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Abstract

The accuracy and interpretability of a (non-life) insurance pricing

model are essential qualities to ensure fair and transparent premiums

for policyholders, that reflect their risk. In recent years, classifica-

tion and regression trees (CARTs) and their ensembles have gained

popularity in the actuarial literature, since they offer good prediction

performance and are relatively easy to interpret. In this work, we in-

vestigate Bayesian CART models for insurance pricing. In addition to

the commonly used Poisson and Negative Binomial (NB) distributions

for claims frequency, we combine Bayesian CART models and zero-

inflated distributions, namely, zero-inflated Poisson (ZIP) and general

zero-inflated Negative Binomial (ZINB) to address the difficulty arising

from the imbalanced insurance claims data. In claims severity analy-

sis, we discover that the Weibull distribution has the ability to capture

different tail characteristics in tree models. Moreover, we propose and

investigate three types of models for aggregate claims modelling. We

find that sequential models and joint models, which incorporate depen-

dence between the number of claims and claims severity, are preferable

to the standard frequency-severity models. We introduce a general

MCMC algorithm using data augmentation methods for posterior tree

exploration. We also develop various types of deviance information cri-

terion (DIC) for tree model selection. The proposed models are able

to identify trees which can better classify the policyholders into risk

groups. The effectiveness of these models’ performance are illustrated

by several carefully designed simulations and real insurance data.

iv



Notation

D = (X,y) data set

xi = (xi1, xi2, . . . , xip) a row vector of explanatory variables

i = 1, . . . , n the number of observations/policy-holders

l = 1, . . . , p the number of explanatory variables

X covariate sample space

y = (y1, y2, . . . , yn) a row vector of response variable

Y response variable sample space

T a binary tree

|T | or t = 1, . . . , b the number of terminal nodes in the tree T
{A1, . . . ,Ab} a partition of the covariate sample space X
θt the parameter in the t-th terminal node

j = 1, . . . , nt the number of observations in the t-th node

v exposure in yearly units

N claims number

λ claims frequency

I() indicator function

d depth of the tree

γ the parameter in the splitting probability

ρ the parameter in the splitting probability

z = (z1, . . . , zn) a general latent variable

m the number of test data

ϵ empirical claims frequency (or severity, cost)

YiNi
individual claim amount

S aggregate claim amount

α the parameter in Gamma/Beta/Weibull distribution

β the parameter in Gamma/Beta/Weibull distribution

κ the parameter in NB distribution

µ the parameter in ZIP/ZICPG/LogNormal distributions



ξ = (ξt1, . . . , ξtnt) a latent variable in NB/ZINB models

ϕ = (ϕt1, . . . , ϕtnt) a latent variable in ZIP/ZINB/ZICPG models

δ = (δt1, . . . , δtnt) a latent variable in ZIP/ZINB/ZICPG models
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Abbreviations

CARTs Classification and Regression Trees

BCARTs Bayesian Classification and Regression Trees

NB Negative Binomial

ZIP Zero-Inflated Poisson

ZINB Zero-Inflated Negative Binomial

CPG Compound Poisson Gamma

ZICPG Zero-Inflated Compound Poisson Gamma

MCMC Markov Chain Monte Carlo

DIC Deviance Information Criterion

GLMs Generalized Linear Models

GAMs Generalized Additive Models

NN Neural Network

RF Random Forest

GB Gradient Boosting

GBT Gradient Boosting Trees

DB Delta Boosting

BART Bayesian Additive Regression Trees

BMA Bayesian Model Averaging

MOTR-BART Model Trees BART

MH Metropolis–Hastings

RI Rand Index

ARI Adjusted Rand Index

MLEs Maximum Likelihood Estimators

IID Independent and Identically Distributed

RJMCMC Reversible Jump Markov Chain Monte Carlo

AIC Akaike’s Information Criterion

WAIC Watanabe-Akaike Information Criterion

RSS Residual Sum of Squares

SE Squared Error



DS Discrepancy Statistics

NLL Negative Log-likelihood

MME Method of Moments Estimation

LPML Log Pseudo Marginal Likelihood
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Chapter 1

Introduction

This chapter begins with an overview of the insurance background and our objec-

tives, followed by a literature review from two perspectives. One aspect explores

various traditional methods for insurance pricing, while the other delves into tree-

based models, particularly the Bayesian tree-based models. Subsequently, we out-

line the main contributions and provide an overview of the thesis structure.

1.1 Background and Objectives

An insurance policy refers to an agreement between an insurance company (the in-

surer) and a policyholder (the insured), in which the insurer promises to charge the

insured a certain fee for some unpredictable losses of the customer within a period

of time, usually one year. Non-life insurance includes policies for things like auto,

travel, home, and so on. The charged fee is called a premium which includes a pure

premium and other loadings such as operational costs. For each policy, the pure

premium is determined by multiple explanatory variables (such as characteristics

of the policyholders, the insured objects, the geographical region, etc.), also called

risk factors ; see, e.g., Ohlsson & Johansson (2010). The premium charged reflects

the customer’s degree of risk; a higher premium suggests a potentially higher risk,

and vice versa. If insurance companies were to charge the same premium for ev-

eryone, low-risk individuals would likely seek cheaper insurance rates elsewhere,

leaving insurers with a larger pool of high-risk individuals, potentially leading to

insufficient premium income to cover all losses. This phenomenon, also known

as adverse selection, occurs when insurers are more likely to cover bad risks than

good risks. Therefore, it is necessary to use risk factors to classify policyholders

with similar risk profiles into the same tariff class. The insureds in the same group,

all having similar risk characteristics, will pay the same reasonable premium. The
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process of constructing these tariff classes is also known as risk classification; see,

e.g., Denuit et al. (2007) and Henckaerts et al. (2018). In the basic formula of non-

life insurance pricing, the pure premium is obtained by multiplying the expected

claims frequency with the conditional expectation of claims severity, assuming

independence between claims frequency and severity; see, e.g., Henckaerts et al.

(2021). In this thesis, we propose efficacious models, namely, Bayesian Classi-

fication and Regression Trees (Bayesian CARTs) or BCART models, to analyze

insurance claims data. First, we explore imbalanced claims frequency data with

BCART models, considering different ways to embed the exposure (typically in

yearly units, used to quantify how long the policyholder is exposed to risk) into the

models and involving data augmentation techniques. Subsequently, we investigate

BCART models to analyze the right-skewed and heavy-tailed claims severity data

by using various distributions. Finally, we discuss three types of models that we

propose, i.e., frequency-severity models, sequential models and joint models for

aggregate claims modelling.

1.2 Literature Review

1.2.1 Insurance Pricing

In order to estimate the relationship between the risk factors and the premium,

a statistical model is used. Due to its flexibility in modelling a large number of

distributions in the exponential family, generalized linear models (GLMs), devel-

oped in Nelder & Wedderburn (1972), have been the industry-standard predictive

models for insurance pricing; see, e.g., Denuit et al. (2007) and Wuthrich (2022).

Explanatory variables enter a GLM through a linear predictor, leading to in-

terpretable effects of the risk factors on the response. Assuming independence

between claims frequency and severity, the frequency-severity models treat these

two components separately. The frequency element focuses on the occurrence of

claims, and the severity element, provided that a claim has occurred, investigates

the claim amount. Both elements can use distributions from the exponential family

within GLMs; see, e.g., David (2015). Claims frequency is typically modelled using

non-negative discrete probability distributions such as Poisson, Negative Binomial

(NB), Zero-Inflated Poisson (ZIP) or a general Zero-Inflated Negative Binomial

(ZINB), and claims severity is typically modelled using non-negative continuous

distributions such as Gamma, LogNormal, Weibull, or a generalized Pareto. As

a result, the expected annual claims cost can be calculated as the product of the
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expectations of claims frequency and conditional claims severity. Alternatively,

the aggregate loss can be directly modelled using the Tweedie Compound Pois-

son model which considers loss as a Poisson sum of Gamma variables, simplifying

the analysis by jointly accommodating discrete and continuous data components;

see, e.g., Jørgensen & Paes De Souza (1994). Concurrently, discussions regard-

ing the suitability of GLMs for aggregate claims analysis have revolved around

the trade-off between model complexity and predictive performance, emphasizing

the benefits and contexts where Tweedie’s model excels and where alternative

methodologies may offer a better solution; see, e.g., Quijano Xacur & Garrido

(2015). Extensions of GLMs to generalized additive models (GAMs) (see Hastie

& Tibshirani (1987)) to capture the nonlinear effects of risk factors sometimes of-

fer more flexible models. Certain risk factors exhibit inherent relationships, such

as the connection between vehicle value and the driver’s salary. The identifica-

tion of complex interactions among these risk factors poses a crucial challenge for

modeling efforts. Both GLMs and GAMs often fail to capture these intricate re-

lationships due to their inherent assumptions and limitations. While GAMs relax

the linearity assumption by incorporating smooth non-linear components through

the use of splines, they encounter difficulties in capturing interactions character-

ized by intricate and complex patterns. We refer to Ohlsson & Johansson (2010)

for a more comprehensive discussion on this. Another popular classical method

which is based on Bayesian statistics, the credibility method, was introduced for

balancing policyholder-specific data with industry-wide loss experience, ensuring

fair and accurate premium rates. Besides, the efficacy of credibility theory in ad-

dressing the challenges posed by multi-level factors and lack of data issues has

been discussed; see, e.g., Ohlsson & Johansson (2010) and Bühlmann & Gisler

(2005).

Moreover, an increasing body of literature emphasizes the importance of un-

derstanding the interrelated nature of claims occurrences and their associated

claim amount to improve prediction accuracy, advocating for a relaxation of the

independence assumption between claims frequency and severity; see, e.g., Frees

et al. (2016) and Lee & Shi (2019). To address this concern, conditional GLMs

were proposed by Garrido et al. (2016), enabling the severity component of the

aggregate claims model to depend on the frequency component. This strategy

is straightforward to implement and has an easy-to-interpret correction term re-

flecting the dependence. Additionally, another strategy primarily used to model

the dependence structure between random variables, the copula method, has been

introduced for capturing the dependence structure of count data in the insurance
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industry; see, e.g., Genest & Nešlehová (2007). Copulas are particularly useful for

modelling the joint distribution of variables while allowing for flexible marginal dis-

tributions and capturing the dependence structure independently. In parallel, the

adoption of Bayesian approaches to copula modelling in Smith (2011) contributed

to the refinement of copula-based modelling techniques. By augmenting the like-

lihood with latent variables and employing efficient Markov Chain Monte Carlo

(MCMC) sampling schemes, copula models with discrete margins can be estimated

using the resulting augmented posterior. This strategy suggests the potential ap-

plicability of the proposed method in higher-dimensional settings and underscores

the limitations of elliptical copulas in capturing dependence in discrete data; see,

e.g., Smith & Khaled (2012). After that, their work is expanded to include situa-

tions where some margins are discrete and others are continuous, providing strong

theoretical support for the subsequent development of mixed copula models. By

incorporating mixed copulas, the dependence between claims frequency and sever-

ity can be addressed. However, the challenge persists in selecting the appropriate

copula family and parameters; see, e.g., Czado et al. (2012), Shi et al. (2015) and

Lee et al. (2019). Because of the limitations of these classical statistical methods

and equipped with continually developing technologies, further research has re-

cently turned to machine learning techniques. Several machine learning methods

such as neural networks (NN), regression trees, bagging techniques, random forests

(RF), and boosting machines have been introduced in the context of insurance by

adopting actuarial loss distributions in these models to capture the characteristics

of insurance claims. We refer to Blier-Wong et al. (2020) for a recent literature

review on this topic, and Denuit & Trufin (2019), Wuthrich & Buser (2022) and

Wüthrich & Merz (2023) for a more detailed discussion.

1.2.2 Tree-based Models

Insurance pricing models are heavily regulated and they must meet specific require-

ments before being deployed in practice, which poses some challenges for machine

learning methods; see Henckaerts et al. (2021). Therein, it is stressed that pricing

models must be transparent and easy to communicate to all the stakeholders and

that the insurer has the social role of creating solidarity among the policyholders

so that the use of machine learning for pricing should in no way lead to an extreme

penalization of risk or discrimination. The latter has also been noted recently in,

e.g., Denuit et al. (2021) and Wüthrich (2020) where it is claimed that prediction
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accuracy on an individual level should not be the ultimate goal in insurance pric-

ing; one also needs to ensure the balance property which means it is crucial that

the models provide a reasonable premium estimation at the portfolio level. Bear-

ing these points in mind, researchers have concluded that tree-based models are

good candidates for insurance pricing due to their capacity to flexibly capture com-

plex, non-linear relationships inherent in diverse data sets. These models provide

transparent decision rules, facilitating easy interpretation and trust among stake-

holders. Besides, their ability to handle both numerical and categorical variables

without extensive pre-processing simplifies the modelling process; see, e.g., Henck-

aerts et al. (2021), Quan (2019), Hu et al. (2022), Meng et al. (2022) and Lindholm

et al. (2023). More precisely, the use of CART, first introduced in Breiman et al.

(1984), partitions a portfolio of policyholders into smaller groups of homogeneous

risk profiles based on some risk factors in which a constant prediction is then used

for each subgroup.

Acknowledging the challenges posed by handling excessive zeros in imbalanced

insurance claims frequency data, a novel decision tree approach designed for zero-

inflated count data was introduced, using the likelihood of a ZIP model in the

splitting criterion; see, e.g., Lee & Jin (2006). Because of the continuous devel-

opment of decision trees, their application is expanding in the insurance industry.

For example, decision trees have also been employed to predict the likelihood of a

claim based on potential risk factors; see, e.g., Frempong et al. (2017). Besides, to

investigate the diverse characteristics of cyber claims, regression trees were used

in Farkas et al. (2021). In this contribution, they employed a generalised Pareto

likelihood with two parameters in the splitting criterion to model the heavy-tailed

cyber claims data. Moreover, the integration of tree-based models into credibility

theory was investigated in Diao & Weng (2019), aiming to incorporate covari-

ate information into credibility premium prediction, and the proposed algorithm

demonstrated superior prediction accuracy. For a comprehensive understanding of

how decision trees can be implemented, we refer to Breiman et al. (1984) and Loh

(2014) for detailed discussions on the methodology. Additionally, the multivariate

regression tree approach has been further explored for its potential application in

a wide range of scenarios where the simultaneous co-occurrence of several depen-

dent variables need to be predicted (e.g., the number of claims and claim amount).

To obtain theoretical insights into this methodology, we refer to Yu & Lambert

(1999), Larsen & Speckman (2004) and Lee (2005).

Although a large number of scholars have carried out empirical and theoreti-

cal studies on the effectiveness of CART, limitations of the greedy forward-search
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recursive partitioning method used in CART have been identified. In particular,

the predictive performance tends to be low, and it is known to be unstable: small

variations in the training set can result in greatly different trees and different

predictions for the same test examples. Due to these limitations, more complex

tree-based models that combine multiple trees in an ensemble have become popu-

lar in insurance prediction and pricing to enhance predictive accuracy, such as RF

and boosting algorithms; see, e.g., Breiman (2001), Yang et al. (2018), Lee (2020,

2021) and Henckaerts et al. (2021). In detail, RF refers to generating ensem-

bles of trees with a set of unpruned fully-grown trees, aiming to reduce variability

through averaging. During this process, these trees are generated based on a boot-

strap sampling of the original data, using a sub-sample of explanatory variables

at each splitting step; see, e.g., Breiman (2001). Nevertheless, the trees in RF

are generated independently, lacking information sharing among them. Boosting

algorithms provide an improvement on this, as they construct trees sequentially.

A tree is grown based on residuals from previously grown trees for each new itera-

tion. This procedure creates strong learners by combining weak learners, achieving

a good balance between bias and variance through parameter tuning. We refer to

Freund & Mason (1999), Freund et al. (1996) and Azmi & Baliga (2020) for some

discussion on this topic. The term gradient boosting (GB) originated from the

use of optimisation based on gradient descent algorithms in the early techniques of

gradient boosting trees; see, e.g., Friedman (2002). In contrast to other methods,

GB simplifies complex interactions and manages missing values with minimal in-

formation loss. Applying the idea of GB to auto insurance loss cost modelling has

been demonstrated to obtain superior predictive accuracy compared to GLMs; see,

e.g., Guelman (2012). The introduction of a gradient tree-boosting approach to

Tweedie Compound Poisson models by Yang et al. (2018), is another noteworthy

addition. The advent of the R package, TDboost, further enhances the accessibility

and practicality of this proposed method; more information about this package

can be found in Yang & Qian (2022). Besides, the introduction of delta boosting

(DB) in Lee & Lin (2018) and Lee (2020), as another novel member of the boost-

ing family, offers promising advancements in boosting algorithms. Unlike GB, DB

relies on a new measure called “delta” and demonstrates optimality for various

loss functions. Its asymptotic version, customised for certain loss functions, works

well and effectively mitigates the biases found in GB. However, while these en-

semble methods are able to significantly increase prediction accuracy, they usually

introduce additional difficulties in model transparency. From another perspective,
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to address the issue of CART producing locally optimal results due to their step-

wise search procedure, evolutionary algorithms were introduced (see Grubinger

et al. (2014)) and implemented in the R package evtree, to emphasize the signif-

icance of global optimization techniques, enabling a more complete exploration of

the parameter space of trees; further details are available in Grubinger & Pfeiffer

(2019). However, running evolutionary trees requires more computer memory and

processing time. Moreover, the inherent randomness of evolutionary algorithms

poses another issue. For larger data sets, different evolutionary trees may produce

a similar or even identical evaluation function value. This phenomenon makes

their interpretation challenging.

In this thesis, we propose BCART models for insurance pricing. Instead of

making an ensemble of trees, we look for one good tree, which can improve the

prediction ability by exploring a global covariate space whilst ensuring model

transparency, by adopting a Bayesian approach applied to CART.

BCART models were first introduced by Chipman et al. (1998) and Denison

et al. (1998), independently. The method has two basic components, prior spec-

ification (for the tree and its terminal node parameters) and a stochastic search.

The method is to obtain a posterior distribution given the prior, thus leading the

stochastic search towards more promising tree models. Compared with the tree

that CART generates by a greedy forward-search recursive partitioning method,

the BCARTmodel generates a much better tree by an effective Bayesian-motivated

stochastic search algorithm. This has been justified by simulation examples (with

Gaussian-distributed data) in the aforementioned papers. Here, we show another

simulation example with Poisson-distributed data to illustrate the effectiveness of

BCART models. Specifically, we simulate 5,000 Poisson-distributed observations

where the Poisson intensity (response, y) depends on two explanatory variables

(or covariates) x1 and x2 as illustrated in Figure 1.1. (See also Subsection 3.5.1

for a slightly more general simulation example.) It is clear from the figure that

the optimal partition of the covariate space consists of four regions where the data

in each region then follows a homogeneous Poisson distribution. Note that the

standard CART will not be able to find the correct partition of the data as the

Poisson intensities are almost uniform for both marginal distributions (see Fig-

ure 1.1) and no matter how the first split is chosen, it is difficult to distinguish

different Poisson intensities on the resulting subspaces. In contrast, the proposed

Poisson BCART excels in retrieving the optimal tree structure due to its ability

to explore the tree space in a global way (for example, it can modify previously
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chosen splits, a capability that significantly contributes to achieving superior re-

sults). Moreover, the BCART models demonstrate additional strengths, notably

providing a probabilistic framework that reduces the instability of standard CART

while maintaining their explainability.

Figure 1.1: Covariate partition for a Poisson-distributed simu-

lation. Two covariates x1, x2 follow a discrete Uniform distribu-

tion with the support {−3,−2,−1, 1, 2, 3}. The response variable,
which is simulated for the points, has a Poisson intensity equal

to 1 (circles) and 7 (triangles). Each bar represents the average

value (≈ 4) of Poisson intensity in that row/column of data.

Because of the advantages of BCART models, Wu et al. (2007) delved into

the prior specification, emphasizing the crucial role of informed assumptions in

the Bayesian framework and providing a comprehensive understanding of the in-

terplay between prior distributions and resulting model outcomes. Notably, an

explicit specification of both the tree size and the tree shape is made possible by

the introduction of the pinball prior. This prior allows the construction of bal-

anced or skewed trees by adjusting a hyper-parameter, providing a formal prior

distributional structure for tree production. Furthermore, an extension of BCART

models, namely, Bayesian “treed models” was proposed, allowing for a functional

relationship between the variable of interest and the predictors to replace a con-

stant prediction used for each subgroup (terminal node) in the tree. This strategy

enables local modelling across the predictor space; see, e.g., Chipman et al. (2003,

2002).
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Since BCART models and their ensemble version – the Bayesian Additive

Regression Trees (BART) models – generally outperform other machine learning

models because of their ability to quantify uncertainty, they have been extensively

studied in the literature; see, e.g., Linero (2017), Chipman et al. (2010), Murray

(2021), Hill et al. (2020) and references therein. In conjunction with the extensive

exploration of BART models and their role in machine learning, Kapelner & Bleich

(2013) introduced the R package bartMachine for implementation; after this, as a

supplement, another R package BART was provided by Sparapani et al. (2021); see

Kapelner & Bleich (2023) and McCulloch & Spanbauer (2023). Besides, Bayesian

Model Averaging (BMA) approaches were incorporated into BART models. This

novel method creates a hybrid algorithm that can handle high-dimensional data

by combining elements of both BART and RF; see, e.g., Hernández et al. (2018).

Another extension of BART models known as Model Trees BART (MOTR-BART)

considers piece-wise linear functions at node levels instead of piece-wise constants,

enabling more efficient estimation of local linearities compared to the original

BART models; see, e.g., Prado et al. (2021a). Furthermore, extensions of BART

to semi-parametric models were introduced in Prado et al. (2021b). By refining

the tree-generation moves in BART models, the study addresses bias and non-

identifiability concerns between the parametric and non-parametric components,

even when they share common covariates. This research serves as a foundational

resource in the field of semi-parametric modelling, providing valuable insights for

similar research endeavours. In particular, the excellent empirical performance of

BART models has also motivated works on their theoretical foundations; see, e.g.,

Pratola (2016) and Linero & Yang (2018). Recognizing the limitations of classical

Metropolis–Hastings (MH) proposals in terms of efficiently exploring the model

space, researchers have also introduced some other proposals, such as a novel tree

rotation proposal and a rule perturbation proposal, tailored to the topological

structure of Bayesian regression trees. These innovative strategies ensure faster

convergence and more accurate estimations; see, e.g., Pratola (2016). Besides,

Linero & Yang (2018) incorporated smoothness and sparsity within the BART

framework. Particularly in the context of high-dimensional data analysis, the

model provides more accurate and interpretable results by considering sparsity

inducing soft decision trees, where the decisions are treated as probabilistic. Ad-

ditionally, the study demonstrates the concentration of the posterior distribution

at the minimax rate for sparse functions and those with additive structures from

a theoretical perspective, which ends by highlighting the fact that only minor

adjustments to the existing BART algorithms are sufficient for implementation.
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Moreover, to address the issue of posterior concentration in Bayesian regression

trees and forests, a spike-and-tree variant of the well-known BCART prior was

proposed to establish new theoretical results; see, e.g., Rocková et al. (2020).

1.3 Main Contributions

Although numerous studies have been conducted on Bayesian tree-based models,

the focus has generally been on Gaussian-distributed data, with some exceptions

such as Murray (2021) and Linero et al. (2020). Therefore, the existing algorithms

do not seem to be directly applicable to insurance data for prediction and pricing.

It turns out that a data augmentation approach is needed when dealing with

general non-Gaussian data in the insurance industry. To cover this gap, we propose

BCART models for insurance pricing that take into account special features of

insurance data, such as the large number of zeros, the involvement of exposure for

claims frequency, and the right-skewed and heavy-tailed nature of claims severity.

The main contributions of this thesis are as follows.

1. We give a general MCMC algorithm for the BCART models applied to data

with a general distribution, where a data augmentation may be needed. In

doing so, we follow some ideas in Meng & Van Dyk (1999) and Van Dyk &

Meng (2001).

2. We introduce a novel model selection method for BCART models based on

the deviance information criterion (DIC). Note that DIC was introduced in

Spiegelhalter et al. (2002) which appeared after the introduction of BCART

models (see Chipman et al. (1998)). Although the use of DIC is widespread,

in recent years, no studies have explored its application in selecting an opti-

mal tree. We propose a three-step approach tailored for this purpose. Addi-

tionally, to accommodate various scenarios, such as incorporating the data

augmentation technique and treating certain parameters as known, we intro-

duce various types of DIC. The effectiveness of this approach is illustrated

by several designed simulation examples and real insurance data.

3. We implement BCART models for various distributions for claims frequency

(such as Poisson, NB, ZIP and ZINB), claims severity (such as Gamma

and Weibull), and aggregate claims, namely, Compound Poisson Gamma

(CPG) and Zero-Inflated Compound Poisson Gamma (ZICPG), which are

10



1.3 Main Contributions

not currently available in any existing R packages. In particular, we intro-

duce different ways of incorporating exposure in the NB, ZIP, ZINB and

ZICPG models, following Lee (2020, 2021) who focused on claims frequency

modelling using delta boosting. The simulation examples and real insurance

data analyses show the applicability of these proposed BCART models.

4. We propose three types of models for aggregate claims modelling. First, we

introduce two BCART models (two trees) for claims frequency and claims

severity independently within the frequency-severity models. Second, to

explore the dependence between the number of claims and claims severity,

we introduce sequential models. These models treat the number of claims

as a covariate in claims severity modelling, exhibiting superior performance

compared to frequency-severity models in real insurance data analyses. In

doing so, we draw on some ideas from Garrido et al. (2016), expanding their

application in tree models. Last, as far as we are aware there have been no

BCART models discussed for multivariate responses in the current literature.

We investigate joint models for a bivariate response (number of claims and

aggregate claim amount) to directly model the claims cost using one joint

tree. For these joint models, we employ two commonly used distributions,

CPG and ZICPG, demonstrating the potential advantages of information

sharing (see related discussion in Linero et al. (2020)).

5. We introduce some model performance measures specifically designed for

testing tree models, including squared error based on a sub-portfolio (termi-

nal node) level and a “lift”. We also propose using the adjusted Rand Index

(ARI) to assess the similarity between different trees. Although widely used

in clusterings, we expand its application to tree models. This index en-

hances the understanding of the necessity of information sharing, an aspect

not covered in the current literature, e.g., Linero et al. (2020). Furthermore,

we introduce a method to analyse the stability of tree models, aiding our un-

derstanding of the superiority of Bayesian tree-based models over standard

decision trees.

6. To date, Bayesian tree-based models have not attracted enough attention

compared to other machine learning methods in the actuarial community.

This first step of applying BCART models for insurance pricing will open

the door for more sophisticated tree-based models to meet the needs of the

11
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insurance industry. We illustrate the effectiveness of BCART models using

both simulated and real insurance data.

1.4 Structure of the Thesis

In Chapter 2, we review the BCART framework which includes an extension with

data augmentation and a model selection method using DIC. Various evaluation

metrics are also described. Chapter 3 introduces the notation for insurance claims

frequency data and several BCART models. The applicability of the proposed

BCART models is discussed using some simulation examples. In Chapter 4, three

BCART models (Gamma, LogNormal and Weibull) are introduced for claims

severity modelling, followed by a simulation example to assess their ability to

handle data with varying tail characteristics. Chapter 5 discusses three types of

models for aggregate claims modelling, namely, frequency-severity models, sequen-

tial models, and joint models, followed by two simulation examples. Chapter 6 is

focused on a real insurance data analysis to illustrate the effectiveness and fea-

sibility of the proposed BCART models. Finally, Chapter 7 concludes the thesis

and outlines future directions.
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Chapter 2

Bayesian CART Theory

In this chapter, we review the Bayesian CART framework as initially introduced

in Chipman et al. (1998) and conduct a more comprehensive and in-depth study

based on subsequent relevant literature, following an extension with data aug-

mentation and a model selection method using DIC. To begin, we provide a basic

introduction to CART and address its limitations, which serve as the motiva-

tion for exploring the BCART models. Subsequently, we present a general theory

of Bayesian CART, including prior choice, MCMC algorithms and posterior tree

selection and prediction. Finally, we introduce various evaluation metrics for val-

idating and comparing different models in the subsequent simulation studies and

real data analyses.

2.1 General Theory of CART

We introduce the CART algorithm in this section. Initially, we describe the math-

ematical expression of CART, providing a comprehensive overview of the general

process for generating a tree. Subsequently, we provide an illustrative example

to demonstrate how CART works with a specific distribution, namely, the Pois-

son distribution. Furthermore, we discuss the limitations of CART to underscore

the importance of exploring the parameter space of trees globally, leading to the

investigation of BCART models in the next section.

Consider a data set D = (X,y) =
(
(x1, y1), (x2, y2), . . . , (xn, yn)

)⊤
with n

observations. For the i-th observation, xi = (xi1, xi2, . . . , xip) represents a vector

of p explanatory variables (or covariates) sampled from a space X ; yi is a response

variable sampled from a space Y . For the severity (or frequency) modelling, Y is

a space of real positive (or integer) values. For the aggregate claims modelling, we

13



2.1 General Theory of CART

shall discuss models where Y is a space of 2-dimensional vectors with two compo-

nents, namely, an integer for number of claims and a real value for aggregate claims

amount. Throughout the thesis, observations are assumed to be independent.

Theoretically, decision trees are commonly used to partition data into binary

groups, known as binary splits. However, decision trees can also include multi-

way splits, which are beneficial when observations need to be allocated to more

than two groups; see, e.g., Fulton et al. (1995). In addition, when selecting the

splitting rule in each split, it is possible to choose either one splitting variable or

a combination of multiple variables; we refer to Bennett (1992) for some insights.

Nevertheless, the optimal search for both multi-way splits in numerical variables

and consideration of combinations of multiple covariates can be significantly de-

manding. Therefore, the thesis is currently restricted to binary splits, with the

choice of a single splitting covariate in each split.

2.1.1 The Structure of a CART Model

The algorithm of CART works by repeatedly partitioning the data into multiple

subspaces so that the data in each subspace are as homogeneous as possible.

This strategy is technically called recursive partitioning. As the name suggests,

CART builds a tree that predicts the value of a response variable using a set

of predictor variables. The key to CART is how to determine optimal splits

using the available data and when to cease splitting to obtain the terminal nodes

and their assignments. A major issue is the absence of growing right-sized trees,

leading to excessively large trees due to redundant splits and overly optimistic

estimates. To address this, the general idea of CART is to continue splitting

until all terminal nodes contain minimal data, obtaining a large tree, which is

then pruned selectively to yield a decreasing sequence of sub-trees. Finally, the

sub-tree with the best estimated goodness of fit, typically determined using a loss

function such as log-likelihood, is selected using cross-validation. This subsection

will detail the complete process of obtaining the optimal sub-tree, encompassing

these two steps, i.e., grow and prune.

To provide a clearer understanding of the tree generation process, the general

mathematical structure of a CART model is introduced. A CART has two main

components: a binary tree T with b terminal nodes which induces a partition of the

covariate space X , denoted by {A1, . . . ,Ab}, and a terminal node specific distri-

bution f
(
yi | θt

)
for the response variable yi if xi ∈ At, where θt is the parameter

value of f
(
yi | θt

)
restricted to terminal node t. We denote θ = (θ1,θ2, . . . ,θb)
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2.1 General Theory of CART

as the terminal node parameter of the tree. Note that here we do not specify the

dimension and range of the parameter θt explicitly which should be clear in the

considered context below.

By associating observations with all terminal nodes in the tree T , we can

represent the data set as

(X,y) =
(
(X1,y

⊤
1 ), (X2,y

⊤
2 ) . . . , (Xb,y

⊤
b )
)⊤
,

where, for terminal node t, Xt =


xt11 xt12 . . . xt1p
xt21 xt22 . . . xt2p
...

...
. . .

...
xtnt1 xtnt2 . . . xtntp

 with nt denoting the

number of observations in the t-th terminal node, p representing the number of

explanatory variables (or covaraites), and xtjl denoting the value/category of the

l-th covariate for the j-th observation; yt = (yt1, . . . ytnt) is an analogously defined

vector with ytj denoting the j-th observed response variable in the t-th termi-

nal node. We shall make the typical assumption that conditionally on (θ, T ),

response variables within a terminal node are independent and identically dis-

tributed (IID), and they are also independent across terminal nodes. The CART

model likelihood in this case will take the form

p(y | X,θ, T ) =
b∏

t=1

f
(
yt | θt

)
=

b∏
t=1

nt∏
j=1

f
(
ytj | θt

)
. (2.1)

It is worth noting that instead of the IID assumption within the terminal nodes,

more general models can be considered; see, e.g., Chipman et al. (2003, 2002) and

the references therein.

From (2.1), there are two things that need to be explicitly addressed in order

to obtain a fully grown tree: how to choose a good partition {At}bt=1 of the feature

space X , and how to obtain the estimated parameter θ̂t for each terminal node.

To delve deeper into the process of tree growth, it is essential to understand the

step-by-step progression and the methodology for deriving feature space partitions

and corresponding estimated parameters. The following discussion will clarify this

aspect.

Let η0 denote the root node, which is the initial node that can be grown at

the first step. The corresponding covariate subspace can be denoted as Bη0 (for

terminal node this is simply X ). The pair (η1, η2) represents two child nodes

of η0 with corresponding subspaces (Bη1 ,Bη2), such that Bη1 ∪ Bη2 = Bη0 and

Bη1 ∩ Bη2 = ∅. Each subspace Bη1 (or Bη2) is associated with a parameter θη1 (or
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2.1 General Theory of CART

θη2), assuming there is only one parameter within each subspace in this context for

simplicity. The objective is to find an optimal solution for the split based on the

available data in the current node (which is the whole data for root node). This

involves identifying the optimal feature component xil (l = 1, 2, . . . , p) of xi, and

the optimal constant c ∈ R (for continuous feature components) or the optimal

non-empty category C (for categorical feature components) that minimises an

objective loss function L after the splitting. We consider only continuous features

as an example to illustrate the ideas here, for which the minimization problem is

given as:

min
1≤l≤p

min
c∈CPl

 ∑
i:xi∈Bη0 ,xil<c

L
(
yi, θ̂η1

)
+

∑
i:xi∈Bη0 ,xil≥c

L
(
yi, θ̂η2

), (2.2)

where CPl is a set of available cut points of xil. Given l and c, the values of θ̂η1

and θ̂η2 should be investigated, and the inner optimizations in the brackets can be

obtained using the Maximum Likelihood Estimation (MLE), that is, for h = 1, 2,

θ̂ηh = argmin
θh

∑
i:xi∈Bηh

L (yi, θh) , (2.3)

where Bη1 = {xi ∈ Bη0 , xil < c} and Bη2 = {xi ∈ Bη0 , xil ≥ c}. After this split, η1
and η2 become the current terminal nodes that can be grown, and the procedure

can be carried out in the same way as before. Following this process, the procedure

is repeated until all current terminal nodes meet the specified step-splitting criteria

(e.g., minimal data requirements).

Based on the above description, the general procedure for tree generation can

be summarized in Algorithm 2.1. The second step, namely, the prune step, begins

once the full tree is grown since the full tree may be too large, leading to over-fitting

and unnecessary model complexity. Pruning is the process of gradually trimming

the terminal nodes of the tree to obtain a sequence of sub-trees. Several related

methods have been proposed in the literature to choose the optimal sub-tree during

the pruning process; see, e.g., Breiman et al. (1984) and Timofeev (2004). The

most commonly used approach is to apply the regularized risk estimate to control

the complexity and select the optimal sub-tree,

R (T , ξ) = R (T ) + ξ |T | ,

where R (T ) represents the goodness of fit of the tree, typically calculated as the

sum of the loss function values across all terminal nodes in the regression setting
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or the sum of the impurity function values in the case of classification; ξ ≥ 0 is a

regularization parameter, controlling the trade-off between the number of terminal

nodes denoted as |T | and its goodness of fit to the data. A larger value of ξ results

in a greater penalty on the number of terminal nodes, leading to a smaller tree.

Setting ξ = 0 results in the full unpruned tree. The optimal ξ can be determined

by using cross-validation in minimizing the regularized risk R (T , ξ).

Algorithm 2.1: Tree generating algorithm

Input: Data (X,y) and root node η0 of the tree T .

1: Investigate every splitting rule of the form xl < c (l = 1, 2, . . . , p) or

xl ∈ C according to whether xl is a continuous or a categorical

explanatory variable at the root node η0 (or any current terminal node η

in the following reapplied steps).

2: Select and execute the split that is considered to be the “best”

among all allowable splits, as determined by the choice of a

goodness-of-split criterion.

3: Obtain two child nodes of the grown node η0 (or η) after the

splitting.

4: Reapply steps 1 to 3 to any current terminal node that does not

meet the specified stop-splitting rules (such as minimal data

requirements), until all current terminal nodes satisfy the specified

stop-splitting rules, stop splitting.

Output: The full tree T with partitioned data in each terminal node.

Remark 2.1 (a) The standard loss function for regression problems is the squared

error loss, expressed as L
{
y, f (x)

}
∝
∑n

i=1

(
yi − f (xi)

)2
, where yi is the ob-

served response and f (xi) is the prediction of the model for the explanatory vari-

ables xi. Although this loss is commonly used, it might not be a good choice for

modelling integer-valued claims frequency data or right-skewed and heavy-tailed

claims severity data. In such cases, deviance is usually preferred, defined as a

likelihood ratio: D{y, f(x)} = −2 log
(
L(f(x))/L(y)

)
, where L(f(x)) represents

the model likelihood and L(y) is the likelihood of the saturated model (i.e., the

model in which the number of parameters equals the number of observations); see,

e.g., Ohlsson & Johansson (2010).

(b) There are two approaches to dealing with categorical feature components in

the growing process.

• Find all possible combinations of the categorical feature levels directly and use

them when splitting. The benefit of this method is that there is no numerical
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transformation requirement for the categorical feature component, but a no-

table drawback is its computational complexity, especially when dealing with

a categorical feature component that has numerous levels. For example, if xl

has 10 levels, there would be 210−1 − 1 = 511 possible combinations.

• Use an ordered version of the categorical feature component to enhance com-

putational efficiency where numerical transformation is needed. For example,

in the claims frequency models, each available categorical level, say k, of xl in

that node, can have its empirical frequency calculated by using ratio of sum

of claim numbers and sum of exposures and used as a numerical replacement.

A subset Cl is then selected based on the ordered empirical frequency values.

The same treatment can be adopted for claims severity models, where the

empirical severity is calculated by using ratio of sum of claim amounts and

sum of claim numbers for numerical replacements. This method can be ap-

plied to other models as well. However, it should be noted that this approach

may encounter challenges when the categorical variables cannot be ordered

in a meaningful way. For instance, if a node does not contain a sufficiently

large sample size, there is a risk of producing misleading results because cer-

tain categorical feature levels are less likely to observe claims sufficiently,

and the ranking provided by the empirical frequency and/or severity may not

be accurate.

2.1.2 A Simple Example: Binary Poisson Regression Trees

To gain a deeper understanding of the application of CART in the insurance

industry and for its comparison to the subsequently introduced Bayesian CART,

this section demonstrates how the Poisson distribution in claims frequency models

works in decision trees as a simple example. Based on this illustration, other

distributions can also be put into practice.

Consider a claims data set with n policyholders D = (X,v,N ) =
(
(x1, v1, N1)

, . . . , (xn, vn, Nn)
)⊤

, where Ni is the number of claims reported, assumed to follow

a Poisson distribution for i = 1, 2, · · · , n; vi ∈ (0, 1] is the exposure, typically in

yearly units, used to quantify how long the policyholder is exposed to risk. For

claims frequency analysis, the goal is to explain and predict the claims informa-

tion Ni based on the rating variables xi and the exposure vi for each individual

policyholder i, leading to the claims frequency, i.e., the number of claims filed per

unit year of exposure to risk. Given a regression function λ : X → R+, the ex-

pected claim counts can be obtained, E (Ni) = λ (xi) vi. In CART, an algorithm is
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created that partitions the feature space X into disjoint (homogeneous) subspaces

At. On each subspace At, a frequency parameter λ̂t is estimated to describe the

expected frequency. Eventually, the (unknown) expected frequency on the total

feature space X can be calculated by

x 7→ λ̂(x) =
b∑

t=1

λ̂tI{x∈At}. (2.4)

In light of the discussion in the previous subsection, for obtaining a good

partition, Poisson deviance needs to be minimized specifically; see, e.g., Wuthrich

& Buser (2022). We illustrate the idea for continuous covariates here only, and the

same treatment can be used for categorical covariates. In this case, (2.2) becomes

min
1≤l≤p

min
c∈CPl

 ∑
i:xi∈Bη ,xil<c

D
(
Ni, λ̂η1

)
+

∑
i:xi∈Bη ,xil≥c

D
(
Ni, λ̂η2

),
where

D(Ni, λ)= 2
(
−Ni +Ni logNi + λvi −Ni log (λvi)

)
= 2Ni

(
λvi
Ni

− 1− log

(
λvi
Ni

))
≥ 0

is the Poisson deviance loss of (xi, vi, Ni) for the expected frequency λ > 0, and

it is set equal to 2λvi for Ni = 0 (we interpret 0 log(0) as 0); CPl has the same

meaning as before, i.e., a set of available cut points of xil. By optimizing the above

equation, the values of λ̂η1 and λ̂η2 can be obtained, for h = 1, 2,

λ̂ηh = argmin
λh>0

∑
i:xi∈Bηh

D (Ni, λh) =

∑
i:xi∈Bηh

Ni∑
i:xi∈Bηh

vi
. (2.5)

With the formulas derived above, we can obtain the full Poisson CART, to-

gether with Algorithm 2.1 and then use the prune step to obtain an optimal sub-

tree through the cross-validation method (see Subsection 2.1.1). However, even if

prune steps can be used to make the tree smaller, CART will still probably overfit

(i.e., be too complicated), and the tree structure can become unstable even for a

small change in the data set. Adding a prior for the tree is a good way to prevent

over-fitting. Additionally, based on (2.5), a common issue that often arises is that

in certain terminal nodes t, we may obtain an estimator λ̂t that is equal to zero.

This occurs particularly when the expected frequency and the overall volume in

the t-th node are small. If the actual value λt is greater than zero, but the estima-

tor λ̂t equals zero, we obtain a degenerate Poisson distribution in the t-th node,
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which cannot provide useful information from a practical standpoint; see some re-

lated discussion in Wuthrich & Buser (2022). Therefore, a Bayesian estimator of

λt that considers prior information should be used to avoid this problem. Due to

these obvious shortcomings of CART, it is necessary to apply Bayesian technology

in CART, leading to Bayesian CART models.

2.2 General Theory of Bayesian CART

In this section, we shall first briefly review the BCART framework of the seminal

paper, Chipman et al. (1998). Afterwards, we introduce an extension with data

augmentation and a model selection method using DIC.

Given that (θ, T ) determines a CART model, a Bayesian analysis of the prob-

lem is conducted by specifying a prior distribution p(θ, T ), and inference about θ

and T will be based on the joint posterior p(θ, T |y,X) using a suitable MCMC

algorithm. Since θ indexes the parametric model whose dimension depends on

the number of terminal nodes of the tree, it is usually convenient to apply the

relationship

p(θ, T ) = p(θ | T )p(T ) (2.6)

and specify the tree prior distribution p(T ) and the terminal node parameter prior

distribution p(θ | T ), respectively. This strategy, introduced by George (1998),

offers several advantages for Bayesian model selection as outlined in Chipman

et al. (1998).

2.2.1 Prior Choice

Specification of Tree Prior p(T )

The prior distribution for T has two components: a tree topology, and a decision

rule for each of the internal/branch nodes. We shall adopt the branching process

prior for the topology of T proposed by Chipman et al. (1998). Due to its com-

putational effectiveness using Metropolis-Hastings (MH) search algorithms, this

prior specification has been the most popular in the literature. Let

p(d) = γ (1 + d)−ρ (2.7)

be the probability that a node at depth d splits, where 0 < γ ≤ 1, ρ ≥ 0 are

parameters controlling the structure and size of the tree. To draw from this prior,

for each node at depth d (with d = 0 for the root node), generate two child
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nodes with the probability p(d). This process iterates for d = 0, 1, . . . , until we

reach a depth at which all the nodes cease growing. Note that p(d) is not a

probability mass function, but instead is the probability of a given node at depth

d being converted to a branch node. A sufficient condition for the termination

of this branching process is that ρ > 0, and the case ρ = 0 corresponds to the

Galton-Watson process; see, e.g., Athreya & Ney (2004). We refer to Linero

(2018) for further theoretical discussion of this prior. Clearly, γ controls the

overall rate of branching at a node, and the larger ρ becomes, the less likely that

deeper nodes will branch, resulting in relatively smaller trees. In Chipman et al.

(1998), some simulations about the number of terminal nodes associated with the

values of the pair (γ, ρ) are carried out, which have been used as a guidance when

choosing these parameters to generate trees with a certain number of terminal

nodes. After the tree topology is generated, each internal node is associated with

a decision rule of the form xl < cl or xl ∈ Cl, where xl is selected independently

and uniformly among the available explanatory variables for each internal node,

and the split value cl or split category subset Cl are selected uniformly among

those available for the selected variable xl. In practice, we only consider the

overall set of possible split values to be finite; if the l-th variable is continuous,

the grid for the variable is either uniformly spaced or given by a collection of

observed quantiles of {xil, i = 1, 2, . . . , n; l = 1, 2, . . . , p}. If the l-th variable is

categorical, the split category subset Cl is usually selected uniformly among all

possible subsets. However, this approach may not be efficient in the (Bayesian) tree

search, particularly when the number of categorical levels of xl is large. Instead, we

shall adopt the same treatment of categorical variables as in the standard CART

greedy search algorithm (see Subsection 2.1.1), and a subset Cl will be selected

uniformly based on the numerical transformation ordered values. Additionally, we

will update the ordered values for categorical levels in each node after each split.

Certainly, the design of the tree prior can be more intricate than the one

proposed in Chipman et al. (1998). There have been several alternatives discussed

in the literature. In a recent contribution, Rocková et al. (2020), the convergence

of the posterior distribution with a near-minimax concentration rate is studied,

where it is shown that the original proposal given by (2.7) does not decay at a fast

enough rate to guarantee the optimal rate of convergence. Instead, a sufficient

condition for optimality is induced by the following probability

p(d) = γd, for some 0 < γ < 1/2.
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Most recently, it is noted in Saha (2023) that the original proposal (2.7) can

still offer better empirical solutions. We believe further theoretical and empirical

studies in this direction are still needed. An alternative to the branching process

prior is to specify a prior directly on the number of leaves and a conditionally-

uniform prior on the space of trees. In Denison et al. (1998), a Poisson-distributed

prior is used for the number of leaves, and then a uniform prior over valid trees

(i.e., trees with no empty bottom leaves) with that number of leaves is imposed.

As noticed by Wu et al. (2007), the uniform prior over valid trees in Denison et al.

(1998) tends to produce more unbalanced trees than balanced ones. Instead, they

propose a pinball prior which can generate balanced or skewed trees by adjusting

a hyper-parameter. Furthermore, instead of uniformly selecting the split value,

the Normal distribution is used for the split value in their simulation and real

data analyses (see Wu et al. (2007)). Recently, some other tree priors have also

been introduced for the purpose of variable selection (particularly when p > n);

see, e.g., Bleich et al. (2014), Linero (2018), Rocková et al. (2020) and Liu et al.

(2021). In Linero (2018), the author proposes a sparsity-inducing Dirichlet prior

for the splitting proportions of the explanatory variables, resulting in this prior

allows the model to perform a fully Bayesian variable selection. Furthermore, in

Rocková et al. (2020) and Liu et al. (2021), a spike-and-tree variant is proposed

by injecting one more layer on top of the prior used in Denison et al. (1998), that

is, a prior over the active set of explanatory variables.

In our current implementation, we adopt the uniform specification for both

variable and split value in each of the internal nodes, which is natural and simple.

It is also noted in Chipman et al. (1998) that it would be beneficial to incorpo-

rate expert knowledge on the prior specification (i.e., using a non-uniform prior),

however, our simulation studies in Subsection 3.5.1 show that using the uniform

prior is able to identify the correct splitting rules even in the presence of noise

variables. This seems to be a consequence of the MH random search steps, which

tends to not accept noise splitting variables. We refer to Bleich et al. (2014) for

some relevant discussions with the same conclusion.

Specification of the Terminal Node Parameter Prior p(θ | T )

When choosing p(θ | T ), it is important to realize that using priors that allow for

analytical simplification can greatly reduce the computational burden of posterior

calculation and exploration. This is especially true for prior form p(θ | T ) for
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which it is possible to analytically margin out θ to obtain the integrated likelihood

p(y | X, T ) =

∫
p(y | X,θ, T )p(θ | T )dθ

=
b∏

t=1

∫
f
(
yt | θt

)
p(θt)dθt

=
b∏

t=1

∫ nt∏
j=1

f
(
ytj | θt

)
p(θt)dθt, (2.8)

where in the second equality we assume that conditional on the tree T with b

terminal nodes, the parameters θt, t = 1, 2, . . . , b, have IID priors p(θt), which is a

common assumption. Examples where this integration has a closed-form expres-

sion can be found in, e.g., Chipman et al. (1998) and Linero (2017), particularly

for Gaussian distributed data y. When no such priors can be found, we have to

resort to the data augmentation technique (see, e.g., Kindo et al. (2016), Linero

et al. (2020) and Murray (2021)) which will be discussed later.

2.2.2 MCMC

Constructing efficient algorithms for stochastically searching posterior trees and

parameters is a significant challenge when implementing BCART models, espe-

cially for multidimensional parameters θ. It is rarely possible to derive the poste-

rior distribution of θ analytically, or even to compute summary statistics of interest

such as the mode, mean and variance of the posterior distribution. Therefore, for

practical applications, MCMC should be developed to estimate the parameters

(posterior distribution or summary statistics). As the name suggests, MCMC

has two components, Markov chain and Monte Carlo methods. In a broad sense,

Monte Carlo methods generate (simulate) a sequence of IID samples as a tool

to investigate the behaviour of statistical models, which crucially requires a large

number of samples. When there is difficulty in generating samples from a given

distribution, the IID sequence is replaced with a Markov chain that explores the

state space of the target distribution (referred to as the posterior distribution in

Bayesian statistics), and this approach is known as MCMC. The key idea is to

create a memoryless stochastic process where the next state depends only on its

current state. By iteratively transitioning between states in a way that maintains

the desired distribution, the Markov chain eventually converges to a stationary

distribution, which is ideally the target distribution of interest. The samples ob-

tained through this process can be used to estimate various properties and perform
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statistical inference for models with intractable likelihoods or high-dimensional pa-

rameter spaces. There are many different MCMC algorithms (see, e.g., Roberts

& Rosenthal (2004)), and we concentrate on the MH algorithm in the following

content.

Combining the integrated likelihood p(y | X, T ) with tree prior p(T ), allows

us to calculate the posterior of T

p(T | X,y) ∝ p(y | X, T )p(T ). (2.9)

When using the MH algorithm to conduct Bayesian inference, T can be updated

with the right-hand side of (2.9) used to compute the acceptance ratio. These MH

simulations can be used to stochastically search the posterior space over trees to

determine the high posterior probability trees from which we can choose a best one.

The posterior sequence for θ is then obtained using an additional Gibbs sampler.

Starting from the root node, the MCMC algorithm for simulating a Markov chain

sequence of pairs (θ(1), T (1)), (θ(2), T (2)), . . . , using the posterior given in (2.9), is

given in Algorithm 2.2.

Algorithm 2.2: One step of the MCMC algorithm for updating the

BCART models parameterized by (θ, T )

Input: Data (X,y) and current values (θ(m), T (m))

1: Generate a candidate value T ∗ with probability distribution

q(T (m), T ∗)

2: Set the acceptance ratio

α(T (m), T ∗) = min

{
q(T ∗,T (m))p(y|X,T ∗)p(T ∗)

q(T (m),T ∗)p(y|X,T (m))p(T (m))
, 1

}
3: Update T (m+1) = T ∗ with probability α(T (m), T ∗), otherwise, set

T (m+1) = T (m)

4: Sample θ(m+1) ∼ p(θ | X,y, T (m+1))

Output: New values (θ(m+1), T (m+1))

In Algorithm 2.2, commonly used arbitrary but specified proposals (or transi-

tions) for q(·, ·) include grow, prune, change and swap (see Chipman et al. (1998)),

which are usually selected with equal probability (i.e., 1/4 each); see Figure 2.1.

Other proposals have been suggested to improve the mixing of simulated trees,

but these are often difficult to put into practice; see, e.g., Wu et al. (2007) and

Pratola (2016). One of the appealing features of these four proposals is that grow

and prune steps are reversible counterparts of one another and both change and

swap steps are independently reversible. As noticed in Chipman et al. (1998),
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Figure 2.1: Four tree moves.

this is very attractive for the calculation of α(T (m), T ∗) in Algorithm 2.2, since

there are substantial cancellations in the ratio; for completeness, we include the

detailed calculations in Appendix A. In our implementation, we consider these

four proposals at each split detailed as follows.

• Grow: Randomly select a terminal node. Split it into two new child nodes

and randomly assign it a decision rule according to the prior specified in

Subsection 2.2.1 until the resulting two child nodes satisfy a minimum ob-

servation requirement. If no such decision rule exists, draw a new terminal

node (without replacement) and try again. If no such terminal node exists,

stop grow.

• Prune: A terminal node is randomly selected. The chosen node and its

sibling node are pruned into the direct parent node which then becomes a

new terminal node.

• Change: Apply one of the following two types of change to a randomly

selected internal node.

– Change1: Reassign randomly only the split value/category subset ac-

cording to the prior specified in Subsection 2.2.1.

– Change2: Reassign randomly both the splitting variable and the cor-

responding split value/category subset according to the prior specified

in Subsection 2.2.1.

In each of the above changes, randomly select an internal node with the

reassignment selected at random from a set (without replacement) until the

updated nodes satisfy the minimum observation requirement. If no such
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reassignment exists, draw a new internal node (without replacement) and

try again. If no such internal node exists, stop change.

• Swap: Randomly pick a parent-child pair which are both internal nodes and

swap their decision rules the updated nodes satisfy the minimum observation

requirement. If no such parent-child pair exists, stop swap.

Remark 2.2 (a) Note that in step 4 of Algorithm 2.2, sampling of θ(m+1) is

needed only for those nodes that were involved in the proposed move from T (m) to

T ∗ and only when this move was accepted.

(b) In comparison to Chipman et al. (1998), we apply two types of change

moves as discussed in Denison et al. (1998). The introduction of these two types

of change is helpful to improve the mixing of posterior trees, demonstrated by our

simulation study in Subsection 3.5.1. Besides, there are two special cases in the

swap move.

• When two child nodes have the same splitting rule, Chipman et al. (1998)

proposed to swap the parent’s splitting rule with that of both children. We

follow this strategy in our implementation.

• A swap between a parent-child pair with splits using the same variable is

impossible. Considering this in our implementation will improve the compu-

tational efficiency.

The MH algorithm is constructed to sample from a target density with a fixed

number of dimensions. Another MCMC algorithm, known as Reversible Jump

MCMC (RJMCMC), is constructed for “dimension jumping”, allowing movement

around the parameter space of a collection of different size models; see, e.g., Green

(1995) and Green & Hastie (2009). RJMCMC can be viewed as a generalization

of the MH algorithm. This algorithm combines the standard MCMC algorithm

for a given model with an additional step that involves moving between differ-

ent models. Since the state space of the Markov chain changes size when adding

or removing nodes in the tree models, that is, when the tree grows or prunes,

RJMCMC should be taken into consideration. In BCART models, the difference

between MH and RJMCMC lies in the calculation of the acceptance ratio. We

have demonstrated that the results of RJMCMC align with the MH algorithm; see

detailed calculations in Appendix B. Additionally, it is worth noting that by inte-

grating out θ in (2.8) we avoid the possible complexities associated with reversible

jumps between continuous spaces of varying dimensions; see, e.g., Chipman et al.

(2010) and Green (1995). Therefore, in our implementation, we do not follow the

route of RJMCMC and exclusively focus on the MH algorithm.
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2.2.3 MCMC Algorithm with Data Augmentation

In this subsection, we discuss the case where there is no obvious prior distribution

p(θt) such that the integration in (2.8) is of closed-form, particularly, for non-

Gaussian data y. In this case, we shall use a data augmentation method in

implementing the MCMC algorithm. Some special cases have been discussed in

Chipman et al. (2010), Kindo et al. (2016), Linero et al. (2020) and Murray (2021).

The term data augmentation originated from Tanner and Wong’s data aug-

mentation algorithm; see, e.g., Tanner & Wong (1987). It is introduced purely

for computational purposes and a latent variable is required so that the origi-

nal distribution is the marginal distribution of the augmented one. We refer to

Van Dyk & Meng (2001) for an overview of data augmentation and relevant the-

ory. For our purpose, we augment the data y by introducing a latent variable

z = (z1, z2, . . . , zn) with n observations, so that the integration in (2.11) below is

computable for augmented data (y, z). To this end, we shall follow the idea of

marginal augmentation introduced in Meng & Van Dyk (1999) (see also Van Dyk

& Meng (2001)). In their framework, our parameter θ can be interpreted as a

working parameter, and thus the integrated likelihood is given as

p(y | X, T ) =

∫
p(y, z | X, T )dz, (2.10)

where

p(y, z | X, T ) =

∫
p(y, z | X,θ, T )p(θ | T )dθ

=
b∏

t=1

∫
f
(
yt, zt | θt

)
p(θt)dθt

=
b∏

t=1

∫ nt∏
j=1

f
(
ytj, ztj | θt

)
p(θt)dθt, (2.11)

with zt = (zt1, zt2, . . . , ztnt) defined according to the partition of X and with obvi-

ous independence assumed. Following Scheme 3 of Meng & Van Dyk (1999) (see

also Section 3 of Van Dyk & Meng (2001)), we propose the following Algorithm 2.3

to simulate a Markov chain sequence of pairs (θ(1), T (1)), (θ(2), T (2)), . . . , starting

from the root node.

Note that in some cases introducing one latent variable z is insufficient to

obtain a closed-form for the integration in (2.11); more latent variables may be

required. In that case, we can easily extend Algorithm 2.3 to include multivariate

latent variables and use the Gibbs sampler in step 2. Clearly, the more latent
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Algorithm 2.3: One step of the MCMC algorithm for updating the

BCART models parameterized by (θ, T ) using data augmentation

Input: Data (X,y) and current values (θ(m), z(m), T (m))

1: Generate a candidate value T ∗ with probability distribution

q(T (m), T ∗)

2: Propose z(m+1) ∼ p(z | X,y,θ(m), T (m))

3: Set the acceptance ratio

α(T (m), T ∗)

= min

{
q(T ∗, T (m))p(y, z(m+1) | X, T ∗)p(T ∗)

q(T (m), T ∗)p(y, z(m) | X, T (m))p(T (m))
, 1

}

4: Update T (m+1) = T ∗ with probability α(T (m), T ∗), otherwise, set

T (m+1) = T (m)

5: Sample θ(m+1) ∼ p(θ | X,y, z(m+1), T (m+1))

Output: New values (θ(m+1), z(m+1), T (m+1))

variables used, the slower the convergence of the Markov chain sequence. As

discussed in Van Dyk & Meng (2001), it is an “art” to search for efficient data

augmentation schemes. We discuss this point in the following chapters for the

claims frequency models and aggregate claims models specifically.

Remark 2.3 Similar to Algorithm 2.2, in step 2 and step 5 of Algorithm 2.3 the

sampling is needed only for those nodes that were involved in the proposed move

from T (m) to T ∗, and step 5 is needed only when this move was accepted.

2.2.4 Posterior Tree Selection and Prediction

The MCMC algorithms described in the previous subsection can be used to search

for desirable trees. This subsection shall introduce the strategy of selecting an “op-

timal” tree among all visited trees in MCMC algorithms and obtaining predictions

for new data.

As discussed in Chipman et al. (1998) and illustrated below in our analysis, the

algorithms quickly converge and then move locally in that region for a long time,

which occurs because proposals make local moves over a sharply peaked multi-

modal posterior. Instead of making long runs of search to move from one mode

to another better one, we follow the idea of Chipman et al. (1998) to repeatedly

restart the algorithm. As many trees are visited by each run of the algorithm,
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we need a method to identify those trees which are of most interest. Moreover,

the structure of trees in the convergence regions is mostly determined by the

hyper-parameters γ, ρ (see (2.7)) which also need to be chosen appropriately. In

Chipman et al. (1998), the integrated likelihood p(y | X,T ) is used as a measure

to choose good trees from one run of the algorithm, though other measures, like

the residual sum of squares (RSS), could also be introduced. However, there is no

discussion on how the tree prior hyper-parameters γ, ρ should be determined op-

timally. A natural way to deal with this is to use cross-validation which, however,

requires repeated model fits and is very computationally expensive. We propose

to use DIC for choosing appropriate γ, ρ, and thus introduce a three-step approach

for selecting an “optimal” tree among those visited. To this end, we first give a

definition of DIC for a Bayesian CART. We refer to Spiegelhalter et al. (2002),

Celeux et al. (2006), Gelman et al. (2014) and Spiegelhalter et al. (2014) for a

more detailed discussion of DIC and its extensions.

Consider the tree T with b terminal nodes and parameters θt (t = 1, 2, . . . , b),

as previously defined. We first introduce the DIC for each node using the standard

definition, the DIC for the tree is then defined as the sum of the DIC of all terminal

nodes in the tree due to the independence assumption. For node t, we call

D(θt) = −2 log(f(yt | θt)) = −2
nt∑
j=1

log(f(ytj | θt)) (2.12)

the deviance, where the deviance is conditional on the parameter vector θ, which

refers to as the “parameters of interest” or “parameters in focus”.

Analogously to the Akaike’s information criterion (AIC), Spiegelhalter et al.

(2002) proposed the DIC based on the principle DIC=“goodness of fit”+“complexity”,

which is defined as

DICt = D(θ̄t) + 2pDt,

where θ̄t = Epost(θt) is the posterior mean (with Epost denoting expectation over

the posterior distribution of θ given data y), and pDt is the effective number of

parameters given by

pDt = D(θt)−D(θ̄t)

= −2Epost

(
log(f(yt | θt))

)
+ 2 log(f(yt | θ̄t))

= 2
nt∑
j=1

(
log(f(ytj | θ̄t))− Epost

(
log(f(ytj | θt))

))
. (2.13)
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The DIC of the tree T with b terminal nodes is then defined as

DIC :=
b∑

t=1

DICt = D(θ̄) + 2pD, (2.14)

where D(θ̄) =
∑b

t=1D(θ̄t) and pD =
∑b

t=1 pDt are the deviance and effective

number of parameters of the tree.

Next, we introduce DIC for tree models with data augmentation. Depending

on whether the latent variable z is treated as a parameter or not, there are three

types of likelihoods leading to eight versions of DIC as discussed in Celeux et al.

(2006). Due to the complexity in implementing any of those eight and motivated

by the idea that DIC=“goodness of fit”+“complexity”, we introduce a new DIC

for node t in the tree as follows

DICt = D(θ̄t) + 2qDt, (2.15)

where D(θ̄t) is the deviance defined through the data yt (as in (2.12)) which

represents the goodness of fit, and qDt is the effective number of parameters defined

through the augmented data (yt, zt) as follows

qDt = −2Epost

(
log(f(yt, zt | θt))

)
+ 2 log(f(yt, zt | θ̄t))

= 2
nt∑
j=1

(
log(f(ytj, ztj | θ̄t))− Epost

(
log(f(ytj, ztj | θt))

))
, (2.16)

where θ̄t = Epost(θt), and in this case Epost denotes expectation over the posterior

distribution of θ given augmented data (y, z). By incorporating the augmented

data (y, z), qDt can be calculated explicitly and is demonstrated to be effective in

our simulation studies. Similarly, the DIC of tree T with b terminal nodes is thus

defined as

DIC = D(θ̄) + 2qD, (2.17)

where qD =
∑b

t=1 qDt.

Remark 2.4 (a) As we will see in the following chapters, for claims models, the

effective number of parameters pDt or qDt is approximately the dimension of θt as

the sample size nt in node t tends to infinity.

(b) D(θ̄) is called the “plug-in” estimate of model deviance. In most cases, the

posterior mean of the parameter θ̄ is taken due to the ease of the computation,

as in our implementation. However, other “plug-in” estimates of θ, such as the

posterior mode or median, can also be used to calculate D(θ̄). Each of them has
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unique characteristics, for example, Spiegelhalter et al. (2002) noted that using

the posterior mode can be less reliable in flat or multimodal distributions; on the

other hand, although the posterior median is robust to outliers and less sensitive

to extreme values, making it a good option for skewed distributions, it may not be

unique in distributions with flat regions. In conclusion, the choice between them

depends on the characteristics of the data and the objectives of the analysis. The

mean is often preferred for its statistical properties, while the mode and median are

chosen for their robustness in certain situations; see more discussion in Spiegel-

halter et al. (2002).

(c) Note that DIC is defined using plug-in prediction densities f(ytj | θ̄t) in

(2.13) (similar to f(ytj, ztj | θ̄t) in (2.16)). More recently, a new criterion called

Watanabe–Akaike information criterion (WAIC) was introduced by Watanabe &

Opper (2010) (see also Gelman et al. (2014) and Spiegelhalter et al. (2014)),

where in its definition the plug-in prediction density is replaced by the full pre-

diction density Epost(f(ytj | θt)). When the explicit expression is not available,

this posterior expectation is usually computed by a Monte Carlo algorithm as

S−1
∑S

k=1 f(ytj | θk), where θk is simulated from the posterior distribution of

θt. In the following chapters, we will see that this posterior expectation can be ob-

tained explicitly for the Poisson model, but not for other models. It turns out that

using WAIC gives the same selected model as DIC in our initial simulation stud-

ies. Additionally, as it involves a Monte Carlo algorithm and could be considerably

more computationally expensive, we suggest using DIC.

(d) It is worth noting that if the independence assumption within the terminal

nodes is violated (see, e.g., Chipman et al. (2003, 2002)), the DIC may also be

used as a tool for model selection but the formulation would not be of the simple

summation form as in (2.12). We refer to Spiegelhalter et al. (2002) for examples

and relevant discussions.

(e) It is noteworthy that, in addition to the two DICs discussed above, two

more specific DICs will be introduced in Sections 3.2 and 4.2 for other models.

Now, we are ready to introduce the three-step approach for selecting an “op-

timal” tree from the MCMC algorithms. Let ms < me be two user input inte-

gers which represent the belief that the optimal number of terminal nodes lies in

[ms,me]. In practice, these can be estimated first by using some other methods,

e.g., a standard CART model. The three-step approach is described in Table 2.1.

In what follows, the tree selected by using the three-step approach will be called

an “optimal” tree.

Remark 2.5 (a) The relation between hyper-parameters (γh, ρh) and the distri-
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Table 2.1: Three-step approach for “optimal” tree selection.

Step 1: Set a sequence of hyper-parameters (γh, ρh), h = ms, · · · ,me, such

that for (γh, ρh), the MCMC algorithm converges to a region of

trees which have h terminal nodes.

Step 2: For each h in Step 1, select the tree with maximum likelihood p(y |
X, θ̄, T ) from the convergence region.

Step 3: From the trees obtained in Step 2, select the optimal one using

DIC.

bution of the number of terminal nodes of the tree has been illustrated in Chipman

et al. (1998). It does not seem hard to set values for (γh, ρh) so that the MCMC

algorithms will converge to a region of trees with required h terminal nodes. It

is also worth noting that the distribution of the number of terminal nodes is also

affected by the data in hand, which can be seen from the calculation of the accep-

tance ratio in the MCMC algorithms. In our simulations and real data analyses

below, we have to select a relatively larger ρ in order to achieve our goals.

(b) In Step 2, the so-called data likelihood p(y | X, θ̄, T ), rather than the in-

tegrated likelihood p(y | X, T ), is used, which is driven by our interest in the fit

of the parametric model to data. The simulations and real data in the following

chapters indicate that these two types of likelihood show a consistency in the or-

dering of their values, and thus we suspect there is no big difference using either

of them.

Suppose T with b terminal nodes and parameter θ̄ is the optimal tree obtained

from the above three-step approach. For a given new x the predicted ŷ using this

tree model is defined as

ŷ | x =
b∑

t=1

E(y | θ̄t)I(x∈At), (2.18)

where I(·) denotes the indicator function and {At}bt=1 is the partition of X .

Remark 2.6 An alternative prediction given x can be defined using the full pre-

dictive density as

ŷ | x =
b∑

t=1

Epost(E(y | θt))I(x∈At). (2.19)

However, for claims models, the explicit expression can be found only for the Pois-

son case, and for other models, the Monte Carlo method is needed to estimate the

posterior expectation. Thus, we shall use (2.18) for simplicity.
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2.3 Evaluation Metrics

Upon mastering the methodology for constructing and identifying the optimal

tree model based on in-sample performance, such as the DIC proposed before, the

next step involves the validation and comparison of different models using out-

of-sample data. There are several ways to quantify prediction accuracy; however,

there is no single ideal metric that applies universally. In this section, we provide

an introduction to a few widely used metrics that will be employed for a compar-

ison between different models before proceeding with the analyses of simulation

studies and real data in the following chapters. Each of these evaluation metrics

is separately described below, along with its interpretation.

Suppose we have obtained a tree with b terminal nodes and the corresponding

parameter estimates which we will use to obtain the prediction ŷi for a test data

set with m observations. The number of test data in terminal node t is denoted

by mt, t = 1, . . . , b. The performance measures used are as follows.

2.3.1 Residual Sum of Squares

Residual Sum of Squares (RSS) can be used to identify the level of discrepancy in

a data set that cannot be predicted by the model. The smaller the RSS, the closer

the predicted values align with the actual values, indicating a more accurate model.

This relationship can be observed in a plot; if there is unexplained variability, the

line representing predicted values may not pass through all the actual data points.

RSS is given by:

RSS(y) =
m∑
i=1

(yi − ŷi)
2.

This measure is commonly used for Gaussian-distributed data, but here we also

apply it to non-Gaussian data for comparison purposes.

Although RSS is a commonly used metric with its advantages (sensitivity to

model fit, simple interpretation, and good mathematical properties), it is impor-

tant to be aware of its limitations and consider other evaluation metrics, especially

when dealing with data sets that contain large outliers. For example, in insurance

claims severity data, RSS places considerable emphasis on outliers, i.e., extremely

large claim amounts. This can result in an excessively large RSS, which is unde-

sirable.
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2.3.2 Squared Error

Given the discussion above, for the tree models, we propose a specifically designed

metric called squared error (SE), based on a sub-portfolio (i.e., those instances in

the same terminal node) level, which is defined by

SE(ϵ) =
b∑

t=1

(ϵt − ϵ̂t)
2 ,

where ϵt/ϵ̂t is the empirical/estimated claims frequency (or claims severity, claims

cost) respectively for terminal node t depending on the type of claims model

considered. This estimation ϵ̂t is obtained using (2.18), assuming unit exposure for

both claims frequency and claims cost, and unit claim number for claims severity.

This measure is preferred to RSS in tree models as it takes into account accuracy

on a (sub-)portfolio level (i.e., balance property) other than an individual level.

We refer to Denuit et al. (2021) and Wüthrich (2020, 2022) for more details and

discussions of the balance property that is required for insurance pricing.

2.3.3 Discrepancy Statistic

Discrepancy statistic (DS) (cf. Naya et al. (2008)), is defined as a weighted version

of SE, given by

DS(ϵ) =
b∑

t=1

1

σ̂2
t

(ϵt − ϵ̂t)
2 ,

where ϵt and ϵ̂t are the same as in Subsection 2.3.2, and σ̂2
t is the estimated

variance of claims frequency (or claims severity, claims cost) for terminal node t.

By considering variance, it is better to assess whether different models have the

ability to handle over-dispersed data, as seen in the comparison between Poisson

and ZIP distributions in claims frequency models.

2.3.4 Negative Log-Likelihood

Negative log-likelihood (NLL) is calculated by using the assumed response dis-

tribution in the terminal node with the estimated parameters from the training

process. It represents the ex-ante belief of the underlying distribution of the data,

and thus a good measure for model comparison; see, e.g., Lee (2021). However,

NLL is not measurable in absolute terms and cannot be directly compared be-

tween different models or data sets. Therefore, although NLL is a useful tool, it is

beneficial to complement its use with other model comparison criteria to obtain a

more comprehensive evaluation of model performance.
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2.3.5 Lift

In addition to the commonly used statistical indicators described above, we intro-

duce a specific metric that enhances our understanding of the “economic value” of

the model, known as lift. Model lift indicates the ability to differentiate between

low and high claims frequency (or claims severity, claims cost) policyholders with-

out assuming an underlying distribution. A higher lift illustrates that the model

is more capable of separating the extreme values from the average. Since lift fo-

cuses on the tails of the distribution, this metric enables actuaries to effectively

construct risk mitigation plans using mechanisms beyond pricing, such as under-

writing, reinsurance, and enforcement of safety measures. For example, if the

model demonstrates an extraordinary ability to identify policyholders with high

claims frequency, insurers may take more targeted risk management actions. We

refer to Henckaerts et al. (2021), Lee (2020, 2021) and references therein for fur-

ther discussion on lift. We propose a way to calculate lift for the tree model in

the following steps.

Step 1: Retrieve the predicted claims frequencies (or claims severities, claim costs)

ϵ̂t, for terminal nodes t = 1, . . . , b, for the optimal tree obtained from the

training procedure.

Step 2: Set ϵ̂min = minb
t=1 ϵ̂t and ϵ̂max = maxbt=1 ϵ̂t, which identify the least and most

risky groups of policyholders, respectively.

Step 3: Use test data in the least and most risky groups/nodes to obtain their total

sum of volumes, say emin and emax. More specifically, volume refers to ex-

posure in both claims frequency and aggregate claims models; volume refers

to the number of claims in claims severity models.

Step 4: If emin ≤ emax, then sort the data using volumes in descending order in

the most risky group. Calculate the cumulative sums of the sorted volumes

until the one equal or greater than emin is achieved and then calculate the

corresponding empirical frequency, i.e., ratio of sum of claim numbers and

sum of exposures, (or empirical severity referred to as ratio of sum of claim

amounts and sum of claim numbers; empirical cost referred to as ratio of

sum of claim amounts and sum of exposures) of these first data involved, say

λ
(em)
max | (or a

(em)
max |, λ

(em)
max |a

(em)
max |); see Chapters 3-5 for more specific mathematical

details. The lift is defined as L = λ
(em)
max |/λ

(em)
min (for claims frequency models);

L = a
(em)
max |/a

(em)
min (for claims severity models); L = λ

(em)
max |a

(em)
max |/λ

(em)
min a

(em)
min (for
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2.4 Summary of Chapter 2

aggregate claims models), where λ
(em)
min is the empirical frequency of the least

risky group; a
(em)
min and λ

(em)
min a

(em)
min are defined analogously.

[Similarly, If emin > emax, then sort the data using volumes in ascending order

in the least risky group. Calculate the cumulative sums of the sorted volumes

until the one equal or greater than emax is achieved and then calculate the

corresponding empirical frequency (or empirical severity, empirical cost) of

these first data involved, say λ
(em)
min | (or a

(em)
min |, λ

(em)
min |a

(em)
min |). The lift is defined as

L = λ
(em)
max /λ

(em)
min | (for claims frequency models); L = a

(em)
max /a

(em)
min | (for claims

severity models); L = λ
(em)
max a

(em)
max /λ

(em)
min |a

(em)
min | (for aggregate claims models),

where λ
(em)
max is the empirical frequency of the most risky group; a

(em)
max and

λ
(em)
max a

(em)
max are defined analogously.]

Although lift can help us better understand the economic value of the model,

it is a relative measure, similar to NLL. Therefore, it may not provide a clear

indication of the actual economic impact or value of a model without additional

context. Besides, the effectiveness of lift may vary across different data sets and

contexts. Since it may not generalize well to diverse scenarios, it is crucial to

consider its application within the specific context of the problem at hand.

Among the five evaluation metrics discussed above, RSS, NLL and lift consis-

tently tend to improve with more splits in tree models, while SE and DS can assist

in identifying the optimal model. This aligns with the DIC selection, which will

be verified in the simulation examples and real data analyses below. We remark

that more performance measures and diagnostic approaches (such as deviance and

Gini index) can be introduced following ideas in, e.g., Henckaerts et al. (2021),

Wuthrich & Buser (2022) and Lee (2020, 2021). However, this is not the main

focus of the present thesis, so these are explored elsewhere.

2.4 Summary of Chapter 2

We began this chapter by reviewing the standard decision tree, understanding its

basic structure, and providing an example of applying the Poisson distribution

in CART. Recognizing the limitations of CART, we delved into Bayesian CART.

Building upon the fundamental framework in Chipman et al. (1998), we conducted

a comprehensive analysis of prior specifications. We proposed a general MCMC

algorithm for BCART models applied to data with a general distribution, involv-

ing data augmentation techniques. Subsequently, we advocated for using different
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2.4 Summary of Chapter 2

DICs to select an optimal tree among all visited trees generated by MCMC algo-

rithms. Following that, a three-step approach was proposed, and its effectiveness

will be thoroughly validated in the subsequent simulation examples and real data

analyses. Finally, five evaluation metrics were introduced and their advantages

and disadvantages were discussed respectively for model comparisons.
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Chapter 3

Frequency Modelling with

Bayesian CART

In this chapter, we introduce BCART models for insurance claims frequency mod-

els by specifying the response distribution in the general framework introduced in

Section 2.2. We shall discuss four commonly used distributions in the literature to

model the number of claims, namely, Poisson, NB, ZIP and ZINB distributions.

Particularly, in the NB, ZIP and ZINB distributions, we not only explore different

ways to embed exposure but also utilize the data augmentation technique; see, e.g.,

Wüthrich & Merz (2023), Murray (2021) and Lee (2020, 2021). Specific formulas

for some of the evaluation metrics for each model are provided in their respective

sections. Subsequently, three simulation examples are designed to address specific

problems, and some conclusions are drawn.

We first review claims frequency data and the purpose of claims frequency

analysis. Consider a claims data set with n policyholders D = (X,v,N ) =(
(x1, v1, N1), . . . , (xn, vn, Nn)

)⊤
(i = 1, 2, . . . , n), where Ni is the number of claims

reported, and vi ∈ (0, 1] is the exposure. The objective of claims frequency analysis

is to explain and predict the claims information Ni based on the explanatory

variables xi and the exposure vi for each individual policyholder i, leading to the

claims frequency, i.e., the number of claims filed per unit year of exposure to risk.

Subsequently, each section demonstrates how to apply different distributions in

BCART models in detail for various purposes.

3.1 Poisson-Bayesian CART

Consider a tree T with b terminal nodes as discussed in Section 2.2. In a Poisson

model, we assume all insurance policyholders i = 1, 2, . . . , n have independent
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3.1 Poisson-Bayesian CART

claim counts Ni with

Ni | x, v ∼ Poi(λ(x)v)

for the i-th observation where λ(x) =
∑b

t=1 λtI(x∈At) (λt > 0), and {At} is a

partition of X . Here we use the standard notation λt for claims frequency rather

than the generic notation θt for the parameter in terminal node t. The aim is

to estimate the regression function λ(·), describing the expected claims frequency.

Essentially, we have specified the distribution for terminal node t as

fP
(
Ntj | λt , vtj) = P

(
Ntj | λt, vtj

)
=
e−λtvtj(λtvtj)

Ntj

Ntj!
, Ntj = 0, 1, 2, . . . , (3.1)

for the i-th observation such that xi ∈ At. The mean and variance of Ntj are

given by

E
(
Ntj

)
= Var

(
Ntj

)
= λtvtj.

Note that, for simplicity, here and hereafter, the exposure vi and explanatory vari-

ables xi will be omitted in some notation. Based on the discussions in Subsection

2.2.1, we choose a common conjugate Gamma prior for λt (t = 1, 2, . . . , b) with

hyper-parameters α, β > 0, that is,

p (λt) =
βαλt

α−1e−βλt

Γ(α)
, (3.2)

with Γ(·) denoting the Gamma function. As in Section 2.2, for terminal node t we

denote the associated data as
(
Xt,vt,Nt) = ((Xt1, vt1, Nt1), . . . , (Xtnt , vtnt , Ntnt)

)⊤
.

With the above Gamma prior, the integrated likelihood for terminal node t can

be obtained as

pP
(
Nt | Xt,vt

)
=

∫ ∞

0

fP
(
Nt | λt

)
p(λt)dλt

=

∫ ∞

0

nt∏
j=1

e−λtvtj
(
λtvtj

)Ntj

Ntj!

βαλt
α−1e−βλt

Γ(α)
dλt

=
βα
∏nt

j=1 v
Ntj

tj

Γ(α)
∏nt

j=1Ntj!

∫ ∞

0

λ
∑nt

j=1 Ntj+α−1

t e−(
∑nt

j=1 vtj+β)λtdλt

=
βα
∏nt

j=1 v
Ntj

tj

Γ(α)
∏nt

j=1Ntj!

Γ(
∑nt

j=1Ntj + α)

(
∑nt

j=1 vtj + β)
∑nt

j=1 Ntj+α
.

(3.3)

Clearly, from (3.3), we see that the posterior distribution of λt, conditional on Nt,

is given by

λt | Nt ∼ Gamma

 nt∑
j=1

Ntj + α,
nt∑
j=1

vtj + β

. (3.4)
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3.1 Poisson-Bayesian CART

The integrated likelihood for the tree T is thus given by

pP
(
N | X,v, T

)
=

b∏
t=1

pP
(
Nt | Xt,vt

)
. (3.5)

Next, we discuss the DIC for this tree, focusing on the DICt for terminal node

t. First, we have

D (λt) = −2
nt∑
j=1

log fP(Ntj | λt) = −2
nt∑
j=1

(
−λtvtj +Ntj log

(
λtvtj

)
− log

(
Ntj!

))
,

(3.6)

and by (3.4) we get the posterior mean for λt as

λ̄t = Epost(λt) =

∑nt

j=1Ntj + α∑nt

i=1 vtj + β
. (3.7)

Furthermore, we derive that

D (λt)

= Epost

(
D (λt)

)
= 2

nt∑
j=1

(
vtjEpost (λt)−NtjEpost

(
log (λt) + log

(
vtj
))

+ log
(
Ntj!

))

= −2

ψ
 nt∑

j=1

Ntj + α

− log

 nt∑
j=1

vtj + β


 nt∑

j=1

Ntj

+2

(∑nt

j=1Ntj + α∑nt

j=1 vtj + β

)
nt∑
j=1

vtj − 2
nt∑
j=1

Ntj log
(
vtj
)
+ 2

nt∑
j=1

log
(
Ntj!

)
, (3.8)

where we use the fact that

Epost

(
log (λt)

)
= ψ

 nt∑
j=1

Ntj + α

− log

 nt∑
j=1

vtj + β

,
with ψ(x) = Γ′(x)/Γ(x) being the digamma function. Using (3.6)–(3.8), we obtain

the effective number of parameters for terminal node t as

pDt = D(λt)−D(λ̄t)

= 2

log

 nt∑
j=1

Ntj + α

− ψ

 nt∑
j=1

Ntj + α


 nt∑

j=1

Ntj,
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3.1 Poisson-Bayesian CART

and

DICt

= D
(
λ̄t
)
+ 2pDt

= 2

(∑nt

j=1Ntj + α∑nt

j=1 vtj + β

)
nt∑
j=1

vtj − 2
nt∑
j=1

Ntj

log

(∑nt

j=1Ntj + α∑nt

j=1 vtj + β

)
+ log

(
vtj
)

+4

log

 nt∑
j=1

Ntj + α

− ψ

 nt∑
j=1

Ntj + α


 nt∑

j=1

Ntj + 2
nt∑
j=1

log
(
Ntj!

)
.

Then the DIC of the tree T is obtained by using (2.14).

Remark 3.1 (a) Since ψ(x) = log(x)− 1
2x
(1 + o(x)), as x→ ∞, we immediately

see that pDt → 1 as nt → ∞. This explains the name of the effective number of

parameters in the Bayesian framework, as 1 is the number of parameters in the

terminal node t for the Poisson model if a flat prior is assumed for λt. Addition-

ally, in the following models (NB, ZIP, ZINB, Gamma in Sections 4.2 and 5.1,

and CPG/ZICPG in Section 5.3), if the Gamma prior is chosen for the param-

eter, we shall obtain this similar form for the corresponding effective number of

parameters, and we can use this property to explicitly obtain the values for effective

number of parameters. Therefore, we will not repeat this later.

With the above (3.4)–(3.5) and DIC obtained, we can use the three-step ap-

proach proposed in Subsection 2.2.4 to search for an optimal tree, where (3.4) and

(3.5) should be used in step 4 and step 2, respectively, in Algorithm 2.2. Given an

optimal tree, the estimated claims frequency λ̄t in terminal node t can be given

by the posterior mean in (3.7), using (2.18). It is worth noting that we can obtain

the same estimate by using (2.19) instead.

Remark 3.2 For a Bayesian CART, the frequency parameter λt can be estimated

in each terminal node by using the posterior distribution of λt | Nt obtained in

(3.4). Several different estimators can be used, such as posterior mean, posterior

mode, or drawing a random value from the posterior distribution. They all have

their own advantages and disadvantages. From a computational viewpoint, it is

generally easier to obtain the posterior mean than the posterior mode. This is

due to the fact that calculating the posterior mean involves calculating an inte-

gral, which can often be done analytically or using numerical methods like MCMC

sampling. On the other hand, calculating the posterior mode typically involves op-

timising a function, which can be more computationally intensive. Consequently,
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3.2 Negative Binomial-Bayesian CART

Table 3.1: Evaluation metrics for Poisson-BCART. ϵt de-

notes the empirical claims frequency in node t, computed as∑nt

j=1Ntj/
∑nt

j=1 vtj, and λ̄t denotes the estimated claims frequency

for node t in the Bayesian framework, obtained from (3.7).

Formulas

RSS(N )
∑b

t=1

∑nt

j=1(Ntj − λ̄tvtj)
2

SE
∑b

t=1(ϵt − λ̄t)
2

DS
∑b

t=1

(
(ϵt − λ̄t)

2/λ̄t
)

the posterior mean is more commonly favoured in practical applications. However,

some simulation examples studied by Celeux et al. (2006) show that the posterior

mean can be a poor estimator within missing data models for various reasons. For

example, in the context of non-normal or skewed distributions commonly encoun-

tered in missing data scenarios, the posterior mean may not accurately capture the

central tendency, making it less robust in comparison to the posterior mode; see

more discussion in Celeux et al. (2006). In addition, the random drawing of a

value from the posterior distribution is easy, but the randomness of this method is

too high, and it is susceptible to extreme values. Further research into the choice of

these three kinds of values could therefore be explored. We use posterior mean in

our implementation for all BCART models in the thesis because of computational

efficiency.

At the end of this section, we provide the specific formulas for some of the

evaluation metrics (see Section 2.3) based on Poisson distribution in Table 3.1.

3.2 Negative Binomial-Bayesian CART

The NB distribution, a member of the mixed Poisson family, offers an effective

way to handle over-dispersed insurance claims frequency data where excessive ze-

ros are common. Consider a tree T with b terminal nodes as before. In the NB

model, we assume that Ntj | Xtj, vtj follows a NB distribution for all terminal

nodes t, (t = 1, . . . , b). There are different ways to parameterize the NB distri-

bution, particularly with the exposure (one option is to embed the exposure in

one parameter, while the other is to embed the exposure in both parameters); see,
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3.2 Negative Binomial-Bayesian CART

e.g., Lee (2020) and Wüthrich & Merz (2023). We shall discuss two models in this

section.

3.2.1 Negative Binomial Model 1 (NB1)

We first adopt the most common parameterization of the NB distribution; see,

e.g., Murray (2021). That is, for terminal node t,

fNB1(Ntj | κt, λt, vtj)

= P(Ntj | κt, λt, vtj)

=
Γ(Ntj + κt)

Γ(κt)Ntj!

(
κt

κt + λtvtj

)κt
(

λtvtj
κt + λtvtj

)Ntj

, Ntj = 0, 1, . . ., (3.9)

where κt, λt > 0. It is easy to show that the mean and variance of Ntj are given

by

E(Ntj | κt, λt) = λtvtj, Var(Ntj | κt, λt) = λtvtj

(
1 +

λtvtj
κt

)
. (3.10)

The degree of over-dispersion in relation to the Poisson is controlled by the ad-

ditional parameter κt in the NB model, which converges to the Poisson model as

κt → ∞.

In NB regression, the lack of simple and efficient algorithms for posterior com-

putation has seriously limited routine applications of Bayesian approaches. Recent

studies make Bayesian approaches appealing by introducing data augmentation

techniques; see, e.g., Zhou et al. (2012) and Murray (2021). In order to save on

the total computational time of the algorithm and avoid the difficulty of finding an

appropriate prior for κt with corresponding data augmentation, we shall treat the

parameter κt as known in the Bayesian framework which can be estimated upfront

by using, e.g., the Method of Moments Estimation (MME) method. However, in

line with the Poisson model, we shall treat λt as unknown and use a conjugate

Gamma prior with corresponding data augmentation. Based on the formulas given

in (3.10), we can estimate the parameter κt using MME; see, e.g., Chapter 2 of

Wuthrich (2022) as follows

κ̂t =
λ̂2t

V̂ 2
t − λ̂t

1

nt − 1

 nt∑
j=1

vtj −
∑nt

j=1 v
2
tj∑nt

j=1 vtj

 , (3.11)

where

V̂ 2
t =

1

nt − 1

nt∑
j=1

vtj

(
Ntj

vtj
− λ̂t

)2

, λ̂t =

∑nt

j=1Ntj∑nt

j=1 vtj
. (3.12)
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3.2 Negative Binomial-Bayesian CART

Next, introducing a latent variable ξt = (ξt1, ξt2, . . . , ξtnt) ∈ (0,∞)nt , we can

define a data augmented likelihood for the j-th data instance in terminal node t

as

fNB1

(
Ntj, ξtj | κ̂t, λt

)
=

(
λtvtj

)Ntj e−ξtj(λtvtj+κ̂t)κ̂κ̂t
t ξ

κ̂t+Ntj−1
tj

Γ(κ̂t)Ntj!
. (3.13)

It is easily checked that integrating over ξtj ∈ (0,∞) in (3.13) yields the marginal

distribution (3.9), since∫ ∞

0

fNB1

(
Ntj, ξtj | κ̂t, λt

)
dξtj

=

(
λtvtj

)Ntj κ̂κ̂t
t

Γ(κ̂t)Ntj!

∫ ∞

0

e−ξtj(λtvtj+κ̂t)ξ
κ̂t+Ntj−1
tj dξtj

=

(
λtvtj

)Ntj κ̂κ̂t
t

Γ(κ̂t)Ntj!

Γ(κ̂t +Ntj)

(λtvtj + κ̂t)κ̂t+Ntj
.

Further, we see that ξtj, given data Ntj and parameters (κ̂t and λt), has a Gamma

distribution, i.e.,

ξtj | Ntj, κ̂t, λt ∼ Gamma
(
κ̂t +Ntj, κ̂t + λtvtj

)
. (3.14)

Given the data augmented likelihood in (3.13), the estimated parameter κ̂t using

(3.11), and a conjugate Gamma prior for λt with hyper-parameters α, β > 0 (cf.

(3.2)), we can derive the integrated augmented likelihood for the terminal node t

as follows

pNB1

(
Nt, ξt | Xt,vt, κ̂t

)
=

∫ ∞

0

fNB1

(
Nt, ξt | κ̂t, λt

)
p (λt) dλt

=

∫ ∞

0

nt∏
j=1

(λtvtj)Ntj e−ξtj(λtvtj+κ̂t)κ̂κ̂t
t ξ

κ̂t+Ntj−1
tj

Γ (κ̂t)Ntj!

βαλα−1
t e−βλt

Γ(α)
dλt

=
βακ̂ntκ̂t

t

Γ(α)Γ (κ̂t)
nt

nt∏
j=1

vNtj

tj

Ntj!
ξ
κ̂t+Ntj−1
tj e−ξtj κ̂t

∫ ∞

0

λ
∑nt

j=1 Ntj+α−1

t e−(
∑nt

j=1 ξtjvtj+β)λtdλt

=
βακ̂ntκ̂t

t

Γ(α)Γ (κ̂t)
nt

nt∏
j=1

vNtj

tj

Ntj!
ξ
κ̂t+Ntj−1
tj e−ξtj κ̂t

 Γ
(∑nt

j=1Ntj + α
)

(∑nt

j=1 ξtjvtj + β
)∑nt

j=1 Ntj+α
.

(3.15)

Moreover, from the above, we see that the posterior distribution of λt given the

augmented data (Nt, ξt), is given by

λt | Nt, ξt ∼ Gamma

 nt∑
j=1

Ntj + α,
nt∑
j=1

ξtjvtj + β

.
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3.2 Negative Binomial-Bayesian CART

The integrated augmented likelihood for the tree T is thus given by

pNB1

(
N , ξ | X,v, κ̂, T

)
=

b∏
t=1

pNB1

(
Nt, ξt | Xt,vt, κ̂t

)
. (3.16)

Now, we discuss the DIC for this tree. Since we only consider uncertainty for

λ but not for κ, the DIC defined in (2.17) cannot be adopted directly. Thus, using

the idea that DIC=“goodness of fit”+“complexity”, we can introduce a new DICt

for terminal node t as follows

DICt = D(λ̄t) + 2rDt.

Here, the goodness of fit is given by

D(λ̄t) = −2
nt∑
j=1

log fNB1(Ntj | κ̂t, λ̄t),

and the effective number of parameters rDt is given by

rDt = D(θt)−D(θ̄t)

= −2Epost(log(f(yt, zt | θt))) + 2 log(f(yt, zt | θ̄t))

= 1 + 2
nt∑
j=1

{
log
(
fNB1(Ntj, ξtj | κ̂t, λ̄t)

)
− Epost

[
log
(
fNB1(Ntj, ξtj | κ̂t, λt)

)]}
,

(3.17)

where κt is treated as known while still maintaining its status as a model parame-

ter, and we denote its effective number as 1; the second part of the last line is for

λt,

λ̄t =

∑nt

j=1Ntj + α∑nt

j=1 ξtjvtj + β
, (3.18)

and

Epost

(
log(fNB1(Ntj, ξtj | κ̂t, λt))

)
= 2

nt∑
j=1

vtjEpost (λt)− 2
nt∑
j=1

NtjEpost

(
log (λt) + log

(
vtj
))

+ 2
nt∑
j=1

log
(
Ntj!

)

= −2
nt∑
j=1

Ntj

log(vtj) + ψ

 nt∑
j=1

Ntj + α

− log

 nt∑
j=1

ξtjvtj + β




+ 2

( ∑nt

j=1Ntj + α∑nt

j=1 ξtjvtj + β

)
nt∑
j=1

ξtjvtj + 2
(
log(Γ(κ̂t))− κ̂t log(κ̂t)

)
+ 2

nt∑
j=1

(
log
(
Ntj!

)
−
(
κ̂t +Ntj − 1

)
log
(
ξtj
)
+ ξtjκ̂t

)
.
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3.2 Negative Binomial-Bayesian CART

Therefore, a direct calculation shows that the effective number of parameters for

terminal node t is given by

rDt = 1 + 2

log

 nt∑
j=1

Ntj + α

− ψ

 nt∑
j=1

Ntj + α


 nt∑

j=1

Ntj, (3.19)

and thus

DICt

= D
(
λ̄t
)
+ 2rDt

= −2
nt∑
j=1

Ntj

log(vtj) + log

 nt∑
j=1

Ntj + α

− log

 nt∑
j=1

ξtjvtj + β




+ 2

( ∑nt

j=1Ntj + α∑nt

j=1 ξtjvtj + β

)
nt∑
j=1

ξtjvtj + 2
(
log(Γ(κ̂t))− κ̂t log(κ̂t)

)
+ 2

nt∑
j=1

(
log
(
Ntj!

)
−
(
κ̂t +Ntj − 1

)
log
(
ξtj
)
+ ξtjκ̂t

)

+ 2 + 4

log

 nt∑
j=1

Ntj + α

− ψ

 nt∑
j=1

Ntj + α


 nt∑

j=1

Ntj.

3.2.2 Negative Binomial Model 2 (NB2)

We now consider another parameterization of the NB distribution; see, e.g., Lee

(2020) and Wüthrich & Merz (2023). Although the parameterization is different,

we employ similar techniques to handle the parameters and perform calculations.

We shall avoid repeated descriptions and emphasize the differences. For easier

reading and completeness, the calculation process and results are still included in

the main text. For terminal node t,

fNB2(Ntj | κt, λt, vtj) =
Γ(Ntj + κtvtj)

Γ(κtvtj)Ntj!

(
κt

κt + λt

)κtvtj ( λt
κt + λt

)Ntj

, Ntj = 0, 1, . . . ,

(3.20)

where κt, λt > 0. It is easy to show that the mean of Ntj is the same as in (3.10),

but the variance becomes

Var(Ntj | κt, λt) = λtvtj

(
1 +

λt
κt

)
. (3.21)

This formulation yields a fixed over-dispersion of size λt/κt which does not depend

on the exposure vti, and thus it is sometimes preferred (see Wüthrich & Merz
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(2023)) and has been judged as more effective for real insurance data analyses

(see Lee (2020)).

We use the same way to deal with κt and λt as in the previous subsection.

Using the same approach as Chapter 2 of Wuthrich (2022), we can estimate the

parameter κt as follows

κ̂t =
λ̂2t

V̂ 2
t − λ̂t

, (3.22)

where V̂ 2
t and λ̂t are given in (3.12). Note that this parameterization offers a

simpler estimation for κ̂t, and that λ̂t is a minimal variance estimator; see, e.g.,

Wuthrich (2022).

As before, by introducing a latent variable ξt = (ξt1, ξt2, . . . , ξtnt) ∈ (0,∞)nt ,

we can define a data augmented likelihood for the j-th data instance in terminal

node t as

fNB2

(
Ntj, ξtj | κ̂t, λt

)
=

(
λtvtj

)Ntj e−ξtj(λtvtj+κ̂tvtj)(κ̂tvtj)
κ̂tvtjξ

κ̂tvtj+Ntj−1
tj

Γ(κ̂tvtj)Ntj!
. (3.23)

Similar to the previous subsection, it can be simply verified that integrating over

ξtj ∈ (0,∞) in (3.23) yields the marginal distribution (3.20). Further, we see

that ξtj, given data Ntj and parameters (κ̂t and λt), has a Gamma distribution,

i.e.,

ξtj | Ntj, κ̂t, λt ∼ Gamma
(
κ̂tvtj +Ntj, κ̂tvtj + λtvtj

)
.

Given the data augmented likelihood in (3.23), the estimated parameter κ̂t using

(3.22), and a conjugate Gamma prior for λt with hyper-parameters α, β > 0, we

can derive the integrated augmented likelihood for terminal node t as follows

pNB2

(
Nt, ξt | Xt,vt, κ̂t

)
=

∫ ∞

0

fNB2

(
Nt, ξt | κ̂t, λt

)
p(λt)dλt

=

∫ ∞

0

nt∏
j=1

(λtvtj)Ntj e−ξtj(λtvtj+κ̂tvtj)(κ̂tvtj)
κ̂tvtjξ

κ̂tvtj+Ntj−1
tj

Γ(κ̂tvtj)Ntj!

βαλt
α−1e−βλt

Γ(α)
dλt

=
βα

Γ(α)

nt∏
j=1

vNtj

tj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
ξ
κ̂tvtj+Ntj−1
tj e−ξtj κ̂tvtj


×
∫ ∞

0

λ
∑nt

j=1 Ntj+α−1

t e−(
∑nt

j=1 ξtjvtj+β)λtdλt

=
βα

Γ(α)

nt∏
j=1

vNtj

tj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
ξ
κ̂tvtj+Ntj−1
tj e−ξtj κ̂tvtj

 Γ(
∑nt

j=1Ntj + α)

(
∑nt

j=1 ξtjvtj + β)
∑nt

j=1 Ntj+α
.

(3.24)
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From the above we see that the posterior distribution of λt, given the augmented

data (Nt, ξt), is given by

λt | Nt, ξt ∼ Gamma

 nt∑
j=1

Ntj + α,

nt∑
j=1

ξtjvtj + β

.
Although the parameterization way is different, the posterior distribution of λt is

the same for NB1 and NB2 models. The integrated augmented likelihood for the

tree T is thus given by

pNB2

(
N , ξ | X,v, κ̂, T

)
=

b∏
t=1

pNB2

(
Nt, ξt | Xt,vt, κ̂t

)
. (3.25)

Now, we discuss the DICt for terminal node t of this tree. Similarly, as in the

previous subsection, we can derive the same expression for rDt as in (3.19) and we

can easily check that

DICt

= D(λ̄t) + 2rDt

= −2
nt∑
j=1

Ntj

log(vtj) + log

 nt∑
j=1

Ntj + α

− log

 nt∑
j=1

ξtjvtj + β




+ 2

( ∑nt

j=1Ntj + α∑nt

j=1 ξtjvtj + β

)
nt∑
j=1

ξtjvtj + 2
nt∑
j=1

(
log(Γ(κ̂tvtj)) + log

(
Ntj!

))
+ 2

nt∑
j=1

(
−κ̂tvtj log(κ̂tvtj)−

(
κ̂tvtj +Ntj − 1

)
log
(
ξtj
)
+ ξtjκ̂tvtj

)

+ 2 + 4

log

 nt∑
j=1

Ntj + α

− ψ

 nt∑
j=1

Ntj + α


 nt∑

j=1

Ntj.

For both NB models, the DIC of the tree T is obtained by using (2.14).

Based on the above discussion, we extend Algorithm 2.3 (see Subsection 2.2.3)

to a new Algorithm 3.1 to simulate a Markov chain sequence of pairs (θ(1), T (1)),

(θ(2), T (2)), . . . , starting from the root node. For the convenience of reference,

we shall describe a general algorithm that is needed for the NB BCART models.

Specifically, θ = (θM ,θB), where θM is the parameter that is treated as known

and is computed using MME (or MLE), and θB is the unknown parameter that

needs to be estimated in the Bayesian framework. This newly proposed algorithm

is applicable when it involves not only the data augmentation technique but also
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includes both known and unknown parameters that need to be estimated using

different methods, thereby extending the scope of the application of BCART mod-

els. With the above formulas derived in the two subsections for NB models, we

can use the three-step approach proposed in Subsection 2.2.4, together with Al-

gorithm 3.1 (treat θM = κ, θB = λ, and z = ξ), to search for an optimal tree

which can then be used to predict new data.

Algorithm 3.1: One step of the MCMC algorithm for the BCART mod-

els parameterized by (θM ,θB, T ) using data augmentation with both

known and unknown parameters

Input: Data (X,y) and current values (θ̂
(m)
M ,θ

(m)
B , z(m), T (m))

1: Generate a candidate value T ∗ with probability distribution

q(T (m), T ∗)

2: Estimate θ̂
(m+1)
M , using MME (or MLE)

3: Propose z(m+1) ∼ p(z | X,y, θ̂
(m+1)
M ,θ

(m)
B , T (m))

4: Set the acceptance ratio

α(T (m), T ∗)

= min

{
q(T ∗, T (m))p(y, z(m+1) | X, θ̂

(m+1)
M , T ∗)p(T ∗)

q(T (m), T ∗)p(y, z(m) | X, θ̂
(m)
M , T (m))p(T (m))

, 1

}

5: Update T (m+1) = T ∗ with probability α(T (m), T ∗), otherwise, set

T (m+1) = T (m)

6: Sample θ
(m+1)
B ∼ p(θB | X,y, θ̂

(m+1)
M , z(m+1), T (m+1))

Output: New values (θ̂
(m+1)
M ,θ

(m+1)
B , z(m+1), T (m+1))

Remark 3.3 (a) Similar to Algorithms 2.2 and 2.3, the sampling steps in Algo-

rithm 3.1 should be done when necessary.

(b) It is worth noting that our way of dealing with parameter κ is different from

that in Murray (2021) where a single κ is sampled from a distribution and used

for all terminal nodes. It turns out that that way of dealing with κ cannot give us

good estimates in our simulation examples, whereas our way of first estimating κ

using MME for each node can give good estimates.

(c) There are other ways to parameterize the NB distribution; see, e.g., Zhou

et al. (2012). However, it looks that these ways are normally discussed when there

is no exposure involved. Since the involvement of exposure is one of the key features

in insurance claims frequency analysis, we will not cover them here.
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3.3 Zero-Inflated Poisson-Bayesian CART

Table 3.2: Evaluation metrics for NB-BCART. ϵt denotes

the empirical claims frequency in node t, computed as∑nt

j=1Ntj/
∑nt

j=1 vtj. λ̄t and κ̂t are parameter estimations that can

be obtained from (3.18) and (3.11) (or (3.22)) respectively.

Formulas

RSS(N )
∑b

t=1

∑nt

j=1(Ntj − λ̄tvtj)
2

SE
∑b

t=1(ϵt − λ̄t)
2

DS
∑b

t=1

(
(ϵt − λ̄t)

2/(λ̄t(1 + λ̄t/κ̂t))
)

(d) It should be noted that Algorithm 3.1 can be easily extended to accommodate

multivariate parameters for both θM and θB. This will become clear in the context

of ZINB models that follow in this chapter.

As in the previous section, we can obtain the formulas for some of the evalua-

tion metrics based on NB distributions in Table 3.2.

3.3 Zero-Inflated Poisson-Bayesian CART

Insurance claims data normally involves a large volume of zeros. Many policyhold-

ers incur no claims, which does not necessarily mean that they were involved in

no accidents, but they are probably less risky. Unlike Section 3.2, there is another

data augmentation way proposed in Diebolt & Robert (1994) that can be used.

Depending on which data augmentation method is used and how the exposure is

embedded in the model to better reflect the excessive zeros (see Lee (2021)), we

discuss four ZIP models in this section. Although the four models involve similar

treatments, to maintain the completeness of the content, calculation procedures

and results are still included in the main text, with differences between them

emphasized.

3.3.1 Zero-Inflated Poisson Model 1 (ZIP1)

For terminal node t, we use the following ZIP distribution by embedding the

exposure into the Poisson part (see Murray (2021)),

fZIP1
(
Ntj | µt, λt, vtj

)
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3.3 Zero-Inflated Poisson-Bayesian CART

=

{
1

1+µt
+ µt

1+µt
fP(0 | λt, vtj) Ntj = 0,

µt

1+µt
fP(Ntj | λt, vtj) Ntj = 1, 2, . . . ,

=
1

1 + µt

I(Ntj=0) +
µt

1 + µt

fP(Ntj | λt, vtj), Ntj = 0, 1, 2, . . . , (3.26)

where fP(Ntj | λt, vtj) is given as in (3.1), and 1
1+µt

∈ (0, 1) is the probability that

a zero is due to the point mass component. Note that for computational simplicity

we consider a model with two parameters rather than three as in Murray (2021).

Similar to the NB model, a data augmentation scheme is needed for the ZIP

model. To this end, we introduce two latent variables ϕt = (ϕt1, ϕt2, . . . , ϕtnt) ∈
(0,∞)nt and δt = (δt1, δt2, . . . , δtnt) ∈ {0, 1}nt , and define the data augmented

likelihood for the j-th data instance in terminal node t as

fZIP1
(
Ntj, δtj, ϕtj | µt, λt

)
= e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj

, (3.27)

where the support of the function fZIP1 is
(
{0} × {0, 1} × (0,∞)

)
∪
(
N× {1} × (0,∞)

)
.

This means that we impose δtj = 1 when Ntj ∈ N (i.e., Ntj ̸= 0). It can be shown

that (3.26) is the marginal distribution of the above augmented distribution. Col-

lecting terms in the augmented variables in (3.27), we have:

• Ntj > 0, then δtj = 1.

In this case, obviously,

fZIP1
(
Ntj, 0, ϕtj | µt, λt

)
= 0,

and

fZIP1
(
Ntj, 1, ϕtj | µt, λt

)
= e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj

Ntj!
e−λtvtj .

Then we can obtain∫ ∞

0

fZIP1
(
Ntj, 1, ϕtj | µt, λt

)
dϕtj

=
µt

(
λtvtj

)Ntj

Ntj!
e−λtvtj

∫ ∞

0

e−ϕtj(1+µt)dϕtj

=

(
λtvtj

)Ntj

Ntj!
e−λtvtj

µt

1 + µt

,

which is consistent with the definition of ZIP1 model in (3.26) when Ntj > 0.
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• Ntj = 0 and δtj = 0.

In this case, we know

fZIP1
(
0, 0, ϕtj | µt, λt

)
= e−ϕtj(1+µt),

and then∫ ∞

0

fZIP1
(
0, 0, ϕtj | µt, λt

)
dϕtj =

∫ ∞

0

e−ϕtj(1+µt)dϕtj =
1

1 + µt

.

• Ntj = 0 and δtj = 1.

We can easily obtain

fZIP1
(
0, 1, ϕtj | µt, λt

)
= e−ϕtj(1+µt)µte

−λtvtj ,

and then ∫ ∞

0

fZIP1
(
0, 1, ϕtj | µt, λt

)
dϕtj

= µte
−λtvtj

∫ ∞

0

e−ϕtj(1+µt)dϕtj

= e−λtvtj
µt

1 + µt

.

Immediately following for Ntj = 0, sum over δtj,

fZIP1
(
0 | µt, λt

)
=

1

1 + µt

+
µt

1 + µt

e−λtvtj ,

which aligns with the definition of ZIP1 model in (3.26) when Ntj = 0.

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, λt ∼ Bern

(
µte

−λtvtj

1 + µte−λtvtj

)
,

and δtj = 1, given Ntj > 0. Furthermore, ϕtj, given the parameter µt, has an

Exponential distribution, i.e.,

ϕtj | µt ∼ Exp (1 + µt) .

It is noted that the augmented likelihood fZIP1 in (3.27) can actually be factor-

ized as two Gamma-type functions parameterized by µt and λt respectively. This

observation motivates us to assume independent conjugate Gamma priors for µt

and λt with hyper-parameters αi, βi > 0, i = 1, 2 (cf. (3.2)). With these Gamma
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priors, we can derive the integrated augmented likelihood for terminal node t as

follows

pZIP1
(
Nt, δt,ϕt | Xt,vt

)
=

∫ ∞

0

∫ ∞

0

fZIP1
(
Nt, δt,ϕt | µt, λt

)
p(µt)p(λt)dµtdλt

=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj


×β
α1
1 µα1−1

t e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

(
e−ϕtjv

δtjNtj

tj

(
Ntj!

)−δtj
)∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtjvtj+β2)λtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

(
e−ϕtjv

δtiNtj

tj

(
Ntj!

)−δtj
)

×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtjvtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.28)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,
nt∑
j=1

ϕtj + β1

,
λt | Nt, δt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,

nt∑
j=1

δtjvtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZIP1
(
N , δ,ϕ | X,v, T

)
=

b∏
t=1

pZIP1
(
Nt, δt,ϕt | Xt,vt

)
. (3.29)

Now, we discuss the DIC for this tree which can be derived as a special case

of (2.15) with θt = (µt, λt). To this end, we first focus on DICt of terminal node

t. It follows that

D(µ̄t, λ̄t) = −2 log fZIP1(Nt | µ̄t, λ̄t)
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= −2
nt∑
j=1

log

(
1

1 + µ̄t

I(Ntj=0) +
µ̄t

1 + µ̄t

(λ̄tvtj)
Ntj

Ntj!
e−λ̄tvtj

)
, (3.30)

where

µ̄t =

∑nt

j=1 δtj + α1∑nt

j=1 ϕtj + β1
, λ̄t =

∑nt

j=1 δtjNtj + α2∑nt

j=1 δtjvtj + β2
. (3.31)

Next, since

log fZIP1
(
Nt, δt,ϕt | µt, λt

)
=

nt∑
j=1

[
−ϕtj(1 + µt) + δtj log (µt) + δtjNtj log

(
λtvtj

)
− δtjλtvtj − δtj log

(
Ntj!

)]
,

we can derive that

qDt = −2Epost

[
log fZIP1(Nt, δt,ϕt | µt, λt)

]
+ 2 log fZIP1(Nt, δt,ϕt | µ̄t, λ̄t)

= 2

log

 nt∑
j=1

δtj + α1

− ψ

 nt∑
j=1

δtj + α1


 nt∑

j=1

δtj

+2

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj. (3.32)

Therefore, DICt can be obtained from (3.30) and (3.32) as

DICt =D
(
µ̄t, λ̄t

)
+ 2qDt

=− 2
nt∑
j=1

log

(
1

1 + µ̄t

I(Ntj=0) +
µ̄t

1 + µ̄t

(λ̄tvtj)
Ntj

Ntj!
e−λ̄tvtj

)

+ 4

log

 nt∑
j=1

δtj + α1

− ψ

 nt∑
j=1

δtj + α1


 nt∑

j=1

δtj

+ 4

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj.

Remark 3.4 ZIP2, ZIP3 and all ZINB models discussed in the following context,

also all ZICPG models discussed in Chapter 5 shall use a similar approach to prove

that the data augmented likelihood is equal to the data likelihood when the latent

variables are integrated out. We provide details only for the ZIP1 model in this

subsection, and others are omitted to avoid repetition.
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3.3.2 Zero-Inflated Poisson Model 2 (ZIP2)

For terminal node t, we use the following ZIP distribution by embedding the

exposure into the zero mass part (see Lee (2021)),

fZIP2
(
Ntj | µt, λt, vtj

)
=


1

1+µtvtj
+

µtvtj
1+µtvtj

e−λt Ntj = 0,

µtvtj
1+µtvtj

λ
Ntj
t

Ntj !
e−λt Ntj = 1, 2, . . . ,

(3.33)

where 1
1+µtvtj

∈ (0, 1) is the probability that a zero is due to the point mass

component. This formulation stems from an intuitive inverse relationship between

the exposure and the probability of zero mass. This way of embedding exposure

has been justified to be more effective in Lee (2021).

Similar to before, we introduce the same two latent variables ϕt and δt, and

define the data augmented likelihood for the j-th data instance in terminal node

t as

fZIP2
(
Ntj, δtj, ϕtj | µt, λt

)
= e−ϕtj(1+µtvtj)

(
µtvtjλ

Ntj

t

Ntj!
e−λt

)δtj

, (3.34)

where the support of the function fZIP2 is the same as in the ZIP1 model. Besides,

it can be shown that (3.33) is the marginal distribution of the above augmented

distribution.

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, λt ∼ Bern

(
µtvtje

−λt

1 + µtvtje−λt

)
,

and δtj = 1, given Ntj > 0. Furthermore, ϕtj, given the parameter µt, has an

Exponential distribution, i.e.,

ϕtj | µt ∼ Exp
(
1 + µtvtj

)
.

As before, we assume independent conjugate Gamma priors for µt and λt with

hyper-parameters αi, βi > 0, i = 1, 2. Given the data augmented likelihood in

(3.34) and Gamma priors, we can obtain the integrated augmented likelihood for

terminal node t as follows

pZIP2
(
Nt, δt,ϕt | Xt,vt

)
=

∫ ∞

0

∫ ∞

0

fZIP2
(
Nt, δt,ϕt | µt, λt

)
p(µt)p(λt)dµtdλt
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=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µtvtj)

(
µtvtjλ

Ntj

t

Ntj!
e−λt

)δtj


×β
α1
1 µt

α1−1e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

(
vtj
Ntj!

)δtj
∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtjvtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtj+β2)λtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

(
vtj
Ntj!

)δtj


×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtjvtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.35)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,
nt∑
j=1

ϕtjvtj + β1

,
λt | Nt, δt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,
nt∑
j=1

δtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZIP2
(
N , δ,ϕ | X,v, T

)
=

b∏
t=1

pZIP2
(
Nt, δt,ϕt | Xt,vt, T

)
. (3.36)

Now, we discuss the DICt of terminal node t. It follows that

D(µ̄t, λ̄t) = −2 log fZIP2(Nt | µ̄t, λ̄t)

= −2
nt∑
j=1

log

(
1

1 + µ̄tvtj
I(Ntj=0) +

µ̄tvtj
1 + µ̄tvtj

λ̄
Ntj

t

Ntj!
e−λ̄t

)
, (3.37)

where

µ̄t =

∑nt

j=1 δtj + α1∑nt

j=1 ϕtjvtj + β1
, λ̄t =

∑nt

j=1 δtjNtj + α2∑nt

j=1 δtj + β2
. (3.38)

Next, since

log fZIP2
(
Nt, δt,ϕt | µt, λt

)
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=
nt∑
j=1

[
−ϕtj(1 + µtvtj) + δtj log

(
µtvtj

)
+ δtjNtj log (λt)− δtjλt − δtj log

(
Ntj!

)]
,

we can derive the same expression for qDt as in (3.32). Therefore, we can obtain

DICt = D(µ̄t, λ̄t) + 2qDt directly from (3.37) and (3.32).

3.3.3 Zero-Inflated Poisson Model 3 (ZIP3)

After considering ZIP1 and ZIP2 models, which embed the exposure into different

parts, it is natural to consider placing the exposure into both the Poisson part and

the zero mass part. For terminal node t, we use the following ZIP distribution

fZIP3
(
Ntj | µt, λt, vtj

)
=

 1
1+µtvtj

+
µtvtj

1+µtvtj
fP(0 | λt, vtj) Ntj = 0,

µtvtj
1+µtvtj

fP(Ntj | λt, vtj) Ntj = 1, 2, . . . ,
(3.39)

where fP(Ntj | λt, vtj) is given as in (3.1), and 1
1+µtvtj

∈ (0, 1) is the probability

that a zero is due to the point mass component.

Similar to before, we introduce the same two latent variables ϕt and δt, and

define the data augmented likelihood for the j-th data instance in terminal node

t as

fZIP3
(
Ntj, δtj, ϕtj | µt, λt

)
= e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj

, (3.40)

where the support of the function fZIP3 is the same as in the ZIP1 model. Besides,

it can be shown that (3.39) is the marginal distribution of the above augmented

distribution.

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, λt ∼ Bern

(
µtvtje

−λtvtj

1 + µtvtje−λtvtj

)
,

and δtj = 1, given Ntj > 0. Furthermore, ϕtj, given the parameter µt, has an

Exponential distribution, i.e.,

ϕtj | µt ∼ Exp
(
1 + µtvtj

)
.

As before, we assume independent conjugate Gamma priors for µt and λt with

hyper-parameters αi, βi > 0, i = 1, 2. Then, we can derive the integrated aug-

mented likelihood for terminal node t as follows

pZIP3
(
Nt, δt,ϕt | Xt,vt

)
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=

∫ ∞

0

∫ ∞

0

fZIP3
(
Nt, δt,ϕt | µt, λt

)
p(µt)p(λt)dµtdλt

=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj


×β
α1
1 µt

α1−1e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt

=
nt∏
j=1

(
e−ϕtjv

δtj(1+Ntj)
tj

(
Ntj!

)−δtj
)∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtjvtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtjvtj+β2)λtdλt ×
βα1
1

Γ (α1)

βα2
2

Γ (α2)

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

(
e−ϕtjv

δtj(1+Ntj)
tj

(
Ntj!

)−δtj
)

×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtjvtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtjvtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.41)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,
nt∑
j=1

ϕtjvtj + β1

,
λt | Nt, δt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,
nt∑
j=1

δtjvtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZIP3
(
N , δ,ϕ | X,v, T

)
=

b∏
t=1

pZIP3
(
Nt, δt,ϕt | Xt,vt

)
. (3.42)

Now, we discuss the DICt of terminal node t. It follows that

D(µ̄t, λ̄t)

= −2 log fZIP3(Nt | µ̄t, λ̄t)

= −2
nt∑
j=1

log

(
1

1 + µ̄tvtj
I(Ntj=0) +

µ̄tvtj
1 + µ̄tvtj

(λ̄tvtj)
Ntj

Ntj!
e−λ̄tvtj

)
,

(3.43)

where

µ̄t =

∑nt

j=1 δtj + α1∑nt

j=1 ϕtjvtj + β1
, λ̄t =

∑nt

j=1 δtjNtj + α2∑nt

j=1 δtjvtj + β2
. (3.44)
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Next, since

log fZIP3
(
Nt, δt,ϕt | µt, λt

)
=

nt∑
j=1

[
−ϕtj(1 + µtvtj) + δtj log

(
µtvtj

)
+ δtjNtj log

(
λtvtj

)
− δtjλtvtj − δtj log

(
Ntj!

)]
,

we still can derive the same expression for qDt as in (3.32). Therefore, we can

obtain DICt = D(µ̄t, λ̄t) + 2qDt directly from (3.43) and (3.32).

3.3.4 Zero-Inflated Poisson Model 4 (ZIP4)

Different from the introduction of two latent variables in the previous subsections,

this subsection shall employ another data augmentation method in the ZIP model,

which only needs to introduce one latent variable; see, e.g., Tanner &Wong (1987),

Rodrigues (2003) and Diebolt & Robert (1994). In the constructions of the mod-

els discussed therein with one latent variable, even if the latent variable can be

integrated out from the data augmented likelihood, it does not lead to an equation

that equals the data likelihood. Meanwhile, using two latent variables proposed

in Murray (2021), the data augmented likelihood is equal to the data likelihood if

the latent variables are integrated out, which should be more accurate. However,

a model using one latent variable should work more efficiently and decrease the

randomness compared to a model using two latent variables. Besides, Diebolt

& Robert (1994) showed that the two likelihoods (data likelihood and data aug-

mented likelihood) can achieve the same asymptotic convergence even if they are

not equal, making this data augmentation method usable as well. We refer to

Diebolt & Robert (1994) for a comprehensive analysis and explanation.

For terminal node t, we use the following ZIP distribution by embedding the

exposure into the Poisson part,

fZIP4
(
Ntj | ωt, λt, vtj

)
=

{
ωt + (1− ωt)fP

(
0 | λt, vtj

)
Ntj = 0

(1− ωt)fP
(
Ntj | λt, vtj

)
Ntj = 1, 2, . . . ,

(3.45)

where fP(Ntj | λt, vtj) is given as in (3.1), and ωt is the probability that a zero is

due to the point mass component. Let Mt = {Ntj : Ntj = 0 (j = 1, 2, · · · , nt)}
and rt = #(Mt), the likelihood function for terminal node t can be rewritten as:

fZIP4
(
Nt | ωt, λt

)
=

∏
j:Ntj=0

fZIP4
(
Ntj | ωt, λt

) ∏
j:Ntj>0

fZIP4
(
Ntj | ωt, λt

)
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=
∏

j:Ntj=0

(
ωt + (1− ωt)e

−λtvtj
) ∏

j:Ntj>0

(1− ωt)
e−λtvtj

(
λtvtj

)Ntj

Ntj!

=
∏

j:Ntj=0

(
ωt + (1− ωt)e

−λtvtj
)
(1− ωt)

nt−rt
∏

j:Ntj>0

e−λtvtj
(
λtvtj

)Ntj

Ntj!
.

The elements of the set Mt come from two different groups, either the degener-

ate distribution at zero or fP(Ntj = 0). In this case, it is natural to define an

unobserved latent variable:

Utj =

{
1, p(ωt, λt)
0, 1− p(ωt, λt)

where j = 1, 2, · · · , rt and

p(ωt, λt) =
ωt

ωt + (1− ωt)e−λtvtj
.

The latent variable Utj indicates whether the j-th element of set Mt is drawn

from the degenerate distribution at zero or not. Therefore, the likelihood function

based on the augmented data (Nt,Ut) for terminal node t is:

fZIP4
(
Nt,Ut | ωt, λt

)
= fZIP4

(
Nt | ωt, λt

) rt∏
j=1

p(ωt, λt)
Utj
(
1− p(ωt, λt)

)1−Utj

=
∏

j:Ntj=0

(
ωt + (1− ωt)e

−λtvtj
)
(1− ωt)

nt−rt
∏

j:Ntj>0

e−λtvtj
(
λtvtj

)Ntj

Ntj!

×
rt∏
j=1

(
ωt

ωt + (1− ωt)e−λtvtj

)Utj

(
(1− ωt)e

−λtvtj

ωt + (1− ωt)e−λtvtj

)1−Utj

= (1− ωt)
nt−rt+rt−

∑rt
j=1 Utj

 ∏
j:Ntj>0

e−λtvtj
(
λtvtj

)Ntj

Ntj!

ω
∑rt

j=1 Utj

t e−λt
∑rt

j=1 vtj(1−Utj)

= (1− ωt)
nt−

∑rt
j=1 Utjω

∑rt
j=1 Utj

t e−λt(
∑nt

j=1 vtj−
∑rt

j=1 vtjUtj)λ

∑
j:Ntj>0 Ntj

t

∏
j:Ntj>0

v
Ntj

tj

Ntj!
.

(3.46)

By conditional arguments, we can check that Utj, given parameters (ωt and

λt), has a Bernoulli distribution, i.e.,

Utj | ωt, λt ∼ Bern

(
1,

ωt

ωt + (1− ωt)e−λtvtj

)
.
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This observation of data augmented likelihood motivates us to assume indepen-

dent conjugate Beta and Gamma priors for ωt and λt respectively with hyper-

parameters αi, βi > 0, i = 1, 2, that is,

p(ωt) =
ωα1−1
t (1− ωt)

β1−1

B(α1, β1)
,

p(λt) =
βα2
2 λt

α2−1e−β2λt

Γ(α2)
,

where B(α1, β1) =
Γ(α1)Γ(β1)
Γ(α1+β1)

. Then, the integrated likelihood for terminal node t

can be obtained as

pZIP4
(
Nt,Ut | Xt,vt

)
=

∫ ∞

0

∫ ∞

0

fZIP4
(
Nt,Ut | ωt, λt

)
p(ωt)p(λt)dωtdλt

=

∫ ∞

0

∫ ∞

0

(1− ωt)
nt−

∑rt
j=1 Utjω

∑rt
j=1 Utj

t e−λt(
∑nt

j=1 vtj−
∑rt

j=1 vtjUtj)λ

∑
j:Ntj>0 Ntj

t

×ω
α1−1
t (1− ωt)

β1−1

B(α1, β1)

βα2
2 λt

α2−1e−β2λt

Γ(α2)
dωtdλt ×

∏
j:Ntj>0

v
Ntj

tj

Ntj!

=
∏

j:Ntj>0

v
Ntj

tj

Ntj!

βα2
2

B(α1, β1)Γ(α2)

∫ ∞

0

(1− ωt)
nt−

∑rt
j=1 Utj+β1−1ω

∑rt
j=1 Utj+α1−1

t dωt

×
∫ ∞

0

e−λt(
∑nt

j=1 vtj−
∑rt

j=1 vtjUtj+β2)λ

∑
j:Ntj>0 Ntj+α2−1

t dλt

=
∏

j:Ntj>0

v
Ntj

tj

Ntj!

βα2
2

B(α1, β1)Γ(α2)
×B

 rt∑
j=1

Utj + α1, nt −
rt∑
j=1

Utj + β1


×

Γ(
∑

j:Ntj>0Ntj + α2)(∑nt

j=1 vtj −
∑rt

j=1 vtjUtj + β2

)Γ(∑j:Ntj>0 Ntj+α2)
. (3.47)

Moreover, from the above, we see that the posterior distributions of ωt and λt

given the augmented data (Nt,Ut) are given by

ωt | Ut ∼ Beta

 rt∑
j=1

Utj + α1, nt −
rt∑
j=1

Utj + β1

,
λt | Nt,Ut ∼ Gamma

 ∑
j:Ntj>0

Ntj + α2,

nt∑
j=1

vtj −
rt∑
j=1

vtjUtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZIP4
(
N ,U | X,v, T

)
=

b∏
t=1

pZIP4
(
Nt,Ut | Xt,vt

)
. (3.48)
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Now, we discuss the DIC for this tree which can be derived as a special case

of (2.15) with θt = (ωt, λt). To this end, we first focus on DICt of terminal node

t. It follows that

D(ω̄t, λ̄t) = −2 log fZIP4(Nt | ω̄t, λ̄t)

= −2
nt∑
j=1

log

(
ω̄tI(Ntj=0) + (1− ω̄t)

(λ̄tvtj)
Ntj

Ntj!
e−λ̄tvtj

)
, (3.49)

where

ω̄t =

∑rt
j=1 Utj + α1∑rt

j=1 Utj + α1 + nt −
∑rt

j=1 Utj + β1
=

∑rt
j=1 Utj + α1

α1 + nt + β1
,

λ̄t =

∑
j:Ntj>0Ntj + α2∑nt

j=1 vtj −
∑rt

j=1 vtjUtj + β2
.

Next, since

log fZIP4
(
Nt,Ut | ωt, λt

)
=

nt −
rt∑
j=1

Utj

 log(1− ωt) + log(ωt)
rt∑
j=1

Utj − λt

 nt∑
j=1

vtj −
rt∑
j=1

vtjUtj


+
[
log(λt) +Ntj log(vtj)− log(Ntj!)

] ∑
j:Ntj>0

Ntj,

we can derive that

qDt = −2Epost

(
log fZIP4(Nt,Ut | ωt, λt)

)
+ 2 log fZIP4(Nt,Ut | ω̄t, λ̄t)

= 2

log

(∑rt
j=1 Utj + α1

α1 + nt + β1

)
− ψ

 rt∑
j=1

Utj + α1


 rt∑

j=1

Utj + 2ntψ(α1 + nt + β1)

+ 2

nt −
rt∑
j=1

Utj


log

(
nt −

∑rt
j=1 Utj + β1

α1 + nt + β1

)
− ψ

nt −
rt∑
j=1

Utj + β1




+ 2

log

 ∑
j:Ntj>0

Ntj + α2

− ψ

 ∑
j:Ntj>0

Ntj + α2


 ∑

j:Ntj>0

Ntj, (3.50)

where we use the fact that

Epost

(
log (ωt)

)
= ψ

 rt∑
j=1

Utj + α1

− ψ (α1 + nt + β1) ,

Epost

(
log (1− ωt)

)
= ψ

nt −
rt∑
j=1

Utj + β1

− ψ (α1 + nt + β1) .
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Table 3.3: Evaluation metrics for ZIP-BCART (ZIP1-ZIP3).

N̂tj = µ̄tλ̄tvtj/(1 + µ̄t) for ZIP1; N̂tj = µ̄tλ̄tvtj/(1 + µ̄tvtj) for

ZIP2; N̂tj = µ̄tλ̄tv
2
tj/(1 + µ̄tvtj) for ZIP3. ϵt denotes the empiri-

cal claims frequency in node t, computed as
∑nt

j=1Ntj/
∑nt

j=1 vtj.

µ̄t and λ̄t are parameter estimations that can be obtained from

(3.31) (or (3.38), (3.44)).

Formulas

RSS(N )
∑b

t=1

∑nt

j=1

(
Ntj − N̂tj

)2
SE

∑b
t=1

(
ϵt − µ̄tλ̄t/(1 + µ̄t)

)2
DS

∑b
t=1

(1+µ̄t)2

µ̄tλ̄t(1+µ̄t+λ̄t)

(
ϵt − µ̄tλ̄t/(1 + µ̄t)

)2
Therefore, DICt = D

(
ω̄t, λ̄t

)
+ 2qDt can be directly obtained from (3.49) and

(3.50).

For the above four ZIP models, the DIC of the tree T is obtained by using

(2.14). With the formulas derived in the above four subsections for ZIP models, we

can use the three-step approach proposed in Section 2.2.4, together with Algorithm

2.3 (see Subsection 2.2.3), to search for an optimal tree which can then be used

to predict new data.

As in the previous section, we can obtain the formulas for some of the evalua-

tion metrics based on ZIP1-ZIP3 models in Table 3.3.

Remark 3.5 (a) As in the data augmentation method proposed following Murray

(2021) there should also be three different ways to embed the exposure (Poisson

part, zero mass part, or both Poisson and zero mass parts) by using one latent

variable. However, as discussed, theoretically, the accuracy of the ZIP4 model is

worse than ZIP1-ZIP3 models because of the different data augmentation methods

used. This theoretical statement is also verified by our simulation study (not in-

cluded in this thesis). Therefore, this technique introduced in this subsection will

not be explored further in the thesis.

(b) The performance of the ZIP3 model does not show a significant improve-

ment compared to the ZIP2 model in some initial simulation studies. Therefore,

in the following simulation studies and real data analyses, only ZIP1 and ZIP2

models are considered.
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3.3 Zero-Inflated Poisson-Bayesian CART

3.3.5 Initial Estimators of ZIP Models

When using Algorithm 2.3 (see Subsection 2.2.3) to search for an optimal tree for

ZIP models, the initial estimators of parameters µt and λt in ZIP1-ZIP3 models

(or ωt and λt in ZIP4 model) should be obtained for generating latent variables.

After some calculations, we find that the MME is not applicable when exposure

is included. However, the involvement of exposure is one of the key features in

insurance claims frequency analysis. Thus, in this subsection, we will focus on

MLE for estimating parameters; see, e.g., Beckett et al. (2014). In the following

discussion, we omit the subscript t for ZIP models since the same calculations can

be done within any certain node. Besides, when exposure is included, there are

different ways to model the response variable. Since it is not the main focus here,

only the calculation details of the ZIP1 model are provided below; others can be

done similarly.

Recall ZIP1 model has the following probability mass function:

fZIP1(Nj | µ, λ) =


1

1+µ
+ µ

1+µ
e−λvj Nj = 0

µ
1+µ

e−λvj (λvj)
Nj

Nj
Nj = 1, 2, . . . .

Then, the likelihood function is defined as

L(µ, λ | N) =
n∏

j=1

fZIP1
(
Nj

)
=
∏

j:Nj=0

(
1

1 + µ
+

µ

1 + µ
e−λvj

) ∏
j:Nj>0

(
µ

1 + µ

e−λvj(λvj)
Nj

Nj!

)
,

and the log-likelihood function is given as

l(µ, λ | N) =
n∑

j=1

[
I(Nj=0) log

(
1

1 + µ
+

µ

1 + µ
e−λvj

)

+I(Nj>0)

(
log

(
µ

1 + µ

)
− λvj +Nj log

(
λvj
)
− log

(
Nj!
)) .

By taking the partial derivatives of l(µ, λ | N) with respect to µ and λ respectively,

the following equations can be obtained:

∂l

∂µ
=

n∑
j=1

(
I(Nj=0)

e−λvj − 1

(1 + µ)(1 + µe−λvj)
+ I(Nj>0)

1

(1 + µ)µ

)
,

∂l

∂λ
=

n∑
j=1

[
I(Nj=0)

−vj(1 + µ)e−λvj

(1 + µe−λvj)
+ I(Nj>0)

(
Nj

λ
− vj

)]
.
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3.4 Zero-Inflated NB-Bayesian CART

Obviously, we cannot obtain explicit expressions for µ̂MLE and λ̂MLE by setting the

above two equations equal to zero manually. However, the optimization problem

can be easily solved using software R. In our implementation, the package optimx

is used; see more details in Nash & Grothendieck (2023).

Remark 3.6 When applying the package optimx, several starting points are used,

yielding consistent results that instill confidence in identifying the global maxima.

Consequently, the estimates are deemed sensible as a result of the optimization

problem.

3.4 Zero-Inflated NB-Bayesian CART

ZINB models potentially fit better than ZIP models since they can incorporate

additional over-dispersion. In this section, we only consider using the data aug-

mentation way proposed in Murray (2021) due to its accuracy (see the discussion

in Subsection 3.3.4). Depending on how the exposure is embedded, we discuss

four ZINB models. While the treatments (data augmentation and treating the

same parameter κ as known) in all four models are similar, the main text includes

the calculation processes and results with an emphasis on their differences for the

completeness of the content.

3.4.1 Zero-Inflated NB Model 1 (ZINB1)

For terminal node t, we use the following ZINB distribution by adopting NB1

model (exposure included, see Subsection 3.2.1),

fZINB1

(
Ntj | µt, κt, λt, vtj

)
=P

(
Ntj | µt, κt, λt, vtj

)
=

{
1

1+µt
+ µt

1+µt
fNB1(0 | κt, λt, vtj) Ntj = 0,

µt

1+µt
fNB1(m | κt, λt, vtj) Ntj = 1, 2, . . . ,

(3.51)

where κt, λt > 0; fNB1(Ntj | κt, λt, vtj) is given as in (3.9), and 1
1+µt

∈ (0, 1) is

the probability that a zero is due to the point mass component. In the same way

as Subsection 3.2.1, we shall treat both µt and λt as unknown in the Bayesian

framework and treat the parameter κt as known which can be estimated upfront

by using MLE.

Similar to NB and ZIP models, a data augmentation scheme is needed for the

ZINBmodel. To this end, we introduce three latent variables ξt = (ξt1, ξt2, . . . , ξtnt) ∈
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3.4 Zero-Inflated NB-Bayesian CART

(0,∞)nt , ϕt = (ϕt1, ϕt2, . . . , ϕtnt) ∈ (0,∞)nt and δt = (δt1, δt2, . . . , δtnt) ∈ {0, 1}nt ,

and define the data augmented likelihood for the j-th data instance in terminal

node t as

fZINB1

(
Ntj, δtj, ξtj, ϕtj | µt, κ̂t, λt

)
= e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj κ̂κ̂t
t

Γ(κ̂t)Ntj!
e−ξtj(λtvtj+κ̂t)ξ

κ̂t+Ntj−1
tj

δtj

,
(3.52)

where the support of the function fZINB1 is
(
{0} × {0, 1} × (0,∞)× (0,∞)

)
∪(

N× {1} × (0,∞)× (0,∞)
)
. It can be shown that (3.51) is the marginal distri-

bution of the above augmented distribution.

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt, κ̂t, and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, κ̂t, λt ∼ Bern

 µt

(
κ̂t

κ̂t+λtvtj

)κ̂t

1 + µt

(
κ̂t

κ̂t+λtvtj

)κ̂t

,
and δtj = 1, given Ntj > 0. And, ξtj, given data Ntj and parameters (κ̂t and λt),

has a Gamma distribution, i.e.,

ξtj | Ntj, κ̂t, λt ∼ Gamma
(
κ̂t +Ntj, κ̂t + λt

)
.

Furthermore, ϕtj, given the parameter µt, has an Exponential distribution, i.e.,

ϕtj | µt ∼ Exp (1 + µt) .

Given the data augmented likelihood in (3.52), the estimated parameter κ̂t, and

independent conjugate Gamma priors for µt and λt with hyper-parameters αi, βi >

0, i = 1, 2 (cf. (3.2)), we can derive the integrated augmented likelihood for

terminal node t as follows

pZINB1

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
=

∫ ∞

0

∫ ∞

0

fZINB1

(
Nt, δt, ξt,ϕt | µt, κ̂t, λt

)
p(µt)p(λt)dµtdλt

=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj κ̂κ̂t
t

Γ(κ̂t)Ntj!
e−ξtj(λtvtj+κ̂t)ξ

κ̂t+Ntj−1
tj

δtj

×β
α1
1 µt

α1−1e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt
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3.4 Zero-Inflated NB-Bayesian CART

=
nt∏
j=1

e−ϕtj

 v
Ntj

tj κ̂κ̂t
t

Γ(κ̂t)Ntj!
e−ξtj κ̂tξ

κ̂t+Ntj−1
tj

δtj ∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtjξtjvtj+β2)λtdλt ×
βα1
1

Γ (α1)

βα2
2

Γ (α2)

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

 v
Ntj

tj κ̂κ̂t
t

Γ(κ̂t)Ntj!
e−ξtj κ̂tξ

κ̂t+Ntj−1
tj

δtj

×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtjξtjvtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.53)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt, ξt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,
nt∑
j=1

ϕtj + β1

,
λt | Nt, δt, ξt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,
nt∑
j=1

δtjξtjvtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZINB1

(
N , δ, ξ,ϕ | X,v, κ̂, T

)
=

b∏
t=1

pZINB1

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
. (3.54)

Now, we discuss the DIC for this tree which can be derived as a special case

of the new DIC proposed in Subsection 3.2.1 with θ = (µ,κ,λ). Particularly,

θM = κ and θB = (µ,λ). To this end, we first focus on DICt of terminal node t.

It follows that

D(µ̄t, λ̄t)

= −2 log fZINB1(Nt | µ̄t, κ̂t, λ̄t)

= −2
nt∑
j=1

log

 1

1 + µ̄t

I(Ntj=0) +
µ̄t

1 + µ̄t

Γ(Ntj + κ̂t)

Γ(κ̂t)Ntj!

(
κ̂t

κ̂t + λ̄tvtj

)κ̂t
(

λ̄tvtj
κ̂t + λ̄tvtj

)Ntj

,
(3.55)

where

µ̄t =

∑nt

j=1 δtj + α1∑nt

j=1 ϕtj + β1
, λ̄t =

∑nt

j=1 δtjNtj + α2∑nt

j=1 δtjξtjvtj + β2
. (3.56)

Next, since

log fZINB1

(
Nt, δt, ξt,ϕt | µt, κ̂t, λt

)
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=
nt∑
j=1

[
−ϕtj(1 + µt) + δtj log (µt) + δtjNtj log

(
λtvtj

)
− δtjξtj(λtvtj + κ̂t)

−δtj log
(
Γ(κ̂t)

)
− δtj log

(
Ntj!

)
+ κ̂t log(κ̂t) + (κ̂t +Ntj − 1) log(ξtj)

]
,

we can derive that

rDt = 1− 2Epost

(
log fZINB1(Nt, δt, ξt,ϕt | µt, κ̂t, λt)

)
+2 log fZINB1

(
Nt, δt, ξt,ϕt | µ̄t, κ̂t, λ̄t

)
= 1 + 2

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj

+2

log

 nt∑
j=1

δtj + α1

− ψ

 nt∑
j=1

δtj + α1


 nt∑

j=1

δtj, (3.57)

Therefore, DICt can be obtained from (3.55) and (3.57) as

DICt

= D
(
µ̄t, λ̄t

)
+ 2rDt

= −2
nt∑
j=1

log

 1

1 + µ̄t

I(Ntj=0) +
µ̄t

1 + µ̄t

Γ(Ntj + κ̂t)

Γ(κ̂t)Ntj!

(
κ̂t

κ̂t + λ̄tvtj

)κ̂t
(

λ̄tvtj
κ̂t + λ̄tvtj

)Ntj


+ 2 + 4

log

 nt∑
j=1

δti + α1

− ψ

 nt∑
j=1

δti + α1


 nt∑

j=1

δtj

+ 4

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj.

Remark 3.7 (a) It is worth noting that the way of dealing with the parameter κ

is different from that in Section 3.2 where MME is used for each node. It turns

out that way of dealing with κ is not applicable in ZINB models, and MLE is used

instead.

(b) ZINB2-ZINB4 models discussed in the subsequent subsections use the same

treatments for all parameters and introduce the same latent variables. Besides, it

can be shown that all ZINB distributions defined at the beginning of each subsection

are the marginal distributions of augmented distributions for each corresponding

model. Therefore, we will not repeat these details in the following context.
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3.4.2 Zero-Inflated NB Model 2 (ZINB2)

For terminal node t, we use the following ZINB distribution by not only adopting

the NB1 model (exposure included, see Subsection 3.2.1) but also embedding the

exposure into the zero mass part,

fZINB2

(
Ntj | µt, κt, λt, vtj

)
=

 1
1+µtvtj

+
µtvtj

1+µtvtj
fNB1(0 | κt, λt, vtj) Ntj = 0,

µtvtj
1+µtvtj

fNB1(Ntj | κt, λt, vtj) Ntj = 1, 2, . . . ,

(3.58)

where κt, λt > 0 and 1
1+µtvtj

∈ (0, 1) is the probability that a zero is due to the

point mass component.

Then, the data augmented likelihood for the j-th data instance in terminal

node t can be defined as

fZINB2

(
Ntj, δtj, ξtj, ϕtj | µt, κ̂t, λt

)
= e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj κ̂κ̂t
t

Γ(κ̂t)Ntj!
e−ξtj(λtvtj+κ̂t)ξ

κ̂t+Ntj−1
tj

δtj

.
(3.59)

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt, κ̂t, and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, κ̂t, λt ∼ Bern

 µtvtj

(
κ̂t

κ̂t+λtvtj

)κ̂t

1 + µtvtj

(
κ̂t

κ̂t+λtvtj

)κ̂t

,
and δtj = 1, given Ntj > 0. And, ξtj, given data Ntj and parameters (κ̂t and λt),

has a Gamma distribution, i.e.,

ξtj | Ntj, κ̂t, λt ∼ Gamma
(
κ̂t +Ntj, κ̂t + λt

)
.

Furthermore, ϕtj, given the parameter µt, has an Exponential distribution, i.e.,

ϕtj | µt ∼ Exp
(
1 + µtvtj

)
.

Given independent conjugate Gamma priors for µt and λt with hyper-parameters

αi, βi > 0, i = 1, 2, and the estimated parameter κ̂t, we can derive the integrated

augmented likelihood for terminal node t as follows

pZINB2

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
=

∫ ∞

0

∫ ∞

0

fZINB2

(
Nt, δt, ξt,ϕt | µt, κ̂t, λt

)
p(µt)p(λt)dµtdλt
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=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj κ̂κ̂t
t

Γ(κ̂t)Ntj!
e−ξtj(λtvtj+κ̂t)ξ

κ̂t+Ntj−1
tj

δtj

(3.60)

×β
α1
1 µt

α1−1e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt

=
nt∏
j=1

e−ϕtj

v
Ntj+1
tj κ̂κ̂t

t

Γ(κ̂t)Ntj!
e−ξtj κ̂tξ

κ̂t+Ntj−1
tj

δtj ∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtjvtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtjξtjvtj+β2)λtdλt ×
βα1
1

Γ (α1)

βα2
2

Γ (α2)

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

v
Ntj+1
tj κ̂κ̂t

t

Γ(κ̂t)Ntj!
e−ξtj κ̂tξ

κ̂t+Ntj−1
tj

δtj

×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtjvtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtjξtjvtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.61)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt, ξt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,
nt∑
j=1

ϕtjvtj + β1

,
λt | Nt, δt, ξt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,
nt∑
j=1

δtjξtjvtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZINB2

(
N , δ, ξ,ϕ | X,v, κ̂, T

)
=

b∏
t=1

pZINB2

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
. (3.62)

Now, we discuss the DICt of terminal node t of this tree. Similarly, we can

derive the same expression for rDt as in (3.57) and we can easily check that

DICt

= D
(
µ̄t, λ̄t

)
+ 2rDt

= −2
nt∑
j=1

log

 1

1 + µ̄tvtj
I(Ntj=0) +

µ̄tvtj
1 + µ̄tvtj

Γ(Ntj + κ̂t)

Γ(κ̂t)Ntj!

(
κ̂t

κ̂t + λ̄tvtj

)κ̂t
(

λ̄tvtj
κ̂t + λ̄tvtj

)Ntj


+2 + 4

log

 nt∑
j=1

δtj + α1

− ψ

 nt∑
j=1

δtj + α1


 nt∑

j=1

δtj
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+4

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj,

where

µ̄t =

∑nt

j=1 δtj + α1∑nt

j=1 ϕtjvtj + β1
, λ̄t =

∑nt

j=1 δtjNtj + α2∑nt

j=1 δtjξtjvtj + β2
. (3.63)

3.4.3 Zero-Inflated NB Model 3 (ZINB3)

For terminal node t, we use the following ZINB distribution by adopting NB2

model (exposure included, see Subsection 3.2.2),

fZINB3

(
Ntj | µt, κt, λt, vtj

)
=

{
1

1+µt
+ µt

1+µt
fNB2(0 | κt, λt, vtj) Ntj = 0,

µt

1+µt
fNB2(Ntj | κt, λt, vtj) Ntj = 1, 2, . . . ,

(3.64)

where κt, λt > 0; fNB2(Ntj | κt, λt, vtj) is given as in (3.20), and 1
1+µt

∈ (0, 1) is

the probability that a zero is due to the point mass component.

As before, the data augmented likelihood for the j-th data instance in terminal

node t can be defined as

fZINB3

(
Ntj, δtj, ξtj, ϕtj | µt, κ̂t, λt

)
= e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj(λt+κ̂t)ξ

κ̂tvtj+Ntj−1
tj

δtj

.
(3.65)

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt, κ̂t, and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, κ̂t, λt ∼ Bern

 µt

(
κ̂t

κ̂t+λt

)κ̂tvtj

1 + µt

(
κ̂t

κ̂t+λt

)κ̂tvtj

,
and δtj = 1, given Ntj > 0. And, ξtj, given data Ntj and parameters (κ̂t and λt),

has a Gamma distribution, i.e.,

ξtj | Ntj, κ̂t, λt ∼ Gamma
(
κ̂tvtj +Ntj, κ̂tvtj + λtvtj

)
.

Furthermore, ϕtj, given the parameter µt, has an Exponential distribution, i.e.,

ϕtj | µt ∼ Exp (1 + µt) .
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Given independent conjugate Gamma priors for µt and λt with hyper-parameters

αi, βi > 0, i = 1, 2, and the estimated parameter κ̂t, we can derive the integrated

augmented likelihood for terminal node t as follows

pZINB3

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
=

∫ ∞

0

∫ ∞

0

fZINB3

(
Nt, δt, ξt,ϕt | µt, κ̂t, λt

)
p(µt)p(λt)dµtdλt

=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj(λt+κ̂t)ξ

κ̂tvtj+Ntj−1
tj

δtj

×β
α1
1 µα1−1

t e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

vNtj

tj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj κ̂tξ

κ̂tvtj+Ntj−1
tj

δtj

×
∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtjξtjvtj+β2)λtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

vNtj

tj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj κ̂tξ

κ̂tvtj+Ntj−1
tj

δtj

×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtjξtjvtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.66)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt, ξt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,

nt∑
j=1

ϕtj + β1

,
λt | Nt, δt, ξt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,
nt∑
j=1

δtjξtjvtj + β2

.
The integrated augmented likelihood for the tree T is thus given by

pZINB3

(
N , δ, ξ,ϕ | X,v, κ̂, T

)
=

b∏
t=1

pZINB3

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
. (3.67)

Now, we discuss the DICt of terminal node t of this tree. Similarly, we can
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3.4 Zero-Inflated NB-Bayesian CART

derive the same expression for rDt as in (3.57) and we can easily check that

DICt

= D(µ̄t, λ̄t) + 2rDt

= −2
nt∑
j=1

log

 1

1 + µ̄t

I(Ntj=0) +
µ̄t

1 + µ̄t

Γ(Ntj + κ̂tvtj)

Γ(κ̂tvtj)Ntj!

(
κ̂t

κ̂t + λ̄t

)κ̂tvtj
(

λ̄t
κ̂t + λ̄t

)Ntj


+ 2 + 4

log

 nt∑
j=1

δtj + α1

− ψ

 nt∑
j=1

δtj + α1


 nt∑

j=1

δtj

+ 4

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj,

where µ̄t and λ̄t are the same as in (3.56).

3.4.4 Zero-Inflated NB Model 4 (ZINB4)

For terminal node t, we use the following ZINB distribution by not only adopting

the NB2 model (exposure included, see Subsection 3.2.2) but also embedding the

exposure into the zero mass part,

fZINB4

(
Ntj | µt, κt, λt, vtj

)
=

 1
1+µtvtj

+
µtvtj

1+µtvtj
fNB2(0 | κt, λt, vtj) Ntj = 0,

µtvtj
1+µtvtj

fNB2(Ntj | κt, λt, vtj) Ntj = 1, 2, . . . ,

(3.68)

where κt, λt > 0 and 1
1+µt

∈ (0, 1) is the probability that a zero is due to the point

mass component.

As before, the data augmented likelihood for the j-th data instance in terminal

node t can be defined as

fZINB4

(
Ntj, δtj, ξtj, ϕtj | µt, κ̂t, λt

)
= e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj(λt+κ̂t)ξ

κ̂tvtj+Ntj−1
tj

δtj

.
(3.69)

By conditional arguments, we can also check that δtj, given data Ntj = 0 and

parameters (µt, κ̂t, and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, κ̂t, λt ∼ Bern

 µtvtj

(
κ̂t

κ̂t+λt

)κ̂tvtj

1 + µtvtj

(
κ̂t

κ̂t+λt

)κ̂tvtj

,
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and δtj = 1, given Ntj > 0. And, ξtj, given data Ntj and parameters (κ̂t and λt),

has a Gamma distribution, i.e.,

ξtj | Ntj, κ̂t, λt ∼ Gamma
(
κ̂tvtj +Ntj, κ̂tvtj + λtvtj

)
.

Furthermore, ϕtj, given the parameter µt, has an Exponential distribution, i.e.,

ϕtj | µt ∼ Exp
(
1 + µtvtj

)
.

Given independent conjugate Gamma priors for µt and λt with hyper-parameters

αi, βi > 0, i = 1, 2, and the estimated parameter κ̂t, we can derive the integrated

augmented likelihood for terminal node t as follows

pZINB4

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
=

∫ ∞

0

∫ ∞

0

fZINB4

(
Nt, δt, ξt,ϕt | µt, κ̂t, λt

)
p(µt)p(λt)dµtdλt

=

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj (κ̂tvtj)
κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj(λt+κ̂t)ξ

κ̂tvtj+Ntj−1
tj

δtj

×β
α1
1 µt

α1−1e−β1µt

Γ (α1)

βα2
2 λt

α2−1e−β2λt

Γ (α2)
dµtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

vNtj+1
tj (κ̂tvtj)

κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj κ̂tξ

κ̂tvtj+Ntj−1
tj

δtj

×
∫ ∞

0

µ
∑nt

j=1 δtj+α1−1

t e−(
∑nt

j=1 ϕtjvtj+β1)µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α2−1

t e−(
∑nt

j=1 δtjξtjvtj+β2)λtdλt

=
βα1
1

Γ (α1)

βα2
2

Γ (α2)

nt∏
j=1

e−ϕtj

vNtj+1
tj (κ̂tvtj)

κ̂tvtj

Γ(κ̂tvtj)Ntj!
e−ξtjvtj κ̂tξ

κ̂tvtj+Ntj−1
tj

δtj

×
Γ
(∑nt

j=1 δtj + α1

)
(∑nt

j=1 ϕtjvtj + β1

)∑nt
j=1 δtj+α1

Γ
(∑nt

j=1 δtjNtj + α2

)
(∑nt

j=1 δtjξtjvtj + β2

)∑nt
j=1 δtjNtj+α2

. (3.70)

Moreover, from the above, we see that the posterior distributions of µt, λt given

the augmented data (Nt, δt, ξt,ϕt) are given by

µt | δt,ϕt ∼ Gamma

 nt∑
j=1

δtj + α1,
nt∑
j=1

ϕtjvtj + β1

,
λt | Nt, δt, ξt ∼ Gamma

 nt∑
j=1

δtjNtj + α2,

nt∑
j=1

δtjξtjvtj + β2

.
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The integrated augmented likelihood for the tree T is thus given by

pZINB4

(
N , δ, ξ,ϕ | X,v, κ̂, T

)
=

b∏
t=1

pZINB4

(
Nt, δt, ξt,ϕt | Xt,vt, κ̂t

)
. (3.71)

Now, we discuss the DICt of terminal node t of this tree. Similarly, we can

derive the same expression for rDt as in (3.57) and we can easily check that

DICt

= D(µ̄t, λ̄t) + 2rDt

= −2
nt∑
j=1

log

 1

1 + µ̄tvtj
I(Ntj=0) +

µ̄tvtj
1 + µ̄tvtj

Γ(Ntj + κ̂tvtj)

Γ(κ̂tvtj)Ntj!

(
κ̂t

κ̂t + λ̄t

)κ̂tvtj
(

λ̄t
κ̂t + λ̄t

)Ntj


+2 + 4

log

 nt∑
j=1

δtj + α1

− ψ

 nt∑
j=1

δtj + α1


 nt∑

j=1

δtj

+4

log

 nt∑
j=1

δtjNtj + α2

− ψ

 nt∑
j=1

δtjNtj + α2


 nt∑

j=1

δtjNtj,

where µ̄t and λ̄t are the same as in (3.63).

For the above four ZINB models, the DIC of the tree T is obtained by using

(2.14). With the above formulas derived in the four subsections for ZINB models,

we can use the three-step approach proposed in Section 2.2.4, together with Al-

gorithm 3.1 in Subsection 3.2.2 (treat θM = κ, θB = (µ,λ), and z = (δ, ξ,ϕ)),

to search for an optimal tree which can then be used to predict new data.

As in the previous section, we can obtain the formulas for some of the evalua-

tion metrics based on ZINB distributions in Table 3.4.

Remark 3.8 In ZINB models, three latent variables need to be employed, which

decreases the computational efficiency significantly. Furthermore, when compared

to ZIP models, the performance of ZINB models does not improve significantly in

some initial simulation studies. Therefore, in the following simulation and real

data analyses, we will not include the ZINB models.

3.5 Simulation Studies

In this section, we illustrate the efficiency of the BCART models for claims fre-

quency introduced in previous sections by using simulated data. In the sequel, we

use the abbreviation P-CART to denote CART for the Poisson model, and the
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Table 3.4: Evaluation metrics for ZINB-BCART. N̂tj =

µ̄tλ̄tvtj/(1 + µ̄t) for ZINB1 and ZINB3; N̂tj = µ̄tλ̄tv
2
tj/(1 + µ̄tvtj)

for ZINB2 and ZINB4. ϵt denotes the empirical claims frequency

in node t, computed as
∑nt

j=1Ntj/
∑nt

j=1 vtj. µ̄t and λ̄t are param-

eter estimations that can be obtained from (3.56) (or (3.63)); κ̂t

is obtained by using MLE.

Formulas

RSS(N )
∑b

t=1

∑nt

j=1

(
Ntj − N̂tj

)2
SE

∑b
t=1

(
ϵt − µ̄tλ̄t/(1 + µ̄t)

)2
DS

∑b
t=1

(1+µ̄t)2κ̂t

µ̄tλ̄t((κ̂t+λ̄t)(1+µ̄t)+λ̄tκ̂t))

(
ϵt − µ̄tλ̄t/(1 + µ̄t)

)2
other abbreviations can be similarly understood (e.g., NB1-BCART denotes the

BCART for the NB1 model). We will discuss three simulation examples below.

Subsection 3.5.1 aims to illustrate that BCART models can do really well for the

chessboard data similar to Figure 1.1 for which CART cannot reasonably do any-

thing. In addition, from this simulation study, we also see that BCART models

can do well with variable selection. In Subsection 3.5.2, we shall examine how dif-

ferent BCART models can capture the data over-dispersion. In Subsection 3.5.3,

we illustrate the performance of ZIP-BCART models for data with exposures.

3.5.1 Poisson Data with Noise Variables

We simulate a data set {(xi, vi, Ni)}ni=1 with n = 5, 000 independent observa-

tions. Here vi ∼ U(0, 1), xi = (xi1, · · · , xi8), with independent components

xi1 ∼ U{−3,−2,−1, 1, 2, 3}, xi2 ∼ N(0, 1), xik ∼ U(−1, 1) for k = 3, 4, xik ∼
N(0, 1) for k = 5, 6, and xik ∼ U{−3,−2,−1, 1, 2, 3} for k = 7, 8. Moreover,

Ni ∼ Poi(λ (xi1, xi2) vi), where

λ (x1, x2) =

{
1 if x1x2 ≤ 0,
7 if x1x2 > 0.

Obviously, the designed noise variables xik, k = 3, . . . , 8 are all independent of the

response N . We use P-BCART and P-CART for the above simulated data, where

xik, k = 1, 7, 8 are treated as categorical. We have included both categorical and
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continuous variables as noise variables and as significant variables, which is a bit

more general than the data shown in Figure 1.1. Note that the same conclusion

can be drawn for numeric xik, k = 1, 7, 8, but to better illustrate the effectiveness

of the P-BCART we choose to make them as characters (to increase the splitting

possibilities of these variables).

We first apply P-CART as implemented in R package rpart; see, e.g., Therneau

& Atkinson (2023). It is not surprising that P-CART is not able to give us any

reasonable tree that can characterize the data, due to its greedy search nature.

The smallest tree (except the one with only a root node) that P-CART generated

has 25 terminal nodes and the tree found by using cross-validation has 31 terminal

nodes. Obviously, both of them are much more complicated than the real model.

Furthermore, in these two trees, all the noise variables are used, which indicates

that P-CART is sensitive to noise.

Now we discuss the P-BCART applied to the data focusing preliminary on

the effect of noise variables to the model. We simply set equal probabilities, i.e.,

P(Grow)=P(Prune)=P(Change1)=P(Change2)=P(Swap)= 0.2, for the tree pro-

posals. For the Gamma prior of the Poisson intensities λt we use α = 3.2096 and

β = 0.8 which are selected by keeping the relationship α/β =
∑n

i=1Ni/
∑n

i=1 vi. It

is worth mentioning that the performance of the algorithm does not change much

when choosing different pairs of (α, β) while keeping their ratio. We also observe

the same in other simulation examples, so in the following, we will not dwell on

their selection.

In Table 3.5 we list the tuned hyper-parameters γ, ρ in the first two columns

for which the MCMC algorithms will converge to a region of trees with a certain

number of terminal nodes listed (see Step 1 of Table 2.1). For each fixed hyper-

parameter γ and ρ, we run 10,000 iterations in the MCMC algorithm and take

results after an initial burn-in period of 2,000 iterations, after which the posterior

probabilities of the tree structures have been settled for some time. This procedure

is done with 3 restarts. The fourth column gives the total number of accepted trees

after the burn-in period in the MCMC algorithms. The last columns of Table 3.5

include the total number of times each variable is used in the accepted trees. We

see from these columns that all noise variables have a very low selection rate and as

expected, the significant variables x1, x2 are dominating. Besides, at first glance, it

is inferred that the noise variables x3 and x4 have a much lower selection rate than

the other noise variables which is just because x3 and x4 are simulated using a

distribution completely different from those of the significant variables. However,

when the experiment is run 10 times, we find that the average selection rates of all
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Table 3.5: Total count of each variable used amongst all accepted

trees from the P-BCART MCMC algorithms (after the burn-in

period; equal probabilities for tree moves; one run with 3 restarts).

γ ρ # terminal

nodes

# accepted

trees

x1 x2 x3 x4 x5 x6 x7 x8

0.50 20 2 342 197 156 1 0 2 5 4 4

0.95 17 3 460 408 381 1 4 8 6 8 5

0.99 15 4 800 1261 1239 12 17 30 25 31 20

0.99 12 5 652 1157 1126 9 7 18 15 16 20

0.99 10 6 305 710 680 13 4 18 25 30 12

0.99 6 7 318 825 809 3 8 15 23 14 9

0.99 5 8 210 681 647 2 10 7 13 18 5

Table 3.6: Average frequency of each variable used in all accepted

trees from the P-BCART MCMC algorithms (after the burn-in

period; equal probabilities for tree moves; ten runs with 3 restarts

using the same simulated data).

# terminal nodes x1 x2 x3 x4 x5 x6 x7 x8

2 183 140 1 1 1 3 2 1

3 422 405 2 3 4 3 3 2

4 1242 1201 11 13 15 13 14 12

5 1207 1162 12 14 12 13 11 14

6 821 828 9 8 10 12 11 8

7 998 976 8 9 10 12 10 8

8 847 795 7 9 9 11 10 8

noise variables are almost the same independent of their distributions (see Table

3.6), which is consistent with the expectation.

In Figure 3.1, we illustrate this procedure for h = 4 (the same as that summa-

rized in the third row of Table 3.5), with plots of the number of terminal nodes, the

integrated likelihood pP(N |X,v,T ) and the data likelihood pP(N |X,v, λ̄,T ) of

the accepted trees. The observations are in line with those in Chipman et al.

(1998); we see from the likelihood plots that the convergence of MCMC can be

obtained relatively quickly. Interestingly, the optimal tree is not found in the first

round of MCMC which got stuck in a local mode, but the restarts helped where

in the second and the third rounds optimal trees can be found. Moreover, we see
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Figure 3.1: Trace plots from MCMC with 3 restarts (γ = 0.99, ρ =

15).

that there is no big difference shown in the plots of the integrated likelihood and

the data likelihood.

Following Step 2 of Table 2.1, for each h = 2, . . . , 8, we select the optimal tree

with maximum data likelihood pP(N |X,v, λ̄,T ) from the convergence region.

The variables used in these optimal trees are listed in Table 3.7, where we can see

that none of these trees involves the noise variables. The values for the effective

number of parameters pD reflect the number of parameters in the tree if a flat prior

for λt is used. Furthermore, we list the DIC for these trees in the last column of

Table 3.7. Following Step 3 of Table 2.1 we conclude that the selected optimal

tree is the one with 4 terminal nodes which is illustrated in Figure 3.2. We see

that this tree is close to a true optimal one with the almost correct topology and

accurate parameter estimates.

Using equal probabilities for the proposed tree moves, the above example pro-

vides detailed information about how to implement the three-step tree selection

procedure in practice and illustrates the effectiveness of the method. Next, we

investigate which type of step (particularly, the Change and Swap moves) con-

tributes more to the computational efficiency. To this end, we shall vary the
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Figure 3.2: Optimal P-BCART. Numbers at each node give the

estimated value for the frequency parameter λt and the percentage

of observations.

Table 3.7: Number of times each variable was used in each chosen

optimal tree and the corresponding pD and DIC (after the burn-in

period; equal probabilities for tree moves; one run with 3 restarts).

Bold font indicates DIC selected model.

# terminal nodes x1 x2 x3 x4 x5 x6 x7 x8 pD DIC

2 1 0 0 0 0 0 0 0 2.00 14221

3 1 1 0 0 0 0 0 0 2.95 14076

4 1 2 0 0 0 0 0 0 3.97 13526

5 2 2 0 0 0 0 0 0 4.97 13570

6 3 2 0 0 0 0 0 0 5.93 13629

7 3 3 0 0 0 0 0 0 6.91 13678

8 4 3 0 0 0 0 0 0 7.95 13683

probabilities of the Change and Swap moves, keeping the same probabilities for

Grow and Prune moves at 0.2. Different experiments can be designed as in Table

3.8.

We fix γ = 0.99 and ρ = 15, as for Figure 3.1. For each of the experiments

E1–E4, we run the P-BCART MCMC algorithms 10 times and for each run, we

record the iteration time until an “optimal” tree is found. The average iteration

time with the standard deviation (s.d.) of the 10 runs and the average acceptance

rates of moves are shown in Table 3.9. The figures in the second row indicate

that experiment E4 is faster in finding an “optimal” tree than E1–E3 when at
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3.5 Simulation Studies

Table 3.8: Four different experiments (E1–E4) for given proba-

bilities of tree moves. In each case, the probability of Grow and

Prune is fixed at 0.2.

Change1 Change2 Swap

E1 0 0.6 0

E2 0 0.3 0.3

E3 0.3 0 0.3

E4 0.2 0.2 0.2

Table 3.9: Average iteration times to obtain an “optimal” tree

(4 terminal nodes) and accepted move rates from the P-BCART

MCMC algorithms (after the burn-in period; ten runs with 3

restarts). Experiments E1–E4 are described in Table 3.8.

E1 E2 E3 E4

Average iteration times (s.d.) 3388 (168) 2710 (187) 2984 (177) 2018 (161)

Acceptance rate of all moves 3.10% 3.23% 3.14% 3.87%

Acceptance rate of Grow 1.50% 1.36% 0.90% 0.65%

Acceptance rate of Prune 1.43% 1.20% 0.54% 0.30%

Acceptance rate of Change1 - - 6.09% 8.19%

Acceptance rate of Change2 4.17% 4.87% - 5.66%

Acceptance rate of Swap - 4.01% 3.49% 4.52%

least one of the Change moves or/and the Swap move is removed. In particular,

the comparison between E1 and E2 confirms the essence of the Swap move, as

illustrated also in Chipman et al. (1998). Moreover, the acceptance rate of all

moves is a weighted average of acceptance rates of all individual moves, and we

observe that the acceptance rates of the Change and Swap moves (in particular,

the Change1 move) are significantly greater than the Grow and Prune moves,

which also confirms the significance of the Change and Swap moves (especially,

the Change1 move).

We also run several other similar but more complex simulation examples to

check the performance of P-BCART, NB-BCART, and ZIP-BCART models. In

particular, we tested the case where the values of λ are closer (with 3.5 and 4.5).

Our conclusions from these simulations are:

1. BCART models can retrieve the tree structure (including both topology and
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parameters) as that used to simulate the data.

2. BCART models are able to avoid choosing noise variables regardless of their

distributions.

3. The Change and Swap moves have significant impacts on the BCART models

and it is beneficial to include two types of the Change move.

Remark 3.9 The hyper-parameters α and β for the conjugate Gamma prior in

the Poisson model can be estimated from the data, and their values appear not to

be crucial as long as the relationship between them is maintained. We will adopt

the same strategy used in this simulation example to estimate hyper-parameters in

the following models in Chapters 4 and 5.

3.5.2 ZIP Data with Varying Probability of Zero Mass

Component

We simulate a data set {(xi, vi, Ni)}ni=1 with n = 5, 000 independent observations.

Here xi = (xi1, xi2), with independent components xik ∼ N(0, 1) for k = 1, 2. We

assume exposure vi ≡ 1 for simplicity since it is not a key feature here. Moreover,

Ni ∼ ZIP(p0, λ (xi1, xi2)), where

λ (x1, x2) =

{
7 if x1x2 ≤ 0,
1 if x1x2 > 0,

and p0 ∈ (0, 1) is the probability of a zero due to the point mass component, for

which the value is to be specified. The data is split into two subsets: a training

set with n−m = 4, 000 observations and a test set with m = 1, 000 observations.

In this case, we aim to examine how the P-BCART, NB-BCART, and ZIP-

BCART will perform when p0 is varied. Note that since exposure vi ≡ 1, NB1 and

NB2 (ZIP1 and ZIP2) will be essentially the same. Intuition tells us that when

p0 is small NB-BCART should be good enough to capture the over-dispersion

introduced by a small proportion of zeros, but when p0 becomes large ZIP-BCART

should perform better for the highly over-dispersed data. This intuition will be

confirmed by this study. For simplicity, we shall present two results, one with

p0 = 0.05 and the other with p0 = 0.95.

We first discuss the simulation with a small probability of zero mass (i.e.,

p0 = 0.05). In Table 3.10 we present the hyper-parameters γ, ρ used to obtain

MCMC convergence to the region of trees with a certain number of terminal

nodes. The last two columns give the effective number of parameters and DIC of
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Table 3.10: Hyper-parameters, pD (or qD,rD) and DIC on training

data (p0 = 0.05). The number in the bracket after the abbrevia-

tion of the model indicates the number of terminal nodes for this

tree. Bold font indicates DIC selected model.

Model γ ρ pD(or qD, rD) DIC

ZIP-BCART (2) 0.50 20 4.00 11451

ZIP-BCART (3) 0.99 20 5.94 11405

ZIP-BCART (4) 0.99 15 7.95 11322

ZIP-BCART (5) 0.99 5 9.86 11364

P-BCART (2) 0.50 20 2.00 11369

P-BCART (3) 0.99 20 2.99 11337

P-BCART (4) 0.99 10 3.99 11262

P-BCART (5) 0.99 5 4.91 11299

NB-BCART (2) 0.50 30 4.00 11317

NB-BCART (3) 0.99 25 5.99 11273

NB-BCART (4) 0.99 20 7.99 11192

NB-BCART (5) 0.99 5 9.90 11237

the optimal trees for each model, respectively. We can conclude from the DIC that

by using Step 3 in Table 2.1 we can select the optimal tree with the true 4 terminal

nodes for either ZIP-BCART, P-BCART or NB-BCART, and among these, the

NB-BCART (with DIC=11192) is the best one. This looks a bit surprising at

first glance because our data are simulated from a ZIP model. We suspect that

the reason for this may be two-fold: First, the NB is enough to capture the small

over-dispersion. Second, we have used data augmentation in the algorithms and

thus it is understandable that the NB-BCART with 1 latent variable (see Section

3.2) could achieve better performance than the “real” ZIP-BCART with 2 latent

variables (see Section 3.3). Moreover, we see that even the P-BCART performs

better than the ZIP-BCART, for similar reasons.

Now, let us look at the performance of these models on test data in Table

3.11. First, we see that for each type of model, ZIP, Poisson, and NB, the optimal

tree with 4 terminal nodes achieves the best SE (0.00162, 0.00108, and 0.00070

respectively) and DS (0.000116, 0.000072, and 0.000056 respectively), which is not

surprising as these models retrieve the almost true tree structures. Second, we see

from the RSS(N ) that for each type of model, the performance becomes better

as the number of terminal nodes that we want increases, however, the amount of

83
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Table 3.11: Model performance on test data (p0 = 0.05) with bold

entries determined by DIC (see Table 3.10). The number in the

bracket after the abbreviation of the model indicates the number

of terminal nodes for this tree.

Model RSS(N ) SE DS NLL Lift

ZIP-BCART (2) 2013 0.00222 0.000185 1975 1.22

ZIP-BCART (3) 1986 0.00208 0.000169 1953 2.67

ZIP-BCART (4) 1923 0.00162 0.000116 1890 6.34

ZIP-BCART (5) 1909 0.00182 0.000130 1863 6.56

P-BCART (2) 1758 0.00175 0.000138 1702 1.40

P-BCART (3) 1732 0.00160 0.000123 1673 3.21

P-BCART (4) 1681 0.00108 0.000072 1612 6.62

P-BCART (5) 1662 0.00126 0.000092 1594 6.75

NB-BCART (2) 1683 0.00145 0.000101 1647 1.58

NB-BCART (3) 1661 0.00131 0.000092 1616 3.53

NB-BCART (4) 1609 0.00070 0.000056 1536 6.95

NB-BCART (5) 1589 0.00097 0.000074 1502 6.97

improvement becomes smaller after the optimal trees with 4 terminal nodes have

been obtained. We observe the same for NLL and lift. It is worth noting that

when calculating and comparing lift for different trees, instead of simply following

the four steps in Subsection 2.3.5, in Step 4 we first choose the minimum total

sum of exposures among the least and most risky groups in all the trees to be

compared in Table 3.11, and then calculate other values accordingly using this

minimum total sum of exposures as the basis (emin in the first paragraph of Step

4). Third, we see that among these three trees with 4 terminal nodes, the one

obtained from NB-BCART gives the best performance on test data based on all

these performance measures, which is consistent with the conclusion from training

data.

Next, we consider the simulation with a large probability of zero mass (i.e.,

p0 = 0.95). The results are displayed in Tables 3.12 and 3.13. Similar discussions

can be done for this case. In particular, we find that the performance order based

on DIC is ZIP-BCART>NB-BCART>P-BCART, which is also consistent with

their performance on test data.

We also run several other similar simulation examples to check the performance

of P-BCART, NB-BCART, and ZIP-BCART with different values for p0. Our
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Table 3.12: Hyper-parameters, pD (or qD,rD) and DIC on training

data (p0 = 0.95). The number in the bracket after the abbrevia-

tion of the model indicates the number of terminal nodes for this

tree. Bold font indicates DIC selected model.

Model γ ρ pD(or qD, rD) DIC

ZIP-BCART (2) 0.50 10 3.99 3483

ZIP-BCART (3) 0.99 10 5.99 3452

ZIP-BCART (4) 0.99 8 7.95 3375

ZIP-BCART (5) 0.99 3 9.93 3396

P-BCART (2) 0.50 10 1.98 3892

P-BCART (3) 0.99 10 2.96 3863

P-BCART (4) 0.99 5 3.91 3801

P-BCART (5) 0.99 2 4.90 3827

NB-BCART (2) 0.50 20 3.99 3726

NB-BCART (3) 0.99 20 5.97 3699

NB-BCART (4) 0.99 10 7.92 3632

NB-BCART (5) 0.99 8 9.89 3667

conclusion from these simulations is that when the proportion of zeros in the data

is small (reflected by small p0), the NB-BCART or P-BCART performs better

than ZIP-BCART, whereas when the proportion of zeros in the data is large, the

ZIP-BCART is preferred to NB-BCART and P-BCART. This finding is consistent

with the real insurance data discussed in Chapter 6.

3.5.3 Different Ways to Incorporate Exposure in ZIPMod-

els

The purpose of this case is to compare two different ways of dealing with exposure,

namely, ZIP1-BCART and ZIP2-BCART. To this end, we simulate a data set

{(xi, vi, Ni)}ni=1 with n = 5, 000 independent observations. Here vi ∼ U(0, 1),

xi = (xi1, xi2), with independent components xik ∼ N(0, 1) for k = 1, 2. Moreover,

Ni ∼ ZIP(p
(τ)
i , λ (xi1, xi2) vi), where

λ (x1, x2) =

{
7 if x1x2 ≤ 0,
1 if x1x2 > 0,
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Table 3.13: Model performance on test data (p0 = 0.95) with bold

entries determined by DIC (see Table 3.12). The number in the

bracket after the abbreviation of the model indicates the number

of terminal nodes for this tree.

Model RSS(N ) SE DS NLL Lift

ZIP-BCART (2) 721 0.00755 0.00721 699 1.25

ZIP-BCART (3) 715 0.00700 0.00698 690 1.92

ZIP-BCART (4) 682 0.00571 0.00619 657 2.86

ZIP-BCART (5) 675 0.00613 0.00646 649 3.13

P-BCART (2) 782 0.00967 0.00802 754 1.15

P-BCART (3) 773 0.00891 0.00786 746 1.50

P-BCART (4) 750 0.00723 0.00712 719 2.40

P-BCART (5) 741 0.00792 0.00739 705 2.72

NB-BCART (2) 775 0.00893 0.00775 740 1.19

NB-BCART (3) 768 0.00810 0.00740 731 1.72

NB-BCART (4) 735 0.00647 0.00667 701 2.60

NB-BCART (5) 730 0.00703 0.00689 693 2.90

and the probability of zero mass component is given as

p
(τ)
i =

µ(xi1, xi2)

vτi + µ(xi1, xi2)
, with µ(xi1, xi2) ≡ 0.5,

and some τ ≥ 0 to be specified below. The data is split into two subsets, namely

a training set with n − m = 4, 000 observations and a test set with m = 1, 000

observations.

In the above simulation setup, we include exposure in both the Poisson com-

ponent and the zero mass component. In this way, it is not clear which of ZIP1-

BCART and ZIP2-BCART will outperform the other. That being said, we could

vary the value of τ to control the effect of exposure to the zero mass component.

We shall consider two extreme cases, one with a very small τ and the other with

a very large τ . More precisely, for a large τ we choose τ = 100. In this case, since

many vτi will be small, we have that p
(τ)
i will be close to one, which implies that

the Poisson component should play a minor role in exposure modelling and thus

we would expect that ZIP2-BCART has a better ability to capture this. On the

other hand, for a small value τ = 0.0001, since many vτi will be close to 1 we have

that p
(τ)
i will be almost independent of vi, which implies that zero mass compo-

nent should play a minor role in exposure modelling. Thus we would expect that
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Table 3.14: DIC for ZIP-BCART models with different values of

τ on training data. The number in the bracket after the abbre-

viation of the model indicates the number of terminal nodes for

this tree. Bold font indicates DIC selected model.

Model DIC (τ = 100) DIC (τ = 0.0001)

ZIP1-BCART (2) 3091 10515

ZIP1-BCART (3) 3055 10437

ZIP1-BCART (4) 2976 10273

ZIP1-BCART (5) 2997 10330

ZIP2-BCART (2) 2653 10924

ZIP2-BCART (3) 2637 10843

ZIP2-BCART (4) 2613 10685

ZIP2-BCART (5) 2627 10751

ZIP1-BCART has a better ability to capture this. We report DIC for these two

cases in Table 3.14. The model performances on test data are listed in Table 3.15

for τ = 100 and Table 3.16 for τ = 0.0001. From these tables, we can confirm the

above intuition that ZIP1-BCART should perform better for small τ and worse

for large τ (compared to ZIP2-BCART). We conclude from this simulation study

that the ZIP2-BCART works better in capturing the potentially stronger effect

of the exposure to the zero mass component, which is also illustrated in the real

insurance data discussed in Chapter 6.

3.6 Summary of Chapter 3

In this chapter, we have discussed the application of different distributions (Pois-

son, NB, ZIP, and ZINB) in BCART models for claims frequency analysis. In

particular, to improve model performance, we explored using different ways of

handling exposure, as well as employing different data augmentation methods.

From our simulation studies, we obtained the following conclusions.

1. BCART models not only can retrieve the tree structure (including both

topology and parameters) but also avoid the selection of noise variables.

Furthermore, Change and Swap moves, particularly the Change1 move, have

a significant impact on computational efficiency in BCART models.
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Table 3.15: Model performance on test data (τ = 100) with bold

entries determined by DIC (see Table 3.14). The number in the

bracket after the abbreviation of the model indicates the number

of terminal nodes for this tree.

Model RSS(N ) SE (in 10−5) DS NLL Lift

ZIP1-BCART (2) 2423 3.06 0.00281 1339 1.01

ZIP1-BCART (3) 2417 2.98 0.00259 1330 1.33

ZIP1-BCART (4) 2376 2.20 0.00209 1308 1.78

ZIP1-BCART (5) 2333 2.63 0.00219 1302 1.81

ZIP2-BCART (2) 2072 2.76 0.00234 1324 1.06

ZIP2-BCART (3) 2069 2.57 0.00207 1317 1.46

ZIP2-BCART (4) 2056 2.02 0.00179 1304 1.97

ZIP2-BCART (5) 2049 2.06 0.00189 1295 2.08

Table 3.16: Model performance on test data (τ = 0.0001) with

bold entries determined by DIC (see Table 3.14). The number

in the bracket after the abbreviation of the model indicates the

number of terminal nodes for this tree.

Model RSS(N ) SE DS NLL Lift

ZIP2-BCART (2) 6859 0.0093 0.0080 4185 1.02

ZIP2-BCART (3) 6648 0.0080 0.0069 4092 2.10

ZIP2-BCART (4) 6408 0.0060 0.0050 3913 3.40

ZIP2-BCART (5) 6320 0.0073 0.0062 3853 3.48

ZIP1-BCART (2) 6628 0.0079 0.0072 3827 1.07

ZIP1-BCART (3) 6535 0.0058 0.0055 3763 2.15

ZIP1-BCART (4) 6350 0.0027 0.0024 3590 3.45

ZIP1-BCART (5) 6282 0.0036 0.0033 3543 3.62

2. When comparing the performance of P-BCART, NB-BCART, and ZIP-

BCART, if the proportion of zeros in the data is small, NB-BCART or

P-BCART performs better than ZIP-BCART. Conversely, if the proportion

of zeros is large especially when it is 10% or higher, ZIP-BCART outperforms

NB-BCART and P-BCART. This provides a strategy for selecting models

in practical applications by first observing data characteristics. Besides, it

raises the idea that in real insurance data with a large number of zeros, ZIP
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models should perform the best among these three, which will be confirmed

in the real data analyses; see Chapter 6.

3. In the comparison among ZIP models that embed the exposure in different

ways, the ZIP2-BCART performs better in capturing the potentially stronger

effect of the exposure to the zero mass component, as is also demonstrated

in the real insurance data discussed in Chapter 6.

4. It should be noted that a more complex way of embedding exposure does

not necessarily lead to better model performance. For example, comparing

the ZIP3 model, which embeds exposure into both the Poisson part and zero

mass part, with the ZIP2 model, which embeds exposure only in the zero

mass part, the former shows no significant improvement. Similarly, it does

not imply that a more general model will necessarily yield better perfor-

mance. For example, ZINB models do not exhibit substantial improvement

compared to ZIP models. Additionally, the more complex the model, the

lower its computational efficiency. We believe that striking a balance be-

tween model performance, efficiency, and complexity is a topic worthy of

further exploration.
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Chapter 4

Severity Modelling with Bayesian

CART

This chapter introduces Bayesian CART models for insurance claims severity.

Assume that for each policyholder i (i = 1, 2, . . . , n), the individual claim amounts

Yi1, Yi2, ..., YiNi
, given Ni > 0, are IID, and claims severity refers to the average

claim amount per claim

S̄ =

∑Ni

j=1 Yij

Ni

.

Different models can be used to characterize the behaviour of claim amounts as

a function of the explanatory variables. Specifically, there are two ways for claim

amount modelling with different response variables; one is to model individual

claim amounts Yi1, Yi2, ..., YiNi
, and the other way is to directly model the aver-

age claim amount S̄i; see, e.g., Henckaerts et al. (2021), Frees et al. (2014) and

Omari et al. (2018). Since the latter is more intuitive and straightforward to ob-

tain claims severity, we shall follow this way within this chapter. Three commonly

used distributions in the literature for claims severity modelling, along with their

respective properties, are discussed in the first section, namely, Gamma, LogNor-

mal, and Weibull distributions; see, e.g., Wüthrich & Merz (2023). Following that,

we demonstrate their applications in BCART models in detail. Specific formulas

for some of the evaluation metrics for each model are provided in their respective

sections. Subsequently, one simulation example is designed to investigate the per-

formance of the above models, especially their ability to fit the data in each group

(terminal node) with varying tail characteristics, and some conclusions are drawn.

It is worth noting that when dealing with claims severity data in this chapter, the

data with zero claims will be omitted.

90



4.1 Distributions for Claims Severity

4.1 Distributions for Claims Severity

The majority of claims severity data typically display characteristics of positive

skewness or heavy tails. Therefore, statistical distributions capable of capturing

these features may be suitable for modelling such claims, such as Gamma, Log-

Normal, Weibull, Pareto, and more generalized distributions; see, e.g., Wüthrich

& Merz (2008). Given that the heavy tail represents significant claim amounts and

risks, insurers often pay more attention to the tail of the distribution. This section

shall discuss three commonly used distributions, namely, Gamma, LogNormal, and

Weibull, and analyze their tail characteristics based on their properties.

The Gamma distribution is a right-skewed, continuous probability distribu-

tion with the tail of the distribution considered “light”. The probability density

function (pdf) is given as:

fG
(
S̄ | α, β

)
=
βαS̄α−1e−βS̄

Γ(α)
, (4.1)

where both the shape parameter α and the rate parameter β are greater than zero.

If S̄i ∼ Gamma(α, β), then the mean and variance of S̄i are given by

E(S̄i | α, β) =
α

β
, Var(S̄i | α, β) =

α

β2
. (4.2)

The LogNormal distribution is a skewed distribution with a low mean value,

large variance, and a somewhat heavier tail than the Gamma distribution. It has

significantly higher probabilities of large or extreme values and its pdf is given as:

fLN
(
S̄ | µ, σ

)
=

1

S̄σ
√
2π

exp

(
−(log(S̄)− µ)2

2σ2

)
, (4.3)

where µ ∈ R and σ > 0. If S̄i ∼ LN(µ, σ2), then the mean and variance of S̄i are

given by

E(S̄i | µ, σ) = exp(µ+ σ2/2), (4.4)

Var(S̄i | µ, σ) = (exp(σ2)− 1) exp
(
2µ+ σ2

)
. (4.5)

The Weibull distribution is widely used due to its versatility, particularly in

modelling data with a high degree of positive skewness. There are different ways

to parameterize the Weibull distribution, either with two or three parameters; see,

e.g., Rinne (2008). For simplicity, we adopt the common parameterization with

two parameters; see, e.g., Fink (1997). The pdf of a Weibull distribution is given

as:

fWeib

(
S̄ | α, β

)
=
α

β
S̄α−1 exp(−S̄α/β), (4.6)
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where both shape parameter α and scale parameter β are greater than zero. If

S̄i ∼ Weib(α, β), then the mean and variance of S̄i are given by

E(S̄i | α, β) = βΓ(1 + 1/α), (4.7)

Var(S̄i | α, β) = β2
(
Γ(1 + 2/α)−

(
Γ(1 + 1/α)

)2)
. (4.8)

The Gamma, LogNormal and Weibull distributions appear to be similar be-

cause all of them can accommodate data with positive skewness. Furthermore,

the fact that both LogNormal and Weibull distributions can handle data with

heavy tails makes them more similar. Selecting among these three models poses a

considerable challenge, and scholars have extensively explored this topic; see, e.g.,

Siswadi & Quesenberry (1982). In claims severity modelling, insurers want to gain

more insights into the (right) tail, which describes the behaviour of the distribu-

tion at large values. To investigate the tail characteristics, the proper approach is

to analyse the distribution function F rather than its density, which is sometimes

unknown in many real-world situations. Specifically, since F must asymptoti-

cally approach 1 for large arguments, exploring how quickly F approaches that

asymptote is necessary. Thus, we need to investigate the behaviour of its survival

function 1−F (x) as x→ ∞. In particular, distribution F is considered “heavier”

than G if and only if F eventually has a higher probability at large values than

G, which can be formalized: there must exist a finite number x0 such that for all

x > x0,

PF(X > x) = 1− F (x) > 1−G(x) = PG(X > x).

Based on this discussion, we can directly analyze the survival functions of the

Gamma and LogNormal distributions, expanding them around x→ ∞ to discover

their asymptotic behaviour. The conclusion is that LogNormal distributions have

heavier tails than Gamma distributions. On the other hand, both the Gamma and

Weibull distributions can be seen as generalisations of the Exponential distribu-

tion. By comparing their pdfs (see (4.1) and (4.6)), we can observe the difference

in effect. Omitting all the normalising constants, it is evident that the pdf of

the Weibull distribution drops off significantly more quickly (for α > 1), resulting

in light tails or slowly (for α < 1), resulting in heavier tails than the Gamma

distribution. Both of them reduce to the Exponential distribution when α = 1.

In summary, concerning the modelling of insurance losses, the Gamma distri-

bution would be a suitable model for losses that are not catastrophic, such as auto

insurance. Additionally, the LogNormal distribution is more suitable for fire in-

surance, which may exhibit more extreme values than auto insurance. Moreover,
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as discussed, the Weibull distribution has the ability to handle different cases by

tuning the shape parameter to adapt to different tail characteristics. In each of

the following sections, we shall demonstrate how to apply these distributions in

BCART models.

4.2 Gamma-Bayesian CART

Consider a tree T with b terminal nodes as before (see Section 2.2). In a Gamma

model, we assume all insurance policyholders i = 1, 2, . . . , n have independent

average claim amounts S̄i with

S̄i | x ∼ Gamma
(
α(x), β(x)

)
for the i-th observation, where α(x) =

∑b
t=1 αtI(x∈At), β(x) =

∑b
t=1 βtI(x∈At),

{At} is a partition of X , and t denotes the t-th terminal node. The aim is to

estimate the regression functions α(·) and β(·), describing the expected claims

severity. For terminal node t, we denote the associated data as (Xt, S̄t) =

((Xt1, St1), . . . , (Xtnt , Stnt))
⊤. To explicitly derive the posterior distribution (see

discussions in Subsection 2.2.1), we choose a common Gamma prior for βt (t =

1, 2, . . . , b) with hyper-parameters απ, βπ > 0 (cf. (3.2)) and use the same way to

deal with αt as in Section 3.2, i.e., treating it as known (using MME to estimate),

α̂t =
(S̄)2t

Var(S̄)t
, (4.9)

where (S̄)t and Var(S̄)t denote the mean and variance of the claims severity in the

t-th node respectively. With the above Gamma prior and the estimated parameter

α̂t, the integrated likelihood for terminal node t can be obtained as

pG
(
S̄t | Xt

)
=

∫ ∞

0

fG
(
S̄t | α̂t, βt

)
p(βt)dβt

=

∫ ∞

0

nt∏
j=1

βα̂t
t S

α̂t−1

tj e−βtStj

Γ(α̂t)

βαπ
π βt

απ−1e−βπβt

Γ(απ)
dβt

=
βαπ
π

∏nt

j=1 S
α̂t−1

tj

Γ(απ)Γ(α̂t)nt

∫ ∞

0

βntα̂t+απ−1
t e−(

∑nt
j=1 Stj+βπ)βtdβt

=
βαπ
π

∏nt

j=1 S
α̂t−1

tj

Γ(απ)Γ(α̂t)nt

Γ(ntα̂t + απ)

(
∑nt

j=1 Stj + βπ)ntα̂t+απ
.

(4.10)
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4.2 Gamma-Bayesian CART

Clearly, from (4.10), we see that the posterior distribution of βt, conditional on

S̄t, is given by

βt | S̄t ∼ Gamma

ntα̂t + απ,
nt∑
j=1

Stj + βπ

 .

The integrated likelihood for the tree T is thus given by

pG
(
S̄ | X, α̂, T

)
=

b∏
t=1

pG
(
S̄t | Xt, α̂t

)
. (4.11)

Next, we discuss the DIC for this tree. Since we only consider uncertainty for

β but not for α and there is no data augmentation involved, the three different

DICs defined in Subsections 2.2.4 and 3.2.1 cannot be adopted directly. Thus,

using again the idea that DIC=“goodness of fit”+“complexity”, we can introduce

a new DICt for terminal node t as follows

DICt = D(β̄t) + 2sDt.

Here, the goodness of fit is given by

D(β̄t) = −2
nt∑
j=1

log fG(S̄tj | α̂t, β̄t)

= −2
nt∑
j=1

[
α̂t log(β̄t) + (α̂t − 1) log(Stj)− β̄tStj − log

(
Γ(α̂t)

)]
,

(4.12)

and the effective number of parameters sDt is given by

sDt = D(θt)−D(θ̄t)

= −2Epost

[
log
(
f(yt | θt)

)]
+ 2 log

(
f(yt | θ̄t)

)
= 1 + 2

nt∑
j=1

{
log(fG(S̄tj | α̂t, β̄t))− Epost

[
log
(
fG(S̄tj | α̂t, βt)

)]}
,

(4.13)

where αt is treated as known while remaining a model parameter, and we denote

its effective number as 1; the second part of the last line is for βt,

β̄t =
ntα̂t + απ∑nt

j=1 Stj + βπ
. (4.14)

Therefore, a direct calculation shows that the effective number of parameters for

terminal node t is given by

sDt = 1 + 2
(
log (ntα̂t + απ)− ψ (ntα̂t + απ)

)
ntα̂t, (4.15)
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4.2 Gamma-Bayesian CART

and thus

DICt

= D(βt) + 2sDt

= −2
nt∑
j=1

α̂t log

(
ntα̂t + απ∑nt

j=1 Stj + βπ

)
+ (α̂t − 1) log(Stj)−

ntα̂t + απ∑nt

j=1 Stj + βπ
Stj


+ 2

nt∑
j=1

(log(Γ(α̂t))) + 2 + 4
(
log (ntα̂t + απ)− ψ (ntα̂t + απ)

)
ntα̂t.

Then the DIC of the tree T is obtained as

DIC :=
b∑

t=1

DICt. (4.16)

We extend Algorithm 2.2 (see Subsection 2.2.2) to a new Algorithm 4.1 based

on the above discussion, which simulates a Markov chain sequence of pairs (θ(1), T (1)),

(θ(2), T (2)), . . . , starting from the root node. For the convenience of reference, we

shall describe a general algorithm that covers the Gamma BCART models as a

special case. More precisely, θ = (θM ,θB), where θM is the parameter that is

treated as known and is computed using MME (or MLE), and θB is the unknown

parameter estimated in the Bayesian framework. This newly proposed algorithm

can be used when it is necessary to estimate parameters in different ways without

involving data augmentation techniques.

With the above formulas derived for the Gamma case, we can use the three-

step approach proposed in Subsection 2.2.4, together with Algorithm 4.1 (treat

θM = α and θB = β), to search for an optimal tree which can then be used

to predict new data. Given an optimal tree, the estimated claims severity α̂t/β̄t

in each terminal node t can be determined using (4.9) and (4.14). Some of the

evaluation metrics based on Gamma distribution are provided in Table 4.1.

Remark 4.1 (a) As before, the sampling steps in Algorithm 4.1 should be done

when necessary. Besides, Algorithm 4.1 can also be easily extended to accommo-

date multivariate parameters for both θM and θB.

(b) There is another way to model S̄i considering Ni as model weights, where

the individual claim amounts Yij are assumed to follow a common Gamma dis-

tribution independently and we can obtain the distribution of S̄i based on the ad-

ditive property of the Gamma distribution. That is, if Yij ∼ Gamma(α, β), then∑Ni

j=1 Yij ∼ Gamma(α,Niβ); thus S̄i =
∑Ni

j=1 Yij/Ni ∼ Gamma(Niα,Niβ). Since
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4.2 Gamma-Bayesian CART

Algorithm 4.1: One step of the MCMC algorithm for the BCART mod-

els parameterized by (θM ,θB, T ) with both known and unknown param-

eters

Input: Data (X,y) and current values (θ̂
(m)
M ,θ

(m)
B , T (m))

1: Generate a candidate value T ∗ with probability distribution

q(T (m), T ∗)

2: Estimate θ̂
(m+1)
M , using MME (or MLE)

3: Set the acceptance ratio

α(T (m), T ∗)

= min

{
q(T ∗, T (m))p(y | X, θ̂

(m+1)
M , T ∗)p(T ∗)

q(T (m), T ∗)p(y | X, θ̂
(m)
M , T (m))p(T (m))

, 1

}

4: Update T (m+1) = T ∗ with probability α(T (m), T ∗), otherwise, set

T (m+1) = T (m)

5: Sample θ
(m+1)
B ∼ p(θB | X,y, θ̂

(m+1)
M , T (m+1))

Output: New values (θ̂
(m+1)
M ,θ

(m+1)
B , T (m+1))

Table 4.1: Evaluation metrics for Gamma-BCART. ϵt de-

notes the empirical claims severity in node t, computed as∑nt

j=1 Stj/
∑nt

j=1Ntj. α̂t and β̄t are parameter estimations that

can be obtained from (4.9) and (4.14) respectively.

Formulas

RSS(S̄)
∑b

t=1

∑nt

j=1(S̄tj − α̂t/β̄t)
2

SE
∑b

t=1

(
ϵt − α̂t/β̄t

)2
DS

∑b
t=1(β̄

2
t /α̂t)

(
ϵt − α̂t/β̄t

)2
the other two distributions discussed in this chapter do not have the additive prop-

erty, in this chapter, we do not pursue this modelling approach. This approach

will be discussed in detail later in Section 5.1.

(c) When dealing with the Gamma distribution in the Bayesian framework, two

alternative approaches can be considered.

• Treat the rate parameter β as known and use a prior for the shape parameter

α, i.e., p(α) ∝ aα−1
0 βαc0/Γ(α)b0 where a0, b0, c0 are prior hyper-parameters.

• Treat both the shape parameter α and the rate parameter β as unknown and
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4.3 LogNormal-Bayesian CART

use a joint prior for them, i.e., p(α, β) ∝ a0
α−1e−βb0/

(
Γ(α)c0β−αd0

)
where

a0, b0, c0, d0 are prior hyper-parameters; see, e.g., Fink (1997).

Although the joint prior can obtain estimators for α and β simultaneously in

the Bayesian framework, it is not formulated as an exact distribution, leading to

less accurate estimators. The first way also has this shortcoming. Therefore, we

do not use them in our implementation.

4.3 LogNormal-Bayesian CART

Consider a tree T with b terminal nodes as before. In the LogNormal model, we

assume that S̄i | x follows a LogNormal distribution. By using (4.3), the data

likelihood for terminal node t can be obtained as

fLN
(
S̄t | µt, σt

)
=

1∏nt

j=1 S̄tj

1

(2π)nt/2

1

σnt
t

exp

[
− 1

2σ2
t

(
ntr

2
t + nt(w̄t − µt)

2
)]

∝ (1/σ2
t )

nt/2 exp

(
− nt

2σ2
t

(w̄t − µt)
2

)
exp

(
−ntr

2
t

2σ2
t

)

∝ exp

(
− nt

2σ2
t

(w̄t − µt)
2

)
,

where w̄t =
∑nt

j=1 log(S̄tj)/nt denotes the empirical mean and r2t =
∑nt

j=1

(
log(S̄tj)− w̄t

)2
/nt

represents the empirical variance. Given the specified form of the likelihood, the

appropriate choice for the conjugate prior is a Normal distribution

p(µt) =
1

σπ
√
2π

exp

(
−1

2

(
µt − µπ

σπ

)2
)

(4.17)

with hyper-parameters µπ ∈ R and σ2
π > 0. We use the same method to deal with

σt as in Section 3.2, i.e., treating it as known (using MME to estimate). With the

above Normal prior and the estimated parameter σ̂t, the integrated likelihood for

terminal node t can be obtained as

pLN
(
S̄t | Xt

)
=

∫ ∞

−∞
fLN

(
S̄t | µt, σ̂t

)
p(µt)dµt

=

∫ ∞

−∞

nt∏
j=1

√
2π

S̄tjσ̂t
exp

(
−(log(S̄tj)− µt)

2

2σ̂2
t

)
1

σπ
√
2π

exp

(
−1

2

(
µt − µπ

σπ

)2
)
dµt

=
1

σ̂nt
t σπ(2π)

(nt/2+1)∏nt

j=1 S̄tj
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4.3 LogNormal-Bayesian CART

×
∫ ∞

−∞
exp

−1

2σ̂2
t

nt∑
j=1

(
log(S̄tj)

2 + µ2
t − 2 log(S̄tj)µt

)
+

−1

2σ2
π

(
µ2
t + µ2

π − 2µπµt

)dµt

=
1

σ̂nt
t σπσ∗t(2π)

(nt/2+2)∏nt

j=1 S̄tj

exp

(
−1

2

(
µt − µ∗t

σ∗t

)2
)

(4.18)

with

σ2
∗t =

σ̂2
t σ

2
π

ntσ2
π + σ̂2

t

,

µ∗t =
σ̂2
t

ntσ2
π + σ̂2

t

µπ +
ntσ

2
π

ntσ2
π + σ̂2

t

1

nt

nt∑
j=1

log(S̄tj) = σ2
∗t

(
µπ

σ2
π

+

∑nt

j=1 log(S̄tj)

σ̂2
t

)
.

The integrated likelihood for the tree T is thus given by

pLN
(
S̄ | X, σ̂, T

)
=

b∏
t=1

pLN
(
S̄t | Xt, σ̂t

)
. (4.19)

Next, we discuss the DIC for this tree. Since we only consider uncertainty for µ

but not for σ without data augmentation involved, we can use the DIC proposed

in Section 4.2. It follows that

DICt = D(µ̄t) + 2sDt,

where

D (µ̄t) = −2
nt∑
j=1

log fLN(S̄tj | µ̄t, σ̂t)

= −2
nt∑
j=1

(
−(log(S̄tj)− µ̄t)

2

2σ̂2
t

− log(S̄tjσ̂t
√
2π)

)
,

(4.20)

with

µ̄t = µ∗t = σ2
∗t

(
µπ

σ2
π

+

∑nt

j=1 log(S̄tj)

σ̂2
t

)
, (4.21)

and the effective number of parameters sDt is given by

sDt = 1 + 2
nt∑
j=1

{
log(fLN(S̄tj | µ̄t, σ̂t)− Epost

[
log(fLN

(
S̄tj | µt, σ̂t)

)]}

= 1 +
nt∑
j=1

σ2
∗t
σ̂2
t

= 1 +
ntσ

2
π

ntσ2
π + σ̂2

t

,

(4.22)

check the calculation here!!! and thus

DICt = D (µ̄t) + 2sDt

= −2
nt∑
j=1

(
−(log(S̄tj)− µ̄t)

2

2σ̂2
t

− log(S̄tjσ̂t
√
2π)

)
+ 2 +

2ntσ
2
π

ntσ2
π + σ̂2

t

.
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4.3 LogNormal-Bayesian CART

Table 4.2: Evaluation metrics for LN-BCART. ϵt denotes the em-

pirical claims severity in node t, computed as
∑nt

j=1 Stj/
∑nt

j=1Ntj.

µ̂t is the parameter estimation that is obtained from (4.21) and

σ̂t is obtained by using MME (see Remark 4.2 (a)).

Formulas

RSS(S̄)
∑b

t=1

∑nt

j=1

(
S̄tj − exp(µ̄t + σ̂2

t /2)
)2

SE
∑b

t=1

(
ϵt − exp(µ̄t + σ̂2

t /2)
)2

DS
∑b

t=1

(ϵt−exp(µ̄t+σ̂2
t /2))

2

(exp(σ̂2
t )−1) exp(2µ̄t+σ̂2

t )

Then the DIC of the tree T is obtained by using (4.16). With the formulas derived

above for the LogNormal case, we can use the three-step approach proposed in

Subsection 2.2.4, together with Algorithm 4.1 in Section 4.2 (treat θM = σ and

θB = µ), to search for an optimal tree which can then be used to predict new data.

Similarly, some evaluation metrics based on LogNormal distribution are provided

in Table 4.2.

Remark 4.2 (a) To obtain σt upfront, we can solve (4.4) and (4.5). However,

there is no explicit solution. One approach is to transform it into an optimization

problem by introducing a loss function:

L =
(
E(S̄i | µ, σ)− exp(µ+ σ2/2)

)2
+
(
Var(S̄i | µ, σ)− (exp(σ2)− 1) exp

(
2µ+ σ2

))2
.

Similar to ZIP models (see Subsection 3.3.5), we can use software R to solve this

optimization problem by using the package optimx.

(b) It is obvious to see that sDt → 2 as nt → ∞. This explains the name of

the effective number of parameters in the Bayesian framework, as 2 is the number

of parameters in the terminal node t for the LogNormal model if a flat prior is

assumed for µt, and σt is assumed known.

(c) There are other ways to deal with the LogNormal distribution in the Bayesian

framework by treating different parameters as known and assuming corresponding

conjugate priors. For example, a Normal inverse-Gamma joint prior can be used

for the parameters µ and σ2; see, e.g., Fink (1997).
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4.4 Weibull-Bayesian CART

4.4 Weibull-Bayesian CART

Consider a tree T with b terminal nodes as before. In the Weibull model, we

assume that S̄i | x follows a Weibull distribution. As in the previous sections,

we choose the inverse Gamma prior for βt with hyper-parameters απ, βπ > 0 to

obtain the posterior distribution in a closed form, that is,

p(βt) =
βαπ
π

Γ(απ)
β−απ−1
t exp(−βπ/βt), (4.23)

and treat αt as known (using MME to estimate). With the above inverse Gamma

prior and the estimated parameter α̂t, the integrated likelihood for terminal node

t can be obtained as

pWeib

(
S̄t | Xt

)
=

∫ ∞

0

fWeib

(
S̄t | α̂t, βt

)
p(βt)dβt

=

∫ ∞

0

nt∏
j=1

α̂t

βt
S̄α̂t−1
tj exp(−S̄α̂t

tj /βt)
βαπ
π

Γ(απ)
β−απ−1
t exp(−βπ/βt)dβt

=
βαπ
π α̂nt

t

∏nt

j=1 S̄
α̂t−1
tj

Γ(απ)
β−nt−απ−1
t exp

− 1

βt

 nt∑
j=1

S̄tj
α̂t + βπ


 dβt

=
βαπ
π α̂nt

t

∏nt

j=1 S̄
α̂t−1
tj

Γ(απ)

Γ(nt + απ)

(
∑nt

j=1 S̄
α̂t
tj + βπ)nt+απ

.

(4.24)

Clearly, from (4.24), we see that the posterior distribution of βt, conditional on

S̄t, is given by

βt | S̄t ∼ Inverse Gamma

nt + απ,

nt∑
j=1

S̄α̂t
tj + βπ

 .

The integrated likelihood for the tree T is thus given by

pWeib

(
S̄ | X, α̂, T

)
=

b∏
t=1

pWeib

(
S̄t | Xt, α̂t

)
. (4.25)

Next, we discuss the DIC for this tree. Since we only consider uncertainty for

β but not for α without data augmentation involved, we can still use the DIC

proposed in Section 4.2. It follows that

DICt = D(β̄t) + 2sDt,
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4.4 Weibull-Bayesian CART

where

D(β̄t) = −2
nt∑
j=1

log fWeib(S̄tj | α̂t, β̄t)

= −2
nt∑
j=1

(
log(α̂t)− log(β̄t) + (α̂t − 1) log(S̄tj)− S̄α̂t

tj /β̄t

)
,

(4.26)

with

β̄t =

∑nt

j=1 S̄tj
α̂t + βπ

nt + απ − 1
, (4.27)

and the effective number of parameters sDt is given by

sDt = 1 + 2
nt∑
j=1

{
log(fWeib(S̄tj | α̂t, β̄t)− Epost

[
log
(
fWeib(S̄tj | α̂t, βt)

)]}

= 1 + 2
nt∑
j=1

(
log(nt + απ − 1)− ψ(nt + απ) +

S̄α̂t
tj∑nt

j=1 S̄
α̂t
tj + βπ

)
,

(4.28)

where we use the fact that

Epost

(
log(βt)

)
= log

 nt∑
j=1

S̄tj
α̂t + βπ

− ψ(nt + απ),

Epost

(
1/βt

)
=

nt + απ∑nt

j=1 S̄tj
α̂t + βπ

.

Thus

DICt = D(β̄t) + 2sDt

= −2
nt∑
j=1

(
log(α̂t)− log(β̄t) + (α̂t − 1) log(S̄tj)− S̄α̂t

tj /β̄t

)
+ 2 + 4

nt∑
j=1

(
log(nt + απ − 1)− ψ(nt + απ) +

S̄α̂t
tj∑nt

j=1 S̄
α̂t
tj + βπ

)
.

Then the DIC of the tree T is obtained by using (4.16). With the formulas

derived above for the Weibull case, we can use the three-step approach proposed

in Subsection 2.2.4, together with Algorithm 4.1 in Section 4.2 (treat θM = α

and θB = β), to search for an optimal tree which can then be used to predict new

data. Similarly, the formulas for some of the evaluation metrics based on Weibull

distribution are provided in Table 4.3.

Remark 4.3 (a) Similar to Section 4.3, to obtain αt upfront, we use software R

to solve these two equations ( (4.7) and (4.8)) by using the package optimx.

(b) Obviously, sDt → 2 as nt → ∞, which is exactly the effective number of

parameters in the terminal node t for the Weibull model if a flat prior is assumed

for βt, and αt is assumed known.

101



4.5 A Simulation Example: Weibull Data with Varying Shape
Parameters

Table 4.3: Evaluation metrics for Weib-BCART. ϵt de-

notes the empirical claims severity in node t, computed as∑nt

j=1 Stj/
∑nt

j=1Ntj. β̂t is the parameter estimation that can be

obtained from (4.27); α̂t can be obtained by using MME (see Re-

mark 4.3 (a)).

Formulas

RSS(S)
∑b

t=1

∑nt

j=1

(
S̄tj − β̄tΓ(1 + 1/α̂t)

)2
SE

∑b
t=1

(
ϵt − β̄tΓ(1 + 1/α̂t)

)2
DS

∑b
t=1

(ϵt−β̄tΓ(1+1/α̂t))
2

β̄2
t

[
Γ(1+2/α̂t)−

(
Γ(1+1/α̂t)

)2
]

There are many other distributions that can also be used to model claims

severity, such as Pareto, generalized Gamma, generalized Pareto distributions,

and so on. However, they either have too many parameters or are challenging to

make explicit calculations in the Bayesian framework. We believe further research

into the selection of these generalized distributions could still be explored; see,

e.g., Mehmet & Saykan (2005), Shi et al. (2015) and Farkas et al. (2021).

4.5 A Simulation Example: Weibull Data with

Varying Shape Parameters

This section aims to examine how different BCART models for claims severity

introduced in previous sections can capture the tail feature of simulated data. To

achieve this, we shall use the Weibull distribution to generate data. By tuning

the shape parameter of the Weibull distribution, we can control the tail. Simulate

a data set {(xi, S̄i)}ni=1 with n = 5, 000 independent observations. Here xi =

(xi1, xi2), with independent components xik ∼ N(0, 1) for k = 1, 2. Moreover,

S̄i ∼ Weib(α, β (xi1, xi2)), where

β (x1, x2) =

{
50 if x1x2 ≤ 0,
200 if x1x2 > 0,

and α is the shape parameter of the Weibull distribution, which is to be varied

and specified later. The value for the rate parameter β is chosen to be 50 (or 200)
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Parameters

Table 4.4: Statistics summary for simulated data with different

values of the shape parameter α.

α = 0.5 α = 2

Mean 255 111

Median 47 74

Max 12539 554

Standard Deviation 657 94

Skewness 7 1

Kurtosis 78 4

to keep the average claim amount S̄i around 200, which is close to the situation

in real data. The data is split into two subsets: a training set with n − m =

4, 000 observations and a test set with m = 1, 000 observations. In this case,

the goal is to investigate the performance of the Gamma-BCART, LN-BCART,

and Weib-BCART when α is varied, leading to different tail characteristics (heavy

and light tails). Clearly, Weib-BCART should be the best among these for two

reasons: First, the data is generated using the Weibull distribution. Second, in

tree models, which involve many groups (terminal nodes), Weib-BCART is flexible

to accommodate data in different groups with varying tail features by tuning the

shape parameter. Besides, intuition tells us that when α < 1, LN-BCART is

expected to outperform Gamma-BCART in capturing the heavy tail. Conversely,

when α > 1, Gamma-BCART is anticipated to be sufficiently effective for the

light-tailed data. This study will support this intuition. For simplicity, we shall

present two results, one with α = 0.5, and the other with α = 2. The statistics

summary for data simulated using different values of α is provided in Table 4.4.

High positive skewness (right-skewed) means that more values are concentrated

on the left side (tail) of the distribution, while the right tail of the distribution

graph is longer, and high kurtosis indicates that the distribution has more values

in the tails, confirming that the smaller the α, the heavier the tail.

We begin our discussion by simulating data with a heavy tail (i.e., α = 0.5).

We provide the hyper-parameters γ, ρ used to achieve MCMC convergence to the

region of trees with a specific number of terminal nodes in Table 4.5. The effective

number of parameters and DIC of the optimal trees for each model are shown in

the last two columns, respectively. We can conclude from the DIC that by using

Step 3 in Table 2.1, we can choose the optimal tree with the true 4 terminal nodes

for either Gamma-BCART, LN-BCART, or Weib-BCART, and among these, the
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4.5 A Simulation Example: Weibull Data with Varying Shape
Parameters

Table 4.5: Hyper-parameters, sD and DIC on training data (shape

parameter α = 0.5). The number in the bracket after the abbre-

viation of the model indicates the number of terminal nodes for

this tree. Bold font indicates DIC selected model.

Model γ ρ sD DIC

Gamma-BCART (2) 0.50 15 3.97 54882

Gamma-BCART (3) 0.95 15 5.97 54641

Gamma-BCART (4) 0.99 12 7.96 54303

Gamma-BCART (5) 0.99 10 9.95 54437

LN-BCART (2) 0.50 10 3.99 54262

LN-BCART (3) 0.95 10 5.98 53960

LN-BCART (4) 0.99 10 7.97 53501

LN-BCART (5) 0.99 8 9.96 53708

Weib-BCART (2) 0.50 10 4.00 54189

Weib-BCART (3) 0.90 10 5.99 53843

Weib-BCART (4) 0.95 10 7.99 53373

Weib-BCART (5) 0.99 10 9.98 53629

Weib-BCART (with DIC=53373) is the best one. This is consistent with our ex-

pectation, and the fact that there is a smaller difference betweenWeib-BCART and

LN-BCART than the difference between LN-BCART and Gamma-BCART shows

that LN-BCART has somewhat captured the heavy tail. Now, let us look at how

well these models perform on test data in Table 4.6. First, it is not surprising that

the best SE (0.365, 0.331, and 0.323 respectively) and DS (5.36×10−6, 5.11×10−6,

and 5.02×10−6 respectively) are obtained by the optimal tree with 4 terminal

nodes for each type of model, i.e., Gamma, LogNormal, and Weibull, which is un-

derstandable given that these models retrieve almost true tree structures. Second,

RSS(S̄), NLL, and lift show that, for each type of model, performance improves as

the number of terminal nodes rises, however, the amount of improvement becomes

smaller after the optimal trees with 4 terminal nodes have been attained (see more

discussion in Section 2.3). Third, we observe that the Weib-BCART, among these

three trees with 4 terminal nodes, performs the best on test data based on all

these evaluation metrics, which is in line with the conclusion from training data.

Next, we consider the simulation with a light tail (i.e., α = 2). Tables 4.7

and 4.8 show the results. For this case, similar discussions can be considered. We

discover that the performance order based on DIC is Weib-BCART > Gamma-
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4.6 Summary of Chapter 4

Table 4.6: Model performance on test data (shape parameter

α = 0.5) with bold entries determined by DIC (see Table 4.5).

The number in the bracket after the abbreviation of the model

indicates the number of terminal nodes for this tree.

Model RSS(S̄) (in 108) SE DS (in 10−6) NLL Lift

Gamma-BCART (2) 1.078 0.395 6.14 13305 1.12

Gamma-BCART (3) 1.043 0.383 5.89 13153 2.34

Gamma-BCART (4) 0.995 0.365 5.36 12869 3.73

Gamma-BCART (5) 0.994 0.377 5.54 12756 3.80

LN-BCART (2) 1.052 0.385 5.92 13115 1.52

LN-BCART (3) 1.009 0.366 5.68 13005 2.78

LN-BCART (4) 0.989 0.331 5.11 12699 3.79

LN-BCART (5) 0.984 0.343 5.28 12601 3.85

Weib-BCART (2) 1.044 0.382 5.85 13025 1.60

Weib-BCART (3) 1.000 0.359 5.61 12916 2.93

Weib-BCART (4) 0.986 0.323 5.02 12605 3.87

Weib-BCART (5) 0.983 0.339 5.14 12528 3.92

BCART > LN-BCART, which is also consistent with their performance on test

data. To avoid duplication of content, we omit the detailed analysis here.

Additionally, we run several other simulation examples to compare the perfor-

mance of Gamma-BCART, LN-BCART, and Weib-BCART with various values of

α. We draw the following conclusions from these simulations: LN-BCART out-

performs Gamma-BCART when the data has a heavy tail (reflected by a small

α), and vice versa; Besides, Weib-BCART is preferred to both Gamma-BCART

and LN-BCART because it can flexibly handle data in groups with different tail

properties by tuning the shape parameter. This finding is supported by the real

insurance data analyses provided in Chapter 6.

4.6 Summary of Chapter 4

The use of several distributions (Gamma, LogNormal, and Weibull) in BCART

models for claims severity analysis is covered in this chapter. We found that

the Weib-BCART is the best model among these three, capable of handling cases

where some groups have lighter tails, and others have heavier tails. Besides, in the

comparison between Gamma-BCART and LN-BCART, the former is preferable
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4.6 Summary of Chapter 4

Table 4.7: Hyper-parameters, sD and DIC on training data (shape

parameter α = 2). The number in the bracket after the abbrevia-

tion of the model indicates the number of terminal nodes for this

tree. Bold font indicates DIC selected model.

Model γ ρ sD DIC

LN-BCART (2) 0.50 12 3.99 43014

LN-BCART (3) 0.95 12 5.97 42891

LN-BCART (4) 0.99 12 7.96 42688

LN-BCART (5) 0.99 10 9.95 42742

Gamma-BCART (2) 0.50 10 3.99 42807

Gamma-BCART (3) 0.95 10 5.98 42641

Gamma-BCART (4) 0.99 10 7.98 42382

Gamma-BCART (5) 0.99 8 9.96 42459

Weib-BCART (2) 0.50 10 4.00 42729

Weib-BCART (3) 0.90 10 5.99 42520

Weib-BCART (4) 0.95 10 7.99 42198

Weib-BCART (5) 0.99 10 9.97 42301

for data with a lighter tail and the latter is more suitable for data with a heavier

tail. This finding provides us with a practical strategy for choosing models, which

will be further demonstrated in real data analyses in Chapter 6.
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4.6 Summary of Chapter 4

Table 4.8: Model performance on test data (shape parameter

α = 2) with bold entries determined by DIC (see Table 4.7).

The number in the bracket after the abbreviation of the model

indicates the number of terminal nodes for this tree.

Model RSS(S̄) (in 106) SE DS (in 10−8) NLL Lift

LN-BCART (2) 2.71 0.0001958 3.619 5513 1.23

LN-BCART (3) 2.59 0.0001934 3.496 5385 2.41

LN-BCART (4) 2.08 0.0001879 3.336 5143 3.75

LN-BCART (5) 1.94 0.0001890 3.402 5012 3.82

Gamma-BCART (2) 2.32 0.0001897 3.503 5366 1.63

Gamma-BCART (3) 2.14 0.0001880 3.358 5157 2.81

Gamma-BCART (4) 1.69 0.0001795 3.112 4916 3.81

Gamma-BCART (5) 1.54 0.0001805 3.266 4843 3.87

Weib-BCART (2) 2.23 0.0001889 3.467 5315 1.65

Weib-BCART (3) 1.99 0.0001868 3.302 5120 2.85

Weib-BCART (4) 1.60 0.0001785 3.075 4888 3.85

Weib-BCART (5) 1.48 0.0001793 3.212 4791 3.90
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Chapter 5

Aggregate Claims Modelling with

Bayesian CART

Unlike the previous two chapters which model claims frequency and claims severity

separately, this chapter introduces probability models to describe the aggregate

(total) claim amount Si =
∑Ni

j=1 Yij for each policyholder i (i = 1, 2, . . . , n), where

both Ni and Yij(j = 1, . . . , Ni) given Ni > 0 are random. First, we present two

types of models, frequency-severity models (see Omari et al. (2018) and Mehmet

& Saykan (2005)) and sequential models, both of which use two trees for claims

frequency and claims severity respectively. The former considers claims frequency

and claims severity independently, so the order in which they are modelled has no

influence. The latter, as the name suggests, is affected by the order of the claims

frequency and claims severity modelling. A common approach is to first model

the claims frequency and then treat the number of claims Ni as a covariate in the

claims severity modelling to address the dependence between the number of claims

and claims severity. This strategy has gained popularity due to the increased focus

on the dependence in aggregate claims modelling. Recent studies have explored

it extensively; see, e.g., Garrido et al. (2016), Shi et al. (2015) and Frees et al.

(2016). We propose to apply this strategy in BCART models. Following this, we

introduce a third model, joint model, which utilize Compound Poisson Gamma

(CPG) and Zero-Inflated Compound Poisson Gamma (ZICPG) distributions for

bivariate response (number of claims and aggregate claim amount) modelling; see,

e.g., Smyth & Jørgensen (2002) and Quijano Xacur & Garrido (2015). Particularly,

for ZICPG distributions, we employ the data augmentation technique (see Murray

(2021)) and explore different ways to embed the exposure, as discussed in Chapter

3. In contrast to the previous two models, joint models construct one joint tree

for (Ni, Si) to directly model the aggregate claim amount Si, thereby avoiding
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5.1 Frequency-Severity Models

the need to look for two trees. Two simulation examples are provided for specific

illustrative purposes. Additionally, to facilitate the comparison between two trees

and one joint tree, we will employ the evaluation metrics introduced in Section

2.3. Specific details on their application in the case of two trees are provided.

5.1 Frequency-Severity Models

This section describes a standard model of insurance claims, which independently

models claims frequency and claims severity using two trees. The ultimate goal of

insurance pricing is to estimate the premium. Under the assumption that claims

frequency and claims severity are independent, the pure premium can be calculated

as:

Pure Premium = Claims Frequency × Claims Severity.

In Chapters 3 and 4, we introduced BCART models for both claims frequency and

claims severity separately. These models can be directly used for the premium

calculation.

In Chapter 4, we model S̄i using three different distributions (Gamma, Log-

Normal, and Weibull). This section proposes another way that uses the Gamma

distribution to model the individual claim amount Yij instead of modelling S̄i di-

rectly, following Henckaerts et al. (2021) and Frees et al. (2014) (also see Remark

4.1 (b) in Section 4.2). Assume the insurance policyholder i = 1, 2, . . . , n have

independent claim amounts Yij (j = 1, 2, . . . , Ni) given Ni > 0. And they follow

a common Gamma distribution with parameters α > 0 and β > 0. Based on the

additive property of the Gamma distribution, we can obtain the distribution for

S̄i, i.e.,

S̄i ∼ Gamma (Niα(xi), Niβ(xi)),

which incorporates the number of claims Ni into the parameters as model weights

for claims severity modelling, in contrast to Section 4.2.

Consider a tree T with b terminal nodes, following a similar procedure to

Section 4.2, for terminal node t, we denote the associated data as (Xt,Nt, S̄t) =

((Xt1, Nt1, S̄t1), . . . , (Xtnt , Ntnt , S̄tnt))
⊤. We then have

fG
(
S̄tj | Ntj, αt, βt

)
=

(Ntjβt)
NtjαtS̄

Ntjαt−1
tj e−NtjβtS̄tj

Γ(Ntjαt)
(5.1)

for the j-th observation such that xi ∈ At, where Ntj can be obtained directly

from the data within the node. The mean and variance of S̄tj are given by

E(S̄tj | αt, βt) =
αt

βt
, Var(S̄tj | Ntj, αt, βt) =

αt

Ntjβ2
t

. (5.2)
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5.1 Frequency-Severity Models

Similar to Section 4.2, we choose the Gamma prior for βt with hyper-parameters

απ, βπ > 0 (cf. (3.2)) and treat αt as known (using MME to estimate), i.e.,

α̂t =
(S̄)2t

Var(S̄)tN̄t

. (5.3)

where (S̄)t and Var(S̄)t have the same meaning as in Section 4.2, and N̄t denotes

the average claim number in the t-th node. With the above Gamma prior and

the estimated parameter α̂t, the integrated likelihood for terminal node t can be

obtained as

pG(S̄t | Xt,Nt)

=

∫ ∞

0

fG(S̄t | Nt, α̂t, βt)p(βt)dβt

=

∫ ∞

0

nt∏
j=1

(Ntjβt)
Ntj α̂tS̄

Ntj α̂t−1
tj e−NtjβtS̄tj

Γ(Ntjα̂t)

βαπ
π βt

απ−1e−βπβt

Γ(απ)
dβt

=
βαπ
π

∏nt

j=1N
Ntj α̂t

tj S̄
Ntj α̂t−1
tj

Γ(απ)
∏nt

j=1 Γ(Ntjα̂t)

∫ ∞

0

β
∑nt

j=1 Ntj α̂t+απ−1

t e−(
∑nt

j=1 Ntj S̄tj+βπ)βtdβt

=
βαπ
π

∏nt

j=1N
Ntj α̂t

tj S̄
Ntj α̂t−1
tj

Γ(απ)
∏nt

j=1 Γ(Ntjα̂t)

Γ(
∑nt

j=1Ntjα̂t + απ)

(
∑nt

j=1NtjS̄tj + βπ)
∑nt

j=1 Ntj α̂t+απ
.

(5.4)

Clearly, from (5.4), we see that the posterior distribution of βt, conditional on

data (Nt, S̄t), is given by

βt | Nt, S̄t ∼ Gamma

 nt∑
j=1

Ntjα̂t + απ,
nt∑
j=1

NtjS̄tj + βπ

 .

The integrated likelihood for the tree T is thus given by

pG
(
S̄ | X,N , α̂, T

)
=

b∏
t=1

pG
(
S̄t | Xt,Nt, α̂t

)
. (5.5)

Now, we discuss the DICt for terminal node t of this tree. Similar to Section

4.2, we can derive

D(β̄t) = −2
nt∑
j=1

[
Ntjα̂t log(Ntjβ̄t) + (Ntjα̂t − 1) log(S̄tj)− β̄tNtjS̄tj − log

(
Γ(Ntjα̂t)

)]
,

(5.6)

where

β̄t =

∑nt

j=1Ntjα̂t + απ∑nt

j=1NtjS̄tj + βπ
. (5.7)
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5.1 Frequency-Severity Models

Therefore, a direct calculation shows that the effective number of parameters for

terminal node t is given by

sDt = 1 + 2

log

 nt∑
j=1

Ntjα̂t + απ

− ψ

 nt∑
j=1

Ntjα̂t + απ


 nt∑

j=1

Ntjα̂t, (5.8)

and thus

DICt

= D(β̄t) + 2sDt

= −2
nt∑
j=1

[
Ntjα̂t log(Ntjβ̄t) + (Ntjα̂t − 1) log(S̄tj)− β̄tNtjS̄tj − log

(
Γ(Ntjα̂t)

)]

+ 2 + 4
nt∑
j=1

log

 nt∑
j=1

Ntjα̂t + απ

− ψ

 nt∑
j=1

Ntjα̂t + απ


 nt∑

j=1

Ntjα̂t.

Then the DIC of the tree T is obtained as

DIC :=
b∑

t=1

DICt. (5.9)

With the above formulas derived, we can use the three-step approach proposed

in Subsection 2.2.4 to search for an optimal tree for the claims severity, where

Algorithm 4.1 in Section 4.2 (treat θM = α and θB = β) should be used.

Remark 5.1 (a) There are many different combinations for the frequency-severity

models, i.e., any model that appears in Chapter 3 and any model that appears in

either Chapter 4 or the newly introduced one above can be used individually.

(b) One benefit of modelling claims frequency and claims severity using two

trees is that the risks associated with each component can be discovered individually.

However, it can be challenging to interpret two trees as a whole, since several

policyholders may be in the same group for claims frequency but a different group

for claims severity.

5.1.1 Evaluation Metrics for Frequency-Severity Models

Some evaluation metrics introduced in Section 2.3 remain applicable in the case

of two trees. However, the process of obtaining the predicted premium for a new

observation in the context of two trees in frequency-severity models (and subse-

quent sequential models in Section 5.2) needs some further discussion. With the
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5.2 Sequential Models

ultimate goal of estimating the premium in mind, RSS(S) and NLL (see Section

2.3) can be easily employed. Given the independence assumption between claims

frequency and severity in the frequency-severity models, RSS(S) is straightfor-

wardly obtained by multiplying N̂i and
ˆ̄Si, i.e., Ŝi = N̂i

ˆ̄Si, where N̂i is obtained

from the claims frequency tree and ˆ̄Si is obtained from the claims severity tree.

Similarly, NLL can be obtained by summing up the corresponding NLLs from the

two trees. Both RSS(S) and NLL focus on the partitioned data itself without

considering the tree structure, while other comparison indexes (SE, DS, and lift)

are tree structure dependent. Although it is possible to combine two trees to

obtain a joint partition, if both separate trees are already large, the process of

deriving their combined partition becomes significantly complex. Therefore, we

do not apply them in the subsequent comparisons. From another perspective, two

additional indicators, time and memory usage, can be employed to examine the

computational efficiency. For the frequency-severity models, time and memory

usage are determined by the summation of corresponding values from the two

trees.

5.2 Sequential Models

Although the traditional approach of considering claims frequency and claims

severity models separately, as discussed in the previous section, can simplify the

problem, it is more realistic to consider the dependence between the number of

claims and claims severity. There are two widely discussed strategies to address

this issue. One is to use a mixed copula to jointly model the discrete variable of

claim count and the continuous variable of claim amount (see, e.g., Czado et al.

(2012), Song et al. (2009) and Gao & Li (2023)), which is very flexible since

there are many different copulas that can be chosen. Besides, there is a dedicated

parameter in the copula that can be used to model the dependence structure

specifically. However, the mixed copulas are difficult to apply in the Bayesian

framework. Therefore, we do not consider this strategy in this thesis. Another

strategy is to include the number of claims Ni as a covariate in the claims severity

model to formulate a conditional severity model; see, e.g., Garrido et al. (2016).

In this section, we shall follow this strategy in the BCART models, where the

claim count Ni is treated as a covariate (also treated as model weights in some

cases; see Section 5.1) in the claims severity tree, keeping everything else the same

as the frequency-severity models in the previous section.
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5.2 Sequential Models

There are usually two ways to consider Ni as a covariate in claims severity

modelling: either directly use Ni as a numeric covariate (see Garrido et al. (2016))

or treat Ni as a factor with different levels (see Gschlößl & Czado (2007)). Con-

sidering that in real life, it is important to allow premium estimation for new

customers when there is no observed claim count Ni, we propose a third way,

i.e., use the estimation of claim count N̂i from the frequency model as a numeric

covariate to address this issue.

Using the tower property of probability expectation, it is easily seen that the

expectation of the aggregate claim amount Si =
∑Ni

j=1 Yij = NiS̄i for an individual

policyholder i can be given as (omitting the subscript i for simplicity),

E(S) = E(NS̄) = E(E(NS̄ | N)) = E(NE(S̄ | N)). (5.10)

Because of this formulation, we can estimate the expected claims severity E(S̄ | N)

using N (or N̂) as a covariate, as in Garrido et al. (2016).

Since the structures of the claims frequency and claims severity trees are es-

sentially the same as in Chapters 3 and 4, except that the claim count Ni (or

N̂i) is treated as a predictor variable in the claims severity modelling within the

sequential models, we do not repeat the model description here.

Remark 5.2 (a) If the sequential models do not choose Ni (or N̂i) as a splitting

covariate, they would be the same as the frequency-severity models.

(b) Sequential models also consist of two trees, so the evaluation metrics intro-

duced in Subsection 5.1.1 can be applied directly to these models.

5.2.1 A Simulation Example: Varying Dependencies be-

tween the Number of Claims and Claims Severity

Given the similarities and differences between the frequency-severity models and

the sequential models, this subsection aims to demonstrate the capability of the

sequential models with Bayesian CART to address the dependence between the

number of claims and claims severity by using simulated data. The performance of

using different forms of Ni (Ni itself and its estimation) within sequential models

is also examined. As the current focus is not on comparing different distributions

applied for claims frequency and claims severity, which has been extensively dis-

cussed in previous Sections 3.5 and 4.5, we consistently employ the Poisson and

Gamma distributions for both frequency-severity models and sequential models

here for the sake of simplicity. Besides, to simplify the setting and more clearly
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5.2 Sequential Models

reflect the importance of treating Ni (or N̂i) as a covariate in the claims sever-

ity modelling, we model S̄i directly as in Section 4.2, i,e., S̄i ∼ Gamma(α, β),

without using Ni as model weights in the Gamma distribution (see Section 5.1).

Additionally, since both frequency-severity models and sequential models have the

same claims frequency tree, in the following model comparison, we only consider

the claims severity tree. The evaluation metrics introduced in Section 2.3 can be

directly employed for the comparison between different claims severity trees. In

the sequel, we exclusively treat Ni as a numeric variable. In real data, Ni typi-

cally encompasses a wide range of distinct values, leading to numerous levels. This

abundance of levels makes it unsuitable for a strategy that transforms the numeric

covariate into a categorical one.

To this end, we simulate a data set
{
(xi, vi, Ni, S̄i)

}n
i=1

with n = 5, 000 inde-

pendent observations. Here xi = (xi1, xi2), with independent components xik ∼
N(0, 1) for k = 1, 2. We assume exposure vi ≡ 1 for simplicity, as it is not a key

feature in this context. Moreover, Ni ∼ Poi(λ(xi1, xi2)vi), where

λ (x1, x2) =

{
1 if x1x2 ≤ 0,
7 if x1x2 > 0.

In this simulation setting, Ni = 0 for 901 occurrences, leading to the setting of

S̄i to be 0 directly. For the remaining 4099 cases, S̄i is generated from a Gamma

distribution with a pre-specified and varied dependence parameter ζ, i.e.,

S̄i | Ni ∼ Gamma
(
α, βζ

)
,

with

βζ = 0.001 + ζNi,

where α is the shape parameter of the Gamma distribution, and for simplicity, it is

fixed at 1 since it is also not a key factor here. The basic value for the rate param-

eter β is set to 0.001 to maintain the average claim amount S̄i to be around 500,

aligning with real-world scenarios. The data is split into two subsets: a training

set with n−m = 4, 000 observations and a test set with m = 1, 000 observations.

In this case, our goal is to examine how the dependence modulated by ζ influences

the performance of both frequency-severity models and sequential models, and the

performance of incorporating Ni (or N̂i) into the sequential models. Clearly, if the

models choose Ni (or N̂i) as a splitting covariate, it would indicate that the claim

count plays an important role in claims severity modelling, and thus sequential

models should be preferred.
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5.2 Sequential Models

Table 5.1: Statistics summary and conditional correlation between

the number of claims and claims severity for simulated data with

different values of the dependence parameter ζ.

ζ = 0 ζ = 0.001

Mean 828 206

Median 494 92

Max 9713 5138

Standard Deviation 983 324

Corr(N, S̄ | NS̄ > 0) -0.01 -0.41

Table 5.1 presents the statistics summary and conditional correlation coeffi-

cients between the number of claims and claims severity for data sets with different

values of ζ. It is obvious that by tuning the value of ζ, the conditional correlation

between the number of claims and claims severity varies. For simplicity, we shall

only focus on the case where ζ = 0.001, indicating a strong dependence between

them. Intuition suggests that sequential models are expected to perform better in

capturing strong dependence, and the stronger the dependence, the better the per-

formance of sequential models. In contrast, when there is only a weak dependence

(e.g., ζ=0.00001) in the data, the claim count Ni (or N̂i) is unlikely to be selected

as a splitting covariate in sequential models, resulting in frequency-severity models

and sequential models being the same.

First, regarding model selection on training data in Table 5.2, although we do

not have knowledge of the true tree structure and the optimal number of terminal

nodes, all models consistently choose five terminal nodes based on DIC, indicating

the stability of BCART models in some sense. A more in-depth discussion on the

stability will be provided in Chapter 6. Notably, the best performing model is

Gamma2-BCART (with DIC=2618), validating our proposed approach of treat-

ing N̂i as a covariate. Moreover, the larger difference between Gamma-BCART

and Gamma1-BCART compared to the difference between Gamma1-BCART and

Gamma2-BCART suggests that Gamma1-BCART has effectively captured the de-

pendence. Subsequently, we compare the performance on test data in Table 5.3.

The conclusion is that based on all these evaluation metrics, Gamma2-BCART

with 5 terminal nodes performs the best, which confirms the finding from the

training data. In addition, when examining the splitting rules used in the optimal

tree for each type of model, both Gamma1-BCART and Gamma2-BCART use Ni
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Table 5.2: Hyper-parameters, sD and DIC on training data (de-

pendence parameter ζ = 0.001). The number in the bracket after

the abbreviation of the model indicates the number of terminal

nodes for this tree. The Gamma1 and Gamma2 models treat the

claim count Ni and N̂i as a covariate respectively, where N̂i comes

from Poisson-BCART. Bold font indicates DIC selected model.

Model γ ρ sD DIC

Gamma-BCART (4) 0.95 10 7.95 2769

Gamma-BCART (5) 0.99 10 9.94 2716

Gamma-BCART (6) 0.99 7 11.92 2738

Gamma1-BCART (4) 0.95 10 7.97 2698

Gamma1-BCART (5) 0.99 10 9.96 2644

Gamma1-BCART (6) 0.99 7 11.94 2663

Gamma2-BCART (4) 0.95 10 7.98 2682

Gamma2-BCART (5) 0.99 10 9.98 2618

Gamma2-BCART (6) 0.99 7 11.97 2635

Table 5.3: Model performance on test data (dependence param-

eter ζ = 0.001) with bold entries determined by DIC (see Table

5.2). The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree. The

Gamma1 and Gamma2 models treat the claim count Ni and N̂i as

a covariate respectively, where N̂i comes from Poisson-BCART.

Model RSS(S) (in 105) SE DS NLL Lift

Gamma-BCART (4) 8.34 0.0927 0.0331 412.83 1.42

Gamma-BCART (5) 8.18 0.0894 0.0309 409.37 1.85

Gamma-BCART (6) 8.11 0.0904 0.0319 407.55 1.92

Gamma1-BCART (4) 8.20 0.0909 0.0321 408.12 1.61

Gamma1-BCART (5) 8.04 0.0875 0.0297 403.41 2.06

Gamma1-BCART (6) 7.97 0.0886 0.0305 402.78 2.16

Gamma2-BCART (4) 8.09 0.0903 0.0312 404.96 1.65

Gamma2-BCART (5) 7.91 0.0866 0.0292 401.13 2.09

Gamma2-BCART (6) 7.83 0.0875 0.0300 400.17 2.18

(or N̂i) in the second split step, and they have similar split values by using Ni and
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N̂i respectively.

We also compare these three models with different values of ζ through sev-

eral additional simulation examples. Based on these simulations, we obtain the

following conclusions: 1) when the conditional correlation coefficient between the

number of claims and claims severity is close to zero, both frequency-severity

models and sequential models exhibit similar performance. In such cases, we

recommend the former since they reduce computation time; 2) When the de-

pendence is stronger, sequential models outperform frequency-severity models by

considering the number of claims as a covariate when modelling claims severity;

3) Gamma2-BCART outperforms Gamma1-BCART, and we suspect the reason

for this may be that when using the original data Ni itself, it can only be integers

and contains a large number of zeros. In contrast, the predicted value N̂i can take

non-integers, providing more possibilities for finding better split values, resulting

in better splitting rules and data partitions. The real insurance data analyses

presented in Chapter 6 support these conclusions.

Remark 5.3 In the above simulation study, we only present the results for Gamma2-

BCART using Poisson-BCART to obtain the prediction of the claim count Ni.

We also assess the performance of using different predicted values of Ni (GLMs

and Poisson-CART) in the claims severity modelling. The conclusion is that the

more accurate the estimated value for claims frequency used, the better the claims

severity tree found, which is consistent with the conclusion obtained in real data

analyses (see Chapter 6). Motivated by this observation, we can also use other

models to obtain the claims frequency estimation, such as random forests (RF),

gradient boosting trees (GBT), neural networks (NN) and so on, which remain to

be further explored.

5.3 Joint Models

Different from the previous two types of BCART models where two separate tree

models are used for the frequency and severity, in this section we introduce the

third type of BCART models, called joint BCART models, where we consider

(N,S) as a bivariate response; see Jørgensen & Paes De Souza (1994) and Smyth

& Jørgensen (2002) for a similar treatment in generalized linear models. We

shall discuss two commonly used distributions for aggregate claim amount S,

namely, Compound Poisson Gamma distribution (CPG) and Zero-Inflated Com-

pound Poisson Gamma distribution (ZICPG). The presence of a discrete mass at
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zero makes them suitable for modelling aggregate claim amount; see, e.g., Qui-

jano Xacur & Garrido (2015), Yang et al. (2018) and Denuit et al. (2021). More-

over, we employ the data augmentation technique and explore different ways to

embed the exposure in ZICPG models, similar to Chapter 3. The advantage of

modelling frequency and severity components separately has been recognized in

the literature; see, e.g., Quijano Xacur & Garrido (2015) and Frees et al. (2016).

In particular, this separate treatment can reflect the situation when the covariates

that affect the frequency and severity are very different. However, one disadvan-

tage is that it takes more effort to combine the two resulting models, as we have

already seen in Subsection 5.1.1. Compared to the use of two separate tree models,

the advantage of joint modelling is that the resulting one tree is easier to interpret

which simultaneously gives estimates for frequency, pure premium and thus sever-

ity. Additionally, for the situation where frequency and severity are linked through

shared covariates, using a parsimony one joint tree model might be advantageous;

this will be illustrated in our simulation examples in Subsection 5.3.3. The con-

clusion from this simulation example can be generalized to a wider field, and some

relevant discussions are provided in Linero et al. (2020). The comparison between

sequential models and joint models is discussed in real data analyses; see Chapter

6.

5.3.1 Compound Poisson Gamma-Bayesian CART

A popular method to model the aggregate claim amount directly is using a Tweedie

Compound Poisson distribution; see, e.g., Smyth & Jørgensen (2002). The Tweedie

distribution is very flexible, encompassing many different distributions, such as

Poisson, Gamma, and Compound Poisson Gamma; see, e.g., Ohlsson & Johans-

son (2010). Below we shall introduce the Compound Poisson Gamma model in its

original form.

Define a Compound Poisson Gamma-distributed random variable

S =
N∑
j=1

Yj,

where

• N follows a Poisson distribution with the parameter λv > 0, which is denoted

by Poi(λv); see Section 3.1.

• Y1, Y2, ..., YN , given N > 0, are independent and follow a common Gamma

distribution with a shape parameter α > 0 and a rate parameter β > 0 denoted

by Gamma(α, β); see Section 5.1.
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• N and (Y1, Y2, ..., YN) are independent.

Under these assumptions, we shall model Si by a Compound Poisson Gamma

distribution denoted by CPG(λvi, α, β), and assume Si, i = 1, 2, . . . , n, are IID.

Consider a tree T with b terminal nodes as before (see Section 2.2). The joint

distribution of the CPG model can be derived as

fCPG(Ntj, Stj | λt, αt, βt, vtj)

= fP(Ntj | λt, vtj)fG(Stj | Ntj, αt, βt)

=

e
−λtvtj (Ntj, Stj) = (0, 0),

(λtvtj)
Ntj e−λtvtj

Ntj !

β
Ntjαt
t S

Ntjαt−1

tj e−βtStj

Γ(Ntjαt)
(Ntj, Stj) ∈ N× R+,

(5.11)

for the j-th observation such that xi ∈ At. To explicitly obtain the posterior

distribution (see discussions in Subsection 2.2.1), we choose independent conjugate

Gamma priors for λt and βt with hyper-parameters (α(λ) > 0, β(λ) > 0) and

(α(β) > 0, β(β) > 0) respectively, where the subscript (λ) indicates this hyper-

parameter is assigned for the parameter λ, and similarly for (β). Besides, αt can

be estimated and updated by using MME in each step before updating βt using

the posterior distribution, i.e.,

α̂t =
(S̄)2t

Var(S̄)tN̄t

, (5.12)

which is the same as in (5.3). For terminal node t we denote the associated data

as (Xt,vt,Nt,St) =
(
(Xt1, vt1, Nt1, St1), . . . , (Xtnt , vtnt , Ntnt , Stnt)

)⊤
. With the

above Gamma priors and the estimated parameter α̂t, the integrated likelihood

for terminal node t can be obtained as

pCPG

(
Nt,St | Xt,vt, α̂t

)
=

∫ ∞

0

∫ ∞

0

fCPG(Nt,St | λt, α̂t, βt)p(λt)p(βt)dλtdβt

=

∫ ∞

0

∫ ∞

0

∏
j:Ntj=0

e−λtvtj

 ∏
j:Ntj>0

(λtvtj)
Ntje−λtvtj

Ntj!

S
Ntj α̂t−1
tj e−βtStjβ

Ntj α̂t

t

Γ(Ntjα̂t)


×β

(λ)α(λ)
λα

(λ)−1
t e−β(λ)λt

Γ(α(λ))

β(β)α(β)
βα(β)−1
t e−β(β)βt

Γ(α(β))
dλtdβt

=
β(λ)α(λ)

β(β)α(β)

Γ(α(λ))Γ(α(β))

∏
j:Ntj>0

 v
Ntj

tj S
Ntj α̂t−1
tj

Ntj!Γ(Ntjα̂t)

∫ ∞

0

λ

∑
j:Ntj>0 Ntj+α(λ)−1

t e−(
∑nt

j=1 vtj+β(λ))λtdλt

×
∫ ∞

0

β

∑
j:Ntj>0 Ntj α̂t+α(β)−1

t e
−(

∑
j:Ntj>0 Stj+β(β))βtdβt
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=
β(λ)α(λ)

β(β)α(β)

Γ(α(λ))Γ(α(β))

∏
j:Ntj>0

 v
Ntj

tj S
Ntj α̂t−1
tj

Ntj!Γ(Ntjα̂t)

 Γ(
∑

j:Ntj>0Ntj + α(λ))

(
∑nt

j=1 vtj + β(λ))
∑

j:Ntj>0 Ntj+α(λ)

×
Γ(
∑

j:Ntj>0Ntjα̂t + α(β))

(
∑

j:Ntj>0 Stj + β(β))
∑

j:Ntj>0 Ntj α̂t+α(β)
. (5.13)

Clearly, from (5.13), we see that the posterior distributions of λt and βt, conditional

on data (Nt,St) are given by,

λt | Nt ∼ Gamma

 ∑
j:Ntj>0

Ntj + α(λ),
nt∑
j=1

vtj + β(λ)

 ,

βt | Nt,St ∼ Gamma

 ∑
j:Ntj>0

Ntjα̂t + α(β),
∑

j:Ntj>0

Stj + β(β)

 .

The integrated likelihood for the tree T is thus given by

pCPG

(
N ,S | X,v, α̂, T

)
=

b∏
t=1

pCPG

(
Nt,St | Xt,vt, α̂t

)
. (5.14)

Now, we discuss the DIC for this tree which can be derived as a special case of

the new DIC proposed in Section 4.2 with a two-dimensional unknown parameter

(λt, βt). To this end, we first focus on DICt of terminal node t. It follows that

D(λ̄t, β̄t)

= −2
∑

j:Ntj>0

[
(Ntjα̂t − 1) log(Stj)− β̄tStj +Ntjα̂t log(β̄t)− log

(
Γ(Ntjα̂t)

)]
− 2

∑
j:Ntj>0

(
Ntj log(λ̄tvtj)− log(Ntj!)

)
− 2

nt∑
j=1

(−λ̄tvtj),

(5.15)

where

λ̄t =

∑
j:Ntj>0Ntj + α(λ)∑nt

j=1 vtj + β(λ)
, (5.16)

β̄t =

∑
j:Ntj>0Ntjα̂t + α(β)∑
j:Ntj>0 Stj + β(β)

. (5.17)

Therefore, a direct calculation shows that the effective number of parameters for

terminal node t is given by

sDt
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= 1 + 2

log

 ∑
j:Ntj>0

Ntjα̂t + α(β)

− ψ

 ∑
j:Ntj>0

Ntjα̂t + α(β)


 ∑

j:Ntj>0

Ntjα̂t

+2

log

 ∑
j:Ntj>0

Ntj + α(λ)

− ψ

 ∑
j:Ntj>0

Ntj + α(λ)


 ∑

j:Ntj>0

Ntj, (5.18)

and thus

DICt = D(λ̄t, β̄t) + 2sDt

= −2
∑

j:Ntj>0

[
(Ntjα̂t − 1) log(Stj)− β̄tStj +Ntjα̂t log(β̄t)− log

(
Γ(Ntjα̂t)

)]
−2

∑
j:Ntj>0

(
Ntj log(λ̄tvtj)− log(Ntj!)

)
− 2

nt∑
j=1

(−λ̄tvtj)

+2 + 4

log

 ∑
j:Ntj>0

Ntj + α(λ)

− ψ

 ∑
j:Ntj>0

Ntj + α(λ)


 ∑

j:Ntj>0

Ntj

+4

log

 ∑
j:Ntj>0

Ntjα̂t + α(β)

− ψ

 ∑
j:Ntj>0

Ntjα̂t + α(β)


 ∑

j:Ntj>0

Ntjα̂t.

Then the DIC of the tree T is obtained by using (5.9). With the formulas derived

above for the CPG case, we can use the three-step approach proposed in Subsection

2.2.4, together with Algorithm 4.1 in Section 4.2 (treat θM = α and θB = (λ,β)),

to search for an optimal tree which can then be used to predict new data.

Remark 5.4 The calculation methods in frequency-severity models and joint mod-

els are similar, but the former aims to model the claims frequency and claims

severity separately, with S̄i modelled directly; the latter one models (Ni,Si) jointly

instead.

5.3.2 Zero-Inflated Compound Poisson Gamma-Bayesian

CART

It is natural to consider the zero mass part additionally to the CPG distribution,

as insurance data involves many zeros; see similar reasons explored in Section 3.3.

We shall follow the same data augmentation strategy as in ZIP models to obtain

a closed form for the posterior distribution. Similar to ZIP models, three ZICPG

models are discussed below based on the way to embed the exposure into the
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model. Given that ZICPG and CPG models share identical CPG parts, and the

same data augmentation strategy is applied as in ZIP models, we will omit some

repetitive details in the following calculations.

Zero-Inflated Compound Poisson Gamma model 1 (ZICPG1)

For terminal node t, we use the same CPG distribution as in Subsection 5.3.1 by

embedding the exposure into the Poisson part,

fZICPG1

(
Ntj, Stj | µt, λt, αt, βt, vtj

)
= fZIP1(Ntj | µt, λt, vtj)fG(Stj | Ntj, αt, βt)

=


1

1+µt
+ µt

1+µt
e−λtvtj (Ntj, Stj) = (0, 0),

µt

1+µt

(λtvtj)
Ntj e−λtvtj

Ntj !

β
Ntjαt
t S

Ntjαt−1

tj e−βtStj

Γ(Ntjαt)
(Ntj, Stj) ∈ N× R+,

(5.19)

where 1
1+µt

∈ (0, 1) is the probability that a zero is due to the point mass compo-

nent. For the sake of computational convenience, a data augmentation scheme is

needed. To this end, we introduce two latent variables ϕt = (ϕt1, ϕt2, . . . , ϕtnt) ∈
(0,∞)nt and δt = (δt1, δt2, . . . , δtnt) ∈ {0, 1}nt (the same as in ZIP1-ZIP3 mod-

els and will be omitted in the following models), and define the data augmented

likelihood for the i-th data instance in terminal node t as

fZICPG1

(
Ntj, Stj, δtj, ϕtj | µt, λt, αt, βt

)
=e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj

β
Ntjαt

t S
Ntjαt−1
tj e−βtStj

Γ(Ntjαt)
,

(5.20)

where the support of the function fZICPG1 is
(
{0} × {0} × {0, 1} × (0,∞)

)
∪(

N× R+ × {1} × (0,∞)
)
. It can be shown that (5.19) is the marginal distribution

of the above augmented distribution.

By conditional arguments, we can also check that δtj, given data Ntj = Stj = 0

and parameters (µt and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = Stj = 0, µt, λt ∼ Bern

(
µte

−λtvtj

1 + µte−λtvtj

)
,

and δtj = 1, given Ntj > 0. Furthermore, ϕtj, given the parameter µt, has an

Exponential distribution, i.e.,

ϕtj | µt ∼ Exp (1 + µt) .
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Similarly, to explicitly obtain the posterior distribution, we choose independent

conjugate Gamma priors for µt, λt, and βt with hyper-parameters (α(µ) > 0, β(µ) >

0), (α(λ) > 0, β(λ) > 0), and (α(β) > 0, β(β) > 0) respectively, where the subscript

has the similar meaning as in the CPG model. Besides, αt can be estimated and

updated by using (5.12) in each step before updating other parameters. With

these Gamma priors and the estimated parameter α̂t, the integrated augmented

likelihood for terminal node t can be obtained as follows

pZICPG1

(
Nt,St, δt,ϕt | Xt,vt, α̂t

)
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

fZICPG1

(
Nt,St, δt,ϕt | µt, λt, α̂t, βt

)
p(µt)p(λt)p(βt)dµtdλtdβt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µt)

µt

(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj

β
Ntj α̂t

t S
Ntj α̂t−1
tj e−βtStj

Γ(Ntjα̂t)


×β

(µ)α(µ)
µα(µ)−1
t e−β(µ)µt

Γ
(
α(µ)

) β(λ)α(λ)
λα

(λ)−1
t e−β(λ)λt

Γ
(
α(λ)

) β(β)α(β)
λα

(β)−1
t e−β(β)λt

Γ
(
α(β)

) dµtdλtdβt

=
β(µ)α(µ)

Γ
(
α(µ)

) β(λ)α(λ)

Γ
(
α(λ)

) β(β)α(β)

Γ
(
α(β)

) nt∏
j=1

e−ϕtjv
δtjNtj

tj

(
Ntj!

)−δtj S
Ntj α̂t−1
tj

Γ(Ntjα̂t)


×
∫ ∞

0

µ
∑nt

j=1 δtj+α(µ)−1

t e−(
∑nt

j=1 ϕtj+β(µ))µtdµt

×
∫ ∞

0

λ
∑nt

j=1 δtjNtj+α(λ)−1

t e−(
∑nt

j=1 δtjvtj+β(λ))λtdλt

×
∫ ∞

0

β

∑
j:Ntj>0 Ntj α̂t+α(β)−1

t e
−(

∑
j:Ntj>0 Stj+β(β))βtdβt

=
β(µ)α(µ)

Γ
(
α(µ)

) β(λ)α(λ)

Γ
(
α(λ)

) β(β)α(β)

Γ
(
α(β)

) nt∏
j=1

e−ϕtjv
δtjNtj

tj

(
Ntj!

)−δtj S
Ntj α̂t−1
tj

Γ(Ntjα̂t)


×

Γ
(∑nt

j=1 δtj + α(µ)
)

(∑nt

j=1 ϕtj + β(µ)
)∑nt

j=1 δtj+α(µ)

Γ
(∑nt

j=1 δtjNtj + α(λ)
)

(∑nt

j=1 δtjvtj + β(λ)
)∑nt

j=1 δtjNtj+α(λ)

×
Γ(
∑

j:Ntj>0Ntjα̂t + α(β))

(
∑

j:Ntj>0 Stj + β(β))
∑

j:Ntj>0 Ntj α̂t+α(β)
. (5.21)

Moreover, from the above, we see that the posterior distributions of µt, λt are the

same as in the ZIP1 model; and the posterior distribution of βt is the same as in

the CPG model.
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The integrated augmented likelihood for the tree T is thus given by

pZICPG1

(
N ,S, δ,ϕ | X,v, α̂, T

)
=

b∏
t=1

pZICPG1

(
Nt,St, δt,ϕt | Xt,vt, α̂t

)
.

(5.22)

Now, we discuss the DIC for this tree which can be derived as a special case

of the new DIC proposed in Section 3.2 (for NB models) with a three-dimensional

unknown parameter (µt, λt, βt). To this end, we first focus on DICt of terminal

node t. It follows that

D(µ̄t, λ̄t, β̄t)

= −2 log fZICPG1(Nt,St | µ̄t, λ̄t, β̄t) (5.23)

= −2
nt∑
j=1

log

 1

1 + µ̄t

I(Ntj=Stj=0) +
µ̄t

1 + µ̄t

(λ̄tvtj)
Ntje−λ̄tvtj

Ntj!

β̄
Ntj α̂t

t S
Ntj α̂t−1
tj e−β̄tStj

Γ(Ntjα̂t)

,
where µ̄t and λ̄t have the same expressions as in the ZIP1 model (see (3.31)); β̄t

has the same expression as in (5.17). Therefore, a direct calculation shows that

the effective number of parameters for terminal node t is given by

rDt = −2Epost

[
log fZICPG1(Nt,St, δt,ϕt | µt, λt, βt)

]
+ 2 log fZICPG1(Nt,St, δt,ϕt | µ̄t, λ̄t, β̄t)

= 1 + 2

log

 nt∑
j=1

δtj + α(µ)

− ψ

 nt∑
j=1

δtj + α(µ)


 nt∑

j=1

δtj

+ 2

log

 nt∑
j=1

δtjNtj + α(λ)

− ψ

 nt∑
j=1

δtjNtj + α(λ)


 nt∑

j=1

δtjNtj

+ 2

log

 ∑
j:Ntj>0

Ntjα̂t + α(β)

− ψ

 ∑
j:Ntj>0

Ntjα̂t + α(β)


 ∑

j:Ntj>0

Ntjα̂t,

(5.24)

and thus DICt = D(µ̄t, λ̄t, β̄t) + 2rDt can be derived directly from (5.23) and

(5.24).

Zero-Inflated Compound Poisson Gamma model 2 (ZICPG2)

For terminal node t, we embed the exposure into the zero mass part, and the CPG

part has the distribution CPG(λ, α, β) which does not include the exposure and

is different from Subsection 5.3.1,
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fZICPG2

(
Ntj, Stj | µt, λt, αt, βt, vtj

)
=fZIP2(Ntj | µt, λt, vtj)fG(Stj | Ntj, αt, βt)

=


1

1+µtvtj
+

µtvtj
1+µtvtj

e−λt (Ntj, Stj) = (0, 0),

µtvtj
1+µtvtj

λ
Ntj
t e−λt

Ntj !

β
Ntjαt
t S

Ntjαt−1

tj e−βtStj

Γ(Ntjαt)
(Ntj, Stj) ∈ N× R+,

(5.25)

where 1
1+µtvtj

∈ (0, 1) is the probability that a zero is due to the point mass

component. Then, the data augmented likelihood for the j-th data instance in

terminal node t can be defined as,

fZICPG2

(
Ntj, Stj, δtj, ϕtj | µt, λt, αt, βt

)
=e−ϕtj(1+µtvtj)

(
µtvtjλ

Ntj

t

Ntj!
e−λt

)δtj
β
Ntjαt

t S
Ntjαt−1
tj e−βtStj

Γ(Ntjαt)
.

(5.26)

It is easy to check that (5.25) is the marginal distribution of the above augmented

distribution.

By conditional arguments, we can also check that δtj, given data Ntj = Stj = 0

and parameters (µt and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, λt ∼ Bern

(
µtvtje

−λt

1 + µtvtje−λt

)
,

and δtj = 1, given Ntj > 0. Furthermore, ϕtj, given the parameter µt, has an

Exponential distribution, i.e.,

ϕtj | µt ∼ Exp
(
1 + µtvtj

)
.

As before, we assume independent conjugate Gamma priors for µt, λt, and βt with

hyper-parameters (α(µ) > 0, β(µ) > 0), (α(λ) > 0, β(λ) > 0), and (α(β) > 0, β(β) >

0) respectively. Besides, αt can be estimated and updated by using (5.12). With

these Gamma priors and the estimated parameter α̂t, we can obtain the integrated

augmented likelihood for terminal node t as follows

pZICPG2

(
Nt,St, δt,ϕt | Xt,vt, α̂t

)
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

fZICPG2

(
Nt,St, δt,ϕt | µt, λt, α̂t, βt

)
p(µt)p(λt)p(βt)dµtdλtdβt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µtvtj)

(
µtvtjλ

Ntj

t

Ntj!
e−λt

)δtj
β
Ntj α̂t

t S
Ntj α̂t−1
tj e−βtStj

Γ(Ntjα̂t)


×β

(µ)α(µ)
µα(µ)−1
t e−β(µ)µt

Γ
(
α(µ)

) β(λ)α(λ)
λt

α(λ)−1e−β(λ)λt

Γ
(
α(λ)

) β(β)α(β)
λt

α(β)−1e−β(β)λt

Γ
(
α(β)

) dµtdλtdβt
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=
β(µ)α(µ)

Γ
(
α(µ)

) β(λ)α(λ)

Γ
(
α(λ)

) β(β)α(β)

Γ
(
α(β)

) nt∏
j=1

e−ϕtj

(
vtj
Ntj!

)δtj
S
Ntj α̂t−1
tj

Γ(Ntjα̂t)


×

Γ
(∑nt

j=1 δtj + α(µ)
)

(∑nt

j=1 ϕtjvtj + β(µ)
)∑nt

j=1 δtj+α(µ)

Γ
(∑nt

j=1 δtjNtj + α(λ)
)

(∑nt

j=1 δtj + β(λ)
)∑nt

j=1 δtjNtj+α(λ)

×
Γ(
∑

j:Ntj>0Ntjα̂t + α(β))

(
∑

j:Ntj>0 Stj + β(β))
∑

j:Ntj>0 Ntj α̂t+α(β)
. (5.27)

Moreover, from the above, we see that the posterior distributions of µt, λt are the

same as in the ZIP2 model; and the posterior distribution of βt is the same as in

Subsection 5.3.1.

The integrated augmented likelihood for the tree T is thus given by

pZICPG2

(
N ,S, δ,ϕ | X,v, α̂, T

)
=

b∏
t=1

pZICPG2

(
Nt,St, δt,ϕt | Xt,vt, α̂t

)
.

(5.28)

Now, we discuss the DICt of terminal node t. It follows that

D(µ̄t, λ̄t, β̄t)

= −2 log fZICPG2(Nt,St | µ̄t, λ̄t, β̄t) (5.29)

= −2
nt∑
j=1

log

 1

1 + µ̄tvtj
I(Ntj=Stj=0) +

µ̄tvtj
1 + µ̄tvtj

λ̄
Ntj

t e−λ̄t

Ntj!

β̄
Ntj α̂t

t S
Ntj α̂t−1
tj e−β̄tStj

Γ(Ntjα̂t)

,
where µ̄t and λ̄t have the same expressions as in the ZIP2 model (see (3.38)); β̄t

has the same expression as in (5.17). Therefore, a direct calculation shows that

the effective number of parameters for terminal node t has the same expression

as in the ZICPG1 model (see (5.24)). Thus, DICt = D(µ̄t, λ̄t, β̄t) + 2rDt can be

derived directly from (5.29) and (5.24).

Zero-Inflated Compound Poisson Gamma model 3 (ZICPG3)

For terminal node t, we embed the exposure into both the Poisson part and the

zero mass part. In this case, we use the same CPG distribution CPG(λvtj, α, β)

as in Subsection 5.3.1,

fZICPG3

(
Ntj, Stj | µt, λt, αt, βt, vtj

)
=fZIP3(Ntj | µt, λt, vtj)fG(Stj | Ntj, αt, βt)

=


1

1+µtvtj
+

µtvtj
1+µtvtj

e−λtvtj (Ntj, Stj) = (0, 0),

µtvtj
1+µtvtj

(λtvtj)
Ntj e−λtvtj

Ntj !

β
Ntjαt
t S

Ntjαt−1

tj e−βtStj

Γ(Ntjαt)
(Ntj, Stj) ∈ N× R+,

(5.30)
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where 1
1+µtvtj

∈ (0, 1) is the probability that a zero is due to the point mass

component. Then, the data augmented likelihood for the j-th data instance in

terminal node t can be defined as,

fZICPG3

(
Ntj, Stj, δtj, ϕtj | µt, λt, αt, βt

)
= e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj

β
Ntjαt

t S
Ntjαt−1
tj e−βtStj

Γ(Ntjαt)
. (5.31)

It is easy to check that (5.30) is the marginal distribution of the above augmented

distribution.

By conditional arguments, we can also check that δtj, given data Ntj = Stj = 0

and parameters (µt and λt), has a Bernoulli distribution, i.e.,

δtj | Ntj = 0, µt, λt ∼ Bern

(
µtvtje

−λtvtj

1 + µtvtje−λtvtj

)
,

and δtj = 1, given Ntj > 0. Furthermore, ϕtj, given the parameter µt, has an

Exponential distribution, i.e.,

ϕtj | µt ∼ Exp
(
1 + µtvtj

)
.

As before, we assume independent conjugate Gamma priors for µt, λt, and βt with

hyper-parameters (α(µ) > 0, β(µ) > 0), (α(λ) > 0, β(λ) > 0), and (α(β) > 0, β(β) >

0) respectively. Besides, αt can be estimated and updated by using (5.12). With

these Gamma priors and the estimated parameter α̂t, we can obtain the integrated

augmented likelihood for terminal node t as follows

pZICPG3

(
Nt,St, δt,ϕt | Xt,vt, α̂t

)
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

fZICPG3

(
Nt,St, δt,ϕt | µt, λt, α̂t, βt

)
p(µt)p(λt)p(βt)dµtdλtdβt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

nt∏
j=1

e−ϕtj(1+µtvtj)

µtvtj
(
λtvtj

)Ntj

Ntj!
e−λtvtj

δtj

β
Ntj α̂t

t S
Ntj α̂t−1
tj e−βtStj

Γ(Ntjα̂t)


×β

(µ)α(µ)
µα(µ)−1
t e−β(µ)µt

Γ
(
α(µ)

) β(λ)α(λ)
λt

α(λ)−1e−β(λ)λt

Γ
(
α(λ)

) β(β)α(β)
λt

α(β)−1e−β(β)λt

Γ
(
α(β)

) dµtdλtdβt

=
β(µ)α(µ)

Γ
(
α(µ)

) β(λ)α(λ)

Γ
(
α(λ)

) β(β)α(β)

Γ
(
α(β)

) nt∏
j=1

e−ϕtjv
δtj(1+Ntj)
tj

(
Ntj!

)−δtj S
Ntj α̂t−1
tj

Γ(Ntjα̂t)


×

Γ
(∑nt

j=1 δtj + α(µ)
)

(∑nt

j=1 ϕtjvtj + β(µ)
)∑nt

j=1 δtj+α(µ)

Γ
(∑nt

j=1 δtjNtj + α(λ)
)

(∑nt

j=1 δtjvtj + β(λ)
)∑nt

j=1 δtjNtj+α(λ)
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×
Γ(
∑

j:Ntj>0Ntjα̂t + α(β))

(
∑

j:Ntj>0 Stj + β(β))
∑

j:Ntj>0 Ntj α̂t+α(β)
. (5.32)

Moreover, from the above, we see that the posterior distributions of µt, λt are the

same as in the ZIP3 model; and the posterior distribution of βt is the same as in

the CPG model.

The integrated augmented likelihood for the tree T is thus given by

pZICPG3

(
N ,S, δ,ϕ | X,v, α̂, T

)
=

b∏
t=1

pZICPG3

(
Nt,St, δt,ϕt | Xt,vt, α̂t

)
.

(5.33)

Now, we discuss the DICt of terminal node t. It follows that

D(µ̄t, λ̄t, β̄t)

= −2 log fZICPG3(Nt,St | µ̄t, λ̄t, β̄t) (5.34)

= −2
nt∑
j=1

log

 1

1 + µ̄tvtj
I(Ntj=Stj=0) +

µ̄tvtj
1 + µ̄tvtj

(λ̄tvtj)
Ntje−λ̄tvtj

Ntj!

β̄
Ntj α̂t

t S
Ntj α̂t−1
tj e−β̄tStj

Γ(Ntjα̂t)

,
where µ̄t and λ̄t have the same expressions as in the ZIP3 model (see (3.44)); β̄t

has the same expression as in (5.17). Therefore, a direct calculation shows that

the effective number of parameters for terminal node t has the same expression

as in the ZICPG1 model (see (5.24)), illustrating that the way to embed the

exposure does not influence the effective number of parameters. This aligns with

the conclusion obtained for NB, ZIP, and ZINB models in Chapter 3. Thus,

DICt = D(µ̄t, λ̄t, β̄t) + 2rDt can be derived directly from (5.34) and (5.24).

For the above three ZICPG models, the DIC of the tree T is obtained by

using (5.9). With the formulas derived above for three ZICPG models, we can

use the three-step approach proposed in Section 2.2.4, together with Algorithm

3.1 in Section 3.2 (treat θM = α, θB = (µ,λ,β), and z = (δ,ϕ)), to search for

an optimal tree which can then be used to predict new data.

5.3.3 A Simulation Example: Shared Covariates

This section aims to investigate scenarios where identical covariates exhibit similar

or distinct impacts on claims frequency and claims severity. The objective is to

assess the effectiveness of employing two trees and one joint tree in such cases and

obtain a general conclusion. To simplify and better illustrate the necessity of shar-

ing information, we focus on the CPG distribution in joint models in this example.
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Besides, since the CPG model involves Poisson and Gamma distributions, we re-

strict the use of Poisson-BCART and Gamma-BCART in the frequency-severity

models to keep consistency for the comparison. Specifically, the CPG distribution

models individual claim amount Yij first and then obtain the distribution for the

aggregate claim amount Si. We shall use Gamma-BCART proposed in Section 5.1

for the frequency-severity models, which also models individual claim amount Yij

first rather than modelling S̄i directly. In the simulation setting, we would model

S̄i involving Ni as model weights, i,e., S̄i ∼ Gamma(Niα,Niβ(xi)).

Figure 5.1: Covariate partition for a Compound Poisson Gamma-

distributed simulation. Two covariates x1 and x2 follow a Normal

and Uniform distribution respectively, i.e., x1 ∼ N(0, 1), x2 ∼
U(−1, 1). The values of parameters λ (in the Poisson model) and

β (in the Gamma model) are provided in each region.

We simulate a data set
{
(xi, vi, Ni, S̄i)

}n
i=1

with n = 5, 000 independent ob-

servations. Here xi = (xi1, . . . , xi5), with independent components xi1 ∼ N(0, 1),

xi2 ∼ U(−1, 1), xi3 ∼ U(−5, 5), xi4 ∼ N(0, 5), xi5 ∼ U{1, 2, 3, 4}, and vi ∼
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U(0, 1). Moreover, Ni ∼ Poi(λ(xi1, xi2)vi), where

λ (x1, x2) =


0.1 if x1 ≤ 0.1, x2 > 0.8,
0.2 if x1 > 0.1, x2 > 0.8,
0.3 if x1 > 0.1, x2 ≤ 0.8,
0.15 if x1 ≤ 0.1, x2 ≤ 0.8,

and Ni = 0 leads to S̄i = 0 directly. For the remaining non-zero cases, S̄i is gen-

erated from a Gamma distribution, i.e., S̄i ∼ Gamma(Niα,Niβ (xi1, xi2)), where

β (x1, x2) =


0.005 if x1 ≤ 0.9, x2 > 0.2,
0.01 if x1 > 0.9, x2 > 0.2,
0.004 if x1 > 0.9, x2 ≤ 0.2,
0.008 if x1 ≤ 0.9, x2 ≤ 0.2.

As before, α is the shape parameter of the Gamma distribution, which is specified

to be fixed at 1 for simplicity since it is not a key feature here. Besides, the design

of the value for the rate parameter β is to keep the average claim amount S̄i around

200, which is close to the situation in real data; see Figure 5.1. Obviously, the

designed noise variables xik, k = 3, 4, 5 are all independent of the bivariate response

variable (N ,S̄). The data is split into two subsets: a training set with n −m =

4, 000 observations and a test set with m = 1, 000 observations. The special design

here is that even though the bivariate response variable (N ,S̄) is influenced by

the same covariates x1 and x2, they have different split points. We aim to assess

the performance of two trees versus one joint tree in this situation. The intuition

is not very clear because, although they share some information (having the same

covariates), there are other distinct factors that influence them (different split

values), leading to different splitting rules. We shall use the comparison indexes

in both training data and test data to clarify it.

We initiate the discussion by assessing the performance on training data in

Table 5.4. The DIC indicates that for both Poisson-BCART and Gamma-BCART,

the optimal tree with the true 4 terminal nodes can be selected, and for CPG-

BCART, it chooses 9 as the optimal number of terminal nodes which is consistent

with the simulation setting (see Figure 5.1). Based on this, we can conclude that

BCART models are capable of bivariate response modelling using one joint tree.

In Table 5.5, we can clearly see that even though joint models (CPG-BCART) use

less time and smaller memory usage, they are not as good as the frequency-severity

models in the comparison of both RSS(S) and NLL. Secondly, joint models obtain

a tree with 9 terminal nodes to find the optimal solution. Compared with the two

optimal trees with 4 terminal nodes found by the frequency-severity models, joint
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Table 5.4: Hyper-parameters, pD (or sD) and DIC on training

data. The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree. Bold

font indicates DIC selected model. This table helps to select the

optimal tree, and DICs between different models cannot be di-

rectly compared.

Model γ ρ pD (or sD) DIC

Poisson-BCART (3) 0.95 15 2.97 3875

Poisson-BCART (4) 0.99 12 3.97 3669

Poisson-BCART (5) 0.99 10 4.96 3724

Gamma-BCART (3) 0.95 10 5.97 32156

Gamma-BCART (4) 0.99 10 7.96 31798

Gamma-BCART (5) 0.99 8 9.96 31904

CPG-BCART (8) 0.99 5 23.85 36174

CPG-BCART (9) 0.99 3 26.81 35622

CPG-BCART (10) 0.99 2 29.79 35781

Table 5.5: Model performance on test data with bold entries de-

termined by DIC (see Table 5.4). FPSG means the frequency-

severity models by using Poisson and Gamma distributions sep-

arately. The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree. Par-

ticularly, two numbers for frequency-severity models indicate the

number of terminal nodes for each tree.

Model RSS(S) (in 108) NLL Time (s) Memory (MB)

FPSG-BCART (3/3) 3.21 5330 98 65

FPSG-BCART (4/4) 3.04 5028 102 68

FPSG-BCART (5/5) 2.95 4934 101 69

CPG-BCART (8) 3.23 5415 63 41

CPG-BCART (9) 3.08 5127 68 43

CPG-BCART (10) 3.01 5015 70 44

models may not be preferred. The models with bold entries (as determined in

Table 5.4) do not show the best performance in Table 5.5, since both frequency-

severity models and joint models will improve based on RSS(S) and NLL when
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the number of terminal nodes increases (see Section 2.3). Nevertheless, given

the demonstrated effectiveness of DIC in all previous simulation examples, we

maintain the belief that the models determined by DIC would remain the optimal

choice in this case.

Given that both frequency-severity models and joint models identify the opti-

mal trees as expected, and considering the model performance of the two models,

our conclusion suggests that there is no need for information sharing. This lack of

necessity may arise from significant dissimilarities observed between the two trees.

To explore this further, we hypothesize that the greater the similarity between two

trees (using the same splitting variables, same or similar split values/categories),

the more imperative it is for them to share information in one joint tree to avoid

redundant use of the same or similar information. Therefore, we design another

case where the values of split points are closer, i.e.,

λ (x1, x2) =


0.1 if x1 ≤ 0.47, x2 > 0.52,
0.2 if x1 > 0.47, x2 > 0.52,
0.3 if x1 > 0.47, x2 ≤ 0.52,
0.15 if x1 ≤ 0.47, x2 ≤ 0.52,

and for non-zero cases, generate S̄i by using S̄i ∼ Gamma(Niα,Niβ(xi1, xi2)),

where

β (x1, x2) =


0.005 if x1 ≤ 0.53, x2 > 0.48,
0.01 if x1 > 0.53, x2 > 0.48,
0.004 if x1 > 0.53, x2 ≤ 0.48,
0.008 if x1 ≤ 0.53, x2 ≤ 0.48,

keeping other settings the same as before; see Figure 5.2.

Tables 5.6 and 5.7 show the results. We omit some detailed analysis similar

to the previous example to minimise content duplication and highlight different

points in this case. For Poisson-BCART and Gamma-BCART, it is easy to check

that both of them find the optimal tree with the true 4 terminal nodes, as suggested

by DIC on training data in Table 5.6. For CPG-BCART, in the simulation setting,

we expect it to still have 9 terminal nodes as in the previous example, but DIC

indicates that the tree with 4 terminal nodes is the best one. To explore the reason,

we check the tree structure and find the chosen split points for both x1 and x2 are

close to 0.5, i.e., the mean of two different setting values in λ(x1, x2) and β(x1, x2)

(0.47 and 0.53 for x1; 0.52 and 0.48 for x2). Since the setting split values are very

close, it is a good choice to select a splitting value around their mean. In doing

so, the tree structure can be simplified significantly. Following that, we evaluate

the model performance on test data. From Table 5.7, it is obvious to see that
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Figure 5.2: Covariate partition for a Compound Poisson Gamma-

distributed simulation. Two covariates x1 and x2 follow a Normal

and Uniform distribution respectively, i.e., x1 ∼ N(0, 1), x2 ∼
U(−1, 1). The values of parameters λ (in the Poisson model) and

β (in the Gamma model) are provided in each region.

joint models (CPG-BCART) perform better among all comparison indexes. In

addition, in terms of interpretability, one tree would evidently be better.

Afterwards, we propose to use the adjusted Rand Index (ARI) to examine the

similarity between different trees and validate our intuition. The ARI is a widely

employed metric for measuring the similarity between different clusterings; see,

e.g., Rand (1971), Hubert & Arabie (1985) and Gates & Ahn (2017). The ARI

ranges from -1 to 1, where 1 indicates perfect agreement between two clusterings,

0 denotes random agreement, and -1 signifies complete dissimilarity between the

two clusterings. Therefore, a higher ARI value indicates greater similarity between

the two trees. More details about ARI can be found in Appendix C. We calculate

the ARI for these three optimal trees,

ARI(Poisson-BCART (4), Gamma-BCART (4)) = 0.8667
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Table 5.6: Hyper-parameters, pD (or sD) and DIC on training

data. The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree. Bold

font indicates DIC selected model. This table helps to select the

optimal tree, and DICs between different models cannot be di-

rectly compared.

Model γ ρ pD (or sD) DIC

Poisson-BCART (3) 0.95 15 2.98 3697

Poisson-BCART (4) 0.99 13 3.98 3572

Poisson-BCART (5) 0.99 10 4.97 3616

Gamma-BCART (3) 0.95 10 5.97 30586

Gamma-BCART (4) 0.99 10 7.97 30319

Gamma-BCART (5) 0.99 8 9.96 30414

CPG-BCART (3) 0.99 5 8.92 34017

CPG-BCART (4) 0.99 4 11.90 33582

CPG-BCART (5) 0.99 3 14.89 33711

Table 5.7: Model performance on test data with bold entries de-

termined by DIC (see Table 5.6). FPSG means the frequency-

severity models by using Poisson and Gamma distributions sep-

arately. The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree. Par-

ticularly, two numbers for frequency-severity models indicate the

number of terminal nodes for each tree.

Model RSS(S) (in 108) NLL Time (s) Memory (MB)

FPSG-BCART (3/3) 3.03 5276 103 67

FPSG-BCART (4/4) 2.89 5024 105 70

FPSG-BCART (5/5) 2.81 4936 106 71

CPG-BCART (3) 3.01 5213 72 38

CPG-BCART (4) 2.84 4947 78 40

CPG-BCART (5) 2.78 4859 81 40

ARI(Poisson-BCART (4), CPG-BCART (4)) = 0.9404

ARI(Gamma-BCART (4), CPG-BCART (4)) = 0.9236

confirming our speculation, as the ARI value for two trees is close to 1, indicating
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5.4 Summary of Chapter 5

high similarity. However, determining a specific ARI threshold that indicates

when sharing information becomes more effective is challenging. Further research

is needed in this area. In the real data analyses in Chapter 6, we use evaluation

metrics to compare different models first. ARI is then employed as an auxiliary

tool to explore why two trees or one joint tree may be more effective.

We also run several other simulation examples which are not displayed here.

From these analyses, we conclude that: when two trees have more same or similar

splitting rules (high ARI), one joint tree is more effective through information

sharing. Conversely, if all covariates affecting claims frequency and claims sever-

ity are different (ARI is close to -1), two trees outperform one joint tree. This

conclusion aligns with our intuition.

Remark 5.5 There are other ways to calculate the similarity between different

trees (see, e.g., Nye et al. (2006)), but they usually require consideration of the tree

structure. If the number of terminal nodes or tree structure (balanced/unbalanced)

is different, it is hard to calculate the score for similarity. Regarding ARI, it

exclusively assesses the partitioned data without considering specific structural dif-

ferences. This makes it versatile across various clustering methods. Additionally,

ARI is easy to implement and calculate in R, using the package fossil (see Vavrek

(2020)).

5.4 Summary of Chapter 5

In this chapter, we proposed three types of models for the aggregate claim amount.

First, we found that the sequential models treating the number of claims as

a covariate in the claims severity modelling perform better than the standard

frequency-severity models when the dependence between the number of claims

and claims severity is strong. Second, we explored the choice between using two

trees or one joint tree. In particular, when there are more identical or similar

splitting rules between claims frequency and claims severity, it is better to use one

joint tree to share information. Third, we provided details on the applications of

evaluation metrics in the case of two trees and proposed the use of ARI to quantify

the similarity between the two trees, which can assist in explaining the necessity of

information sharing. Finally, in the analysis of various joint models, especially the

three ZICPG models employing different methods to embed exposure, we address

their similarities to the analysis of ZIP and ZINB models discussed in Chapter 3.

More detailed discussions about their model performance will be presented in the

real insurance data analysis in Chapter 6.
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Chapter 6

Insurance Data Analysis

The unique nature of the insurance industry, combined with the complexities of

managing extensive data sets, poses significant challenges, such as the necessity

of data pre-processing and the optimal selection of distributions that accurately

capture the features of the data among massive distributions. Building accurate

predictive models that reflect real-world risks is crucial for the insurance industry.

Simultaneously, maintaining the interpretability of the model is essential, as cus-

tomers (the insured) and regulators are not expected to possess sufficient statistical

knowledge to understand the model. This chapter uses one real dataset to illus-

trate the effectiveness and feasibility of our proposed BCART models. Following

Chapters 3, 4, and 5, we shall discuss claims frequency modelling, claims sever-

ity modelling, and aggregate claims modelling. We will see that the conclusions

obtained from real data are consistent with those obtained from the simulation

examples we conducted previously in Sections 3.5, 4.5, 5.2.1, 5.3.3. Therefore, we

conclude that BCART models have superior performance and can be well applied

to the insurance industry.

6.1 Data Description: dataCar

The real insurance dataset used to illustrate our methodology is named dataCar,

available from the library insuranceData in R; see Wolny-Dominiak & Trzesiok

(2014) for details. This dataset is based on one-year vehicle insurance policies

taken out in 2004 or 2005. There are 67,856 policies of which 93.19% made no

claims. A summary of the variables used is given in Table 6.1. We split this dataset

into training (80%) and test (20%) data sets, in doing so we keep the balance of

zero and non-zero claims in both training and test data sets. Tables 6.2 and 6.3

provide some basic information about the number of claims and claims severity
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6.1 Data Description: dataCar

respectively, revealing a substantial mixture of zeros representing no claims and

a right-skewed distribution with heavy tails due to large claim amounts, reflected

in significant skewness and kurtosis. To better understand the dataset, especially

the relationship between covariates and claims frequency and claims severity re-

spectively, scatter plots are provided in the main text; see Figures 6.1-6.12.

When implementing BCART models, it is crucial to transform categorical co-

variates into numeric ones, particularly when a categorical covariate has numerous

levels. In such cases, directly using the combinations of its levels can pose com-

putational challenges. Therefore, we transform the categorical covariates at each

node based on their empirical claims frequency (or severity, cost), depending on

the specific type of analysis we intend to conduct. More discussions on this topic

can be found in Subsections 2.1.1 and 2.2.1. Some basic information about the

transformed categorical covariates at the root node is available in Appendix D. Af-

ter the numerical transformation, more useful information emerges. For example,

both empirical claims frequency and severity achieve the smallest and largest val-

ues for areas D and F respectively (see Table D.3). We shall explore if our model

can efficiently capture this kind of information. Moreover, we refer to Omari et al.

(2018) and Quijano Xacur et al. (2019) for more discussions on the same dataset

dataCar.

Table 6.1: Description of variables in dataCar.

Variable Description Type

numclaims number of claims numeric

exposure in yearly units, between 0 and 1 numeric

claimcst0 total claim amount for each policyholder numeric

veh value vehicle value, in $10,000s numeric

veh age vehicle age category, 1 (youngest), 2, 3, 4 numeric

agecat driver age category, 1 (youngest), 2, 3, 4, 5, 6 numeric

veh body vehicle body, includes 13 different types coded

as HBACK, UTE, STNWG, HDTOP, PANVN,

SEDAN, TRUCK, COUPE, MIBUS, MCARA,

BUS, CONVT, RDSTR

character

gender Female or Male character

area coded as A B C D E F character
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6.1 Data Description: dataCar

Table 6.2: Frequencies of the number of claims in dataCar.

Number of Claims 0 1 2 3 4 > 4

Frequencies 63232 4333 271 18 2 0

Table 6.3: Summary statistics of the claims severity in dataCar.

Min Mean Max Standard Deviation Skewness Kurtosis

Claims Severity 0 131 55922 1024 18 534

Figure 6.1: Scatter plot between log(vehicle

value) and claims frequency in dataCar.

Figure 6.2: Scatter plot between log(vehicle

value) and claims severity in dataCar.

Figure 6.3: Scatter plot between vehicle

age and claims frequency in dataCar.

Figure 6.4: Scatter plot between vehicle age

and claims severity in dataCar.
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6.2 Claims Frequency Modelling

Figure 6.5: Scatter plot between driver

age and claims frequency in dataCar.

Figure 6.6: Scatter plot between driver age

and claims severity in dataCar.

Figure 6.7: Scatter plot between vehicle

body and claims frequency in dataCar.

Figure 6.8: Scatter plot between vehicle body

and claims severity in dataCar.

6.2 Claims Frequency Modelling

We shall apply the BCART models for claims frequency modelling (see Chapter

3) to the training data, where we can use the three-step approach given in Table

2.1 to choose an optimal tree for each model (and also a global optimal one). We

also assess the performance of these selected trees on test data.

Running ANOVA-CART on training data, we first use cross-validation to select

a base tree size, which has 5 terminal nodes. We also run P-CART in the same way,

again resulting in a tree with 5 terminal nodes, and this tree is shown in Figure

6.13. We also apply P-BCART, NB1-BCART, NB2-BCART, ZIP1-BCART, and

ZIP2-BCART to the same data. Based on the knowledge learnt from CARTs
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6.2 Claims Frequency Modelling

Figure 6.9: Scatter plot between gender

and claims frequency in dataCar.

Figure 6.10: Scatter plot between gender and

claims severity in dataCar.

Figure 6.11: Scatter plot between area

and claims frequency in dataCar.

Figure 6.12: Scatter plot between area and

claims severity in dataCar.

above, we can tune the hyper-parameters γ, ρ (see (2.7)), so that the algorithm

will converge to a region of trees with a number of terminal nodes around 5.

Some of these, together with the effective number of parameters and DIC, are

shown in Table 6.4. We see from this table that all the effective numbers of

parameters are reasonable for the model used to fit the data. We conclude from

the DIC that all of these BCART models select an optimal tree with 5 terminal

nodes using the three-step approach and among these the one from ZIP2-BCART,

with the smallest DIC(=25632.5), should be chosen as the global optimal tree to

characterize the frequency data.

It is interesting to check if there are the same splitting variables and the

same/similar split values/categories used in the trees obtained from different mod-
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6.2 Claims Frequency Modelling

Table 6.4: Hyper-parameters, pD (or qD,rD) and DIC on training

data (dataCar) for claims frequency models. The number in the

bracket after the abbreviation of the model indicates the number

of terminal nodes for this tree. Bold font indicates the DIC se-

lected model.

Model γ ρ pD(or qD,rD) DIC

P-BCART (4) 0.99 15 4.00 27948.8

P-BCART (5) 0.99 8 5.00 27943.8

P-BCART (6) 0.99 6 6.00 27944.4

NB1-BCART (4) 0.99 15 7.98 26002.4

NB1-BCART (5) 0.99 7 9.96 25892.0

NB1-BCART (6) 0.99 6 11.96 25945.2

NB2-BCART (4) 0.99 15 7.99 25925.7

NB2-BCART (5) 0.99 6 9.98 25846.4

NB2-BCART (6) 0.99 5 11.97 25885.6

ZIP1-BCART (4) 0.99 10 8.05 25688.4

ZIP1-BCART (5) 0.99 5 9.85 25674.1

ZIP1-BCART (6) 0.99 3 12.00 25678.3

ZIP2-BCART (4) 0.99 10 7.99 25654.3

ZIP2-BCART (5) 0.99 4 9.91 25632.5

ZIP2-BCART (6) 0.99 3 11.93 25641.4

els, including the P-CART, particularly as they all have 5 terminal nodes. For the

tree from P-CART illustrated in Figure 6.13, the variable “agecat” is first used

and then “veh value”, followed by “agecat” again. The tree from P-BCART (not

shown here) also uses “agecat” first, but in the following steps, it uses “veh value”

and “veh body”. The trees from NB1-BCART and NB2-BCART look very simi-

lar, and both of them use “gender” first and then use “agecat”, “veh value”, and

“veh body”. Further, the trees from ZIP1-BCART and ZIP2-BCART have the

same tree structure and select the same splitting variables as the tree from P-

BCART, while the split values/categories are slightly different. The optimal tree

from ZIP2-BCART is displayed in Figure 6.14, where the estimated frequency

(i.e., the first value in each node) is calculated through (2.18) for the ZIP2 model

with unit exposure. Comparing the two trees in Figures 6.13 and 6.14 we see that

the ZIP2-BCART model can identify a more risky group (i.e., the one with an

estimated frequency equal to 0.2674). Moreover, we also use a Poisson-GLM to fit
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6.2 Claims Frequency Modelling

Figure 6.13: Tree from P-CART. Numbers at each node give the

estimated frequency and the percentage of observations.

the data. We find that only the variables “agecat” and “veh body” are significant,

in which we also use the interactions between these two variables. In conclusion,

though the variables used in different models can differ slightly, there seems to be

a consensus that “agecat”, “veh value” and “veh body” are relatively significant

variables and “gender”, “veh age” and “area” are less significant. This finding is

somewhat consistent with our initial analysis of the relationship between covari-

ates and claims frequency, as demonstrated in Figures 6.1 and 6.7, emphasizing the

significance of covariates “veh value” and “veh body”. Particularly, ZIP2-BCART

accurately selects four types of vehicle body (all claims frequency greater than

0.2 after the numerical transformation) for splitting (see Table D.1). This is the

reason why ZIP2-BCART can identify a riskier group more effectively. Addition-

ally, BCART models identify another important variable, “agecat”, which was not

initially discovered.

Now, we apply the identified optimal trees to the test data. The performances

are given in Table 6.5. We also include the commonly used GLM with Poisson

regression models, for which the performance looks not as good as the tree models.

From the table, we can conclude that for each of the BCART models, the tree

with 5 terminal nodes that is selected by DIC performs better, in terms of SE

and DS (see Section 2.3), than the trees with either a smaller or larger number of

terminal nodes. This confirms that the proposed three-step approach for the tree

model selection in each type of model based on DIC works well in this dataset.

Moreover, all the performance measures give the same ranking of models as follows:
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6.2 Claims Frequency Modelling

Figure 6.14: Optimal tree from ZIP2-BCART. Numbers at each

node give the estimated frequency and the percentage of observa-

tions.

ZIP2-BCART, ZIP1-BCART, NB2-BCART, NB1-BCART, P-BCART, P-CART,

ANOVA-CART, P-GLM. This ranking is, to some extent, consistent with the

conclusions from the simulation examples (see Section 3.5) and as expected. We do

not know the exact distribution of real insurance claims frequency data, but we do

know that it contains a high proportion of zeros, where the advantage of ZIP comes

into play. Further, comparing NB and Poisson distributions, the former is able

to handle over-dispersion, so their performance ranking is reasonable. Moreover,

the ranking of two ZIP-BCART models and two NB-BCART models are also

consistent with the conclusions of Lee (2020, 2021) where it is justified that the

non-standard ways of dealing with exposure (i.e., ZIP2-BCART and NB2-BCART)

should better fit real insurance data.

In addition to the performance measures, we also record the computation time

(in seconds) and memory usage (in megabytes); see the last two columns of Table

6.5. All computations were performed on a laptop with Processor (3.5 GHz Dual-

Core Intel Core i7) and Memory (16 GB 2133 MHz LPDDR3). Clearly, BCART

models are far inferior to CARTs and GLM in these two respects and as the number

of latent variables increases (from P-BCART to NB-CART to ZIP-BCART) these

indicators become worse, but we think with such a large training data these are

still acceptable and feasible to use in practice. We remark that there have been

prior endeavours to address computing issues; see, e.g., Chipman et al. (2014), He

et al. (2019) and Sparapani et al. (2021). We believe these two indicators will be
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6.2 Claims Frequency Modelling

Table 6.5: Model performance on test data (dataCar) for claims

frequency models with bold entries determined by DIC (see Table

6.4). The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree.

Model RSS

(N )

SE DS NLL Lift Time

(s)

Memory

(MB)

P-GLM 1057.029 - - 5532.37 - 1.15 115

ANOVA-CART (5) 1054.061 0.0205 0.0700 5514.06 1.83 2.05 98

P-CART (5) 1042.295 0.0185 0.0681 5476.43 1.97 2.13 98

P-BCART (4) 1042.221 0.0172 0.0680 5473.90 1.74 317.61 364

P-BCART (5) 1042.211 0.0167 0.0602 5472.86 2.26 291.28 378

P-BCART (6) 1042.205 0.0171 0.0632 5472.27 2.29 325.10 581

NB1-BCART (4) 1041.129 0.0168 0.0445 5470.12 1.80 413.95 628

NB1-BCART (5) 1041.109 0.0159 0.0372 5469.00 2.46 403.84 569

NB1-BCART (6) 1041.103 0.0162 0.0413 5468.51 2.57 459.70 689

NB2-BCART (4) 1041.127 0.0155 0.0416 5470.01 1.85 431.90 642

NB2-BCART (5) 1041.102 0.0144 0.0352 5468.68 2.50 441.82 661

NB2-BCART (6) 1041.094 0.0151 0.0390 5468.35 2.58 492.19 721

ZIP1-BCART (4) 1041.102 0.0150 0.0383 5469.07 1.91 548.29 827

ZIP1-BCART (5) 1041.087 0.0138 0.0316 5468.39 2.56 524.84 792

ZIP1-BCART (6) 1041.075 0.0142 0.0362 5468.02 2.60 569.21 889

ZIP2-BCART (4) 1041.054 0.0145 0.0279 5468.25 2.20 561.98 840

ZIP2-BCART (5) 1041.038 0.0136 0.0241 5468.01 2.72 570.40 851

ZIP2-BCART (6) 1041.025 0.0141 0.0271 5467.81 2.79 589.24 892

improved after our code is optimized in the future.

We conclude the claims frequency modelling with discussions on the stability

of the proposed BCART models. Stability is a notion in computational learning

theory of how the output of a machine learning algorithm is perturbed by small

changes to its inputs. A stable learning algorithm is one for which the prediction

does not change much when training data is modified slightly; see, e.g., Arsov

et al. (2019) and references therein. CART models are known to be unstable. It

is thus interesting to examine whether the proposed BCART models can be more

stable. To this end, we propose the following approach to assess the stability of

the P-CART and ZIP2-BCART (as the best) models.

Step 1: Randomly divide the data into two parts, 80% for training and 20% for
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6.3 Claims Severity Modelling

testing.

Step 2: Randomly select 90% of training data for 20 times to construct 20 training

subsets, named Data1, Data2, . . . , Data20.

Step 3: Obtain the optimal tree from P-CART and ZIP2-CART, respectively, for

each training subset Dataj, j = 1, . . . , 20.

Step 4: Use the previously obtained trees to get predictions for test data. For each

observation in test data, we will have 20 predictions from the 20 P-CART

trees for which we calculate the variance, and do the same for the 20 ZIP2-

BCART trees to get a variance.

Step 5: Calculate the mean (over the observations on test data) of those variances

for P-CART and ZIP2-BCART, respectively.

Since variance can capture the amount of variability, we shall use the above ob-

tained mean of variance to assess the stability (in their prediction ability) of a

tree-based model. Namely, the smaller the mean the more stable the model that

was used to calculate it. We apply it to the dataCar insurance data, the calculated

mean for P-CART is 9.3×10−5 and for ZIP2-BCART, it is 6.9×10−5. This implies

that ZIP2-BCART is more stable than P-CART. Additionally, we also compare

the 20 trees from P-CART, where we can observe very different trees in terms of

number of terminal nodes (ranging from 3 to 8) and splitting variables selected

in the trees. Whereas, the 20 trees from ZIP2-BCART also show some stability

regarding the number of terminal nodes (all around 5) and splitting variables se-

lected. The same procedure has also been applied to other BCART models and

the conclusions are almost the same. Therefore, we conclude from our studies that

the proposed BCART models in this thesis show some stability that the CART

models may not possess.

6.3 Claims Severity Modelling

Based on Chapter 4, we aim to directly model the average claim amount S̄ for

claims severity. The claims severity model considered here only applies to the

subset of the data for which the policyholder has at least one claim. This is a

traditional and commonly used way to deal with claims severity data; see, e.g.,

Henckaerts et al. (2021) and Frees et al. (2014). Among all 67,856 policies, 4,624

policies satisfy this requirement (3,699 in the training data, and 925 in the test
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data). Two graphs are used to illustrate which distribution better fits the claims

severity data in Figures 6.15 and 6.16. At first glance, distinguishing their per-

formance is challenging in Figure 6.15 since all of them capture the right-skewed

feature. However, in Figure 6.16, none of the three fitted distributions correctly

describes the right tail of the distribution. The LogNormal distribution might be

preferred, as the points from the LogNormal distribution form a line that is clos-

est to the 45-degree reference line. This finding is somewhat surprising and goes

against our expectations. We expected that the Weibull distribution would be

the best among these three, as discussed in Section 4.5. The reason may be that

the plots are drawn by using parameters estimated once with the entire claims

severity data, whereas in our proposed BCART models, we update the parame-

ters in the Bayesian framework at every step using subsets of data in each node.

The approach we use not only provides more accurate parameter estimates but

also allows the model to better capture data characteristics and fit the data more

effectively in each group (terminal node).

First, when running ANOVA-CART on training data, the result indicates there

is no potential split that would lead to improvement. Apparently, ANOVA-CART

is not capable of capturing this right-skewed and heavy-tailed insurance data (see

Table 6.3). Another approach involves running ANOVA-CART on log(S̄) and

transforming the results back to S̄. This method is intuitive and straightforward

to implement. However, when examining the results, there is still no split identi-

fied, resulting in a root node tree. Consequently, we do not include both of them

in the following context. Next, we run Gamma-CART, implemented using the R

package distRforest. This package extends the applicable distributions for deci-

sion trees to include Gamma and LogNormal distributions, allowing the analysis

of light/heavy-tailed data. It builds a random forest in the ensemble consisting

of individual CARTs based on the package rpart; see more details in Henckaerts

(2020). Since our focus is on one tree, we restrict the number of trees to one in

the random forest, allowing us to obtain Gamma-CART. We use cross-validation

to select the tree size, which has 5 terminal nodes. Similarly, we run LN-CART

in the same way, again resulting in a tree with 5 terminal nodes. Regarding the

Weibull distribution, no package can be used to implement it in decision trees

currently, so we do not include it in the following context. Further research may

be needed to include more distributions with different characteristics in decision

trees. We then apply the proposed Gamma-BCART, LN-BCART, and Weib-

BCART to the same data. Similar to the previous claims frequency modelling,

we tune the hyper-parameters γ, ρ. The DICs displayed in Table 6.6 indicate that
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Figure 6.15: Histogram and theoretical densities of Gamma, Log-

Normal, and Weibull distributions for claims severity data. Pa-

rameters used to generate the plot are estimated by using the

“fitdist” function in the R package fitdistrplus (see more de-

tails in Marie-Laure Delignette-Muller & Pouillot (2023)).

all these BCART models choose an optimal tree with 4 terminal nodes, one less

than those obtained from CARTs. In Figure 6.17, we present trace plots for trees

around h = 4 terminal nodes for Gamma-BCART, including plots of the number

of terminal nodes, the integrated likelihood pG(S̄|X,T ), and the data likelihood

pG(S̄|X, α̂, β̄,T ) of the accepted trees. The figure illustrates that although the

number of terminal nodes fluctuates between h = 3 and h = 4, and occasionally

jumps to h = 5, it predominantly remains at h = 4. Besides, the data likelihood

and integrated likelihood exhibit minor differences with a similar trend, which

is in line with previous conclusions (see more discussions in Subsection 3.5.1).

The trace plots of LN-BCART and Weib-BCART have a similar pattern and are

thus omitted. Based on Table 6.6, among these BCART models, Weib-BCART,

with the smallest DIC(=77646), should be selected as the global optimal tree to

characterize the claims severity data.

Similar to claims frequency modelling, we also examine the splitting variables
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Figure 6.16: Q-Q plot of Gamma, LogNormal, and Weibull dis-

tributions for claims severity data. The parameters used to gen-

erate the plot are estimated by using the “fitdist” function in

the R package fitdistrplus (see more details in Marie-Laure

Delignette-Muller & Pouillot (2023)).

and corresponding split values/categories used in the trees obtained from differ-

ent models. For Gamma-CART, it uses both “agecat” and “veh value” twice,

with the first one being “agecat”. In contrast, LN-CART uses three different

variables, “veh value” first, followed by “veh body” and “area”. All trees from

BCART models, i.e., Gamma-BCART, LN-BCART, and Weib-BCART, have the

same tree structure and splitting variables (“agecat”, “veh value”, and “area”),

while the split values/categories are slightly different. Weib-BCART, in partic-

ular, identifies a more risky group (i.e., the one with estimated severity equal

to 2743.41); see Figure 6.18. This may be because, as discussed in Section 4.5,

Weib-BCART can flexibly control the shape parameter to adapt to data with dif-

ferent tail characteristics, allowing it to handle cases where some groups (terminal

nodes) have lighter tails, and others have heavier tails. In Figure 6.19, we observe

that although all shape parameters are smaller than one, indicating heavy tails

for claims severity data within each terminal node, the optimal Weib-BCART tree
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Table 6.6: Hyper-parameters, sD and DIC on training data (dat-

aCar) for claims severity models. The number in the bracket after

the abbreviation of the model indicates the number of terminal

nodes for this tree. Bold font indicates the DIC selected model.

Model γ ρ sD DIC

Gamma-BCART (3) 0.99 4 5.97 78061

Gamma-BCART (4) 0.99 3.5 7.97 77779

Gamma-BCART (5) 0.99 2 9.95 77982

LN-BCART (3) 0.99 5 5.98 78014

LN-BCART (4) 0.99 4 7.97 77723

LN-BCART (5) 0.99 3 9.97 77889

Weib-BCART (3) 0.99 7 5.98 77932

Weib-BCART (4) 0.99 5 7.98 77646

Weib-BCART (5) 0.99 4 9.98 77821

Figure 6.17: Trace plots from MCMC with 3 restarts for Gamma-

BCART (γ=0.99, ρ=3.5).

shows improved data fitting compared to Figure 6.16. We also conduct similar

analyses for Gamma-BCART and LN-BCART (with their Q-Q plots not shown

here). Particularly, for Gamma-BCART, the range of shape parameters is 0.62-
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Figure 6.18: Optimal tree from Weib-BCART. Numbers at each

node give the estimated severity and the percentage of observa-

tions.

0.89, whereas Weib-BCART can distinguish between 0.48-0.96, allowing for better

tail control and data fitting. Moreover, we use a Gamma-GLM to fit the data.

We find that only the variable “gender” is significant, and thus no interaction is

considered in the Gamma-GLM. Interestingly, “gender” does not appear in all

CART and BCART models. In summary, though the variables used for different

models may differ, there seems to be a consensus that “agecat” is still significantly

important for claims severity modelling, as Gamma-CART and all BCART models

use it in the first split, and “veh value” is another relatively significant variable.

This discovery aligns, to some extent, with our initial analysis of the relationship

between covariates and claims severity. Particularly, in comparison to CARTs,

BCART models reveal another important variable, “area”, which was identified

after the initial numerical transformation (see Table D.3). Notably, Weib-BCART

precisely chooses areas A, B, and D (identified as having the three smallest claims

severity after the initial numerical transformation) for splitting.

Now, we apply the identified optimal trees to the test data. The performances

are given in Table 6.7. It is evident that the Gamma-GLM does not exhibit good

performance compared to the tree models. From the table, we also conclude that,

for each of the BCART models, the tree with 4 terminal nodes selected by DIC out-

performs those with either a smaller or larger number of terminal nodes in terms

of SE and DS. This validates the effectiveness of the proposed three-step approach

for selecting tree models based on DIC, as observed in claims frequency modelling.
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6.3 Claims Severity Modelling

Figure 6.19: Q-Q plots of the Weibull distribution for claims sever-

ity data in each terminal node of the optimal Weib-BCART tree.

The shape parameter used to generate the plot is estimated by

using MLE (see Remark 4.3 (a) in Section 4.4), and the scale pa-

rameter is estimated using the posterior distribution (see (4.27)).

For CARTs, having one more terminal node than all optimal trees for each type

of BCART model makes an unfair direct comparison using RSS(S), NLL, and

lift, as these measures can usually be improved with more splits (see Section 2.3).

However, despite this, the values for these measures are very close between CART

and BCART models. In such cases, a more parsimonious model (the tree from

BCART models) should be preferred. Regarding SE and DS, CARTs perform

worse compared to the optimal tree for each type of BCART model (for example,

the comparison between Gamma-CART (5) and Gamma-BCART (4)). There-

fore, we obtain a model ranking: Weib-BCART, LN-BCART, Gamma-BCART,

LN-CART, Gamma-CART, Gamma-GLM. This ranking is consistent with the

conclusions from the simulation example in Section 4.5 and our expectations. Al-

though we lack information about the exact distribution of real insurance claims
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Table 6.7: Model performance on test data (dataCar) for claims

severity models with bold entries determined by DIC (see Table

6.6). The number in the bracket after the abbreviation of the

model indicates the number of terminal nodes for this tree.

Model RSS(S)

(in 1010)

SE DS NLL Lift Time

(s)

Memory

(MB)

Gamma-GLM 1.4335 - - 13769 - 0.21 15

Gamma-CART (5) 1.4173 464 0.00171 13693 1.625 1.13 5

LN-CART (5) 1.4168 458 0.00168 13685 1.629 1.42 6

Gamma-BCART (3) 1.4201 486 0.00181 13712 1.567 49.89 94

Gamma-BCART (4) 1.4176 457 0.00154 13698 1.615 51.53 97

Gamma-BCART (5) 1.4158 472 0.00167 13690 1.643 50.12 96

LN-BCART (3) 1.4189 482 0.00176 13708 1.572 55.68 99

LN-BCART (4) 1.4170 451 0.00145 13692 1.633 57.11 101

LN-BCART (5) 1.4152 463 0.00159 13683 1.651 57.34 101

Weib-BCART (3) 1.4177 473 0.00164 13700 1.604 58.23 102

Weib-BCART (4) 1.4154 433 0.00131 13684 1.661 60.01 105

Weib-BCART (5) 1.4136 446 0.00144 13673 1.693 61.87 106

severity data, we are aware of its right-skewed and heavy-tailed nature. Specifi-

cally, in tree models, data within groups (terminal nodes) may exhibit different tail

characteristics, highlighting the advantage of the Weibull distribution, which can

effectively handle varying tail characteristics. With respect to time and memory,

similar discussions can be considered as in previous claims frequency modelling.

For stability analysis, the same conclusions can be drawn for claims severity

modelling: BCART models are more stable than CART models. To avoid redun-

dancy, we omit the details here.

6.4 Aggregate Claims Modelling

Based on Chapter 5, three types of models can be employed for aggregate claims

modelling: frequency-severity models, sequential models, and joint models. In

the case of frequency-severity models, numerous combinations arise from claims

frequency and claims severity models. In our implementation, there are 5 models

for claims frequency (1 Poisson, 2 NB, and 2 ZIP) and 4 models for claims sever-

ity (2 Gamma, 1 LogNormal, and 1 Weibull), resulting in 20 frequency-severity
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models. Instead of running all these models, we propose using the optimal trees

found (ZIP2-BCART and Weib-BCART) in the previous Sections 6.2 and 6.3

as one combination for frequency-severity models. Although ZIP2-BCART and

Weib-BCART are identified as the best for claims frequency and claims severity

respectively, it is uncertain if they remain optimal when combined. This can be

examined in the real insurance dataset. Additionally, given that the proposed joint

models employing a CPG distribution, we include the frequency-severity models

with Poisson and Gamma distributions in the comparison. Furthermore, three

ZICPG distributions in joint models are compared to assess their capability to

capture data characteristics with a high proportion of zeros. For sequential mod-

els, we ensure consistency of claims frequency modelling as the other models by

using Poisson-BCART and ZIP2-BCART. Subsequently, we treat the claim count

Ni (or N̂i) as a covariate in the corresponding Gamma-BCART and Weib-BCART

for claims severity modelling. The resulting models are called Gamma1-BCART

(or Gamma2-BCART) and Weib1-BCART (or Weib2-BCART).

From Table 6.8, it is evident that, for both Gamma and Weibull distributions

with Ni (or N̂i) as a covariate, optimal trees are chosen with 4 terminal nodes

consistently. Upon inspecting the tree structure, Ni (or N̂i) is indeed used in

the first step in all optimal trees for each model (Gamma1-BCART, Gamma2-

BCART, Weib1-BCART, and Weib2-BCART). All of them replace the previously

used variable “agecat”, with the only difference being in the split values used. This

observation aligns with the results obtained in Subsection 5.2.1. We suspect that

the reason for this may be a strong relationship between the covariates Ni and

“agecat”, as verified in the claims frequency analysis (see Section 6.2), where the

optimal claims frequency tree selects “agecat” in the first split, indicating a strong

relationship between Ni and “agecat”. Consequently, it is reasonable to replace

“agecat” with Ni (or N̂i) to avoid multicollinearity. Furthermore, by comparing

the DIC of all Gamma-BCART and Weib-BCART models in Tables 6.6 and 6.8

(with/without Ni or N̂i as a covariate), we can conclude that the model perfor-

mance improves when considering Ni (or N̂i) as a covariate, especially when using

N̂i. This approach has a practical advantage as there is no direct information

about Ni itself for new customers. For joint models, i.e., CPG-BCART and three

ZICPG-BCART models, all of them choose optimal trees with 5 terminal nodes.

Among them, ZICPG3-BCART, with the smallest DIC (=102120), is deemed the

best. The difference in DIC between the CPG model and ZICPG models is signif-

icantly larger than the difference between ZICPG models themselves, illustrating

the necessity of considering the zero mass part. Additionally, there is no big
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difference between ZICPG2-BCART and ZICPG3-BCART models, aligning with

the conclusion obtained in ZIP models (see Remark 3.5 (b) in Subsection 3.3.4).

This observation implies that embedding the exposure into both the Poisson part

and the zero mass part does not yield substantial improvement; embedding the

exposure into the zero mass part is sufficient. However, it cannot be denied that

ZICPG3-BCART still exhibits the best performance.

Similar to the previous analysis, we examine the splitting variables and the cor-

responding split values/categories used in the trees obtained from joint models.

All models use the same splitting variables (“agecat”, “veh value”, “veh body”,

and “area”), but the order of use and the tree structures vary. Notably, “age-

cat” remains the first variable used in all models. Among them, ZICPG3-BCART

demonstrates the ability to identify a riskier group (i.e., the one with an estimated

premium equal to 657.45; see Figure 6.20), possibly for the same reasons discussed

in Section 6.2 for the outstanding performance of ZIP2-BCART. Both ZIP2 and

ZICPG3 models exhibit the capacity to handle data sets with a substantial number

of zeros by incorporating exposure in the zero mass part. Besides, we observe that

the tree structure of ZICPG3-BCART is quite similar to ZIP2-BCART. However,

ZICPG3-BCART identifies another important variable “area”, which was recog-

nized as important for claims severity before. Furthermore, we fit a CPG-GLM

to the data. We find that only the variable “agecat” is significant, aligning with

its consistent selection as the first splitting variable in almost all BCART models.

Since only one variable is deemed significant in the CPG-GLM, no interactions

were included. It is also worth mentioning that CART is not included in this

analysis due to the absence of R packages on decision trees that can directly use

CPG to process the data.

Now, we apply the identified optimal trees to the test data. The performances

are given in Table 6.9. As before, GLM exhibits poorer performance compared to

tree-based models, as evidenced by RSS(S) and NLL. However, for other models,

drawing a clear and unified conclusion is challenging, and thus we discuss this

from various perspectives.

1. A comparison of the different frequency-severity models reveals that it is

indeed preferable to use the combination of two best models for claims fre-

quency and claims severity respectively, i.e., FZIP2SWeib-BCART > FPSG-

BCART. In the sequential models, the same conclusion as in Subsection

5.2.1 is reached: using the prediction of the claim count N̂i is superior to

using Ni itself when treating them as a covariate in the claims severity tree.
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Table 6.8: Hyper-parameters, rD (or sD) and DIC on training

data (dataCar) for aggregate claims models. The number in

the bracket after the abbreviation of the model indicates the

number of terminal nodes for this tree. The Gamma1/Weib1

and Gamma2/Weib2 models treat the claim count Ni and N̂i as

a covariate respectively, where N̂i comes from Poisson-BCART

and ZIP2-BCART respectively. Bold font indicates DIC selected

model. This table only helps to select the optimal tree, and DICs

between different models cannot be directly compared.

Model γ ρ rD (or sD) DIC

Gamma1-BCART (3) 0.99 4 5.97 78032

Gamma1-BCART (4) 0.99 3.5 7.97 77750

Gamma1-BCART (5) 0.99 2 9.96 77854

Gamma2-BCART (3) 0.99 4 5.98 78024

Gamma2-BCART (4) 0.99 3.5 7.97 77743

Gamma2-BCART (5) 0.99 2 9.97 77849

Weib1-BCART (3) 0.99 7 5.98 77911

Weib1-BCART (4) 0.99 5 7.98 77619

Weib1-BCART (5) 0.99 4 9.98 77804

Weib2-BCART (3) 0.99 7 5.98 77893

Weib2-BCART (4) 0.99 5 7.98 77608

Weib2-BCART (5) 0.99 4 9.98 77787

CPG-BCART (4) 0.99 10 11.96 105710

CPG-BCART (5) 0.99 8 14.93 105626

CPG-BCART (6) 0.99 7 17.92 105643

ZICPG1-BCART (4) 0.99 11 15.97 102314

ZICPG1-BCART (5) 0.99 10 19.95 102198

ZICPG1-BCART (6) 0.99 7.5 23.92 102225

ZICPG2-BCART (4) 0.99 12 15.95 102265

ZICPG2-BCART (5) 0.99 11 19.94 102134

ZICPG2-BCART (6) 0.99 8 23.92 102167

ZICPG3-BCART (4) 0.99 14 15.94 102247

ZICPG3-BCART (5) 0.99 12 19.93 102120

ZICPG3-BCART (6) 0.99 9 23.90 102158
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Figure 6.20: Optimal tree from ZICPG3-BCART. Numbers at

each node give the estimated premium and the percentage of ob-

servations.

Regarding joint models, ZICPG models outperform the CPG model, with

ZICPG3-BCART being the best. These conclusions align with those ob-

tained in the training data.

2. When comparing frequency-severity models and sequential models, it is ev-

ident that adding Ni (or N̂i) as a covariate improves performance, i.e.,

FPSG2-BCART > FPSG1-BCART > FPSG-BCART. The same ranking is

observed for another combination, i.e., FZIP2SWeib2-BCART > FZIP2SWeib1-

BCART > FZIP2SWeib-BCART. This is reasonable, as real data often exhibits

a correlation between the number of claims and claims severity (see Garrido

et al. (2016)), favouring sequential models that consider this correlation over

frequency-severity models assuming independence.

3. In comparing frequency-severity models and joint models, FPSG-BCART

and CPG-BCART (or ZICPG-BCART) are intuitive to examine as they

use the same (or similar) distributions. CPG-BCART (or ZICPG-BCART)

consistently outperforms FPSG-BCART, suggesting that sharing informa-

tion is necessary for this dataset, and one joint tree exhibits better per-

formance. Further exploration of the reasons is provided below. However,

for FZIP2SWeib-BCART and CPG-BCART (or ZICPG-BCART), there is no

clear intuition due to the use of different distributions. Performance rank-

ings, based on evaluation metrics, conclude that joint models are superior.
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Table 6.9: Model performance on test data (dataCar) for ag-

gregate claims models with bold entries determined by DIC (see

Table 6.8). The Gamma1/Weib1 and Gamma2/Weib2 models

treat the claim count Ni and N̂i as a covariate respectively,

where N̂i comes from Poisson-BCART and ZIP2-BCART respec-

tively. FPSG represents frequency-severity models using Poisson

and Gamma distributions separately, similar to other models. The

number in the bracket after the abbreviation of the model indi-

cates the number of terminal nodes for this tree. Particularly,

two numbers for frequency-severity models indicate the number

of terminal nodes for each tree.

Model RSS (S)

(in 1010)

NLL Time (s) Memory

(MB)

CPG-GLM 1.5187 19305.1 2.66 129

FPSG-BCART (5/4) 1.4874 19170.9 342.81 475

FPSG1-BCART (5/4) 1.4813 19144.2 350.18 481

FPSG2-BCART (5/4) 1.4798 19140.2 349.78 479

FZIP2SWeib-BCART (5/4) 1.4844 19152.0 630.41 956

FZIP2SWeib1-BCART (5/4) 1.4790 19138.5 639.55 962

FZIP2SWeib2-BCART (5/4) 1.4779 19135.2 640.05 963

CPG-BCART (4) 1.4791 19139.0 301.58 401

CPG-BCART (5) 1.4781 19135.5 310.41 406

CPG-BCART (6) 1.4778 19134.9 308.17 404

ZICPG1-BCART (4) 1.4670 19076.3 598.14 968

ZICPG1-BCART (5) 1.4497 19061.2 604.23 991

ZICPG1-BCART (6) 1.4478 19058.1 605.76 990

ZICPG2-BCART (4) 1.4612 19062.9 630.63 966

ZICPG2-BCART (5) 1.4434 19044.3 640.87 1023

ZICPG2-BCART (6) 1.4417 19040.6 638.11 1018

ZICPG3-BCART (4) 1.4598 19055.6 649.56 970

ZICPG3-BCART (5) 1.4415 19040.2 665.22 1012

ZICPG3-BCART (6) 1.4409 19037.4 659.91 1010

4. As for sequential models and joint models, they address dependence in dif-

ferent ways. The former uses two trees, treating the number of claims as a

covariate in claims severity modelling to address the dependence issue. In
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contrast, the latter uses one joint tree, potentially hiding some dependence in

the common variables used to split the nodes and incorporating the number

of claims as model weights in the aggregate claim amount distribution. Their

performance ranking is obtained through evaluation metrics. Joint models

employing ZICPG distributions perform better than all sequential models,

possibly due to a small conditional correlation between the number of claims

and claims severity (-0.0336) and the dataset involving a high proportion of

zeros (93.19%). There is no unified conclusion for joint models employing

CPG distributions and sequential models (for example, FZIP2SWeib2 is better

than CPG-BCART but FZIP2SWeib1 is worse), indicating the need for further

exploration, especially for data with high dependence between the number

of claims and claims severity.

To investigate why one joint tree performs better in this dataset, we discuss

two aspects. The first perspective focuses on the relationship between covariates

and claims frequency (or claims severity). The intuition is that if the majority

of covariates exhibit strong relationships with both claims frequency and claims

severity, it is beneficial to share this information. In previous Sections 6.2 and 6.3,

we discovered that the same two variables are used in optimal claims frequency

and claims severity trees, namely, “agecat” and “veh value”. These two variables

account for 2/3 of all splitting variables, indicating a high rate. Moreover, both

trees choose “agecat” in the first step, illustrating its importance for both claims

frequency and claims severity. On the other hand, we can calculate the correlation

coefficient numerically. However, as several covariates are categorical, they cannot

be used directly in calculations. We use the transformed categorical variables (see

Appendix D) to do this; see Table 6.10. For claims frequency, the three variables

with the strongest correlation coefficients are used in the optimal tree. For claims

severity, “veh age” has the third strongest correlation, but the optimal severity

tree does not use it. We explore a strong relationship between covariates “veh age”

and “veh value” (see Figure D.1 in Appendix D), so it is reasonable to only use

one of them, which has a stronger correlation with the response variable to avoid

multicollinearity. Additionally, both claims frequency and claims severity show

the strongest correlation with “agecat”, illustrating the effectiveness of BCART

models for variable selection.

The second perspective involves using ARI (see Subsection 5.3.3 and Appendix

C) to assess the similarity between different trees and determine whether infor-

mation sharing is necessary; see Table 6.11. As discussed in Subsection 5.3.3,
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Table 6.10: Correlation coefficients between covariates (numerical

ones and transformed categorical ones) and claims frequency (or

severity). Bold font indicates the largest correlation coefficient

(although they are very small) in each row.

veh value veh age agecat veh body gender area

Claims Frequency -0.0047 0.0013 -0.0131 0.0022 0.0008 -0.0021

Claims Severity 0.0135 -0.0059 -0.0274 -0.0035 0.0003 -0.0034

Table 6.11: Values of ARI between different trees. The number

in the bracket after the abbreviation of the model indicates the

number of terminal nodes for this tree.

Poisson-

BCART

(5)

ZIP2-

BCART

(5)

Gamma-

BCART

(4)

Weib-

BCART

(4)

CPG-

BCART

(5)

ZICPG3-

BCART

(5)

Poisson-BCART (5) 1 0.7396 0.5398 0.5163 0.8585 0.7823

ZIP2-BCART (5) - 1 0.5599 0.5179 0.8587 0.8152

Gamma-BCART (4) - - 1 0.7430 0.6921 0.6423

Weib-BCART (4) - - - 1 0.6491 0.6022

CPG-BCART (5) - - - - 1 0.6351

ZICPG3-BCART (5) - - - - - 1

although a specific threshold value of ARI for making a direct judgment about the

need for information sharing in one joint tree is unknown, it is evident that ARI

values between all claims frequency and claims severity trees are greater than 0.5.

This suggests significant similarities that cannot be ignored. Therefore, based on

these two aspects discussed, we conclude that one joint tree performs better than

two trees (in frequency-severity models) in this dataset.

After conducting a thorough analysis of this dataset, we conclude that insurers

need to pay more attention to policyholders who are younger and have vehicles

with higher values since they are more likely to incur higher risks. In addition,

policyholders with specific vehicle body types (such as “COUPE” and “BUS”),

also require additional attention.

Remark 6.1 We also use other datasets (such as dataOhlsson included in the

library insuranceData in R, freMTPL2freq and freMTPL2sev included in the

library CASdatasets; see more details in Christophe Dutang (2020)), to validate
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our proposed BCART models. Due to the similarity in analysis methods and the

consistency of conclusions, we omit the details.

6.5 Summary of Chapter 6

In this chapter, the real dataset dataCar was used to validate our proposed

BCART models. We found consistent conclusions with previous simulation exam-

ples and the conclusions of Omari et al. (2018) and Quijano Xacur et al. (2019).

Given the multitude of available distributions in the insurance industry, it is im-

practical to run all models each time to determine the best one. Drawing on

insights from both simulated and real data, we provide the following recommen-

dations for insurance industry modellers.

1. In claims frequency analysis, a similar set of important variables was ob-

tained by our proposed BCART models and Bayesian GLM models (see

Quijano Xacur et al. (2019)). Additionally, we extended our consideration

to zero-inflated models compared with Omari et al. (2018) and observed that

the ZIP2 model, which embeds exposure into the zero mass part, outperforms

others. Therefore, modellers should prioritize the ZIP2 model when working

with data containing a substantial number of zeros.

2. In claims severity analysis, Quijano Xacur et al. (2019) employing Bayesian

GLM models concludes the same variables chosen by BCART models are

important. However, our finding contradicts the conclusion of Omari et al.

(2018), which suggests that the LogNormal distribution is superior to the

Gamma and Weibull distributions. We found that the Weib-BCART per-

forms better in handling data with right-skewed and heavy-tailed character-

istics. Actually, the conclusion of Omari et al. (2018) aligns with our initial

analysis of claims severity data, as shown in Figure 6.16. We attribute the

difference in results to two factors: First, they use MLE to obtain estimators

once, while we use both MLE and posterior distributions to update parame-

ter estimations at each node. Second, the Weibull distribution in their study

has only one shape parameter for the entire dataset, while our approach in-

corporates different shape parameters in groups (terminal nodes) to adapt

to data with different tail features (see Figure 6.19).

3. For aggregate claims data, we found that sequential models and joint models

outperform the standard frequency-severity models, especially when incor-

porating N̂i as a covariate in claims severity modelling within sequential
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models and the ZICPG3 model within joint models. Modellers are advised

to assess the conditional correlation between the number of claims and claims

severity. If the dependence is strong, it is recommended to prioritize sequen-

tial models and ZICPG models (especially for data with many zeros); if the

dependence is weak, consider frequency-severity models and joint models.

Notably, joint models are preferred when there are many shared important

covariates between claims frequency and severity (high ARI between their

trees).
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Chapter 7

Summary and Discussion

In this thesis, we explored the application of Bayesian CART models in insurance,

employing various models to accommodate the unique characteristics of real in-

surance data. This chapter concludes the thesis by summarizing the key findings

of the previous chapters. Additionally, we provide an outline for future research,

along with potential industrial and practical applications.

7.1 Concluding Remarks

This work proposes the use of BCART models for insurance pricing. These tree-

based models can automatically perform variable selection and detect non-linear

effects and possible interactions among explanatory variables. The obtained opti-

mal trees are relatively accurate, stable and straightforward to interpret by a vi-

sualization of the tree structure. These are desirable aspects of insurance pricing.

We have introduced the framework of the BCART models and presented MCMC

algorithms for general non-Gaussian distributed data where data augmentation

may be needed in its implementation. We have included BCART models for Pois-

son, NB, ZIP, and ZINB distributions, which are the commonly used distributions

for claims frequency. For the NB, ZIP, and ZINB models, we explored different

ways to deal with exposure and concluded from the simulation examples and real

data analyses that the non-standard ways of embedding exposure can provide us

with better tree models, which is in line with the conclusions of Lee (2020, 2021).

Moreover, for claims severity, we incorporated BCART models for Gamma, Log-

Normal, and Weibull distributions, which have different abilities to handle data

with varying tail characteristics. Concerning aggregate claims modelling, we pro-

posed three types of models. First, the frequency-severity models consider two
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trees for claims frequency and claims severity independently. Second, the sequen-

tial models treat the number of claims as a covariate in claims severity modelling,

aiming to investigate the dependence between the number of claims and claims

severity. Moreover, sequential models have demonstrated better performance in

real data when compared to the frequency-severity models. Lastly, joint mod-

els for the bivariate response modelling (number of claims and aggregate claim

amount) employ CPG and ZICPG distributions to directly model the claims cost

using one joint tree. Joint models support the conclusion in Linero et al. (2020)

by illuminating the benefits of information sharing.

Furthermore, we introduced a tree model selection approach based on DIC,

which has been seen to be an effective approach using both simulation examples

and real insurance data. In particular, we concluded from the real insurance data

analyses that the ZIP-BCART with exposure embedded in the zero mass compo-

nent is the best candidate for claims frequency modelling. It is worth remarking

that another ZIP-BCART with exposure embedded in both the zero mass com-

ponent and Poisson component does not yield significant improvements, but it

indeed increases the model complexity. Besides, a general ZINB-BCART can be

implemented and may further improve the accuracy, but this requires more latent

variables to be introduced and will make the convergence of the MCMC algorithm

harder/slower; see Murray (2021) for some insights. For claims severity, we found

that the Weib-BCART performs the best among all candidates, as it can deal

with cases where some groups have lighter tails, while others have heavier tails.

In aggregate claims modelling, we discovered that among all joint models, the

ZICPG3-BCART, which embeds exposure in both the zero mass component and

Poisson component, delivers the most favourable results in real insurance data.

When comparing joint models with frequency-severity models, we proposed using

ARI to assess the similarity between two trees. This evaluation helps explain the

potential benefits of employing one joint tree for information sharing.

7.2 Future Work

As we conclude our exploration of BCART models, we recognize the progress

made in their application in the insurance industry, extending the usage to data

with any general distribution. However, the landscape of Bayesian methodologies

for tree-based models continues to develop, presenting opportunities for future

research and refinement. Below we comment on potential further improvements

of the BCART models.
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1. In the MCMC algorithms we have only used four common move proposals,

namely, Grow, Prune, Change, and Swap, which have made the algorithm

quickly converge to a local optimal region. To make it better to explore the

tree space, other proposals such as those in Wu et al. (2007) and Pratola

(2016) can be suggested to improve the mixing of simulated trees. However,

we suspect this will significantly increase the computational time, particu-

larly, for high-dimensional large data sets and models requiring data aug-

mentation. To mitigate this effect, we might need to use a non-uniform

choice of splitting variables in the tree prior to achieve a better variable

selection, e.g., the Dirichlet prior proposed in Linero (2018).

2. The proposed models have imposed several assumptions to simplify calcula-

tions. For example, we used conjugate priors for the terminal node distri-

butions, and additional independence assumption as in (2.8) and (3.28). To

further improve the analysis, it might be beneficial to incorporate different

specifications of the prior for the same distribution scenario without using

conjugate priors or independence, while this may require other techniques

such as Laplace approximation (see Chipman et al. (2003)). We refer also

to Chipman & McCulloch (2000) for an interesting incorporation of some

hierarchical priors.

3. We have proposed to use a single (optimal) tree induced from the BCART

models for insurance pricing. The main reason for this choice is, as we

discussed in the introduction, for ease of interpretation. Since stakeholders

and regulators may not be statisticians who are able to understand very

complex statistical models, a single tree offers intuitive and visual results

to them. Although we have proposed an approach to find a single optimal

tree, some sub-optimal trees (in the convergence region of the MCMC) which

possess similar/different tree structures, may also be as informative as the

single optimal tree and should not be simply ignored. Further research can be

done in this direction to make better use of the posterior trees by clustering

or merging them; see, e.g., Chipman et al. (2001) and Banerjee et al. (2012).

4. We used sequential models to account for the dependence between the num-

ber of claims and claims severity. Alternatively, the copula approach can be

adopted, which allows the modelling of the marginals and the dependence

structure separately, providing an intuitive way to interpret the dependence.

Recent advances in mixed copula models have simplified their application
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in insurance; see, e.g., Czado et al. (2012) and Zilko & Kurowicka (2016).

We propose further exploration into the use of mixed copula models in the

Bayesian framework. We refer to Smith & Khaled (2012) and Smith (2011)

for some discussions.

5. To further improve the accuracy of these Bayesian tree-based models we

could explore BART models for insurance pricing. The BART models are

tree ensembles; each tree in BART only accounts for a small part of the

overall fit, potentially improving the performance, but model interpretability

needs to be explored before it can be used for insurance pricing. To this end,

we believe some insights from Henckaerts et al. (2021) would be helpful.

6. Because of the remarkable properties of tree-based models, an expanding

number of researchers have been attempting to integrate them with other

methodologies, as shown in Quan et al. (2020) and Diao & Weng (2019).

Particularly, evolutionary trees are used to bin the effects of continuous risk

factors in insurance claims data, thereby deriving GLMs that approximate

the original GAMs in a flexible manner; see, e.g., Henckaerts et al. (2018).

We expect the potential prospects for integrating Bayesian tree-based mod-

els with data-driven strategies for insurance tariff construction, like binning

specifically; see, e.g., Lindholm et al. (2023) and Henckaerts et al. (2018).

Binning, involving the discretization of continuous variables into categor-

ical bins, simplifies the modelling process and potentially enhances inter-

pretability. Therefore, this integration may provide benefits for improving

interpretability and efficiently managing large data sets.

7. We proposed the use of ARI (see Subsection 5.3.3) to measure the similarity

between different trees, aiming to assess the necessity of using one joint tree

to share information. However, this method does not accurately provide a

threshold for making decisive judgments. This limitation may arise because

ARI solely considers the partitioned data itself, disregarding the underlying

tree structure. To delve deeper into tree similarity exploration, alternative

methods, as suggested in Bakirli & Birant (2017) and Nye et al. (2006),

can be used. Additionally, there are other evaluation metrics capable of

providing insights into the benefits of information sharing (such as the Log

Pseudo Marginal Likelihood (LPML)) which are worth exploring; see, e.g.,

Linero et al. (2020).
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8. Insurers must collect vast amounts of data to optimize performance and

mitigate risks. Data plays a crucial role, and dealing with missing data

remains an unavoidable challenge. Consequently, the capability of tree-based

models to handle missing data becomes a critical criterion when considering

their application in the insurance industry. We refer to Kapelner & Bleich

(2015) for a more insightful discussion on this topic.
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Appendix A

Metropolis-Hastings for Sampling

New Trees

This appendix provides detailed calculations for Algorithm 2.2 described in Sub-

section 2.2.2. The goal is to explicitly calculate the acceptance ratio α(T (m), T ∗)

for all possible tree moves. For each tree move, the calculations are organised into

three separate ratios: transition ratio q(T ∗, T (m))/q(T (m), T ∗), integrated likeli-

hood ratio p(y | X, T ∗)/p(y | X, T (m)), and tree prior ratio p(T ∗)/p(T (m)). There

are similar calculations discussed in Kapelner & Bleich (2013). We present our

calculations first and discuss the similarities and differences in the final remark.

A.1 Grow Move

In grow moves, an arbitrarily terminal node needs to be selected and split into

two new child nodes, along with randomly assigned decision rules for the split.

Therefore, when a grow move occurs to generate a new tree T ∗ from T (m), we only

need to consider the changes in the selected terminal node and the two resulting

child nodes, as other nodes remain unchanged.

• Transition ratio.

q(T (m), T ∗)

= P(GROW)P(selecting the t-th terminal node to grow)

× P(selecting one covariate from the available covariates to split on)

× P(selecting one value c /category C to split on based on the chosen

covariate)

= P(GROW)
1

b

1

p(m)(t)

1

np(m)(t)
,
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A.1 Grow Move

where b is the number of terminal nodes; p(m)(t) denotes the number of

predictors left available to split on, which can be less than p (the total

number of explanatory variables) if certain predictors do not have two or

more unique values/categories once the data reaches the t-th node in T (m);

np(m)(t) represents the number of unique values/categories left for the chosen

covariate. Furthermore, P(GROW) is a probability that can be specified

in advance. In our implementation, we select equal probability (i.e., 1/4

each) for four tree moves, as suggested in Chipman et al. (1998), but it can

be varied for different purposes. For example, a higher probability can be

specified for grow moves if a larger tree is desired. Additionally, it should

be noted that P(GROW) is set to zero and the step will be automatically

rejected if there are no variables with two or more unique values/categories.

Similarly, the transition from the new tree T ∗ to the original tree T (m)

involves pruning the grown node:

q(T ∗, T (m)) = P(PRUNE)P(selecting the t∗-th node to prune)

= P(PRUNE)
1

b∗
,

where b∗ denotes the number of nodes with two terminal children in the new

tree T ∗, and P(PRUNE) is also a known probability as P(GROW). Thus,

the full transition ratio is:

q(T ∗, T (m))

q(T (m), T ∗)
=

P(PRUNE)bp(m)(t)np(m)(t)

P(GROW)b∗
.

• Integrated likelihood ratio. Since the likelihoods are entirely determined by

the terminal nodes, the new tree T ∗ differs from the original tree T (m) solely

in the t-th terminal node which is chosen to grow and becomes two children

nodes after the grow move, denoted by t∗L and t∗R. Therefore, the integrated

likelihood ratio can be expressed as follows:

p
(
y | X, T ∗)

p
(
y | X, T (m)

) =
p(yt∗L

| Xt∗L
)p(yt∗R

| Xt∗R
)

p
(
yt | Xt

) .

• Tree prior ratio. For the entire tree,

p (T ) =
∏

t∈Lterminals

(
1− p(dt)

) ∏
t∈Linternals

(
p(dt)

1

p(m)(t)

1

np(m)(t)

)
,

where Lterminals denotes the set of terminal nodes and Linternals denotes

the set of internal nodes; dt represents the depth of node t and p(dt) =
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A.2 Prune Move

γ (1 + dt)
−ρ (see Subsection 2.2.1). Thus, the tree prior ratio can be ex-

pressed as:

p (T ∗)

p
(
T (m)

) =
(1− p(dt∗L))(1− p(dt∗R))p(dt∗)

1
p(m)(t

∗)
1

np(m)(t
∗)(

1− p(dt)
)

=

(
1− γ

(1+dt∗
L
)ρ

)(
1− γ

(1+dt∗
R
)ρ

)
γ

(1+dt∗ )
ρ

1
p(m)(t

∗)
1

np(m)(t
∗)

1− γ
(1+dt)

ρ

=
γ
(
1− γ

(2+dt)
ρ

)2(
(1 + dt)

ρ − γ
)
p(m)(t∗)np(m)(t∗)

.

Note dtL = dtR = dt + 1 and dt = dt∗ .

A.2 Prune Move

In prune moves, a terminal node and its sibling node are randomly selected to be

pruned into the direct parent node, which then becomes a new terminal node. In

essence, it is the reverse process of grow moves. Consequently, each ratio will be

approximately the inverse of the ratios found in grow moves.

• Transition ratio.

q(T (m), T ∗) =P(PRUNE)P(selecting the t-th node to prune)

=P(PRUNE)
1

b∗2
,

where b∗2 denotes the number of nodes with two terminal children in the

original tree T (m), which is different from b∗ in the grow move. To transition

in the opposite direction, this formula closely resembles the one in the grow

move, with the exception that the new tree has one less terminal node due

to pruning the original tree, resulting in a 1/(b− 1) term,

q(T ∗, T (m)) = P(GROW)
1

b− 1

1

p(m)(t∗)

1

np(m)(t∗)
.

Thus, the full transition ratio is:

q(T ∗, T (m))

q(T (m), T ∗)
=

P(GROW)b∗2
P(PRUNE)(b− 1)p(m)(t∗)np(m)(t∗)

.

• Integrated likelihood ratio, which is simply the inverse of the integrated

likelihood ratio in the grow move:

p
(
y | X, T ∗)

p
(
y | X, T (m)

) =
p
(
yt∗ | Xt∗

)
p
(
ytL | XtL

)
p(ytR | XtR)

.
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• Tree prior ratio, which is also simply the inverse of the tree prior ratio in

the grow move:

p (T ∗)

p
(
T (m)

) =

(
(1 + dt)

ρ − γ
)
p(m)(t

∗)np(m)(t
∗)

γ
(
1− γ

(2+dt)
ρ

)2 .

A.3 Change Move

The change moves can be implemented in any internal node, as described in Sub-

section 2.2.2. However, for the sake of simplicity, we only show the computation

details of a change move restricted to a single internal node with two terminal

children below.

• Transition ratio.

q(T (m), T ∗)

= P(CHANGE)P(selecting the t-th node to change)

× P(selecting one (new) covariate from the available covariates to split)

× P(selecting one value c /category C to split based on the chosen

covariate),

where the node t is the parent of two terminal nodes under the given re-

striction. When calculating the transition ratio, the first two terms in the

numerator and denominator are the same, while the last two terms differ due

to varying numbers of available covariates in the different chosen nodes and

different numbers of unique values/categories available for different splitting

covariates. Therefore,

q(T ∗, T (m))

q(T (m), T ∗)
=
p(m)(t

∗)np(m)(t
∗)

p(m)(t)np(m)(t)
.

Specifically, for Change1 (see Subsection 2.2.2), the above equation can be

simplified to 1 since the splitting covariates are not changed, and the number

of unique values/categories available for the same splitting covariate remains

the same.

• Integrated likelihood ratio. The new tree differs from the original tree solely

in the two child nodes of the selected change node. Thus,

p
(
y | X, T ∗)

p
(
y | X, T (m)

) =
p(yt∗L

| Xt∗L
)p(yt∗R

| Xt∗R
)

p(ytL | XtL)p(ytR | XtR)
.
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A.4 Swap Move

• Tree prior ratio. Since the new tree essentially has the same structure as

the original tree, only the two children of the chosen change node need to

be taken into account,

p (T ∗)

p
(
T (m)

) =
(1− p(dt∗L))(1− p(dt∗R))p(dt∗)

1
p(m)(t

∗)
1

np(m)(t
∗)(

1− p(dtL)
) (

1− p(dtR)
)
p(dt)

1
p(m)(t)

1
np(m)(t)

=
p(m)(t)np(m)(t)

p(m)(t∗)np(m)(t∗)
.

Apparently, this is the inverse of the transition ratio.

Therefore, for the change move,

α(T (m), T ∗) = min

{
p
(
y | X, T ∗)

p
(
y | X, T (m)

) , 1} .
A.4 Swap Move

Similar to the change move, swap moves can also be implemented in any internal

node, and we only show the computation details of a swap move restricted to a

child node within the parent-child swap pair that has two terminal children.

• Transition ratio. Since the splitting rules are swapped rather than changed,

we do not need to consider choosing new splitting rules,

q(T (m), T ∗) = P(SWAP)P(selecting the t-th node to swap)

where the node t is the child node in the chosen parent-child swap pair under

the given restriction. When calculating the transition ratio, the two terms

are the same in the numerator and denominator. Therefore,

q(T ∗, T (m))

q(T (m), T ∗)
= 1.

• Integrated likelihood ratio. Under the given restriction, the new tree differs

from the original tree in the sibling of the child node in the chosen parent-

child swap pair, denoted as t1, and the two terminal children of the child

node denoted as t2 and t3 respectively. Thus,

p
(
y | X, T ∗)

p
(
y | X, T (m)

) =
p(yt∗1

| Xt∗1
)p(yt∗2

| Xt∗2
)p(yt∗3

| Xt∗3
)

p(yt1 | Xt1)p(yt2 | Xt2)p(yt3 | Xt3)
.
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A.4 Swap Move

• Tree prior ratio. The new tree has the same structure as the original tree,

and the splitting rules remain unchanged. Thus,

p(T ∗)

p(T (m))
= 1.

Therefore, for the swap move, the same conclusion can be obtained as the

change move,

α(T (m), T ∗) = min

{
p
(
y | X, T ∗)

p
(
y | X, T (m)

) , 1} .
Since only the integrated likelihood ratio needs to be computed for change and

swap moves in the acceptance ratio, this is a particularly appealing feature for the

implementation.

Remark A.1 (a) The actual implementation uses the above expressions in loga-

rithmic form for numerical accuracy.

(b) It should be noted that in the above expressions for a node, as long as there

is ∗, it indicates the node belongs to T ∗.

(c) Similar detailed calculations can be found in Kapelner & Bleich (2013).

However, there are some differences we need to emphasize.

• We do not restrict the implementation to Gaussian data, allowing the inte-

grated likelihood ratio to be expressed in a broader manner suitable for data

with any general distribution.

• Unlike Kapelner & Bleich (2013), we consider swap moves in our implemen-

tation.

• In our approach, change and swap moves are considered for any internal

node in the tree, while Kapelner & Bleich (2013) limit their implementation

to those with two terminal nodes for change moves. Additionally, we include

two types of change moves (see Subsection 2.2.2).
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Appendix B

Reversible Jump MCMC for

Sampling New Trees

This appendix illustrates the computation of the acceptance ratio in RJMCMC,

demonstrating its equivalence to the MH algorithm in Appendix A. To this end,

we provide a basic introduction to RJMCMC first, following the mathematical

description of the method as outlined in Voss (2013). Additionally, it is important

to note that all letters used in this appendix have specific meanings exclusive to

this appendix.

B.1 A Basic Introduction to RJMCMC

More mathematical formalism is needed to state the RJMCMC algorithm than

was required for the MH algorithm because of the complex structure of the state

space employed in RJMCMC. The general RJMCMC algorithm is provided in this

section along with the necessary notation. We begin the exposition by describing

the state space mathematically. Let O be a finite or countable set and let dh ∈ N0

for all h ∈ O be given. Define the state space

S =
⋃
h∈O

Sh,

where Sh = {h} × Rdh for all h ∈ O. For any element w in the space S, we

have the form w = (h, x), where h ∈ O and x ∈ Rdh , and the first component,

h, indicates which of the spaces Rdh a point is in while the second component, x,

identifies the position in this space. The spaces Sh are disjoint and each w ∈ S is

contained in exactly one of the subspaces Sh because the index h is included as

the first component of all elements in Sh.
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B.1 A Basic Introduction to RJMCMC

Next, on the space S, where the Markov chain constructed by the RJMCMC

algorithm will move in, the target distribution π is specified. If W ∼ π, then W

can be written as W = (H,X), and the joint distributions of H ∈ O and X ∈ RdH

must be specified. A density π that is split between the different subspaces Sh

can be used to characterise such a distribution; that is, a function π(·, ·) such that

π(h, ·) : Rdh → [0,∞) for every h ∈ O and∑
h∈O

∫
Rdh

π(h, x)dx = 1.

Then we have

P(H = h) =

∫
Rdh

π(h, x)dx,

and

P(H = h,X ∈ A) =

∫
A

π(h, x)dx,

for all A ⊆ Rdh and all h ∈ O.

Now, the aim is to construct a Markov chain with stationary distribution

π in Bayesian tree models. A pair (Hj, Xj) describes the state at time j for

the Markov chain moving in S. For each (h, x) ∈ S, we need to specify the

distribution of (Hj, Xj) when (Hj−1, Xj−1) = (h, x) in order to characterise the

transition probabilities of such a Markov chain. The RJMCMC algorithm benefits

from first determining the value of Hj before determining the value of Xj from

the conditional distribution in a second step that is conditioned on the value of

Hj. Thus, the transitions of the Markov chain from (h, x) ∈ S to (g, y) ∈ S will

be described by probability weights b(h, x; g) with∑
g∈O

b(h, x; g) = 1

and probability densities p(h, x; g, ·) on Rdg for all (h, x) ∈ S. If (Hj, Xj)j∈N is

described by b and p, then

P(Hj = g,Xj ∈ A | Hj−1 = h,Xj−1 = x) = b(h, x; g)

∫
A

p(h, x; g, y)dy

for all h, g ∈ O, x ∈ Rdh and A ⊆ Rdg .

The idea of splitting the transition mechanism into different move types, i.e.,

tree moves in Bayesian tree models, is the next component incorporated into the

RJMCMC algorithm. The set of all potential move types is denoted by M . The
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B.1 A Basic Introduction to RJMCMC

probability of selecting move m ∈ M for a given state (h, x) ∈ Sh is represented

by γm(h, x). The probabilities γm(h, x) satisfy∑
m∈M

γm(h, x) = 1

for all (h, x) ∈ S. In the presence of different move types, the transition proba-

bilities given by b and p rely on the move type m, that is rather than b and p,

probability weights bm and probability densities pm are considered for all m ∈M .

There are two scenarios to take into account while calculating the correspond-

ing acceptance ratio for the MH algorithm.

1. The proposal (g, y) lies in the same space as the previous state (h, x) does,

i.e., g = h. This is exactly the case with regard to change and swap moves

in tree models. The distribution of the new location Xj, which occurs with

probability bm(h, x;h), is provided by a density pm(h, x; ·) : Rdh → [0,∞).

The acceptance ratio for this case can be stated as follows:

αm(h, x; y) = min

(
π(h, y)γm(h, y)bm(h, y;h)pm(h, y;x)

π(h, x)γm(h, x)bm(h, x;h)pm(h, x; y)
, 1

)
for all x, y ∈ Rdh and all h ∈ O.

2. The proposal (g, y) falls into a space Sg ̸= Sh. This is exactly the case with

regard to grow and prune moves in tree models. In this more complex case,

it is necessary to calculate the probability bm(h, x; g) in the space Sg = {g}×
Rdg . When transitioning from Sh to Sg, both Rdh and Rdg are temporarily

extended to spaces of matching dimension; that is, we consider Rdh × Rnh

and Rdg in place of Rdh and Rdg , where

dh + nh = dg + ng.

In order to construct the proposal R, we follow these steps: (1) generate an

auxiliary random variable U ∈ Rnh using a probability density ψm(h, x, ·; g) :
Rnh → [0,∞). (2) Use a map φh→g

m : Rdh × Rnh → Rdg × Rng to obtain

(R, V ) = φh→g
m (x, U). The densities ψm and the maps φh→g

m can be chosen

as part of designing the algorithm, subject to certain conditions; see more

detailed discussion in Voss (2013).

The acceptance ratio for this case can then be expressed as:

αm(h, x, u; g, y, v)

=min

(
π(g, y)γm(g, y)bm

(
g, y;h)ψm(g, y, v;h)

π(h, x)γm(h, x)bm
(
h, x; g)ψm(h, x, u; g)

| detDφh→g
m (x, u) |, 1

)
,
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B.2 Grow/Prune Move

where Dφh→g
m (x, u) is the Jacobian matrix of φh→g

m (see Voss (2013)).

After providing a basic introduction to RJMCMC, the objective aligns with

that of the MH algorithm (see Appendix A), i.e., to explicitly calculate the accep-

tance ratio for all possible tree moves. Initially, we specify the notation for tree

models: using h to denote the node state of the tree; µ for the splitting variable;

ϕ for the split value/category based on the chosen covariate, and θ for the node

parameter which can be a vector. For simplicity, in the following calculation,

we only consider θ within one dimension as a replacement for multidimensional

parameters θ. Considering move types m ∈ M , we have four tree moves, where

grow and prune moves are inverses, ensuring identical calculations. The stationary

distribution can be expressed as π(h, z) with z = c(µ, ϕ, θ).

B.2 Grow/Prune Move

For grow and prune moves, the dimension has changed, and the acceptance ratio

is referred to as the second case,

αm(h, z, u; g, z
∗, v)

=min

(
π(g, z∗)γm(g, z

∗)bm(g, z
∗;h)ψm(g, z

∗, v;h)

π(h, z)γm(h, z)bm(h, z; g)ψm(h, z, u; g)

∣∣∣detDφh→g
m (z, u)

∣∣∣ , 1) ,
where u and v are random variables. Next, we will calculate each probability

shown in the equation.

• The stationary distribution can be expressed as the production of likelihood

and each parameter’s priors,

π(g, z∗) = p(g, µ∗, ϕ∗, θ∗ | y,X)

= p(y | g, µ∗, ϕ∗, θ∗,X)p(θ∗ | g, µ∗, ϕ∗,X)p(ϕ∗ | g, µ∗)p(µ∗ | g)p(g).

A similar equation can be obtained for π(h, z). Using the same notation

as in the MH algorithm (see Appendix A), we can rewrite the probabilities

accordingly and calculate the ratio,

π(g, z∗)

π(h, z)
=
p(g, µ∗, ϕ∗, θ∗ | y,X)

p(h, µ, ϕ, θ | y,X)

=
p(yt∗L

| Xt∗L
)p(yt∗R

| Xt∗R
)

p
(
yt | Xt

) p(θt∗L)p(θt∗R)

p(θt)

1

np(m)(t)

1

p(m)(t)

×
(1− p(dt∗L))(1− p(dt∗R))p(dt∗)(

1− p(dt)
) .
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B.3 Change Move

• γm is the probability of choosing tree moves m ∈ M , which is given in

advance, so

γm(g, z
∗) = γm(h, z).

• bm(h, z; g) is the probability for move type m to move into space Sg when

the current space is Sh,

bm(g, z
∗;h) = P(PRUNE)× 1

b∗
,

bm(h, z; g) = P(GROW)× 1

b
.

• ψm(g, z
∗, v;h) is the density of the auxiliary random variable U ∈ Rnh , when

moving from space Sh into space Sg using move type m,

ψm(h, z, u; g)
g=h+1
=

1

p(m)(t)

1

np(m)(t)
p(θt∗L)p(θt∗R).

Given U = (µ, ϕ, θt∗L , θt∗R), ψm(g, z
∗, u∗;h) = p(θt); the map can be obtained,

(z∗, v) = (z/θt, µ, ϕ, θt∗L , θt∗R , v)

= φh→g
m (z, u) =

(
z/θt, θt, u1, u2, u3, u4

)
.

By using the permutation, we can obtain
∣∣detDφh→g

m (z, u)
∣∣ = 1.

Finally, by substituting all the probabilities obtained above into the acceptance

ratio, we can derive:

αm =
p(yt∗L

| Xt∗L
)p(yt∗R

| Xt∗R
)

p
(
yt | Xt

) (1− p(dt∗L))(1− p(dt∗R))p(dt∗)(
1− p(dt)

) P(PRUNE)b
P(GROW)b∗

,

which is the same as the MH algorithm for grow and prune moves in Appendix A.

B.3 Change Move

For change and swap moves, the dimension has not changed, and the acceptance

ratio is referred to as the first case,

αm(h, z; z
∗) = min

(
π(h, z∗)γm(h, z

∗)bm(h, z
∗;h)pm(h, z

∗; z)

π(h, z)γm(h, z)bm(h, z;h)pm(h, z; z∗)
, 1

)
.

Change and swap moves can be implemented in any internal node in the tree.

For the sake of simplicity, we only provide the computation details of change and

swap moves under the same restriction as in the MH algorithm (see Appendix A).
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B.4 Swap Move

• For the stationary distribution,

π(h, z∗)

π(h, z)
=
p(h, µ∗, ϕ∗, θ∗ | y,X)

p(h, µ, ϕ, θ | y,X)

=
p(yt∗L

| Xt∗L
)p(yt∗R

| Xt∗R
)

p(ytL | XtL)p(ytR | XtR)

p(θt∗L)p(θt∗R)

p(θtL)p(θtR)

np(m)(t
∗)

np(m)(t)

p(m)(t
∗)

p(m)(t)
.

• For γm, it is obvious to obtain

γm(h, z
∗) = γm(h, z).

• bm(h, z;h) is the probability for change moves to transition into space Sh

when the current space is Sh as well, which is considered alongside pm below.

• pm (h, z; ·) is the density of the proposal when moving inside space Sh with

change moves. Combining probability weights bm and probability densities

pm gives the transition probabilities,

bm(h, z
∗;h)pm(h, z

∗; z) = P(CHANGE)P(selecting the t-th node to change)

× 1

p(m)(t∗)

1

np(m)(t∗)
p(θtL)p(θtR),

bm(h, z;h)pm(h, z; z
∗) = P(CHANGE)P(selecting the t-th node to change)

× 1

p(m)(t)

1

np(m)(t)
p(θt∗L)p(θt∗R),

where the node t is the parent of two terminal nodes under the given restric-

tion.

Finally, by substituting all the probabilities obtained above into the acceptance

ratio, we can derive:

αm =
p(yt∗L

| Xt∗L
)p(yt∗R

| Xt∗R
)

p(ytL | XtL)p(ytR | XtR)
,

which is the integrated likelihood ratio itself, and this result is the same as in the

MH algorithm for change moves in Appendix A.

B.4 Swap Move

Recall that under the given restriction as in the MH algorithm (see Appendix A),

the new tree differs from the original tree in the sibling of the child node within

the parent-child swap pair, denoted as t1, and the two terminal children of the

child node, denoted as t2 and t3 respectively.
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B.4 Swap Move

• For the stationary distribution,

π(h, z∗)

π(h, z)
=
p(h, µ∗, ϕ∗, θ∗ | y,X)

p(h, µ, ϕ, θ | y,X)

=
p(yt∗1

| Xt∗1
)p(yt∗2

| Xt∗2
)p(yt∗3

| Xt∗3
)

p(yt1 | Xt1)p(yt2 | Xt2)p(yt3 | Xt3)

p(θt∗1)p(θt∗2)p(θt∗3)

p(θt1)p(θt2)p(θt3)
.

• For γm, it is obvious to obtain

γm(h, z
∗) = γm(h, z).

• Using the same method to calculate probability weights bm and probability

densities pm as in change moves, we can obtain,

bm(h, z
∗;h)pm(h, z

∗; z) = P(SWAP)P(selecting the t-th node to swap)

× p(θt1)p(θt2)p(θt3),

bm(h, z;h)pm(h, z; z
∗) = P(SWAP)P(selecting the t-th node to swap)

× p(θt∗1)p(θt∗2)p(θt∗3).

Finally, by substituting all the probabilities obtained above into the acceptance

ratio, we can derive:

αm =
p(yt∗1

| Xt∗1
)p(yt∗2

| Xt∗2
)p(yt∗3

| Xt∗3
)

p(yt1 | Xt1)p(yt2 | Xt2)p(yt3 | Xt3)
,

which is the integrated likelihood ratio itself, and this result is the same as in the

MH algorithm for swap moves in Appendix A.
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Appendix C

Rand Index and Adjusted Rand

Index

In the context of cluster analysis and partition comparison, the Rand Index (RI)

and adjusted Rand Index (ARI) serve as essential metrics to evaluate the similarity

between different clusterings; see, e.g., Rand (1971), Hubert & Arabie (1985) and

Gates & Ahn (2017). This appendix provides a brief introduction to RI and ARI,

aiming to help readers better understand their application in tree-based models

to assess the similarity between different trees. Besides, it is crucial to remember

that each letter used in this appendix holds a unique meaning exclusive to this

appendix.

C.1 Rand Index

The RI evaluates the similarity between two clusterings by calculating the per-

centage of accurately classified pairs of data points, distinguishing between those

belonging to the same cluster or distinct clusters. Computed by dividing the total

number of pairs of data points by the sum of true positives and true negatives,

the value of RI ranges from 0 to 1. A value of 0 indicates no agreement (the

two data clusterings disagree on all pairs of points), while a value of 1 signifies

perfect agreement (the data clusterings are identical). Specifically, given a set of n

elements O = {o1, . . . , on} and two partitions of O, denoted as X = {X1, . . . , Xr}
(a partition of O into r subsets) and Y = {Y1, . . . , Ys} (a partition of O into s

subsets), we define the following terms to compare these two clusterings.

• a, the number of pairs of elements in O that are in the same subset in both

X and Y , representing the number of times that a pair of elements belongs
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C.1 Rand Index

to the same cluster across two different clustering outcomes.

• b, the number of pairs of elements in O found in different subsets in both X

and Y .

• c, the number of pairs of elements in O that are in the same subset in X but

in different subsets in Y .

• d, the number of pairs of elements in O that are in different subsets in X

but in the same subset in Y .

RI can then be computed as follows:

RI =
a+ b

a+ b+ c+ d
=

a+ b(
n
2

) =
a+ b

n(n− 1)/2
.

Intuitively, a+ b can be seen as the number of agreements between X and Y , and

c + d as the number of disagreements between X and Y . Since the denominator

represents the total number of pairs (the number of unordered pairs in a set of n

elements), the RI denotes the frequency of agreements over the total pairs or the

probability that X and Y would agree on a randomly selected pair. To facilitate

a better understanding of the RI, we provide a simple example below.

C.1.1 A Simple Example

Assuming we have a set of six elements: {A,B,C,D,E, F}. Clustering Method 1

(CM1) forms three clusters: the first two items are in group 1, the third and fourth

are in group 2, and the fifth and sixth are in group 3, i.e., {1, 1, 2, 2, 3, 3}. Cluster-
ing Method 2 (CM2) creates two clusters: the first three items belong to group 1,

and the last three items are in group 2, i.e., {1, 1, 1, 2, 2, 2}. To manually calculate

the RI, we need to consider each unordered pair to determine a and b. In a set of six

elements, there are 15 unordered pairs: {A,B}, {A,C}, {A,D}, {A,E}, {A,F},
{B,C}, {B,D}, {B,E}, {B,F}, {C,D}, {C,E}, {C,F},{D,E}, {D,F}, and {E,F}.
Given that a represents the number of times a pair of elements is clustered to-

gether by both clustering methods, e.g., A,B and E,F , we find a = 2. On the

other hand, b represents each time a pair of elements is not clustered together by

both clustering methods. Pairs such as {A,D}, {A,E}, {A,F}, {B,D}, {B,E},
{B,F}, {C,E}, and {C,F} are not clustered together, resulting in b = 8. Conse-

quently, the RI is calculated as RI = (2 + 8)/15 = 0.67.
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C.2 Adjusted Rand Index

Table C.1: Contingency table for ARI calculation.

X\Y Y1 Y2 · · · Ys sums

X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...

Xr nr1 nr2 · · · nrs ar

sums b1 b2 · · · bs

C.2 Adjusted Rand Index

Even though the RI provides a useful measure of clustering agreement, it has lim-

itations when dealing with data sets where chance agreement may be substantial.

By accounting for the expected similarity between random clusterings, the ARI

corrects for chance and offers a more accurate and reliable metric. Additionally,

the ARI ranges from -1 to 1, where -1 indicates a completely discordant clustering,

0 suggests random agreement, and 1 implies perfect agreement. Consider two ran-

dom partitions U and V, each with multiple clusters. The number of elements in

both clusters ui and vj is denoted by nij. Besides, let ni and nj be the number of

elements in clusters ui and cluster vi respectively. Given the notations illustrated

in Table C.1, the ARI can be expressed as follows:

ARI =

∑
ij

(
nij

2

)
−

∑
i

(
ai
2

)∑
j

(
bj
2

) /( n
2

)

1
2

∑
i

(
ai
2

)
+
∑

j

(
bj
2

)−

∑
i

(
ai
2

)∑
j

(
bj
2

) /( n
2

) .

We still provide a simple example to aid understanding.

C.2.1 A Simple Example

Given the data,X = (1, 2, 3, 3, 2, 1, 1, 3, 3, 1, 2, 2) and Y = (3, 2, 3, 2, 2, 1, 1, 2, 3, 1, 3, 1),

we observe three different clusters in each partition. The contingency table can be

obtained; see Table C.2. Based on the ARI formula, we can derive ARI = 0.0833.
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C.3 Comparison of RI and ARI

Table C.2: Contingency table for ARI calculation in a simple

example.

X\Y Y1 Y2 Y3 sums

X1 3 0 1 4

X2 1 2 1 4

X3 0 2 2 4

sums 4 4 4

C.3 Comparison of RI and ARI

In summary, the RI and ARI provide quantitative insights into the similarity of

clustering solutions. Researchers and practitioners often rely on these indices to

evaluate the efficacy of clustering algorithms and compare different partitionings

across various fields. Now, we propose employing these indices in tree-based mod-

els due to their simplicity without considering complex tree structures, and easy

implementation using the R package fossil. However, it is important to note

that there are cases where the RI may be high, but the ARI is low, leading to

opposite conclusions. This occurs when there are many clusters, increasing the

likelihood that a pair of elements in both sets are in different clusters. The RI

still counts this as a concordant event, whereas the ARI considers all cluster pairs,

providing a more comprehensive assessment. To address this, we opt to use the

ARI in this thesis.
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Appendix D

Data Explorations for the

Dataset dataCar

This appendix provides tables and figures, aiming to enhance understanding of the

numerical transformation for categorical covariates when implementing BCART

models. It also illustrates some relationships within the data, such as those be-

tween covariates and claims frequency (or severity), or relationships among differ-

ent covariates.

Based on the discussions in Subsections 2.1.1 and 2.2.1, when processing cat-

egorical variables, we calculate empirical claims frequency (or severity) for each

categorical level as a numerical replacement, depending on which type of model

under consideration, i.e., claims frequency (or severity) modelling. In detail, at

each node, we can gather data for each categorical variable at every level. Sub-

sequently, based on this data, the empirical claims frequency can be calculated

as ratio of sum of claim counts and sum of exposure. Similarly, the empirical

claims severity can be determined by ratio of sum of claim amounts and sum of

claim counts. Tables D.1-D.3 present the empirical claims frequency (or sever-

ity) for each transformed categorical variable on training data at the root node,

serving as a simple illustration. As discussed in Subsection 2.2.1, in our proposed

BCART models, the numerical transformation needs to be done after each split,

in each updated node. One thing to note is that in Table D.2, we observe that the

empirical claims frequency for females is slightly higher than for males (although

the difference is small), which contradicts common sense somewhat. However, the

empirical claims severity comparison aligns with common sense. The relationship

between covariates “veh value” and “veh age” is also provided.

184



Table D.1: Empirical claims frequency (or severity) for different

vehicle body levels on training data (dataCar) at the root node.

Bold font indicates the smallest and largest correlation coefficients

for each level.

Frequency Severity

HBACK 0.151 1947

UTE 0.131 2164

STNWG 0.163 1894

HDTOP 0.174 2168

PANVN 0.166 1958

SEDAN 0.153 1678

TRUCK 0.154 2458

COUPE 0.235 2503

MIBUS 0.142 2580

MCARA 0.253 712

BUS 0.387 1336

CONVT 0.092 2296

RDSTR 0.257 456

Table D.2: Empirical claims frequency (or severity) for different

genders on training data (dataCar) at the root node.

Frequency Severity

Female 0.16 1733

Male 0.15 2093
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Table D.3: Empirical claims frequency (or severity) for different

area levels on training data (dataCar) at the root node. Bold font

indicates the smallest and largest correlation coefficients for each

level.

Frequency Severity

A 0.155 1754

B 0.162 1758

C 0.156 1919

D 0.137 1739

E 0.149 2104

F 0.176 2629

Figure D.1: Scatter plot between vehicle age and vehicle value on training data

(dataCar).
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