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Abstract

Multilingual speech recognition systems usually benefit low-resource languages but suffer

degradation in the performance of several languages compared with their monolingual

counterparts. With an objective to improve speech recognition performance for a target

language, closer languages are chosen to build a multilingual system. The number of

shared phonemes among them is usually taken into account to estimate the languages’

closeness. However, various close languages such as English, German, Dutch and many

others with significant phonemes overlap yield higher error rates from multilingual speech

recognition systems when compared with their monolingual speech recognition systems.

Limited attention has been paid towards investigating the performance trends of multi-

lingual speech recognition systems and their relation with acoustic-phonetic similarities

across the languages.

The objective of this research is to estimate cross-lingual acoustic-phonetic similarities

and their impact on multilingual speech recognition systems. To that end, a novel data-

driven approach is proposed to analyse the output from several monolingual acoustic

models given a target language speech signal. This technique measures the similarities

between posterior distributions from various monolingual acoustic models given a target

language speech signal. Neural networks-based ‘mapping models’ are trained that trans-

form the distributions from hybrid DNN-HMM acoustic models of different languages

into a directly comparable form. The analysis shows that the ‘closeness’ among the

languages can not be truly estimated by the size of the shared phonemes set. Entropy

analysis of the proposed mapping models exhibits that a language with lesser overlap can

be more amenable to cross-lingual transfer, and hence more beneficial in the multilingual

setup.

The proposed mapping models are then exploited to improve low-resource speech recog-

nition. A novel approach of hybrid DNN-HMM acoustic model fusion is proposed in a

multilingual setup. Posterior distributions from different monolingual acoustic models,

given a target language speech signal, are fused. Mapping models are trained for source-

target language pairs to transform posteriors from a source acoustic model to the target

language. These models require limited data as compared to the acoustic model training.

Multilingual model fusion yields a relative average gain of 4.56% and 3.77% for selected

languages from the Babel data set when compared with multilingual and monolingual
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baselines respectively. Cross-lingual model fusion shows that comparable results can be

achieved without using posteriors from the language-dependent ASR system.

Substantial phonemes overlap across the languages and the relatively smaller size of the

universal phoneme set is expected to make the mapping task less challenging compared

with mapping models for end-to-end ASR systems where tokens are usually graphemes

or sub-word units. Furthermore, end-to-end speech recognition systems have been

dominated over hybrid DNN-HMM models. So, the concept of learnable cross-lingual

mappings is extended for end-to-end speech recognition to study if mappings could be

learnt for end-to-end speech recognition systems. Mapping models are also employed

to transliterate the source languages to the target language without using parallel data.

Finally, the source audio and its transliteration are used for data augmentation to re-

train the target language ASR system. The retrained speech recognition system with

data augmentation results in a relative gain of up to 5% over the baseline monolingual

speech recognition system for the selected languages from the Babel data set.

Student-teacher learning or knowledge distillation has been previously used to address

data scarcity issues for the training of speech recognition systems. However, a limi-

tation of knowledge distillation training is that the student model classes must be a

proper or improper subset of the teacher model classes. It prevents distillation from

even acoustically similar languages if the character sets are not the same. In this work,

the aforementioned limitation is addressed by proposing a novel multilingual knowledge

distillation approach that exploits the earlier proposed mapping models. A pre-trained

mapping model is used to map posteriors from a teacher language ASR system to the

student language ASR system. These mapped posteriors are used as soft labels for knowl-

edge distillation. Various teacher ensemble schemes are experimented with to train an

ASR system for low-resource languages. A model trained with MUST learning reduces

relative character error rate up to 9.5% in comparison with a baseline monolingual ASR.



Chapter 1

Introduction

Speech and language technologies have revolutionised the conventional modes of human-

machine interactions. The use of physical input hardware such as keyboards and joy-

sticks etc. is now being replaced by machines which can listen, understand and respond

to human speech and language. Lately, personal voice assistants such as Siri, Cortana

and Google Assistant etc. have gained substantial popularity. A key component of such

systems is an Automatic Speech Recognition (ASR) system which converts an input

speech signal to the text.

1.1 Automatic speech recognition systems

Over the past decade, automatic speech recognition has been one of the most rapidly

growing research topics. The dramatic improvement in ASR performances, with the

introduction of recent modelling techniques such as transformers and self-supervised

models, has resulted in the increasingly widespread use of speech recognition systems in

real-world scenarios. Nowadays, speech recognition systems can be seen playing a role

in many fields of life such as health care (Sherwani et al., 2007), agriculture (Patel et al.,

2009), informational retrieval, military and security applications (Schultz and Kirchhoff,

2006a) are a few to name. Typical speech recognition systems, consisting of data-driven

models trained using machine learning techniques, require:

1. Large amount of transcribed speech data for training of the Acoustic Model

(AM)

2. A large text corpus for learning a Language Model (LM)

3. A pronunciation model (or lexicon) which maps words to distinct underlying

representations such as sounds (phonemes) or characters etc of a language.

An acoustic model takes a speech signal as an input and outputs the probabilities of

the language representations. These representations can be phonemes, characters or

any other predefined tokens such as Byte Pair Encoding (BPE) (Sennrich et al., 2016)

1
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tokens. The language model, on the other hand, helps to convert the probabilities of

these representations to coherent language words. Language models are referred to as

models that assign probabilities to word sequences (Jurafsky and Martin, 2008b) and

are trained on (usually huge) text corpora of the language. Given a sequence of words,

it predicts which words or sequence of the words are more likely (and thus semantically

more plausible) than the others. For example, a language model would know that “I’m

from Pakistan, born and bred” is more likely than “I’m from Pakistan, born and bread”

although both bred and bread sound the same. Although pronunciation models have

been required to build an ASR system for very long, their use has been drastically

decreased with a paradigm shift towards Deep Neural Network (DNN) based end-to-end

(e2e) speech recognition systems. The acoustic model is the main component of most

State-of-the-art (SOTA) speech recognition systems. In e2e ASR systems training, an

implicit language model is also learnt (Gong et al., 2022). However, external language

models are also frequently integrated with these systems, significantly improving their

performance (Chorowski and Jaitly, 2016, Hori et al., 2018).

Many companies and government organisations are investing in the development of

speech recognition technologies with the rapid increase in the availability of super-fast

processing units, open data resources and the emerging trend of smart devices (Chuang-

suwanich, 2016). Most commercial applications aim to deal with clients from around

the globe, and thus commercial interests are not limited to speech technologies of only

one language but the systems which could process multiple languages (and ideally all

the languages spoken around the globe). However, out of nearly 7000 languages that

are spoken around the world, just 23 languages are spoken by more than half of the

world’s population (Ethnologue). Since the collection of language resources is usually

very expensive and laborious, it is very hard to collect sufficiently large amounts of data

for most of the languages to build their speech recognition systems (Lamel et al., 1995).

Some spoken languages do not even have writing systems and it is difficult to get lin-

guistic knowledge of some languages (Schultz and Kirchhoff, 2006b). Hence, only a few

languages have been predominately focused on for the development of speech recognition

systems (Burget et al., 2010, Kohler, 1996, Lamel et al., 1995).

Although it is very hard to build a speech recognition system for all the languages

given the aforementioned constraints let alone the computational costs and technical

issues, gradual efforts have been seen to build multilingual speech recognition systems

with as many as possible languages (Conneau et al., 2021, Hou et al., 2020, Li et al.,

2022a, Pratap et al., 2020a). A speech recognition system is considered multilingual if

at least one of the two components (i.e. acoustic model and language model) is multi-

lingual (Tong, 2020). Though modern speech recognition systems have achieved pretty

impressive performance for the English language, multilingual ASR systems received

scant attention until the recent past. They have stolen the limelight lately because of

manifold objectives. Before delving deeper into multilingual speech recognition systems
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and the motivation of this work, some crucial foundational terminology is defined in the

following section to enhance the readability of this thesis.

1.2 Terminology

In this section, several terms are defined with the meaning adopted for this thesis. Some

of the terminology has been used in different contexts in the literature. So, it is vital

to define them here to better understand the rest of the thesis. Definitions here are

intended to explain what they mean when encountered in this work.

• Automatic speech recognition system: The task of an ASR system is to map

a waveform to the appropriate string of words (Jurafsky and Martin, 2008a). This

term is used for a system consisting of machine learning model(s) which is capable

of converting speech into text.

• Acoustic model: A machine learning model which takes speech as an input

and outputs the probabilities of the language(s) representations i.e. phonemes,

graphemes or any other predefined tokens.

• Language model: A statistical or machine learning model which outputs the

probabilities of the next language token given the previous token(s).

• Pronunciation model: A pronunciation model or dictionary is a mapping of

words to their pronunciations. It is usually a hand-crafted mapping of words to

underlying phonemes by language experts. However, a pronunciation dictionary

or model can have mappings from words to their graphemes or sub-words. It is

also referred to as lexicon.

• Monolingual speech recognition: A speech recognition system with all of its

models (acoustic and language) trained using the data of only one single specific

language. It is alternatively termed as a language-dependent and language-specific

speech recognition system as well.

• Multilingual speech recognition system: A speech recognition system is re-

ferred to as a multilingual speech recognition system when any of the above-defined

models i.e. acoustic or language model is trained using the data from multiple

languages. It is alternatively termed as a language-independent system as well.

Unless specified otherwise, the term ‘multilingual model’ (either acoustic or lan-

guage) refers to a model for which the training data of multiple languages is mixed

before training and then batched randomly from the pool during training. Such

models are usually evaluated on the languages seen in the training data. When an

ASR system consists of both an acoustic model and an explicit language model,

it would be considered multilingual if any of those models is multilingual. How-

ever, since most of the work in this thesis revolves around acoustic modelling, this
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term widely refers the multilingual acoustic models unless explicitly mentioned

otherwise.

• Cross-lingual speech recognition: The definition of this term relates more

to the inference stage rather than the training. Cross-lingual speech recognition

refers to using a multilingual speech recognition system to infer languages that

are not included in its training data. Though it holds for both acoustic and lan-

guage models, it mostly refers to acoustic modelling in this thesis unless specified

explicitly.

• International Phonetic Alphabets representations: International Phonetic

Alphabets (IPA) (Association, 1999) is an alphabetic system to represent the dis-

tinct sounds (phones) of spoken languages in the written form. It has been devel-

oped by the International Phonetic Association and is based on Romic alphabets.

• Phone: A phone is the smallest unit of speech perceived as a distinct sound by

a listener (Hardcastle et al., 2010); for example [p], [b] and [P]. They are usually

represented by IPA symbols in the square brackets.

• Phoneme: The representation of a group of phones in a particular language which

count as if they were the same for practical purposes (i.e. two phones in a language

are one phoneme if replacing one with the other does not change the meaning of

the word) (Jones, 1957). For example, the acoustic realisation of phoneme \p\can
be [ph] or [p] in English where changing either of the phones with the other, does

not change the meaning of a word.

• Allophones: A set of phones which are used to pronounce one phoneme of a

language (Society, 1961) and linguistically non-variant for that language. For

example, phones [p] and [ph] are allophones of phoneme \p\in English while these

might be considered different phonemes in some other language such as they are

in Urdu.

• Grapheme: A grapheme is the smallest unit of the writing system, serving to

represent a phoneme (Coulmas, 1996). One or more than one graphemes can

represent a sound. It can be the characters of a language as well as the punctuation

marks etc.

• Sub-word units: In terms of speech recognition, a sub-word unit is any represen-

tation between the smallest units such as phonemes and graphemes to the larger

units of words. It could be as small as a phoneme or a grapheme but usually

smaller than a word.

After defining the necessary terminology, different approaches towards multilingual speech

recognition, motivation and the challenges faced in multilingual speech recognition tech-

nologies are discussed. Then the motivation, objectives and contribution of this work

will be presented briefly.
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1.3 Multilingual ASR systems

In this section, different approaches towards multilingual ASR systems, the motivation

of multilingual speech recognition systems and the main challenges faced by the research

community are discussed.

1.3.1 Approaches towards multilingual speech recognition

In the last section, a multilingual ASR system has been defined as a system with models

trained on multilingual data. However, there are various possible approaches to building

a multilingual ASR system. Though it is discussed in detail during the literature review

in Chapter 3, some examples of exploiting resources of multiple languages for speech

recognition are given below.

• Different acoustic and language models: Usually ASR systems also make use

of explicit language models (especially in the case of conventional Hidden Markov

Model (HMM) based models). So, multilingual resources can be utilised to train

either acoustic, language or both models. However, in any of these cases, the

resulting ASR would be multilingual. For example, an acoustic model trained on

data from multiple languages but with the language-dependent language models

gives gain over the monolingual models (Billa, 2018). Though only the acoustic

model is multilingual and the language model is monolingual, it would still be

regarded as a multilingual ASR.

• Multilingual ASR system as a feature extractor: Studies have been done

where multilingual ASR systems have been used to extract features for a target

language ASR training (Ghoshal et al., 2013, Grézl et al., 2014, Veselý et al., 2012).

The language-dependent models trained using these features prove to outperform

the baseline monolingual ASR system. This is usually the case for e2e ASR systems

where a multilingual ASR system is trained first. Then the target language data is

passed through the pre-trained multilingual ASR system to extract representations

from a hidden layer as the features. These extracted features are used to train a

language-dependent ASR which proves to perform better than a system trained

using conventional features (Thomas et al., 2012).

• Multilingual ASR system for transfer learning: In a similar nature to the

above, language-independent ASR systems are used to train a monolingual ASR by

transfer learning (Hou et al., 2020, Schultz and Waibel, 2001, Tong et al., 2018).

This approach is particularly evident in end-to-end systems, where a language-

specific system is initialised with the weights of a pre-trained multilingual model.

This initialisation leverages the broad linguistic knowledge of the multilingual

model, providing a strong foundation that enhances the performance of the target

language model through fine-tuning. This model can be transferred to a monolin-

gual model in two ways explored by (Tong et al., 2018) i.e. updating the whole
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model during the re-training for target language data or updating only a few final

layers. Their results show that monolingual models initialised from multilingual

models outperform the models trained from random initialisation.

• Multilingual ASR system as a unified model for multiple languages: A

very common and simple approach to training a multilingual model is to train a

single model using training data of all the languages. However, this can also be

done in two ways i.e. a model trained for a single task (Hou et al., 2020) or multiple

tasks (Heigold et al., 2013). For a single task, data from all the participating

languages is used to predict the output tokens of all the languages i.e. the output

tokens would be ∪Li=1Oli where Oli are the output tokens of li language and L is the

total number of languages. In the multi-task approach, an e2e model contains some

shared layers between all the languages and then some language-specific layers. So,

the model is trained in a multi-task fashion where output tokens of each language

are a separate task.

1.3.2 Motivation of multilingual speech recognition systems

The aforementioned approaches towards building multilingual speech recognition sys-

tems can be used in many different ways to build a multilingual system. These ap-

proaches are discussed in the literature review (Chapter 3) but the scope of this section

is limited to the motivation and objectives of building multilingual or cross-lingual sys-

tems. Why are scientists interested in building multilingual speech recognition systems?

As an answer to this question, the key motivations for building multilingual ASR systems

are briefly described here.

• A single model to recognise the speech of a large number of languages:

A possible way to build a speech recognition system for multiple languages is to

cascade two systems i.e. Language Identification (LID) system followed by indi-

vidual ASR systems for each language. In a cascaded system, the language spoken

in an utterance is detected first using the LID system and then the corresponding

ASR system is used to convert speech into text. However, if an error occurs in the

initial stage of the cascaded systems, it is propagated to the following stages conse-

quentially i.e. if the LID system misidentifies the language, the wrong ASR system

is invoked and ultimately the whole output text would be wrong. Furthermore, it

becomes cumbersome to train and maintain separate speech recognition systems

as the number of languages increases (Li et al., 2022a, Pratap et al., 2020a). So,

one objective of building multilingual speech recognition systems is to train a sin-

gle model which could recognise speech from a large number of languages. It is

referred to as “massively multilingual” as well.

• Improving low-resource speech recognition: Another objective of multilin-

gual speech recognition is to exploit cross-lingual resources to improve the perfor-

mance of speech recognition systems for low-resource languages (Choi and Park,
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2022, Hsu et al., 2020, Klejch et al., 2022, Xu et al., 2022). Since modern speech

recognition systems require a lot of transcribed data that low-resource languages

lack, a multilingual speech recognition system can be trained using closer or re-

lated languages. It is usually expected that the closer languages help to increase

the training data of shared representations across the languages and multilingual

models perform better than the monolingual models for such languages. Some

studies have also shown that a monolingual model bootstrapped from a pre-trained

multilingual model also outperforms a monolingual model trained from random ini-

tialisation (Tong et al., 2018). Using multilingual models just to extract features

to train the monolingual models also gives some gains (Thomas et al., 2012).

• Code-switched speech recognition: Code-Switching (CS), the spontaneous

use of two or more languages in a single conversation, is a prevalent linguistic

phenomenon in multi-cultural societies or countries where native and official lan-

guages are different. The speakers keep on mixing the dominant language (referred

to as matrix language) and the second language (embedded language) in their daily

communications. CS renders a monolingual ASR system confused about the lan-

guage and muddles the context when the system confronts the embedded language

(Farooq et al., 2020). This limitation of monolingual ASRs in the context of code-

switched speech recognition has also attracted researchers towards multilingual

speech recognition. Speech recognition systems that are capable of handling the

complex acoustic and linguistic relationships between multiple languages are ro-

bust to code-switching speech.

1.3.3 Challenges for multilingual ASR systems

In this section, the key challenges in building multilingual speech recognition are de-

scribed. The first two issues are more prominent and exacerbated in the case of e2e-based

models where most of the languages have distinct output representations (graphemes or

sub-word units).

• The long tail problem: In large-scale multilingual (synonymously referred to as

massively multilingual) model training, a single model is trained for a large number

of languages (Hou et al., 2020, Pratap et al., 2020a). However, the data across the

languages usually is very skewed. There are some resource-high languages with

thousands of hours of data and then the low-resource languages with a few tens of

hours. It raises the challenge of efficient data sampling during training steps.

• Convergence: When a single model is trained for a large number of languages

where most of the languages have different output representations (in the case

of e2e systems), it becomes challenging for the model to learn all the tasks at

the same time. Such scenarios make it hard for a model to learn smoothly and

converge. This is an active research area and approaches such as lifelong learning
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(Li et al., 2022a) and curriculum training (Pratap et al., 2020a) have been studied

to overcome this problem.

• Benchmark data sets: Until recently, there have been very few benchmark data

sets to train and evaluate multilingual ASR systems. The most standard ones

included GlobalPhone (2002 and 2013) (Schultz, 2002, Schultz et al., 2013) and

data set released under the IARPA Babel project (Gales et al., 2014) but both of

them have not been freely available open resources. So, a lot of work on multilin-

gual ASR has been reported on a wide range of non-standardised different data

sets. It raises the issue of the lack of a standard benchmark data set and thus a

standard baseline. This has led to the research community building multilingual

speech recognition systems using non-standard data sets and comparing the pro-

posed techniques with their baselines (Datta et al., 2020, Kannan et al., 2019).

Although the performance gains of the proposed techniques can be seen in com-

parison with the given baselines, it is hard to compare two different techniques.

A rise in standardised multilingual data sets has been seen since 2020 and vari-

ous multilingual data sets such as Multilingual LibriSpeech (MLS) (Pratap et al.,

2020b) and CommonVoice (CV) (Ardila et al., 2020) have been made publicly and

freely available to the community. Additionally, some works show performances of

their proposed systems on their in-house data sets which also makes it difficult to

compare their approaches with other works in the literature. However, that is not

an issue specifically associated with multilingual speech recognition research.

• Criteria to mix languages for a multilingual ASR: To improve low-resource

languages, resources of a few languages (usually on a scale of 5-10) are exploited

(Burget et al., 2010, Kannan et al., 2019, Madikeri et al., 2020). In most such cases,

the performance from multilingual approaches improves the speech recognition

performance when compared with monolingual counterparts of the low-resource

languages. Usually, the choice of these languages is based on ‘close languages’

(Datta et al., 2020). However, there is no solid definition of closeness in the

literature and seems an open-ended term. It raises a question about which, how

many and how close languages are needed to combine for the speech recognition

improvement of a low-resource language.

1.4 Motivations and objectives

So far, the different definitions, motivations and challenges in multilingual ASR research

have been discussed. In this section, the motivation for this work is described briefly.

In this work, the research is primarily motivated by the last challenge in Section 1.3.3

i.e. what is language closeness and on which criteria languages are mixed to train a

multilingual ASR for low-resource speech recognition improvement. Before diving into

technical aspects, the problem is stated from linguistics aspects and ongoing research in

the domain of multilingual ASR.
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Summarising all the motivations of multilingual ASR (described in Section 1.3.2) into

a single point, the ultimate objective of multilingual speech recognition is to build an

‘universal ASR’. A universal ASR would ideally be able to convert speech of any language

to text. Massively multilingual is one way to reach the destination using very large data

and computational resources. On the other hand, attempts are being made to achieve

the same objectives with minimal effort in terms of data and computation (Li et al.,

2020, 2022b). However, these approaches are quite challenging and far from SOTA

performances yet.

The main challenge is to devise ways to optimise the use of multilingual resources to

get the maximum gain not only in terms of the performance of ASR systems but also

computational costs. According to a renowned linguist Peter Ladefoged, the sounds

produced by humans which have some lexical information (phones) are never similar to

those sounds which do not have any lexical information such as whistling, clicking teeth

and waging tongue side to side etc. (Ladefoged, 1996). Although some phones might not

be known yet due to lack of available data or some new phones may come into existence

in future, those will be similar to the previously known phones or will be formed by

rearrangement of properties of the known phones (Ladefoged, 1996). It implies that the

sounds (phones) of all the languages are somehow related to each other. This argument

appears quite plausible upon closer examination. Assuming that all languages have very

diverse sounds, the statistical analysis of phones across the languages shows that some

of the phones are more common in a lot of languages than others (Moran and McCloy,

2019). This important question of phonology was answered in the form of the Quantal

theory of speech by Ken Stevens (Stevens, 1989). The quantal theory formalises the

intuition that some sounds are easier to produce than others and are common across

languages. For example, \m\, \k\and \j\are among the most common consonants with

presence in 96% and 90% Phoible1 inventories (Moran and McCloy, 2019).

Given the linguistic theories that the different sounds of diverse languages with some

lexical information are somehow related, the motivation of multilingual and cross-lingual

speech recognition is to make use of resources of other languages to recognise the speech

of a target language or all the existing languages. However, the question that arises

here is about how to optimally use those resources. It calls for devising ways to use

available resources meaningfully for building a speech recognition system. Though lin-

guistic theories about the similarities in the distinct speech sounds have been presented,

linguists also admit the variations in different instances of an identical sound produced

by the same speaker not to mention different speakers and languages. These variations

are expected to become more prominent across the speakers and even further across

the languages. For example, a spoken phone \p\of 80ms by a certain speaker might be

82ms long in another instance of the same speaker. Usually, the speech data for speech

recognition is annotated at the phoneme level and an acoustic model is expected to learn

1 Phoible is an online repository of phonological inventories of a huge number of languages. https:

//phoible.org

https://phoible.org
https://phoible.org
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the variations of underlying acoustic realisations (phone and allophones). In the case of

building a multilingual speech recognition system when the training data of all the lan-

guages is mixed, an underlying assumption is that the sounds represented by the same

IPA symbols across the languages are acoustically close too (Schultz and Waibel, 2001).

It implies that the training data of the phonemes (IPA representations) shared by more

languages is increased and expected to be learned better during the model training.

Some earlier works attempted to measure phonemes similarities for context-independent

(monophone) acoustic models (Kohler, 1996). A few later studies on the same lines mea-

sured the closeness among phonemes for context-dependent (triphone) acoustic models

(Imperl et al., 2000, Le et al., 2006). The closeness has been measured based on the num-

ber of confusions between two phonemes pi and pj from an HMM model of the phoneme

pi (Imperl et al., 2000). Some studies have also made use of linguistic knowledge to

measure the distance between polyphonemes (Le et al., 2006). However, the objective

of these approaches has been to cluster the closer phonemes to build a multilingual ASR

system rather than studying languages’ similarities. A very limited work done could be

found in the direction of cross-lingual similarities.

Most of the works on multilingual speech recognition systems combine languages either

randomly or based on the number of shared phonemes (based on IPA representations)

among the languages. However, various multilingual works have observed that the per-

formance of multilingual systems does not show any improvement over the monolingual

models in the case of resource-rich languages. In often cases, multilingual ASR systems

perform worse than monolingual models for resource-high languages. Recent work has

shown that the improvement in the error rate of a phoneme in a multilingual setup has

no clear relation with the number of languages it is being shared with (Żelasko et al.,

2020).

Assuming that it is possible to build a universal ASR using the available resources, it

is needed to come up with ways to use these resources optimally. It calls for studies to

analyse the relationships between the languages (referred to as ‘cross-lingual similarities’

in this work).

Motivated by the literature observations that;

• A multilingual speech recognition system does not guarantee a reduction in the

speech recognition error rate of a language when compared with a language-

dependent ASR system,

• Performance of a multilingual ASR system is degraded for many languages with

significant phoneme overlap,

• Language closeness is usually measured based on the number of shared phonemes

(IPA representations) to build a multilingual system
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• Limited attention has been paid towards defining criteria to choose languages to

combine for building a multilingual ASR system,

• There are still a lot of languages with too limited resources to build a modern

speech recognition system for them,

• Attempts are actively being made to build larger and larger ASR systems to recog-

nise as many languages as possible.

Some research directions and gaps are identified as follows;

• An underlying assumption in the case of building multilingual systems that the

phonemes across the languages with identical IPA representations are also acous-

tically similar may lead to performance degradation of multilingual setups,

• If the number of shared phonemes (IPA representations) is not a true measure of

language closeness, how can it be decided if combining certain languages would

help each other in multilingual setups,

• Given that there are still a lot of low-resource languages, it is need of time to devise

ways of efficient exploitation of cross-lingual resources to build ASR systems for

such languages.

Given the observations from the literature review and identified research gaps and di-

rections, the objective of this research is to;

• Devise data-driven approach to measure cross-lingual acoustic phonetic similari-

ties,

• Study effect of cross-lingual acoustic-phonetic similarities on the multilingual setup,

• Propose ways to improve low-resource speech recognition in light of insights from

the aforementioned study and analysis.

1.4.1 The proposed approach

To analyse the acoustic-phonetic similarities among the languages, a data-driven ap-

proach is proposed to analyse how a monolingual acoustic model of a source language

perceives the speech signal of some target language. As discussed earlier, some ear-

lier studies counted the number of confusions to estimate the similarities between the

phonemes (Imperl et al., 2000). However, it is argued that even if a phoneme of a target

language is confused with some other phoneme by a source language acoustic model,

there is a possibility of patterns in these confusions. If there are significant patterns

in these confusions, the languages can still be considered close except that the acoustic

realisations of some phonemes of the target language are different in the source language.
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Furthermore, if such patterns exist to the extent that they could easily be learnt by a

machine learning model, then the resources of a source language can be used to improve

the speech recognition of the target language. This approach allows making use of

several approaches in multilingual setup that have never been applied for multilingual

ASR to the best of authors’ knowledge. For example, outputs from diverse monolingual

models are fused given a target language speech signal to improve target language ASR

performance. As diverse monolingual acoustic models have different output tokens,

their outputs cannot be fused straightforwardly. The proposed approach is employed

for this kind of model fusion which has not been done before. Furthermore, a long-

standing problem of multilingual knowledge distillation is also addressed. A novel data

augmentation technique is also presented to improve low-resource speech recognition.

Another merit of the proposed mapping approach is that it can be applied on top of any

kind of ASR system i.e. hybrid DNN-HMM-based or end-to-end models.

1.5 Organisation of the thesis

The rest of the thesis is organised in two sections i.e. “Background” and “Contribu-

tions”. Two chapters of the “Background” section cover the literature review on work-

ing, challenges, data sets, trends and techniques for building ASR systems in general

and multilingual speech recognition systems. The chapters under the section of “Con-

tributions” discuss the motivation, approaches, experimental setup and results of this

research.

Chapter 2 discusses the foundations of speech recognition systems along with current

trends in building ASR systems. It reviews the literature on different techniques over

time for feature extraction and acoustic modelling.

In Chapter 3, developments in multilingual speech recognition are discussed. It covers

the review of different approaches towards multilingual and cross-lingual speech recogni-

tion. Available multilingual speech data sets and their developments over time are also

discussed. Furthermore, current trends in the multilingual speech recognition domain

such as massively multilingual and approaches towards low-resource and universal ASR

are also discussed.

The “Contributions” section starts from Chapter 4 which contains problem formulation

and the initial experiments as an experimental base for the experiments. Furthermore, a

detailed analysis is presented to show that the learnable patterns exist in the confusion

when a speech signal of a target language is decoded through a source-language acoustic

model.

After establishing experimental evidence about learnable cross-lingual mappings in the

previous chapter, Chapter 5 covers extensive experimentation and discussion about

learning the said mappings. Experimental setup, results and the trends in the results

are discussed in detail. This chapter is partially based on our published work (Farooq

et al., 2022).
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Chapter 6 presents the proposed mapping approach for cross-lingual acoustic-phonetic

similarities with evidence from extensive experimentation. Phoneme-based hybrid DNN-

HMM models have been trained for different languages to study the phonemic similar

ties in them. This chapter is based on the published work (Farooq and Hain, 2022).

In Chapter 7, a novel model fusion technique is proposed in multilingual and cross-lingual

setups to improve low-resource speech recognition. The learnable mappings proposed

in earlier chapters are exploited for fusing output from diverse monolingual models to

recognise the speech of an under-resourced language. This chapter is built upon the

published work (Farooq et al., 2022).

The analysis of cross-lingual acoustic-phonetic similarities and model-fusion techniques

have been applied on top of phoneme-based hybrid DNN-HMM-based models so far.

The study shows that the mapping models can learn mappings on top of phoneme-

based hybrid DNN-HMM models. However, the phonemic vocabulary of the languages

is a subset of the universal phoneme set which is a limited set and usually the languages

have some overlap among them. So, it suggests that it might be easier for a machine

learning model to learn the mappings on top of such models as compared to the e2e

models. So, in Chapter 8 the proposed approach is extended for e2e models. Mapping

models on top of e2e models are further used to devise a novel data augmentation

technique. The work done in this chapter has also been published (Farooq and Hain,

2023).

Knowledge distillation (Hinton et al., 2015) has been widely applied for various tasks

where a single or ensemble of a few teacher models is used to distil their knowledge to a

student model of the same or reduced capacity. However, a limitation of this technique

is that the output tokens of a student model must be a proper or improper subset of

the teacher model(s) output tokens. It is not usually the case if it is aimed to use ASR

systems from different languages to distil knowledge to some other language’s model.

The reason is that the output tokens of different languages are usually very diverse due

to different writing scripts and characters etc. Chapter 9 exploits the proposed approach

to overcome this long-standing issue and proves that distilling knowledge from teachers

of another language using the proposed approach, help improving speech recognition of a

under-resourced language. This chapter is motivated by the collaborative work (Ahmad

et al., 2023) and describes our published work (Farooq et al., 2023).

Finally, all the studies, experimentation, outcomes and take-home lessons are sum-

marised in the Chapter 10.



Part I

Background
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Chapter 2

Automatic Speech Recognition

In this chapter, foundational and state-of-the-art techniques of building an ASR system

are revisited. Previous work and current trends in feature extraction, training and

decoding techniques are discussed.

Automatic speech recognition - the conversion of a speech signal into a string of words -

is a difficult task due to several cumulative sources of variation. Defining the boundaries

of speech units in a speech signal is not straightforward irrespective of speech units (e.g.

phonemes, words or sub-words). The task gets more complicated due to phenomena such

as varying speech speed, and context-dependencies such as co-articulation and prosody.

The complexity level of speech recognition can be factorised into four dimensions (Renals

and King, 2010).

1. Vocabulary size: One of the earlier widely deployed speech recognising systems

was built with a vocabulary size of only two words i.e. “yes” and “no”. However,

for a conversation-like human-human or human-computer interaction, much larger

vocabularies are needed (Renals and King, 2010).

2. Speaking style: Earlier systems such as the “yes”/“no” recognition system were

able to recognise isolated words. Pauses were left between words to let the system

know the end of a word. However, a real conversation consists of connected or

continuous speech.

3. Speaker characteristics: Speech from each speaker has different characteristics

which makes it harder for an ASR system to recognise speech from an unseen

speaker. So, usually speaker-dependent ASR system gives better performance

than a speaker-independent ASR.

4. Background environment: It is less challenging for an ASR system to learn from

clean speech data compared to the data recorded with significant background noise.

Furthermore, different recording equipment produces different quality of data such

15
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as telephonic speech is more challenging to train a speech recognition system rather

than a microphone-recorded speech.

Given the complex nature of the speech recognition task, it is very hard to build a robust

speech recognition system to recognise the speech with minimum error incorporating all

the aforementioned variations. However, a recent analysis of sexennial surveys of speech

community (Moore and Marxer, 2023) reveals that a lot of speech recognition applica-

tions considered nearly impossible in past are now deemed as just a few years away. A

survey in the early 2000s stated that the performance of speech recognition systems has

been improved by 10% per decade in the last three decades (Deng and Huang, 2004).

This is mainly because of the massive improvements seen in the performance due to a

combination of algorithmic and modelling improvements and increased computational

resources (Renals and King, 2010).

Modern speech recognition systems are based on data-driven methods. Building on

fundamental research of the 1970s, these approaches are based on the noisy channel

model. In the noisy channel model theory, the human speech production system is

considered a noisy channel between the words in the mind of the speaker and the spoken

speech waveform. The goal of a speech recogniser is to decode the speech signal to

get the correct word sequence. Let X be a sequence of acoustic feature vectors, a

speech recognition system aims to predict the most probable sequence of words given

the acoustic feature vectors. In terms of probability, it can be written as;

W ∗ = argmax
W

P (W |X)

where W ∗ is the most probable word sequence among all possible word sequences W

given the input utterance X. Using the Bayes theorem, this equation can be rewritten

as;

W ∗ = argmax
W

P (X|W )P (W )

P (X)

As only the word sequence with the highest probability is needed and the denominator

term has the same effect on all the probabilities, the most probable word sequence is

the one with the highest numerator value;

P (X|W )P (W )

P (X)
∝ P (X|W )P (W )

So, the most likely word sequence W∗ is given by;

W ∗ = argmax
W

P (X|W )P (W ) (2.1)

P (X|W ) is the probability of the acoustic feature vectors given the sequence of words

and P (W ) is prior for the probability of the sequence of words in the language (and is

not conditioned on speech). In Equation 2, P (X|W ) is estimated by an acoustic model
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(a) Schematic overview of training a data-
driven automatic speech recognition sys-
tem. An annotated speech corpus is used
to train an acoustic model (along with a
lexicon in hybrid GMM-HMM or DNN-
HMM systems). Text corpora are used to

train a language model.

(b) Schematic overview of decoding a
speech utterance into text spoken in it em-
ploying a data-driven trained ASR system.

Figure 2.1: Schematic overview of (A) training and (B) decoding in an ASR system

whereas P (W ) comes from a language model. So, generally, a speech recognition system

is divided into four interacting modules;

1. Acoustic feature extraction: A process to extract suitable features from speech

waveform to train an acoustic model.

2. Acoustic model: A machine learning model which is usually trained using tran-

scribed speech corpus. It relates the acoustic features to the output tokens such

as phonemes, graphemes or sub-words.

3. Language model: A statistical or machine learning model which is trained using

a large text corpus of the target language. It gives the probability of a sequence

of words in the language.

4. Pronunciation model: Pronunciation dictionary or lexicon is a key component

in hierarchical models to specify how the words are made from basic speech units.

The aforementioned four components are shown in Figure 2.1 to depict their use in

training (Figure 2.1a) and inference (Figure 2.1b) in a speech recognition system. In the

following sections, acoustic feature extraction and modelling techniques are described.

Before training a speech recognition system, some pre-processing steps are also per-

formed for both, speech signals and text transcriptions. In Section 2.1, the pre-processing
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steps such as framing and acoustic feature extraction etc. are discussed. Then, various

acoustic modelling techniques such as GMM-HMMs, hybrid DNN-HMM modelling and

end-to-end speech recognition systems are explained in Section 2.2.

2.1 Pre-processing

There are a few important steps to take before training a speech recognition system

to pre-process both speech waveforms and transcriptions. Sometimes a speech signal

is processed to separate speech and non-speech segments, remove noise or enhance the

speech quality before the feature extraction step (Lee et al., 2022). However, only

the acoustic feature extraction is discussed in this section as a pre-processing step of

the acoustic signal. Transcriptions of the speech signals, on the other hand, also need

normalisation and standardisation steps sometimes which are discussed here.

2.1.1 Acoustic feature extraction

The goal of acoustic feature extraction is to keep information from a speech signal

which is important to the speech recognition task and discard the information which is

not helpful towards speech recognition. A very diverse range of transformations have

been seen over time to extract the acoustic features. Some of the widely used are as

follows;

• Mel-Frequency Cepstral Coefficients (MFCCs) (Davis and Mermelstein, 1980)

• Perceptual linear predictive (PLP) (Hermansky, 1990) features

• Filterbanks (Chougule et al., 2014)

Feature extraction or pre-processing is an important step to remove irrelevant infor-

mation from the input. A feature extractor transforms an input speech signal into a

sequence of vectors. Various kinds of approaches have been used for feature extraction

from a speech signal. However, MFCC is the one most widely used. Filterbank features,

speech spectrum and raw waveform have also been used for e2e speech recognition.

MFCCs and filterbanks are discussed in detail here. Before delving further into acous-

tic feature extraction, basic speech processing components such as sampling, sampling

frequency and framing etc. are introduced in the following section.

2.1.1.1 Speech processing

A machine learning model is usually trained using a discrete number of training exam-

ples. For example, a set of daily observations for a past period such as temperature,

precipitation and wind speed on each day can be used to train a weather forecast sys-

tem. Considering each day as a single training example, the observations on each day

i.e. temperature, precipitation and wind speed are the features associated with each

example. This is pretty much the case for training a machine learning model for any

structured data (in the form of numbers and tables etc). However, language processing
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is a difficult problem since language resources such as text and speech etc. are con-

sidered unstructured data. Speech is a continuous signal with a lot of spoken phones

without any information about their boundaries within the signal. In the case of speech,

a discrete number of training examples with known targets are not available, unlike the

structured data. So, some pre-processing is needed for segmenting a speech signal into

training examples, extracting features and assigning target labels to each example. This

is discussed after briefly describing some speech-processing basics.

Speech is an analogue quantity in its nature which needs to be converted into digital form

for storage and processing. For this purpose, the signal is sampled at regular intervals.

Sampling involves taking discrete values of continuous signals after uniform intervals.

The sampling rate or sampling frequency is the number of samples taken in one

second of a signal. For example, a sampling rate of 16KHz means taking 16000 per second

of an audio signal. Nyquist theorem (Shannon, 1949), which is a fundamental signal

processing concept, provides guidelines for proper sampling of a continuous system.

It states that the sampling frequency of a signal must be at least twice the highest

frequency in the signal for its lossless reconstruction. In the case of audio, the human

hearing frequency ranges from 20Hz to 20KHz (Moore, 2014). According to the Nyquist

theorem then, it implies that the maximum possible frequency audible to a human might

reach 20KHz and audio should be sampled at a minimum of 40 kHz to ensure lossless

reconstruction. However, sampling at higher frequency means a large number of samples

per second and thus larger file sizes and higher processing time.

Typically speech covers the frequency range of 30 to 10KHz, and most of the energy is

in the range of 200 to 3500 Hz (Sobolewski, 2003). Although there is some information

in higher frequency bands too, the human ear is not very sensitive to small frequency

changes and humans can correct small things such as missing syllables or words etc

(Sobolewski, 2003). So, it is not necessarily needed to sample speech at a frequency of

40KHz. In telephony, speech is usually sampled at 8KHz to save the bandwidth. To

increase information retention, usually better quality data is recorded at a sampling

frequency of 16KHz. However, high-fidelity data such as broadcast and music is usually

recorded at even higher frequencies such as 44.1 KHz and 48 KHz. Most of the speech

data sets recorded using headsets, hands-free or table microphones etc. are recorded at

a sampling frequency of 16 KHz. Data sets consisting of telephonic speech usually come

with a sampling frequency of 8KHz. Some data sets recorded with microphones might

still be recorded at higher frequencies such as 48KHz.

Going back to the pre-processing of a speech signal for acoustic feature extraction, a

speech signal is segmented into fixed-sized overlapping frames. For conventional ASR

building, these frames are then aligned with the output tokens. Each frame and the

corresponding output token are then used as a training example. Usually for speech

recognition, the frame width is set to 20-30 ms and the frame shift is usually 10 ms.

Acoustic feature extraction techniques are then applied to these frames. The widely
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accepted methods of acoustic feature extraction i.e. MFCCs and filterbanks are discussed

here.

2.1.1.2 Mel-frequency cepstral coefficients

The use of Mel-frequency cepstral coefficients was first proposed for speech recognition

in 1980 which outperformed the Linear-Frequency Cepstral Coefficients (LFCCs) and

linear-prediction cepstral and spectral coefficients (Davis and Mermelstein, 1980). The

words ‘cepstral’ and ‘cepstrum’ have been coined from inverting the words ‘spectral’

and ‘spectrum’.

During the process of LFCCs or MFCCs etc. extraction, the signal is transformed twice

i.e. Fourier transform and cosine transform. The Fourier transform provides frequency

information of a signal (frequency spectrum of audio), while the second transform (cosine

transform) implies spectrum-of-a-spectrum. So, the final output is termed a cepstrum.

Since there is a non-linear function of log(·) between both the transforms, this is a

non-linear spectrum-of-a-spectrum.

Human hearing sensitivity is not linear for all the frequencies in the audible spectrum.

It is more sensitive to the frequencies in the lower range (Zwicker, 2005). In LFCC

extraction, linear frequency bands are used where the spacing between all consecutive

frequencies is linear. However, the Mel-frequency scale approximates human hearing

perception better and emphasises lower frequencies more than the higher frequencies. A

transform function for a linear frequency fl to Mel frequency fm is defined as;

fm = 1127 · ln(1 + fl
700

)

After applying the Fourier transform, K number of bandpass filters are applied and

log-energy of each filter is computed. Filters could be of any shape, triangular filters

have been simulated in the original paper (Davis and Mermelstein, 1980) and are still

widely used. MFCCs are then computed by taking the cosine transform of these log

energies in decibels. ith coefficient is calculated as;

MFCCi =

K∑
k=1

Xkcos[i(k −
1

2
)
π

K
] (2.2)

where Xk is the log-energy of the kth filter. The schematic diagram of extracting MFCC

features is shown in Figure 2.2.

Figure 2.2: Schematic overview of steps involved in Mel-frequency cepstral coefficients
extraction.
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2.1.1.3 Filterbank

Filterbank (or fbank) features have also been employed for the training of speech recog-

nition systems. The process of extracting filterbank is the same as MFCCs except that

the energies of all the bandpass filters are concatenated in a vector for each frame. This

vector is referred to as the filterbank features. However, filterbank features are highly

correlated along its dimensions which is not very suitable for GMMs with diagonal co-

variance matrices (Li, 2022b). So, these features are not ideal for conventional ASR

approaches such as GMM-HMM and are mostly used for training of e2e systems. The

last step of discrete cosine transform in MFCCs decorrelates these energies (Li, 2022b).

So, MFCCs are more widely used than the filterbank feature.

2.1.2 Text normalisation

Transcriptions of speech utterances also need some pre-processing steps before training

a speech recognition system. The nature of pre-processing depends on the requirements

of the model being trained. Most of the available speech data is annotated at the word

level. Usually, it is human-annotated and sometimes might have been generated in a

semi-supervised way (Pratap et al., 2020b).

Conventional HMM-based ASR systems are usually trained on phoneme-level output

tokens. It could be trained using graphemes also (Dines and Magimai Doss, 2008,

Kanthak and Ney, 2002, Killer et al., 2003) but mostly it is trained on the phonemes

level. So, the word-level transcriptions are needed to be converted into phoneme-level

transcriptions. A lexicon (or pronunciation model) is used for this purpose. A lexicon

is usually a hand-crafted list of words with corresponding phoneme sequences for each

word. As defined in Section 1.2, phonemes are the basic speech sounds of a language

and are denoted using IPA symbols. Other than language phonemes, some additional

representations are also used to indicate some other cues such as silence, unknown, noise,

start and end of the utterance etc. The unknown symbol is usually used to annotate an

out-of-vocabulary word (which is not present in the lexicon) during training. Further

details on how to train an HMM model and perform decoding using these models are

discussed in Section 2.2.1.

End-to-end models, on the other hand, are trained on graphemes or sub-word units

such as BPE tokens. The transcriptions are transformed into tokens in a tokenisation

process. For e2e systems, the tokenisation is followed by a normalisation step. Usually,

the annotations of speech data have some unstandardised transcriptions which might

cause some confusion for model training. For example, annotation of spoken numbers

in multiple forms such as in words and numbers for different instances might adversely

affect a learning process. Some other examples include inconsistent handling of con-

tractions, acronyms and cases. In a normalisation step, transcriptions of speech data

are normalised using standardised notation and removing punctuation marks etc. The

transcriptions are tokenised after the normalisation step. Tokens can be a language’s
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Figure 2.3: Example of a Markov chain with two possible states of the weather on a
day: sunny and rainy. The arrows show the probability of transition of weather states.

character (graphemes) or sub-word units. Similar to HMMs, some additional tokens are

also used such as space, blank symbol, unknown symbol, start and end of sentence.

2.2 Acoustic modelling

Over the past several decades, automatic speech recognition systems have experienced

significant advancements, evolving from GMM-HMMmodels (Rabiner and Juang, 1986),

several hybrid DNN-HMM models (Bourlard and Morgan, 1994, Vinyals et al., 2012),

e2e speech recognition systems (Graves and Jaitly, 2014) to recent self-supervised models

like wav2vec (Baevski et al., 2020), Hubert (Hsu et al., 2021b) and Whisper (Radford

et al., 2022) are a few to name. This section discusses the acoustic modelling techniques

that are used or relevant to this work. Widely used training and decoding methods of

HMM and e2e models are described.

2.2.1 Hidden Markov models

Hidden Markov models have widely been used as machine learning models for speech and

language processing (Hinton et al., 2012, Zhu et al., 2005). HMMs are fundamentally

based on Markov chains which are a special case of weighted finite-state automaton. A

Markov chain or observable Markov model is a stochastic model which informs about

the probabilities of a sequence of random variables. These random variables are usually

referred to as states which can take values of any random process. A principle assumption

of Markov chains is that the probability of a given state depends only on the last state

and the states before the previous states do not have any impact on the prediction. For

a set of states S = {s1, s2, · · · , sS}, a Markov chain embodies the Markov assumption

that P (si = a|si−1, si−2, · · · , s1) = P (si|si−1). A very simple weather prediction Markov

chain is shown in Figure 2.3. The states show the observed weather on a day i.e. sunny

or rainy. The arrows (in blue colour) show the probability of a weather state given

the previous state. For example, the probability of a day being sunny is 0.4 given the

previous day had also been sunny and 0.6 otherwise. The prediction probability only
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Figure 2.4: Example of a hidden Markov chain with two possible states (hidden)
of the weather on a day: sunny and rainy. Bob’s mood is an observable information
which could be happy or grumpy. The arrows between states show the state transition
probabilities and the arrows towards mood possibilities (happy and grumpy) show the

probability of the mood given the state information.

depends on the last day’s weather (previous state) irrespective of observed weather in

all the previous states.

Markov chains are useful for predicting the probability of a sequence of observable events.

However, in many cases, the possible events of interest might not be directly observable.

Let’s modify the earlier simple example of weather prediction (Figure 2.3) with hidden

information. Alice and Bob live in two different cities and thus Alice cannot observe

the weather at Bob’s place. However, she knows that Bob’s mood heavily depends on

the weather in his city. When Bob calls Alice and tells her that he is happy (observable

state), Alice knows that it is a sunny day in Bob’s city (hidden state) and vice versa.

The probabilities of weather transition in Bob’s city and his mood given a weather state

are shown in Figure 2.4. From her knowledge, Alice knows that the probability of Bob’s

being happy is 0.9 given it is a sunny day and 0.1 in the case of a rainy day. In language

processing, one example of such a case is Parts-of-Speech (POS) tagging where POS

tags are not observed in the world. Rather sequence of words is observed and POS tags

are inferred from the observed sequence of words. Similarly, in speech recognition, only

the acoustic events (speech signal) are observable to infer “hidden” events (tokens which

could be phonemes or graphemes etc). For such problems, Hidden Markov models are

used rather than Markov models. In HMMs, the state of the system being modelled

is not directly observable rather each state emits observations (as shown for weather

prediction example in Figure 2.4).

HMMs have widely been used for building speech recognition systems (Bourlard and

Morgan, 1994, Gemello et al., 2007). An HMM model is trained for each token and each
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HMM model is a finite state machine. At each time step, the finite state machine is at

some hidden state (Li, 2022b). Each HMM has two kinds of states i.e. emitting and

non-emitting states. Non-emitting states are useful for joining HMM models of all the

tokens together. Let a speech utterance with T observations O = {o1,o2, · · · ,oT } and
an HMM model of five states S = {s1, s2, s3, s4, s5} where s1 and s5 are non-emitting

states. The transition probability from state i to j is given as a transition probability

matrix A for which;

aij = P (st = j|st−1 = i) (2.3)

where
∑S

j=1 aij = 1 and S is the total number of states. The probability of an observa-

tion ot at state i is given as

bi(ot) = p(ot|st = i) (2.4)

Equation 2.4 assumes that the probability of an observation ot depends only on the

state it is being emitted from (st = i) irrespective of other states and observations. It

is the second independence assumption of HMM models (the first one comes from the

Markov chain). The emission probability density function at a state is usually modelled

by Gaussian Mixture Models (GMMs). A simple approximation could be modelling

using a single Gaussian of the form;

bi(ot) = N (ot;µi,σi) (2.5)

=
1√

(2π)D|Σi|
exp

(
−1

2
(ot − µi)

TΣ−1
i (ot − µi)

)
(2.6)

Practically, a single Gaussian is a poor approximation compared to using GMMs (Li,

2022a). In case of GMMs, bi(ot) becomes;

bi(ot) =

Mi∑
m=1

cimN (ot;µim,σim) (2.7)

where Mi is the total number of Gaussian components in a Gaussian mixture and cim

is the prior of the Gaussian m at ith state.

Along with A (matrix of transition probabilities) and B (matrix of emission proba-

bilities), HMMs have an additional parameter π = {π1, π2, · · · , πS} as a probability

distribution of states being an initial state where S is the total number of states and∑S
i=1 πi = 1. So, the notation λ with parameters (A,B, π) is used to represent an HMM

model.

Inspired by an HMM tutorial of Rabiner (Rabiner and Juang, 1986), HMMs are char-

acterised by three problems;
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1. Likelihood: Given an HMM model λ(A,B, π) and a sequence of observations O,

how to efficiently compute the probability of observation sequence i.e. P (O|λ)

2. Training: How to find parameters of HMM model λ to maximise the probability

of observation sequence P (O|λ).

3. Decoding: Given a sequence of observations O and an HMM model λ, how to

find the optimal sequence of hidden states S.

In the following section, approaches to solving these problems are discussed.

2.2.1.1 Likelihood calculation

In the case of a Markov chain where the state sequence is known, the probability of a

given observation sequence P (O|S) can be calculated easily. However, in the case of Hid-

den Markov models, the state hidden state sequence is not known and the likelihood of

the observation sequence is not straightforward to compute. But if the joint probability

of the observation sequence and all possible sequence states are known, the likelihood of

the observation is simply the sum of probabilities of all possible state combinations i.e.

P (O) =
∑
S′

P (O,S) (2.8)

where S′ is all possible combinations of hidden state sequences. The Equation 2.8 can

be re-written as;

P (O) =
∑
S′

P (O|S)P (S) (2.9)

where P (O|S) is the probability of observation sequence given a sequence of the hidden

states which is the product of observation probabilities at all time steps given the state.

P (O|S) =
T∏
i=1

p(oi|si) (2.10)

And from HMM’s second assumption i.e. the probability of a state depends only on the

previous state, the probability of a state sequence can be calculated as;

P (S) =
T∏
i=1

p(si|si−1) (2.11)

So, Equation 2.9 can be computed using Equation 2.10 and Equation 2.11. However,

computing probabilities over all possible hidden state sequences is very expensive as the

number of possible sequences grows exponentially (NT ; where N is the total number of

states and T is the number of time stamps).

To make the probabilities computation efficient, the forward algorithm is used. The

forward algorithm reduces the computation complexity to (N2T ) and uses intermediate

values for the following calculations. The approach is the same as dynamic programming
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i.e. values at intermediate steps are stored and then used for computing values in the next

steps. In summary, the forward algorithm makes the use of fact that the likelihood of an

observation sequence up to timestamp t at state j is equal to the sum of probabilities of

all possible paths up to the previous timestamp (t−1) at state i (αt−1(i)) times transition

probability from previous state i to j (aij) and the emission probability of observation

at time t and state j (ot(j)). This αt(j) is referred as the “forward-probability”.

αt(j) =

N∑
i=1

αt−1(i)aijbt(oj) (2.12)

For the first time step t = 1, α1(j) = πjb1(oj) where πj is the initial probability of

state j and a parameter of HMM model λ. Then, probabilities for all possible paths

are calculated using Equation 2.12 for each time step t propagating towards the last

time step T . Summing all the final probabilities gives the likelihood of the observation

sequence P (O|λ).

2.2.1.2 Training

In the last section, an estimation of the likelihood of a sequence of observations given

an HMM model λ(A,B, π) has been shown. Now, the question is how do we know the

values of A, B and π. Or formally, how to estimate the initial (π), transition (A) and

emission probabilities (B) of an HMM model?

Before going into the training process, it is important to define another probability

term called “backward-probability”. For the observation ot at time t and hidden

state i, the backward-probability is defined as the likelihood of observing the sequence

ot+1, · · · , oT . It is computed the same as the forward-probability and given as;

βt(i) =

N∑
i=1

βt+1(j)aijbt+1(oj) (2.13)

For training an HMM model, three parameters are needed to be estimated i.e. transition

(A) and emission (B) probabilities and initial (π) probabilities.

Transition probabilities If the hidden state sequence is known for a given observa-

tion sequence, transition probability from state i to state j can simply be estimated by

dividing the total number of transitions from i to j by the number of transitions from

state i.

âij =
expected # of transitions from state i to j

expected # of transitions from state i
(2.14)

In practice, however, the hidden state sequence is not known and transition probabilities

can not be calculated directly. Formally, the numerator in Equation 2.14 can be written

as P (st = i, st+1 = j|O, λ) where O and λ are the observation sequence and HMM model
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respectively. It might be confusing to see the HMM model in the conditional probability

when it is being trained. HMMmodels are trained in a back-and-forth backward-forward

algorithm which keeps updating the parameters of the HMM model after each iteration.

For the first iteration, these parameters are randomly initiated. Assuming that HMM

model is given, the joint probability P (st = i, st+1 = j,O) can be calculated as;

P (st = i, st+1 = j,O) = αt(i) · aijbj(ot+1) · βt+1(j) (2.15)

where αt(i) is the likelihood of the observation sequence up to t time step at state i

and βt+1(j) is the observation sequence likelihood after time step t + 1 given it is at

state j at t + 1. As shown earlier, the transition cost from state i to state j is the

product of transition probability from i to j (aij) and emission probability at state j

(oj(ot+1)). So, the joint probability P (st = i, st+1 = j,O) would be the product of all

these probabilities. Since P (st = i, st+1 = j|O, λ) can be written as

P (st = i, st+1 = j|O, λ) = Et(i, j) =
P (st = i, st+1 = j,O|λ)

P (O|λ)
(2.16)

Et(i, j) =
αt(i) · aijbj(ot+1) · βt+1(j)∑N

i=1 αt(i) · βt(i)
(2.17)

The sequence observation probability is replaced with the product of backward and

forward probability for all the states at a given time step t. Equation 2.16 gives the

probability of transitions from state i to j at time t. For the total expected number of

transitions from state i to j (the numerator in Equation 2.14), Et(i, j) is needed to be

summed over all the time steps. Similarly, the denominator of Equation 2.14) would be

not only the sum over all the time steps but also overall different j states for each time

step. So, the Equation 2.16 can be written as;

âij =

∑T−1
t=1 Et(i, j)∑T−1

t=1

∑N
k=1 Et(i, k)

(2.18)

Using Equation 2.18, the transition probabilities can be trained in two steps (forward and

backwards). In the forward step, the likelihood probabilities (α and β) are estimated.

The transition probabilities of the last step are used for these calculations. In the

backward step, these transition probabilities are updated.

Emission probabilities Similar to the transition probabilities, emission probabilities

are learned using the backward-forward algorithm. The emission probability of a state

j can be estimated as;

b̂j =
expected # of times in state j and an emitting observation o

expected # of times in state j
(2.19)
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It is important to note that this definition provides a simplified explanation. Typically,

b̂j is modelled using GMMs to capture the distribution of observations more accurately

(as described earlier in Equation 2.7). However, for the sake of clarity and simplicity, the

current explanation does not incorporate GMMs and will be introduced later in Equa-

tion 2.23. As the term P (st = j|O, λ) is needed to be calculated for the numerator, and

the same steps are followed which have been taken for updating transition probabilities.

P (st = j|O, λ) = γt(j) =
P (st = j,O|λ)

P (O|λ)
(2.20)

The joint probability P (st = j,O) in the numerator can be seen as the product of

forward and backward probabilities at state j while the denominator has already been

formulated in the last section.

γt(j) =
αt(j)βt(j)∑N
i=1 αt(i)βt(i)

(2.21)

As Equation 2.21 gives the probability of being in state j at time t, it needs to be summed

over all the time steps to calculate the total probability of being in state j. However,

for the probability of being in state j and emitting observation o (the numerator of

Equation 2.19), the summation is done over only time steps which omit observation o.

So, the Equation 2.19 is used to update omission probabilities in the backward step as

follows;

b̂j =

∑
t∈T ′ γt(j)∑T
t=1 γt(j)

(2.22)

where T ′ is the set of time steps which omit observation o. However, an assumption here

is that the observations are discrete from a finite set and a discrete probability density

can be used within each state of the model.

However, observations are usually continuous signals in speech processing (MFCCs etc).

So, a probability density function is used to model the emission probabilities ensuring

that its parameters can be estimated in a consistent way. A finite mixture of the following

form is most widely used;

b̂j(O) =

M∑
m=1

cjmN (O,µjm,σjm) (2.23)

where cjm is the mixture coefficient for the mth mixture in j state and N represents

the mth Gaussian distribution in j state with mean vector µjm and covariance matrix

σjm. Though the density function could be any log-concave or elliptically symmetric

density, the emission probabilities are widely modelled by Gaussian mixture models. So

for continuous observations, Equation 2.21 can be modified for the joint probability of
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being in j state at time t with kth mixture of the GMMs accounting for Ot as following;

γt(j, k) =
αt(j)βt(j)∑N
i=1 αt(i)βt(i)

·
cjkN (ot;µjk,σjk)∑M

m=1 cjmN (ot;µjm,σjm)
(2.24)

where cjm is the mixture coefficient for the mth mixture in jth state and N (µjm,σjm)

is a Gaussian probability density function with mean µjm and variance σjm. The

parameters cjk is re-estimated as;

ĉjk =

∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

(2.25)

where the numerator gives the expected number of times being in state j using the

kth mixture and the denominator means the expected number of times in the state j.

Similarly, the parameters µjm and σjm are updated as;

µ̂jk =

∑T
t=1 γt(j, k) ·Ot∑T

t=1 γt(j, k)
(2.26)

σ̂jk =

∑T
t=1 γt(j, k) · (Ot − µjk)(Ot − µjk)

′∑T
t=1 γt(j, k)

(2.27)

where prime denotes the transpose of a matrix.

2.2.1.3 Decoding

The last yet important part is to employ a trained HMM model (λ) to output the most

probable hidden state sequence (S) given a sequence of observations (O = o1, o2, · · · , oT ).
The Viterbi algorithm proposed by Andrew Viterbi (Viterbi, 1967) is used in the de-

coding. The process of the Viterbi algorithm is pretty similar to computing forward

probabilities in the Section 2.2.1.2. The only difference is that the Viterbi algorithm

does not sum all previous paths rather only keeps the most probable one for each state.

Formally, the likelihood of state j at time t is given as;

vt(j) =
N

max
i=1

vt−1(i) ∗ aijbj(ot) (2.28)

The most likely hidden state sequence is the one which gives the highest values of v at

the last time step (vt=T ). To output the most probable hidden state sequence, the most

probable state sequence is also stored at each state to backtrack after the final output.

s′t(j) =
N

argmax
i=1

vt−1(i) ∗ aijbj(ot) (2.29)

At the end of the algorithm, maxNj=1 vT (j) is the likelihood of the most probable path

and argmaxNj=1 vT (j) gives the most probable hidden state sequence.
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2.2.2 Hybrid DNN-HMM models

As discussed in the last section, the emission probabilities of observations are modelled by

GMMs. In hybrid DNN-HMM models, the problem is regarded as discriminative rather

than generative. A DNN model is trained to predict probability p(s|ot) of a state s given

an observation ot at time t. It is contrary to GMMs which estimate the probability of

an observation given a state p(ot|s). In the case of DNNs, the pseudo-log-likelihood of

state s given observation ot is used by the recogniser;

log p(ot|s) = log p(s|ot)− logP (s)

where P (s) is the prior probability of state s which is calculated from the training data.

The number of output classes of a DNN is theoretically equal to the total number of

possible HMM states which is Qn × S where Q is the total number of unique tokens

(phonemes or graphemes etc.), n is the context width (monophone and biphone etc.)

and S is the number of states per HMM model. However, the number of states increases

significantly by changing the context width or number of states of the HMM models.

In practice, various HMM states are clustered to train a DNN model. Given an input

observation, a trained DNN model predicts the posterior probabilities of the states.

These probabilities are used as emission probabilities of an HMM model. The rest of

the process remains the same.

2.2.2.1 Training

Training of the neural network of hybrid DNN-HMM models usually requires a pre-

trained GMM-HMM model. Transcriptions are force-aligned using a pre-trained GMM-

HMM model. A neural network is trained using speech features (e.g. MFCCs) as

input and forced-aligned transcriptions as the targets for each frame. These neural

networks can be trained using different objective functions such as Cross-Entropy (CE),

Maximum Mutual Information (MMI) (Bahl et al., 1986), Minimum Phone Error (MPE)

(Povey, 2003) and state-level minimum Bayes risk (sMBR) (Kaiser et al., 2002) etc.

However, only the cross-entropy and maximum mutual information objective functions

are discussed here as most of the work around hybrid DNN-HMM models in this thesis

uses only these two functions.

Cross-entropy objective function Cross-entropy is a widely used objective for bi-

nary or multi-class classification tasks which computes the negative log posteriors.

FCE = −
∑
T

log ŷt(s
′) (2.30)

where T is the number of frames in an utterance and ŷt(s
′) is the probability of state s′

which is the reference state label at time t. Cross-entropy, however, is a frame-level loss

function and does not take context into account whereas speech is a continuous signal
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and the output at a frame might fairly depend on its context.

Maximum mutual information objective function Maximum mutual informa-

tion maximises the mutual information between observations and output word sequences

(Veselý et al., 2013). Given a sequence of observation O = {o1,o2, · · · ,oT } and W as

the reference word sequence for an utterance, the MMI criterion is;

FMMI = log
P (O|S′) · P (W)∑
W P (O|S) · P (W )

(2.31)

where the denominator is a summation over all possible word sequences in the decoded

speech lattice for the utterance and S is the sequence of states associated with the

sequence of words (W ). S′ is the state sequence associated with the reference word

sequence W. As MMI is a sequence-level objective function, a DNN trained with this

objective proves to perform better than CE-trained DNN models. However, the require-

ment of summation over all possible word sequences in the lattice in the denominator

makes it computationally very expensive. So, Lattice-Free Maximum Mutual Infor-

mation (LF-MMI) has been introduced (Povey et al., 2016) where a phoneme-based

graph is used rather than a word-based graph which reduces the possible combinations

and thus the computational complexity. Furthermore, the frame rate in the decoding is

reduced three times which further improves the computation speed.

2.2.3 Kullback-Leibler HMM (KL-HMM) Models

Kullback-Leibler HMMs (Aradilla et al., 2007) are a type of hybrid HMMmodel proposed

for acoustic modelling. They are described here briefly. As mentioned in the previous

section, the output posterior distributions of a DNN are used as emission probabilities

of the tied HMM states in a hybrid DNN-HMM model. Thus, the outputs of a DNN

are tied to the HMM states, which typically model context-dependent sub-word units

such as triphones. One limitation of hybrid DNN-HMM models is that if we want to

consider a different type of sub-word unit, such as biphones, the DNN structure needs

to be modified. This limitation is addressed by KL-HMMs (Aradilla et al., 2007), in

which the HMM states are not tied to specific DNN outputs but are characterised by

their target posterior distributions. Therefore, the HMM states can represent different

kinds of sub-word units even if the DNN output remains unchanged.

In KL-HMM, the posterior probabilities of acoustic states (e.g., triphones) are estimated

using a DNN and used directly as feature observations. Let zt denote the acoustic state

posterior feature vector estimated at time frame t:

zt = [z1t , . . . , z
d
t , . . . , z

D
t ]

= [P (a1 | xt), . . . , P (ad | xt), . . . , P (aD | xt)]

where xt is the acoustic feature at time frame t, {a1, a2, . . . , aD} is the set of acous-

tic states, D is the number of acoustic states, and P (ad | xt) denotes the posterior
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probability of acoustic state ad given xt.

Let S = {s1, . . . , si, . . . , sS} be the set of HMM states, which can be different context-

dependent sub-word units (from those of DNN outputs). Each HMM state si in the

KL-HMM system is parameterised by a categorical distribution:

yi = [y1i , . . . , y
d
i , . . . , y

D
i ]

where 0 ≤ ydi ≤ 1,
∑D

d=1 y
d
i = 1, and ydi = p(ad | si). Therefore, KL-HMM can be seen

as a probabilistic modelling approach where the relationship between acoustic states

modelled by the DNN and the output states modelled by KL-HMM is probabilistic.

The local score at each HMM state is the KL divergence between the acoustic state

posterior feature and the state distribution:

J(yi, zt) =
D∑

d=1

ydi log

(
ydi
zdt

)

Training: In the KL-HMM approach, it is assumed that an already trained DNN

(similar to hybrid DNN-HMM models) is available. The cost function of a KL-HMM

model is:

J = min
T∑
t=1

J(yi, zt) (2.32)

where yi is the target posterior distribution that characterises the i-th HMM state.

Since zt is extracted from the pre-trained DNN model, the only parameters left to

estimate are the HMM states’ target posterior distributions {yi}Si=1. The KL-HMM

parameters {yi}Si=1 are estimated using the Viterbi expectation-maximisation (Viterbi-

EM) algorithm, which minimises the cost function in (2.32). During testing, decoding is

performed using a standard Viterbi decoder, with the log-likelihood-based score in the

Viterbi decoding replaced by the KL-divergence-based local score −J(yi, zt).

2.2.4 Neural networks for speech recognition

Speech recognition has a long history of utilising neural networks, often used to model

emission probabilities of HMMs (Bourlard and Morgan, 1994, Zhu et al., 2005). Basic

Feed-Forward Neural Network (FFN) to Recurrent Neural Network (RNN) have been

used for hybrid DNN-HMM models for speech recognition (Bourlard and Morgan, 1994,

Vinyals et al., 2012). The advanced works explore using neural networks for end-to-end

speech recognition (Graves et al., 2006) rather than combining them with HMMs. Pre-

vious works have explored various types and architectures of feed-forward, recurrent,

convolutional and transformer models for the task of speech recognition. This section

briefly describes the neural networks that are used for speech modelling, their training,

activation and objective functions which are widely used to train them. Neural net-

works are usually trained using back-propagation (Rumelhart et al., 1986) that is briefly
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described in the following section.

2.2.4.1 Feed-Forward Neural Networks

Feed-forward neural networks are fundamental artificial neural networks where informa-

tion travels in only one direction i.e. from the input layer to the output layer through

one or more hidden layers. In their compact form, feed-forward neural networks do not

contain cycles or loops. Each layer in a feed-forward network only receives input from

the previous layer and passes output to the next layer, creating a straightforward, acyclic

structure. A simple FFN with only one hidden layer is shown in Figure 2.5. This is also

referred to as Multi-Layer Perceptron (MLP), though an MLP can have more than one

hidden layer. The first and last layers (shaded in light yellow and green colours) are the

input and out layers respectively. The input data (or feature vector) X ∈ R1×T is fed

through the input layer. The output of the first hidden layer is computed as;

H1 = σ(XW1 + b1)

where W1 is a weight matrix (W1 ∈ RT×N where N is the number of neurons in the

first layer), b1 is a bias vector (b ∈ R1×N ) and σ(·) is an activation function. A bias

vector acts to add an offset in the weighted sum of input values. It lets the neurons get

some value even if the weighted sum of the inputs is zero which implies that it allows

the neurons to have some impact even if the input impact is zero. The output of the

Figure 2.5: An example feed-forward neural network with 3 layers: input, hidden,
and output. The input layer receives the input data, which is then processed by the
hidden layers. The output layer produces the final output of the network. Hidden
parameters are computed by multiplying input features X with a weight matrix W1

and adding a bias B1. An activation function σ(·) is applied to all output parameters.
The same operation is carried out on hidden layer parameters to get outputs O using

a different weights matrix W2 and bias vector B2.
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next hidden layers can be computed in the same way. However, each layer would have

different weight matrices and bias vectors. Generally, the output of a jth hidden layer

can be described as;

Hj = σ(Hj−1 ·Wj + bj)

Each layer can have a different number of neurons in it. The dimension of the last

(output) layer is chosen depending on the task. For example, for a binary classification

task, the final layer would have only two neurons. In the case of a phoneme-based speech

recogniser, the output layer might have the same number of neurons as the number of

phonemes.

For training of a neural network, all the weights and bias matrices are usually randomly

initialised which are then learnt during training. Neural networks are usually trained

using the back-propagation (Rumelhart et al., 1986) method where learning is done by

back-propagating the errors.

Training Given an input example, the output of a neural network is computed as

outlined above. The error between the neural network output and the ground truth

is computed. The error computation function is usually selected based on the task.

For example, for a simple classification task, a cross-entropy function is used and Mean-

Squared Error (MSE) is computed for a regression task. These functions are also referred

to as loss functions or objective functions. Various objective functions used to train

speech models are discussed in the following sections. Having Ŷ output from a neural

network and the ground-truth output Y for an input X, the error is calculated using a

function g(·).
E = g(Y, Ŷ )

This error is back-propagated to compute the gradient of the loss with respect to the

weights and biases at each layer. In machine learning, the gradient refers to a vector

containing partial derivatives of a scalar-valued function with respect to its input vari-

ables. So, ∂E
∂X = ∂

∂X g(Y, Ŷ ) are needed to be calculated. However, Ŷ is the final output

of the neural network through several non-linear hidden layers and thus cannot be dif-

ferentiated with respect to (w.r.t) input X straightforwardly. So, the chain rule is used

to compute the gradient of the loss;

d

dx
[f(g(x))] = f ′(g(x)) · g′(x)

where g′(x) is the derivative of g w.r.t x and f ′(g(x)) is the derivative of function f w.r.t

its input evaluated at g(x). The chain rule can be extended to any number of functions

and thus used to compute the gradient of the loss w.r.t the weights and biases of the

layers of a neural network. After calculating the gradient, the weights and biases are
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updated as;

W ∗
j = Wj − η · ∂E

∂Wj

where η is a hyper-parameter known as learning rate and defines the size of the step

to be taken to optimise the objective function. Usually, the weights are not updated for

each input example for the sake of training stability rather the gradients are calculated

and back-propagated after a forward pass on a batch of input examples (referred to as

batch size).

Time-Delay Neural Network A Time-Delayed Neural Network (TDNN) (Waibel

et al., 1989) is an important type of feed-forward neural networks. It introduces the

concept of time delays in the connections between neurons, allowing the network to

capture temporal dependencies in the input data. This makes TDNNs well-suited for

applications in sequential or time-series data processing such as speech and natural

language processing. In conventional deep neural networks, the initial layer learns an

affine transform of the entire temporal context. In TDNN architecture, however, the

initial layer learns transforms in a narrow context and the higher layers learn hidden

activations from the wider context. In TDNN, each layer operates at a different temporal

context which increases towards the deeper layers. A simple TDNN architecture is shown

in Figure 2.6.

In Figure 2.6, a TDNN with two hidden layers is shown. Each neuron in the first hidden

layer is computed using features at the current time frame and one left and right frame.

For the example here, only one left and right contextual frame are used though it could

be any context. For the second layer, a context of two left and right frames is used to

Figure 2.6: An example TDNN model with (red and grey lines) and without sub-
sampling (only red lines) approach is shown for a given time step t. Contextual frames
are considered at each time step (context width is 7 in this figure). For computing
parameters of the second layer, features of one left and right contextual frame are also
used. This temporal context increases towards the higher layers i.e. last layer uses 4
left and right frames. In the sub-sampling approach, only the extreme neurons of each

frame from the last layer are used to compute the parameters of the next layer.
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Table 2.1: Temporal context captured by different layers of TDNN of Figure 2.6.
The temporal context considered by different layers is shown for TDNN without sub-
sampling (Waibel et al., 1989) and with sub-sampling (Peddinti et al., 2015) approaches.

Layer
Input Context

w/o sub-sampling w/ sub-sampling

Layer 1 [-1,1] [-1,1]
Layer 2 [-2,2] {-2,2}
Output [-4,4] {-4,4}

compute the value of each neuron. The final layer outputs the class probabilities by

carrying out the weighted sum of all the neurons of the previous layer. As it is evident

that a lot of computation is needed for a TDNN, a variant of it with sub-sampling has

also been proposed (Peddinti et al., 2015) (only red lines in the Figure 2.6). With sub-

sampling, rather than computing neurons of second layers by taking all five frames into

account (current time frame and two left and right contextual frames), only extreme

neurons of previous layers are used for computation. It reduces the computation of a

TDNN significantly. The input context without sub-sampling (red and grey lines in

Figure 2.6) and with sub-sampling (only red lines) is shown in Table 2.1.

As the transformations within the TDNN architecture are tied across different time

steps, they can be seen as a precursor to Convolutional Neural Network (CNN). In the

back-propagation process of a TDNN, the tying of these transformations results in the

gradient accumulation over all the time steps of the input temporal context for the

lower layers of the network. Consequently, this makes the lower layers of a TDNN learn

translation-invariant feature transformations (Waibel et al., 1989).

The time delays in time-delay neural networks are typically fixed and predefined. Each

neuron in each layer of a TDNN processes information from a specific time window. This

limits the ability of TDNNs to capture long-term temporal dependencies. Sequence (or

recurrent) neural models such as Gated Recurrent Unit (GRU) or Long Short-Term

Memory (LSTM) are alternative architectures that can handle long-range dependencies

in a better way.

In the following two sections, activation and objective functions are described which are

an important part of all kind of neural networks and their training process. Their use

is not limited to only the feed-forward neural networks.

Activation functions Activation functions play a crucial part in the training of neural

networks by introducing non-linearities into the computation. Without using activation

functions, a neural network would be a linear model regardless of the number of layers

etc. A lot of problems are much more complex than to be solved by a linear model. The

introduction of activation functions makes a model non-linear and able to learn complex

patterns and relationships in the data. Furthermore, these functions also help to stabilise

the training of neural networks by preventing neurons from saturating. Saturation occurs
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when the output of a neuron is pushed to extreme values, making it difficult for the

network to learn effectively.

Various activation functions are used based on the complexity of the network and limi-

tations of the activation functions etc. Sigmoid, hyperbolic tan (tanh), Rectified Linear

Unit (ReLU) (Nair and Hinton, 2010), Leaky Relu (Xu et al., 2015a) and softmax are a

few to name. However, some of the most widely used are described here and plotted in

Figure 2.7 along with their derivatives.

• Sigmoid: The sigmoid function takes a real value input and produces outputs

within the interval of 0 to 1. Mathematically, it is described as;

σsigmoid(x) =
1

1 + e−x

So, as the input gets smaller (more negative) the output moves close to 0. The

sigmoid function outputs values closer to 1 as the input gets larger and larger. This

is a widely used activation function as it is differentiable and provides a smooth

gradient (no jumps in the output of its derivative).

∂σsigmoid(x)

∂x
= σsigmoid(x) · (1− σsigmoid(x))

However, as the output range of the sigmoid function is from 0 to 1, it pulls all the

inputs to a very small range which makes it impossible for the following layers to

discriminate among the diverse input examples (very negative and very positive

etc). Furthermore, as evident from the Figure 2.7 the gradient of the sigmoid

function has very small output values for the inputs outside the range of [−3, 3].
As the gradient value becomes very small, a neural network suffers from vanishing

gradient problem and is not able to learn.

• Hyperbolic tan (tanh): The tanh function is very similar to the sigmoid function

except that it outputs in the range of [−1, 1] rather than 0 to 1.

σtanh(x) =
1− e−2x

1 + e−2x

The tanh activation function produces output values that are centred around zero,

allowing for a straightforward mapping of output values to strongly negative, neu-

tral, or strongly positive categories. Usually employed in the hidden layers of a

neural network, the tanh activation function has values ranging between -1 and 1.

So, the mean of a hidden layer tends to be close to zero, which helps in the centring

of data and facilitating the learning process for the subsequent layers. However,

the derivative of tanh also suffers the vanishing gradient problem (as shown in

Figure 2.7).
∂σtanh(x)

∂x
= 1− σ2

tanh(x)
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Figure 2.7: Different frequently used activation functions (blue lines) along with their
gradients (orange lines).

• Rectified Linear Unit: The ReLU is a linear activation function. Though it

gives an impression of linearity, ReLU does not activate all the neurons at the same

time. Only the neurons with linear transformation greater than 0 are activated.

Being a simple differentiable linear function, ReLU allows back-propagation and

makes it computationally very efficient.

σReLU (x) = max(0,x)

The gradient of a ReLU function is constant 1 for input values greater than 0 while

it gets value 0 for input less than 0. Although ReLU is computationally efficient

and accelerates the convergence of gradient descent because of its linear and non-

saturating property, ReLU suffers from dying ReLU problem (Lu, 2020). Since

the gradient of input values less than 0 is 0, the weights for such neurons would

not be updated in the back-propagation process. This might create dead neurons

that never get activated. Since any negative input values instantly become zero,

it decreases a model’s capacity to properly fit or train on the data.

• Leaky ReLU: Dying ReLU problem is addressed by the leaky ReLU activation

function as it has a small positive slope in the negative area too (shown in Fig-

ure 2.7).

σL ReLU (x) = max(0.1x,x)

Since a derivative exists for negative regions as well, no dead neurons get generated

during the backpropagation. However, the derivative of small negative values
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would be very small and make learning of the parameters slower.

Despite having a positive slope in the negative region, leaky ReLU is not always

guaranteed to solve the problem of dying ReLU because of a constant multiplying

factor of 0.1. A variant to overcome this issue is Parametric ReLU where the

multiplying factor is learnt during the backpropagation.

σP ReLU (x) = max(ax,x)

where a is a learnable parameter.

• Exponential Linear Unit (ELU): ELU is another variant that modifies the

slope in the negative region. A log curve is used to define the output in the

negative region.

σELU (x) =

x, for x ≥ 0

α(ex − 1), forx < 0

Unlike ReLU, ELU becomes smooth gradually until its output reaches −α, pro-
viding a more continuous transition. Additionally, ELU effectively addresses the

dead ReLU problem by introducing a logarithmic curve for negative input values.

However, ELU is a computationally expensive function as it involves exponential

operation.

• Softmax: The sigmoid function outputs values in the range of 0 to 1 but does

not constrain them in any other way. The softmax function, on the other hand,

outputs values in the range of [0, 1] such that the sum of all the outputs equals

1. Softmax is usually used as an activation function at the last layer to get the

probabilities of the output classes. For a vector of K entries, the ith element of

output vector is given as;

σsoftamx(x)i =
e(x)i∑K
k=1 e

(x)k

Objective functions An objective function (also referred to as cost or loss function)

is used to quantify the error between predicted output from a neural network and the

target labels. The objective of neural network training is to adjust weights and biases

to minimise the objective function. Various objective functions such as cross-entropy,

mean squared error, Kullback-Leibler (KL) divergence and Euclidean distance (L2) loss

etc. are used depending on the task. Limiting the scope of this section to the work in

this thesis, only the KL-divergence and cross-entropy losses are discussed here.

• Kullback-Leibler divergence: The KL-divergence DKL(P ||Q) is a type of sta-

tistical distance to measure the divergence of a probability distribution P from a

second, expected probability distribution Q. In the context of information theory
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and statistics, KL divergence quantifies the difference between two probability dis-

tributions. For two probability distributions P (x) and Q(x) over a discrete random

variable x, the KL divergence from P to Q is defined as;

DKL(P ||Q) =
∑
X

P (x) log
P (x)

Q(x)
(2.33)

Although KL-divergence measures how two distributions are different, it is not a

distance ’metric’ and it is evident from the above equation that KL-divergence

between two distributions is not symmetric. The value of KL-divergence between

two distributions is always non-negative. In machine learning, KL divergence is

usually used in variational methods and certain types of probabilistic models, such

as Variational Auto-Encoder (VAE). It is also used in information retrieval and

other fields to measure the difference between probability distributions or models.

• Cross-Entropy: Cross-entropy loss is the most widely used objective function in

classification tasks. In information theory, entropy is the measure of the minimum

number of bits required to transmit a randomly selected event from a probability

distribution. A smaller number of bits are required for a skewed distribution and

thus the entropy is lower and vice versa. Entropy H(X) for a random variable X

with the probability of its events as P (x) can be calculated as;

H(X) = −
∑
X

P (x) logP (x)

Built upon the idea of entropy, cross-entropy calculates the (additional) number of

bits required to transmit an average event from a distribution P when the optimal

code is used for some other distribution Q.

H(P,Q) = −
∑
X

P (x) logQ(x)

Writing in terms of a loss function to train a machine learning model, P and

Q can be thought of as target and the approximation of the target distributions

respectively.

FCE = −
∑
X

P (x) logQ(x)

Cross-entropy can be deemed as a reduced form of KL-divergence loss. Equa-

tion 2.33 of KL-divergence loss can be written as;

DKL(P ||Q) =
∑
X

(P (x) logP (x)− P (x) logQ(x))
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Figure 2.8: An example one-unit recurrent neural network. From bottom to top:
input state, hidden state and the output state. The hidden state at each time step ht

is computed using the input at the given state xt and the hidden state at the previous
time step ht−1.

Since P (x) is the target probability distribution and has a value of 1 for the target

class and 0 for the rest, the term P (x) logP (x) is always 0 because either P (x) = 0

or logP (x) = log(1) = 0. So, the above equation is reduced to the CE equation.

2.2.4.2 Recurrent neural networks

Recurrent neural networks are designed to process sequential or time-series data. Unlike

feed-forward neural networks, RNNs have cyclic connections in their compact form which

allows them to maintain a hidden state to memorise information about the previous

inputs in the sequence. RNNs have been proven to outperform conventional neural

networks for the speech recognition task (Graves et al., 2013b).

Similar to any other neural network, an RNN has input, output and one or more hid-

den layers. A simple RNN with one hidden layer is shown in Figure 2.8. RNNs are

particularly designed for sequential data, allowing them to process one element of an

input sequence at a time, maintaining an internal state to capture context from previous

inputs. The key feature of RNNs is the presence of recurrent connections, which allow

previous information to be used across different time steps. Each neuron in the network

receives input not only from the current time step but also from its own output at the

previous time step. This ability to retain memory makes RNNs particularly effective in

tasks where context and temporal dependencies are crucial.

For a simple RNN with one hidden layer shown in Figure 2.8, the output of the hidden

layer is described as;

ht = σ(xt ·W xtht + ht−1 ·W ht−1ht + bxtht)

where W are the weight matrices and b is the bias vector. W xtht ∈ RF×D are the

weights for the input to the hidden layer, W ht−1ht ∈ RD×D are the weights between the
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neurons of the hidden layers and bxtht ∈ R1×D is the bias vector where D and F are the

dimensions of feature vector and hidden representation vector respectively. Then the

output of the RNN at timestep t is given as;

yt = ht ·W htyt + bhtyt

where W htyt ∈ RD×C is weight matrix from hidden to the output layer and C is the

number of output classes.

RNNs are trained using Back-Propagation in time (BPPT) (Werbos, 1988, Williams and

Zipser, 1995). In BPTT, the recurrent connections of an RNN are unfolded over time,

creating a chain of connected instances of the network. As described above, the cell

state and output for each time step are computed sequentially. The error is computed

by comparing the output of each time step to the target output at the corresponding

time step. In the backward pass, gradients of the error with respect to model parameters

are calculated starting from the last time step and moving backwards to the start of

the sequence. The gradients at each time step are then accumulated over the entire

sequence. Although training of RNNs with BPPT addresses the challenges associated

with the processing of sequential data through conventional neural networks, it poses

its own challenges. RNNs can become computationally unstable and unable to hold

sequential information for longer sequences which can impact their performance for

applications such as machine translation and speech recognition etc. In the case of

longer sequences, RNNs suffer vanishing or exploding gradients problems with BPPT

training (Hochreiter and Schmidhuber, 1997). If the gradient becomes too small or

too large, it becomes harder for a network to learn the weights as gradients explode or

diminish exponentially. This issue is addressed by Long Short-Term Memory (LSTM)

RNN architecture which can learn for a sequence of up to 1000 time steps without having

gradient vanishing or exploding problems (Hochreiter and Schmidhuber, 1997). A gated

recurrent unit has also been introduced which addresses the same problem but is more

efficient than the LSTMs. In the following section, these two RNN architectures are

described briefly.

Long Short-Term Memory In LSTM RNNs, each neuron (commonly referred to as

a cell) also has an internal state. So in LSTMs, the internal state is also used along with

input at the current time step and output from the previous time step to calculate the

output at the current time step. The internal state or cell state carries the long-term

information while the hidden state encapsulates the relevant information to be passed

to the next time step or the output layer. The flow of the available information (i.e.

input at the current time step, output from the previous time step and the cell state) is

controlled by the ‘gating’ mechanism. An LSTM cell is shown in Figure 2.9.

LSTM’s gating mechanism consists of three gates made of sigmoid function to control

the flow of information into and out of a cell. The three gates are referred to as input,
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output and forget gates.

• Forget gate determines what information from the previous cell state should be

discarded. This allows the network to learn when to ”forget” irrelevant infor-

mation, preventing the accumulation of unnecessary information that can lead to

vanishing gradients. Represented as f t in the Figure 2.9, forget gate is described

by the previous hidden state and the current time step input;

f t = σ(xtU
f + ht−1W

f )

where U and W are the weight matrices which are different at each time step

(though no subscript is used to denote that here).

• Input gate decides what new information should be added to the cell state. The

input gate it is given as;

it = σ(xtU
i + ht−1W

i)

• Output gate determines what information from the current cell state should be

output as the hidden state. ot in Figure 2.9 is computed as;

ot = σ(xtU
o + ht−1W

o)

Figure 2.9: Illustration of the internal structure of an LSTM cell. The cell consists
of three gates: the forget gate (f t), the input gate (it), and the output gate (ot). The
forget gate decides which information to discard from the cell state (ct−1), while the
input gate determines which new information (C̃) to store in the cell state. The output
gate selects which part of the cell state to output as the hidden state (ht). The cell
state (ct) and hidden state (ht) are passed to the next time step of the LSTM cell.
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The current cell state of an LSTM cell is given as;

Ct = σ(f tCt−1 + itC̃) (2.34)

where C̃ (as shown in Figure 2.9) is given as;

C̃t = tanh(xtU
g + ht−1U

g)

So, Equation 2.34 can be re-written as;

Ct = σ(f tCt−1 + it(tanh(xtU
g + ht−1W

g)))

It is evident from this equation that the update in the cell state is controlled by

the input gate (it) which controls the flow of new information into the cell state.

The hidden state and the output of a cell are then the product of the activated

current cell state and the output gate.

ht = tanh(C̃t)ot

The control of information flow mechanisms in LSTMs helps to alleviate the problems of

traditional RNNs. LSTM networks can be uni-directional or bi-directional (BLSTMs)

(Graves and Schmidhuber, 2005, Graves et al., 2013b). BLSTMs allow the flow of in-

formation in both directions by adding an additional layer to handle the reverse flow of

information. Outputs of the forward and backward layers can be combined by accumu-

lation or concatenation etc. BLSTMs perform better than uni-directional LSTMs for

various tasks including speech recognition (Graves et al., 2013a).

Gated recurrent unit The gated recurrent units (Cho et al., 2014) have been pro-

posed as an efficient alternative to LSTMs and consist of only two gates i.e. update gate

and the reset gate. A GRU cell is shown in Figure 2.10.

• Update gate in a GRU determines how much of the previous hidden state should

be retained and how much of the new candidate hidden state should be incorpo-

rated. It takes into account the current input and the previous hidden state. The

value of update gate zt (as shown in Figure 2.10) is computed as;

zt = σ(xtU
z + ht−1W

z)

• Reset gate controls the extent to which the previous hidden state should be

ignored when computing the new candidate hidden state. It helps the model to

selectively forget irrelevant information. The reset gate is described as;

rt = σ(xtU
r + ht−1W

r)
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Figure 2.10: A gated-recurrent unit cell with three main components: an update
gate (zt), a reset gate (rt), and a candidate hidden state (h̃t). The input data (input
at current time xt and last hidden state (ht−1) flow into the GRU cell, which then
processes the data and produces an output (ht). The update gate determines whether
the hidden state (ht−1) is to be updated with a new hidden state (h̃t), while the reset

gate decides whether the previous hidden state should be disregarded.

The actual activation of an RNN node is then computed by;

ht = ztht−1 + (1− zt)h̃t−1

where

h̃t−1 = tanh(Wxt +U(r ⊙ ht−1))

where ⊙ is the Hadamard (or element-wise) product of two vectors. It is evident from

the last equation that if the value of the reset gate is very small, the last hidden state

is forced to ignore and the output of the current state mostly depends on the input

only. The update gate, on the other hand, controls how much information from the

previous hidden state would go into the current hidden state. If the value of the update

gate is very small, current hidden state ht gets more information from previous state

(1 − zt)h̃t−1. This acts similarly to the memory cell of an LSTM which carries the

information of the long-context (Cho et al., 2014). Each hidden unit of an RNN has

separate update and reset gates and thus learns to capture dependencies over different

time scales.

Since the GRU implementation is simpler than an LSTM cell, it results in fewer param-

eters and is thus efficient to train. Even with fewer parameters, they can outperform

the more complex LSTM models for speech recognition task (Ravanelli et al., 2018).

Similar to LSTMs, GRUs can also be implemented in uni-directional or bi-directional

configurations (Bhuvaneswari et al., 2019).

There are various other popular architectures such as RNN-Transducer (RNN-T) which

are being widely used for speech recognition. However, those are beyond the scope of
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this thesis and so not discussed here.

Objective functions Earlier, cross-entropy and KL-divergence objective functions

have been discussed which are used for frame-based speech recognition systems. Since

sequence models (i.e. RNNs) prove to perform better than conventional neural networks

because they are specifically designed to handle sequential information, sequence-based

objective functions have also been introduced such as Connectionist Temporal Clas-

sification (CTC) objective function for speech recognition (Graves et al., 2006). CTC

allows the training of recurrent neural networks without the need for aligned input-

output pairs, making it particularly useful for problems where the alignments between

input and output sequences are not known during training. CTC objective is usually

used to train a sequence model which will be explained in detail in the Section 2.2.5.2.

2.2.4.3 Convolutional neural networks

Motivated by an idea of a neurophysiology discovery that neurons in a cat’s visual cortex

were sensitive to specific local patterns (Hubel and Wiesel, 1962), convolutional neural

networks have been initially used for image processing (Lecun et al., 1998). Convo-

lutional neural networks employ shared weights and local receptive fields to capture

temporal and spatial information. CNNs are designed for grid-like data structures such

as images while preserving the spatial hierarchies and local patterns in data.

Usually, CNN models consist of blocks of convolution layers followed by pooling layers.

A convolution layer is designed to perform convolution operations on 2D input data.

A small filter (known as a kernel) is moved over the input to compute a dot product at

each position. This results in a feature map that captures local patterns in the input.

A kernel or filter is a small learnable matrix that is applied to the local regions of an

input. The weight parameters of the filters are shared across different spatial locations.

This parameter sharing reduces the number of parameters in the network. A pooling

layer is used to reduce the dimensionality and information aggregation on the output of

a CNN layer and capture the most essential information from the input. They generally

do not have any learnable parameters. Average pooling and max pooling are the two

most commonly used pooling types. In max pooling, the maximum value from the input

window is selected while average pooling takes the average of the input window. Pooling

could be applied on the output of a single filter to further reduce the dimensionality or

across the different channels of a CNN layer (output from different kernels).

In speech recognition, CNN layers are used as the initial layers to the sequence models

where input is given in 2D (Abdel-Hamid et al., 2014). Features of all the frames of an

audio are concatenated to form a 2D input which is then fed to CNN layers. An example

is shown in Figure 2.11 where the dimensionality of a speech signal can be reduced by

capturing information in the low-dimension using CNN layer(s). In the shown figure, a

fully connected neural network is used after flattening the output of the final pooling

layer. However, any other model such as RNNs can also be used (Hori et al., 2017).
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Figure 2.11: Illustration of a high-level CNN model with a convolutional, pooling and
a fully connected layer. A small kernel of the convolution layer performs convolution
operation over the input image to capture spatial information in a low-dimension out-
put. A pooling layer is used to perform pooling over the output of a convolution layer
to further reduce the dimensionality. The last fully connected layer is usually used to

output probabilities of a finite number of classes for the downstream task.

2.2.5 End-to-end models

In this section, various end-to-end speech recognition systems and their training are

discussed. End-to-end ASR systems can be trained in various ways using different ar-

chitectures. However, the scope of this section is only limited to the architectures and

regimes which are used later in this work.

2.2.5.1 Encoder-Decoder models

A technique proposed to use two RNN models for machine translation has proven to

outperform a model of single RNN (Cho et al., 2014). One RNN is used as an encoder

which encodes the input data in the hidden layers. The hidden layer representation

is then fed to another RNN which is referred to as a decoder. The decoder outputs

the target labels. With its success in machine translation and several other sequence

tasks such as image captioning (Xu et al., 2015b), encoder-decoder models have been

employed for speech recognition and proven to perform better than frame-based ASR

systems (Chorowski et al., 2014, Lu et al., 2016).

In encoder-decoder models, the encoder processes the variable-sized input sequence and

captures the information into a fixed-size representation. The decoder takes the last

encoder state and generates the output sequence step by step. At each step, it produces

the next element in the sequence based on the last decoder state and the previously

generated output tokens (autoregressive) or using only the last decoder state (non-

autoregressive) (Gu et al., 2018). As the decoder predicts output using representations

from the encoder, the output sequence length does not depend on the input sequence

and thus no alignments are required. Only encoder-decoder models are discussed here

which are based on recurrent neural networks, however, transformers-based encoder-

decoder models have also been used for speech recognition (Chang et al., 2020). In
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RNN-based encoder-decoder models, both encoder and decoder consist of one or more

RNN (such as GRU or LSTM etc.) layers. At each time step, the decoder gets the

hidden representation and output from the last time step to output the token i.e.;

h = RNN(x)

yn = RNN(yn−1, sn−1)

where yn is the output at nth output step and sn−1 is the decoder state from the last

output step. For n = 1, sn−1 is the last representation from the encoder h.

A variant of the encoder-decoder model where the decoder is replaced by an attentional

decoder proves to perform better (Chan et al., 2016). In such a model, the output at each

time step also takes a context vector into account. A context vector is a weighted vector

of all the hidden representations of the encoder. At each time step, an attention vector

is trained to learn how much the encoder’s hidden representations are to be attended.

h = RNN(x)

cn = AttentionContext(sn,h)

sn = RNN(sn−1, yn−1, cn−1

yn = MLP (sn, cn)

At each decoder timestep, AttentionContext generates a context vector cn taking the

decoder state from the last time step and all the encoder representations. The last

decoder state sn−1, previously generated output token yn−1 and the last context vector

cn−1 are given as input to the decoder RNN which generates decoder state sn at current

time step. This current decoder state sn and the context vector cn are fed to a multi-layer

perceptron (or a fully-connected) layer with a softmax activation function to output the

probabilities of the output tokens at each time step.

AttentionContex computes scalar energy (ei,n) for each encoder timestep i at each

decoder timestep n taking hi and sn as the inputs where hi is the encoder output

at ith timestep (Chan et al., 2016). Then, cn is the encoder outputs h weighted by

corresponding normalised scalar energy.

ei,n = (ϕ(sn),Φ(hi))

αi,n =
ei,n∑
i ei,n

cn =
∑
i

αi,nhi

where ϕ and Φ are multi-layer perceptron networks (Chan et al., 2016).
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2.2.5.2 CTC training

As discussed earlier in Section 2.2.5.1 RNNs do not need alignments for ASR training.

Rather, they have been trained to output a series of tokens in a way of independent label

classification (Graves et al., 2006). This implies that the training data must be pre-

segmented and the output needs to be post-processed to have the final output sequence.

However, in CTC training (Graves et al., 2006), RNNs can be directly trained with

sequence labelling (without pre-segmenting).

For CTC training of a model, the possible output tokens L are the tokens for the task L′

(such as graphemes of a language for a grapheme-based ASR system) and one additional

blank symbol (let’s denote it with ϵ; L = L′ ∪ {ϵ}). The task of the CTC training is to

minimise the ’label error rate’ which is an edit distance measure between the ground-

truth labels sequence and the network output label sequence. The decoder RNN outputs

the probabilities of the token symbols from L′ or ϵ at each timestep where the probability

of ϵ implies no symbol or a ’blank’. Let ytk be the probability of k symbol at time t which

defines a distribution over the set LT of length T sequences:

p(π|x) =
T∏
t=1

ytπt
∀ π ∈ LT

where x is the input signal and π is the elements in LT (referred to as paths). An

implicit assumption here is that the network outputs are conditionally independent as

no previous output is used for the prediction of future outputs (Graves et al., 2006).

Having the output sequences from the network for a given signal x, a many-to-one

mapping step (B(.)) is done in which the repeated and blank symbols are removed. For

example, B(aaϵab) = B(aϵϵab) = aab. So, two different paths from network output

can lead to the same output sequence. Finally, the probability of a labelling sequence

l ∈ L≤T is calculated as the sum of probabilities of all the probable paths for l.

p(l|x) =
∑

π∈B−1(l)

p(π|x)

The final output sequence can be worked out as the most probable sequence from the

above equation (best-path) or the backward-forward algorithm (prefix-search as described

in detail in (Graves et al., 2006)). The backward-forward algorithm is similar to the one

explained in Section 2.2.1.2 for hidden Markov models. The probabilities of all the paths

are calculated in the same way in the forward path. For the most probable path at the

end of the forward pass, corresponding labels are given as output in the backward pass.

ASR systems trained with CTC training outperform frame-based ASR systems (Graves

et al., 2006) and are the most widely used training scheme for most of the ASR systems

(Amodei et al., 2015, Graves and Jaitly, 2014). However, the Markov assumption that

CTC relies on, regarding conditional independence between output symbols, can hinder
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its ability to capture complex dependencies among those symbols. So, some variants have

been introduced to exploit CTC further. The hybrid CTC/attention loss (Watanabe

et al., 2017) is briefly discussed here as that is used in some models trained in this work.

Hybrid CTC/Attention architecture The objective of hybrid CTC/attention train-

ing (Watanabe et al., 2017) is to leverage the benefits of both CTC and attention models.

CTC is effective for tasks where the alignments are mostly monotonic while the attention

mechanism does not make Markov independence assumption. In the hybrid CTC/at-

tention training benefits of both, CTC and attention are leveraged to train a model.

Hybrid CTC/attention architecture usually consists of an RNN encoder, attentional de-

coder and a feed-forward neural network. This is very similar to the architecture already

explained for the encoder-decoder model. The difference is that a CTC loss is also ap-

plied on the top of the encoder while frame-wise classification loss is applied on the top

of the decoder. One or a few feed-forward layers are applied on the top of the encoder

layers to apply CTC loss. So, the encoder is trained over the gradients calculated from

both, CTC and classification loss, while the decoder is trained using only one (classifica-

tion) loss. The speech recognition systems trained with hybrid CTC/attention objective

have been proven to perform better than only CTC or frame-wise classification models

(Hou et al., 2020, Watanabe et al., 2017).
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Multilingual Speech Recognition

In the past few decades, automatic speech recognition systems have seen a lot of devel-

opments from HMM models (Rabiner and Juang, 1986) to large self-supervised models

such as wav2vec (Baevski et al., 2020), Hubert (Hsu et al., 2021b) and Whisper (Radford

et al., 2022) are a few to name. It is no longer just a research topic, rather speech recog-

nition systems have been deployed in a variety of applications such as voice assistants

(Sri, Google Assistant and Cortana etc). However, a few languages have been predom-

inantly focused on for building speech recognition systems. More than 7000 languages

are being spoken around the globe. So from the application perspective, the need of the

time is to build ASR systems that could support multiple input and output languages.

However, a lot of languages do not have sufficient available data resources for building

their speech recognition systems. In this chapter, the efforts made towards building

multilingual speech recognition systems and ways to exploit cross-lingual resources to

train ASR systems for under-resourced languages are revisited. The work in this thesis

mostly revolves around acoustic modelling, so the acoustic modelling is mainly focused

on while revisiting the literature.

Earlier works on speech recognition have been limited only to the English language

(Gauvain et al., 1994). However, the advancements in the domain attracted researchers

to build ASR systems for other languages too (Glass et al., 1995, Lamel et al., 1995).

The implementation of core speech recognition systems is independent of the target

language and all the core components remain the same for speech recognition systems

of different languages (Schultz and Kirchhoff, 2006b). Many works have shown that the

speech recogniser trained for a language can be ported to other languages (Glass et al.,

1995, Lamel et al., 1995). Lamel et al. (Lamel et al., 1995) ported the GMM-HMM-

based speech recognition systems of American English and French to British English and

German languages. Porting of a speech recogniser to another language needs to change

certain system components or parameters such as; the change of phonemes set requires to

train HMM models for new phonemes (Lamel et al., 1995). Even for the same phonemes,

new language-dependent knowledge is needed to be incorporated. The success of porting

51
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speech technology to other languages has given rise to the idea of sharing knowledge

across languages. Multilingual ASR has been trained in the sense that the HMM models

of shared phonemes have been trained using training data of all the sharing languages

(Kohler, 1996). As described earlier in Section 1.3.2, multilingual speech recognition

systems gained attention because of their many-fold advantages (Schultz and Kirchhoff,

2006b);

• A multilingual speech recognition is capable of recognising input speech from sev-

eral multiple languages. If the input language is from a close set, a multilingual

ASR system performs implicit language identification and converts speech input

to the text in the corresponding language (Zhou et al., 2022). From an applica-

tion perspective, ideally, a universal ASR (a speech recognition system which can

recognise speech from any language of the world) is needed.

• A single model is easy to maintain and deploy for multiple languages rather than

having a separate speech recognition system for each language (Schultz and Kirch-

hoff, 2006b).

• Code-switching is a common phenomenon of spoken language by bilingual speakers

(Farooq et al., 2020). A multilingual ASR enables recognition of code-switched

speech whereas a monolingual ASR can not handle code-switched speech (Schultz

and Kirchhoff, 2006b).

• Another advantage is about exploiting multilingual ASR systems or resources to

improve speech recognition of low-resource languages (Kannan et al., 2019, Kovac,

2005, Li et al., 2014a, Lin et al., 2009). It is quite challenging to train a good

ASR using very limited data resources. Various approaches have been adopted to

improve the speech recognition of languages with limited data exploiting data or

speech recognition systems of other languages (Chen and Mak, 2015, Gaur et al.,

2021, Heigold et al., 2013, Sailor and Hain, 2020).

However, multilingual speech recognition poses its challenges. In the following sections,

challenges associated with multilingual speech recognition are briefly discussed. The

work done for the aforementioned aspects of multilingual speech recognition is revisited

after that.

3.1 Challenges for multilingual speech recognition

Limited attention has been paid to multilingual speech recognition research until the

last few years. Multilingual speech recognition is more challenging because of data

requirements and language peculiarities. A few challenges associated with multilingual

data and languages are discussed here.
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3.1.1 Data collection

Machine learning-based speech recognition approaches are data-driven and require a

reasonable amount of data to train a speech recognition system of a language. Lexicon

or pronunciation modelling has been among the core components of GMM-HMM-based

speech recognition system which is usually designed by linguists and requires language

knowledge. So, language knowledge is also needed along with the speech data.

Lack of resources A large amount of speech data of the target language is required

to train a speech recognition system. As the earlier research on speech recognition has

been mainly focused on the English language, efforts have been made to collect English

speech data such as TIMIT (Fisher et al., 1986), Wall Street Journal (WSJ) (Paul and

Baker, 1992) and Switchboard (SWBD) (Godfrey et al., 1992) etc. In case of porting

an ASR system to another language, the speech data of the target language is required

which needs very expensive and laborious efforts. The problem is exacerbated by the

increasing number of languages. So, sufficient data resources of multiple languages are

needed to train a multilingual speech recognition system. However, data of very few

languages, that are spoken by a large proportion of the population, have been collected

during the earlier works (Hess et al., 1995, Larnel et al., 1991, Paul and Baker, 1992,

Robinson et al., 1995). Furthermore, linguistic knowledge such as phonemes and words-

to-phonemes maps are also needed. This makes language research a prerequisite for

building an ASR system.

Uniformity in data For a fair learning of each language in a multilingual speech

recognition system, the quality of data of all the languages should ideally be uniform

in several aspects such as duration, speakers, speaking style, data domain, recording

equipment and environment etc. Data recorded with certain factors makes learning more

challenging than others. For example, read speech data is easier to understand (and thus

less challenging to learn by machine) as compared to spontaneous conversational speech.

Similarly, speech with background noise in an open environment makes the recognition

task harder than the speech recorded in a very clean environment. In a multilingual

setup, mixing data from different languages that were recorded under varying conditions

introduces a bias in the learning process (Schultz and Kirchhoff, 2006b), which is not

good for a fair comparison of the different languages.

3.1.2 Language units

The objective of multilingual speech recognition has been to share the acoustic data

across multiple languages (Lin et al., 2009). A common phonetic alphabet system for

all the languages such as IPA (Association, 1999) has been defined. Speech data of the

languages can be transcribed on words, phonemic or phonetic level. For phoneme-based

ASR systems, utterances are either transcribed on a phonemic level or are converted to

phonemic transcriptions using a pronunciation dictionary if annotated on a word level. In

IPA-based phonemic transcriptions, there is an implicit assumption that the phonemes
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represented by the same IPA representations across the languages are acoustically simi-

lar too (Schultz and Kirchhoff, 2006b). However, phonemes of different languages might

have different underlying acoustic realisations (phones). Given pronunciation dictio-

naries of different languages in a uniform phonemic representation (i.e. IPA), lexicons

from various languages can be joined together for multilingual ASR training (Schultz

and Kirchhoff, 2006c). The number of total phonemes becomes the union of individual

phoneme sets of all the languages for the multilingual ASR which is always a subset of

the universal phoneme set. A universal phoneme set is a set consisting of phonemes from

all the languages and consists of a limited number (The Phoible1 (Moran and McCloy,

2019) database of 2186 languages contains 3183 phonemes to-date).

In the case of e2e of speech recognition systems, most of the languages have very diverse

writing systems. A significant number of languages do not even have a written form

(Schultz and Kirchhoff, 2006c). For a multilingual ASR, the number of output tokens

would be the union of tokens of all the individual languages which amounts to a sig-

nificantly large number of classes if the participating languages have different writing

scripts. It makes it difficult for a model to learn even if the languages are acoustically

close (Schultz and Kirchhoff, 2006b).

The aforementioned challenges in building multilingual speech recognition raised slow

progress in this domain until the recent past. Recently, a significant increase has been

seen in multilingual data resources (Ardila et al., 2020, Pratap et al., 2020b) and efforts

have been made to build massively large multilingual speech recognition (Li et al., 2022a,

Pratap et al., 2020a, Tjandra et al., 2022) systems as well as exploiting these resources

to improve ASR performances for low-resource languages (Hsu et al., 2020, Shetty and

Sagaya Mary N.J., 2020).

3.2 Massively multilingual speech recognition systems

It has been a long-standing goal of speech recognition research to develop a single model

which is capable of recognising speech from multiple languages (Pratap et al., 2020a).

Until the late past decade, the research on multilingual speech recognition has been

limited to a set of a few languages (around 5-10 mostly) (Burget et al., 2010, Kannan

et al., 2019, Madikeri et al., 2020). Furthermore, the languages of interest have been

among the very rich-resource languages for a very long time such as English, German

and French etc (Burget et al., 2010, Lin et al., 2009). The potential reason is the

unavailability of data and limited computational resources. Multilingual data sets are

discussed in detail in Section 3.5, a very few multilingual speech data sets have been

available until the recent past.

Recently, some projects such as CommonVoice (Ardila et al., 2020) and Babel (Gales

et al., 2014) have stepped towards collecting speech data of various languages. Though

the GlobalPhone corpus consists of speech from multiple languages, it has not been a

1 phoible.org [Last accessed: 14th January 2024]
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freely available resource. CommonVoice, on the other hand, consists of the actively

collected data sets. Resources for both existing and additional languages have been

actively collected and made freely available to the public. Furthermore, the wider use of

modern technology has enabled various companies to have in-house public data to build

their speech recognition systems (Li et al., 2022a, Pratap et al., 2020a).

Hou et al. (Hou et al., 2020) have built a large-scale single e2e multilingual model which

has been trained on around 5000 hours of speech data from 42 languages. The data

for the participating languages have been sourced from different available corpora i.e.

CommonVoice, Voxforge and Babel etc. The speech recognition system has been trained

using a hybrid CTC/attention objective which achieved an average word error rate of

52.8%. A language tag has been appended at the start of each transcription. Language

identification performance is measured in terms of the correct tag prediction by the

model. The system achieved a language identification accuracy of 93.5%. The trained

model has been used to bootstrap a model of 14 unseen low-resource languages. The

low-resource multilingual ASR system has seen a reduction in average WER from 28.1%

to 11.4% when bootstrapped from the large-scale multilingual model. Since the data of

different languages have been included from different corpora, the data may have been

recorded in non-uniform conditions such as recording equipment and environment. So

the training and thus the performance of the model may have been influenced by these

factors.

The work done by Pratap et al. (Pratap et al., 2020a) discusses building a massive

multilingual model of up to 1 billion parameters. The model has been trained using

about 16,000 hours of speech data from 51 languages. The speech data is Facebook’s

(now Meta) in-house data and is not publicly available. The participating languages

range from rich-resource to low-resource languages. Data (in terms of hours) varies

from 100 to 1100 hours for low to high-resource languages. Various efforts have been

made to avoid over-fitting and catastrophic forgetting. An average relative WER im-

provement of up to 28.8% has been observed in comparison with monolingual models

of the languages. Results show that the resource-rich languages show degradation, no

or very-low improvement in multilingual models when compared with the performance

of their monolingual models. This work has recently been extended to build a bigger

model. An RNN-T model has been trained for 70 languages using 150,000 hours of their

in-house data set (Tjandra et al., 2022).

Catastrophic forgetting is a problem in machine learning when a model starts forgetting

previously learnt information while learning new tasks (McCloskey and Cohen, 1989).

Li et al. (Li et al., 2022a) proposed a lifelong learning solution to build a massively large

multilingual ASR system avoiding the problem of catastrophic forgetting. The final

model is trained for 67 languages using 670,000 hours of in-house data from Google. The

model is gradually trained for different sets of languages and does not see degradation in

the performance of languages it learnt as the first set of tasks. This process is expected
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to speed up the development of a language-universal speech recognition system (which

could recognise speech from ideally any language of the world) (Li et al., 2022a).

With the recent trends towards self-supervised modelling (Baevski et al., 2020, Hsu et al.,

2021b), various multilingual SSL models have been trained (Babu et al., 2022, Conneau

et al., 2021). Wav2vec2.0 model has been trained using 56,000 hours of unsupervised

speech data of 53 languages (XLSR-53 from Babel, MLS and CommonVoice corpora)

(Conneau et al., 2021). The model consists of nearly 317 million parameters. This has

later been extended to build a bigger model of (up to 2 billion parameters) which have

been trained on 128 languages (Babu et al., 2022). It also included data from VoxPopuli

and VoxLingua data resources to have 436,000 hours of unsupervised speech to train the

model (XLS-R).

3.3 Improving low-resource speech recognition

One main objective of multilingual speech recognition is to share language resources to

improve speech recognition of low-resource languages (Lin et al., 2009). Many different

approaches have been made towards solving this problem which are discussed here.

3.3.1 A single multilingual model

Many studies have shown that multilingual speech recognition systems reduce speech

recognition error rates for low-resource languages when compared with the monolingual

ASR systems (Li et al., 2014a). A multilingual model is trained by mixing training data

from all the participating languages before training. However, various architectures and

training procedures have been explored to train a multilingual model. For example, a

conventional approach could be where all the layers are shared among all languages and

the output tokens are the union of output tokens of all individual languages. A multilin-

gual ASR system has also been trained with multitask machine learning (Caruana, 1997,

Kovac, 2005). One approach with Multi-Task Learning (MTL) is to build a model with

some initial shared layers among all the languages followed by language-dependent layers

(or output layer) (Heigold et al., 2013). Another approach is to have speech recognition

as the primary task and language identification as the auxiliary task in an MTL-trained

model (Sailor and Hain, 2020). Many other approaches have been experimented with

multi-task learning approaches such as recognising phonemes and graphemes as parallel

tasks (Chen and Mak, 2015).

Kannan et al. (Kannan et al., 2019) have trained an RNN-T-based multilingual speech

recognition system. However, the authors have used Learning Hidden Unit Contributions

(LHUC) (Swietojanski and Renals, 2014b) like language-dependent adapter layers before

each layer in the encoder of RNN-T. These adapter layers are expected to learn weights

to assign each layer based on the input language. In a similar approach, a mixture-

of-experts (Shazeer et al., 2017) has been employed in a multilingual speech recogniser

(Gaur et al., 2021). In this approach, each layer of the RNN-T encoder learns language-

independent and language-dependent parameters, and the way to activate them.
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So far, training of a multilingual model in different ways has been discussed. Many

other approaches have been adopted where multilingual or cross-lingual resources have

been exploited to improve low-resource speech recognition such as using the multilingual

ASR system as a feature extractor, transfer learning and data augmentation. These

approaches are revisited briefly now.

3.3.2 Feature extraction and transfer learning

Previous work has shown that using bottleneck features from a pre-trained multilingual

speech recognition system to train a low-resource ASR system helps in improving the

performance rather than using conventional MFCC or PLP etc. features (Grézl et al.,

2014, Heigold et al., 2013, Thomas et al., 2012, Veselý et al., 2012). For this purpose,

usually a multilingual model is trained which consists of initial shared layers among the

languages followed by a low-dimension layer and then language-dependent layers. The

intuition is that the layer before the language-dependent layers would learn language-

independent representations. The schematic of such a model is shown in Figure 3.1.

Once the model is trained, the target language data is passed through this model and the

representations from the bottleneck layers are extracted as the features to train another

model. These representations help improve performance regardless of whether the target

language has been among the pre-training languages for the multilingual model (Heigold

et al., 2013) or not (Heigold et al., 2013, Thomas et al., 2012, Veselý et al., 2012). It

means bottleneck features can be extracted using multilingual or cross-lingual resources.

Thomas et al. (Thomas et al., 2012) have combined both approaches, bottleneck fea-

tures and transfer learning, to improve low-resource speech recognition. A multi-layer

Figure 3.1: Illustration of a multi-task multilingual speech recognition system to
extract bottleneck features. The neural network consists of an input, several shared
hidden layers, a low-dimension hidden layer (bottleneck layer) and multiple output
layers (one for each language usually). Once the model is trained using data from
multiple languages, speech data of a target language is passed through this model and
the representations from the bottleneck layer are extracted as the features to train

another model.



Chapter 3. Multilingual Speech Recognition 58

perceptron is trained for multilingual speech recognition using speech data from mul-

tiple languages. Except for the output layer, the layers of this trained model are used

to bootstrap a model for a low-resource language. The final layer for the new model is

bootstrapped from a single-layer MLP. This single-layer MLP is trained using bottle-

neck features of the target (low-resource) language from a pretrained multilingual model.

This approach proves to perform better for a low-resource language when compared with

randomly initialised models and using conventional features such as PLP. Various other

studies have also shown the advantage of using features extracted from a multilingual

ASR system to train a monolingual speech recognition system (Tüske et al., 2013).

Similarly, studies have been done to show that a bootstrapped model to train an ASR

system for a low-resource language outperforms a randomly initialised model (Hou et al.,

2020, Huang et al., 2013, Vu and Schultz, 2013). A multilingual speech recognition

system is trained using data from multiple languages. The layers of this model are then

used as initialisation for the layers of a low-resource speech recognition system. The

target language-dependent output layer is usually added on top of these layers. Either

the parameters of the whole model are updated (Huang et al., 2013) during the training

(also referred to as fine-tuning) or only the output layer is updated while the rest of the

layers are kept unchanged (Huang et al., 2013, Vu and Schultz, 2013). The approach not

only works for the seen languages in multilingual training but it has also been proven

to perform well for unseen (cross-lingual) target languages (Huang et al., 2013, Vu and

Schultz, 2013).

3.3.3 Multilingual knowledge distillation

Recently, efforts have been made towards multilingual knowledge distillation with an

aim to utilise multilingual resources to improve low-resource speech recognition, where

multilingual models are used to train language-specific student ASR models (Leal et al.,

2021). Student-teacher training or knowledge distillation (Hinton et al., 2015) has been

widely used to transfer knowledge from either single or multiple teacher models (Huang

et al., 2023) to a student model. This technique involves transferring a teacher’s knowl-

edge to a student model either at the output layer (Hinton et al., 2015) or at intermediate

stages (Romero et al., 2015) and has been applied to tasks such as model compression

(Huang et al., 2023, Kim et al., 2019) and domain generalisation (Fang et al., 2021, Kim

et al., 2021, Wang et al., 2021). The student model is trained with the combined objec-

tive of minimising the KL-divergence loss for the prediction of the teacher’s posteriors

(soft labels) and a classification loss with the original training labels (hard labels).

Since KL-divergence loss is used as KD loss between a teacher’s soft labels and the

student model posteriors (Hinton et al., 2015), the output classes of the student model

should be a subset of the teacher model. This is because KL divergence loss is calculated

between two posterior distributions and makes sense only if the posterior distributions

represent the probabilities of the same classes from two different models. However,

multilingual knowledge distillation studies have used teacher models where the student
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model output classes are an improper subset of the teacher model classes (Leal et al.,

2021). In such cases, to train a student model for a specific language, the posterior

distribution of a multilingual model is used, dropping the probabilities of the classes

that do not belong to the target language. The updated posterior distribution is then

normalised before calculating the KL divergence loss. Some studies have used multiple

multilingual teacher models to distil knowledge for training a monolingual student model

(Shen et al., 2023). Nonetheless, this still requires a teacher model to cover all the student

classes, despite the diverse character sets and writing scripts of many languages.

Tan et al. (Tan et al., 2019) proposed training a multilingual machine translation sys-

tem by distilling data from monolingual teacher models. The posteriors of pre-trained

monolingual machine translation models are used to match the posteriors of the mul-

tilingual student model. During each training step, a mini-batch of only one bilingual

pair is sampled for student training, and the posteriors from the corresponding teacher

model are used to calculate the KL divergence loss. (Cui et al., 2017) et al. trained

student models for low-resource languages by distilling knowledge from teacher models,

which were trained on the same languages but used different neural network structures.

Additionally, the teacher model was trained using features extracted from a multilin-

gual speech recognition system. Xu et al. (Xu et al., 2019) used both multilingual and

language-specific monolingual ASR models jointly to train a student model for a specific

language.

In a recent study (Fukuda and Thomas, 2021), output posterior distributions from indi-

vidual monolingual acoustic models were used to train a multilingual ASR model. The

student multilingual model includes some shared and a few language-specific layers. The

goal of this research is to train a multilingual model with some language-agnostic shared

layers, which can be used to initialise a model for an unseen language. Leal et al. (Leal

et al., 2021) trained a monolingual student model using multiple cross-lingual teacher

models, ensuring the languages shared the same set of tokens.

3.4 Challenges in multilingual speech recognition research

3.4.1 Cross-lingual acoustic-phonetic similarities

In the last two sections, several approaches towards multilingual speech recognition have

been presented. The objective of different studies has been to improve the performance

of multilingual speech recognition systems. Multilingual setups show improvements for

low-resource languages in literature (Abate et al., 2020, Tachbelie et al., 2020a) but no

significant reduction in WER is seen for rich-resource languages (Conneau et al., 2021,

Feng et al., 2021, Gaur et al., 2021, Hou et al., 2020, Pratap et al., 2020a, Żelasko

et al., 2020). Since most of the multilingual models, which include rich-resource lan-

guages, are trained on unbalanced data and so the performance degradation of rich

languages is attributed to increased confusion for these languages in the multilingual
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setup (Pratap et al., 2020a). Conneau et al. mention language interference as the rea-

son for this phenomenon (Conneau et al., 2021). However, no experimental evidence

could be found in the literature about these reasons. So, the focus of this research is on

investigating acoustic-phonetic similarities among the languages and exploiting them to

improve speech recognition of low-resource languages. The relevant previous work has

been discussed in Section 1.4 but they are briefly discussed here.

Before the time of ample language resources and computational resources, there were

studies on efficient data sharing across languages. This includes heuristic, data-driven

and hierarchical (heuristic and data-driven) phone clustering into classes. Data for these

clustered classes’ models is then shared among languages. However, these studies cover

only Context-Independent (CI) acoustic models. As a data-driven approach, Kohler et

al. (Kohler, 1996) have measured an entropy-based distance for a set of phonemes tokens.

Context-Dependent (CD) acoustic-phonetic similarity has been studied by Imperl et

al. (Imperl et al., 2000) and later extended by Le et al. (Le et al., 2006). Both

of these studies measure the distances of two polyphones as a weighted sum of the

monophonic distances of these polyphones. In (Le et al., 2006), a knowledge-based

approach has been applied where a manually made hierarchical graph of phonemes

has been used with hand-crafted questions. Each layer (step) in the tree has been

assigned different scores (to be used as distances) and has been used to measure the

distance between two phonemes. Polyphones are re-clustered to train a multilingual

acoustic model. However, a knowledge-based approach needs sufficient manual effort as

it requires a hierarchical graph to measure the distance between monophones. It makes

enrolling a new language challenging since the same manual effort will be required for

each new language. Moreover, phonemes are clustered based on IPA symbols which

implies that the cross-lingual phonemes with the same IPA representations have been

considered acoustically similar here as well.

Recently, some efforts have been made to interpret the learning of multilingual speech

recognition systems (Feng et al., 2021, Żelasko et al., 2020) in the context of phonemes

overlap. The Phoneme Error Rate (PER) of each phoneme in monolingual ASR has

been compared with that of the multilingual system (Żelasko et al., 2020). However, no

monotonic trend has been observed with the growing number of languages a phoneme

shared. The authors described this as “unexpected” because the phonemes shared by

more languages provide more training data and thus the expected error trend would be

decreasing. The motivation for research into multilingual speech recognition is based

on an assumption that the articulatory representations of phonemes are too close across

the languages to be considered language-dependent units (Schultz and Waibel, 2001).

Many resource-rich languages such as English, German, Dutch and many other Euro-

pean languages share more than 50% of phonemes with others but still depict degraded

performance in multilingual setups (Conneau et al., 2021, Feng et al., 2021, Hou et al.,

2020, Pratap et al., 2020a, Żelasko et al., 2020). It calls for investigating the reason for

the trends in the performance of multilingual speech recognition systems.
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3.4.2 Limited benchmark data sets

One significant challenge in multilingual speech recognition has been the availability of

benchmark data sets. Different approaches towards English speech recognition have been

using standard benchmark data sets, such as LibriSpeech (LS), Switchboard andWSJ etc

to compare their performance with other works (Prabhavalkar et al., 2023). Until 2020,

GlobalPhone and Babel data sets have been the ‘standard’ multilingual data sets (where

data from all the languages have been recorded under similar conditions). However,

neither of them has been freely available to the public. So, many previous works on

multilingual speech recognition have been done on very diverse data sets. Usually, the

target languages have been chosen based on mutual intelligibility and overlap in acoustic

and lexical content (Datta et al., 2020, Gaur et al., 2021) to build a multilingual speech

recognition system. Furthermore, the speech data is sometimes locally collected or an

in-house data set (Kannan et al., 2019, Klejch et al., 2022, Pratap et al., 2020a). The

studies with technical novelties to overcome multilingual challenges, being on a diverse

set of languages makes it difficult to compare them fairly (Gaur et al., 2021). The

performance of proposed techniques has been mostly compared with their monolingual

baselines (Gaur et al., 2021, Kannan et al., 2019, Klejch et al., 2022). It limits the

fair comparison among different approaches. In Table 3.1, a few recent works have

been summarised in terms of corpora or data sets used in these works. It shows that

very diverse data sets and different numbers of languages have been targeted for different

techniques which makes a fair comparison very hard. Furthermore, no criteria are defined

for the selection of languages being combined.

Recently, some multilingual speech data sets such as MLS (Pratap et al., 2020b) and CV

(Ardila et al., 2020) etc. have been publicised and are freely available. It has encouraged

and streamlined multilingual speech recognition significantly. In the following section,

all major multilingual speech data sets are revisited.

3.5 Data sets

A few open-resource multilingual data sets have been available in the recent past. Lately,

some more resources have been introduced with the paradigm shift towards multilingual

speech recognition. In this section, common multilingual speech recognition data sets

being used as benchmarks by researchers are described. Though the speech data sets

of different languages have been available, each corpus has its recording constraints

such as speaker variability, background environment and recording equipment etc. So,

two different data sets of two different languages are not a sane choice for building a

multilingual speech recognition system. GlobalPhone has been the first prominent step

towards collecting a standard speech corpus for multiple languages.

3.5.1 GlobalPhone

GlobalPhone is the first multilingual data set which has been collected under uniform

constraints across the languages. The project started in 1995 and an initial release was
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Table 3.1: Summary of some works on multilingual speech recognition systems, the
data sets used and the baselines the work has been compared with

Work # of lan-
guages

Corpora Duration
(Hours)

Baseline

Unsupervised multilingual
(wav2vec2.0) (Conneau
et al., 2021)

53 Babel, Common
Voice,MLS

∼56K Available
mono/mul-
tilingual
systems

Large-scale e2e multilin-
gual ASR and LID MTL
(Hou et al., 2020)

42 Babel, Common
Voice, Voxforge,
Aurora4 and
many others

∼5K -

Massively multilingual
(Pratap et al., 2020a)

51 Facebook in-
house data set
(publicly video
shared by users)

∼16K Authors’
monolingual
system

MOE for multilingual
ASR (Gaur et al., 2021)

6 “Unknown” data
set for English,
French and four
dialects of Arabic

∼100K Authors’ sys-
tem without
MOE

Streaming e2e model
(RNN-T) (Kannan et al.,
2019)

9 Google’s in-house
data set

∼37K Authors’
monolingual
system

MTL language-specific
phone recognition with
multilingual ASR (Sailor
and Hain, 2020)

3 Data set released
for “low resource
speech recogni-
tion challenge
for Indian Lan-
guages” in IS
2018

∼120 Authors’
monolingual
system

Transliteration based data
augmentation (Thomas
et al., 2020)

4 Mongolian, Ja-
vanese, Dhoulo
and Georgian
from Babel

∼210 Authors’
monolingual
system

published in 2002 (Schultz, 2002) when the data of 15 languages was released initially

and extended to 5 more later on (Schultz et al., 2013). The objective of GlobalPhone has

been to collect uniform speech and text data from multiple languages for the development

of Large Vocabulary Continuous Speech Recognition (LVCSR) systems. Until the last

publication on this data (Schultz et al., 2013), about 400 hours of transcribed speech

of nearly 20 languages recorded by more than 2000 native speakers has been released.

For Chinese-Shahmghai, there are no transcriptions available. For Arabic, the data is

transcribed in Roman but not in Arabic text.

GlobalPhone speech data sets are mostly clean read speech data where each speaker

was asked to read a passage from a news article. About 100 native speakers of each

language read a passage for about 20 minutes in a single recording. However, they
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Table 3.2: Details of GlobalPhone data set. The statistics are collected from the
relevant published papers (Schultz, 2002, Schultz et al., 2013) and corresponding ELRA

catalogues. The amount of audio is in hours.

Lang.
Lang.
Family

Audio (hours)
# Spks.

Total Transcribed

Arabic Afro-Asiatic (Semitic) 35 12 170
Ch-Mandarin Sino-Tibetan (Sinitic) 31 7.03 132
Ch-Shanghai Sino-Tibetan (Sinitic) 10 9.83 41
Croatian Indo-Euro (Slavic) 16 15.58 94
Czech Indo-Euro (Slavic) 29 7.87 102
French Indo-Euro (Romance) 25 2.93 100
German Indo-Euro (Germanic) 18 18.32 77
Japanese Isolate 34 0.95 149
Korean Isolate 21 20.78 100
Portuguese Indo-Euro (Romance) 26 2.17 102
Russian Indo-Euro (Slavic) 22 2.417 115
Spanish Indo-Euro (Romance) 22 21.3 100
Swedish Indo-Euro (Germanic) 22 21.67 100
Tamil Dravidian 17.9 98
Turkish Turkic 17 16.9 100

Bulgarian Indo-Euro (Slavic) 20.98 0
Hausa Afro-Asiatic (Chadic) 8.73 100
Polish Indo-Euro (Slavic) 23.7 102
Thai Kra-Dai (Tai) 23.1 98
Ukrainian Indo-Euro (Slavic) 13.87 119
Vietnamese Austroasiatic 1.42 160
Swahili Niger-Congo 70

were instructed to pause after each sentence which helped in post-processing. During

the post-processing, the sentences with significant errors were discarded and the minor

mistakes were resolved in the text. An analysis of the top spoken languages around

the world was carried out and nine out of the top 15 were selected to be part of the

GlobalPhone. All the languages were selected considering the considering the following

characteristics.

• Speakers’ population size

• Economic and political relevance

• Geographic coverage: Asian, European, African, American and Indian etc.

• Phonetic coverage

• Script variety (orthography such as Latin, Cyrillic and Arabic)

In its initial release, GlobalPhone only released audio data along with its transcriptions

but the latest release (Schultz et al., 2013) includes dictionaries, text corpus and n-

gram language models as well. The languages of the GlobalPhone data set are given
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in Table 3.2. The languages above the dashed lines were released in the initial release

of GlobalPhone corpus (Schultz, 2002) while the others (below the dashed line) were

released later. Except the Swahili, all the new languages (below the dashed line) have

been discussed in the later release paper. However, Swahili is only found in the ELRA

catalogue.

Most of the languages have been recorded in a clean office environment using the same

Sennheiser 440-6 close-speaking microphone as the recording equipment. Only the sub-

ject and the recorder were in the room during the recording. Only the data of Hausa

was recorded using the headsets. As the participants were asked to read the news ar-

ticle and were allowed to read the text beforehand, the data is read speech and very

less prone to mistakes. Furthermore, the minor mistakes have been resolved during the

post-processing.

The GlobalPhone corpus has been designed to be uniform across the languages in terms

of data quantity and quality, environment and word and phonemes transcriptions. Au-

dio transcriptions are provided on the word level, however, the dictionaries of all the

languages consist of the same phonetic representations (IPA). Furthermore, the corpus

has been designed to cover diverse phonetic, scripts and morphological variations. It

includes tonal sounds (from Chinese, Vietnamese and Thai), consonantal clusters (from

German), palatised phones (from Russian) and pharyngeal sounds (from Arabic) etc.

Different languages cover phonographic segmental, consonantal, syllabic and featural

scripts. Furthermore, GlobalPhone includes agglutinative languages (Korean and Turk-

ish), compounding languages (e.g. German) and scripts which lack word segmentation

at all (e.g. Chinese and Thai). Being a very rich and diverse data set, GlobalPhone is

a very good basis for research in various domains such as multilingual and cross-lingual

speech recognition, multilingual speech synthesis, speaker identification and language

identification etc.

Though the GlobalPhone corpus has been a big step towards multilingual speech re-

sources, it is not an open resource which hinders many researchers from using it. How-

ever, there was no other multilingual speech data set collected in such a careful manner

and it remained a prominent benchmark for multilingual speech technologies for a while

until the other resources have been made available to the scientists.

3.5.2 Babel

The Babel data set has been collected under The Babel project by the Intelligence

Advanced Research Project Activity (IARPA). According to its documentation, the

objective of the Babel project has been to develop robust and agile speech methods to;

• apply rapidly to any new language

• make keyword search effective over massive amounts of speech data from all the

languages
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Contrary to the GlobalPhone data, the Babel project intended to collect the data in

real-time noisy environments rather than quiet and controlled environments. The goal

of this data set has been to build speech recognition systems for a much larger set of

languages using much smaller yet noisy data.

The Babel program was divided into four phases with the goal of data collection of

a certain number of languages. Each phase included the data release of a “surprise”

language as well and a limited time was allotted to build a keyword search system for

the surprise language. For example, the very first phase (base phase) included four

main languages which included Cantonese, Turkish, Pashto, Tagalog and one surprise

language. The build time of a keyword search system was set to 4 weeks followed by

1 week for evaluation for the base phase period. The plan involved reducing the build

time gradually for later phases.

The data set has been designed on the following basis

• Diverse languages from the outset: Data of very diverse languages was

collected from the countries where those languages had been spoken.

• Real recording conditions: Recordings were done in a variety of environmental

conditions such as in a moving vehicle or a cafe on the street etc. Though most of

the data has been recorded over the mobile phone channel, several other devices

have also been used to record some amount of the data such as hands-free and

tabletop microphones etc.

During each phase, the data set was delivered in two packs i.e. Limited Language Pack

(LLP) and Full Language Pack (FLP) which contain limited and full amounts of the

recorded data respectively. Though most of the data was recorded using mobile phones

in noisy environments, limited read speech clean data was also recorded. Each data

set included audio data along with orthographic transcriptions. Furthermore, the hand-

crafted pronunciation dictionaries have also been provided with mapping words to their

Roman versions and their pronunciations in the Sampa format. Syllable breaks, word

boundaries, and primary and secondary stresses have also been marked. The data has

been released via the Linguistic Data Consortium (LDC)2. The data was annotated care-

fully maintaining the uniformity of annotation rules which have been well documented

and available in a separate document. However, a lot of tags have been used to define

the anomalies in the speech such as hesitation, idiosyncrasies and partial words etc.

Babel data sets include 25 languages in total and the details are given in the Table 3.3.

Though the amount of average audio data per language is around 218 hours in the Babel

data sets, each data set involves a lot of non-speech segments due to recording in real-

time environments. For example, the analysis of the Turkish language shows that 97

hours out of 213 hours consist of non-speech (silence or noise) which is about 45% data

2 https://catalog.ldc.upenn.edu/

https://catalog.ldc.upenn.edu/
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Table 3.3: Details of Babel data set (languages, their families and the total amount
of audio data). Languages marked with ’*’ are tonal languages.

Lang. Lang. Family (Region) Audio (Hrs)

Amharic Ethiopian Semitic (Ethiopia) 204
Assamese Indo-European (Assam) 205
Bengali Indo-European (Bengal) 215
Cantonese* Sino-Tibetan (Southeastern Chin) 215
Cebuano Austronesian (Philippines) 200
Dholuo* Nilotic (Kenya and Tanzania) 204
Georgian Kartvelian (Georgia) 190
Guarani Tupian (South America (Paraguay)) 198
Haitian Haiti 203
Igbo* Niger-Congo (Nigeria) 207
Javanese Austronesian (Java) 204
Kazakh Turkic (Kazakhstan) 203
Kurmanji Indo-European (Northern Kurdish) 203
Lao* Kra-Dai (Lao, near Thailand) 207
Lithuanian* Indo-European (Lithuania) 210
Mongolian Mongolic (Mongolia) 204
Pashto Indo-European (Afghanistan, Pakistan) 244
Swahili Niger-Congo (East Africa (Kenya, Sudan,...)) 350
Tagalog Austronesian (Philippines) 213
Tamil Dravidian (India/Sri Lanka) 350
Telugu Dravidian (India) 201
Tok Pisin English Creole (Papua New Guinea) 200
Turkish Turkic (Turkey) 213
Vietnamese* Austroasiatic (Vietnan) 201
Zulu* Niger-Congo (South Africa, Zimbabwe etc.) 211

of the total amount. Similarly, 40% of data of Tagalog language is non-speech and this

is the case for almost all the languages.

To annotate the various speech and non-speech events (e.g. cough, laugh and hesitations

etc.) in the recordings, various tags have been used. As the Babel data set is used for

several experiments in this work, further details on the Babel data set tags and their

handling for this work are discussed in Appendix A.

Though the Babel data set was developed primarily for keyword search, it is an excellent

resource to build or evaluate low-resource challenging speech technologies as it consists

of real-time noisy low-resource speech data. It can also be used for multilingual speech

recognition though the error rates on the Babel data set are quite high yet because of

the very challenging nature of the data.

3.5.3 CommonVoice

CommonVoice multilingual speech data sets are part of a Mozilla project3 which is

intended to collect speech data of a huge number of languages to build multilingual

3 https://commonvoice.mozilla.org/en

https://commonvoice.mozilla.org/en
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speech recognition systems. However, the data can also be used for other tasks such as

language identification. The databases are being actively updated including more data

and languages on the online portal. However, the discussion in this section is based

upon the data set paper published in 2020 (Ardila et al., 2020).

In the CommonVoice project, the data is collected and validated through crowd-sourcing

i.e. people from diverse languages and backgrounds volunteer to record and validate the

data of their languages of interest. The data to be recorded is extracted from Wikipedia

(Ardila et al., 2020) articles published in the respective language. For speakers, text

sentences appear on the screen which they have to read. It means that the data is read

speech but there is no guarantee that it is a clean speech as the choice of background

environment is up to the speakers. Furthermore, the recording equipment is also not

the same as speakers can record using whatever setup they have such as laptop mic,

headsets, hands-free and table-top mic etc. Validation of recorded utterances is also

done by crowd-sourcing based on the voting. A recording utterance along with its

transcription appears before a listener who votes if the recorded speech is correct or not.

Each utterance appears before three listeners and the utterances receiving two upvotes

are considered correct. Whereas the utterances with two downvotes are deemed invalid.

Only the validated utterances are included in the officially released training, development

and testing sets while the unprocessed data or the utterances with an insufficient number

of votes are released under the ‘other ’ category.

The validated data is bucketed into train, development and test sets using statistical

power analysis. The number of utterances in the development and test sets is equal

to the number needed to achieve a confidence level of 99% relative to the number of

utterances in the training set. It is implemented in a way that there is no speaker

overlap among these sets and the repetition of utterances with the same text is removed.

The released audio data is mono-channel, 16-bit MPEG-3 format and 48kHz sampling

rate. As this is the latest data set with an aim to build a modern speech recognition

system, only audio files along with their transcriptions are included in the data set. No

phonemic/phonetic dictionaries are included in the data set. As the data is moderately

controlled (read speech and most likely to be indoors) and validated (through crowd-

sourcing), CommonVoice data is a fairly plausible resource for building multilingual

speech recognition systems.

Given its magnitude of nearly 25K hours from 50K speakers of 38 languages, it is the

first open resource towards multilingual speech recognition. The aforementioned num-

bers are taken from the last published paper (Ardila et al., 2020), the portal (Online)

mentions data recording of 28.7K hours with 19.2K hours of validated speech of 114

languages. Although GlobalPhone and Babel have been used by several previous re-

searches, CommonVoice is well-received because of its free availability and is being used

as a benchmark multilingual data set by several modern studies (Conneau et al., 2021).

Since the motivation of this work is cross-lingual acoustic-phonetic similarities whereas
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CommonVoice is a better fit for end-to-end models and does not have words-to-phonemes

mapping dictionaries, it is not used for experimentation in this work. As the corpus con-

sists of nearly 114 languages to date, the list of the languages is avoided here. However,

the latest details of the corpus can be found on the dedicated web page (Online).

3.5.4 VoxLingua107

VoxLingua107 (Valk and Alumäe, 2020) is a massively multilingual speech data of 107

languages which have been developed with an aim for language recognition tasks. So,

it only contains speech data and corresponding language tags and does not include

transcriptions of the audio. As it does not contain transcriptions, it cannot be used

to build speech recognition systems. However, it has been used for audio-only training

(such as pre-training multilingual self-supervised models). So, the data collection of

VoxLingua107 is briefly discussed here.

Speech data of VoxLingua107 has been collected from YouTube videos in different lan-

guages. Random phrases are used for each language to search the videos on the platform.

These random phrases are generated from Wikipedia articles. A list of the most impor-

tant search phrases of a language is extracted using Term Frequency Inverse Document

Frequency (TF-IDF) over a huge number of Wikipedia articles written in the corre-

sponding language. Phrases with only 3 words have been finally selected as the optimal

ones for video search. Polyglot Python package has been used for language identifica-

tion on the search phrases to filter out any phrases containing word(s) from any other

language. These phrases have been used for search on YouTube platforms.

Even the carefully generated search phrases can result in false positives i.e. the videos

in some other language. Additionally, there might be videos with the title written in

the target language but content in some other language. So, language identification

has also been applied to the title, description and other meta-data (if available) of the

videos to make sure they contain the audio in the target language. The audios have

been segmented into shorter clips using LIUM SpkDiarization toolkit (Rouvier et al.,

2013). It has been constrained to result in the segments of the duration between 2 to

20 seconds. Non-speech segments such as noise, music or silence have been removed

before segmentation. A total of 14,044 hours of data from about 78 thousand videos

have been extracted. After segmentation, the data contains 3.5 million utterances of

107 languages. The data has been validated by crowd-sourcing where people validated

if the language spoken in audio is the same as the tagged language.

3.5.5 Multilingual LibriSpeech

Multilingual LibriSpeech is another large-scale multilingual speech data which is de-

rived from read audiobooks from LibriVox (Pratap et al., 2020b). LibriVox is also a

CommonVoice-style platform where people can contribute towards data collection by

reading books. So, the MLS data set is also a read speech data but the recording

equipment and environment depends on the speaker’s choice. Though mostly the data
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is expected to be clean, there can be segments with background noises or very low

Signal-to-Noise Ratio (SNR). LibriVox contains massive amounts of audio recordings

in multiple languages. Though currently LibriVox has audio recordings in about 47

languages, the duration of LibriVox audio recordings for the languages with more than

50 hours of recordings are given in the Table 3.4. The statistics are extracted using

LibriVox APIs4.

As it is evident from the Table 3.4 LibriVox contains impressively large amounts of

recorded data in a lot of languages but it comes with some challenges. In LibriVox

data, each recording session consists of one chapter of a book. Whereas smaller audio

segments are needed to develop speech technologies due to computation limitations and

training constraints. However, the challenge is to chunk the large audio clips into smaller

segments and annotate the recordings. It would be a laborious task if done manually.

MLS introduces a semi-supervised approach to segment and annotate the data and

releases nearly 50K hours of speech data from 8 languages. These eight languages are

selected from the top ten languages in LibriVox data (Table 3.4). About 44.5K hours of

data belong to the English language while the rest of the seven languages make up 6K

hours portion of the data. Data is not uniformly distributed even among the rest of the

seven languages. The details of MLS languages and speech data are given in Table 3.5.

4 https://librivox.org/api/info {Last accessed on: 15th November, 2023}

Table 3.4: Details of LibriVox total audio data set (includes unlabelled data). The
languages, duration of available audio data and the number of recorded books are given

here

Language Duration (Hrs) # of books

English 98334.82 16696
German 4124.48 721
Spanish 2319.26 432
Dutch 2303.13 210
French 2169.37 304
Multilingual 638.03 165
Portuguese 472.93 110
Italian 361.19 80
Russian 314.71 81
Polish 164 32
Latin 138.93 22
Church Slavonic 136.42 8
Hebrew 129.07 25
Japanese 97.67 38
Ancient Greek 92.62 46
Greek 69.72 26
Finnish 67.66 18
Chinese 65.24 29

https://librivox.org/api/info
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Table 3.5: Languages and their durations in train, dev and test sets of MLS data set.
All the durations are in hours.

Language Train Dev Test

English (en) 44659.74 15.75 15.55
German (de) 1966.51 14.28 14.29
Dutch (nl) 1554.24 12.76 12.76
French (fr) 1076.58 10.07 10.07
Spanish (es) 917.68 9.99 10
Italian (it) 247.38 5.18 5.27
Portuguese (pt) 160.96 3.64 3.74
Polish (pl) 103.65 2.08 2.14

MLS authors have selected eight languages from LibriVox which includes English, Ger-

man, Dutch, French, Spanish, Portuguese, Italian and Polish. The LibriVox recordings of

48KHz have been down-sampled to 16KHz. For audio segmentation, pre-trained acous-

tic models have been used to get the Viterbi token sequence along with their timestamps

of the audio files. As the MLS data is released by Facebook (now Meta), they have used

their in-house data for these languages to train language-dependent streaming ASR

systems. Streaming models have been used to be more efficient for long segments (of

LibriVox). Details about the speech recognition systems can be found in the original

paper (Pratap et al., 2020b). The longest silence section is detected within 10 to 20 sec-

onds from the start of the audio to split it. The audio is cut in the middle of the detected

longest silence segment to chunk it. If there is no silence segment in 10-20 seconds, the

audio is split at 20 seconds mark. This process implies that all the segments are between

10 to 20 seconds in duration which ensures sufficient spoken words in each segment and

no extra-ordinary long segments. It helps with the semi-automated transcribing process

described in the next paragraphs.

The MLS data is transcribed in a lightly supervised manner. First, the data is decoded

through the aforementioned in-domain acoustic models along with language-dependent

language models to generate pseudo-labels for the audio files. Mostly, 4-gram language

models are used which have been trained on the text corpus of transcriptions of the

in-house acoustic models training set. As the MLS corpus consists of read books, the

text of the books would be needed for transcriptions which is itself challenging. Text for

the English books has been extracted using HTML parser where the books are available

online. For other languages, it has been challenging to find the text of recorded books

and various approaches have been used to get the data such as PDF to text libraries and

manually searching the books etc. Such challenges and the approaches to mitigate them

have been discussed in detail in the paper (Pratap et al., 2020b). However, even if the

text from all the books is available, another challenge is to normalise the text data to

make it uniform across the books and languages and find the text read in each chunked

audio segment from the whole book. For normalisation, all the unnecessary characters

such as punctuation markings, superscripts and subscripts, emojis and escape symbols
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etc have been removed. Furthermore, the end-of-line hyphen for partial words has also

been removed and the partial parts of words have been joined together. Additionally, the

characters outside the Unicode range of a language’s characters have also been removed.

Once the text is normalised, each book has been chunked into 1250-word documents

with a stride of 1000 words and 250 words overlap. For each chunk, the most rele-

vant (chunked) text document is selected by measuring the TF-IDF similarity between

chunked documents and the hypothesis from the speech recognition system. Having the

closest text document, Smith-Waterman alignment (Smith and Waterman, 1981) is used

to find the best match sub-sequence. In this way, a candidate label is generated for each

audio segment. Candidate transcripts are filtered out if the word error rate between

pseudo labels and the candidate labels is higher than 40%.

Data is split into training, development and test sets ensuring that

• there is no speaker overlap,

• speakers are balanced in terms of gender and duration in the test and development

sets,

• there is sufficient audio in the test and development sets to validate the perfor-

mance of ASR systems.

Several post-processing steps have been carried out including training of a model for

speaker classification to ensure the aforementioned constraints given the data complexity.

Please refer to the data set paper for further details on what kind of challenges were there

and how they have been resolved (Pratap et al., 2020b). As the MLS data set has been

released recently with the aim of a resource for the development of end-to-end speech

technologies, it only consists of audio data along with the transcriptions and language

models. The released language models have been trained using normalised text from all

the books of Project Gutenberg5. The training text corpus also includes the books which

are not in MLS audio data sets. Text is normalised before training a language model

and 3-gram and 5-gram models are trained.

Since the transcriptions of the audio data are extracted in a semi-supervised way, there

might be errors in the labels. So, MLS data sets include supervised data of 10 hours

duration for each language. Furthermore, labels of development and test sets are also

verified and corrected (where necessary) manually.

3.5.6 Few-shot Learning Evaluation of Universal Representations of

Speech (FLEURS)

Fleurs (Conneau et al., 2022) is a recently released dataset with an aim to provide a few-

shot data set for the evaluation of self-supervised speech recognition models. Since the

5 https://www.gutenberg.org/

https://www.gutenberg.org/
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primary objective of Fleurs data set is about self-supervised models which are beyond

the scope of this work, it is only described briefly here.

The Fleurs dataset is a multilingual speech dataset which serves as a crucial benchmark

for evaluating few-shot learning in the context of universal representations of speech.

It is an n-way parallel speech dataset comprising 102 languages. The dataset is built

on top of the machine translation FLoRes-101 benchmark and provides approximately

12 hours of speech supervision for each language. Researchers can use FLEURS for

various speech tasks, including Automatic Speech Recognition (ASR), Speech Language

Identification (Speech LangID), translation, and retrieval.

The Fleurs dataset is built using the FLoRes-101 dataset (Goyal et al., 2021), which

comprises 3,001 sentences originally extracted from English Wikipedia. These sentences

have been translated into 101 languages by professional human translators. Since the

FLoRes-101 test set is not publicly available, only the dev and devtest sets, totalling

2,009 sentences, are used in Fleurs. These sentences have been re-split into new train,

dev, and test sets, containing 1,509, 150, and 350 sentences, respectively. For each

sentence in the 102 languages (101 from FLoRes-101 plus English), three recordings by

three different native speakers have been collected.

After recording the audio, each file is evaluated to determine if it accurately corresponds

to the input sentence. Invalid recordings are discarded, resulting in 0 to 3 recordings per

sentence in the final dataset. The recordings are made in uncontrolled environments,

meaning they may have clean or noisy backgrounds. The speech sampling rate is 16

kHz. For transcriptions, translations from human translators of the FLoRes-101 data

set are used.

3.6 Summary

Section Section 3.4.1 discussed previous work showing that a multilingual speech recog-

nition system does not always guarantee improved performance compared to a mono-

lingual system. Sometimes, the performance of a multilingual ASR system is degraded,

even if the participating languages have significant phoneme overlap. This overlap is

typically measured by the number of shared IPA-represented phonemes across the lan-

guages. However, some studies have shown that multilingual ASR systems can improve

speech recognition performance compared to monolingual systems. It is argued that

this improvement depends on the choice of languages combined to train the multilingual

ASR system.

Section Section 3.4.2 highlighted that, due to the lack of freely available multilingual

benchmark datasets, many previous works on multilingual ASR have used diverse non-

standard or in-house datasets. Additionally, the background conditions of the different

languages often vary. Because of this lack of standard datasets, many system improve-

ments are compared with the work’s own baseline, making many comparisons unfair or

unclear.
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Considering these observations from the literature, our objective is to investigate the rea-

sons for performance degradation in multilingual ASR systems, devise a better measure

of language closeness (compared to IPA-represented phoneme sharing), and improve low-

resource speech recognition using standard benchmark datasets for fair comparisons.
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Chapter 4

Cross-lingual representations

sharing

As described earlier in Section 1.4, the motivation of research into multilingual speech

recognition is based on the assumption that the articulatory representations of identi-

cally IPA-represented phonemes across the languages are close enough to be considered

language-independent units (Schultz and Waibel, 2001). It implies that for multilingual

ASR training, a phoneme shared by more languages provides more training data and

thus the error rate of that phoneme must be reduced in a multilingual setup (Żelasko

et al., 2020). However, several languages with substantial cross-lingual phoneme overlap

exhibit poorer performance in multilingual setups (Conneau et al., 2021, Hou et al.,

2020, Pratap et al., 2020a) when compared with their monolingual counterparts. Two

potential reasons for this trend have been suggested in the literature;

1. Increased confusion: Degradation in the performance of multilingual ASR sys-

tems for some languages is attributed to increased confusion for them compared

to their monolingual models (Pratap et al., 2020a). Most multilingual models, in-

cluding both high and low-resource languages, are usually trained on very skewed

training data across the languages. For monolingual model training, a resource-rich

language has a lot of in-domain training data. However, in the case of multilingual

model training when the data from other languages is also included, the model is

trained to optimise the performance for all the languages. So, the performance of

a multilingual ASR system might decrease for resource-rich languages compared

to their language-dependent ASR systems.

2. Language-units interference: Conneau et al. (Conneau et al., 2021) mention

language interference as the reason for the increased error rate. During multilin-

gual ASR training, cross-lingual data is also included which might have the same

phonemes from other languages. Though the same phonemes from other languages

have the same IPA representations, the underlying acoustic realisations might be
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different. This cross-lingual interference increases confusion for the model to learn

a phoneme properly given input signal which is regarded as language interference.

However, no experimental evidence could be found to dig out the reasons for the perfor-

mance degradation from multilingual ASR systems for some languages. The argument

of unbalanced sampling can be validated by simply sampling the data uniformly and

very limited studies have been done to explore ‘language interference’.

In this chapter, experimentation is done to train baseline ASR systems to observe the

trends in the performance of multilingual ASR systems. A post-analysis is done to get

insights into these trends and cross-lingual relationships. In Section 4.1, the relevant

literature on cross-lingual similarities in the context of multilingual acoustic modelling

is revisited. Section 4.2 discusses the grapheme and phoneme-based baseline speech

recognition systems. Section 4.3 and Section 4.4 describes the experimental setup and

results. A detailed discussion on the performances of ASR systems and to analyse cross-

lingual relations is done in 4.5.

4.1 Background

Earlier studies, in the context of efficient data sharing among languages for multilingual

setup, are on context-independent acoustic models (Kohler, 1996). Having 3-state HMM

phoneme models for phonemes of English, German and Spanish languages, a relative-

entropy-based distance measure has been used to estimate the similarity between two

phonemes. These phonemes can be of the same language or from different languages.

The distance measure has been calculated with the potential goal of clustering the closer

phonemes for modelling purposes. Let λi and λj be phoneme models of two phonemes i

and j, and their set of observations Xi and Xj . Distance between phoneme i and j has

been calculated as;

D(λi, λj , Xi, Xj) =
1

2
(d(λi, λj , Xi) + d(λj , λi, Xj))

where

d(λi, λj , Xi) = log p(Xi|λi)− log p(Xi|λj)

d(λj , λi, Xj) = log p(Xj |λj)− log p(Xj |λi)

However, models have been trained for the phonemes without considering their contex-

tual phonemes in the study. Context-dependent acoustic-phonetic similarity has been

studied by Imperl et al. (Imperl et al., 2000) and later extended by Le et al. (Le et al.,

2006). With contextual modelling of phonemes, the number of possible polyphonemes

rises exponentially. For example, considering only two contextual phonemes (triphones),

the number of possible triphones raises to (n3) for n phonemes. It implies that need to

train n3 triphone HMM models or a neural network with n3 output classes. To reduce

the number of models or output classes, (Imperl et al., 2000) have proposed a metric to
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measure the distance between two triphones. Consider φL
i −φi+φR

i and φL
j −φi+φR

j two

triphones, the proposed distance measure is the weighted sum of individual distances

between both left, centre and right phonemes.

STRI(φ
L
i − φi + φR

i , φ
L
j − φi + φR

j ) =WL · S(φL
i , φ

L
j )+

WC · S(φC
i , φ

C
j )+

WR · S(φR
i , φ

R
j )

where WL, WC and WR are the weights assigned to the individual distances of left,

centre and right phonemes respectively. Though the individual distance between any

two phoneme S(φi, φj) can be any distance measure, the one used by the authors is

given as;

S(φi, φj) =
1

2

N∑
k=1

[|c(φi, φk) + c(φj , φk)|

− |c(φi, φk)− c(φj , φk)|]

where N is the number of phonemes and c(φi, φj) is the number of confusions between

phonemes φi and φj . Triphones with a distance below a certain threshold are then

clustered for modelling. Both of the aforementioned studies (Imperl et al., 2000, Kohler,

1996) measure the distance between two polyphones as a weighted sum of monophonic

distances of these polyphones. Le et al. (Le et al., 2006) have measured the distance be-

tween polyphones rather than triphones using a similar concept. However, a knowledge-

based tree is constructed first for phonemes based on their linguistic properties. For

instance, the root node decides if a phoneme is a vowel or consonant. The first child, in

the case of consonants, makes decisions based on articulatory properties such as plosives

and bilabials etc. In the case of vowels, these properties are vowel characteristics such as

the position of the tongue (front or back etc). The distance between any two phonemes

is then measured based on their distance in their levels in the tree. Since this approach

is knowledge-based, it needs considerable manual effort and linguistic knowledge of the

languages.

Recently, efforts have been made to interpret the learning of multilingual speech recog-

nition systems (Feng et al., 2021, Żelasko et al., 2020). The Phonetic Token Error Rate

(PTER)1 of each phoneme in monolingual ASR has been compared with that of multi-

lingual system (Żelasko et al., 2020) (shown in Figure 4.1). Each dot in the box plot of

Figure 4.1 represents a specific phoneme and the horizontal axis shows the number of

languages it is being shared with. The vertical axis shows the difference in error rates

of a monolingual and multilingual ASR for a phoneme. Since the phonemes shared by

more languages have more training data for multilingual ASR training, their error rate

is expected to be lower (Żelasko et al., 2020). However, no monotonic trend has been

1 PTER is similar to PER except for the tonal languages where PER considers a vowel and its tone are
considered two different phonemes but PTER deems it as a single phoneme.
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observed with the growing number of languages the phonemes shared. The authors have

described this as an “unexpected” behaviour.

Furthermore, as discussed in Section 3.4.2, most works on multilingual ASR do not spec-

ify the criteria on which the languages are chosen for a multilingual setup. Sometimes

the chosen languages are regarded as ‘close languages’ without an explicit definition of

‘closeness’. Languages are usually regarded as closer based on the size of the overlapping

set of phonemes across the languages (Datta et al., 2020). However, degradation in the

performance of multilingual ASR systems for the languages with considerable phoneme

overlap (Conneau et al., 2021, Hou et al., 2020, Pratap et al., 2020a) suggests that the

size of overlapping phonemes set across two languages does not inform much about their

acoustic similarities.

Motivated by the fact that many languages with significant phonemes overlap pose

performance degradation in the multilingual setups (Conneau et al., 2021, Feng et al.,

2021, Hou et al., 2020, Pratap et al., 2020a, Żelasko et al., 2020), the objective of

this research is to study cross-lingual acoustic-phonetic similarities and their impact on

multilingual speech recognition setups. The aim is to analyse whether the identically

IPA-represented phonemes across different languages are acoustically similar too. It also

explored how the cross-lingual acoustic-phonetic similarities impact the performance

of multilingual ASR systems. Data-driven approaches are focused to investigate the

phonetic unit representations and measure cross-lingual similarities.

Figure 4.1: Absolute improvement in phonetic token error rate per token
(multilingual-monolingual) (figure credits: (Żelasko et al., 2020)). Each dot in the
box plot depicts a phonetic token. The horizontal axis represents the number of lan-
guages a token is being shared with and the vertical axis is the absolute difference in

the error rates of the monolingual and multilingual ASR systems.
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In Section 4.2, baseline monolingual and multilingual ASR systems are described which

are trained to observe the shift in the performance of a few resource-rich languages.

4.2 Baseline speech recognition systems

A baseline multilingual ASR system is trained for foundational experiments. Train-

ing data is uniformly sampled from all the languages to validate the argument that

the skewed training data causes degraded performance from multilingual ASR systems

(Pratap et al., 2020a). Since the main objective of this study is to analyse acoustic-

phonetic similarities, phoneme-based speech recognition systems are a better choice for

analysis. However, such systems require lexicons (usually handcrafted) for each lan-

guage which are not available for a lot of languages. So, initially, grapheme-based hybrid

DNN-HMM speech recognition systems are trained with equal training data for all the

languages. Hybrid DNN-HMM models are preferred over end-to-end models for analysis

to avoid the effect of implicit language modelling in e2e models. Later, phoneme-based

models are also trained for fewer languages and an analysis is done to understand cross-

lingual acoustic phonetic similarities. Both, grapheme-based and phoneme-based ASR

systems, are the same except that the pronunciation dictionary for a grapheme-based

ASR is simply a mapping of words to their constituent characters whereas it is words

to phonemic mapping in the latter case. Acoustic models in all these experiments are

GMM-HMM and hybrid DNN-HMM models, and language models are 3-gram count-

based models (unless explicitly mentioned).

4.3 Experimental setup

4.3.1 Data set

The experiments in the rest of the sections of this chapter are carried out using portions

of the MLS data set. This is a big multilingual open resource data set which is quite rich

in terms of duration, number of speakers, high quality of speech and easy availability.

This data set covers eight European languages yielding more than 50 thousands hours

of speech data by nearly 6000 speakers. MLS data set has been discussed in detail in

Section 3.5.5. ISO 639-1 codes2 of languages are used for representation of MLS data

set languages throughout this thesis.

For the baseline experiments, a small portion of the MLS data set is sampled. However,

both the train and test sets consist of the same duration for all the target languages.

The motivation for uniform sampling from all the languages is to assess the ‘increased

confusion’ argument (described at the start of this chapter) as the reason for the per-

formance degradation of rich resource languages in a multilingual setup. For training

and evaluation of grapheme-based ASR systems, approximately 15 hours and 2 hours

are randomly sampled from train and eval sets of MLS corpus respectively. However,

training data is doubled (30 hours) for the training of phoneme-based systems while the

2 https://www.loc.gov/standards/iso639-2/php/English_list.php

https://www.loc.gov/standards/iso639-2/php/English_list.php
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test set remains the same. Speaker distribution is not monitored during data sampling

assuming that random sampling would uniformly sample the speakers from data.

4.3.2 Acoustic modelling

Initially, a monophone GMM-HMM acoustic model is trained using uniform alignments.

For all the GMM-HMMmodels in this work, three-state HMMs are used for monophones

or polyphones (biphones and triphones etc) training. Remember that the term mono-

phone or any polyphone is only used to be consistent with Kaldi documentation and

previous work using Kaldi. The trained models are, however, phoneme-based (not the

phone-based). The model is trained iteratively, force-aligning the transcription using

the trained model and then retraining the acoustic model in each iteration. After vari-

ous iterations (nearly 40), a triphone model is trained with the same iterative approach

and using alignments from the final monophone model (for the first triphone iteration).

Since triphone training after transformation proves to perform better, Maximum Likeli-

hood Linear Transformation (MLLT) (Gales, 1999, Gopinath, 1998) is estimated using

Linear Discriminant Analysis (LDA) on spliced MFCC features. Then a triphone model

is trained again using the same iterative approach. MFCC features are transformed into

speaker-adapted features using feature-space Maximum Likelihood Linear Regression

(fMLLR) transformation (Gales, 1998). Using fMLLR transformed features has shown

significant improvement in ASR performance (Gales, 1998, Parthasarathi et al., 2015).

So, fMLLR transformed features are used to train a speaker-adapted model (referred to

as Speaker Adapted Training (SAT) training). Alignments from the final model of the

last triphone training are used as initial alignments for SAT training.

Using neural networks for the estimation of emission probabilities has been proved to

outperform GMM-HMMmodels (Tachbelie et al., 2020b). So, two different hybrid DNN-

HMMmodels are trained and their performances are compared. A DNN model is trained

with greedy layer-wise supervision (Zhang et al., 2014) which outputs log-likelihood of

HMM states (this model is termed as “nnet2” here). The output log-likelihoods are used

as emission probabilities. In greedy layer-wise supervised training, the layers are added

gradually. At the start of training, only one hidden layer is added and trained for a

few steps. Then the second layer is added with randomly initialised weights. Previously

learnt weights of the output layer are also randomly initialised again. The second layer

is trained for a few steps before adding the third layer. This process continues until all

the layers are added and the whole model is trained in the following epochs. The nnet2

model, experimented with here, consists of six layers with an equal number of neurons.

Another hybrid DNN-HMM model is trained which is a TDNN network and trained

with MMI (Povey et al., 2016) objective without using lattices (thus called Lattice-Free

Maximum Mutual Information (LF-MMI)). 40 MFCCs are extracted for each frame of

the speech signals using a window size of 25 ms and a shift of 10 ms. These features

are then fed to DNN which consists of 12 factorised TDNN (TDNN-F) layers (Povey

et al., 2018). Each TDNN-F hidden layer is of dimension 1024, factorised with a linear
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Table 4.1: Nomenclature used in experiments sections to identify different training
methods and models

Notation Description

monophone Monophone acoustic model
triphone Triphone acoustic model
lda+mllt Triphone acoustic model after LDA-MLLT features’ transformation
sat Triphone acoustic model with speaker adaptive training
nnet2 DNN-HMM acoustic model with greedy layer-wise training (Zhang

et al., 2014)
lf-mmi DNN-HMM acoustic model with DNNs trained using LF-MMI criteria

(Povey et al., 2016)

mono Monolingual acoustic and language model
multi Multilingual acoustic and language model (unified data of all lan-

guages)
mono-lm Multilingual acoustic model and monolingual language model

‘bottleneck’ dimension of 128. The model is trained with a cross-entropy objective

function and the output of the model is the likelihood of the tied HMM states.

Table 4.1 summarises the nomenclature used to point to the aforementioned modelling

techniques and models during further discussion in this chapter. All the ASR systems

are built using the Kaldi toolkit (Povey et al., 2011).

4.3.3 Language modelling

In the following discussion, terms monolingual language model and multilingual language

model are frequently used. A monolingual language model is trained using the text

corpus of only the language of interest. On the other hand, a multilingual language model

is a universal language model developed by mixing text corpora of all the languages.

Both of them are 3-gram language models and only the transcriptions of the training

set are used for the training of these models.

4.3.4 Evaluation metric

Word Error rate (WER) is the universally accepted metric to measure the performance of

speech recognition systems. End-to-end systems, however, report performance in Char-

acter Error Rate (CER) sometimes. For the experiments, the performance of developed

ASR systems is reported in terms of WER, CER and PER where applicable. Reference

and hypothesis transcriptions are aligned using dynamic string alignment and the token

error rate is calculated using the formula given in Equation 4.1 where the tokens could

be words, phonemes or characters. The only difference is that for each kind of error,

alignments are on respective token levels i.e. words, characters or phonemes.

Token Error Rate =
S + I +D

N
(4.1)
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where S,I and D are the number of substitutions, insertions and deletions in hypothesis

text while N is the total number of tokens in the reference or ground-truth transcription.

MLS data set is transcribed on word level which can easily be decomposed into char-

acters. So calculations of WER and CER are straightforward. However, for measuring

PER, phoneme-level transcriptions are required. Phonemic alignments are automatically

generated by force alignments using the trained monolingual models.

4.3.5 Tools

Speech recognition systems, reported in this chapter, are built using the widely used

Kaldi toolkit (Povey et al., 2011). Language modelling is done using the SRILM (Stolcke,

2002) toolkit.

4.4 Experiments and results

4.4.1 Grapheme based ASR

As described in Section 3.1.1, the development of language resources (including collecting

speech data and making pronunciation dictionaries) is a very demanding task. So, it

is very hard to find pronunciation dictionaries for numerous languages. Though such

resources are available for rich resource languages, hardly any open resource could be

found for some of the languages of interest in these experiments. Moreover, the lexicon

should cover at least all the words in train and test sets which is quite challenging

while using off-the-shelf resources. The alternate approach, to overcome this issue, is

using Grapheme-to-Phoneme (G2P) techniques (Novak et al., 2012) which is a learned

statistical model to automatically transcribe words to their phonemes. Such models are

trained using hand-crafted large enough lexicons, which can not be done for a lot of

languages due to the lack of availability of rich pronunciation dictionaries. Furthermore,

ASR performance becomes highly dependent on G2P performance. Due to these issues,

initial experiments are carried out using grapheme-based lexicons. Such lexicons are

automatically created by mapping words to their constituent characters.

All the languages in the MLS data set share Latin alphabets. So, all of them share

a subset of characters which may help languages in multilingual scenarios, learning

the shared representations. The sharing of symbols of all targeted languages is shown

in Figure 4.2. The heatmap shows the proportion of characters in training data of

languages on the horizontal axis that are shared with phonemes of languages on the

vertical axis.

Acoustic modelling is done by training GMM-HMM and hybrid DNN-HMM models

as described in Section 4.3.2. Results for all the models are reported here using the

nomenclature tabulated in Table 4.1. Language model, as described in Section 4.3.3, is

a 3-gram model which is trained using text corpora of the train set. For monolingual

ASR of any language, text corpus for LM training is the transcriptions of the train set

of that language. In the case of multilingual LM, a text corpus of unified transcriptions
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Figure 4.2: Graphemes sharing across the languages of MLS data sets. Each box of
the heatmap represents the portion of graphemes of the languages on the vertical axis

shared by the languages on the horizontal axis.

from train sets of all the languages is used for language modelling. Performance of

ASR is primarily measured in terms of %WER, however, %CER is also calculated for

reported results because the error analysis depicted some character level confusions due

to language interference and lexicon overlap across the languages. For example, the

German character ’ß’ is frequently decoded as ’ss’ by the multilingual ASR system.

Results of hybrid DNN-HMM techniques, nnet2 and lf-mmi, are shown in Table 4.2 and

Table 4.3 respectively.

Results for monolingual (mono), multilingual (multi) and multilingual AM with mono-

lingual LM (mono-lm) are tabulated in the first three columns. The last column shows

Table 4.2: ASR systems performance on test set using grapheme-based nnet2 trained
DNN-HMM model. mono: Monolingual AM and LM models, multi: Multilingual AM
and LM models, mono-lm: Multilingual AM and monolingual LM, Rel. Imp.: Relative

improvement from the mono-lm comapred with mono

Language
mono multi mono-lm Rel. Imp.

%WER %CER %WER %CER %WER %CER %WER %CER
en 53.45 31.52 60.15 35.02 57.68 33.38 -7.91 -5.90
de 47.42 18.62 53.25 20.77 48.79 18.29 -2.89 1.77
it 43.05 13.12 44.57 12.75 41.03 11.69 4.69 10.90
nl 50.64 21.55 58.12 26.04 52.70 21.90 -4.07 -1.62
pl 53.80 16.24 57.36 19.61 47.12 14.65 12.42 9.79
pt 55.60 26.53 62.17 26.83 54.21 22.33 2.5 15.83
es 33.00 10.75 38.76 13.52 33.43 10.74 -1.3 0.09
fr 46.29 23.28 52.91 26.38 50.42 24.78 -8.92 -6.44

Overall 47.97 20.36 53.60 22.86 48.45 19.93 -1.00 2.11
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Table 4.3: ASR systems performance on the test set using grapheme-based lfmmi
trained DNN-HMM model. mono: Monolingual AM and LM models, multi: Multilin-
gual AM and LM models, mono-lm: Multilingual AM and monolingual LM, Rel. Imp.:

Relative improvement from the mono-lm comapred with mono

Language
mono multi mono-lm Rel. Imp.

%WER %CER %WER %CER %WER %CER %WER %CER
en 47.47 28.35 50.34 29.68 47.14 28.15 0.69 0.70
de 40.04 15.75 42.47 16.77 38.76 14.52 3.20 7.81
it 37.56 11.41 40.05 12.62 36.38 11.15 3.14 2.28
nl 43.68 18.72 54.40 25.39 45.89 20.18 -5.06 -7.80
pl 47.08 15.82 60.63 28.74 49.4 18.63 -4.93 -17.76
pt 49.43 22.29 58.96 27.49 48.55 21.00 1.78 5.79
es 30.28 10.57 35.89 13.37 29.6 10.16 2.24 3.88
fr 39.69 19.59 41.62 20.28 39.7 19.46 -0.02 0.66

Overall 41.95 17.95 48.07 22.05 42.14 18.1 -0.14 -0.83

the best performance improvement relative to the monolingual ASR systems. Nega-

tive relative improvement means a degradation in performance. Overall performance

across the languages is also shown in the last row of the tables. It can be inferred from

the results that lf-mmi performs better than nnet2 DNNs when both the systems are

trained using alignments from the same HMM-GMM model. Speech recognition perfor-

mance improves steadily from monophone training towards hybrid DNN-HMM systems.

This pattern is similar for mono, multi and multi-am models. The gap in performance

of mono versus multi systems is significant in initial training setups but keeps on de-

creasing towards hybrid DNN-HMM systems. The performance lines, in Figure 4.3, for

mono and multi-am setups of lf-mmi training, are very much similar. Though multi-am

setup is comparable to mono but couldn’t beat due to a marginal relative degradation

of −0.14%. nnet2 training showed more relative improvement in %CER than lf-mmi,

but the overall %CER and %WER for lf-mmi are lower than that of nnet2.

4.4.2 Phonemes based ASR

As described in the Section 1.4, there is a significant research gap in studying the criteria

of mixing languages for training multilingual ASR systems. In this context, very limited

work has been done to study the cross-lingual acoustic-phonetic similarities. Identically

represented phonemes across the languages may have very different phonetic realisa-

tions. Since the pronunciation dictionaries are not easily available for all languages or

are not reliable without verification by language experts. Based on the availability of

reliable pronunciation dictionaries, the scope of this ASR is limited to a few rich re-

source languages including English, German and Dutch. All these languages share some

portion of their phonemes. The sharing of phonemes is shown in Figure 4.4 which is

based on statistics extracted using alignments of train data. The map shows the per-

cent phonemes in training data of languages on the horizontal axis that are shared with

phonemes of languages on the vertical axis. Thus the map is asymmetric.
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Table 4.4: Pronunciation dictionaries statistics for phoneme-based ASR systems train-
ing. Dictionaries are sourced from reliable open resources. Out-of-vocabulary words of

train and test sets are transcribed by training a G2P model

Lang. Source No. of entries No. of unique words Avg. pronun./word
Total Manual G2P

en CMU dict 28143 25745 19188 6557 1.09
de bomp 30584 30569 12833 17737 1.0005
nl fonilex 39407 24924 16948 7990 1.58

Though the test data is the same as described in Section 4.3.1 for the experiments, an

additional 15 hours are randomly sampled and added to the train set of each language.

Open resource lexicons for target languages (as given in Table 4.4) are used. But still,

the languages do not cover all the words of train and test sets. To overcome this issue,

Phonetisarus (Novak et al., 2012) is used to train a G2P model which is then used for

annotating the words not covered by the original dictionary.

For training of acoustic and language models, the same techniques and pathways are

chosen as for grapheme-based ASRs (described in Section 4.3.2). As the results of

Figure 4.3: Performance of grapheme-based HMM models on various GMM-HMM
and hybrid DNN-HMM training stages and techniques. Brief descriptions of these

models are given in Table 4.1
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Figure 4.4: Percentage of IPA-representations based phonemes sharing across English
(en), German (de) and Dutch (nl) languages. Each box of the heatmap represents the
percentage of phonemes the languages on the vertical axis shared with those on the

horizontal axis.

grapheme based ASR system show that lf-mmi outperformed nnet2, so only lfmmi hy-

brid DNN-HMMmodel is trained and the results (of lf-mmi) are shown in Table 4.5. The

performance of speech recognition systems is shown in %WER and %PER. Similar to

the grapheme-based ASR systems, the performance of multi goes worse than mono ASR

systems. Using language-dependent LM with the multilingual acoustic model (mono-lm)

helps reduce the word error rate. Since only the language model is replaced, %PER of

multi and mono-lm remains the same. The phoneme-based ASR experiments are used

for further analysis of cross-lingual similarities (in Chapter 6).

4.5 Discussion

4.5.1 Trends in the performance of multilingual ASR

It is evident from the results in the Table 4.5 that the performance of the multilingual

ASR system degrades for all the participating languages when compared with their

monolingual counterparts. The same amount of training data is used for all the languages

to avoid any bias but still %PER of all the languages is increased in multilingual setup.

This implies that the degradation in the performance of multilingual ASR systems for

some languages can not be just attributed to the skewed data sampling.

Table 4.5: Phoneme-based lfmmi speech recognition system performance in terms of
%WER/%PER. mono: Monolingual AM and LM models, multi: Multilingual AM and
LM models, mono-lm: Multilingual AM and monolingual LM. Since only the LM is

changed for mono-lm, the PER remains unchanged when compared with multi.

Language mono multi mono-lm

en 43.84/28.10 47.48/31.06 46.40/31.06
de 37.77/26.86 40.81/28.35 38.11/28.35
nl 37.94/21.40 58.84/36.16 52.33/36.16
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Figure 4.5: % Relative improvement in PER per shared phoneme of a multilingual
ASR system (trained using en, de and nl speech data) compared with the monolingual
ASR of en language. Each blue dot on the plot represents a phoneme and the horizontal
axis shows the number of languages a phoneme is being shared with. The improvement
in % is shown on the horizontal axis where the negative sign shows the degradation in

the performance of the multilingual ASR system.

Even though there is a significant phonemes overlap among these languages, an increased

amount of training data for those phonemes does not help to reduce their error. Similar

to (Żelasko et al., 2020), the improvement in the phoneme error rate of each phoneme

from multilingual ASR systems (compared with monolingual ASR systems) is calculated

and plotted in Figure 4.5. Improvements with negative values show the degradation

in the performance of the multilingual ASR system. As the analysis shows that the

performance of shared phonemes is also degraded in multilingual setup, it intrigues us

to investigate the reasons for that. The next section (Section 4.5.2) digs into the question

of how a monolingual ASR perceives an input signal of some other language.

4.5.2 Cross-Lingual ASR performance analysis

The evidence from the aforementioned comparison and previous work that the multilin-

gual systems suffer performance degradation due to language interference, intrigues us to

go deeper into these confusions. To understand how a monolingual acoustic model per-

ceives data from some other language, the speech data of a (target) language is decoded

using acoustic models trained on all other (source) languages. For each source-target

language pair, some of the target language phonemes might be shared by the source

languages. An analysis is carried out on output from source languages’ acoustic models

given a target language utterance and its transcription. Given an utterance uLA
of a tar-

get language LA, the phonemic output generated from source languages’ acoustic models
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Figure 4.6: An illustrative example in recognition from source and target languages’
acoustic models given a speech utterance uLA

of the target language LA.

are compared with ground-truth phonemic transcription. In Figure 4.6, an example of

target language English decoded by its own monolingual ASR and German source lan-

guage acoustic model is shown. Though it is only for illustrative purposes, some patterns

can be seen in the figure. Ground-truth phonemic transcription is generated by forced

alignments. The objective of this experiment is to analyse the disparity in the perfor-

mance of the in-domain (target language) and out-of-domain (source language) acoustic

models for a given speech signal. When a source language acoustic model produces

errors given an input speech utterance of a target language, one possibility is that there

might be a consistency in those errors. So, an entropy-based Mapping Confidence (MC)

score is introduced as a metric to measure the uncertainty in the recognition results of

the source language acoustic model. MC score is a measure of patterns in the output

of a source language ASR for a certain phoneme. It measures how consistently a source

language (LS) acoustic model is decoding ith phoneme (φA
i ) of the target language (LA)

as the jth phoneme of the source language (φS
j ).

MCφA
i
=

∑
C pj log(pj)

log(C)
(4.2)

where

pj =
# of φA

i recognised as φS
j

# of total occurrences of φA
i

and C is the total number of phonemes in the source language. Though entropy indicates

the uncertainty in distribution, its value alone does not inform its statistical significance

in this case. So, the denominator in Equation 4.2 normalises the entropy calculated in

the numerator.

When the utterance uLA
is decoded through a source language ASR, the output is the

phonemes of the source language. Output from the source language acoustic model and

the ground-truth phonemic transcriptions are then aligned together. For each source

language phoneme, the MC score is calculated. An analysis is done for both shared and

unshared phonemes.
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(a) (b)

(c)

Figure 4.7: Mapping Confidence (MC) scores for shared and unshared phonemes of
en (4.7a), de (4.7b) and nl (4.7c) target languages from all source languages. MC is
an entropy-based score and thus lower values show higher consistency patterns in the

output from the source language ASR system.

For the experiments done in Section 4.4.2, MC scores are calculated for each source-

target language pair for both shared and unshared phonemes. The scores are averaged

over all the phonemes in shared and unshared phoneme sets and plotted in Figure 4.7.

Though the MC scores are higher for unshared phonemes than for shared phonemes,

values of MC scores are around 0.54 for shared and 0.70 for unshared phonemes. Ideally,

the MC score can approach 0 for ith target language phoneme if a source language

acoustic model always recognises it as a jth source language phoneme. Since MC is

an entropy-based score, even the 0.70 value represents that there are some patterns in

recognition by source language acoustic models of unshared phonemes as well.

To understand what the values of the MC score mean, consider them as an entropy

measure of a binary class posterior distribution (shown in Figure 4.8). The value of

entropy is minimum when the probability is 0 or 1 and the value goes to highest when

the probability for both classes is exactly equal. Defining this relationship in terms of
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Figure 4.8: Probability versus entropy plot in the case of binary classification. Blue
and red dots on the curve show the average MC score of shared and unshared phonemes
respectively (0.54, 0.70) to roughly illustrate the patterns in the outputs of different

acoustic models given a speech signal

the problem here, the entropy (or MC score) is minimum when there is an exact one-to-

one mapping in recognised phonemes from the target language and a source language

acoustic models. MC score values go to highest when a source language acoustic model

confuses a phoneme uniformly with all of its phonemes. In Figure 4.8, values of average

MC scores for shared and unshared phonemes over all the languages are plotted which

gives probability values of 0.13 and 0.19 for shared and unshared phonemes. It roughly

means that a source language acoustic model recognises target language phonemes with

at least a consistency of 80%. It implies that the outputs from the source language

acoustic model have strong consistency patterns and do not produce entirely random

outputs even for unshared and unseen phonemes.

Though the average MC scores for shared and unshared phonemes are around 0.54

and 0.70, some phonemes have more consistency in mappings (lower MC score) than

others (higher MC score). The overall distributions of MC scores for each source-target

language pair are analysed by plotting a histogram of MC scores and their approximated

distribution. Histograms for all the languages are shown in Figure 4.9. For each target
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(a) de en (b) nl en

(c) en de (d) nl de

(e) en nl (f) de nl

Figure 4.9: Histogram and distribution plot of phonemes MC scores for all source-
target pairs (captions in the format of src tgt). The histogram and distribution in
blue are for phonemes which are shared by source and target languages while orange
represents unshared phonemes. Dotted lines are the mean MC values corresponding to

each coloured phoneme set.
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Table 4.6: Comparison of source-target language similarity in terms of shared
phonemes and average MC scores

Target
Language

Source Languages (phoneme shares / MC score)
en de nl

en 0.70 / 0.62 0.69 / 0.61
de 0.73 / 0.59 0.89 / 0.54
nl 0.70 / 0.59 0.85 / 0.52

language, MC scores histograms are plotted for all the source languages and the bin width

is set for both, shared and unshared phonemes, according to the Freedman-Diaconis

rule (Freedman and Diaconis, 1981). It has been designed to roughly minimise the

L2 distance between the relative frequency density (histogram) of a distribution and

the density of the theoretical probability distribution. Freedman-Diaconis rule sets bin

width as;

BW =
IQR(data)

3
√
n

where IQR is the interquartile range which is a difference between the 75th and 25th

percentile of data.

For each source-target pair, plots for shared and unshared phonemes are independent

of each other which means that the probability of occurrence on the vertical axis sums

to 1 for each set of phonemes i.e. shared phonemes and unshared phonemes. It can be

seen that for most of the plots (especially for the shared phonemes), the distribution

peak occurs before the mean MC score (dotted line). It indicates that the majority of

the phonemes of a target language are recognised as some consistent source language

phonemes by the source language ASR system. It could be a one-to-one, one-to-many

or many-to-one mapping. Rather than carrying out a human-based analysis of these

mappings, it is proposed to train a mapping model to learn these mappings.

4.5.3 Comparison with phoneme sharing

In the Table 4.6, mean MC scores are compared with the phoneme sharing of languages

shown in Figure 4.4. Rather than showing phoneme shares in percentage, they are scaled

from 0 to 1 to compare with mean MC scores. The maximum value of phoneme shares

can reach to one and the lower and the upper limits (or best and the worst values) for

MC score are 0 and 1. It is evident from the Table 4.6 that the higher phoneme sharing

does not guarantee a lower MC score for a source-target language pair. For example for

en target language, de language shares more phonemes with it when compared with nl

but nl has a lower MC score than de. For de and nl target languages, MC scores are

lower for the languages that have higher phoneme sharing, however, the magnitude of

change in MC score is not as high as in phoneme shares. It shows that the consistencies

in decoded results from source languages ASR do not depend on the magnitude of the

shared phonemes set.
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Given the observations that there exists patterns or consistencies when the data of a tar-

get language is decoded through a source language ASR, it is proposed to train a neural

network model to learn these mappings. In the following chapters, details of mapping

models, the use of these models to analyse cross-lingual acoustic phonetic similarities

and their application to improve low-resource speech recognition are discussed.

4.6 Summary

In this chapter, baseline speech recognition systems have been trained for three West

Germanic languages i.e. English, German and Dutch from the MLS dataset. Phoneme-

based hybrid DNN-HMM acoustic models have been trained on uniformly sampled 30

hours from the train set of the MLS data set. A multilingual model has also been

trained by mixing the training data of all the languages. The performance of acoustic

models has been estimated on 2-hour test sets uniformly sampled from the MLS test

set. Results have shown that the performance of multilingual ASR systems degrades

for all the languages compared with their monolingual counterparts. The comparison

of the error rate of each phoneme from monolingual versus multilingual acoustic models

has shown that a phoneme being shared among more languages does not guarantee an

improvement in its error rate from the multilingual acoustic model.

This motivated us to analyse the behaviour of acoustic models of different (source)

languages given a target language speech utterance. For this analysis, the mapping con-

fidence (MC) score has been calculated for each target language phoneme. MC score is

an entropy-based measure to estimate the patterns in the output from a source acous-

tic model and the ground-truth phonemic transcription. The results have shown that

there are consistent patterns for all the languages when decoded from source languages’

acoustic models with an average MC score of 0.54 and 0.70 for shared and unshared

phonemes. A probability versus entropy plot has been presented as an aid in under-

standing the significance of the MC score which depicts that significant patterns exist

in ground-truth and source language’s acoustic model phonemic outputs. It is proposed

that such patterns can be learnt by training a machine learning model.



Chapter 5

Mapping models

Mapping models lie at the heart of the rest of the work described in this thesis. In

this chapter, training of baseline mapping models and gradual improvements in their

performance are discussed in detail. As described in Section 4.5, mapping models are

trained to learn the mappings between posterior distributions from a source language and

a target language ASR given a target language utterance. The concept of the mapping

model is somewhat analogous to KL-HMMs (Aradilla et al., 2007). In both models,

the DNN output in a hybrid DNN-HMM framework produces posterior distributions of

phonemes. However, while the mapping model is trained to map posterior distributions

from acoustic models of different languages, KL-HMMs aim to map phoneme posteriors

from the DNN to the HMM states’ emission probabilities for graphemes. Although the

motivation and parameter estimation processes differ between KL-HMMs and mapping

models, KL-HMMs can be viewed as a type of mapping model. The mapping models

discussed here specifically map posterior distributions of phonemes from the acoustic

models of different languages, both source and target. The posterior distributions can be

output distributions from a phoneme, grapheme or sub-word units based ASR systems.

It can be from end-to-end or hybrid DNN-HMM models. However, training methods of

mapping models are not affected by any of these constraints. Though a mapping model

can be trained on top of any of the said systems, phoneme-based hybrid DNN-HMM

speech recognition systems are preferred over e2e systems for the initial experiments

here due to several following reasons.

• As a starting point, phoneme-based systems are used because the motivation of the

initial work is to compare cross-lingual acoustic-phonetic similarities (Chapter 6).

Additionally, the limited size of the universal phoneme set allows a significant cross-

lingual phoneme overlap as compared to graphemes which makes it less challenging

for models to learn cross-lingual mappings.

• Hybrid DNN-HMM models are preferred over end-to-end ASR systems to avoid

the effect of implicitly entangled language models in E2E systems which might

manipulate the analysis of cross-lingual acoustic-phonetic similarities.

94
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• One of the motivations of this work is to leverage these models to improve speech

recognition for low-resource languages. Though E2E modelling has dominated re-

cently, hybrid DNN-HMM outperforms them in limited data scenarios (Kürzinger

et al., 2020). The only downside of hybrid systems is using manually created

lexicons. However, the advancement of G2P and text to IPA transliteration ap-

proaches such as Phonetisarus (Novak et al., 2012), Epitran (Mortensen et al.,

2018), and open source LanguageNet G2P models (Hasegawa-Johnson et al., 2020)

have alleviated this problem.

The structure of this chapter is as follows. Some necessary terms are defined in Sec-

tion 5.1 for better readability. Then, baseline mapping models are explained in Sec-

tion 5.2. Structural and optimisation improvements in baseline mapping models are

described in Section 5.3 and Section 5.4. Section 5.5 discusses the training and evalu-

ation setups for the experimentation. Results are presented and discussed in detail in

Section 5.6.

5.1 Terminology

Before delving further into the details of mapping models, a few terms are defined here

to avoid confusion. Mapping models are trained to map posteriors from space to the

other. Some of the terms used for different posterior distributions are defined here and

will be used in the rest of the thesis.

• Target language: The language of an input speech utterance.

• Source language: A language from the participating languages that is different

from the target language.

• Source posterior distribution: Posterior distribution from a source language

ASR given a target language speech utterance. Source posterior distributions are

also shortened as source posteriors. The posteriors from ith source language are

denoted by PSi .

• Target posterior distribution: Posterior distribution from the target language

ASR given a target language speech utterance. It can also be a one-hot vector

from forced alignments. Target posterior distributions are also shortened as target

posteriors. These are denoted as PA.

• Mapping model: A machine learning model which transforms source posterior

distributions to the target posterior distributions’ space. A mapping model is

specified as a source-target mapping model for specific source and target languages.

• Mapped posterior distribution: Output posterior distributions from a source-

target language model given a target language speech utterance. Mapped posterior

distributions are also shortened as mapped posteriors. For target language LA,

mapped posteriors from source language Si are denoted as PSiA.
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5.2 Baseline mapping models

Let MA and MSi be the monolingual acoustic models of the target and ith source lan-

guage respectively, a mapping modelMSiA is trained to transform posteriors PSi ∈ RdSi

fromMSi to the posteriors PSiA ∈ RdA where dSi and dA are the number of output classes

in a posterior distribution from MSi and MA respectively.

Mapping models are trained on frame level and each frame of a speech signal is as-

sumed independent. KL divergence objective function is used for training. Let X =

{x1, x2, . . . , xT } be a set of observations in a batch of the target language, for which

posterior distributions (PZ = {pZ1 , pZ2 , . . . , pZT } where Z ∈ {A,Si}) are attained from

all monolingual acoustic models. A mapping model is trained using KL divergence loss

to map posteriors from source acoustic models (PSi) to the target language posteriors

(PSiA). The loss function for a batch is given as;

LSiA(θ) =

T∑
t=1

dA∑
k=1

pAt,k · (log pAt,k − log pSiA
t,k ) (5.1)

where pAt,k and pSiA
t,k are the target and hypothesis posteriors for kth class of tth input

frame in a batch.

Target posteriors for training can be extracted in two ways either by decoding training

data from the target language acoustic model or by force alignments of the training data.

For forced alignment, an audio file is processed through a pre-trained acoustic model,

typically a hybrid DNN-HMM model, using Viterbi decoding. During this process, the

model evaluates the likelihood of each HMM state generating the observed acoustic

features at every time frame in the audio. The outcome of forced alignment is a time-

aligned transcription where each phoneme in the transcription accurately corresponds

to its respective segment of the audio waveform.

The acoustic model gives a posterior distribution with probabilities for all the output

classes for each frame in case of decoding. However in force alignments, usually the

alignments are produced as one hot vector i.e. probability is 1 for the aligned class and

0 for all others. Though a mapping model can be trained with target posteriors extracted

through any of these ways, KL loss reduces to Cross-entropy loss in forced alignment

case. With target posterior distributions of one-hot vector the term pAt,k · log pAt,k will

always be zero and the Equation 5.1 is reduced to

LSiA(θ) = −
T∑
t=1

dA∑
k=1

pAt,k · log p
SiA
t,k (5.2)

which is the cross-entropy loss. Mapping models are trained using either of these losses

in the following chapters.

A separate mapping model is trained for each source-target language pair which implies
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that a total of N(N−1) models are required to be trained for N participating languages.

Baseline mapping models consist of three stacked Fully-Connected (FC) layers.

The proposed baseline mapping model learns mappings on the frame level without con-

sidering the contextual information but the connected speech is a continuous signal which

poses co-articulation and temporal smearing. Thus assuming each frame independent of

its context is a very weak modelling approach. Furthermore, pairwise models are trained

for all languages which restricts applying baseline mapping models on a large scale as

N(N − 1) models are needed for N languages. So, in the next few sections, various

improvements are explored to address the aforementioned shortcomings of the baseline

mapping models.

5.3 Structural improvements

5.3.1 Contextual information

Continuous speech signal has temporal smearing, co-articulation and several other char-

acteristics which implies that the signal at a given time step is not independent of its

context. This suggests that the output posterior distributions from an ASR also depend

on their contextual frames. Since the baseline mapping models in Section 5.2 are trained

on frame-level posterior distribution with an independence assumption, the impact of

considering context is studied here.

To include context for mapping model training, various modifications are experimented

with.

• Contextual input: Mapping model architecture is kept the same as for the base-

line mapping models, but input to the model is the posterior distribution of the

current frame concatenated with posterior distributions of a few left and right

frames. Different context windows are explored to study the effect of contextual

information on the performance of mapping models. Using the baseline architec-

ture, posterior distributions of a few left and right frames are concatenated to the

input along one dimension.

• Auto-regressive mapping model: Auto-regressive mapping model is also ex-

plored where output at previous time frames is also fed along with right and left

input context. Input and previous outputs are processed through separate layers.

The output of final layers from separate modules is then combined and fed to the

shared output layers.

• Convolution layers: Convolution layers are added before the fully connected

linear layers to capture the context. Contextual frames are concatenated along

the second dimension before inputting to the mapping model where initial CNN

layers are expected to capture the dependencies. The output from CNN layers is

flattened and fed to a few fully-connected layers.
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• Sequence modelling: Sequence model architecture is also used for mapping

models rather than training non-sequential neural networks. A sequence RNN

model is expected to better capture the sequential information.

The implementation details are discussed elaborately in Section 5.5.4.

5.3.2 Sequence modelling

In order to capture the sequence information better, an encoder-decoder model is exper-

imented with rather than the non-sequential mapping models. Given a speech utterance

u, the output posterior distribution from ith source language acoustic model MSi is fed

to an encoder module. For output at a given time frame t, the encoder state at that

time step is fed to a decoder along with the decoder’s output at the previous time step

(t− 1). The impact of adding an attention module before the decoder is also explored.

For the attention decoder, encoder states are first fed to an attention module to compute

the context vector which is then passed to the decoder module along with the prediction

at the previous time step.

5.3.3 Multi-encoder single-decoder model

To deal with the requirement of N(N−1) number of models of baseline mapping models,

Multi Encoder Single Decoder (MESD) is proposed to train only one model per target

language. An encoder-decoder model with multiple source language-dependent encoders

and a single target language decoder is presented here. The architecture of the proposed

model is shown in Figure 5.1.

Given a speech utterance u, source posterior distributions (PSi) are fed to the corre-

sponding encoder (ESi). Embeddings from the final encoder layer are then fed to a

single decoder through a language switch. The switch connects the encoder of a specific

language to the decoder depending on the input ASR. It implies that mappings can be

obtained even having input from only one source-language ASR.

For a target language, all the baseline mapping models from different source languages

map different inputs to the same output space. So, the underlying intuition for the

MESD model is that each encoder can extract source-language independent features

which are then fed to the decoder which could map its input to the target language

posteriors’ space.

Though a mapping model contains multiple encoders, any encoder can be used with a

decoder during inference and MESD does not require a data stream from all the encoders

for a given utterance. It implies that mappings can be obtained by having input even

from only one source language at a time.
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Figure 5.1: Architecture of the proposed multi-encoder single-decoder model. The
model consists of N − 1 source language-specific encoders and a single decoder. The
input of each encoder ESi

is the source posteriors from ith source language. The single
decoder outputs the mapped posteriors from any of the encoders.

5.4 Optimisation improvements

5.4.1 MESD training loss

For the training of the proposed MESD model, outputs from all the source AMs for a

given utterance u are sequentially fed as input to respective encoders which are propa-

gated to the single decoder in the forward pass. The loss of a batch is then calculated

as the weighted sum of all the encoder-decoder pair losses.

LA(θ) =
∑
K

wk · LSkA (5.3)

where K is the number of total source languages (K = N − 1), wk = 1
K in the case

of mean average and LSkA is given in Equation 5.1 and Equation 5.2 which is still a

frame-based loss. It allows mapping model training to converge in low-resource settings

as a small amount of data provides millions of examples. However, this might cause

unbalanced training across languages as the mean value can be continuously decreasing
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Algorithm 1 Multi-Encoder Single Decoder

Require: MSi : ASR systems of source languages
Require: α: step size hyper-parameters
1: randomly initialise θei , θd
2: while not done do
3: Sample batch of target language utterances T
4: for source languages Si do
5: Obtain posterior distribution P T

Si
using MSi

6: Evaluate ∇θei ,θd
LTSiA

(fθei ,θd)
7: end for
8: initialise LA to zero
9: for source languages Si do

10: Calculate weights for each source language loss wi

11: Update θei ←− θei − α∇θei
wiLTSiA

(fθei ,θd)

12: LA ←− LA + wiLTSiA
(fθei ,θd)

13: end for
14: Update θd ←− θd − α∇θdLA
15: end while

when loss for one of the languages is decreasing monotonically but increasing in the same

fashion for the other one. This can cause the model to learn mappings for one language

much better than for another. To cope with this issue, a dynamic weighting scheme

is applied to weight the losses for each encoder-decoder loss. For the experimentation

here, rank sum weighting (Roszkowska, 2013) is used to assign the weights. In this

scheme, weights are assigned based on their normalised ranks. So, w in Equation 5.3

now becomes

wr =
2(K + 1− r)

K(K + 1)
(5.4)

where r is the rank of the language when the languages are sorted on decreasing values

of their losses. It helps to restrict the model from biasing towards a specific language or

a group of languages.

The algorithm of MESD training is shown in 1.

5.4.2 LR Annealing

Training with a large initial learning rate followed by gradually decreasing learning rates

proves to outperform training with either a large or small learning rate throughout the

whole training process (Nakkiran, 2020). Various methods are widely used for learning

rate annealing (George and Powell, 2006, Smith, 2015, Smith et al., 2017). For the

experimentation here, an annealing method is used which depends on the improvement

of the model’s accuracy over time. At each epoch e, the learning rate η is multiplied

by a factor f if Accue − Accue−1 < m where f and m are predefined factorisation and

threshold values respectively. Accux is the accuracy of the model on the dev set after

epoch x.
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Table 5.1: Details of the Babel data sets used for training speech recognition systems.

Lang
Train Eval

# hours # spks # hours # spks

Tamil (tam) 110.67 372 16.08 61
Telugu (tel) 67.27 243 13.92 60
Cebuano (ceb) 74.26 239 15.51 60
Javanese (jav) 76.39 242 16.25 60

η
′
=

ηf, if Accue −Accue−1 < m

η, otherwise

5.5 Experimental Setup

Mapping models can be trained on top of different ASR systems and is done in later

chapters, all the experiments reported in this chapter are done with the same data set

and underlying ASR systems for the sake of consistency and fairness. The scope of this

chapter is limited to the performance of baseline mapping models and experimentation

with various structural and optimisation improvements to enhance the performance of

mapping models.

5.5.1 Data sets

For the experimentation here, mapping models are trained on the top of acoustic models

of four low-resource languages from IARPA Babel speech corpus (Gales et al., 2014).

Full language packs of Tamil (tam ), Telugu (tel ), Cebuano (ceb ) and Javanese (jav

) are used for baseline ASR training and evaluation. Since the eval data of Babel

is not publicly available, train and dev sets of Babel data sets are used as train and

eval sets respectively for the experiments. The details of the data sets are tabulated

in Table 5.1. These data sets consist of conversational telephone speech and are quite

challenging because of limited bandwidth, conversational styles, channel and background

environment conditions. A limited amount of scripted read speech is also included in

each language pack.

Full amounts are used for the training of baseline monolingual speech recognition sys-

tems. However, for training the mapping models, a subset of 30 hours is chosen from

Table 5.2: Examples (in millions) for training of mapping models for each target
language. Train set: 29 hours; Dev set: 1 hour; Eval set is same as for the ASR

Language Train Dev Eval

Tamil (tam) 3.234 0.358 1.664
Telugu (tel) 3.232 0.356 1.915
Cebuano (ceb) 3.241 0.348 1.943
Javanese (jav) 3.225 0.365 1.854
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each language pack. Utterances containing only non-speech or silence are discarded

while randomly sampling the 30 hours. This data is further divided randomly into 29

and 1-hour portions as train and dev set to train the mapping models. Since the map-

ping models are trained on frame level, 30 hours provide millions of examples for the

sufficient training of these models. The examples, used for building the mapping models,

are given in Table 5.2.

5.5.2 Speech recognition systems

As mapping models are trained using posterior distributions from acoustic models, they

are briefly described here. Monolingual acoustic models of all the languages are hybrid

DNN-HMM models. 40 MFCCs are extracted for each frame of the speech signals

using a window size of 25 ms and a shift of 10 ms. These features are then fed to

DNN which consists of 12 factorised TDNN (TDNN-F) layers (Povey et al., 2018).

Each TDNN-F hidden layer is of dimension 1024, factorised with a linear ‘bottleneck’

dimension of 128. The acoustic model is trained using lattice-free MMI criterion (Povey

et al., 2016). Neural network outputs posteriors of the clustered monophone classes.

Clustering results in different clusters for each monolingual ASR training and thus the

outputs from different acoustic models against an identical speech signal are not directly

comparable. The ASR systems are built using the Kaldi toolkit (Povey et al., 2011).

5.5.3 Performance metric

The performance of mapping models is reported in terms of accuracy. The accuracy of

a mapping model is measured as the ratio of correctly mapped frames (CMF ) to the

total number of frames (TF ). Correctly mapped frames are defined as the frames where

the most probable class from the mapping model is among the top k most probable

classes of target posterior distribution. Accuracies of mapping models in this chapter

are usually shown for various values of k ∈ {1, 5, 10}. The detailed method to calculate

the accuracy of a mapping modelMSiA is given in Algorithm 2.

5.5.4 Structural improvements

The implementation details of the structural improvements discussed in Section 5.3.1

are discussed here.

• Contextual input: To consider the contextual information while training the

mapping model, the experimentation is started by appending contextual frames to

the input in 1-D. Consider l left and r right context, source posterior distributions

from t− l frames are concatenated on the left of source posteriors at current time

t and distributions of t+ r frames are appended on the right of the input.

• Auto-regressive mapping model: Using a baseline mapping model, an auto-

regressive setup is also explored where the output of a few previous time steps

is also fed to the model. Input (with concatenated context) is fed to a separate

module (contextual input module) of a few linear layers and concatenated output
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Algorithm 2 Accuracy measure of a mapping model

Require: PA = {pA1 , pA2 , · · · , pAT }: Target posterior distribution
Require: PSiA = {pSiA

1 , pSiA
2 , · · · , pSiA

T }: mapped posterior distribution from mapping
model NSiA

Require: k: Number of most probable classes to consider from target posteriors for
accuracy calculation

1: for pSiA
t in PSiA do

2: candst,k ←− Indices of top k most probable classes in pAt
3: ot ←− Index of most probable class in pSiA

t

4: if ot in candst,k then
5: CMF ←− CMF + 1
6: end if
7: TF ←− TF + 1
8: end for
9: accuracy ←− CMF

TF
10: return accuracy

of a few previous time frames is fed to another module (contextual output module)

consisting of some linear layers. The output of both modules is combined and then

fed to the final linear layers. The architecture is shown in Figure 5.2.

• Convolution layers: To make use of convolution to capture the context, poste-

riors from contextual frames are concatenated in 2-D. Posteriors from t− l, t, and

t+ r are stacked and convolution layers are added before linear layers of the map-

ping model to capture the context. Various configurations of convolution layers

are experimented with.

• Sequence modelling: Finally, an encoder-decoder architecture is used with an

attention module in between them for sequence modelling. Both encoder and

decoder with a single GRU layer and dot attention are found to outperform other

variants during the experimentation.

5.5.5 Optimisation improvements

For better convergence, learning rate annealing is used for the training. For an encoder-

decoder mapping model, the learning rate is factored by 0.8 if the accuracy of two

adjacent epochs is less than by an absolute value of 0.25.

Along with LR annealing, rank sum weighting is employed to calculate the total loss for

the MESD model. A batch of the same target utterances is fed to each source-language

encoder and decoder sequentially and the overall loss is calculated using Equation 5.3.

All three losses are sorted on their decreasing value and the first ranked language gets

the largest weight and so on. It helps to stop the model from biasing towards a specific

language.



Chapter 5. Mapping models 104

Figure 5.2: Architecture of baseline auto-regressive mapping model. Contextual input
and output from previous time frames are given to separate fully-connected modules.
The output of the final layers from both module is then combined before feeding to the

shared layers.

Table 5.3: Hybrid DNN-HMM ASR system performance in terms of %PER. Mapping
models are trained on top of mono ASR systems.

Language
%PER

mono multi

Tamil (tam ) 43.96 43.67
Telugu (tel ) 43.66 46.36
Cebuano (ceb ) 36.67 41.02
Javanese (jav ) 41.60 45.54

5.6 Results and discussion

5.6.1 Speech recognition systems

The results of the baseline speech recognition systems for all the languages are shown

in Table 5.3 in terms of %PER. Monolingual (mono) baseline systems are the language-

dependent acoustic, pronunciation and language models which are trained on a language-

specific data set. On the other hand, all the components of multilingual (multi) systems

are language-independent (the train sets of all the languages are mixed before training of

acoustic and language models). The mapping models are trained on top of monolingual

(mono) acoustic models. The error rates here for the Babel data set are higher than

the MLS data set (in Table 5.3). This is mainly due to the very challenging nature

of the Babel data set. Since the mapping models are trained on top of these models,

the performance of mapping models is also influenced by the performance of acoustic

models.
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5.6.2 Baseline mapping models

As described earlier a mapping model is trained for each source-language pair of Babel

data set. So, 12 mapping models are trained on the top of baseline ASR systems using

data sets outlined in Section 5.5.1. Since even the limited amounts of data provide

millions of training examples, baseline mapping model training converges in early epochs

for all the networks with an accuracy of nearly 50%. The training curves with accuracy

measure for one mapping model (Nceb tel) are shown in Figure 5.3 and accuracies of

mapping models are tabulated in Table 5.4.

Analysis reveals that most of the time when the most probable output class from a

trained mapping model is not accurate i.e. it is not the same as the most probable

target class, the correct target AM class is usually still among a few most probable

classes of the mapped distribution. So, the network accuracy is recalculated considering

top n classes of the mapping model output. The results in Table 5.4 show that the

accuracy for most of the networks is dramatically increased to nearly 90% from less

than 50% by considering the top two most probable classes of the mapped posteriors.

Although the baseline mapping models seem promising and details of their use for anal-

ysis and downstream ASR tasks are shown in the next chapters, there is still a lot of

room to improve their accuracies. In the next sections, the results of several structural

and optimisation improvements are presented. As described earlier N(N − 1) mapping

models are needed to train for N languages in the baseline system which makes this

technique difficult to use at scale. So, proposed structural and optimisation improve-

ments are not done for all models to save time and explored for randomly selected one

source-target mapping model (Mceb tel) and then the best architecture and configuration

are used for the rest of the mapping models.

5.6.3 Structural improvements

Initial experiments are done with different input and output contexts and the results

are shown in the top section of the Table 5.5. It is evident that using context wins gain

Figure 5.3: Training curve of mapping model for target language tel from source
language ceb . The curve shows that the training converges in very early epochs.
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Table 5.4: Accuracy of baseline mapping models considering top n mapped classes.
The accuracy of a source-target mapping model is calculated using Algorithm 2.

Target
Lang

Source
Lang

mapping model accuracy
n=1 n=2 n=5 n=10

tam
tel 42.91 88.16 94.91 97.91
ceb 44.43 84.63 91.82 96.13
jav 41.89 85.82 92.82 96.69

tel
tam 54.44 92.08 96.87 98.58
ceb 35.51 90.26 95.40 97.91
jav 50.54 90.71 95.70 98.10

ceb
tam 45.73 85.50 93.71 97.23
tel 46.17 87.87 93.98 97.51
jav 47.04 88.50 94.67 98.03

jav
tam 47.81 85.63 93.36 96.58
tel 48.29 86.31 93.74 97.03
ceb 48.05 86.28 93.61 96.95

in the performance. Appending only the left 5 frames to the input gives a gain of 1.59%

which increases to 2.64% when concatenating the same number of frames from the right

context as well. A marginal gain of 0.5% is achieved using the output of the previous

3 frames in the auto-regressive architecture. For this experimentation, the architecture

of Figure 5.2 is used. Both the contextual input and the contextual output modules

consist of one fully connected layer. Two fully connected layers are used after combining

the output of final layers from both contextual input and output modules. In addition,

multiplication and concatenation methods are experimented with to combine the output

of contextual input and output modules. Results of E3 are reported with concatenation

as it outperforms addition and multiplication. The gain achieved in this experiment

(E3) in comparison with E2 might be attributed to increased model capacity. So as an

ablation study, the model capacity is increased by adding a few more layers for the same

input of experiment E3 (experiment E3’). The number of FC layers in contextual input

and output modules is increased to 2 layers per module and three FC layers are stacked

after concatenation of output from both modules. It drops the accuracy to 60.32% which

is marginally worse than the performance of the model with smaller capacity. So, the

architecture of initial experiments (E1-E3) is retained for the rest of the experiments.

Increasing the context window from 5 to 10 frames slightly increases the gain for all

aforementioned scenarios (E4-E6).

In further experiments, convolutional layers are applied to extract the features from con-

textual frames. Posterior distributions of the current time frame and several contextual

frames are concatenated in 2-D. Convolution filters are applied on this 2D input to cap-

ture the context-aware features. For the experimentation here, 3 convolutional layers are

applied followed by 4 FC layers. Various convolutional layer configurations experiment

and results with the best configuration (kernel size = (3, 5), stride = 1 and one input

and output channel) are reported. The left and right contexts of 5 and 10 frames are
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Table 5.5: Improvements in the accuracy of Mceb tel mapping model for various
structural and optimisation improvements

Exp ID Model % Accuracy Model size

Baseline from previous work

E0 Baseline 56.12 1.25M

Using context with baseline architecture

E1 E0 + input left=5 57.71 1.64M
E2 E1 + input right=5 60.45 2.03M
E3 E2 + output left=3 60.95 2.92M
E3’ E2 + output left=3 60.32 5.02M
E4 E0 + input left=10 57.75 2.03M
E5 E4 + input right=10 61.05 2.81M
E6 E5 + output left=3 61.56 3.70M

With convolutional layers

E2’ E2 + conv layers=3 60.52 2.38M
E5’ E5 + conv layers=3 62.07 3.11M

Sequence modelling

E7 Enc-Dec (uni-direc) 56.83 0.76M
E8 Enc-Dec (bi-direc) 60.35 1.07M
E9 E8+ Attention 62.74 1.21M

Multi-Encoder sequence modelling

E10 Multi encoder-decoder 58.77 2.59M
E11 E10 + Rank loss 61.91 2.59M

experimented with. A marginal gain is achieved at the cost of increased model capacity

(E2’ and E5’).

The same source-target pair model is trained using an encoder-decoder architecture.

Various configurations with different RNN layer types including simple RNN, GRU

and LSTM are experimented with. As an attentional decoder in also experimented for

the encoder-decoder architecture, attention types from simpler dot attention to Luong

(Luong et al., 2015) and Bahdanau (Bahdanau et al., 2016) attention are applied. Results

with the best configuration (GRU layers and dot attention) are reported. A significant

gain is attained by using a bidirectional GRU (E8) rather than a unidirectional one (E7).

It achieves an accuracy of 60.35% with a model size of only 1.07 million parameters

which is the smallest among baseline and all the improvements made on that. Adding

an attention module to this, the model is still the smallest in size but outperforms all

other configurations. E9 even outperforms a model (E6) which is three times bigger in

terms of model capacity.

The best encoder-decoder model (bidirectional GRU and attention) is then leveraged

for the proposed MESD model. In the MESD model for a target language, there are

three encoders and only one decoder. The model size is 2.59 million parameters which is

about 1.5 times smaller than the accumulative model sizes of baseline mapping models

required for a target language. Initially, MESD is trained using the mean loss of all the
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languages in each batch, but the performance gets worse significantly (E10). Though

the criteria for LR annealing in this model is the average accuracy of all three languages,

accuracy for only ceb is shown to be consistent with the rest of the entries. The accu-

racy is significantly dropped using the MESD model. On analysis, it is found that the

performance for one of the languages is monotonically increasing but decreasing for ceb

encoder-decoder part. It leads us to optimisation improvements discussed in the next

section.

5.6.4 Optimisation improvements

As described earlier in Section 5.4.1, using the mean weighted loss of all source languages

for the training of a target language MESD mapping model might cause biased training

for some source languages. To cope with this issue, the use of rank sum weighting is

introduced for source languages’ losses (as described in Section 5.4.1). For tel target

language, losses of all source languages are compared for mean weighted and rank sum

weighted losses approaches. Losses and %PER of tel target language dev set for all the

source languages over the epochs are shown in Figure 5.4 and 5.5 respectively.

It is evident from the Figure 5.4 that at the point of convergence, deviation in losses

for all the encoder-decoder pairs is very high when a mapping model is trained with

mean weighted losses. However, the losses for source languages are comparatively very

close to each other in the case of training using rank sum weighted losses. Similarly,

the same trend can be observed for %PER of tel dev set for all the source languages

in Figure 5.5. In Figure 5.5, %PER for tam -tel pair is lower in case of mean weighted

losses (Figure 5.5a) if compared with rank sum weighted losses (Figure 5.5b). However,

highly divergent %PER with mean losses make the rest of the source languages have

high %PER which is significantly reduced when rank sum weighted losses are used.

Table 5.6: Accuracy of MESD mapping models in comparison with the baseline
mapping models considering top-1 (n = 1) mapped class. The accuracy of a source-

target mapping model is calculated using Algorithm 2

Target
Lang

Source
Lang

mapping model accuracy
Baseline MESD

tam
tel 42.91 47.53
ceb 44.43 56.85
jav 41.89 58.22

tel
tam 54.44 76.87
ceb 35.51 72.30
jav 50.54 75.44

ceb
tam 45.73 46.40
tel 46.17 46.80
jav 47.04 47.49

jav
tam 47.81 47.83
tel 48.29 48.33
ceb 48.05 48.54
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(a) Mean weight loss

(b) Rank sum weight loss

Figure 5.4: Losses of the target language (tel ) dev set for all the source languages
(tam , jav and ceb ) with mean weights (5.4a) and rank sum weights (5.4b) approaches.
It is evident that over the epochs, the losses of all the source languages are less diverged

with rank sum weights when compared with mean weights.
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(a) Mean weight loss

(b) Rank sum weight loss

Figure 5.5: %PER of the target language (tel ) dev set for all the source languages
(tam , jav and ceb ) with mean weights (5.4a) and rank sum weights (5.4b) approaches.
It is evident that over the epochs, %PER for all the source languages are less diverged

with rank sum weights when compared with mean weights.
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Table 5.7: Statistics of speech and non-speech examples (in millions) for training
and evaluation of mapping models. total: Number of total examples, NS: Number of

non-speech frames (examples), %: Percentage of speech examples in the data set

Lang
Train Dev Eval

total NS % total NS % total NS %

Tamil (tam) 3.23 0.15 95.47 0.36 0.02 95.46 1.66 1.35 29.50
Telugu (tel) 3.23 0.11 96.64 0.36 0.01 96.71 1.91 1.27 23.50
Cebuano (ceb) 3.24 1.42 55.89 0.35 0.16 55.68 1.94 1.43 26.64
Javanese (jav) 3.22 1.35 58.42 0.36 0.14 58.89 1.85 1.28 30.95

To cope with the drop in accuracy of the MESD model (E10 when compared with E9),

it is trained using rank sum weighted losses. It significantly increases the accuracy from

58.77% to 61.91%. This improvement in accuracy is about 3.2% if compared with mean

loss training. Though this is not as good as the single encoder-decoder model (E9),

MESD is used for the rest of the experiments due to two-fold advantages;

• It reduces the pain of training N(N − 1) models by reducing number of required

models to only N

• The model size of an MSED model is smaller than the total size of three single

encoder-decoder mapping models making processing faster

So, the MESD model with rank sum weighted loss is then used for training the mapping

models for all the participating languages and the results are shown in Table 5.6. Though

the MESD architecture yields an absolute gain of up to 36%, ceb and jav languages show

a very marginal gain when compared with the baseline. However, still, an overall gain

of 10% is achieved over the baseline model.

5.6.5 Analysis and Discussion

Since the MESD model improves mapping massively for some language pairs and very

marginal for others, the trends in the accuracies of the mapping models are investigated.

The analysis reveals that the Babel data set consists of a lot of non-speech segments.

As the mapping models’ accuracies are reported on the Babel dev set which contains

significant non-speech utterances (which are labelled as silence phoneme), the perfor-

mance of the mapping model is very much dependent on the mapping accuracy of the

silence phoneme. To get statistics of speech and non-speech frames in the data sets, a

frame-wise analysis is done on data alignments.

Train, dev and eval data sets are force-aligned using the in-domain monolingual pre-

trained hybrid DNN-HMM ASR system (described in Section 5.6.1). During analysis

of these alignments, the frames with silence phonemes as the most probable class are

considered non-speech frames while the rest are considered speech frames. Earlier in

Table 5.2 the number of train, dev and eval sets’ examples have been tabulated, here

Table 5.7 summarises the alignment analysis and shows the statistics of speech and
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non-speech examples for each data set. It is evident that only around 30% data of the

evaluation set consists of speech frames which implies that the accuracy calculation of

a mapping model is highly dependent on the accuracy of silence phoneme mapping.

Though the non-speech utterances are dropped during the sampling for the train set, 45%

of the training data of ceb and jav still consists of non-speech frames. Since a significant

portion of the Babel data set is conversational speech recorded in noisy environments, a

lot of ceb and jav utterances have a significant duration of non-speech in a segment with

very little speech. A few different cases of a lot of non-speech are shown in Figure 5.6.

A spectrogram of a simple case is shown in Figure 5.6a where a very long utterance

contains a few speech segments. Non-speech in this case is just silence. Figure 5.6b

shows a spectrogram where an utterance has a lot of non-speech but the non-speech is

silence but a background noise. Since Babel data contains telephonic conversation in

an open environment, the spectrogram of a segment is shown in Figure 5.6c where only

a short single word is spoken by the speaker of interest at the start of a more than 12

seconds long audio. The rest of the audio contains considerably loud background talking

(as evident from the spectrogram). Since anything other than speech is not annotated

and considered silence by the ASR systems, such examples are very noisy for mapping

(a) A ceb training example with a significant amount of silence

(b) A ceb training example with a significant background noise

(c) A jav training example with a lot of background talking

Figure 5.6: Spectrograms of a few segments of Babel data sets are shown as examples
of speech versus non-speech analysis



Chapter 5. Mapping models 113

Table 5.8: Accuracy of mapping models with and w/o considering non-speech (NS)
frames for top-1 (n = 1) mapped class. The accuracy of a source-target mapping model

is calculated using Algorithm 2

Target
Lang

Source
Lang

w/ NS w/o NS
Baseline MESD Baseline MESD

tam tel 42.91 47.53 49.31 51.22
ceb 44.43 56.85 38.51 43.50
jav 41.89 58.22 42.30 46.07

tel tam 54.44 76.87 54.12 55.72
ceb 35.51 72.30 47.70 50.50
jav 50.54 75.44 49.41 52.63

ceb tam 45.73 46.40 45.45 48.15
tel 46.17 46.80 46.97 49.86
jav 47.04 47.49 50.07 52.02

jav tam 47.81 47.83 44.23 47.90
tel 48.29 48.33 45.03 48.77
ceb 48.05 48.54 44.16 48.73

models to train.

The noisy training examples are unavoidable unless the sampling is done in a very con-

trolled training which might cause a selection only from very clean speech and thus a

mismatch between the training and evaluation set. However, for more insightful results

from mapping models, evaluation is carried out on the evaluation set ignoring the map-

ping of silence phonemes. Table 5.8 shows the accuracies of mapping models for n = 1

when the silence phonemes are ignored. The accuracies of mapping models in Table 5.8

are consistent across the languages and more comprehensible. Though the performance

gap is not very huge, MESD still performs around 3% on average better than the base-

line mapping models. Mapping from a source language ASR which is from the same

language family as the target language yields the highest accuracy. The trend remains

the same for both baseline and MESD models.

5.7 Summary

In the last chapter (Chapter 4), it has been proposed to learn the patterns in the output

from a source language acoustic model and the ground-truth phonemic transcriptions

of a target language utterance. The objective of this chapter has been to explain the

proposed mapping models to learn the patterns. A feed-forward neural network with

four layers has been trained as a baseline mapping model. Given a posterior distribution

from a source language acoustic model for a target language utterance, the objective of

a mapping model is to map it to the posterior distribution from the target language

acoustic model. The accuracy of a mapping model is calculated as the ratio of the

correctly mapped frames to the total number of frames in the test set. A frame is

considered a correctly mapped frame if the most probable mapped class is the same as

the most probable class in the target posteriors. Mapping models have been trained
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for four low-resource Babel languages i.e. Tamil, Telugu, Cebuano and Javanese. A

separate mapping model has been trained for each source-target language pair and an

accuracy of 46.44% has been achieved.

However, baseline mapping models are based on various assumptions such as the mutual

independence of frames. So, many structural and optimisation modifications have been

explored for mapping models. A multi-encoder single decoder model (MESD) has been

proposed to reduce the number of mapping models from N · (N −1) to N for N number

of participating languages. An average accuracy of 49.59% has been achieved by MESD

models.

Both baseline and MESD mapping models are employed to bridge some gaps in mul-

tilingual speech recognition research to improve low-resource speech recognition which

are discussed in the next chapters.



Chapter 6

Cross-lingual acoustic-phonetic

similarities

In this chapter, proposed mapping models are employed to investigate the cross-lingual

acoustic-phonetic similarities. As discussed in Section 3.4.1, multilingual speech recogni-

tion systems mostly benefit low-resource languages but suffer degradation in the perfor-

mance of several languages relative to their monolingual counterparts (Hou et al., 2020,

Pratap et al., 2020a). Limited studies have focused on understanding the languages’

behaviour in multilingual speech recognition setups. Mapping models are trained on

top of monolingual ASR systems of different languages. An analysis is done to measure

the similarities between mapped and the target posterior distributions against a target

language speech signal.

Section 6.1 revisits the literature to underscore the motivation of this work to measure

cross-lingual similarities. Section 6.2 explains the way mapping models are being ex-

ploited for cross-lingual acoustic-phonetic similarities. Experimental setup details are

discussed in Section 6.3. Results are presented and discussed in Section 6.4 while the

work is briefly summarised in Section 6.5.

6.1 Motivation and background

This work is motivated by the fact that the previous works show that multilingual speech

recognition systems do not yield a significant reduction in word error rate for various

languages including English, German, French and several others (Conneau et al., 2021,

Hou et al., 2020, Pratap et al., 2020a). Many open-source data sets are available for

these languages and are generally regarded as resource-rich languages. Most of the

multilingual models, which include resource-rich languages, are trained on unbalanced

This chapter is based on our research paper in Interspeech 2022;
M. U. Farooq and T. Hain, “Investigating the Impact of Cross-lingual Acoustic-Phonetic Similarities
on Multilingual Speech Recognition”, Interspeech, 2022.
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data. So, degradation in the performance of these languages is attributed to increased

confusion for them in the multilingual setup (Pratap et al., 2020a). Pratap et al. (Pratap

et al., 2020a) have trained several massively multilingual speech recognition systems with

different configurations. The word error rate gets worse for many languages even for a

fairly large model of 1B parameters when no language information is provided. Though

the trend of %WER getting worse is very obvious in the resource-high languages zone,

there are several spikes even in the low-resource languages region as well. It implies

that attributing this trend to the unbalanced sampling is not guaranteed to be true.

A similar trend has been shown for many languages by (Hou et al., 2020). Even the

state-of-the-art unsupervised wav2vec2.0 model does not improve the error rate for the

languages including English, German and French etc. while using their full amounts in

the MLS dataset for fine-tuning (Conneau et al., 2021). Conneau et al. (Conneau et al.,

2021) mention language interference as the reason for the increased error rate. However,

no experimental evidence of any of these justifications could be found in the literature.

The argument about unbalanced sampling can simply be verified by training a multi-

lingual speech recognition system using a balanced data set. The experiments in Sec-

tion 4.4.2 shows that some languages’ ASR error rate increases even with the balanced

sampling. It implies that the long-tail problem does not have much effect on the degra-

dation of WER of these languages. The other argument about increased confusion might

have an effect potentially because a phoneme-based multilingual ASR, for instance, is

trained on the basis of multilingual assumption (Schultz and Waibel, 2001). Phonemes

of several languages are represented by the same IPA representations but might have

different underlying acoustic realisations. In Section 3.4.1 and Section 4.1, earlier studies

in the context of efficient data sharing among languages have been discussed. Recently,

some efforts have been made to interpret the learning of multilingual speech recognition

systems (Feng et al., 2021, Żelasko et al., 2020). The phoneme error rate of each phoneme

in monolingual ASR has been compared with that of multilingual system (Żelasko et al.,

2020) (shown in Figure Figure 4.1). However, no monotonic trend has been observed

with the growing number of languages the phonemes shared. The authors described this

as “unexpected” because the phonemes shared by more languages provide more training

data and thus the expected error trend would be decreasing. Motivated by the fact that

many languages with significant phonemes overlap pose performance degradation in the

multilingual setups (Conneau et al., 2021, Feng et al., 2021, Hou et al., 2020, Pratap

et al., 2020a, Żelasko et al., 2020), the objective and contribution of this work is to study

acoustic-phonetic similarities to understand if the cross-lingual phoneme sharing is truly

a sharing and how does it impact on multilingual speech recognition setups?

In this chapter, a novel technique is proposed to estimate the cross-lingual acoustic-

phonetic similarities for CD hybrid DNN-HMM acoustic models to study the cross-

lingual similarities. A hybrid DNN-HMM system is preferred over end-to-end modelling

to avoid the influence of the entangled language model in e2e speech recognition systems.

The same data set of three West Germanic languages (English, German and Dutch),
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as used for phoneme-based ASR experiments in Section 4.4.2, is used to study the

impact on multilingual performance. The behaviour of monolingual acoustic models of

different source languages against a speech signal of the target language is studied by

differentiating the posterior distributions. To compare distributions of source and target

AMs, a separate baseline mapping model is trained for each <source, target> pair to

map source posterior distributions to the target posterior distributions.

6.2 Cross-lingual acoustic-phonetic similarities

The motivation for research into multilingual speech recognition is based on the assump-

tion that the articulatory representations of phonemes are very close across the languages

and can be considered language-independent units (Schultz and Waibel, 2001). How-

ever, several languages with substantial cross-lingual phoneme sharing exhibit poorer

performance in multilingual setups. This calls for a study to understand the reason for

degradation or improvement in multilingual setups when compared with corresponding

monolingual systems.

Though e2e speech recognition systems have dominated the conventional HMM-based

ASR system, hybrid DNN-HMM systems still outperform e2e ASRs with the limited

amounts of training data (Povey et al., 2016). Furthermore, the output from e2e speech

recognition systems is stronger because they are able to learn some language character-

istics. Thus their output is influenced by the implicit language model which adversely

affects the acoustic analysis.

In hybrid speech recognition systems, a deep neural network is trained to produce a

posterior distribution of tied states of HMM models. For a language with Q number

of phonemes, a maximum number of Qn polyphonemes with n context width can exist

i.e. English language with 44 phonemes can have 442 = 1936 biphones. Each of these

biphones can be modelled by a separate HMM model of S number of states. So theoret-

ically, the total number of tied states for a language with Q number of phonemes and S

number of states per HMM model is given by Qn × S. Usually, the conventional HMM

models have been trained using triphones considering one left and one right phoneme

along with the centre one. However, any number of context phonemes can be consid-

ered while training the model. So, the term polyphonemes is conventionally used here

for phonemes with any context width greater than one. As the theoretically possible

states are Qn× S, the number of states increases exponentially when either the context

width or the number of phonemes is increased. For instance, training a triphone 3-state

HMM model of a language with 20 phonemes would have 203 × 3 = 24000 states. It

implies that there would be an output layer of size 24000 of the neural network of a

DNN-HMM-based ASR system. It is very hard to train a neural network with such

a large output layer and the performance of such a system is not expected to be very

good. In reality, many polyphonemes out of these possible combinations might never

occur in language or many are quite similar to each other. One possible way of reducing

the number of possible states is to drop the ones which never occur in the training set.
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Figure 6.1: Proposed system architecture for analysis of cross-lingual acoustic pho-
netic similarities. Mapped posteriors from diverse monolingual source acoustic models

are compared with the target posteriors.

However, that poses a potential risk of losing the polyphonemes which never occur in the

training set but might present in the language or evaluation set. So, the total number

of states (and thus the output layer dimension of DNN) is reduced by clustering many

polyphonemes together. For instance, the Kaldi toolkit builds a decision tree based on

statistics from GMM-HMM model alignments. The bottom layers of these trees are

the number of clustered states. Since these trees are dependent on the statistics from

the alignments from a language-dependent ASR, each language yields a different pho-

netic decision tree in its monolingual ASR. So, the number of tied states differs for each

language and thus the size of the output layer of DNN of each DNN-HMM model is

different. Not only the size is different, but each output class might represent a different

set of polyphonemes. Furthermore, each class might represent a single polyphoneme or

multiple polyphonemes based on the clustering. It means that the posterior distributions

from the two models are not directly comparable even for an identical speech signal and

through the monolingual models of quite closer languages.

In this work, a data-driven approach, to transform posteriors from diverse models to a

directly comparable form, is proposed. Having the posterior distributions from various

models given the same input speech signal, it can be analysed how different monolingual

models perceive an identical speech signal. As the underlying assumption of mapping

models is that some patterns might exist between posterior distributions from the target

model and a source language ASR given a target language speech signal, the mapping

model is not able to learn well when a source model significantly confuses a phoneme

with some other phoneme or multiple phonemes. So, a similarity measure is calculated

between the target and the mapped posterior distributions to approximate the closeness

of the two languages. Furthermore, these measures are compared for different source

languages to estimate the cross-lingual acoustic-phonetic similarities.
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6.2.1 Similarity measure

Let MA and MSi be the monolingual acoustic models of target and source languages

respectively. The target language is the language for which the similarity is being mea-

sured against the source languages. A baseline mapping model MSiA is trained to

translate posteriors PSi ∈ RdSi from MSi to the posteriors PSiA ∈ RdA where dA is the

dimension of posteriors from MA. As presented in the previous chapter, the mapping

models are able to learn some language-related relationships between the posterior dis-

tributions of a source and the target acoustic models. They can learn the phonemes

of the target language which are more amenable to cross-lingual transfer than the oth-

ers. A few hours of speech data can give millions of examples that provide sufficient

training data for the mapping model. KL divergence, the most widely used measure to

differentiate two posterior distributions (Kullback and Leibler, 1951), is calculated as a

similarity measure between the posterior distributions from the target language AM and

the mapped posterior distributions from the source language AM. The proposed system

architecture is shown in Figure 6.1.

Let X = {x1, x2, . . . , xT } be a set of observations of the target language, for which

posterior distributions (PZ = {pZ1 , pZ2 , . . . , pZT } where Z ∈ {A,Si}) are attained from all

monolingual acoustic models. Posteriors from source acoustic models (PSi) are mapped

to target posteriors (PSiA) using mapping model MSiA. The similarity between a source

and the target language for a given set of observations is calculated as

DX(MT ,MSi) =

∑T
t=1 p

A
t · (log pAt − log pSiA

t )

T
(6.1)

where DX , the similarity measure, is the average KL divergence over all the examples.

The value can range from the best 0 to the worst infinity. If two posterior distributions

are perfectly matched, the value of the similarity measure would be 0 and can range

from 0 to infinity otherwise.

6.3 Experimental setup

6.3.1 Data set

Experiment results are reported using three languages (English en, German de and

Dutch nl) of the West Germanic family. From previous works and the results reported

in Table 4.5, the performance of these languages is either degraded or shows a very minor

improvement in multilingual setups despite a sufficient number of the shared phonemes

(Figure 4.4).

The same data sets utilised for experimentation in Section 4.4.2 for phoneme-based ASR

systems, are used for the study of cross-lingual acoustic phonetic similarities here. While

the speech recognition systems discussed in Section 4.4.2 are used to train the mapping

models on top of them, 30 hours of training set of each language is further divided into



Chapter 6. Cross-lingual acoustic-phonetic similarities 120

29 hours for train and 1 hour for the validation set. A limited amount of data for each

language is used in this study due to several reasons.

• On the phonemic level, 30 hours provide millions of examples for mapping model

training (tabulated in Table 6.1). The training of mapping models has shown that

it converges in early epochs (as shown in Figure 5.3) with the training data of this

size, implying that the amount of data is sufficient for acoustic-phonetic similarity

analysis.

• Experiments with the limited data for model fusion provide a realistic scenario for

low-resource languages and the technique can be extended for resource-deficient

languages.

• In continuation of the experiments from Section 4.4.2, the objective of the limited-

resource setup has been to investigate whether the performance of the selected

languages declines in multilingual scenarios. This decline is attributed to the dom-

inance of their robust monolingual counterparts, which are trained on significantly

larger amounts of data due to their resource-rich nature (Pratap et al., 2020a).

6.3.2 Speech recognition systems

Monolingual hybrid DNN-HMM models are trained for all the participating languages.

40 MFCCs are extracted for each frame of the speech signals using a window size of

25 ms and a shift of 10 ms. These features are then fed to DNN which consists of 12

factorised TDNN (TDNN-F) layers (Povey et al., 2018). Each TDNN-F hidden layer is

of dimension 1024, factorised with a linear ‘bottleneck’ dimension of 128. The acoustic

model is trained using lattice-free MMI criterion (Povey et al., 2016). The output of the

neural network is the posteriors of the clustered left biphone states. The clustering in

each monolingual ASR training is different and thus the outputs from different acoustic

models against an identical speech signal are not directly comparable. ASR systems are

built using the Kaldi toolkit (Povey et al., 2011).

The Kaldi toolkit converts each phoneme into four further phonemes based on the po-

sition of a phoneme in a word. For example, a phoneme \E\is converted into \E B\,
\E I\, \E E\and \E S\where B, I, E and S represents beginning, intermediate, end and

singleton positions. To avoid confusion, the terminologies ‘phonemes’ (pl) and ‘posi-

tional phonemes’ are used for actual phonemes in a language and the Kaldi phonemes

Table 6.1: Examples (in millions) for training of mapping models for each target
language. Train set: 29 hours; Dev set: 1 hour; Eval set is same as for the ASR

Language Train Valid Test

en 3.48 0.12 0.24
de 3.35 0.12 0.24
nl 3.34 0.12 0.24
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respectively. During alignments for the training of the models, if the phoneme \E\occurs
at the start of a word it is replaced by \E B\and it is changed with \E E\if it occurs at
the end of a word. If the phoneme takes place somewhere between the other phonemes

of a word, it is replaced by \E I\. However, there might be some very short words

consisting of only a single phoneme, which is changed with \E S\. Furthermore, the

Kaldi introduces two more phonemes i.e. SIL and SPN for silence and speech noise

in the utterance. SIL phoneme is for silence on sentence, word or phoneme bound-

aries whereas SPN phoneme is to label the speech segments with spoken noises such

as laughs, coughs or any other vocal noises made by speakers which do not have any

linguistic information. Both of these phonemes are converted into five further phonemes

on the same lines. Besides converting into four positional phonemes, the original SIL

and SPN phonemes (without positional indication) are also retained. So, if a language

has pl phonemes, a Kaldi model is trained for more than (4× pl + 10) phonemes. Note

that the word ‘more than’ is used since there are some disambiguation symbols as well.

As the experimentation here is primarily on top of the LF-MMI models, it is worth

mentioning here that LF-MMI models are usually trained for biphones using two-state

HMM models (Povey et al., 2016). So, the total number of possible HMM-tied states

for a language becomes more than (2× (4×pl+10)2). Though these states are clustered

before training to reduce the number of classes, biphones with the same phoneme but

different positional indications or HMM classes are not guaranteed to be in the same

class which causes further challenges for learning of the mapping models.

Furthermore, Kaldi uses the logits (referred to as pseudo-likelihood in the Kaldi) of

the neural network as emission probabilities of the HMM states. As described for the

training of mapping models to map the posteriors, log-softmax is applied on these logits

to convert them to posterior distributions for further processing i.e. ASR inference and

training of the mapping models.

6.3.3 Mapping model

Baseline mapping models (described in Section 5.2) are trained for each source-target

language pair. It is important to note that the mapping models from language A to B

and from B to A are not trained on the same data. For the mapping model from A to B,

the input consists of the source posteriors from the acoustic model of language A, and

the target is the posteriors from the acoustic model of language B, using the audio data

of language B. Conversely, for the mapping model from B to A, the input comprises the

source posteriors from the acoustic model of language B, and the target is the posteriors

from the acoustic model of language A, using the audio data of language A. Please be

aware of the different audio input data in each case.

Each mapping model consists of three fully connected linear layers with a model size

of about 1.25 million parameters. The target posteriors, used for the training of the

mapping models, are extracted by decoding training data through a language-dependent

ASR. KL-divergence loss is used for the training of the baseline mapping models. As
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there are three participating languages, n · (n − 1) = 3 × (3 − 1) = 6 mapping models

are trained in total. The amount of training data for each target language is given in

Table 6.1.

6.3.4 Similarity measure

All acoustic models used for experiments in this work are trained using lattice-free MMI

criterion (Povey et al., 2016). Though the study can easily be extended for polyphonemes

of any context, left biphones are modelled for the experimentation here and the term

biphones will be used during the remainder of the discussion.

Given the phoneme sets of two languages (the target and a source language), biphones

can be categorised into the following subsets of biphones:

• Shared biphones: If there is some overlap between the phoneme sets of the target

and the source languages, there would be some biphones which occur in both

(source and the target) languages. They can be further divided into two subgroups.

– Shared seen biphones (SS): The set of shared biphones which are seen by both

languages during training of their acoustic models.

– Shared unseen biphones (SU): The set of shared biphones which are never

seen by source language in its train set. One possibility is that the biphone

might exist in the target language but the source language does not have

such a combination. Another likely reason could be that the biphone does

not exist in both of the languages. In the latter case, probably it will not

affect the similarity measure a lot if no such biphone appears in the test set,

but the mapping model is not expected to learn well in the earlier case. That

might affect the performance of the mapping model.

• Unshared biphones (U): The biphones of the target language that are never seen

by the source language due to non-overlapping phonemes.

As stated earlier, the similarity measure proposed in this work measures the similarity

between the posterior distributions from the DNN of the hybrid ASR system. Each out-

put class of these DNN models represent some clustered polyphonemes (or a single poly-

phoneme very rarely). Since hybrid DNN-HMM models cluster various polyphonemes

into one output class, it does not guarantee that the biphones of the aforementioned

categories would go to separate classes during the clustering. An output class might

be a cluster of some shared, shared seen, shared unseen and unseen biphones. Or it

could be any combination of these categories. However, for such clusters, the analysis

of similarity distance is not expected to be very clear. It is discussed further in the

results section, but the analysis is restricted to the classes which contain only clusters

consisting of only one of the above categories. Furthermore, due to Kaldi’s positional

phonemes, the problem becomes more challenging since some positional phonemes of a
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phoneme could be clustered with the same category but some of them might go with

different category’s positional phonemes. Additionally, positional phonemes increase the

output dimensionality of the DNN and make it challenging for mapping models to learn

the mappings.

A similarity measure is calculated for each of the aforementioned cases and an analysis

of trends in distance measure is carried out to comprehend the language similarities and

their behaviour in the multilingual setups.

6.4 Results and discussion

6.4.1 Baseline speech recognition systems

Monolingual (mono) baseline systems are the language-dependent acoustic, pronuncia-

tion and language models which are trained on a language-specific data set. The train

sets of all the languages are then mixed to train multilingual (multi) acoustic and lan-

guage models. The multilingual acoustic model is then used with the monolingual lan-

guage model of the target language which is termed as mono-lm in the reported results.

As described earlier usually the logits are used as emission probabilities of HMM states

in Kaldi, log-softmax is applied before any processing in the experimentation here. An

analysis shows that it is hard for mapping models to learn with a broader range of values

of output distributions in the case of pseudo-likelihood (or logits). So, log-softmax is

applied to compress the values of output distributions between 0 to 1. The results of

the baseline systems for all the languages are given in Table 6.2 in terms of %WER and

%PER. Since only the language model is changed for mono-lm, thus the PER remains

unchanged when compared with that of a multilingual system. The results show that

the error for all the languages increases in multilingual setup despite the balanced data

duration for each language. This indicates that the reason for performance degradation

in multilingual setups can not only be attributed to rich resources of these languages or

unbalanced data sampling.

According to the assumption of multilingual systems (Schultz and Waibel, 2001) dis-

cussed earlier in Section 6.2 if the articulatory representations of phonemes are con-

sidered language-independent units then the performance of shared phonemes should

improve with more training data in the multilingual systems. The languages, being

Table 6.2: Baseline ASR performance in terms of %WER and %PER. mono:
language-dependent ASR system, multi : language-independent ASR system, mono-
lm: language-independent acoustic model with language-dependent language model

Language
%WER/%PER

mono multi mono-lm

English (en) 43.84/28.10 47.48/31.06 46.40/31.06
German (de) 37.77/26.86 40.81/28.35 38.11/28.35
Dutch (nl) 37.94/21.40 58.84/36.16 52.33/36.16
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Figure 6.2: % Relative improvement in PER per shared phoneme compared with
monolingual ASR for en target language

studied here, have an overlapping set of 24 phonemes. As a case study of en as the

target language, the relative improvement in PER of shared phonemes is analysed with

gradually increasing the languages in the training data. In Figure 6.2, the relative im-

provement in English phoneme error rate is shown with two bilingual models (en + nl

and en + de) and one multilingual model (en + de + nl). Bilingual models are trained

by mixing the training data of English with either Dutch or German. In the case of the

multilingual model, data from all the languages is mixed. It is evident from the results

that even the performance of shared phonemes is degraded in bilingual and multilingual

setups, though the bilingual model with nl causes less detrimental effects than de for

the en language.

Table 6.3: Accuracy of baseline mapping models for MLS data set considering top
n mapped classes. The accuracy of a source-target mapping model is calculated using

Algorithm 2

Target
Lang

Source
Lang

mapping model accuracy
n=1 n=2 n=5 n=10

en
de 42.89 54.18 68.08 77.22
nl 43.89 55.96 70.89 80.36

de
en 53.77 66.96 81.68 89.49
nl 51.42 64.58 79.38 87.54

nl
en 46.17 58.11 72.21 81.03
de 48.54 60.76 74.69 82.96
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(a) Training curve for de en mapping model

(b) Training curve for nl en mapping model

Figure 6.3: Training curves for the mapping models from de and nl source languages
to en target language

6.4.2 Mapping models

As described earlier a separate baseline mapping model is trained for each source-

language pair of MLS data set. So, N(N −1) = 3 ·2 = 6 mapping models are trained on

the top of acoustic models of the baseline ASR systems (described in Section 4.4.2) using

data sets outlined in Table 6.1. Since even the limited amounts of data provide millions

of training examples, baseline mapping model training converges in early epochs for all

the networks with an accuracy of nearly 50%. The training curves for the mapping

models from source languages to en target language are shown in Figure 6.3.

Table 6.3 shows the accuracies of mapping models for all the target languages. As

described earlier in Section 5.5.3, accuracies are shown considering top n classes with a



Chapter 6. Cross-lingual acoustic-phonetic similarities 126

Table 6.4: Speech and non-speech examples in train, dev and test sets for mapping
models. ‘NS’ shows the non-speech frames in the data while ‘%’ is the percentage
of speech data among the total data. All the numbers (except % percentage) are in

millions.

Lang
Train Dev Eval

total NS % total NS % total NS %

en 3.48 0.67 80.63 0.12 0.02 80.57 0.24 0.05 79.23
de 3.35 0.65 80.59 0.12 0.02 80.34 0.24 0.06 75.82
nl 3.26 0.79 75.73 0.12 0.03 76.49 0.24 0.06 73.26

range of different values of n. Similar to the trends in the mapping model on the Babel

data set, the accuracy of mapping models is increased with the increasing number of n.

However, the increase is not as much as in the mapping models for Babel data sets.

As it has been observed the Babel data sets contain a lot of non-speech segments and the

overall performance of mapping models has been seriously influenced by the accuracy of

those frames. So, the ratio of speech and non-speech frames is calculated for the MLS

data set here as well. Since the model is trained for biphones, all the classes where

non-speech phonemes are the central phonemes are considered non-speech examples.

The statistics of speech and non-speech examples in the mapping model training data

sets are summarised in Table 6.4. It can be seen that the ratio of speech to non-speech

examples in the MLS data set is much higher than that for the Babel data set which

means that there are a relatively very small number of non-speech segments in the data

set here. The reason is that the MLS data set consists of read speech recorded in a

very clean environment and segmented in a semi-automated way which minimises the

non-speech recordings in the data.

6.4.3 Similarity analysis

Table 6.5 shows the similarity measure for English (en) test set when decoded through

German (de) and Dutch (nl) acoustic models. English, German and Dutch vocabu-

laries consist of 39, 45 and 39 phonemes respectively. However, as described earlier

Kaldi divides each phoneme into four further phonemes. Furthermore, it includes two

more phonemes for silence and spoken noises and divides each of them into five further

phonemes. Additionally, some disambiguation symbols are also added to distinguish the

word end. Further details on disambiguation symbols can be found in Kaldi documen-

tation1. Consequently, Kaldi models are trained based on biphones using 176, 199 and

183 phones in English, German and Dutch. Theoretically, the possible number of HMM

states, for example for English, are 2× 1762 = 61952. Similarly, German and Dutch can

have up to 79202 and 66978 HMM states. However, after clustering the classes are re-

duced to 3344, 3232 and 3288 respectively. In clustering, shared seen biphones (SS) may

share the same cluster with unseen (SU) or unshared biphones (U) and vice versa. So

1 https://kaldi-asr.org/doc/graph.html#graph_disambig

https://kaldi-asr.org/doc/graph.html#graph_disambig


Chapter 6. Cross-lingual acoustic-phonetic similarities 127

for insightful observations, analysis is restricted to the clusters which have only one bi-

phone (shown with “R” prefix). It is clear from the results that the KL divergence-based

similarity measure increases from shared seen biphones towards unshared biphones.

Shared seen biphones (or restricted shared biphones) are supposed to be in source clus-

ters as well which implies that the source acoustic model should comprehend these

biphones during decoding. It implies that a mapping model should learn one-to-one

mapping to the same biphone class if the multilingual assumption holds. It means that

at a given time t, the most probable class of source and target posterior distributions

(max(pAt ) and max(pSi
t )) should belong to same biphone (it is referred as correct Source

Acoustic Model Class (SAMC)). The results (“Correct SAMC” in tables) show that the

source acoustic models are not very good at recognising these biphones but the lower

values of KL divergence (KL-Div in parenthesis) indicate that it is easier for mapping

models to learn a one-to-one mapping in these cases. It implies that the source ASR has

a pattern in errors of these biphones sets which the mapping model could learn easily.

On analysis, it appears that the source acoustic models confuse these biphones with

several close biphones. For example, a biphone \i,z\from English test set is frequently

confused with \i,s\and \E,s\by German acoustic model.

Since the similarity measure is calculated between the two posterior distributions i.e.

mapped and the target posteriors, trends in the entropy of the output of the mapping

models (“Entropy” column in the Table 6.5, Table 6.6 and Table 6.7) are analysed for

the given input speech utterances. It turns out that the trends in the entropy measure

are the same as those of similarity measure (KL-Div). It suggests that the similarities

between two languages can be estimated by just calculating the entropy of the mapping

model which is less computationally expensive. The entropy of a mapping model is an

indicative measure to see how much the model is confident in its output given the input

Table 6.5: Posterior distributions similarity analysis for the en test set. KL divergence
(KL-Div) and entropy (Entropy) are computed between en target posteriors and the
mapped posteriors from de and nl models. % Correct SAMC is the measure of source
AM performance to recognise shared phonemes correctly. KL-Div and Entropy in

parenthesis show the KL divergence of mapped posteriors for SAMC phomenes.
Phoneme sets; SS : Shared Seen, RSS : Restricted Shared Seen, RSU : Restricted

Shared Unseen, RU : Restricted Unshared

AM Biphone
subsets

% Correct
SAMC

KL-Div (SAMC) Entropy (SAMC)

de

SS 37.08 1.32 (0.32) 2.43 (1.4)
RSS 13.30 1.75 (0.84) 3.22 (2.64)
RSU - 1.88 3.40
RU - 2.27 3.59

nl
SS 38.04 1.23 (0.32) 2.21 (1.29)
RSS 12.90 1.64 (0.82) 2.95 (2.44)
RSU - 1.71 2.86
RU - 1.81 3.1
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Table 6.6: Posterior distributions similarity analysis for the de test set. KL divergence
(KL-Div) and entropy (Entropy) are computed between de target posteriors and the
mapped posteriors from en and nl models. % Correct SAMC is the measure of source
AM performance to recognise shared phonemes correctly. KL-Div and Entropy in

parenthesis show the KL divergence of mapped posteriors for SAMC phomenes.
Phoneme sets; SS : Shared Seen, RSS : Restricted Shared Seen, RSU : Restricted

Shared Unseen, RU : Restricted Unshared

AM Biphones
subset

% Correct
SAMC

KL-Div (SAMC) Entropy (SAMC)

en

SS 43.56 0.83 (0.22) 1.76 (1.07)
RSS 14.90 1.21 (0.74) 2.52 (2.12)
RSU - 1.15 2.21
RU - 1.27 2.54

nl
SS 36.37 1.05 (0.31) 1.95 (1.24)
RSS 13.68 1.38 (0.82) 2.5 (2.09)
RSU - 1.54 2.67
RU - 1.41 2.56

speech signal. The value of entropy can range from 0 to log(C) where C is the number

of output classes of the DNN. If the entropy is equal to log(C), it means that all the

classes are equally likely. In terms of mapping models, it implies that a mapping model

has not learnt a clear pattern for the given example.

In the case of unseen (RSU) and unshared (RU) biphones, the entropy values for mapped

posteriors increase compared to all the language pairs. Since unseen and unshared bi-

phones are not seen by source language speech recognition systems, a one-to-one map-

ping is not expected to be learnt at least for unshared phonemes as those biphones do

not exist in the source language. Thus ’Correct SAMC ’ measure cannot be used for

Table 6.7: Posterior distributions similarity analysis for the nl test set. KL divergence
(KL-Div) and entropy (Entropy) are computed between nl target posteriors and the
mapped posteriors from en and de models. % Correct SAMC is the measure of source
AM performance to recognise shared phonemes correctly. KL-Div and Entropy in

parenthesis show the KL divergence of mapped posteriors for SAMC phomenes.
Phoneme sets; SS : Shared Seen, RSS : Restricted Shared Seen, RSU : Restricted

Shared Unseen, RU : Restricted Unshared

AM Biphones
subset

% Correct
SAMC

KL-Div (SAMC) Entropy (SAMC)

en

SS 46.51 1.33 (0.37) 1.75 (0.95)
RSS 15.43 1.87 (1.26) 2.36 (1.77)
RSU - 2.113 2.66
RU - 2.173 2.69

de
SS 40.90 1.44 (0.46) 1.89 (1.19)
RSS 17.30 1.88 (1.15) 2.33 (1.81)
RSU - 2.04 2.43
RU - 2.13 2.58
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(a) de to en mapping model

(b) nl to en mapping model

Figure 6.4: Posteriorogram and entropy plot of Nde−en and Nnl−en mapping models
with one-hot vectors as input. Behaviour for only a hundred source biphone classes is
shown. The posteriorogram shows sorted probabilities of the top ten mapped classes.
Each box on the horizontal axis is a one-hot vector of the source language and on the

vertical axis is the probability of a mapped output class

unshared and unseen biphones (in the above Tables). It is relatively more challenging

for mapping models to learn a mapping for unseen and unshared phonemes compared

to the seen biphones. These classes show the lowest performance in mapping model

accuracies. Analysing mapping model accuracies (of the Table 6.3) reveals that the

mapping models accuracy for unseen and unshared classes is only around 25% and 35%

respectively whereas this number is around 65% in case of seen biphones. However, this

analysis is restricted to again restricted (’R’ ) classes where only one biphone is among

the clustered classes. Analysis shows that mapping models try to map to the closest

class in case of unseen and unshared classes which remains challenging, however. To

keep a brief discussion, most of the analysis is shown around en target language. The

same patterns are observed for the remaining two languages (Table 6.6 and Table 6.7).

To study the learning of a mapping model further, it is sequentially fed the one-hot

vectors as input to get insights on which classes learnt the mapping better. As a case

study, the posteriorogram and entropy of mapping models from source languages to en is

analysed. As the number of input and output classes are of the magnitude of thousands,

behaviour for the top n source classes, which are mapped to the target classes with

minimum entropy (more confidently), is plotted for better visualisations. Entropy and

posteriorgram from both networks, Nde−en andNnl−en, for same n (n = 100) is visualised

in Figure 6.4. Only the top ten most probable mapped output classes are shown in the

sorted posteriorogram. Each box on the vertical axis shows an output class with the

most probable class on the top. It is worth mentioning that for each input class (one-hot

vector) on the horizontal axis, the mapped output classes are different from the output

classes of its neighbouring input frames. As only the top 10 most probable mapped

classes are visualised, entropy at each input frame is also plotted (white solid line) to

see the overall confidence of the mapping model for the given input class. It can be seen

that for the same input one-hot vectors, the entropy range is lower for nl-en mapping

model than the range for de-en model. It evidences that nl-en mapping model could

learn better mappings and nl phonemes are more amenable to transfer to en phonemes
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(a) Normalised entropies of en , de and nl acoustic models given an identical input speech
utterance of en

(b) Normalised entropies of en acoustic model and mapped posteriors fromMde en andMnl en

mapping models given the same input speech utterance of en

(c) Selected frames from above data with phoneme annotation to visualise trends of different
models for different phonemes (annotated in X-SAMPA)

Figure 6.5: For an input speech utterance of en language, normalised entropies of
posterior distributions from all acoustic models (6.5a), en acoustic model and Nde en

and Nnl en mapping models (6.5b), and selected frames with phonemes annotation
(6.5c).

when compared with the same ability of de phonemes.

Though the entropy of the mapping model is shown in Figure 6.4 to see the confidence

of the mapping models in the output posterior distributions, in-domain acoustic models

do not show a zero entropy during the interference. Since the ASR systems are also

data-driven and trained on training data, they are often not very confident (or at least

not uniformly confident for all the input frames). So although the figure tells us about

the entropy (or thus confidence) of mapping models given one-hot vector inputs, it does

not inform on the quality of the training of the mapping models. Since the outputs of an

in-domain acoustic model are used as targets to train mapping models, the performance

of the mapping models depends on the performance of the in-domain acoustic model.

So, to compare the confidence of the mapping models with that of an ASR, the entropy

measures from different acoustic and mapping models are analysed given an identical

speech utterance.

As an example to illustrate, an English(en ) speech utterance is decoded through an

in-domain (trained on en data) and two source language acoustic models (trained on

de and nl data). Entropy is measured for all the frames and plotted in Figure 6.5a.
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Table 6.8: Mean normalised entropies for test sets of all the target languages from all
the acoustic and mapping models

Target
Lang.

Source Languages (Normalised entropy)
en de nl

ASR MM ASR MM ASR MM
en 0.192 - 0.268 0.360 0.275 0.320
de 0.237 0.257 0.177 - 0.251 0.259
nl 0.228 0.264 0.233 0.255 0.173 -

Source posteriors from de and nl acoustic models are mapped to en target posterior

distributions using the corresponding mapping models (Mde en andMnl en). Normalised

entropies of these mapped posteriors are plotted along with in-domain ASR normalised

entropy (Figure 6.5b). Entropies for Only 100 time frames (from 100 to 200) are plotted

for better visualisation. The dotted lines show the mean normalised entropy over all

the frames. In a meticulous analysis of Figure 6.5a and Figure 6.5b, it can be seen

that the entropy of de acoustic model is lesser than that of nl acoustic model for the

given input speech signal. However, after mapping posteriors from these models to en

posteriors, the mean entropy value is lower for the posteriors mapped from the nl model

compared to the posteriors mapped from de ASR. It is in line with the previous results

(Table 6.5) where nl mapping models have consistently shown lower KL-divergence

and entropy values. The analysis here confirms that the mapping model from nl to en

(Mnl en) appears to learn better than (Mde en) for the English target language. Though

mapping models occasionally appear to be more confident than the in-domain ASR, the

overall entropy of mapping models is a bit higher than that of the language-dependent

ASR. The statistical significance of these entropy values could be understood in light of

the analysis in Section 4.5.2.

In Figure 6.5c, normalised entropies for the selected frames of the same file are shown.

The plot elements are the same as in Figure 6.5b except that the phonemes are also

annotated along with their boundaries. The annotations are extracted from forced align-

ments to visualise the trends of entropies for different phonemes. As described earlier

the Kaldi toolkit divides each phoneme into four phonemes, each phoneme annotation

has two parts i.e. actual phoneme representation and their position in the word, both

separated by an underscore symbol (‘ ’).

Although the aforementioned particular example confirms the earlier entropy results of

mapping models (Table 6.5), claims cannot be made based on a single example. So, the

entropies are calculated for test sets of all the participating languages and tabulated in

Table 6.8. It can be seen that the overall mean entropies of in-domain acoustic models

are lower than those of out-of-domain acoustic models. Though all the acoustic models

have higher confidence than the mapping models (MM), the entropy of mapping models

is also dependent on those of acoustic models. For example, source acoustic models

have higher entropy values for en data set and then those values for mapping models
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Table 6.9: Bilingual ASR performance and mean KL-divergence versus % phonemes
sharing of the target language with a source language (as the cross-lingual similarity

measure)

Target
Language

Source Languages (KL-Div/% phoneme sharing/% WER)
en de nl

en 0 / - / 43.84 1.56/ 70.58 / 46.35 1.44 / 69.48 / 44.46
de 1.00 / 72.96 /38.94 0 / - / 37.77 1.18 / 88.59 / 39.46
nl 1.60 / 69.80 / 42.32 1.61/ 85.14 / 44.03 0 / - / 37.94

are further higher. Whereas the entropies of source acoustic models are lower for nl data

set, hence those of mapping models are lower too. However, this trend also depends on

the cross-lingual similarities and how much the two languages are amenable to learning

mappings. The ratio of entropies of mapping models to acoustic models ranges from

1.032 to 1.342.

Trends in the performance of mapping models can also be dependent on training data

sharing among the languages. Even if the two languages share a large number of

phonemes, it does not guarantee that those phonemes or polyphonemes are seen by

the training data of both languages. As an instance, en shares 130 and 110 positional

phonemes with de and nl . As described earlier, only a subset of all possible poly-

phonemes is utilised in the spoken language, rather than the entirety. So, the en train

set sees only 2368 and 1632 biphones from shared phonemes of de and nl respectively.

A training set of en sees 1367 and 1303 biphones jointly with de and nl . So far, the

numbers are higher for de source language which should mean that de is closer than

nl for en target language which is opposite to the previous analysis. However, if the

number of unseen biphones of en for de and nl are compared, de has not seen 1001

biphones of en during training of its ASR while this number is only 320 for nl . It

implies that the training of nl ASR has seen a lot of ‘en like’ data which might make it

easy for nl to en mapping model (Nnl en) to learn the mappings.

As a thorough analysis of the performance of mapping models and potential reasons for

those trends has been shown, it is worth mentioning that there are some other factors

which affect and make the objective performance of mapping models a bit worse. It

has been described earlier that the output classes of the neural network of DNN-HMM

are the clustered HMM states and each phoneme is further divided into four phonemes

by Kaldi. In the implemented model, Kaldi uses a two-state model for each class and

both states are not guaranteed to be clustered in a single class. The analysis reveals

that there are various cases where the mapping model maps the input posteriors to the

correct biphone technically but with the wrong positional biphone. For example, an en

biphone class \I B,N E\is confused significantly with the class \I I,N E\and \I B,N I\.
Although if the positioning of the class is ignored, \I,N\is still mapped to \I,N\but is

considered an error because of the wrong positioning. Similar errors are encountered

when even the positions are fine as well but HMM class is wrong.
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The average cross-lingual KL divergence along with the WER of bilingual ASR systems

is tabulated in Table 6.9. Diagonal entries are the monolingual ASR system. These

results can be seen in comparison with cross-lingual phoneme sharing of Figure 4.4 (%

phoneme sharing in Table 6.9). For example, Figure 4.4 infers that de shares 72.96%

phonemes of en while nl shares only 69.80%. From phoneme sharing statistics, de is

closer to en among de and nl , but the mean KL divergence is smaller for nl (Source

lang.: nl and Target lang.: en). These numbers are more aligned with the %WER of

bilingual ASR systems in Table 6.9. The same is true for de target language as well that

the phoneme sharing shows a different picture than the entropy analysis. The overall

analysis indicates that using the size of overlapping phonemes set across the languages

to measure cross-lingual similarities is not a very accurate approach. Though it can

inform to some degree, it does not inform much about how close the two languages are.

That’s why the multilingual setups of several languages result in the degradation of the

performance of participating languages despite a significant phoneme overlap.

6.4.4 Basis for further experimentation

Though a thorough analysis has been done and described in the previous sections, it is

quite hard to carry on an analysis on the phoneme level using a phone-trained acoustic

model. The clustering of biphone classes also makes some analyses ambiguous and re-

quires to analyse the restricted classes. Additionally, biphones make a huge number of

possible output classes which makes it harder for a simple mapping model to learn the

mappings among the different acoustic models. It is expected that the job of the map-

ping model would be easier if trained on the top of the mono-phone speech recognition

systems. However, previous work on conventional HMM-based ASR systems has shown

that polyphoneme (usually triphone) models perform better than monophones. In the

next chapters, mapping models will be used for different data sets and tasks.

Before moving on to further experimentation, an analysis is carried out on the perfor-

mance of Kaldi’s LF-MMI-based speech recognition systems with monophones. All the

monolingual ASR systems are trained with monophones keeping all the other constraints

the same and the %WER is shown in the Table 6.10. It can be seen that the perfor-

mance of the ASR system is marginally degraded overall in the case of monophones, the

number of output classes is reduced significantly. For example, the number of classes

falls to 232 in the case of monophones compared to 3344 classes of the biphone-trained

model. Remember that these output classes are the clustered HMM states of positional

Table 6.10: Comparison of monolingual ASR performance trained with monophones
and biphones

Tgt. Lang biphone monophone % relative

en 36.73 36.74 0
de 27.26 28.05 -2.93
nl 32.34 32.71 -1.14
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phonemes. Given a marginal degradation in the performance of the ASR system with a

reduction of classes on the scale of 10 to 15 times, monophone-based models are trained

for further experiments.

6.5 Summary

In line with our previous experiments, the work in this chapter has also shown that

the languages which share more phonemes do not guarantee performance gain in mul-

tilingual setups. In this chapter, the analysis has observed that the phonemes with

identical representations across languages are not guaranteed to be acoustically close.

This study reveals that the behaviour of different languages for multilingual ASR is

more complex than predicting from a cross-lingual phoneme-sharing perspective. In

this chapter, cross-lingual acoustic-phonetic similarities are estimated by comparing the

posterior distributions from the source and the target languages’ acoustic models.

The source posteriors have been mapped to target language posteriors using a pre-trained

mapping model for a given target language utterance. The mapped posteriors have

been compared with the target posteriors (from the target language ASR) to estimate

the cross-lingual similarities. The intuition is that the mapping model would be able to

learn if there are any patterns in the source and the target posteriors. So, KL-divergence

between mapped source and target posteriors has been employed as an estimate of the

language similarities between a source and the target language. As the underlying

assumption of mapping models is that some patterns might exist between posterior

distributions from the target model and a source language ASR given a target language

speech signal, the mapping model would not be able to learn well when a source model

significantly confuses a phoneme with some other phoneme or multiple phonemes. The

experiments have shown that only the entropy of the mapped posteriors can inform on

source-target language similarities.

Mapping models have been trained on top of hybrid DNN-HMM acoustic models of

three West Germanic languages i.e. English, German and Dutch. Bilingual acoustic

models for all pairs have also been trained to observe the relationship of performance of

the acoustic models with mutual phoneme sharing and the proposed mapping model’s

KL-divergence measure. The results have shown that the trends in the phoneme error

rate from bilingual acoustic models are more aligned with the mapping models’ entropy

and KL-divergence of the mapped posteriors compared with the conventional measure

of the number of overlapping phonemes.



Chapter 7

Acoustic model fusion for

low-resource speech recognition

Multilingual speech recognition has gained attention as an effective way to address data

scarcity in building ASR systems for low-resource languages (Abate et al., 2020, Karafiát

et al., 2016, Tachbelie et al., 2020a). Efforts have been made to leverage cross-lingual

and multilingual resources to improve performance (Grézl et al., 2014, Tong et al., 2018).

End-to-end modelling is now preferred over conventional hybrid systems due to its lack of

lexicon requirements. However, hybrid DNN-HMMs still perform better in limited data

scenarios (Povey et al., 2016). In this chapter, the proposed mapping model approach

of Chapter 5 is leveraged for hybrid DNN-HMM acoustic model fusion in a multilingual

setup to improve the ASR performance for low-resource languages. Mapped posterior

distributions from different source monolingual acoustic models for a target language

input speech signal, are fused. Baseline and MESD mapping models are trained for each

target language to compare their performance. Since training of the mapping models

requires very limited data as compared to the ASR training for the target language,

the objective is to improve the performance of target language ASR by exploiting the

proposed mapping modelling approach.

In the following sections, the previous work done to make use of cross-lingual and mul-

tilingual resources to improve low-resource speech recognition is revisited first. In Sec-

tion 7.2, the proposed approach discusses how mapping models can be used to improve

speech recognition in limited data scenarios. Experimental details are described in Sec-

tion 7.3 and the results are presented and discussed in Section 7.4.

This chapter is based on my publication in Interspeech 2022;
M. U. Farooq, D. A. H. Narayana, T. Hain, “Non-Linear Pairwise Language Mappings for Low-
Resource Multilingual Acoustic Model Fusion”, Interspeech 2022.

135
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7.1 Background

Over the past decade, various approaches have been used to exploit multilingual re-

sources to compensate for the data scarcity problem in training automatic speech recog-

nition systems for low-resource languages (Abate et al., 2020, Besacier et al., 2014,

Imseng et al., 2014, Karafiát et al., 2016, Tachbelie et al., 2020a, Vu and Schultz, 2013).

As discussed earlier in Chapter 1, one way is to train a unified acoustic model by mix-

ing the training data of all the languages (Hou et al., 2020, Huang et al., 2013, Pratap

et al., 2020a, Tong et al., 2018). A multilingual model then can be used directly for

speech recognition of a low-resource language (Hou et al., 2020, Pratap et al., 2020a),

or transferred to a specific language through a further language-specific training stage

(Huang et al., 2013, Tong et al., 2018). Another approach is to use these DNN-based

multilingual acoustic models to extract features to train a monolingual model (Ghoshal

et al., 2013, Grézl et al., 2014, Veselý et al., 2012). For feature extraction, a multilingual

DNN acoustic model is trained first on the mixed training data of multiple languages.

Usually, a bottleneck layer is used before the final or a few final layers. Once the model

is trained, the training data of a language is decoded through this model, and the em-

beddings (regarded as features) from the bottleneck layer are used as features to train

a language-specific model.

Though e2e multilingual speech recognition systems are preferred over conventional ASR

systems to avoid demanding manual lexicon creations (Graves et al., 2013b), DNN-

HMMs still outperform e2e models in limited data scenarios such as low-resource lan-

guages (Kürzinger et al., 2020). The problem of creating lexicons for HMM-based ASR

systems has been alleviated with the advancement of G2P and text-to-IPA translitera-

tion approaches such as Phonetisaurus (Novak et al., 2012), Epitran (Mortensen et al.,

2018) and open source LanguageNet G2P models (Hasegawa-Johnson et al., 2020). Pre-

vious work on e2e multilingual speech recognition systems shows that multilingual speech

recognition systems do not guarantee the reduction in word error rate for target lan-

guages (Conneau et al., 2021, Hou et al., 2020, Pratap et al., 2020a) when compared with

their monolingual counterparts. Especially in the case of multilingual systems consisting

of high-resource languages, WER is not reduced for all languages (Conneau et al., 2021,

Hou et al., 2020, Pratap et al., 2020a).

As discussed in Chapter 4, recent efforts to interpret the learning of multilingual speech

recognition systems (Feng et al., 2021, Żelasko et al., 2020) observe that the error rate

of an overlapped phoneme is not reduced in multilingual ASR with the growing number

of its sharing languages. It implies that the number of shared phonemes is not a reliable

metric to measure language similarities. Even balanced language data sampling can

cause degradation or improvement due to underlying phonetic unbalancing (as shown

in Section 4.4.2). It demands a very controlled language mixing for a target language

ASR.

In this chapter, a proposed novel technique is presented to fuse outputs from different
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monolingual models given a target language input speech signal. Various previous studies

on monolingual speech recognition have fused outputs from different models for acoustic

(Abdelaziz, 2018, Mallidi and Hermansky, 2016, Rebai et al., 2017, Wong et al., 2020)

and language models (McDermott et al., 2019, Shan et al., 2019). In (Abdelaziz, 2018),

several model fusion approaches have been discussed. Wong et al. (Wong et al., 2020)

have combined the hypothesis from hybrid DNN-HMM and e2e ASR systems which

performed better than all of the individual models. Similarly, hypotheses from acoustic

and vision-based ASR systems have been fused by Abdelaziz et al. (Abdelaziz, 2018)

for multimodal speech recognition.

However, monolingual models have never been fused in a multilingual setup so far. An

obvious limitation is that different languages have different phoneme or character sets

and the output classes of the monolingual model of each language are different from

the others. In the case of e2e systems, output classes are characters or sub-word tokens

which can be very diverse across the languages. In the case of phoneme-based hybrid

DNN-HMM ASR systems, a different phonetic decision tree of each monolingual model

causes different clusters and thus diverse output classes of DNNs. It makes it harder

to use previous model fusion techniques to fuse monolingual outputs in a multilingual

setup.

In this work, the proposed mapping models (discussed in Chapter 5) are leveraged to

fuse the output of monolingual models of different languages for a given target language

input speech utterance. A mapping model is trained for each <source, target> language

pair to map posteriors from a source language acoustic model to the posteriors of the

target language acoustic model. A given input speech signal is decoded through all

monolingual acoustic models (of source and target language ASR systems). Then pos-

teriors from all the source languages are mapped to the target language posteriors space

using the specific source-target mapping model. These mapped posteriors are then fused

in multilingual and cross-lingual fashion for phoneme recognition of the target language.

In multilingual model fusion, the target posteriors are also included in the model fusion.

However, in cross-lingual model fusion, only the mapped posteriors from source acous-

tic models are fused for decoding the target language data. The proposed approach is

helpful especially for low-resource languages because;

• the mapping models can be trained with very limited amounts of data since a few

hours can provide sufficient examples for phonetic-level training.

• controlled fusion of posteriors based on language similarity will allow controlling

contribution of different source languages.

The mapped posteriors from the monolingual acoustic models are fused in a multilingual

setup which not only outperforms the baseline multilingual ASR but also the monolin-

gual ASR systems.
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Figure 7.1: Proposed system architecture for model fusion. In multilingual model
fusion, mapped posteriors from various source monolingual models are fused along
with target posteriors. However, target posteriors are not used in cross-lingual model

fusion.

7.2 Acoustic model fusion

In this section, the proposed approach to fuse outputs from different monolingual acous-

tic models for target language speech recognition is discussed in detail. The approach

can be extended for any type of speech recognition system and output tokens such as

phonemes, graphemes, or BPE tokens-based end-to-end or hybrid DNN-HMM models.

In this chapter, the concept is proved for phoneme-based hybrid DNN-HMM models

since hybrid models still outperform e2e ASR systems in limited training data scenar-

ios (Povey et al., 2016). The approach is extended for end-to-end ASR systems later

(in Chapter 8) but the scope of this chapter is limited to phoneme-based hybrid DNN-

HMM-based speech recognition systems.

As described in previous chapters, a deep neural network is trained to produce the emis-

sion probabilities of tied states of HMM models in hybrid speech recognition systems.

Theoretically, the total number of tied states for a language with Q number of phonemes

and S number of states per HMM model is given by Qn × S, where n is the context

width. However, many polyphonemes never occur in a language speech data and many

are quite similar to the others. The total number of states is reduced by clustering

many polyphonemes together. Each language yields a different phonetic decision tree in

its monolingual ASR. Thus the number of tied states differs for each language and the

output classes of DNN models of each monolingual ASR are different. So, the posterior

distributions from DNNs of two different monolingual acoustic models are not directly

comparable and thus not fusible as well.

Let MA and MSi be the monolingual acoustic models of target and source languages

respectively. A baseline mapping modelNSiA is trained to translate posteriors PSi ∈ RdSi

from MSi to the posteriors PSiA ∈ RdA . An underlying assumption is that a mapping

model can learn some language-related relationships between posterior distributions of
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source and target acoustic models. For example, a mapping model could learn the

phonemes of the target language which are more amenable to cross-lingual transfer than

the others. Furthermore, a few hours of speech data can give millions of examples that

provide sufficient training data for the mapping model.

Let X = {x1, x2, . . . , xT } be a set of observations of the target language, for which

posterior distributions (PZ = {pZ1 , pZ2 , . . . , pZT } where Z ∈ {A,Si}) are attained from

all monolingual acoustic models. A mapping model is trained using cross-entropy loss

to map posteriors from source acoustic models (PSi) to the target language posteriors

(PSiA). The loss function for a batch is given as;

LSiA(θ) = −
T∑
t=1

dA∑
k=1

pAt,k · log p
SiA
t,k (7.1)

where T is the total number of training examples in a batch to train a mapping model

NSiA which maps posteriors from ith source language to the target language.

Posterior distributions from target AM and mapped distributions from source acoustic

models are fused for phoneme recognition of a target language. For a given observation

at time t, the final posterior vector is given as;

pFt = wA · pAt +
K∑
i=1

wSiA · p
SiA
t (7.2)

where w are the scalar weights assigned to each posterior vector such that
∑

w = 1 and

K is the number of source languages. The proposed system architecture is shown in

Figure 7.1.

For the experimentation in this chapter, model fusion is done in multilingual and cross-

lingual settings. In multilingual model fusion , target posteriors are also used in

fusion along with mapped posteriors from various source languages acoustic models.

As the posteriors from the target language acoustic model are also fused with mapped

posteriors, multilingual model fusion is still dependent on the language-specific ASR

system. So in the cross-lingual model fusion , only the mapped posteriors from source

language acoustic models are fused (the term wA ·pAt is omitted from Equation 7.2). The

cross-lingual setting avoids using the target-language acoustic model which is helpful for

low-resource languages. During model fusion, different methods are experimented with

to assign weights to the posterior distributions. As shown and discussed in Section 6.4.3,

the entropy of a <source, target> mapping model indicates similarities between a source

and a target language. The same similarity measure is used along with mapping model

accuracy to assign the weights. Later, rather than assigning manually, weights are also

learnt in mapping model training.
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7.3 Experimental setup

7.3.1 Data set

The experimentation is done on various languages from two different multilingual data

sets i.e. MLS and Babel. The idea of experimenting with two different data sets is

to analyse the performance of the proposed fusion approach for data sets of diverse

domains. As the MLS data set has been recorded in a very clean environment and read

speech, the recording quality is far better than the conversational Babel speech which

has been recorded in an open environment. A significant proportion of Babel data sets

has been recorded with noisy backgrounds and a lot of non-speech segments which pose

a lot of challenges to build a considerably good speech recognition system. Hence the

performance of the mapping models is also expected to be affected by that.

The proposed model fusion technique is applied for the three languages of MLS i.e.

English(en ), German(de ) and Dutch(nl ). The same amounts are used as described in

Section 6.3.1. Monolingual speech recognition systems are trained on 30-hour train sets

of each language and evaluated on 2 hours of test set. The train set is further divided

into 29 hours of train and 1 hour of dev set for mapping model training. The evaluation

set for the mapping model remains the same as for the speech recognition system.

Data sets from the Babel data, used for the experimentation here, have been explained

in detail in Section 5.5.1. Full language packs of Tamil (tam), Telugu (tel), Cebuano

(ceb) and Javanese (jav) are used for baseline ASR training and evaluation. Since the

eval data of Babel is not publicly available, train and dev sets of Babel data sets are

used as train and eval sets respectively for the experiments. The details of the data sets

are tabulated in Table 5.1. Since most of the Babel data consists of Conversational Tele-

phone Speech (CTS), it is quite challenging to build a speech recognition system being

conversational and telephonic speech. Recording conditions are also very challenging

such as noisy background environments, different phone sets (recording equipment) and

cellular operators. A limited amount of scripted read speech is also included in each

language pack.

Full amounts are used for the training of baseline monolingual and multilingual speech

recognition systems. Multilingual ASR is trained by mixing data from all the languages.

However, for training the mapping models, a subset of 30 hours is chosen from each

language pack. This data is further divided randomly into 29 and 1-hour portions as

train and dev set to train the mapping models. Since the mapping models are trained on

a phonetic level, 30 hours provide millions of examples for the sufficient training of these

models. The examples, used for building the mapping models, are given in Table 5.2.

7.3.2 Baseline ASRs

Baseline monolingual and multilingual acoustic models are hybrid DNN-HMM models.

40 MFCCs are extracted for each frame of the speech signals using a window size of
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25 ms and a shift of 10 ms. These features are then fed to DNN which consists of

12 factorised TDNN (TDNN-F) layers (Povey et al., 2018). Each TDNN-F hidden

layer is of dimension 1024, factorised with a linear ‘bottleneck’ dimension of 128. Model

architecture and configuration are the same for MLS and Babel experiments in principle,

however, there might be slight differences. For instance, the handcrafted pronunciation

dictionaries of Babel data sets come with the corpus while open-source lexicon is used for

MLS data sets along with G2P models for transcription of OOV words. Further details

of MLS and Babel models can be found in Section 4.4.2 and Section 5.6.1 respectively.

The acoustic models are trained using MMI criterion with lattice-free approach (Povey

et al., 2016). As discussed in the last chapter the output of the neural network is the

posteriors of the clustered biphone classes in the case of the MLS data set, HMM states of

monophones are clustered and are the output classes of the DNN for the Babel data set.

The clustering in each monolingual ASR training is different and thus the outputs from

different acoustic models against an identical speech signal are not directly comparable.

The ASR systems are built using the Kaldi toolkit (Povey et al., 2011).

7.3.3 Mapping models

Experiments are done with both, baseline and MESD mapping models. A baseline

mapping model (discussed in detail in Section 5.2) is a feed-forward regression network

with four fully connected layers. Baseline mapping models are trained for each source-

target language model and each model is of about 1.25 million parameters. So, for each

language, n−1 mapping models are trained where n is the number of total languages. On

the other hand, a MESD mapping model is a multi-encoder and single-decoder mapping

model and one model is trained for each participating language. Technical details of

MESD mapping models have been discussed in Section 5.3.3 and Section 5.4.1.

7.4 Results and discussion

7.4.1 Baseline ASR systems

Monolingual baseline systems (mono) are the language-dependent acoustic and pronun-

ciation models which are trained on a language-specific data set. The train sets of all the

languages are then mixed to train the multilingual models (multi). The performance of

the baseline systems (in terms of PER) is given in Table 7.1 (above the dashed line). The

results show that the error for all the languages is increased in the baseline multilingual

setup. The mean phoneme error rate rises to 44.1% from 41.44% in the case of Babel

data whereas it is increased from 25.38% to 31.28% for the MLS data set. Though PER

is increased for most of the Babel languages, a mean relative reduction of 0.8% is from

tam language. A massive relative increase of 25.19% in PER of the MLS data set is

seen, but a significant contribution is from nl language. The investigation reveals that

the speakers’ distribution in the training set of nl language in the MLS data set is highly

skewed. About 79% of data have been recorded by one speaker and the other 39 speakers

contributed for the rest of the 21% of data. So, the ability of the multilingual model
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Table 7.1: Speech recognition performance in terms of % phoneme error rate for
Babel and MLS data sets. mono: Language-dependent ASR system, multi : Language-
independent ASR system, cross-mf : proposed cross-lingual model fusion, multi-mf :

proposed multilingual model fusion

Babel MLS
tam tel ceb jav avg en de nl avg

mono 43.96 43.66 36.67 41.6 41.44 28.10 26.86 21.40 25.38
multi 43.67 46.36 41.02 45.54 44.10 31.06 28.35 36.16 31.28

cross-mf 55.47 52.76 43.04 47.79 49.72 37.90 32.27 27.15 32.44
multi-mf 41.96 42.05 35.54 38.87 39.55 23.57 25.35 20.23 23.05

to learn speaker variability for nl weakens when speakers from en and de are mixed in

the training data. Even if the performance for nl language is ignored, a degradation of

6.68% is still there in the case of MLS multilingual ASR performance.

Error rates for the Babel languages are quite higher than the MLS data set even though

ASR systems of Babel languages are trained with more training data. This is due to the

reason that the Babel data set is quite challenging and the error rates in literature are

also very high (up to 80% word error rate) (Hou et al., 2020).

7.4.2 Acoustic model fusion

As described in Section 7.2, a multilingual acoustic model is imitated by fusing the

target and the mapped posteriors. The performance of model fusion is measured for

both data sets i.e. MLS and Babel sets. For each target language, the input speech

utterance is decoded through all the monolingual ASR systems (of source languages

as well as of the target language). Source posterior distributions are mapped to the

target posteriors’ space using respective mapping models. For multilingual model fusion,

mapped posteriors and target posteriors are fused in a weighted sum before decoding. In

cross-lingual model fusion, target posteriors are dropped and only the mapped posteriors

are fused.

7.4.3 Multilingual model fusion

Multilingual model fusion is the linear weighted sum of all of the posterior distributions

of a target language i.e. target posteriors and mapped posteriors from all the source

languages. The results of multilingual model fusion multi-mf are shown in the last row

of the Table 7.1. The setup of multi-mf is similar to multilingual ASR system multi

(since it is imitating a multilingual setup) and directly comparable with that but it

outperforms monolingual ASR (mono) systems as well for all the languages. For Babel

data sets, multilingual model fusion gives a mean absolute improvement of 1.9% and

1.55% compared with monolingual and multilingual models respectively. In the case of

MLS data sets, the mean absolute improvement of 2.4% is achieved when compared with

monolingual models which rise to 8.81% if compared with multilingual ASR system.

However, it is due to a very high multilingual MLS baseline as discussed in the last
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Table 7.2: Performance of model fusion in cross-lingual setting. ‘Y’ represents the
source languages being fused

Target
Language

Fused languages
% PER

tam tel ceb jav

tam

N Y Y Y 55.47
N Y N N 55.65
N N Y N 57.69
N N N Y 57.33

tel

Y N Y Y 52.76
Y N N N 52.37
N N Y N 55.68
N N N Y 53.58

ceb

Y Y N Y 43.04
Y N N N 45.94
N Y N N 45.28
N N N Y 43.91

jav

Y Y Y N 47.79
Y N N N 48.40
N Y N N 48.90
N N Y N 48.25

section.

7.4.4 Cross-lingual model fusion

The results of cross-lingual model fusion are given in the first row of Table 7.1 after

the dashed line. Results of cross-lingual model fusion show that without using the

language-dependent ASR, a comparable phoneme error rate for a target language can

be achieved. For cross-lingual fusion, mapped posteriors from only the source languages

AMs are fused. On average, the performance of cross-lingual model fusion is degraded

by 8.62% and 0.58% from baseline multilingual models for Babel and MLS data sets

respectively.

The computation cost for fusing a large number of languages intrigues us to minimise

the number of fusing languages. For a given target language, further experiments are

carried out using the mapped posteriors from only one source language at a time. For the

Babel data set, Table 7.2 shows that nearly similar results as cross-mf can be achieved

using mapped posteriors from the closest source language AM only. In the case of the tel

language, mapped posteriors from a single AM model of tam perform even better than

the cross-lingual model fusion. The first row for each language is the same as cross-mf

of Table 7.1 and the following rows are the cross-lingual mapped posteriors from only

one of the source language AM.

The results shown in this and the last section are produced by using baseline mapping

models and manually fine-tuned weights for model fusion. As it has been shown earlier

that the MESD mapping models perform better than baseline mapping models, both
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Table 7.3: Model fusion speech recognition error (in %PER) after improvements in
acoustic model fusion. Baseline MM : results from the Table 7.1, MESD MM : using
MESD mapping models for mapping posteriors before fusion, + learnt weights: Using

learnt weights for fusion

multi-mf cross-mf
tam tel ceb jav tam tel ceb jav

Baseline MM 41.96 42.05 35.54 38.87 55.47 52.76 43.04 47.79
MESD MM 36.47 35.39 34.79 38.54 46.89 43.16 42.14 47.51
+ learnt weights 36.27 34.63 34.72 38.16 46.64 42.23 42.05 47.04

multi-mf and cross-mf experiments are done using MESD mapping models on top of

speech recognition systems. Furthermore, manually tuned weights for model fusion

might lead to a sub-optimal solution. So, rather than manually assigning, weights are

learnt as a single layer on top of the mapping models. The input for this layer is

the mapped posteriors from all source languages and the target is the ground-truth

posteriors. Both of these modifications help reduce error rates further. Phoneme error

rates of multilingual and cross-lingual model fusions for the Babel data set are tabulated

in Table 7.3.

For all the languages, the improved mappings yield a reduction in error rate over the

baseline multilingual and cross-lingual model fusion (cross-mf ) but the improvement

margin is dependent on mapping model accuracy. Languages with better mapping mod-

els show a relative reduction of up to 20% but it is marginal for others. As evident from

Table 7.3, fusion using the learnt weights slightly reduces the error rate further.

7.5 Summary

A novel model fusion technique has been explained in this chapter to improve low-

resource speech recognition. Model fusion approaches have shown promising results for

several different downstream tasks including multimodal speech recognition. However,

acoustic models of diverse languages cannot be fused because of being trained on different

data and thus different output tokens. The work described in this chapter proposed an

approach to fuse the knowledge from diverse monolingual acoustic models to improve

the speech recognition of low-resource languages. A target language speech signal is

decoded through multiple monolingual acoustic models (of diverse languages). The

output posteriors from source acoustic models are mapped to the target posteriors using

pre-trained mapping models (described in Chapter 5). The mapped posteriors have been

fused in two ways i.e. multilingual and cross-lingual model fusion. In the multilingual

model fusion approach, mapped posteriors are fused along with the target posteriors

(from the target acoustic model) in a weighted sum. However, in cross-lingual model

fusion, only the mapped posteriors have been fused without using target posteriors to

avoid the usage of the target acoustic model during fusion. Since mapping models need

limited amounts for training, the approach is helpful for low-resource languages.
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The baseline experiments in this chapter have been done for four low-resource languages

from the IARPA Babel data set i.e. Tamil, Telugu, Cebuano and Javanese and the

three West Germanic languages from the MLS corpus i.e. English, German and Dutch.

Using the baseline mapping models, the results have shown that multilingual model

fusion yields an absolute average gain of 4.55% and 8.23% over the baseline multilingual

acoustic model for Babel and MLS data sets respectively. Though cross-lingual model

fusion uses posteriors from only source acoustic models, the error rate is still comparable

and degrades by 5.62% and 1.14% for Babel and MLS data sets respectively. The

experiments have shown that nearly similar results to the cross-lingual model fusion can

be achieved by using posteriors from only one (closer) language. It would decrease the

computation cost at a marginal expense of performance degradation.

Further experiments have been done to employ MESD mapping models and learning

fusion weights in training. It has reduced the error by an absolute of 3.66% for mul-

tilingual and 5.27% for cross-lingual model fusion of Babel languages which drops the

overall error rate even below those from their monolingual acoustic models. However,

the improvements are fairly dependent on mapping models’ accuracies. Languages with

better mapping models show a relative reduction of up to 20% but it is marginal for

others.



Chapter 8

Mapping models for e2e ASR

systems

In previous chapters, the concept of mapping models and their use for phoneme-based

hybrid DNN-HMM models have been demonstrated. However, the phoneme set of every

language is a subset of a finite universal phonemes set of around 3800 phonemes (Moran

and McCloy, 2019) which is a very small set compared to the set of characters of all

the languages. For example, the size of the union set of phonemes of the four Babel

languages (Cebuano, Javanese, Tamil and Telugu) in previous experiments is 56 while

the number of total characters rises to 168. The small set of phonemes increases the

chances of various diverse languages to share the same phonemes. Limited tokens set and

overlap among the languages are expected to make the cross-lingual mapping learning

task less challenging. State-of-the-art speech recognition systems are trained in end-to-

end fashion nowadays (Graves et al., 2013b, Hou et al., 2020, Pratap et al., 2020a). For

end-to-end ASR models, output tokens are usually characters or sub-word units which

are very diverse across the languages (Hou et al., 2020, Pratap et al., 2020a). Even

several languages which are acoustically similar or belong to the same language families

are written in different scripts such as Turkish and Kazakh (Turkic), Urdu and Hindi

(Indo-Aryan), and Greek and Armenian (Indo-European). In this chapter, the mapping

model approach is extended for the e2e speech recognition models to analyse whether

the assumption of learning cross-lingual similarities holds for end-to-end ASR models as

well.

In this chapter, a novel data augmentation technique is also proposed to improve low-

resource speech recognition using the mapping model approach for e2e ASR models. A

lot of work has been done on audio data augmentation by altering original audio signals

This chapter is based on my publication in Interspeech 2023;
M. U. Farooq, T. Hain, “Learning Cross-lingual Mappings for Data Augmentation to Improve Low-
Resource Speech Recognition”, Interspeech 2023.
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(Jaitly and Hinton, 2013, Ko et al., 2015, Park et al., 2019). However, very limited work

has been done for audio data augmentation in terms of altering the text rather than the

audio signal (Datta et al., 2020, Thomas et al., 2020).

This chapter is organised as follows. In Section 8.1, literature is revisited to highlight the

importance of e2e ASR models as a pretext for extending the mapping approach for e2e

ASR models. Recent approaches to improve e2e low-resource speech recognition models

and data augmentation are also discussed. Section 8.2 describes the details of mapping

models for e2e and challenges in extending the mapping model approach for end-to-

end ASR models. The mapping model approach is exploited for data augmentation

to improve the low-resource speech recognition which is discussed in Section 8.3. The

experimental setup is described in Section 8.4 and experimental results are presented

and discussed in Section 8.5.

8.1 Background

In hybrid DNN-HMM systems, neural networks are employed as a part of an HMM-based

acoustic model. Output from the DNN model is formulated as the emission probabilities

of the HMM states. Training of such systems usually needs frame-level alignments which

are achieved using a pre-trained (usually GMM-HMM) acoustic model. Additionally,

the requirement of a lexicon is also a challenge in training a hybrid DNN-HMM acoustic

model. With the advancement in building end-to-end models for different tasks in vision

and language processing, efforts have been made to build an e2e automatic speech recog-

nition system. Raw waveform or spectrogram is usually fed as input to such models and

the output is the orthographic transcriptions. Graves et al. (Graves and Jaitly, 2014)

have employed an RNN model with a speech spectrogram as input which outperformed

the baseline DNN-HMM models without using an explicit language model. End-to-end

speech recognition systems are considered stronger speech recognition systems because

of the implicitly trained language model. Thus, e2e speech recognition systems have

more language information than HMM-based speech recognition systems. Since then,

numerous works have been done to improve e2e speech recognition models (Chan et al.,

2016, Watanabe et al., 2017) because of the several following reasons;

• Contrary to DNN-HMM models, no prior alignments are needed to start the train-

ing.

• No (phonemic) pronunciation dictionary is required which is usually created man-

ually in case of HMM models training.

• The Acoustic model has implicitly learnt language information and works well even

without an explicit language model.

• Usually a raw waveform or spectrogram is used as input features which saves pre-

processing time.
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In recent years, a lot of efforts have been made to improve e2e speech recognition models

and use them for multilingual speech recognition (Hou et al., 2020, Hsu et al., 2020,

Pratap et al., 2020a). One of the motivations is to build a unified model for a large

number of languages which have been discussed in Section 3.2. Several works have been

done for low-resource languages which are briefly described in the following paragraphs.

Training of end-to-end models usually requires a lot more data than needed for training

of an HMM model. However as discussed earlier, a lot of languages do not have enough

data to build such models. This has drawn the attention of the researchers to exploit the

cross-lingual resources in efforts to improve the e2e speech recognition of low-resource

languages (Ragni et al., 2014, Thomas et al., 2020).

With the emergence of sequence modelling approaches, encoder-decoder architectures

have also been applied to improve low-resource speech recognition in a multilingual

setup (Toshniwal et al., 2018). Zhou et al. have shown that a multilingual transformer

model improves ASR performance for participating languages if the corresponding lan-

guage tags have been appended at the start of the transcriptions (Zhou et al., 2018).

Furthermore, a lot of massively multilingual speech recognition models have been de-

veloped recently which are also based on end-to-end modelling approaches (Hou et al.,

2020, Li et al., 2022a, Pratap et al., 2020a).

Though the earlier proposed approach of exploiting cross-lingual resources for low-

resource speech recognition has been proven to work for phoneme-based hybrid DNN-

HMM models, the mapping model approach is extended for end-to-end speech recogni-

tion models. However, training mapping model on top of e2e ASR models is challenging

for several reasons;

• Different writing scripts across the languages (thus different character sets) make

very diverse representations across the languages. It makes it challenging for a

model to learn cross-lingual projections.

• Some languages have writing scripts that are very rich with a character set of 70-80

alphabets though they have fewer phonemes. A larger number of output tokens

further make the task hard for mapping models.

Given the aforementioned challenges, a question arises if the mapping model approach

is applicable on the top of e2e ASR models as well. Though each language has a very

diverse character set, the underlying acoustic units are still the same so a model is

expected to learn projections among the cross-lingual characters or sub-word units.

With that intuition, the previously used mapping model approach is extended for e2e

speech recognition models.

As described earlier, mapping models for e2e speech recognition are further employed

for data augmentation. The work done for data augmentation so far is briefly described

in the following section.
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8.1.1 Data augmentation for low-resource ASR

End-to-end acoustic modelling techniques require a lot of training data for reliable pa-

rameters estimation. However, more than half of the world’s population speaks only 23

languages out of more than 7000 languages being spoken across the globe (Ethnologue).

Thus only a few languages have sufficient data resources, and a lot of languages are

still under-resourced to build an ASR system. For such languages, multilingual speech

recognition systems have stolen the limelight over the past decade (Abate et al., 2020,

Besacier et al., 2014, Imseng et al., 2014, Karafiát et al., 2016, Tachbelie et al., 2020a,

Vu and Schultz, 2013) which have been used for feature extraction (Ghoshal et al., 2013,

Grézl et al., 2014, Veselý et al., 2012) or directly for transfer learning (Huang et al.,

2013, Tong et al., 2018).

Data augmentation is another approach to increase the training data of a low-resource

language. Commonly used data augmentation techniques include extending training

data by making perturbed copies either by adding noise (Gales et al., 2009, Hannun

et al., 2014), varying speed and tempo of original speech (Ko et al., 2015), Vocal Tract

Length Perturbation (VTLP) (Cui et al., 2015, Jaitly and Hinton, 2013), SpecAugment

(Park et al., 2019) and combinations of these methods (Ragni et al., 2014). All these

techniques are based on audio data augmentation.

Jaitly and Hinton (Jaitly and Hinton, 2013) laid the foundation of audio data augmen-

tation for speech recognition systems. In their proposed VTLP technique, perturbed

copies of original audio data have been produced by mapping a frequency f in an audio

signal to a new frequency f ’ using a randomly generated frequency warping factor. The

range of the warping factor has been limited from [0.9, 1.1] to avoid unrealistic distor-

tions. Ko et al. (Ko et al., 2015) proposed a similar approach but in the time domain.

Audio data is augmented by making three copies of the audio data with perturbed speeds

of 0.9, 1.0 and 1.1 of the original audio speed. LVCSR trained for four different tasks

have shown a relative improvement of more than 4% compared to VTLP (Ko et al.,

2015). Ragni et al. (Ragni et al., 2014) combined two data augmentation techniques

that are, unsupervised data and VTLP for training of low-resource ASR. Unsupervised

data augmentation (Evermann and Woodland, 2000) is a conventional approach where

unlabelled audio data is decoded through an existing baseline ASR. A certain threshold

is set for the confidence score of the model and the utterances with a confidence score

below that threshold are rejected while the rest of the utterances are augmented for

retraining of the ASR.

In (Hannun et al., 2014), noisy data is synthesised to train a noise-robust speech recog-

nition system. Multiple short noises are collected from various videos. These collected

noisy clips are superimposed with a clean speech utterance to generate a noisy speech

utterance (i.e. x̂(i) = x(i) + ξ
(i)
1 + ξ

(i)
2 + · · · where x is a clean speech utterance and ξ

represents a segment of noise). Multiple random noises are superimposed rather than

adding a single noise to refrain the model from learning a single noise and subtracting
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that from noisy speech. Any noise with an average frequency range significantly dif-

ferent from real-time noises has been discarded. This synthesised noisy data is used

as augmented data to train an ASR which is more robust to noise than a system just

trained on clean speech.

SpecAugment (Park et al., 2019) has also been proposed for data augmentation that

is directly applied to speech spectrogram rather than raw audio or frequency. Time

warping, time masking and frequency masking have been applied to a spectrogram to

generate data for augmentation. The proposed method proves to outperform all other

augmentation techniques for transformer-based LVCSR and achieved a word error rate

of 2.5% and 5.8% on test-clean and test-other data sets of LibriSpeech.

In the recent past, a few studies have been done to augment data by processing text

rather than speech (Datta et al., 2020, Emond et al., 2018, Thomas et al., 2020). Tran-

scripts from different languages have been transliterated to Latin script to train a multi-

lingual system (Datta et al., 2020). Emond et al. (Emond et al., 2018) and Datta et al.

(Datta et al., 2020) transliterated code-switched and multilingual transcriptions to a uni-

form writing script. The transliteration has been done using a composition of Weighted

Finite State Transducers (WFST). In I ◦P ◦O composed WFST of (Emond et al., 2018),

I maps an input unicode symbol to a paired language model symbol, P is a bi-gram

language model that maps input in one writing script to the other and O maps the pair

language model symbol to the target language symbol. However, these transliteration

techniques require paired data (a word in the original script and its transliteration in

Latin) for each language.

Thomas et al. (Thomas et al., 2020) have proposed to transliterate source language data

to the target language without using parallel data. A multilingual ASR model is trained

where all the layers are shared except the language-dependent output layers as shown

in Figure 8.1. During training, gradients are calculated and updated for shared layers

and only specific output layers for a batch of language Li. During decoding, however,

transcriptions from all the output layers are extracted for the data of language Li.

Though when ith language-specific output layer outputs the transcription of the input

audio data, the rest of the output layers generate pseudo transcriptions in corresponding

languages. As those layers are not trained with this objective, the generated output is

not expected to be an exact transliteration. The pseudo transcription from jth language

output layer along with the input audio of ith language is used for data augmentation

to train the ASR of jth language. This is an interesting idea but an out-of-domain

ASR has no knowledge of input language and thus is not expected to generate a good

transliteration.

Motivated by the idea of Thomas et al. (Thomas et al., 2020) and the fact that the

output layers of other languages are not trained with the objective they are being used

for, the work on e2e cross-lingual speech recognition is extended for data augmentation

employing the mapping models. In the previous chapters, mapping models have been
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discussed as a technique to learn cross-lingual acoustic-phonetic similarities on phoneme

level (Chapter 6), for multilingual and cross-lingual acoustic model fusion (Chapter 7).

For data augmentation in this work, the ASR systems of source languages followed

by a source-target mapping model for each source-target pair are used to transliterate

source data into the target language script. Though both the components are trained

on task-specific data and are expected to generate better output labels, transliteration

of a source language audio data into the target language is still unintelligible, especially

for unrelated languages and thus called ciphered data. So, the key contribution of this

work is to generate ciphered text for a target language data augmentation using source

languages ASR and <source-target> mapping models.

8.2 Mapping models

As discussed in Chapter 5, the training and functionality of mapping models are not

dependent on ASR architecture or output tokens i.e. phonemes or characters. So, the

mapping models are trained on the top of e2e ASR models exactly in a similar way as

they have been trained for phoneme-based hybrid DNN-HMM acoustic models. For the

experimentation in this chapter, the latest MESD mapping models are trained for each

target language (details in Section 5.3.3). As either the output posterior distribution

Figure 8.1: Architecture of multilingual acoustic model proposed by (Thomas et al.,
2020). For training, all the layers are shared for all the languages except the language-
dependent output layer. Transcriptions are obtained from all the output layers for each
language for the proposed data augmentation technique to train the monolingual ASR

models of each language.
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or the alignments from the target language ASR model are used as targets to train a

mapping model, the alignments (one-hot) have been used previously for the training

of the MESD model in the Chapter 5. However, the only difference in MESD models

here is that the models are trained using posterior distribution from monolingual ASR

models as targets rather than the alignments. Training data for the mapping model is

decoded through in-domain pre-trained monolingual model and the frame-level posterior

distributions are used as the targets. Though the training data of the mapping model

is already seen by the monolingual acoustic model during their training, decoding that

data from the pre-trained monolingual acoustic model still poses the chances of mis-

recognition. It raises the chances of noisy data for the mapping models’ training which

is likely to impact their performance. So, the loss function for training of a mapping

model is KL divergence loss rather than the cross-entropy loss (reduced form of the KL

loss). The loss function of each encoder-decoder module in a MESD model is then given

as Equation 5.1

LSiA(θ) =
T∑
t=1

dA∑
k=1

pAt,k · (log pAt,k − log pSiA
t,k )

A MESD model is trained using a rank-weighted sum loss of all the source languages

encoder-decoder modules (Equation 5.3).

As discussed earlier, mapping models are trained on frame-level data i.e. posterior

distributions from each frame are an example of the training. Since the phoneme-based

TDNN acoustic models are trained on frame level using MFCC features as the input,

the number of output frames is also theoretically equal to the number of input frames.

However, the e2e speech recognition models (described in detail in the Section 8.4.2)

are trained using stacked filterbank features of the whole utterance as the input. The

dimensionality of these 2D stacked features is reduced in some initial CNN layers which

are then fed to a RNN encoder. During the training, the auto-regressive decoder is

fed with the outputs of the encoder and an embedding layer is trained to generate

the embeddings of the target output tokens. The decoder then generates the output

sequence, typically consisting of text tokens (such as characters, words, or subwords),

one token at a time. During decoding, the decoder takes the outputs of the encoder

and generates a hypothesis in an auto-regressive fashion where the embeddings of the

previous output token are fed to the next state. However, the output frames are reduced

by compressing the output tokens. Furthermore, the sentence is terminated as soon as

an end-of-sentence token is encountered. So, the number of output tokens is fewer than

the number of input tokens. Since the number of training examples for a mapping model

is dependent on the number of output frames which is lesser than the input frames, the

training data for mapping models is also way less than that used to train mapping models

on the top of phoneme-based DNN-HMM hybrid models. Though one can consider a lot

of examples from those systems as copies of the same examples (since multiple frames
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represent one phoneme), posterior distributions of all the frames of one phoneme are

not necessarily identical. Therefore, such examples still help to improve the training of

a neural network.

Though the details of e2e speech recognition models used for experimentation in this

chapter are described in detail in the following sections, the reduction in training ex-

amples due to CNN layers is briefly described here. For an ASR system, usually the

input features are extracted using a window of 10ms which gives 100 frames per second.

However, the neural networks of the hybrid DNN-HMM models are Kaldi’s LF-MMI

models which use the reduced frame rate i.e. about only 33 frames per second. Assum-

ing an utterance of t milliseconds, the number of output frames (or training examples

for mapping models) is given as t/30. However, in the case of e2e models, input features

are extracted using a window of 10ms and then stacked in 2D. A simple convolution

layer of rectangular kernel = (h,w) (assuming unit dilation and stride, and no padding)

reduces the dimensionality of an input (Hin,Win) as following;

Hout = Hin − 2

Wout = Win − 2

where H and W are the number of input frames and filterbank dimensions respectively.

We are only interested in H (number of frames) here. In e2e ASR models here, two

such CNN layers are applied with a time pooling (layer of kernel size 2) after each layer.

Finally, a time pooling layer (of kernel size 4) is applied. With all this configuration,

the final number of output frames is given as

= (
(t/10)−2

2 − 2

2
) · 1

4

≈ t− 30

160

which is quite smaller than the t/30 of hybrid acoustic models. However, zero padding

is applied to speech signals in a batch to keep a uniform size of all the examples. So,

technically this is the lower limit of the number of frames but appended frames are con-

sidered as non-speech frames (zero padding) and do not contribute towards the training

of a mapping model.

8.3 Mapping models for data augmentation

As described in Section 8.1.1, Thomas et al. ((Thomas et al., 2020)) have used target

language ASR for transliteration of source language audio data (architecture shown in

Figure 8.1). Then this source language audio data with its transliterations from a source

language ASR have been used for target language data augmentation. An ASR for the

target language is retrained with augmented data. However, the target language ASR
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Figure 8.2: Flow of generating data for augmentation and retraining of target lan-
guage ASR

layer has not been trained on source language data and thus transliterations of source

language data from a target language layer are not expected to be rational.

In this work on the contrary, source language audio data is decoded using in-domain

ASR (MSi) and then the output posterior distributions (PSi) are transformed to the

target language posterior distributions (PSiA) using the source-target mapping model

(MSiA). Since an in-domain acoustic model is used for speech recognition and the

output posterior distributions are then mapped using a source-target mapping model,

both the components are trained for the tasks they are being used during inference.

Mapped posteriors from the mapping models are then used to generate transliterated

transcriptions (alternatively referred to as ciphered text or transcriptions) using greedy

decoding. Though the transliterations still might not be exact transliterations (thus

called ciphered text), both the components involved in the process are trained using the

task-specific data and are expected to perform better.

A source language audio data and their ciphered transcriptions for the target language

are then used as augmented data to retrain a target language ASR. The flow of the data

augmentation and retraining is shown in the Figure 8.2.
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Table 8.1: Details of Babel data sets used for training e2e ASR models

Lang
Train Eval

# hours # spks # hours # spks

Tamil (tam) 59.11 372 7.8 61
Telugu (tel) 32.94 243 4.97 60
Cebuano (ceb) 37.44 239 6.59 60
Javanese (jav) 41.15 242 7.96 60

8.4 Experimental Setup

8.4.1 Data set

As this work extends the previous work, experiments here are done on the same four

languages of the Babel data set as used in the previous Babel experiments. Full language

packs of four low-resource languages from IARPA Babel speech corpus (Gales et al.,

2014) (Tamil (tam ), Telugu (tel ), Cebuano (ceb ) and Javanese (jav )) are used

for baseline ASR training and evaluation. However, only utterances with a duration

of less than 20 seconds are included in the training due to computational limitations.

Furthermore, all the non-speech utterances are discarded. So, the overall training data

for e2e ASR models is less than the one used to train phoneme-based hybrid DNN-HMM

ASR systems. The details of the data sets are tabulated in Table 8.1.

For training of the mapping models, a subset of 30 hours is randomly selected from each

language pack. This data is further split into 29 hours of train set and 1 hour of dev

set. The summary of training examples for the mapping model of each target language

is given in Table 8.2.

If compared the data of Table 8.2 with the training data of mapping models on top of

phoneme-based hybrid DNN-HMM models (Table 5.2), it can be seen that the same

amount of training data (29 hours) produces around 1.5 million training examples for

e2e models compared to 3.2 million examples from the of hybrid models. Similarly, the

examples in the eval set for e2e systems are about one-third of the data produced in

the case of hybrid models. The reason is that a lot of utterances in the Babel data sets

carry no speech at all which have been discarded in the case of e2e systems. It has been

discussed in detail for phoneme-based hybrid acoustic models in Section 5.6.5 and is

discussed for e2e models in Section 8.5.1.

Table 8.2: Examples (in millions) for training of mapping models for each target
language. Train set: 29 hours; Dev set: 1 hour; Eval set is same as for the ASR

Language Train Dev Eval

Tamil (tam) 1.881 0.065 0.506
Telugu (tel) 1.611 0.078 0.358
Cebuano (ceb) 1.471 0.051 0.379
Javanese (jav) 1.479 0.049 0.400
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8.4.2 Speech recognition systems

Hybrid CTC/attention architecture (Kim et al., 2017) is used to train all speech recog-

nition models which consists of three modules that are; a shared encoder, an attention

decoder and a CTC module. The input to the model is 40 filterbanks and the output

of the model is the BPE tokens. Monolingual ASRs are trained for 100 BPE tokens

for each language while the output of multilingual ASR is 400 tokens. SentencePiece

library (Kudo, 2018) is used for tokenisation. The acoustic model is a sequence-to-

sequence encoder-decoder model where the encoder is a combination of 2 convolutional

blocks, 4 LSTM layers and 2 fully connected layers while the decoder consists of a single

GRU layer. As described earlier, each convolution block consists of one CNN layer fol-

lowed by a time pooling layer. There is a time pooling layer as well after the two blocks.

The encoder of a model outputs an embedding of dimension 128 which is fed to the

decoder. A combination of CTC and cross-entropy losses is used as a training criterion.

CTC loss is calculated after a fully connected layer on the top of the encoder and CE

loss is estimated on the output of the decoder. The training process jointly optimises

the weighted sum of CTC and attention losses.

LASR = αLCTC + (1− α)Latt (8.1)

During decoding, the final prediction is made based on a weighted sum of log probabilities

from both the CTC and attention components. Given a speech input X, the final

prediction Ŷ is given by;

Ŷ = argmax
Y ∈Y

{λ logPCTC(Y |X) + (1− λ) logPatt(Y |X)} (8.2)

where λ is a hyper-parameter. The values of α and λ are kept same for all ASR systems.

SpeechBrain toolkit (Ravanelli et al., 2021) is used for training all ASR systems.

8.4.3 Mapping models

Multi encoder single decoder models are trained with the same configuration as for

phoneme-based hybrid DNN-HMM models (5.3.3). A MESD model is trained for each

target language. In an MESD model, there are three encoders and only one attention

decoder. Each encoder and single decoder consists of one bidirectional RNN layer. For

each target language, the mapping model size is only 2.59 million parameters. The

performance of these mapping models is measured in terms of accuracy as given in

Algorithm 2.

8.5 Results and Discussion

8.5.1 Mapping models

As discussed earlier, the posterior distributions of target language data from an in-

domain monolingual acoustic model are used as targets to train the mapping models.
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Table 8.3: Performance of e2e monolingual ASR models on train set of each language
in terms of %CER

Language % Character Error Rate

tam 28.57
tel 33.72
ceb 20.98
jav 22.72

Though mapping models for phoneme-based hybrid systems have been trained using

alignments from the acoustic model, it is hard to get alignments from an e2e model

trained with CTC loss. However, using posterior distributions from an ASR model as

a target for training poses the challenge of noisy training data. Even if the model is

trained using the same data, the model does not guarantee to recognise training data

perfectly. To analyse the performance of monolingual models on their own training data,

the %CER is shown in Table 8.3 for all the target languages. It can be seen that the

error rate of these monolingual models is still not very good on the training data which

means that there are noisy examples for the training of mapping models.

Accuracies of mapping models, trained to map posterior distribution from a source

language ASR to the target language ASR, are tabulated in Table 8.4. Analysis shows

that the correct target class is still among the top n mapped classes if not the most

probable one. So, the mapping models’ accuracy is calculated for different values of n

where n represents the number of most probable classes. Though the accuracy increases

with increasing value of n, the rate of change is not as much as observed in the case of

phonemes (Section 5.6.2) which implies that the performance of the mapping model in

the case of phoneme based hybrid DNN-HMM systems has been better than that for

Table 8.4: Accuracy of baseline mapping models considering top n mapped classes.
The accuracy of a source-target mapping model is calculated using Algorithm 2.

Target
Lang

Source
Lang

Mapping model accuracy
n=1 n=2 n=5 n=10

tam
tel 47.46 54.58 66.31 77.06
ceb 45.98 52.88 64.25 74.65
jav 46.97 54.02 65.63 76.26

tel
tam 48.88 56.20 67.80 78.28
ceb 46.22 53.27 64.97 75.96
jav 47.40 54.78 66.76 77.54

ceb
tam 60.53 66.32 74.79 82.31
tel 48.32 51.43 56.49 62.53
jav 65.04 71.39 80.06 86.58

jav
tam 62.24 68.40 77.00 83.76
tel 54.64 57.92 62.29 67.69
ceb 65.51 71.85 80.30 86.65
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e2e systems. The reasons include the lesser training data and the detrimental effect of

noisy data sets.

Since there are no consistent trends in the performance of mapping models are observable

here (similar to phoneme-based hybrid ASR systems), an analysis is carried out to

understand the reasons behind it. As the analysis for phoneme-based hybrid acoustic

models has shown that there is still a lot of silence/non-speech in utterances, the analysis

is started from the same point. Though the non-speech utterances are already dropped

in the case of e2e models, a lot of utterances with a little speech can still have a lot

of non-speech frames. Silence and non-silence frames have been visualised in 5.6.5 for

phoneme-based hybrid DNN-HMM models, alignments cannot be obtained from end-

to-end ASR models and spectrograms cannot be visualised here. The reason mainly is

that the number of output frames is not based on the number of input frames and an

output frame cannot inform which speech segment it belongs to. Having the output

posterior distributions from acoustic models, speech and non-speech frames (mapping

model training examples) are counted and summarised in the Table 8.5.

As it is evident from Table 8.5, data sets used for training and evaluation of the mapping

model consist of a huge amount of silence or zero-padded frames and thus the accuracy

of mapping models in Table 8.4 is highly influenced by the performance of mapping

models on the silence examples. So, the accuracy of the mapping model is calculated

again ignoring the silence examples and tabulated in Table 8.6.

Though the amount of audio data for the training of the mapping model is the same

for all the languages, the mappings for ceb and jav target language are better than tam

and tel . It is even clear from the Table 8.5 that the non-silence examples for ceb and

jav are less than those for tam and tel , and accuracies of mapping models for these

two languages are still better. As the monolingual ASR models of ceb and jav perform

better than tam and tel on their training data sets (Table 8.3), it is evident that the

cleaner data helps to achieve better mapping model performance. Even for ceb and

jav target languages, the accuracy of mappings from tel source language is very low in

comparison to other source languages. Though both tam and tel are from a different

language family, their higher CER on training data can also be a factor which implies

Table 8.5: Statistics of speech and non-speech examples (in millions) for training
and evaluation of mapping models. total: Number of total examples, NS: Number of

non-speech frames (examples), %: Percentage of speech examples in the data set

Lang
Train Dev Eval

total NS % total NS % total NS %

Tamil (tam) 1.88 1.02 45.88 0.07 0.04 43.64 0.51 0.27 45.91
Telugu (tel) 1.61 0.85 47.41 0.08 0.05 41.33 0.36 0.19 46.10
Cebuano (ceb) 1.47 0.75 49.22 0.05 0.03 49.06 0.38 0.20 48.27
Javanese (jav) 1.48 0.78 47.21 0.05 0.03 48.64 0.40 0.21 47.58
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Table 8.6: Accuracy of MESD mapping models with and w/o considering non-speech
(NS) frames for top-1 (n = 1) mapped class. The accuracy of a source-target mapping

model is calculated using Algorithm 2

Target
Lang

Source
Lang

Mapping model accuracy
w/ NS w/o NS

tam tel 47.46 44.76
ceb 45.98 41.89
jav 46.97 43.80

tel tam 48.88 47.19
ceb 46.22 43.62
jav 47.40 45.19

ceb tam 60.53 44.04
tel 48.32 41.24
jav 65.04 52.52

jav tam 62.24 52.05
tel 54.64 41.62
ceb 65.51 57.36

that the training of mapping models is not only affected by the noisy data of the target

language but also that of a source language.

8.5.2 Speech recognition performance

Monolingual systems (mono) are the language-dependent acoustic and language models

which are trained on target language-specific data sets. The train sets of all the lan-

guages are then mixed to train a multilingual system (multi). The language model for a

multilingual system is also trained using a mix of corpora of individual languages. The

results of speech recognition systems are shown in Table 8.7. The first row contains the

monolingual ASR result without using LM for a later comparison while the rest of the

results are ASR decoding with LM.

From Table 8.1, tam has more training data than the rest of the languages but the

%CER of tam and tel is worse than ceb and jav . One potential factor is that the

number of BPE tokens is restricted to 100 for all the languages. ceb and jav with only

Table 8.7: Speech recognition performance in terms of %CER. mono: monolin-
gual ASR models without explicit LM, +LM : an explicit in-domain language model
is integrated for all the rest of the results, multi : multilingual ASR model, multiAug :
data augmentation from all the languages for retraining the monolingual ASR model,

crossAug : data augmentation from only the closest language

Lang tam tel ceb jav

mono 44.6 58.24 39.40 42.42
+ LM 39.25 52.68 31.25 32.11
multi 41.15 54.38 38.91 42.65

multiAug 41.90 56.10 32.30 32.86
crossAug 38.83 52.06 29.94 30.47
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Table 8.8: Cross-lingual speech recognition performance (in terms of %CER) on top
of mapping models. Greedy decoding is applied on mapped posteriors from each source

language for a target language

Target
Lang

Source Languages
tam tel ceb jav

tam 44.60 49.34 49.21 49.03
tel 63.19 58.24 64.33 63.65
ceb 48.10 65.31 39.40 40.94
jav 46.72 56.92 40.88 42.42

19 and 26 characters respectively and have good context coverage in 100 BPE tokens.

However, the BPE tokens extracted for tam and tel , which have far more characters,

do not cover context very well. As tel has the smallest training data among all the

languages and also suffers from the BPE tokens size problem, the %CER on the training

set and evaluation set is the worst. Though the training data for ceb and jav is still less

than tam , they have good context coverage in 100 BPE tokens and the performance is

better than the rest of the two languages. Furthermore, both ceb and jav are written

in Latin script and thus have a full overlap of characters and are even acoustically close

which helps them to train better mapping models as well. On the other hand, even

though both tam and tel belong to the same Dravidian family, their writing scripts are

different which makes it difficult for a model to learn mappings with a limited number

of BPE tokens.

For a given target language, cross-lingual speech recognition results are also computed

on top of mapping models after decoding target language data using source language

acoustic models. Greedy decoding is applied on mapped posteriors and the results

are shown in Table 8.8. CER on the diagonal is the same as the first row of Table 8.7.

Though these results are from source language ASR followed by a source-target mapping

model and do not use language-dependent ASR, it performs better than monolingual

ASR in the case of jav . Results are comparable for other languages but fairly depend on

the mapping model’s performance. It is evident from these results that a source language

acoustic model can be used for decoding a target language followed by a mapping model

trained on a limited amount of data.

8.5.3 Data augmentation

For a given target language, audio data of all the source languages is decoded us-

ing language-dependent ASR systems and the source posterior distributions are then

mapped to the target language distributions using the mapping modelsMSiA. Greedy

decoding is carried out on these output posterior distributions to generate ciphered

transcriptions for the target language. The language model is not integrated at this

stage to avoid LM’s effect on transliterations. As this stage solely depends on mapping

models, the quality of ciphered text depends on mapping models’ accuracy (for n = 1).

The analysis of ciphered transcriptions shows that the transliteration is fairly good for



Chapter 8. Mapping models for e2e ASR systems 161

Figure 8.3: Examples of ciphered transcriptions

shorter utterances but gets worse for longer utterances. A few examples of ciphered

transcriptions are shown in Figure 8.3.

Ciphered transcriptions are generated from all the source languages for a target lan-

guage using mapping models as described in Section 8.3. Then the audio data of source

languages and the ciphered transcriptions are used together as augmented data for re-

training of target language ASR (multiAug). As described earlier, the quality of ci-

phered transcriptions depends on the performance of mapping models, using ciphered

transcriptions data augmentation from all the source languages includes very low-quality

transcriptions and has a detrimental effect on retraining of target language ASR. So,

the augmentation is then restricted to use ciphered data from only the closest language

(crossAug). For a target language, the source language with the highest mapping model

accuracy is chosen as the closest language. By augmenting this data for retraining of

a target language, a relative gain of up to 5% and 28.5% is achieved in terms of CER

(crossAug) when compared with monolingual and multilingual ASR performance.

8.6 Summary

In this chapter, the approach of mapping models (from previous chapters) has been

discussed and extended for e2e speech recognition systems. In the last few chapters,

mapping models have been discussed to be trained on top of phoneme-based hybrid

DNN-HMM acoustic models. However, the learning of mapping models for phoneme-

based hybrid acoustic models is expected to be less challenging compared with those

trained on e2e models. So, the mapping models have been trained on top of e2e speech

recognition models. The speech recognition models are encoder-decoder models with a

few convolutional blocks to process the input before feeding to an RNN encoder. These
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convolution blocks reduce the frame rate of the input and consequently, we have fewer

output frames compared to input frames. Since mapping models are trained on output

posteriors, the output frame rate reduction reduces the training data for mapping models

in this case compared to those trained on hybrid models. These mapping models have

been employed for a novel data augmentation technique to improve low-resource speech

recognition. Audio data of an out-of-domain language is decoded through its ASR and

then mapped to the target language using the pre-trained mapping model. Then, this

audio data along with its transcriptions in the target language has been augmented for

retraining of the ASR of the target language.

The experimentation in this chapter has been done for four low-resource languages from

the IARPA Babel corpus i.e. Tamil, Telugu, Cebuano and Javanese. The mapping

models trained on top of e2e give an average accuracy of 46.27%. The proposed data

augmentation approach reduces the character error rate by a relative of 28.5% and 5%

compared to multilingual and monolingual speech recognition baselines.



Chapter 9

Multilingual knowledge

distillation

Student-teacher learning or Knowledge Distillation (KD) (Hinton et al., 2015) has been

previously used to improve the performance of speech recognition systems for the lan-

guages which show degradation from multilingual ASR systems (Leal et al., 2021). The

loss used in training of knowledge distillation is usually the KL-divergence between pos-

terior distributions from student and teacher model (Hinton et al., 2015, Leal et al.,

2021). It implies that both posterior distributions, from the teacher and the student

models, should be the same in terms of output tokens. Formally stated, a limitation

of KD training is that the student model classes must be a proper or improper subset

of the teacher model classes. This limitation prevents knowledge distillation from even

acoustically similar languages if the character sets are not the same.

In this chapter, a novel approach is proposed to bridge the gap in distilling knowledge

from teachers of diverse languages to a target language student model. The work on

multilingual knowledge distillation here is motivated by my collaborated work on knowl-

edge distillation for domain-adaptation (Ahmad et al., 2023) for English data which is

presented in Section 9.2. The work on domain adaptation shows that the Out-of-Domain

(OOD) data helps to improve the performance of a student domain without using la-

belled data. This approach could be helpful for low-resource languages and motivates

to use knowledge distillation for low-resource languages. However, as mentioned in the

literature revisited in Section 9.1.2, there is a gap which hinders the use of cross-lingual

This chapter is based on the publication in IEEE ASRU 2023;
M. U. Farooq, R. Ahmad, T. Hain, “MUST: A Multilingual Student-Teacher Learning approach for
low-resource speech recognition”, ASRU 2023.

This work is motivated by the collaborated work published in ICASSP 2023
R. Ahmad, M. A. Jalal, M. U. Farooq, A. Ollerenshaw and T. Hain, “Towards Domain
Generalisation in ASR with Elitist Sampling and Ensemble Knowledge Distillation”, ICASSP 2023
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ASR systems as teacher models to train a low-resource student model. In Section 9.3,

mapping models are employed to bridge that gap.

This chapter is structured as follows; in Section 9.1, literature is revisited for both,

knowledge distillation for domain adaptation and multilingual knowledge distillation.

The collaborated work on knowledge distillation for domain adaptation is presented in

Section 9.2. The proposed approach to bridge the gap in exploiting cross-lingual ASR

systems for knowledge distillation is described in Section 9.3.

9.1 Previous work

Knowledge distillation is a popular technique to distil the knowledge from a model

(referred to as the teacher model) to train another (student) model. The teacher model

can be a single model or knowledge can be transferred from multiple teacher models

to train a single student model. The motivation for training a student model from

ensemble teacher models has been to replace these computationally expensive multiple

models with only one model (Hinton et al., 2015). The model ensemble has been a

widely used technique where various models are trained for one task and their ensemble

is used to predict the output for a given evaluation example (Sagi and Rokach, 2018).

Since multiple models are needed to be trained and used for inference, the computational

complexity is very high. So, the motivation of knowledge distillation has been to train

a single model which could showcase the abilities of all different models. In knowledge

distillation, various teacher models distil their knowledge to a single student model.

However, it is also used to train a smaller student model distilling knowledge from a single

bigger teacher model (Li et al., 2014b). The idea is to train a smaller capacity model

from a bigger model without the loss of validity. As smaller models are computationally

less expensive, they can be deployed on less powerful hardware devices such as edge or

handheld devices.

Let’s assume the knowledge from a teacher model MT is distilled to train a student

model MS . Given a training example, MT and MS output the posterior distributions

PT and PS respectively and ytrue are the true labels (synonymously hard labels). The

loss of the student model is calculated as the weighted sum of the two losses.

L = (λ)Lseq(PS , ytrue) + (1− λ)LKD(PS , PT ) (9.1)

where LKD is KL-divergence loss and Lseq is a cross-entropy loss. Losses in the above

equation are synonymously regraded as supervised loss and KL loss respectively. λ is a

hyper-parameter to weigh both the losses.

Knowledge can also be transferred from teachers’ hidden layers to the student’s hidden

layer (Romero et al., 2015) but usually, a student model is trained using soft labels

from teachers’ outputs (posterior distribution or output of the neural network before

softmax layer) (Gou et al., 2021). A common technique is to transfer the knowledge on



Chapter 9. Multilingual knowledge distillation 165

the output layer using teachers’ posterior distribution (Gou et al., 2021). Usually, the

student model is trained with the teacher’s posteriors (soft labels) along with the original

training labels (hard labels). Therefore, the total loss is the weighted sum of supervised

and KL losses. KD is used for many tasks such as domain adaptation (Asami et al.,

2017, Meng et al., 2019, Zhu et al., 2020), domain generalisation (Fang et al., 2021, Kim

et al., 2021, Wang et al., 2021), and model compression (Chebotar and Waters, 2016,

Kim et al., 2019, Takashima et al., 2018).

In automatic speech recognition, knowledge distillation is performed over either frame-

level (Hinton et al., 2015) or sequence-level (Huang et al., 2018, Wong and Gales, 2016)

span. Initially, knowledge distillation has been proposed in speech recognition models

trained with cross-entropy loss. However, sequence loss-trained acoustic models have

outperformed conventional cross-entropy trained acoustic models (Graves, 2012). How-

ever, as given in Equation 9.1, KD loss is the sum of cross-entropy (supervised) and KL

loss which is calculated on the frame level. So, it has been a challenge to distil knowl-

edge from the teachers who are trained with sequence loss. Sequence level KD has been

first proposed for neural machine translation (Kim and Rush, 2016) where the teacher

models provide sequence-level probability distribution over the whole sample space for

better knowledge transfer. Following the sequential nature of the speech recognition

task, a sequence-level transfer is shown to be a better approach in (Wong and Gales,

2016) where the authors have proposed knowledge distillation from teachers’ models to

train a student model using maximum mutual information sequence loss. The concept

has been later extended to use joint CTC/attention loss for the student model training

(Yoon et al., 2021). In the domain adaptation part of this work, knowledge is distilled

from multiple teacher models to train a domain-generalised student model. In the case

of multiple teacher models, it is crucial to optimise the sampling strategy to obtain

the best possible output. Various ensemble techniques along with a proposed Elitist

Sampling (ES) technique are experimented with.

Most of the work done in the knowledge distillation domain has been done where the

teachers and students have the same output tokens (Hinton et al., 2015, Huang et al.,

2018, Wong and Gales, 2016). Since KL divergence is computed between student and

teacher models’ posteriors, the output tokens of the student model should be a proper

or improper subset of the teacher models’ output tokens. It hinders the distillation of

knowledge across the acoustically closer languages if they have different sets of alphabets.

In this work, a novel approach is proposed to bridge this gap by exploiting mapping

models.

In the following sections, the literature is revisited for domain adaptation and multilin-

gual knowledge distillation.

9.1.1 Domain adaptation

This section describes the work on knowledge distillation for domain adaptation as a

precursor of the multilingual knowledge distillation work. As described earlier, the main
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motivation of knowledge distillation has been its application for model compression to

reduce the computational complexity (Chebotar and Waters, 2016, Kim et al., 2019,

Takashima et al., 2018), it has also been used for domain adaptation and generalisation

for speech applications. Previous work has shown that an acoustic model trained using

speech data recorded for a specific domain does not perform well on out-of-domain

data (Likhomanenko et al., 2021). For instance, Likhomanenko et al. (Likhomanenko

et al., 2021) have shown that an acoustic model trained on LibriSpeech gives a word

error rate of 2.8% on in-domain dev-clean data set but the error rate jumps to 30%

for CommonVoice test set. It implies that an acoustic model trained on speech data

recorded in one domain does not guarantee the same performance for the data set from

a different domain even though the data is of the same language (i.e. English in this

case). It calls for some techniques to build a more generalised model or ways to adapt

one model for OOD data with minimal effort. This would be more challenging in the

case of multilingual speech recognition where the languages are different and might not

share linguistic characteristics.

Various approaches have been tried to overcome the aforementioned problem including

retraining of a limited number of parameters (Gemello et al., 2007, Neto et al., 1995),

learning hidden unit contributions (Swietojanski and Renals, 2014a) and use of global do-

main capturing auxiliary features (Abdel-Hamid and Jiang, 2013, Delcroix et al., 2016).

In limited parameters retraining, a model trained for some specific task is retrained

using an out-of-domain train set. Retraining can be done in two ways i.e. retraining

all the parameters or updating only a few hidden and final layers (Huang et al., 2013,

Vu and Schultz, 2013). LHUC introduces domain-specific hidden units after each or

some selected layers for which the weights are learnt during training (Swietojanski and

Renals, 2014a). At inference time, only the domain-specific hidden unit is activated. An-

other popular approach is to use regularise optimisation in retraining a model to avoid

catastrophic forgetting during retraining (Yu et al., 2013). The regularisation term in

the objective function controls the gradient updates so that the pre-trained model also

retains its previous information while learning the new task. L2 or KL divergence regu-

larisation is usually used between a trained and the source model. Knowledge distillation

is based on regularisation approaches which regularise the distillation of the knowledge

from a teacher model to a a student model during its training. Student models trained

with the KD approach prove to generalise better than the conventional regularisation

approaches (Asami et al., 2017).

In (Asami et al., 2017) and many other knowledge distillation approaches, both hard

and soft labels are used for loss calculation during the training of a student model. A

weighted sum of both, hard and soft label losses, is used to calculate the total loss.

Usually, the cross-entropy loss is used for hard labels and the KL divergence loss is

computed for soft losses. Meng et al. (Meng et al., 2019) proposed an unsupervised

approach to train a student model using only the soft labels without relying on the hard
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labels. KL divergence between teacher (target) and student (hypothesis) model posterior

distributions are calculated and used as a loss function for the student training.

Since the original KD work has shown that a student trained with an ensemble of

multiple teachers outperforms a student trained using a single teacher model (Hinton

et al., 2015), Gao et al (Gao et al., 2021) has shown that a student acoustic model

trained using multiple teacher models of a different domain, generalises well. Various

ensemble techniques have been experimented and the results have been compared. In

the presence of multiple teachers, a very conventional method is to take an average of

output posterior distributions of all the teachers’ models at a given time frame (usually

referred to as teacher averaging) (Chebotar and Waters, 2016, Fukuda et al., 2017).

Another approach is to select the best model among all the teacher models to distil

the knowledge (Gao et al., 2021). The best teacher can be selected on an utterance

level or a frame level. The output posterior distribution of the best teacher is used to

calculate the KL divergence loss for the student model training. Rather than choosing

the best teacher model, the average of the top ‘K’ teacher model has also been explored.

Furthermore, a dynamic weighting of teachers has also been experimented with where

each teacher is assigned a weight based on the error of each teacher for a given input

audio utterance (Gao et al., 2021). Ground-truth transcriptions are used to measure

the error of each teacher which assumes that the hard labels are available beforehand.

However, this approach is not helpful in those scenarios where the goal is to adapt

unseen out-of-domain data. Hence, an unsupervised sampling strategy is necessary to

reduce the uncertainty of multiple teacher outcomes and select the best output. The

results of (Gao et al., 2021) have shown that none of these schemes generalises well. In

this work, an elitist sampling strategy is proposed for the teachers’ ensemble to select

the best-decoded utterance generated by completely out-of-domain teacher models for

generalising unseen domains. An OOD student model is trained in a fully unsupervised

fashion.

Furthermore, the performance of a student model fairly depends on the underlying

teacher models. A teacher model is important for the generalised representation of the

acoustic samples. Representations from various models such as BERT(Futami et al.,

2020) and BLSTMs (Kurata and Audhkhasi, 2018) with different context windows have

been used in ASR knowledge distillation tasks. Self-supervised training paved the path

to learning the general data representation through unsupervised pre-training. Such a

model is trained with masked spans for generalised contextual latent representation of

speech (Baevski et al., 2020). These self-supervised models have been observed to be

quickly adaptable to new domains or cross-domain tasks (Hsu et al., 2021a).

9.1.2 Multilingual knowledge distillation

Modern automatic speech recognition systems nowadays require huge amounts of data

for training. However, only 23 out of 7000 languages are spoken by more than half of the

world’s population (Ethnologue). Thus a large number of languages lack enough data
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resources to train a modern ASR system. Multilingual and cross-lingual systems have

got a lot of attention in recent years to exploit resources of other languages to overcome

the data scarcity issue for training of speech technologies for low-resource languages

(Abate et al., 2020, Besacier et al., 2014, Karafiát et al., 2016, Tachbelie et al., 2020a).

Although multilingual ASR systems are considered to perform better when compared

with their monolingual counterparts of low-resource languages, the performance of these

systems often degrades due to mixing of unrelated languages (Gaur et al., 2021, Hou

et al., 2020, Pratap et al., 2020a). This has given rise to various studies intending to

improve a monolingual ASR using multilingual or cross-lingual resources rather than

training a unified model (Klejch et al., 2022, Morshed and Hasegawa-Johnson, 2022, Xu

et al., 2022). Recently, some efforts have been made towards multilingual knowledge

distillation where multilingual models are used for knowledge distillation to train a

language-specific student ASR model (Leal et al., 2021). Such efforts have been discussed

briefly in Section 3.3.3 and are recapped here.

As described earlier, student-teacher training or knowledge distillation (Hinton et al.,

2015) has widely been used to distil the knowledge from either single or multiple teacher

models (Huang et al., 2023) to train a student model. This technique of transferring

a teacher’s knowledge to a student model either at output layer (Hinton et al., 2015)

or at intermediate stages (Romero et al., 2015) has been used for many tasks such as

model compression (Huang et al., 2023, Kim et al., 2019) and domain generalisation

(Fang et al., 2021, Kim et al., 2021, Wang et al., 2021). The student model is trained

with a combined objective of minimising the KL-divergence loss for the prediction of

the teacher’s posteriors (soft labels) and a classification loss with the original training

labels (hard labels).

Since KL-divergence loss is used as KD loss between a teacher’s soft labels and the

student model posteriors (Hinton et al., 2015), the output classes of the student model

should be a proper subset of the teacher model. The reason is that the KL divergence

loss is calculated between two posterior distributions and makes sense only if the pos-

terior distributions represent the probabilities of the same classes from two different

models. However, multilingual knowledge distillation studies have used teacher models

where student model output classes are an improper subset of the teacher model classes

(Leal et al., 2021). In that case, to train a student model of a specific language, the pos-

terior distribution of a multilingual model can be used dropping the probabilities of the

classes that do not belong to the target language. The updated posterior distribution

is normalised before calculating the KL divergence loss. Works have been done to use

multiple multilingual teacher models to distil knowledge to train a monolingual student

model (Shen et al., 2023). Nevertheless, it still constrains a teacher model to cover all

the student classes yet a lot of languages have diverse character sets and writing scripts.

Tan et al. (Tan et al., 2019) proposed to train a multilingual machine translation

system by distilling data from monolingual teacher models. Posteriors of pre-trained
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monolingual machine translation models have been used to match the posteriors of the

multilingual student model. At each training step, a mini-batch of only one bilingual

pair is sampled for student training and the posteriors from the corresponding teacher

model are used to calculate the KL divergence loss. Though work has been done to

train a student model of a specific language using knowledge of various teacher models

trained on features from multilingual acoustic models (Cui et al., 2017), the attempt

was not to train or directly distil knowledge from a multilingual ASR model. Xu et al.

(Xu et al., 2019) have used multilingual and language-specific monolingual ASR models

jointly to train a student model of a specific language.

In a recent work (Fukuda and Thomas, 2021), output posterior distributions from indi-

vidual monolingual acoustic models have been used to train a multilingual ASR model.

The student multilingual model has some shared and a few language-specific layers. The

objective of this research is to train a multilingual model with some language-agnostic

shared layers. These shared layers have been used for the initialisation of a model of an

unseen language. Leal et al. (Leal et al., 2021) trained a monolingual student model

using multiple cross-lingual teacher models. However, the set of languages has been cho-

sen in a way that the languages share the same set of tokens. However, if the languages

are chosen in a way that the output tokens are very diverse, KL divergence loss cannot

be calculated between student and teacher models.

As it happens, several languages which are acoustically similar or belong to the same

language families are written in different scripts such as Turkish and Kazakh (Turkic),

Urdu and Hindi (Indo-Aryan), and Greek and Armenian (Indo-European). It prevents

various languages from distilling their knowledge for training of a closer language ASR

model. Previous work on knowledge distillation has been done for the domains where

the student and teachers are from the same language and have the same output classes.

However, no work has been done for either cross-lingual knowledge distillation or to

overcome the aforementioned problem. This work on multilingual knowledge distillation

presents a step towards overcoming the obstacle of applying KD in cross-lingual settings.

9.2 Knowledge distillation for domain adaptation

The generalisation problem in KD is two-fold. The first problem is optimising the teacher

model’s learned representation, and the second is choosing the appropriate distribution

for a student from the teacher model. These problems become challenging when dealing

with OOD data between teacher and student. In this work, the first problem is tackled

with pre-trained wav2vec2.0 teacher models where each model is fine-tuned with an in-

domain corpus. The second problem is tackled with a posterior-based elitist sampling

strategy which selects the best utterance decoded by the teachers. In summary, an

ensemble of teacher models is trained on completely OOD data compared to the data

which student needs to adapt. An inference is run on the unlabelled OOD data to

generate the soft labels from the teachers. Finally, an elitist sampling strategy based

on the output posteriors is used to select the best-decoded utterance from the teachers
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to train a student model. More specifically, data sets from read speech: WSJ (LDC

catalogue LDC93S6A, LDC94S13A), LibriSpeech (Panayotov et al., 2015) and meeting:

AMI (Carletta et al., 2006) are used to train three state-of-the-art teacher models.

These models are used to decode the Switchboard (Godfrey et al., 1992) corpus, and a

student model is trained. The results show that with such selection on the ensemble of

teacher outputs, the student model performs better compared to the baselines and all

the individual teacher models.

9.2.1 Distillation using CTC loss

In teacher-student training, knowledge is usually transferred from the teacher model in

terms of the posterior distribution. The teacher model is already trained on a given

labelled dataset. While training the student, its output distribution is tried to become

closer to the teacher’s posterior distribution. This is usually achieved by using KL

divergence (Joyce, 2011) loss as:

KL(ŷtea||ŷstu) =
N∑
i=1

ŷitea log
ŷitea
ŷistu

(9.2)

where ŷtea and ŷstu represent the teacher and student output posteriors, and N is the

total number of examples. Frame-wise KL divergence is usually calculated to match the

two distributions. The total loss for the student model is the weighted sum of supervised

and KL loss:

Ltotal = αLsup + (1− α)LKL (9.3)

In sequential tasks such as ASR, the studies show that knowledge can be transferred ef-

fectively via sequence-level information instead of frame-level. Therefore, CTC (Graves,

2012) loss has been used in this study.

The teacher and student models for KD are based on wav2vec2 (Baevski et al., 2020)

pre-trained with libriVox (LV-60K). Dense neural network layers are connected at the

output of wav2vec2 and CTC loss is applied. The raw input to the model is represented

by sequence x = [x1, ...xTn ] ∈ X with each sequence of length Tn and X represents all

the training sequences. The wav2vec2 model outputs the context features represented by

c = [c1, ...cTn ]. Context vector c given to the fully connected dense layers produces the

output represented by h = [h1, ...hTy ], where Ty is the output length with the vocabulary

of G = [g1, ...gz], where gz represents grapheme. Teacher models are trained with original

labels using CTC loss as:

LCTC = −
∑
B

log p(y|h) (9.4)

where y is the output label sequence and B = {X,Y } is the training dataset.
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In a standard distillation setting, the student model is trained with the original (hard)

labels and soft labels provided by the teacher model. The total loss for the student

model is the weighted sum of hard and soft label losses as presented in Equation 9.3.

However, for the domain adaptation problem here, it is assumed that the original labels

of the target domain are not available.

The OOD teacher models run the inference on the target data and provide the soft labels

to train the student. Hence, the value of α in equation 9.3 becomes zero.

For the distillation loss, the work of (Huang et al., 2018, Takashima et al., 2018) is

followed which has proposed to use sequence-level loss rather than frame-level for the

ASR task. Therefore, LKL in Equation 9.3 is replaced by soft CTC-KD loss. This is

represented as follows:

LCTC−KD = −
∑
B

ptea(ŷ|htea) log pstu(ŷ|hstu) (9.5)

where ptea(ŷ|htea) and pstu(ŷ|hstu) are posteriors from teacher and student models. In

this case, the teacher posteriors come from the selection criteria from multiple teachers

which is explained in Section 9.2.2.

9.2.2 Utterance selection strategies

This work utilises multiple teacher models to generalise the out-of-domain data for the

student model. It is known that the ensemble models usually provide better predictions

compared to the single model. One of the most straightforward approaches to distil the

knowledge from the teacher models is to average the frame-wise posterior of the teachers

following the work of (Chebotar and Waters, 2016, Fukuda et al., 2017) as:

ptea =
1

K

∑
k

pk (9.6)

were K is the total number of teachers, and pk is the posteriors of the whole utterance

for teacher k. The resulting ptea is the frame-wise average posteriors of each utterance.

However, this strategy may not perform well because if some teachers perform poorly

then the overall average becomes worse. Therefore, a sampling technique is devised

which selects the best-decoded utterances from the teacher models.

In (Gao et al., 2021), authors have proposed three distillation strategies, i.e. weighted,

Top-1 and Top-K. The authors have proposed to use error rate as a metric of selec-

tion/weighting in each strategy. For example, in the weighted technique, the weights for

each teacher are determined with the average error on the mini-batch, which can only

be calculated if labelled data is present. Moreover, in their technique, the student learns

on the same data which teachers have already been trained on. However, this is not the

case in here, where the student learns on the data unseen by the teachers and without

original labels. Eventually, this technique cannot be directly adapted.
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For the unlabelled data, each teacher model may make different mistakes while tran-

scribing the same utterance, and one teacher would perform better than the others.

Therefore, it has been proposed to select the utterance from that particular teacher

model which best transcribes it. This could be achieved by ranking the decoded poste-

riors from the teachers. For the proposed selection strategy in this work, the average of

the posteriors is computed of the whole utterance from each teacher as follows;

qk =
1

Ty

Ty∑
i=1

max pik (9.7)

where Ty is the length of utterance and k is the teacher. This average is calculated

for each utterance which is decoded by the teachers. The best teacher is selected with

maximum average posterior as:

b = argmax
k

qk (9.8)

With such a selection strategy, each utterance is selected from the best-performing

teacher b, and its posteriors are used in Equation 9.5 to train the student model. The

intuition behind the selection strategy is elitist, i.e. assuming if a group of graphemes

projects the highest confidence as a group, they are also best fitted as individuals. The

grapheme-phoneme correspondence is optimal when the confidence score in graphemes is

maximised as a group. If the posteriors are higher for each label, it refers to the model’s

confidence. Taking the average of all the frames would provide the model’s confidence

for the whole utterance. So the best utterance among the three models would have the

highest average posterior.

9.2.3 Experimental setup

9.2.3.1 Data

Four different corpora have been used in the experiments comprising read and conversa-

tional speech. AMI, LS and WSJ are used to train the teacher models, while SwithBoard

is for the student. LS, WSJ and SB are recorded by US native English speakers, while

AMI is recorded in three different institutes including Edinburgh, Idiap and TNO, cov-

ering both native and non-native English speakers. Among these corpora, AMI and SB

belong to the conversational speech and WSJ, and LS belong to the read speech. All

of these corpora have different distributions in terms of recording conditions, speaking

style etc.

The total duration of LS, WSJ, AMI and SB are 960h, 272h, 100h and 300h. As LS is the

largest in duration, only the 360h subset (referred to as LS360) is considered. Moreover,

all datasets have a sampling rate of 16Khz except SB. Hence, SB is up-sampled from

8KHz to 16KHz rate. To analyse the performance of the models, the standard test sets

from each corpus are considered. LS-test-clean and LS-test-other are clean and noisy
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test sets of LS. One test from WSJ is considered, i.e. WSJ-Eval92-20K, which consists

of 20K unique words. From AMI, the full corpus ASR test set AMI-FCASC is taken.

From SB, two test sets; eval00-CallHome (LDC97S42) represented by CH and eval00-

Switchboard (SB) are considered. The eval00 combines both of these CH and SB test

sets.

9.2.3.2 Experimental details

The base model for teachers and students is wav2vec2-large pre-trained with LV-60k.

The output of wav2vec2 is connected with two fully connected layers, and CTC loss is

applied. During training, wav2vec2 is also fine-tuned for both teachers and students.

Moreover, wav2vec2 requires audio to be sampled at a 16KHz rate, so only SB audio is

upsampled. The grapheme-based tokeniser is used for all the models.

In the experiments, independent teacher models are first trained on AMI, WSJ and

LS360 datasets. These models are evaluated on multiple test sets including in-domain

and out-of-domain sets as listed in Table 9.1. This evaluation helps to understand the

performance of the model on completely out-of-domain distribution to analyse cross-

domain adaptation. The language model (LM) used in the decoding is a 3-gram model

which is trained on the training transcripts of all the teacher models.

Teacher models are used to decode the SB data and based on the selection strategy

discussed in Section 9.2.2 the best decoded-utterance is selected to train the student

model. While training the student model, it does not know the original training labels

considering that they are not available. Hence, the student only generalises based on the

posteriors from the teachers. Moreover, similar to the acoustic models the LM is also

an out-of-domain model for the SB data. This is selected to maintain the consistency in

this study to just evaluate the unseen domain adaptation. The results of the proposed

technique are compared with individual teacher models and two baselines. For the first

baseline, the frame-wise average of the posteriors of all the teachers is computed and the

resulting posteriors are used to train the student model. For the second baseline, the

maximum frame-wise posteriors are selected among the teachers to make the resulting

distribution. The resulting posteriors are then used to train the student. The frame-

wise maximum value of the posterior represents the confidence of the model for that

particular label. Hence, frame-wise highly confident soft-labels are selected. All of these

results are discussed in Table 9.2 and Table 9.3, where the first baseline is ensemble

using teachers averaging method (TA) and the second one with frame-wise maximum

method (FWM ). The results using the proposed elitist sampling technique are in the

ES column.

9.2.4 Results & Discussion

The teacher models trained in individual corpora were initially evaluated on in-domain

and out-of-domain test sets. Table 9.1 shows the WER of the individual test set used

for the evaluation. Each column (AMI, LS360 and WSJ) represents the model trained
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Table 9.1: WER(%) evaluation of the teacher models on in-domain and out-of-
domain test sets with and without LM. The three individual teacher models (fine-tuned
wav2vec2.0) are trained on AMI, LibriSpeech 360 hours (LS360) and Wall Street Jour-
nal (WSJ) datasets. ’✗’: without using OOD LM, ’✓’: with using OOD LM. The

shaded areas are the results of in-domain test sets.

AMI LS360 WSJ

Test sets
LM

✗ ✓ ✗ ✓ ✗ ✓

AMI-FCASC 15.85 14.41 51.69 47.42 60.60 57.32
LS-test-clean 14.61 12.41 3.51 3.04 10.14 8.39
LS-test-other 29.69 26.32 10.76 9.51 27.19 24.43
WSJ-Eval92-20K 15.87 13.11 9.60 7.14 2.39 1.47
eval00 52.04 49.21 45.86 42.59 66.43 64.20

Table 9.2: Evaluation of WER(%) of student and teacher models on Switchboard
(SWBD) test sets without a language model. Utterance election strategies for ensemble:

Teacher Averaging (TA), Frame-Wise Max (FWM) and Elitist Sampling (ES).

Teacher models Student models
(w/o LM) (w/o LM)

TA FWM ES

sets AMI LS360 WSJ SWBD

eval00 52.04 45.86 66.43 58.11 51.71 37.38
CH 56.74 50.55 73.48 62.68 54.63 41.15
SB 47.09 40.96 59.07 53.33 48.67 33.45

Table 9.3: Evaluation of WER(%) of student and teacher models on Switchboard
test sets with a 3-gram language model trained on AMI, LS360 and WSJ transcripts.
Utterance election strategies for ensemble: Teacher Averaging (TA), Frame-Wise Max

(FWM) and Elitist Sampling (ES).

Teacher models Student models
(with OOD LM) (with OOD LM)

TA FWM ES

sets AMI LS360 WSJ SWBD

eval00 49.21 42.59 64.20 46.53 38.09 32.00
CH 54.03 47.18 71.70 51.84 42.16 35.72
SB 44.17 37.80 56.37 40.99 33.84 28.13

on that specific corpus and each test set is evaluated with and without LM. It can be

seen that each model produces state-of-the-art results on its own test sets represented

by shaded cells. For both LS test sets the best cross-corpora WER was produced by

WSJ and then AMI. This is because WSJ is also read speech data and has native En-

glish speakers. However, both WSJ and LS have different recording and environmental

conditions. Therefore, the WSJ model produced more than 2.5 times worse WER for

LS-test-clean and LS-test-other with and without LM. On the other hand, AMI is a

conversational speech and also has non-native English speakers. Additionally, the WSJ

and LS are relatively more clean speech compared to AMI as it has many environmental
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and human-generated noises. Similar behaviour is being noticed for the WSJ-Eval92-

20K test set. For the AMI test set, LS360 and WSJ produced worse results compared

to the AMI model itself. Again the reason is the speaking styles and short spontaneous

utterances present in the conversational speech. Finally, the eval00 test, which belongs

to the SB data, is best transcribed by LS360. This is due to the large training data

(360h) and more speakers compared to the AMI and WSJ. One can argue that the AMI

should perform better due to the conversational speech. However, the AMI model is

only trained on 86h and has both native and non-native English speakers. While SB

only has native English speakers.

Table 9.2 shows the WER of the individual teacher models and student models on SB

test sets without LM. Among the student models the teacher averaging does not seem

to be a good strategy for ensemble models as the WER is much worse compared to

two teachers (AMI and LS360) and also other student models. The main reason is that

one of the teachers i.e. WSJ is performing worse, thus deteriorating the average of

the teachers’ posterior which eventually affected the student models training. Whereas,

Fw max is better than the majority of the teachers and Tea avg due to the reason that

in this strategy maximum posterior is selected among the teachers which corresponds

to the high confident prediction. The downside of this technique is that it affects the

sequential nature of the output because it selects the posteriors from different teacher

models.

Furthermore, other than the proposed the best model among the teachers and students

which produced the lowest WER for all the test sets is LS360. However, it cannot be

concluded that the LS360 model decodes all the utterances of the SB better than AMI

and WSJ to train the students. This is depicted by the evaluation of the proposed

student model which has the lowest WER compared to all the teachers and baseline

student models. For the CH test set, the WER of the proposed student model is 41.15%,

which is almost 9.4% better than the LS360, 21.5% better than Tea avg and 13.4% better

than Fw max in an absolute difference. Similarly, SB achieved a minimum improvement

of about 7.5% compared to the LS360 model. Collectively, for eval00 the proposed

student model is almost 8.4% better than the best-performing model LS360.

Moreover, Table 9.3 show that better results are achieved when OOD LM is used for

both teachers and student models. Compared to the results in Table 9.2 the proposed

student model is improved up to 5.3% in absolute difference using the OOD LM making

WER of eval00 to 32.00%. It has also been observed that the results of TA and FWM

models have improved significantly eventually making FWM better than all the teachers

and TA. This shows that frame-wise posterior sampling seems to be a better candidate if

decoding is applied with an LM. Overall, results show the significance of the ensemble of

teachers and selection strategy to train the student. As the teacher models are trained

on completely out-of-domain data, the knowledge can still be distilled effectively from

ensemble models to adapt better student. Therefore, the student performs much better
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than the baselines and individual teachers.

9.2.5 Summary

To generalise the unseen out-of-domain data, this work proposes to use ensemble knowl-

edge distillation with an elitist sampling technique. The sampling is performed based on

output posteriors, and the best utterance is selected from the teachers to train a student

model. With the proposed technique the results show that the student model generalises

well on the out-of-domain data compared to the teacher models and baselines. Only the

out-of-domain language model is used to study the effectiveness of cross-domain acoustic

model variability. Furthermore, intermediate neural representations are analysed across

different models and layers to understand the relationship between acoustic data and

transcription. In future work, one can improve the sampling strategy and pseudo-label

correction using iterative pseudo-labelling and in-domain language models.

9.3 Multilingual knowledge distillation

As described in Section 9.1.2, Student-teacher learning or knowledge distillation has

been previously used to address data scarcity issues for the training of speech recognition

systems. However, a limitation of KD training is that the student model classes must be

a proper or improper subset of the teacher model classes. It prevents distillation from

even acoustically similar languages if the character sets are not the same. In this section,

the aforementioned limitation is addressed by proposing a Multilingual Student-Teacher

(MUST) learning which exploits a posteriors mapping approach. A pre-trained mapping

model is used to map posteriors from a teacher language to the student language ASR.

These mapped posteriors are used as soft labels for KD learning. As an ensemble of

multiple teachers proves to perform better than a single teacher in the work for domain

generalisation, various teacher ensemble schemes are experimented with to train an ASR

model for low-resource languages.

Earlier, the mapping model approach (described in Chapter 5) has been employed for

multilingual and cross-lingual model fusion for speech recognition on phonemes level

Chapter 7 and end-to-end ASR systems Chapter 8. In this chapter, a source (teacher)

language ASR model followed by a source-target (teacher-student) mapping model is

used to act as a teacher for student model training. Source and target are synonymously

used as teacher and student respectively for the rest of the discussion in this chapter.

For N languages, one mapping model is trained for each target language to map pos-

teriors from other N − 1 source languages ASR models to the posteriors of the target

language ASR. Mapped posteriors from a source language ASR are used as soft labels for

knowledge distillation. Having multiple teachers from N − 1 source languages, different

existing weighting schemes along with a proposed Self-Adaptive Weighting (SAW) are

experimented with for teachers’ ensemble to generate soft labels. The key contribution

of MUST learning is to overcome the limitation of multilingual KD and use teachers

from diverse languages for multilingual knowledge distillation.
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9.3.1 Multilingual Student-Teacher (MUST) Learning

As described at the start of this chapter, output classes of the student model are required

to be a proper or improper subset of the teacher model classes for knowledge distillation.

It prevents a teacher language to distil its knowledge to train a student model if writing

scripts or character sets are not the same. In this work, mapping models are employed

to overcome this issue and distil knowledge from diverse teacher languages to train a

student model of a low-resource language.

For a given target language (LA), an encoder-decoder sequence-to-sequence monolingual

acoustic model is trained using hybrid CTC loss as given in Equation 9.9.

LASR = αLCTC + (1− α)Lseq (9.9)

where LCTC is applied on top of the encoder after an affine projection layer. Lseq is

cross-entropy loss which is applied to the decoder’s output.

For MUST learning, soft labels from a single teacher or an ensemble of multiple teacher

models are used to distil knowledge for the training of a model for low-resource language.

Lseq loss in Equation 9.9 is modified as

Lseq(θ) = λLKD + (1− λ)L′seq (9.10)

where L′seq is still a cross-entropy loss and LKD is the knowledge distillation loss which

is an ensemble of multiple teachers and given as

LKD =
∑
K

WkLTk
(9.11)

LTk
is KL-divergence loss between posteriors from kth teacher model and the student

model.

LTk
=

∑
B

pTk log
ps

pTk
(9.12)

where pTk and ps are the posterior distributions from kth teacher and the student model

respectively. A teacher model is a source language ASRmodel followed by a source-target

language mapping modelMSiA as shown in Figure 9.1. α and λ in Equations 9.9 and

9.10 are hyper-parameters and different teacher weighting strategies are experimented

for W in Equation 9.11.

Given an utterance u of a target language, it is decoded through all the source language

ASR systems (MSi) which generate posteriors for their output classes (PSi). Then a

pre-trained target language mapping model (MSiA) is used to map the output poste-

riors from source language ASR systems to the target language ASR (PSiA). Output

posteriors from the mapping model are used as soft targets for student model training.
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So, the ASR of each source language along with a target language mapping model acts

as a teacher model for MUST learning. For the target language student learning, exper-

iments are conducted using an ensemble of multiple teachers (source languages) and a

single teacher to generate soft labels for KD training.

9.3.1.1 Self-adaptive weighting

Performance of the ensemble teacher models depends on the choice of W in the Equa-

tion 9.11 for each teacher loss. A straightforward approach is the Teacher averaging

(TA) where all the teachers are assigned equal weights. However, all the teachers have

different relationships with the student task and thus impact differently. In the case of

multilingual systems, all teacher languages are not equally similar and assigning equal

weights does not prove to be an optimal way.

In this work, a self-adaptive weighting scheme is proposed. Motivated by the domain

adaptation work which makes use of posterior distributions, teacher models get relative

weights based on their confidence in soft-labels. Furthermore, rather than assigning the

same weights for a batch, teachers’ weights are calculated on the fly for each utterance.

Given an utterance u of T frames, mean of max(pt)∀t ∈ {0, 1, · · · , T} is calculated where

pt is the posterior distribution at time t.

µk =
1

T

∑
t

max(pTk
t )

Then the weight of each teacher is set to

Wk =
τµk∑
K τµk

(9.13)

Figure 9.1: Architecture of Multilingual Student-Teacher (MUST) learning
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Table 9.4: Details of Babel data sets used to train e2e speech recognition models

Lang
Train Eval

# hours # spks # hours # spks

Tamil (tam ) 59.11 372 7.8 61
Telugu (tel ) 32.94 243 4.97 60
Cebuano (ceb ) 37.44 239 6.59 60
Javanese (jav ) 41.15 242 7.96 60

where
∑

KW = 1 and τ is a hyper-parameter for the sake of statistically significant

weight distribution across the teachers. Increasing the value of τ increases the deviation

of the teachers’ weights from the mean weight.

9.3.2 Experimental setup

9.3.2.1 Data set

In this work, all the experiments are conducted using the same data sets as in the

previous work on mapping models (as described in Section 7.3.1). Four low-resource

languages (Tamil (tam ), Telugu (tel ), Cebuano (ceb ) and Javanese (jav )) from the

IARPA Babel speech corpus (Gales et al., 2014) with their full language packs are used

for ASR training and evaluation. Most of the Babel data sets consist of conversational

telephone speech with real-time background noises and are quite challenging because

of conversation styles, limited bandwidth, environment conditions and channel. All the

utterances without any speech are discarded. The details of the data sets are given in

Table 9.4.

For training of the mapping models, a subset of 30 hours is randomly selected from each

Babel language pack. This data is further split into 29 hours of train set and 1 hour of

dev set.

9.3.3 Student and teacher models

As described earlier, Hybrid CTC/attention architecture (Kim et al., 2017) is used to

train all e2e speech recognition models which consists of three modules that are; a

shared encoder, an attention decoder and a CTC module. The training process jointly

optimises the weighted sum of CTC and attention model as given in Equation 9.9 but

Lseq is a cross-entropy loss for the training of teacher models which implies that Lseq in

Equation 9.9 is same as L′seq of Equation 9.10.

The input to the model is 40 filterbanks and the output of the model is byte-pair

encoded tokens. All the models are trained for 100 BPE tokens for each language and

SentencePiece library (Kudo, 2018) is used for tokenisation. Both student and teacher

models are of the same capacity (∼ 170.9 million) throughout the experimentation.

During decoding, the final prediction is made based on a weighted sum of log probabilities

from both the CTC and attention components. Given a speech input X, the final
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prediction Ŷ is given by;

Ŷ = argmax
Y ∈Y

{γ logPCTC(Y |X) + (1− γ) logPseq(Y |X)} (9.14)

where γ is a hyper-parameter.

For the speech recognition task, results are reported in terms of percent character error

rate. The SpeechBrain toolkit (Ravanelli et al., 2021) is used for training all ASR

systems.

9.3.3.1 Mapping models

A multi-encoder single decoder model is trained for each target language. In an MESD

model, there are three encoders and only one attention decoder. Each encoder and single

decoder consists of one bidirectional RNN layer. For each target language, the mapping

model size is only 2.59 million parameters. The performance of these mapping models

is measured in terms of accuracy as given in Algorithm 2.

9.3.3.2 MUST learning

For the experimentation in this work, different values of α and λ of Equation 9.9 and

9.10 are varied between the range of [0, 1] and the numbers are reported with the best

configuration. The values of α and γ are kept constant for all the experimentation

while λ may vary for different languages. For teachers’ ensemble, various weighting

strategies are experimented to assign the weights (W). Conventional teacher averaging

is compared with proposed self-adaptive weighting. In teacher averaging, all the teachers

get equal weights and do not change during the whole training. Frame-wise maximum

(FWM) selects posteriors from a different teacher for each frame of a given utterance.

For each frame, the teacher having a maximum value of posteriors among all the teachers

is selected. In domain adaptation experiments, the proposed elitist sampling technique

has outperformed TA and FWM weighting strategies for speech recognition domain

generalisation task. ES takes a mean of maximum posterior values of all the frames for

a given utterance. Then the soft labels of the teacher having the highest value are used

for that given utterance.

As discussed in Section 7.4, posterior distributions from all the mapping models have

been fused as an acoustic model which has outperformed the monolingual acoustic mod-

els. However, the fused weights have been fine-tuned for the test set. An experiment is

also done here by assigning fine-tuned weights (FTW) for the test set. These weights are

manually fine-tuned and might be a sub-optimal solution. Lastly, a comparison is shown

by using only one teacher model for knowledge distillation rather than an ensemble of

all the teachers. The objective is to analyse the gap in performance by reducing the

teacher models to reduce the computational complexity. In the case of single-teacher

(ST) distillation, only the teacher from the closest language is selected. ‘Closest’ lan-

guage is defined in terms of mapping model accuracy. For a target language, the source
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Table 9.5: Accuracy of the pre-trained mapping models from Table 8.4 of Chapter 8

Source
Lang.

Target/Student languages
tam tel ceb jav

tam - 48.88 60.53 62.24
tel 47.46 - 48.32 54.64
ceb 45.98 46.22 - 65.51
jav 46.97 47.40 65.04 -

language with maximum mapping model accuracy is selected as the teacher model.

9.3.4 Results and Discussion

9.3.4.1 Teacher models

As described in Section 9.3.1, a teacher model for MUST learning is a combination

of a teacher language ASR and a student-teacher mapping model. Since most of the

languages included in this study have different scripts and character sets, the ASR of a

language cannot be used for decoding the data of the other one. Pre-trained mapping

models are used for each student-teacher pair in this work. Performance of the pre-

trained mapping models is tabulated in Table 9.5 in terms of accuracy. For each target

language, the accuracy of the mapping model is shown for all the source-target mapping

modules.

9.3.4.2 MUST learning

For multilingual student-teacher learning, various teacher ensemble strategies are ex-

plored. Before training a student model, the ensemble strategies are applied for teach-

ers’ model fusion. For a given target language, outputs from all the teacher models are

fused in a weighted sum. CER is calculated by applying greedy search on fused teacher

outputs. All the discussed ensemble strategies (in Section 9.3.3.2) including teacher

averaging (TA), frame-wise max (FWM), elitist sampling (ES), self-adaptive weighting

(SAW) and fine-tuned weights (FTW) are experimented with and results are tabulated

in Table 9.6.

Table 9.6: MUST teachers’ performance in terms of %CER with different ensemble
approaches. ES : elitist sampling of Section 9.2.2, FWM : frame wise maximum, SAW :
proposed self-adaptive weighting, TA: teacher averaging, FTW : manually fine-tuned

weights

MUST
teachers

Target/Student languages
tam tel ceb jav avg

ES 57.24 83.23 72.09 75.93 72.12
FWM 57.39 82.54 62.45 70.14 68.13
SAW 57.34 84.31 61.99 67.32 67.74
TA 57.38 84.31 61.98 67.26 67.73
FTW 57.34 83.36 60.03 59.45 65.04
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Table 9.7: Performance (%CER) of student model trained using MUST learning.
mono: baseline monolingual model, ST : single teacher (the closest language)

MUST
teachers

Target/Student languages
tam tel ceb jav avg

mono 44.28 56.18 31.26 40.90 43.16
TA 44.72 57.02 32.43 42.61 44.20
SAW 44.59 56.14 31.87 39.11 42.93
FTW 44.42 55.79 30.80 37.50 42.13
ST 43.77 55.56 29.43 36.98 41.44

Analysis shows that the trend of student model performance with different ensemble

strategies is the same as the trend for model fusion. So, the student models here are

trained using only the top three best-performing teachers’ ensemble techniques in Ta-

ble 9.6 which are SAW, TA and FTW. %CER of student model are shown in Table 9.7.

The first row is the %CER from a baseline monolingual ASR using an explicit RNNLM

trained on the limited text of train set transcriptions. Although the performance of TA

and SAW is almost the same for model fusion (in Table 9.6), student models trained

with SAW ensemble reduce average CER by 1.27% relative if compared with the models

trained with TA weighting (Table 9.7). With the weights fine-tuned for the test set, av-

erage CER is reduced to 42.13% from 42.93% of SAW-trained models which is a relative

improvement of 2.4% compared to monolingual models.

In another experiment, knowledge from only a single teacher model is distilled for stu-

dent model training (ST in Table 9.7). For each target language, the closest language

is chosen as a teacher model. As described earlier, the closest source language for a

target language is the one which has the highest mapping model accuracy for the target

language. Student models trained using the single teacher outperform all other stu-

dents for all the languages by an average improvement of 4% in the performance of the

monolingual model. For jav target language, a relative improvement of 9.5% is observed.

Both ceb and jav yield more gains in performance than tam and tel because the mapping

models’ accuracies are higher for these two languages. It is evident that the gain for

each language depends directly on the performance of the corresponding mapping model.

Student training with ST does not have any test set information and performs even better

than FTW which has fine-tuned weights for the test set. The results are in line with

the performance of mapping models and the results reported for data augmentation

using the mapping models in Section 8.5.2. Since some source-target mapping models

do not perform very well for some of the teacher languages, the teacher knowledge

introduces noise in student training and makes it hard for a student to learn. Knowledge

distillation from only a single student not only improves ASR performance but also

reduces computational complexity.
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9.3.5 Summary

This chapter discusses two experiments i.e. collaborative work to improve out-of-domain

speech recognition using knowledge distillation and bridging a gap in using knowledge

distillation approach across the languages. In the work to improve OOD speech recog-

nition, several self-supervised teacher models (wav2vec2.0) have been fine-tuned with

speech data from different domains i.e. meetings (AMI) and read speech (LibriSpeech360

and WSJ). Then, a student model is trained in an unsupervised way distilling knowledge

from the teachers’ models. A novel ’elitist sampling’ approach is introduced to select

the best utterance among the teacher outputs for the student training. The results have

shown that the individual teacher models give a higher error rate on an out-of-domain

(telephonic) data set (Switchboard). AMI, LibriSpeech360 and WSJ give a word error

rate of 52.04%, 45.86% and 66.43% respectively which is reduced to 51.71% using a

frame-wise max ensemble approach to train a student model. A student model trained

with the proposed elitist sampling approach reduces the error further to 37.38% without

using any explicit language model.

The promising results of OOD work intrigued us to study the feasibility of a knowledge

distillation approach for low-resource speech recognition improvement. However, a limi-

tation of knowledge distillation is that the output tokens of the student model must be a

proper or improper subset of the output tokens of the teacher models. It is not possible

for different languages which have different writing scripts yet acoustically very similar.

In this work, we addressed this limitation by employing previously proposed mapping

models. In MUST learning, a teacher model is a combination of a source language ASR

followed by a source-target mapping model. Pre-trained mapping models are used to

map posteriors from a source language ASR to those of the target language ASR (Table

9.5). Various weighting strategies are explored for teachers’ ensembles (Table 9.6). Stu-

dent models are trained for each language with top-performing ensemble strategies. A

student model trained with MUST learning proves to outperform baseline monolingual

ASR by a relative gain of up to 9.5%.
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Conclusions and Future Work

The work in this thesis has been motivated by the fact that many languages with sig-

nificant phonemes overlap pose speech recognition performance degradation from mul-

tilingual ASR systems. A novel data-driven approach has been devised to estimate

cross-lingual acoustic-phonetic similarities. Mapping models have been trained for each

source-target languages pair and these models are trained to map the posteriors from

source language ASR to the target language ASR. Given a speech signal of a target

language, posteriors from the target language acoustic models and mapped posteriors

from the source language acoustic models are analysed to study the cross-lingual sim-

ilarities. The mapping models have also been exploited to propose an acoustic model

fusion approach in a multilingual setup to improve the performance of low-resource

speech recognition. The approach is also further extended for e2e models. Furthermore,

a long-standing gap between using knowledge distillation technique to distil knowledge

from diverse languages has also been bridged in this work.

10.1 Contributions

10.1.1 Cross-lingual acoustic-phonetic similarities

In Chapter 4, an analysis has been done as a pretext for this research. The analysis has

shown that the multilingual ASR systems might cause to increase phoneme error rate of

some languages compared with the monolingual ASR systems. This can happen even in

the case where the languages are close. Closeness of languages is usually estimated by the

size of overlapping IPA-representations based phonemes of the languages. Furthermore,

the analysis has shown that when a speech signal of a target language is decoded through

a source language ASR, learnable patterns exist in the outputs from the target language

ASR system and the source-language ASR system outputs.

In light of the insights into the existence of learnable cross-lingual mappings, the mapping

models have been trained (discussed in detail in Chapter 5) for source-target languages.

These mapping models have been used to analyse cross-lingual acoustic phonetic simi-

larities to evaluate if the number of overlapping IPA-representations-based phonemes is

184
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a good criterion to estimate the closeness of languages. The analysis has shown that a

language might be acoustically closer to a target language even if has a lesser phoneme

overlap compared to some other languages. Phonemes with different IPA representa-

tions across languages might be closer acoustically and IPA representation does not well

inform on languages’ closeness in this case. These properties are well-captured by learnt

mapping models and the experiments here have shown that the KL-divergence between

mapped posteriors (from a source-target language mapping model) and ground-truth

posteriors (from target language ASR) can better inform about language similarities.

10.1.2 Improving low-resource speech recognition

Previous work on monolingual speech recognition has shown that fusing outputs from

different models (i.e. models with different architectures for the same downstream task)

helps improve speech recognition. Output posterior distributions from different models

given an identical input signal can be fused if the posterior distributions are the same (in

terms of the set of tokens and their identifiers). However, monolingual models of diverse

languages have never been fused in a multilingual setup because all the languages have

different token sets (i.e. phonemes or graphemes), and thus the output classes of the

monolingual model of each language are different from the others. ASR systems of other

languages can be helpful for a low-resource speech recognition system as an additional

knowledge source especially when the languages are closer.

In Chapter 7, the mapping models have been leveraged to bridge the gap for the fusion of

diverse monolingual models to help improve speech recognition of a target low-resource

speech recognition system. A source language ASR has been used to output posterior

distributions for a target language input speech signal. These posteriors are then mapped

to the target language posterior space using a pre-trained source-target mapping model.

Remember that these mapping models have the property to be trained on very limited

data. The experiments have shown that the fusion of mapped posteriors along with the

posteriors from the target-language acoustic model outperforms multilingual as well as

monolingual ASR systems.

The approach does not only work for phoneme-based hybrid DNN-HMM ASR systems

but also helps improve the performance of end-to-end ASR models (Chapter 8). Mapping

models can also be used to generate transliterated data for augmentation which can be

used to retrain a low-resource speech recognition system. Additional experiments in

Chapter 8 show that the models retrained with adding augmented data outperform

monolingual ASR systems.

10.1.3 Cross-lingual knowledge distillation

Many works have been done where a student model is trained using distilled knowledge

from another pre-trained (teacher) model. Knowledge distillation or KD loss is computed

as a KL divergence between posteriors from the student and teacher models given an

input speech utterance. However, for this loss calculation, the output classes of the
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student model must be a proper or improper subset of the teacher model. This prevents

a teacher model to distil knowledge for a student if the student is of some other language

(even a closer one but with different tokens). In Chapter 9, this gap is bridged through

the proposed MUST approach. MUST exploits the mapping models to train student

ASR systems using knowledge from ASR systems of diverse languages. The student

models trained from MUST have been shown to reduce speech recognition error rates if

compared with the monolingual ASR systems.

10.2 Future work

10.2.1 Enhancing mapping model capabilities

In this work, the cross-lingual mapping models have been proposed and their potential

has been shown. For several approaches, the performance depends on the accuracy of

mapping models and the performance of mapping models is dependent on the baseline

acoustic models. The mapping models have been kept quite simple due to several re-

source limitations and there is room to enhance their capacity to perform even better

which would lead to further gains in improving low-resource speech recognition. Further-

more, the mapping models have been trained to map posterior distributions. However,

many other ways can be explored and might be helpful i.e. training a sequence mapping

model to output target language transcription (rather than posteriors) taking posteriors

from a source-language ASR as an input.

10.2.2 Exploiting rich resources for low-resource ASR improvement

For low-resource speech recognition improvement, resources of several other low-resource

languages have been exploited. The idea has been to show the capabilities of mapping

models trained with limited data. However, the work can be extended to improve

low-resource speech recognition using acoustic models of resource-rich languages. In

this work, both source and target languages are low-resource languages and hence their

acoustic models are also weak. A limited amount of data has been used to train mapping

models. If a source language is a high-resource language, its acoustic model would

be strong and less prone to error. Incorporating the future work of the last section

(Section 10.2.1), a mapping model trained to learn mappings from source posteriors

to target text (rather than posteriors) would alleviate the problem of training a target

language ASR.



Appendix A

Babel data sets tags

As discussed in Section 3.5.2, the various speech and non-speech events in the recordings

have been annotated using various tags in the Babel data set. The Babel data set is

used for several experiments in this work from training ASR models to training mapping

models on top of them. In this appendix, the different tags used in Babel annotation

and their handling for this work are described.

Table A.1: Tags used to annotate different speech and non-speech events in the Babel
data set

Tag Description

Non-speech events

sta on start of medium/loud background noise
lipsmack lip smacks, tongue clicks
breath inhalation and exhalation between words, yawning
cough coughing, throat clearing, sneezing
laugh laughing, chuckling
click machine or phone click
ring telephone ring
dtmf noise made by pressing telephone keypad
int any other intermittent foreground noise
no-speech such as silence or breath
overlap two speakers speaking simultaneously
prompt electronic voice/automated recording
male-to-female male-to-female speaker change during recording
female-to-male female-to-male speaker change during recording

Speech events

hes hesitations in speaking
*word* mispronounced word
-word/word- fragments (mid-word stumbling)
(()) unintelligible (for annotator)
word/word /(()) recording truncation
foreign words from some non-native language
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Table A.2: Duration of utterances having the speech or non-speech events tags in
Tamil data set of Babel

Tag Duration (hours)

Non-speech events

sta 38.12
lipsmack 0.66
breath 2.44
cough 0.62
laugh 4.33
click 0.61
ring 0.12
dtmf 0.09
int 7.03
no-speech 83.90
overlap 0.06
prompt 0.07

Non-speech events

*word* 1.72
-word/word- 4.6
(()) 13.45
word/word /(()) 0.34
foreign 7.5

Most of the speech utterances in the Babel data set consist of conversational telephonic

speech with a significant portion recorded in noisy environments. So, there are many

speech and non-speech events such as cough, laughing, ringing sounds, hesitation in

speaking and uttering some foreign language words etc. Such events make data very

challenging and noisy. All the tags with their brief descriptions have been tabulated in

Table A.1.

As a case study, the Tamil data set in Babel is analysed and the duration of utterances

having these tags in their transcriptions is computed. A significant amount of utterances

contain these tags. In particular, there are a lot of utterances which do not have any

speech at all (consisting of only a ’no-speech’ tag). The duration of utterances having

each of these tags has been shown in Table A.2. There are utterances of the duration

of about 84 hours which do not contain any speech. Many other tags also constitute a

large number of utterances. Given the volume of utterances having these tags, all such

utterances cannot be simply dropped as it would come with the price of losing a huge

amount of data. The same analysis have been done then for other Babel languages’ data

sets as well and the same magnitude of utterances with these tags have been found.

As a simple rule to handle speech and non-speech events in the Babel data set, it is

expected that an ASR model can learn most of the non-speech events except for those

which cause confused speech. It includes ’overlap’ and ’prompt’ tags where the speech

of the speaker is overlapped with another speech recording. However, speech events are
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Table A.3: Handling of speech and non-speech events tags in Babel data sets tran-
scriptions. Remove tag : remove tag from annotation and retain the segment, Remove

segment : drop the utterance from the data set

Tag Duration (hours)

Non-speech events

sta Remove tag
lipsmack Remove tag
breath Remove tag
cough Remove tag
laugh Remove tag
click Remove tag
ring Remove tag
dtmf Remove tag
int Remove tag
no-speech Remove tag
overlap Remove segment
prompt Remove segment
male-to-female Remove tag
female-to-male Remove tag

Non-speech events

hes As it is
*word* Remove segment
-word/word- Remove segment
(()) Remove segment
word/word /(()) Remove segment
foreign Remove segment

a more serious challenge as the annotation tags do not represent what is being spoken.

So, the utterances with most of the speech tags are removed from the data set. Only the

utterances with ’hes’ tags are retained as the Babel lexicons come with annotations of

’hes’ tags to corresponding phonemes. The summary of handling of all tags is tabulated

in Table A.3.
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