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Abstract

Turbulence drives anomalously high cross-field transport rates in tokamak plasmas. This dras-
tically decreases the energy efficiency and presents a major issue in fusion research because
the underlying plasma dynamics are not yet fully understood.

Phenomena known as ‘zonal flows’ directly suppress cross-field transport while siphoning
energy from the turbulence, making them highly beneficial for enhancing plasma confinement.
Despite the theoretically predicted ubiquity of zonal flows in tokamak plasmas, experimental
measurements, particularly in spherical tokamaks, are remarkably scarce. This scarcity is
largely attributed to a notorious difficulty in obtaining accurate velocity field measurements. To
address this gap, this thesis presents improvements to velocity field inference techniques and
preliminary measurements of zonal flows. To this end, the Beam Emission Spectroscopy (BES)
diagnostic on the upgraded Mega-Ampere Spherical Tokamak (MAST-Upgrade) was utilised.

Image-velocimetry techniques, which are used to infer velocity fields from imaging diag-
nostics such as BES, were extensively performance tested for the first time. The two primary
techniques, Cross-Correlation Time-Delay Estimation (CCTDE) and Dynamic Time-Warping
(DTW), were investigated across the majority of reasonably achievable experimental condi-
tions. Strongly nonlinear behaviour was identified in both techniques, indicating that testing
was required for reliable velocimetry. Tests uncovered the effects and mitigation techniques of
the barber pole illusion, the impact of sheared flows, optimal operational velocimetry parame-
ters, the effect of varying the number of spatial channels, and more. Results were numerous,
nuanced, and often unexpected; highlighting that thorough reading is recommended to anyone
aiming to perform image-velocimetry analysis.

Velocimetry analysis of BES data from the second MAST-U campaign was performed. The
aforementioned testing results were used to guide and optimise the velocimetry workflow while
preemptively avoiding complications. However, precision of the inferred velocities fell short of
expectations, a discrepancy later attributed to an incorrectly calibrated optical filter in the BES
diagnostic. Consequently, only background carbon II emissions reached the BES detector in
most shots, rendering velocimetry of the main species impossible.

Instead, attempts were made to perform velocimetry using the carbon background emis-
sions, which may appear impossible at first glance due to localisation issues. After calibra-
tions using a synthetic diagnostic, results demonstrated agreement with the Charge-Exchange
Recombination Spectroscopy (CXRS) diagnostic, implying accurate velocimetry. Notably, this
marked the first instance of successful CII velocimetry using BES, opening a promising new
avenue for investigating impurity dynamics.

A single useful shot, #46459, emerged unaffected by the preceding optical filter issues.
The data was predicted to be suitable for accurate velocimetry based on the velocimetry test-
ing results. Upon comparison with CXRS, temporal velocity trends showed agreement with
CCTDE velocimetry. CCTDE velocities were inferred with typical standard errors below 1 km/s
at a temporal frequency of 4 kHz. The results unveiled radially localised velocity structures,
intermittently drifting and re-forming on timescales of 1-10 ms. Further analysis identified this
as a coherent localised shear mode featuring a characteristic frequency of 60 Hz and a radial
wavelength of approximately 10 cm. The observation of this mode closely aligns with the ex-
pected attributes of quasi-stationary zonal flows, pointing to the first zonal flow detection in a
high-performance spherical tokamak.



Turbulence drains force.
Zonal flow shields, stays on course,

confines the life source.
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Chapter 1

Introduction & Motivation

Fusion energy. It has been powering our Sun and the stars for billions of years. Here on
Earth it promises a clean and inherently safe energy source - ideal for a decarbonising
world. The fuel is abundant, spread out throughout the world, and could theoretically
support global energy demands for millions of years. Besides these benefits of fusion
energy, there is one major drawback: it is really difficult to reach net energy production.

Achieving nuclear fusion reactions in itself has been possible since the 1930s [1],
but these first experiments produced next to no energy compared to the amount of
energy used. Since then, the invention of the ‘tokamak’ device has led to drastically
improved energy efficiency, from practically zero to Q = 0.671, a record set in 1997 by
the Joint European Torus [2]. Next-generation tokamaks are currently under construc-
tion, such as the internationally funded ITER project2, expected to achieve Q = 5-10
by 2040. Additionally, private fusion companies such as Tokamak Energy and Com-
monwealth Fusion Systems have joined the race, both expecting net energy production
within this decade.

The main way to improve the energy efficiency is by minimising the rate at which
energy ‘leaks’ out of the machine. This ‘leakage’ rate, determined by the cross-field
transport rate, is orders of magnitude faster than theoretical predictions based on colli-
sional transport and the exact underlying mechanisms are still unknown. Improving our
understanding of cross-field transport is currently slowed down significantly by a lack
of high quality experimental measurements of the plasma dynamics. Measurements
which are incidentally ‘notoriously difficult in tokamaks’ [3]. This leads to the two central
aims of this thesis:

• To improve the reliability and performance of spatially resolved plasma dynamics
measurements.

• To measure zonal flows in the upgraded Mega-Ampere Spherical Tokamak (MAST-
U).

Zonal flows are a type of flow in fusion plasmas known to strongly suppress cross-field
transport rates, which means that they are highly beneficial for the overall energy effi-
ciency. On top of that, they are not some rare, highly situational phenomenon and are

1‘Q’ measures the energy efficiency of the reaction. Q = 0.5 means that, compared to the amount of
energy used, 50% as much is produced by the fusion reactions. Q = 5 means that 5 times more energy
is produced than used.

2Not an acronym. Simply ‘the way’ in Latin
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Chapter 1

instead thought to be ubiquitous in tokamak plasmas. Despite their importance, experi-
mental measurements are scarce, limiting our understanding and eventual exploitation
of this beneficial phenomenon.

Chapters 2 - 5 cover summaries of previous work and give context for the rest of this
thesis. Chapters 6 - 8 are novel work performed as part of this PhD project. In chapter
6, extensive testing is performed of image-velocimetry techniques. These techniques
are key to measuring plasma flows but had previously not thoroughly been tested,
putting previous velocimetry results into question. With an improved understanding of
the velocimetry techniques, chapter 7 covers experimental analyses of MAST-U data.
This chapter focuses on initial velocimetry results, cross-checking with other diagnos-
tics, and optimising velocimetry performance. Additionally, the discovery of a major
issue with the experimental data is addressed with some unexpected and novel out-
comes. The final experimental chapter, chapter 8, analyses a shot which did not suffer
from the issues addressed in the previous chapter. High precision and high temporal
frequency velocimetry are achieved, leading to the identification of a mode that closely
aligns with zonal flows.

2 Y. W. Enters



Chapter 2

An Introduction to Fusion Energy and
Plasma Confinement

This chapter serves as an introduction to fundamental concepts in plasma confinement.
Its purpose is to provide context for the more specialised topics explored throughout
this thesis and how the research can impact the energy efficiency of fusion plasmas.
A basic understanding of plasma physics and fusion energy will be assumed and this
chapter will not provide an exhaustive literature review or delve into detailed theoretical
derivations.

We will outline the requirements for achieving a self-sustaining fusion reaction and
explore the associated challenges. The importance of improving the energy-confinement-
time will be highlighted, which will lead into a discussion on how the plasma particles
and energy are confined in the magnetic geometry of two categories of fusion machine.
At the forefront of these machines stands the ‘tokamak,’ currently the most advanced
and elegant solution for plasma confinement, surpassing all other machine types in
all-round performance. Additionally, there is the ‘stellarator’ approach, which may be
considered a more promising option for plasma stability and long term performance.
However, this type of machine is less mature and currently does not perform as well as
the tokamak.

Moreover, we will delve into the concept of cross-field transport, a key process that
constrains the confinement efficiency and correspondingly governs the overall energy
efficiency in tokamaks. We will explore various mechanisms that drive cross-field trans-
port, spanning from basic collisional theory to the elusive ‘anomalous transport’. This
topic will be covered most thoroughly in this chapter as it forms the cornerstone of this
thesis, emphasising the critical need to manage transport levels in tokamaks effectively.

2.1 Fundamentals of Fusion

In the 1950s, during a period of growing interest fusion energy production, J. Lawson
conducted an analysis of the power balance in idealised fusion reactors [4]. This widely
known work laid the foundation for defining when a deuterium-tritium (D-T) plasma
enters a ‘burning’ state, where the fusion reaction becomes self-sustaining, eliminating
the need for external heating. This criterion, now known as Lawson’s criterion, can be

3



Chapter 2

expressed as:
nT τE ≥ 3×1021 keV s m−3 (2.1)

In this equation, n represents number density, T signifies temperature, and τE denotes
the energy confinement time. Equation 2.1 shows that the triple product of density,
temperature, and energy confinement time must exceed the specified threshold for the
plasma to reach a burning state. Increasing each of these three parameters leads
to significant engineering and physics challenges. For example, if the density in the
plasma is increased, the corresponding increase in density gradient drives plasma in-
stabilities which can drastically reduce the energy confinement timescale or lead to
complete disruption of the plasma. This is why it can often be counterproductive to
increase the density beyond a certain threshold. The temperature, in addition to in-
stigating gradient-driven instabilities, is also limited by the fact that the D-T reaction
cross-section has an optimal temperature, shown in figure 2.1. Beyond this optimal
value, increasing the temperature decreases the D-T reaction probability, rendering
further increase in temperature less effective.

This brings us to the energy confinement timescale, which can hypothetically be
increased without known drawbacks. This makes increasing the energy confinement
time an attractive avenue for improving the triple product. However, a significant chal-
lenge lies in the current inability to directly tune the energy confinement timescale
due to the complex interplay of numerous non-linearly interacting transport processes.
While some of these processes are known and constitute an active field of research,
it is likely that more are yet to be uncovered. To provide a basic understanding of
transport processes, particularly in tokamak plasmas, we will delve into an overview in
sections 2.2 and 2.3.

2.2 Introducing: the Tokamak

Before the widespread adoption of the tokamak approach in fusion research, the 1950s
and 1960s saw a predominant focus on linear devices [5]. As depicted in figure 2.2a,
these linear devices featured ‘open’ magnetic field lines, providing a rapid path for
charged particles to escape from the central plasma region. Researchers explored
various techniques, such as magnetic mirrors and field-reversed configurations, to re-
duce these transport rates and enhance energy confinement times [5].

While western countries concentrated their efforts on linear machines, an arguably
more elegant approach was being developed in the former Soviet Union. Their in-
novation involved curving the magnetic field lines into a toroidal shape, as illustrated
in figure 2.2b. This configuration eliminated ‘open’ field lines, and by the late 1960s,
these ‘tokamak’ devices claimed to significantly outperform linear counterparts. The
validation of these claims by a sceptical team of British scientists in 1969 [6] triggered
a ‘veritable stampede’ of tokamak construction in the early 1970s [7].

We will now delve into a brief overview of the fundamental plasma dynamics and
transport within tokamaks. Along the field lines, rapid transport of charged particles
occurs on the order of thermal velocities. The helical rotation of the field lines gen-
erates a series of nested surfaces, as depicted in figure 2.2b. In terms of transport,
this means that all points on these so-called flux-surfaces are connected through fast

4 Y. W. Enters



Chapter 2

Figure 2.1: Nuclear cross-sections, σ , of several fusion candidate reactions. Data from
IAEA’s evaluated nuclear data services database. D-T peak cross-section observed at
60-70 keV.

parallel transport, rapidly equalising thermodynamic variables across these surfaces.
Due to the toroidal symmetry in these devices, the three-dimensional magnetic geom-
etry is often simplified to the two-dimensional radial-poloidal plane1, as shown in figure
2.3a. In this two-dimensional view, flux-surfaces are represented by nested loops. The
direction perpendicular to these flux-surfaces is referred to as the cross-field direction
or the minor-radial direction2.

Cross-field transport occurs much more slowly than parallel transport, enabling the
development of significant thermodynamic gradients, as exemplified in the thermody-
namic profiles displayed in figure 2.3b. High gradients can only be sustained when
transport rates are low, and vice versa. Furthermore, different confinement ‘modes’
can be achieved in a plasma by adjusting tokamak operational parameters, with high-
confinement (H-mode) and low-confinement modes (L-mode) illustrated in figure 2.3b.
The control of confinement modes represents a central area of investigation in tokamak
science, with a key focus on understanding the underlying transport mechanisms.

1For visualisation purposes, I like to imagine this plane as the cross-section of a bagel that has been
sliced in the objectively incorrect direction. Is this the best analogy one could make? Perhaps not, but it
is certainly memorable...

2The cross-field and minor-radial directions are technically not quite the same if rotational symmetry
around the magnetic axis is broken, but they are often conflated regardless for simplicity

Y. W. Enters 5
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(a)
(b)

Figure 2.2: Comparison of magnetic field structure between linear devices (a) and toka-
maks (b). Flux surfaces, ψ, shown in (b). Images (a) and (b) taken from publications
[5] and [8] respectively.

(a)

(b)

Figure 2.3: Radial-poloidal plane shown in a), with the outer solid black circle repre-
senting the separatrix. Grey dotted loops depict flux surfaces. Minor-radial and poloidal
directions labelled θ and r respectively. Toroidal direction, φ , points into the page. Part
b) shows example thermodynamic profiles from DIII-D. Steeper gradients in H-mode
are due to suppressed cross-field transport. Image adapted from [9].

6 Y. W. Enters



Chapter 2

2.3 Cross-Field Transport

An essential advantage of the magnetic geometry within a tokamak lies in its ability
to govern the energy confinement time through the relatively slow cross-field transport
rates. However, it is crucial to emphasise that cross-field transport is far from negligible,
and its suppression is key to enhancing plasma energy efficiency. This subsection will
cover the primary cross-field transport processes, ranging from basic collisional theory
to the realm of the initially unexpected ‘anomalous transport’ mechanisms.

A common starting point for comprehending cross-field transport is to delve into col-
lisional theory. In a linear field geometry, cross-field single-particle motion and its as-
sociated diffusion lengthscale are confined to the gyro-radius, which is around 1 cm for
protons in typical tokamak field strengths. If this so-called ‘classical’ transport were the
sole form of transport in tokamaks, fusion reactors could theoretically be as compact as
a couple of centimetres while maintaining effective energy confinement3. However, in a
toroidal geometry, single-particle motion is no longer bound only to the gyro-radius and
can also follow ‘banana orbits,’ governing cross-field diffusion at lengthscales an order
of magnitude larger than the gyro-radius. This gives rise to ‘neoclassical’ transport,
characterised by theoretically well-understood and predictable transport rates. Neo-
classical transport rates, on their own, were thought to be sufficiently low for tokamaks
like the Joint European Torus (JET) to achieve energy break-even. However, this pre-
diction has evidently not materialised, as demonstrated by the absence of operational
fusion plants in the world today. In reality, experimentally measured transport rates in
tokamaks are orders of magnitude higher than neoclassical rates [11], underscoring
the presence of other transport mechanisms, which we will explore further in the rest
of this section.

MHD instabilities, if left unmitigated, can emerge as an example of strong drivers
of cross-field transport levels. These instabilities have the potential to induce trans-
port at rates many orders of magnitude above the neoclassical baseline and can even
trigger full-scale plasma disruption. Fortunately, the underlying modes are typically
well-described by MHD theory and evolve relatively slowly with the magnetic equilib-
rium. This characteristic enables analytical predictions to be made of when instabilities,
such as the sawtooth or neoclassical tearing modes, might become unstable. Conse-
quently, these instabilities can often be controlled by implementing various mitigation
techniques [12]. The successful application of these mitigation techniques is critical
in modern tokamaks and will be even more so in future fusion power plants. How-
ever, MHD mitigation falls outside the scope of this thesis. Instead, this thesis focuses
on the transport processes that persist even when MHD-driven transport is maximally
suppressed.

2.3.1 Anomalous Transport

In tokamak discharges characterised by minimal MHD activity, an unexpected phe-
nomenon emerges: experimentally measured transport rates are consistently found to
be up to two orders of magnitude higher than the predictions of neoclassical theory,

3Interestingly, this dimension matches the fictional Iron Man’s chest-piece ‘arc reactor’ [10].

Y. W. Enters 7
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as demonstrated by e.g. Connor et al. [11]. This revelation didn’t stem from a single
groundbreaking observation but rather from a multitude of experiments, each pointing
increasingly toward the inadequacy of neoclassical theory in predicting transport rates.
These unusually high transport rates were evident in both energy and particle trans-
port across a diverse range of tokamak discharges, as reported by Artsimovich et al.
[13]. Much like the enigmatic ‘dark energy’ and ‘dark matter’ in astrophysics, this so-
called ‘anomalous’ transport was given a similarly vague name due to its unexpected
discovery and the mystery surrounding its underlying physics.

However, amid these initial uncertainties, one key insight has consistently emerged
from experimental observations: anomalous transport can almost entirely be attributed
to turbulent fluctuations (Rowan et al. [14]; Wootton et al. [15]). While this obser-
vation provides a starting point for further investigations, it also introduces a host of
complexities in pinpointing the exact mechanisms driving this anomalous transport.

First and foremost, turbulence presents a formidable challenge in theoretical mod-
elling. Deriving analytical expressions for turbulent transport solely from first principles
is even thought to be impossible. Although the transport levels due to turbulence can-
not currently be modelled directly, there is a substantial theoretical body of knowledge
surrounding the unstable modes which lead to turbulence [16]. A key mode in relation
to this is the drift-wave mode, which will be covered in more detail in section 3.1.

Attempting to model turbulent transport empirically also poses challenges, primarily
due to diagnostic limitations. Turbulent fluctuations manifest on spatial and temporal
scales that are orders of magnitude smaller and faster than the plasma equilibrium.
Turbulence diagnostics often require trade-offs between optimising temporal or spatial
resolution to capture specific aspects of the turbulence.

Another approach involves employing nonlinear gyro-kinetic simulations to com-
pute the driving modes and saturated states of turbulence. However, running sim-
ulations that encompass all relevant scales requires prohibitively high computational
costs. Reduced models have been developed to mitigate computational expenses, yet
these models often rely on precarious assumptions, and their predictive power beyond
specific scenarios can be questionable. For example, an underlying assumption in a
lot of computational work is that ion and electron scales evolve separately and inde-
pendently, an assumption that recent state-of-the-art nonlinear simulations have chal-
lenged [17, 18]. This underscores the challenging task of producing experimentally rel-
evant simulations of tokamak turbulence and transport, and furthermore highlights the
importance of the verification of simulations with experimental observations. Nonethe-
less, computational endeavours have yielded numerous valuable insights which will
be referenced throughout, where relevant, but a full review of computational work is
outside the scope of this thesis.

Despite the aforementioned challenges, researchers have made noteworthy obser-
vations in both simulations and experiments. For instance, zonal flow modes, which are
covered in detail in section 3.2, are known to act as internal transport barriers that exert
a strong suppressive effect on cross-field transport. Streamers have been observed
to enhance cross-field transport levels in localised poloidal regions, while avalanch-
ing processes intermittently project energy and matter radially outward. Furthermore,
anomalous transport has been linked to impurity recycling further downstream in the
scrape-off-layer [19, 20, 21, 22, 23]. These examples likely represent only a fraction
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of the relevant mechanisms at play and a full review of the literature falls outside the
scope of this thesis. Regardless, investigating individual mechanisms that are known
to influence transport, and the interactions between them, will conceivably lead to a
consistent understanding of cross-field transport in tokamak plasmas.

The focus of this thesis centres on one such system characterised by multiple in-
teracting mechanisms: the drift-wave–zonal-flow (DW-ZF) system. At present, this
system is a leading example of how multiple processes can organise into a globally
consistent system, and we will delve into the theory in chapter 3.3.

Y. W. Enters 9



Chapter 3

Plasma Turbulence and Zonal Flow
Theory

In this chapter, the basic theories that provide context for the rest of this thesis will be
covered. The target audience is individuals who may be new to the field of turbulent
transport in tokamak plasmas or those who require a refresher on the importance of
the drift-wave–zonal-flow system specifically. It is important to note that this chapter will
not encompass a comprehensive review of the theories but will instead serve as an ac-
cessible introduction to the field, facilitating a heuristic understanding of the underlying
physics.

In section 3.1, drift wave turbulence will be introduced, a phenomenon which is
ubiquitous in tokamak plasmas. Although this mode is often subdominant to the ion-
temperature-gradient (ITG), electron-temperature-gradient (ETG), or trapped-electron-
mode (TEM) modes, the focus will be on the drift-wave because it is an essential pre-
requisite for zonal flow theory. Additionally, many key characteristics of drift-waves
are analogous to ITG, ETG and TEM modes. The structure and evolution of a single
drift-wave eigenmode will be described in part 3.1.1. Subsequently, the nonlinear in-
teractions between drift waves will be covered in section 3.1.2, setting the stage for the
development of a turbulent spectrum.

In section 3.2, zonal flows will be introduced, and after providing a bit of histor-
ical context, the structure and evolution of the zonal flow eigenmode will be exam-
ined. Emphasis will be placed on developing a mental image of zonal flows. It will be
demonstrated how nonlinear coupling with drift waves is the sole driving mechanism
for zonal flows, implying that zonal flows cannot directly tap into free energy reserves.
Nevertheless, it will be shown that the zonal flow mode always grows in a tokamak
plasma. Additionally, the only linear damping mechanism is through the notoriously
slow collisional processes, which is why zonal flows are ubiquitously expected to grow
to non-negligible amplitudes.

In section 3.3, the fact that drift-waves and zonal flows should not be seen as inde-
pendent entities, but rather as two parts of a unified drift-wave–zonal-flow system, will
be highlighted. As such, the DW-ZF system will be modelled using two simplified mod-
els, each of which are used to highlight specific aspects of the system’s characteristics.
Additionally, numerical solutions to more generalised nonlinear diffusion equations will
be provided to elucidate a more realistic picture of the system’s temporal evolution.
Finally, the existence of a strongly-suppressed transport regime, also known as the

10
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Dimits regime, will be pointed out during a general description of the radial transport
due to the DW-ZF system.

In order to demonstrate how the DW-ZF system can be linked to a globally self-
consistent transport system, the E×B staircase is introduced in section 3.4. This sec-
tion introduces the results of gyrokinetic solutions that observed staircase-like struc-
tures consistently emerging in the thermodynamic profiles of simulated Tore Supra
discharges. Incidentally, the regions of steep gradient in the staircases were found
to be caused by zonal flows. The regions of near-flat gradients located between the
zonal flows were caused by turbulent avalanching processes. The manner in which the
zonal flows and avalanching regions self-organise, along with the temporal evolution
and different regimes of the E×B staircase, will be described.

3.1 Drift Wave Theory

In this section, we will delve into the physics of drift-waves, which emerge as ubiq-
uitous micro-instabilities within tokamak plasmas. These waves constitute one of the
primary modes responsible for generating a turbulent spectrum, consequently driving
anomalous transport rates. Our exploration will begin with an introduction to the spatial
structure and evolution of individual drift-wave eigenmodes. To maintain clarity and
brevity, we will adopt a heuristic derivation approach, which will necessarily sacrifice
some mathematical rigour.

Following our exploration of individual drift-wave characteristics, we will briefly de-
scribe the nonlinear interactions between drift waves. This will shed light on the fact
that drift waves should not be perceived as a collection of loosely interacting individual
modes, but rather a unified spectrum of strongly interdependent drift-waves. These
nonlinear interactions represent the key catalyst for the development of the drift-waves
into a turbulent system.

For those seeking a more comprehensive and rigorous understanding of drift-waves,
particularly within the context of cross-field transport rates, we highly recommend start-
ing with the 1999 review paper authored by W. Horton [24].

3.1.1 The Drift Wave Eigenmode

We will begin with an exploration of the spatial structure and dynamics of the drift-wave
eigenmode. Imagine a plasma in a magnetic field exclusively oriented in the toroidal
direction. A radially-localised seed density perturbation is introduced with a non-zero
poloidal wavenumber, which is shown in figure 3.1. From the perspective of the radial-
poloidal plane (see figure 2.3a), one can think of this mode as aligning with the flux
surfaces along the poloidal direction. Under the assumptions of massless electrons
and quasi-neutrality, it can be demonstrated that the density perturbation gives rise to
a corresponding electric potential perturbation:

δφ =
Te

e
δn
n

(3.1)

Here, Te is the electron temperature. It should be highlighted that these electric field
perturbations induce an E×B drift (see eq. 10.1). This is shown on the left-hand-side
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of figure 3.2, where eddies encircle the potential perturbations in the radial-poloidal
plane.

Another aspect to consider is the motion of the perturbations themselves. The
E×B motions of the plasma particles impact the density perturbations, which sets up
a feedback loop between the density and potential perturbations. The net result of
the feedback loop is that particles undergo radial oscillations and the perturbations
propagate in the poloidal direction. Consequently, the drift wave eigenmode can be
thought of as a radially localised plane wave that travels in the poloidal direction:

φk(θ , t) = φ
′
k(t)e

−ikθ (3.2)

Here, θ is the poloidal coordinate, φ the electric potential and k the poloidal wavenum-
ber. Although the perturbations have been shown to evolve as a plane-wave, the pro-
longed existence of these modes in the first place is unfounded until this point. Under
the assumption of massless electron that led to equation 3.1, it can be shown that
the seed perturbation does not grow [25, 26]. If instead we include a non-zero elec-
tron mass, a phase shift is introduced between the density and potential perturbations,
which ubiquitously leads to the unstable growth of the drift-wave eigenmode [27, 28].
As a result, drift-waves will always grow from seed perturbations and are a pervasive
presence in any tokamak plasma.

Figure 3.1: Example perturbations associated with the drift-wave eigenmode shown
along the poloidal direction, θ . Density and electric field magnitude perturbations
shown with a poloidal modenumber of 2.

Up until this point, we have mainly restricted our perspective to the radial-poloidal
plane. Next, we will consider the structure of drift waves along the toroidal direction.
Density perturbations couple strongly to the ion acoustic mode which travels at the
speed of sound along the magnetic field lines. Consequently, the drift wave eigen-
modes can extend up to the machine size along the field lines while remaining localised
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within a few gyro-radii in the direction perpendicular to the field lines [24, 29]. An exam-
ple of the elongated drift wave eigenmodes is presented in figure 3.2. Although these
long, thin eddies can theoretically extend up to the machine size along the field lines,
two main processes are known to limit the eigenmode length. Firstly, flow shearing
can disrupt the modes at a rate faster than the Alfvén waves can traverse machine.
Secondly, the eigenmodes are inherently unstable once they get to a certain length
[24, 29].

Figure 3.2: An example drift-wave eigenmode (with poloidal modenumber m=2) in a
short toroidal section of a tokamak plasma. Positive and negative potential pertur-
bations alternate along the poloidal direction. Perturbations are elongated along the
magnetic field lines (toroidal direction). Adapted from Horton [24].

3.1.2 Nonlinear Drift Wave Interactions

We will start with a heuristic derivation of the time-evolution for an individual drift-wave
eigenmode. It’s essential to note that we’ll skip some steps for the sake of brevity. Our
starting point is the Hasegawa-Wakatani (H-W) equation [27], which is derived from
the continuity equation in fluid dynamics and it crucially includes compressibility of the
fluid. The H-W equation describes the evolution of the electric potential and density in
a fluctuating magnetised plasma:

∂

∂ t
(n−∆⊥φ)+(b̂×∆⊥φ) ·∆⊥(n−∆⊥φ)+

∂

∂θ
φ = 0 (3.3)

Here, b̂ represents the direction of the magnetic field. Interestingly, the hypothesised
plane-wave description of drift-waves, as shown in Equation 3.2, can indeed be shown
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to be an eigenmode of the H-W equation by the assumption of an isothermal electron
fluid and use of the electron equation of motion [27, 28]. The time evolution of such a
plane-wave eigenmode can be expressed as:

dφk

dt
=−iωkφk + ∑

k+k1+k2=0
Λ

k
k1,k2

φ
∗
k1

φ
∗
k2

(3.4)

Here, ωk represents the frequency of mode k, and Λk
k1,k2

denotes the nonlinear coupling
coefficient between modes k, k1, and k2. This equation illustrates that the time evolution
of mode k relies on its own linear evolution and on its nonlinear interaction with modes
k1 and k2.

Upon closer examination, it becomes evident that the drift-wave evolution is pro-
foundly nonlinear [27], implying that the nonlinear term in Equation 3.4 exerts domi-
nance over the linear term. These nonlinear interactions become increasingly impor-
tant with increasing drift-wave amplitude and eventually lead to a fully turbulent spec-
trum [30]. Consequently, it’s typically inappropriate to view drift-waves as an amalga-
mation of weakly-interacting individual drift-waves; instead, they often constitute a uni-
fied spectrum of strongly interdependent drift-waves. Numerous studies have corrob-
orated this, demonstrating that the saturated drift-wave spectrum exhibits phenomena
such as energy cascading, spectrum broadening, and notably, enhanced cross-field
transport rates [27, 28, 26, 25, 29, 30].

3.2 Zonal Flow Theory

Zonal flows initially puzzled researchers when first observed in Jupiter’s atmosphere
[31]. These longitudinal bands, referred to as ‘zonal’ bands in atmospheric physics,
consist of counter-propagating gas flows, as illustrated in figure 3.3. While these struc-
tures, characterised by high shear regions, may seem like an improbable phenomenon
to emerge in the chaotic turbulence of the Jovian atmosphere, they have proven to be
remarkably stable.

Curiously, what began as an intriguing discovery in the study of gas giants has now
become directly relevant to the dynamics of tokamak plasmas right here on Earth.

This section is dedicated to providing a theoretical overview of zonal flows. Subsec-
tion 3.2.1 will delve into the spatial and temporal structure of the zonal flow eigenmode,
aiming to provide a clear mental image of zonal flows for the reader. Subsection 3.2.2
will focus on elucidating the driving mechanisms behind zonal flows, emphasising that
zonal flows are inherently expected to grow in any tokamak plasma. Finally, in subsec-
tion 3.2.3, we will explore the damping processes that affect zonal flows, highlighting
the fact that the lack of fast collisionless processes will consistently lead to the satura-
tion of zonal flows at significant amplitudes.

3.2.1 The Zonal Flow Eigenmode

The Spatial Structure of Zonal Flows

Zonal flow modes in tokamaks are radially localised, typically within the range of 1-
10 cm, and display axisymmetry in both the poloidal and toroidal directions. In other
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Figure 3.3: Gas flow velocities observed in the atmosphere of Jupiter. Counter-
propagating zonal flows give Jupiter it’s banded appearance. Image adapted from [31].

words, the zonal flow mode takes on the appearance of a hollow toroid, with its primary
flow oriented in the poloidal direction. For a visual representation of the spatial structure
of zonal flows, please refer to figure 3.4a, where you can observe that zonal flows
consist of a pair of poloidally counter-propagating flows, establishing a region with high
flow shear between them.

Relation to Convective Cells

Given that turbulent flow fields typically include rotating eddy structures, it can be ben-
eficial to conceptualise zonal flows as the strong asymmetric limit of such a convective
cell; imagine taking a convective cell and wrapping it around the magnetic axis, as
depicted in figure 3.4b. In this scenario, a pair of counter-propagating flows emerges.
Whilst a rigorous proof has been omitted, this description was intended to provide an
intuitive framework for visualising how counter-propagating poloidal flows can poten-
tially emerge from a turbulent flow field.

A Heuristic Justification for the Emergence of Counter-Propagating Poloidal Flows

Let’s dive deeper into understanding the zonal flow eigenmode by considering a spe-
cific scenario. Imagine an axisymmetric (n=m=0) electric potential perturbation within a
tokamak plasma. For the sake of this discussion, the perturbation’s origin is irrelevant.
In section 3.2.2 we will justify the growth of such a mode but for now we will assume
that it exists and remains constant with time.

The plasma response to this perturbation can be divided into two key compo-
nents: first, a rapid, compressible element known as the oscillatory geodesic acoustic
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(a) (b)

Figure 3.4: The spatial structure of zonal flows in the radial-poloidal cross-section. θ̂

represents the poloidal direction and φ̂ is the toroidal direction which points into the
page. a) shows a zonal flow as a pair of counter-propagating flows which are radially
localised. b) shows a convective flow cell wrapped around the magnetic axis, which is
an alternative perspective of zonal flow structure.

mode (GAM), and second, a slower, in-compressible response referred to as the zero-
frequency (or residual) zonal flow1. In both cases, the plasma response takes the form
of an E×B flow, as described by Equation 10.1. Considering the magnetic geometry of
a large aspect ratio tokamak, the E×B direction primarily aligns with the poloidal direc-
tion, with only a minor component pointing in the toroidal direction. While this explains
how a predominantly poloidal flow can be established within a tokamak, it doesn’t yet
clarify the emergence of a pair of counter-propagating flows.

Returning to our initial perturbation, we can deduce the existence of an equiva-
lent perturbation but with the opposite sign, invoking the principle of quasi-neutrality of
the plasma. This opposing perturbation must reside at an adjacent radius due to the
axisymmetry observed in both the poloidal and toroidal directions.

In summary, any initial axisymmetric potential perturbation must come in pairs with
opposite signs at adjacent radii. These perturbations induce E×B flows that run in
parallel - but opposite - directions, precisely justifying the spatial structure of zonal
flows.

Temporal Behaviour and Predator-Prey Oscillations

The zonal flow maintains a steady-state, and the mode is typically characterised as
having a zero-frequency. This is evidenced by Equation 10.1, which implies that there

1GAMs and residual zonal flows both technically fall under the umbrella of ‘zonal flow’. However, the
term ‘zonal flow’ is often colloquially used to refer to the residual component only. This convention will
be used throughout this thesis for the sake of brevity, and GAMs will be referred to as such to distinguish
the oscillatory branch.
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is no acceleration of the flow if the fields are static.
In practice, the zonal flow mode is often referred to as a quasi-zero frequency phe-

nomenon. This is due to a predator-prey relationship between the zonal flow and the
drift-waves: Initially, the zonal flow mode grows through non-linear interactions with the
drift-wave spectrum. Subsequently, the shear generated by the zonal flow suppresses
the drift waves. The driving force behind the zonal flow diminishes, leading to the decay
of the zonal flow mode. Eventually, as the drift-wave spectrum regains strength due to
a lack of suppression, it kick-starts the next cycle of this oscillation. This cycle repeats
at a characteristic frequency, typically on the order of kHz [32]. A further description of
the predator-prey model is covered in section 3.3.1.

In conclusion, while zonal flows are theoretically zero-frequency, from an experi-
mental measurement perspective, they are more accurately described as ‘quasi-zero
frequency’ due to the predator-prey-like oscillations between zonal flow and drift-waves.

A Non-Axisymmetric Field Caveat

The magnetic field within a tokamak is inherently poloidally non-axisymmetric, with
a stronger field strength closer to the central column. This non-axisymmetry should
theoretically lead to a non-axisymmetric E×B flow. However, this presents a challenge
since the zonal flow, by definition, is considered in-compressible[33]. Resolving this
issue involves two plausible approaches:

• radial flow component: one possibility is the existence of a radial flow compo-
nent with a return flow occurring at a different radius. This would eliminate the
need for compression and allow the zonal flow to remain in-compressible.

• toroidal Return Flow: alternatively, a toroidal return flow could also mitigate the
need for compression, preserving the in-compressibility of the zonal flow.

The exact nature of these return flows in actual tokamaks remains uncertain. Both
scenarios are plausible, and it’s also possible that they coexist.

Exploring density perturbations as an experimental marker

Additionally, an intriguing avenue of investigation relates to the density perturbation as-
sociated with zonal flows. In cases featuring Boltzmann electrons, there is the usual
expectation that density perturbations are directly proportional to potential perturba-
tions. However, a more rigorous analysis reveals an expression for density perturba-
tions, as shown in Equation 3.5, involving the zonal flow radial wavenumber (qr) and
the ion gyro-radius (ρi).

ñi

n
≈ q2

r ρ
2
i

eφ̃

Te
(3.5)

This analysis indicates that density perturbations (ñ) are indeed linked to electric po-
tential perturbations (φ̃ ), but the pre-factor (q2

r ρ2
i ) is typically small in modern tokamaks

[33]. Consequently, the density perturbation associated with zonal flows tends to be
negligible in most cases, making it unsuitable as an experimental marker.
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3.2.2 Zonal Flow Generation

Zonal flows emerge through non-linear interactions with drift waves, a phenomenon
extensively examined in prior literature using both theoretical and computational meth-
ods [33]. Consequently, the fundamental theory underlying this process has been well-
established, and the behaviour of zonal flow growth rates is theoretically well-defined.
A thorough understanding of zonal flow growth necessitates a step-by-step derivation
of its growth rate. However, a complete derivation lies beyond the scope of this thesis
and instead we will focus on a heuristic approach to understand the growth of zonal
flows. Consequently, this section provides an overview of zonal flow generation theory,
prioritising clarity and comprehension over the inclusion of mathematical details. For a
more detailed discussion of this theory and additional references, I refer the reader to
P. Diamond’s review paper on zonal flows [33].

First and foremost, it’s important to highlight that zonal flows and drift waves occupy
different spatial and temporal scales. Zonal flows are characterised by quasi-zero fre-
quencies (typically ≤ kHz) and mesoscale lengthscales (between the gyro-radius and
machine size), while drift waves operate at considerably higher frequencies (typically in
the range of 10-100 kHz) and lengthscales on the order of the gyro-radius. In turbulent
systems, energy transfer between different modes typically occurs through cascading
processes, where energy is continuously transferred through intermediate frequencies
via local interactions.

However, a remarkable feature of zonal flows and drift waves is their non-local in-
teraction in frequency and wavenumber space. In this context, energy transfer doesn’t
involve intermediate frequencies. To provide some general insight into non-local en-
ergy transfer phenomenon, let’s delve into a transfer process known as the Reynolds
stress. This process is prevalent in turbulent systems and is believed to be the under-
lying mechanism behind the interaction between drift waves and zonal flows.

Let’s begin by considering a generalised incompressible fluid. We can express the
relevant Navier-Stokes momentum equation as:

ρ
Dui

Dt
=− ∂ p

∂xi
+µ

∂ 2ui

∂x2
j

(3.6)

In this equation, u represents the fluid flow velocity, xi is a component of the coordinate
vector x, ρ is the fluid density, p stands for pressure, and µ denotes dynamic viscosity.
Unsurprisingly, Equation 3.6 illustrates that the evolution of the fluid flow depends on
the pressure gradient and viscosity.

Next, it’s common practice to decompose the total fluid flow in a turbulent system
into two components: the mean flow, denoted as ū, and the fluctuating flow, repre-
sented as u′. By employing the linear combination ui = ūi +u′i, we can substitute this
into Equation 3.6. Taking a time average of the expression and thus eliminating the
fluctuating quantities, we arrive at the following equation:

ρ
Dūi

Dt
= ρ

(
∂ ūi

∂ t
+ ū j

∂ ūi

∂x j

)
=− ∂ p̄

∂xi
+

∂

∂x j

(
µ

∂ ūi

∂xi
−ρu′iu

′
j

)
(3.7)

In Equation 3.7, we observe that the time evolution of the mean fluid flow still depends
on the pressure gradient and a viscosity term. However, there is an additional term,
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ρu′iu
′
j, which emerges. This new term serves to link the time evolution of the mean flow

(zonal flow) to the nonlinear interaction with fluctuating flows (turbulence).
Having illustrated how energy can be transferred through nonlinear interactions be-

tween drift waves and zonal flows, let’s delve into a more specific derivation. This
derivation aims to establish an expression for the growth rate of zonal flows in the
presence of a drift wave spectrum. The overall structure of the derivation will be as
follows:

1. An expression for the evolution of a seed zonal flow in the presence of a single
drift wave mode will be derived

2. The zonal flow evolution equation will be averaged over the interaction with an
ensemble of drift waves

3. The response of the drift wave ensemble to the zonal flow shear will be derived
to find the self-consistent evolution of the zonal flow

4. The growth rate of the seed zonal flow will be determined

We begin with the Charney-Hasegawa-Mima equation [25, 26], which serves as our
framework for describing the evolution of electric potential in a turbulent plasma:

∂

∂ t
(n−∆⊥φ)+(b̂×∆⊥φ) ·∆⊥(n−∆⊥φ)+

∂

∂y
φ = 0 (3.8)

Here, φ represents the electric potential, n denotes plasma density, b̂ signifies the
magnetic field direction, and y is the direction perpendicular to both the magnetic field
and the minor radial direction.

As our focus lies on drift waves and zonal flows, we define the following decompo-
sition:

n = nz f +nd and φ = φz f +φd (3.9)

In these equations, the ‘zf’ subscripts refer to zonal flows, and ‘d’ signifies drift waves.
Note that zonal flows exhibit negligible density perturbations (nz f = 0), while the drift
wave density is proportionally related to the drift wave potential, assuming adiabatic
electrons (nd ∝ φd). Consequently, we can eliminate density from Equation 3.9, yielding:

∂

∂ t
∇

2
φz f =− ∂

∂ t
⟨ṽrd ∇

2
φ̃d⟩− γdamp∇

2
r φz f (3.10)

Here, vrd represents the drift wave velocity, and γdamp is a generalised damping coeffi-
cient. Equation 3.10 illustrates that the time evolution of the zonal flow potential
is uniquely driven by the fluctuating drift wave potential. Specifically, the zonal
flow potential vorticity, ∇2φz f , evolves based on the spatial flux of the drift wave poten-
tial vorticity, ṽrd∇2φ̃d. This demonstrates that zonal flow evolution is not a process of
net vorticity generation, but rather a process of potential vorticity transfer.

Moving forward, we expand the scope of Equation 3.10 from the interaction with a
single drift wave, φ̂d, to the envelope of an ensemble of drift waves, |φ |2. This expansion
is justified as a single zonal flow is likely to interact with multiple drift waves. Further-
more, we introduce the concept of drift wave density, denoted as N, which serves as a
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conserved quantity representing the drift wave envelope. It can be related to the drift
wave envelope by the expression N ∝ (1+ k2

⊥ρ2
s )|φ d

k |
2. This leads us to the following

equation:

∂

∂ t
Ṽ z f ′ =

1
B2

∂ 2

∂ r2

∫
d2k

krkθ

(1+ k2
⊥ρ2

s )
2

δN
δṼ z f ′

(k,r, t)Ṽ z f ′− γdamp[Ṽ ′
z f ] (3.11)

In this equation, kr, kθ , and k⊥ represent the wavenumbers of the drift wave envelope
|φ |2, ρs corresponds to the ion gyro-radius at Te, and Ṽ ′

z f denotes the zonal flow shear.
Equation 3.11 illustrates the closed feedback loop and the self-consistent evolution of
the zonal flow in the presence of a drift wave ensemble.

At this point, it becomes evident that zonal flow growth is expected if the drift wave
modulational response to the zonal flow shear, ∂N/∂Ṽ z f ′, is positive. The quantity
∂N/∂Ṽ z f ′ is determined through linearisation of the relevant wave kinetic equation
(see [33]). This leads to the final expression for the zonal flow growth rate:

Γ =
−q2

B2

∫
dk2 k2

θ

(1+ k2
⊥p2

s )
2

γk

(Ω−qvg)2 + γk

(
kr∂ ⟨N⟩

∂kr

)
− γdamp (3.12)

Here, Ω represents the instability eigenfrequency, γk is a linear damping term, Γ signi-
fies the zonal flow growth rate, and q is the radial wavenumber of the zonal flow.

An essential observation from Equation 3.12 is that a positive growth rate necessi-
tates ∂ ⟨N⟩/∂kr < 0. This condition is met within any realistic drift wave spectrum, as the
alternative would imply a population inversion of the drift waves. Additionally, it’s worth
noting that the damping rate, γd, is typically expected to be small in comparison to the
drive term when the zonal flow starts with a small seed amplitude. Consequently, we
can conclude that the growth of zonal flow seed perturbations is positive in any
tokamak.

Furthermore, when investigating the corresponding transport coefficients, it can be
found that the radial transport associated with zonal flows is orders of magnitude slower
than the turbulent transport.

In conclusion, zonal flows are theoretically predicted to be widespread in tokamak
plasmas and represent an improvement in confinement when compared to transport
driven by drift wave turbulence. This is why zonal flows are considered a reliable and
benign repository for free energy in tokamaks.

3.2.3 Zonal Flow Damping

The preceding subsection demonstrated that the zonal flow mode will invariably expe-
rience a positive initial growth rate due to its interaction with the drift wave spectrum.
However, this alone doesn’t guarantee that the zonal flow mode will saturate at a sig-
nificant amplitude. If the damping rate scales more rapidly than the zonal flow growth
rate, the zonal flow will remain negligible. Therefore, understanding the damping mech-
anisms is crucial to assessing the extent of the zonal flow’s role in tokamak dynamics.

In any plasma, charged particles naturally counteract electric-potential-deviations
from equilibrium through a process known as ‘polarization shielding’. Typically, this
phenomenon is highly efficient and has the capability to completely shield potential
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perturbations, provided that there is an ample supply of charged particles. To assess
the effectiveness of this shielding, it’s crucial to consider both temporal and spatial
scales of particle transport.

The zero-frequency nature of zonal flows means that the transport timescale isn’t
a limiting factor. Instead, the effectiveness of shielding hinges on the restricted spa-
tial mobility of plasma particles. Notably, interactions with banana orbits can facilitate
particle transport over a scale up to the banana width. Given that zonal flows are
predicted to exhibit radial wavelengths comparable to the banana width, the extent to
which polarization shielding suppresses the zonal flow potential remains uncertain.

This question was addressed theoretically by Rosenbluth and Hinton in a large-
aspect-ratio tokamak with circular geometry [34]. They found that linear collisional
damping had a negligible effect on zonal flows in the deep banana regime. Instead,
they quantified the effect of neoclassical polarization shielding and discovered that
the zonal flow potential is not entirely shielded, leaving a residual potential with the
following form:

φq(t)
φq(0)

=
1

1+1.6ε−1/2q2
(3.13)

Here, ε = r/R represents the inverse aspect ratio, and q is the radial wavenumber of the
zonal flow. Equation 3.13 reveals that the aspect ratio of the tokamak plays a pivotal
role in influencing the residual amplitude of zonal flows; Tokamaks with a tighter aspect
ratio are expected to support zonal flows with a proportionally larger residual potential.
Moreover, zonal flows with larger radial wavelengths exhibit a proportionally greater
residual potential, presumably because spatially larger potentials are less effectively
shielded. Additionally, other collisionless damping mechanisms, such as transit-time
magnetic pumping and Landau damping, were shown to have no significant impact on
the zonal flow mode [35, 36].

Instead, the primary damping of the residual zonal flow is driven by collisional mech-
anisms. However, this process is not simply collisional damping but is additionally as-
sociated with the asymmetry of the magnetic field. When a fluid element moves from
the low-field side to the high-field side of the tokamak, it accelerates anisotropically
due to the conservation of magnetic moment, leading to a departure from thermo-
dynamic equilibrium. This anisotropy is subsequently thermalised through collisional
processes, draining energy from the zonal flow mode and resulting in overall damping.
Multiple more detailed collisional processes can thermalise the zonal flow mode, and
their relative significance depends primarily on the ion-ion collision frequency. This
dependence is shown in figure 3.5, which highlights that zonal flows are expected to
have larger amplitudes at either very low collision rates or very high collision rates com-
pared to the connection frequency. A detailed description of the underlying processes
is omitted from this thesis but can be found in P. Diamond’s review [33].

In summary, it has been demonstrated that polarization shielding is unable to en-
tirely suppress zonal flows, leaving behind a residual zonal flow potential. Instead, the
primary source of damping arises from collisional processes. In the absence of faster
decay mechanisms, zonal flows have the capacity to grow to substantial amplitudes
[33].

Y. W. Enters 21



Chapter 3

Figure 3.5: Theoretical zonal flow collisional damping rate dependence on ion-ion col-
lision rate. ωt is the connection frequency. Image adapted from [33].

3.3 The Drift-Wave–Zonal-Flow System

As previously discussed in sections 3.1 and 3.2, drift-waves, and subsequently zonal
flows, are anticipated to be pervasive within tokamak plasmas. In this section, we will
delve into the interplay between drift-waves and zonal flows, which forge a unified and
self-consistent system. Our primary objective here is to furnish a basic overview of the
system’s dynamics and equilibrium states.

To cover some specific aspects of the drift-wave–zonal-flow (DW-ZF) system, two
toy models will be discussed. These models will highlight aspects like the oscillations
between drift-wave and zonal flow amplitudes, and the existence of chaotic regimes.
Furthermore, we will embark on a more comprehensive portrayal of the system by
presenting numerical solutions to the relevant nonlinear diffusion equations. We will
also address the levels of turbulent transport and its scaling in the DW-ZF system.

By considering these different perspectives, there are numerous themes that will
consistently emerge. Specifically, we will observe the competition for energy between
zonal flows and drift-waves, the inhibitory effect of zonal flows on turbulent transport,
and the existence of a regime where the influence of zonal flows nearly extinguishes
turbulent transport altogether.

For a more detailed discussion and in-depth information, I recommend referring to
P. Diamond’s 2005 review paper [33].

3.3.1 DW-ZF Self-Consistent State

Predator-Prey Model

In this subsection we will cover a simple model capable of capturing some aspects
of the DW-ZF system. This model supposes that the zonal flow is driven by the drift
waves, while the drift waves, in turn, are suppressed by the presence zonal flows.
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Analytically, the model is described in equation 3.14(
∂

∂ t
− γL + γNL

)
⟨N⟩=−α⟨U2⟩⟨N⟩(

∂

∂ t
+ γdamp

)
⟨U2⟩= α⟨U2⟩⟨N⟩

(3.14)

Here, γL represents the linear drift-wave growth rate, and γNL represents the nonlinear
self-saturation of drift-waves. γdamp corresponds to the zonal flow damping term, α

characterises the zonal flow’s nonlinear drive coupling strength, ⟨U2⟩ stands for the
zonal flow amplitude, and ⟨N⟩ represents the drift wave amplitude.

Now, let’s have a look at some of the behaviours predicted by this model.

Predator-Prey Stable Points

There exist two steady-state solutions within the model, primarily governed by two
key parameters: γL and γdamp. Other parameters hold no substantial influence over
the qualitative behaviour of these solutions. The transition between these two states
becomes evident when varying γdamp, as is shown in figure 3.6.

Figure 3.6: Steady state solutions to the drift wave-zonal flow predator-prey system.
Y-axis represents the mode amplitude. Zonal flow mode shown by dotted line and drift
wave mode shown by solid line. Image adapted from [33].

At high γdamp, the model solution is given by the following:

⟨N⟩= γL/γNL ; ⟨U2⟩= 0
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It can be seen that only drift waves exist at nonzero amplitude in this regime. However,
this regime is not expected to be observed experimentally because zonal flows are
predicted to have low damping rates.

Conversely, when γdamp is low (0 < γdamp <
α

γNL
γL), the solution is as follows:

⟨N⟩= γdamp/α ; ⟨U2⟩= α
−1(γL − γNLγdampα

−1)

In this regime, drift waves and zonal flows coexist with nonzero amplitudes, revealing
several noteworthy features:

• As expected, the zonal flow population increases as the drift wave growth rate
increases.

• The zonal flow and drift waves compete for energy. As γdamp decreases, zonal
flow amplitude grows while the drift wave amplitude shrinks.

• Interestingly, the drift wave population remained independent of γL and is instead
entirely governed by γdamp.

Predator-Prey Dynamics

In this system, any deviation from the stable states, {⟨N⟩,⟨U2⟩}, leads to a damped
oscillation back to the stable solution. This decay may involve transient oscillations
between drift-waves and zonal flows. Two example limiting cases of the dynamics are
shown in figure 3.7.

(a) (b)

Figure 3.7: Phase space trajectories of the predator-prey model for the DW-ZF system.
a) shows oscillatory behaviour when there are no nonlinear self-stabilisation mecha-
nisms of the drift-waves, γNL = 0. b) shows the case when there is no zonal flow damp-
ing, γdamp = 0. Single-burst quenching events are shown where the final state depends
on initial conditions. Image adapted from [33].

Figure 3.7a illustrates one limiting case where the nonlinear self-stabilisation pro-
cess of drift-waves is excluded. Oscillations occur between drift-waves and zonal flows
around the stable point.
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Figure 3.7b presents the other limiting case where zonal flows are not linearly
damped. Here we observe single-burst quenching events of the drift-waves. Initially,
the drift-waves grow, driving the zonal flow. As the zonal flow grows, the drift-waves
decay and eventually reach zero amplitude. There is a complete quench, leaving only
the zonal flow. This scenario is believed to the underlying mechanism in the Dimits
regime, where turbulent transport is very strongly suppressed by zonal flows [37].

Single-Instability Model

A system is considered where a primary drift-wave is unstable with two stable side-
bands, in the presence of a zonal flow which is introduced artificially. Two observa-
tions are made which agree with the predator-prey model. Firstly, it is found that the
drift-wave growth rate, γL, is entirely governed by the zonal flow damping rate, γdamp.
Secondly, the Dimits regime is reproduced in the limit of negligible zonal flow damping.

Interestingly, one novel observation is made in this model. As γdamp is increased,
bifurcations in the system occur and eventually lead to a chaotic system, as can be
seen in figure 3.8.

Figure 3.8: Bifurcations observed in the normalised zonal flow amplitude, Z f , as the
normalised damping rate, γz, increases. Bifurcations eventually lead to a fully chaotic
system. Image adapted from [33].

Numerical Solutions

A set of nonlinear diffusion equations, which will not be shown here for brevity, can
be derived to predict the self-consistent spectra of the drift-waves and zonal flow [38].
In this model, the zonal flow reaches steady state when it’s nonlinear drive is bal-
anced by collisional damping. Similarly, the drift waves reach saturation when its linear
drive is balanced by linear damping, nonlinear damping and k-space diffusion induced
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by the zonal flow shear. Upon solving these diffusion equations, the basic trends of
the predator-prey and single instability models are qualitatively reproduced, although
quantitative differences are observed.

(a) γNL = 0 (b) γdamp = 0

(c) γdamp ̸= 0, γNL ̸= 0, γL ̸= 0

Figure 3.9: Time-evolution of the DW-ZF system according to nonlinear diffusion equa-
tions [38]. Three cases shown. Limit-cycle oscillation in a), single-burst quenching in
b) and transient oscillations before saturation in c).

As shown in figure 3.9a, limit-cycle oscillations are observed, in agreement with the
predator-prey model. Similarly, figure 3.9b exhibits single-burst quenching, which was
also observed in the predator-prey model.

Finally, a more general case is shown in figure 3.9c. Here, it can be seen that a
steady state is achieved after transient oscillations. Just like the toy models, the en-
ergy partition in the steady state between the zonal flows and drift-waves is governed
by the zonal flow damping rate, γdamp. Another interesting observation is that the aver-
age wavenumber of the system increases with time, a result of the drift-wave k-space
diffusion induced by the zonal flow shearing.
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3.3.2 Turbulent Transport Suppression

This subsection will briefly introduce some analytical expressions which highlight the
suppressive effects of the zonal flow shear on turbulent transport. Two expressions will
be shown, one with an artificially introduced shear flow and one that represents a self-
consistently evolved DW-ZF system. Both expressions show a significant reduction in
turbulent transport due to shear flow. Interestingly, the self-consistent model addition-
ally captures the transition from the transport-suppressed Dimits regime to the strong
turbulence regime.

The Effect of an Artificial Shear

Several analyses have been performed to investigate the impact that an artificially intro-
duced shear flow can have on the transport levels [39, 40, 41]. These studies focused
on ITG turbulence but the general findings are also applicable to drift-wave turbulence.

χturb ≃
(γL −ωE1 − γ∗1)

1/2γ
1/2
d

k2
y

(3.15)

Equation 3.15 presents an expression that illustrates the scaling of turbulent transport
in the presence of shear flows. As expected, it can be seen that increasing the ITG
growth rate, γL, and the zonal flow damping rate, γdamp, causes an increase in the
turbulent transport. Additionally, increasing the shearing rates leads to a reduction in
turbulent transport.

Transport Scaling in the DW-ZF System

A less simplistic study, which did not rely on the introduction of an artificial shear,
will now be covered [33]. Here, the DW-ZF system was evolved self-consistently, and
analytical expressions for the transport scaling were determined. The exact scaling
depended on the saturation mechanism of the zonal flow, but the general trend was
consistent. One example scaling is shown in Equation 3.16.

χturb =
1

1+ τ2
c v2

z q2
r

χturb,0 (3.16)

Here, τ2
c is the turbulence decorrelation time, v2

z is the saturated zonal flow velocity, q2
r

is the zonal flow radial wavenumber, and χturb,0 is the turbulent transport level in the
absence of zonal flows.

Once again, it is observed that zonal flows reduce transport levels. However, upon
closer inspection, it can be seen that there are two regimes in Equation 3.16. One
regime occurs where τ2

c v2
z q2

r ∼ 1, which is the case where strong turbulence dominates
the system. In this regime, turbulent transport scales identically to a system without
zonal flows. The other regime occurs near marginal stability of the turbulence and
τ2

c v2
z q2

r ≫ 1. In this case, turbulent transport is strongly suppressed. This is another ex-
ample of the Dimits regime, and the reduction in turbulent transport has been observed
experimentally [37].
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3.4 Global Transport Organisation: E×B Staircases

In this section, we will introduce a globally organised set of transport processes known
as the E×B staircase. Much like the system discussed in section 3.3, this system
undergoes self-consistent evolution, with zonal flows playing a key role in mediating
transport levels.

The term ‘staircase’ accurately characterises this phenomenon, as it originates from
initially smooth thermodynamic profiles observed in simulations, which subsequently
transform into quasi-periodic, step-like profiles. These distinctive profiles, exemplified
in figure 3.10, appear to be a prevalent feature in flux-driven simulations, provided they
encompass the relevant physics [42, 3]. Additionally, experimental indications of these
structures have been observed, and we will delve into this aspect in section 4.1.

Figure 3.10: Temperature gradient profile corrugations observed in flux-driven GY-
SELA simulations of the Tore Supra tokamak. Localised steep profile gradients co-
incide with zonal flows (seen in the inset). Image adapted from [42].

3.4.1 Description of the Numerical Simulations

The simulations conducted aimed to replicate Tore Supra plasma geometry, enabling
a direct comparison with experimental data. To achieve this, the GYSELA and XGCI
codes were employed, running full-f, flux-driven gyrokinetic simulations [42, 3]. It’s
worth emphasising the flux-driven nature of these simulations, as gradient-driven sim-
ulations are more commonly employed. In gradient-driven simulations, thermodynamic
profile gradients are imposed, prohibiting the spontaneous emergence of staircase-
like structures. In contrast, flux-driven simulations dictate the overall transport levels,
allowing the profiles to evolve self-consistently and take any form.

28 Y. W. Enters



Chapter 3

A multitude of simulations were conducted, encompassing a wide range of param-
eters and scenarios:

• Various heating mechanisms were considered

• Collisionality was varied, spanning an order of magnitude within the banana
regime

• Machine size was explored across the spectrum, from the smallest tokamaks in
operation today to the scale of ITER

• The turbulence drive was also varied, ranging from scenarios of marginal stability
to those characterised by strong turbulence

This comprehensive approach allowed for a thorough examination of the system’s be-
haviour under diverse conditions and configurations.

3.4.2 E×B Staircase Characteristics

The aforementioned L-mode simulations consistently revealed the presence of the
staircase pattern. In this section, we will delve into some noteworthy characteristics
linked to this pattern. Crucially, this observation exhibited a remarkable level of robust-
ness, showing no dependence on either machine size or the specific simulated exper-
imental conditions. Consequently, it suggests that the E×B staircase phenomenon
could be an inherent and nearly inevitable feature in tokamak plasma organisation.

One intriguing observation is the coincidence of strong profile gradients with poloidal
shear flows, which were characterised by coherence times spanning from 1 to 100 mil-
liseconds. These shear flows are typically spaced at intervals of 20 to 30 ion gyro-radii,
with each flow having a width of approximately 10 gyro-radii. Moreover, these flows
demonstrate a radial meandering behaviour, traversing the width of a shear flow within
a timescale of 1 to 5 milliseconds. Additionally, the locations of these flows do not
exhibit a direct connection to q-rationals, suggesting that they are not rooted in MHD
processes.

In the intervals between zonal flows, nearly flat gradients are observed. These
inter-shear regions exhibit periodic bursts of radial transport, which occur due to tur-
bulent avalanche-like processes. A visual example of these avalanches is shown in
figure 3.11, which was observed in fluid-model simulations [43]. These avalanching
phenomena represent a rapid radial transport channel, justifying the locally nearly flat
profile observations.

The zonal flows play a pivotal role as internal transport barriers, effectively blocking
the avalanches that might otherwise propagate to the machine scale. This underscores
the critical importance of zonal flows in suppressing turbulent transport. Without the
presence of zonal flows, avalanches would likely lead to nearly flat profiles across the
entire confined region of most tokamak plasmas. However, this blocking effect is semi-
permeable, allowing larger avalanches to breach a zonal flow. Near states of marginal
stability, the zonal flow may re-form but not necessarily at the same location. In cases
where turbulence drive is strong, the zonal flow may not be given the opportunity to
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Figure 3.11: Two zonal flows shown at x=25 and x=75 in a fluid-model simulation,
where the colour represents the flow velocity in the y-direction [all a.u.]. Intermittent tur-
bulent structures known as ‘ferdinons’ form and propagate radially, temporarily breach-
ing a zonal flow. Zonal flow reforms after breach. Image adapted from [43]

re-form, resulting in a regime dominated by turbulence. An illustrative example of inter-
mittent turbulent structures breaching zonal flows is shown in figure 3.11.

The intricate interplay between zonal flows and avalanches gives rise to the concept
of the mesoscale, represented by ∆. In numerical terms, ∆ corresponds to the spacing
between zonal flows. Below the scale of ∆, transport exhibits scale invariance and is
primarily mediated by the presence of avalanches. Conversely, at scales surpassing ∆,
avalanches become infrequent, especially near marginal stability, and transport char-
acteristics are predominantly dictated by the properties of the zonal flows. This high-
lights importance of incorporating multi-scale effects into turbulence simulations, as
the dominant transport mechanism fundamentally hinges on the scales encompassed
within the simulation.

Finally, the E×B staircase system has been found to be generally advantageous for
plasma confinement. Transport levels in a staircase-configured system are consistently
measured to be 2 to 3 times lower than in plasmas that do not exhibit the staircase
phenomenon.
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A Brief Review of Zonal Flow
Experimental Measurements

The experimental detection of quasi-stationary zonal flows presents a formidable set
of challenges. Part of this challenge originates from the intrinsic difficulty of measuring
poloidal flows (or radial electric fields) in high-temperature plasmas. In addition to this,
confirming a robust detection of the zonal flow mode requires the simultaneous execu-
tion of multiple measurements. Velocity measurements must be conducted simultane-
ously at several toroidal and poloidal positions to validate the flow mode’s symmetry.
This, in turn, necessitates the utilisation of (multiple) dedicated turbulence diagnostics,
a task that is often hindered by cost limitations or the constraints of diagnostic space.
The following ZF characteristics should be observable:

• Radially localised (i.e. sheared) poloidal flows

• Poloidal and toroidal mode symmetry (n=m=0)

• Near-zero frequency (sub-kHz)

• Nonlinearly driven by turbulence

The scientific literature is rife with hints of ZF characteristics, where papers claim to
have ‘observations consistent with quasi-stationary zonal flows.’ Nevertheless, con-
vincing direct identifications remain scarce.

Some early studies observed turbulent fluctuations with short radial correlation
lengths and extended poloidal correlation lengths [44, 45]. Poloidally sheared flows
have been documented in a range of fusion devices [46, 47, 48, 49]. GAMs, which
are comparable to ZF in terms of spatial structure and the nonlinear turbulence drive,
have repeatedly been detected [50, 51, 47, 52, 53, 54, 55]. However, GAMs have well-
defined frequencies, typically on the order of ∼10 kHz, which makes them significantly
easier to isolate. Conversely, the longer timescales associated with the sub-kHz ZF
requires longer steady-state plasmas to build up the statistics, which is often beyond
experimental capabilities.

Compounding the situation is a matter of terminology: both quasi-stationary ZFs
and GAMs technically exhibit flows with ‘zonal’ structures. Some research groups refer
to both quasi-stationary zonal flows and GAMs as ‘zonal flows’, a practice which is not
technically incorrect. Conversely, other groups reserve the term ‘zonal flow’ exclusively
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for quasi-stationary zonal flows. It is emphasised that, in this thesis, the terms ‘zonal
flow’ (ZF) and ‘geodesic-acoustic mode’ (GAM) refer specifically to the stationary and
oscillatory branches of turbulence-driven shear flow, respectively.

4.1 Prior Observations of Zonal Flows

This section will cover a non-comprehensive overview of ZF related measurements.
The intention was not to give a complete review of the field, but rather to point to
some influential results of existing measurements and act as a starting point for further
reading.

4.1.1 Observation of Radially Localised, Sheared Flows with n=m=0
near Zero Frequency

One early observation of zonal flows was reported in a 2004 Physical Review Letters
publication by A. Fujisawa et al. [56]. They employed two Heavy-Ion-Beam Probe
(HIBP) diagnostics on the Compact Helical System (CHS), which were toroidally sepa-
rated by 90 degrees. Figure 4.1 provides a schematic of this setup. These diagnostics
simultaneously provided local measurements of density and potential fluctuations at
500 kHz. The CHS was operated with a steady-state plasma to minimise MHD activity.

Figure 4.1: Geometry and observation points of the dual heavy ion beam probe set up
in CHS. Each probe takes measurements from three different radial locations. Image
adapted from [56].

Several observations supported the presence of zonal flows:

• The electric potential fluctuation power consistently peaked at frequencies less
than 1 kHz, as depicted by the red line in figure 4.2a.
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• Also in figure 4.2a, the blue line illustrated the coherence between potential fluc-
tuations at different toroidal locations, which also peaked at low frequencies (<1
kHz).

• Although not shown here, the phase difference between potential fluctuations
was found to be zero, not only when the probes were at the same radius but also
when they were placed on the same field line. This confirmed toroidal symmetry
across at least 90 degrees and poloidal symmetry from θ = 30 degrees to θ = 50
degrees.

• The peak coherence exhibited a strong variation when the radial position of one
of the probes was adjusted, suggesting a significant shear flow. This dependency
is depicted in figure 4.2b and implies a radial coherence length of 1.5 cm ± 0.5
cm for the low frequency mode.

• The flow amplitude for this mode was approximately 0.1 km/s, in contrast to a
background turbulent flow of around 1 km/s.

Summarising these observations, a radially sheared flow was identified with: toroidal
and poloidal symmetry, a frequency in the range of 300-700 Hz, and radial localisation
with a wavelength of 1.5 cm ± 0.5 cm. Taken together, these measurements strongly
support the detection of the quasi-stationary zonal flow.

(a) (b)

Figure 4.2: Results from CHS heavy ion beam probes detecting zonal flow. (a) Power
spectra of potential difference (red), and coherence between potential differences
(blue) at the two toroidal locations. Dashed red lines show the not-fully-converged
power spectrum at longer segment lengths. (b) Radial correlation structure of zonal
flow. Solid red circles represent the traditional correlation coefficient. Open blue circles
represent coherent structure from FFT analysis. Both images adapted from [56].
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4.1.2 Nonlinear Turbulence Drive of Zonal Flows

Various aspects of zonal flows were observed in the previously discussed paper by Fu-
jisawa; however, the turbulence drive remained unaddressed. The experimental mea-
surement of the nonlinear drive necessitates higher-order analyses, requiring longer
integration times and higher signal-to-noise ratios to achieve statistical significance.
This renders it a considerably more challenging measurement.

Early works involved the development of single-field nonlinear analyses capable of
observing the nonlinear coupling strength between density fluctuations [57, 58]. For
instance, these methods were employed to directly measure the nonlinear interactions
between turbulent density fluctuations underlying the turbulent energy cascade in the
Texas Experimental Tokamak (TEXT). However, nonlinear interactions between turbu-
lent density fluctuations and flows could not be investigated in these experiments.

This section will discuss a paper that refined these early methods, enabling not
only the determination of the direction of the energy transfer but also encompassing
the multi-field nonlinear coupling between the density and velocity field [59]. Note that
this thesis measured the nonlinear coupling between the GAM and the turbulence.
However, these techniques have also been applied to ZF-turbulence coupling in sub-
sequent studies [60, 61].

Measurements were conducted at the edge of a steady L-mode discharge of the
DIII-D tokamak. The beam-emission spectroscopy diagnostic was utilised to infer 2D
density fluctuation images at a 1 MHz sampling frequency. Velocity fields were inferred
from the BES data using time-delay estimation techniques. In these particular shots,
the GAM existed as an 18 kHz mode with significant coherence between the GAM and
turbulence intensity.

The nonlinear interactions between density fluctuations and poloidal velocity fluctu-
ations were quantified by measuring the transfer function, as represented in Equation
4.1. Here, T θ

n ( f ′, f ) denotes the nonlinear transfer function between density fluctua-
tions, ñ( f ), with frequency f , and density gradient fluctuations, ∂ ñ

∂θ
( f ′), with frequency

f ′, mediated by the fluctuating poloidal flow Vθ . The angled brackets denote the short-
time average. Positive T θ

n ( f ′, f ) values indicate energy transfer from gradient fluctua-
tions, ∂ ñ

∂θ
( f ′), to density fluctuations, ñ( f ).

T θ
n ( f ′, f ) =−Re

〈
ñ( f )Ṽθ ( f − f ′)

∂ ñ
∂θ

( f ′)
〉

(4.1)

The quantities ñ( f ) and ∂ ñ
∂θ

( f ′) could be directly extracted from the beam emission
diagnostic, while the flow, Vθ , was inferred using time-delay estimation methods (see
section 5.3). Thus, the transfer function could be calculated directly, and the result
is shown in figure 4.3a. This figure illustrates that all density fluctuations with f > 50
kHz gain energy from the lower-frequency density gradient fluctuations. Conversely,
the lower-frequency density gradient fluctuations lose energy to the higher-frequency
density fluctuations. The frequency separation, f-f’, for these interactions is consistently
equal to the GAM frequency of 18 kHz, suggesting that the GAM is mediating this
energy transfer. Overall, the energy is progressively transferred to higher frequencies
until it is dissipated at >150 kHz.

For comparison with this experiment, nonlinear numerical simulations were con-
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(a) (b)

Figure 4.3: Nonlinear interactions between poloidal flow and turbulence. (a) Experi-
mental bispectrum from BES diagnostic on DIII-D. Fluctuation energy is transferred to
progressively higher frequencies through a mediating 18 kHz GAM. (b) Bispectrum of a
simulated plasma from numerical simulations representative of the DIII-D experiment.
No GAM was present in the simulations. Instead, a ZF mediates the nonlinear transfer.
Images adopted from[59].
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ducted using the gyrokinetic code ‘GYRO.’ A plasma similar to the experimental plasma
was simulated, but instead of the GAM, quasi-stationary zonal flows were present. The
corresponding transfer function is shown in figure 4.3b, which demonstrates a qualita-
tive resemblance to the experimentally observed transfer function, with one difference:
the two transfer lines are now adjacent to the ω = ω ′ line, representing mediation of the
quasi-zero-frequency zonal flow. Nonetheless, the overall pattern remains the same,
with energy nonlinearly transferred to progressively higher frequencies until it is dissi-
pated in the high-frequency range where the turbulence is linearly stable.

In summary, this thesis presents experimental measurements of the nonlinear in-
teraction between GAM and turbulence. Fluctuation-energy transfer is mediated by the
GAM and transferred to progressively higher frequencies until it is dissipated. Note
the lack of direct evidence to identify the energy source of the GAM. Nevertheless, the
experimental results were compared with numerical simulations, which showed qualita-
tive agreement and suggested that ZF can play the same mediating role as the GAM.
Since the ZF is not observed in these experiments, it is suggested that the GAM is
instead the main regulator of turbulence.

4.1.3 Sheared Flows and Confinement Transitions

Sheared flows can play a pivotal role in confinement transitions and are believed to act
as part of a triggering mechanism. Early observations indicate an increase in ZF or
GAM power, coupled with a simultaneous decrease in turbulence power just before the
L-H transition [48, 62, 63]. Subsequent studies on L-H transitions have solidified the
critical role of sheared flows through phase delay observations and nonlinear transfer
analyses [64, 65, 60, 66, 32, 67]. These findings have also been extended to I-mode
confinement transitions, where GAMs were identified as playing a key role in the fluc-
tuation dynamics [52, 66].

An illuminating narrative that underscores the role zonal flows can play in the L-H
transition goes as follows. Let’s consider an L-mode plasma where turbulence and
zonal flows exist in equilibrium. If the nonlinear drive of the zonal flow is temporarily
enhanced, surpassing the turbulence drive, the zonal flow will rapidly absorb all turbu-
lent energy. This large amplitude shear flow, combined with suppressed turbulence,
results in strongly enhanced local gradients. If the local pressure gradient surpasses
a critical threshold (30-100% larger than typical in L-mode [65, 32]), the gradient can
self-stabilise. This is achieved through a gradient-driven neoclassical shear that sup-
presses transport and maintains the edge gradient. The zonal flow amplitude will decay
due to a lack of turbulent drive, but the edge gradient will self-consistently remain, com-
pleting the transition to H-mode.

Note that large amplitude zonal flows are only one possible triggering mechanism.
The transition into H-mode can be induced through various methods, provided a suf-
ficiently prominent edge gradient, equivalent shear flow, or radial electric field well is
initiated in the edge plasma. For example, confinement transitions have also been trig-
gered by supersonic mass injection into the edge [68] and direct biasing [69, 70, 71],
which initialised the edge gradient and Er well, respectively.
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4.1.4 Observations of the E×B Staircase

The emergence of the E×B staircase in numerical simulations has been discussed in
section 3.4. Bolstering these numerical simulations, several experimental observations
were made in the Tore Supra tokamak [3]. Radial profiles of turbulent fluctuations,
along with the determination of radial correlation lengths of the turbulence, were facili-
tated through X-mode reflectometry. The E×B staircase is expected to be observable
by imprinting its quasi-regular structure on the radial correlation length. As such, a cor-
rugation of radial correlation lengths, consistent with the E×B staircase, was observed
experimentally, as seen in figure 4.4. Additionally, the correlation length troughs did
(mostly) not align with q-rationals, suggesting that MHD activity was not responsible for
the observed structure. This experimental measurement, although indirect, provided a
tantalising glimpse of the E×B staircase in an experimental plasma.

Figure 4.4: Reflectometer coherence length in Tore Supra showing corrugations as ex-
pected from the E×B staircase. S1, S2, and S3 do not align with q-rationals, suggesting
no MHD involvement. Image adapted from [3].

More recent experimental hints of the E×B staircase were presented in W. Liu’s
2021 publication [72]. In these experiments, HL-2A, a large-aspect ratio tokamak, was
utilised. The tokamak was operated in L-mode, with intermittent MHD activity observed
in the relevant shots. However, significant steady-state periods were isolated between
these MHD bursts for the purpose of their investigations.

To record data on density fluctuations, a BES system, featuring 2 (vertical) by 24
(radial) channels, was employed, encompassing minor radii ranging from 0.45 to 1.2
r/a. Some results from this diagnostic are presented in figure 4.5. Remarkably, in-
terruptions in the radial structure of the fluctuations were intermittently observed at
various locations, indicated by asterisks. The break in radial structure is most clear
at the outermost asterisk, which corresponds to the last-closed flux surface (LCFS)
and is therefore unrelated to the staircase. At the two innermost asterisks, one can
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consistently observe radial structures extending beyond these positions, making these
‘breaks’ in structure less clear.

The structures in figure 4.5 seem to propagate radially but encounter barriers at
these asterisk-marked locations, implying a potential connection with transport barri-
ers. However, the barber pole illusion, known to cause misleading apparent motion,
may be at play here due to the limited number of vertical channels [73]. Therefore,
uncertainty exists regarding whether the observed propagation aligns with true motion
or misleading illusory motion. Supplementary measurements, as portrayed in figure
4.6c), displayed a reduction in radial correlation lengths at the same asterisk-marked
locations, although it is unclear if these corrugations are significant due to the lack of er-
ror margins. These observations may point to the existence of weak, semi-permeable
transport barriers, but results remain inconclusive.

Figure 4.5: Radial-temporal evolution of normalised density fluctuations with a 25-120
kHz band-pass filter to isolate the turbulence. The asterisks indicate the pink box
locations in figure 4.6. Image adapted from [72].

By examining the BES kr − kθ spectra, eddy tilting angles were investigated, al-
though not shown here. The claim was made that increased eddy tilting was observed
coinciding with the asterisk locations, hinting at the presence of localised shear flows.
Although it is certainly true that structural disturbances are observed at these locations,
it is unclear if these observations correspond to eddy tilting, especially considering the
real possibility of aliasing with this BES set-up.

The f − kθ spectra, which are also not shown here, show clear signs of aliasing
at high wavenumbers. Despite this, reversals of the phase velocity were observed
to occur at the asterisk locations. This is an interesting observation because flow
reversals are not expected from the E×B staircase. Instead, localised shear flows
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are expected to be observed on top of the background flow. The nature of these flow
reversals remains unclear, although it is noteworthy that this structure could not be
reproduced in measurements of the toroidal or neoclassical flows.

For the measurements of electron temperature and electron density profiles, the
electron cyclotron emission and wave reflectometer diagnostics were relied upon, re-
spectively. The results of these measurements can be found in figure 4.6a) and 4.6b).
Local increases in the gradients are observed at the asterisk locations, which would be
consistent with the staircase transport barriers. Contrary to this, the peaks are mostly
within the given error margins, so it is unsure if these variations are statistically sig-
nificant. Another point of contention is that the alleged gradient peaks coincide with
q-rationals, making it challenging to disentangle the observations from MHD activity.

Figure 4.6: Profiles of (a) ∇Te given by the ECE, (b) ∇ne given by the FMCW reflec-
tometer, (c) radial correlation length Lc of density fluctuations obtained from BES, and
(d) safety factor, q, computed by the EFIT. Pink rectangle locations correspond to as-
terisk locations in figure 4.5. Image adapted from [72].

In conclusion, a tantalising glimpse of the E×B staircase was observed in Tore
Supra, as shown in figure 4.4. Subsequent attempts (by Liu et. al. [72]) to replicate
and build upon this observation have fallen short of achieving an unquestionably con-
vincing result. Once again, tantalising indications of the E×B staircase were noted,
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but a definitive observation remains elusive. Within these publications, the suggestion
of employing methods such as velocimetry analysis for the identification and charac-
terisation of sheared flows was repeatedly stated as a promising approach to detect
the E×B staircase, which is a point that this thesis attempts to address.
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An Overview of the Tokamak,
Diagnostics, and Analysis Techniques

This chapter introduces some experimental details and context necessary for the re-
mainder of this thesis. The specific tokamak which was used to gather experimental
data for this thesis is introduced in section 5.1. In addition to a basic overview of the
machine, general pros and cons of spherical tokamaks are discussed.

The relevant diagnostic that was used to gather experimental data is also introduced
in section 5.2, with a basic overview of the underlying physics and a description of the
diagnostic capabilities.

Two velocimetry techniques commonly used in turbulence investigations are intro-
duced in sections 5.3 and 5.4. Basic overviews of their underlying reasoning are given
along with descriptions of step-by-step inner workings.

5.1 The Upgraded Mega-Ampere Spherical Tokamak

The Upgraded Mega-Ampere Spherical Tokamak (MAST-U) is currently the most pow-
erful spherical tokamak in the world. Although referred to as an upgrade of the original
MAST, over 90% of the components are new, resulting in large improvements to the
machine capabilities. Higher performance and longer pulses can be achieved due to
increased heating power and a stronger magnetic field. Additionally, a novel plasma
exhaust system leads to decreased impurity contamination in the core whilst improving
the divertor heat spreading. An overview of the machine parameters is given in Table
5.1 and a schematic is shown in figure 5.1. All in all, this machine is able to produce the
most reactor-relevant plasmas of any spherical tokamak to date. This makes it useful
for next-generation machines like ITER and especially relevant to the development of
the UK-based Spherical Tokamak for Energy Production (STEP) project.

Spherical tokamaks can represent a significantly more compact design than con-
ventional tokamaks, as seen in figure 5.2. This enables the use of smaller magnets,
which represents a major cost saving in tokamak construction, and leads to more
energy-efficient plasmas. Additionally, due to the magnetic geometry, the particles
spend significantly more time on the ‘favourable’ inboard side of the plasma, which
leads to enhanced plasma stability. This delayed onset of instabilities enables these
machines to operate at higher plasma beta, which is a magnetic efficiency defined
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as the ratio of the plasma pressure to the magnetic pressure. These benefits make
spherical tokamaks a leading contender on the route to compact fusion power plants.

Figure 5.1: Rendering and cut-out of MAST-U.

MAST-U started operations with first plasma in October 2020. Campaign 1 ran from
April 2021 until October 2021, mostly involving basic scenario development. Unfortu-
nately, no BES data relevant to this thesis was produced during campaign 1.

Campaign 2 ran from May 2022 until January 2023. Throughout this campaign, the
heating power, plasma current, magnetic field strength, and pulse length were roughly
comparable to the plasmas observed in the old MAST. Additionally, the appearance of
a locked mode resulted in limited rotation of the plasma, with typical toroidal velocities
below 50 km/s, significantly below typical MAST velocities that exceeded 150 km/s.
With the Beam Emission Spectroscopy diagnostic fully operational, this campaign was
supposed to provide the bulk of raw data for analysis in this thesis. Unfortunately, all but
10 shots in campaign 2 had an optical filtering issue with the BES diagnostic, rendering
the shots useless for ‘normal’ velocimetry analysis1. Out of the remaining 10 shots, 9
disrupted early, leaving only shot #46459 as a suitable candidate for image-velocimetry
analysis. This shot will be analysed in chapter 8. Campaign 3 was scheduled to start
early summer 2023, which fell outside the timeline of this thesis.

1I will self-indulge in stating that I was not involved in the operation of BES.
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Parameter Design value
Major and minor radii (m) 0.7/0.5

Pulse duration typical 1-2s, max 5s
Electron density 1.5×1020 m−3

Electron temperature up to 3 keV
Toroidal rotation typically 150 km/s
Normalised beta 3-6
First wall material Carbon (graphite)

Maximum toroidal magnetic field (T) 0.8
Maximum plasma current (MA) 2.0

Maximum elongation 2.5
Triangularity range up to 0.6
Divertor geometry closed, pumped
Plasma heating up to 6 MW ohmic + NBI

Table 5.1: MAST-U machine operational parameters and characteristics.

Figure 5.2: Plasma comparison between spherical tokamaks and conventional toka-
maks.
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5.2 Beam Emission Spectroscopy

The Beam Emission Spectroscopy (BES) diagnostic is typically employed to capture
two-dimensional images of plasma density fluctuations [74, 75, 76]. It operates as
an active diagnostic, requiring the simultaneous use of Neutral Beam Injection (NBI),
which launches high-energy neutrals (usually atomic deuterium) into the plasma. These
neutrals undergo collisional interactions with the main species ions, impurity ions, and,
to a lesser extent, free electrons:

D0
beam +D+

plasma → D0∗
beam +D+

plasma

D0
beam +Zz+

plasma → D0∗
beam +Zz+

plasma

D0
beam + e−plasma → D0∗

beam + e−plasma

(5.1)

The resultant excited beam neutrals emit light which is doppler shifted according to the
velocity of the incoming beam and the angle between the beamline and the viewing
direction. The beam emission can therefore be localised and isolated from the back-
ground emissions. The emissions are rich in information and measurements thereof
can be used to determine a number of metrics, such as the magnetic field strength and
direction, and neutral particle density.

For example, the v×B Lorentz electric field experienced by the neutrals causes
Stark splitting of the energy levels. The spacing between the energy levels can be
measured to determine the magnitude of the magnetic field, given that the beam ve-
locities are known. Similarly, the polarisation patterns of the emission lines can be
compared to determine the local direction of the magnetic field.

The beam emission intensity fluctuations are generally dependent on local plasma
temperature and density fluctuations. However, the plasma temperature is typically
very small compared to the beam temperature and can be assumed negligible [77].
This means that the intensity fluctuations primarily depend on local density fluctuations,
which is the measurement that will be exploited throughout this thesis.

In MAST-U, the BES diagnostic utilises an 8x8 array of Avalanche Photo-Diodes
(APDs) to record emissions [74, 75, 76]. An optical filter is employed to isolate the
Doppler-shifted emission, enhancing the contrast with background emissions and al-
lowing for signal localisation along the line of sight of the detectors, as depicted in
figure 5.3a. The 8x8 array of detectors generates two-dimensional images of density
fluctuations in the radial-poloidal plane, as illustrated in figure 5.3b. The BES field of
view can be adjusted radially through a motor in the internal optics, facilitating mea-
surements from the core to the edge, as shown in figures 5.3a and 5.3b. The APD
channels provide a spatial resolution of approximately 1.6 cm by 1.6 cm, enabling the
resolution of the ion-scale turbulence. Additionally, the system boasts a refresh rate of
4 MHz, sufficiently fast to freeze the turbulent motions of the plasma.
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(a) (b)

Figure 5.3: Geometry of the BES diagnostic on MAST-U. a) shows the top-down view of
MAST-U, with the SS neutral beam, and BES sight-lines. b) shows the radial-poloidal
view of MAST-U with the detector channel measurement locations. Three different
radial viewing locations are shown in blue, orange and green. Image credit: S. Thomas,
RO of MAST-U’s BES.
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5.3 Cross-Correlation Time-Delay Estimation

Cross-correlation time-delay estimation (CCTDE) is a technique used to estimate the
velocity between two spatially separated time-signals. It is a specific implementation
of the general cross-correlation-based Particle Image Velocimetry (PIV) approach [78].
This technique relies on finding the time-delay, denoted as τm, at which the cross-
correlation between the two signals is maximised. When the maximum amplitude of the
cross-correlation function (CCF) is close to one, it suggests that identical fluctuations
exist in both signals and have travelled between the two spatial locations in time τm.
Since the spatial separation between the two signals is typically known, one can infer
velocity by dividing this known distance by τm. By repeating this process for various
spatial locations, a velocity field can be constructed.

During the velocimetry testing in this thesis, the two-point CCTDE method is specif-
ically focused on, which can be considered fundamental to most other CCTDE varia-
tions. Consequently, the results presented in section 6.2 can be extrapolated to more
modern and elaborate techniques such as the line method [79] and the hybrid method
[80]. The procedure for the two-point technique is outlined below:

• A time-series of spatially resolved images is loaded.

• Two spatially separated pixels are selected, and their time-signals are cross-
correlated using the following function:

CCF(τ) =


N−1

N+τ−1
∑

N−τ

n=1 [ f (n+τ)− f̄ ][g(n)−ḡ]√
∑

N
n=1[ f (n)− f̄ ]2[g(n)−ḡ]2

, τ < 0

N−1
N−τ−1

∑
N−τ

n=1 [ f (n)− f̄ ][g(n+τ)−ḡ]√
∑

N
n=1[ f (n)− f̄ ]2[g(n)−ḡ]2

, τ ≥ 0
(5.2)

where N is the length of the time-series, τ is the time-delay between the two
signals f and g, and f̄ and ḡ represent their means. The time-delay typically
ranges from -N to N frames. The pre-factor in the expressions is included to
normalise the CCF based on the length of their overlap, which varies with τ.

• The time-delay τm at which the CCF peak occurs is determined. If the correlation
peak exceeds a user-imposed threshold between 0 and 1, the velocity is inferred
as v = ∆ℓ/τm, where ∆ℓ is the spatial separation between the two signals.

• This procedure is repeated for all pixel pairs in both orthogonal directions to pro-
duce two spatially resolved two-dimensional velocity fields.

An essential user-defined parameter in this context is the characteristic separation dis-
tance, denoted as ∆ℓ. This parameter signifies the distance between the selected
pixels used for analysis. The implications of varying both the separation distance ∆ℓ
and the length of the time-series, denoted as N, are elaborated upon in section 6.2.

One noteworthy source of spurious velocity measurements is the ‘barber pole illu-
sion,’ named after the apparent up/down motion of a spinning barber’s pole [74, 81],
as illustrated in figure 5.4. This effect can occur especially when large, tilted density
features propagate through the frame. Similar to a barber pole, tilted density features
may appear to move in a different direction than their true underlying velocity. In such
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Figure 5.4: The apparent up/down motion of a barber pole as it spins. Adapted from
[73].

cases, distinguishing between apparent motion and true motion can be challenging
and sometimes impossible for any velocimetry method.

In tokamaks, the barber pole illusion can manifest in two primary ways. The first
is where field-aligned density filaments are observed along the radial direction. The
typical motion of the filaments is primarily in the toroidal direction but due to the tilt-
ing of the filaments, this can look like poloidal motion. For the purpose of this thesis,
the previous manifestation will not be a problem because no measurements are made
viewing along the radial direction. The second possibility is where density structures
are tilted in the radial poloidal plane. This is frequently observed especially in high
shear tokamak plasmas. When viewed along the toroidal direction, as is approximately
the case with the BES diagnostic, the primarily poloidal motion can have the illusion
of propagating in the radial direction. This version can result in spurious velocity mea-
surements and the extent to which CCTDE is susceptible to the barber pole illusion is
investigated in section 6.2.3.

5.4 Dynamic Time-Warping

Dynamic Time Warping (DTW) is a technique within the broader framework of the
‘optical flow’ approach in Particle Image Velocimetry (PIV), where the assumption is
made that brightness is conserved along flow trajectories. An overview of optical flow
is presented in the introductory book by Cai et al. [82]. The primary goal of DTW is
to determine an optimised displacement field from one image to another [83, 84, 85,
86]. The spatial transformation is achieved through an iterative process that initially
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calculates a displacement field based on the largest intensity features, followed by
increasingly smaller corrections in subsequent iterations. The optimisation in each
iteration is based on minimising the intensity difference between the two images.

DTW is a promising technique in image velocimetry due to its theoretical capabil-
ity to determine accurate displacement fields, even in challenging scenarios such as
turbulent flow fields. Furthermore, it offers the potential to deliver velocity fields at the
diagnostic sampling rate, whereas other techniques, such as CCTDE, offer sampling
rates typically at least an order of magnitude slower.

The operational details of the algorithm are thoroughly explained in G. Quenot’s
1998 paper [83] and will be briefly summarised here. Two images, between which an
optimised transformation is desired, are fed into the DTW algorithm. The two images
are then divided into strips which overlap each other by half in the short direction, as
can be seen in figure 5.5a. The number of pixels along the short direction is referred to
as the strip width. Optimised displacements are determined along the long direction,
or ‘slicing direction,’ of the strips, as depicted in figure 5.5b. The optimisation process
is based on minimising the intensity difference between the two strips [83].

The division of the image into strips introduces a natural ordering of pixels, imposing
a continuity constraint on the displacement search. By recombining the strips into the
whole images, a full displacement field is constructed with pixel displacements along
the slicing direction of the strips. This process is then repeated in the orthogonal
direction, inferring a 2D displacement field.

In the first iteration, the algorithm infers a displacement field weighted towards in-
tensity features with a spatial size comparable to the first strip width. Subsequent
iterations progressively refine the displacement field by using smaller strip widths. In
this thesis, the strip width was reduced by a factor of

√
2 in each iteration, following

the convention used by Quenot [83]. The exact code utilised throughout this thesis is
available in version 1.0.0 of S. Thomas’ GitLab repository [87].

(a) (b)

Figure 5.5: Strips used in the DTW algorithm. a) shows how the images are split into
overlapping strips, with alternating slicing directions and increasingly small strip widths.
b) shows displacements between strips of subsequent images. Images adapted from
[83].
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Testing Velocimetry Methods Using
Synthetic Data

This chapter focuses on the testing of velocimetry methods. Specifically, the two most
commonly used methods: Cross-Correlation Time-Delay Estimation (CCTDE) and Dy-
namic Time-Warping (DTW) will be tested for accuracy and precision. These methods
have typically been tested in previous literature for specific scenarios [88, 89, 80, 90,
91, 86]. However, as will become clear in this chapter, the results and observations un-
der specific conditions should not be extrapolated outside the tested parameter range
due to strongly nonlinear behaviours of both methods. The investigations in this chap-
ter aimed to achieve the following:

• to quantify the accuracy and precision for both CCTDE and DTW under a broad
range of conditions.

• to test both techniques to the limits of their operational parameter spaces.

• to provide examples of the reliable application of velocimetry techniques using
the results in this chapter.

• to compare the techniques with each other under controlled conditions.

Synthetic data was generated to provide the controlled conditions under which both
techniques could be tested, as is discussed in section 6.1.

CCTDE was tested in section 6.2, and DTW was tested in section 6.3. Note that
the results sections for both CCTDE and DTW can be rather dense to read and may
require several passes to fully grasp. Instead, it is recommended to start with the
discussion and summary sections for an overview and return to the results sections
if further details are desired. Note that digital copies of all results graphs, the vast
majority of which are not shown in this thesis, are available from the authors upon
reasonable request.

A cross-comparison of the techniques can be found in section 6.4, and an example
workflow which applies the results in this chapter to the application of the techniques
is covered in section 6.5. A general discussion and summary can be found in section
6.6.

49



Chapter 6

6.1 Generating Synthetic Turbulence Fluctuation Data

Synthetic data were generated with the primary objective of accurately representing
the common structures observed in turbulence diagnostics, such as gas-puff imaging
[92] and beam-emission spectroscopy [75]. These diagnostic methods capture density
fluctuation data in the form of a time-series of two-dimensional images. While the
primary focus was on these specific diagnostic techniques, the synthesised data can
effectively represent turbulent fluctuations found in any data-set.

Two distinct categories of fluctuation structures were generated. The first category
consisted of ‘isolated density fluctuations,’ often observed as individual density fluc-
tuations propagating through plasmas near marginal stability. We shall refer to this
category as ‘isolated density feature’ (IDF) data. Note that, throughout this thesis,
these isolated density features are occasionally denoted as ‘blobs.’ It is essential to
clarify that, in the context of this chapter, the term ‘blob’ does not specifically relate to
the scrape-off layer filaments observed in magnetically confined plasmas [20].

The second category comprised ‘turbulent density fields’ (TDF), representing the
density structures commonly observed in fully-developed turbulent plasmas. It is note-
worthy that these data types are distinguished not because they correspond to dis-
parate turbulence regimes in real plasmas but rather due to their distinct data genera-
tion methods. In fact, one could conceptualise IDF data as the large feature-size limit
of TDF data.

The synthetic data generation process was controlled by three primary user inputs:

• in-plane velocity field imposed on the density structures

• characteristic spatial scales associated with the density structures

• signal-to-noise ratio of the data

Additionally, the orientation of the fluctuations could be adjusted to investigate the im-
pact of the barber pole illusion (as discussed in section 6.2.3). Furthermore, sheared
flows could be introduced in the TDF data.

All variables in this thesis are expressed in terms of machine units. For example,
velocities are given in pixels per frame, and lengthscales are represented in pixels.
This approach ensures that the results can be applied to a wide range of diagnostic
applications.

6.1.1 Isolated Density Features

Synthetic data were generated to simulate the behavior of isolated density features
as they propagate through the field-of-view. Images of these isolated density features
were created using a two-dimensional Gaussian function as described by Equation 6.1,
where A and (x0,y0) represented the amplitude and centroid location of the blob, while
(σx,σy) denoted the standard deviations of the Gaussian blob shape, offering control
over the spatial size of the blobs.

z(x,y) = A exp

(
−(x− x0)

2

2σ2
x

− (y− y0)
2

2σ2
y

)
(6.1)
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However, true Gaussian features, as defined in Equation 6.1, extend infinitely in spa-
tial extent, which is non-physical and unsuitable for testing purposes. To localise the
density features, the following process was applied:

1. 25% of the maximum intensity was subtracted from all images

2. any resulting negative intensities were set to zero

3. the remaining intensities were scaled by a factor of 4/3 to restore the original
maximum amplitude

This resulted in a modified two-dimensional Gaussian shape with a finite spatial extent
that could be calculated in each direction using Equation 6.2, where ∆λx,y represented
the full size of the blob in pixels in the x- or y-direction, often referred to as the blob
y-size or x-size throughout this thesis. An example of a synthetic IDF image can be
found in figure 6.1a.

∆λx,y = 2
√

2ln(1/0.25)σx,y = 3.33σx,y (6.2)

Synthetic time-series were generated by producing images of these blobs and shift-
ing the blob’s centroid according to the imposed velocity with each frame. All images
had dimensions of 128 pixels by 128 pixels, and the blob’s centroid location was ini-
tialised below the field-of-view in the negative y-direction. The starting location was
constrained to prevent blobs from extending beyond the edges of the x-side of the field-
of-view. Only one blob was present in the images at any given time, and the time-series
generation ended once the blob exited the field-of-view entirely. Optionally, noise was
introduced and added to each frame in the form of normally distributed, pixel-sized
noise to simulate diagnostic electronic noise. The Signal-to-Noise Ratio (SNR) was
defined as the ratio between the maximum blob amplitude and the root mean square
(rms) of the added noise, as shown in Equation 6.3.

SNRblob =
A

rms(noise)
(6.3)

Synthetic data was generated with a range of blob y-sizes (1-100 pixels), blob velocities
in the y-direction (0.1-60 pixels per frame), and signal-to-noise ratios (1-Inf). All data
was generated with an arbitrary blob x-size of 25 pixels, chosen to be sufficiently large
for registration by velocimetry techniques but small enough to minimise clipping. The
x-size had negligible impact on velocimetry performance in initial tests, except when it
approached the pixel size or frame size. Notably, in all tests conducted in this thesis,
the velocity of the blobs was set to zero in the x-direction, and the implications of this
choice are further discussed in section 6.2.4.

6.1.2 Turbulent Density Fields

Density fields observed in turbulence diagnostics often exhibit intricate structures that
cannot be directly replicated using a simple function like the one demonstrated in sec-
tion 6.1.1, Equation 6.1. However, when represented in wavenumber space, turbulent
density fluctuations can often be approximated as broad, singly-peaked functions, such
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Example images of synthetic data showing: an isolated blob (a) and tur-
bulent density fields with large (b) and small (c) spatial scales. (d-f) show the effect
of varying ∆k. All images were generated with SNR = 100 and colourbars were nor-
malised to maximum intensity in time-series.
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as Gaussians or Lorentzians [91]. To emulate this structure, distributions were initially
generated in reciprocal space and then inverse Fourier transformed, resulting in real-
space TDF images, as shown in figure 6.1b-6.1f.

In particular, arrays were generated following a Lorentzian distribution as expressed
in Equation 6.4, where P represented the distribution amplitude, (kx0,ky0) indicated the
centroid location of the Lorentzian, and ∆k determined the function width. Randomised
phase values were assigned to all elements, and the real component of the inverse
Fourier transform yielded the final TDF image.

P(kx,ky) =
∆k2

(kx − kx0)2 +(ky − ky0)2 +∆k2 (6.4)

The Lorentzian centroid location, (kx0,ky0), could be adjusted to alter the spatial size
and angle of the density features, as illustrated in figure 6.1b-6.1c. Throughout this
thesis, all ky0 values were normalised to correspond to the number of full wavelengths
in the y-direction per width of the image frame (wavelengths per 128px). For ease
of interpretation, the real-space lengthscale of the fluctuations was defined as λy0 =
128 px/ky0. kx0 is typically given as a fraction of ky0, and the tilt angle of the density
features, measured clockwise from horizontal, was defined as θ = Arctan(kx0/ky0).

The Lorentzian width, ∆k, could be increased from zero to enhance the ‘broken up’
appearance of the structures in the real-space image, as demonstrated in figure 6.1d-
6.1f. ∆k was also normalised to ky0, ranging from 0 to 2 in increments of 0.3, with a
typical value of 1.3 observed in density fluctuation diagnostics [91].

To generate a time-series with an imposed velocity field, the density fields were
produced to be spatially larger than the final image dimensions. This allowed entire
columns of pixels to be rigidly shifted up and down according to the imposed velocity
field, defined by Equation 6.5, where kv,y represented the wavenumber of the velocity
field sinusoid. All imposed velocity fields pointed purely in the y-direction, and kv,y varied
from 1 to 8 wavelengths per 128px. Although especially computationally expensive at
high velocities, this approach was chosen because it circumvented the use of periodic
boundary conditions, which could introduce aliasing in the velocimetry analysis.

vvvimposed = v0 ŷyy+ v1 cos(kv,y x) ŷyy (6.5)

The time-series were generated with image dimensions of 128 px by 128 px and com-
prised 512 frames. Velocity fields with v0 ranging from 0.1 to 60px/frame and v1 from
1 to 15 px/frame were utilised. Additionally, normally distributed, pixel-sized noise was
added to the images, resulting in SNRrms values ranging from 1 to infinity and generated
individually for each image frame, as defined in Equation 6.6. Please note that SNRblob
and SNRrms represent significantly different definitions, often differing by more than an
order of magnitude. Conversion factors are contingent solely on the blob size and can
be found in figure 6.2.

SNRrms =
rms(signal)
rms(noise)

(6.6)
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Figure 6.2: Conversion factor between SNRblob and SNRrms for IDF data. Factor defined
as SNRblob/SNRrms. Blob x-size fixed at 25px.

6.2 Testing Cross-Correlation Time-Delay Estimation

This section is dedicated to testing the accuracy of the Cross-Correlation Time-Delay
Estimation (CCTDE) technique. These tests encompass both IDF and TDF data, which
represent turbulent data spanning from marginal stability to strongly developed turbu-
lence. The metrics that were used to define the accuracy and precision were described
in section 6.2.1.

For a smoother comprehension of this section, skipping the results sections and
starting with the discussion and summary is recommended, can be found in section
6.2.4. The results sections can be rather dense and may require some time for proper
interpretation. If one is interested in the more detailed results regardless, they can be
found in section 6.2.2 and section 6.2.3.

6.2.1 Quantification of Technique Uncertainties

To facilitate a standardised comparison of results, the velocity fields derived through
CCTDE were summarised using metrics designed to assess both overall accuracy and
precision. To begin, the ‘percentage velocity-deviation field’, denoted as ∆vmeas, was
calculated. This field represents the percentage difference between the measured
velocity field, vmeas, and the imposed velocity field, vimp, and can be expressed as:

∆vmeas = 100% ·
(

vmeas − vimp

vimp

)
(6.7)

The metric for accuracy used in e.g. figure 6.3 was then taken to be the mean of ∆vmeas.
In the case of isolated density features, the average was performed over the area of
the blob. In the turbulent density fluctuations case, the average was performed over the
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(a) ∆ℓ= 10 (b) ∆ℓ= 20

Figure 6.3: The accuracy of CCTDE with isolated density features at ∆ℓ = 10 (a) and
∆ℓ= 20 (b). Velocities are normalised to ∆ℓ. The bottom subplots show velocities below
1 px/frame. The dashed line denotes the predicted minimum measurable velocity that
is imposed due to signal clipping by the finite length of the time-series, N. Accurate
velocity fields (white) were typically measured with a standard deviation of <1%. Pre-
cision was not a good proxy for accuracy.

entire field. Similarly, the precision was quantified by the root-mean-square of ∆vmeas,
with the same areas as above.

6.2.2 Results with Isolated Density Features

In this section, the performance of CCTDE in inferring velocities from data contain-
ing isolated density features is evaluated. Emphasis is placed on the assessment of
velocimetry accuracy parallel to the imposed velocity. Investigations involving density
features spanning spatial scales ranging from 1 pixel to 100 pixels were conducted.
Additionally, the range of imposed velocities was varied from 1/10 pixel per frame to 30
pixels per frame.

As depicted in figure 6.3, the results reveal a negligible dependence of velocity
measurement accuracy on the spatial size of the blobs. This outcome aligns with
expectations for the CCTDE method, particularly in cases with minimal noise. However,
an exception is noted in figure 6.3b, where, for blob y-sizes < 10 pixels and 0.5 <
v0 < 1.0 ∆ℓ/frame, the small and fast-moving blobs can skip one of the measurement
locations, rendering accurate velocity measurement impossible.

Furthermore, it was revealed in this investigation that varying the length of the time-
series, denoted as N, had no discernible effect on velocimetry accuracy. Consequently,
when dealing with isolated blobs, the choice of N need not be influenced by accuracy
considerations.

Figure 6.3 also highlights a significant dependence of CCTDE’s velocity measure-
ment accuracy on the underlying velocity. This dependency aligns with the expecta-
tions of the two-point CCTDE method but has notably not been previously discussed
in literature. Previous applications of CCTDE have implicitly assumed that this effect
will be averaged out, the validity of which is further explored in section 6.2.4. No-
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(a) SNR = 4 (b) SNR = 1

Figure 6.4: The accuracy of CCTDE with isolated density features. The SNRblob was
varied to assess the dependence of method accuracy on noise. Noise had little effect
on accuracy for SNRblob > 10 [not shown]. The standard deviation of the accurately
measured velocity fields (in white) varied from <20% in a) to >100% in b).

tably, initial tests indicated that the strong accuracy dependence on imposed velocity
magnitude could be mitigated by employing a ‘line method’, which involves performing
the two-point method simultaneously for a range of ∆ℓ values and selecting the mea-
surement with the highest correlation. While this represents an advantage of the line
method, spatial resolution is lost through this process. Extensive testing of the line
method was beyond the scope of this thesis, but some considerations are discussed in
section 6.2.4.

The investigation into the effect of varying ∆ℓ revealed that increasing ∆ℓ enables
the accurate measurement of faster velocities, as one might expect. Additionally, the
accurately measurable space expanded near slow velocities (around approximately 1
pixel/frame), as evident in figure 6.3. However, it’s important to note that maximising
∆ℓ may not always be beneficial in practical applications, and this will be discussed
further in section 6.2.4. Another noteworthy observation is the consistent pattern of
accuracy, which remains constant with the normalised velocity, as shown in figure 6.3.
Once again, this observation aligns with expectations and is elaborated on in section
6.2.4.

The results also reveal an often-overlooked fact: the finite length of the time-series
imposes a limit on the minimum velocity that can be measured. This threshold is given
analytically by:

vmin =
λy0 +∆ℓ

N
(6.8)

where N represents the length of the time-series, λy0 is the blob y-size, and vmin is
the minimum velocity in the y-direction that can be measured. This expression was
over-plotted in figure 6.3 and was found to accurately predict the minimum measur-
able velocity in all cases. Quantitatively, the threshold was observed to correspond
approximately to the 25% velocity deviation mark. An additional observation was that
the precision of velocity inference decreased with decreasing N, but this effect was not
quantified.
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The impact of increasing noise levels on the performance of CCTDE was also exam-
ined, as summarised in figure 6.4. Notably, the accuracy of CCTDE remained largely
unaffected by noise at SNRblob >10, displaying accuracies similar to figure 6.3b. How-
ever, as SNRblob was decreased from 10 to 4, significant signs of accuracy degradation
due to noise emerged, as illustrated in figure 6.4a. This included increasingly unreli-
able accuracies and a shrinking parameter space of reliably accurate measurements.
A further decrease in SNRblob from 4 to 1 led to a steady reduction in the accurately
measurable parameter space and increased standard deviation in the measured veloc-
ity fields. By SNRblob = 1, no accurate velocities could be inferred, as shown in figure
6.4b. Importantly, it was noted that the standard deviation of the inferred velocity was
not necessarily a reliable predictor of accuracy.

Subsequently, the ability to recover accurate CCTDE measurements from noisy
data using frequency filtering was assessed. The synthetic data used for figure 6.4
underwent a two-way low-pass Butterworth filter prior to CCTDE analysis, with a cut-
off frequency set at 0.3 times the Nyquist frequency to effectively filter out noise while
preserving the signal. Initial tests indicated marginal improvements in accuracy; for
instance, the SNRblob = 4 case after filtering showed accuracies comparable to the un-
filtered SNRblob = 100 case seen in figure 6.3b. However, for data with SNRblob = 3, only
marginal recovery of accuracy was observed. Whether further optimisation of noise
filtering techniques could fully recover accuracy for SNRblob = 3 (and lower) appears
unlikely based on the non-linearity of degradation observed in these tests.

Lastly, it was consistently observed in all tests within this subsection that the blob
velocity orthogonal to the direction of blob propagation was accurately measured to be
zero on average for imposed velocities greater than 1 pixel/frame. However, standard
deviations of up to 20% relative to the measured parallel velocity were observed in this
range. In contrast, orthogonal velocity inferences at v0 < 1 pixel/frame were found to be
susceptible to high statistical variation of the measurements. The standard deviation
often exceeded that of the parallel velocity measurements, significantly reducing the
reliability of the overall measurements in this region of velocity space.

6.2.3 Results with Turbulent Density Fields

This section assesses the performance of CCTDE when presented with turbulent den-
sity field data. The characteristic spatial scale, λy0, was varied from 1 pixels to 100
pixels, and the imposed velocity was varied from 0.1 pixels/frame to 30 pixels/frame.
The angle of the density features was given a range from 0◦ to 75◦ clockwise from hor-
izontal. ∆k was given a range from 0 ky0 to 2 ky0 in 0.3 ky0 increments, while ∆ℓ was
varied from 1 pixels to 20 pixels.

As expected, variations in ∆ℓ, SNRrms, and N had effects comparable to what was
found in section 6.2.2. In summary, decreasing N was known to reduce precision
and impose a minimum measurable velocity. The corresponding expression defined in
equation 6.8 held for the turbulent density data. SNRrms was found to have a negligible
effect on accuracy for SNRrms > 1, although reductions in precision were observed.

It was found that the barber pole illusion had a negligible impact on the measure-
ment accuracy parallel to the flow direction. Conversely, spurious perpendicular veloc-
ity measurements were widely observed when ∆k ≤ 0.3ky0. When ∆k is this low, density
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(a) Barber pole approximate thresholds (b) Barber pole threshold regression fit

Figure 6.5: Defining a threshold at which barber poling becomes significant; a) thresh-
olds drawn approximately at 25% deviation from v0; b) examples from the multivari-
ate linear regression aiming to predict threshold line 1. Data-points denote empirical
measurements with estimated error bars, and the dashed lines denote the regression
equation fits. R-squared was 0.9.

features often have a spatial extent comparable to the image field-of-view. Further-
more, negative velocities were observed, which were due to a combination of barber
poling and aliasing. A subtle example of aliasing effects can be seen in the light-blue
regions at v0 > 1 in figure 6.5a. These spurious velocities could not consistently be pre-
dicted, and experimental CCTDE analysis in the region of ∆k ≤ 0.3ky0 was considered
to be unreliable without further in-depth testing.

In the region of ∆k ≥ 0.6ky0, it was observed that a well-defined threshold emerges
that predicts when the barber pole illusion becomes significant. An illustrative example
is provided in figure 6.5a, where two distinct lines are approximately drawn at the 25%
velocity deviation mark. Threshold 1 in figure 6.5a was found to depend solely on
the spatial parameters: ∆k, ∆ℓ, θ , and λy0. However, no analytical expression for the
threshold could be determined from first principles. Instead, an empirical approach
was employed, utilising a multivariate linear regression to define the threshold.

To estimate the characteristic length, λy0, at which threshold line 1 occurs, angles
of 30◦ and 45◦, ∆k ranging from 0.6 to 1.3 ky0, and ∆ℓ ranging from 5 pixels to 20
pixels were used. The threshold was determined as follows: the λy0 values at which
the percentage velocity deviation reached 25% were traced across v0. A five-point
moving average was applied, resulting in a trace with a bi-linear form (approximately
corresponding to lines one and two in figure 6.5a. The transition between the two linear
regions did not always exhibit a sharp gradient change, and an approximate gradient
transition region was defined visually. The λy0 threshold was defined as the lowest λy0
within the gradient transition region (roughly equivalent to the intersection of lines 1
and 2 in figure 6.5a. The error margin of the λy0 threshold was defined to be equal to
half the width of the gradient transition region.

Subsequently, a weighted multivariate linear regression was performed using the
determined λy0 thresholds as the dependent variable and ∆k, ∆ℓ, and Tan(θ) as the
independent variables, all of which exhibited approximate linear dependence. The fol-
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lowing expression was constructed from the regression to approximate the λy0 thresh-
old:

λy0,threshold = 30 ·Tan(θ)+15 ·∆k+2.2 ·∆ℓ−40 (6.9)

For this regression involving 24 data points, all coefficients were found with a standard
error of approximately 15%, and the R2 was 0.9. ∆k was normalised to ky0, and ∆ℓ was
given in pixels. A good prediction (within errors) was also found when extrapolated to
parameters θ = 15◦ - 60◦, ∆k = 0.6−2.0 ky0, and ∆ℓ = 5-20 pixels.

With increasing λy0, the perpendicular velocity increases and saturates at a well-
defined value that can be calculated using the following expression:

v⊥ = v∥/Tan(θ) (6.10)

The v⊥ calculated in Equation 6.10 strictly applies when there is no underlying velocity
in the x-direction. It has not been explicitly tested whether the barber-pole-induced
illusory-x-velocity is non-linearly affected by true underlying x-velocities.

(a) BP predicted threshold (b) BP predicted threshold

Figure 6.6: Two example plots showing the λy0 threshold as predicted by the regression
equation. Fit within error margins was found for most (∼ 90%) cases tested. Triangular
region in a) shows accurate area that can be gained by quantifying threshold 2. This
area does not exist in b).

Threshold 2, as shown in figure 6.5a, was not investigated in detail because its
quantification would have little impact. Measuring threshold 2 would not significantly
expand the area in parameter space that can be measured accurately. The potential
additional area is exemplified by the small triangular region in figure 6.6a. Conversely,
no added benefit would be seen in figure 6.6b.

6.2.4 Discussion and Summary of CCTDE Uncertainties

Accuracy dependence on underlying velocity: The measurement accuracy of the
two-point CCTDE method exhibits a strong dependence on the underlying velocity of
the fluctuations, as illustrated in figure 6.3. This pattern aligns with the theoretical
expectations of the method, although this has not been covered in previous literature.
Only velocities that are exact factors of ∆ℓ can be accurately measured. Velocities
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falling between these factors are approximated to the nearest factor of ∆ℓ. However,
this naturally poses a challenge as the underlying velocity is typically unknown before
CCTDE analysis. Additionally, and crucially, it’s worth highlighting that the precision
of the inferred velocity fields does not serve as a reliable predictor of measurement
accuracy. Therefore, it is important to use two-point CCTDE in conjunction with other
velocity estimation techniques to ensure accurate results.

A lack of precision may be beneficial: In initial tests, it was observed that the line-
CCTDE method’s accuracy did not display the same velocity dependence as two-point
CCTDE. It may not always be necessary, however, to employ this more computation-
ally expensive method. This is due to a most welcome scenario where experimental
noise introduces an unexpected but beneficial effect. Turbulent velocity fluctuations
and optical jitter can cause fluctuations in the apparent velocity, leading to the inferred
velocity ‘flip-flopping’ between factors of ∆ℓ throughout the velocity field. This results
in an average velocity field with improved accuracy but at the cost of reduced spatio-
temporal resolution. This effect is particularly pronounced for underlying velocities that
lie mid-way between two factors of ∆ℓ and the effect can be enhanced by decreasing
N to reduce measurement precision. While this beneficial averaging effect may be
common, it should not currently be relied upon without further investigation.

Accuracy dependence on SNR: The impact of noise on CCTDE performance was
found to be negligible for SNR > 1, in both IDF and TDF data. These findings appear
to contradict previous literature, such as [89], which suggests a stronger dependence
on SNR and defines a measurement limit around SNR = 10. However, due to the lack
of detailed data generation descriptions and ambiguity of SNR definitions, meaningful
comparisons with this prior work could not be made.

Choosing appropriate ∆ℓ: Increasing ∆ℓ leads to an increase in the maximum
accurately measurable velocity (up to 1 ∆ℓ/frame) and expands the accurately mea-
surable velocity space at low velocities near 1 pixel/frame (see figure 6.3). However,
maximising ∆ℓ may not be desirable when the decorrelation timescale is significant
compared to the underlying velocity. In such cases, reducing ∆ℓ can limit the impact
of decorrelation. Importantly, ∆ℓ can be independently defined in different orthogonal
directions without significantly complicating the analysis because velocity inferences in
different directions are independent of each other. It is re-iterated that, in this study, ∆ℓ
was kept symmetric in all tests.

The effect of reducing the length of the time-series, N: Reducing N can offer
various advantages, including: i) lowering computational costs, ii) potentially benefi-
cial averaging through reduced precision, and iii) increasing the temporal frequency of
velocity inference. The reduction in precision with decreasing N in CCTDE has been
quantified in existing literature [90]. One consideration that must be made is ensur-
ing that the expected velocities do not fall below the minimum velocity limit defined in
Equation 6.8 for the chosen N. This equation can be applied to both IDF and TDF data,
with some extra care required to determine a representative λy0 for TDF data. It was
observed in this study that CCTDE can be effectively operated with N as low as 32 in
all cases tested with little effect on measurement accuracy, whereas previous literature
typically used N ≥ 256 [89].

A simplified method to avoid barber pole illusions: The prevalence of spurious
velocity measurements due to the barber pole illusion was quantified in section 6.2.3.
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Due to this research, it can be predicted before CCTDE analysis if the barber pole illu-
sion will significantly impact velocimetry. This prediction requires an estimation of the
spatial parameters associated with fluctuations in the data, namely ∆k and λy0. Equa-
tion 6.9 can be used to avoid spurious velocities by increasing ∆ℓ. An example of this
simple check is provided in section 6.5. These findings differ from previous literature
that focused on correcting spurious velocities post-velocimetry [88]. This previous cor-
rection process is typically laborious and requires assumptions to be made about the
shape of underlying structures.

Precision in the low-velocity regime: For slow velocities, v0 < 1 pixels/frame,
it was observed that the statistical variation of the velocity measurements becomes
significant. The standard deviation becomes comparable to the average inferred ve-
locity. Therefore, extra care is recommended to ensure statistical convergence in this
low-velocity regime.

6.3 Testing Dynamic Time-Warping

This section is dedicated to testing the accuracy of the Dynamic Time Warping (DTW)
technique. These tests encompass both IDF and TDF data, which represent turbulent
data spanning from marginal stability to strongly developed turbulence. The metrics
used to define accuracy and precision were defined in section 6.2.1.

For a smoother comprehension of this section, skipping the results sections is rec-
ommended and instead on could start with the discussion and summary section 6.3.3.
The results sections can be rather dense and may require some time for proper inter-
pretation. If one is interested in the more detailed results regardless, they can be found
in section 6.3.1 and section 6.3.2.

6.3.1 Results - Isolated Density Features

This section evaluates the performance of Dynamic Time Warping (DTW) when con-
fronted with data featuring isolated density features. The accuracy and precision of the
inferred velocity fields were assessed both parallel and perpendicular to the imposed
velocity. The fluctuation spatial scales ranged from 1px to 100px, and the imposed
velocities varied from 0.1px/frame to 60px/frame. The signal-to-noise ratio (SNRblob)
was varied from 1 to infinity. DTW was typically operated with seven iterations using
the following strip widths: [32, 22, 16, 12, 8, 6, 4] px, unless specified otherwise. The
initial slicing direction was set parallel to the known imposed velocity, a crucial step
discussed in more detail in section 6.3.3.

As depicted in Fig. 6.7a, DTW exhibits highly accurate velocity measurements
across most of the parameter space at SNRblob = 100. The primary exception occurs at
v0 ≤ 2px and blob sizes > 20px, where there is consistent overestimation of the veloc-
ity. Aside from this small overestimation region, the accuracy of DTW is independent
of the spatial size of the blobs or the underlying velocity. All perpendicular velocity
measurements accurately yielded zero.

As SNRblob decreases, the accuracy of DTW rapidly degrades. This is evident in
Fig. 6.7b, where DTW fails to recover any velocities accurately at SNRblob = 2. Further
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(a) (b)

Figure 6.7: The effect of pixel-size noise on DTW velocity inference accuracy. SNR =
100 in (a) and SNR = 2 in (b). Input data was unsmoothed and 7 default DTW iterations
were used.

investigation revealed that the displacement field was often accurate after the first iter-
ation of DTW, and subsequent iterations would distort the originally accurate field. This
effect stems from an operational quirk of DTW in situations where there are areas with
no signal and only noise, as discussed in section 6.3.3. Follow-up tests with a single
DTW iteration at strip width = 32px and varying SNRblob from 100 to 1 were performed.
Highly improved accuracies were found, typically with less than 10% velocity deviation,
as shown in Fig. 6.8a, although full recovery of accuracy could not be achieved using
this approach.

(a) (b)

Figure 6.8: Two approaches for recovering from noise in IDF data. a) shows DTW
performance with only one iteration. b) shows DTW performance when the data was
pre-smoothed with a 3 px gaussian kernel.

To explore the effectiveness of spatially smoothing out the noise before DTW anal-
ysis, the input data images were passed through nested 1D convolution filters with a
Gaussian kernel. The optimum Gaussian Full Width at Half Maximum (FWHM) was
found to lie around 1-3px, where the noise was effectively smoothed out while leaving
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the underlying signal relatively unaffected. The smoothed data were then analysed us-
ing DTW. Figure 6.8b illustrates that smoothing is highly effective across the majority
of parameter space in recovering the accuracy of the DTW algorithm, allowing most
velocities to be measured within 5% accuracy. However, at low velocities (v0 < 5px/ f r),
accurate velocity inference could not be achieved using this approach.

6.3.2 Results - Turbulent Density Fields

This section evaluates the performance of DTW when confronted with data featuring
turbulent density fields. The operational parameters for DTW remained identical to
those detailed in section 6.3.1, unless otherwise specified. The characteristic spatial
scale, λy0, ranged from 1 px to 100 px, and the imposed velocity in the y-direction
varied from 1 px/frame to 60 px/frame. All tests in this section utilised TDF data with
default parameters: ∆k = 1.3ky0, θ = 45◦, unless stated otherwise.

(a) (b)

Figure 6.9: The effect of smoothing TDF input data on DTW performance with noise.
No smoothing in (a) and with smoothing in (b).

Initial tests at SNRrms = 100 demonstrated DTW’s ability to accurately infer velocities
across the entire spectrum of spatial sizes and imposed velocities, comparable to the
IDF results shown in Fig. 6.7a. As SNRrms was incrementally decreased to 1, the
accuracy and precision generally diminished, although tests at SNRrms = 1 still revealed
accurately measurable regions in parameter space, as depicted in figure 6.9a. The
standard deviation of the velocity fields in Fig. 6.9 was typically around 10%. Unlike
the issues observed in section 6.3.1 when using multiple iterations, such problems
were not reproduced with TDF data. Smoothing, applied using the same approach as
described in section 6.3.1, substantially improved measurement precision. At SNRrms
= 1 and a 2px smoothing length, the standard deviation was reduced to within 5% of
the average. However, a consistent overestimation of velocities below 10 px/frame was
revealed, as shown in Fig. 6.9b.

The impact of reducing the number of spatial channels available in the input data
was investigated. The original 128 by 128 channel images were downresolved onto
new Nch by Nch channel images. This was done by splitting the original images into
arrays of size ∆d by ∆d, where ∆d = 128/Nch. Thus, each channel in the new Nch by Nch
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image corresponded to one ∆d by ∆d array in the original image. The intensities of the
channels in the Nch by Nch images were calculated by taking weighted averages of the
respective ∆d by ∆d arrays. The weighted average was calculated using a 2D Gaussian
kernel with a FWHM equal to ∆d, and were centred on the center of the ∆d by ∆d array.
Exploratory tests showed negligible dependence on the shape of the averaging kernel.
Nevertheless, the Gaussian shape was chosen to approximate the increased sensitivity
in the center of the channels found in diagnostics such as BES [93]. Synthetic data
with Nch = [4,8,16,32,64] was generated and pixel-size noise was re-introduced with
SNRrms = [1,2,3,4,10,100]. Although DTW could technically run using data with down
to 4 by 4 spatial channels, the accuracy of the velocity inferences (which was not shown
here) was found to rapidly degrade with decreasing Nch and SNRrms. This degradation,
although not quantified here, was sufficiently severe to recommend pre-processing of
the low-channel data.

(a) (b)

Figure 6.10: The effect of reducing the number of available channels on DTW perfor-
mance. Images contained Nch by Nch channels. 16 by 16 channels in (a) and 8 by 8
channels in (b). All images were re-interpolated onto 128 by 128 channels before DTW
analysis.

The downresolved data was re-interpolated onto the original 128 by 128 channel
grid using bivariate cubic spline interpolation before DTW analysis [91]. At SNRrms =
100, the accuracy was only marginally affected in the range Nch = 128−16. Measured
velocities typically deviated less than 10% from the imposed values. Figure 6.10 il-
lustrates that accuracy deteriorated strongly going from < 10% deviation at Nch = 16
to ≥ 20% deviation at Nch = 8. Additionally, there was a marked decrease in the re-
liable parameter space shown in figure 6.10. Decreasing Nch also exhibited a strong
decrease in the precision of DTW velocity fields, which could be exacerbated by si-
multaneously decreasing SNRrms. The combined result of these effects is evident in Fig
6.11a, showing unreliable velocity measurements across all parameter space at Nch = 8
and SNRrms = 2, values which are not uncommon in BES diagnostic measurements.
However, averaging 32 measurements from successive pairs of frames improved pre-
cision to a standard deviation of < 10%, recovering considerable regions of accurate
measurements, as shown in figure 6.11b. Averaging over multiple frames, while im-
proving precision, reduced DTW temporal resolution, becoming comparable to typical
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CCTDE temporal resolution.

(a) (b)

Figure 6.11: Assessing DTW performance at Nch = 8 under noisy conditions. Reduced
precision shown in fig a) is shown to converge upon averaging multiple measurements
in b).

For 128 by 128 channel images with ∆k ≥ 0.3ky0, the inferred velocity was zero in
the direction perpendicular to the imposed velocity. At ∆k < 0.3ky0, spurious velocities
were found due to the barber pole illusion.

Exploratory tests assessed the impact of sheared velocity fields on DTW perfor-
mance, utilising TDF data with a characteristic fluctuation spatial scale of 7px. Velocity
field parameters v1 and kv,y (see equation 6.5) were varied from 1 to 15 px/frame and
from 1 to 8 wavelengths per 128px, respectively. In literature, the same kv,y range had
been investigated, but v1 was not varied in those tests [91]. Independently increas-
ing the amplitude and the wavenumber showed detrimental effects on accuracy and
precision in both cases. Although thresholds were observed for the onset of these
effects depending on v1 and kv,y, they were not quantified. It was found that the ac-
curacy and precision remained constant when v1 and kv,y were varied whilst keeping
the maximum shear amplitude, ∂x(vy)|max = v1kv,y, constant. Conversely, increasing the
maximum shear resulted in worse performance of the method, although this was not
quantified. These results suggest that the maximum shear is a governing parameter
for the performance of DTW.

6.3.3 Discussion and Summary of DTW Uncertainties

Accuracy Dependency on SNR. The accuracy of DTW decreases with increasing
noise levels, as shown in figure 6.7. This was observed in 128px by 128px images
for both IDF and TDF data. This loss of accuracy could largely be recovered through
spatial smoothing of the images before velocimetry, as seen in figure 6.9. One caveat
is observed in figure 6.9b, where a consistent overestimation of up to 20% is observed
at low velocities, v0 < 10 px/frame. Additionally, the accuracy at characteristic spatial
scales below 5px could not be recovered using spatial smoothing. The precision of
velocity fields also varied with signal-to-noise levels. Velocity fields with 1% standard

Y. W. Enters 65



Chapter 6

deviation were observed at SNRrms = 100. The standard deviation increased to 10% at
SNRrms = 1. In conclusion, the reduced precision due to noise could be mostly, but not
completely, counteracted by spatial smoothing of the images before DTW analysis.

An operational quirk with IDF data. This was observed in section 6.3.1 and at-
tributed to regions in the images where no signal, only noise, was present. With a lack
of signal outside of the blob area, DTW would transform the images here according
to the noise. This distortion outside the blob area would affect the displacement field
inside the blob area due to continuity constraints in the DTW method. Caution is ad-
vised for DTW velocimetry of IDF-like data. Two approaches to minimising detrimental
effects were demonstrated in figure 6.8.

Performance Dependency on the Number of Spatial Channels. Without interpo-
lation, it is important to note that DTW accuracy decreases rapidly below Nch = 32, even
when noise levels are negligible. The beneficial effect of interpolating the images onto
a higher grid prior to DTW is ubiquitous, but at best marginal, for the accuracy of the
velocimetry. Despite this improvement, DTW still increasingly and consistently over-
estimated velocities upon decreasing Nch, which can be seen in figure 6.10. Spatial
scales below approximately three times the channel size resulted in unreliable infer-
ences, especially if v0 was not an integer. The introduction of noise was investigated
at Nch = 8 and decreasing SNRrms rapidly decreased the precision of DTW. At SNRrms
= 2, this effect could be considered fatal, as can be seen in figure 6.11a. Upon av-
eraging multiple consecutive inferences, the precision improved and accurate velocity
inferences were revealed in figure 6.11b. Specifically, a consistent overestimation of
approximately 10% was found at v0 = 1 px/frame. This shows that reliable velocity in-
ferences can be obtained well below the measurement limit of SNR = 10 defined in
previous literature [91].

Sheared Flow Fields. Exploratory tests investigated the ability of DTW to infer
sheared velocity fields by varying the velocity field parameters v1 and kv,y seen in equa-
tion 6.5. It was found that both the accuracy and precision were reduced by increasing
the maximum shear past a threshold. Interestingly, the accuracy and precision did not
vary locally with local shear amplitude. Instead the global maximum shear was found
to be the parameter which governs the accuracy and precision. This is a result which
generalises previous tests by Kriete et. al. [91], who found that shear flow wavenumber
is an important parameter which affects DTW accuracy and precision. The reduction
in accuracy presented itself as a reduction in amplitude of the measured velocity si-
nusoid, although shape and wavelength were conserved, which was consistent with
previous findings [91].

The Limited Impact of the Barber Pole Illusion. All measurements in the di-
rection perpendicular to the imposed velocity were accurately inferred to be zero at
∆k ≥ 0.3. Spurious perpendicular velocities due to the barber pole illusion occurred at
∆k < 0.3. The onset of spurious velocities is hypothesised when the density features
are tilted, extend past the diagnostic field of view, and if spatial variations within the
density features are negligible compared to the noise levels.

The Main Complication of Using DTW. In all tests, the first slicing direction was
set parallel to the direction of the imposed velocity. Choosing the perpendicular direc-
tion instead was found to be catastrophic for DTW velocity inference. The threshold
at which misalignment between the initial slicing direction and flow direction becomes
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an issue was not tested, although increasing the first strip width was hypothesised to
accommodate larger misalignments. Nevertheless, it is critical that the direction of the
velocity field be estimated prior to DTW analysis in a real experimental setting. This
could be achieved by cross-comparison with other velocimetry methods like CCTDE.
Additionally, sub-pixel velocities could not be accurately inferred by DTW. This short-
coming can be circumnavigated by increasing the temporal spacing between images
that are analysed, although extra care in selecting the temporal spacing is advised.

6.4 Comparison Between CCTDE and DTW Performance

A fundamental distinction between DTW and CCTDE lies in their approach to velocity
field inference. DTW relies on spatial information in images to identify velocity fields,
while CCTDE leverages variations in temporal information within time-series data. This
distinction implies that DTW theoretically has the capacity to infer velocity fields at a
frequency equal to the frame rate of the diagnostic, whereas CCTDE typically oper-
ates at a measurement frequency at least an order of magnitude slower. This inherent
drawback of CCTDE contrasts with its reduced reliance on spatial information, poten-
tially resulting in higher accuracy and precision than DTW when the number of spatial
channels is reduced.

The CCTDE inference frequency has historically been at least two orders of mag-
nitude slower than the diagnostic frame-rate [89]. In these investigations, it was found
that CCTDE can be operated with N = 32 in most cases, which represents at least an
order of magnitude improvement compared to most previous literature. Additionally,
DTW was found to require averaging of multiple subsequent inferences with noisy, low-
spatial-channel data (e.g., SNRrms = 2, Nch = 8). This reduced the effective velocity-
inference frequency of DTW, and in some cases, the inference frequency could be
comparable between the two techniques.

Both techniques were susceptible to inferring spurious velocities due to the barber
pole illusion. Neither technique reliably inferred accurate velocity fields at ∆k < 0.3. At
∆k ≥ 0.3, DTW typically inferred accurate velocity fields, while CCTDE could also do
so, assuming it passed a simple check using equation 6.9.

Shear in the velocity fields negatively impacted DTW accuracy once a threshold in
the maximum local shear was surpassed. Shear cannot affect two-point CCTDE be-
cause the velocity inferences at each spatial location are independent of each other.
For the same reason, CCTDE accuracy is unaffected by reducing the number of spa-
tial channels, Nch. On the other hand, reducing Nch had detrimental effects on DTW
accuracy and precision.

The accuracy of both techniques varied with the underlying velocity field. The di-
rection of the velocity must be known before setting the initial slicing direction of DTW;
if done incorrectly, DTW inferences were unreliable. In contrast, the magnitude of the
velocity must be known to infer the accuracy of CCTDE. The salient issue is that the
velocity is unknown prior to velocimetry, once again highlighting that a combination of
velocimetry techniques must be used for accurate velocity inferences.
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6.5 Workflows for Predicting Velocimetry Uncertainty

In this section, an illustrative workflow is presented to highlight how the preceding ve-
locimetry testing results (section 6.2 and 6.3) could be utilised to guide the experimen-
tal application of velocimetry methods. Note that the intent of this workflow was not
to be comprehensive but, instead, to serve as a simple example that highlights some
main considerations that should be taken into account.

The velocimetry was conducted on two synthetic TDF time-series, denoted simply
as A and B. Note that velocimetry applications employing experimental data are cov-
ered in chapters 7 and 8. The signal-to-noise ratio, denoted as SNRrms = 100, was
known prior to the analysis. Spatial parameters and the underlying velocity of the data
were unknown before the analysis, but they could be subsequently retrieved from meta-
data for cross-verification. Despite the utilisation of synthetic data in this section, the
example workflow remains directly applicable to experimental velocimetry.

(a) (b)

Figure 6.12: Example 2D spatial Fourier spectra of time-series A (a). 1D slice of the
Fourier spectrum in the y-direction with Lorentzian fit (b). Slice location shown by black
line in (a).

Before making any velocity inferences, preliminary analysis was conducted to eval-
uate the spatial characteristics of the fluctuations in the data. The magnitude of the 2D
spatial Fourier transform of each image in the time-series was determined, with man-
ual adjustment of the DC peaks to zero. The resulting Fourier images were summed
together, and the outcome was normalised to the maximum amplitude. An illustration
of such an aggregate Fourier spectrum is depicted in figure 6.12a, revealing a distinct,
singular peak.

To quantify the spatial parameters, one-dimensional slices of the Fourier spectra
were taken through the peak. These slices were then fitted through a least-squares
routine to a Lorentzian, as presented in equation 6.4. A demonstration of the fit is
shown in figure 6.12b. A summary of the final estimates for the spatial parameters of
time-series A and B is provided in Table 6.1. Additionally, the minimum ∆ℓ required to
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avoid spurious velocity measurements induced by the barber pole illusion was calcu-
lated using equation. 6.9.

time-series kx0 ky0 θ ∆k ∆ℓmin
A 4.2 4.2 45◦ 0.7 ky0 13 px
B 2.8 2.7 45◦ 0.7 ky0 21 px

Table 6.1: Table summarising the estimated spatial parameters associated with the
density fluctuations in the time-series. Wavenumbers given in wavelengths per image-
width. Minimum ∆ℓ was calculated from equation 6.9. All estimated values had uncer-
tainty margins around 10%.

When applying CCTDE, multiple operational parameters must be considered. First
of all, at SNRrms = 100, which was well above the SNRrms ≥ 1 limit determined in sections
6.2 and 6.3, the influence of noise was thought to be negligible and spatial smoothing
or filtering was presumed to be unnecessary. Furthermore, correlation parameters
were computed using standard techniques (see [94] or section 7.1), revealing that
decorrelation effects were negligible - which was of course expected from the synthetic
data.

Subsequently, the selection of the time-series length, N, will be addressed. In gen-
eral, it is preferable to minimise this parameter, as discussed in section 6.2.4. Never-
theless, it is essential to recognise that reducing N will decrease precision, potentially
leading to extended averaging times and an overall adverse impact on the effective ve-
locity inference frequency. Additionally, it noted that the minimum measurable velocity
is influenced by N, as illustrated in Equation 6.8. N = 128 frames was arbitrarily chosen
at this point, acknowledging that adjustments may be necessary.

The final parameter to be considered is the separation distance, ∆ℓ. Firstly, note
that an increase in ∆ℓ results in an elevation of the maximum measurable velocity and
enhances the measured velocity resolution below ∆ℓ. While a larger ∆ℓ is generally
advantageous, caution is advised to avoid increasing ∆ℓ to a degree where decorrela-
tion effects become substantial. Given the insignificance of decorrelation effects in this
data, ∆ℓ could be adjusted freely.

As depicted in figure 6.3, the accuracy is anticipated to strongly vary with the under-
lying velocity. Consequently, ∆ℓ had to be adjusted across multiple velocity inferences
to hone in on an approximate quantification of velocity. After initial testing, a trial range
of ∆ℓ = 10-30 px was selected. Now that both ∆ℓ and N are established, the minimum
measurable velocities were computed using Equation 6.8. Based on these calcula-
tions, velocities down to 1 px/frame can be measured accurately in both time-series.

Using the aforementioned parameters, velocities in both time-series A and B were
estimated using CCTDE. The standard procedure outlined in section 6.2 was followed,
and the results are summarised in Table 6.2. The inferred velocities exhibited signifi-
cant variation with ∆ℓ, which was expected. No spatial variations were observed, so it
was not considered worthwhile to present example velocity fields here.

For time-series A, only NaN velocities were recorded in the x-direction, and the ve-
locity in the y-direction exhibited the highest correlation at 15px/frame. In time-series
B, non-zero velocities in the x-direction were observed at ∆ℓ≤ 15. These were hypoth-
esised to be spurious velocities induced by the barber pole illusion, as anticipated by
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Table 6.1. This hypothesis could be cross-checked with DTW results at a later point.
The velocity in the y-direction had multiple values with correlation close to unity, and
the y-velocity was estimated to fall within the range of 10-20 px/frame. This range could
be refined at a later point by increasing the ∆ℓ resolution and through comparison with
DTW.

time-series ∆ℓ vx vx corr. vy vy corr.
10 nan 0.3 10 0.5
15 nan 0.3 15 1.0

A 20 nan 0.3 20 0.5
25 nan 0.3 12.5 0.5
30 nan 0.3 15 0.5
10 10 0.5 10 0.7
15 15 0.4 15 1.0

B 20 nan 0.4 20 0.9
25 nan 0.3 25 0.6
30 nan 0.3 15 0.9

Table 6.2: Summarising CCTDE inferred velocities for time-series A and B. ∆ℓ was
varied from 10 px to 30 px. Correlation amplitudes of the inferences are included. NaN
velocities given when the time-delay was zero.

Subsequently, velocities will be inferred using DTW to enable cross-checking be-
tween the techniques. Given that the velocity fields were previously found to solely
point in the y-direction, the initial slicing direction for DTW could be set accordingly.
Moreover, no sheared flows were observed, and no spurious velocities due to the bar-
ber pole illusion should be anticipated from DTW at ∆k = 0.7ky0. DTW accuracy is
also not significantly dependent on fluctuation spatial scale or underlying velocity at
SNRrms = 100. For these reasons, DTW could be straightforwardly applied without ex-
pected complications.

Strip widths of [32, 22, 12, 8, 6, 4, 2] px were employed for a total of 7 iterations,
with the initial slicing direction set along the y-direction. As depicted in figure 6.13,
velocity fields were successfully measured by DTW with standard deviations of less
than 10% from the mean velocity. For time-series A, average velocities of 0 px/frame
in the x-direction and 15 px/frame in the y-direction were determined. For time-series
B, average velocities of 0 px/frame in the x-direction and 17 px/frame in the y-direction
were inferred. These results generally align with the CCTDE estimates and support the
hypothesis that the CCTDE-inferred non-zero velocities in the x-direction were indeed
due to the barber pole illusion.

CCTDE was rerun for both time-series A and B while varying ∆ℓ from 10px to 20px
in 1px increments. In the case of time-series A, the velocity in the y-direction with the
highest correlation remained unchanged at 15 px/frame. Conversely, for time-series
B, the velocity in the y-direction with the highest correlation was determined to be
17 px/frame. Through the utilisation of both velocimetry methods and cross-checking
results, dependable velocity field inferences were achieved for both time-series A and
B.

In conclusion, the analysis revealed that fluctuations in both time-series exhib-
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(a) (b)

Figure 6.13: Example DTW velocity field inferences of time-series B. Velocity in the x-
direction (a) averages to zero and velocity in the y-direction (b) averages to 17px/frame.
Colourbars were centred on the averages. All velocity fields were measured with a
standard deviation of < 10% from the average.

ited no significant velocity in the x-direction. The velocity in the y-direction for time-
series A was determined to be 15± 0.5 px/ f rame, while for time-series B, it was 17±
0.5 px/ f rame. Uncertainties were defined as half the step size in ∆ℓ for the final CCTDE
inferences.

Imposed velocities were subsequently recovered from the metadata, confirming y-
velocities of 15 px/frame and 17 px/frame for time-series A and B, respectively. The
velocity in the x-direction remained at 0 px/frame in both cases.

This section demonstrated how fluctuation spatial parameters were instrumental in
configuring the operational parameters of CCTDE, and accurately predicting spurious
velocities due to the barber pole illusion. The direction of the CCTDE-inferred velocity
fields was then utilised to set the slicing direction in the DTW analysis. By cross-
checking results from both techniques and refining the CCTDE inferences, consistent
outcomes between the two methods were achieved.

6.6 Discussion and Conclusion

The two main image velocimetry techniques, CCTDE and DTW, were tested exten-
sively to quantify the dependencies of their accuracy and precision on key parameters
in the underlying fields. Synthetic data was used to represent a range of fluctuation
structures observed in turbulence diagnostics, namely, ranging from isolated density
fluctuation structures to fully-developed turbulent density fields. Additionally, specific
scenarios were investigated like the barber pole illusion, sheared velocity fields, and
variation of the number of spatial channels. It was shown in sections 6.2 and 6.3 that
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the accuracy of both techniques can exhibit strongly nonlinear behaviour. It is therefore
ill-advised to extrapolate results from any such tests, including previous literature, be-
yond the investigated parameter range. Nevertheless, the scope of this thesis covers
the typical data parameters for most plasma turbulence diagnostics.

Decorrelation effects were not imposed on the synthetic data. For DTW this is
not thought to be an issue unless the decorrelation timescale is comparable to the
diagnostic measurement frequency, which is the realm where any velocimetry method
is doomed to fail anyway. CCTDE can be more strongly affected by decorrelation
effects, especially if ∆ℓ is increased. Nevertheless, decorrelation effects can often be
mitigated by analysing the decorrelation timescale, as discussed in [94] and section
7.1.

This study only investigates velocities pointing in the orthogonal directions, thus pre-
venting the investigation of, for example, rotational flows. However, the impact of such
flows on two-point CCTDE and DTW is likely limited. If rotational flows are spatially
larger than the spatial resolution, CCTDE will be unaffected. If rotations are smaller,
the diagnostic will not record them anyway. It should also be noted that some more
elaborate CCTDE methods can infer diagonal velocities [80]. It has been shown previ-
ously that DTW can perform accurately with rotational velocity fields [83].

It was found that CCTDE’s accuracy strongly depends on the underlying velocity,
which can unknowingly introduce inaccuracies if not carefully considered. A number of
options which address this issue were discussed in section 6.2.4.

The signal-to-noise ratio and density fluctuation spatial scale did not have a signifi-
cant impact on CCTDE accuracy in the majority of cases. Precision loss due to noise
could mostly be counteracted via filtering.

The length of the time-series could be reduced down to 32 frames without significant
impact on the CCTDE accuracy. This represents an inference frequency which is an
order of magnitude faster compared to the typical ≥256 frames in previous literature.

Spurious CCTDE velocities due to the barber pole illusion were quantified and could
largely be avoided through a simple analysis before velocimetry. This complication,
which is highly prevalent in plasma turbulence studies, could previously not be circum-
vented without extensive additional analysis and bold assumptions [88].

The accuracy of DTW, with 128 by 128 channel images, was not strongly dependent
on the spatial size of the fluctuations or the underlying velocity. Noise was detrimental
to accuracy but these effects could largely be counteracted via spatial smoothing of the
images. Sheared flows were detrimental to accuracy and a threshold in the maximum
shear was observed. These tests confirmed the expected result that DTW is typically
a reliable technique for such high-spatial-resolution images.

A major caveat with DTW is that the direction of the underlying velocity field must
be known prior to analysis. The flow direction is used to set the initial slicing direction
of DTW, which results in complete failure of the velocimetry if set incorrectly.

A more challenging test for DTW was to observe its performance when the number
of spatial channels is reduced. In this regime, it was found that the accuracy and pre-
cision were strongly reduced in images with 16 by 16 channels or fewer. Additionally,
noise had a strongly enhanced detrimental effect on the method precision and accu-
racy. Through averaging consecutive measurements, accurate velocity fields could be
recovered in 8 by 8 channel images with SNRrms = 2. This is novel evidence that DTW
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can confidently be applied to high-time-resolution, but low number of spatial channels
plasma diagnostics such as beam emission spectroscopy [75], which was a point of
contention in previous literature. No spurious velocities due to the barber pole illusion
were observed using DTW at ∆k ≥ 0.3 ky0.

In conclusion, the accuracy and precision of both CCTDE and DTW were quantified
under a broad range of conditions. Improvements on multiple fronts were made to
the operational range of both techniques. It was found that two of CCTDE’s main
drawbacks were: the velocimetry accuracy can depend strongly on the magnitude of
the underlying velocity, and CCTDE is prone to spurious inferences due to the barber
pole illusion. Conversely, DTW accuracy was found to strongly depend on the direction
of the underlying velocity and the number of spatial channels in the data. Additionally,
DTW was much more robust against spurious inferences due to the barber pole illusion.
In general, it is recommended that both CCTDE and DTW be used in conjunction with
each other for accurate velocity field inferences. To this end, a basic example workflow
was presented in section 6.5 which utilises both techniques and should significantly
improve confidence in velocity estimates. In any case, the highly nonlinear and often
unexpected behaviour of both techniques show that referral to tests like the ones in this
chapter are necessary for confident and accurate image velocimetry.
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Delocalised Velocimetry Experiments
on MAST-U

The first velocimetry applications in this thesis to experimental data are covered in this
chapter. The focus was on applying the results shown in chapter 6 and investigating
potential differences with the synthetic data tests. In section 7.1, the BES data is
examined, and preparatory analysis for velocimetry is performed. The initial results
from DTW and CCTDE velocimetry are covered in sections 7.2 and 7.3, respectively.
In section 7.4, it is observed that de-localised carbon emissions dominate the BES
signal in almost all MAST-U shots in the second campaign (MU02). At first glance, this
discovery is devastating for any potential velocimetry, but, through further investigation,
a method was developed to uncover the carbon II shell dynamics for the first time using
BES.

7.1 Preliminary Analysis of BES Density Fluctuations

This section is dedicated to the analysis of density fluctuation structures captured by
BES in shot 46883. Subsection 7.1.1 explores the existence of coherent density struc-
tures in both radial and poloidal directions of the BES field-of-view. Subsection 7.1.2
covers the preparatory analysis of the BES data required for confident velocimetry
analysis. Specifically, the analysis investigates the signal-to-noise characteristics, spa-
tial correlation lengths, eddy tilting angles, and decorrelation timescales of the density
fluctuations.

7.1.1 Coherent Density Fluctuation Structures

In preparation for the application of BES density fluctuation data to velocimetry tech-
niques, an analysis was undertaken to investigate the presence of coherent density
structures in the data. The focus is on shot 46883, which was chosen due to a pro-
longed L-mode that features clean broadband turbulence signatures in the BES kθ − f
spectra. The shot encompasses an ELM-y H-mode between 200-300 ms, an ELM-
free H-mode spanning 300-400 ms, a H-L backtransition around 400 ms, and a steady
L-mode from 430-660 ms before disruption, which can be seen in figure 7.1. The L-
mode is characterised by consistent broadband turbulence ranging from 10-30 kHz,
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exhibiting a phase velocity of approximately ∼ -7 km/s in the z-direction1.

Figure 7.1: Overview of shot 46883. ELM-y H-mode between 200-300 ms, an ELM-
free H-mode spanning 300-400 ms, a H-L backtransition around 400 ms, and a steady
L-mode from 430-660 ms before disruption at ∼700 ms. Top subplot shows a BES raw
signal trace. Vertical green and red lines denote start and end of NBI power. Second,
third and fourth subplots show plasma current, electron number density and electron
temperature, respectively. Fifth subplot shows Dα emissions. Final subplot shows the
SS NBI injection power.

To explore the presence of coherent structures, the magnitude-squared coherence
between BES channels was calculated, as shown in Equation 7.1:

Cxy( f ) =
|Gxy( f )|2

Gxx( f )Gyy( f )
(7.1)

Cxy( f ) and Gxy( f ) represent the magnitude-squared coherence and spectral density,
respectively. Both quantities are calculated with two time-signals x and y, and given at
frequency, f . The time signals x and y are taken from BES channels (i,j) and (i+sep,j),

1The z-direction of the BES array corresponds approximately to the -ve poloidal direction.
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respectively, to investigate the poloidal coherence. Channels (i,j) and (i,j+sep) are cho-
sen to investigate the radial coherence. The separation value, ‘sep’, represents the
poloidal (radial) distance between the BES channels. All possible pairs of channels are
taken at constant separation value, and the subsequent coherence functions are aver-
aged to maximise statistical convergence. Preliminary testing did not reveal significant
differences between individual coherence spectra, justifying the use of averaging.

Examining figure 7.2, a poloidal coherence around unity is observed in the sub-kHz
regime. At sep = 2 cm, increasing in frequency, the coherence gradually drops to ∼ 0.8
at 30 kHz, after which a sharp drop in coherence is observed. Despite the sharp drop,
significant coherent peaks are still observed above 100 kHz, although these peaks
likely correspond to global noise that affect all BES channels simultaneously.

Figure 7.2: Poloidal coherence of the BES density fluctuations. The left plot shows the
poloidal coherence spectra at different separation values. Separation values are given
as average channel-pair separation in cm. Grey shaded area represents the broad-
band turbulence range. The right plot shows the median coherence of the broadband
turbulence depending on poloidal separation distance. The e-folding length, λ1/e, and
uncertainty margin were estimated through a least-squares fit to an exponential decay
function.

By varying the poloidal separation between channels, the poloidal coherence lengths
of distinct features can be investigated. As seen in figure 7.2, a highly coherent peak
is observed around 200-800 Hz which doesn’t depend strongly on the poloidal separa-
tion distance. These frequencies correspond to the NBI frequency range and therefore
likely represent coherent NBI modulation of the BES emissions. It can also be observed
that the turbulence, with frequencies 10-30 kHz, has a significant poloidal coherence
length, which was quantified to have an e-folding length of ∼5.5 cm ± 0.5 cm. Finally,
another noteworthy feature is a 1-2 kHz peak that displays a coherence length signif-
icantly longer than the turbulence. The nature of this peak was not clear, but further
investigation fell outside the scope of this research.
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A comparable analysis was performed investigating the radial coherence spectra,
as shown in figure 7.3. Again, the NBI attenuation appears to have a long radial co-
herence, which was to be expected. Interestingly, the 1-2 kHz peak also displays a
long radial coherence length. The turbulent fluctuations displayed a radial coherence
e-folding length of ∼3.7 cm ± 0.4 cm, which was significantly shorter than the poloidal
coherence length.

Figure 7.3: Radial coherence of the BES density fluctuations. The left plot shows the
radial coherence spectra at different separation values. Separation values are given as
the average channel-pair separation in cm. Grey shaded area represents the broad-
band turbulence range. The right plot shows the median coherence of the broadband
turbulence depending on radial separation distance. The e-folding length, λ1/e, and
uncertainty margin were estimated through a least-squares fit to an exponential decay
function.

In short, high coherence was observed both poloidally and radially in the NBI at-
tenuation of the BES signal, as expected. An unidentified peak was identified around
1-2 kHz with consistently high poloidal and radial coherence. Finally, the background
turbulence was found to be characterised by a poloidal coherence length of approxi-
mately 5.5 cm and a radial coherence length of approximately 3.7 cm. This result is
not unsurprising because shear flows often decrease the radial extent of density struc-
tures whilst leaving the poloidal extent relatively unaffected. Although shear flows could
explain the observation, concrete conclusions could not be drawn at this point.

7.1.2 Preparatory Analysis for Velocimetry

In the initial examination of density fluctuations within the BES data, conditional kθ -
f spectra were plotted, as depicted in figure 7.4. It can be seen that the density
fluctuations exhibit a consistent phase velocity of approximately 6-7 km/s through-
out the L-mode times. This observation remains consistent across the entire BES
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radial range, with no significant temporal variations in velocity slower than a ∼ 1 ms
timescale. Faster timescales could not be investigated through this method due to con-
vergence issues. Noise is present at frequencies above ∼ 150 kHz and will be filtered
out throughout further investigations. Furthermore, these plots reveal that the turbulent
signal does not extend beyond ∼ 50 kHz. Finally, coherence analyses between the
BES fluctuations and the NBI fluctuations (which are not shown here) indicate a rapid
drop-off in NBI modulation of the BES signal above 2 kHz, becoming negligible by 3
kHz. Consequently, a frequency range of 3-50 kHz was deemed appropriate to isolate
turbulent density fluctuations.

(a) (b)

Figure 7.4: kθ -f spectra of BES data. An NBI beam notch was present in the shot
between graphs a) and b), at times 520-540 ms. Both graphs represent an L-mode
plasma.

Two signal samples were acquired to estimate signal-to-noise characteristics: a raw
signal sample taken during times 430-510 ms and a background sample during the NBI
notch at 520-540 ms. The NBI notch, characterised by its brief duration to minimise
changes in the plasma equilibrium, was thought to provide an appropriate background
signal for BES measurements. The signal-to-background ratio (SBR) was computed
by dividing the RMS of the raw signal by the RMS of the background. This calcula-
tion was conducted for all BES spatial channels, resulting in the graph illustrated in
figure 7.5. Notably, the SBR exhibits significant variation across the field of view, likely
corresponding to the variation of NBI amplitude. Additionally, the signal-to-noise ratio
(SNR) was determined by filtering both the signal and background between 3-50 kHz
and taking the ratio of fluctuation amplitudes from their respective means. The SNR,
estimated to be SNR = 1, displayed no significant spatial variation. Comparing these
estimates with the established noise limits in sections 6.2 and 6.3 suggests that noise
may marginally affect velocimetry accuracy for both CCTDE and DTW, but velocimetry
should generally be accurate.

A spatial Fourier analysis was attempted like the one performed in section 6.5, but
no useful information could be resolved, likely due to the low number of spatial channels
and low signal to noise ratio of the BES data. Instead, a spatial correlation approach
was used to investigate the typical spatial structures of the density fluctuations, which
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Figure 7.5: Spatial map of the signal-to-background ratio of the BES signal.

involved the following steps:

1. A reference BES channel was selected.

2. The reference time-signal was cross-correlated with signals from each of the
other BES channels.

3. A spatial correlation map was built up by taking the zero-time-lag correlation val-
ues.

4. Gaussian least-square fits were taken through the reference in the radial and
z-directions.

5. Average correlation lengths of the density structures were estimated based on
the full width at half maximum (FWHM) of the Gaussian fits.

6. Steps 1-5 were repeated with different reference channels to build up a radial
scan of the correlation lengths

The results in figure 7.6 suggest correlation lengths of approximately 8-10 cm in both
radial and z-directions, with estimates at the edges disregarded due to edge clipping
effects. Individual spatial correlation maps, not presented here, showed no evidence of
density feature tilting. In short, the spatial correlation analysis estimated λz0 ∼ λR0 ∼
8−10 cm, θ = 0, and no estimates could be made for ∆k.

The typical decorrelation timescale of the density fluctuations was also investigated
through a cross-correlation method, as outlined below:

• Two signals, denoted as f and g, were selected at BES indices (i, j) and (i+sep, j),
respectively, where the parameter ‘sep’ was an integer initialised equal to 1.
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Figure 7.6: Spatial correlation lengths of BES density fluctuations. Estimates near the
edges should be ignored due to clipping effects.

• The cross-correlation between signals f and g was computed.

• The peak of the cross-correlation function and its corresponding time-lag were
located.

• This process was repeated with variations in the parameter ‘sep’.

• An exponential decay function was then fitted through the peaks of the correlation
function, providing an estimate of the decay time.

The outcomes, illustrated in figure 7.7, present the decorrelation of the BES fluctuations
with time. The 1/e decay time was estimated at 15 µs or 59 frames. Correspondingly,
at an estimated velocity of 6-7 km/s, this translates to a lengthscale of 9-10 cm. These
findings suggest significant decorrelation effects across the BES field-of-view, yet they
are unlikely to have a significant effect when analysing directly adjacent channels.

7.2 Initial Results and Challenges with DTW

This section encompasses initial tests which evaluate the performance of DTW when
applied to BES data from MAST-U, shot 46883. The general methodology employed
for inferring velocities using DTW is outlined as follows:

• The BES data is pre-processed to isolate turbulent fluctuations (as detailed in
section 7.1).
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Figure 7.7: Estimating decorrelation timescale of the turbulence. Estimated timescales
were given as the 1/e exponential decay time.

• The BES data is interpolated onto a regular 8 by 8 grid since irregular spatial
maps are incompatible with the current implementation of DTW.

• Two images separated by ‘shift’ number of frames are selected and processed
using DTW to estimate a displacement field (the rationale behind the shift param-
eter and its selection process will be discussed later in this section).

• The previous steps are repeated for the entire BES time series using subsequent
pairs of frames.

In these investigations, BES data at times 430-510 ms and frequencies 3-50 kHz were
utilised, and the parameter sw list was set to two iterations with [4,2] channel strip-
widths.

The estimated phase velocity in this time series was 6-7 km/s (see section 7.1.2),
corresponding roughly to 0.1 channel separations per frame. However, this presents
a challenge because, as established in section 6.3, DTW struggles to accurately infer
velocities below 1 channel separation per frame (1 px/frame). To address this, instead
of analysing adjacent BES images, the image at index t would be compared with image
t+shift. This can artificially increase the apparent velocity inferred by DTW and bring
the velocity into the accurately measurable regime. As depicted in figure 6.11, DTW
can infer accurate velocities at ∼ 1 channel separation per frame. Given the estimated
velocity of 6-7 km/s, meaning that the density features travel one channel separation
in ∼ 12 frames, the shift parameter was set to 12 frames for initial tests. Since the
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inclusion of the ‘shift’ parameter was not previously tested in section 6.3, the effect of
varying the shift parameter was investigated later in this section.

Initial results yielded an average velocity of -2 km/s with a standard deviation of ap-
proximately 20 km/s. Apart from the low precision and the average velocity disagree-
ment with the estimated phase velocity, several other complications were observed.
Namely, edge effects were observed in the inferred velocity fields, with velocities at
the edges of the field-of-view observed to be relatively large and point away from the
edges. Further initial tests (not shown here) revealed that interpolating the BES data
onto higher numbers of spatial channels exacerbated these edge effects, leading to
the decision not to further explore this ‘up-resolving’ approach.

Figure 7.8: Time-averaged velocities in the z-direction inferred by DTW. Velocity gradi-
ent in the bottom half of the field-of-view was likely nonphysical and instead due to a
currently unknown quirk of DTW.

An issue related to these edge effects is observable in figure 7.8. Velocities at
the bottom of the frame are zero (and often even positive), while velocities in the top
half of the frame were consistently negative. These DTW results imply that the density
features are being compressed in the bottom half of the frame, although this is certainly
not an accurate reflection of the true physical picture. Instead, this phenomenon is
an expected quirk of DTW2 that would not have been very significant in the testing
of section 6.3; however, further testing of this effect was outside the scope of this
investigation. Instead, the bottom four channels, as dictated by the largest strip width,

2This quirk is due to the fact that DTW cannot infer the velocities of features that leave the field of
view. In other words, negative velocities cannot be measured at the very bottom of the frame. In theory
this should only affect the bottom row of channels, but due to the way that DTW averages overlapping
strips and due to the strip widths chosen, this effect bleeds into the bottom 4 channels. As such, re-
running DTW with strip widths [2,1] channels could be considered for future work, but this falls outside
of the scope of this investigation.
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could be ignored to circumvent this edge effect. The remaining top half of the field-
of-view appears to estimate velocities in rough agreement with the preliminary phase
velocity estimations in figure 7.4.

The estimated optimal shift parameter for this data was previously evaluated to lie
around 12 frames, but it remained unclear how sensitive DTW performance was to this
shift. Consequently, the shift parameter was varied from 2 to 256, and the resultant
average velocities were presented in figure 7.9. The inferred velocity at z ∼ -0.07 m
ranged between 0 and 1 km/s, consistent with the aforementioned ‘squishing’ problem.
In the top half (+ve z) of the field-of-view, the inferred velocities varied strongly with
varying shift. At shift ∼ 2 frames, the inferred velocity was close to zero. Increasing
the shift resulted in an increasingly negative velocity, until the average velocity (at +ve
z) reached 5-7 km/s with shift = 12, which was in approximate agreement with the
estimated phase velocity of 6-7 km/s. The average inferred velocities then remained
approximately constant for shift 12-32 frames. Increasing the shift beyond this point
brought the inferred velocity closer to zero again. Remarkably, this pattern of under-
estimation, roughly accurate velocities, and then underestimation again, is consistent
with the testing shown in figure 6.11. To clarify this point, it is important to realise that
increasing shift is akin to increasing v0 in figure 6.11.

Figure 7.9: Investigating the effect of varying ‘shift’ on the velocities inferred by DTW.
Velocities at z ∼ -0.07 m were constrained to only positive velocities due to edge ef-
fects.

Finally, the effect of the DTW operational parameter ‘sw list’ was investigated. In-
depth results are not shown here because the effect of varying sw list was rather lim-
ited, as expected from the testing in section 6.3. Regardless, it was observed that a
strip-width of 8 was detrimental for this 8 by 8 array, and a strip-width of 1 did not yield
any beneficial effects, despite requiring a significantly larger computational cost. Thus,
a sw list of [4,2] channels was chosen for these investigations.

In conclusion, an edge effect was found in this investigation that was not previously
observed in the testing of section 6.3. This edge effect was an expected quirk of the
DTW method, but further investigations aiming to minimise these edge effects were
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outside the scope of this analysis. The edge effects do not impact the top half of the
field-of-view for these investigations. In this area the DTW velocities were observed
to be in agreement with the expected phase velocities. This agreement was observed
for shift values ranging from 12-32 frames, and the introduction of the shift parameter
enabled velocities to be inferred despite lying below the 1 channel separation per frame
operational limit found in section 6.3. Note that the introduction of the shift parameter
also enables averaging of up to ‘shift’ number of velocity inferences without further im-
pacting the effective inference frequency. Despite these somewhat promising results
which suggest that DTW can be successfully applied to BES data, more in-depth ve-
locimetry analysis could not confidently be performed without significant further testing
on the effect of varying the shift parameter and operation in this low velocity regime.

7.3 Initial Results and Challenges with CCTDE

This section presents the workflow and initial results of CCTDE velocimetry of shot
46883. Subsection 7.3.1 describes preparatory work performed to optimise the perfor-
mance of CCTDE and identify possible challenges. Subsection 7.3.2 presents initial
velocimetry results and investigates performance dependence on variations in ∆ℓ and
N.

7.3.1 Preparations for CCTDE velocimetry

The expected velocities of -6 to -7 km/s, as detailed in section 7.1.2, fall significantly
below 1 channel separation per frame (approximately 80 km/s). In this regime, the
accuracy dependence on the true underlying velocity was thought to be negligible, as
can be seen in the bottom subplots of figure 6.3. Despite not facing complications
related to the previous point, it was anticipated that precision may be decreased in this
regime.

The decorrelation lengthscale was projected to be around 9 cm with expected veloc-
ities at 6-7 km/s. At a ∆ℓ of 1.8 cm, the impact of decorrelation on the inferred velocities
was deemed negligible. The impact of decorrelation on the inferred velocities can be
quantified through analysis comparable to that in [94].

SNR and SBR estimates ranging from 1-3 approach the SNR ≥ 1 limit defined in
section 6.2. While a loss of accuracy was not expected due to the SNR based on the
testing in chapter 6, a reduction in precision may be observed in the inferred velocities.

Operational CCTDE parameters ∆ℓ and N were determined through consultation
with figure 7.10. In this figure, the minimum measurable velocities, as predicted by
equation 6.8, were plotted. It is evident that N = 32 and 64 frames cannot measure
velocities down to the expected velocity of -6 km/s. N = 128 frames is the lowest N that
may be able to detect expected velocities, provided ∆ℓ is kept below ∼ 8 cm. At N =
256 frames, minimum velocities range from 2-4 km/s, depending on the choice of ∆ℓ.
With the selection of N = 256 frames, CCTDE should not only be able to capture the
expected average velocity but also observe fluctuations of ∼ 2-4 km/s from a presumed
average of -6 km/s.
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Figure 7.10: The minimum measurable velocities attainable by CCTDE, as predicted by
equation 6.8. The red hatched area shows the parameter combinations which cannot
measure down to the expected velocity of -6 km/s.
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The impact of the barber pole illusion could not be estimated using the methods
described in section 6.5 due to a lack of a ∆k estimate. Nevertheless, given the absence
of eddy tilting in the spatial correlation maps, it was assumed that the barber pole
illusion would have a negligible impact.

7.3.2 CCTDE velocimetry results

Preliminary results were obtained from CCTDE using the following parameters: N =
256 frames and ∆ℓ = 1.8 cm. Figure 7.11 displays an example time-series of inferred
velocities. The standard deviation of the velocities typically ranged from 15-20 km/s,
significantly exceeding the magnitude of the estimated mean velocity of approximately
-6 km/s. Notably, the substantial standard deviation is primarily attributed to large out-
liers in velocity, as reflected in the IQR estimate of around 6 km/s that excludes these
outliers. Nevertheless, due to the low precision in the inferred velocities, long averag-
ing times are necessary to ensure convergence of the standard error. For instance,
averaging over the entire time series with 1250 realisations yields a standard error of
0.4 km/s.

Figure 7.11: CCTDE velocimetry results at one example spatial location. Uncertainty
margins shown for the mean and median were the standard deviation and IQR, respec-
tively. Standard error for the mean was 0.4 km/s.

Figure 7.12 illustrates the dependence of velocimetry performance on ∆ℓ. Increas-
ing ∆ℓ substantially reduces precision, aligning with the drop in correlation due to longer
∆ℓ. The mean velocity tends towards zero with increasing ∆ℓ, which may be explained
by the increased prevalence of velocity outliers, assuming outlier symmetry around
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zero. The relatively unaffected median and IQR support this hypothesis, suggesting
that inlier statistics are not strongly dependent on ∆ℓ. Therefore, using the median for
velocity averaging could be considered a more robust metric than the mean. Addition-
ally, applying an outlier removal scheme may prove beneficial for further investigations.

(a) (b)

Figure 7.12: CCTDE performance depending on ∆ℓ. Results averaged spatially over
the entire BES array and temporally from 430-510 ms.

The dependence of velocimetry performance on N is depicted in figure 7.13. Pre-
cision improves with increasing N, as anticipated from the testing in section 6.2. How-
ever, diminishing returns on IQR improvements are observed beyond N = 512 frames.
Increasing N also converges the velocity mean and median, but strong diminishing re-
turns are observed beyond N = 1024. Therefore, N = 512-1024 frames is considered
the optimal range for maximising accuracy and precision while also maximising the
number of independent realisations attainable in this specific time-series.

In summary, the presented results estimate a median velocity of -7 km/s with an
IQR of 5 km/s at N = 1024 frames and ∆ℓ = 1.8 cm. This aligns with the phase velocity
estimated in section 7.1.2. However, the precision was found to be too low for meaning-
ful further investigations into temporal velocity variations or coherence analyses. The
reduced precision was expected from the testing in section 6.2, but the discovery of
large outliers was not previously observed. It was later found that these outliers likely
resulted from a lack of spatial localisation of the BES signal, discussed in more detail
in section 7.4.

7.4 CCTDE Velocimetry of the CII Impurity Shell

This chapter revolves around a significant challenge posed by the existing experimental
data – specifically, the absence of a substantial beam emission signal recorded in
nearly all MAST-U shots by the BES diagnostic. The examination and interpretation
of the remaining background signal captured by BES are detailed in section 7.4.1. In
section 7.4.2, this limitation is addressed by constructing a rudimentary synthetic BES
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(a) (b)

Figure 7.13: CCTDE performance depending on N. Results averaged spatially over the
entire BES array and temporally from 430-510 ms.

diagnostic, aiming to calibrate the BES radii for the background emissions. Ultimately,
in the cross-comparison of BES velocimetry with CXRS velocities discussed in section
7.4.3, an agreement between the two diagnostics is observed within acceptable error
margins. This has never been achieved to this date, and could provide a promising
new avenue through which to study carbon impurity dynamics in the future.

7.4.1 Dominant CII emissions in BES signal

Upon plotting the power spectra of the BES signal at different times, which are not
shown here, it was observed that there was no discernible difference in BES turbulent
signal power whether the Neutral Beam Injection (NBI) was switched on or off3. In
other words, the diagnostic was not recording any signal other than the background
emissions. This observation persisted across almost all shots in the second MAST-U
campaign, including those shots most promising for L-mode velocimetry. Despite this
disheartening discovery, this section explores the prospect of conducting velocimetry
analysis on the background signal. To my knowledge, this has never been attempted
before but could provide useful information, particularly in the study of impurity dynam-
ics.

The prevailing background emissions that dominate the BES signal were thought
to originate from Carbon-II (CII), as it was the only known emission line that would
pass through the optical filter. The R-z coordinates assigned to each BES spatial
channel were not calibrated for these CII emissions, and it can be assumed that the
emissions are not accurately localised by the BES diagnostic. This lack of localisation

3The lack of beam signal was due to an unforeseen calibration issue with the BES optical filter.
Instead of maximally filtering out background emissions and transmitting the beam emission, the beam
emission was entirely blocked by the filter. This issue could easily be fixed through a heating element
which shifts the bandpass frequencies of the optical filter, but this adjustment could unfortunately not be
applied in time for the writing of this thesis.
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poses a challenge for image-velocimetry analysis, which relies on spatially localised
measurements.

CII emissivity typically forms a hollow shell in tokamak plasmas, where the temper-
ature is sufficiently high for the first carbon ionisation but not high enough for further
ionisation. In search of the shell location, a radial scan of the total BES emission
intensity revealed a clear peak in CII emission, as illustrated in figure 7.14a. The ob-
servation of a single emission peak was deemed consistent with the location where the
BES line-of-sight intersects the greatest volume of CII. This intersection would approxi-
mately occur where the BES views the CII shell tangentially or as close to tangential as
possible. If this hypothesis is correct, at the location of R = 1.31-1.35 m, the emissions
may be radially localised enough to yield meaningful velocimetry results.

CCTDE was applied to shot 47108 during notch times 620-635 ms, where the BES
data was frequency filtered between 3-100 kHz. The lower frequency limit was se-
lected for consistency and the upper limit was to remove high-frequency noise. N =
512 frames and ∆ℓ = 1.8 cm were used for the CCTDE operation. The results, depicted
in figure 7.14b, exhibit a distinct velocity shear at approximately 1.34 m. Notably, this
shear does not align with the separatrix location predicted by the equilibrium modelling
tool ‘EFIT.’ This discrepancy is intriguing because a flow shear region typically coin-
cides with the separatrix. Thus, considering that the BES radii were not calibrated for
CII emissions, this misalignment is most likely attributed to inaccurate BES radii rather
than an accurate reflection of the true physical picture.

(a) (b)

Figure 7.14: BES intensity profile of the CII background emissions shown in (a). The
three shots that were used represent repeat shots with near-identical discharges. Ve-
locimetry applied to shot 47108 shows a shear flow in (b). The mismatch of the shear
flow location and the separatrix suggests that the BES radii are not accurate for CII
emissions.

7.4.2 Calibrating BES Radii for CII Emissions

A rudimentary BES synthetic diagnostic was developed to provide improved estimates
of the true radii from which the CII emissions originate, as observed by BES. Firstly,
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the theoretically expected CII radial density distribution was estimated using Thomson
scattering measurements and the Saha ionisation equation [95]. The result is shown in
figure 7.15a, where it can be seen that the CII density may be expected to peak outside
the separatrix.

(a) (b)

Figure 7.15: (a) shows an estimate of the CII radial distribution in blue. Estimate based
on Saha ionisation curve shown in orange and SOL transport considerations that would
likely deplete the CII concentration outside the separatrix. (b) shows the CII distribution
extrapolated onto the R-z plane assuming equalised density along flux surfaces. BES
sight-line of channel (3,3) shown as red line.

Considering the limitations of the Saha equation, which does not account for effects
like transport or neutralisation, and recognising that SOL transport would likely rapidly
deplete the CII concentration outside of the separatrix, a (slightly) more nuanced dis-
tribution was proposed. This distribution was estimated by fitting a Gaussian to the
inboard part of the Saha equation fit, with the peak fixed at the separatrix location, as
illustrated in figure 7.15a. Note that the precise CII distribution was not considered
critical at this point, and the impact of varying the CII distribution was investigated later
in this section.

To create a CII density map in the R-z plane, the radial distribution from figure 7.15a
was extrapolated onto the MAST-U equilibrium of shot 47108, assuming CII density
equalisation along flux surfaces. This assumption was thought to be reasonable near
the outboard midplane, the region of interest, but less so in the divertor region. The
resulting R-z density distribution is presented in figure 7.15b. BES lines of sight were
then projected onto the R-z plane, with an example channel also illustrated in figure
7.15b. By integrating the CII density along the BES lines of sight, estimates were
made for the total CII emission intensity observed by each BES channel. This assumes
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that fluctuations in CII emission intensity are directly proportional to fluctuations in CII
density only, a common assumption in BES data analysis. The result is an approximate
image that would be observed by BES, given the emission from the estimated CII
density profile, as is shown in the background of figure 7.16.

Figure 7.16: CII emission intensity distribution as observed by synthetic BES diagnostic
shown in background. This result assumes a true CII distribution that is shown in red.
The black curve shows the CII intensity profile as experimentally observed by BES.

The radial location where the intensity peaks in the synthetic diagnostic does align
qualitatively, but does not align quantitatively with the experimental BES readings. It is
unclear if the quantitative mismatch is due to the crudeness of the synthetic diagnostic
or an inaccurate estimate of the true CII distribution. To gain further insight, tests
were conducted by varying the peak location and Gaussian width of the theoretical
CII distribution by ±5 cm and ±50%, respectively. In all cases, it was found that the
synthetic-BES-predicted CII peak was radially shifted inward from the imposed CII
density peak. The magnitude of this shift was found to increase with an increase of
the Gaussian width of the imposed CII distribution, but no significant dependence was
found on the imposed CII peak location. The magnitude of the shift was found to range
between 1-5 cm.

In conclusion, these findings consistently support that the true CII density distri-
bution is centred radially further outward than implied by experimental BES readings.
The direction of this shift is an artefact of the viewing geometry of the BES optics,
which was thought to be adequately captured by the synthetic diagnostic. The precise
magnitude of this shift could not be confidently estimated due to the otherwise crude
assumptions made for the synthetic diagnostic and CII distribution estimates, although
values ranging from 1-5 cm were observed. Regardless, it is unlikely that the CII peak
occurs outside the separatrix, noting the SOL transport considerations mentioned ear-
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lier. Thus, the experimentally observed BES emission peak at R = 1.33 m can be
conservatively estimated to originate from CII emissions peaking at R = 1.33-1.38 m.

7.4.3 CII velocimetry cross-diagnostic comparison

The objective of this section was to cross-compare the velocities estimated by BES
at R=1.33 m with CXRS velocities at R=1.34-1.37 m, assuming a CII shift of 1-4 cm.
CCTDE was applied to the entire L-mode portion of shot 47108 spanning 500-800
ms. Density fluctuations were frequency-filtered between 3-100 kHz, and CCTDE pa-
rameters N=512 frames and ∆ℓ=1.8 cm were chosen. Outlier velocities, differing from
the long-term median velocity by more than twice the IQR, were removed. Next, the
median of the velocities across all z-locations were taken at each time-point. Sub-
sequently, the velocities - which pointed in the z-direction - were projected onto the
diamagnetic drift direction (cross-field direction) using equation 7.2.

v⊥,BES =−
Bφ

|B|
vz,BES (7.2)

The resultant velocities are illustrated in figure 7.17. As anticipated from section 7.3,
long-term averages were necessary for velocity convergence, with the standard error
after averaging 10 ms segments being approximately 2 km/s.

Figure 7.17: CCTDE-inferred velocities in the ion drift direction. Standard deviation
of the velocities was 15 km/s. Averaging over 10 ms converges standard error to ∼2
km/s. Time shown in seconds on the x-axis.

Cross-comparison between the diagnostics is not straightforward because the BES-
inferred velocities point in the machine-z (approximately poloidal) direction, while the
CXRS velocities point in the toroidal direction. As such, the ExB velocity will be es-
timated separately using both diagnostics since this quantity should be identical re-
gardless of the diagnostic used. For both diagnostics, their inferred velocities were
projected onto the diamagnetic drift direction and by subtracting the main species dia-
magnetic velocity, the ExB velocity could be estimated4. The expressions used to

4This assumes that the turbulent phase velocity observed by BES image-velocimetry techniques is
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estimate the ExB velocities are detailed in equations 7.3 and 7.4, and a derivation can
be found in section 10.1.

vE×B,CXRS = v∗,e −
Bθ

|B|
vφ ,CXRS (7.3)

vE×B,BES = v∗,e −
Bφ

|B|
vz,BES (7.4)

It is important to note that the derivation of equations 7.3 and 7.4 assumes that neo-
classical transport theory holds. If this is not the case, a more detailed analysis can
be followed as is shown, for example, in experimental measurements in C-Mod[96].
Regardless, the assumption was considered sufficient for the initial comparisons made
in this thesis. On a separate note, the electron diamagnetic velocity was chosen over
the ion velocity because electron profiles are more easily experimentally obtained, but
the choice should not affect subsequent observations and conclusions.

The electron diamagnetic velocity, v∗,e, was calculated using the pressure profile
obtained from combining the temperature and density measurements from Thomson
scattering. Magnetic field strengths were obtained from the equilibrium reconstruction
tool EFIT. The resultant E×B velocities for both BES and CXRS are presented in figure
7.18.

The two CXRS-predicted velocity bounds were based on the uncertainty of the
BES radii with CII emissions. It is observed that the BES-predicted velocity largely falls
between these bounds and both diagnostics predict the same trend of increasing E×B
velocity with time. A notable exception is a large velocity excursion at 620-650 ms,
which was likely due to transient flows generated by a NBI beam notch.

In conclusion, the fact that CII velocimetry agreement was observed between the
diagnostics is a significant feat that, to the knowledge of the author, has never before
been achieved. This approach to velocimetry of the CII shell may provide valuable
information in the study of impurity transport and dynamics, which is an active and
impactful field of research. Improvements are suggested in BES calibration for CII
emissions or the development of a full BES synthetic diagnostic in order to further
improve the reliability CII velocimetry with the BES system. In short, this proof-of-
concept workflow has yielded results that suggest CII velocimetry is possible with BES,
and a significant scope for improvements makes this a promising avenue for further
exploration.

7.5 Discussion and Conclusion

The investigation of shot #46883 involved an examination of BES data, revealing den-
sity structures with typical poloidal coherence lengths of 5.5 ± 0.5 cm and radial coher-
ence lengths of 3.7 ± 0.4 cm (see section 7.1). In both directions, correlation lengths
of the density features were approximately 8-10 cm. The poloidal phase velocity, es-
timated by kθ − f spectra, ranged from -6 to -7 km/s at turbulent frequencies between

equal to the bulk diamagnetic velocity. Similarly, for CXRS, the Carbon diamagnetic velocity is assumed
to be equal to the main-species diamagnetic velocity. Although these assumptions do not necessarily
hold, any resultant velocity mismatch is not expected to exceed the magnitude of the main-species
diamagnetic velocity.
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Figure 7.18: Estimated ExB velocities using the BES and CXRS diagnostics. Steady
L-mode plasma present throughout times presented, except for an NBI beam notch
at 620-640 ms that may cause transients. BES velocities with 5 ms averaging time
resulted in standard errors of 2-3 km/s throughout the presented data.

3-50 kHz. The SNR was assessed to be around 1-3, and density features were ob-
served to decorrelate within 15 µs or 59 frames. The estimation of these parameters,
coupled with the testing in chapter 6, suggested that performing accurate velocimetry
analysis on this data was feasible.

Velocimetry utilising the DTW algorithm was conducted in section 7.2. One chal-
lenge that was encountered was that the velocities estimated by the kθ − f spectra were
an order of magnitude too slow and DTW velocity inferences were predicted to be in-
accurate. However, this issue was mitigated by introducing the ‘shift parameter’. Initial
findings revealed additional challenges at the bottom edge of the BES field-of-view.
These edge effects were expected, but strongly exacerbated by the limited number of
spatial channels available to the DTW. Figure 7.9 depicts strong velocity underestima-
tion in the bottom half of the BES field-of-view, while the top half exhibited rough but
somewhat robust agreement with the anticipated velocities. This implies that DTW can
yield reasonable velocity estimates, but further investigation is recommended for its
performance in this low-velocity regime and near the edges of the field-of-view.

Initial CCTDE velocimetry analyses were conducted in section 7.3. After prepara-
tory analysis and initial testing, optimal parameters were determined to be N = 1024
frames and ∆ℓ = 1.8 cm. With these parameters, the mean velocity was found to be
-8.0 ± 0.4 km/s, roughly in line with expected velocities. However, this result required
averaging over the entire 80 ms segment, which was due to the high standard devia-
tion of 15.1 km/s. This high standard deviation was primarily attributed to large (±100
km/s) outliers that were not observed in the testing in chapter 6.
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The aforementioned outliers were attributed to localisation issues detailed in sec-
tion 7.4. Specifically, the BES signal was dominated by background carbon emissions
instead of the intended neutral beam emissions. Upon further inspection, it was de-
termined that the background carbon emissions existed in a radially localised shell
observable by the BES diagnostic. This raised the possibility of accurate velocimetry,
granted that BES views the carbon shell tangentially. After ‘re-calibrating’ the BES ra-
dial coordinates for the carbon emissions, poloidal CCTDE velocimetry was performed
on the radially localised carbon shell emissions.

To improve confidence in inferred velocities, a cross-comparison was undertaken
with the charge-exchange-recombination spectroscopy diagnostic. Figure 7.18 illus-
trates that the magnitudes and temporal trends of the estimated ExB velocities agreed
between the two diagnostics. This promising outcome suggests that the method is ap-
plicable to accurate velocity estimation of background carbon impurities, an achieve-
ment not previously realised and could prove valuable for impurity transport studies.
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Velocimetry Experiments with
Localised BES Signals

This chapter investigates the only shot in the second MAST-U campaign that is suitable
for main species velocimetry analysis - shot #46459. A preliminary analysis can be
found in section 8.1, where the long-time (>10 ms) velocity trends are explored and
compared with the CXRS diagnostic. In section 8.2, the focus shifts towards higher
precision velocimetry at a faster inference frequency with the implementation of the
line-CCTDE method.

8.1 Slowly Varying (>ms) Velocity Comparison with Charge-
Exchange Recombination Spectroscopy

In this section, velocimetry analysis was conducted on BES data presumed to originate
from localised emissions. This became feasible following the identification of a sole
shot (in MAST-U campaign 2) exhibiting substantial NBI beam emissions recorded by
BES. CCTDE velocimetry analysis was then applied to this localised signal, presenting
novel challenges that had not been encountered in chapter 6. Additionally, a cross-
diagnostic comparison was undertaken between the E×B velocities predicted by the
BES and CXRS diagnostics.

8.1.1 Initial Look at the Data

The BES system could use two different optical filters depending on the region of the
plasma that was being imaged. The optical filtering issues outlined in section 7.4 were
specific to the edge optical filter, which was used in the majority of experiments. In
contrast, ten shots in MAST-U campaign 2 utilised a differently calibrated core filter,
potentially recording significant levels of beam emission. Of those ten shots, nine
experienced immediate or early disruptions, leaving only shot #46459 as a possible
candidate for velocimetry.

In shot #46459, both SW and SS neutral beams were employed. Upon activating
both beams, the plasma transitioned into an ELMy H-mode lasting from 210 to 270 ms.
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Figure 8.1: Power spectra of the BES signal at different times in shot #46459. Pre-
shot: -100 to -1 ms, SW only: 100-130 ms, SW and SS: 140-180 ms, ELMy H-mode:
210-270 ms, L-mode: 350-550 ms.

(a) (b)

Figure 8.2: a) ‘despiked’ raw BES signal in a single channel. Signal spikes due to
photon noise filtered out based on large spikes in signal gradient. sub-3kHz signal
represents fluctuations primarily due to NBI fluctuations. b) ‘cleaned’ BES signal after
despiking, frequency filtering and mean centring.
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Subsequently deactivating the SW beam, thereby reducing plasma heating, led to a
transition back to an L-mode from 350 to 550 ms until disruption.

Figure 8.1 displays the power spectra of the BES signal at different times in shot
#46459. When the SS beam was activated, there was an almost order of magnitude
increase in signal amplitude across frequencies of 5-100 kHz. This was in contrast
to all other shots in the second campaign, where no such increase was observed.
Additional investigations, using the same method covered in section 7.1.2, estimated a
SNR ranging from roughly 1 to 5, depending on the time and channel. These findings
indicate the presence of significant levels of beam emission signal in this particular
shot1.

Figure 8.2 shows example ‘despiked’ and ‘cleaned’ data from a single BES channel.
Raw data contained large signal spikes due to neutrons striking the detectors. These
were filtered out by removing datapoints that resulted in signal gradients that were or-
ders of magnitude larger than the median gradient. Resultant ‘despiked’ but otherwise
raw data is shown in figure 8.2a. Sub-3kHz signal fluctuations highlighted as resulting
from fluctuations in NBI power. Figure 8.2b shows fully ‘cleaned’ data ready for ve-
locimetry analysis. Raw data was despiked, frequency filtered between 3-50 kHz and
mean-centred. Lower frequency limit determined by NBI fluctuation frequency. Upper
frequency bound defined by electronic noise frequencies. Mean-centred to eliminate
channel-to-channel signal variations.

The analysis of conditional kθ - f spectra, though not presented here, unveiled two
counter-propagating flows during the H-mode at 210-270 ms, with phase velocities of
+15 km/s and -20 km/s, occurring at frequencies between 15 and 50 kHz. Throughout
the L-mode at 350-550 ms, a singular flow component was observed at frequencies of
3-50 kHz, exhibiting an approximate phase velocity of -7 km/s.

Operational parameters for CCTDE were determined following the workflow de-
scribed in section 7.3.1. It was estimated that the decorrelation timescale was around
16 µs, or 62 frames, throughout the entire shot. The density fluctuation structures
extended to 6-10 cm. These results, in conjunction with SNR estimates, guided the
selection of N = 512 frames and ∆ℓ = 1.8 cm for accurate CCTDE velocimetry.

8.1.2 CCTDE Velocimetry Comparison with CXRS

Using the selected parameters of N = 512 frames and ∆ℓ = 1.8 cm, CCTDE was applied
to times 150-550 ms. At times 150-350 ms, the data was frequency filtered to isolate
the turbulent fluctuations with a 15-50 kHz bandpass filter. At times 350-550 ms, the
frequencies 3-50 kHz were used. Velocities were determined in the z-direction across
the full BES field-of-view.

Example velocity inferences, shown in figure 8.3, represent the typical results during
H-mode (8.3a) and L-mode (8.3b). In both figures, it can be seen that the raw velocities
have large variance due to ‘singularity-like’ phenomena, where velocities shoot off to
infinity intermittently. These singularities could not easily be removed or circumvented,
and their origin could not confidently be pinpointed2. Regardless, the singularities were

1This outcome was warmly received after the numerous experimental setbacks discussed in
chapter 7

2Singularity frequency was found to increase with decreasing N and also with decreasing ∆ℓ. Tenuous
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(a) (b)

Figure 8.3: Example CCTDE velocimetry results in H-mode (a) and L-mode (b). Veloc-
ities point in the machine-z direction (approximately antiparallel to poloidal direction).
CCTDE was expected to underestimate velocities by approximately 20% - 50%, as de-
termined using (unshown) results from section 6.2.

statistical outliers and could be averaged out, which significantly reduced the effective
measurement frequency, but an optimised measurement frequency was not required
for this study anyway.

The following workflow was followed to process and clean the raw velocities:

1. In the H-mode segment, positive velocities were replaced with NaNs to isolate
the mode propagating in the negative direction3. This was not necessary for the
L-mode portion.

2. According to Equation 6.8, the minimum measurable velocity for these tests is 0.9
km/s. Thus, all velocities below 0.9 km/s in magnitude were replaced with NaNs
as they are likely false positive measurements.

3. A rolling median was taken over the reciprocal of the velocities. Taking the re-
ciprocal is equivalent to averaging over the time-lags determined by CCTDE and
is necessary to avoid bias towards higher velocities.

Next, the ExB velocities were estimated using both the BES and the CXRS diagnostics,
following the method described in section 7.4.3. Results can be seen in figure 8.4.

8.1.3 Discussion and Conclusion

The precision and effective temporal frequency of velocity inferences were drastically
reduced by the velocity-singularities depicted in figure 8.3. Although the origin of the

links were found between singularities and the lack of signal peaks in the BES segments, but this could
not fully explain singularity occurrence. The peak correlation amplitude of the cross-correlation functions
did not show any links to the singularities. Large radially propagating features could also theoretically
explain these singularities but these were not observed in the data. Notably, the singularity times varied
significantly, although nonlinearly, with the z-location.

3Crude. Yes. Please refer to the section 8.1.3 for further discussion.
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Figure 8.4: E×B velocities estimated using both BES and CXRS diagnostics. Error
margin on the BES rolling median represents the inter-quartile-range of the cleaned
CCTDE velocities. E×B velocities calculated using electron diamagnetic velocities and
Equation 7.2.
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singularities could not be pinpointed, a leading hypothesis suggests a link to the in-
termittency of large (3-6 channel) density features propagating through the BES field-
of-view. This hypothesis was derived from visual inspections of the BES data, where
singularities were exclusively observed during the absences of large density structures.
During these times, velocities of the smaller (1-2 channel), rapidly decorrelating den-
sity structures are attempted to be determined by CCTDE. Regardless, the singularity
behaviour was not observed in any of the testing in section 6.2, and further work is
advised to explain this phenomenon.

The velocities presented in figure 8.4 demonstrated approximate agreement in the
overall trends, although velocities estimated by the CXRS diagnostic typically exhibited
larger magnitudes. This discrepancy could potentially be explained by predictions in
chapter 6.2, where CCTDE was estimated to underestimate velocities by 20-50% in
this regime.

Agreement in the velocity trend could be most clearly observed during the L-mode.
During this time, relatively high precision was observed in the CCTDE velocity IQR
of 2-3 km/s. However, this does not necessarily imply high accuracy of the CCTDE
velocities, as cautioned in section 6.2.

The magnitudes of the velocities did not show agreement between the diagnos-
tics within uncertainty margins. In addition to the CCTDE velocity underestimation of
20-50%, this mismatch may be due to assumptions regarding the non-E×B velocities
picked up by the diagnostics. In this analysis, it was implicitly assumed that the tur-
bulent phase velocity picked up by BES, vph, was equal to the Carbon diamagnetic
velocity relevant to CXRS, v∗C. Although a common approximation, this assumption
does not generally hold, but the corresponding mismatch is not expected to exceed the
main species diamagnetic velocity — in this case, 5-15 km/s. Notably, the E×B velocity
estimates mostly agree within this additional error margin of ∼15 km/s.

On top of the previous complication, it is not unlikely that the dominant turbulent
mode changed during the H-L transition, resulting in a change of the turbulent phase
velocity. This would further complicate the comparison of the non-E×B velocities be-
tween the diagnostics. Gyrokinetic simulations could be performed to identify the dom-
inant turbulent modes throughout this shot, uncovering any possible mode changes
and potentially explaining the discrepancy between the E×B velocity estimates. Unfor-
tunately, this analysis fell outside the scope of this thesis.

It is worth noting that this shot, along with all other shots in the second MAST-U
campaign, was not able to generate a high rotation plasma. Specifically, the toroidal
rotation did not exceed 50 km/s in shot #46459, while values of 150 km/s were regularly
achieved in pre-update MAST. This is relevant because the faster the rotation, the less
significant the non-E×B flow components become in the velocity measurements by
BES and CXRS. This means the assumptions made for the turbulent phase velocity
and the carbon diamagnetic velocity would be much less critical to the cross-diagnostic
comparison in the high rotation case, drastically simplifying the required analysis.

Finally, an improvement can be made to the velocity cleaning during the H-mode
section. Instead of isolating the negative flow mode by manually removing the positive
velocities post-CCTDE, the positive flow mode could be cut from the data in Fourier
space prior to CCTDE analysis. This approach would likely yield higher precision and
more statistics of the CCTDE inferences.
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In conclusion, approximate agreement was found in the temporal trends of the ve-
locities predicted by both the BES and CXRS diagnostics. The trend were especially
converged during the L-mode, but the velocity magnitudes did not agree within uncer-
tainty margins. Avenues for investigating the magnitude mismatch, along with general
improvements, were suggested for future work.

8.2 Tentative Zonal Flow Observation with Line-CCTDE
Velocimetry

In order to improve precision and circumvent the singularity issue seen in section 8.1,
the more robust ‘Line-CCTDE’ method was employed. This method can achieve im-
proved precision and exclude large outliers at the cost of sacrificing spatial resolution
in the z-direction (or R-direction if desired). The line method builds upon the two-point
approach, and the accuracy estimations found in chapter 6 are still directly relevant to
the line method. The line method workings can be summarised as follows:

1. A reference channel (i, j) is chosen.

2. The reference channel is individually cross-correlated with all eligible other chan-
nels along one of the orthogonal directions. Only channels separated by less
than ∆ℓmax are included.

3. The cross-correlation function peaks are calculated for each pair of channels, and
time delay and distance between channels are stored.

4. A velocity and error are fitted through the time-delays and distance data points
using a RANSAC estimator, as shown in figure 8.5. RANSAC was chosen over
least-squares for improved outlier handling.

5. Steps 1-4 are repeated with a sliding time window to produce a temporally re-
solved velocity estimation.

Line-CCTDE can be applied to data using much of the same operational parameters
as two-point CCTDE, with the only difference being that the ∆ℓ parameter is replaced
by a ∆ℓmax parameter, defining the maximum ∆ℓ included in the analysis.

The L-mode portion of shot #46459 was analysed, covering times from 350 to 550
ms and frequencies from 3 to 50 kHz. A segment length of N = 1024 frames was pre-
dicted to be optimal based on a preliminary analysis similar to the one shown in section
7.3.1. The ∆ℓmax parameter was set to 10 cm, which was below the decorrelation length
and the corresponding minimum measurable velocity was 3 km/s.

The Line-CCTDE method was applied with the aforementioned parameters, and
the initial results, shown in figure 8.6, revealed typical uncertainty margins of <1 km/s.
These raw inferred velocities were further processed by removing outliers in reciprocal
space that were more than twice the inter-quartile range away from the long-term re-
ciprocal median. Inspection of the velocity distributions showed that primarily positive-
and low-velocity anomalies were removed through this scheme.
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Figure 8.5: A RANdom SAmple Consensus (RANSAC) estimator fit of the velocity. The
RANSAC method estimates outliers in the data (in this case at -0.07 cm and +0.06 cm),
and then estimates the be best fit according to only the inliers. Gradient of the line of
best fit corresponds to the velocity.

Figure 8.6: Example velocity estimates by line-CCTDE. Uncertainty margins - shown
by blue shading - fall below 1 km/s on average.
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Figure 8.7: Radial-temporal plot of velocity inferences of L-mode plasma. Radii refers
to the major radius. Mean velocity was -8.1 km/s in the z-direction.

Figure 8.8: Major-radial profiles of the L-mode velocities in shot 46459. Uncertainty
margins represent the standard deviation. Average shear estimated by least-squares
routine.
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The results, presented in figure 8.7, display the radio-temporally resolved velocities
in the z-direction. These velocity inferences could be determined with an effective fre-
quency of 4 kHz and an uncertainty margin of <1 km/s. Radially localised structures
are clearly discernible here. In addition, radial drifting and intermittent re-formation
of the structures are observed, both expected from zonal flow theory. Upon temporal
averaging, as shown in figure 8.8, an average shear in the velocities becomes evi-
dent, with faster velocities on the radially outboard side. Furthermore, underlying the
average shear is a velocity sinusoid with consistent wavenumber and phase. These
observations were found to be robust with variations in segment length, N, ∆ℓmax, time,
and outlier removal scheme. Although not shown here, coherence analysis suggested
that this sinusoid had a high radial coherence of 0.65, peaking at 60 Hz, with no other
coherent modes observed in the velocity data.

The radial wavelength and coherence time of the quasi-stationary zonal flow are
expected to lie around ∼10 cm and >ms, respectively. As such, the observed velocity
sinusoid is consistent with quasi-stationary zonal flows described in section 3.2.
This is a novel result that has never before been observed in MAST(-U).

Future work is recommended to further investigate this flow mode:

• nonlinear flow-turbulence analysis should be performed to determine if the flow
mode is nonlinearly driven by the turbulence.

• The short-time (0.1-10 ms) behaviour of the velocities could also be further in-
vestigated through the Line-CCTDE method.

• In-depth comparison with DTW velocimetry and also CXRS is recommended to
test robustness.

• Repeat analyses of shots at varying radii, collisionality, confinement mode, etc.

These recommendations are thought to lie well within the performance capabilities of
line-CCTDE. Additionally, at time of writing of this thesis, the third MAST-U campaign
has concluded with many shots, including a 12 shot radial and toroidal field strength
scan, ideal for performing velocimetry analysis. Unfortunately, the third MAST-U cam-
paign shots fell outside the scope of this thesis due to time restrictions, but further
velocimetry analysis of these shots is highly encouraged.

In conclusion, line-CCTDE successfully inferred velocities with high precision and
high inference frequency from the BES data in shot #46459 (<1 km/s uncertainty at 4
kHz). Emerging from these velocity inferences were shear structures that were remi-
niscent of quasi-stationary zonal flows. The structures were observed to drift radially
and re-form intermittently, which is expected behaviour of zonal flows. The long-time
(>50 ms) average of the flows revealed a velocity sinusoid that was consistent with the
wavenumber, frequency, and amplitude expected from zonal flows.
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Summary and Discussion

The first aim of this thesis: ‘to improve the reliability and performance of spatially re-
solved plasma dynamics measurements’, was successfully achieved. Through the test-
ing in chapter 6, and applications in chapters 7 and 8, velocimetry techniques have
been applied with improved confidence and performance. The work in this thesis is
thought to provide a solid foundation for future image velocimetry endeavours, as is
further summarised in section 9.1.

Unexpected challenges were encountered with the BES diagnostic in chapter 7,
rendering velocimetry of the main-species impossible. Regardless, novel velocime-
try was successfully performed of the carbon impurity ions, as is further described in
section 9.2.

The second aim of this thesis: ‘to measure zonal flows in the upgraded Mega-
Ampere Spherical Tokamak’, was also addressed successfully. This marks the first
zonal flow measurement in MAST-U, which is expanded upon in section 9.3. Addition-
ally, suggestions for future work are discussed in section 9.4.

9.1 The relevance and impact of velocimetry testing

Chapter 6 focuses on the performance testing of the two main image-velocimetry tech-
niques employed in fusion research: Cross-Correlation Time-Delay Estimation and Dy-
namic Time-Warping. The accuracy and precision of both techniques were tested us-
ing synthetic data, spanning the majority of reasonably achievable experimental con-
ditions. The intention was for this work to serve as a solid foundation to guide the
implementation and interpretation of experimental image-velocimetry.

A broad range of novel, and sometimes unexpected, results were uncovered in the
tests. For example, CCTDE’s paradoxical accuracy dependence on underlying velocity
was uncovered, CCTDE’s minimum measurable velocities were quantified, the thresh-
olds at which the barber pole illusion becomes significant were quantified. The critical
DTW performance dependence on the direction of the underlying flow was uncovered,
and DTW’s performance with a reduced number of spatial channels was investigated.

One limitation of this research was that decorrelation was not simulated in the
synthetic data and therefore the corresponding impact on velocimetry performance
could not be determined. Decorrelation was not thought to be a major issue for the
experimental application of either technique, as long as the operational length- and
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timescales of the methods were kept significantly below decorrelation length- and
timescales. Although exact quantified thresholds are undefined, the impact of decor-
relation on the experimental results in chapters 7 and 8 was thought to be small, if not
negligible, as justified in section 6.6.

In-homogeneous and rotational velocity fields were generally not included in the
testing either. The impact of such fields was, however, thought to be limited; CCTDE
performance may only be expected to be impacted if the in-homogeneity or curvature
lengthscales are comparable to ∆ℓ. In all other cases, CCTDE performance is thought
to be accurately represented by the synthetic data tests. DTW has previously been
shown to perform accurately with rotational velocity fields [83], as is expected based
on the inner workings of the method.

One main conclusion is that both CCTDE and DTW can display highly nonlin-
ear and unexpected behaviour in their accuracy dependence. This means that
previous small-scale velocimetry test results should not be extrapolated to broader pa-
rameter regimes. The testing results in this thesis cover a broad parameter range that
should be applicable to most conceivable experimental data not only from Beam Emis-
sion Spectroscopy and Gas-Puff Imaging diagnostics, but also from any diagnostic in
which structures propagate across the field-of-view.

Without careful referral to these tests, image velocimetry cannot be relied upon
to produce accurate results. High precision was explicitly found to be a bad proxy
for accuracy, meaning that no intrinsic metrics are available to estimate uncertainty
margins. This is why careful reading of chapter 6 is necessary for those wishing to
reliably perform image velocimetry analysis.

9.2 The delocalisation issue

In the second campaign of MAST-U - the only campaign relevant to this thesis - all
but 10 shots were conducted with an incorrectly calibrated optical filter in the BES
diagnostic. This resulted in only carbon background emissions reaching the detector
in most shots, rendering ‘normal’ velocimetry analysis of the main species impossible.

Despite this problem, the signals were further examined to determine if the data
was suitable for velocimetry of carbon impurities. Initially, this may seem impossi-
ble because emission localisation is necessary for image-velocimetry analysis and the
BES optics do not localise carbon emissions (because it was not designed to do so).

The carbon II ions, responsible for the background emissions, exist in a radially lo-
calised shell. Through radial scans of the total emission intensity, it was hypothesised
that the carbon II shell is viewed approximately tangentially by BES, resulting in the
approximate radial localisation of the emissions. This opened the door for velocimetry
analysis, and after a rough radial ‘re-calibration’ of the diagnostic, velocimetry analy-
sis was carried out on the carbon II shell in section 7.4. Results indicated agreement
with the velocities estimated by the Charge Exchange Recombination Spectroscopy
diagnostic in terms of velocity magnitude and long-term temporal trends. This agree-
ment suggests that velocimetry can be accurately performed on the carbon II shell
using BES, a feat never before achieved. Although further work is recommended to
optimise the method, this analysis has demonstrated that impurity dynamics studies
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can be conducted with the BES diagnostic, offering a new avenue of exploration for the
field.

In sections 7.2 and 7.3, velocimetry was performed on BES data before the discov-
ery of the optical filter issue. Noteworthy is the fact that the lack of localisation was
not immediately obvious in the BES data - most preliminary analyses of the data re-
turned reasonable results. Unexpectedly low precision and velocity ‘singularities’ were
observed during analysis, but the link to localisation issues was only made in hindsight.

Although the lack of localisation means that the velocimetry results in sections 7.2
and 7.3 are not representative of the true flows in the tokamak, they should not be
entirely discounted either. It was found that the inferred velocities were consistent
across three methods of inference: direct Fourier, CCTDE, and DTW. This suggests
that the determined velocities were an accurate representation of the underlying ‘ve-
locities’ in the BES data, despite the BES data not being representative of the bulk
plasma dynamics. Additionally, these sections contain workflows to guide the applica-
tion of velocimetry methods, making it a worthy read for individuals wishing to conduct
image-velocimetry analysis.

9.3 A preliminary detection of zonal flows

Out of the ten shots with localised BES data, only one ran for the full time without dis-
rupting. Initial investigations of this shot determined that the BES data was suitable for
velocimetry, with CCTDE expected to perform accurately. Initial CCTDE velocity infer-
ences were compared with the CXRS diagnostic, revealing agreement in the temporal
trends, although CCTDE estimated consistently slower velocities than CXRS. These
analyses, covered in section 8.1, suggested that reliable CCTDE performance could
be achieved with this data.

The line-CCTDE method was introduced in section 8.2 for its significantly improved
precision and enhanced inference frequency at the expense of spatial resolution in
the z-direction. The line-method is based on the two-point method that was tested in
chapter 6, making the testing results still directly applicable.

Line-CCTDE velocimetry was applied to the L-mode plasma of shot #46459, pro-
ducing velocity inferences at an effective 4 kHz frequency and typical uncertainty mar-
gins below 1 km/s. These results revealed radially localised velocity structures ob-
served to radially drift and re-form on 1-10 ms timescales, behaviour that is expected
from zonal flows. Temporal averaging over 50 ms segments revealed a consistent
average velocity shear, as expected in most tokamak plasmas. The novel observa-
tion was a sinusoidal velocity structure superposed on the average shear with a low
∼0.5 km/s amplitude. Note that without the guide of chapter 6, convergence of this
low-amplitude feature would likely not have been achieved. The mode was found to be
coherent with a characteristic frequency of ∼60 Hz and a radial wavelength of ∼10 cm.
Comparing with section 3.2, the determined amplitude, frequency, and wavelength
closely correspond to the expected characteristics of the quasi-stationary zonal
flow mode1. This constitutes the first zonal flow observation in the MAST(-U) spherical

1“If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we
have a small aquatic bird of the family anatidae on our hands.” - Dirk Gently.

108 Y. W. Enters



Chapter 9

tokamak, and one of very few measurements in any fusion machine.

9.4 Future work

The velocimetry testing in chapter 6 is considered to be reasonably comprehensive
and does not require further large-scale investigations. Regardless, further testing of
DTW performance with sub-1 px/frame velocities could guide DTW velocimetry in this
regime. DTW performance dependence on the shift parameter (see 7.2) and its effec-
tiveness in recovering the sub-1 px/frame velocity regime would improve confidence
in the method. Further in-depth investigations comparing the synthetic data with the
experimental data may also prove insightful.

The CII velocimetry in section 7.4 was a proof of concept that showed promising
results, but two main assumptions should be addressed further. Firstly, a more rigorous
BES synthetic diagnostic should be developed, and secondly, more thorough estimates
should be made of the CII shell radius. Addressing these points would likely minimise
the main sources of uncertainty for the CII velocimetry analysis.

A common challenge faced in chapters 7 and 8 was the appearance of velocity
‘singularities’, where the CCTDE-inferred velocity periodically shot off to infinity. There
was no obvious cause and this phenomenon was not previously observed in the testing.
The singularities drastically reduced especially the precision of the velocity inferences,
forcing the use of the line-method which sacrifices z-spatial resolution. Uncovering
the cause and developing a method to circumvent the singularity issue would enable
z-resolved velocimetry, a crucial requirement for poloidal coherence testing.

The highest impact future work recommendation is to further investigate the zonal-
flow-like mode discovered in section 8.2. This ‘low-hanging fruit’ was not further anal-
ysed in this thesis due to time restrictions. No obvious technical challenges are ex-
pected. Shot #46459 could be further investigated to quantify the radial drifting and
temporal evolution of the mode. H-mode velocimetry of the same shot could be per-
formed as well as comparisons with DTW. Importantly, bispectral analysis should be
performed to test if the mode is nonlinearly driven by turbulence. Measurement of the
flow-turbulence nonlinear coupling would firmly confirm or reject the hypothesis that
this mode is indeed a quasi-static zonal flow mode.

Hunting for zonal flow structures in other shots is also highly recommended. The
third MAST-U campaign, carried out after the timeline of this PhD project, didn’t display
localisation issues. Numerous shots dedicated to turbulent flow investigations are an
ideal candidate for further zonal flow hunting. For example, 12 repeat shots were
performed varying the BES radii and the toroidal field strength. If zonal flow modes are
observed in these shots, zonal flow parametric dependencies could be experimentally
determined. This would be a novel, high impact measurement that I would strongly
encourage to be attempted.
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Appendices

10.1 Equations and expressions

10.1.1 E×B flow

uE×B =−∇φ ×B
B2

0
(10.1)

Equation 10.1 describes the E×B drift velocity, uE×B, with which a charged particle
guiding center moves when placed in an electric and magnetic field.

10.1.2 Flow measurement equations derivation

Equations 7.3 and 7.4 are based on a consideration of radial force balance in tokamak
plasmas, which can be described as follows:

−∇Pi = niqi(E +ui ×B) (10.2)

where Pi, ni, qi, and ui are the ion pressure, density, charge, and velocity, respectively.
E and B are the electric and magnetic field strengths, respectively. Rearranging the
equation and taking the minor-radial electric field projection gives:

Er =
∇Pi

niqi
−uϕBθ +uθ Bϕ (10.3)

where θ , and ϕ are the poloidal and toroidal directions. The positive direction was
defined along the positive minor-radial direction. Substituting the radial electric field
into the E×B flow (eq. 10.1) gives us:

uE×B =
�
�
���

u∗,i
−∇Pi

niqiB
−

�
�

���
u⊥

uϕBθ

B
+

�
�

���
0

uθ Bϕ

B
= u∗,i −u⊥ (10.4)

where u∗,i is the ion diamagnetic velocity. u⊥ is the total flow in the ion drift direction
and represents the directly experimentally measurable metric in this equation. Under
neoclassical flow and transport theory, the poloidal flow can be assumed to go to zero
at timescales longer than the neoclassical timescale. If this assumption does not hold,
a more detailed analysis can be found in e.g. C-Mod experimental measurements[96].
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10.2 Source Code: Cross-Correlation Time-Delay Esti-
mation

1 import numpy as np

2 import warnings

3 import numpy.ma as ma

4 import matplotlib.cm as cm

5 import matplotlib

6 import multiprocessing as mp

7 from scipy import signal

8 from scipy.signal import butter,filtfilt

9 from scipy.ndimage import gaussian_filter

10 from sklearn.linear_model import RANSACRegressor,LinearRegression

11 from scipy.optimize import curve_fit

12 import itertools

13

14 ##########################################################################

15 ##########################################################################

16 # two-point method helper functions

17 ##########################################################################

18 ##########################################################################

19

20 def calc_norm_factor(f,g):

21 #calculates normalisation factor for ccf

22 #set precision to reduce overflow chance

23 f = f.astype(np.float32)

24 g = g.astype(np.float32)

25 #calculate sumsquares

26 sumsquare_f= (np.sum((f)**2))

27 sumsquare_g= (np.sum((g)**2))

28 # calculate normalisation factor

29 norm_factor = np.sqrt(sumsquare_f*sumsquare_g)

30 return norm_factor

31

32 def calc_distance(R1,R2,z1,z2):

33 #Calculates the distance between two locations (R1,z1) and (R2,z2).

34 distance = np.sqrt((R2-R1)**2 + (z2-z1)**2)

35 return distance

36

37 def reverse_direction_check(i1,i2,z1,z2):

38 # function which checks if the direction of the velocity needs to be

reversed↪→

39 # ensures that a positive velocity points in the positive z-direction

40 if i2>i1:

41 if z2>z1:

42 reflect_bool = False

43 elif z1>z2:

44 reflect_bool = True
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45 else:

46 print('zero error. abort.')

47 print(1/0)

48 elif i1>i2:

49 if z2>z1:

50 reflect_bool = False

51 elif z1>z2:

52 reflect_bool = True

53 else:

54 print('zero error. abort.')

55 print(1/0)

56 elif i1==i2:

57 reflect_bool = False

58 return reflect_bool

59

60 def calc_corr_threshold(N,tolerance,print_bool = True):

61 '''

62 Determines the root mean square (rms) correlation amplitude expected

from↪→

63 cross-correlating random noise. Correlation above this threshold is

considered↪→

64 significant, while below is not.

65

66 Parameters

67 ----------

68 N : int

69 Length of the random signals.

70 tolerance : float

71 Standard error tolerance used to calculate the rms correlation

amplitude precision.↪→

72 print_bool : bool, optional

73 If True, prints the calculated correlation threshold. Default is

True.↪→

74

75 Returns

76 -------

77 float

78 The calculated correlation threshold.

79

80 Notes

81 -----

82 This function generates random signals of length N, cross-correlates

them, and calculates↪→

83 the rms of the cross-correlation function. It repeats this process

until a certain precision↪→

84 level, defined by the standard error tolerance, is achieved.

85
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86 The iteration limit is set to 1000000, and if the precision is not

achieved within this limit,↪→

87 an error message is printed.

88

89 Examples

90 --------

91 To calculate rms correlation of 100 length random signals, to within

a 0.01 error margin:↪→

92 >>> calc_corr_threshold(100, 0.01)

93 correlation threshold = 0.52

94 0.52

95 '''

96 #initialise

97 rms_ccfs = []

98 iteration_limit = 1000000

99 for i in range(iteration_limit):

100 # generate random signals of length N

101 sigA = np.random.normal(size=N)

102 sigB = np.random.normal(size=N)

103 # cross-correlate random signals

104 ccf,lags = calc_ccf(sigA,sigB)

105 # calculate rms of cross-correlation function

106 rms_ccf = np.sqrt(np.nanmean(ccf**2))

107 # add rms to storage list

108 rms_ccfs.append(rms_ccf)

109 # calculate the standard error of the rms_ccfs list

110 std_err = np.nanstd(rms_ccfs)/len(rms_ccfs)

111 if i>100:

112 # if standard error is below tolerance, precision level

achieved. Break loop.↪→

113 if std_err <tolerance:

114 break

115 if i == iteration_limit-1:

116 print('Err: iteration limit reached')

117 if print_bool:

118 print('correlation

threshold={0:.2f}'.format(np.nanmean(rms_ccfs)))↪→

119 return np.nanmean(rms_ccfs)

120

121 ##########################################################################

122 ##########################################################################

123 # two-point method core functions (non-parallel)

124 ##########################################################################

125 ##########################################################################

126

127 def calc_ccf(f,g,norm_bool = True,plot_bool=False,

128 overlap_mode = 'same',method='fft'):

129 '''
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130 Returns cross-correlation function and corresponding time-delays of

two one-dimenaional arrays.↪→

131 Arguments: (f,g,norm_bool = True,plot_bool=False,overlap_mode =

'same',method='fft')↪→

132 Returns: ccf,lags

133

134 Parameters

135 ----------

136 f,g : 1D numpy array

137 two input array to be cross-correlated.

138

139 Keyword arguments

140 -----------------

141 norm_bool : boolean

142 turn cross-correlation function normalisation on or off, defaults

to True (on).↪→

143 plot_bool : boolean

144 option to plot ccf, defaults to False.

145 overlap_mode : string

146 can change overlap mode of signal.correlate

['same','full','valid']↪→

147 method : string

148 can change signal.correlate method

149

150 Returns

151 -------

152 ccf : 1D numpy array

153 cross-correlation function of arrays f and g.

154 lags : 1D numpy array

155 lags corresponding to the ccf.

156

157 Notes

158 -----

159 :: ccf is calculated with scipy.signal.correlate.

160 :: Mode is set to 'same', meaning ccf output is same length as f

161 :: Method is set to 'fft', so correlation is calculated via fft method

162 '''

163 #zero center the signals

164 f = (f - np.nanmean(f))/np.nanstd(f)

165 g = (g - np.nanmean(g))/np.nanstd(g)

166 #calculate unnormalised ccf and lags

167 ccf = signal.correlate(g,f,mode=overlap_mode,method=method)

168 N = len(ccf)

169 lags = np.linspace(-N//2,N//2-1,N)

170 if norm_bool==True:

171 #normalise entire ccf based on ccf rms

172 norm_factor = calc_norm_factor(f,g)

173 ccf = np.divide(ccf,norm_factor)
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174 if overlap_mode=='same':

175 #normalise each ccf value base on length array overlap (which

varies with the lag)↪→

176 for i in range(len(ccf)):

177 lag = lags[i]

178 lag_norm = N/(N-np.abs(lag))

179 ccf[i] = ccf[i]/lag_norm

180 #plot ccf

181 if plot_bool==True:

182 index=np.where(np.max(ccf)==ccf)[0][0]

183 time_delay = lags[index]

184 print('time delay: {0} frames'.format(time_delay))

185 fig,ax=plt.subplots(3,figsize=(8,8))

186 ax[0].plot(lags,ccf,'.',ls='-')

187 ax[0].set_xlabel('time delay')

188 ax[0].set_ylabel('ccf')

189 ax[0].set_title('ccf')

190 ax[1].plot(f,'.',ls='-')

191 ax[1].set_title('f')

192 ax[2].plot(g,'.',ls='-')

193 ax[2].set_title('g')

194 fig.tight_layout()

195 plt.show()

196 return ccf,lags

197

198 def infer_velocity_two_point(sig1,sig2,times,R1,R2,z1,z2,

199 correlation_threshold,mode='same',

200 plot_bool=False,return_ccf=False):

201 """

202 Infers velocity from the cross-correlation time-lag between two

spatially separated signals.↪→

203

204 Parameters

205 ----------

206 sig1, sig2 : 1D numpy array

207 Two input arrays to be cross-correlated.

208 times : 1D numpy array

209 Array containing times at which samples were taken. Assumed to be

the same for sig1 and sig2.↪→

210 Assumed to be in [seconds].

211 R1, R2, z1, z2 : floats

212 R- and z-locations of sig1 and sig2. Distances expected to be in

[meters].↪→

213 correlation_threshold : float between 0 and 1

214 Defines the minimum correlation used for velocity inference.

215 If correlation below the threshold, then velocity defaults to

np.nan.↪→

216
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217 Keyword arguments:

218 ------------------

219 mode : str, optional

220 Overlap mode parameter for overlap between two signals. Default

is 'same'.↪→

221 plot_bool : bool, optional

222 Should the cross-correlation function (CCF) be plotted? Default

is False.↪→

223 WARNING! Make sure you're not inside several nested loops if set

to True.↪→

224 return_ccf : bool, optional

225 If True, returns velocity, correlation_max, CCF, and lags.

226 Default is False, returns velocity,correlation_max

227

228 Returns

229 -------

230 velocity : float

231 The inferred velocity [km/s] from signal 1 to signal 2.

232 correlation_max : float

233 The peak correlation value corresponding to the inferred velocity.

234

235 Notes

236 -----

237 If np.nan is returned, the correlation threshold was not surpassed OR

time-lag was equal to zero.↪→

238

239 Examples

240 --------

241 >>> infer_velocity_two_point(sig1, sig2, times, R1, R2, z1, z2,

correlation_threshold=0.5)↪→

242 (2.34, 0.75)

243 """

244 # calculate ccf

245 ccf,lags = calc_ccf(sig1,sig2,plot_bool=plot_bool,overlap_mode=mode)

246 if len(ccf) == 0:

247 # if ccf empty, set velocity to nan and correlation to 0

248 velocity = np.nan

249 correlation_max = 0.

250 #if ccf is not empty, proceed

251 else:

252 # find the peak of the cross-correlation function

253 correlation_max = np.max(ccf)

254 # correlation peak must exceed correlation threshold

255 if correlation_max>correlation_threshold:

256 #find time-delay at ccf peak

257 index=np.where(np.max(ccf)==ccf)[0][0]

258 time_delay = lags[index]

259 #account for zero-time delay scenario
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260 if time_delay == 0.:

261 #manually set velocity to nan

262 velocity = np.nan

263 else:

264 #calculate unit conversion factors

265 distance = calc_distance(R1,R2,z1,z2)

266 t_sampling = np.mean(np.diff(times))

267 #calculate velocity

268 velocity = 1./time_delay * (distance/t_sampling)/1000.

269 else:

270 # set veloity to nan if below correlation threshold

271 velocity = np.nan

272 if plot_bool==True:

273 print('Velocity: {0}km/s \n Time: {1}s \n Correlation:

{2}'.format(velocity,np.mean(times),correlation_max))↪→

274 if return_ccf==False:

275 return velocity,correlation_max

276 elif return_ccf==True:

277 return velocity,correlation_max,ccf,lags

278 else:

279 print('error')

280 print(1/0)

281

282 def infer_velocity_timeseries_two_point(sig1,sig2,times,R1,R2,z1,z2,N,

283 stepsize,correlation_threshold,

284 iterationlimit = 10000000,

285 mode='valid',plot_bool=False):

286 '''

287 Infer velocity timeseries from two signals. Shorter clips are taken

of the signals for velocity inference.↪→

288

289 Parameters

290 ----------

291 sig1, sig2 : 1D numpy array

292 Two input signals to be cross-correlated.

293 times : 1D numpy array

294 Array containing times at which samples were taken. Assumed to be

the same for sig1 and sig2. Assumed to be in [seconds].↪→

295 R1, R2, z1, z2 : floats

296 R- and z-locations of sig1 and sig2. Distances expected to be in

[meters].↪→

297 N : integer

298 The length of the individual time-series to be analysed [number

of frames].↪→

299 stepsize : integer

300 The step size between clips moving through the time-series.

[number of frames]↪→

301 correlation_threshold : float
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302 Threshold of correlation below which the inferred velocity will

be ignored. [between 0 and 1].↪→

303

304 Keyword Arguments

305 -----------------

306 iterationlimit : integer

307 Maximum number of velocity inferences to make.

308 mode : str

309 Overlap mode parameter for overlap between two signals. Default

is 'valid'.↪→

310 plot_bool : bool

311 Should the cross-correlation function (CCF) be plotted? Default

is False.↪→

312 WARNING! Make sure you're not inside several nested loops if set

to True.↪→

313

314 Returns

315 -------

316 inferred_velocities : 1D numpy array

317 Array containing all the inferred velocities. [velocity output in

km/s].↪→

318 inference_times : 1D numpy array

319 Contains the times at which the velocity inferences were taken.

Times taken as the middle of the time-series. Measured in [s].↪→

320 inferred_correlations : 1D numpy array

321 Contains the peak correlation values corresponding to the

inferred velocities.↪→

322

323 Notes

324 -----

325 :: The function takes two time series (sig1 and sig2), splits them

into consecutive shorter time-series of length N, and

cross-correlates each pair to infer velocities.

↪→

↪→

326 :: Velocity is inferred based on the peak correlation value exceeding

the specified correlation_threshold.↪→

327 :: The output includes arrays of inferred velocities, corresponding

times, and peak correlation values.↪→

328 :: If np.nan is returned in the velocities array, either the

correlation threshold was not surpassed or the time-lag was equal

to zero.

↪→

↪→

329

330 Examples

331 --------

332 >>> infer_velocity_timeseries_two_point(sig1, sig2, times, R1, R2,

z1, z2, N, stepsize, correlation_threshold=0.5)↪→

333 (array([2.34, nan, ... ]), array([time1, time2, ... ]), array([0.75,

nan, ... ]))↪→

334 '''
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335 #initialise

336 more_data=True

337 i = 0

338 sig_length = len(sig1)

339 arr_length = int(sig_length/stepsize)+1

340 inferred_velocities = np.full(arr_length,np.nan)

341 inferred_correlations = np.full(arr_length,np.nan)

342 inference_times = np.full(arr_length,np.nan)

343 #loop until there is no more data

344 while more_data:

345 # use zero padding of input signals to calculate ccf

346 # output ccf will be of 'same' length as input signals

347 if mode == 'same':

348 #take slices of time-series

349 sliced_sig1 = sig1[i:i+N]

350 sliced_sig2 = sig2[i:i+N]

351 sliced_times = times[i:i+N]

352 #cross-correlate ts slices and infer velocity

353 velocity, maxcorr = infer_velocity_two_point(sliced_sig1,slic ⌋
ed_sig2,sliced_times,R1,R2,z1,z2,correlation_threshold,mo ⌋
de=mode,plot_bool=plot_bool)

↪→

↪→

354 #store velocity in array

355 inferred_velocities[int(i/stepsize)] = velocity

356 inferred_correlations[int(i/stepsize)] = maxcorr

357 inference_times[int(i/stepsize)] = np.mean(sliced_times)

358 # calculate ccf but don't allow zero padding

359 elif mode == 'valid':

360 #exclude edge times

361 if i <N//2:

362 velocity, maxcorr = np.nan,np.nan

363 inference_time = np.nan

364 elif i >sig_length-N//2-N-1:

365 velocity, maxcorr = np.nan,np.nan

366 inference_time = np.nan

367 else:

368 #take slices of time-series

369 sliced_sig1 = sig1[i:i+N]

370 sliced_sig2 = sig2[i-N//2:i+N+N//2]

371 sliced_times = times[i:i+N]

372 inference_time = np.nanmean(sliced_times)

373 #cross-correlate ts slices and infer velocity

374 velocity, maxcorr = infer_velocity_two_point(sliced_sig1, ⌋
sliced_sig2,sliced_times,R1,R2,z1,z2,correlation_thre ⌋
shold,mode=mode,plot_bool=plot_bool)

↪→

↪→

375 #store velocity in array

376 inferred_velocities[int(i/stepsize)] = velocity

377 inferred_correlations[int(i/stepsize)] = maxcorr

378 inference_times[int(i/stepsize)] = inference_time
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379 #move the current starting time index by 'stepsize' frames

380 i = i + stepsize

381 # abort loop if there is not enough data left in the time-series

382 if i+N >= len(sig1): more_data = False

383 # abort if iterationlimit is exceeded

384 if i/N > iterationlimit:

385 print('iteration limit exceeded!')

386 more_data = False

387 return inferred_velocities,inference_times,inferred_correlations

388

389 ##########################################################################

390 ##########################################################################

391 # core two-point cctde functions (parallel)

392 ##########################################################################

393 ##########################################################################

394

395 def z_velocity_scan_parallel_wrapper(i,j,signals,time,R,z,delta_ell,N,

396 stepsize,correlation_threshold):

397 # wrapper function to enable easy parallelisation of CCTDE analysis

398 # Initialise input parameters and signals for CCTDE

399 j1,j2 = (j,j)

400 i1,i2 = (i,i+delta_ell)

401 sig1 = signals[i1,j1]

402 R1,z1 = (R[i1,j1],z[i1,j1])

403 sig2 = signals[i2,j2]

404 R2,z2 = (R[i2,j2],z[i2,j2])

405 # Run CCTDE on one pair of signals

406 velocities_one_channel,inference_times,correlations_one_channel =

infer_velocity_timeseries_two_point(sig1,sig2,time,R1,R2,z1,z2,N, ⌋
stepsize,correlation_threshold,mode='valid')

↪→

↪→

407 # Reverse direction of inferred velocity if required

408 if reverse_direction_check(i1,i2,z1,z2): velocities_one_channel =

np.multiply(velocities_one_channel,-1.)↪→

409 return i,j,velocities_one_channel,inference_times,correlations_one_ch ⌋
annel↪→

410

411 def z_velocity_full_scan_parallelised(signals,time,j_range,i_range,R,z,N,

412 stepsize,correlation_threshold='aut ⌋
o',↪→

413 delta_ell = 1):

414 '''

415 Scans field of view and performs velocimetry along the z (i)

direction.↪→

416 Scan channel numbers can be specified in both i and j

417

418 Arguments: (signals,time,j_range,i_range,R,z,N,correlation_threshold)

419 Returns: inferred_velocities,inference_times

420
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421 Variables:

422 ----------

423 signals: 3D numpy array [channel_i,channel_j,time]

424 The signals to be analysed. Time assumed to be in seconds

425 time: 1D numpy array [time]

426 The times at which the signal datapoints were sampled.

427 Time assumed to be in seconds.

428 j_range,i_range: list or numpy array of integers

429 The j/i channels to be scanned.

430 j_range can include the full range of j indices

431 i_range can include the full range, minus one, of i indices

432 R,z : 2D numpy array

433 the R,z coordinates corresponding to the j,i channel numbers.

434 N: integer

435 the length of the time-series clips to be analysed [number of

frames]↪→

436

437 Keyword arguments:

438 ------------------

439 correlation_threshold: string or float

440 threshold of correlation below which the inferred velocity will

be ignored. [between 0 and 1, or 'auto']↪→

441 if default 'auto', threshold determined by cross-correlation of

random noise↪→

442 delta_ell: integer

443 what should the distance be between analysed channels?

444

445 Returns:

446 --------

447 inferred_velocities: np array

448 an [i_range,j_range,time] array containing inferred velocities

449 inference_times: np array

450 contains the inference times of the velocities

451 inference_correlations: np array

452 an [i_range,j_range,time] array containing correlation values of

inferred velocities↪→

453

454 Notes:

455 ------

456 ::

457 '''

458 # Run CCTDE in parallel

459 nProcesses = len(i_range)*len(j_range)

460 # Calculate and set correlation threshold if it is 'auto'

461 if correlation_threshold=='auto':

462 correlation_threshold=calc_corr_threshold(N,0.01)

463 # Initialise a multiprocessing pool

464 with mp.Pool(processes= nProcesses) as pool:
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465 # Execute z_velocity_scan_parallel_wrapper in parallel

466 i_indices,j_indices,inferred_velocities,inference_times,inferred_ ⌋
correlations =

zip(*pool.starmap(z_velocity_scan_parallel_wrapper, [(i,j,sig ⌋
nals,time,R,z,delta_ell,N,stepsize,correlation_threshold) for

i in i_range for j in j_range]))

↪→

↪→

↪→

↪→

467 # Convert outputs to numpy arrays

468 inferred_velocities = np.asarray(inferred_velocities)

469 inferred_correlations = np.asarray(inferred_correlations)

470 inference_times= np.asarray(inference_times)

471 # Reshape output arrays based on R, z coordinates and time stepsize

472 inferred_velocities_reshaped =

np.full((R.shape[0],R.shape[1],int(len(time)/stepsize)+1),np.nan)↪→

473 inferred_correlations_reshaped =

np.full((R.shape[0],R.shape[1],int(len(time)/stepsize)+1),np.nan)↪→

474 for k,i in enumerate(i_indices):

475 j = j_indices[k]

476 inferred_velocities_reshaped[i,j,:] = inferred_velocities[k,:]

477 inferred_correlations_reshaped[i,j,:] = inferred_correlations[k,:]

478 inference_times_reshaped = inference_times[0,:]

479 return inferred_velocities_reshaped,inference_times_reshaped,inferred ⌋
_correlations_reshaped↪→

480

481 def R_velocity_scan_parallel_wrapper(i,j,signals,time,R,z,delta_ell,N,

482 stepsize,correlation_threshold):

483 # wrapper function to enable easy parallelisation of CCTDE analysis

484 # Initialise input parameters and signals for CCTDE

485 j1,j2 = (j,j+delta_ell)

486 i1,i2 = (i,i)

487 sig1 = signals[i1,j1]

488 R1,z1 = (R[i1,j1],z[i1,j1])

489 sig2 = signals[i2,j2]

490 R2,z2 = (R[i2,j2],z[i2,j2])

491 # Run CCTDE on one pair of signals

492 velocities_one_channel,inference_times,correlations_one_channel =

infer_velocity_timeseries_two_point(sig1,sig2,time,R1,R2,z1,z2,N, ⌋
stepsize,correlation_threshold,mode='valid')

↪→

↪→

493 # Reverse direction of inferred velocity if required

494 if reverse_direction_check(i1,i2,z1,z2): velocities_one_channel =

np.multiply(velocities_one_channel,-1.)↪→

495 return i,j,velocities_one_channel,inference_times,correlations_one_ch ⌋
annel↪→

496

497 def R_velocity_full_scan_parallelised(signals,time,j_range,i_range,R,z,N,

498 stepsize,correlation_threshold='aut ⌋
o',↪→

499 delta_ell = 1):

500 '''
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501 Scans field of view and performs velocimetry along the R (j)

direction.↪→

502 Scan channel numbers can be specified in both i and j

503

504 Arguments: (signals,time,j_range,i_range,R,z,N,correlation_threshold)

505 Returns: inferred_velocities,inference_times

506

507 Variables:

508 ----------

509 signals: 3D numpy array [channel_i,channel_j,time]

510 The signals to be analysed. Time assumed to be in seconds

511 time: 1D numpy array [time]

512 The times at which the signal datapoints were sampled.

513 Time assumed to be in seconds.

514 j_range,i_range: list or numpy array of integers

515 The j/i channels to be scanned.

516 j_range can include the full range, minus one, of j indices

517 i_range can include the full range of i indices

518 R,z : 2D numpy array

519 the R,z coordinates corresponding to the j,i channel numbers.

520 N: integer

521 the length of the time-series clips to be analysed [number of

frames]↪→

522

523 Keyword arguments:

524 ------------------

525 correlation_threshold: string or float

526 threshold of correlation below which the inferred velocity will

be ignored. [between 0 and 1, or 'auto']↪→

527 if default 'auto', threshold determined by cross-correlation of

random noise↪→

528 delta_ell: integer

529 what should the distance be between analysed channels?

530

531 Returns:

532 --------

533 inferred_velocities: np array

534 an [i_range,j_range,time] array containing inferred velocities

535 inference_times: np array

536 contains the inference times of the velocities

537 inference_correlations: np array

538 an [i_range,j_range,time] array containing correlation values of

inferred velocities↪→

539

540 Notes:

541 ------

542 ::

543 '''
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544 # Run CCTDE in parallel

545 nProcesses = len(i_range)*len(j_range)

546 # Calculate and set correlation threshold if it is 'auto'

547 if correlation_threshold=='auto':

548 correlation_threshold=calc_corr_threshold(N,0.01)

549 # Initialise a multiprocessing pool

550 with mp.Pool(processes= nProcesses) as pool:

551 # Execute R_velocity_scan_parallel_wrapper in parallel

552 i_indices,j_indices,inferred_velocities,inference_times,inferred_ ⌋
correlations =

zip(*pool.starmap(R_velocity_scan_parallel_wrapper, [(i,j,sig ⌋
nals,time,R,z,delta_ell,N,stepsize,correlation_threshold) for

i in i_range for j in j_range]))

↪→

↪→

↪→

↪→

553 # Convert outputs to numpy arrays

554 inferred_velocities = np.asarray(inferred_velocities)

555 inferred_correlations = np.asarray(inferred_correlations)

556 inference_times= np.asarray(inference_times)

557 # Reshape output arrays based on R, z coordinates and time stepsize

558 inferred_velocities_reshaped =

np.full((R.shape[0],R.shape[1],int(len(time)/stepsize)+1),np.nan)↪→

559 inferred_correlations_reshaped =

np.full((R.shape[0],R.shape[1],int(len(time)/stepsize)+1),np.nan)↪→

560 for k,i in enumerate(i_indices):

561 j = j_indices[k]

562 inferred_velocities_reshaped[i,j,:] = inferred_velocities[k,:]

563 inferred_correlations_reshaped[i,j,:] = inferred_correlations[k,:]

564 inference_times_reshaped = inference_times[0,:]

565 return inferred_velocities_reshaped,inference_times_reshaped,inferred ⌋
_correlations_reshaped↪→

566

567 ##########################################################################

568 ##########################################################################

569 # line-CCTDE method helper functions

570 ##########################################################################

571 ##########################################################################

572

573 def myline(x,m):

574 #simple straight line function for fitting routines

575 #line is forced through 0,0

576 return m*x

577

578 def estimate_gradient_with_ransac_through_origin(distances, lag_peaks,

max_trials=100):↪→

579 """

580 Estimate best line of fit gradient through the origin using RANSAC

(RANdom SAmple Consensus).↪→

581

582 Parameters:
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583 ----------

584 distances : numpy.ndarray

585 Array of distances.

586 lag_peaks : numpy.ndarray

587 Array of corresponding lag peaks.

588 max_trials : int, optional

589 Maximum number of RANSAC trials. Default is 100.

590

591 Returns:

592 ----------

593 Tuple (gradient, gradient_error):

594 gradient : float

595 Estimated gradient of the linear model.

596 gradient_error : float

597 Standard error of the estimated gradient.

598

599 Notes:

600 ----------

601 - This function fits a RANSAC regressor to find the best linear model

through the origin.↪→

602 - It handles NaN values, reshapes input arrays, and performs RANSAC

regression.↪→

603 - Visualization code (optional) for inspecting the results is

included but commented out.↪→

604

605 Example:

606 ----------

607 ```python

608 distances = np.array([1, 2, 3, 4, 5])

609 lag_peaks = np.array([2, 4, 6, 8, 10])

610 gradient, gradient_error =

estimate_gradient_with_ransac_through_origin(distances, lag_peaks)↪→

611 print(f"Estimated Gradient: {gradient}, Standard Error:

{gradient_error}")↪→

612 ```

613

614 References:

615 ----------

616 - RANSACRegressor: https://scikit-learn.org/stable/modules/generated/ ⌋
sklearn.linear_model.RANSACRegressor.html↪→

617 - LinearRegression: https://scikit-learn.org/stable/modules/generated ⌋
/sklearn.linear_model.LinearRegression.html↪→

618 """

619 # Check for NaN values and remove corresponding rows

620 nan_mask = np.logical_or(np.isnan(distances), np.isnan(lag_peaks))

621 distances = distances[~nan_mask]

622 lag_peaks = lag_peaks[~nan_mask]

623 # Reshape the arrays to 2D if they are 1D
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624 if len(distances.shape) == 1:

625 distances = distances[:, np.newaxis]

626 if len(lag_peaks.shape) == 1:

627 lag_peaks = lag_peaks[:, np.newaxis]

628 # Initialize RANSAC regressor with a linear model without an intercept

629 ransac = RANSACRegressor(LinearRegression(fit_intercept=False),

max_trials=max_trials)↪→

630 # Fit the regressor

631 ransac.fit(distances, lag_peaks)

632 # Get the inlier mask

633 inliers = ransac.inlier_mask_

634 # Extract inlier points

635 inlier_distances = distances[inliers]

636 inlier_lag_peaks = lag_peaks[inliers]

637 # Fit the final model on the inliers

638 final_model = RANSACRegressor(LinearRegression(fit_intercept=False))

639 final_model.fit(inlier_distances, inlier_lag_peaks)

640 # Get the estimated gradient

641 gradient = final_model.estimator_.coef_[0]

642 # Calculate the residuals for the inliers

643 residuals = inlier_lag_peaks - final_model.predict(inlier_distances)

644 # Calculate the standard error of the gradient

645 n = len(inlier_distances)

646 mse = np.sum(residuals ** 2) / (n - 2) # Mean squared error

647 gradient_error = np.sqrt(mse / np.sum((inlier_distances -

np.mean(inlier_distances)) ** 2))↪→

648 # Visualization (optional)

649 # plt.scatter(distances, lag_peaks, color='b', label='Data points')

650 # plt.scatter(inlier_distances, inlier_lag_peaks, color='r',

label='Inliers')↪→

651 # plt.plot(distances, final_model.predict(distances), color='orange',

label='RANSAC Model')↪→

652 # plt.xlabel('Distances')

653 # plt.ylabel('Lag Peaks')

654 # plt.legend()

655 # plt.show()

656 return gradient, gradient_error

657

658 ##########################################################################

659 ##########################################################################

660 # line-CCTDE method core functions (non-parallel)

661 ##########################################################################

662 ##########################################################################

663

664 from scipy.stats import linregress

665

666 def infer_velocity_line_method(Linedata_segment, ref_j, zz,

correlation_threshold, sampling_time,↪→
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667 max_distance=None, exclude_edges=True,

fit_method='ransac', plot_bool=False):↪→

668 """

669 Infer velocity using the line method.

670

671 Parameters:

672 ----------

673 Linedata_segment : numpy.ndarray

674 2D array of data segments.

675 ref_j : int

676 Reference channel index.

677 zz : numpy.ndarray

678 2D array of z coordinates.

679 correlation_threshold : float

680 Threshold for correlation to consider in the analysis.

681 sampling_time : float

682 Sampling time in seconds.

683 max_distance : float, optional

684 Maximum distance for analysis. Default is None.

685 exclude_edges : bool, optional

686 Flag to exclude edge indices. Default is True.

687 fit_method : str, optional

688 Method for fitting ('leastsq' or 'ransac'). Default is 'ransac'.

689 plot_bool : bool, optional

690 Flag for optional plotting. Default is False.

691

692 Returns:

693 ----------

694 Tuple (velocity, velocity_err):

695 velocity : float

696 Inferred velocity in km/s.

697 velocity_err : float

698 Error in the inferred velocity.

699

700 Notes:

701 ----------

702 - Uses cross-correlation function (CCF) to find time delays and

distances.↪→

703 - Implements line fitting methods: 'leastsq' or 'ransac'. RANSAC is

default for its ability to ignore outliers.↪→

704 - Optional plotting can be enabled with plot_bool.

705

706 Example:

707 ----------

708 ```python

709 velocity, velocity_err = infer_velocity_line_method(Linedata_segment,

ref_j, zz, correlation_threshold,↪→
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710 sampling_time,

max_distance ⌋
=None,

↪→

↪→

711 exclude_edges=Tr ⌋
ue,

fit_method=' ⌋
ransac',

plot_bool=Fa ⌋
lse)

↪→

↪→

↪→

↪→

↪→

712 print(f"Inferred Velocity: {velocity} km/s, Velocity Error:

{velocity_err} km/s")↪→

713 ```

714 """

715 # Find all combination pairs of indices

716 indices = range(Linedata_segment.shape[0])

717 combinations = np.array(list(itertools.combinations(indices, 2)))

718 index_exclusions = []

719 for index, (iref, icomp) in enumerate(combinations):

720 # Optionally filter out edge indices

721 if exclude_edges:

722 if iref == np.nanmin(indices) or icomp == np.nanmax(indices):

723 index_exclusions.append(index)

724 # Filter out combinations with distances larger than max distance

725 if max_distance is not None:

726 distance = (zz[iref, ref_j] - zz[icomp, ref_j]) * 100 # cm

727 if distance > max_distance:

728 index_exclusions.append(index)

729 # Remove combinations to be excluded

730 index_exclusions = list(set(index_exclusions.copy()))

731 combinations = np.delete(combinations, index_exclusions, axis=0)

732 # Initialise

733 N = Linedata_segment.shape[1] // 2

734 lag_peaks = np.full(combinations.shape[0], np.nan)

735 distances = np.full(combinations.shape[0], np.nan)

736 # Loop through all combinations

737 for index, (iref, icomp) in enumerate(combinations):

738 refsig = Linedata_segment[iref, N // 2:N + N // 2]

739 compsig = Linedata_segment[icomp, :]

740 # Calculate CCF

741 ccf, lags = calc_ccf(refsig, compsig, overlap_mode='valid',

plot_bool=False)↪→

742 # Check if CCF is empty

743 if len(ccf) == 0:

744 # Leave lag_peak as nan and set correlation to 0

745 correlation_max = 0.

746 else:

747 # Find the peak of the cross-correlation function

748 correlation_max = np.max(ccf)
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749 # Correlation peak must exceed correlation threshold

750 if correlation_max > correlation_threshold:

751 # Find time-delay at CCF peak

752 peak_index = np.where(np.max(ccf) == ccf)[0][0]

753 time_delay = lags[peak_index]

754 # Account for zero-time delay scenario

755 if time_delay == 0.:

756 # Leave lag_peak as nan

757 pass

758 else:

759 # Store time_delay and distance at which the CCF peaks

760 lag_peaks[index] = time_delay * sampling_time * 1e6

761 distances[index] = -zz[iref, ref_j] + zz[icomp, ref_j]

762 else:

763 # Leave lag_peak as nan if correlation threshold not

reached↪→

764 pass

765 # Sort arrays for neatness

766 sorted_indices = np.argsort(distances)

767 distances = distances[sorted_indices].copy()

768 lag_peaks = lag_peaks[sorted_indices].copy()

769 # Line fitting (multiple methods)

770 if fit_method == 'leastsq':

771 mask = np.isfinite(lag_peaks)

772 distances = distances[mask]

773 lag_peaks = lag_peaks[mask]

774 grad, intercept, _, _, grad_err = linregress(distances, lag_peaks)

775 else:

776 grad, grad_err =

estimate_gradient_with_ransac_through_origin(distances,

lag_peaks)

↪→

↪→

777 grad = grad[0]

778 # Calculate velocity in km/s

779 velocity = 1. / (grad / 1000.)

780 velocity_err = velocity * (grad_err / grad)

781 # Optional plotting

782 if plot_bool:

783 # Fitted

784 plt.plot(distances, distances * grad, ls='--', c='k',

785 label=f'v={velocity:.2f}(+/-){velocity_err:.2f} km/s')

786 # Raw

787 plt.plot(distances, lag_peaks, '.', c='b')

788 # Formatting

789 plt.title('line-CCTDE velocity fit, shot:46459, j=3 \n least

squares method')↪→

790 plt.xlabel('distance [m]')

791 plt.ylabel('time-delay [us]')

792 plt.legend()
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793 plt.show()

794 return velocity, velocity_err

795

796 def infer_velocity_timeseries_line_method(Linedata, times, N, stepsize,

ref_j, zz, correlation_threshold,↪→

797 max_distance=None,

exclude_edges=True,

plot_bool=False,

iterationlimit=1e9):

↪→

↪→

↪→

798 """

799 Analyze consecutive clips of density fluctuation data to infer

z-velocities.↪→

800

801 Parameters:

802 Linedata (numpy.ndarray): 2D array containing density

fluctuations data.↪→

803 times (numpy.ndarray): 1D array of timestamps corresponding to

the Linedata.↪→

804 N (int): Size of the window for cross-correlation.

805 stepsize (int): Step size between consecutive clips of data.

806 ref_j (int): Index of the reference location (column).

807 zz (numpy.ndarray): 2D array of z-coordinates of the signals.

808 correlation_threshold (float): Threshold value for the

correlation coefficient to consider a valid peak.↪→

809 max_distance (float, optional): Maximum distance for analysis.

Defaults to None.↪→

810 exclude_edges (bool, optional): If True, exclude edge indices.

Defaults to True.↪→

811 plot_bool (bool, optional): If True, plot the fitted line and raw

data points. Defaults to False.↪→

812 iterationlimit (int, optional): Maximum number of iterations for

the analysis loop. Defaults to 1e9.↪→

813

814 Returns:

815 tuple: A tuple containing the inference times, inferred

velocities, and their associated errors.↪→

816

817 Note:

818 The function takes consecutive slices of the Linedata with a

specified window size (N) and step size↪→

819 (stepsize). It performs cross-correlation on each slice to infer

the line velocities. The function↪→

820 aborts if there is not enough data left in the time-series or if

the iteration limit is exceeded.↪→

821

822 Example:
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823 times, velocities, velocity_errors =

infer_velocity_timeseries_line_method(Linedata, times, 100,

10, 4, zz, 0.7)

↪→

↪→

824 print("Inference Times:", times)

825 print("Inferred Velocities:", velocities)

826 print("Velocity Errors:", velocity_errors)

827 """

828 # Initialize

829 is_more_data = True

830 i = 0

831 sampling_time = np.nanmean(np.diff(times))

832 nframes = len(Linedata[i, :])

833 arr_length = int((nframes - N) / stepsize) + 1

834 inferred_velocities = np.full(arr_length, np.nan)

835 inferred_velocity_errors = np.full(arr_length, np.nan)

836 inference_times = np.full(arr_length, np.nan)

837 # Loop until there is no more data

838 while is_more_data:

839 # Take slices of time-series

840 Linedata_segment = Linedata[:, i:i + 2 * N]

841 sliced_times = times[i:i + 2 * N]

842 inference_time = np.nanmean(sliced_times)

843 try:

844 # Cross-correlate ts slices and infer velocity

845 velocity, velocity_err =

infer_velocity_line_method(Linedata_segment, ref_j, zz,

correlation_threshold,sampling_time,

max_distance=max_distance,exclude_edges=exclude_edges,

plot_bool=plot_bool)

↪→

↪→

↪→

↪→

846 except:

847 velocity = np.nan

848 velocity_err = np.nan

849 # Store velocity in array

850 inferred_velocities[int(i / stepsize)] = velocity

851 inferred_velocity_errors[int(i / stepsize)] = velocity_err

852 inference_times[int(i / stepsize)] = inference_time

853 # Move the current starting point

854 i = i + stepsize

855 # Abort loop if there is not enough data left in the time-series

856 if i + 2 * N >= nframes:

857 is_more_data = False

858 # Abort if iterationlimit is exceeded

859 if i / N > iterationlimit:

860 print('iteration limit exceeded!')

861 is_more_data = False

862 return inference_times, inferred_velocities, inferred_velocity_errors

863
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864 def z_velocity_full_scan_line_method(BESdata, BEStimes, shotn, RR, zz, N,

stepsize, j_indices, max_distance=None,↪→

865 exclude_edges=True,

correlation_threshold='auto',

plot_bool=False):

↪→

↪→

866 """

867 Perform a full scan of z-velocities using the line method.

868

869 Parameters:

870 BESdata (numpy.ndarray): 3D array containing BES data.

871 BEStimes (numpy.ndarray): 1D array of timestamps corresponding to

the BESdata.↪→

872 shotn (int): Shot number.

873 RR (numpy.ndarray): 2D array of R coordinates.

874 zz (numpy.ndarray): 2D array of z coordinates.

875 N (int): Size of the window for cross-correlation.

876 stepsize (int): Step size between consecutive clips of data.

877 j_indices (list): List of indices for the j channels.

878 max_distance (float, optional): Maximum distance for analysis.

Defaults to None.↪→

879 exclude_edges (bool, optional): If True, exclude edge indices.

Defaults to True.↪→

880 correlation_threshold (float or 'auto', optional): Threshold

value for the correlation coefficient↪→

881 to consider a valid peak. If 'auto', the threshold is

determined by calc_corr_threshold.↪→

882 plot_bool (bool, optional): If True, plot the overview of

inferred velocities. Defaults to False.↪→

883

884 Returns:

885 tuple: A tuple containing the inferred velocities, their

associated errors, and the inference times.↪→

886

887 Example:

888 velocities, velocity_errors, inference_times =

z_velocity_full_scan_line_method(BESdata, BEStimes, 123,RR,

zz, 100, 10,[0, 1, 2],max_distance=500,exclude_edges=True,cor ⌋
relation_threshold='auto',plot_bool=True)

↪→

↪→

↪→

889 print("Inferred Velocities:", velocities)

890 print("Velocity Errors:", velocity_errors)

891 print("Inference Times:", inference_times)

892 """

893 # Initialize

894 all_inferred_velocities = np.full((BESdata.shape[1], (len(BEStimes) -

N) // stepsize + 1), np.nan)↪→

895 all_inferred_velocities_err = np.full((BESdata.shape[1],

(len(BEStimes) - N) // stepsize + 1), np.nan)↪→
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896 all_inference_times = np.full((len(BEStimes) - N + 1) // stepsize,

np.nan)↪→

897 # Optionally calculate correlation threshold

898 if correlation_threshold == 'auto':

899 correlation_threshold = calc_corr_threshold(N, 0.01)

900 elif not np.isnumeric(correlation_threshold):

901 raise ValueError("correlation_threshold is not a number.")

902 # Loop over j indices

903 for j in j_indices:

904 BESdata_line = BESdata[:, j, :]

905 inference_times, inferred_velocities, inferred_velocity_errors =

infer_velocity_timeseries_line_method(↪→

906 BESdata_line, BEStimes, N, stepsize, j, zz,

correlation_threshold, max_distance=max_distance,↪→

907 exclude_edges=exclude_edges, plot_bool=False)

908 all_inferred_velocities[j, :] = inferred_velocities

909 all_inferred_velocities_err[j, :] = inferred_velocity_errors

910 all_inference_times = inference_times.copy()

911 # Plot overview if plot_bool is True

912 if plot_bool:

913 for j in j_indices:

914 plt.plot(all_inference_times * 1000.,

all_inferred_velocities[j, :],

label='R={:.2f}m'.format(RR[3, j]))

↪→

↪→

915 plt.legend()

916 plt.title('Overview of line-CCTDE inferred velocities \n

shot:#{}, times {:.2f}-{:.2f}ms'.format(↪→

917 shotn, np.nanmin(all_inference_times) * 1000.,

np.nanmax(all_inference_times) * 1000.))↪→

918 plt.ylabel('z-velocity [km/s]')

919 plt.xlabel('time [ms]')

920 plt.show()

921 return all_inferred_velocities, all_inferred_velocities_err,

all_inference_times↪→

922

923 ##########################################################################

924 ##########################################################################

925 # line-CCTDE method core functions (parallel)

926 ##########################################################################

927 ##########################################################################

928

929 def z_velocity_scan_line_method_parallel_wrapper(j, BESdata, BEStimes, N,

stepsize, zz, correlation_threshold,↪→

930 max_distance=None,

exclude_edges=True):↪→

931 """

932 Wrapper function for parallelized z-velocity scanning using the line

method.↪→
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933

934 Parameters:

935 j (int): Index for the j channel.

936 BESdata (numpy.ndarray): 3D array containing BES data.

937 BEStimes (numpy.ndarray): 1D array of timestamps corresponding to

the BESdata.↪→

938 N (int): Size of the window for cross-correlation.

939 stepsize (int): Step size between consecutive clips of data.

940 zz (numpy.ndarray): 2D array of z coordinates.

941 correlation_threshold (float): Threshold value for the

correlation coefficient to consider a valid peak.↪→

942 max_distance (float, optional): Maximum distance for analysis.

Defaults to None.↪→

943 exclude_edges (bool, optional): If True, exclude edge indices.

Defaults to True.↪→

944

945 Returns:

946 tuple: A tuple containing the index j, inferred velocities, their

associated errors, and the inference times.↪→

947 """

948 BESdata_line = BESdata[:, j, :]

949 inference_times, inferred_velocities, inferred_velocity_errors =

infer_velocity_timeseries_line_method(↪→

950 BESdata_line, BEStimes, N, stepsize, j, zz,

correlation_threshold, max_distance=max_distance,↪→

951 exclude_edges=exclude_edges, plot_bool=False)

952 return j, inferred_velocities, inferred_velocity_errors,

inference_times↪→

953

954 def z_velocity_full_scan_line_method_parallelised(BESdata, BEStimes,

shotn, RR, zz, N, stepsize, j_indices,max_distance=None,

exclude_edges=True, correlation_threshold='auto',plot_bool=False):

↪→

↪→

955 """

956 Perform a full scan of z-velocities using the line method in parallel.

957

958 Parameters:

959 BESdata (numpy.ndarray): 3D array containing BES data.

960 BEStimes (numpy.ndarray): 1D array of timestamps corresponding to

the BESdata.↪→

961 shotn (int): Shot number.

962 RR (numpy.ndarray): 2D array of R coordinates.

963 zz (numpy.ndarray): 2D array of z coordinates.

964 N (int): Size of the window for cross-correlation.

965 stepsize (int): Step size between consecutive clips of data.

966 j_indices (list): List of indices for the j channels.

967 max_distance (float, optional): Maximum distance for analysis.

Defaults to None.↪→
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968 exclude_edges (bool, optional): If True, exclude edge indices.

Defaults to True.↪→

969 correlation_threshold (float or 'auto', optional): Threshold

value for the correlation coefficient↪→

970 to consider a valid peak. If 'auto', the threshold is

determined by calc_corr_threshold.↪→

971 plot_bool (bool, optional): If True, plot the overview of

inferred velocities. Defaults to False.↪→

972

973 Returns:

974 tuple: A tuple containing the inferred velocities, their

associated errors, and the inference times.↪→

975

976 Example:

977 velocities, velocity_errors, inference_times =

z_velocity_full_scan_line_method_parallelised(BESdata,

BEStimes,123, RR, zz, 100, 10,[0, 1, 2],max_distance=500,excl ⌋
ude_edges=True,correlation_threshold='auto',plot_bool=True)

↪→

↪→

↪→

978 print("Inferred Velocities:", velocities)

979 print("Velocity Errors:", velocity_errors)

980 print("Inference Times:", inference_times)

981 """

982 all_inferred_velocities = np.full((BESdata.shape[1], (len(BEStimes) -

N) // stepsize + 1), np.nan)↪→

983 all_inferred_velocities_err = np.full((BESdata.shape[1],

(len(BEStimes) - N) // stepsize + 1), np.nan)↪→

984 all_inference_times = np.full((len(BEStimes) - N + 1) // stepsize,

np.nan)↪→

985 # Optionally calculate correlation threshold

986 if correlation_threshold == 'auto':

987 correlation_threshold = calc_corr_threshold(N, 0.01)

988 elif not np.isnumeric(correlation_threshold):

989 raise ValueError("correlation_threshold is not a number.")

990 num_processes = len(j_indices)

991 with mp.Pool(processes=num_processes) as pool:

992 results =

pool.starmap(z_velocity_scan_line_method_parallel_wrapper,↪→

993 [(j, BESdata, BEStimes, N, stepsize, zz,

correlation_threshold, max_distance,

exclude_edges) for j in j_indices])

↪→

↪→

994 for j, inferred_velocities, inferred_velocity_errors, inference_times

in results:↪→

995 all_inferred_velocities[j, :] = inferred_velocities

996 all_inferred_velocities_err[j, :] = inferred_velocity_errors

997 all_inference_times = inference_times.copy()

998 # Plot overview if plot_bool is True

999 if plot_bool:

1000 for j in j_indices:
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1001 plt.plot(all_inference_times * 1000.,

all_inferred_velocities[j, :],

label='R={:.2f}m'.format(RR[3, j]))

↪→

↪→

1002 plt.legend()

1003 plt.title('Overview of line-CCTDE inferred velocities \n

shot:#{}, times {:.2f}-{:.2f}ms'.format(↪→

1004 shotn, np.nanmin(all_inference_times) * 1000.,

np.nanmax(all_inference_times) * 1000.))↪→

1005 plt.ylabel('z-velocity [km/s]')

1006 plt.xlabel('time [ms]')

1007 plt.show()

1008 return all_inferred_velocities, all_inferred_velocities_err,

all_inference_times↪→
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