the pipe length, we would note that there
is a trade-off in accuracy and robustness here, with ORB-SLAM3
regularly failing to track features in these feature-sparse sewer pipes.
Ultimately we might find both systems are used in parallel in
future to take advantage of the attributes of both approaches. The
developed method can be applied as part of real robot localization
systems, as part of digital twins for pipe networks with different
scale, under different environmental conditions and different prior
knowledge.
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Chapter 4

Multiple Hypothesis Particle

Filtering For Visual Odometry

4.1 Summary of research

The publication included in the chapter is a short conference article detailing a novel method

of navigating a map consisting of junctions and the traversable connections between them. At

the time of this research being conducted, the available in-pipe footage was very limited and no

method of performing odometry or SLAM within them existed beyond a tether attached to the

camera platform which reported how much tether had been un-spooled as an estimate of the

distance travelled down the pipe. Therefore, the data used was footage of a car on roads from

a standard data-set due to the belief at the time that the topology of road junctions and their

connecting roads closely resembled that of pipe networks with manholes connected by pipes and

the availability of SLAM and odometry systems able to operate on road networks.

While this belief held mostly true, increased access to pipe network data revealed some

further dissimilarities between the two topologies. One of the main differences is the possibility

of travelling in both directions along roads and the ability to revisit previously visited junctions.

This differs from sewer pipe networks which are designed to allow flow in a single direction along

multiple branches towards a single point. This makes pipes directed radial networks as apposed

to the undirected mesh network of roads. Despite this, much of the research in the publication

remains applicable to pipe networks.

Additionally, pipe networks were found to have additional structure due being constructed
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from prefabricated sections of equal length. This structure was found to be detectable and its

use for SLAM was explored in the publication contained in chapter 3.

The publication details the use of particle filtering to loosely constrain the vehicle location to

the given map and the instantiation of multiple independent particle filters when at a junction.

These filters are each assigned to a different possible route taken after the junction and culled

as their accuracy deteriorates, leaving the filter that assigned to the correct route to continue.

This allows the vehicle to operate past junctions when it has no information about which exit

it has taken.

While the primary contribution of this publication is the multi hypothesis particle filtering

system, it was also used as an opportunity to implement and trial a deep learning based method

of odometry using optical flow. This method was investigated due to it not requiring the feature

extraction and matching which causes other methods to fail in pipes as well its purported efficacy

and potential to run dedicated optical flow processing hardware designed for mobile robots. The

method was ultimately found to be insufficient, however it performs adequately as a stand in

for an arbitrary odometry system in any future work.

The publication makes an assumption that a separate system would be capable of identifying

when a robot in a pipe network is at a junction (manhole). While no such system had been

developed at the time due to a lack of available data, investigation into the structure of pipe

environments had led us to be confident in the possibility of such a system. Because of this, and

due the increased complexity and diversity among road junctions, it was decided to not attempt

such detection during this research. As shown in the previous chapter, this assumption proved

to be valid, as an accurate manhole detection system was developed for that publication.

The particle filtering system was found to improve the accuracy of localisation compared to

the raw odometry outputs, bringing the mean positional error from 335.2m to 49.2m and the

mean heading error from -1.65 radians (-94.54 degrees) to 0.28 radians (16.04 degrees). The

system also allows recovery from failure, the lack of which causes the localisation output to

be unable to leave an incorrectly entered section of the map when naively integrating prior

information.

4.2 Publication
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Abstract. Visual odometry can be used to estimate the pose of a robot
from current and recent video frames. A problem with these methods is
that they drift over time due to the accumulation of estimation errors at
each time-step. In this short paper we propose and briefly demonstrate
the potential benefit of using prior 2D, top-down map information com-
bined with multiple hypothesis particle filtering to correct visual odom-
etry estimates. The results demonstrate a substantial improvement in
robustness and accuracy over the sole use of visual odometry.
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1 Introduction

Visual odometry (VO) is a popular method of pose estimation in mobile robots
and there are many methods for this including key-frame optimisation [8] and
recently deep learning [6, 3]. The deep learning methods are advantageous be-
cause they avoid the need for camera calibration and online optimisation used in
key-frame methods, although they tend to be less accurate than the optimisation
methods.

One problem that is common to all VO methods (and indeed all odometry
methods) is that the pose estimate drifts over time due to the accumulation
of estimation errors. Yet, there is often additional information we can use to
help reduce drift, such as prior map information. This is true in scenarios of
driver-less cars (road maps), mobile robots moving along corridors in indoor
environments (architectural floor-plans), and pipe inspection robots such as in
the oil, gas, sewer/water and nuclear industries (where pipe network plans tend
to be readily available). In all these cases we potentially have prior information
in the form of a top-down 2D view of the map, and the mobile agent is largely
constrained to move along routes in this map. So, it appears attractive to make
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Council (EPSRC) Programme Grant EP/S016813/1 Pervasive Sensing for Buried
Pipes (Pipebots) https://pipebots.ac.uk
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use of this information in scenarios where it is available. This idea is used in
a VO system in [1], where the probability of being located in a discrete road
segment is estimated using a particle filter.

The algorithm developed in this paper fuses VO with prior 2D map informa-
tion using multiple hypothesis particle filtering: when a moving agent reaches
a junction in the map, multiple particle filters are used to fuse the VO data
with each possible route away from the junction. The most likely hypothesis is
probabilistically selected using the distribution of particles for each filter, which
acts as a likelihood function, similar to methods that have been used in multiple
model particle filtering for fault detection [4]. The results demonstrate that sim-
ply using knowledge of the map alone with VO does not lead to successful pose
estimation but instead a multiple hypothesis method must be used to ensure
accuracy and robustness.

2 Methods

The proposed method of map hypothesis switching is intended for robots or
vehicles operating in environments that highly constrain the agent’s motion but
whose exact layout is uncertain. Examples of such situations are road or pipe
networks where the location of junctions and the connections between junctions
are approximately known and available in the form of a 2D, top-down map.

The system performs VO via a deep network similar to those presented in
[6, 5] using optic flow calculated via the Horn-Shunck method. The VO outputs
are filtered via a particle filter that uses accelerometer and gyroscope data as
the basis for a state-space model.

The map provided to the system is represented as a set of coordinates of
known junctions with connections between each junction. The system uses the
straight lines between each pair of connected junctions as its prior map. Multiple
models are instantiated upon reaching a junction and we make one important
assumption that the system can identify when it has reached a junction via a
separate system. A standard method of multiple model particle filtering, as in
[4], is adapted here to switch between particle filter models that express different
hypotheses, where the distribution of particles for each filter acts as a likelihood
function, and this is used to probabilistically select the most likely hypothesis.

We use the KITTI data set [2] consisting of camera and GPS data from a
car, to both train the visual odometry and test the multi hypothesis system. We
use different sequences for training and testing, to ensure testing is independent.

3 Results

In order to evaluate our proposed algorithm we tested 1. a system that used
VO only, 2. a VO system using a map with a single particle filter, and 3. a VO
system using a map with multiple hypothesis particle filtering on separate test
data. Fig 1 shows the ground truth and pose estimates for each method overlaid
on a street map. As can be seen, the raw VO system performs poorly and a single
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Fig. 1. Comparison of ground truth GPS vehicle data with pose estimation algorithms
on independent validation data (KITTI, sequence 5). (a) Ground truth. (b) Visual
odometry only (note that the pose estimate exits the area of the ground truth but we
retain a comparable zoom-level to the other plots for clarity). (c) Visual odometry with
map information. (d) Multiple hypothesis visual odometry.
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map hypothesis results in unrecoverable failure when the system believes itself to
be in the wrong section of the map. The multiple hypothesis system is generally
much more accurate. This system occasionally selects an incorrect hypothesis
(corresponding to the apparent gaps in location estimates in Fig. 1d) but then
automatically recovers. The principal improvement of this system over simple
odometry is the ability to recover from failure, however it also demonstrates
an improved pose accuracy, with VO alone resulting in a mean position and
heading error of 335.2m(343.20 and -1.65(-2.20) radians respectively and a final
positional error of 230.4 m, and the multi hypothesis system resulting in mean
errors of 49.2m (40.3) and 0.28 (0) radians and a final error of 0.85 m.

4 Conclusions

In this work we have presented a novel VO method that uses prior 2D map
information and multiple hypothesis particle filtering. We demonstrated that
the method was more accurate and robust than solely using VO, and that using
multiple hypothesis particle filtering substantially improved on using a single
particle filter with map information, particularly in it’s ability to recover from
errors. In future work we aim to resolve the problem of junction recognition in
order to make a fully standalone algorithm and also develop a compact system
that can run in real-time on mobile hardware.

Additionally we aim to address the system’s main weakness, that of tem-
porarily selecting an incorrect hypothesis, which occurs regularly after junctions.
Improvements here may come from including additional information in the prob-
ability calculations, such as designed or learned features from each hypotheses
parameters similar to [7], or from more complex assessments of each hypotheses
probabilities compared to each other and possibly the system’s states and sensor
inputs.
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Chapter 5

Conclusions

This thesis aimed to address the problem of autonomous navigation in buried pipe networks

by leveraging prior knowledge of pipe environments. Section 1.2 stated five objectives to met

in order to realise this aim. The research presented in the previous chapters has met those

objectives, and in doing so, made significant contributions to the field of SLAM in pipe networks.

The first of those objectives (the creation of usable maps of pipe networks) has been addressed

in chapters 3 and 4 via the creation of maps used in the corresponding publications. Chapter 4

does this by approximating road maps to pipe networks while chapter 3 operates in real pipes

and uses knowledge of their structure to create a map suitable for its method of odometry.

The system of odometry via landmark detection detailed in chapter 3 effectively addresses

the second and objective of this thesis, presenting systems of detecting landmarks and manholes

with 85% and 98.5% accuracy’s respectively. It is then able to use those detections to locate

itself within its environment relative to its last known location and obtain the path it has taken

with an average error of 1.76m, thus addressing the third and fourth objectives significantly

effectively than ORB-SLAM3’s average error of 11.53m in the same environment.

Chapter 4 then completes the final objective by developing a method of robustly considering

multiple possible paths in order to account for uncertainty in the direction travelled and to allow

for odometry systems to recover from failure. This method improves the average error of the

odometry system alone from 335.2m to 49.2m.

While autonomous navigation of pipe networks remains a complex and challenging problem,

this thesis presents promising progress toward an overall solution. The system described in

chapter 3 is able to localise within a pipe network to a degree that, to this authors knowledge,
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has not previously been demonstrated. This system could be used in real world navigation

systems with only minor optimisation of its parameters for the intended operating environment.

It could also be further developed to include other predictable landmarks such as inlets, or be

adapted for other types of pipes provided they have suitable structural landmarks. The work

in chapter 4 requires adapting specifically to pipe networks, however it serves as a foundation

for building such a system and demonstrates the effectiveness of map integration by multiple

hypothesis particle filtering.

A continuation of this thesis would likely begin by applying the multi hypothesis particle

filtering algorithm developed in chapter 4 to pipe network odometry. While the existing method

should, in theory, work equally well in a pipe network, some work may be needed to adapt and

tune the algorithm for this environment. Work would also need to be conducted to integrate

the algorithms developed in chapters 3 and 4 into a single system.

The most obvious continuation however, would likely be to address the problem of creating

maps of pipe networks since the research included in this thesis only used existing maps or

knowledge of the environment. Although some work on this topic was undertaken, it was not

up to publishable standards and therefore this thesis did not present research on the problem

of creating maps of pipe networks from above ground detections of manholes. It is the authors

opinion that low altitude aerial imagery is a potential solution to this problem however more

research would be needed to assess the viability of various detection methods as well as methods

of converting those detections into a usable map.
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