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Abstract

There has been significant scientific interest in studying the response of structures when

subjected to extreme dynamic loading events such as blast and impact. Over the past three

decades, there has been a rise in the number of explosion incidents globally. These often

involve deliberate attacks where terrorists use high explosives to cause harm to civilians

and public infrastructure through devastating blast waves. Blast loads from explosions can

cause loss of human lives or severe injuries due to either the direct exposure of people to

blast waves and/or as consequences of partial or overall collapse of structures, or their key

structural elements. Through experiments, it is observed that the resulting deformations

of structures under blast loadings are mainly plastic, and the magnitudes associated with

typical blasts are found to exceed, by far, the quasi-static ultimate capacities of practical

civilian structures. Furthermore, blasts from detonations of high explosives at close-in

distances from the structures (called near-field blasts) are found to be highly transient

and spatially non-uniform. This poses challenges to the structural engineering community

that is required to provide reliable designs to protect the public and vital structures from

such rising unconventional loading conditions. Most of the existing analytical techniques

are either inapplicable or less accurate when the explosive threat corresponds to a near-field

blast loading. Due to the high variability and sensitivity of the blast load to changes in the

explosive threat’s input variables, the utilisation of commercially available numerical tools

(e.g., hydrocodes and sophisticated finite element solvers) is less attractive to practising

blast engineers in the early phase of design due to their substantial computational costs.

The present study focuses on developing a physically based and simple model to predict

the plastic response of thin plates when subjected to near-field blasts so that it is fast-

running and hence can be made available to practising blast engineers. The developed

model is based on three idealising assumptions: the blast load is impulsive; the thin

plate’s material is rigid-perfectly plastic according to von Mises’s criterion of yielding;

and the plate responds in a pure membrane (or catenary) mode. These assumptions

are necessarily taken to deem the ultimate model simple and easy to run, and they are

considered reasonable based on a detailed review of the relevant literature. The model’s

accuracy is validated by comparisons to real experiments performed by others and high-

fidelity finite element simulations performed by the author using LS-DYNA. The model is

found reasonably accurate and provides additional insights on the response of thin targets

to typical near-field blast loading.
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Chapter 1

Introduction

1.1 Overview

The present work focuses on providing an analytical model to predict the transient and

peak permanent response of a thin structural target subjected to a near-field blast loading.

The main goal of the current research is to build a simple and efficient model so that it

is fast-running and of considerably low computational expense. Thus, certain idealising

assumptions based on observations of the various aspects controlling the overall behaviour

are formulated such that they can be reasonable, i.e., without jeopardising the accuracy

of the ultimate model. The basic assumptions underlying the model development are:

(i) a rigid-perfectly plastic behaviour of the target’s material; (ii) membrane mode of

deformation without in-plane displacements; (iii) an impulsive blast loading, which is fully

characterised by the specific impulse distribution so that the target’s motion is initiated

by the initial velocity field that is directly proportional to the specific impulse field.

Based on the first two assumptions, given above, an appropriate equation of motion was

derived by means of the principle of virtual work. Then, according to the third assumption,

i.e., the impulsive regime, the externally applied pressure, in the equilibrium equation, is

set to zero, and the resulting equation becomes, then, a two-dimensional wave equation

with the wave speed as a function of the yield stress in uni-axial tension. Since the wave

speed is related to the yield stress, the equation of motion will be called the plastic wave

equation. Initially, the equilibrium equation is expressed in a rectangular Cartesian co-

ordinate system to describe the motion of rectangular targets, and using the standard

transformation from rectangular to cylindrical coordinates, an equivalent equation of mo-

tion was obtained for circular targets that are assumed to be in axi-symmetric conditions.

Therefore, overall, the target is found to be governed by the wave equation and responding

in a free vibration manner where its motion is set by the initial velocity condition that is

induced by the blast-generated specific impulse.

In the development of the equation of motion, the material behaviour was assumed as

rigid-perfectly plastic as mentioned earlier, and the perfect plasticity is based on von Mises
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2 1.1. Overview

yield criterion and its associated flow rule. However, since the classical von Mises relations

are expressed in terms of plastic strain rates, they were found to lead to a highly non-

linear equilibrium equation. Thus, in accordance with the form of the total strains of the

considered membrane, it was recognised that if the plastic flow relations are expressed in

the total plastic strains (instead of their rates), considerable simplifications are obtained.

Hence, the total form of the flow rule was adopted, using which the final equation of

motion, or the linear wave equation described above, is derived. However, the total flow

rule imposed restrictions on the applicability of the thus-obtained equilibrium equation.

This is summarised as follows. The response of the membrane is governed by the wave

equation as long as it is under progressive yielding (i.e., as the total plastic strains are

increasing, which means the strain rates are non-zero and hence the yield condition should

be satisfied as assumed), and the solution of the wave equation must be terminated when

a decrease in the total plastic strain takes place. In the absence of externally applied

loading (as assumed in the present study), the condition when the total plastic strain

starts to decrease is identical to the condition when the local kinetic energy starts to

increase. Thus, the solution (of the wave equation) must be terminated when the kinetic

energy increases. This important step (of terminating the solution) is essential to prevent

the plastic work, or magnitude of the total plastic strain, from decreasing. The underlying

basis of the solution termination condition is that the rate of plastic work must be always

non-negative. That is, gained plastic work cannot be re-claimed (in particular, it cannot

be converted back to kinetic energy); in the absence of external loading and rigid-body

motion, the local kinetic energy can, then, only decrease.

Assuming the membrane is under progressive yielding, its response is given by the solution

of the plastic wave equation. Since this equation is linear, it is solved by the eigen-

expansion technique. For the rectangular membranes, the eigen-functions are the familiar

Fourier components (or modes) of the solution. This is because each Fourier mode solves

the wave equation, and the total solution is then the sum of the modes, due to the linearity

of the (plastic wave) equation and the mutual orthogonality of the Fourier modes. For

the circular membrane, the eigen-functions are the Bessel’s functions of the first kind

and, due to the axi-symmetric assumption, of zeroth order. The thus-obtained solution is

considered valid up to an instant of time when the local kinetic energy reaches zero for

the first time.

Therefore, overall, an analytical model is developed that consists of (i) the solution of

the plastic wave equation and (ii) a solution-termination strategy to enforce the plastic

work rate’s non-negativity. The theoretical basis of the model is given in sufficient detail

to address the implications of the adopted assumptions in constructing the model. Fur-

thermore, some useful results or consequences of the implied assumptions on the overall

response of the target are discussed.

The model is thoroughly validated using relevant experimental data available in the liter-

ature and results from numerical simulations using LS-DYNA performed by the present

author. Based on the validation work, the model is demonstrated to be efficient and rea-
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sonably accurate in predicting the overall behaviour and peak response of the thin target

when loaded by blast-generated uniform and non-uniform specific impulses.

There are many experiments, available in the literature, for the case of uniform specific

impulse, especially in the earlier studies. The peak transient and permanent displacements

of uniformly loaded thin targets are measured in the experiments. The reported uniform

specific impulses are directly used in the analytical model to provide the corresponding

response predictions, which are then compared to the experimental findings. Recently,

relatively fewer studies on the responses of thin targets, when subjected to near-field

blasts and, hence, non-uniform specific impulses, became available. However, the majority

of these latter non-uniform studies measure and report the total impulses instead of the

actual specific impulse distributions. Thus, in order to provide predictions by the present

analytical model, the blast event’s set-up is replicated numerically using LS-DYNA to

re-produce the specific impulse profiles. Then, this numerically obtained specific impulses

are used in the model, and the predictions are compared to the experimentally measured

displacements of the thin targets.

Two types of numerical analyses were performed for the purpose of validating the present

analytical model. Firstly, the multi-material arbitrary Lagrangian-Eulerian (MM-ALE)

technique, available in LS-DYNA, is utilised to run explosive blast events and hence pre-

dict the specific impulse distribution associated with a given explosive configuration. In

this, the detonation of a high explosive (HE) charge that is placed in ambient air is sim-

ulated, and the resulting formation and subsequent propagation of a shock wave in the

air are solved. Ultimately, the shock wave impinges onto a pre-defined target, which is

modelled as perfectly rigid for an efficiency reason, thereby causing blast wave reflection.

The reflected pressure on the rigid target is obtained, and from which the reflected over-

pressure (absolute pressure minus the initial ambient pressure) is computed. Then, the

reflected overpressure is time integrated over the positive phase of the blast wave (de-

fined as the time interval when the pressure relative to the ambient pressure is positive)

to estimate the positive specific impulse. Secondly, given a specific impulse profile (uni-

form or non-uniform), additional purely Lagrangian structural analyses are performed to

study the elasto-plastic responses of deformable thin plates where their motions are ini-

tiated by prescribed initial velocity fields, that are directly proportional to the specific

impulses. In such Lagrangian problems, all effects regarding the target’s linear and non-

linear behaviours are incorporated; namely, elastic deformations, membrane, bending, and

transverse shear modes, plastic strain-hardening, and strain rate effects on the dynamic

yield stress, are modelled. The results for the peak residual displacements from these

structural simulations are then compared to the predictions by the present model for the

considered prescribed specific impulse fields. The underlying theories of the various mod-

els and procedures in the numerical simulations are discussed in appropriate sections of

the thesis, and the sources and numerical values of the various parameters as used in the

present simulations are given.
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1.2 Motivations

Over the past three decades, there has been an increasing number of incidents of explosions

worldwide, particularly in the form of malicious attacks in which terrorists detonate high

explosives to cause civilian destruction and/or public harm by means of the explosion-

induced blast waves (Edwards et al., 2016). Blast loads from explosions can cause loss

of human lives, severe injuries, or organ malfunctions due to either the direct exposure

of individuals to the blast waves, see, e.g., Frykberg and Tepas (1988) and Denny et

al. (2021), or as consequences of partial or overall collapses of structures, or their key

structural elements, housing the human individuals (Teague, 2004; Edwards et al., 2016).

Three major terrorist attacks that targeted building structures and resulted in significant

structural collapse and related casualties include the Alfred P. Murrah building bombing in

1995, Oklahoma City, the United States; the Al-Khobar tower bombing in Dhahran, Saudi

Arabia, in 1996; the United States Embassy bombing in Nairobi, Kenya, in 1998 (Arnold

et al., 2004). Accidental explosions can also occur, such as the recent devastating incident

that took place at the Port of Beirut on the 4th of August 2020. This catastrophic

event resulted in 190 deaths (Abouzeid et al., 2020), and about 240 buildings and 2,310

households were assessed as severely damaged (Strategy&, 2020). Beirut’s blast was due

to a transitioned detonation (Pasman et al., 2020) of 2.75 kilotons of ammonium nitrate,

which is estimated by Rigby et al. (2020b) to be equivalent to [0.5-1.12] kilotons of TNT

(trinitrotoluene); the overall damage-induced cost amounts to ∼ £1.3 billion (Strategy&,

2020).

There has been significant scientific interest in studying the response of structures when

subjected to extreme dynamic loading events such as blast and impact. Through ear-

lier experiments, it was observed that the resulting deformations of the given structures

under such extreme loading conditions are mainly plastic. Furthermore, the actual magni-

tudes associated with typical blasts were found to exceed, by far, the quasi-static ultimate

capacities of practical structures.

The blast load arises due to the reflection of a shock wave in the air as the shock impinges

onto the exposed surface of the structure. The incident shock wave (just before reflection)

is of extremely high pressure and the shocked air particles are of considerable momenta

(product of the current density and particles’ velocities). The air shock is initially formed

due to a very rapid release of energy from an explosion of an explosive charge. For

example, when a high explosive detonates, the inert explosive material is decomposed

into extremely high-temperature and pressure gases (called the detonation by-products),

which are then forced to expand very rapidly and thereby compressing the surrounding

air and creating a high-pressure disturbance; owing to the high-pressure levels of this

disturbance, it travels supersonically (or with a speed well above the speed of sound in

air), i.e., as a shock. The intensity of the incident shock depends on the size of the

charge (as this is directly related to the amount of the instantaneous energy deposition

from the explosion) and the distance (called the stand-off distance) from the explosion’s
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centre such that it increases with the charge’s mass and decreases with (roughly) the

cube of the distance as the shock travels. As the exposed surface of the structure, when

assumed as perfectly rigid, imposes a zero-velocity condition on the air particles (along

the surface’s normal), the air’s pressure increases substantially, and this increased pressure

is the reflected pressure that the structure will experience. As the structure restricts the

motion of the shocked air particles in the normal direction (to its surface), the angle of

incidence (defined as the angle between the normals of the shock front and that of the

surface as the incident wave strikes the surface) plays a critical influence on the increased

magnitude of the reflected blast wave; in general, the reflected pressure is higher as the

angle of incidence is smaller. For structural applications, typically the pressure of interest

is the pressure relative to the ambient pressure, which is called the overpressure. The time

durations of blast waves (reflected pressure waves) are typically extremely short, e.g., in

the order of several milliseconds.

In the early scientific investigations, blast loads arising from far-field explosions (i.e., the

explosion centre is sufficiently far from the considered structure) were the main topic. Due

to such blast configuration, the blast load is typically uniform over the exposed surface of

the structure. However, as the explosive charge is detonated in proximity to the target

(i.e., the structure), the resulting blast load has been confirmed experimentally to be

highly non-uniform over the loading spans of the structure. This type of blast event is

termed the near-field blast. Furthermore, in near-field blasts, the reflected blast wave is of

extremely high peak overpressures, e.g., in tens or even hundreds of megapascals, and the

blast wave duration is extremely short, e.g., few or sub-milliseconds. From the structural

response’s point of view, the complex nature of the near-field blast loading would induce

modes of response that were not encountered in conventional structural problems. In

particular, the response of the target would be mainly plastic, the deformation profiles

can be highly transient and localised, and the overall response is more likely to be nearly

impulsive. Thus, the commonly available analysis tools, methods, and techniques (that

were developed mainly to address conventional loading regimes) are less applicable or less

accurate.

The finite element method has been proven effective in terms of accuracy to numeri-

cally solve a wide range of mechanical problems and predict the (generally non-linear)

responses of materials and complex structures when subjected to complex loading, initial,

and boundary conditions. This is meant to be the case when the loading and the mate-

rial behaviour are fully characterised and described by models that are validated against

actual experiments. In particular, the transient response of arbitrarily shaped thin tar-

gets made of structural elasto-plastic materials under generic blast loadings resulting from

detonations of high explosives can be simulated.

Nevertheless, the numerically obtained results can be considered reliable once the overall

numerical model is validated first using relevant experiments, e.g., an actual experiment

is replicated (or simulated) using the finite element program. The thus-validated model

(or set-up) can then be adopted to predict the behaviours of real-world structures as the



6 1.2. Motivations

various loading and geometric parameters are varied. However, in the implementation

of the finite element method, several numerical artefacts are necessarily introduced to

improve accuracy, stability, and/or efficiency. Thus, typically, it is recommended to ensure

that the calculated response of the structure is practically insensitive to the actual values

of the artificial parameters. Furthermore, the solution should not be sensitive to the mesh

of the model, and typically a suitable mesh should be determined with which a variable of

interest is shown to converge. Furthermore, due to the high rate of load application and

the associated (highly) transient structural response, explicit time integrator schemes are

typically used (and usually preferred) in the numerical calculations, and as such the time

step sizes are required to be adequately small to avoid instability. The permitted time step

size decreases as the mesh resolution is increased. Therefore, the modelling of real-world-

sized problems can, sometimes, require appreciable computational times. Although the

finite element method, as highlighted above, is an indispensable tool (and, in fact, is the

current state-of-the-art) for solving complex blast problems, it can (as briefly explained

above) be associated with user expertise and computational resources, e.g., data storage

and CPU time.

As priorly discussed, the blast loading is highly variable, so in a typical real blast analysis, a

designer would be interested to perform several analyses, where the blast input parameters

are varied so that the effects of a large variety of possible loading cases and the associated

structural responses are addressed. It is believed herein that the finite element method

(due to its relatively considerable computational expense) is used to make a final detailed

analysis or to verify a preliminary design that has been alternatively reached using some

fast-running models, which are simple and very rapid to run as will be discussed briefly

in the next section.

The reader should be aware that fast-running models are typically prone to some limi-

tations due to the simplifications that are undertaken during the models’ developments.

Hence, during the final design stage, it is recommended that more accurate computational

methods, e.g., the FE analysis, are utilised to obtain refined and more robust predictions.

This is an example of the desirable integration, in practice, in solving engineering problems

with an emphasis on the balance of accuracy-efficiency (or -simplicity). Furthermore, as

another example where fast-running models and FE computations complement each other

in engineering research, the high-fidelity computational (or numerical) methods can be of

significant importance during the development of a fast-running model, e.g., to generate

validation data to test the model’s performance or to inform future research to improve

existing approximate models. As compared to experimental methods, pre-validated nu-

merical models are relatively more attractive and economical source for the generation of

mechanically-rich validation data.

However, the availability of reliable fast-running models is indeed of a practical importance

to obtain rapid first-order approximate predictions, in particular, in the initial design

stage. Recently, other researchers, in the field of structural blast engineering, focused

on developing remarkably fast-running models to characterise the near-field blast loading
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that apply when the explosive charge is detonated at close-in proximity to the target. The

present work is concerned with developing a fast-running model to predict the structural

response of thin plates when they are subjected to a prescribed near-field blast loading.

In the present model, the target is assumed to be loaded impulsively and hence the blast

loading is completely characterised by the specific impulse distribution. Justifications for

the above and other assumptions in the development of the present model were given in

the previous subsection and to be discussed in more detail in the following chapters.

1.3 Intellectual Contribution

1.3.1 Relevant Background

As presented in the previous section, the present study focuses on the response of thin tar-

gets when subjected to near-field blast loading. Owing to the nature of near-field blasts,

the loading is of extremely high magnitudes, extremely short durations, and is highly

non-uniform spatially and highly transient temporally. Experiments on plates loaded by

uniform and non-uniform blast loads and early theoretical studies on uniformly loaded

structures both indicate that the structural target responses are mainly plastic (i.e., ma-

terially non-linear) and are accompanied by geometric non-linearities.

The problem (of predicting the structural response to blast loading) can be solved by using

two broad approaches. The first is the utilisation of commercially available high-fidelity

finite element software, in which all complexities are properly incorporated. However,

this numerical approach is computationally expensive per one run and needs preliminary

validations whenever a new problem setting is encountered. Furthermore, the numerically

obtained solution (from an individual run) gives the prediction for one specific set of input

parameters, e.g., load magnitude and distribution and sizes (or dimensions) of the struc-

tural target (assuming the material properties are deterministic, or constant, in nature);

furthermore, such sophisticated tools require substantial user expertise and specialised

training. It is meaningful, in the present context, to view the finite element solution as

being an approximate solution of the more-or-less actual problem. A blast engineer, espe-

cially in the preliminary design stage, is typically interested in solving several (or more)

problems so that varying combinations of the input parameters are considered to achieve

a reliable initial design. Thus, demanding predictive models or methods (such as the finite

element technique) are less attractive or, simply, inapplicable. This, naturally, leads to the

importance of the second approach that utilises fast-running models. These efficient (or

low-demanding) models offer exact or nearly exact solutions to a simplified (or idealised)

version of the actual problem.

For a blast-loaded structure application, the fast-running models are subdivided into three

main categories: to predict (i) the blast parameters given a blast threat configuration (i.e.,

explosive charge’s mass and its position relative to the structure); (ii) blast load effects

(e.g., the (likely) overall mode of the structural response) given the blast load type and its
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parameters; (iii) structural response (e.g., plastic displacement) given a blast load type,

its intensity, and mode of response. For the sake of definiteness, examples of the first

category include the Kingery and Bulmash’s (1984) model to predict the blast parameters

for far-field blasts, and the one by Pannell et al. (2021) to predict the non-uniform specific

impulse for near-field blasts from spherical charges. An example of the second category

is the Tyas and Pope (2003; 2004) and Rigby et al. (2019) model stating that the effect

of a near-field blast on thin targets is that the target responds impulsively, and hence

the blast load is fully characterised by the specific impulse distribution, and the initial

velocity field of the target is non-uniform and directly proportional to the specific impulse

field. Lastly, Nurick and Martin model, described in Nurick and Martin (1989b), Nurick

and Martin (1989a), Chung Kim Yuen et al. (2016), and Cloete and Nurick (2014), is an

example for the third category, which predicts the normalised (with respect to the target’s

thickness) permanent displacement of the thin target as a function of the imparted total

impulse. The present study is concerned with the last category of fast-running models, i.e.,

to predict the response of targets given a blast, of the near-field type, and with the likely

overall structural response as being nearly impulsive (in correspondence with the nature

of the near-field blast regarding the blast wave duration). It needs to be emphasised that

fast-running models are, typically, either analytical and/or empirical (or semi-empirical)

in nature.

Most of the available analytical models were developed in the early past, in which the blast

load was always assumed as spatially uniform. Recent works in which non-uniform blast

loads are addressed are available. Almost all the earlier and recent analytical solutions

are based on the rigid-perfectly plastic idealisation of the structure, a theoretical tool

that has been proven to be powerful and applicable for structures subjected to extreme

dynamic events, such as in a blast problem. However, the available models extend the

well-established (standard) plastic analysis framework to the dynamic regime when the

externally applied loading exceeds the quasi-static collapse load. In these, the deformation

profile needs to be assumed a priori based on the given fixed (or assumed) load distribution

(this is made to be uniform in the early studies). The obtained solution, then, applies to

that fixed load distribution.

1.3.2 Contribution by the Present Work

With the above background, the present study provides the following contribution: an

analytical and fast-running model to predict the transient and maximum plastic response

of a thin ductile plate when subjected to an arbitrarily non-uniform near-field blast loading.

Important assumptions have been made in order to obtain a generic model that admits

(or applies to) any blast load distribution. These are: (i) the blast loading is of extremely

short duration such that the main structural response is impulsive, and hence the blast

load is characterised by the specific impulse field, and the non-uniform specific impulse

induces (proportionally) non-uniform initial velocity field; (ii) the intensity of the specific



Chapter 1. Introduction 9

impulse is significantly high such that the material can properly be assumed as rigid-

perfectly plastic, and the thin plate responds mainly in purely membrane mode that is

associated with the transverse displacement being extremely large. Furthermore, the von

Mises yield condition and its associated flow rule are adopted. However, as the intended

model is planned to be ultimately efficient and fast-running, the rate form of the flow rule

is extended to be described in terms of the total plastic strains instead of their time rates,

and the extended rule is called the total form of the flow rule. These assumptions were

then used in the well-established virtual work principle, and a general equation of motion

was ultimately derived, which governs the plastic response of the thin plate. This equation

was then solved under the initial condition on the velocity field (which is related to the

prescribed non-uniform specific impulse). Due to the introduced assumption on the total

flow rule, the actual (plastic) response is the solution of the equation of motion as long

as the restriction by the use of the total flow rule is not violated. Thus, the solution is

then required to be terminated by a solution-termination strategy (which is discussed in

detail in the thesis), and the subsequent response is held constant at the termination time.

The basis of the termination strategy is to avoid the violation of the plastic work rate’s

non-negativity, which would take place whenever the incremental plasticity formulation

is replaced by the total formulation (as assumed in the model development as described

above).

Therefore, an analytical solution is developed in the thesis to predict the response of a

thin target when subjected to a typical near-field blast. The model is believed to be fast-

running (i.e., predictions are practically instant to be determined for given values of the

structural, material, and loading parameters) and accurate (as the underlying assumptions

are deemed reasonable and relevant; the model has been already validated using relevant

experimental data and well-detailed numerical simulations). For a real blast problem,

the model predictions can be considered reasonable approximations that would be highly

useful for initial and preliminary design calculations, as the model demands relatively low

computational cost. In addition, the analysis, discussion, and results that are presented in

the thesis offer useful insights as the overall structural problem is reduced down to the most

elemental (primitive) building blocks so that the important concepts and their scientific

bases are (hopefully) lit and made evident. As a representative example, the model shows

clearly that the mass density of the target is as structurally important (identically) as the

yield strength of the material (as the functional form of the maximum plastic displacement

is symmetric in terms of the two mentioned parameters) when the blast is of a near-field

type and hence fully characterised by the specific impulse. Moreover, it is analytically

derived that the time of maximum response of the target is (materially) a function of

the inverse of the uni-axial yield stress, which is relatively quite small (when compared

to typical elastic moduli), so that the maximum response time is relatively quite long.

Hence, the response, due to a typical near-field blast load, is more likely to be impulsive;

that is, if the impulsive regime can be justified for an elastic problem, then the plastic

response is much more impulsive.
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1.4 Aims of the Thesis

In setting out the scope and outline of the thesis, the following aims were formulated:

� Develop a physically-based theoretical model to quantify the overall effect of a near-

field blast loading on a thin target;

� Keep the minimum required modelling features so that the model is simple and

efficient to run;

� Identify relevant validation data and validation techniques to test the initial model;

� Assess the accuracy of the model and the implications of the necessarily to be taken

assumptions, and propose modifications to address arising issues; and

� Investigate the consequences of the model and the significance of the results, and,

if possible, highlight the basic mechanisms affecting the responses of targets when

loaded by near-field blasts.



Chapter 2

Literature Review

2.1 The Blast Loading

2.1.1 Explosion

High explosives are chemical mixtures that when initiated undergo rapid and highly

exothermic chemical decomposition, which is a process (called detonation) during which

the inert explosive is transformed into detonation by-products of high temperature and

pressure. The hot gaseous by-products are, then, forced to expand violently and hence

disturb the surrounding medium, assumed as air. When air experiences pressure distur-

bance, the disturbance travels with a velocity that increases with the pressure magnitude

so that higher pressures travel faster, resulting in a leading sharp front of the disturbance.

A (pressure) disturbance that travels supersonically and of a steep or discontinuous front

is called a shock wave. The detonation of high explosives, then, creates a strong shock

wave in the surrounding air that travels (typically in all directions) away from the point

of the explosion into the undisturbed air (Kinney and Graham, 1985). The wave is called

an incident wave as it propagates freely in the undisturbed air.

2.1.2 Incident Blast Wave

The initial intensity of the incident wave is an increasing function of the amount of energy

that was suddenly released from the explosive’s detonation, while its current intensity

decays with the distance from the explosion’s centre. The reduction of the blast intensity

with distance is because the initial energy is constant and gets progressively distributed

over larger volumes of air as the shock travels further. The energy released during the

explosion is typically related to the mass of the charge. It is well-established that the

incident wave intensity (as will be demonstrated in the following subsections) is determined

by the scaled distance, which is defined as

Z =
R

W 1/3
, (2.1.1)

11
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where R is the stand-off distance and W is the charge’s mass. The stand-off distance

is defined as the distance of a point (where the blast intensity is measured) from the

explosive’s centre.

As the incident wave arrives at a (fixed) point in air initially at ambient conditions, the

air pressure abruptly increases (or discontinuously jumps) to a high maximum value, then

it decays exponentially over time, drops below the ambient pressure, attains a minimum

value, and eventually returns to the ambient level by the end of the wave. Relative to

the initial atmospheric pressure, the maximum point is termed the peak overpressure,

whereas the minimum point is called the minimum underpressure. The incident blast

wave is therefore composed of an earlier positive phase, during which the relative pressure

is positive, and then a subsequent negative phase, when the relative pressure is negative.

A typical incident blast wave is shown by the dashed curve in Fig. 2.1, which will be

presented in Section 2.1.5. The durations of each phase are important blast parameters.

The area under the relative pressure-time curve is called the specific impulse (i.e., im-

pulse per unit surface area). The positive specific impulse is the area associated with the

overpressure time history, p(t), during the positive phase, i =
∫ ta+td
ta

p(t) dt, or,

i = td

∫ 1

0
p(τ) dτ, (2.1.2)

where the normalised time, τ , is

τ =
t− ta
td

, (2.1.3)

in which ta is the time of arrival of the blast wave and td is the duration of the positive

phase; note that dt = tddτ . Similarly, the corresponding area of the relative pressure curve

over the negative phase defines the negative specific impulse. The negative phase exists

due to the over-expansion of air molecules owing to the early increase of their momenta

(when they were shocked) and to their instantaneous inertia so that pressure drops below

the ambient value (Kinney and Graham, 1985). Throughout the remaining of the present

section, the peak overpressure of the incident wave is considered as the measure of the

main blast intensity.

2.1.3 Blast Scaling Law

The incident blast parameters are commonly predicted by scaling the given blast to a refer-

ence blast problem associated with a charge of unit mass of a reference explosive (typically

taken as TNT), according to the well-established scaling law formulated independently by

Hopkinson (1915) and Cranz (1926). Baker et al. (1991) discusses the applicability and

usefulness of Hopkinson-Cranz scaling and shows that the scaling law is obeyed at a wide

range of distances from explosions produced by varying amounts of explosive charges. The
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scaled parameters are determined at a scaled stand-off distance, and once the scaled pa-

rameters are known, the corresponding actual values are obtained by undoing the scaling

operation. Scaled quantities are the actual quantities divided by their scaling lengths. The

scaling lengths for pressure and velocity are equal to unity. Whereas, the scaling lengths

for distance, time, and specific impulse are all equal to the cube root of the actual mass,

denoted by W . Therefore, the scaled stand-off distance (or simply the scaled distance),

as was given earlier in Eq.(2.1.1), is

Z = R/W 1/3 ,

where R is the actual stand-off distance. All scaled parameters are (empirically) found to

be (distinct) functions of the scaled distance alone (Baker et al., 1991). This is one of the

most important implications of blast scaling from the modelling perspective. Associated

with a scaled distance for a given problem, the scaled parameters are determined using

some empirical models that are based on experiments with a unit mass of a standard type

of explosive (which, as mentioned earlier, is commonly taken as TNT). Then, the actual

blast parameters for the actual blast problem can be easily found by simple multiplications

with the respective scaling lengths. For example, the actual peak overpressure is just the

scaled peak overpressure, and the actual positive specific impulse is the scaled positive

specific impulse times W 1/3.

At the very simplified level, the blast wave can be summarised as being generated by

an instant deposition of energy (from the detonation), E, into the air that creates a

disturbance, and the disturbance wave then propagates spherically in three dimensions in

the air. Hence, the intensity of the wave in terms of peak overpressure at some distance

R (from the blast source point) can be said to be in proportion to E/R3 (Baker et al.,

1991). Here, R3 represents the volume over which the input (or source) energy, E, is

spent (or converted into heat and mechanical work in the medium, i.e., the surrounding

air). Simplifying further, if the input energy is replaced by the mass (or amount) of

the explosive, W , the blast intensity is then proportional to ∼ W/R3. Therefore, using

Hopkinson-Cranz scaled distance, if R is substituted with ZW 1/3, the blast intensity,

or the peak overpressure, is proportional to ∼ W/(ZW 1/3)3 = 1/Z3. Hence, the blast

intensity is condensed down to be a function of a single parameter Z, which demonstrates

the importance and usefulness of the concept of the scaled distance in blast predictions.

Also, this simplified analysis shows that the intensity (say in terms of peak overpressure)

of a given blast rapidly decreases as Z increases. That is, maintaining a clear stand-off

distance between a sensitive (or critical) structural member and the explosive charge greatly

reduces the blast pressures it would experience (Cormie et al., 2009).
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2.1.4 TNT Equivalence of an Explosive

It is well-known that the initial deposition of energy depends on the type of explosive

being detonated, and there are a wide variety of explosives, then (for practical reasons)

it is common practice to relate the blast strength of a given explosive to some reference

explosive that has been extensively documented through many experiments. Traditionally,

TNT is taken as the standard explosive (Esparza, 1986). In addition, it is common to

replace the energy yield of an explosive by simply its amount (or mass) because they are

quite proportional to one another, and the measurement of mass is much easier. This

leads to the notion of the equivalence factors of various explosives, which estimate the

equivalent mass of TNT required to re-produce the same blast intensity (or effect) at

some predefined (or reference) stand-off distance as a unit mass of a particular explosive

of interest. That is, WTNT = kexpWexp, in which kexp is the equivalence factor of the

explosive with mass Wexp, and WTNT is the equivalent mass of TNT. In the literature,

equivalence factors are evaluated based on, e.g., the peak incident overpressure or incident

positive specific impulse as the parameter of measuring the blast strength; although, some

other publications report the TNT equivalence factor in terms of the heat of detonation

of an explosive relative to that of TNT (Command, 1975).

Therefore, models developed to predict the blast parameters from TNT explosions can be

used to predict the corresponding parameters associated with other types of explosives.

However, it should be noted that the equivalence factors for a given explosive are generally

dependent on the choice of the blast strength parameter (e.g., whether it is based on

overpressure or specific impulse) and sometimes on the scaled distance at which such

parameters were measured, see Cooper (1994), Esparza (1986), and Bogosian et al. (2016).

2.1.5 Re�ected Blast Wave

In addition to the substantial increase in pressure, the passage of the shock wave through

a region of air increases its density and particle velocities that, in turn, lead to significant

increases in air’s momentum and kinetic energy. When the incident wave encounters a

structure, reflection occurs, and the reflected wave is the load that the structure will expe-

rience. The blast load, in this thesis, refers to the reflected blast wave and its associated

specific impulse.

The reflected pressures are substantially larger than the original incident pressure of the

incident wave (Kinney and Graham, 1985). This is because the presence of the structure

(when treated as ideally rigid) imposes a zero velocity constraint on air particles, and

consequently the initial kinetic energy and momentum (before reflection) lead to increases

in the pressure (upon reflection). This significant rise in pressure is traditionally decom-

posed into acoustic and dynamic contributions under the simplifying assumption that the

molecular structure of air (and hence its specific heat ratio) is unchanged. However, more

accurate analysis shows that dissociation and ionisation of air (molecules) take place un-
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der some strong shock conditions, which result in an additional increase of the reflected

pressure (Command, 1975). The ratio of the reflected to incident pressures is known as

the reflected pressure coefficient, Cr.

The intensity of the reflected wave depends primarily on three factors:

� Intensity of the incident wave;

� Orientation of the structure’s surface relative to the direction of travel of the blast

wave; and

� Lateral extent of the structure’s surface.

An additional but less important factor is the relative rigidity of the reflecting surface

compared to that of shocked air; it is common practice to conservatively treat a practical

structure as perfectly rigid. The peak reflected overpressure is, typically, multiple times

the peak incident overpressure. A parameter called the angle of incidence is defined as the

angle between the inward normal of the incident shock front and the outward normal of

the reflecting surface. Since reflection restricts the component of air particle velocity in the

normal direction to the reflecting surface, the amplitude of the reflected wave is therefore

dependent on the angle of incidence. When this angle is zero, a normal reflection takes

place as the incident wave strikes the surface. When the angle of incidence approaches 90

degrees, no reflection occurs and the structure merely experiences the incident (or side-on)

pressure.

Normal reflection is an upper limit on the reflected wave intensity for moderate to strong

incident waves. Under normal reflection, the reflected pressure coefficient, Cr, is the

sum of Ca (due to acoustic contribution) and Cd (due to the dynamic contribution). The

dynamic contribution relates the dynamic pressure, pd = (γ+1)
[
(1/2)ρsu̇

2
s

]
to the incident

overpressure, pso, such that pd = Cdpso, where ρs and u̇s are the air’s density and particle

velocity behind the incident shock and γ is the ratio of specific heats of air; when these air’s

properties behind the shock are expressed in terms of the incident pressure, the dynamic

coefficient of reflection can be determined, see Kinney and Graham (1985, Eq. (5-12),

p. 72) assuming constant γ for the shocked air. When an acoustic (compressive) wave

encounters a rigid reflecting surface, it reflects as a compressive wave of equal magnitude

so that the reflected pressure is the superposition of the original incident (of overpressure

magnitude pso) and reflected waves (which has a magnitude of pso, as just explained), and

hence the total reflected pressure (due to the acoustic effect) is pa,r = Capso = 2pso.

As indicated above, Ca is always 2, while Cd is an increasing function of the magnitude

of the peak incident overpressure. When the incident intensity is sufficiently low, the

effect of air’s dissociation and ionisation is typically negligible, and Cd can be as high as 6.

Therefore, under strong air blasts, the normally reflected pressure can be at least 8 times as

high as the incident pressure, when air is assumed as perfectly ideal gas (Command, 1975;

Kinney and Graham, 1985). However, as discussed above, the actual normally reflected

to incident pressure ratio can be even higher than the cited value above (e.g., 20 or more,
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see references cited in Command (1975)), owing to the expected real-gas effects, i.e., the

dissociation and ionisation of air molecules, under strong shock conditions (Cormie et al.,

2009).

From the above discussion, the normally reflected pressure requires knowledge of the in-

tensity of the incident pressure and evaluations of the dynamic contribution, which is a

function of the density and particle velocity of the air behind the incident shock, including

the contribution from the dissociation and ionisation of the shocked air. Due to the diffi-

culty in quantifying the last contributions, the normally reflected pressures are measured

directly by appropriate sensor set-ups in blast experiments, using which empirical models

are developed to predict the normally reflected blast parameters. Since reflection affects

pressure, it also affects the specific impulse. However, the time durations and (obviously)

the time of arrival were found to be unaffected by reflection.

A typical reflected blast wave, showing the reflected pressure-time history (indicated by

the solid line), is shown in Fig. 2.1; the corresponding incident pressure-time history is

also shown in the figure by the dashed line to highlight the substantial increase of pressure

due to the reflection. Similar to the incident blast wave parameters, the normally reflected

parameters were observed to obey Hopkinson-Cranz scaling, and the scaled reflected pa-

rameters depend only on the scaled distance Z (Baker et al., 1991). The actual variation

of the peak reflected overpressure against the scaled distance, Z, is depicted in Fig. 2.2

for Z ≤ 5 m/kg1/3.

2.1.6 Oblique Re�ection

Oblique reflection results when the wave incidentally strikes the structure at angles θ

between 0 and 90 degrees. Within that range, a critical sub-range (generally for θ ≈ [40−
50] degrees) exists for which an abnormal phenomenon emerges, known as the formation

of the Mach wave (coalescence of incident and reflected waves) and its corresponding front

(referred to as Mach’s stem). The exact range of angles of incidence leading to Mach

stem’s formation depends on the incident wave’s intensity.

In general, the magnitude of the reflected wave is at maximum under normal reflection,

and its intensity decreases as the angle of incidence increases. However, there is a grad-

ual increase and then decrease in the reflected wave intensity as the angle of incidence

(increasingly) passes through the critical range described above. For a rigid and infinite

reflecting surface, the reflected pressure is solely a function of the incident pressure and

the angle of incidence (Kinney and Graham, 1985).

2.1.7 Blast Clearing

When the structure is of finite dimensions (as is always the case in reality), the actual

transient reflected pressure can be substantially reduced due to a phenomenon called

blast clearing, discussed in detail by Rigby (2014). Such a process develops due to the
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to 1 atmospheric pressure. This �gure was generated using ConWep formulae for free air blast and a
TNT charge of 10 kg; although, the overpressure is independent of the actual mass of charge used to
construct the graph, as it depends only on Z. The ordinate values of the three labelled data points (at
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formation of rarefaction waves along the edges (free boundaries) of the loaded surface of

the structure. This is due to an initial existence of pressure differentials since the reflected

pressure distribution is not smooth over regions joining two surfaces with abrupt changes

in their respective angles of incidence.

The rarefaction (or clearing) waves, which are expansive and emanating from the free

edges, then propagate towards the interior of the loaded surface and, hence, reduce the

current reflected overpressure. Therefore, blast clearing waves can substantially affect the

actual amount of positive specific impulse and shrink the positive phase of the reflected

blast wave at some points on the loaded surface of the structure, depending on how far

the points are from the nearest free edges (Rigby, 2014). Clearing waves travel at sonic

speed.

2.1.8 Blast Loading

The blast load, therefore, is the reflected blast wave, which itself is caused by the reflection

of an incident wave of high pressure and large momenta of shocked air particles. Blast

loads are classified into two main types: far- and near-field blast loadings (Tyas, 2019),

depending primarily on (i) the shortest stand-off distance of the structure from the charge’s

centre and (ii) the size of the charge in relation to the shortest stand-off distance and the

dimensions of the structure’s exposed surface.

A far-field blast load corresponds to the case when the structure is sufficiently far from

the explosion’s centre (Tyas, 2019), and thus it is generally associated with the following

features:

� Planar shock wave front;

� Little or no variations of stand-off distances, angles of incidence, and times of arrival

over the exposed surface of the structure;

� Moderate reflected peak overpressures;

� Relatively long positive phase durations; and

� Possibly significant negative specific impulses.

On the other hand, near-field blasts, which correspond to the case when the structure

is close to the explosive’s centre, are associated with the following characteristics (Tyas,

2018; Tyas and Pope, 2003; Tyas, 2019; Rigby et al., 2015):

� High curvatures of the blast wave front;

� Considerable variations of stand-off distances, angles of incidence, and times of ar-

rival over the structure’s exposed area;
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� Extremely high reflected overpressures, especially in localised areas associated with

the smallest stand-off distances and angles of incidences;

� Very short positive phase durations; and

� Significant positive specific impulses (and their spatial profiles follow that of the

reflected pressures above).

� Shape and directional effects of the charge could be significant;

� Instabilities and fireball-shock front interaction might influence local pressure levels;

The combination of the last features indicates the very complicated nature of near-field

blast loadings. In particular, near-field blasts are of high peak pressures, large specific

impulses, extremely short durations, and considerable spatial non-uniformities or localisa-

tions (Tyas, 2019; Rigby et al., 2015). Also, different regions of the structure start to be

loaded at different times, which may induce sharp transverse shear differentials. Fig. 2.3

shows typical spatial distributions of the important blast parameters in the near-field

range; the profiles of the various parameters were normalised by their maximum values.
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Fig. 2.3. Typical spatial variations of the positive phase blast parameters, associated with a typical near-
�eld blast problem, over the surface of a rigid target. The charge (small red circle at (x = 0, y = 0, z = 1.5))
is detonated above the target (solid black line at z = 0); thus, the smallest stand-o� distance is 1.5 unit
of length. The red (inverted) semicircle represents a vertical section (at y = 0) of the spherical pro�le
of the shock front when the wave just touched the target for the �rst time. The various blast parameter
pro�les were normalised with respect to their maxima to ease the visualisation. As can be seen, the blast
parameters (namely the peak overpressure, positive speci�c impulse, and positive phase duration) are
highly localised, and this is mainly because the charge is very close to the target. Note: Mach's stem e�ect
was not included.

A thorough characterisation of the near-field blast loading is provided by Tyas and his

team (2015; 2015) of the Blast and Impact Engineering research group at the University
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of Sheffield. The team developed a robust experimental apparatus, called the Character-

isation of Blast Load (or CoBL), to resolve both the temporal and spatial distributions

as air’s shock waves reflect off practically rigid targets. Several split-Hopkinson’s pressure

bars (split-HPBs), which are long and thin rods, are used as high-resolution pressure sen-

sors. Certain arrangements of the split-HPBs are constructed to record reflected near-field

blast waves at varying stand-off distances and angles of incidence. The authors provide

quantitative evidence of the following: the spatial profiles of the peak reflected pressures

and positive specific impulses are highly non-uniform (or localised), as is schematically

shown in Fig. 2.3, the peak reflected pressures are typically in the tens or even hundreds

of megapascals [MPa], the durations of the positive phase are typically in sub-milliseconds

[ms] range, the negative phase is negligible (Tyas, 2018; Tyas, 2019; Rigby et al., 2015).

The experimental diagnosis of the near-field blast load is recently improved by utilising the

high-speed video (HSV) imaging technique (Rigby et al., 2020a), where the intensity and

full-field distribution of the reflected near-field blast waves are correlated to the kinematics

of the rising fireball generated by a high explosive’s detonation.

Tyas (2019) defines the near-field blast as the one when the scaled distance is approx-

imately less than 0.5 [m/kg1/3], for which instabilities from the fireball do not appear;

(Rayleigh-Taylor) instabilities may form and influence the reflected pressures in the range

of scaled distances of about 0.5-2 [m/kg1/3]. Furthermore, Gel’fand et al. (2004) suggest

that the near-field domain size Rnf could be defined as 0 ≤ Rnf ≤ 20rcharge, where rcharge

is the characteristic dimension of the explosive charge.

2.1.9 Blast Loading Characterisation

The blast loading on a structure is characterised by the blast parameters of the positive

and negative phases of the reflected blast wave. Once the parameters are known, the

transient reflected pressure can be described using the modified Friedlander’s function

during the positive phase and the Granström’s cubic polynomial (in terms of time) for the

negative phase.

The reflected blast parameters under normal reflection can be determined using the semi-

empirical model of Kingery and Bulmash (KB) (1984), which is available in graphical

format in U.S. Army (2008). The parameters for oblique reflection can be estimated

(for any angle of incidence) when the normally reflected and original incident wave pa-

rameters are known. The incident wave parameters can also be determined from the KB

model (1984). Predictive models for the incident and normally reflected negative phase

parameters are discussed in Rigby et al. (2014b).

The KB model predicts the blast parameters in terms of the Hopkinson-Cranz scaled

distance, Z, and the cube root of the TNT equivalent mass, WTNT, and it was developed

from (i) a large compilation of experimental data from various sources during the second

half of the last century (for moderate to large Z), and (ii) numerically reproduced data

from computational explosive analyses (for the smallest values of Z). This fast-running



Chapter 2. Literature Review 21

model is extensively shown to be accurate for the predictions of the incident and normally

reflected blast parameters that are associated with free air and ground surface explosions

from detonations of spherical and hemispherical TNT charges (Cheval et al., 2010; Cheval

et al., 2012; Rigby et al., 2014a). The model accuracy is especially high for far-field blasts,

but it becomes more questionable as the target becomes very close to the explosion’s

centre, i.e., in the near-field blast range (Rigby et al., 2015; Bogosian et al., 2002). A

computer program known as ConWep and developed by (1992) provides predictions based

on the model of KB.

Fig. 2.4 gives the normally reflected scaled blast parameters of the positive phase of the

blast wave in terms of the scaled distance Z, according to the KB model; the blast is

assumed to be due to a spherical TNT charge and the wave is propagating in free air before

it is (normally) reflected at a perfectly rigid plane. On the other hand, the corresponding

incident peak overpressure and incident positive specific impulse can be obtained from

Fig. 2.5; in this figure, the ratios of the reflected to incident values of peak overpressure and

scaled positive specific impulses are also shown to demonstrate the previously discussed

substantial increases in blast parameters upon the normal reflection of the blast wave at

a rigid target. Note that the time parameters for the incident wave are identical to those

for the reflected wave, as was shown in Fig. 2.4.
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Fig. 2.4. Re�ected scaled blast parameters of a free air (spherical) blast wave. The values of the peak
re�ected overpressure pr,max, scaled positive speci�c impulse ir,s, scaled time of arrival ta,s, and scaled

positive phase duration td,s are given in terms of the Hopkinson-Cranz scaled distance Z = R/W
1/3
TNT. The

actual speci�c impulse, positive phase duration, and time of arrival can be obtained by multiplying the
scaled values (shown in the �gure) by W

1/3
TNT. For visual convenience, the pressure and speci�c impulse

curves correspond to the left vertical axis, whereas the time parameters are associated with the right vertical
axis, as shown in the legends and by the arrows in the respective graphs. These curves are reproduced
after the KB model.



22 2.1. The Blast Loading

10-1 100 101 102

Scaled distance, Z, [m/kg1/3]

100

101

102

103

104

105

p
so

;m
a
x
[k

P
a
],

i s
o
;s

[P
a
.s
/
k
g
1
/
3
]

0

5

10

15

20

25

30

p
r;
m

a
x
=
p
so

;m
a
x
[-
],

i r
;s
=
i s

o
;s
,
[-
]

Incident blast parameters

Free air (spherical)

pso;max A

iso;s A

! pr;max=pso;max

! ir;s=iso;s

pso;max (left)
iso;s (left)
pr;max=pso;max (right)
ir;s=iso;s (right)

Fig. 2.5. Incident scaled blast parameters of a free air (spherical) blast wave. The values of the peak
incident overpressure pso,max, scaled positive speci�c impulse iso,s are given in terms of the Hopkinson-

Cranz scaled distance Z = R/W
1/3
TNT. The actual speci�c impulse is obtained by multiplying the scaled

values (shown in the �gure) by W
1/3
TNT. The incident overpressures and speci�c impulses are associated

with the left vertical axis. Additionally, the ratio of peak re�ected overpressure pr,max to peak incident
overpressure and scaled re�ected positive speci�c impulse ir,s to scaled incident positive speci�c impulse
for various scaled distances are shown as the dashed lines, which corresponds to the right vertical axis;
note that the right-hand axis is not associated with the (log-spaced) horizontal grid lines. The re�ected
parameters correspond to normal re�ection. These curves are reproduced after the KB model.
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During the positive phase, the transient reflected pressure, pr(t), is represented by the

following modified Friedlander function

pr(τ) = pr,max(1− τ)e−bτ ,

where the normalised time τ is

τ =
t− ta
td

, 0 ≤ τ ≤ 1,

and b is known as the exponential decay coefficient, which, after Rigby (2014), can be

evaluated by the iterative solution of the equation of the positive specific impulse,

ir = td

∫ 1

0
pr(τ) dτ

= td pr,max

∫ 1

0
(1− τ)e−bτ dτ

= td pr,max

[
b+ e−b − 1

b2

]
.

In the above, ir, pr,max, and td are the (normally reflected) values, respectively, of the

positive specific impulse, peak overpressure, and positive phase duration, as predicted

from the KB model. The blast wave arrival time is ta.

There is a publicly available chart, see, e.g., Kinney and Graham (1985, Figure 5-5(a) and

Figure 5-8), Cormie et al. (2009, Figure 3.9), and Rigby et al. (2020a, Fig. 9) to estimate

the reflected pressure under an oblique reflection in terms of the angle of incidence and

peak incident overpressure which accounts for Mach’s stem formation at the critical angles

of incidence associated with the respective intensities of the incident waves. However, as

an alternative approximate method, the dependence of the actual reflected pressure can

be reduced in terms of the incident pressure and also the normally reflected pressure (to

grossly contain the effects of the dynamic and air’s dissociation contributions during the

wave reflection) for a given angle of incidence. Therefore, the obliquely reflected pressure,

pr(θ) ≡ pr,θ, can be predicted in terms of the angle of incidence (in radians), θ, the incident

(or side-on) pressure, pso, and the normally reflected pressure, pr,0 ≡ pr(θ = 0), according

to

pr,θ =
[
1 + cos(θ)− 2 cos2(θ)

]
pso +

[
cos2(θ)

]
pr,0

Note that pr,θ is being interpolated (trigonometrically) from pr,0 when θ = 0 down to pso

when θ = π/2. The formula applies to the transient (time-varying) pressure at homologous

times, i.e., the pressures pr,θ, pso, and pr,0 correspond to the same time instant and the

relationship can be applied for all time instants. However, this approximate formula should

not be applied near the range of critical angles of incidences (generally for θ ≈ [40 − 50]

degrees) where Mach’s wave would form. The specific impulse due to oblique reflection can
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also be predicted using the above trigonometric interpolation formula where all pressures

are replaced by the corresponding specific impulses, i.e., to predict the oblique reflected

specific impulse ir,θ (for any angle θ) in terms of the incident iso and normally reflected

ir,0 specific impulses; Namely,

ir,θ =
[
1 + cos(θ)− 2 cos2(θ)

]
iso +

[
cos2(θ)

]
ir,0

The (reflected) pressure in the negative phase is modelled by Granström’s cubic equation,

pr(τ
−) = (27/4) pr,minτ

− (1− τ−
)2

,

where τ− = [t− (ta + td)] /t
−
d , 0 ≤ τ− ≤ 1. pr,min is the peak (reflected) underpressure,

and t−d is an estimate of the negative phase duration that preserves the negative specific

impulse, i−r , i.e.,

t−d = (16/9) i−r /pr,min

In the definition of τ−, (ta + td) is the starting time of the negative phase. The blast

negative parameters, pr,min and i−r , can be predicted using available models (U.S. Army,

2008).

An extensive review of the mathematical modelling (or predictions) of the blast wave

parameters is available in Rigby (2014), Command (1975), and Cormie et al. (2009), from

which the present material is taken. Although, the reader should be aware that most

of the available predictive models for the blast load characterisation have been validated

for the far-field blast cases, and the near-field blast characterisation is still under active

research (Tyas, 2019; Tyas, 2018; Rigby et al., 2015; Rigby et al., 2018), as will be discussed

later in Section 2.1.10.

In the present work, the focus is on the prediction of the response of thin targets (thin

plates or membranes) when subjected to near-field blasts. Furthermore, owing to the

extremely short duration of a typical (near-field) blast wave, the target is assumed to be

impulsively loaded, i.e., the external blast pressure pulse is completed whilst the target is

practically intact (not deforming). Consequently, the thin target is said to be loaded by

the specific impulse. A recently developed model to predict the specific impulse profile

over a target is the one proposed by Pannell et al. (2021). The model applies to near-

field blasts induced by the detonation of spherical charges made of PE4, and the specific

impulse is described in terms of (a spatially varying) angle of incidence and the shortest

stand-off distance (which corresponds to the zero angle of incidence) and the mass of the

PE4 charge. According to Pannell et al., the specific impulse profile i(θ) is given by the

following Gaussian model

i = aZ−n exp

(
−θ2

b

)
W 1/3,

where θ is in degrees, Z is the smallest scaled distance (corresponding to θ = 0), W is the
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mass of the spherical PE4 charge, and a, n, and b are the model’s coefficients: a = 0.557,

n = 1.663, and b = 2007 which are valid for 0.11 ≤ Z ≤ 0.55 [m/kg1/3]. The authors also

give refined values of the coefficients as a = 0.383, n = 1.858, and b = 1829 that provide

more accurate predictions for the extreme near-field case for which 0.11 ≤ Z ≤ 0.21. The

spatial profile of i can then be determined once θ is evaluated at the various spatial points

on the target.

2.1.10 Limitations of Available Fast-Running Blast Loading Models

It should be re-emphasised that the available fast-running models, namely the KB model

(U.S. Army, 2008; Kingery and Bulmash, 1984), to predict the parameters of the blast

wave are shown to be accurate for the moderate- to far-field blast cases, i.e., when Z is

relatively large, e.g., Z ≥ 4 [m/kg1/3], since the models were mainly developed using data

corresponding to these blast scales (Rigby et al., 2014a). Moreover, the available models

apply to idealised blast settings, e.g., spherically shaped charges detonated in free air

and reflecting upon infinitely wide rigid targets (Command, 1975). Tyas (2019) discusses

the significant overprediction of the positive reflected specific impulses of the ConWep

(the computer implementation of the KB model) in the near-field range. Also, the models

require the estimation of the TNT-equivalence factor of a given explosive type, the values of

which (if available) vary from source to source in the literature (Cooper, 1994). In addition

to the reduced accuracy for near-field blast cases, the effects of angles of incidence, given

their localisations, are cumbersome to accurately model. Almost all available fast-running

models are deficient in describing the effect of the rising fireball and its interaction with

the nearby target and the likely occurrence of the after-burn effect (Tyas, 2019; Tyas,

2018).

In an attempt to overcome the above limitations and to accurately predict the blast

loading, the blast event is numerically simulated using some commercially available com-

putational fluid dynamics solvers (or hydrocodes) and/or specialised finite element soft-

ware (Rigby, 2014; Pannell, 2022; Curry, 2017; Pope, 2002). Although this approach

might be associated with computational cost, it provides valuable means to predict the

blast loading associated with (practically) any blast problem. In the present work, the

blast event is modelled using the finite element method in combination with the multi-

material arbitrary Lagrangian-Eulerian (MM-ALE) framework using LS-DYNA.

Using the latter approach, the air is modelled by its equation of state and is assumed at

ambient conditions initially, and the explosive is modelled explicitly before detonation.

The explosive is set to detonate at a particular point, and its detonation is modelled using

the explosive’s Chapman-Jouguet’s properties that allow predicting the final state of the

explosive upon detonation. These post-detonation states are then taken as the initial states

of the detonation by-products (the hot gaseous products). The gaseous by-products are

treated as a single (gaseous) material, and it is then modelled by its equation of state.

Through the interaction of this detonation by-product with the surrounding ambient air, a
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shock wave develops in the air and travels outwardly (from the centre of the inert explosive)

with supersonic speed, i.e., the shock wave formation and its propagation through the air

are modelled explicitly. Eventually, the propagating shock impinges on a priorly defined

structural target. The reflected overpressures (i.e., absolute pressures minus the initial

ambient air pressure) at various points on the exposed side of the target are recorded. The

specific impulse profile is then generated by time-integrating the reflected overpressure time

histories corresponding to the various points. In this approach, the domain is described

using an ALE mesh, an effective technique that combines the advantages of a purely

Lagrangian and purely Eulerian meshes and avoids some of their limitations, an overview

of which will be given in Section 5.4. Furthermore, the adopted approach employs the

novel multi-material element technology that allows more than one material to occupy

the same element, each of which has its distinct material interface. This approach has

been demonstrated to provide accurate predictions of general blast loadings. Excellent

guidelines for this approach are given in Rigby (2014, Chapter 3) and Curry (2017).

2.2 Response of Structures to Blast Loadings

2.2.1 Overview

One of the simplest and most popular analytical methods for the analysis of blast-loaded

structures is the equivalent single-degree-of-freedom (SDOF) model, which is originally

developed by Biggs (1964), in which the actual structure is replaced with an equivalent

mass-spring oscillator having effective structural properties, which are related to the ac-

tual ones by means of the mass, stiffness, and load transformation factors; the factors are

functions of the assumed mode shape (of the actual structure’s displacement). In essence,

the transformation operation removes the spatial dependence, and the resulting SDOF

becomes a single ordinary differential equation in time. Such simple idealisation enables

important concepts to be easily understood and useful results to be derived. For example,

the SDOF technique highlights and explains the notion of the pressure-impulse diagram.

Furthermore, this analysis gives the important result that structures would respond im-

pulsively when the pressure pulse’s duration becomes very small compared to the time the

structure requires to attain its maximum response. When the response is nearly impulsive,

the exact magnitude of the pressure and the shape of the pressure pulse are irrelevant,

only the impulse and the duration of the load are significant. This topic is extensively

covered by U.S. Army (2008), Kinney and Graham (1985), Biggs (1964), and Cormie

et al. (2009).

Although, the SDOF model assumes that the mode shapes correspond either to the first

vibrational mode of the actual structure in question or to the static elastic or elasto-plastic

displacement mode of the structure; the latter assumption is the most common in prac-

tice (U.S. Army, 2008, Sections 3.16-3.17). That is, the central assumption of the SDOF

model is that the deformed shape is known a priori as given by the “static” mode that
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depends on the spatial distribution of the external load and the geometry of the structure,

and the transformation factors are, thus, already tabulated in design manuals for certain

special cases, e.g., a uniformly loaded and simply supported Euler-Bernoulli beam. As

the load becomes spatially non-uniform and/or the response of the structure’s material

becomes non-linear, the SDOF model loses its simplicity as the calculations of the transfor-

mation factors become quite involved. Moreover, under near-field blast loading, the actual

displacement profile is far from being close to the static mode of the structure (Pope, 2002;

Curry, 2017). In fact, the mode (shape) is highly transient (or time evolving) when the

blast pressure magnitude far exceeds the plastic capacity of the structure, this is the case

even when the blast loading is uniform (Hopkins and Prager, 1954).

Following the development of the modern theory of plasticity (i.e., the flow theory) and

the theorems of static plastic analysis (Drucker et al., 1952; Prager, 1942; Prager, 1948),

the analysis of the transient dynamic response of various structures under intense dynamic

loads has been an active research field; in particular, such activity dates back to the early

1950s (Hopkins and Prager, 1954; Wang and Hopkins, 1954; Hudson, 1951), see Jones

(1996) for an extensive list of references. Only the conclusions of the earlier works will be

presented herein.

It has been consistently argued that under intense but extremely short dynamic loading

due to blast or impact events, structures respond mostly impulsively and the resulting

deformations are mainly plastic. As in the classical limit analysis of structures under static

loading, the rigid-plastic material idealisation has been proven powerful and successful in

describing the structural response in the dynamic regime (Jones, 2010; Jones, 2012). In

the rigid-plastic material idealisation, elastic deformations are neglected, and a structure

made thereof remains rigid unless its plastic capacity is reached at a given point (or

section) within the structure; when the later condition is met, the structure undergoes

purely plastic deformations.

The first step in carrying out a dynamic rigid-plastic analysis is the specification of the

plastic limit curve (or yield surface) in the principal stress space; this surface is the geo-

metric representation of the material’s yield condition. When a stress point (in that space)

is within the interior region bounded by the surface (but not on it), the material is said to

be rigid. A stress point on the surface represents a state of yielding of the material, and

this latter case is accompanied by increments (or rates) of plastic strains. The increment

(or rate) of plastic strain is expressed by the flow rule. Inspired by the well-established fact

that, for elastic materials, the elastic strain is the gradient (or derivative) of a well-defined

function (called the elastic complementary energy, or the elastic complementary potential)

with respect to the stress, the rate of plastic strain is formulated to be proportional to the

gradient of an assumed function (called the plastic potential) with respect to the stress

when the stress state satisfies the yield condition. The proportionality factor is called

the rate of plastic multiplier. When the plastic potential function is identically the yield

function, the plastic strains are said to be described by an “associated” flow rule. For

materials obeying the associated flow rule, the plastic strains are always normal to the
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yield surface (expressed in terms of stresses) and pointed to the exterior; this is called the

normality rule. The plastic multiplier rate is required to be always non-negative, and it

can be non-zero only when the current stress state is on the yield surface (i.e., the yield

condition is satisfied). Further details of the development and results of the flow theory

of plasticity can be found in Chen and Han (1988).

If the yield surface is a function of total plastic strain, plastic strain rates, or both, then

the material is said to be strain-hardening, strain-rate sensitive (or visco-plastic), or both,

respectively. A general rigid-plastic model incorporates all the above effects when they are

applicable, depending on the type of material in question. Their inclusions, however, gen-

erally increase the level of complexity of the analysis. The most basic and computationally

attractive case is the rigid-perfectly plastic model, described in great detail for the static

regime by Prager and Hodge (1951) and the dynamic regime by Jones (2012), in which the

yield surface is assumed constant (and fixed) throughout the motion of a given structure.

Two widely used yield conditions for metallic structures are those due to von Mises’s and

Tresca’s, explained in Chen and Han (1988), which are both pressure-independent; that

is, yielding of a material obeying these criteria is induced by shearing action only (i.e., by

shear or deviatoric stresses). Since the volumetric and deviatoric behaviours are mutu-

ally orthogonal, then when a von Mises’s or Tresca’s material yields, only distortional or

shearing deformations take place (i.e., no volume change occurs, and for this reason, the

material is said to be plastically incompressible).

In the literature, there are several closed-form solutions obtained by various researchers

for dynamically loaded structures, in particular where the load is impulsive. Some works

belong to the second half of the last century, such as the works of Hudson (1951) and

Hopkins and Prager (1954) as mentioned earlier, but there continue to be recent works

such as the analytical models of Cloete and Nurick (2014) and Mehreganian et al. (2019b).

Most of the available models were based on the “rigid-perfectly plastic” assumption of

the material’s behaviour. The investigated structures include beams and (circular and

rectangular) plates with various boundary conditions. However, the earlier (from the

1950s until the late 1980s) models were limited to uniform blast loading; it transpires that

near-field blasts were not an issue or unrevealed at the time. A thorough review of the

analytical and experimental studies during this period regarding the dynamic response of

plastic structures can be found in Jones (1989), Jones (1996), and Symonds (1967).

2.2.2 Basis of the Main Analytical Technique

The field of investigating the response of engineering structures under intense dynamic

loads has attracted the interest of many researchers. By far, the idealisation of a rigid-

plastic material behaviour has been the basic framework based on which several approx-

imate closed-form solutions were obtained. In the earlier works, responses to uniform

dynamic pressure and uniform impulse were the main topics. Both small and large dis-

placement regimes were considered in the response of circular and rectangular plates and
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beams with various boundary conditions. Some works will be discussed in the next sub-

section.

Again, structures were idealised as rigid-plastic, and the particular spatial form of the

dynamic load is assumed a priori. The first step is to find the “quasi-static” limit load by

means of the upper and lower limit analysis theorems and to assume the incipient collapse

mechanism. The mechanism should be consistent with the underlying yield function,

its associated flow rule, and the boundary conditions. At the static collapse load, motion

follows the “quasi-static” mechanism. As the dynamic load intensity increases further, the

determination of the resulting dynamic mechanism becomes highly involved, and hence

it is typically assumed. Then, the exact dynamic equilibrium equation is formulated

in which the acceleration derives from the assumed collapse mechanism. The equation

is then solved while avoiding any violation of the yield condition and the flow rule. If

yield violation cannot be avoided, then the initially assumed mechanism is wrong. In

this case, another initial mechanism must be chosen, and the process is repeated. The

solution is valid when equilibrium, yield conditions, flow rule, and the boundary conditions

are all satisfied. Thin plates are found to initially respond in flexure, and as displacement

increases further, membrane effects evolve and become dominant. The load-free membrane

response is typically driven by some initial displacement and velocity conditions, which

are the final states of the initial flexural phase of the response.

Typically, the eventual correct solution could be associated with a “dynamic” collapse

mechanism that is substantially different from the “quasi-static” mechanism. Since the

material is rigid-plastic, then the motion will eventually end, which happens when the

external loads are removed and the instantaneous velocity is zero everywhere (i.e., current

kinetic energy and external work are simultaneously zero; note that accumulated plastic

energy is dissipative, and hence it is not available to the structure to drive further motion).

The methodology behind the earlier works has been continued recently where non-uniform

blast loads are also studied, which will be discussed below. However, the so-obtained

solutions apply to the initially specified spatial forms of the loading function. Response

to arbitrary loading has not been obtained. Furthermore, no solution for membranes’

responses due to initial conditions imposed directly by the blast load (namely in terms of

the blast-generated specific impulse) is available.

2.2.3 Analytical Models

Hudson (1951) presented a simplified analytical method to predict the permanent deforma-

tion of thin ductile circular membranes loaded by uniform impulsive pressures arising from

underwater explosions and conducted experiments to validate the predictions. The load

was replaced with an idealised impulse and, hence, was converted into an instantaneous

uniform initial velocity profile.

Hopkins and Prager (1954) developed the concept of stationary and travelling plastic
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hinge circles in analysing circular plates under uniform blast pressures. The small dis-

placement regime was assumed to exclude the membrane action, and the plate was simply

supported along its edge. The fully clamped problem was addressed later by Hopkins

and Wang (1954). Hopkins (1957) discussed the theory in a separate work. Wang (1955)

solved a similar problem but idealised the blast load as a uniform impulse such that the

plate picks an instantaneous uniform velocity field, similar to the treatment in Hudson

(1951) discussed above; that is, the circular plate was load-free during its entire motion.

Florence (1966) conducted several blast experiments and compared the measurements to

the predictions of Wang (1955).

The one-dimensional version of these works was treated by Parkes, who studied the evo-

lution of deformation of cantilever (1955) and fixed-fixed (1958) beams subjected to point

impacts of concentrated masses. The author compared the obtained solutions to his ex-

perimental results. Parkes’s cantilever model was reviewed by Wang and Yu (1991) and

also in Symonds and Fleming (1984). The first analytical treatment of non-circular targets

was addressed by Cox and Morland (1959) where the dynamic response of a uniformly

blast-loaded rectangular plate is investigated.

In all these pioneering works, the structure’s material is modelled as rigid-perfectly plastic,

an idealisation that neglects elastic deformations. The systematic technical procedures

involved in the works discussed so far are illustrated at an elementary level in the books

of Chakrabarty (2010, Chapter 8) and Jones (2012).

The large-displacement problem of the circular membrane under uniform impulsive load

was considered by Jones (1967) and Mihailescu-Suliciu and Wierzbicki (2002). Wierzbicki

and Nurick (1996) solved a similar case but with a localised uniform impulsive load applied

over partial regions of the circular plate. In the latter works, the eigen-function expansion

method was used to solve the derived linear partial differential equation (PDE) governing

the plate’s motion, in particular during the final phase in which membrane action prevailed.

Wierzbicki (1974) discussed the possibility of extending the eigen-expansion method (or

the principle of superposition) to plasticity problems when the loading regime is monotonic.

Martin (1964) utilised the fundamental principles of mechanics to derive theoretical bounds

on the motion of rigid-plastic structures in response to impulsive loading, although under

the assumption of small displacements. Similar bounding theorems were extended to the

large-displacement case by Ploch and Wierzbicki (1981) and Ronter and Martin (1972).

Symonds and Fryer (1988) critically examined the applicability of the perfect-plasticity

assumption in the dynamic regime, which later led to the development of the well-known

and widely used Cowper-Symonds’s (1957) model for the dynamic yield stress as a function

of strain rate. However, elastic deformations were shown to be still negligible as the load

approaches the impulsive regime (Symonds and Fryer, 1988).

Martin and Symonds (1965) developed an approximate theory to predict the displacement

of rigid-plastic structures by the so-called mode approximation technique, in which a ki-

netic energy-based functional is minimised to adjust the assumed velocity field which gives
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Table 2.1. Analytical works to study the dynamic response of rigid-plastic structures under extreme
dynamic loadings

Small displacement
(�exure)

Large displacement
(membrane)

Circular plate (Hopkins and Prager, 1954), (Wang
and Hopkins, 1954; Wang, 1955),
(Micallef et al., 2012; Micallef et al.,
2014)

(Hudson, 1951), (Jones, 1967),
(Mihailescu-Suliciu and Wierzbicki,
2002), (Wierzbicki and Nurick,
1996), (Cloete and Nurick, 2014),
(Tyas and Pope, 2003), (Rigby et
al., 2019a)

Rectangular plate (Cox and Morland, 1959), (Mehre-
ganian et al., 2019b)

(Mehreganian et al., 2018a; Mehre-
ganian et al., 2019a), (Gharababaei
and Darvizeh, 2010), (Jones, 2014),
(Lomazzi et al., 2021)

Beam (Parkes, 1955; Parkes, 1958), (Wang
and Yu, 1991),(Symonds and Flem-
ing, 1984)

(Symonds and Mentel, 1958)

Theory (Hopkins, 1957), (Martin, 1983),
(Martin and Symonds, 1965)

(Ploch and Wierzbicki, 1981), (Ron-
ter and Martin, 1972)

the time-independent mode. Martin (1983) mathematically derived that an impulsively

loaded structure (plate as an example) eventually converges to a mode-form response.

It is remarkable to notice that the current practice of structural blast analysis, namely

the SDOF method is related to Martin-Symonds’s theory. The SDOF method is adopted

in U.S. Army (2008), which is available at (UFC, 2022), and is applied in Rigby et al.

(2014c) for the response of an elasto-plastic plate under realistic blast loading. As out-

lined earlier in Section 2.2.1, the SDOF technique utilises transformation factors based on

the static deformation mode of the structure being analysed and is due to Biggs (1964).

The main difference between Biggs’s and Martin-Symonds’s techniques is the choice of the

mode shape.

The reader is referred to the three papers written by Jones (1996; 1989; 1978) for more

discussion on the earlier developments in the field. Throughout his scientific contributions,

see Li (2016), Jones consistently shows that the rigid-plastic material idealisation is an

indispensable and suitable tool for blast analysis of structures. A summary of the earlier

and recent publications that studied the dynamic response of rigid-plastic structures under

extreme dynamic loadings (e.g., blast and impact) is provided in Table 2.1. Additional

references can be found in Jones (2012), J. Chakrabarty (2010), Jones (1996), Jones

(1989), Jones (1978), and Lomazzi et al. (2021).

In 1989, Nurick and Martin (1989a; 1989b) published the two-part paper, and their find-

ings were recently revisited by Chung Kim Yuen et al. (2016). The three papers provide

excellent predictive models for the permanent peak displacement of extremely thin plates,

i.e., membranes, subjected to spatially uniform specific impulses; rectangular and circular

membranes are considered. Their model is based on theoretical and dimensional analy-

sis considerations. The authors derived an important parameter, called the normalised

impulse or the damage number, φ̂0, that is a function of the total impulse I0. The resid-
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ual displacement, when normalised to the plate’s thickness, is found to be linear in the

normalised impulse, φ̂0, and the authors formulated their final model by linear fitting to

a large set of experimental data. Their model will be presented and discussed in Sec-

tion 4.6.3. Later, Cloete and Nurick (2014) obtained a closed-form approximate solution

for the response of ductile circular membranes subjected to uniform impulsive loads that

almost matches the original equation of Nurick and Martin (1989), the difference be-

ing a constant factor (see the above-cited paper where direct comparison is highlighted).

In Cloete and Nurick (2014), an assumed (namely quadratic) displacement mode shape

was used, and the authors devised a form of the balance of global initial kinetic and plas-

tic (or dissipation) energies to find the eventual solution: the amplitude of the assumed

displacement profile and the time when (the purely plastic) motion ends.

More recently, some analytical solutions considered spatially non-uniform impulsive load-

ings applied to different types of structures including thin and thick beams and plates

under small- and large-displacement regimes (Micallef et al., 2012; Mehreganian et al.,

2018a; Thil et al., 2019). However, in these models, the assumed (localised) distribution

of the impulsive blast load does not follow the actual specific impulse distribution from a

typical near-field blast as predicted by Pannell et al. (2021) for spherical charges. Their

solutions apply to materials obeying Tresca’s yield criterion. Modelling a material with

Tresca’s yield condition is typically simpler; however, this is only so when the directions

of the principal stresses are known or can be found (or anticipated) in advance. In general

conditions, determination of the principal axes are not trivial; hence, the model simplic-

ity is lost when Tresca yield condition needs to be formulated in terms of the Cartesian

components of the stresses. Moreover, Tresca yield curve (in the in-plane principal stress

space) is not smooth, and the plastic strains do not uniquely determine the stress state.

The corresponding von Mises’s curve neither suffer from these limitations nor require an

initial guess of the principal stress directions (Chen and Han, 1988).

In studying the response of thin plates under non-uniform blast loads, Rigby et al. (2019a)

and Rigby et al. (2019b) established two important relationships. Firstly, the local initial

velocity, ẇ0, of the target (with density ρ, thickness h, and exposed area A) is confirmed

to be a linear function of the imparted non-uniform specific impulse field, i,

ẇ0 =
i

ρh
,

which is based on the upper bound kinetic energy. That is, non-uniform specific impulse

generates non-uniform initial velocity, see Fig 2.6 (c). This initial velocity field contrasts

with the “lower-bound” initial velocity field,

ẇ0,lb =

∫
A i dA

ρhA

which is uniform and is interpreted as the rigid-body velocity (i.e., total impulse divided

by total mass), see Fig 2.6 (b).
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Secondly, the maximum permanent displacement is a linear function of the energy-equivalent

total impulse, Ik, which is also based on the upper bound kinetic energy uptake, Kub, de-

veloped by Tyas and Pope (2003), see Fig. 2.6,

Kub =
1

2ρh

∫
A
i2 dA, and Ik =

√
A

∫
A
i2 dA.

The authors showed that the blast load can be replaced by a prescribed initial velocity field,

which remarkably simplifies the analysis. This observation highlights the importance of

the actual spatial variation of the specific impulse. According to the authors, the imparted

energy from the blast onto a thin plate cannot be higher than Kub or lower than the kinetic

energy computed with ẇ0,lb, provided the regime is impulsive.

specific 

impulse i(x,y)

uniform  initial velocity 

non-uniform  initial velocity =
i

ρh

=
A i dA

ρh A

a)

b)

c)

Fig. 2.6. Non-uniform speci�c impulse distribution (a) and the generated pro�le of initial velocity as-
suming a lower-bound (b) and an upper-bound (c) kinetic energy uptake, reproduced after Tyas and Pope
(2003). Lengths of the downward arrows indicate qualitatively the magnitude of the initial transverse
velocity �eld.

As discussed in Section 2.1.9, Pannell et al. (2021) proposed a model that predicts the

non-uniform distribution of specific impulses arising from near-field blasts with scaled

distances of 0.11-0.55 m/kg1/3. Determining the specific impulse profile is critical in

analysing structures under near-field blast loading, as discussed in Rigby et al. (2019a).

2.2.4 Experimental Results

Bodner and Symonds (1979) reported the results from experimental tests on circular plates

under uniform blast loads applied over the whole and central regions of the plates. Nurick

and his collaborators (1996; 1985; 1989; 1996; 1991) presented extensive experimental data

for circular and rectangular plates under uniform impulsive loads and different boundary

conditions.

As discussed in Section 4.2, the team of the Blast and Impact Engineering research group at

the University of Sheffield confirmed experimentally that near-field blasts produce spatially
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non-uniform specific impulses (Rigby et al., 2020a; Rigby et al., 2015; Tyas, 2019; Tyas and

Pope, 2003). Furthermore, the researchers and their collaborators presented experimental

and numerical studies of the transient deformation of thin ductile plates subjected to

near-field blast (Rigby et al., 2019b). In their study, both the blast load and the full-field

transient displacement of the target were measured locally: (a) the dynamic pressures

histories at different spatial points were measured by the Characterisation of Blast Loading

(CoBL) apparatus, which is described in detail in Rigby et al. (2015) and Clarke et al.

(2015), providing the spatial variations of the specific impulses; (b) full-field transient

displacements of the targets were measured using high-speed imaging, a technique that is

described further in Curry and Langdon (2017); and (c) the total impulse was measured

using a ballistic pendulum.

Furthermore, G. Langdon and her collaborators studied the response of steel plates un-

der near-field blast experimentally (Curry and Langdon, 2017; McDonald et al., 2018;

Mehreganian et al., 2018b). It was observed that a localised blast load induces central

dishing (or bulging) in the targets. Gharababaei and Darvizeh (2010) performed blast

experiments on steel, aluminium, and copper thin circular plates, which were loaded by

detonating thin cylindrical charges of high explosives. The authors used rigid tubes to

guide the propagation of the shock waves as they travel towards the specimens. Large

plastic deformations were observed in the tests.

In addition, from the team of SIMLab, Aune et al. (2016) and Aune et al. (2017) presented

experimental and numerical studies on the response of thin plates under free-air blasts,

and similar studies were conducted by Elveli et al. (2022) on the response of thin plates to

blasts produced in a shock tube facility. Additional air-blast experiments are also reported

by Spranghers et al. (2012b) and Spranghers et al. (2013). The plates are made of ductile

materials (structural steel and aluminium) and were observed to be primarily responding

impulsively and plastically.

2.2.5 Connection of the Near-Field Blast Loading to the Response of

Structures

As clearly indicated by the previous subsections, there is significant scientific interest in

studying the structural response in the inelastic range when structures are subjected to

extreme dynamic loadings, such as those arising from missile impacts and explosions.

Extremely high magnitudes and short durations characterise loads generated from near-

field blasts, see Rigby et al. (2020a), Rigby et al. (2015), Tyas (2019), and Tyas (2018),

and are expected to cause mainly plastic deformations in the structures.

Simplified dynamic analysis of an idealised mass-spring oscillator suggests that the re-

sponse tends to be impulsive as the ratio of the load duration to the (fundamental) struc-

tural period tends to zero; the impulsive response of the structure (or the oscillator here)

is sensitive to the total impulse only, regardless of the magnitude of the peak force or the

shape of the force-time function. Finally, in such a simplified analysis, the impulse can be
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replaced with an initial velocity condition (U.S. Army, 2008, p. 611).

Recent experimental studies show that near-field blast waves are characterised by ex-

tremely short positive phase durations and a substantial specific impulse of the positive

phase; in addition, owing to the closeness of the charge to the target in this blast type,

the specific impulse distribution is spatially non-uniform. Rigby et al. (2019c) and Rigby

et al. (2019b) show that thin plates (or membranes) respond impulsively to a near-field

blast load; furthermore, the authors developed a simplified analytical model to convert the

specific impulse distribution directly into an initial velocity field of the thin target. That

is, the structural response is likely to be sensitive to the specific impulse in a near-field

blast.

More recently, Pannell et al. (2021) developed a model to predict the specific impulse

distribution from spherically shaped PE4 (plastic explosive) charges; according to their

model, the specific impulse distribution follows a Gaussian distribution with respect to

the angle of incidence. The model determines the specific impulse profile by knowledge

of the charge’s weight and normal (or the shortest) stand-off distance characterising the

near-field blast threat. As it was specifically built for such blast problems, the model is

applicable for scaled distances in the range 0.11 ≤ Z ≤ 0.55 [m/kg1/3]. Although, when

the charge is cylindrical but still made of a PE4 explosive, its spherical equivalence should

be first calculated in order to use Pannell et al.’s model; Rigby et al. (2021) proposed a

method for calculating the spherical equivalence factor for cylindrical PE4 charges.

Rigby et al. (2020a), Rigby et al. (2015), Tyas (2019), and Tyas and Pope (2003) provided

experimental evidence that near-field blasts generate spatially non-uniform spontaneous

pressures that, subsequently, decay exponentially. Such intense loading could induce large

displacement, strain rate-dependent, and material failure effects in the structural response,

see, e.g., Jones (2010).

For these reasons, in addition to geometric complexities and boundary effects, the blast an-

alyst typically resorts to making use of advanced computational methods, e.g., hydrocodes

and finite element (FE) programs, attempting to simulate the complete problem. The

commercially available FE programs can simulate the non-linear structural response un-

der specific blast settings (Rigby et al., 2019a; Aune et al., 2017; Spranghers et al., 2013;

Rigby et al., 2018; Curry, 2017). In solving the relevant problem numerically, additional

preliminary computations could be necessary to ensure the solution is insensitive to some

artificial parameters, e.g., those related to hour-glassing, artificial damping, structural

(i.e., membrane or shear) and material (i.e., incompressibility) locking, extra contact and

leakage controls, etc., which were introduced to improve the numerical solution’s accuracy

and/or to prevent instabilities.

However, the latter approach could, sometime, be relatively computationally expensive.

The challenge becomes more critical once it is recognised that the input data of the blast

threat are never known in advance, as pointed out by Tyas (2019). Furthermore, the

material characteristics are prone, to some extent, to potential variabilities. Thus, to
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design robust structures, it is more appropriate not to perform a single simulation but

rather sufficiently many, to fully characterise the likely response and associated confidence

intervals. What, then, suits the analyst in this regard is the availability of models that

can be evaluated more rapidly.

2.2.6 Aims of the Present Study

The discussions in Sections 2.2.1–2.2.6 serve as a short account of some notable works

investigating the response of structures to blast loads. As mentioned, some researchers

discuss the theory and provide analytical solutions, while others give experimental insights

and observations to strengthen or refine existing theories.

The trend of simplifying the problem and obtaining analytical and fast-running models

is of considerable practical importance. Especially, rapid models are most suitable for

probabilistic-based blast analyses where the cost of computation (per run) is a key concern

since the framework requires, typically, many repeated calculations as the design input

parameters are varied. That is, the situation (of variability of the problem inputs and the

need for rapid computations) would naturally lead to the interest in building analytical

solutions (or models) to a reasonably idealised version of the problem because of their

relatively low computational expense. This is the rationale of the present work. It should

be re-emphasised that once a first-order approximate solution is obtained through a fast-

running model during the initial design stage, then a more robust analysis, e.g., based on

high-fidelity computational methods (e.g, FE analysis), is typically required during the

final design stage to ensure the reliability of the ultimate design.

The present work aims to develop an analytical solution to predict the transient and

permanent displacement of thin ductile plates subjected to near-field blast loadings. The

model utilises the following simplifying idealisations: impulsive blast load, rigid-perfectly

plastic material behaviour, and membrane mode of deformation, according to observations

from the already discussed literature.

That is, the problem to be analytically investigated is a thin plate made of a rigid-perfectly

plastic ductile material, and the plate’s response to the near-field blast loading is perfectly

impulsive. Furthermore, in Chapter 3, the kinematics of the plate will be simplified such

that the plate deforms as a pure membrane without in-plane displacements. Although

the perfect impulsive regime and the rigid-perfect plasticity idealisations do not exist in

reality, they have been shown to be of great practical importance in approximating the

observed responses that are obtained experimentally and through high-fidelity numerical

simulations. Nevertheless, the idealisations, to be practically valid, are subject to some ap-

plicability limits. As already mentioned, the present model is based on the aforementioned

idealisations; hence it is vital to discuss the applicability of the model in (reasonable) de-

tail. Practical guidelines on when the model should be applicable will be provided, later,

in Chapter 6. In particular, discussions and practical considerations on the definition of

the impulsive regime, the rigid-plastic material assumption, and the near-field blast and
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the non-uniformity of its corresponding specific impulse distribution, will be addressed.

The reason for the postponed discussion is to connect the model’s limitations (which will

be made clear after the model’s validation) to the adopted assumptions, and hence to pro-

vide clear direction for future research as necessary. Discussion on the direct impact of the

model, after its development in Chapter 3 and subsequent validation in Chapters 4 and 5,

on engineering applications will be given in Section 6.7. This topic is vital to emphasise

the practical importance of the present work, despite the limited nature of its applicability

due to the adopted assumptions.

The well-established extended Hamilton’s or the virtual work principles will be applied

to the above-defined problem of impulsively loaded rigid-perfectly plastic membrane, in

Chapter 3 and briefly in Section 4.3.2, to obtain a general equation of motion that applies

to any target’s geometry without a prior assumption on the initial field of motion. Hence,

the then-derived equation and solution will accommodate any distribution of the blast-

induced specific impulse.

2.3 Summary

From the reviewed literature concerning the dynamic response of near-field blast loaded

plates, the following main conclusions are identified:

� Section 2.1:

� Near-field blasts are associated with extremely short duration of the positive

phase and non-uniform (highly localised) specific impulses;

� The widely used semi-empirical blast parameter predictive models are less ap-

plicable to near-field blasts;

� A generic near-field blast event can be numerically simulated using commer-

cially available special-purpose hydrocodes and general-purpose explicit finite

element solvers, e.g., LS-DYNA, when combined with the MM-ALE technique.

� Section 2.2:

� Current practice of analysing the blast-loaded dynamic response of structures

is the equivalent SDOF technique, which is based on the assumption that the

mode shape (of response) is known a priori and taken as the quasi-static de-

formed profile. From this, it is concluded that a structure tends to respond

impulsively when the blast load duration becomes relatively shorter than the

maximum response time;

� Experiments and early theoretical studies on the dynamic plastic response of

plates, when subjected to extreme blast load intensity, show that the deforma-

tion mode is by far different from the quasi-static mode, and the deformation

profile is highly transient, i.e., not a mode-response;
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� Available analytical solutions of the plastic displacements of thin plates under

both uniform and non-uniform blast loading are based on the extension of the

conventional (i.e., for static regimes) plastic analysis to the dynamic regime.

This method requires that the initial incipient and subsequent dynamic defor-

mation shape (a dynamic plastic mechanism) is assumed a priori, corresponding

to a given load distribution (whose spatial profile is fixed). Thus, the analyti-

cally derived solutions apply only to such a fixed loading profile. These studies

show that the rigid-perfectly plastic idealisation is powerful and applicable for

the analysis of blast-loaded structures. Furthermore, it is concluded that the

responses of blast-loaded plates become eventually dominated by the membrane

mode of deformation as the blast load intensity and transverse displacements

increase substantially;

� Experiments and well-detailed numerical simulations on near-field blast-loaded

thin targets show clearly that the resulting structural responses are mainly

plastic and nearly impulsive. When thin plates are loaded by near-field blasts

generated from close-in high explosive detonations, it is confirmed that the

blast load is fully characterised by the specific impulse alone. The non-uniform

specific impulse induces a proportionally non-uniform initial velocity field.



Chapter 3

Membrane Model

3.1 Overview

A model to predict the response of thin plates against impulsive blast loading will be

developed. The plates will be assumed to respond in pure membrane mode, and their

material are treated as rigid-perfectly plastic according to von Mises’s yield conditions.

The equation of motion governing the dynamic response of the plates will be derived.

First, the kinematics of the membrane to be considered, which will be called a simple

membrane, is introduced with reference to the well familiar plate theories. Then, the gen-

eral equilibrium equations will be developed based on the purely geometric assumptions.

That is, the equilibrium equations will be obtained by direct application of the principle

of the virtual work, which, hence, is applicable regardless of the constitutive relations (i.e.,

no matter how stresses are related to the strains). Then, a short overview of von Mises’s

plasticity is presented for a rigid-perfectly plastic material. Finally, the equilibrium equa-

tion of the simple membrane is specialised for this particular material behaviour, i.e., when

the membrane is made of rigid-perfectly plastic von Mises material.

3.2 Structural Context of the Simple Membrane

A very powerful systematic tool to derive the governing equilibrium equation(s), of a given

structural problem, is the virtual work principle, which requires the specification of the

appropriate forms of the strains associated with the dominant behaviour of the considered

problem (Reddy, 2002; Washizu, 1975). Various structural theories exist that apply to

particular plate problems, see, e.g., Reddy (2007) and Ventsel and Krauthammer (2001).

The main differences between these are the assumptions made on the form of strains.

In this section, the goal is to relate the simple membrane to other familiar plate theories.

For this purpose, first the primary kinematic variables are defined. Consider a general

plate of thickness h, and let its mid-plane be lying on the x-y plane, and the z axis being

perpendicular to it. Let the displacement components be (u, v, w) for any point (x, y, z).

39
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Furthermore, let the components of the displacement at any point on the mid-plane, z = 0,

be (u0, v0, w0); observe that these displacements (of the mid-plane) are functions of (x, y)

only, by definition. The (u, v) and (u0, v0) are called the in-plane displacements, and w

(and w0) is the transverse displacement (measured along the thickness or the z axis).

When the plate is thin and the transverse displacement w is small, then Kirchhoff plate

theory is applicable, and accordingly, the kinematics of the plate are

w(x, y, z) = w0(x, y)

u(x, y, z) = u0(x, y)− z
∂

∂x
[w0(x, y)]

v(x, y, z) = v0(x, y)− z
∂

∂y
[w0(x, y)] ,

(3.2.1)

owing to the well-known Kirchhoff’s hypotheses: perpendicular plane sections remain

perpendicular and plane, and the plate’s thickness is inextensible, see, e.g., Timoshenko

and Woinowsky-Krieger (1959).

According to the above kinematic assumptions, the strains in a Kirchhoff plate are

ε(K)
x =

∂u0
∂x

− z
∂2w0

∂x2

ε(K)
y =

∂v0
∂y

− z
∂2w0

∂y2

2ε(K)
xy =

∂v0
∂x

+
∂u0
∂y

− 2z
∂2w0

∂x∂y

2ε(K)
xz = 0

2ε(K)
yz = 0

ε(K)
z = 0,

(3.2.2)

where the three transverse strains are identically zero due to the form of the displacement

components given earlier. The superscript (K) is used to refer to Kirchhoff. It should be

emphasised that the transverse displacement is independent of z, i.e., w = w0(x, y), and

hence w is uniform across the thickness.

It will be referred to the three non-zero strains, ε
(K)
x , ε

(K)
y , ε

(K)
xy , as the in-plane strains.

These strains can be split into two parts: a membrane part associated with the derivatives

of the in-plane displacements, u0 and v0, and a bending part associated with the (second-

order) derivatives of the transverse displacement w0. The above forms of the in-plane

strains apply when the transverse displacement is small. For this reason, the membrane

and bending behaviours are geometrically uncoupled (Reddy, 2007).

Discussion of Kirchhoff’s thin plate theory is ended at this point. However, it is helpful
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to note the following. The theory is an approximate structural theory that applies to

thin plates under small displacement because Kirchhoff’s assumptions well describe the

motions of such plates. It is a simplification of the general three-dimensional case which

is applicable when the structure is a thin plate under small w0. For such problems, the

significant kinematics of the actual behaviour are those retained in the theory of Kirchhoff,

outlined above (Ventsel and Krauthammer, 2001).

When the transverse displacement w0 becomes large, non-linear terms will appear in the

definition of the strains. However, attempts are made to again avoid considering the gen-

eral case by including all such non-linear terms but instead just retain the most significant,

based on further kinematic assumptions. That is, one seeks another simplified (or approx-

imate) plate theory that is applicable and practical. When large transverse displacement,

w0, occurs in a thin plate, it induces large rotations, which are given by ∂w0
∂x and ∂w0

∂y .

Von Kármán established a thin plate theory that accounts for large transverse displace-

ment; von Kármán plate is the extension of Kirchhoff plate in which the large rotation

effects are included, see, e.g., Reddy (2007). According to von Kármán, only the following

quadratic terms need to be retained in the non-linear strains: (1/2)(∂w0
∂x )2, (1/2)(∂w0

∂y )2,

and (1/2)∂w0
∂x

∂w0
∂y , while the remaining quadratic terms (that would appear from the def-

initions of the non-linear strains) can be neglected as they are considered relatively very

small. Again, the justification is that the retained (quadratic) terms correspond to the

large rotations induced when w0 gets larger (Reddy, 2007).

Hence, the von Kármán strains can be written as

ε(VK)
x = ε(K)

x +
1

2

(
∂w0

∂x

)2

ε(VK)
y = ε(K)

y +
1

2

(
∂w0

∂y

)2

2ε(VK)
xy = 2ε(K)

xy +

(
∂w0

∂x

∂w0

∂y

)
2ε(VK)

xz = 2ε(K)
xz + 0 = 0

2ε(VK)
yz = 2ε(K)

yz + 0 = 0

ε(VK)
z = ε(K)

z + 0 = 0,

(3.2.3)

where the superscripts (VK) refers to von Kármán strains, and (as before) the superscript

(K) refers to Kirchhoff strains, which were given earlier. Note that the bending parts

of the in-plane strains in the von Kármán plate are identically the same as those in the

Kirchhoff plate. However, the membrane strains now have additional contributions due to

the transverse displacement, w0, being large, which are the quadratic terms appearing in

the von Kármán in-plane strains. Both Kirchhoff and von Kármán strains apply to thin

plates; on the other hand, Kirchhoff strains apply when the transverse displacement, w0,



42 3.2. Structural Context of the Simple Membrane

is small, whereas von Kármán strains apply when w0 becomes large (Reddy, 2007).

Next, the transverse displacement w0 is kept to be large, i.e., starting with von Kármán

thin plate, and focus is made on the limit as the plate becomes infinitely thin (or when

the thin plate becomes a membrane). In this limiting process, the contribution of the

behaviour pertaining to bending tends to disappear. The reason for the vanishing of

bending action is due to the absence of bending stresses, not bending strains (i.e., curva-

tures). That is, the following quantities are the ones that tend to zero as the thickness

becomes infinitely small,∫ h/2

−h/2
σxε

(B)
x dz = −

∫ h/2

−h/2
σxz

(
∂2w0

∂x2

)
dz

= −
(
∂2w0

∂x2

)∫ h/2

−h/2
σxz dz

≈ −
(
∂2w0

∂x2

)
σx

∫ h/2

−h/2
z dz ≡ 0

(3.2.4)

and similarly ∫ h/2

−h/2
σyε

(B)
y dz = 0

∫ h/2

−h/2
σxyε

(B)
xy dz = 0,

since the in-plane stresses, σx, σy, and σxy, become uniform across the thickness in the

limit as it tends to zero. The superscript (B) was used to refer to the bending part of the

corresponding strains. So, it is clear that the vanishing of the bending contribution for an

infinitely thin plate is due to the product with the thickness coordinate, z, appearing in

the bending strains.

Thus, in the limit as the plate becomes infinitely thin, the appropriate form of in-plane

strains become those of von Kármán where the terms multiplied with the thickness co-

ordinate, z, are removed (since their integration over the infinitely small thickness will

vanish). That is, for membranes (or infinitely thin plates) under large displacement, the
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strains take the form

ε(M)
x =

∂u0
∂x

+
1

2

(
∂w0

∂x

)2

ε(M)
y =

∂v0
∂y

+
1

2

(
∂w0

∂y

)2

2ε(M)
xy =

∂v0
∂x

+
∂u0
∂y

+

(
∂w0

∂x

∂w0

∂y

)
2ε(M)

xz = 0

2ε(M)
yz = 0

ε(M)
z = 0,

(3.2.5)

where the superscript (M) refers to pure membranes. A membrane whose strains are as

defined above is called the general membrane. In the literature, the general membrane

formulation is credited to Föpple and is, simply, a modified version of von Kármán theory

with the flexural parts removed due to extreme thinness of the plate see, e.g., Marker and

Jenkins (1997). Note that the thickness does not necessarily need to approach zero for the

general membrane theory to be valid. For example, Reddy (2007) discussed the general

membrane theory as an approximation of the mechanics of thin plates when bending

action is negligible compared to the membrane action, e.g., due to the large transverse

deformation. In the above development, the final result is reached using the more direct

mathematical limiting process, which is the approach of Föpple, see, again, Marker and

Jenkins (1997).

Extending from the general membrane kinematics, there can emerge a further limiting

case in which the transverse motion of the thin plate is dominantly depending on the

contribution to in-plane strains by the derivatives of the large transverse displacement

(w0) in comparison to the contribution by the in-plane displacements (u0 and v0). That

is, the stretching of the membrane is said to be due only to a purely transverse motion.

Duffey (1967) and Cloete and Nurick (2014) argue that the internal plastic work of a

(general perfectly plastic) membrane in the large displacement regime that is associated

with large transverse blast loading is independent of the in-plane displacements.

In the following, the latter membrane kinematics are investigated by requiring that ∂u0
∂x ,

∂v0
∂y , and (∂v0∂x + ∂u0

∂y ) are very small (compared to the derivatives of the transverse displace-

ment) that, in turn, imply that u0 = const., and v0 = const. Hence, when it is further

considered that the membrane is to be fixed at its outer edges, then one finds that

u0 ≡ 0

v0 ≡ 0

A membrane that is free of in-plane displacements will be called a simple membrane.
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Therefore, the strains in a simple membrane (in which the in-plane displacements, u0 and

v0, are zero) can be defined as

εx =
1

2

(
∂w0

∂x

)2

εy =
1

2

(
∂w0

∂y

)2

εxy =
1

2

(
∂w0

∂x

∂w0

∂y

)
εxz = 0

εyz = 0

εz = 0

(3.2.6)

The overall summary is that the starting point is Kirchhoff’s plate, which is thin and

subjected to small displacement w0. Then, a transition is made from Kirchhoff to von

Kármán as w0 increases, where additional membrane strains emerge from w0 being large,

while the bending strains remained as given by Kirchhoff. Then, the bending contribu-

tion was eliminated as the plate becomes infinitely thin (i.e a membrane) to obtain the

general membrane. The in-plane displacement effects in all three cases (i.e., Kirchhoff

and von Kármán thin plates and the general membrane) remained the same as in the

Kirchhoff plate. Ultimately, it was considered a further limiting case (emerging from the

general membrane) when w0 becomes exceedingly large so that the in-plane strains be-

come dominated by its derivative in comparison to the contributions from the derivatives

of the in-plane displacements (u0 and v0), which, in turn, imply that the total displace-

ment is identically the transverse displacement w0, and the in-plane displacements are set

zero. The last limiting case was called the simple membrane. The strains in the simple

membrane are given by the last set of equations, i.e., Eq.(3.2.6). The simple membrane

formulation will be the basis of the kinematic description of the membrane response of thin

plate that are subjected to intense lateral loading arising from near-field blasts. The effects

of the in-plane displacements were neglected to reduce the dimensions of the problem, i.e.,

to deal with a point-wise single degree-of-freedom which is the transverse displacement,

w0. This simplifying step is thought reasonable after the important conclusion of Cloete

and Nurick (2014) that the transverse response of blast-loaded circular thin plates is inde-

pendent of the in-plane (namely, the radial) displacement. The relationship between the

different plate-like theories is depicted in Fig. 3.1.
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Fig. 3.1. Qualitative classi�cation of kinematic theories applicable for di�erent plate-like structures. In
the literature, Kirchho� plate is also known as Kircho�-Love theory, von Kármán plate is known as Föppl-
von Kármán, Mindlin plate is also known as Reissner-U�yand-Mindlin theory. Von Kármán plate extends
Kirchho� plate by including strains associated with large transverse displacement (i.e., large rotations).
The general membrane, or Föpple membrane, is obtained from von Kármán plate with bending e�ects
neglected. The simple membrane is derived from the general one after removing the strains associated
with the in-plane displacements.

3.3 General Equilibrium Equations

3.3.1 Overview

A membrane problem is considered in which the in-plane displacements u0 and v0 of the

membrane’s mid-plane are negligible compared to the transverse displacement w0. This is

viewed as the limiting case of the general von Kármán plate when: (i) bending strains are

omitted in the limit as thickness becomes infinitely small, and (ii) in-plane displacements

(u0 and v0, along the x and y axes, respectively) have negligible contribution to the

membrane strains.

However, in the following, the general membrane is considered first in which the in-plane

displacements (u0, v0) are present (in addition to the transverse displacement w0), and

its equilibrium equations are provided. Then, discussion of the special case (which will

be called a simple membrane) is made when the in-plane displacements can be assumed

negligible compared to the large transverse displacement w0, and its equilibrium equation is

given. Again, the equilibrium equations will be developed using the virtual work principle,

following the approach in Reddy (2002) and Washizu (1975), such that they are applicable

regardless of the material constitution. The starting points are the kinematics of the two

membranes, as given in the previous section.
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3.3.2 A General Membrane

If the in-plane components u0 and v0 are retained, the non-zero strains are the in-plane

strains given below

εx =
∂u0
∂x

+ (1/2)

(
∂w0

∂x

)2

εy =
∂v0
∂y

+ (1/2)

(
∂w0

∂y

)2

2εxy =

(
∂v0
∂x

+
∂u0
∂y

)
+

∂w0

∂x

∂w0

∂y

(3.3.1)

whereas the other three (transverse) strains are assumed zero. However, note that the

in-plane shear strain, εxy, is generally non-zero. For a membrane with its non-zero strains

as given above, it is governed by the following (three) equilibrium equations

∂σx
∂x

+
∂σxy
∂y

= 0

∂σxy
∂x

+
∂σy
∂y

= 0

σx
∂2w0

∂x2
+ 2σxy

∂2w0

∂x∂y
+ σy

∂2w0

∂y2
+

p

h
= ρẅ0,

(3.3.2)

where the in-plane accelerations ü0 and v̈0 were made zero (this is a very usual assumption).

The parameters are as follows: h is the membrane’s thickness, ρ is the mass per unit

volume, and p is the externally applied pressure (in the direction of z and w0). Note that

the stresses σx, σy, and σxy were assumed uniform across the thickness (in line with its

smallness, and since no bending effects can develop). The above equilibrium equations

were obtained by a direct application of the principle of virtual work. Note, also, that

three equations are obtained since there are three independent motion variables, namely

u0, v0, and w0, in such a membrane problem. The membrane is assumed to be supported

along all its outer edges.

As long as the strains are given by Eq. (3.3.1), which are due to Föpple as discussed in the

previous section, then the equilibrium equations, Eqs. (3.3.2), are applicable regardless

of the material constitutive relations, i.e., without restrictions about how the stresses are

related to the strains. This is because the virtual work applies in general (Reddy, 2002).

Hence, they apply to elastic, elasto-plastic, or even rigid-plastic membranes. Note that the

in-plane shear stress σxy appears in the equilibrium equations. The corresponding equilib-

rium equations for a circular general membrane, which is under axi-symmetric conditions,

are provided and discussed in Section B.1.3 of Appendix B.
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3.3.3 A Simple Membrane

The simple membrane is defined as the one that is the limiting case of the earlier general

membrane where the contributions of the in-plane displacements, u0 and v0, to the in-

plane strains, are negligible. That is, u0 = const., and v0 = const. Since the membrane

will be assumed to be supported on all its outer edges, then one lets u0 ≡ 0, and likewise,

v0 ≡ 0. Therefore, the non-zero strains are taken as

εx =
1

2

(
∂w0

∂x

)2

εy =
1

2

(
∂w0

∂y

)2

εxy =
1

2

∂w0

∂x

∂w0

∂y

(3.3.3)

and the remaining three transverse strains are still taken to be zero, as in the general

membrane case.

When the above strains, in Eq. (3.3.3), are used in the virtual work equation, the simple

membrane becomes governed by the following single equilibrium equation

∂

∂x

(
σx

∂w0

∂x
+ σxy

∂w0

∂y

)
+

∂

∂y

(
σxy

∂w0

∂x
+ σy

∂w0

∂y

)
+

p

h
= ρẅ0, (3.3.4)

where the parameters, h, ρ, and p, are as defined following Eq. (3.3.2). Again, the simple

membrane is assumed to be supported along all its outer edges. The equilibrium equation

Eq. (3.3.4) applies to any membrane (irrespective of the material constitution) for which

the strains are as given in Eq. (3.3.3). Note that the application of the virtual work

provided one equilibrium equation since the simple membrane (the present case) has only

one degree of freedom for the motion, namely the transverse displacement, w0. This

simple membrane can only resist externally applied pressure along the z axis (i.e., in the

direction of w0). The corresponding equilibrium equation for an axi-symmetric circular

simple membrane is treated in Section B.1.4 of Appendix B.

3.3.4 Discussion

When the membrane is assumed to be made of a rigid-perfectly plastic material, the

strains (whenever non-zero) are the plastic strains. The increments of these strains can

be non-zero only when the stress state satisfies the yield condition of the material. The

accumulations (over time) of such increments give the total (plastic) strain (Chen and

Han, 1988). The equilibrium equations, in Eqs. (3.3.2) for the general membrane and in

Eq. (3.3.4) for the simple membrane, involve the spatial derivatives of w0, and if such

derivatives are non-zero, they lead to non-zero strains (according to the definitions of the
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strains given earlier). Therefore, the stresses in the equilibrium equations need to satisfy

the yield condition, otherwise, their coefficients (i.e., the spatial derivatives of w0) would

be zero. Next, when the material is known to follow a particular yield condition, e.g., von

Mises plasticity, a stress state satisfying the yield condition needs to be determined. For

the present two membranes’ problems, the stress state is a plane-stress state. However, the

collection of plane-stress states satisfying the yield condition represents a surface called

the yield surface (Chen and Han, 1988); every point (i.e., stress state) on the surface

satisfies the yield condition (and there are infinitely many such points since the surface is

continuous).

Since the membrane is under a plane-stress state, then the third principal stress axis is

the z axis (because there are no transverse shear stresses, σxz and σyz); then, the other

two principal axes must lie on the x-y plane, i.e., on the membrane’s mid-plane, since the

principal axes must be mutually orthogonal.

Then, if it can, somehow, be shown that the whole membrane is free of in-plane shear

stress σxy, the remaining two principal axes coincide with the Cartesian axes, x and y;

this is because the principal directions are, by definition, those with respect to which there

are no shear stresses.

For such case (σxy ≡ 0 throughout the membrane), then one has for the general membrane

(from Eq. (3.3.2))

σ1
∂2w0

∂x2
+ σ2

∂2w0

∂y2
+

p

h
= ρẅ0,

and likewise, for the case σxy ≡ 0 in the simple membrane, one (from Eq. (3.3.4)) has

∂

∂x

(
σ1

∂w0

∂x

)
+

∂

∂y

(
σ2

∂w0

∂y

)
+

p

h
= ρẅ0,

where σ1 and σ2 are the in-plane principal stresses, and the Cartesian axes x and y are

the principal axes.

However, in the principal plane (which coincides, for the present case, with the x-y plane),

the collection of the stress states (σ1, σ2) satisfying the yield condition represents a con-

tinuous curve (a 45o rotated ellipse for von Mises material in the two-dimensional σ1-σ2

space), see, e.g., Chen and Han (1988). But, since the membrane cannot develop negative

membrane stresses, the physically valid region is the first quadrant σ1 ≥ 0 and σ2 ≥ 0.

Next, if one further assumes that the membrane is, throughout, free of any in-plane shear

stress σxy in “all orientations”, then the two stresses σ1 and σ2 (also σx and σy) must

be equal (it is helpful to think of this with reference to the Mohr circle, which happens

to be a circle with radius zero, i.e., a point if in-plane shear stresses must be zero in all

orientations). For both von Mises and Tresca materials, the state of stress satisfying either

yield conditions and for which σ1 ≥ 0, σ2 ≥ 0 and σ1 = σ2 is the following: σ1 = σ2 = σ0,

where σ0 is the uni-axial yield stress (in tension) of the material. This solution follows

immediately from the characteristics of the mentioned yield criteria (Chen and Han, 1988).
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Hence, if the membrane throughout is free of in-plane shear stress, i.e., σxy ≡ 0, and in

all possible orientations, then the stress state satisfying both Tresca and von Mises yield

conditions, is σx = σy = σ1 = σ2 = σ0, and σ0 is constant. For such particular stress

state, the general membrane equilibrium equation is

σ0

(
∂2w0

∂x2
+

∂2w0

∂y2

)
+

p

h
= ρẅ0

The first two equations in Eq. (3.3.2) are identically satisfied. Furthermore, under the

same stress state as above (i.e., when setting σx = σ1 = σy = σ2 = σ0 and recalling that

σ0 is a constant), the simple membrane is governed by

σ0

(
∂2w0

∂x2
+

∂2w0

∂y2

)
+

p

h
= ρẅ0, (3.3.5)

which is identical to that of the general membrane. In both of the last two equations, σ0

is the uni-axial tensile yield stress, h the membrane thickness, ρ its mass per unit volume

(density), and p is the externally applied pressure along the direction of the transverse

displacement, w0. That is, if the stress state is σx = σy = σ0 throughout the mem-

brane’s area, then σxy = 0, and there appears no distinction between the simple or general

membrane kinematics in describing the motion of a membrane due to a purely transverse

loading, and the membrane is fully supported along its periphery.

The validity of the last equilibrium equations depends on the validity of the assumption

that the in-plane shear stress, σxy, is zero everywhere on the membrane and in all orienta-

tions. That is, the above equations are subject to the condition that σxy ≡ 0 and σx = σy.

If this is known to be the case or has been verified, then the last (duplicate) equilibrium

equation governs the responses of either membrane type.

The foregoing discussion concerns the motions of rigid-plastic (general and simple) mem-

branes, where an initial guess on the stress state has been made. Membranes made of

ductile materials obey the associated flow rule. However, in the associated flow plasticity,

the stress state needs not be assumed but rather be associated with plastic strain rates

that are normal to the yield surface (or curve for plane-stress problems) at that stress

state. Furthermore, if, in particular, the von Mises’s yield criterion is adopted, then the

stress state (which is a particular point on the yield curve) is automatically (and uniquely)

determined by the plastic strain rates themselves whenever they are non-zero. In addi-

tion, the plastic incompressibility (a feature of von Mises materials) of the material poses

restrictions on the stress state.

The equation of motion for a membrane made of rigid-perfectly plastic von Mises material

will be derived systematically in the sequel without a prior assumption on the stress state;

however, an overview of the plastic relations for von Mises materials will be discussed

first.
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3.4 Basic Review of Von Mises Plasticity

The membrane is assumed rigid before yielding and perfectly plastic during yielding,

according to von Mises plasticity. Hence, the strains, εij , and their rates, ε̇ij are the

plastic strains, εpij , and their rates, ε̇pij . So, throughout, the superscript (p) will be omitted

in the sequel. In the following, the classical (or incremental) theory of von Mises plasticity

will be briefly introduced, and the material is based on the work of Chen and Han (1988);

the reader is referred, among others, to this cited source for detailed discussion of the

classical theory. The incremental plasticity of von Mises is the basis for the subsequent

extension of the formulation in terms of total plasticity, which will be introduced and

discussed later on.

According to (the classical) von Mises yielding theory, the condition of yielding is sijsij =

(2/3)σ2
0, and σ0 is the uni-axial tensile yield stress which is assumed constant due to the

perfect-plasticity assumption. sij is the deviatoric part of the total stress, σij . That is,

sij = σij − p̂δij , in which p̂ is the (hydrostatic) pressure, and δij is Kronecker delta. Since

σ0 is constant, one also has (by differentiating the yield condition): sij ṡij ≡ 0. When

the yield condition is satisfied, rates of (plastic) strains would develop according to the

“associated” flow rule, i.e., by

ε̇ij = λ̇
∂

∂σij

[
(1/2)sklskl − (1/3)σ2

0

]
= λ̇sij ,

(3.4.1)

where λ̇, known as the plastic multiplier rate, is a non-negative scalar. λ̇ can be non-zero

only when the yield condition is satisfied, i.e., sij satisfies the yield condition, given earlier.

By using the flow rule and the yield condition, the plastic multiplier rate is given by

λ̇ = 1/
[√

(2/3)σ0

]√
ε̇ij ε̇ij , (3.4.2)

whenever the stresses sij satisfy the yield condition, i.e., sij is on the yield surface; oth-

erwise, λ̇ ≡ 0, and, in turn, ε̇ij = 0. Note that repeated indices imply summation; for

example, σkk = σxx + σyy + σzz, and furthermore, for simplicity σxx is replaced with σx.

Now, since ε̇ij are the plastic strain rates, due to the rigid-plastic assumption, then when-

ever ε̇ij are non-zero (and λ̇ > 0) means that sij must satisfy the yield condition and is

given by sij = ε̇ij/λ̇,

sij =
ε̇ij

λ̇

=
√
(2/3)σ0

ε̇ij√
ε̇klε̇kl

(3.4.3)

whenever ε̇ij > 0. This can be viewed as a (deviatoric) stress-strain (rate) relation of a

rigid-perfectly plastic von Mises material. The above relation suggests that sij is uniquely
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determined by the strain rates ε̇ij , when ε̇ij > 0, which is equivalent to the statement

that sij satisfies the yield condition, sijsij = (2/3)σ2
0. In other words, the strain rates

whenever non-zero determine (by themselves) the appropriate point (stress state) on the

yield surface. It is well-known for a perfectly plastic von Mises material that only the

ratios (proportions) of plastic strains (relative to one another) are what determine the

stress state, irrespective of their absolute values, and this is attributed to the normality

rule which will be discussed later.

The rate of plastic work (per unit volume) is given by σij ε̇ij , and for the material at hand,

it evaluates to
σij ε̇ij = (sij + p̂δij)ε̇ij

= sij ε̇ij + p̂ε̇ii

= sij ε̇ij + p̂λ̇sii

= sij ε̇ij ,

(3.4.4)

where the flow rule has been used, and in arriving at the last equality, the fact that sii = 0

was used. Furthermore, using the last equality and substituting the flow rule again, one

has for the rate of plastic work

σij ε̇ij = sij ε̇ij

= λ̇sijsij

= (2/3)λ̇σ2
0

(3.4.5)

Hence, for the rate of plastic work (i.e., the left-hand side of the above) to be non-negative,

one must have λ̇ to be non-negative at all times. Note that the rate of plastic work can

be rewritten as σij ε̇ij = (2/3)λ̇σ2
0 = σ0

√
(2/3)ε̇ij ε̇ij , and hence by noting that σ0 =√

(3/2)sijsij is the effective (or von Mises) stress, then the quantity
√
(2/3)ε̇ij ε̇ij is the

so-called effective (or von Mises) plastic strain rate, ε̇eff ; the rate of plastic work can,

in turn, be rewritten more compactly as σ0ε̇eff . It is important to note that since λ̇ is

non-negative, and according to the flow rule, ε̇ij = λ̇sij , one should have: the signs of ε̇ij

and sij are equal.

The above is the classical analysis of a rigid-perfectly plastic von Mises material that

is universally accepted as a successful formulation to describe its plasticity; for more

discussion and applications, the reader is referred to Chen and Han (1988). It is a rate

form formulation since it is based on the rates of (plastic) strains.

If the simple membrane, whose equilibrium is governed by Eq. (3.3.4), is assumed to be

made of a rigid-perfectly plastic von Mises material, for which sij = ε̇ij/λ̇ holds whenever

ε̇ij > 0, then its equilibrium equation takes the following form
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∂

∂x

[
1

λ̇

(
ε̇x

∂w0

∂x
+ ε̇xy

∂w0

∂y

)]
+

∂

∂y

[
1

λ̇

(
ε̇xy

∂w0

∂x
+ ε̇y

∂w0

∂y

)]

+
∂

∂x

(
p̂
∂w0

∂x

)
+

∂

∂y

(
p̂
∂w0

∂y

)
+

p

h
= ρẅ0,

(3.4.6)

where σx = sx + p̂, σy = sy + p̂, σxy = sxy have been used, then the three deviatoric

stresses were related to the corresponding three strain rates. p̂ is the internal pressure,

p̂ = (1/3)σkk, and the notation p̂ is used to distinguish it from the externally applied

pressure, p.

The internal pressure cannot be associated with strains in a rigid perfectly plastic von

Mises material (Washizu, 1975), unless the strain rates (as given by the derivatives of the

displacements, i.e., the total strains) satisfy the incompressibility identically. Hence, its

appearance in the above equation needs to be looked at as a “reaction”, and it could be

interpreted as an attempt by the membrane to satisfy the incompressibility. Note that the

strains appearing in the above equilibrium equation are purely deviatoric.

However, since the flow rule, in its classical form, is incremental, and it appears to result

in non-linearity in the constitutive relation, the “total” form of plastic deformation, i.e.,

dealing with total (plastic) strains instead of their increments or rates, becomes of interest.

From the flow rule, ε̇ij = λ̇sij , the total strains can be found by direct integration (with

respect to time t) of this relation to get

εij − ε
(0)
ij = sijλ− s

(0)
ij λ(0) −

∫ t

t0

λṡij dt,

where the superscripts (0) denote the initial values of the quantities, or initial conditions,

at time t = t0. Next, the case of interest is the one where: (i) the initial conditions,

for εij and λ, can be dropped, and (ii) when ṡij can be set zero to eliminate the time

integral altogether. That is, the following total form of flow rule, εij = λsij is sought.

This is discussed in the next subsection below. The reader should be aware that notion

of the total (or deformation) plasticity is, in fact, an existing branch of the mathematical

plasticity (Chen and Han, 1988); although such formulation is not as popular as the

modern (or incremental) plasticity theory, see, e.g., the critical comments by Drucker

(1956). For completeness, a well-known application of the total plasticity theory is the yield

(or slip) lines theory, which is credited to Henky, that develop in plane-strain problems

under monotonic loadings, e.g., in quasi-static indentation of a semi-infinite plate (Chen

and Han, 1988).
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3.4.1 Conditions Under Which εij = λsij Holds

On integrating the flow rule, (ε̇ij = λ̇sij), over time t, and then integrating the right-hand

side by parts, one gets the total (plastic) strain as

εij = sijλ−
∫ t

0
λṡij dt, (3.4.7)

assuming zero initial conditions for εij and λ. This expression for the total strain, εij , is

valid as long as the initial conditions as assumed above are zero. That is, it applies to

monotonic loading paths, since for such paths, the initial conditions are those at the start

of motion which can be assumed zero for an initially unstrained membrane.

The flow rule also states that sij = ε̇ij/λ̇, and after using the expression of λ̇, given earlier,

the rate of sij can be evaluated by direct differentiation to get

ṡij =
ε̈ij − sij λ̈

λ̇
, (3.4.8)

which is valid when λ̇ > 0, i.e., when sij continues to satisfy the yield condition.

Now, differentiating both sides of [λ̇ = 1/(
√
(2/3)σ0)

√
ε̇ij ε̇ij ], one finds that

(2/3)σ2
0λ̈ = sij ε̈ij ,

which is also valid only when the stresses sij satisfy the yield condition. Now because the

yield is satisfied, i.e., (2/3)σ2
0 = sijsij , the last relation can be written as (sijsij λ̈ = sij ε̈ij),

which in turn implies that

0 = sij

(
ε̈ij − sij λ̈

)
(3.4.9)

From the above, Eq. (3.4.9), either sij = 0, the quantity inside the parentheses is zero

during yielding, or sij is orthogonal to
(
ε̈ij − sij λ̈

)
, by viewing the above as a dot product.

If one lets

ε̈ij = λ̈sij

to hold, then it implies that ε̈ij is a scalar multiple of sij , the multiplier being λ̈ (note

that λ̈ is not restricted to be non-negative). Hence, ε̈ij is parallel to sij and hence normal

to the yield surface (since sij is the normal to von Mises yield surface). Furthermore,

sij ṡij = 0 (presented earlier) also implies that sij and ṡij are normal to each other. So,

the condition that ṡij is zero, is equivalent to saying that ε̈ij is normal to the yield surface

as is the strain rate ε̇ij . Hence, it is a condition of progressive yielding where the stresses

sij remain on the yield surface at the same point throughout the response.

Hence, for progressive yielding, one has ε̈ij = λ̈sij , and for which ṡij becomes

ṡij =
0

λ̇
= 0 (3.4.10)
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whenever λ̇ > 0.

Hence, during the monotonic loading path and during progressive (continuing) yielding,

the total (plastic) strain εij is found as

εij = λsij , (3.4.11)

as the deviatoric stresses continue to satisfy the yield condition, sijsij = (2/3)σ2
0. From

this total form of the flow rule, λ is found as

λ =

√
εijεij√
(2/3)σ0

, (3.4.12)

given the yield condition is and remains satisfied.

Now, εij = λsij is valid when the initial conditions are zero and when ṡij = 0. It was

shown that ṡij = 0 is valid when ε̈ij = λ̈sij .

Next, suppose that ε̇ij at some time is initially positive (i.e., yielding is already established)

but its value decreases (as the structure under consideration approaches its end of (the

purely plastic) motion). Hence, the value of the instantaneous ε̈ij is negative, and so is

the value of λ̈; note that sij is positive since ε̇ij is so, and the two quantities must have

similar signs. The response is now investigated during a small time interval ∆t from the

instant of time t = t0 at which the response is as assumed above. In particular, what

is investigated is the evolution of the quantity λ̇ over the small time increment ∆t. For

this, one can write: λ̇(t0 + ∆t) ≈ λ̇(t0) +
∂
∂t (λ̇)|t0∆t = λ̇(t0) + λ̈(t0)∆t. Now, recalling

that λ̇ must be non-negative, and given the present assumption that λ̈ is negative, then

there is a critical ∆t beyond which the condition λ̇ ≥ 0 would be violated. For the present

hypothetical example, the critical ∆t is defined when the left-hand side becomes zero for

the first time, which gives ∆t = −λ̇(t0)/[λ̈(t0)], where λ̈ < 0 by assumption, and hence the

value of the critical ∆t is well-defined (i.e., finite and non-negative). If the response is not

terminated at the time t0+∆t, where ∆t is as given above, then λ̇(t0+∆t) would then be

negative (according to the assumption λ̈ < 0), which is not valid (not physical) and implies

a decreasing plastic work. This can be considered as a basis for the idea of terminating

the solution at some critical time instant when the “total” flow rule relation εij = λsij

is assumed to hold at the beginning of the response of a rigid-perfectly plastic structure.

The reader is referred to Capurso (1972) and Maier (1968) for the numerical procedures

to detect the critical time instant (beyond which a negativity of the plastic multiplier rate

would occur) in an impulsively loaded rigid-perfectly plastic structure. This topic will be

revisited in Section 6.4, when discussing solutions of irregularly shaped membranes.

From the foregoing discussion (in the present section), it is seen that there will be a

critical time instant whenever ε̇ij and ε̈ij have opposite signs, i.e., when the strain rate is

initially positive and is decreasing, or when it is initially negative and increasing. Thus,

equivalently, a critical time instant is preceded by ε̇ij ε̈ij ≤ 0; that is, when this inequality
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is met, a critical time instant is approaching. Note that it was earlier established that

(2/3)σ2
0λ̈ = sij ε̈ij . This can also be rewritten as (2/3)σ2

0λ̇λ̈ = ε̇ij ε̈ij . Hence, since (2/3)σ2
0λ̇

is always non-negative, then whenever ε̇ij ε̈ij < 0, one has λ̈ < 0. Finally, since again λ̇

must be non-negative at all times, then there is a critical time instant associated with λ̈

being negative (so that λ̇ does not turn negative as time evolves), or equivalently with

ε̇ij ε̈ij being negative.

On the other hand, since the critical time instant is (after all) directly defined when λ̇

becomes zero for the first time (after it was already strictly positive), and since λ̇ =

1/(
√
(2/3)σ0)

√
ε̇ij ε̇ij , then the critical time instant is also defined when ε̇ij becomes zero

for the first time (after being non-zero initially). So, the time when strain rates reach zero

is a critical time instant; consequently, the velocity plays a key role. The ultimate effect of

watching for the critical time instant and, then, terminating the solution at that instant is

to make the total (plastic) strains εij never decrease in magnitude irrespective of its sign

without application of external work by an external agency (i.e., by external loading that

has a reversed effect on the motion).

It is important to explain why when the strain rates reach zero, there will be a critical time

instant. It is because strain rates (according to the well-established flow rule) must be

normal to the yield surface (since it is proportional to sij which is normal to the von Mises

surface) and pointing towards the exterior of the yield surface (since λ̇ is non-negative).

Hence, if strain rates were initially positive, then decreasing to zero, and then turning

negative, they must be normal and pointing to the exterior of the yield surface in the final

state (i.e., when they are negative). That means that the stress state must change from the

previous state (when the strain rate was positive and decreasing) to a new state for which

the associated new strain is normal and pointing to the exterior. Since only the sign of

the strain rates has been changed, the new stress state (associated with the new negative

strain rate) is the image of the previous state across the yield surface. Recall that it has

been discussed earlier that the stress and strain rates, according to the classical flow rule,

must have the same sign. In other words, the stress sij “instantaneously” travelled through

the interior of the yield surface (i.e., the elastic domain) to appear on the other side of

the yield surface so that to change its sign. This situation is already familiar in the one-

dimensional uni-axial stress problem, in which the stress immediately (or instantaneously)

changes from (+σ0) when the uni-axial strain rate was positive to (−σ0) as soon as strain

rate turns negative.

In summary, it was shown that ṡij = 0 directly implies that ε̈ij = sij λ̈. That is, acceleration

of strain, ε̈ij , is normal to the yield surface or, equivalently, is parallel to sij since λ̈ is

a scalar. When λ̈ is positive, then ε̈ij points to the exterior of the yield surface (as is

the strain rate, ε̇ij , in terms of direction). In contrast, when λ̈ is negative, then ε̈ij is

still normal to the yield surface but, in the present case, points to the interior of the yield

surface (as opposed to the strain rate in terms of direction). In either case, the point on the

yield surface (at which one measures and associates these strain quantities) remains the

same throughout the evolution of deformation, i.e., ṡij ≡ 0. For both cases, the foregoing
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deformation regime is denoted as being progressive yielding at the same point on the yield

surface.

From now on, it will be assumed that εij = λsij , see Eq. (3.4.11), holds, and sij satisfies

the yield condition whenever the strains, and hence λ, are non-zero.

3.5 Equilibrium Equation of a Simple Membrane Made of a

Rigid-Perfectly Plastic Von Mises Material

It is well-known that a von Mises material is plastically incompressible because one has

ε̇ii = λ̇sii = 0 since sii ≡ 0. Similarly, under the conditions mentioned above for which

εij = λsij holds, one also has εii = λsii ≡ 0. There is no volume change during the plastic

deformation of a rigid perfectly plastic von Mises material. Hence, the total plastic work,

σijεij is sijεij (the internal work of a rigid perfectly plastic von Mises material is provided

by the deviatoric stresses, sij , alone).

Hence, the internal (plastic) work (per unit volume of the membrane) is

Wp = σijεij

= sijεij

= sijsijλ

=
√
(2/3)σ0

√
εijεij

(3.5.1)

For later use in the principle of the virtual work, of interest is the variation of the above

internal work, i.e., evaluating δWp, where δ is the virtual (or variational) operator. For

this, one has

δWp = δ
(√

(2/3)σ0
√
εklεkl

)
=
√

(2/3)σ0
∂

∂εij
(
√
εklεkl) δεij

=
√

(2/3)σ0
εij√
εklεkl

δεij

=
εij
λ
δεij

= sijδεij

(3.5.2)

Hence, it is found that sijδεij = δWp.

In the virtual work, one has, for the internal virtual work, the quantity σijδεij when the

strains are independent of each other (they are only required to be compatible with the

displacements using the usual strain-displacement relations). So, if one replaces σijδεij

with sijδεij , there is a side condition that implies that the three normal strains εx, εy, and
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εz are related so that the incompressibility holds, i.e., their sum is zero, or εii = 0. Thus,

one can let εz depend on the other normal strains, εx and εy, to enforce the incompress-

ibility explicitly. An alternative approach to make these normal strains independent is to

multiply the (subsidiary) incompressibility condition, εii = 0 by an independent Lagrange

multiplier and integrate over the volume (note that this multiplier will eventually appear

as the internal pressure), and then it is added to the virtual work (using sij instead of σij)

expression. However, this will not be done.

Instead, the incompressibility will be enforced explicitly, using εz = −(εx + εy). If this is

done, then the internal virtual work becomes sijδεij , which has been shown earlier to be

equivalent to δWp =
√
(2/3)σ0δ

(√
εijεij

)
.

Therefore, in addition to the in-plane strains εx, εy, and εxy as given in Eq. (3.3.3), one

has the additional relation that

εz = −(εx + εy) (3.5.3)

So, since the internal virtual work now is given by δWp, and that involves the quantity
√
εijεij , focus is now made on evaluating the expression εijεij , using the non-zero strains,

εx, εy, εxy, and εz. First, note, according to the definitions of the in-plane strains in

Eq. (3.3.3), that

∂w0

∂x
=

√
2εx

∂w0

∂y
=
√
2εy

and using which, one has, for ε2xy,

ε2xy =
1

4

(
∂w0

∂x

)2(∂w0

∂y

)2

= εxεy

Next, εijεij can be expanded as

εijεij = ε2x + 2ε2xy + ε2y + ε2z

= ε2x + 2εxεy + ε2y + ε2z

=
(
ε2x + 2εxεy + ε2y

)
+ ε2z

= (εx + εy)
2 + ε2z

= (εx + εy)
2 + [− (εx + εy)]

2

= 2 (εx + εy)
2

(3.5.4)

Note that the factor 2 appeared because of the incompressibility, which was enforced

explicitly by εz = −(εx + εy).
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Using the last relation,
√
εijεij is found as

√
εijεij =

√
2 (εx + εy) (3.5.5)

Finally, the variation of internal work δWp is found as

δWp =
√

(2/3) σ0 δ
(√

εijεij
)
=
√
(2/3) σ0

√
2 (δεx + δεy) , (3.5.6)

in which the factor
√
(2/3) came from von Mises yield condition and its consequence on

the internal plastic work. A further additional factor,
√
2, appeared from the explicit

enforcement of the plastic incompressibility. The product of these two factors is 2/
√
3,

which is the one that will show up in the equilibrium equation.

Now applying the virtual work principle to a membrane under zero in-plane displacements

(u0 = v0 = 0), i.e., to a simple membrane, and using the internal virtual work as δWp as

given by the last expression, Eq. (3.5.6), (with an explicit enforcement of the incompress-

ibility condition, εx + εy + εz = 0), one obtains the following equilibrium equation

2√
3
σ0

(
∂2w0

∂x2
+

∂2w0

∂y2

)
+

p

h
= ρẅ0 (3.5.7)

In deriving the above equation, the simple membrane is assumed to be restrained along

its outer edges. The equation will be used later when the external pressure p is set to zero

in describing an impulsively loaded membrane. See Reddy (2002) and Washizu (1975) for

excellent step-wise derivations of obtaining the governing equilibrium equation(s) using

the virtual work method.

3.5.1 Discussion

In deriving the last equilibrium equation, no assumption has been made on the stress state

except that it is and remains on the yield surface (i.e., without specifying a particular point

on the yield surface). The strains, εij , when non-zero will choose the appropriate point

when motion takes place.

By comparing the last equilibrium equation with those developed in Section 3.3.4, in which

the stress state was assumed to be free of in-plane shear stress throughout the membrane

and in all orientations, it becomes apparent that the contributions of the in-plane shear

stress and the incompressibility of the membrane provide extra membrane resistance that

amounts to a factor of 2/
√
3 compared to unity when they are neglected such that the

resistance is provided solely by the normal membrane stresses.

However, this approach is valid when the loading path is monotonic and yielding is pro-

gressive. The monotonicity of the deformation path means that the absolute value of the

strains is not allowed to decrease without an external agency that reverses the motion (i.e.,

extra external work is applied); this is because εij are plastic strains (which cannot be
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allowed to unload freely as elastic strains would). If reversal of motion happens, then there

will be non-zero initial conditions for εij and λ that must be accounted for. A progressive

yielding is defined by the situation that yielding continues to be satisfied at a fixed point

on the yield surface, i.e., ṡij ≡ 0, throughout motion for every point on the membrane.

The main assumption is that εij = λsij ; if it is not valid, then it cannot be guaranteed

that the last equilibrium equation is applicable.

3.6 Deriving the Equilibrium Equation Using the Virtual Work

3.6.1 Internal Virtual Work

In the previous section, the steps of deriving the equilibrium equations by the application

of the virtual work were omitted for brevity. Herein, the procedure is revisited for the

sake of clarity and completeness. The principle of virtual work is the starting point to

develop the appropriate equilibrium equation. It is a powerful tool and very general in the

sense that it applies to any structure made of any constitutive behaviour. In particular,

it is applicable when the structure is a membrane made of rigid-perfectly plastic material.

Among the terms of the virtual work statement, focus is made on the form of the internal

virtual work as the other terms remain the same as in the general problems.

The internal virtual work is given by δWint = σijδεij that is integrated over the volume

of the membrane. Herein, both quantities, σij and εij , are total, i.e., each is the sum of

the corresponding deviatoric and volumetric parts. By expanding the stresses in terms of

the deviatoric (sij) and hydrostatic pressure (p̂δij) parts, one has, for the internal virtual

work, δWint = (sijδεij + p̂δεii). It is important to recall that εij is the total strain (i.e., it

is not the deviatoric strain alone), whose volumetric part is εii. The strains that are given

in terms of the derivatives of the displacement are the total strains.

At this point, the form of the internal virtual work will be tailored to the present specific

problem, which is a simple membrane that is free of in-plane displacements (u0 = v0 = 0)

and in a state of plane stress. In particular, one has σz = σxz = σyz = 0. From σz = 0, one

has (sz + p̂ = 0), and from which one can write p̂ = −sz, where sz is the deviatoric stress

in the z direction. Since εii = εz + εx + εy, then the internal virtual work of a membrane

in a plane-stress is

δWint = sxδεx + 2sxyδεxy + syδεy + szδεz + p̂ (δεx + δεy + δεz)

= sxδεx + 2sxyδεxy + syδεy + szδεz − sz (δεx + δεy + δεz)

= sxδεx + 2sxyδεxy + syδεy − sz (δεx + δεy) ,

(3.6.1)

where p̂ = −sz (since σz = 0) has been utilised. Now, if one lets the quantity −(εx + εy)

be interpreted as the normal strain εz so that the membrane is incompressible, i.e.
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εz + εx + εy = 0, (3.6.2)

then one obtains −(εx + εy) = εz. Hence, the internal virtual work can be expressed as

δWint = sxδεx + 2sxyδεxy + syδεy + sz [− (δεx + δεy)]

= sxδεx + 2sxyδεxy + syδεy + szδεz

(3.6.3)

where εz, which re-appeared in the last equality above, is defined as −(εx + εy), and

it is said that the membrane whose internal virtual work as given above is explicitly

incompressible. Now, it is important to bear in mind that all the strains appearing in

the above internal virtual work expression are the total strains (not the deviatoric). In

particular, these strains can be substituted with the relevant derivatives of displacements;

the strain εz needs to be evaluated in terms of the derivatives of the displacement through

its definition, i.e., εz = −(εx+ εy) since it appeared from there. Thus, the internal virtual

work, as given by the last expression, can be rewritten compactly (in indicial notation),

as δWint = sijδεij , while keeping in mind that the membrane is in a state of plane-stress,

hence sxz = syz ≡ 0.

Next, the internal virtual work is further specialised for the rigid-perfectly plastic mem-

brane where its plasticity obeys von Mises’s condition. For the conditions under which the

total form of the flow rule applies (i.e., ṡij = 0 throughout the (purely plastic) response

and with zero initial conditions of εij and λ), one has for the (purely plastic) strains:

εij = λsij . Also, it was shown that the internal (plastic) work during deformation is given

by Wp = sijεij =
√

(2/3)σ0
√
εijεij where σ0 is the uni-axial yield stress. Furthermore, it

has been shown that the variation of this internal work is δWp = sijδεij . In summary, the

internal virtual work given earlier, δWint, is δWp. That is,

δWint = sijδεij

= δWp = δ
[√

(2/3)σ0
√
εijεij

]
=
√
(2/3)σ0δ

(√
εijεij

) (3.6.4)

Recall once again that the strains appearing above are the total strains, and hence they

can be expressed in terms of the derivatives of displacements. Now, for the present simple

membrane (which is free of in-plane displacements), one has for the in-plane strains, as
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presented earlier in Eq. (3.3.3),

εx =
1

2

(
∂w0

∂x

)2

εy =
1

2

(
∂w0

∂y

)2

εxy =
1

2

∂w0

∂x

∂w0

∂y

(3.6.5)

and in addition, one has for εz (due to the incompressibility, Eq. (3.6.2)),

εz = − (εx + εy)

From the definitions of the three in-plane strains, εx, εy, εxy, it can be inferred (by com-

patibility) that

ε2xy = εxεy

Therefore, the quantity εijεij is expanded as

εijεij = ε2x + 2εxεy + ε2y + [− (εx + εy)]
2

= 2 (εx + εy)
2 ,

where only algebraic operations were performed. Hence, it was found that
√
εijεij =√

2(εx + εy). Consequently, one has for the internal virtual work,

δWint = δWp =
√

(2/3)σ0δ
(√

εijεij
)

=
√

(2/3)σ0
√
2 (δεx + δεy)

(3.6.6)

Finally, by expressing the normal strains, εx and εy, in terms of the displacements, one

gets

δWint = 2/(
√
3)σ0 (δεx + δεy)

= 2/(
√
3)σ0

(
∂w0

∂x

∂δw0

∂x
+

∂w0

∂y

∂δw0

∂y

) (3.6.7)

since δεx = ∂w0
∂x

∂δw0
∂x and δεy = ∂w0

∂y
∂δw0
∂y .

3.6.2 Total Virtual Work

Now, the virtual work equation for the simple membrane (with u0 = v0 = 0)∫
V
δWint dv +

∫
V
ρẅ0δw0 dv −

∫
S
p(x, y)δw0 ds = 0 (3.6.8)
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can be expanded as

2/(
√
3)σ0h

∫
S

(
∂w0

∂x

∂δw0

∂x
+

∂w0

∂y

∂δw0

∂y

)
ds+ ρh

∫
S
ẅ0δw0 ds−

∫
S
p(x, y)δw0 ds = 0,

where h is the (uniform) thickness of the membrane, across which all quantities are uni-

form, and ρ is its (uniform) mass density (mass per unit volume). The externally applied

pressure (in the direction of w0) is denoted by p. By performing integration by parts, one

then obtains∫
S

[
−2/(

√
3)σ0h

(
∂2w0

∂x2
+

∂2w0

∂y2

)
− p(x, y) + ρhẅ0

]
δw0 ds = 0, (3.6.9)

in which the assumption that w0 is imposed on the boundary of the membrane requires

that δw0 ≡ 0 on the boundary, which was utilised in arriving at the above result.

3.6.3 The Equilibrium Equation

The equilibrium equation is then obtained by making δw0 arbitrary over the interior of

the membrane area, S, and hence the integrand in Eq. (3.6.9) is required to vanish for the

virtual work to hold for any surface area of the membrane. The equilibrium equation is

2σ0√
3

(
∂2w0

∂x2
+

∂2w0

∂y2

)
+

p

h
= ρẅ0 (3.6.10)

Recall that this equilibrium equation is considered valid for a membrane that is:

(i) Free of in-plane displacements (u0 = v0 = 0), and the strain energy is due (only) to

the transverse displacement w0 being large;

(ii) Made of a rigid-perfectly plastic von Mises material, with uni-axial tensile stress σ0,

and incompressible;

(iii) Subjected to a monotonic loading path (with the initial condition for εij being zero)

and experiencing progressive yielding so that ṡij = 0 throughout the response. That

is, εij = λsij holds.

An alternative approach to derive the equilibrium equation of the simple membrane, which

is made of a rigid-perfectly plastic von Mises material, is provided in Appendix A. Therein,

the general equilibrium equation is chosen as the starting point, then the constitutive rela-

tion (i.e., the total flow rule) is utilised to replace the stresses (in the original equilibrium

equation) with the deformation measures, i.e., the strains and the gradients of the trans-

verse displacement. The final equation of motion is identical to the plastic wave equation,

Eq. (3.6.10), that was derived in the present chapter. That is, the obtained equilibrium

equation is not a mere consequence of the variational principle (whether the virtual work
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or the extended Hamilton’s principles). Although, the application of the variational prin-

ciple (namely, the virtual work as used in the present chapter) is of convenience to derive

the final equilibrium equation systematically and simply. In Section 4.3.2 in Chapter 4,

the extended Hamilton’s principle will be used to re-derive the same equilibrium equa-

tion for the rigid-perfectly plastic von Mises simple membranes. In overall, three different

(yet completely equivalent) approaches have been utilised to obtain the same plastic wave

equation.

The problem of an axi-symmetric circular simple membrane that is made of a rigid-

perfectly plastic von Mises material is addressed in Section B.1.4 of Appendix B. For

such problem, the in-plane displacement is the radial displacement which is considered

zero, and the transverse equilibrium equation is derived in which the factor (2/
√
3)σ0,

also, appears.

The effect of the in-plane displacement on the transverse motion of (general) membranes

is thoroughly discussed for the axi-symmetric circular case in Cloete and Nurick (2014), in

which the authors derive an important result that the in-plane (i.e., the radial) displace-

ment provides a zero total contribution to the total plastic internal work. That is, the

externally imparted energy to the membrane is dissipated through the transverse defor-

mation only. In Section B.2.1 of Appendix B, the original problem of Cloete and Nurick

is reviewed and analysed in detail to guide the reader and also to derive some important

features of the in-plane displacement response, which are direct consequences of the origi-

nal authors’ result. Furthermore, the main idea of Cloete and Nurick that the total plastic

work is completely independent of the in-plane displacement for the axi-symmetric circu-

lar problem is extended, in Section B.2.2 of Appendix B, to make it applicable to general

(e.g., rectangular) membrane problems. The simple membrane kinematics removes the

in-plane displacement effect completely, which is found to be of a practical importance in

determining the stress state and expressing the transverse equilibrium equation in terms of

fixed (or constant) stresses. Again, the simple membrane kinematic’s idealisation is based

on the result of Cloete and Nurick (2014) and its generalisation, which was mentioned

above, as given in Appendix B.1.3.

3.7 Implications of εij = λsij on the Validity of the Solution

When the total form of the flow rule holds, one has εij = λsij , in the rigid-perfectly plastic

von Mises membrane. This relation emerges by integrating the classical “incremental” flow

rule from zero initial conditions (for εij and λ) and by assuming that ṡij = 0. Whenever

the strain rates ε̇ij are non-zero, the stresses have to satisfy the yield condition in the

rigid-plastic membrane. The accumulations (over time) of the non-zero ε̇ij result in non-

zero total strains, εij . Hence, the stresses in the total flow rule, εij = λsij , are required to

satisfy the yield condition when εij are non-zero and when they are changing with respect

to time, (i.e., the instantaneous strain rates, ε̇ij , are non-zero).
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Furthermore, for the condition ṡij = 0 to be valid, the acceleration of the strains, ε̈ij , must

be normal to the yield surface (i.e., aligned with sij) but can be pointing either toward

its exterior or to its interior. The first direction of ε̈ij (i.e., to the exterior of the yield

surface) implies that the strain rates are increasing in magnitude. In contrast, the other

possible direction of ε̈ij corresponds to a decreasing strain rate (in magnitude); this is a

critical scenario as it signals that the response is approaching a critical time instant when

the strain rates reach zero. If strain rates become zero, one cannot require the stresses

to satisfy the yield condition. In particular, the total flow rule is not applicable for the

subsequent response after the critical time instant. When strain rates reverse their sign

(as they pass through zero from the initial phase of response) and continue to become non-

zero, the stresses need to satisfy the yield condition at another point on the surface; recall

that strain rates ε̇ij and stresses sij have to have similar signs (this is direct consequence

of the incremental flow rule, ε̇ij = λ̇sij , and by noting that λ̇ must be non-negative at

all times). Hence, the total form of the flow rule must be established for the new phase

of response, and at this time it must account for the new initial conditions of εij and λ,

which are the final values from the initial phase of the response (just before ε̇ij turned

zero for the first time).

Since the strain rates have not been considered explicitly when the total form of flow rule

is adopted, it is important to identify another quantity that can signal the occurrence of

the critical time instant. One important quantity is the parameter λ, since it is a scalar

and is directly related to the strains εij . If the value of λ starts to decrease, then there

must be a critical time instant. This is because λ is 1/(
√
(2/3)σ0)

√
εijεij , and hence it

measures the magnitude of the strains. When the strains, εij , just start decreasing, they

indicate that the strain rates have just reversed their signs, i.e., they have just passed

through zero. This will make λ begin to decrease. Preventing λ from decreasing is the

idea of watching for the critical time instant. Furthermore, λ is the time integral of λ̇,

and it is λ̇ that must be kept non-negative at all times; that is, λ cannot be allowed to

decrease, and if it does, then the subsequent motion is not correct.

Therefore, the total flow rule, εij = λsij , is valid until λ starts to decrease, this is the

instant of critical time. The response is stopped at this instant, and for the subsequent

motion, a new total flow rule is established in the form of εij = ε
(0)
ij + sijλ− s

(0)
ij λ(0). The

new initial conditions (denoted by the superscript (0)) are the corresponding values just

before the critical time instant. However, the real merit of adopting the total form of the

flow rule (from the practical point of view) is when the whole response is terminated at

the first occurrence of a critical time instant, that is when the entire motion ends at such

time instant so that there is no necessity to use the total form of flow rule with non-zero

initial conditions. In other words, of interest is the case when there is only one phase of

motion that is associated with the total flow rule with zero initial conditions.

For the present problem of the rigid-perfectly plastic simple membrane, it has been shown

that
√
εijεij =

√
2(εx + εy). Hence, λ =

√
3/(σ0)(εx + εy), and the solution based on the

total flow rule is considered valid until this λ starts to decrease. A simplified example of a
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simple membrane that is impulsively loaded and in which the initial velocity is proportional

to the first mode of vibration will be treated in Section 3.9.3. Due to the wave nature of

the equilibrium equation, the (general) solution comprises a combination of (vibrational)

modes, and if the loading term, such as the initial velocity field in an impulsive regime, is

proportional to the shape of a single mode, then the total solution becomes very simple as

the response of this single mode alone. Hence, the notion of the solution termination step

can be clarified analytically therein, where it is related to the evolution of kinetic energy

and the plastic work rate. Further discussion on the importance of the solution termination

step in general and the influence of this step on the prediction of the permanent (or plastic)

response will be revisited in Chapters 4 and 5, and lastly in Section 6.5.

3.8 Implications of εij = λsij on the Stress State of the Simple

Membrane

There are other implications of the total form of flow rule, εij = λsij , namely on the

stress state at yielding of the present simple membrane. It was shown that sz = −p̂, since

σz = 0, and εz = −(εx + εy), due to the incompressibility. Hence, by direct application of

the total flow rule, the deviatoric stress sz is found as

sz =
εz
λ

=
√
(2/3)σ0

εz√
2(εx + εy)

=
√

(2/3)σ0
−(εx + εy)√
2(εx + εy)

=
−1√
3
σ0,

(3.8.1)

which also gives p̂ = −sz = 1/(
√
3)σ0.

Since p̂ = (1/3)(σx + σy), the following result is obtained

σx + σy = 3p̂

=
3√
3
σ0

=
√
3σ0
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From the total flow rule, one also has

sx =
εx
λ

=
√
(2/3)σ0

εx√
2(εx + εy)

=
εx

(εx + εy)

1√
3
σ0

sy =
εy
λ

=
εy

(εx + εy)

1√
3
σ0

sxy =
εxy
λ

=
εxy

(εx + εy)

1√
3
σ0

(3.8.2)

so that, using σx = sx + p̂ and σy = sy + p̂, one can find that

σx = sx + p̂

=
εx

(εx + εy)

1√
3
σ0 +

1√
3
σ0

=
2εx + εy
(εx + εy)

1√
3
σ0

σy = sy + p̂

=
2εy + εx
(εx + εy)

1√
3
σ0

σx + σy =
3εx + 3εy
(εx + εy)

1√
3
σ0

=
√
3σ0

(3.8.3)

By the definition of the in-plane strains, it might be written that ε2xy = εxεy, which, in

fact, was used in deriving
√
εijεij =

√
2(εx+εy). Hence, one also has the following relation

for the shear stress sxy = σxy,

σ2
xy =

(
εxy

(εx + εy)

1√
3
σ0

)2

=
εxεy

(εx + εy)2
1

3
σ2
0

from which one can write

σxy =
±√

εxεy

(εx + εy)

1√
3
σ0, (3.8.4)

where one has two (equally valid) solutions for the σxy.

From the above, it is seen that the stress state is completely determined by the values

of the in-plane normal strains, εx and εy. These strains are given by the derivatives of

the transverse displacement w0, i.e., by εx = (1/2)
(
∂w0
∂x

)2
and εy = (1/2)

(
∂w0
∂y

)2
. Since

these normal strains are always non-negative, then the sum εx+ εy will not be zero unless
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both of these strains are identically zero, i.e., when the membrane is rigid. Hence, the

stress state can be determined whenever the membrane is not rigid, i.e., whenever either

or both of εx and εy are non-zero.

3.8.1 Determination of Stress States for Special Cases of the In-Plane

Strains

3.8.1.1 In-Plane Stresses

According to the above relations, Eqs. (3.8.3) and (3.8.4), important special cases of the

stress states can be studied based on the values of the in-plane normal strains:

Case (A): εy = 0 and εx 6= 0.

For this case, one obtains

εxy = ±√
εxεy = 0

σxy = 0

σx =
2√
3
σ0

σy =
1√
3
σ0 =

1

2
σx

σx + σy =
3√
3
σ0 ≡ 3p̂ =

√
3σ0

Case (B): εx = 0 and εy 6= 0.

For this case, one obtains

εxy = ±√
εxεy = 0

σxy = 0

σx =
1√
3
σ0

σy =
2√
3
σ0 = 2σx

σx + σy =
3√
3
σ0 ≡ 3p̂ =

√
3σ0

Case (C): εx = εy 6= 0.
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For this case, one obtains

εxy = ±εx = ±εy

σxy =
±εx
(2εx)

1√
3
σ0 =

±1

2

(
1√
3
σ0

)

σx =
3

2
√
3
σ0 =

√
3

2
σ0

σy = σx =
3

2
√
3
σ0 =

√
3

2
σ0

σx + σy =

(√
3

2
σ0 +

√
3

2
σ0

)
≡ 3p̂ =

√
3σ0

It should be pointed out that the stress state can not be determined when εx and εy are

both zero because the structure is rigid in this case. As soon as either or both of these

in-plane normal strains deviate from zero, then one says that the membrane is yielding and

hence its stress state (which has to be satisfying the yield condition) can be determined,

as it has been shown for the special cases above and also by the general relations in terms

of the arbitrary (but non-zero) values of these normal strains. Recall, again, that these

strains are non-negative (from their dependence on the square of the derivates of w0), and

hence their sum, which appears in the denominator of the above relations, can not be zero

unless the membrane is rigid.

3.8.1.2 Principal In-Plane Stresses

As it was shown, above, the stress state (σx, σy, σxy) can be determined once at least

one of the normal strains is non-zero. Then, use can be made of Mohr’s circle to further

determine the values of the principal stresses and the orientations of the principal axes.

In particular, one can do so for the above important special cases, A, B, and C, for which

the stress states, i.e., the triplets (σx, σy, σxy), are fixed values that are proportional to

the uni-axial tensile yield stress σ0 (the dependency of the in-plane stresses on the normal

strains disappear for those special cases).

The largest (in-plane) principal stresses will be denoted by σ1 and the other by σ2, and

thus one has σ1 ≥ σ2 as a convention. Then, recall that for a plane-stress problem,

a Mohr circle is drawn in the space of normal stress σ and shearing stress τ , where the

horizontal axis is the normal stress, and the vertical axis is the shearing stress, see Fig. 3.2.

The procedure of principal stress analysis for plane-stress problems can be found in any

standard engineering textbook on the mechanics of materials.

Furthermore, the centre of the circle always lies on the horizontal axis. An arbitrary stress

state, characterised by the triplet (σx, σy, σxy), is a point on the Mohr’s circle. The in-

plane principal stresses are the abscissas of the (two) special points on the circle where
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Fig. 3.2. A generic Mohr's circle for plane-stress. The important parameters de�ning the stress state are
shown. A general plane-stress state, i.e., with arbitrary triplet σx, σy, σxy, completely de�nes the centre of

the Mohr's circle
(
1
2
[σx + σy], 0

)
, its radius

(
R =

√
[ 1
2
(σx − σy)]2 + σ2

xy

)
, and an angle (2θ); by geometry,

tan (2θ) = σxy/[
1
2
(σx − σy)]. The principal stresses σ1 and σ2 are also determined, as the abscissas of two

extreme points of the circle as it intersects the horizontal axis. The angle (2θ) determines the inclination
of the largest principal stress σ1 axis with the x-axis. Note that, in this �gure, it is implied that σx ≥ σy.

there are no shearing stresses. The principal stress states are, thus, the two extreme points

on the circle where the circle intersects the horizontal axis since this axis is the line of zero

shear stress. Hence, by geometry, σ1 equals the abscissa of the coordinate of the circle’s

centre plus the radius of the circle. Also, σ2 equals the abscissa of the circle’s centre minus

the radius of the circle.

The abscissa of the centre is the average of σx and σy, or (1/2)(σx + σy). The radius of

the circle is
√

[(σx − σy) /2]
2 + σ2

xy. So, once σx, σy and σxy are known, one can find the

abscissa of the centre and the radius of the Mohr circle, and, in turn, the values of the

principal stresses σ1 and σ2. Note that since the present problem is a plane-stress, then the

abscissa of the centre, (1/2)(σx + σy), is always given by (1/2)(σx + σy) = (3/2)p̂, which

for the present rigid-perfectly plastic membrane corresponds to 3/(2
√
3)σ0 =

√
3/(2)σ0.

Therefore, the principal stresses for the three special cases, A, B, and C, are:

Case (A): εy = 0 and εx 6= 0.

It was shown that

σxy = 0

σx =
2√
3
σ0

σy =
1√
3
σ0 =

1

2
σx

Thus, the abscissa of the centre of Mohr’s circle is (1/2)(σx + σy) =
√
3/(2)σ0.

And, the radius of the circle is

√[
1/(2

√
3)σ0

]2
= 1/(2

√
3)σ0. Therefore, the
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principal stresses are

σ1 =
√
3/(2)σ0 + 1/(2

√
3)σ0 = 2/

√
3σ0 = σx

σ2 =
√
3/(2)σ0 − 1/(2

√
3)σ0 = 1/

√
3σ0 = σy

Furthermore, the principal shear stress is τmax = ±1/(2
√
3)σ0. Note that since

σxy = 0 for the present case, then σ1 = σx and σ2 = σy. The geometric axes

x and y are the principal stress axes. The principal shear direction is at 45o

degrees with respect to principal stress σ1 axis, which is the x axis in this case.

Case (B): εx = 0 and εy 6= 0.

It was shown that

σxy = 0

σx =
1√
3
σ0

σy =
2√
3
σ0 = 2σx

Again, the abscissa of the centre is
√
3/(2)σ0, and the radius of Mohr’s circle for

the present case is

√[
−1/(2

√
3)σ0

]2
= 1/(2

√
3)σ0. From these, one obtains,

for the principal stresses, the following

σ1 =
√
3/(2)σ0 + 1/(2

√
3)σ0 = 2/

√
3σ0 = σy

σ2 =
√
3/(2)σ0 − 1/(2

√
3)σ0 = 1/

√
3σ0 = σx

where have retained our convention that σ1 ≥ σ2. According to the above, it is

seen that σ1 = σy and σ2 = σx. The direction of the largest principal stress σ1

is the geometric y axis, and the second principal axis coincides with the x axis.

The principal shear stress is again τmax = ±1/(2
√
3)σ0, as in the previous case

A. The direction of principal shear stress is at 45o degrees with respect to the

principal stress σ1 axis, which is the y axis in the present case.

Case (C): εx = εy 6= 0.
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It was shown that

σxy =
±1

2

(
1√
3
σ0

)

σx =

√
3

2
σ0

σy = σx =

√
3

2
σ0

The abscissa of the centre is as before, i.e.,
√
3/(2)σ0. For the present case, the

radius of the circle is simply the absolute value of σxy, since σx = σy. That

is, the radius is 1/(2
√
3)σ0. Since σx = σy =

√
3/(2)σ0, which is the abscissa

of the centre, then for the present case, the stress state is the principal shear

stress state, the points on the circle that is directly above its centre. Thus,

τmax is simply the absolute value of σxy. Furthermore, the principal normal

stresses, σ1 and σ2 are found as

σ1 =
√
3/(2)σ0 + 1/(2

√
3)σ0 = 2/

√
3σ0

σ2 =
√
3/(2)σ0 − 1/(2

√
3)σ0 = 1/

√
3σ0,

which are numerically the same as in all the previous cases, A and B. However,

the direction of the principal (normal) stress, σ1, the axis is rotated at 45o to

the x axis. The direction of the second principal stress, σ2, makes 90o + 45o

angle with respect to the x axis. Note that for the present case, the geometric

axes x and y are the directions of principal shear stresses.

From the above considerations, it is seen that the numerical values of the principal stresses

are all the same. However, the directions of the principal stresses σ1 and σ2 vary in each

of these cases. The largest principal stress, σ1, axis is the x-axis when εy = 0; it is the

y-axis when εx = 0; and it makes equal (45o degrees) angles with the x and y-axes when

εx = εy.

3.8.2 Principal Stresses for the General Strain Case

Based on the observation that the numerical values of the principal stresses are fixed for

the three special cases discussed in the previous subsection, focus in the following is on

their values for the general case when the normal strains εx and εy are arbitrary (but not

both zero simultaneously). By the definition of the principal stresses in plane-stress, one
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has

σ1 =
1

2
(σx + σy) +R

=
3

2
p̂+R,

σ2 =
1

2
(σx + σy)−R

=
3

2
p̂−R,

(3.8.5)

where R is the radius of Mohr’s circle, and the common first term in both equations is

the abscissa of the centre of the circle. It was already found that p̂ = 1/(
√
3)σ0. Thus,

to determine the principal stresses, one needs to evaluate R. From the geometry of the

Mohr’s circle, R is

R =

√(
σx − σy

2

)2

+ σ2
xy, (3.8.6)

where it is seen that the signs of both (σx − σy) and σxy are not important, since each

term will be squared. From the earlier relations for the three in-plane stresses, σx, σy, and

σxy, in terms of the normal strains εx and εy, namely

σx =
2εx + εy
εx + εy

1√
3
σ0

σy =
2εy + εx
εx + εy

1√
3
σ0

σxy =
±√

εxεy

εx + εy

1√
3
σ0

one finds that (
σx − σy

2

)2

=
(1/4)(εx − εy)

2

(εx + εy)2

(
1√
3
σ0

)2

σ2
xy =

εxεy
(εx + εy)2

(
1√
3
σ0

)2

and, hence, (
σx − σy

2

)2

+ σ2
xy =

(1/4)(εx + εy)
2

(εx + εy)2

(
1√
3
σ0

)2

=

(
1

2
√
3
σ0

)2
(3.8.7)
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Therefore, one has for the radius of Mohr’s circle, (for arbitrary εx and εy),

R =

√(
σx − σy

2

)2

+ σ2
xy

=
1

2
√
3
σ0

(3.8.8)

Finally, the principal stresses, σ1 and σ2, are

σ1 =
3

2
p̂+R

=
3

2
√
3
σ0 +

1

2
√
3
σ0

=
2√
3
σ0

σ2 =
3

2
p̂−R

=
3

2
√
3
σ0 −

1

2
√
3
σ0

=
1√
3
σ0

(3.8.9)

where σ1 is (by convention) the largest principal stress, i.e., σ1 > σ2. The above general

solution agrees with all the special cases. Thus, it is shown that σ1 is always 2/(
√
3)σ0

and σ2 = 1/(
√
3)σ0 = (1/2)σ1 = p̂. The numerical values of the two principal stresses

are fixed irrespective of the amount of the normal strains εx and εy, provided that these

strains are not both zero; the membrane is rigid if one has εx = εy = 0, and hence there

is no requirement that the yield condition is satisfied, which in turn means that the stress

state cannot be determined.

In summary, in the two-dimensional σ1-σ2 space, the membrane (if yielding) is at a fixed

point on the yield curve, namely the point (σ1, σ2) = (2/
√
3σ0, 1/

√
3σ0), during the whole

response. This is in agreement with the earlier assumption that the membrane is yielding

at the same yield point on the yield surface so that ṡij = 0, which led to the total form of

flow rule, εij = λsij .

From the above analysis, a further observation is noted. By the definition of the principal

stresses, the shearing stress in the principal orientation is zero; an element of the membrane

is subjected to the two normal principal stresses, σ1 and σ2, which are purely normal

stresses. From the flow rule, there is no shear strain (because there is no shear stress) in

the principal orientation. Furthermore, it can be verified that the yield curve in the σ1-σ2

has a normal that is parallel to the σ1 axis at the point (2/
√
3σ0, 1/

√
3σ0) (on the curve).

To illustrate this, recall that the equation of von Mises yield condition (see Fig. 3.3) in
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terms of the in-plane principal stresses is

1

2

[
(σ1 − σ2)

2 + σ2
1 + σ2

2

]
− σ2

0 = f(σ1, σ2) = 0 (3.8.10)

then, the normal to the yield curve, f(σ1, σ2) = 0, has the components

n1 =
∂f

∂σ1
= 2σ1 − σ2

n2 =
∂f

∂σ2
= 2σ2 − σ1

So, at the stress point (σ1, σ2) where σ1 = 2/
√
3σ0 and σ2 = 1/

√
3σ0 = (1/2)σ1, the

normal has the components n1 = (3/2)σ1 =
√
3σ0 and n2 = 0. Therefore, the component

of the normal along σ2 is n2 = 0; hence, the normal vector is parallel to σ1 at the point

given by σ1 = 2/
√
3σ0 and σ2 = 1/

√
3σ0. The von Mises yield curve, corresponding to

the equation f(σ1, σ2) = 0, is shown in Fig. 3.3, where the point (σ1, σ2) =
(

2√
3
σ0,

1√
3
σ0

)
and the outward normal (to the curve) at it are shown. The reader is referred to Chen

and Han (1988) for derivation of the equation of von Mises yield condition in the principal

space.
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Fig. 3.3. Von Mises yield curve in the in-plane principal stress σ1-σ2 space. The outward normal to the
curve at the point (2/

√
3σ0, 1/

√
3σ0), which is shown as the small blue circle, is drawn. This indicates

that the normal is identically parallel to the σ1 axis. The principal stress state of the membrane is the
point shown here, i.e., the blue circle. The equation displayed in the �gure is the von Mises condition for
the plane-stress case and is expressed in terms of the principal stresses σ1 and σ2. σ0 is the uni-axial yield
stress in tension.

Then, from the flow rule, the normal strain along the direction of σ2 must be zero, because

the strains must be normal to the yield curve but the component of the normal to the

curve along σ2 is zero as demonstrated above. In other words, the element of the material

is under a state of uni-axial stretch (uni-axial strain) in the direction of the σ1 stress, i.e.,
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along the first (or largest) principal axis.

However, from the computational perspective, determining the orientation of the first

principal axis (with respect to the Cartesian axis x) requires evaluating the Cartesian

stresses σx, σy, and σxy (through the relative values of the normal strains εx and εy; it is

the ratio εx to εy, or its inverse, that matters). Nevertheless, from the material behaviour

point of view, the membrane is subjected to a uni-axial stretch along its first principal

(stress) axis at every point on the membrane during the whole response whenever the

membrane is subjected to progressive yielding, and the stress state is σ1 = 2/(
√
3)σ0 and

σ2 = (1/2)σ1.

3.8.3 Principal Directions for the General Strain Case

By the geometry of the Mohr’s circle, given an arbitrary (plane-) stress state characterised

by the triplet (σx, σy, σxy), the directions of the principal axes can be determined. Denoting

the angle of the largest principal stress σ1 with respect to the Cartesian x axis by θ, and

the radius of the Mohr’ circle by R, as given earlier, one can determine θ by one of the

following equivalent relations

tan(2θ) =
σxy

(σx − σy) /2

=
2εxy

εx − εy

sin(2θ) =
σxy
R

=
εxy

εx + εy

cos(2θ) =
(σx − σy) /2

R

=
εx − εy
εx + εy

,

(3.8.11)

where substitutions have been made of the expressions of the stress quantities in terms

of the normal strains εx and εy according to the total form of the flow rule, which was

given earlier. The direction of the second principal stress σ2 is obtained as θ + (π/2) (in

radians). The direction of principal shear stress ±τmax is obtained as θ ± (π/4). Herein,

θ is the angle of σ1 axis, as defined above. Therefore, once the normal strains εx and εy

are given, the directions of principal stresses axes can be determined.

Note that although the above expressions for θ should give identical results. However,

due to the periodicity of the trigonometric functions, the signs of the values of θ might be

different. Thus, it is recommended that the angle is determined by the tangent relation,

i.e., by tan(2θ), as it preserves the sign of the angle so that it covers the range [−π/2−π/2]

for θ. Hence, in practice, one should use tan(2θ) to calculate θ.
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Now, from the definition of the in-plane strains, εx, εy, and εxy, in terms of the derivatives

of the transverse displacement w0, one can write

tan(2θ) =
2εxy

εx − εy

=
2
[
(1/2)∂w0

∂x
∂w0
∂y

]
(1/2)

[(
∂w0
∂x

)2
−
(
∂w0
∂y

)2]
=

2e

1− e2

(3.8.12)

where it has been defined that

e =

(
∂w0

∂y

)
/

(
∂w0

∂x

)
(3.8.13)

The quantity e is the ratio (εxy/εx), and its square is e2 = (εy/εx). Therefore, it is seen

that the direction of the first principal stress, σ1, depends only on the ratio of the in-plane

strains, i.e., through e and e2, but not their actual magnitudes. It is worth mentioning

that the case when both ∂w0
∂x and ∂w0

∂y are simultaneously zero should be excluded since it

implies that εx and εy are both zero and hence the membrane is rigid (so its stress state

can not be determined).

From the practical point of view, it can be observed that the angle θ can also be determined

by considering a right triangle, with hypotenuse’s length of (1 + e2), an adjacent side’s

length of (1 − e2), an opposite side’s length of (2e), and the angle between the adjacent

side and the hypotenuse being (2θ).

According to the relation, tan(2θ) = (2e)/(1 − e2), some observations can be made: (i)

when (2e) and (1− e2) are both positive, one has 0 ≤ 2θ ≤ π/2; (ii) when these are both

negative, then one has π ≤ 2θ ≤ 3π/2; (iii) when 2e is positive while (1 − e2) negative,

then π/2 ≤ 2θ ≤ π; (iv) and lastly when 2e is negative while (1 − e2) positive, then

3π/2 ≤ 2θ ≤ 2π.

By letting e varies over the entire range [−∞,+∞], θ can be obtained from

θ =
1

2
tan−1

(
2e

1− e2

)
, (3.8.14)

the graph of which is depicted in Fig. 3.4.

The expression for θ can be simplified further as follows. Since tan(2θ) can be expressed

as

tan(2θ) =
2 tan(θ)

1− tan2(θ)
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Fig. 3.4. Orientation, θ, of the �rst principal stress σ1 (with respect to the x-axis) as a function of the
ratio e of the in-plane strains, e = εxy/εx, and e2 = εy/εx. As e → ±∞ implies εx → 0, but εy must be
�nite (and hence σ1 is aligned with the y axis); θ → ±π/2 as e → ±∞. As e → 0 implies εy → 0, but
εx is �nite (and hence σ1 is aligned with the x axis). As e = ±1 implies εx = εy (and hence σ1 makes
equal angles (of π/4 or 45o) with the two axes x and y). The value of σ1 is �xed at 2/

√
3σ0, and only its

direction varies from point to point on the membrane (and this variation of orientation is controlled solely
by the relative magnitude of the actual in-plane strains, as indicated by the dependence of θ on e. The
strains must be normal to the yield surface (from the material point of view) and must be compatible with
each other and with the derivatives of the displacement. So the orientation of the �rst principal stress
varies to make all these conditions satis�ed throughout the response.)

for any θ, then one can infer from

2 tan(θ)

1− tan2(θ)
≡ tan(2θ) =

2e

1− e2

the following practical relation

tan(θ) = e (3.8.15)

Therefore, one has

θ = tan−1(e)

This last relation clearly gives the values of θ for the following special cases: when e = −∞,

then θ = −π/2; when e = ∞, one has θ = π/2; when e = 0, one has θ = 0 (or θ = π);

when e = 1, then θ = π/4; and when e = −1, then θ = −π/4.

Recall that the case when both εx (or ∂w0
∂x ) and εy (or ∂w0

∂y ) are zero represents a rigid

material and, hence, the determination of the stress state can not be made (since the yield

condition can not be said to be satisfied). So the fact that the ratio e = (∂w0
∂y )/(∂w0

∂x ) can

not be evaluated when both the denominator and numerator are zero is associated with

the membrane being rigid and its yield condition needs not be satisfied (and hence the

stress state, including the direction of the principal axis, can not be predicted).

The trajectories of first principal stress, σ1, are defined by the (differential) equation

dy1/dx = tan (θ), and those of the second principal stress, σ2, are given by dy2/dx =

tan (θ + π/2). It was derived that tan (θ) = e, and tan (θ + π/2) = −1/ tan (θ) = −1/e.

Therefore, the two families of trajectories (of σ1 and σ2) are mutually orthogonal because
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their dot product is zero (note that dy1 = e dx and dy2 = −1/(e) dx) as shown below

dx2 + dy1dy2 = dx2 + (e dx) [−1/(e) dx]

=
(
1− e

e

)
dx2

= 0

3.8.4 Remarks on the Determination of the Stress States

When the equilibrium equation was derived, in previous sections, the starting point was

the principle of virtual work, then it was specialised for the case when the yield condition

of von Mises is satisfied, and then the compatibility of strains and incompressibility of

the material were utilised. Furthermore, use has been made of the assumption that the

total strains are associated with the deviatoric stresses that satisfy the yield condition, and

hence the strains obey the normality rule; this was made by assuming the total form of flow

rule to hold. Thus, the obtained equilibrium equation already includes the satisfaction of

the yield condition (namely sijsij = (2/3)σ0), the normality of the total strains (namely

εij = λsij), and compatibility of the in-plane strains (namely εxy = ±√
εxεy), and the

incompressibility (namely εz = −(εx+ εy)). Therefore, the obtained equilibrium equation

accounts for all the aspects of the response as long as the yielding of the material is taking

place. Once yielding stops, the equilibrium equation becomes not applicable. That is,

when the material is actively yielding (or under progressive yielding), one only needs to

solve the obtained equilibrium equation without the need to determine the stress state in

the Cartesian x and y axes. The foregoing discussion of evaluating the principal stresses

and the orientations of their axes only provides additional information that is important

when needed. It does not affect the form of the equilibrium equation that one needs to

solve to obtain the response, the transverse displacement w0 of the membrane.

When the solution w0 is obtained (by solving the equilibrium equation), one can determine

the ratio e =
(
∂w0
∂y

)
/
(
∂w0
∂x

)
. Thus, the principal directions θ (of σ1) and θ + 90o (of σ2)

become available. Note that since w0 is a function of (x, y, t), then so are the strains, εx

and εy, and the angles θ and θ + 90o. That is, in general, the directions of the principal

stresses are time-dependent, i.e., dynamic.

However, once again, the solution w0 of the equilibrium equation is valid as long as the

material is under active yielding. It has been discussed earlier that there is a critical time

instant at which the equilibrium equation becomes invalid because the already assumed

form of the total flow rule is not correct. It also was discussed that the critical time

instant can be identified when λ starts to decrease. For our (rigid-perfectly plastic) simple

membrane problem, λ =
√
3/(σ0)(εx + εy), so that it is proportional to (εx + εy). So, the

response w0 that is obtained by solving the equilibrium equation is valid until the instant

of time when (εx + εy) just starts to decrease. The strain rates are temporarily zero at

that instant, and the membrane is instantaneously rigid. Thus, the total strains can not
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decrease in magnitude. So, for the next phase of response, the additional total strains are

zero (only the initial strains from the end of the last phase are finite). When the strain

rates reverse their signs, all the active stresses must reverse their signs. The new reversed

stresses cancel out the initial stresses (that are associated with the total strains by the end

of the first phase), and hence the membrane is forced to remain in a permanent deformed

state, provided that there are no external forces that lead to imbalance in the established

equilibrium between the two opposing stresses. In summary, in the absence of external

forces, whenever λ starts to decrease, the membrane has reached its final deformation

state, and the entire motion will end at the first occurrence of this specific (critical) time

instant.

3.9 A Simpli�ed Example of an Impulsively Loaded Simple

Membrane

3.9.1 General

In this section, a simple example is considered as a rectangular simple membrane under

an impulsive loading. The equilibrium equation then takes the following form

c2p

(
∂2w0

∂x2
+

∂2w0

∂y2

)
= ẅ0 (3.9.1)

where

c2p =
2σ0√
3ρ

(3.9.2)

It is assumed that the membrane is fixed at its outer edges and its initial displacement is

zero, w0(x, y, 0) = 0. The lengths of the membrane are Lx and Ly along x and y, and one

corner of the membrane is taken as the origin of the x and y axes. Then, the boundary

conditions are w0(0, y, t) = w0(Lx, y, t) = w0(x, 0, t) = w0(x, Ly, t) = 0.

As stated above, the membrane is impulsively loaded so that its initial velocity is given

by

ẇ0(x, y) =
i(x, y)

ρh
, (3.9.3)

where i(x, y) is the specific impulse (as would be generated from a blast), and h is the

membrane’s thickness. This dynamic initial condition model, Eq. (3.9.3), and its basis

will be discussed in Chapter 4.

The response w0 is the one that solves the above equilibrium equation as long as λ is

increasing. Since the equilibrium equation is initially linear in w0, and it is a wave equation,

the general solution (with zero initial displacement) is used, which is given in terms of the
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well-familiar Fourier expansion. This solution is given by

w0(x, y, t) =
1

ρh

∞∑
m=1

∞∑
n=1

Imn

ωmn‖φmn(x, y)‖2
φmn(x, y) sin (ωmnt) (3.9.4)

where

φmn(x, y) = sin

(
mπx

Lx

)
sin

(
nπy

Ly

)

ωmn = cp

√
(mπ/Lx)

2 + (nπ/Ly)
2

Imn =

∫ Ly

0

∫ Lx

0
i(x, y)φmn(x, y) dx dy

‖φmn(x, y)‖2 =
LxLy

4

(3.9.5)

The method of obtaining the solution and discussion of the various parameters will be

given in great detail later in Chapter 4.

For our present purpose of investigating the response of a simple example, the simplest

form of a specific impulse i(x, y) is used such that it is proportional to the first mode

shape, i.e., φmn(x, y) with m = n = 1. The first mode shape is denoted by φ1,1(x, y) by

φ1(x, y) for simplicity. That is, i(x, y) is taken to be

i(x, y) = a0φ1(x, y) = a0 sin

(
πx

Lx

)
sin

(
πy

Ly

)
,

where a0 is some non-zero constant that gives the central amplitude of the specific impulse.

For this particular choice of i(x, y), one then have

Imn =

 a0 (LxLy/4) ≡ a0‖φmn(x, y)‖2, when m = n = 1

0, otherwise

Note, as seen in the above, that all modal contributions will vanish except one single mode

which is the first (since the forcing function, i.e., the specific impulse, spatially matches

the first mode). Thus, the exact solution will be the first mode solution, and thus it is the

simplest solution for the present simple investigation.
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3.9.2 Membrane's Response Under Speci�c Impulse That Is Propor-

tional to the First Mode Shape

Hence, the solution w0, when i(x, y) = a0φ1(x, y), takes the following simple form

w0(x, y, t) =
a0
ρhω

φ1(x, y) sin(ωt)

=
a0
ρhω

sin(kxx) sin(kyy) sin(ωt)

(3.9.6)

where it has been defined that

φ1(x, y) = sin(kxx) sin(kyy),

kx = π/Lx,

ky = π/Ly,

ω = cp

√
k2x + k2y = cp

√
(π/Lx)2 + (π/Ly)2,

and it is emphasised that this is the exact solution of an impulsively loaded membrane

when i(x, y) = a0 sin(kxx) sin(kyy) = a0φ1(x, y), as assumed earlier, and it is valid until λ

starts to decrease, or equivalently when (εx + εy) starts to decrease as time evolves.

3.9.3 Determination of the Critical Time Instant

From the solution of our simple example, the normal strains, εx = (1/2)
[
∂w0
∂x

]2
and

εy = (1/2)
[
∂w0
∂y

]2
, can be found (by direct differentiation) as

εx =
1

2

(
∂w0

∂x

)2

=
1

2

(
kxa0
ρhω

)2

cos2(kxx) sin
2(kyy) sin

2(ωt)

εy =
1

2

(
∂w0

∂y

)2

=
1

2

(
kya0
ρhω

)2

sin2(kxx) cos
2(kyy) sin

2(ωt)

and, hence, their sum is

εx + εy =
1

2

(
a0
ρhω

)2 [
k2x cos

2(kxx) sin
2(kyy) + k2y sin

2(kxx) cos
2(kyy)

]
sin2(ωt)

Taking the derivative of the above relation, i.e., for the sum of εx and εy, with respect to

time t, one then has

∂

∂t
(εx + εy) =

1

ω

(
a0
ρh

)2 [
k2x cos

2(kxx) sin
2(kyy) + k2y sin

2(kxx) cos
2(kyy)

]
sin(ωt) cos(ωt)
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Thus, it can be seen that (εx + εy) will start to decrease (for the first time) when

[sin(ωt) cos(ωt)] turns negative for the first time. This latter condition is reached when

cos(ωt) becomes zero for the first time since the cosine becomes negative thereafter while

the sine is still positive. Hence, the solution is terminated at the critical time instant t∗,

which now is defined by

cos(ωt∗) = 0,

which gives

t∗ =
π

2ω
, (3.9.7)

since this corresponds to the instant just before the first occurrence when cos(ωt) turns

negative, and hence εx + εy will start to decrease. Note that ω is a structural constant,

ω = cp
√

(π/Lx)2 + (π/Ly)2, as given earlier, i.e., it is independent of the loading.

From the above, it is noted that the solution is terminated at one-quarter of the mem-

brane’s fundamental period, T , which is defined as T = 2π/ω. That is,

t∗ =
T

4
(3.9.8)

Since t∗, as defined, is the termination time at which the (transient) solution is terminated,

then the membrane is allowed to complete only one-fourth of the modal cycle.

It might be more practical to redefine the critical time instant discussed above. For

this purpose, it is noted that the condition when λ (and hence εx + εy) stops increasing

is equivalent to the condition that the kinetic energy stops decreasing. This is because

(2/3)σ2
0λ =

√
(2/3)σ0

√
εijεij is the internal work (due to plastic deformation), which then

must balance with the kinetic energy (in the absence of external work due to external

forces). Hence, the time instant when λ starts to decrease is the time instant when the

kinetic energy starts to increase after having reached zero. Therefore, the critical time

instant can be (equivalently) defined to be when the kinetic energy reaches zero and its

time rate is instantaneously zero. Now, for the current simple example, the local kinetic

energy is

Ek = (1/2)ρẇ2
0

and its time derivative is

Ėk =
∂Ek

∂t
= ρẇ0ẅ0

From the solution of the present example, namely w0 = a0/(ρh)φ1(x, y) sin(ωt), it can

be shown that Ek is proportional to cos2(ωt), and Ėk is proportional to [sin(ωt) cos(ωt)].

So, when the critical time instant, t∗ is defined to be when both Ek and its time rate

Ėk are both zero, then one should have cos(ωt∗) = 0 as the condition of the occurrence

of the critical time instant t∗. This directly leads to t∗ = π/(2ω), which agrees with the

earlier (equivalent) definition based on λ (and hence εx+εy) attaining its maximum. Note

that when cos(ωt) = 0 means the velocity, ẇ, is zero. For the present simple example,
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the response is represented by a single mode response, which is the first mode, and hence

when the cos(ωt∗) becomes zero, then all points on the membrane have zero velocities

simultaneously; thus, t∗ is the time when the whole membrane reaches its final permanent

deformed shape.

3.9.4 Directions of the Principal Stresses

The determination of the principal stress direction is to be discussed next. Letting θ be

the angle that the axis of the principal stress makes with the Cartesian x axis, it is given

by

tan(2θ) =
2εxy

εx − εy

=
2
[
(1/2)∂w0

∂x
∂w0
∂y

]
(1/2)

[(
∂w0
∂x

)2
−
(
∂w0
∂y

)2]
=

2e

1− e2

where it was defined

e =

(
∂w0

∂y

)
/

(
∂w0

∂x

)
,

where εxy/εx, and its square is e2 = εy/εx. Before e is evaluated, it is convenient to

re-write the solution w0 as

w0(x, y, t) = α(t) sin(kxx) sin(kyy)

where

α(t) ≡ a0
ρhω

sin(ωt)

Hence, one can evaluate the first derivatives ∂w0
∂x and ∂w0

∂y as

∂w0

∂x
= αkx cos(kxx) sin(kyy)

∂w0

∂y
= αky sin(kxx) cos(kyy)
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and from which

e =

∂w0
∂y

∂w0
∂x

=
αky sin(kxx) cos(kyy)

αkx cos(kxx) sin(kyy)

or,

e =
(1/kx) tan(kxx)

(1/ky) tan(kyy)

=
Lx tan(kxx)

Ly tan(kyy)

Thus, the direction of the largest principal stress σ1 can be found from

tan(2θ) =
2e

1− e2

However, as was discussed in the previous sections, since tan(2θ) = 2e/(1 − e2) and also

tan(2θ) ≡ 2 tan(θ)/(1− tan2(θ)) for any θ, then one simply has tan(θ) = e. That is,

tan(θ) = e

=
(1/kx) tan(kxx)

(1/ky) tan(kyy)

(3.9.9)

From the above, θ can be determined at every point (x, y) on the membrane. Note that e

is not a function of time t since the dependence on t of εx, εy, and εxy are identical, and

θ depends on the relative values of the in-plane normal strains (or their ratios given by e

and e2). For the same reason, θ does not depend on the amplitude of the specific impulse,

a0, either; it depends on the spatial shape of i(x, y). It is helpful to recognise that when

the specific impulse matches one of the mode shapes of the membrane (as it was made, in

this example, to match the first mode in particular), then the solution is a standing wave

solution, in which the deformed shape is time-invariant and given by the modal shape. In

other words, the spatial variation is fixed as time evolves, and only the amplitude depends

on time. Hence, the strains are temporally similar. Consequently, the field of θ is fixed as

time changes. Again, this is due to the assumption of making the specific impulse as one

of the modes, i.e., when the response is a standing wave.

The angle of the direction of the second principal stress σ2 is simply θ + π/2, in radians.

From the previous section, it was established that σ1 = 2/(
√
3)σ0 and σ2 = 1/(

√
3)σ0,

where σ0 is the uni-axial yield stress. That is, the two principal stresses are constants; only

their orientations vary over the membrane area. As can be seen from the above expression

for θ, the orientation of the principal stress axis purely depends on the planar geometry
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of the membrane (not on its material nor the thickness of the membrane).

3.9.4.1 First Principal Stress σ1 Direction

Next, when the first principal stress axis is denoted by x1. So, since x1 makes angle θ with

the Cartesian x axis, one can write

dx = dx1 cos(θ)

dy = dx1 sin(θ)

dy

dx
= tan(θ) = e

To plot the trajectory of the first principal stress, a numerical method can be used. First,

one can evaluate θ at many points (x, y) on the membrane. Then, one chooses an arbitrary

but small length for dx1, say 0.05 (or so), and use it for all points; the arbitrary length dx1

can be adjusted based on the density (or spacing) of the points (x, y). Then, dx and dy

are calculated at these points according to dx = dx1 cos(θ), and dy = dx1 sin(θ). Finally,

one can plot (at every point (x, y)) the small straight lines (which can be made with start

and end markings), the run of each of which is dx and the rise dy. This will result in a

vector plot, known as quiver in Matalb. Thus, one has (an approximate and discrete)

graphical representation of the directions of the principal stress σ1. With refinement,

i.e., increasing the number of points (x, y), the resulting graph would become closer to

matching the continuous curves that solve the ordinary non-linear differential equation,
dy
dx = tan(θ) = e, in which θ = θ(x, y) is known function of x and y, as given previously

for our simple example.

Knowing the direction of the first principal stress can be of direct interest as it is the

direction along which the largest stress 2/
√
3σ0 is applied and along which the membrane

experiences uni-axial stretch. Hence, it is the direction where the membrane may need

additional strengthening; that is, along θ, the membrane needs most of its resistance.

From tan(θ) = e, and since dy
dx = tan(θ) = e, one can, then, write

dy

dx
=

(1/kx) tan(kxx)

(1/ky) tan(kyy)

and from which one obtains

sin(kyy)dy

ky cos(kyy)
=

sin(kxx)dx

kx cos(kxx)

The last equation can be manipulated slightly to make it of a familiar form,

−ky sin(kyy)dy

k2y cos(kyy)
=

−kx sin(kxx)dx

k2x cos(kxx)
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Hence, by letting v = cos(kyy) (and v0 = cos(kyy0)), and u = cos(kxx) (and u0 =

cos(kxx0)), one has
1

k2y

dv

v
=

1

k2x

du

u

The solution of the above separable differential equation is

1

k2y
ln

(
v

v0

)
=

1

k2x
ln

(
u

u0

)
,

where the initial conditions u0 and v0 were given above. This solution can be simplified

further by

ln

[(
v

v0

)(−k2y)
]
= ln

[(
u

u0

)(−k2x)
]

and, hence, by exponentiating both sides (to remove the natural logarithms), one finds

(
v

v0

)(−k2y)

=

(
u

u0

)(−k2x)

,

where v = cos(kyy), v0 = cos(kyy0), u = cos(kxx), and u0 = cos(kxx0). The point (x0, y0)

is any arbitrary point on the membrane through which a curve y = y(x) passes. For every

point (x0, y0), there is a unique curve; hence, overall one has a family of such curves.

These are the trajectories (or locus) of the principal stress σ1 axis.

By substituting the expressions for u and v (and their initial values) in terms of x and

y (and their initial values x0 and y0), an explicit expression for y(x) that passes through

(x0, y0) is obtained

cos(kyy)

cos(kyy0)
=

[
cos(kxx)

cos(kxx0)

]( ky
kx

)2

(3.9.10)

which leads to

y(x;x0, y0) = ± 1

ky
cos−1

cos(kyy0) [ cos(kxx)

cos(kxx0)

]( ky
kx

)2 ,

where the notation y(x;x0, y0) implies that y is function of x with (x0, y0) as parameters.

Fig. 3.5 shows the trajectories of σ1 for a square simple membrane, ky/kx = Lx/Ly = 1 by

plotting the implicit relation between cos(kyy) and cos(kxx) given earlier. It can be seen

that the direction of σ1 makes right angles with the edges of the square membrane except

near the four corner regions where its direction is aligned with the diagonals of the square.

The plot was obtained using several initial points (x0, y0) lying on the membrane edges.

Continuous lines of σ1 traverse the entire membrane (from one edge to the corresponding

opposite edge) and pass through the membrane’s centre.



Chapter 3. Membrane Model 87

0 0.25 0.5 0.75 1
x; [m]

0

0.25

0.5

0.75

1

y
;[
m

]

Lx=Ly = 1; Lx = 1

Fig. 3.5. Trajectories of the �rst principal stress σ1 = 2/(
√
3)σ0. The membrane is square, ky/kx =

Lx/Ly = 1, of side length Lx = 1. The membrane displacement w0 is due to the �rst mode since the
speci�c impulse was chosen to be that mode in particular. The graph of σ1 trajectory was obtained by
plotting the implicit equation relating cos(kyy) and cos(kxx) for a variety of initial conditions (x0, y0) that
were chosen to be points on the four edges of the membrane. Although the direction of σ1 varies as can
be seen in this graph, its value is �xed at 2/(

√
3)σ0. The trajectory of the second principal stress σ2 can

be inferred from this graph as it must be perpendicular to every and all curves of σ1 shown here.

3.9.4.2 Second Principal Stress σ2 Direction

The direction of the second principal stress σ2 makes an angle of π/2 with the direction of

σ1, whose orientation was denoted with θ. Thus, the angle of σ2 makes an angle of θ+π/2

with the Cartesian x axis. Thus, if one lets dy/dx = tan(θ + π/2) to find the trajectories

y(x) of the axis of σ2. Since tan(θ + π/2) is

tan(θ + π/2) =
sin(θ + π/2)

cos(θ + π/2)

=
sin(θ) cos(π/2) + cos(θ) sin(π/2)

cos(θ) cos(π/2)− sin(θ) sin(π/2)

= −cos(θ)

sin(θ)

=
−1

tan(θ)
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Then, one can write

dy

dx
= tan(θ + π/2)

=
−1

tan(θ)

=
−1

e

and using e = [(1/kx) tan(kxx)] / [(1/ky) tan(kyy)], the above becomes

ky cos(kyy)dy

sin(kyy)
=

−kx cos(kxx)dx

sin(kxx)

Then, the substitutions v = sin(kyy) (along with v0 = sin(kyy0)) and u = sin(kxx) (along

with u0 = sin(kxx0)) are made to re-write the last equation into the following (separable)

familiar form
dv

v
= −du

u

which once integrated (using the initial conditions u0 and v0) gives

ln

(
v

v0

)
= − ln

(
u

u0

)
= ln

(u0
u

)
By exponentiating both sides (to remove the logarithms), one then obtains

v

v0
=

u0
u

which can be transformed back to x and y, using the definitions of u and v (and their

initial conditions) given earlier,

sin(kyy)

sin(kyy0)
=

sin(kxx0)

sin(kxx)

This relation gives (in implicit form) the trajectories of the second principal stress σ2.

An interesting observation can be made from the last implicit relation. By re-arranging

the terms so that the variables x and y are on one side while the constants x0 and y0 in

the other side, one obtains the following

sin(kxx) sin(kyy) = sin(kxx0) sin(kyy0) (3.9.11)

Now, it is seen that the left-hand side is precisely the mode shape of the solution, φ1(x, y) =

sin(kxx) sin(kyy). The right-hand side represents constant modal displacements of the

mode under consideration (which is the first mode for our simple example), φ1(x0, y0) =
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Fig. 3.6. Combined trajectories (curves) of the �rst principal stress σ1 = 2/(
√
3)σ0 (blue solid lines) and

the second principal stress σ2 = (1/2)σ1 (black dashed lines). It is seen that the curves of σ1 axis are
orthogonal to those of σ2. Moreover, the trajectories of the σ2 axis are themselves the iso-lines of the �rst
mode shape φ1(x, y).

sin(kxx0) sin(kyy0). Thus, the trajectories (or curves) of σ2 are the iso-lines of the mode

shape φ1(x, y), and each curve corresponds to a constant value φ1(x0, y0), for any (x0, y0)

in the membrane’s area.

Thus, the contours of the constant modal displacements are themselves the curves defining

the direction of the second principal stress σ2 axis. That is, the trajectories of the σ2 axis

are obtained immediately as the curves of intersections when slicing the mode shape by

horizontal planes passing through any point on the membrane. The stress σ2 is constant

throughout the membrane, and its value was established in the previous section and given

as σ2 = 1/(
√
3)σ0. Moreover, since the direction of σ2 makes a perpendicular angle

with the direction of the first principal stress σ1, then the direction of σ1 is the normal

(orthogonal or perpendicular) direction to the contours of the modal displacement at

constant amplitudes. Fig. 3.6 shows the trajectories of both the first principal stress σ1,

as was shown in Fig. 3.5, and the second principal stress σ2.

As was demonstrated in Section 3.8.3, the two families of the trajectories of σ1 and σ2 are

mutually orthogonal since the dot product of the vectors (dx, dy1) and (dx, dy2) is zero

dx2 + dy1dy2 = dx2 + (e dx) (−1/(e) dx) =
(
1− e

e

)
dx2 = 0

where dy1 and dy2 are the differentials (or increments) along the y-axis of the trajecto-

ries of σ1 and σ2, respectively. This general property can be verified in Fig. 3.6 as the

two trajectories of σ1 (the solid blue lines) and of σ2 (in dashed black lines) intersect

perpendicularly.
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3.9.4.3 Principal Shear Stresses ±τmax Directions

Having determined the direction of the first principal stress σ1, which makes angle θ with

the x axis, the directions of principal shear stresses, τmax = ±(σ1 − σ2)/2 = ±(1/2
√
3)σ0,

can be obtained. These are given by θ± π/4, i.e., as pairs of orthogonal directions. Thus,

the trajectories of the principal shear solves the following differential equation, dy/dx =

tan(θ ± π/4). Instead of solving this non-linear equation, resort is made to the numerical

method. One can let dy = dxs sin(θs) = dxs sin(θ ± π/4), and likewise dx = dxs cos(θs) =

dxs cos(θ± π/4), where θ is the direction of first principal stress σ1, and is assumed to be

already determined (using θ = tan−1 (e), with e = (1/kx) tan(kxx)/ [(1/ky) tan(kyy)]). In

the expressions for both dy and dx, one makes dxs to be arbitrary but small enough, e.g.,

dxs = 0.01 or so. Then, θ is evaluated at sufficiently many points (x, y) on the membrane.

For each point, dy and dx are numerically calculated using the above expressions. Note

that there will be two pairs of dy and dx at each point, corresponding to the (±π/4).

Finally, a plot of the sets of short vectors (dx, dy) at every point is obtained as the discrete

representation of the trajectories of the principal shear stresses.

Fig. 3.7 shows the numerical representation of the directions of principal shear stresses,

τmax = ±1/(2
√
3)σ0, for the present simple example for the case of square membrane.

Although it is not visually evident from the figure, the trajectories of the principal shear

stress axes form two pairs of spirals that are orthogonal to each other, with the vortices

of the spirals centred at the membrane’s centre, and they happen to impinge on the four

sides (or outer edges) of the membrane at angles of identically ±45o. As one approaches

the membrane’s centre, the spacing between the spirals (belonging to one pair) becomes

increasingly small; the same is true for the spirals of the other pair. The two spiral families

appear to rotate in opposite directions.

An attempt was made to provide smoother graph of the trajectories of maximum shear

stresses, ±τmax, by solving the non-linear first-order differential equation,

dy

dx
= tan (θ ± π/4),

numerically. This was achieved using the ode45() in Matalb, and two equations were

solved separately for each of the positive and negative signs. The coordinates of multiple

points on the four sides of the membrane are used as the initial conditions. A square mem-

brane is used. Although, at the membrane centre, i.e., x = Lx/2 and y = Ly/2, solutions

could not be found due to the singularity of the differential equation when expressed as

above (i.e., when it is assumed that y is a function of x, or y = y(x)). Thus, the domain

was split into four (equal) quadrants, by dividing the membrane into four segments formed

by the membrane’s centre lines. The solutions, as collections of (x, y) pairs, are then com-

bined to produce the overall trajectories of the two mutually orthogonal principal shear

axes. This is presented in Fig. 3.8. Although, the figure does not provide precise infor-

mation near the membrane’s centre, it can be shown that the (already drawn) principal

shear trajectories bisect the trajectories of the principal normal stresses σ1 and σ2, which
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Fig. 3.7. A numerical representation of the directions of principal shear stresses, τmax = ±1/(2
√
3)σ0. At

su�ciently many points (x, y) on the membrane, two pairs (as shown in blue and red) of directions that
are mutually orthogonal are constructed.

were presented early in Fig. 3.7. In line with this, the trajectories of shear stresses can

be noted to strike on the four (exterior) edges of the membrane at ±45o degrees (or π/4

radians); note that the axes of σ1 and σ2 are perpendicular and parallel, respectively, to

the membrane’s edges.

3.9.5 Comparison of the First Mode Analytical Solution to a Numerical

Solution Using LS-DYNA

In this section, the solution of the simple example membrane (given in the previous subsec-

tion) is compared to an LS-DYNA simulation. Since the first mode solves the equilibrium

equation when the spatial distribution of specific impulse, i(x, y), matches the first mode

shape, φ1,1(x, y), the specific impulse distribution was assumed to be of the form

i(x, y) = a0φ1,1(x, y) = a0 sin(kxx) sin(kyy),

where a0 is the central amplitude of the specific impulse.

A square membrane that is fixed along all its outer edges is considered. The membrane

material is assumed to be mild steel, and the Johnson-Cook (JC) material model in LS-

DYNA was utilised. Hence, the current (or dynamic) yield stress σd,y takes the form

σd,y = (A+Bεneff)

[
1 +

ε̇eff
ε̇0

]c
,

where εeff is the effective plastic strain, and ε̇eff being its rate. ε̇0 is strain rate threshold

above which the material becomes strain-rate sensitive. The JC model will be discussed
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Fig. 3.8. Trajectories of the principal shear stresses, ±τmax, which were obtained by solving the di�erential
equation dy/dx = tan (θ ± π/4), where θ is the direction of the principal normal stress σ1. Problems were
encountered at the membrane's centre (the intersection of the dashed black lines), due to the singularity of
the di�erential equation, as given above, at that point. This is because tan (θ ± π/4) = [tan (θ)± 1]/[1∓
tan (θ)] and tan (θ) = e cannot be determined at the membrane's centre. However, the trajectories of
±τmax are well-de�ned as shown in the regions away from the centre; the trajectories are the two sets of
mutually orthogonal maximum shear axes as seen in the �gure. Also, it is seen that the trajectories make
angle of ±45o at the four sides of the square membrane.

in detail in Section 5.3.4.

However, the material parameters controlling strain-hardening (B) and strain-rate sensi-

tivity (ε̇0) were set so that the material behaviour approaches perfect plasticity during

yielding; namely, very small B and relatively high ε̇0 were used. The actual values are

ε̇0 = 14 [1/s], and B = 642 × 103 [Pa]. Note that the used values, for ε̇0 and B re-

spectively, correspond to 104 and 10−3 times the typical values for a Domex-355 steel as

suggested by Curry (2017); the remaining parameters in JC model, namely, n and c, are

0.5597 and 0.0320, respectively, which are directly adopted from Curry (2017). Realistic

values were used for the elastic parameters, in particular the elastic modulus and Poisson’s

ratio are E = 205 × 109 [Pa] and ν = 0.29, respectively, and for the (quasi-static) yield

stress. For simplicity, thermal and damage-based softening were neglected. Essentially,

σd,y ≈ A = σ0, where σ0 is the uni-axial yield stress.

The following values of the parameters, length Lx, width Ly, density ρ, thickness h, uni-

axial yield stress σ0, and specific impulse’s maximum amplitude a0, were chosen as given

in Table. 3.1. A negative value for a0 indicates an impulsive action in the negative (z)

direction.

The membrane is set into motion by a prescribed initial velocity field, ẇ0, according to

ẇ0(x, y) =
i(x, y)

ρh
=

a0
ρh

φ1,1(x, y)
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In the LS-DYNA simulation, the outer nodes of the membrane are fixed for all degrees

of freedom. The membrane was modelled using thin shell elements with five (5) through-

thickness integration points, and a value of (5/6) was adopted for the coefficient of trans-

verse shear. Note that the membrane behaviour in the simulation includes all components

of displacement and bending and transverse shear effects, in addition to the membrane’s

elasticity.

From the LS-DYNA results, the membrane response is analysed to verify some aspects

of the accuracy of the analytical solution. Namely, the displacement shape predicted by

LS-DYNA was compared to the first mode shape predicted by the present model. For

this purpose, the intensity of the first mode, which will be denoted by IM1, is defined to

measure the presence of the first mode (as predicted by the present model) in LS-DYNA

response, according to

IM1(t) =

∫
Aw(x, y, t)φ1,1(x, y) dA

‖w(x, y, t)‖ × ‖φ1,1(x, y)‖
(3.9.12)

where

‖w(x, y, t)‖ =

√∫
A
w2(x, y, t) dA

‖φ1,1(x, y)‖ =

√∫
A
φ2
1,1(x, y) dA,

and A is the whole area of the membrane. In the above, w(x, y, t) is the one from LS-DYNA

simulation.

The value of IM1, thus, can be viewed as a direct metric to measure the spatial simi-

larity of displacement field given from LS-DYNA simulation and the mode shape under

consideration, which is φ1,1(x, y), that solves the equilibrium equation predicted by the

present model. The value of IM1(t) approaches unity when w(x, y, t) is a scalar multiple

of the mode shape φ1,1(x, y); the scalar multiplier disappears due to the normalisation as

given by the norm of w(x, y, t) in the denominator, ‖w(x, y, t)‖. The basis of choosing this

quantity, IM1, is due to the standard Fourier analysis. It can be seen that if w = αφ1,1, for

any non-zero α, then one will have |IM1| ≡ +1. Since w(x, y, t) is a function of time, then

so is IM1. On the other hand, |IM1| will have a value less than 1 when w(x, y, t) is spatially

different from φ1,1; in general |IM1| ≤ 1. The difference of |IM1| from unity reflects that w

and φ1,1 are less related.

Evaluations of IM1(t) associated with the transverse displacement, w, response from LS-

DYNA are made, for the range in time from t = 0 up to the time instant, denoted tmax,

when the central displacement attained its peak value. The result is given in Fig. 3.9,

which interestingly shows that the (transverse) displacement profile from LS-DYNA is

practically the first mode φ1,1(x, y) predicted by the present model as IM1(t) is 1 in the

considered time interval, t = (0, tmax].
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Table 3.1. Used parameters' values for validating the �rst mode solution against numerical results from
a simpli�ed LS-DYNA analysis

Parameter Value Unit

a0 -2000 Pa.s
Lx 0.35 m
Ly 0.35 m
σ0 352 ×106 Pa
ρ 7830 kg/m3

h 0.002 m
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Fig. 3.9. Measuring the resemblance of the transverse displacement pro�le, w(x, y, t), as predicted by
LS-DYNA and the shape of the �rst mode, φ1,1(x, y) = φ1(x, y), which solves the equilibrium equation
predicted by the analytical model. It is shown that IM1(t) = 1 for the considered time interval, t = [0, tmax],
where tmax (shown as dashed vertical line) is the time when the peak displacement is reached at the
membrane's centre. Consequently, w from LS-DYNA is practically the �rst mode of the present model.
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As an additional assessment of the accuracy of the present model, the transverse displace-

ment history at the square membrane’s centre, wc(t), is used to compare the predictions

of the model against that from LS-DYNA. Recall that the time-dependent solution given

by the model is valid until the critical time instant t∗ is reached, where t∗ = π/(2ω), as

was given in the previous subsection. The analytical solution thus is terminated at t∗,

and the subsequent displacement is taken to be w(x, y, t = t∗), which is considered as the

permanent displacement. The result of the present validation is given in Fig. 3.10.
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Fig. 3.10. Transient central displacement wc ≡ w(Lx/2, Ly/2, t) as predicted by the present model and
LS-DYNA associated with the �rst mode solution. A vertical dashed line is drawn at the critical time
instant t∗, beyond which the analytical solution is held constant. It is seen that (i) the variation of
the central displacement from the model and LS-DYNA are correlated well before t = t∗; (ii) the peak
displacements from the model and LS-DYNA are very close from each other; (iii) the time of maximum
displacement occurrence from the model and LS-DYNA are comparable; (iv) the model can predict the
velocity at the membrane's centre (as can be inferred from the slope of the curves) when compared to
LS-DYNA, before the critical time is reached.

From Fig. 3.10, the time to peak central displacement from LS-DYNA compares well with

the model, and the slopes of the displacement’s time histories (i.e., the central velocity)

from the LS-DYNA and the model match, from the initial time up to the time of peak

response. Hence, this suggests that the angular frequency, ω, predicted by the model is

practically the same as that in LS-DYNA response. Furthermore, from Fig. 3.9, it can be

concluded that LS-DYNA response, w, is the first mode of the present model, from time

zero up to the peak time. Now, since ω is directly related to the model’s plastic wave

speed, cp, and the magnitude of the first mode’s wavenumber,
(√

k2x + k2y

)
, then it can

be said that cp is also (implicitly) present in LS-DYNA response, which, in turns, implies

that the functional form of cp is accurate, namely, its dependence on
(
2/
√
3
)
σ0. Thus, it

can ultimately be inferred that the response w from LS-DYNA solves the wave equation,

c2p

(
∂2w
∂x2 + ∂2w

∂y2

)
= ẅ, where cp is as given by the present model, i.e., c2p = 2σ0/(

√
3ρ).

The foregoing validation example, then, shows that the equilibrium equation predicted by

the model is also valid when the specific impulse is non-uniform, since i(x, y) considered

therein is spatially non-uniform and has the spatial shape that is proportional to the first

mode, φ1,1(x, y). Also, the modal solution is adequate and accurate for this non-uniform

specific impulse case when compared to LS-DYNA results. It should be re-emphasised

that the specific impulse is non-uniform, and the model is reasonably accurate for this
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loading distribution.

Lastly, the present validation study successfully tested the applicability of the simple mem-

brane kinematics and the rigid-plastic (i.e., negligible elasticity) idealisations to accurately

reproduce the transverse motion of the impulsively loaded thin plate where the impulse

intensity is high (which corresponds to typical blast impulse amplitudes) and the in-plane

membrane strains are attributed merely to the transverse displacement being large. Note

that the impulsive regime and the perfect plasticity assumptions are not investigated as

the validation data (from LS-DYNA results) incorporate these assumptions as well.



Chapter 4

Validation of the Uniform Model

4.1 Note

The content of this chapter is, subject to minor re-structuring, the manuscript of the paper

by Alotaibi et al. (2023) that has been published in the International Journal of Impact

Engineering, and as such, the word(s) “authors” or “present authors” refer to the authors

of the paper, including the author of the present thesis. The full bibliography record of

the paper is given below:

S. A. Alotaibi et al. (2023). “Rigid-plastic membrane response of thin plates under impulsive

blast loads using the extended Hamilton principle”. In: Int. J. Impact Eng. 178, p. 104624.

issn: 0734743X. doi: 10.1016/J.IJIMPENG.2023.104624

4.2 Overview

The present work aims to develop an analytical model to predict the response of thin

ductile plates under impulsive blast loads. To this end, the current knowledge about the

physical problem, see Section 2.2, is utilised while attempting to minimise the complexity

of the problem.

First, the load is assumed to be perfectly impulsive and, thus, specified in terms of an

initial velocity field derived from the prescribed blast-induced specific impulse. According

to the UFC 3-340-02 design manual (U.S. Army, 2008), the impulsive regime applies

when the time to maximum response to load duration ratio exceeds three, see Figure

1-7 of the manual. Secondly, the material is idealised as rigid-perfectly plastic, which

obeys von Mises’s yield function and its associated flow rule. Finally, the plate, which

is restrained along its outer periphery, is assumed to deform in membrane mode without

in-plane displacements; hence, flexural effects are ignored.

The first assumption, due to Rigby et al. (2019a), is fundamental to the present analysis

(the absence of externally applied forces ensures a monotonic deformation path in a rigid-

plastic structure, as will be discussed in Section 4.3). The last assumption is based on the
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membrane thinness and loading intensity.

The well-known extended Hamilton’s principle, see, e.g., Reddy (2002) and Washizu

(1975), is applied to the above described problem to obtain the appropriate equation

of motion governing the transverse displacement of the thin membrane. The equation is

found as a two-dimensional linear wave equation. Therefore, it is solved by the modal de-

composition technique while enforcing Drucker’s (1957; 1956) postulate of the plastic work

non-negativity. Analytical solutions are provided for rectangular membranes subjected to

arbitrary distribution of specific impulse and for axi-symmetric circular membranes.

The closed-form solutions for rectangular and circular membranes loaded by uniform im-

pulses are compared to experimental data found in Nurick et al. (1985), Gharababaei and

Darvizeh (2010), and Nurick et al. (1996). In addition, the analytical solution is com-

pared to results from LS-DYNA simulations, where the loads are prescribed through the

initial velocity field according to Rigby et al. (2019a) and using experimentally validated

parameters for the plate’s material that are adopted from Rigby et al. (2019a), Curry

(2017), and Curry and Langdon (2017). Finally, the present model is compared to an

existing model proposed by Chung Kim Yuen et al. (2016) as a modification to Nurick

and Martin (1989b) model. The uniform and non-uniform impulse solutions are found to

be reasonably accurate with very low computational expense.

4.3 Theory

4.3.1 Problem De�nition

Consider a thin membrane made of a rigid-perfectly plastic metal that is subjected to a

prescribed initial velocity field obtained from a specific impulse distribution according to

Tyas and Pope (2003) and Rigby et al. (2019a).

The membrane can be of a rectangular or circular geometry, and it is supported along

its outer periphery. For the rectangular geometry, Lx and Ly are the sides’ lengths, as

indicated in Fig. 4.1, and R is the radius of the circular membrane. The specific impulse

is denoted by i(x, y) or i(r), where x and y are the rectangular undeformed coordinates

for rectangular geometry, whereas r is the radial undeformed coordinate for the circular

membrane. Let t denotes time, and ρ, h, and σ0 denote, respectively, density, thickness,

and characteristic yield strength of the membrane.

The membrane is assumed to respond in pure membrane mode. Further, it is assumed

that the components of displacement along the undeformed in-plane coordinates are neg-

ligible. That is, the only non-zero displacement is the one along the original out-of-plane

coordinate, which is denoted by w. In other words, every particle of the membrane dis-

places only vertically. Note that even though in-plane displacements are absent, there will

be membrane (or stretching) action due to the large transverse displacement; for the sake

of completeness, the reader is reminded that such membrane action is the one responsible
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Fig. 4.1. Problem de�nitions for the rectangular membrane: (a) plan view showing undeformed geometry
and (b) side view showing a typical spatial distribution of speci�c impulse i.

for the well-known (non-linear) flexural-membrane coupling in large displacement analysis

of materially linear elastic thin plates and beams, see, e.g., Reddy (2007).

In line with the perfect plasticity assumption, the characteristic yield strength σ0 is as-

sumed constant. Thus, for materials exhibiting substantial work-hardening, see, e.g., Elveli

et al. (2022) and Granum et al. (2019), σ0 could be defined such that a rectangular stress-

plastic strain curve preserves the total area under the actual uni-axial stress-plastic strain

curve. This approach is adopted in the UFC 3-340-02 (2008) manual.

4.3.2 Development of the Equation of Motion

Note A thorough derivation of the equation of motion (the rigid-plastic membrane’s

equilibrium equation) was given and extensively discussed earlier in Chapter 3 of the

thesis. The present section summarises the derivation as given in the published paper

that is referenced at the beginning of the present chapter.

The extended Hamilton’s principle is applied to the present problem to systematically

derive the equation of motion. In applying the principle, treatment of kinetic energy and

external work (if any) terms are not new and will not be shown for brevity. However, the

internal energy term needs special consideration. First, there is no elastic strain energy in

the system, and the only allowed internal energy (arising from the accumulation of plastic

deformation) is dissipative in nature. To obey such irreversible behaviour, the rate of

plastic work must always be non-negative (Drucker, 1956; Drucker, 1957). That is, when

strain rate tends to change sign, stress must instantly do so in a rigid-perfectly plastic
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structure.

In Hamilton’s principle, the total internal energy is the one that should be included, not

the rate of energy. The total energy is the time integral of the energy rate. However, the

time integration can be carried out beforehand (i.e., explicitly) when the total plastic strain

is monotonic since the stress would be constant in terms of sign (recall that its magnitude

is already constant from the perfect plasticity). Now, since there are no external forces,

the total plastic strain is guaranteed to be monotonic (i.e., the sign of strain rate is fixed)

when the transverse velocity is monotonic.

In the following, σij , sij , εij , and λ are the stress, deviatoric stress, (Green-Lagrange)

strain, and the plastic multiplier, respectively. A dot (.) over a symbol denotes time

differentiation, a repeated subscript implies summation, and a superscript (p) denotes the

plastic part.

With reference to the von Mises’s yield function, f(σij) =
1
2sijsij , yielding of the material

occurs when f(σij) = 1
3σ

2
0. Associated with such a yielding condition, the incremental

flow rule reads

ε̇pij = λ̇
∂f

∂σij
= λ̇sij ε̇pij ≡ 0 if f(σij) <

1

3
σ2
0 (4.3.1)

Now, if the material has actually yielded, i.e., ṡij ≡ 0, then under a monotonic deformation

regime, the flow rule can be integrated by parts (while taking advantage of ṡij = 0 and

assuming λ|t=0 = 0) to obtain

εpij =

∫
ε̇pij dt =

∫
λ̇sij dt = λsij −

∫
λṡij dt = λsij . (4.3.2)

Eq. (4.3.2) allowed a transition from the flow- to the total-theories of plasticity, and it

holds only when the path is monotonic. In fact, Drucker (1956) argues that when loading

is monotonic, the two plasticity theories are identical.

Using Eq. (4.3.2), it can be shown that λ =
(√

3/2 εpijε
p
ij

)
/σ0, and the total plastic work,

which is

Wp =

∫
V
σijε

p
ij dV, (4.3.3)

can be expanded as Wp =
∫
V sijε

p
ij dV =

∫
V λsijsij dV =

∫
V λ

(
2
3σ

2
0

)
dV , or

Wp =

∫
V
σ0

√
2/3 εpijε

p
ij dV, (4.3.4)

where the plastic incompressibility, εpii = λsii = 0, of the von Mises material was utilised.

From now on, the superscript p will be omitted as total strain and plastic strain are

identical in line with the rigid-plastic assumption. To evaluate the quantity εijεij , the four

non-vanishing strain components as functions of the transverse displacement, w(x, y, t),
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will be utilised. These are

εx =
1

2

(
∂w

∂x

)2

, εy =
1

2

(
∂w

∂y

)2

,

γxy =
∂w

∂x

∂w

∂y
= 2

√
εxεy , (4.3.5)

and from the incompressibility condition, one has

εz = −(εx + εy). (4.3.6)

Then, through some algebra simplifications, it can be shown that

εijεij = 2(εx + εy)
2. (4.3.7)

Therefore, the total plastic work under a monotonic deformation path becomes

Wp =

∫
V

2√
3
σ0(εx + εy) dV

=

∫
V

2√
3
σ0

[
1

2

(
∂w

∂x

)2

+
1

2

(
∂w

∂y

)2
]
dV. (4.3.8)

It should be noted that the stress σij , appearing in Eq. (4.3.3), is the second Piola-Kirchhoff

stress since it is the work-conjugate to Green-Lagrange strain. However, for consistency

of the formulation, the small strain assumption implies that this mentioned stress can be

replaced with the true Cauchy stress. Hence, we refer to σij throughout as the Cauchy

stress.

Then, the extended Hamilton’s principle is applied, which reads

δ

(∫ t2

t1

H dt

)
= 0, (4.3.9)

where δ is the variational operator, and t1 and t2 are arbitrary times. In Eq. (4.3.9), the

Hamiltonian, H, of the system (in absence of external work and elastic strain energy) is

given by

H = [K −Wp] . (4.3.10)

in which K is the total kinetic energy of the membrane, which is K =
∫
V

1
2ρẇ

2 dV , and

Wp was given in Eq. (4.3.8). Notice that H becomes a functional of w only.

Finally, by (i) applying δ on w, (ii) carrying out spatial and temporal integration by

parts, (iii) imposing constraints on w at the membrane edges and anywhere at times t1

and t2 where δw vanishes identically, and (iv) requiring δw to be otherwise arbitrary,

then one obtains the (Euler-Lagrange) equation of motion governing the response of the
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rigid-perfectly plastic membrane as

2√
3
σ0

[
∂2w

∂x2
+

∂2w

∂y2

]
= ρẅ. (4.3.11)

Eq. (4.3.11) is a two-dimensional scalar (plastic) wave equation in w(x, y, t) in a rectangular

coordinate system and with a wave speed
[
2σ0/(

√
3 ρ)
]1/2

. Note that Eq. (4.3.11) is a field

equation so that it applies to any membrane geometry with restrained edges.

Later, the equation is solved for a rectangular membrane, as defined in Fig. 4.1, under the

following kinematic conditions

w(0, y, t) = w(Lx, y, t) = w(x, 0, t) = w(x, Ly, t) = 0,

w(x, y, 0) = 0, (4.3.12)

and the dynamic condition

ẇ(x, y, 0) =
i(x, y)

ρh
. (4.3.13)

Eq. (4.3.13) is experimentally shown to hold for thin plates under non-uniform specific

impulse by Rigby et al. (2019a), Rigby et al. (2019b), and Tyas and Pope (2003), which

was derived from the balance of linear momentum of shear non-rigid thin plates.

For a circular membrane and under axi-symmetric conditions (which will be assumed

throughout), it can be shown, through the standard transformation from rectangular to

polar coordinates, that the equation of motion is given as

2√
3
σ0

[
∂2w

∂r2
+

1

r

∂w

∂r

]
= ρẅ. (4.3.14)

where a term within the brackets on the left-hand side (1/r2) ∂2w/∂θ2 has been omitted

due to the axi-symmetric assumption. Eq. (4.3.14) will be solved under the following

conditions

w(R, t) = w(r, 0) = 0, ẇ(r, 0) =
i(r)

ρh
. (4.3.15)

Although the actual problem involves plastic deformations, the obtained equations of

motion are linear. Hence, they can be solved by Fourier’s decomposition, which is based

on the principle of superposition. The Fourier decomposition technique is a type of the

eigen-expansion method, where the eigen-functions are the components of the Fourier

series in the rectangular membrane case, whereas the eigen-functions are the classical

Bessel’s functions of the first kind for the circular membranes. Wierzbicki discusses the

possibility to extend and apply the eigen-expansion (i.e., the superposition) method to

structural plasticity problems.

It should be recalled that the above equations of motion are valid as long as the deformation
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path remains monotonic so that Eq. (4.3.2) is not violated. Hence, the solutions (to

be presented later) of Eq. (4.3.11) and Eq. (4.3.14) are valid up to the instant of time

when the transverse velocity, ẇ, tends to change sign, or simply when velocity reaches

zero. In other words, a component of the solution must terminate whenever the velocity

associated with it reaches zero for the first time. Otherwise, plastic work would decrease

and thereby violating its irreversibility or dissipating nature, and thus the solution becomes

non-physical.

Many textbooks, e.g., references that treat the elastic free vibration of pre-tensioned mem-

branes under small displacements, such as Rayleigh (1894, Ch. IX) and Timoshenko and

Young (1955, Sec. 69), show how equations similar to Eqs. (4.3.11) and (4.3.14) can be

solved. Excellent stepwise derivations are presented in Rao (2019b), which is open-access.

Hence, the derivation steps of the solution will be omitted for brevity. Instead, the solu-

tions themselves are given.

4.4 Rectangular Membranes

4.4.1 Response of Rectangular Membranes

The rectangular membrane equation of motion, Eq. (4.3.11), was solved by the modal de-

composition technique under the prescribed geometric conditions, Eqs. (4.3.12) and (4.3.13).

The solution is

w(x, y, t) =
4

ρhLxLy

∞∑
m,n=1

Imn

ωmn
φmn(x, y) sin (ωmnt), (4.4.1)

with the wave speed c, mode shape φmn(x, y), modal angular frequency ωmn, and total

modal impulse Imn given by

c =

√
2√
3

σ0
ρ

(4.4.2)

φmn(x, y) = sin

(
mπx

Lx

)
sin

(
nπy

Ly

)

ωmn =
πc

LxLy

√
(Lym)2 + (Lxn)2 (4.4.3)

Imn =

∫ Lx

0

∫ Ly

0
i(x, y) sin

(
mπx

Lx

)
sin

(
nπy

Ly

)
dy dx. (4.4.4)

The pair (m,n) defines a particular mode with mode shape φmn(x, y). It is known that

the modes are orthogonal over the membrane domain, and hence they are independent.

Therefore, the requirement of a monotonic deformation path enforces the termination of a
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particular mode when the associated (modal) velocity reaches zero for the first time, i.e.,

when

t = tm,n =
π

2ωmn
. (4.4.5)

From ωmn, see Eq. (4.4.3), it is clear that the sequence of turning off the modal contri-

butions is ordered from highest to lowest modes in terms of frequency. The notion of

sequential terminations of the modes was previously used in Jones (1967) and Wierzbicki

and Nurick (1996). The last contributing mode is the first, i.e., with (m = n = 1). Thus,

the whole membrane ceases motion at no later than t = t1,1, which is given by

t1,1 =
L∗

2c
(4.4.6)

where L∗, defined for convenience, is the ratio of the membrane area to the length of its

diagonal and given by

L∗ ≡ LxLy√
L2
x + L2

y

. (4.4.7)

Note that if t1,1 is less than three times the duration of blast load, the global response is

less likely to be impulsive, based on U.S. Army (2008), since t1,1 is an upper bound on

the response time. The actual time of maximum response is the modal time tm,n of the

dominant mode (whose total modal impulse is Imn) of the membrane under a particular

distribution of specific impulse i. If there are several dominant modes, then the maximum

time is the largest tm,n among these modes.

The permanent shape, wp(x, y), of the membrane is given by w(x, y, t) when t ≥ t1,1, or

wp(x, y) =
4

πρch

∞∑
m,n=1

Imn√
(Lxn)2 + (Lym)2

φmn(x, y). (4.4.8)

For all cases in which the specific impulse distribution is symmetric about the membrane’s

centre, the peak displacement is located at the centre. The central permanent displace-

ment, wc ≡ wp(Lx/2, Ly/2), is

wc =
4

πρch

∞∑
m,n=1

Imn√
(Lxn)2 + (Lym)2

sin
(mπ

2

)
sin
(nπ

2

)
. (4.4.9)

According to Pannell et al. (2021), the specific impulse distribution from a near-field spher-

ical charge blast is of a Gaussian form as a function of the angle of incidence. However, it

was not possible to evaluate Imn symbolically for a specific impulse distribution, i(x, y), as

predicted by Pannell et al. Hence, numerical integration is needed. A practical Matlab

code for calculating Imn using the Fast Fourier Transform (FFT) is given in D.

Fig. 4.2 shows the normalised permanent displacement, wp, profiles along y = Ly/2 due

to three impulse distributions with constant amplitudes applied over varying central areas
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of a rectangular membrane. In the figure, the legends indicate the ratios of the loaded

to total areas. It is, thus, evident that a localised impulse induces localised displacement

shape, i.e., with central dishing, while the case of uniform impulse applied over the whole

area of the membrane results in global uniform dishing. In practice, a finite number of

0.0 0.2 0.4 0.6 0.8 1.0

x=Lx

0.0

0.2

0.4

0.6

0.8

1.0

w
p

[n
o
rm

a
li
se

d
]

(1)

(2)

(3)

Aloaded=Atotal =
(1) : 0:062
(2) : 0:250
(3) : 1:000

Fig. 4.2. Permanent displacement pro�le for rectangular membrane under three sets of impulses of
constant amplitudes applied over central rectangular regions with loaded-to-total area ratios of (1) 0.062,
(2) 0.25, and (3) 1.0. Curve (1) is associated with localised impulse, and (3) results from a uniform impulse
over the entire membrane.

modes is used to numerically evaluate the permanent, wp(x, y), and permanent central,

wc, displacements. To maintain sufficient accuracy while truncating the infinite series in

Eqs. (4.4.8) and (4.4.9), the error estimate given in C can be used. The error relates

the sum of modal impulses (included in the approximation) to the energy-equivalent total

impulse, Ik, that is due to Rigby et al. (2019a) and Tyas and Pope (2003) and given by

Ik =

√
A

∫
A
i2 dA,

in which A is the loaded area of the membrane. The absolute importance of a particular

mode is shown to be indicated by the measure 0 ≤ (2Imn/Ik)
2 ≤ 1, which can also be

used to identify the dominant mode(s); dominant modes have values closer to unity.

4.4.2 Uniform Speci�c Impulse Case (Rectangular Membrane)

For the case where the specific impulse has a constant distribution, i.e., i(x, y) = i0, the

modal impulse, Imn, simplifies to

Imn =


4i0LxLy

π2mn
when (m,n) are odd

0 otherwise,

which suggests that the first mode is the most dominant.
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The peak displacement is located at the plate’s centre and is given by

wc =
16i0Ly

π3ρch

∞∑
m,n=1,3,5

sin
(
mπ
2

)
sin
(
nπ
2

)
mn
√

n2 +m2(Ly/Lx)2
. (4.4.10)

In Eq. (4.4.10), the summand depends solely on the membrane’s aspect ratio Ly/Lx.

Denoting the sum by S0, it was observed to converge. The value of S0 for any aspect ratio

in the range [0.1− 1.0] can be read from Fig. 4.3, in which Ly ≤ Lx.
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Fig. 4.3. The converged value of truncated sum, S0, for the rectangular membrane associated with
uniform impulse case as a function of the membrane aspect ratio, Ly/Lx, where Ly ≤ Lx.

With S0 known, the central displacement of a membrane due to a uniform impulse (with

intensity i0) is given by

wc =
16i0Ly

π3ρch
S0. (4.4.11)

Or, using the total impulse I0 =
∫
A i(x, y) dA = A i0, the last expression becomes

wc =
16S0

π3ρchLx
I0 ≡ k0I0, (4.4.12)

where a structural parameter k0 was introduced and defined as

k0 =
16S0

π3ρchLx
. (4.4.13)

It should be re-emphasised that Ly is the shorter side’s length, i.e., Ly/Lx ≤ 1, when S0

is estimated from Fig. 4.3.
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4.5 Circular Membranes

4.5.1 Response of Circular Membranes

As stated in Section 4.3, axi-symmetric conditions are assumed for the circular membrane

problem. Eq. (4.3.14) was solved by the modal decomposition technique. The solution is

presented below, Eq. (4.5.1), which gives the displacement of a circular rigid-perfectly plas-

tic membrane of radius R, mass density ρ, characteristic yield strength σ0, and thickness

h, due to a specific impulse (impulse per unit area), i(r).

w(r, t) =
2

ρcRh

∞∑
m=1

Im
j0,mJ1(j0,m)2

φm(r) sin (ωmt), (4.5.1)

where

φm(r) = J0

(
j0,m
R

r

)
, (4.5.2)

ωm =
cj0,m
R

, (4.5.3)

Im =

∫ R

0
i(r) J0

(
j0,m
R

r

)
rdr (4.5.4)

Im is the total modal impulse per unit radian, c is the wave speed given in Eq. (4.4.3),

φm(r) is the mth mode shape, and ωm is the corresponding frequency. In above, J0(x)

and J1(x), respectively, are Bessel functions of the first kind of order zero and one, while

the scalar value j0,m is the mth root of J0(x) = 0, i.e., J0(j0,m) ≡ 0. The solution does

not involve Bessel functions of the second kind to avoid infinite (non-physical) response at

the origin (plate’s centre). Furthermore, the modal solution depends only on the zeroth

order Bessel function due to the axi-symmetry of the problem. Again, the mth mode shape

is J0(j0,mr/R), and the square of its norm (per unit radian) is (1/2)R2 [J1(j0,m)]2. The

modes, φm(r), are orthogonal to each other, and thus they are independent.

Similar to the rectangular case, the contribution from a given mode in the solution is

valid until the corresponding modal velocity reaches zero when t ≥ tm, where tm =

πR/(2cj0,m). Thus, the modes will be switched off sequentially in descending order with

respect to frequency. Thus, the whole membrane motion terminates at or before t = t1 =

πR/(2cj0,1), where j0,1 = 2.405.

The permanent membrane profile, wp(r), is obtained from Eq. (4.5.1) for t ≥ t1 and is

given by

wp(r) =
2

ρcRh

∞∑
m=1

Im
j0,mJ1(j0,m)2

φm(r). (4.5.5)

Since the problem is axi-symmetric, the central displacement is the peak. Using the fact
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Table 4.1. The �rst seven roots of the zeroth order Bessel function J0(x) and their related quantities,
which were computed using a Matalb function developed by Nicholson (2022).

m 1 2 3 4 5 6 7

j0,m 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116
J1(j0,m)2 0.2695 0.1158 0.0737 0.0540 0.0427 0.0352 0.0300
J1(j0,m)/j0,m 0.2159 -0.0616 0.0314 -0.0197 0.0138 -0.0104 0.0082

that J0(0) = 1, the central permanent displacement, wc ≡ wp(r = 0), is

wc =
2

ρcRh

∞∑
m=1

Im
j0,mJ1(j0,m)2

. (4.5.6)

Some available tools, e.g.,Matlab native function besselj() and the user-builtMatlab

function in Nicholson (2022), can be utilised to evaluate Bessel quantities appearing in the

above expressions. Table 4.1 is provided for convenience.

Similar to the rectangular case, it was not possible to evaluate the integral Im for a specific

impulse distribution, i(r), of the type predicted by Pannell et al. (2021) model. Thus, Im

needs to be computed numerically.

Experiments indicate that when a circular membrane is subjected to localised impulse,

say, over the membrane’s central region, then central dishing results, see Curry and Lang-

don (2017). Thus, to qualitatively test the developed solution, such a loading case was

simulated that results in the permanent shape depicted in Fig. 4.4 by curve (1), in which

a central bulging can be seen.
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Fig. 4.4. Permanent displacement pro�le of an axi-symmetric circular membrane subjected to a uniform
impulse which is applied over a localised region (1) with a loaded-to-total area ratio of 0.062 and over the
whole area (2) of the membrane as predicted by the present solution.

4.5.2 Uniform Speci�c Impulse Case (Circular Membrane)

When the specific impulse (impulse per unit area) is spatially uniform with intensity i0,

the total modal impulse Im simplifies to Im = [i0R
2J1(j0,m)]/j0,m.
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In this case, the permanent central displacement of a circular membrane is

wc =
2Ri0
ρch

∞∑
m=1

[
j20,mJ1(j0,m)

]−1

=
2Ri0
ρch

S0, (4.5.7)

in which the numerical value of the infinite sum is denoted with S0 and evaluates to

0.2674. Hence, the central permanent displacement of a circular membrane due to a

uniform specific impulse (of intensity i0) is

wc =
2Ri0
ρch

× 0.2674. (4.5.8)

Alternatively, in terms of total impulse I0 = πR2i0, the central displacement becomes

wc =
2× 0.2674

πRρch
I0 ≡ k0 × I0 (4.5.9)

with the circular structural parameter k0 defined as

k0 =
2× 0.2674

πRρch
. (4.5.10)

The model predicts the normalised permanent membrane profile for the uniform specific

impulse case as shown by curve (2) in Fig. 4.4, presented earlier.

4.6 Uniform Model Veri�cation

4.6.1 Rectangular Membrane

4.6.1.1 Results

The solution wc for the uniform impulse case, as given by Eq. (4.4.12), is validated using

experimental data obtained from Nurick, Martin, and Pearce (1985). In the tests, 82

experiments were conducted using rectangular and square thin plates made of steel, and

the specimens were loaded impulsively by distributed sheets of explosives. The authors

suggest that the impulse distributions are uniform over the specimens’ exposed surfaces.

The sides measured 113 mm and 70 mm for the rectangular plates, and a side length of

89 mm was given for the square plates. The thickness and static yield strength were given

as 1.6 mm and 296 MPa, respectively; the mass density is assumed to be 7830 kg/m3.

In the tests, the amounts of explosives were varied, resulting in different values of total

impulses measured using a ballistic pendulum. The permanent central displacements were

measured and given in the paper, and further details can be found there.
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Nurick et al. (1985) data is used to validate the solution, Eq. (4.4.12). The static yield

strength reported in the experiments is taken as σ0 in the model. The results of the

comparisons are shown in Figs. 4.5 and 4.6.
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Fig. 4.5. Comparison of model predictions to experimental data (Nurick et al., 1985) in terms of central
residual displacement wc of rectangular and square membranes under uniform impulse of total magnitude
of I0; k0 is the membrane's parameter de�ned in Eq. (4.4.13).

Nurick et al.’s experiments were simulated numerically using LS-DYNA, in which the

plates were subjected to uniform initial velocity fields. The steel material was modelled us-

ing the *Mat Simplified Johnson Cook model, available in LS-DYNA (LST, 2021b), which

accounts for strain-hardening and strain-rate effect on the current yield stress. Thermal

softening and strain-based failure were neglected in the analyses. The material parameters,

except the static yield strength, were taken from Curry (2017) and Rigby et al. (2019a).

Description of the material model will be given in Section 5.3.4. The rectangular plates

were modelled as fully integrated shell elements using *Element Shell and *Section Shell

keywords with Elform=16 (free of hourglass modes) and 3 through-thickness integration

points, NIP=3, (to incorporate flexural effects). The uniform initial velocities were pre-

scribed using the *Initial Velocity Node keyword. Nodes on the plates’ peripheries were

restrained in all (including the rotational) degrees of freedom.

The peak displacement at the plate’s centre was used to determine an appropriate element

mesh density, which was then held fixed in subsequent analyses; results of similar analysis

will be presented in Section 5.3.2. The permanent displacement was determined by aver-

aging (through time integration) the displacement time history beyond the first peak over

a small number of vibration cycles.

LS-DYNA results are compared to the experiments and the analytical predictions for the

rectangular and square tests (separately) as shown in Fig. 4.6.

From the team at SIMLab, Aune et al. (2016) and Aune et al. (2017) and Spranghers

et al. (2012b) and Spranghers et al. (2013) presented experimental and numerical studies

on the response of thin plates under free-air blasts, and further studies on the response
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Fig. 4.6. Comparison of model predictions to experimental data (Nurick et al., 1985) and LS-DYNA
numerical results in terms of central residual displacement wc of (a) rectangular and (b) square membranes
under uniform impulse of total magnitude of I0. LS-DYNA data are for permanent displacements. The
data was separated for visual convenience.

of similar structures due to blasts produced in a shock tube facility are given by Elveli

et al. (2022). The rectangular plates are made of ductile materials (structural steel and

aluminium). Some specimens are seen to respond impulsively and plastically. From the

span-to-thickness ratios of some experiments and the intensity of the generated blast loads,

the targets are thought to respond in membrane mode. Therefore, their experiments can,

in general, be used to further assess the accuracy of the present model. However, few tests

should be excluded from the validation analysis in which the plates: (1) experienced com-

plete fractures, (2) had pre-formed cracks or holes, or (3) experienced a (counterintuitive)

bifurcation or rebound buckling due to their ultra thinness when combined with low blast

intensity. The validation of the model against the above experiments is not presented

herein because the original works, cited above, did not provide quantitative information

about the distribution of the blast-generated specific impulses, which the present model

requires.

4.6.1.2 Discussion and Limitations

Fig. 4.5 and Fig. 4.6 exhibit a reasonable accuracy of the analytical model, Eq. (4.4.12),

although the model accounts only for membrane behaviour, rigid-perfectly plastic material

model, and idealised impulsive load.

However, as can be seen in the figures, the analytical model appears to be vertically offset

when compared to the data. The offset is attributed to the fact that the model equation

passes through the origin of wc versus I0, which is a shortcoming of the model since one

expects a negative intercept on the wc-axis (note that wc is a plastic displacement).

From the other hand, it should be noted that Nurick et al. (1985) measured (indirectly)

the total impulse, and the actual specific impulse distribution (which is assumed uniform

herein) was not reported. The slight discrepancy between the present model prediction
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and the experimental data could then be attributed to the implied lack of precise data.

Furthermore, the slight discrepancy can also be linked to the perfect plasticity assump-

tion on the material behaviour. The model excludes strain-hardening and strain-rate

effects, and for simplicity the static yield strength is taken as the perfectly plastic limit.

However, many practical ductile materials exhibit various levels of yield enhancement

due to these plastic effects. Heat-treated metals, e.g., typically possess substantial work-

hardening where the current yield strength progresses gradually from the (less distinct)

initial yield stress up to the ultimate strength that could be as twice as the initial yield

strength (Granum et al., 2019). A certain class of steel, which has been used in blast envi-

ronments, exhibits different hardening-ductility characteristics depending on the material

composition, heat-treatment, and manufacturing processes (Elveli et al., 2022). Idealising

plates made of hardening materials as perfectly plastic would then result in overestima-

tions of the responses under large dynamic loads. Therefore, it is important that such

plastic characteristics are incorporated in computer numerical analyses since mathemati-

cal complexity is not a barrier.

The perfect plasticity assumption is adopted in the present work to obtain a “first-order

approximation” model. Addition of the two mentioned effects into the model was found,

by the authors, to lead to a non-linear equation of motion. Therefore, the solution given

by the present perfectly plastic model should be regarded as an upper-bound solution

for structures made of materials that (in practice) deviate from the perfect plasticity

behaviour.

If desirable, we propose that the yield strength to be used in the model might be adjusted

(e.g., amplified) to compensate for large strain-hardening strengthening. For example,

the actual area under the plastic part of the engineering stress-strain curve could be

converted to a rectangular area, and by maintaining the ultimate strain, the characteristic

(or effective) yield strength can then be determined. This procedure should give better

predictions while maintain the upper-bound sense. However, in the foregoing validation

work, the model is evaluated using the “static” yield strength because it was found to

agree with the data.

A simplified study to assess the effect of work-hardening on the response of a single-

degree-of-freedom (SDOF) due to blast-type loading is presented in E. Few representative

numerical cases are given in which the ratios of the constant hardening moduli to elastic

stiffness are in a range of practical values. Furthermore, a numerical parametric study

using LS-DYNA of the effect of strain-hardening on the residual response of thin plates is

also given in E; in addition, the corresponding predictions by the present analytical model

are compared to LS-DYNA results.

The experiments in Aune et al. (2016), Aune et al. (2017), Elveli et al. (2022), Spranghers

et al. (2012b), and Spranghers et al. (2013), discussed earlier, can be used to quantify the

effect of neglecting the work-hardening in the model as some uni-axial tensile specimens

show a significant presence of strain-hardening.
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Finally, it should be re-emphasised that values of the material parameters, except the

static yield strength, used in the LS-DYNA simulations are assumed. The source papers

reported neither the Johnson-Cook (JC) parameters nor re-usable stress-strain data to

enable identifications of the constitutive plastic parameters. For example, Nurick et al.

(1985) present the engineering stress-strain data at different strain rates. Using their data,

it was attempted to obtain digitally converted true stress-strain curves and determine the

material parameters by curve-fitting the data to JC model. However, this was not possi-

ble due to precision issues associated with the strain axis resolution. Thus, practical JC

parameters (except the static yield strength) were adopted from Rigby et al. (2019a) and

Curry (2017), as mentioned already. Curry point out that when quasi-static stress-strain

data are fitted to JC model, the resulting static yield stress (AJC) underestimates the value

observed experimentally, due to the hardening power-law in JC model. Although, the used

material parameters were found to give reasonable predictions when compared to the ex-

periments. Example techniques to determine such parameters are explained by Spranghers

et al. (2012a) and Curry (2017). Validated JC material parameters for commonly used

ductile materials and their justifications can be found in Rigby et al. (2019a), Lomazzi

et al. (2021), Spranghers et al. (2013), Aune et al. (2017), and Mehreganian et al. (2018b).

4.6.2 Circular Membrane

4.6.2.1 Results

In this section, we compare the predictions of the model for uniform specific impulse, as

given by Eq. (4.5.9), to experimental data and numerical LS-DYNA predictions. Nurick

et al. (1985), discussed in Section 4.6.1.1, also report experimental data for the permanent

displacements of circular membranes of fixed diameters of 100 mm when subjected to

uniform impulses of varying amplitudes. The membrane material properties and thickness

are as described for the rectangular membrane, see Section 4.6.1.1. The data are compared

to predictions from the model for the uniformly loaded circular membranes, Eq. (4.5.9).

The characteristic yield strength σ0 is taken as the static yield strength in Nurick et al.

(1985). The results are shown in Fig. 4.7.

In addition, LS-DYNA was used to replicate the tests of Nurick et al. (1985) for the

circular membrane case. Axi-symmetric conditions were assumed in the simulations, and

hence the problems were solved using beam elements along the radial axis of the plates

using *Element Beam and *Section Beam keywords with Elform=8 and 3 through-thickness

integration points IR/QR=3. With this set-up, it is unnecessary to specify the conditions

at the axis of symmetry. Because the axi-symmetric solver was utilised, the *Mat Modif-

ied Johnson Cook model was used; it should be noted that the “modified” and “simplified”

Johnson-Cook models differ in describing the strain-rate sensitivity. Again, applicable

material parameters (except the static yield strength) were adopted from Rigby et al.

(2019a) and Curry (2017). Motion is induced by a uniform initial velocity field calculated
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Fig. 4.7. Comparison of model predictions to experimental data (Nurick et al., 1985) and LS-DYNA
results in terms of central residual displacement wc of circular membranes under uniform impulse of total
magnitude of I0; k0 is the circular structural parameter de�ned in Eq. (4.5.10).

from the uniform specific impulse. The periphery node was fully restrained. Finally, the

central displacement was chosen to carry out mesh convergence study to determine the

appropriate mesh density, which was then maintained throughout.

The finite element results for the permanent displacement are compared to the present

analytical model and the experimental data of Nurick et al. (1985), as shown in Fig. 4.7.

Gharababaei and Darvizeh (2010) report results from 86 experiments on circular plates.

The authors measured the central permanent displacements of steel, copper, and alu-

minium thin plates and the total impulses they were subjected to using a ballistic pendu-

lum. All specimens had circular exposed areas with a fixed diameter of 100 mm. Among

the experiments, 42 tests are assumed to generate spatially uniform specific impulse based

on the following. The blast loads were generated by detonating thin (cylindrical) disks of

C4 explosives located at a stand-off distance of 300 mm from the plates’ centres for the

42 tests. The smallest scaled distance was Z=1.12 m/kg1/3, and a 9.5o angle of incidence

at the plates’ periphery was held constant for the tests. Furthermore, the authors used a

rigid circular tube of equal diameter as that of the specimens to guide the propagation of

the shock waves along its axis. Further details can be found in the original paper.

The predictions from the present model, Eq. (4.5.9), and LS-DYNA simulations are com-

pared to the experimental data of Gharababaei and Darvizeh. Again, the static yield

strengths reported in experiments are taken as the characteristic yield strengths in the

model calculations. The data for the aluminium plates were excluded due to numerical

difficulties in simulating their behaviour as the material is not strain-rate sensitive, and

there is no available material data given in Gharababaei and Darvizeh (2010) regarding

its strain-hardening parameters. The results are given in Fig. 4.8.

As shown in Fig. 4.8, the model does not accurately predict the experimental outcomes
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Fig. 4.8. Comparison of model predictions to experimental data (Gharababaei and Darvizeh, 2010)
and LS-DYNA results in terms of central residual displacement wc of circular membranes under uniform
impulse. In Gharababaei and Darvizeh (2010), the total impulse I0 was measured by ballistic pendulum;
however, it was generated from thin disks of explosives with charge-to-target radius ratios of 0.2 and
0.30, but with a stand-o� distance to plate's diameter ratio of 3.0. Experimental data for specimens with
diameter-to-thickness ratio, (D/h), less than 50 are highlighted with �lled red markers. k0 is the circular
structural parameter de�ned in Eq. (4.5.10).

of Gharababaei and Darvizeh (2010), in particular for k0 × I0 larger than 0.03 m. The

model overpredicts the permanent displacement by at most a factor of two.

Fig. 4.9 compares the model to data from LS-DYNA alone, which combines data already

shown in Fig. 4.7 and Fig. 4.8. In the validation data in Fig 4.9, yield strength, plate

thickness and density are variables in addition to the total impulse. As the model properly

captures the trend of LS-DYNA predictions, it is concluded that the functional form of

wc in terms of these structural parameters is accurate.

Nurick et al. (1996) present additional 162 experiments on circular steel plates, of varying

diameters, loaded with uniform impulses. All had 1.6 mm thickness and assumed den-

sity of 7850 kg/m3. For plates with diameters 60, 80, 100, 120 mm, the corresponding

static yield strengths were given as 251, 220, 270, 220 MPa, respectively. These specimens

were clamped with sharp edges. Two additional sets of specimens with filleted clamp-

ing supports had diameters of 100 mm and yield strength of 251 MPa each. All data,

including the total impulses and central residual displacements, are tabulated in Nurick

et al. (1996), and further details can be found there. Their data, excluding five tests for

which displacements are not reported, are used to verify the circular membrane solution,

Eq. (4.5.9), as shown in Fig. 4.10.

So far, the experimental tests used for the validation involve limited ranges of plates’

thickness. To further assess the performance of the model under combined variations of

total impulse and plate thickness in broader ranges, the input data presented in Rigby et

al. (2019a) was used in additional LS-DYNA simulations. The set-ups are similar to those

described earlier. From a sample simulation run, the central displacement time history is
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Fig. 4.9. Comparison of model predictions to results from LS-DYNA simulations corresponding to the
experimental set-ups in Gharababaei and Darvizeh (2010) and Nurick et al. (1985) in terms of central
residual displacement wc of circular membranes under uniform impulse of total magnitude of I0. Numer-
ical material parameters (except the static yield strength) were taken from Rigby et al. (2019a) for the
steel plates. Notice that LS-DYNA simulations account for elasticity, strain-hardening, strain-rate sensi-
tivity, bending and shear e�ects, which the present analytical model completely ignores. k0 is the circular
structural parameter de�ned in Eq. (4.5.10).
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Fig. 4.10. Comparison of model predictions to experimental data (Nurick et al., 1996) in terms of central
residual displacement wc of circular membranes under uniform impulse of total magnitude of I0. k0 is the
circular structural parameter de�ned in Eq. (4.5.10).
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shown in Fig. 4.11. The results of the latter investigation are depicted in Fig. 4.12, which

demonstrates the accuracy of the present model under varying plate thickness.
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Fig. 4.11. Time history of the central displacement wc from LS-DYNA simulation for a sample problem
using input parameters given in Rigby et al. (2019a). Negative values on the ordinate y-axis correspond
to downward displacements. It is seen that the resulting displacement is mainly plastic.

4.6.2.2 Discussion and Limitations

The discussion and limitations presented in Section 4.6.1.2 for the rectangular case are

also applicable to the validation of the uniform circular model against the experiments of

Nurick et al. (1985) and Nurick et al. (1996). In general, the model slightly deviates from

the experimentally observed measurements.

However, there is a pronounced discrepancy when comparing the uniform model to Gha-

rababaei and Darvizeh data. This required a reappraisal of the model, the input data, and

the testing set-up to trace the source of discrepancy. As previously discussed, the authors

used a rigid tube as a blast wave guide that (when combined with the moderate stand-off

distance) could produce wave reflection effects due to the interaction near the tube’s wall.

However, the assumption of uniformity of the impulse is ruled out. If the resulting specific

impulse was indeed non-uniform, then according to Rigby et al. (2019a) and Tyas and

Pope (2003), the displacement would then be even larger than that induced by a uniform

impulse.

Although the model is built to predict membrane behaviour of thin plates, it performs

better for the relatively thicker plates in Gharababaei and Darvizeh (2010) than it does for

specimens with diameter-to-thickness ratios greater than 50. This can be seen in Fig 4.8,

in which the markers for thicker specimens are filled in red to highlight such observation.

Furthermore, the trend of the experimental data deviates from the expected behaviour

that moderately thicker plates are stiffer. This is because: (1) extra resisting modes are

involved, i.e., bending and shear, that also contribute to absorb (or dissipate) the initial
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Fig. 4.12. Comparison of model predictions to LS-DYNA results in terms of central residual displacement
wc of circular membranes under uniform impulse of total magnitude of I0. In the numerical simulations,
input parameters were obtained from the parametric study in Rigby et al. (2019a) to investigate the model
performance for a wide range of plate's thickness. Peak (p) and residual (r) displacements from LS-DYNA
analyses are shown.

kinetic energy; and (2) due to increased mass per unit area, thicker plates attenuate the

initial velocity generated by the (externally) imparted impulse according to Rigby et al.

(2019a).

However, since an increase in the impulse leads to increase in initial velocity (for a given

plate), the dynamic yield stress increases (due to strain-rate effects), which in turn would

reduce the permanent displacement. Thus, the discrepancy between the model predic-

tions and the experimental displacements for the range of larger impulses can be partly

attributed to neglecting the strain-rate sensitivity of the yield strength and possibly, as

discussed in Section 4.6.1.2, the work-hardening of the specimens (in particular made of

copper).

Furthermore, similar to the discussion in Section 4.6.1.2, the authors in Gharababaei and

Darvizeh (2010) measured the total impulse indirectly using a ballistic pendulum. Rigby

et al. (2019b) pointed out that targets typically experience ∼ 67% of the total impulses

calculated from the ballistic pendulum measurements. Their conclusion can explain the

observed discrepancy between the model predictions and Gharababaei and Darvizeh (2010)

data.

4.6.3 Comparison of the Uniform Models to the Modi�ed Nurick and

Martin's Model

Yuen et al. (2016) proposed modifications to Nurick and Martin’s (1989) model. In their

model, the normalised permanent displacement (i.e., displacement-thickness ratio), wc/h,

of circular or rectangular thin plates with exposed areas A is linearly related to the non-



Chapter 4. Validation of the Uniform Model 119

Table 4.2. Comparison of the present model against the modi�ed Nurick and Martin's model proposed
by Chung Kim Yuen et al. (2016)

α β
Geometry: Yuen et al. Present Yuen et al. Present

Circular 0.241 0.281 0.298 0.0

Rectangular 0.253 0.480× S0(Ly/Lx)
1/2 −0.158 0.0

Square 0.253 0.270 −0.158 0.0

dimensional impulse, φ̂0,

φ̂0 =
I0

h2
√
ρσ0A

,

by the following empirical relation,

wc

h
= αφ̂0 + β,

where α and β are correlation coefficients given in Chung Kim Yuen et al. (2016) and

presented in Table 4.2 for convenience. Note that α (reported in Yuen et al. Chung Kim

Yuen et al. (2016)) is divided herein by
√
π and 2 for the circular and rectangular models,

respectively, to unify the form of φ̂0 for the two geometries, as given above.

Their empirical models were shown to reasonably predict the response of the thin plates

compared to 699 (circular) and 356 (rectangular) experiments. Thus, it is of interest to

compare the present model, developed herein, to their findings. For the present model, the

corresponding coefficients α and β are obtained from the previously developed solutions

(for the uniform impulse case) by rewriting them in terms of the normalised impulse, φ̂0.

The comparisons are summarised in Table 4.2.

While Yuen et al.’s α and β are identical for the rectangular and square plates, the present

model’s α depends on the aspect ratio, Ly/Lx, (the parameter S0 also depends on the

aspect ratio). The values S0 = 0.5627 and
√
Ly/Lx = 1 were used to calculate α for the

square geometry using the expression of α for the rectangular model, given in Table. 4.2.

Note that β is zero for all cases of the membrane geometry in the present model.

Since the value of β from Yuen et al. is small and will be multiplied by the plate’s thickness

to give a fraction of wc, β can be neglected for the present comparison. Overall, the present

model overestimates the displacement by around 7 v 17% (based on α) compared to the

predictions of Chung Kim Yuen et al. (2016).

From the comparisons of the present model against data from experiments and LS-DYNA

simulations, presented in Sections 4.6.1.1 and 4.6.2.1, it is concluded in overall that the

model is reasonably accurate in predicting the permanent displacements of rectangular

and circular membranes under uniformly distributed specific impulses. The comparison

of the uniform model to the already validated predictions of Nurick and Martin (1989a)

and Chung Kim Yuen et al. (2016), presented in this section, also supports this conclusion.
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4.7 Overall Limitations and the Theory Drawbacks

Despite the relative accuracy of the present model, it has several shortcomings.

First, during the development of the equation of motions, the membrane is assumed to be

already yielding as long as there is motion. That is, there is no rigid body motion. The

whole membrane experiences (non-uniformly) distributed plasticity.

Second, “plastic” motion is assumed to be initiated by initial velocity, which is directly

given by the imposed specific impulse. Hence, the model cannot determine the amount

of impulse to be elastically absorbed. Therefore, any amount of given impulse leads

immediately to an onset of “plastic” deformation. The model indicates that kinetic energy

is at maximum at the initial time state, which gradually and monotonically decays as

plasticity evolves. The model assumes complete removal of the external load (that induced

the specific impulse) before motion, and hence the decreasing rate of kinetic energy is

identical to the increasing rate of plastic work; the time history of plastic work is of an

inverted form of the kinetic energy history.

Third, the yield strength is independent of the evolution of the membrane’s motion. That

is, enhancement (or hardening) of the yield stress due to strain-hardening and/or strain-

rate sensitivity are not (correctly) incorporated. This is due to the perfect plasticity

assumption. Detailed discussion was given earlier in Section 4.6.1.2.

Fourth, the displacement components along the in-plane coordinates of the undeformed

membrane are assumed negligible as compared to the out-of-plane component of displace-

ment. In fact, the in-plane components are set identically to zero throughout. Hence, the

longitudinal Green-Lagrange strains are merely due to the quadratic terms of the gradient

of the out-of-plane displacement. This, in turn, leads to zero membrane strains at points

where zero gradients occur, such as at the centre of a symmetrically loaded membrane. Ex-

periments often show that this is not true; in fact, the peak membrane strains in uniformly

and impulsively loaded membranes could be located near their central regions. Despite

this shortcoming, the model can predict thinning (or necking) of the membrane near its

restraints (i.e., where it is supported). This is directly due to the plastic incompressibility,

which necessarily gives the transverse longitudinal strain as the negative of the sum of the

other two longitudinal strains (which are always non-negative); thus, thickness shortens.

4.8 Summary and Conclusions

Analytical solutions were developed to predict the profile and peak permanent displace-

ment of thin plates under impulsive blast loads. The plates’ materials were assumed rigid-

perfectly plastic, obeying von Mises’s yield criterion, and their motions were initiated from

the blast-induced specific impulse. This problem set-up led to a monotonic deformation

path, which was exploited in deriving the governing equation of motion systematically

through the application of the extended Hamilton’s principle. The equations of motion
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apply to thin plates deforming mainly in membrane modes and plastically. Although the

obtained equations are general, solutions were given for two membrane geometries, rect-

angular and circular, by the modal decomposition technique. The modal decomposition

was supplemented with sequential mode terminations, a strategy that is justified herein

by Drucker’s requirement of plastic work non-negativity.

The rectangular solution applies to any spatial distribution of specific impulses. A practical

MATLAB code is proposed to efficiently compute the total modal impulses involved in

the general solutions for non-uniform impulses. Moreover, a procedure to estimate the

errors from truncating the infinite series in the solutions was discussed in connection to

the concept of the upper bound kinetic energy of Rigby et al. (2019a) and Tyas and Pope

(2003). The circular solution is restricted to axi-symmetric specific impulses.

However, it was possible to provide simple closed-form solutions for the case of uniform

specific impulse. The uniform solutions of the rectangular and circular thin plates were

verified against experimental data in the literature and results from LS-DYNA simulations

performed by the authors.

The present models for the rectangular and circular membranes were shown to be rea-

sonably accurate in comparison to the experimental and numerical results. It should be

emphasised that the models account only for simplified idealisations: an impulsive blast

load, a rigid-perfectly plastic material behaviour, and a membrane mode of deformation.

As a result, the obtained models are believed to be (already validated) simple and fast-

running tools. Thus, they can be used by structural blast engineers for probabilistic-based

analyses. Although the analytical models were compared against cases with uniform im-

parted impulsive loads, the relations derived herein are of a general form and can readily

model non-uniform impulsive loads. The validation of the main analytical model against

the non-uniform impulse case will be covered in detail in the next chapter.





Chapter 5

Validation of the Non-Uniform

Model

5.1 Background and Preamble

The equilibrium equation governing the response of a rigid-perfectly plastic membrane

under impulsive loading, which is characterised by the specific impulse i(x, y) distribution,

was derived in Chapters 3 and 4 and given as

c2p

(
∂2w

∂x2
+

∂2w

∂y2

)
= ẅ,

where cp is the plastic wave speed that is defined by c2p = 2σ0/(
√
3ρ), in which σ0 is the

uni-axial tensile yield stress of the membrane and ρ its mass density. As stated above, the

motion of the membrane is assumed to be initiated by the specific impulse-induced initial

velocity ẇ0 according to Tyas and Pope (2003) and Rigby’s et al. (2019) hypothesis

ẇ0 =
i

ρh
,

where i is the specific impulse, and h is the membrane’s thickness.

This equilibrium equation was derived on the assumption that the von Mises yield condi-

tion is satisfied whenever the membrane undergoes active straining, i.e., when it is under

progressive yielding. This is because the stress state satisfies the yield condition only when

the (plastic) strain rate is non-zero. When this condition is violated, then the equation

of motion given above becomes not applicable. Thus, the solution (that solves the above

equation of motion) must be terminated as soon as the instantaneous strain rates tend to

reverse in sign. This latter condition is equivalent to the instant of time when the total

strain starts to decrease. This is a requirement to avoid the occurrence of a negative rate

of plastic work as this would lead to a reduction in the total “plastic” work in the ab-

sence of work done by external forces. Now, since the membrane is assumed to be loaded

123
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impulsively (i.e., external forces are absent), the reduction of total plastic work can be

prevented by stopping the solution when the kinetic energy attains a zero value for the

first time (after being non-zero initially).

In solving the membrane response under uniform specific impulse (in Chapter 4), a strategy

was proposed to define the instant of time when the solution should be terminated. The

strategy was to terminate every mode in an independent manner based on the velocities of

the individual modes; the velocity was chosen since the kinetic energy is the criterion for

terminating the solution. This was described as a sequential mode termination strategy,

and its basis was the orthogonality of the modes with respect to each other, as the modes

are mutually independent as already known. It is a sequential process since the times for

zero modal velocities differ from mode to mode based on the modal frequencies, and these

frequencies are monotonically increasing as the mode number increases. The termination

sequence follows a descending order of the mode numbers. It was shown, (in Chapter 4),

that the strategy leads to very accurate predictions for membranes under uniform specific

impulses when the model (that incorporates such termination strategy) was validated

against experiments and detailed LS-DYNA analyses, Section 4.6.

However, when the general case of non-uniform specific impulse was considered, it was

found that the model overpredicts the membrane’s displacement when compared to LS-

DYNA predictions of similar problems. In the LS-DYNA simulations, the membrane was

loaded by non-uniform specific impulses, which were obtained from earlier MM-ALE ex-

plosive simulations. It should be kept in mind that non-uniform impulses are, in practice,

typically associated with extremely high amplitudes in highly localised regions. Hence,

initially it was thought that the model overestimates the structural response (compared

to LS-DYNA) due to the neglect of the material’s strain-rate sensitivity (which is in-

corporated in the LS-DYNA structural analyses) as the model is limited to a perfectly

plastic behaviour. Nevertheless, the model was seen to account for significant structural

parameters correctly according to the functional form of the model.

On the other hand, it was observed that the model accuracy can be substantially improved

by introducing another strategy to terminate the solution that is predicted by the model.

The new strategy defines the critical time instant, at which the solution is terminated, to

be the one when the total velocity (the sum of all active, or dominant, modes) reaches

zero after being non-zero initially; this means that the solution is terminated at a specified

time for all modes instead of multiple times for each mode independently. Using this new

strategy, the model is found to give consistent and reasonably accurate predictions when

compared to experiments and LS-DYNA simulations when the specific impulse distribution

is non-uniform.

The present chapter aims to provide results of validating the membrane model (using the

new solution termination strategy) for the case of membranes under non-uniform specific

impulses when the model is compared to LS-DYNA simulations and the experiments of

Curry and Langdon (2017). The content of the following sections was written to be a

standalone manuscript for publication in the near future.
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5.2 Introduction

In Chapter 4, the rigid-perfectly plastic membrane solution of a thin plate response is

given as a function of the blast-induced specific impulse, and use has been made of a

sequential mode termination strategy to obtain a closed-form model that was validated

against uniform impulse experiments and LS-DYNA results. However, validation of the

model against non-uniform impulse data was not given. The following work aims to provide

such validation.

Preliminary investigation indicated that the solution based on the sequential modal ter-

mination approach overestimates the displacements when compared to the validation data

(to be discussed in the next sections) from experiments and LS-DYNA simulations for the

non-uniform specific impulse case. Thus, the general solutions given in Sections 4.4-4.5,

i.e., in their temporal forms, are adopted without switching the modes off. Herein, the

plastic-work non-negativity is enforced on the total velocity (i.e., the sum of significant

modes) rather than on the individual modal velocities in an independent manner.

For example, the displacement response of a rectangular target, which is of length Lx,

width Ly, thickness h, density ρ, and characteristic yield strength σ0, and subjected to

non-uniform specific impulse i(x, y), was given in Section 4.4 by

w(x, y, t) =
4

hρcpLxLy

∑
m

∑
n

Bmn(x, y) sin (ωmnt), (5.2.1)

where

Bmn(x, y) =
Imnφmn(x, y)

ωmn
,

Imn =

∫ Ly

0

∫ Lx

0
i(x, y)φmn(x, y) dx dy,

and φmn(x, y) and ωmn are the (spatial) modal shape and frequency of the (m,n)th mode,

and cp =
√
(2σ0)/(

√
3ρ) is the wave speed. The expressions for all variables are as given

in Section 4.4.

It is considered herein that the above solution, Eq. (5.2.1), is valid up to the instant of time

when the total velocity reaches zero for the first time. In particular, the solution w(x, y, t)

at a given spatial coordinate (x, y) is terminated whenever the total velocity ẇ(x, y, t)

reaches zero for the first time, and the velocity is held at zero thereafter. In this manner,

the kinetic energy can only decrease, and hence the plastic work will be monotonically

increasing. Therefore, the deformation path is, thus, monotonic as assumed in deriving the

general equation of motion (whose solution is given above for a rectangular membrane).

It is instructive to note that in Section 4.4, the temporal term, sin (ωmnt), was ultimately

replaced with a value of unity due to the sequential mode termination strategy, which will

not be adopted herein as discussed above. Similar modifications will be applied to the
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solution of circular membranes.

For the sake of definiteness, the present model is exactly the model proposed in Chapter 4

except that the strategy to terminate the modal solution is modified to be based on the

total velocity rather than on the individual modes separately.

In the next sections, the central residual displacements, wc, are reported as functions of

the energy-equivalent total impulse, Ik, due to Rigby et al. (2019), which is defined as

Ik =

√
A

∫
A
i2(x, y) dA

in which, A is the exposed area of the membrane. The energy-equivalent total impulse,

Ik, is found by Rigby et al. (2019) to be the significant loading parameter in the response

of thin plates under non-uniform specific impulse. In the present model, Ik appears to be

significant as well according to the well-known important property of Fourier’s decomposed

solutions (see Appendix C for details), which, for a rectangular membrane problem, takes

the form
∞∑

m=1

∞∑
n=1

I2mn =

(
Ik
2

)2

,

which states that the sum of the squares of the total modal impulses, Imn, is the square

of one-half the energy-equivalent total impulse. This also states that Ik/2 is the upper

bound of the sum of the modal components of the specific impulse that directly influences

the response of the membrane.

5.3 Description of LS-DYNA Models

5.3.1 MM-ALE Set-Up

Following the approach in Rigby et al. (2018), the Multi-Material Arbitrary Lagrangian-

Eulerian (MM-ALE) technique, available in LS-DYNA, is used to simulate the air-blast

event and calculate the generated reflected pressures and the corresponding specific im-

pulses which a nearby target experiences. An overview of the ALE method will be dis-

cussed in Section 5.3.3. Throughout, axi-symmetric conditions and a perfectly rigid target

are utilised to reduce computational times. Spherical and cylindrical shapes of the high

explosive (HE) charge are considered, and the explosive is assumed as PE4 (Plastic Ex-

plosive, Composition 4).

The HE is modelled using the *Mat High Explosive Burn material and the *Eos Jwl equa-

tion of state (EOS). The detonation of the HE was triggered using the *Initial Detonation

keyword. The surrounding medium, which is taken as air, is treated as an ideal gas of

a specific heat ratio of 1.4 and modelled with the *Mat Null and *Eos Linear Polynomial

models. The material and EOS parameters for the PE4 explosive and air are taken from

Rigby et al. (2019) and Curry (2017). The material models for the air and HE will be
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described in Section 5.3.4. The domain is represented with *Section ALE2D and *Elem-

ent Shell, and the *Initial Volume Fraction Geometry keyword was utilised to specify

the domain’s initial configuration such that it is initially filled with air and the HE is

confined in a spherical or cylindrical container representing the physical charge. The ALE

reference mesh is allowed to shrink (in a Lagrangian manner) near the blast wave’s front

(by setting Prtyp=8 and Efac=0.1 in *ALE Reference System Group), and the second-order

accurate van Leer+HIS advection logic was chosen, in *Control ALE, with one advection

cycle (Nadv=1) per one (Lagrangian) time step and without smoothing.

In LS-DYNA, there are three methods to set the interaction between ALE fluids and a

rigid body. The first two require explicit modelling of the rigid body’s geometry (i.e.,

using a unique part, section, and *Mat Rigid keywords), and its interaction with the ALE

fluids is then modelled using either *Constrained Lagrange In Solid or *ALE Coupling Rig-

id Body. However, we adopted the third (simplest) method that does not require an

explicit presence of the rigid body. That is, the rigid target was modelled using the

*Rigidwall Planar keyword that automatically creates the rigid wall, constrains its motion,

and prevents penetration by the surrounding entities (i.e., air and detonation products).

The domain boundaries, except the axis of symmetry, are treated as transmitting (using

*Boundary Non Reflecting 2D). The domain extents were deliberately enlarged to provide

additional offsets from the nearest transmitting boundaries in order to reduce unwanted

boundary effects.

The *Database Sensor keyword is used to define the positions of adequately spaced pressure

sensors, which were placed slightly off the rigid wall and towards the blast source’s side.

The output of these sensors is requested using the *Database Trhist keyword. When the

blast simulations were completed, LS-DYNA data were read in Matalb using a user

function developed by the author, described in Appendix F and to be published. The

overpressure data were subsequently time-integrated to obtain the specific impulses.

The results from a preliminary study to validate the specific impulse predictions using the

MM-ALE method in LS-DYNA are shown in Fig. 5.1. In this figure, the specific impulse

due to a spherical PE4 charge of mass 100 [g] and at clear stand-off distance of 44.5 [mm]

is compared to the corresponding experimental values measured by Rigby et al. (2019).

5.3.2 Lagrangian Only Set-Up

The structural response of the target is modelled using the pure-Lagrangian approach, in

which the target is explicitly modelled as a deformable plate that is subjected to blast

load in the form of a specific impulse-induced initial velocity. That is, the plate’s motion

is driven by the prescribed initial velocity without any externally applied pressures. The

specific impulse is obtained from the post-processed results of the previous MM-ALE

simulations as discussed in the previous section. The specific impulse i is converted into

initial velocity profile ẇ0 according to Rigby et al. (2019) and Tyas and Pope (2003)

models, i.e., ẇ0 = i/(ρh), where ρ and h are the plate’s density and thickness.
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Fig. 5.1. Validation results for the prediction of speci�c impulse distribution, i(r), using the MM-ALE
method in LS-DYNA for a spherical PE4 charge of mass 100 [g] and clear stand-o� distance of 55.4 [mm].
The numerical speci�c impulse (MM-ALE (2D)) is compared to the experimentally measured speci�c
impulse by Rigby et al. (2019). The dashed red line (exp. (max)) connects the maximum experimental
data, shown as circular markers, reported in Rigby et al. (2019b). The (exp. (spline)) line is constructed
for splined smooth experimental distribution of speci�c impulse which is constrained to have a zero slope
at the membrane's centre, r = 0.

Rectangular and circular plate geometries were considered. In the rectangular model, the

plate is represented by *Element Shell and *Section Shell with five through-thickness

integration points, fully-integrated shell formulation (Elform = 16), and the commonly

suggested transverse shear factor (Shrf=5/6). The nodes on the outer sides of the plate

are restrained in all translational and rotational degrees of freedom. The used element

formulation is based on the constant transverse shear shell theory, i.e., an extension of

the Mindlin plate to include membrane effects; the shear factor scales the traverse shear

stresses.

The circular model is considered as axi-symmetric, in which the plate is modelled using

*Element Beam and *Section Beam with five through-thickness integration points, Elform=8,

and default shear factor. The periphery node is fully clamped.

In both models, the plate’s material is assumed as Domex-355 steel and described using

the *Mat Modified Johnson Cook (JC) material model, in which the supplemented material

parameters are taken from Curry (2017); the JC model will be described in Section 5.3.4.

The rectangular plates had equal sides of length 260 mm, and the diameter of the circular

plates is taken as 300 mm. For both models, the plate’s thickness is 3 mm.

A preliminary mesh sensitivity study, see Fig. 5.2, was performed for the rectangular plates

to determine the appropriate mesh, which was then held fixed in subsequent analyses,

and the peak displacement at the plate’s centre was chosen as the basis of convergence,

Fig. 5.2(c).

The global mechanical energies and all nodal displacements were requested in binary
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Fig. 5.2. Preliminary mesh convergence analysis for a rectangular membrane problem. A mesh of 64
elements along each direction was chosen based on this analysis. In the two sub-plots at the top, (the
time-history) results from all meshes are plotted together, i.e., there are multiple curves and each curve
corresponds to one mesh density; some curves are less visible as they are almost identical. In (a), the total
kinetic and internal energies are plotted. In (b), the time-history of the transverse displacements at the
plate's centre are shown. In (c) and (d), the peak central displacements versus the mesh density, in terms
of the number of elements along the x-direction (NXE), are provided; h is the plate's thickness. It is seen
that all results are practically identical, and the mesh with NXE = 64 provides the desired convergence.
The plate is loaded impulsively by a speci�c impulse generated by a spherical PE4 explosive charge of mass
50 [g] and clear stand-o� of 25 [mm].
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format using the *Database Glstat and *Database Nodout keywords. Again, LS-DYNA

data were subsequently post-processed in Matalb, after they were read by the Matalb

function described in Appendix F. The residual displacements at the plates’ centres were

calculated by averaging the transient displacement histories over one-half cycles beyond

the first peak occurrences. That is, the residual displacement wc,r is defined as

wc,r =
1

t2 − tmax

∫ t2

tmax

wc(t) dt,

where tmax is the first peak time, i.e., at which the peak central displacement, wc,max, is

attained, and t2 is a subsequent time instant at which the velocity is zero for the first time,

i.e., ẇc(t = t2) = 0 where t2 > tmax. Note that, by definition, we also have ẇc,max = 0.

Additionally, stresses and effective plastic strains in all elements were requested by the

*Database Elout keyword. The time histories of von Mises stresses, σvm, (computed in

Matalb) and of the (von Mises) effective plastic strains, εpvm, were used to produce the

corresponding stress-strain curves. These are defined as

σvm = σeff =
√

3/2
√
sijsij ,

εvm = εeff =
√
2/3
√
εpijε

p
ij ,

where sij is the deviatoric stress and given by sij = σij− p̂δij , in which p̂ is the hydrostatic

pressure (positive in tension), and εpij is the total plastic strain. Note that σvm, in general,

does not need to be at the yielding point. The effective plastic strain rate is ε̇peff = ε̇pvm.

Note that the rate of plastic work (per unit volume) at a given time t is σij ε̇
p
ij ≡ sij ε̇

p
ij =

σvmε̇vm, and the total plastic work is
∫ t
0 σvmε̇vm dt.

This was done to better observe the combined effects of strain-hardening and strain-rate

sensitivity on the current yield stresses, which are incorporated in LS-DYNA analyses

through the JC model. The average von Mises stresses for each element are calculated

(using the above curves) as the characteristic yield stress parameter, and using which a 2D

fringe plot is produced over the plate’s area, to additionally study the effect of the specific

impulse profile on the spatial distribution of plastic work (i.e., how the input kinetic energy

has been absorbed internally).

5.3.3 Summary of the ALE Method

As mentioned in the previous subsections, the explosive analyses to simulate the blast

event utilise the Multi-Material Arbitrary Lagrangian-Eulerian (MM-ALE) formulation.

The high explosive (HE) charge is initially modelled as a solid placed in a volume that is

assumed to be air (gas) at ambient conditions. Upon detonation (of the HE), the charge



Chapter 5. Validation of the Non-Uniform Model 131

gradually is converted to hot gases (the detonation products), and when this very rapid

process is completed, the domain becomes entirely composed of two interacting gaseous

materials (air and the detonation products). Therefore, since these are fluids, and hence

their (subsequent) deformations and distortions are substantially large, the appropriate

kinematic description is the Eulerian instead of the Lagrangian description.

However, the present problem involves (i) development of shock waves, (ii) interaction of

more than one fluid where each fluid has its unique material interface, and (iii) possible

presence of Lagrangian solid structures with which the fluids can interact. Thus, use will

be made of the Arbitrary Lagrangian-Eulerian formulation instead of the purely Eulerian

one.

Using the Lagrangian description, the mesh exactly follows the material, and hence the

relative velocity of a material particle to mesh is zero; therefore, there are no convection

terms. Note that the mesh motion is not arbitrary as it is exactly the material motion. In

the Eulerian description, the mesh is fixed in space, and the material flows with respect

to this fixed mesh; thus the relative velocity of a material particle (with respect to the

mesh) is the absolute material velocity. Note that mesh motion is not arbitrary as it is not

moving at all. However, in the ALE description, the mesh is allowed to move arbitrarily,

and its motion is not entirely fixed in space nor follows the material’s motion exactly. In

this ALE description, the relative velocity of a material particle (with respect to the mesh)

is the difference between the velocity of the material particle and the local velocity of the

mesh. In both purely Eulerian and ALE formulations, convective terms appear and should

be accounted for due to the (generally non-zero) relative velocity of a material point with

respect to the corresponding mesh; again, this relative velocity is exactly the material

particle’s velocity for the Eulerian mesh, while it is the difference between the material

particle velocity and the local mesh velocity for the ALE mesh. Therefore, the ALE

generalises the description of motion from which the purely Eulerian or purely Lagrangian

can be retrieved.

All conservation laws (mass, momentum, and energy) involve the material time derivatives

in both the local (differential) and global (integral) forms. The material time derivative

depends on the formulation being used to describe the motion. To illustrate the idea,

consider a scalar quantity φ(x, t). The time derivative of φ is given as

φ̇(x, t) =
∂φ

∂t
+ c

∂φ

∂x

in which the second term is the convective term, and c is the velocity of the material

particle relative to the mesh; that is,

c = v − v̂,

where v is the material particle’s velocity and v̂ is the velocity of the mesh. Note that when

v = v̂ (and hence c ≡ 0) corresponds to the purely Lagrangian description since the mesh
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is adhered to the material (i.e., a mesh point is made identical to the material point itself).

On the other hand, if v̂ = 0 (and hence c = v), the purely Eulerian description is obtained

since the mesh is held stationary and fixed. The mesh is made to move arbitrarily in the

ALE description, and hence v̂ is arbitrary, and associated with such arbitrary motion is

the arbitrary relative velocity c.

If the quantity φ(x, t) is to be conserved over time-changing volume, then we require that
∂
∂t

∫
V φ(x, t) dv = 0,

0 =
∂

∂t

∫
V
φ(x, t) dv =

∫
V
φ̇+ φ

∂v

∂x
dv,

by Reynold’s transport theorem. Thus, substituting for φ̇ by the given-earlier expression,

the ALE statement of the conservation of φ takes the form∫
V

∂φ

∂t
+ c

∂φ

∂x
+ φ

∂v

∂x
dv = 0

which, since the above holds for any volume V and thus the integrand itself must vanish,

is equivalent to the following differential form

∂φ

∂t
+ c

∂φ

∂x
+ φ

∂v

∂x
= 0

The mass conservation (or the continuity) equation, as an example, is obtained by replac-

ing φ with the density ρ, that is,
(
∂ρ
∂t + c ∂ρ∂x + ρ ∂v

∂x = 0
)
. This differential (strong form)

equation is then converted into a weighted integral (weak form) equation, which then is

discretised using the ALE mesh, associated with which is the convective velocity c. Unlike

purely Lagrangian procedures, in which the Galerkin method is used, in the ALE weak

form development, typically, the Petrov-Galerkin method is adopted, where the test (vir-

tual variable) and trial (approximation of an actual variable) are different. This latter

method has been proven to be stable and adequate to model advection (or convection)

phenomena, e.g., as when motion is described by an ALE or purely Eulerian descriptions

(as convective terms appear naturally) (Belytschko et al., 2014, Chapter 7).

For all other conservation equations (i.e., momentum and energy), the ALE differential

equations can be readily obtained from the corresponding purely Eulerian counterparts by

merely replacing all material time derivatives with the ALE material time derivatives as

given above for the quantity φ which involves the relative convective velocity c. However,

it should be noted that the partial time derivatives (i.e., the ones denoted above by ∂
∂t )

in the ALE description need to be performed while holding a given ALE coordinate fixed

instead of holding the Eulerian coordinate fixed.

For non-zero c (i.e., v 6= v̂), convective effects are present and must be accounted for. Since

there is a relative motion between the material and the mesh, the material movement is

accompanied by transport of physical variables from one element (in the mesh) to an

adjacent element. In other words, across an interface joining two elements, the flow of
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physical parameters occurs. Such flows must be taken into account in order to correctly

guarantee the satisfaction of conservation laws, which require the conservation of the

fundamental quantities (i.e., mass, momentum, and energy), in the problem.

Note that the arbitrariness of the mesh motion in the ALE description does not mean that

its motion is unknown but rather is controlled such that the individual advantages of the

purely Lagrangian and purely Eulerian approaches are combined to obtain a mesh that

suits a given problem. In the implementation of the ALE formulation in LS-DYNA, the

mesh is made to first follow the material as if it were purely Lagrangian. Typically, this is

done for some small number of consecutive time steps. Thus, the mesh will distort as the

material deforms. Then, to avoid further unwanted distortion of the so far distorted mesh,

the mesh is adjusted by relocating the nodes (to relieve or eliminate the distortion), which

is the process where the mesh moves relative to the material. Such relocation of the nodes

can be (but is not required to be) optimised by implementing some smoothing procedures

(e.g., by averaging a node coordinates based on the coordinates of the neighbouring nodes);

in essence, this can be viewed as local and light re-meshing. Now, since there is a relative

motion (with or without smoothing) between the material and the mesh, a required step

needs to be done next; this is called the advection step since physical quantities are being

transported from element to adjacent element and from nodes to neighbouring nodes as

the mesh is being moved relative to the material; for this reason, the advection step is

also called a re-mapping step as the values of physical quantities in an element (before

the mesh motion) are mapped to set of elements that will occupy that element’s position

(after mesh motion). Note that in the definition of the ALE description, we stated that

the material moves with respect to the mesh; however, in the above discussion of ALE

implementation, the opposite process is what happens where the mesh initially follows

the material and then subsequently the mesh moves (or detaches) from the material. The

numerical scheme in which the overall (ALE) computation is subdivided into a first purely

Lagrangian step and a subsequent advection (re-mapping) step is known as the operator

split technique. Note that all physical time stepping are performed in the first Lagrangian

step, whereas the advection/re-mapping is purely computational (the physical time is held

fixed during such latter step).

Therefore, in summary, the computation using the ALE formulation consists of three steps:

first, a purely Lagrangian step in which the mesh and material move together; then, the

independent motion of the mesh relative to the material (with or without smoothing);

finally, applying the advection algorithm to account for the relative motion of the mesh

and the material. Again, the first step may actually consist of multiple purely Lagrangian

increments, say three time increments, before the second and last steps are invoked.

The advection step is critical and generally expensive. There are several advection al-

gorithms available in LS-DYNA, among which is the van Leer algorithm in combination

with the half-index shift (HIS) method (Hallquist, 2006). The van Leer-HIS method is

second-order accurate (as long as the elements are not heavily distorted) and capable of

ensuring monotonicity and conservation of the parameters being advected (transported).



134 5.3. Description of LS-DYNA Models

The HIS method is used as a practical treatment of parameters that are defined at nodes

(e.g., velocity) rather than at an element’s integration points (e.g., stresses, internal en-

ergy, etc) so that the nodal variables can be advected (using the van Leer method) as

element-based variables. The accuracy of advection algorithms depends significantly on

the amount of material being advected (or swept during the movement of the mesh rela-

tive to the material). For this reason, the ALE formulation becomes very superior to the

purely Eulerian formulation since the ALE mesh is (in part) moving with the material and

its re-positioning does not need to exactly bring the elements back to their initial location,

and hence there is less material transported in comparison to the fixed purely Eulerian

mesh.

The advection algorithm is said to be conservative if it ensures the conservation of an

advected parameter, say φ, in the sense that
∫
V φafter dv =

∫
V φbefore dv, where the field

of φ before and after the advection step is denoted by φbefore and φbefore respectively.

The requirement of monotonicity ensures that during the advection, the values of the

various physical quantities (e.g., density and/or energy) do not fall outside permissible

ranges (e.g., occurrence of negative density which is not physical) since the local values

will change by such advection process. Achievement of monotonicity and second-order

accuracy requires additional iterative computations and verifications where the iterations

can be thought of to take place over artificial time. Thus, the performing of this required

step increases the computational cost. Therefore, it is typically practical to make the mesh

follow the material for several physical time steps before the independent mesh motion

and advection steps are applied. In other words, the computations are kept Lagrangian

until there is a need or necessity to move the mesh (alone without the material) and hence

do the advection step.

In comparison to purely Eulerian formulation, the ALE description better suits explosive

simulations for the following reasons

� The boundaries of the fluid can be made purely Lagrangian, i.e., the mesh nodes on

the boundary follow (or deform) with the material. This permits proper specification

of boundary conditions;

� The fluid particles in the vicinity of solid structures (rigid or deformable) can be made

purely Lagrangian so that the fluid-structure interaction (FSI) can be modelled more

accurately.

� When a shock wave develops, the area of the fluid under shock, can be represented

as nearly Lagrangian. So, the very thin nature of the shock front can be modelled as

the elements are allowed to be heavily compressed (i.e., shrunk) and hence making

nodes dense around such zone and facilitating the capture of steep gradients of some

important physical variables (e.g., the pressure); across the thin layer (front), jumps

in the properties can then be simulated.

� Elements can accommodate more than one physical material and their interfaces can
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be tracked more better.

� Adverse (unwanted) effects associated with the advection process can be minimised

due to the motion of the mesh (since less material is being transported per one

advection cycle).

� Account of material’s path dependence is improved due to the following of the mesh

to the material because of the partly Lagrangian nature of the mesh (Lagrangian

elements store all needed information about the history of the material).

� The initial mesh does not need to be oversized to account for future (unknown)

movement of the exterior fluid materials (i.e., to avoid complexities arising from

the possibility that the material out-flows from the initial domain without a priori

specification of the required boundary conditions). If the material tends to move

outside the boundaries of the initial domain, those domain boundaries can themselves

be made moving (i.e., in a Lagrangian way).

On the other hand, in comparison to purely Lagrangian description, The ALE mesh is

significantly less affected by the large distortion (deformation) of the material as the

essence of making the mesh in part independent of the material means that the mesh can

be regularised (healed) at any point during the simulation; moreover, such partial or total

mesh’s re-construction can be optimised when smoothing is performed. Accumulated

mesh distortion after several pure Lagrangian increments can be judicially removed or

alleviated to some extent, especially in most of the computational domain where the nearly

Lagrangian behaviour is not needed. Hence, the restrictions imposed on the critical time

step (associated with very small element sizes) are alleviated in the majority of the domain;

also, the accuracy of the solution is improved due to the healing of the mesh distortions.

Furthermore, an ALE mesh is less prone to unwanted hour-glassing effects since the hour-

glassing mechanism can be prevented by healing the mesh. This additionally suggests that

lower hourglass coefficients should be used to avoid applications of unnecessary forces to

counter-act against hour-glassing modes; note that these forces can be very detrimental,

especially if they are not needed at all. It should be noted that the ALE is not limited to

fluid-like materials, and indeed it is an attractive formulation to model solids undergoing

large deformations, i.e., where the limitations of purely Lagrangian formulation prohibit

accurate modelling.

Further discussions on the underlying theory of the ALE technique and its practical aspects

can be found in Belytschko et al. (2014), Rigby (2014), Curry (2017), and Livermore

Software Technology Corporation (2019), from which the foregoing material are taken,

and additional references are available in Donea et al. (2004).

In LS-DYNA, the ALE mesh will be purely Eulerian unless an important command is

invoked; this is the ALE reference system group, namely the *ALE Reference System Gr-

oup. In this command, some important parameters concerning explosive simulations are:

Prtyp which when set to 8 allows the ALE mesh to distort near the shock wave’s front, and
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Efac which ranges from 0 (corresponding to purely Lagrangian) to 1 (purely Eulerian);

the mesh tends to more resemble a Lagrangian motion (and hence distort) when Efac

gets smaller. In this study, we set Prtyp=8 and Efac=0.1. According to LS-DYNA user’s

manual, as the shock front moves away from an element, the element tends to behave in

an Eulerian way as time progresses, but the element was nearly Lagrangian when it was

in the shock zone. Also, using this ALE reference system command, the initial ALE mesh

is set by identifying the part (or part set) IDs associated with which a usual finite element

mesh (elements, nodes, sections) is assigned.

LS-DYNA lumps most of the controls that affect the ALE implementation in another

important command, which is the *Control ALE. Among the very many parameters avail-

able through this keyword are: Meth to specify the advection algorithm, Nadv to set the

number of (Lagrangian) calculation cycles before one advection step is performed. In

this present explosive simulations, Meth =2 (or -2) for the van Leer-HIS with monotonicity

being strongly enforced (or relaxed, when -2 is used), and Nadv=[1-3] to speed up the

calculations (when it is greater than 1) but without increasing the amount of material

being advected (as the values are not far from 1).

The blast simulations considered in the present study are axi-symmetric. That is, the

domain is two-dimensional (2D), and the ALE mesh is modelled using Element Shell and

using the special command *Section ALE2D, with ALEform=11 (for MM-ALE formulation)

and Elform=14 (for axi-symmetric solid formulation). Furthermore, the practical key-

word *Initial Volume Fraction Geometry was utilised in all the simulations to facilitate

the specifications of the initial configurations of the different (air and HE) ALE materi-

als; namely, to define the initial mesh as filled entirely of air except the volume that the

solid HE charge initially occupies. The precise assignments of the different materials in

the different regions (in the originally empty mesh) are done automatically by LS-DYNA

according to this latter command.

5.3.4 Material and Equation of State (EOS) Models in LS-DYNA

The explosive simulations using the multi-material arbitrary Lagrangian-Eulerian (MM-

ALE) method are essentially supersonic fluid dynamics, in which a shock wave propagates

through the initially ambient air. The shock wave in the air is produced by the expansion

of the detonation products, which were generated from the detonation of a solid high

explosive. The detonation products are high-energy, temperature, and pressure gases. By

their extreme thermodynamic state, the hot gases expand rapidly and hence compress the

surrounding air such that a sharp increase in air pressure occurs. Since the levels of the

resulting pressures are extremely high, the pressure wave is supersonic, i.e., it is a shock

wave. The thus-established shock wave then propagates (or travels) towards the ambient

region (i.e., away from the source of shock wave formation, or away from the explosive

centre, in all outward directions).

In the explosive analyses, the domain physically consists of two materials: the surround-
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ing medium and the solid charge prior to detonation. The surrounding medium is as-

sumed as air in standard atmospheric conditions. The bare charge is taken as a plastic

explosive–composition 4, (PE4), which is thermodynamically equivalent to C4 (Bogosian

et al., 2016), another common type of plastic explosive. Once the explosive experiment

is completed, the blast-generated reflected pressures and the associated reflected specific

impulses are obtained. Subsequently, the reflected specific impulses are converted into

initial velocity fields, according to Rigby et al. (2019a) and Tyas and Pope (2003), in

purely Lagrangian analyses to study the (structural) responses of the Domex-355 steel

plates. Note that in the Lagrangian analyses, there are no externally applied pressures,

i.e., the loadings are perfectly impulsive. Hence, the Lagrangian domain consists only of

the steel plate. In the following, the material and equation of state (EOS) models, which

were used in the uncoupled explosive and purely Lagrangian analyses, are described, and

the numerical values (and their sources) of the various parameters are given.

Air. The air is modelled using its equation of state (EOS) and its ambient properties.

The EOS relates the current pressure in terms of the current density and current internal

energy. In practice, the air is modelled as an ideal (and calorically perfect) gas so that its

EOS is the ideal gas law

p = (γ − 1)ρe,

where p, ρ, and e are the current pressure, density, and internal energy (energy per unit

mass), and γ is the specific heat ratio (cp/cv), which has a (constant) value of 1.4 for

diatomic gases, such as air. In LS-DYNA, the ideal gas EOS is implemented by using the

*Eos Linear Polynomial model,

p =

3∑
n=0

cnµ
n +

(
c4 + c5µ+ c6µ

2
)
ρ0e,

where µ = ρ/ρ0 − 1, and then setting c0 = c1 = c2 = c3 = c6 = 0 and c4 = c5 = γ − 1. In

addition, the null material model is used to define the initial density of air. The quantity

(ρ0e) is denoted by E and defined as the internal energy per unit initial volume. The

values of the parameters of air that were used in the simulations are listed in Table. 5.1.

In the table, the value of E0 was obtained from E0 = ρ0e0 = p0/(γ − 1) (see the ideal gas

law, given earlier), when the standard air’s ambient pressure, p0, is taken as 101.32× 103

[Pa], and γ = 1.4.

LS-DYNA allows controlling the transient behaviour of bulk material, e.g., air, when it is

subjected to sudden loading such that unreasonable spikes (or high-frequency oscillations)

in pressure can be regulated (or reduced) by means of artificial damping, namely by

introducing a bulk viscosity that depends on the current strain rate along the direction of

load application (or in the direction of the wave propagation that loads the material). Note

that this is meant to regulate post-peak pressure oscillation; although, excessive damping

could smear out the initial (and physically important) jump in the pressure by the shock
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Table 5.1. Air parameters used in *Eos_Linear_Polynomial and *Mat_Null

Parameter Value Units

*Eos_Linear_Polynomial:
c0 − c3, c6 0 [-]
c4 0.4 [-]
c5 0.4 [-]
E0 253.3× 103 [N.m/m3]

*Mat_Null:
ρ0 1.18 [kg/m3]

Subscript 0 (in E0 and ρ0) refers to initial (ambient) values

arrival (Rigby, 2014). This is described as the bulk viscosity feature in (Livermore Software

Technology Corporation, 2019).

High explosive, PE4. PE4 is modelled in LS-DYNA by (i) specifying the physical

geometry of the charge and its density (as a solid); (ii) specifying the point (within the

charge) of initial detonation and the time of detonation; (iii) prescribing its Chapman-

Jouguet’s (CJ) detonation characteristics to model the transient detonation process as

the solid explosive burns and thereby generates the detonation products (the hot-gases);

and (iv) defining the EOS governing the thermodynamic state of the high-pressure and

high-temperature detonation products as they expand and interact with the surrounding

medium, which is air.

That is, the explosive is first modelled as an inert solid occupying a certain volume, then

at a particular point within the explosive, detonation starts at a prescribed time. Then,

detonation progresses through the rest of the unexploded material with a speed called the

CJ detonation velocity. The detonation front, as it travels, brings the inert solid explosive

into the state of decomposed (fully detonated) explosive (or detonation products). The

pressure at the fully detonated state is called the CJ pressure; knowledge of CJ detonation

velocity and the CJ pressure determines other properties of the fully detonated explosive.

The CJ state of the fully detonated explosive is the initial state of the detonation products.

Further behaviour of the detonation products is then described by their EOS starting from

the CJ state. The high pressures and temperatures of the already detonated explosive drive

(from behind) the detonation wave towards the remaining inert solid explosive. Once the

detonation front has passed through the whole inert explosive, the detonation process ends,

and the detonation products are modelled by the EOS as gaseous material. The detonation

products interact with all surrounding media from the moment of their formation as they

(i.e., the hot detonation products) expand. This eventually results in compressing and

heating the surrounding air and thereby creating a shock wave in the air.

LS-DYNA provides a feature in modelling the detonation process such that the explosive

transitions from the initial inert state to the fully detonated state in a finite time interval.

For this, a burning fraction parameter is defined that ramps linearly from zero (inert) to

unity (fully-detonated); this burning fraction is linear in time t measured with respect



Chapter 5. Validation of the Non-Uniform Model 139

to the lighting time, tL, (the time at which the detonation front has just reached the

element in question, which is the distance from the initial detonation point divided by

the detonation velocity). Therefore, the inert explosive does not turn into fully detonated

products instantaneously but requires some time (or delay) to do so. The value of the

burning fraction is capped (from above) at the value of 1. Then, the instantaneous pressure

in one element (for which t ≥ tL) is taken as the burning fraction times the current pressure

calculated from the EOS of the fully detonated explosive. This is called the “programmed

burning” scheme in LS-DYNA and is used in the present simulations as a representation

of initiating detonation deliberately by a detonator.

For PE4, the detonation products are modelled by the Jones-Wilkins-Lee (JWL) EOS,

*Eos Jwl, which gives the current pressure p, in terms of the current specific volume change

v and internal energy e, as

p = A

(
1− ω

r1v

)
exp (−r1v) +B

(
1− ω

r2v

)
exp (−r2v) +

ω

v
e,

in which A, B, r1, r2, and ω are material constants. As the detonation products expand

significantly (i.e., as v becomes large), the first two terms can be neglected, and the overall

gas approaches the ideal gas behaviour where ω can be interpreted as (γ − 1); note that

1/v ≡ ρ.

In LS-DYNA, the high explosive characteristics controlling its detonation (or burning)

are the Chapman-Jouget’s (CJ) pressure, pCJ, and the detonation velocity (the speed

with which the reaction (or detonation) front progresses through the unreacted explosive

material), DCJ. These parameters, in addition to the charge’s mass density, are defined

in *Mat High Explosive Burn. The initial detonation point (within the solid explosive) and

time instant are supplied using the *Initial Detonation keyword. The values of the various

parameters for the PE4 explosive as used in the simulations are provided in Table 5.2. The

parameter beta when set to 2 disables the feature that the explosive may detonate (on its

own) depending on the (mechanical) state of the inert (or unreacted) solid explosive so

that it cannot be detonated except by explicitly invoking the initial detonation command

(keyword) in LS-DYNA, discussed earlier.

Domex-355 steel In the structural response of the membrane, in a purely Lagrangian

setting, the material behaviour is modelled using the modified Johnson-Cook (1985) (JC)

constitutive relation, through the keyword *Mat Modified Johnson Cook. The model is ini-

tially linear elastic up to the current yield limit. On yielding of the material, plasticity

develops and is represented as an extension of von Mises plasticity such that the current

yield stress depends on the current total plastic strain (strain-hardening), the instanta-

neous plastic strain rate (strain-rate sensitivity), the current temperature (thermal soften-

ing). The model allows for softening due to the accumulation of damage, which is directly

related to the maximum value of the total plastic strain. This is achieved in LS-DYNA

by scaling the stresses based on the damage value. As the model is based on von Mises
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Table 5.2. PE4 parameters used in *Eos_Jwl and *Mat_High_Explosive_Burn. All values are adopted
from Curry (2017) and Rigby et al. (2019a).

Parameter Value Units

*Eos_Jwl:
A 609.77× 109 [Pa]
B 12.95× 109 [Pa]
r1 4.50 [-]
r2 1.40 [-]
ω 0.25 [-]
e0 9.00× 109 [N.m/m3]

*Mat_High_Explosive_Burn:
ρ0 1616.0 [kg/m3]
DCJ 8193.0 [m/s]
pCJ 29.0× 109 [Pa]
β 2 [-]

Subscript 0 refers to initial (ambient) values.

Subscript CJ refers to Chapman-Jouguet's detonation condition.

criterion, the yielding of the material depends on the state of the deviatoric stress, sij ,

only and, thus, is independent of the hydrostatic pressure. Therefore, any volume change

is purely elastic.

According to JC model, an element of the material yields when the following (yield)

condition is satisfied √
(3/2)

√
sijsij = σy,d

where σy,d is the current (or dynamic) yield stress (yield limit), and sij is the usual

deviatoric stress; that is, sij = σij − p̂δij , where the internal hydrostatic pressure is

p̂ = (1/3)σkk, which is positive in tension, and δij is the Kronecker’s delta. The quantity√
(3/2)

√
sijsij is called the effective (von Mises) stress, σeff .

Whenever the yield condition is satisfied, a material element can undergo plastic shearing

deformation, in addition to possible further elastic (shearing and volumetric) deforma-

tions. Thermal softening in the material might be achieved through a reduction in the

current yield limit, σy,d as temperature, T , increases. On the other hand, hardening (or

strengthening) is achieved by increases in σy,d as the total plastic strain and/or plastic

strain-rate increase; there is a critical strain-rate threshold below which strain-rate sensi-

tivity is deactivated. The quasi-static initial yield stress is σy,d without any of the above

increases or reductions.

The current yield stress σy,d, according to JC model, is given by

σy,d =
(
A+Bεnp,eff

) [
1 +

(
ε̇p,eff
ε̇0

)]c [
1−

(
∆T

∆Tm

)m]
,

where εp,eff is the effective plastic strain and ε̇p,eff is its rate. In the above, A, B, n, c, and

m are material constants. A is the initial yield stress, B and n control strain-hardening, c
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and ε̇0 control strain-rate effects (ε̇0 is the quasi-static strain-rate threshold). According

to LS-DYNA user’s manual (LST, 2021b), ε̇p,eff/ε̇0 = 0 when ε̇p,eff/ε̇0 < 1.

∆T = T − T0 and ∆Tm = Tm − T0, where T , Tm, and T0 are the current, melting, and

the room (absolute) temperatures. The model allows the conversion of plastic work to

heat, and this feature requires the specification of the Taylor-Quinney ratio, χ, and the

specific heat at constant pressure, cp. The plasticity-induced (adiabatic) heating is given

by ρcpṪ = χσeff ε̇p,eff , where the plastic work rate is Ẇp = σeff ε̇p,eff , and χ is the fraction

of plastic work that is converted into heat.

As mentioned earlier, the modified JC model in LS-DYNA allows material softening due

to the accumulation of damage based on the largest attained total plastic strain. The

damage is stored as the damage variable D. When this feature is enabled, the effective

deviatoric stress and effective plastic strains are factored based on the value of D according

to

σ∗
eff =

σeff
1− βD

,

ε∗p,eff = (1− βD)εp,eff ,

where the star refers to the scaled quantities, according to the current damage value, D,

and β = 1 when the damage-induced softening is activated. However, in the present study,

this behaviour is neglected, β = 0, and the starred and unstarred quantities are identical.

It should be mentioned that the modified JC model in LS-DYNA includes a modification

to the power-hardening law that would cause an additional reduction of the current yield

limit σy,d; however, this is also neglected in the present study following Curry’s (2017)

work.

The various JC material parameters for the Domex-355 steel material as used in the

present simulation analyses are given in Table. 5.3.

The adopted values of various parameters are taken from Richard Curry’s (2017) thesis.

Curry derived the values by advanced curve-fitting (through LS-OPT (2019)) the JC

model to experimental data from dynamic and static material testing on Domex-355 steel

specimens. High strain-rates and different temperatures were varied in the author’s work.

Finally, the author demonstrated the validity of his derived values when compared to

experiments on the response of shells to explosive loading. In addition, Rigby et al. (2019)

show the excellent agreement of numerical models, in which Curry’s data are utilised,

when compared to experimental measurements of near-field blast-loaded thin plates.

Documentations of the material models, their underlying theories, and recommendations

on the values of some parameters (not given herein) are available in LS-DYNA keyword

manuals (LST, 2021b; LST, 2021a).
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Table 5.3. Domex-355 steel parameters in *Mat_Modified_Johnson_Cook which are adopted
from Curry (2017) and Rigby et al. (2019a).

Parameter Value Units

ρ 7830 [kg/m3]
E 200× 109 [Pa]
ν 0.29 [-]
A 352× 106 [Pa]
B 642× 106 [Pa]
n 0.5597 [-]
c 0.032 [-]
ε̇0 0.0014 [-]
χ 0.9 [-]
cp 452 [N.m/(Kg.K)]
m 0.81 [-]

5.4 The Non-Uniform Model Versus LS-DYNA

The present model is first evaluated by comparing it to numerical results from LS-DYNA

analyses performed by the author, which are outlined as follows. First, the MM-ALE

technique in LS-DYNA was utilised to generate physically relevant specific impulses that

are imparted onto rigid targets due to the detonations of close-in PE4 spherical charges.

The technique was experimentally validated by Rigby et al. (2018) using near-field blast

experiments (Rigby et al., 2015). Subsequently, in a separate purely Lagrangian set-up,

the responses of rectangular and circular thin (Domex-355) steel plates were simulated,

in which the plates are set into motion by prescribed initial velocities ẇ0 obtained by

converting the specific impulses i from the earlier MM-ALE analyses. According to Rigby

et al. (2019), ẇ0 is given by

ẇ0 =
i

ρh
,

where ρ and h are the plate’s density and thickness, respectively; both ẇ0 and i are

dependent on the spatial coordinates of the target, i.e., non-uniform.

The energy-equivalent total impulses, Ik, are taken as representative for both the am-

plitudes and non-uniformities of the non-uniform specific impulses, and hence for the

near-field blast threats. The values of Ik corresponding to the considered masses and clear

stand-off distances of the spherical PE4 charges are summarised in Table. 5.4.

In the Lagrangian analyses, the Domex-355 steel material is described using the modi-

fied Johnson-Cook (JC) model and for which the material parameters are adopted from

Curry (2017). It is important to highlight that in the Lagrangian LS-DYNA simulations,

the plates’ behaviours incorporate flexural and membrane modes and strain-hardening

and strain-rate sensitivity effects; in addition, the membranes’ elasticity is accounted for.

Further details of the MM-ALE and pure Lagrangian models were provided earlier, see

Section 5.3.

In the model predictions, the peak displacement occurring when the total velocity reaches
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Table 5.4. Input parameters for the MM-ALE explosive analyses and the corresponding energy-equivalent
total impulses (Tyas and Pope, 2003; Rigby et al., 2019a), Ik, and area-integrated total impulses I0. The
total impulses are computed over the circular (cir.) and rectangular (rec.) plates. The Hopkinson-Cranz
scaled distance Z are shown.

ID Charge mass clear SOD SOD Z I0 (rec.) Ik (rec.) I0 (cir.) Ik (cir.)

[g] [mm] [mm] [m/kg1/3] [N.s] [N.s] [N.s] [N.s]

1 50.0 25.0 44.5 0.12 51.62 104.15 53.10 111.15
2 75.0 25.0 47.4 0.11 73.63 146.66 76.53 156.42
3 100.0 25.0 49.6 0.11 95.96 186.40 99.41 198.66
4 125.0 25.0 51.5 0.10 117.20 224.17 121.99 238.90
5 150.0 25.0 53.2 0.10 141.07 260.80 144.36 277.67
6 175.0 25.0 54.7 0.10 161.28 295.48 166.32 314.69
7 200.0 25.0 56.0 0.10 181.33 329.43 188.14 350.95
8 225.0 25.0 57.3 0.09 201.66 362.25 209.93 385.98
9 50.0 35.0 54.5 0.15 49.83 87.32 52.34 93.43
10 75.0 35.0 57.4 0.14 72.09 123.94 74.86 132.28
11 100.0 35.0 59.6 0.13 93.49 158.44 96.79 168.96
12 125.0 35.0 61.5 0.12 115.65 191.73 118.46 204.19
13 150.0 35.0 63.2 0.12 134.48 223.39 139.70 238.16
14 175.0 35.0 64.7 0.12 155.88 254.33 160.82 270.97
15 200.0 35.0 66.0 0.11 175.33 284.41 181.60 303.10

zero is identified herein as the residual (or permanent) displacement at a given spatial

coordinate on the membrane. Throughout, the specific impulses are symmetric with re-

spect to the membranes’ centres, and hence the peak residual displacements are located

at the plates’ centres and are denoted by wc. In evaluating the analytical solutions for

the rectangular membrane, the FFT procedure described in Appendix D is utilised for

computational efficiency.

The model predictions are compared to LS-DYNA results for rectangular membranes under

non-uniform specific impulses, and the results are shown in Fig. 5.3 using the permanent

central displacement, wc, as a function of the energy-equivalent total impulse, Ik.

Similar model validation is provided for the circular membranes under non-uniform specific

impulse, and the results are shown in Fig. 5.4.

From the two validation analyses, it is shown that the model compares excellently with the

predictions from the LS-DYNA structural analyses. Furthermore, it can be seen that both

the model and LS-DYNA predictions exhibit the linear dependence of the central peak

plastic displacements with the energy-equivalent total impulse, Ik, in agreement with the

findings of the original authors who derived this important load parameter (Rigby et al.,

2019a; Tyas and Pope, 2003). This demonstrates the accuracy of the present analytical

model and, also, indicates that the functional form of the membrane model is correct when

applied to non-uniform specific impulse cases. Additionally, it is evident, from Figs. 5.3

and 5.4, that the peak and residual displacements are almost coincident, such that the

resulting membranes’ responses are mainly plastic. In Section 5.6, the precise specific

impulse profiles, as predicted from the foregoing explosive analyses in LS-DYNA, will be

given, which are highly non-uniform (as the case from typical near-field blast scenarios).

It should be emphasised that the analytical model predictions compare well with the cor-
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Fig. 5.3. Comparisons of the model predictions to LS-DYNA results for rectangular membranes in terms
of the central displacements, wc, versus the energy-equivalent total impulse, Ik. Residual (r) and peak (p)
displacements are shown from LS-DYNA simulations. Ik values correspond to speci�c impulses generated
by explosive simulations using the MM-ALE technique in LS-DYNA.

Fig. 5.4. Comparisons of the model predictions to LS-DYNA results for circular membranes in terms of
the central displacements, wc, versus the energy-equivalent total impulse, Ik. Residual (r) and peak (p)
displacements are shown from LS-DYNA simulations. Ik values correspond to speci�c impulses generated
by explosive simulations using the MM-ALE technique in LS-DYNA.
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responding numerical results from the Lagrangian LS-DYNA analyses, even though the

input specific impulses in both approaches are based on the MM-ALE calculations. That

is, given a non-uniform specific impulse (without associating it with an actual explosive

event), the analytical model and the purely Lagrangian simulations give comparable re-

sults. Although, the MM-ALE technique was utilised to base the comparisons on physically

relevant specific impulse characteristics (i.e., reasonable amplitudes and distributions) as

would be encountered in real situations.

5.5 The Non-Uniform Model and LS-DYNA Predictions Ver-

sus Explosive Plate Experiments

As already mentioned, in the above validation work, the specific impulses used in both the

model predictions and the LS-DYNA Lagrangian simulations are based on results from

the earlier LS-DYNA MM-ALE analyses. In this section, experimental results (discussed

below) are used to validate both predictions from LS-DYNA and the present model.

Curry (2017) and Curry and Langdon (2017) performed 26 air-blast experiments on thin

circular Domex-355 steel plates of constant diameter of 300 mm and thickness of 3 mm,

and the specimens were loaded by near-field blasts generated by detonating cylindrical PE4

explosive charges. In the tests, the charges had various masses and were located at two

clear stand-off distances. The authors measured the transient and residual displacements

of the plates and outlined the blast configuration in detail.

However, in Curry and Langdon (2017), only measurements of the total impulses are re-

ported, whereas the actual specific impulse distributions are not quantitatively available.

In addition, the total impulses are inferred by their effects on the early oscillatory motion of

a ballistic pendulum housing the target specimens and the explosive charge, as described

in the authors’ work. Thus, in order to apply the analytical model, MM-ALE simula-

tions using LS-DYNA were performed by the present author to numerically reproduce the

blast-induced specific impulses according to the experimental blast set-ups in Curry and

Langdon (2017), as was described in Section 5.3.1.

Fig. 5.5 shows the test matrix of the explosive experiments of Curry and Langdon (2017)

in terms of the masses and clear stand-off distances of the explosives. The left sub-figure

gives the values of the energy-equivalent total impulses, Ik as predicted by the MM-ALE

analyses, and the right sub-figure provides the average (among replicates) values of the

experimental total impulses. This figure is meant to relate the values of Ik, discussed

herein, to the input explosive experiments of Curry and Langdon (2017).

The MM-ALE results were then validated using the measured total impulses in Curry and

Langdon (2017), as shown in Fig. 5.6. It should be pointed out that total impulses from

the MM-ALE simulations correspond to areas of circular targets of radius 0.15 [m], as this

is the radius of exposed (or unsupported) areas of the plate specimens (i.e., portions of

impulse transferred by the clamping frame are omitted). The total area of the front surface
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Fig. 5.5. Explosive testing matrix of Curry and Langdon (2017) and their associated energy-equivalent
total impulses (as predicted by the MM-ALE analyses in LS-DYNA) (left) and the average values of the
experimentally measured total impulses (right).

of the pendulum (consisting of the unsupported area of the specimens and the front area

of the clamping frame) is 0.42 or 0.16 [m2], whereas the surface area of the unsupported

area of the plate specimens is (π 0.152) or ∼ 0.07 [m2]. Thus, the area considered in the

impulse calculations comprises 0.44 of the total area (exposed to the explosive charge).

The part of impulse transferred through the clamping frame is thought to not influence

the plate’s response, as will be explained later. The red data points indicate that these

explosive tests are excluded from the subsequent Lagrangian analyses of the specimens’

responses.
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Fig. 5.6. Area-integrated total impulses from LS-DYNA MM-ALE simulations (Idyna) and Curry and
Langdon's (2017) experiments (Iexp) versus the equivalent impulses, Ik. Red markers indicate that exper-
iments were excluded from the subsequent Lagrangian analyses.

It is seen in Fig. 5.6 that the MM-ALE model underestimates the total impulses compared
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to the experiments. This is in agreement with the findings of Rigby et al. (2019a) that

the total impulse inferred from the ballistic pendulum readings is generally larger than

what the actual target specimens (mounted on the pendulum’s front) experience. The

experimental impulses, shown in Fig. 5.6, are based on ballistic pendulum measurements,

as discussed earlier. Furthermore, the contributions of the total impulse associated with

the exposed area of the clamping frame (which is neglected in the impulse calculations from

the MM-ALE results) appear to be accounted for in the experimental readings (shown in

Fig. 5.6 as Iexp) in Curry and Langdon (2017), see the authors’ Section 2.3. However,

since the specific impulses are highly non-uniform due to the near-field nature of the blast

experiments, the majority of the specific impulse is concentrated in a partial region of

unsupported area of the circular plate specimen. Thus, the total impulse contribution

associated with the clamping frame is not directly related to the ratio of the omitted area

to total area, which is (1− 0.44) = 0.56.

The numerically obtained specific impulses are subsequently used in the analytical model

to calculate the predicted residual displacements at the plates’ centres, which are then com-

pared to the corresponding experimentally measured displacements of Curry and Langdon

(2017) as shown in Fig. 5.7.
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Fig. 5.7. Experimental validation of the model predictions for circular membranes in terms of the central
displacements, wc, versus equivalent impulse, Ik. The Model and LS-DYNA predictions are compared to
the experimental data of Curry and Langdon (2017). Residual (r) and peak (p) displacements are given
from LS-DYNA simulations and experiments (exp).

Furthermore, purely Lagrangian LS-DYNA analyses (using the modified JC model) were

also performed to predict the structural response of the plates, as was described in Sec-

tion 5.3.2, and the results are compared to both the model predictions and the experimen-

tal data of Curry and Langdon as already shown in Fig. 5.7. Two testing arrangements

in Curry and Langdon (2017), as indicated by the red markers in Fig 5.6, were excluded

from the structural analyses of the steel plates. This is because the peak transverse dis-

placements from the Lagrangian LS-DYNA simulations that are associated with these
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explosive tests were found to be less than the experimentally measured residual displace-

ments, and experimental data were not provided for the peak displacements. Hence, the

two tests were eliminated from the validation work.

As can be seen in Fig. 5.7, since the maximum displacements from the experiments and

the Lagrangian LS-DYNA analyses are in reasonable agreement, it is concluded that the

specific impulses from the MM-ALE models are accurate as well, despite the deviations

of numerical total impulses from the experimentally reported ones. The maximum dis-

placement is the quantity that is least affected by the method of determination in both

the experiments and the post-processing of LS-DYNA results. The model predictions,

as discussed earlier, are based on the MM-ALE specific impulses. Therefore, the model

predictions in terms of the central plastic displacements, as depicted in Fig. 5.7, compare

excellently with the experimental findings of Curry and Langdon (2017). The results in

the present and previous sections both exhibit that the model is accurate when compared

to LS-DYNA results.

5.6 Additional Analysis Results from LS-DYNA Simulations

As mentioned in the previous sections, the purpose of performing LS-DYNA analyses

is to validate the analytical model for the non-uniform specific impulse case. Further-

more, the model was also validated against real experiments conducted by Curry and

Langdon (2017) using explosive charges (made of PE4) detonated at very small stand-off

distances. However, the experimental measurements did not provide quantitative data

on the spatial profile of the specific impulses impinged onto targets. Therefore, explo-

sive analyses using the MM-ALE method in LS-DYNA were performed to numerically

reproduce the specific impulses, where the explosive set-up used in Curry and Langdon is

replicated. The obtained specific impulse profiles were then used in the analytical model

to predict the structural response of the membranes. In addition, these numerically gen-

erated impulse profiles were used as input in subsequent purely Lagrangian analyses to

predict the membrane response in LS-DYNA.

The aim of the present section is to provide additional results that were not shown in the

previous sections. Herein, the structural responses of the target are associated with the

specific impulses and the explosive input parameters, namely, in terms of the charge masses

and the stand-off distances. The following graphs are referred to the various explosive

experiments using the following (naming) convention: Mx-Sy, where “M” stands for mass

and “S” stands for stand-off distance, and x is the mass in [g] and y is the stand-off

distance in [mm], measured from the target’s centre to the nearest edge of the charge.

For all analyses, the charge is placed directly above the target’s centre, and the target is

assumed rigid.

Fig. 5.8 shows the specific impulse profiles, i(r) where r is the radial coordinate from the

centre of the circular targets, corresponding to the explosive experiments, as designated
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Table 5.5. Blast input parameters in explosive MM-ALE simulations

Experiment ID Range of x [g] Range of y [mm] Charge shape

Mx-Sy
x: mass of charge [g]
y stand-o� distance [mm]

[10− 50] [40− 50] Cylindrical

by the earlier-defined naming convention Mx-Sy. First, the profiles remarkably follow the

Gaussian distribution predicted by Pannell et al. (2021), and the high non-uniformity of the

specific impulse is obvious. This is attributed to two facts, the variations of (i) the actual

stand-off distances and (ii) the angles of incidence of the various points on the target’s

surface are highly variable as the explosive charge is very close to the target. The actual

distances and the angle of incidence near the target’s centre are by far small compared to

points that are further away. These two blast parameters directly lead to high increases

in the reflected pressure from the explosive blast. Although the positive phase duration is

generally much shorter for smaller stand-off distances, the positive specific impulse (which

is the time integral of the reflected pressure over the positive phase) is much larger in the

central region of the target, thus giving a highly localised profile. Moreover, the figure also

shows that the specific impulse is highly dependent on both the stand-off (from the target’s

centre), R, and the cylindrical charge’s mass W , or the scaled distance Z = R/(W )(1/3);

smaller Z leads to larger specific impulses in the central regions.

Fig. 5.9 shows the resulting permanent displacement profiles wp(r) when deformable thin

membranes are subjected to the specific impulses (through prescribed initial velocity fields

ẇ0(r) = i(r)/[ρh]), where the specific impulses are as shown in Fig. 5.8, presented earlier.

In this figure, we also used the earlier-defined experiments’ designations. The permanently

deformed profiles are given for each considered charge’s mass and stand-off distance. Note

that the membrane responses were obtained from axi-symmetric LS-DYNA analyses, and

the deformed profiles wp(r) were extended (in the negative radial direction), i.e., by reflec-

tion about the axis of symmetry, for visual convenience. It can be seen that the target dis-

placement profiles, wp(r), exhibit spatial non-uniformity in direct correspondence with the

imparted specific impulse distributions i(r). In particular, localised dishing (or bulging)

can be seen near the central region of the circular target where the specific impulse has

greater amplitude, which is in agreement with experiments, see Curry and Langdon.

In order to provide valuable insights, the results obtained from LS-DYNA were subse-

quently post-processed in Matalb. In particular, the von Mises stresses, σvm, were com-

puted for every element and were related to the effective plastic strains εeff . It was noted

that plasticity (as indicated by εeff) developed very rapidly (in terms of time) and prop-

agated (in terms of space) through most of the membrane’s area. The average von Mises

stresses for all elements were also computed by time integration. Also, the average von

Mises stress and effective plastic strains were computed through integration over the mem-

brane surface area.

Fig. 5.10 shows the von Mises stress versus effective plastic strain curves for the most-
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Fig. 5.8. Numerically predicted (from MM-ALE LS-DYNA) speci�c impulse pro�les that were generated
from the detonations of cylindrical explosive charges. The designation Mx-Sy gives the charge's mass x in
[g] and the clear stand-o� distance y in [mm]. The charge is directly located above the centre of the rigid
target.
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Fig. 5.9. Residual (or permanent) deformed pro�les, wp(r), of impulsively loaded circular targets as
predicted by purely Lagrangian structural analyses in LS-DYNA. The targets were loaded by near-�eld
blasts associated with non-uniform speci�c impulses. In the legends, the designation Mx-Sy refers to the
explosive charge's mass x in [g] and the clear stand-o� distance y in [mm], as the speci�c impulses were
obtained from separate MM-ALE explosive analyses, as shown in Fig. 5.8. It can be inferred that there
is a direct correspondence between the speci�c impulse pro�les (shown in Fig. 5.8) and the permanent
displacement pro�les, shown in this �gure. Note that r = 0 is the centre of the circular membrane, and
the pro�le w(r) in the negative r range is simply the image of the pro�le in the positive r range; this was
made for visual convenience, and the actual analyses were all axi-symmetric.
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stressed element for each blast experiment. This curve comprises the time histories of

the von Mises stress and the effective plastic strain at the same integration point of a

single element. As can be seen, strain-hardening and strain-rate effects are present as the

stress levels (corresponding to non-zero effective plastic strains) exceed the initial yield

stress, σ0, which is the parameter A in the JC model. In addition, the figure shows that

maximum effective strains are within physically reasonable range; that is, it can be said

that the neglect of strain-based material failure are practically justified (recall that the

present figure correspond to the most-stressed element in each of the numerical explosive

experiments).

Fig. 5.10. Von Mises stress, σe, versus e�ective plastic strain, ε
p
e , curves as deduced from the results of

circular membrane responses under non-uniform speci�c impulses. The von Mises stresses and e�ective
plastic strains correspond to the most stressed elements for each blast experiment. Time was used to
directly map the stresses to the strains. The nearly vertical lines in the curves are due to purely elastic
unloading and/or reloading, i.e., phases during which no change of plastic strain takes place. The quasi-
static yield stress, i.e., Johnson-Cook's A, of the material, was 352× 106 [Pa]; thus, strain rate sensitivity
and strain hardening are seen to play a substantial role as the current stresses exceed the mentioned quasi-
static yield value.

For each element, the von Mises stress time history was determined, and then the time-
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average stress was calculated by time integration (per element). Then, the profile of such

time-averaged von Mises stress over the entire membrane domain is obtained. Fig. 5.11

shows these profiles for each experiment designated by the charge’s mass and stand-off

distance, i.e., Mx-Sy defined previously; note that every experiment corresponds to a

particular specific impulse distribution as present earlier in Fig. 5.8.

In the plate response LS-DYNA simulation, recall that the material of the membrane

was described by Johnson-Cook (JC) model, and the quasi-static yield stress, i.e., A in

JC model, was 352 × 106 [Pa]. Thus, it can be seen that the dynamic yield stress is

significantly affected by strain-hardening and strain-rate sensitivity. The effective (or von

Mises) stress profiles are area-averaged and the mean effective stresses are shown in the

figure by the horizontal dashed lines labelled “mean”. It can be seen that the mean stresses

are in order of the initial yield stress σ0 (which is taken as the parameter A in JC model).

Therefore, the initial yield stress in the analytical model, which is taken as σ0, can be

viewed to reflect the global (or overall) yield stress in an average sense. This is believed

to explain the reasonable agreement between the model and LS-DYNA predictions of the

plastic displacements of the plates despite the actual differences of the yield stress values

in the two approaches.

Further numerical blast experiments were performed in LS-DYNA for impulsively loaded

circular membranes. The specific impulses were generated from earlier axi-symmetric

explosive simulations using the MM-ALE technique, in which the explosive charges are

spherical and were detonated at small stand-off distances from rigid targets. The specific

impulses were then converted into initial velocity fields that drive the motion of the purely-

Lagrangian circular membranes. Certain combinations of the explosive charge masses and

clear stand-off distances (from the closest outer edge of the charge to the centre of the

target) were considered. Again, we designate the numerical blast experiments using the

code Mx-Sy, where x is the mass in [g] and y is the stand-off distance in [mm]. The blast-

induced specific impulses were all non-uniform and followed Pannell et al.’s Gaussian

profile. Herein, we will present the time histories of the central points of the circular

membranes for each blast experiment, as shown in Fig. 5.12. The figure suggests that for

all explosive scenarios, the response of the target is mainly plastic as the central points

are practically held at the permanent displacement values, which are attained very early

through the response. Thus, it can be said that most of the input (kinetic) energy has

already been entirely dissipated as soon as the peak central displacement is attained, for all

the numerical experiments. This is also verified by examining the time histories of global

(kinetic and internal) energies (although these graphs are not shown herein for brevity).

As the present model is based on the simplifying assumption that the in-plane strains of

the thin target are associated with membrane action and without in-plane displacement

effects, hence the local variation of the (purely plastic) strains does not accurately capture

the corresponding observations from experiments and well-detailed numerical simulations.

In particular, expected deviations of the model predictions regarding the distribution of

the effective plastic strains exist, which are attributed to the additional membrane action
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Fig. 5.11. Pro�les of the von Mises stress, σe, versus the radial coordinate, r, of the circular membranes.
The von Mises stress at a given point, r, is the average of the corresponding von Mises versus time curve
at that point; the averaging is performed by time integration. The quasi-static yield stress, σ0, of the
membrane's material is taken as 444 × 106 [Pa], which corresponds to the corresponding experimental
value in Curry and Langdon (2017). Dashed horizontal lines in the sub-plots represent the quasi-static
yield stress, σ0, and the area-averaged, labelled �mean�, of the pro�les (obtained by integration over the
membrane's circular area).
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Fig. 5.12. Time histories of the central transverse displacements, wc(t), of circular membranes loaded by
non-uniform speci�c impulses. The impulses were generated from earlier explosive MM-ALE experiments
in LS-DYNA, and the experiments are labelled using the naming code Mx-Sy, where x is the explosive's
mass in [g] and y is the stand-o� distance in [mm]. The charges are located directly above the target's
centres. It can be recognised that the response is mainly plastic and that the peak response is attained in
the early phase of the response.
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due to the in-plane displacements and possibly to flexural effects near the top and bottom

surfaces of the thin plate. Moreover, the analytical model is expected to deviate from the

real local distribution of the effective plastic strain field due to the neglect of the strain-

hardening and/or strain-rate sensitivity effects, which are experimentally observed in the

real behaviour of some typical ductile materials (e.g., Domex-355 steel). These plastic

characteristics, to some extent, prohibit plastic flow as the yield stress increases during

the evolution of deformation.

It should be re-emphasised that the present model can only predict the plastic strain con-

tribution that is associated with the large transverse displacements. That is, the predicted

plastic strain is a lower-bound geometrically (or kinematically) due to the neglect of the

in-plane displacement contribution. In contrast, the predicted strain is an upper-bound

materially (or constitutively) due to the perfect-plasticity assumption. The overall effect

can be identified as an explanation for the reasonably accurate prediction of the transverse

displacement’s spatial profile (both transient and permanent deformed shapes). Fig. 5.13

shows the deformed shapes of a circular plate that is impulsively loaded by a near-field

blast (corresponding to a PE4 spherical charge with mass m = 75 [g] and clear stand-off

distance of Rclear = 35 [mm]). In this figure, the model-predicted profile (solid blue) is

compared to a set of deformed profiles from the LS-DYNA simulation corresponding to

different time instants (solid red curves). In addition, the permanent deformed profile,

wp(r), from LS-DYNA is represented by the dashed red curve; the remaining dashed black

curves provide offsets (using the plate’s thickness, h) of LS-DYNA permanent profile.

It is seen, in Fig. 5.13, that the predicted profile is reasonably accurate compared to the

numerical results; the conservative deviation is within the order of one plate’s thickness,

h. For the same blast problem, the time history of the total (or global) kinetic energy

as predicted by the present theory when compared to the corresponding LS-DYNA result

is shown in Fig. 5.14. From the latter figure, it can be seen that the model’s prediction

exhibits reasonable agreement with the numerical prediction, in particular with respect to

the time interval during which the plate as a whole dissipates the blast input kinetic energy.

For example, the model predicts that beyond time t = 0.5 [ms], the plate is completely

rigid, which can be regarded as a reasonable approximation to the global predictions from

the LS-DYNA simulation.

The combined contributions of in-plane displacement, strain-rate sensitivity, and strain-

hardening, in addition to the large transverse displacement, on the effective plastic (mem-

brane) strains at the mid-plane of circular thin plates that are subjected to non-uniform im-

pulsive loading, due to near-field blast, were studied numerically using LS-DYNA. Namely,

the results from Lagrangian LS-DYNA analyses are post-processed to determine the spa-

tial profiles of the mid-plane effective plastic strain, strain-rate, dynamic yield (von Mises)

stress. Elveli et al. (2022) suggested that the influence of work-hardening on the distri-

bution of effective plastic strains in blast-loaded plates can be studied numerically due to

expected difficulties in the experimental approach. The near-field blasts are characterised

by the (non-uniform) specific impulses, which are shown in Fig. 5.15, as obtained by the
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Fig. 5.13. Deformed pro�les of a circular thin plate due to an impulsive near-�eld blast corresponding
to a spherical PE4 explosive with a mass of 75 [g] and detonated at a clear stand-o� distance (measured
from the plate's centre) of 35 [mm]. Shown are the pro�les predicted by the analytical model (based on
the total solution termination strategy) and the corresponding ones from a purely Lagrangian LS-DYNA
simulation. The plate thickness, (h = 3 [mm]), is used to o�set the permanent deformed pro�le, wp, that
is determined from LS-DYNA results, and the model predicted pro�le is shown to be within one plate
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Fig. 5.14. Evolution of total kinetic energy of a circular thin plate due to an impulsive near-�eld blast
corresponding to a spherical PE4 explosive with a mass of 75 [g] and a clear stand-o� distance (measured
from the plate's centre) of 35 [mm]. The kinetic energy as predicted by the analytical model (based on
the total solution termination strategy) is compared to the corresponding one from a purely Lagrangian
LS-DYNA simulation. There appears slight deviation among the initial kinetic energies, i.e., at t = 0,
which can be attributed to small numerical error, in LS-DYNA, associated with the linear interpolation
of the initial velocity pro�le. The exact kinetic energy (per unit radian) is 1/(2ρh)

∫
R
i2rdr, where the

speci�c impulse, i(r), is as will be given by the curve (M75-S35) in Fig. 5.15.
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priorly performed MM-ALE explosive analyses. The actual input parameters of the blast

configurations are shown in the various graphs with reference to the mass of the spherical

PE4 explosives and the clear stand-off distance. The naming convention Mx-Sy is adopted

where x is the charge’s mass in [g], and y is the clear stand-off distance in [mm].

Representative profiles of effective plastic strain and the effective plastic strain-rate are

shown in Figs. 5.16 and 5.17, respectively. Note that the plastic strain and plastic strain-

rate at a spatial point (in the corresponding profiles) are the maximum values of the

respective time histories. Since the circular plates were impulsively loaded, and the results

correspond to the mid-plane of the plates, the obtained profile of maximum plastic strain

is the final distribution of the plastic strain. The maximum strain-rate profiles were

smoothed using the moving average method with a span (or moving width) of 8 (out of

150) data points; this due to observed spikes in the raw data.

As well-known, evolution of plastic strains and high strain-rates lead to enhancement in

the dynamic yield stress, which is accounted for by the utilisation of Johnson-Cook model

in the present numerical study. To obtain suitable representation of the dynamic yield

stress, LS-DYNA results were initially processed to determine the effective (or von Mises)

stress (which is not necessarily the yielding stress) versus effective plastic strain curve for

each element (using the integration point at the mid-plane of the plate). These curves,

then, are averaged by integration over the plastic strain. Hence, elastic rebounds are

eliminated automatically since the plastic strain is held fixed during such events. This

averaging process is performed for all elements, and hence a spatial profile is obtained

for the dynamic yield stress (again, a point on the profile is the average estimate of the

dynamic yield stress over the entire course of plastic deformation). Such representation of

the dynamic effective yield stress, in the described average sense, is presented in Fig 5.18.

Since the targets are impulsively loaded and their material is strain-hardening and strain-

rate dependent, the increase in the dynamic yield stress provides extra resistance to further

plasticity, i.e., the material strain-hardens. As such, subsequent plastic strains evolve more

slowly, and, hence, the magnitudes of strain-rates are expected to diminish. That is, the

profiles of strain-rates based on the maximum values are not entirely representative of

the whole deformation path. Nevertheless, the maximum profiles were shown earlier, in

Fig. 5.16, to obtain a quantitative sense of the order of high strain-rates that could arise

in the impulsive loading regime. For the present problems, the maximum strain-rates are

in the range of 106 times the quasi-static threshold of strain-rate (which is ε̇0 = 0.0014

[1/s] for the Domex-355 steel material (Curry, 2017)); the extreme yield enhancement in

the foregoing analysis due to the strain-rate effect alone amounts to 263%.

When the profiles of the average dynamic stresses, as given in Fig. 5.18, are averaged

further over the circular area of the plates (by spatial integration), a measure of the global

dynamic stress is obtained for each numerical experiment. For clarity, the global dynamic

stress is averaged twice (first over the plastic deformation cycle at a particular spatial

coordinate, then over the circular area of the plate). The ratio of the global dynamic

stress to the experimentally measured quasi-static (or initial) yield stress is, then, related
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to the total impulse from a given specific impulse distribution for the same numerical

experiment. This is shown in Fig. 5.19, which shows a (nearly) linear dependence of the

increase in the global yield stress of the plates on the imparted total impulse from the

blast loading.

The aim of the foregoing presentation of additional results from the numerical simulations

using LS-DYNA is to provide the reader with accurate representation of the more realistic

effects of near-field blast loadings on the response of thin plates, especially in areas where

the present analytical model (the main work of the thesis) exhibits deficiencies. The

foregoing discussion, also, highlight that further research is, indeed, required to improve

the developed model, such as by addressing the effects of in-plane displacements on the

membrane strains and the strain-hardening and/or strain-rate sensitivity of the material

on the dynamic increase in the yield stress and the corresponding local distribution of the

effective plastic strains. This can be essential as the basis of design against material failure

is typically based on the maximum plastic strains (just before fracture) and the regions of

severe plasticity in the target’s area, i.e., where failure is likely to initiate.

Although the near-field blast loading is highly localised, as seen in Fig. 5.15 in terms of

the blast-generated specific impulses, the target’s plasticity appears to spread laterally in

some numerical experiments, e.g., see Fig. 5.17 for effective plastic strain profile in the

M200-S35 experiment. This is attributed to the smoothing effect of the work-hardening of

the material. Elveli et al. (2022) and Granum et al. (2019) point out that low hardening

plates under blast loadings exhibit pointed (or distinct localisation of) plasticity patters in

the permanent deformed profiles, while plates with considerable work-hardening result in

smeared (or smooth) distribution of plastic strains and permanent deformed configuration.

Finally, the present numerical analysis quantitatively demonstrate that the thin plate’s

membrane action is a primary mechanism to dissipate the blast-imparted initial kinetic

energy in a distributed manner, e.g., see the lateral spread of the average dynamic yield

stress profiles shown in Figs. 5.18 and 5.11, and the profiles of final effective plastic mem-

brane strain in Fig. 5.17. A structure’s ability to distribute plasticity even though it was

subjected to intense localised loading offers practical advantage such that the material is

more efficiently exploited; the whole structure is being actively utilised to dissipate the

inputted kinetic energy, and the (ductile) membrane, due to its thinness, can be relatively

light in weight. The set-ups of the numerical analyses and the values of the parameters in

the material and equation of state models are as given in Section 5.3.

5.7 Summary and Conclusions

The primary aim of this chapter was to assess the accuracy of the analytical model for

the general case of non-uniform specific impulse. Such distribution of the specific impulse

is the actual case encountered in typical near-field blasts. Thus, investigating the model

performance for the considered case is of significant practical importance. To accomplish
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Fig. 5.16. Maximum plastic strain-rate distributions in circular thin plates when subjected to near-�eld
blasts. The blasts are labelled by Mx-Sy where x is the mass in [g] of the spherical PE4 explosive, and
y is the clear stand-o� distance (measured from the plate's centre) in [mm]. The corresponding speci�c
impulses were given in Fig. 5.15. The plastic strain-rate at a point (in the pro�les) is the maximum
strain-rate in the corresponding time history at that point. Shown by the dashed horizontal line in each
sub-graph is the value of the quasi-static threshold of strain-rate, ε̇0; notice that these lines are hardly
distinguishable from the zero axis line due to the relatively small value of ε̇0 = 0.0041 [1/s].
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Fig. 5.17. Maximum (e�ective) plastic strain distributions in circular thin plates when subjected to near-
�eld blasts. The blasts are labelled by Mx-Sy where x is the mass in [g] of the spherical PE4 explosive, and
y is the clear stand-o� distance (measured from the plate's centre) in [mm]. The corresponding speci�c
impulses were given in Fig. 5.15. The plastic strain at a point (in the pro�les) is the maximum plastic
strain in the corresponding time history at that point. Observe that the region of large plastic strains
are near the plates' centres; the analytical model incorrectly predict zero plastic strains near the central
part of the plates. This limitation is attributed by the presence of in-plane displacements despite their
insigni�cance in the determination of the plate's permanent pro�le of the transverse displacement.
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Fig. 5.18. Average e�ective (or von Mises) yield stress distributions in circular thin plates when subjected
to near-�eld blasts. The blasts are labelled by Mx-Sy where x is the mass in [g] of the spherical PE4 explo-
sive, and y is the clear stand-o� distance (measured from the plate's centre) in [mm]. The corresponding
speci�c impulses were given in Fig. 5.15. The e�ective yield stress at a point (in the pro�les) is the average
stress that is determined by integrating the von Mises stress versus e�ective plastic strain curve at that
point. The plate's material assumed as Domex-355 steel and is modelled by the JC material model in
LS-DYNA. It is seen that the e�ective dynamic stress is well above the quasi-static (or initial) yield stress,
σ0 = 444×106 [Pa], (represented by the dashed horizontal lines). This is explained by the large magnitudes
of the e�ective plastic strains and strain rates experienced during the deformation regime of the near-�eld
blast-loaded plates. Figs. 5.16 and 5.17 provide graphical representations of the pro�les of e�ective plastic
strain-rate and e�ective plastic strain, respectively.
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Fig. 5.19. Ratio of global dynamic yield stress to quasi-static yield stress versus total impulse. The global
dynamic yield stress is the spatial average of the pro�les shown in Fig. 5.18. The total impulses, I0, are the
spatial integrals of the speci�c impulse pro�les shown in Fig. 5.15. The quasi-static yield stress is taken as
444 [MPa], which corresponds to the experimental value in Curry (2017) for the Domex-355 steel.

this, validation data were obtained from relevant experiments, performed by others, and

high-fidelity numerical predictions from LS-DYNA. Concerning the loading parameter, the

used experiments reported only the total impulses instead of the actual specific impulses

imparted on the structural plates. Hence, it was necessary to carry out numerical explo-

sive blast analyses, using the MM-ALE technique in LS-DYNA, to replicate the explosive

events, using the blast configuration detailed in the experimental source, and thus repro-

duce the specific impulse fields. The numerically obtained specific impulse is eventually

used in the analytical model to provide predictions of the structural target response. In

addition, these calculated specific impulses are inputted in subsequent purely Lagrangian

structural simulations, in LS-DYNA, to obtain the target response. The analytical model

was then compared to the experimental and LS-DYNA results.

Additional LS-DYNA simulations, both explosive and structural, were performed to in-

vestigate and present the effects of the near-field blasts, in terms of specific impulse distri-

butions, on the structural responses of thin Domex-355 steel plates. The utilised material

models and their underlying theories as well as an overview and considerations of relevant

best practices of the ALE technique were discussed. Due to the large size of the numerical

analyses, and the associated post-processing, a highly practical Matalb function was de-

veloped to automate reading the binary outputs from LS-DYNA, the source code of which

will be made public.

The main conclusions, drawn from the work presented in this chapter, are:

� The sequential termination strategy, which is adopted for the response of plates

under uniform specific impulse, is found to overestimate the plastic response when

the specific impulse is highly non-uniform;
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� A new solution termination strategy is introduced and greatly improves the accuracy

of the membrane model for the non-uniform specific impulse (i.e., that arises from

an actual near-field blast event). The new strategy requires the termination of the

solution (of the plastic wave equation) when the local kinetic energy (i.e., the kinetic

energy at a particular point) reaches zero for the first time after it was initially non-

zero. Thus, the solution is terminated when the total velocity (the sum of dominant

modes) reaches zero;

� The membrane model (based on the new termination strategy) is found to agree

well with the used validation data, from experiments performed by Curry (2017)

and Curry and Langdon (2017) and results from LS-DYNA simulations performed

as part of the present work;

� The numerical simulations of near-field blast events using the MM-ALE in LS-DYNA

are shown to provide reliable predictions of the near-field blast-generated reflected

positive specific impulse distributions. The profiles of the specific impulse appear

to capture the important features of near-field blasts, such as the high sensitivity to

variations of stand-off distances and angles of incidence. These profiles follow the

Gaussian spatial distribution as predicted by Pannell et al. (2021). The total impulse

(obtained by spatial integration of the specific impulse) compares reasonably with

the corresponding experimental measurements in Curry and Langdon (2017), when

the findings of Rigby et al. (2019b) and Rigby et al. (2019a) are taken into account;

� In the structural LS-DYNA analyses, where thin steel plates are subjected to non-

uniform specific impulse, it is found that plasticity (as measured by the effective

total plastic strains) of the plates develops and progresses through the majority of

the domain (the planar areas of the plates), in the early phase of the response.

The responses of the targets are, hence, mainly plastic. Furthermore, the peak

displacements are attained in the early phase.

� The model predictions and LS-DYNA numerical results on the plastic responses of

the thin targets both show linear dependence on the energy-equivalent total impulse,

as first developed and discussed in Rigby et al. (2019a) and Tyas and Pope (2003).





Chapter 6

Discussion

6.1 Overview of the Work

The work contributes to the engineering field through the fast-running engineering mod-

els (FREMs) framework (Dennis and Rigby, 2023). In particular, the present research

provides a FREM tool by adopting a set of idealising assumptions in an attempt to rea-

sonably reformulate and simplify the physical problem such that only the most dominant

mechanical features are retained while achieving accurate fast-running predictions. The

model should be able to predict the response of thin targets under a near-field blast load-

ing. This can be explained by noting, as informed by experiments and past analytical

studies in the literature, that real plated structures would respond to the near-field blast

loading impulsively, by undergoing considerable plasticity, and through dominantly mem-

brane mode of deformation. These mechanical features are those that are retained in the

mathematical formulation of the problem to be solved. The main outcomes of the present

work are: (i) the development and derivation of the equation of motion that applies to

the transverse motion of impulsively blast-loaded rigid-perfectly plastic membrane in the

absence of in-plane displacement; (ii) the identification of the conditions defining the ap-

plicability of the derived equation of motion and their implications on the solution; and

(iii) the solution of the equation of motion, i.e., the wave equation, and a strategy to ter-

minate the solution to respect the conditions of physical applicability of the mathematical

model. Since the equation of motion of the membrane is valid only conditionally, and it

is very important to identify the conditions of its validity, this topic has been given a full

treatment in a separate chapter, Chapter 3, of the present thesis.

The fundamental limitations of the present work are primarily due to the adopted as-

sumptions in the model’s development. These are the inabilities to account for (i) the

in-plane displacements on the membrane (plastic) strains; and (ii) the realistic plastic

effects of strain-hardening and strain-rate sensitivity when the plate’s material exhibit

such features, as the case for common ductile materials in practice. Associated with these

drawbacks, the accuracy of the model is confirmed to be only reasonable for the predic-

tion of the global response of the blast-loaded thin plate, i.e., the transient and permanent
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transverse deformed configuration. At the local level, the profiles of effective plastic strains

are incorrectly predicted by the model as these profiles qualitatively deviate from those

observed experimentally, as emphasised in Cloete and Nurick (2014), and obtained by

numerical simulations using LS-DYNA by the author. In the local sense, other deviations

are expected due to flexure, particularly near the clamping edges of the membrane, and

due to elasticity of the material. There is an additional limitation of the model that is ex-

plained as follows. The model assumes that when the blast imparts specific impulse on the

target, the target picks up an initial velocity, according to Rigby et al. (2019a) and Tyas

and Pope (2003), which triggers the motion of the membrane (i.e., the target). Then, the

membrane’s motion induces deformation, and its material is assumed under active yield-

ing (i.e., the yield condition is assumed to be satisfied). As such, the present analytical

treatment cannot identify the level of imparted impulse below which no plasticity would

develop. For clarity, the model assumes the onset of plasticity regardless of the magnitude

of the impulse (and, hence, the initial velocity), provided that it is non-zero. The main

reason of this (arguably inevitable) drawback is the non-linear nature of the membrane

problem in the pre-plastic regime; note that membranes (or strings in the one-dimensional

case) would not sustain lateral loadings without being transversely deflected (i.e., the

transverse equilibrium of the structure is displacement-dependent, hence, geometrically

non-linear) unless the structure is initially under large pre-tension (Rao, 2019a).

Despite the above limitations, the model is shown to be reasonably accurate for predicting

the gross (or global) effects of the impulsive blast loading on the response of the targets.

During the model’s validation, predictions are compared to realistic observations from

both experiments and high-fidelity numerical simulations. The specimens in the validat-

ing experiments are thin plates with finite thickness, and some of their materials have

realistic plastic characteristics (i.e., strain-hardening and visco-plasticity, or strain-rate

sensitivity). Furthermore, the impulses are associated with real blasts generated by deto-

nations of high explosives. Related to the existing knowledge, the present work provided

the novel contributions that the impulsive blast loading can be arbitrary in terms of spatial

distribution, and the ductile material obeys the von Mises yielding criterion, which is the

most widely adopted criterion of initial yielding in the current practice of metal plastic-

ity. Furthermore, the present work jointly contributes to engineering research where the

complexity of the original mechanical problem is reduced to obtain practical first-order ap-

proximation of the solution. The adopted assumptions are informed by existing knowledge

that is credited to others.

6.2 Notes on the Model's Applicability

As the aim of the work is to provide practising engineers with simple and fast-running

model to analyse near-field blast-loaded thin plates, it is vital to discuss some preliminary

guidelines on when the model should be used with confidence. Although, thorough and

extensive treatment is beyond the scope of the undertaken study, and, as such, further
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research is deemed necessary as will be highlighted in the following.

The model, in overall, is applicable when:

(1) The blast load is impulsive such that the actual duration of the positive phase dura-

tion is considerably less than the time of maximum response of the given target. In

the current practice of simplified blast analysis of structures based on the UFC (2008)

manual, the loading-response domain is impulsive when the ratio of load duration

to the time of maximum response is less than one-third. However, this practical

definition is based on the initial elastic response of an elastic SDOF structure. That

is, the time of maximum response of the SDOF system is related to its frequency,

which is related to the elastic stiffness and, in turn, the appropriate elastic modulus.

However, when the structure experiences elastic-perfectly plastic deformation, the

calculation of the maximum time response depends additionally on the plastic char-

acteristics (namely, associated with the change in stiffness and mass factors based on

the assumed deformed shape in the plastic range). The manual, see Section 3.17-4

in U.S. Army (2008), suggests that the calculation of the maximum response time

can be based on plastic response alone when the structure undergoes large plastic

deformations.

The present model concerns the purely plastic response of the structure that is gov-

erned by the developed plastic wave equation. In particular, the time of maximum

response is derived to be related to the plastic wave speed that, in turn, is related

to the tensile yield stress of the membrane. Thus, as the yield stress is typically

substantially smaller than common elastic moduli of ductile materials, the time of

maximum response of a purely plastic membrane is much longer than that of an elas-

tic counterpart structure. In other words, when there is confidence that a given blast

loading acts impulsively on a relevant elastic thin plate, then the plastic membrane

response of the thin target would be much more impulsive.

As a preliminary guideline, the same rationale on defining the practical threshold on

the impulsive regime in the SDOF analysis can be extended to the present problem

of a rigid-perfectly plastic membrane. Although, it should be emphasised that this

conclusion is theoretical, and elaborate investigation is needed to address the issue.

The basis of the above guideline is that the impulsive regime, which is an idealisation,

tends to be justifiable when the displacement (in the direction of the applied external

load) at the end of the load duration is small so that the external work is effectively

absent. Therefore, the input energy is due only to the kinetic energy that is built up

during the load application. The transition from perfectly impulsive to completely

quasi-static regimes is gradual, as can be understood from an SDOF analysis. The

practical thresholds, in Biggs (1964) and the U.S. Army (2008), to define the “nearly”

impulsive regime appear to be based on the (analytically based) observation that

when the load duration to maximum response time ratio is less than (1/3), the load’s

magnitude and temporal variation are irrelevant, and the response is, mainly, driven
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by the imparted impulse.

The reader should be aware that the condition of impulsive response based on merely

the elastic characteristics of the target can be more restrictive. This condition would

be relaxed if the purely plastic response is concerned; that is, a blast loading with

a longer positive phase duration could be considered impulsive in the purely plastic

domain, even though it is not for a purely elastic response.

Again, note that the impulse that is discussed herein is due, completely, to the blast

loading. Namely, it is not associated with the excess force (blast force minus plastic

resistance force). Thus, the impulse estimate is conservative in the above discussed

sense. As will be discussed later in this section, the present theory is incapable of

determining the plastic resistance pressure (i.e., the one below which the target would

be completely elastic).

Lastly, the impulsive regime implies that the initial velocity of a point on the target

is associated with the amplitude of specific impulse at that point, ẇ0 = i/(ρh),

where ẇ0 and i are the initial velocity and specific impulse at the same coordinate

on the target. That is, the initial velocity is not affected by the specific impulse at

neighbouring points. This has been called the upper bound kinetic energy hypothesis

in Rigby et al. (2019a) and Tyas and Pope (2003), in which the wave speed, during

the application of the blast pressure, is zero due to the zero shear (stiffness) modulus

of infinitely thin targets. It should be mentioned that the findings of the above-cited

authors are the main basis of the adopted assumption that the thin plate responds

to the near-field blast impulsively. Namely, as discussed in Section 2.2.5, Rigby et al.

(2019a) and Rigby et al. (2019b) provided experimental and numerical evidence that

the response of a thin plate to a near-field blast is impulsive, i.e., it is mainly driven

by the specific impulse alone which gives rise to a proportional initial velocity field.

In the present work, the (plastic) wave speed of transverse motion of the membrane

is derived as a function of the tensile yield stress. Mechanical information propagates

laterally with this speed. Hence, by the end of finite durations of reflected blast waves,

partial specific impulses from neighbouring points could affect the accumulated ini-

tial velocity at a given point since the wave speed is finite (i.e., non-zero); mechanical

information is likely to be arrived from different points to the point under consider-

ation. Although, since near-field blasts are typically associated with extremely short

durations, and the plastic wave speed is dependent on the yield stress (and, hence,

practically small when compared to the speeds associated with elastic shear moduli),

then, the “perfect” impulsive regime can reasonably be assumed to hold. Equiva-

lently, the mechanical information, practically, has no time to propagate laterally.

That is, ẇ = i/(ρh) is valid, and accordingly the blast loading is fully characterised

by the specific impulse alone.

(2) The structure is a thin plate that responds in a pure membrane mode of deformation.

As such, the target should be thin in the sense that the ratio of loading span to
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thickness is high. From existing knowledge, one can define the target to be thin

plate (i.e., without presence of transverse shear effects) when this ratio exceeds 20

according to Reddy (2007) for elastic plate responses. Although, in Mehreganian et

al. (2019b) and Blaauwendraad (2010), the thin-plane response domain is dominant

when the span to thickness ratio is greater than or equal to five (5) for rigid-plastic

plates. The corresponding ratios for the specimens used in the validation data (with

which the model was shown to give accurate predictions) are in the order of 30 or

more. Thus, this is a safe preliminary value to recommend; a higher value is suggested

to practically ensure the applicability of the large displacement regime in the thin

plate response. The flexural resistance can be negligible, in comparison to that due

to the membrane action, for very thin plates. However, the membrane resistance

additionally depends on the magnitude of the transverse displacement. When the

displacement is large, the membrane resistance (or geometric stiffening) can dominate

the overall response.

The criterion to determine the domain of pure membrane action is more well-defined.

In his excellent book, Jones (2012) defines the membrane threshold of response when

the ratio of maximum transverse displacement to thickness is equal to 1 for fully

clamped rectangular plates or (1/2) for simply supported plates. Additional helpful

classification is provided by Cloete and Nurick (2014), in which a ratio of about 2.5 is

proposed. These are the suggested thresholds of maximum transverse displacement

to thickness ratios at which the response transition from the initial flexural-membrane

to the eventual pure membrane mechanisms.

However, the model treats the thin target as a pure membrane from the onset of

motion (i.e., as soon as deformation starts). Hence, the analyst is advised to treat

the target as a membrane then verify the validity of the membrane-only assumption

by computing the ratio of the maximum displacement to the target’s thickness; the

calculations are deemed satisfactory when Jones’s condition, i.e., the ratio is at least

one, is met. In summary, the model is applicable when the plate is thin (so that

transverse shear is not an issue), and the transverse displacements are large (so that

flexure can be neglected). To ensure the validity of this statement, the above criteria

can be utilised as practical guidelines.

(3) The transverse response is primarily dominated by the plastic deformations of the

blast-loaded target. This is crucial as the model assumes the target to be rigid-

perfectly plastic. Hence, the model is applicable when the elastic deformations can

be deemed negligible. Note, as briefly mentioned in Section 6.1, that if elasticity of

the membrane is retained, the problem will be geometrically non-linear, regardless of

the linearity in the constitutive (or material) behaviour, which could make it difficult

to be solved analytically. Since stresses are constant for a rigid-perfectly plastic

membrane, a linear equation of motion has been found.

There is a general agreement in the literature that elasticity can be neglected when-

ever the blast-induced initial (or input) kinetic energy (i.e., in an impulsive regime)



172 6.2. Notes on the Model's Applicability

is several orders of magnitude, e.g., ten times, larger than the maximum elastic en-

ergy associated with the actual target response; the reader is referred to Section 3.10

in Jones (2012) for a discussion on the validity of the rigid-plastic assumption; in

addition, see Sections E.1 and E.2 in Appendix E. However, determination of the

maximum elastic energy of a membrane is non-trivial as the elastic response is non-

linear, as mentioned earlier. Therefore, a practical approach would be to subject

the membrane to small impulsive loading and obtain predictions of the elasto-plastic

response and compare them with the model predictions. The deviation (or inac-

curacy) of the model predictions from the obtained results can be used to define

a practical threshold defining the insignificance of the elastic portion of the overall

response. It is instructive to note that for the initiation of plastic deformation of a

thin plate, the transverse displacement is initially small, and hence plastic bending

(which is assumed negligible herein) predominates membrane action (Hopkins and

Prager, 1953).

The same applies to the validity of neglecting the additional resistance provided by

strain-hardening and strain-rate sensitivity, when applicable, beyond the material’s

initial yielding. As the model assumes perfect plasticity, the model can be regarded

as conservative when applied to targets made of strain-hardening and strain-rate

sensitive ductile materials. However, the model predictions can be improved when

the initial yield stress of the material is reasonably amplified to grossly account for the

extra (or the increased dynamic) strength, as discussed in Section 4.6.1.2 to address

the contribution of strain-hardening; in Appendix E, the work-hardening effect on

the global response is discussed and compared to the corresponding rigid-perfectly

plastic solution.

The increase in dynamic yield stress due to merely the strain-hardening is bounded

as can be observed from quasi-static tensile testing of the material, and noting that

plastic strain is limited by the material’s failure (or ultimate) strain. However, the

corresponding increase associated with high strain-rates appear to be unbounded,

and there can be a situation where a priorly assumed amplification can be overcon-

servative if it is based on unrealistically high strain-rates. The reader is referred

to Gharababaei and Darvizeh (2010) for an approximate treatment to account for

the dynamic increase of yield stress in the analytical treatment of blast-loaded cir-

cular thin plates responding in a single mode (which coincides with the first mode

predicted by the present theory for circular membranes). However, it is found herein

that it is more balanced to neglect the strain-rate sensitivity until a reliable pre-

dictive technique is developed to estimate the likely order of magnitude of strain

rates associated with a given impulsive blast load amplitude and non-uniformity;

the important parameter of the energy-equivalent total impulse due to Rigby et al.

(2019a) is envisaged to be critical, in addition to the area-integrated total impulse.

The proposed treatment, in above, of accounting for the dynamic increase in the

yield stress are empirical in nature, and it is justified according to the findings of the
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present study that the inclusion of the aforementioned plastic characteristics in the

mathematical formulations would lead to a non-linear equation of motion. The above

discussion concerns the “global” effect of strain-hardening and the visco-plasticity;

the corresponding effect of these plastic characteristics on the local response, e.g., in

terms of effective plastic strain field, will be addressed later in Section 6.6.

Nevertheless, it should be re-emphasised that the overall aim of the present work is to

balance the problem’s accuracy-and-simplicity and achieve a fast-running and practi-

cal solution. As has been discussed herein and throughout the thesis, the developed

model attempts to idealise the actual problem and provide solution of the simpli-

fied version of the problem. The model is found to have inherent limitations that

are imposed by the adopted assumptions. The limitations are fully acknowledged,

the bases of which are identified, and the need for further research is appropriately

highlighted.

(4) The blast loading is monotonic, and the target is strain-free initially. An impulsive

blast load is monotonic in the sense that there is no loading reversal, and its spatial

distribution is invariant. However, the (plastic) deformation regime should be pro-

gressive in terms of yielding since the model is based on the total (or integral form of

the incremental) flow rule. This means that the model is applicable as long as there

is no decrease of the plastic work, and the solution of the response is valid until this

statement is violated. The subsequent response is taken to be the state of the target

just prior to the terminated solution (i.e., the last valid state). The author believes

that the impulsive nature of blast loading and a solution termination strategy can

be taken as an approximation to fulfil the above statement. To guide the reader and

explain the basis of the importance of the solution termination, further material is

provided in Appendix G describing a relevant and simple problem of a rigid-perfectly

plastic SDOF model so that the important physical concepts can be described in full

detail without being hidden by the mathematical complexity. There are two solution

termination strategies, which are proposed in the present work, as will be discussed

later in Section 6.5.

6.3 On the De�nition of the Near-Field Blast Loading and

Its Non-Uniformity

The thesis discussed two alternative methods to define the practical limit for the classifica-

tion of the blast loading as near-field blast. First, Tyas (2019) defines the near-field blast

according to the scaled distance, namely when it is less than or equal to 2; the reader

should be aware that shock fronts’ irregularities, i.e., Rayleigh-Taylor instabilities, are

present, which might influence the local spatial distribution of the near-field blast loading,

when the scaled distance is between 0.5 and 2 (Tyas, 2018). Additionally, Gel’fand et al.

(2004) proposes an alternative definition for the near-field blast domain that is based on
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the characteristic size of the blast wave (when it reaches the structure) in comparison to

a multiple times the nominal size (e.g., radius) of the explosive charge. The reader is

referred to Section 2.1.8 for further details.

The model of Pannell et al. (2021) provides a mathematical characterisation of the spa-

tial distribution of the specific impulse from near-field blasts associated with spherical

explosive charges. According to their model, the specific impulse, due to typical near-field

blasts, assumes a Gaussian spatial profile, i.e., generally non-uniform. The practical pa-

rameter of the impulse-enhancement factor that is derived by Rigby et al. (2019a) can

be utilised as appropriate measure to quantify the non-uniformity of any specific impulse

distribution. When the factor is 1, the distribution is perfectly uniform. The specific im-

pulse’s non-uniformity increases as the factor increases above 1. The impulse-enhancement

factor can be readily computed once the specific impulse distribution is obtained (Rigby

et al., 2019a).

The blast analyses, presented in Chapter 5 for the validation of the model against non-

uniform loadings, correspond to values of 1.4 or greater for the impulse-enhancement

factor. The specific impulses distributions agree with the Gaussian model of Pannell et

al.; furthermore, the blasts are associated with clear scaled distances of less than 0.15

[m/kg1/3], see Table. 5.4, and, hence, the explosive events correspond to near-field blasts

according to Tyas’s definition.

6.4 Solutions for Irregularly Shaped Targets

In the development of the present model, the membrane geometry is arbitrary provided

that the membrane is pin-supported along its outer edges. Thus, the derived plastic wave

equation should be applicable for arbitrary shapes of the membrane. This is supported by

the fact that the circular membrane equation of motion was achieved by, simply, trans-

forming the wave equation in rectangular coordinates, and the circular and rectangular

models were shown to be of equal performance when compared to their corresponding vali-

dation data. Hence, the wave equation should apply to any membrane’s shape. Although,

as discussed in Chapter 4, analytical solutions were given only for the rectangular and

circular geometries, which are the most common shapes in practice, as they are simple to

derive. In addition, the given circular solution is limited to axi-symmetric specific impulse

distributions.

Thus, when the target is of irregular or complex shape, it is vital to provide preliminary

guidelines on how to predict the solution using the present theory. The suggested pro-

cedure, in the following, is numerical and consists of two steps: solving the conditionally

valid wave equation and adaptation of a solution termination strategy to respect the appli-

cability of the wave equation. Thus, in the first step, one might start with the plastic wave

equation of the present theory and solve it numerically to obtain the transverse displace-

ment of the target. Example techniques to numerically solve the plastic wave equation
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can be any method of choice that is applicable for a hyperbolic scalar partial differential

equation (PDE) in two dimensions (2D) for bounded domains, e.g., the finite element

(FE) method, the finite difference method, or the spectral method; the reader is referred,

e.g., to the recommendations in Marfurt (1984) and Komatitsch et al. (1999). Although, it

should be mentioned that when the spatial domain is arbitrary (as the case in the foregoing

discussion), then the first method can be more effective. The domain’s boundary should

be treated as reflecting, or non-absorbing, as the given plastic wave equation concerns

membranes that are fully pinned (or restrained) along the periphery.

It is believed that the adaptation of the present plastic wave equation, as the starting

point, would lead to considerable advantages in terms of the computational cost of the

implied numerical approach. In particular, as can be seen in the plastic wave equation,

the only variable (or unknown) is the transverse displacement (i.e., the stresses are fixed

and the incompressibility of the membrane is inherently taken into account). Further-

more, since the wave speed is related the yield stress (which is substantially smaller than

typical elastic moduli), the restrictions on the time step size in an explicit time integration

are much more relaxed, i.e., larger time steps can be used without stability issues for a

given mesh resolution (or element size). In addition, since the PDE is linear, involves

constant coefficients, and homogeneous (i.e., forcing term is zero due to the impulsive

loading), then it can be more efficient to utilise the (unconditionally stable) implicit time

integration scheme without convergence issues since no iterations are needed per one time

step. Nevertheless, it should be re-emphasised that the membrane must be restrained

(against transverse displacement) along its entire periphery, as the developed model does

not address the presence of stress (or natural) boundary conditions, e.g., free edge(s).

The same (numerical) approach is suggested to the case of circular membranes that are

subjected to non-symmetric specific impulse distributions (i.e., when the circular problem

is not axi-symmetric). The reader is warned that the main wave equation for the circular

problem is only applicable for the axi-symmetric case, as the term depending on the

angular coordinate is removed from the equation. That removed term is given in the text

following the first presentation of the polar wave equation. For clarity, the equation of

motion for circular membranes under non-axi-symmetric impulsive loading is given below
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+
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∂w
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∂θ2

]
= ρẅ. (6.4.1)

which should be solved under the following conditions

w(R, θ, t) = 0, w(r, θ, 0) = 0, ẇ(r, θ, 0) =
i(r, θ)

ρh
. (6.4.2)

Since the plastic wave equation only holds at a point on the domain when the membrane is

under active plastic straining (or yielding), then the solution that is obtained numerically

using the above approach needs to be processed; this is the second (and last) step, which

is described as follows. The transient response is considered valid, in the point-wise sense,
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until the velocity reaches zero for the first time at the considered spatial coordinate. The

maximum displacement attained at a given point can be considered as the permanent

displacement. The final deformed profile of the membrane is, hence, given by the envelope

of the maximum displacements at all points.

The reader should be aware that the above-described rapid practical approach for the

solution termination corresponds to the total solution termination strategy, which will be

discussed in Section 6.5; hence it is applicable for non-uniform specific impulses. Note

that for circular plates, the uniform impulse is already an axi-symmetric problem, and,

therefore, the circular uniform model in Chapter 4.5 can be utilised.

The remaining case for irregular membrane under uniform specific impulse is suggested

to be solved incrementally using a forward-time marching, i.e., in an explicit manner,

as described in the following. The stable time step size, ∆ts, can be chosen based on

∆x∗/cp, where cp is the plastic wave speed, and ∆x∗ is a characteristic length of the

smallest element. For procedures of solving linear dynamic problems using the finite

element method and the explicit time scheme, the reader is referred, among many others,

to Bathe (1996) and Hughes (2012). Initially, it is assumed that the plastic wave equation

holds. The solution is incremented by time stepping. By the end of a time increment,

compute the (total) plastic multiplier. If it is not decreasing, then the last step is valid and

the analysis is continued to the next step where the acceleration is specified by the wave

equation. On the other hand, if the plastic multiplier decreased, then the previous step

is revised by requiring the acceleration to be zero. The initially wrong acceleration would

have been non-zero by a deformation event that cannot happen; the event is detected by

a decrease in the plastic multiplier which cannot have negative rate at all times during

a valid plastic deformation. The total strain can be non-zero, but in a non-monotonic

deformation path, the total flow rule does not apply. Hence, the change in plastic work,

which is in balance with the change in kinetic energy (and hence giving rise to non-zero

acceleration), is zero. Thus, the stresses must be made zero to ensure that no change in

plastic work is available for updating the kinetic energy. Since accelerations are evaluated

per node in a finite element analysis, and strains and plastic multipliers are evaluated per

element, say, e.g., at its centre, then interpolation/extrapolation might be necessary to

determine the plastic multiplier at the nodes.

Furthermore, upon first detection of a decrease in the total plastic multiplier, the time

step size might be made progressively smaller in a set of consecutive time steps to enhance

the accuracy of detecting the critical time instant at which the acceleration is forced to

be zero; the magnitude of the decrease in the last plastic multiplier should reflect whether

the size of the time step is adequately small. Alternatively, it can be assumed that the

acceleration is constant per one time step, and the approximate critical time instant can

then be determined by requiring the rate of plastic multiplier at the critical time to be

zero using a linear Taylor approximation in time: λ̇(t∗) ≈ λ̇(t0) + λ̈(t0)∆tc, where λ̇ and

λ̈ are the rate and acceleration of the plastic multiplier, λ, see Eq. (3.4.12), and t0 and

∆tc are the previous time and the unknown critical time step size; t∗ is the critical time
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instant, t∗ = t0 +∆tc. The above equation is solved for ∆tc by requiring λ̇(t∗) = 0, and

note, by assumption, that λ̈(t0) is negative since the objective is to detect an expected

violation of the non-negativity of the rate of plastic multiplier in the next time increment;

if the computed critical time step size, ∆tc from above, is greater than the given earlier

stable time step size, ∆ts, then one should use the latter, i.e., the smallest, and when λ̈

is positive, then one should ignore the critical time step size and use the stable time step

size. The notion of detecting the critical time instant is a primary topic in rigid-plastic

analysis using the mathematical programming, e.g., linear and quadratic programming,

approaches, and the reader is referred to Capurso (1972), Maier and Nappi (1984), and

Maier (1968). The constant acceleration method of detecting the critical time instant was

originally proposed by Capurso (1972).

It must be mentioned that the described approach has not been validated, and it is simply

given as a starting point, which is a consequence of the generality of the present theory.

6.5 The Two Solution Termination Strategies and the Solu-

tion Termination Dilemma

There are two distinct solution termination strategies that are proposed to terminate the

solution of the plastic wave equation. The wave equation is valid only conditionally;

that is, it holds until the condition of non-negative plastic work rate is violated. This is

because the developed equation of motion is based on the validity of the total flow rule, see

Section 3.4.1. Without the total flow rule assumption, the (linear) wave equation could

not be arrived at. This rule applies if (i) the loading is monotonic, and (ii) the yielding of

the membrane is progressive (or the material is currently under active straining). Under

these conditions, the total flow rule gives correctly identical results to the incremental flow

rule, the basis of the modern plasticity theory (Prager, 1948; Drucker, 1956).

Clearly, as can be seen from Eq. (4.3.11), the wave equation relates the (point-wise)

acceleration of the membrane, i.e., the right-hand side, to the left-hand side that depends

on the yield stress and the measure of “total” deformation. When deformation ceases,

the yield condition needs not be satisfied, and, hence, the wave equation, as given, does

not hold. In this case, the acceleration must be zero, and the velocity is implied to be

zero since strain-rate is zero (when the membrane is, locally, not under active straining).

That is, motion stops. The total flow rule, in effect, is a tool to linearise the equation of

motion, and the linear equation is the plastic wave equation. Again, the linear equation

holds conditionally. Thus, when the equation is solved as it is unconditional (i.e., using

the modal decomposition and sum of the modes), the solution must be terminated.

In attempt to emphasise the importance of the solution termination step, a simplified

material is provided in Appendix G to explain the concept in the simplest level without

unneeded mathematical complexity. Therein, it is hypothesised that an initially non-

linear equation can be linearised so that it can be solved easily, then the obtained solution
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(of the linear problem) is terminated posteriorly such that the linear model is physically

acceptable. This is believed to be the same approach that is implemented in solving the

rigid-perfectly plastic membrane problem, i.e., the main topic of the thesis. The simple

problem in Appendix G will not be discussed any further.

The membrane’s time-dependent general solution (of the plastic wave equation when it

holds) is the sum of the modes; each of the modes solves the conditional wave equation,

and the modes are mutually independent (or orthogonal to each other). In chapter 4,

and in Alotaibi et al. (2023), a “sequential” solution strategy is proposed to terminate

the solution, in which the modes are switched off sequentially based on the individual

modal velocities. It should be emphasised that when a mode is terminated, it does not

mean it is removed altogether (or considered absent); rather, the solution contribution

by the terminated mode is held fixed at its termination’s state. That is, that mode does

not contribute to further changes of velocity (and acceleration), though the displacement

associated with this mode is, generally, non-zero. This non-zero modal displacement is

the final contribution to the total displacement provided by the mode in question, i.e., it

is held constant as time evolves. The same applies to all modes.

Since the modal velocities reach zero for the first time at different time instants for the

various modes, and these time instants are inversely related to the corresponding angu-

lar frequencies of the modes, then the modes are terminated sequentially according to

the values of their modal frequencies. The modal frequencies are increasing functions of

the modes’ numbers, and hence the solution termination is sequential. The last termi-

nated mode is the first mode since its frequency is the smallest. The basis of adopting

this sequential strategy is that the (linear) wave equation is the one that is conditional.

Therefore, if the total solution is the sum of the modes, then each mode should satisfy

the wave equation and its condition of validity. Again, the condition is the plastic work

rate’s non-negativity, and without the satisfaction of which, the wave equation itself does

not hold. Hence, the individual modes were forced to satisfy the latter condition.

A mode to be acceptable candidate solution to the complete system, it has to satisfy all

conditions, in addition to the differential equation. It is instructive to note the following

as an example. The mode’s wavenumber, kx, for the rectangular case in the x direction is

kx = (mπ/Lx) where m must be an integer so that the boundary condition, at x = Lx, is

satisfied, i.e., sin(kxLx) = 0. The wavenumber appears also in the angular frequency; thus,

it affects the spatial and temporal variations of the displacement. Herein, when there is

an extra condition, which is the plastic work non-negativity, the modes were altered such

that a mode does not violate this condition. The physics of the problem is modelled

by the set of all conditions: the equation of motion, boundary and initial conditions,

and the plastic work non-negativity. Thus, a mode to be physically valid and hence an

independent solution, it was initially proposed to terminate. Since other modes are not

linearly dependent, the other modes (as independent solutions in their own) have to be

terminated and, then, added together to constitute the total solution.

With the above justification, the model solution was simplified to derive the expression of
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the permanent displacement (when all modes were terminated). In mathematical terms,

the membrane attains its permanent shape when the value of the temporal (sinusoidal)

factor is taken to be one for all the modes when adopting the sequential modal termination

strategy. The total plastic work associated with the obtained permanent deformed profile

is derived to be in balance with the initial kinetic energy, see Eq. (C.3) in Appendix C.

This simplification led to the derivation of a closed-form solution for the uniform specific

impulse case of loading.

The uniform model (which is based on the sequential modal termination) was shown to

reasonably agree with the validation data that corresponds to uniform impulsive blast

loadings, see Section 4.6. Therefore, it is concluded that a fast-running and reasonably

accurate model is achieved for the uniform specific impulse case, and the sequential modal

termination strategy is shown to be appropriate from the practical perspective. Further-

more, the uniform model excellently agrees in functional form with the well-performing

model of Nurick and Martin (1989a) and its modified version by Chung Kim Yuen et al.

(2016), see Section 4.6.3. The functional form of the closed-form solution of the present

uniform model is a primary consequence of the sequential modal termination strategy.

Therefore, it can be said that the present model, for the uniform impulse case, along

with its sequential termination strategy theoretically explains the model of Nurick and

Martin, including, within a reasonable accuracy, the values of their experimentally-based

calibration coefficients.

However, when the performance of the model that is based on the sequential strategy is

assessed against numerical predictions for non-uniform specific impulses, it was found that

the model is significantly overestimating and, hence, inaccurate. Preliminary attempts

were made to enhance the model performance. Namely, it was thought that the poor-

performance was due to the perfect plasticity assumption such that dynamic increase in the

yield stress should be accounted for. Although amplifying the initial yield stress improved

the model predictions, the optimal dynamic yield multiplier seemed to be empirical, and

it was not verified that the numerical values are not specific to the used validation data.

Furthermore, the improvement is only in terms of the peak displacement, and the model

predicted deformed profile exhibits deviations when compared to the corresponding profile

from the numerical simulations.

It is important to note that even though the amplification of yield stress would result in

reduced displacements (as desirable), it would not affect the total plastic work associated

with the permanent deformed profile that is based on the sequential (or modal) termination

strategy, see Appendix C. Thus, the balance of plastic work and the initial kinetic energy

(which is completely independent of the response) is guaranteed. This can be a legitimate

subject for further research, and the yield stress amplification can, e.g., be based on

the energy-equivalent total impulse, impulse enhancement factor, and/or area-integrated

total impulse; the first two parameters are due to Rigby et al. (2019a). The foregoing

articulations are provided to inspire new research on this topic. However, the implied

approach was not adopted herein as the alternative solution, as given in Chapter 5, has
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been proposed as will be discussed below.

On the other hand, it has been observed that excellent overall improvements in the model

predictions are achieved when the solution termination strategy is considerably modified

for the non-uniform impulsive blast loadings. Thus, a new termination strategy was pro-

posed, as discussed and justified in Sections 5.2 and 5.3.4, that is based on the total velocity

of the membrane instead of the individual modal velocities. In the “total” solution termi-

nation strategy, the time-dependent displacement at a given spatial point (or coordinate)

is terminated (and taken as the permanent displacement) when the total velocity at that

point reaches zero for the first time, after it had been non-zero initially. The model based

on the total termination strategy (i.e., the new one) reasonably compares well with the

validation data from experiments and LS-DYNA predictions for the non-uniform specific

impulse case of loading, as already demonstrated in Sections 5.5 and 5.6.

However, the new termination strategy has been found to lead to inaccurate predictions

when applied to the uniform specific impulse case. In particular, the model based on the

total termination strategy highly overpredicts the response of uniformly loaded membranes

as compared to the predictions based on the sequential modal termination strategy.

That is, there are two distinct termination strategies: the sequential termination and the

total termination strategies. One strategy is confirmed to provide accurate predictions

for one of two cases of impulsive loading distributions, whereas the other strategy is the

appropriate one for the other case of loading distribution. Clear guidance will be given

later. It must be mentioned that a unified strategy is not reached yet, and such dilemma

is acknowledged as a serious limitation of the present analytical work. Although, it has

been carefully observed that the appropriate termination strategy (among the sequential

and the total solution terminations) always leads to the least peak transverse displace-

ments (in magnitude). The recommendations to be given next are merely based on clear

observations, namely the corresponding accuracies with respect to the transverse motion

of the membranes, when validating the uniform and non-uniform models.

Note that the two solution termination strategies will lead to identical results when the

specific impulse distribution coincides with one of the mode shapes. In Section 3.9, a

simple example was studied for a specific impulse profile that is proportional to the first

mode shape in a rectangular target. This simple problem was investigated, in purpose, to

test the main model (the plastic wave equation and transient transverse deformed profile)

without the issues introduced by the choice of the termination strategy. Note that for

this single mode response, the total velocity is the modal velocity of the considered mode,

i.e., the sequential and total termination strategies are identical. For other non-modal

specific impulse distributions, the choice of the termination strategy affects the temporal

variation of the total velocities, and, hence, the magnitude of the transverse displacements.

That is, two responses will be obtained from the two termination strategies if the specific

impulse is not proportional to, precisely, one mode shape, which is generally the case for

real impulsive blast loadings.
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Hence, for practical reasons, the author suggests that the two different termination strate-

gies need to be implemented to obtain the predictions of the transverse displacements. The

appropriate termination strategy is taken as the one corresponding to the least peak dis-

placement. This is recommended when there is an ambiguity on classifying the impulsive

loading distribution, i.e., whether nearly uniform or slightly non-uniform.

On the other hand, when the impulsive loading is uniform, then it is confirmed that the se-

quential modal termination strategy is appropriate, and the uniform model in Chapter 4 is

applicable. In contrast, when the impulsive loading is non-uniform, the model as described

in Chapter 5, with the total termination strategy, is applicable. The excellent parameter,

due to Rigby et al. (2019a), of the impulse-enhancement factor, defined as the ratio of

energy-equivalent total impulse to area-integrated total impulse, can be used to determine

how “non-uniform” an impulsive blast loading is; the load is identically uniform when the

factor is one, and the non-uniformity increases as the factor increases above one (Rigby

et al., 2019a). The non-uniform specific impulses that were used during the validation

of the non-uniform model, in Sections 5.5 and 5.6, correspond to impulse enhancement

factors of 1.4 and larger, and the specific impulse distributions obey the general Gaussian

profile as proposed and predicted by Pannell et al. (2021), which is the mathematical

characterisation of real (spherical) near-field blast-generated specific impulses.

In overall, the equation of motion (i.e., the plastic wave equation) is applicable condi-

tionally. The solution of which must be terminated before the equation becomes invalid.

Thus, the solution termination step is required as part of the overall solution. Without

the solution termination strategy, completely false predictions could be obtained. The so-

lution can be terminated based on the modal velocities or the total velocity. In the modal

termination procedure, a given mode is terminated at a specific time; all points on the

membrane are treated simultaneously since the modal velocity is shared by all points for

the mode under consideration. The procedure is completed by repeating the procedure

for all other modes. Different modes are terminated at different (and sequential) time

instants. As such, the procedure is called modal or sequential termination. On the other

hand, the total termination strategy is based on the total velocities. At one point on the

target, the total velocity is the sum of all modes. The solution at this point is terminated

based on this total velocity. The procedure is completed by doing the same for all points

on the membrane. This latter strategy is called the total solution termination. It might

be more instructive to call this strategy as the point-wise termination because it contrasts

to the mode-wise termination of the modal termination strategy. In the two strategies,

the kinetic energy of the membrane is forced to not increase after it had been decreasing.

The plastic work increases identically by the decrease in kinetic energy. Thus, in both

terminations strategies, the plastic work is monotonically increasing. Maximum plastic

work is reached when the kinetic energy is zero.

The balance of energy has been confirmed with the two termination strategies. The energy

balance for a circular membrane associated with the solution termination strategies for

non-uniform and equivalent uniform specific impulses is depicted in Figs. 6.1 and 6.2. In
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these figures, additional curves are plotted that correspond to the solutions without any

termination, which clearly reflect that the termination strategy is an important step for

the solution to be physically valid. The difference between the predictions based on the

two termination strategies is on the magnitude and distribution of transverse displace-

ment. The reader is referred to the above practical recommendations on the choice of the

appropriate termination strategy based on the distribution of the specific impulse.
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Fig. 6.1. Kinetic (KE) energy and plastic work (PW) balance for a circular membrane under non-uniform
speci�c impulse corresponding to the two solution termination strategies. The time histories of energies
are given as predicted using the (total) solution termination strategy and the (sequential) termination
strategy. The corresponding time histories from purely Lagrangian LS-DYNA simulation of the same
input impulsive loading are given for reference. The dashed horizontal line is the initial kinetic energy.
The global energies are given per unit radian. The actual used speci�c impulse distribution correspond
to a spherical PE4 charge of mass 75 [g] and at clear stand-o� distance of 35 [mm] from the centre of
the circular membrane. The pro�le of the speci�c impulse was given by the curve labelled �M75-S35� in
Fig. 5.15. The yellow curves correspond to the solution without any termination, which clearly re�ect that
the termination strategy is an important step for the solution to be physically valid; note that internal
work oscillates, namely, it decreases, which is unacceptable.

The user of the model is kindly advised to be aware of the above limitation (i.e., existence

of two termination strategies for the uniform and non-uniform distributions), and further

research is highly needed to alleviate or eliminate this dilemma. The reader is kindly

reminded that the present approach of the analytical modelling is to provide fast-running

reasonable predictions of the target response under generic impulsive blast loadings. The

starting problem is already an idealised (or simplified) version of the actual problem.

Thus, the above practical workaround could be acceptable until a more rigorous solution

is obtained.

6.6 On the Local Plastic Strain Distribution

The model, throughout the thesis, is only shown to provide accurate predictions on the

global level. Namely, the transient and permanent deformed transverse profile and the
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Fig. 6.2. Kinetic (KE) energy and plastic work (PW) balance for a circular membrane under uniform
speci�c impulse corresponding to the two solution termination strategies. The speci�c impulse is uniform
and energy-equivalent, according to Rigby et al. (2019a), to the non-uniform speci�c impulse that was used
in Fig. 6.1. The time histories of energies are given as predicted using the (total) solution termination
strategy and the (sequential) termination strategy. The dashed horizontal line is the initial kinetic energy.
The global energies are given per unit radian. Note that the curves corresponding to LS-DYNA predictions
are not relevant for the present case of equivalent uniform speci�c impulse. The yellow curves correspond
to the solution without any termination, which clearly re�ect that the termination strategy is an important
step for the solution to be physically valid; note that internal work oscillates, namely, it decreases, which
is unacceptable.

global (kinetic and plastic) energies time histories as predicted by the model show relatively

excellent agreement with the (experimental and numerical) testing data. However, in the

local level, namely in terms of effective stresses and plastic strains, the model exhibit

deficiencies when compared to experiments and numerical (LS-DYNA) results. These

limitations are discussed below.

The model is assumed to apply to ductile thin plates when subjected to large lateral im-

pulsive blast loading. It is hypothesised that the relevant loading intensity is sufficient to

produce significant plastic deformation that is responsible for the transverse displacement

of the target. The goal of the present analytical modelling was not to exactly replicate the

actual physical problem as this would result in increased complexity and, hence, to some

extent, prohibit advancing the theoretical development further. Thus, crucial simplifica-

tions were adopted in describing the material behaviour of the membrane. In particular,

the ductile material was treated as rigid-perfectly plastic. However, real materials in

practice could deviate from the perfect plasticity idealisation beyond the initial yield-

ing, namely, by exhibiting appreciable yield enhancement as total plastic strain, plastic

strain-rate, or both increase during the deformation path. As such, the perfect plasticity

assumption could be conservative in the global sense.

However, there is a possibility that the development of the mentioned yield enhancements

(i.e., due to strain-hardening, strain-rate sensitivity, or both) could affect the local response
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in terms of an anticipated stress or strain redistribution. The reader is referred to the

excellent experimental and numerical investigations of Aune and his team where strain-

hardening is associated with the lateral spread of yielded regions in blast-loaded thin

plates (Elveli et al., 2022; Granum et al., 2019). Furthermore, it is implied by the authors’

work that such a phenomenon is attributed to the scatter of the directions of the principal

in-plane plastic strains so that plastic flow is distributed spatially (or flattened out). The

profile of the plastic membrane strain as predicted by the model is qualitatively incorrect,

due to the neglect of the in-plane displacement contribution that will be discussed later in

this section; the effect of the strain-hardening on the local plastic strain distribution can

not be studied by direct comparisons between the numerical predictions (which account

for strain-hardening) and the predictions of the present rigid-perfectly plastic model. It

will be highlighted later that further research is needed to account for the influence of

the in-plane displacement on the plastic strains to qualitatively enhance the local model

predictions. The assessment of the strain-hardening and strain-rate effects on the local

behaviour can then be made possible.

Again, the model has been shown to reasonably re-produce the global effect (i.e., the

peak permanent transverse displacement) observed in real experiments, see Sections 4.6,

and 5.6. In addition, the time histories of the transverse displacement and the global

energies as predicted by the numerical simulations, using LS-DYNA, are closely followed

by the model predictions, see Fig. E.5 in Appendix E. Moreover, the permanently deformed

profiles predicted by the model agree reasonably with the corresponding profiles obtained

from LS-DYNA simulations, as demonstrated in Fig. 5.13. As such, it is concluded that

the perfect plasticity is sufficient in practically re-producing the permanent displacement

(or the global response) of thin targets when subjected to intense lateral impulsive blast

loading.

On the other hand, the model, as presented in the thesis, is incapable of providing a

complete and accurate picture of the local distribution of the stresses, especially when

the target material exhibits pronounced deviation from the perfect plasticity idealisation.

These limitations can be overcome by utilisation of some commercially available finite

element programs. The reader is highly suggested to consult Section 5.7 for a realistic and

accurate picture, as obtained from Lagrangian LS-DYNA analyses, of the local plastic

strain distributions in near-field blast-loaded thin plates.

The influence of the in-plane displacement on the membrane plastic strains is addressed

next. Recall that the model assumes a pure membrane mechanism that is merely associ-

ated with the transverse displacements being large. That is, the membrane contribution

by the in-plane displacements was neglected. Consequently, whenever the slopes of the

transverse displacement are zero, the membrane strains are zero. These slopes are always

zero at the midpoint of a membrane that is loaded symmetrically. However, experiments,

see, e.g., the relevant graph of in-plane strain profile in Cloete and Nurick (2014), and

numerical simulations, see Fig. 5.17 in Chapter 5, show that the membrane strains in the

central region of symmetrically loaded membranes are non-zero, which are attributed to



Chapter 6. Discussion 185

the non-zero contributions of the in-plane displacements. Thus, the model is incapable of

providing a correct description of the local (plastic) strain field near the central region of

symmetrically loaded thin plates; note that the strains that are computed by the model

are plastic. This latter limitation is due to the simplifying assumption for the membrane’s

kinematics (i.e., it is not associated with the perfect plasticity idealisation).

The contribution to the membrane strain by the in-plane displacement is discussed in Cloete

and Nurick (2014) for a uniformly loaded thin circular plate. In their work, the authors

showed that the transverse response is independent of the in-plane displacement (which

is the radial displacement); the main reason is that the terms of the in-plane strains as-

sociated with the in-plane (or the radial) displacement provide zero contribution to the

total plastic work of the circular membrane. However, the non-zero in-plane displacement

will affect the membrane strain. The authors derived a linear differential equation that

relates the radial displacement to the transverse displacement using the assumption that

the radial and circumferential strains are equal, which followed from the von Mises’ asso-

ciated flow rule and the equality of the corresponding normal in-plane stresses; the normal

stresses (i.e., the radial and circumferential) were argued to be equal according to the

equilibrium equation in the radial direction. This treatment led the authors to determine

the radial displacement (by solving the differential equation), associated with which is the

contribution to the membrane (radial) strain by the in-plane (or radial) displacement. The

starting transverse solution was taken to be a single mode with a parabolic (spatial) shape.

The authors argued that this was the “exact” solution for a uniformly loaded quasi-static

membrane.

It is noted that for a circular membrane under axi-symmetric conditions, the principal

in-plane stresses are the radial and circumferential stresses, see, e.g., Hopkins and Prager

(1953). As such, the results of Cloete and Nurick on the zero contribution of the membrane

strains due to the in-plane displacements to the plastic work apply to the principal plane

(i.e., in terms of principal in-plane stresses and the corresponding strains). This problem

of Cloete and Nurick is covered in detail in Sections B.2.1 and B.2.2 of Appendix B of

the present thesis; therein, the independence of the total plastic work on the in-plane

displacement is generalised for non-circular problems. It is hoped that the added material

in Appendix B would be useful to improve the present theory, in future research, to

accommodate the influence of the in-plane displacements on the maximum membrane

strains.

Although the Cloete and Nurick’s approach is analytically very attractive, it would require

careful investigation to be integrated within the present analytical modelling consistently.

Note that the model in the present thesis predicts the transverse displacement for arbi-

trarily non-uniform impulsive loading, and as such it consists of a sum of, generally many,

Bessel’s modes (for the circular membrane case). However, another crucial issue follows.

A consequence of the present theory is that the first and second principal in-plane stresses

are (2/
√
3)σ0 and (1/

√
3)σ0 such that the second principal in-plane strain is zero since

the normal to the von Mises yield curve at the point
(
2σ0/

√
3, σ0/

√
3
)
has zero compo-
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nent along the second principal stress, see Fig. 3.3. Hence, for the axi-symmetric circular

problem, when the circumferential stress is the second principal stress, then the circumfer-

ential strain is zero, which immediately gives zero radial displacement. This would make

it troublesome to equate the radial strain to, this, zero circumferential strain; in fact,

the in-plane normal strains, according to the present work, are not required to be equal

since the point on the yield curve (in the principal plane) is as given above, namely it not

(σ0, σ0) associated with which the in-plane strains would have to be equal. It should be

mentioned that the results on the stress state of the membrane are direct consequences

of the total flow rule where the total strains were assumed to be pure functions of the

transverse displacement; that is, the strain contributions by the in-plane displacements

were set as zero.

For this reason, among possibly others, the incorporation of the practical method of Cloete

and Nurick (2014) in the attempt to rectify the present work limitation on the in-plane

displacement effect is a possible research topic. According to the above-cited authors, the

in-plane displacements can be added posteriorly without necessary modifications to the

predictions of the transverse response. That is, the present model is still valid for the

purely transverse motion of the membrane, and the developed transverse response can be

used in subsequent future work to incorporate the in-plane displacement effect to enhance

the predictions of the membrane’s plastic strains. For clarity, according to Cloete and

Nurick, the in-plane displacement depends on the solution of the transverse displacement,

to which the present model has been shown to provide a reasonably accurate solution.

Despite the mentioned limitations for the localised behaviour, the model can predict the

plastic strains due to the pure membrane action without the in-plane displacement effects.

This portion of membrane strain is significant as it reflects the dominance of the membrane

action due to large displacement; namely, it is the main mechanism where the in-plane

strains are non-negative (i.e., non-compressive). Hence, it is the reason why membranes,

despite their thinness, are stable structures (i.e., without buckling-related instabilities).

It is instructive to note that in-plane strain contribution due to in-plane displacements

can be negative in some regions of the membrane, and the added contribution due to

the large transverse displacement ensures non-negative total in-plane strains throughout

the domain. Furthermore, the model predicts that the principal in-plane stresses are

constant in magnitude. The directions of these stresses rotate according to the relative

magnitudes of the membrane strains. It was analytically derived that the material of

the membrane in the mid-plane is, in fact, under a state of uni-dimensional straining

(or stretch), along the directions of the first (i.e., the largest) principal in-plane stress,

see Section 3.8. Lastly, the model additionally predicts that the membrane thickness will

shrink (or will experience necking) as the transverse normal strain (i.e., along the thickness

direction) will be compressive whenever the in-plane normal strains are non-zero. The

transverse normal strain is negative since the in-plane strains are always non-negative as

they are related to the square of the slope of the transverse displacement. Again, recall

that the strains, mentioned above, are associated with large transverse displacements.
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6.7 Practical Engineering Applications of the Model

The model can be of important use in the field of structural blast engineering in two main

ways. First, the model can provide rapid estimates of the likely response of thin plates

that are subjected to near-field blast loading, particularly when the blast loading is of

extreme magnitude so that the pure plasticity and pure membrane action are the most

dominant mechanisms of resistance (Jones, 2012; Mehreganian et al., 2018a). It is part

of the present work to assess the model’s ability to reasonably re-produce and explain

observations from real experiments and realistic numerical modelling using LS-DYNA.

Thus, due to the relatively excellent performance of the model during its validation, and

as far as the overall response is concerned, the model can be used with confidence to

obtain reasonable first-order predictions when designing very thin targets to resist a set

of near-field blast loadings as characterised by the blast-induced specific impulses.

That is, the first application is through the utilisation of the model by practising engineers

to investigate the blast-loaded thin plates and obtain the predictions (i.e., blast effects).

Thin plates are primary structural elements in the blast engineering industry (Rajendran

and Lee, 2009); when these plates are made of ductile materials (e.g., structural steel,

copper, aluminium), then the model is hopefully an appropriate candidate to obtain fast-

running predictions to inform the designer. Furthermore, as the model is fast-running, it

has the great potential to be implemented as a core deterministic engine in a probabilistic

analysis, e.g., in a Monte Carlo simulation, that involves large repetitive calculations to

obtain initial performance-based designs of blast-loaded thin plates (Tetlow et al., 2023).

As discussed in Chapter 2, the blast loading’s magnitude and spatial profile can vary

significantly (Seisson et al., 2020).

Second, the model can be used to increase confidence on the utilisation of ductile thin

plates as protective solution against blasts that are impulsive. This can be achieved once

a reliable predictive method (e.g., the present model) is available that characterises the

likely effect of the blast loading on the protective structural element. As one reliably knows

what the worst-case scenario would be, and that is decided to be safe and acceptable in

the event of an anticipated risk, then such knowledge would inform (or support) the

decision-making in adopting a viable candidate design. In relation to the present model

application, as the designer would know in advance about how a ductile thin plate would

respond to an impulsive blast load, he/she might choose to protect an existing critical

structural member (i.e., a key column or solid wall) by ductile membranes as the primary

means to dissipate the initial (kinetic) energy transferred directly by the impulsive blast

loading. That is, the model could serve as a rational basis to utilise ductile thin plates (or

membranes) as structural blast protection devices. The membrane-protected structure is

responsible to carry out the other (or conventional) loading cases, e.g., dead or earthquake

loadings, where stiffness and compressibility are important. Note that the present model is

applicable to thin plates that respond primarily as pure membranes (i.e., without in-plane

compressive stresses).
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Utilisation of membranes for blast protection might come in two forms. The first is already

discussed above, i.e., the membrane is installed on the front (or loaded) side to dissipate

the blast energy and actively shield the (protected) structure (Ioannou and Gantes, 2021).

As the second form, ductile membranes could be erected on the back (or free) side of an

existing under-rated structural element as a type of external reinforcement or a passive

catcher system; here, the membrane is engaged (i.e., providing reserve resistance) in the

event of flexural failure, due to a lateral blast loading, of the priorly unstrengthened

structure (Pope, 2002; Ioannou and Gantes, 2021). One of the findings of the present

thesis is that the membrane action alone can provide the needed energy dissipation against

impulsive blast loadings that are of extreme magnitudes. In the performed analyses, the

maximum transverse displacements are in the order of few centimetres; thus, these can be

the values for the gap to be maintained when the membrane is installed on the front of an

existing planar structure to be protected. Note that the ideal scenario can be achieved by a

trade-off of the primary blast effects; for example, limited yield strength and high ductility

(i.e., large failure strain) would limit (or cut-off) the reaction forces that are transferred to

the structure (supporting the membrane), see, e.g., Ioannou and Gantes (2021), whereas

it would result in excessive permanent deflections and larger plastic strains; the reader is

referred to Elveli et al. (2022) for the important notion of strength-ductility trade-off in

the blast engineering setting.



Chapter 7

Summary and Conclusions

7.1 Conclusions

Note Detailed conclusions were provided by the end of Chapters 3, 4, and 5. The

purpose of the present chapter is to provide the most overall summary and conclusions.

These are organised by the individual chapters.

� Chapter 3:

� The problem of a thin plate subjected to a near-field blast loading is investigated

analytically. The plate responds impulsively and in a pure membrane mode,

and its material is rigid-perfectly plastic according to von Mises’s criterion of

yielding and its associated flow rule. The in-plane strains are dominated by

the gradients of the transverse displacements, and accordingly, the in-plane

displacements were neglected. The ultimate kinematic description of the plate

is termed the simple membrane motion.

� Given the impulsive nature of loading (i.e., without externally applied pres-

sures), the incremental plastic flow rule is extended, and the plastic relations

were eventually expressed in terms of the total plastic strains. This was called

the total flow rule;

� Through the application of the principle of virtual work, a general equation

of motion governing the plastic transverse displacement is derived, and it is

recognised as a linear (two-dimensional) wave equation, and called herein as

the plastic wave equation, with the wave speed given in terms of the uni-axial

yield stress of the membrane;

� The adoption of the total flow rule introduced restrictions on the solution of

the (plastic) wave equation such that the requirement of the plastic work rate’s

non-negativity is not violated;

� Certain practical consequences of the developed total flow rule on the stress

states of the membranes, the principal in-plane (normal and shear) stresses
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and their directions are derived;

� Preliminary results on the first mode solution of a membrane under a particular

specific impulse, which is taken to be proportional to the first mode shape, are

presented. Closed-form solutions on the principal stresses and their directions

(or trajectories) are given.

� The first mode solution was compared with corresponding numerical predictions

using LS-DYNA. The analytical solution (of the first mode problem) is shown

to compare excellently with LS-DYNA results. The accuracy of the model’s

performance is measured with respect to the transient and maximum trans-

verse displacements and the corresponding transient and permanent deformed

profiles. The results, also, imply the appropriateness of the derived plastic wave

equation and the dependence of the wave speed on the factor 2σ0/
√
3 in mod-

elling the transverse motion of the impulsively-loaded thin plate. The notion of

the solution termination step, which is essential to ensure the applicability of

the wave equation, is studied in relation to time at which plastic work rate tends

to become negative. Nearly beyond this time, the corresponding time history of

the peak displacement from the LS-DYNA results show that only elastic oscil-

lations (i.e., purely elastic loading/unloading cycles) take place without further

plasticity;

� The closed-form solution based on the first mode provided an important con-

clusion that the time to maximum response is one-quarter of the first mode

period of the membrane. This period, in turn, is inversely proportional to the

uni-axial yield stress. As the yield stress is by far smaller than typical elastic

moduli, the plastic response of the membrane would, hence, take longer times

to attain its peak value, which in turn means that the membrane response is

more likely to be impulsive as assumed when it is loaded by a near-field blast

of considerably small duration. Lastly, it was derived that the trajectories of

first (i.e., the largest) principal (normal) stress is identically orthogonal to the

contours of constant transverse displacements; in other words, the principal

stress is always along the directions of the steepest descent of the transverse

displacement profile. The contours of constant transverse displacements are,

themselves, the trajectories of the second principal stress.

� Chapter 4:

� The plastic wave equation was solved for rectangular and axi-symmetric circular

membranes by using the eigen-expansion, or modal decomposition, technique.

For the rectangular membranes, the eigen-functions are the usual (sinusoidal)

components of the Fourier series, while the eigen-functions are the first-kind

Bessel’s functions of order zero (due to the axi-symmetric condition in the

circular case) for the circular membranes;

� A sequential mode termination strategy is proposed, which is based on ter-
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minating the individual modes (of the solution of the plastic wave equation)

whenever the corresponding modal velocity (of a particular mode) reaches zero

for the first time after being non-zero initially. This strategy ensures that the

total plastic work does not decrease at any instant during the response of the

membrane;

� The obtained solutions of the wave equation when combined with the above

termination strategy provide the transient plastic response of the rectangular

and circular membranes;

� Closed-form solutions of the maximum plastic displacements associated with

uniform specific impulses are derived. The uniform impulse model predicts that

the peak plastic response is linear in the total impulse (given by the product

of the uniform specific impulse and the membrane’s area) and inversely pro-

portional to (hρcp), where h, ρ, and cp are, respectively, the plate’s thickness,

density, and plastic wave speed;

� The uniform model is shown to reasonably agree with the validation data, which

consists of a large set of experimental measurements, available in the literature,

and numerical results obtained from well-detailed numerical analyses using LS-

DYNA;

� The uniform model can, as indicated above, then be considered as an already-

validated fast-running tool to provide a reasonable and relatively instant as-

sessment of the likely plastic response of a target subjected to a uniform blast

load of extremely short duration;

� As some practical ductile materials exhibit substantial strain-hardening and

the present model assumes perfect plasticity behaviour, simplified elasto-plastic

(with hardening) SDOF analysis and additional LS-DYNA plate response sim-

ulations (in which the hardening modulus is varied) were undertaken to assess

the effect of neglecting the work-hardening phenomena. It was shown that the

rigid-perfectly plastic model is reasonably adequate to capture the overall (or

global) plastic response provided that the initial kinetic energy (e.g., from the

blast-generated specific impulse and the associated initial velocity field) is rel-

atively larger than the additional energy dissipation offered by the inclusion of

the work-hardening. Detailed discussion of the overall model limitations was

provided in Section 4.7.

� Chapter 5, the conclusions below are taken directly from Section 5.7:

� The sequential termination strategy, which is adopted for the response of plates

under uniform specific impulse, is found to overestimate the plastic response

when the specific impulse is highly non-uniform;

� A new solution termination strategy is introduced and greatly improves the

accuracy of the membrane model for the non-uniform specific impulse (i.e.,

that arises from an actual near-field blast event). The new strategy requires
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the termination of the solution (of the plastic wave equation) when the local

kinetic energy (i.e., the kinetic energy at a particular point) reaches zero for

the first time after it was initially non-zero. Thus, the solution is terminated

when the total velocity (the sum of dominant modes) reaches zero;

� The membrane model (based on the new termination strategy) is found to agree

well with the used validation data, from experiments performed by Curry and

Langdon (2017) and results from LS-DYNA simulations performed as part of

the present work;

� The numerical simulations of near-field blast events using the MM-ALE in

LS-DYNA are shown to provide reliable predictions of the near-field blast-

generated reflected positive specific impulse distributions. The profiles of the

specific impulse appear to capture the important features of near-field blasts,

such as the high sensitivity to variations of stand-off distances and angles of

incidence. These profiles follow the Gaussian spatial distribution as predicted

by Pannell et al. (2021). The total impulse (obtained by spatial integration of

the specific impulse) compares reasonably with the corresponding experimental

measurements in Curry and Langdon (2017) when the findings of Rigby et al.

(2019b) and Rigby et al. (2019a) are taken into account;

� Despite the good performance of the model for the predictions of the gross (or

global) response, it is found that the model is incapable of providing accurate

representation of the response on the local level. In particular, the distribution

of the effective plastic strains in the membrane are incorrect when compared to

the numerical predictions from relevant Lagrangian LS-DYNA analyses and the

experimental observations presented in Cloete and Nurick (2014). This crucial

limitation is attributed to the neglect, from the material perspective, of strain-

hardening and strain-rate sensitivity and, from kinematics perspective, of the

in-plane displacements effects on the evaluation of the plastic membrane strains.

This has been discussed in Section 6.6. The more accurate distributions for the

effective stresses, plastic strains, and strain-rates in near-field blast-loaded thin

plates are presented in Section 5.7.

� In the structural LS-DYNA analyses, where thin Domex-355 steel plates are

subjected to non-uniform specific impulse, it is found that plasticity (as mea-

sured by the effective total plastic strains) of the plates develops and progresses

through the majority of the domain (the planar areas of the plates), in the early

phase of the response. The responses of the targets are, hence, mainly plastic.

Furthermore, the peak displacements are attained in the early phase.

� The model predictions and LS-DYNA numerical results on the plastic responses

of the thin targets both show a linear dependence on the energy-equivalent total

impulse, as first developed and discussed in Rigby et al. (2019a) and Tyas and

Pope (2003).
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In addition to the above per chapter conclusions, the conclusions for the overall work is

the following. The thesis developed analytical model to predict the transverse response

of thin ductile plates when subjected to impulsive blast loading. The model consists of

the plastic wave equation, its solution, and an appropriate solution termination strategy.

The uniform model, as presented in Chapter 4 with the sequential solution termination

strategy (based on the individual modal velocities), has been found to be reasonably

accurate for the uniform specific impulse case. On the other hand, when the specific

impulse is non-uniform, then the non-uniform model, which is described in Chapter 5 with

the total solution termination strategy (based on the total velocity), provides the accurate

predictions. That is, there are two solution termination strategies, and the choice of the

appropriate strategy depends on the distribution of the specific impulse. The reader should

be kindly aware that inaccurate predictions could be obtained when the wrong solution

termination strategy is used. This topic has been discussed in Section 6.5.

The model accuracy has been confirmed to be reasonably excellent only regarding the

global response in terms of the transverse deformed profile. That is, concerning the trans-

verse motion of a thin target plate, the target is very likely to respond to a near-field blast

loading through the following basic mechanisms: an impulsive response, purely plastic ma-

terial behaviour, and a membrane action that is solely due to the transverse displacement

being large. And, this transverse motion is governed by the plastic wave equation, with

the wave speed being cp = [2σ0/(
√
3ρ)]1/2, where σ0 and ρ are the membrane’s tensile

yield stress and density, respectively.

However, on the local level, the model predictions considerably deviate from the corre-

sponding experimental and numerical observations regarding the distribution of the plastic

strains. This is a crucial limitation as the plastic strain distribution is an important design

parameter. For this reason, this issue has been, to some extent, addressed in Section 6.6,

where suggestions for future work to enhance the predictions of plastic strains by the in-

corporation of the in-plane displacement effect are provided. Throughout Chapter 6, the

engineering applicability of the model is provided, and discussions on the need for future

work are highlighted to address certain limitations of the present theory.

7.2 Final Remarks and Future Work

The thesis derives a simple analytical model that provides fast predictions of the plastic

response of thin targets when subjected to near-field blast loadings. The results and final

models developed as part of the thesis have the significant potential to be added to the

toolbox of practising blast engineers, where reasonably accurate fast-running predictive

models are used to obtain reliable initial designs for blast-related structural protection

and strengthening.

Despite the simplicity of the model and its underlying idealising assumptions, the model

is found to agree with the validation data from real experiments (performed by others on
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ductile plates) and sophisticated finite element simulations (in which most of all complex-

ities are incorporated). As such, the model shows that the dominant and fundamental

mechanisms responsible for the first-order representation of the overall behaviour of near-

field blast-loaded thin plates are: impulsive response, membrane action, and pure perfect

plasticity, as these are the retained structural response features in the model development.

Additionally, on the journey during the development of the plastic wave equation (that

governs the response of the target), further results were derived that can be of practical

interest. Namely, the model predicts thinning of the membrane as the transverse normal

strains are necessarily compressive and non-zero whenever in-plane strains are non-zero.

As the in-plane strains’ expressions are given in terms of the derivatives of the transverse

displacement, necking (or thinning) of the plates can be predicted, and its contour can

be determined and investigated. Also, the thin plates are predicted to be in a state of

uni-axial stretch (in terms of principal in-plane strains) on their mid-planes as implied by

the principal stresses’ state. The directions (or trajectories) of this uni-axial stretching are

predicted also as the directions of the principal normal stress. The model predicts that the

magnitudes of the principal stresses are constant (on the whole plate’s mid-plane) when-

ever the plate is under active yielding (i.e., when the transverse displacement is actively

changing in time).

Concerning the global transverse response, the model can accommodate strain- or work-

hardening, and an efficient method to modify the initial uni-axial yield stress is discussed

in the thesis if deemed necessary. However, the thesis does not provide an assessment of

the application of the suggested method. The effect of strain rate, when applicable, on

the uni-axial yield stress is more challenging to incorporate in the model. This is mainly

because the magnitudes and the range of strain rates that would be generated in a non-

uniformly and impulsively loaded plate are unknown and can vary greatly based on the

magnitude and distribution of the blast-generated specific impulse.

The membrane solution, developed and validated herein, has an additional potential appli-

cation if thin ductile (e.g., steel) membranes are supplemented in blast protection construc-

tion to (externally) strengthen existing under-rated thick plates. The present membrane

model can be used in initial designs to limit the likely plastic response. Other practical

considerations were discussed in Section 6.7. As a concluding potential significance of

the derived results, the present membrane solutions can be regarded as exact (or analyt-

ical) solutions to validate numerical schemes and their associated solutions in which the

rigid-plastic ductile thin plates are loaded by uniform or non-uniform specific impulses,

e.g., when the dynamic plastic (or limit) analysis of thin plates is solved numerically by a

special-purpose (or non-traditional) finite element technique.

There are mainly two issues that need further research to improve the present model as

given in the thesis. The first is related to the dilemma introduced by the two proposed

solution termination strategies. The solution termination is a required step since the

main mathematical model is based on the total flow rule instead of the incremental flow

rule. Without the solution termination, the total flow rule would lead to completely



Chapter 7. Summary and Conclusions 195

non-physical behaviour. The total flow rule in combination of the solution termination

should be equivalent to the incremental flow rule-based solution, i.e., the physically correct

behaviour. The main reason is that, in contrast to the total flow rule, the incremental

flow rule never allow negative plastic work rate. As just mentioned above, two termination

strategies were proposed to adhere to the plastic work rate’ non-negativity, and each of

the strategies gives accurate predictions depending on the distribution of the impulsive

loading, i.e., whether uniform or non-uniform. The thesis suggests that the sequential

solution termination strategy should be used when the impulsive loading distribution is

uniform, whereas the total solution termination is found to provide the accurate predictions

when the loading is non-uniform, as the case in typical near-field blasts. This proposed

approach is considered practical and justified based on the accuracy observations. Future

work is needed to obtain a practical unified strategy for the solution termination and/or

to provide theoretical explanation on why should one of the two strategies be avoided

for a given class of the distribution of the specific impulse. This issue was discussed in

Section 6.5.

The second issue that needs additional research is discussed next. The model has been

shown to provide reasonably accurate predictions only for the overall (or global) response,

i.e., in terms of the evolution of global (kinetic and internal plastic) energies and transverse

motion of the target. In particular, the model has been found to be qualitatively incorrect

with respect to the local behaviour of the impulsively loaded thin plate with respect to

the distribution of the plastic membrane strains. This issue has been attributed to two

assumptions during the model’s development, which are the neglect of the in-plane dis-

placements’ contributions to the membrane strains and (possibly) to the strain-hardening

and strain-rate effects on the dynamic yield stress. This is an important issue as the design

of a target against material failure would, typically, be based on the maximum (or failure)

strains and the likely spatial regions where they occur. It is clear, to the author, that the

model needs to be improved first by incorporating the in-plane displacement effect on the

plastic strains. The improved rigid-perfectly plastic predictions of membrane strains could,

then, be compared to more realistic profiles that are influenced by the strain-hardening

and visco-plasticity to provide further insights for additional theoretical refinement to even

improve the predictions on the local level. Relevant discussion was given in Section 6.6.
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Appendix A

Alternative Approach to Derive the

Equilibrium Equation for the

Rectangular Simple Membrane

By applying the principle of virtual work to a simple membrane (i.e., with u0 = v0 =

0) without specialising it as a rigid-perfectly plastic material, the following equilibrium

equation can be obtained

∂

∂x

(
σx

∂w0

∂x
+ σxy

∂w0

∂y

)
+

∂

∂y

(
σxy

∂w0

∂x
+ σy

∂w0

∂y

)
+

p

h
= ρẅ0,

that applies to any material.

Herein, the above equilibrium equation is made the starting point, and the aim is to re-

derive the equation of motion, Eq. (3.6.10), that were presented in Section 3.6 when the

simple membrane is made of a rigid-perfectly plastic von Mises material. First, the normal

stresses σx and σy are expanded in terms of their deviatoric and hydrostatic pressure parts,

i.e., σx = sx + p̂ and σy = sy + p̂, where p̂ is the internal pressure, and sx and sy are

the corresponding deviatoric stresses. σxy = sxy. Substituting these in the equilibrium

equation, one eventually obtains,

∂

∂x

(
sx

∂w0

∂x
+ sxy

∂w0

∂y

)
+

∂

∂y

(
sxy

∂w0

∂x
+ sy

∂w0

∂y

)
+

∂

∂x

(
p̂
∂w0

∂x

)
+

∂

∂y

(
p̂
∂w0

∂y

)
+

p

h
= ρẅ0.

According to the rigid-plastic material assumption, strains when they develop are plastic

strains; hence, when they are non-zero, then the yield condition is satisfied. From the flow

rule, ε̇ij = λ̇sij , see Section 3.4, the following, for a plane-stress problem, holds

λ̇ =
ε̇x
sx

=
ε̇y
sy

=
ε̇xy
sxy

=
ε̇z
sz

,
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while recalling that λ̇ > 0 when the yield is satisfied. So, one can write

sxy =
ε̇xy
ε̇x

sx =
ε̇xy
ε̇y

sy

In a plane-stress problem, one also has σz = 0 = sz + p̂, which gives sz = −p̂. Moreover,

due to the material assumption, the membrane is plastically incompressible, i.e., one must

have ε̇x + ε̇y + ε̇z = 0; therefore, one can write ε̇z = −(ε̇x + ε̇y).

The above relations hold as long as the material is rigid-perfectly plastic, obeying von

Mises yield when the yield condition is satisfied. However, since these are expressed in

incremental (“rate”) form, they will not result in a simpler expression of the equilibrium

equation if they were substituted into it. From now, it will be reverted to the “total” form

of the flow rule, i.e., when εij = λsij holds as in Section 3.4, since the aim in the present

material is to re-derive the equilibrium equation given in Section 3.6.

It will be assumed now that εij = λsij holds, and hence (in a very analogous way to the

above) one can write

λ =
εx
sx

=
εy
sy

=
εxy
sxy

=
εz
sz

and based on this, one further has

sxy =
εxy
εx

sx =
εxy
εy

sy

The incompressibility now takes the “total” form: εz = −(εx + εy). In addition, one still

has sz = −p̂.

Now the equilibrium equation can be re-written as

∂

∂x

(
sx

∂w0

∂x
+ sy

εxy
εy

∂w0

∂y

)
+

∂

∂y

(
sx

εxy
εx

∂w0

∂x
+ sy

∂w0

∂y

)
+

∂

∂x

(
−sz

∂w0

∂x

)
+

∂

∂y

(
−sz

∂w0

∂y

)
+

p

h
= ρẅ0,

in which use has been made of: sxy = (εxy/εy)sy = (εxy/εx)sx (twice) and p̂ = −sz.

The terms involving quotients of strains can be evaluated according to the definitions of

the in-plane strains in terms of the derivatives of displacement. That is,

εxy
εy

∂w0

∂y
=

(1/2)∂w0
∂x

∂w0
∂y

(1/2)
[
∂w0
∂y

]2 ∂w0

∂y
=

∂w0

∂x

εxy
εx

∂w0

∂x
=

(1/2)∂w0
∂x

∂w0
∂y

(1/2)
[
∂w0
∂x

]2 ∂w0

∂x
=

∂w0

∂y
.

By substituting the above two relations in the equilibrium equation and collecting common
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terms, it becomes

∂

∂x

[
∂w0

∂x
(sx + sy)

]
+

∂

∂y

[
∂w0

∂y
(sx + sy)

]
+

∂

∂x

(
−sz

∂w0

∂x

)
+

∂

∂y

(
−sz

∂w0

∂y

)
+

p

h
= ρẅ0.

Next, since the deviatoric stress, by definition, has the property that sx+sy+sz ≡ 0, then

one has sx + sy = −sz, which, when substituted in the last equilibrium equation, leads to

∂

∂x

[
−sz

∂w0

∂x

]
+

∂

∂y

[
−sz

∂w0

∂y

]
+

∂

∂x

(
−sz

∂w0

∂x

)
+

∂

∂y

(
−sz

∂w0

∂y

)
+

p

h
= ρẅ0,

or,

2

[
∂

∂x

(
−sz

∂w0

∂x

)
+

∂

∂y

(
−sz

∂w0

∂y

)]
+

p

h
= ρẅ0

Therefore, the equilibrium equation (in terms of stresses) depends on the value of (−sz)

at yield. By the total form of the flow rule, one has

sz =
√
(2/3)σ0

εz√
εijεij

.

From the incompressibility, εz = −(εx+εy), and it was shown in the previous section that

εijεij = ε2x + 2ε2xy + ε2y + ε2z = 2(εx + εy)
2, according to the definition of the strains (in

terms of derivatives of displacement) and the incompressibility. Hence, one has

sz =
√
(2/3)σ0

−(εx + εy)√
2(εx + εy)

=
−1√
3
σ0.

Observe that from the above result, one also has p̂ = −sz = 1/(
√
3)σ0, and from the latter

one has σx + σy = 3p̂ =
√
3σ0.

Finally, the substitution is made for sz = −1/(
√
3)σ0, which is a constant, in the last

equilibrium equation to obtain

2√
3
σ0

(
∂2w0

∂x2
+

∂2w0

∂y2

)
+

p

h
= ρẅ0,

which is identical to Eq. (3.6.10), given in Section 3.6. Again, the validity of this equation

is limited to the cases for which the “total” form of the flow rule holds, εij = λsij .





Appendix B

Axi-Symmetric Membranes and the

In-Plane Displacement E�ect

B.1 Axi-Symmetric Circular Membranes

B.1.1 Overview and the Problem De�nition

The equation of motion for circular membranes under axi-symmetric conditions will be

derived using the virtual work principle. As such, the starting point is the definition of

the membrane strains. The problem to be investigated is as follows. Consider a general

membrane, i.e., a very thin plate where its flexure provides no resistance, and the plate

undergoes large transverse displacement. The membrane’s parameters are thickness h,

density ρ, radius R, and the externally applied pressure is p. The membrane is assumed

to be fully restrained along the outer periphery. The radial and transverse coordinates

are denoted by r and z, and the z-axis originates at the plate’s mid-plane. Furthermore,

let the loading and boundary conditions be axi-symmetric. Hence, the membrane motion

is completely characterised by the transverse, w, and radial, u, displacements, and all

mechanical quantities are independent of the circumferential coordinate, θ.

It should be noted that the present problem derives from the von Kármán plate by assum-

ing negligible flexure action, i.e., in the Föpple kinematics sense. Therefore, all quantities

are uniform across the thickness. That is, for the present axi-symmetric case, all motion

variables are functions of the radial coordinate, r, only. Furthermore, due to the plate’s

thinness, the transverse shear stresses are zero.
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B.1.2 Membrane Strains

The in-plane strains for the above defined membrane are

εMr =
∂u

∂r
+

1

2

(
∂w

∂r

)2

,

εMθ =
u

r
,

εMrθ = 0,

(B.1.1)

while the three remaining (transverse) strains are identically zero; the superscript M refers

to the general membrane, or Föpple’s plate.

According to the zero transverse shear stresses, the plate’s mid-plane is the principal plane.

Furthermore, since the transverse in-plane stress, σrθ, is zero due to the axi-symmetry,

the polar coordinates’, r and θ, directions are the principal axes.

B.1.3 Equilibrium Equations for a General Membrane

The virtual work equation for the present problem is written as∫
R
(hσrδεr + hσθδεθ + hρẅδw − pδw) r dr = 0, (B.1.2)

where it has been assumed that ü = 0, and p is a surface pressure that is applied in the z-

direction. Upon substituting for the in-plane strains, δεr = δεMr , etc., and, subsequently,

carrying out integration by parts, and noting δu = 0 and δw = 0 at r = R (since the

corresponding actual displacements are prescribed), and δu = 0 at the origin r = 0 (due

to the axi-symmetry), one obtains

∫
R

[
−h

∂

∂r
(rσr) + hσθ

]
δu+

[
−h

∂

∂r

(
rσr

∂w

∂r

)
+ rhρẅ − rp

]
δwdr = 0, (B.1.3)

Then, the virtual displacements, δu and δw, are made arbitrary within the domain to

obtain the following two equilibrium equations, after some arrangements of terms,

∂

∂r
(rσr)− σθ = 0

∂

∂r

(
rσr

∂w

∂r

)
+

rp

h
= rρẅ,

or, after expanding the derivatives of the products,
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∂σr
∂r

+
σr − σθ

r
= 0

∂σr
∂r

∂w

∂r
+ σr

∂2w

∂r2
+

σr
r

∂w

∂r
+

p

h
= ρẅ

(B.1.4)

B.1.4 Equilibrium Equation for a Simple Membrane

The simple membrane is considered the special case of the general one where the in-plane

displacement, namely u, is zero. Thus, the only non-zero strain is εr = (1/2)
(
∂w
∂r

)2
, and

εθ = 0.

Therefore, by simple application of the virtual work in which the only degree-of-freedom

is the transverse displacement, w, whose variation is δw, the following single equilibrium

equation governs its motion

∂σr
∂r

∂w

∂r
+ σr

∂2w

∂r2
+

σr
r

∂w

∂r
+

p

h
= ρẅ (B.1.5)

which is the transverse equilibrium equation of the general membrane.

For the sake of completion, a special case of the above equilibrium equation will be derived

when the simple membrane is made of a rigid-perfectly plastic von Mises’s material with

tensile yield stress σ0, and the total flow rule is assumed valid, εij = λsij , where the

total plastic multiplier, λ, is
√
(3/2)/(σ0)

√
εijεij . Accordingly, the deviatoric stress is

sij =
√

(2/3)σ0εij/
√
εklεkl.

Since the only non-zero in-plane strain is εr, and from the incompressibility, εr+εθ+εz =

εr + εz = 0, one has
√
εijεij =

√
2εr. Furthermore, from σz = sz + p̂ = 0, the internal

(hydrostatic) pressure, p̂, is given by p̂ = −sz. For the present axi-symmetric problem,

srθ = σrθ = 0.

By applying the flow rule, the deviatoric stresses are sr = σ0/
√
3, sθ = 0 (since εθ ≡ 0

in the simple membrane), and sz = −σ0/
√
3 = −p̂. Therefore, the normal stresses are

σr = sr + p̂ = 2/
√
3σ0, and σθ = p̂ = 1/

√
3σ0 = (1/2)σr. Note that the radial and

circumferential stresses are the principal (in-plane) stresses.

Lastly, since σr = 2/
√
3σ0, and noting that σ0 is constant (i.e., σr is independent of

the strains provided the total flow rule is valid, and the membrane is yielding), namely
∂σr
∂r ≡ 0, then the earlier equilibrium equation of the simple membrane takes the following

form

2√
3
σ0

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+

p

h
= ρẅ, (B.1.6)

which governs the transverse motion of the simple membrane. This equation is valid

provided that the simple membrane is under active yielding and is loaded monotonically

(i.e., when the total flow rule applies). For clarity, it is implied that the membrane is in
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axi-symmetric conditions. This equation, if p = 0 (for an impulsive loading), is identical

to Eq. (4.3.14) which is presented in Section 4.3.2.

B.2 In-Plane Displacement E�ect

B.2.1 Cloete and Nurick's Case of Axi-symmetric Membranes

Cloete and Nurick (2014) considered a general membrane that is made of a rigid-perfectly

plastic material which obeys the von Mises’s yield criterion. The authors argued that the

radial stress is constant throughout the (circular) domain; that is, ∂σr
∂r ≡ 0. Hence, the

radial equilibrium equation

r
∂σr
∂r

+ (σr − σθ) = 0,

requires that the normal in-plane stresses (which are the principal stresses) are equal, i.e.,

σr = σθ (B.2.1)

for all r.

Furthermore, the membrane’s stresses must be non-negative (for stability). Hence, the

stress state that satisfies the von Mises’s yield condition, σr = σθ, and σr ≥ 0 is σr =

σθ = σ0, where σ0 is the uni-axial tensile yield stress. This can be shown by noting that

the von Mises condition in the σr-σθ space, which is the principal in-plane space, can be

written as

σr (σr − σθ) + σ2
θ = σ2

0 (B.2.2)

which, for σr = σθ, gives σ
2
θ = σ2

0. Lastly, for the stresses to be positive, then σr = σθ = σ0.

The associated “incremental” flow rule, ε̇ij = λ̇sij , for a von Mises’s material, requires

that at the point (σr, σθ) = (σ0, σ0), the rates of normal in-plane strains are also equal;

this is because

σr = σθ

p̂+ sr = p̂+ sθ

for any hydrostatic pressure, p̂. Hence, sr = sθ, and by using the incremental flow rule

sr = sθ

ε̇r

λ̇
=

ε̇θ

λ̇
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that directly gives

ε̇r = ε̇θ, (B.2.3)

for any arbitrary positive value of the rate of plastic multiplier, λ̇. Lastly, since the material

is incompressible, i.e., the deviatoric and total strains are identical, then the above rates

of strains are the rates of the total radial, ε̇r, and circumferential, ε̇θ, strains.

Note that the hydrostatic pressure is given by p̂ = (1/3)(σr+σθ) = (2/3)σ0, where σz = 0

has been used. Thus, sr = sθ = σ0 − (2/3)σ0 = (1/3)σ0, which is positive. Hence,

the (equal) rates of normal in-plane strains are also positive since λ̇ is non-negative. As

a result, a membrane element is under bi-axial in-plane stretching in the membrane’s

mid-plane. In addition, since σz = sz + p̂, then it follows that sz = −(2/3)σ0, which is

negative. As a result, ε̇z is non-positive which, in turn, indicates necking (or shortening of

the thickness). The incompressibility also requires ε̇z = −(ε̇r + ε̇θ) = −2ε̇r, which, again,

confirms the negativity of the transverse normal strain rates.

The effect of the in-plane displacement, u, on the total plastic work is discussed next. The

total plastic work of the present axi-symmetric problem can be written as

Wp =

∫
R

[
rhσr

∂u

∂r
+ rhσr

1

2

(
∂w

∂r

)2

+ hσθu

]
dr (B.2.4)

where the first two terms are associated with radial stress and the last term is associated

with the circumferential stress. Note that the second term is the only non-zero term for

the plastic work of a corresponding simple membrane, i.e., when u = 0.

When the radial and circumferential stresses are made equal (and noting that their com-

mon value, σ0, is constant), Cloete and Nurick derives the following interesting and im-

portant result

Wp =

∫
R
hσ0

[
r
∂u

∂r
+ r

1

2

(
∂w

∂r

)2

+ u

]
dr (B.2.5)

Hence, when the first term is integrated by parts, and assuming u = 0 on the boundary and

at r = 0 (due to the axi-symmetric condition), the plastic work of the general membrane

evaluates to

Wp =

∫
R
hσ0

[
−∂r

∂r
u+ r

1

2

(
∂w

∂r

)2

+ u

]
dr

=

∫
R
hσ0

[
(u− u) + r

1

2

(
∂w

∂r

)2
]
dr

=

∫
R
hσ0r

1

2

(
∂w

∂r

)2

dr

(B.2.6)

The last result indicates that there is no contribution to the plastic work of the general

membrane by the in-plane displacement, which is the radial displacement, u, provided

the membrane is under axi-symmetric conditions and is fixed at the outer boundary, i.e.,

u = 0 at the limits r = 0 and r = R. As indicated by the above, the contributions of
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the radial displacement to the radial and circumferential internal work cancel each other.

This important result is due to Cloete and Nurick (2014). An important implication of the

result is the transverse motion of a general (axi-symmetric circular) membrane, in which

σr = σθ = σ0, is completely independent of the in-plane (or radial) displacement.

Using σr = σ0, which is constant (i.e., ∂σr
∂r = 0), in the transverse equilibrium equation,

the latter becomes
σ0
ρ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+

p

ρh
= ẅ (B.2.7)

This equation is independent of the radial displacement, u, and the solution of which is

the response of transverse motion, w. Thus, w is assumed to be known (by solving this

equilibrium equation when subjected to some initial and boundary conditions on w and

ẇ).

The membrane strains are to be discussed next. The rates of the normal strains, ε̇r and

ε̇θ, are equal, as was shown earlier, based on the incremental flow rule and the condition

that σr = σθ. Although, Cloete and Nurick (2014) argued that the normal strains, εr and

εθ, themselves, are also equal. This appears to be due to an implied assumption that the

total flow rule is applicable, i.e., the membrane is loaded monotonically, and the stress

state σr = σθ = σ0 is fixed throughout the deformation path. Therefore, the authors state

that
u

r
=

∂u

∂r
+

1

2

(
∂w

∂r

)2

(B.2.8)

where the left-hand side is the circumferential strain, εθ, whereas the right-hand side is the

radial strain, εr. This (differential) equation relates u to the priorly known w. Multiplying

both sides of the above equation by r and rearranging terms, it can be rewritten as

r
∂u

∂r
− u = −r

2

(
∂w

∂r

)2

(B.2.9)

Since r2 ∂
∂r (u/r) equals to the left-hand side of the above differential equation, then it

becomes
∂

∂r

(u
r

)
= − 1

2r

(
∂w

∂r

)2

(B.2.10)

It is noticed that the left-hand side is the derivative, with respect to r, of the circumferential

strain, εθ. Since the right-hand side is always negative (because r and (∂w∂r )
2 both are

non-negative), then εθ is monotonically decreasing as r increases. The solution (u/r) is

obtained by direct integration over r to get

u

r
= ε0θ −

1

2

∫ r

0

1

r

(
∂w

∂r

)2

dr (B.2.11)

where ε0θ is the constant of integration which corresponds to the value of εθ = (u/r) at

the circular plate’s centre, r = 0. The integral in the second term of the right-hand

side is assumed to be given since w is already known from the solution of the transverse
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equilibrium equation, Eq. (B.2.7). From the boundary condition u = 0 at r = R, it is

found that

ε0θ =
1

2

∫ R

0

1

r

(
∂w

∂r

)2

dr (B.2.12)

Note that ∂w
∂r = 0 at r = 0 (due to the axi-symmetry), and, hence, the integral is finite.

The circumferential strain, εθ, has a maximum value, ε0θ, at the centre, and it decreases

(monotonically) to the zero value at r = R (since εθ = u/r and u = 0 at the mentioned

limit).

Lastly, since εθ = εr, then ε0θ is also the value of εr at the centre. All results on εθ applies

equally to εr, namely εr is monotonically decreasing, and its maximum is ε0θ that is located

at the plate’s centre.

The above treatment gives qualitative information on the distribution of membranes

strains and an important quantitative estimate on the maximum membrane’s strain, i.e.,

the primary parameter of interest to control material failure. The in-plane displacement,

u, can be found by simply multiplying (u/r) by r. The above solution for u/r also says

that u is non-negative throughout the domain, r = [0, R]; this is because

ε0θ ≥
1

2

∫ r

0

1

r

(
∂w

∂r

)2

dr

for 0 ≤ r ≤ R.

The contribution of u to the radial strain, εr, can be found, using Eqs. (B.2.8) and (B.2.11),

as
∂u

∂r
=

u

r
− 1

2

(
∂w

∂r

)2

= ε0θ −
1

2

∫ r

0

1

r

(
∂w

∂r

)2

dr − 1

2

(
∂w

∂r

)2

which, when evaluated at r = R, the first two terms on the right-hand side cancel each

other, and it can be found that the value of ∂u
∂r is the negative of (1/2)

(
∂w
∂r

)2
at the same

point, r = R. Hence, it is confirmed that the radial strain, εr, is zero at the membrane’s

periphery.

An additional property on the distribution of u can be inferred as follows. By multiply-

ing the differential equation, Eq. (B.2.10), by r2, integrating both sides over r, carrying

integration by parts on the left-hand side, and then using the boundary conditions on u

at r = 0 and r = R, it can be shown that the following identity holds

2

∫ R

0
udr =

1

2

∫ R

0

(
∂w

∂r

)2

rdr (B.2.13)

which confirms that the area under (the non-negative) u is positive. The right-hand side

of the last relation is proportional to the total plastic work (which depends completely on

w alone). When the plate is impulsively loaded, i.e., p = 0 and ẇ0 is given by the specific
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impulse i(r), according to ẇ0 = i/(ρh), then the total plastic work can be made equal to

the total upper-bound (initial) kinetic energy to get

σ0h

2

∫ R

0

(
∂w

∂r

)2

rdr =
1

2ρh

∫ R

0
i2 rdr (B.2.14)

which, then, leads to ∫ R

0
udr =

1

2σ0h

(
1

2ρh

∫ R

0
i2 rdr

)
(B.2.15)

in which the quantity inside the parenthesis, on the right-hand side, is the initial kinetic

energy (per unit radian). By noting that u is non-negative, see Eq. (B.2.11), and since

it must be smooth and finite, the small area under its curve, as estimated by the above

relation (and noting the large factor 2σ0 in the denominator), implies that u, itself, is

small in an impulsively loaded axi-symmetric membrane.

The result of Cloete and Nurick underlies the work of the present thesis, based on which

the in-plane displacements were neglected. Note that Cloete and Nurick result is general

regardless of the distribution of u and w, provided that the in-plane strains are tensile

throughout the domain, as required for σr = σθ = σ0. Although, the result is only

ensured for the axi-symmetric circular problem. The circular axi-symmetric membrane is

a problem that is expressed in the principal plane. However, it remains equally important

to attempt to generalise Cloete and Nurick’s result to non-circular problems. Thus, for

general problems that are described in rectangular Cartesian system, the starting point

can be based on rewriting the plastic work in the principal plane as the original work of

the above-cited authors applies to a problem in the principal plane.

B.2.2 Extension of the Cloete and Nurick's Result

B.2.2.1 Motivation

The analytical result of Cloete and Nurick (2014), which was introduced and discussed in

Section B.2.1, is of great importance as it allows crucial simplifications when analysing

membranes under intense lateral loadings. In particular, the authors show that the in-plane

displacements can be neglected when the transverse motion of the membrane is the primary

concern. Although their result initially appears to be applicable for an axi-symmetric

circular problem, it suggests the possibility to be generalised since the mentioned problem

is one that is described in the principal (stress) plane. Hence, the starting point, herein,

is to describe the general problem in the corresponding principal plane.

B.2.2.2 Principal Stress Analysis

A general membrane (i.e., with in-plane displacements) is considered. The membrane’s

mid-plane is the principal plane since the transverse shear stresses are identically zero.
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The strains, stresses, and in-plane displacements, in the following, refer to the principal

coordinate system even though the principal directions are unknown in advance. Let x1

and x2 be the principal (in-plane) axes, and the corresponding components of the in-

plane displacement are u1 and u2; for example, u1 is measured along x1. The transverse

displacement w is along the out-of-plane direction. By the definition of the principal

directions, the in-plane shear stress is zero, i.e., σ12 = 0.

In the following, the equilibrium equations and the internal work expressions will be de-

rived using the same basic procedure that has been used throughout the thesis, i.e., the

principle of virtual work. Thus, the starting point is determining the expressions of the

strains. As mentioned above, the present problem is to be investigated in the principal

plane. The expression of the strain tensor in an orthogonal curvlinear coordinate system

is derived by Liu et al. (2010), from which the following expressions are adopted since the

principal axes are orthogonal and curvlinear.

The (principal) in-plane stains are

ε1 =
∂u∗1
∂x1∗

+
1

2

(
∂w∗

∂x1∗

)2

ε2 =
∂u∗2
∂x2∗

+
1

2

(
∂w∗

∂x2∗

)2

In the above strain definitions, the (starred) partial differentials include corrections since

the (orthogonal curvlinear) coordinates, x1 and x2, are, in general, curved; note that u1

and u2 are measured along these curves. The partial differentials are

∂x∗1 = ξ1∂x1,

∂x∗2 = ξ2∂x2,

∂u∗1 = ∂u1 − u2∂f,

∂u∗2 = ∂u2 + u1∂f,

where ξi is the scale length associated with xi, and the correction operator, ∂f , is a

pure function of (the two) ξi’s and (the two) ∂xi’s. Their expressions will be given later.

Note that the out-of-plane coordinate, z, and the corresponding displacement, w, neither

influence nor are influenced by the differentials of the in-plane displacements. This is

because the direction of z (and, hence, w) is not curved. That is, ξ3 = 1 and ∂w∗ = ∂u3 =

∂w.
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The scaling length ξi is defined as

ξi =

[(
∂x

∂xi

)2

+

(
∂y

∂xi

)2

+

(
∂z

∂xi

)2
]1/2

,

in which x, y, and z are the usual rectangular Cartesian coordinates. The correction

operator is

∂f = − ∂ξ1
∂x2

∂x1
ξ2

+
∂ξ2
∂x1

∂x2
ξ1

However, in the following, it is unnecessary to substitute the explicit expressions of ξi’s

and ∂f . For the derivations of the above expressions for ξi and ∂f , the reader is referred

to the work of Liu et al. (2010).

The principal (normal) stresses, which are work-conjugates to ε1 and ε2, respectively, are

denoted by σ1 and σ2.

The virtual work, with reference to the principal plane, takes the form∫
A
(hσ1δε1 + hσ2δε2 + hρẅδw − pδw) ξ1ξ2dx1dx2 = 0 (B.2.16)

or,

∫
A

[
h
σ1
ξ1

(
∂δu1
∂x1

− δu2
∂f

∂x1
+

1

ξ1

∂w

∂x1

∂δw

∂x1

)]
ξ1ξ2dx1dx2

+

∫
A

[
h
σ2
ξ2

(
∂δu2
∂x2

+ δu1
∂f

∂x2
+

1

ξ2

∂w

∂x2

∂δw

∂x2

)]
ξ1ξ2dx1dx2

+

∫
A
[hρẅδw − pδw] ξ1ξ2dx1dx2 = 0 (B.2.17)

where ü1 = ü2 = 0, and (p ξ1ξ2 dx1dx2) is assumed to be work-conjugate to w. The virtual

work statement can be shown, through carrying integration by parts and requiring δu1,

δu2, and δw to be arbitrary everywhere except on the boundary of the surface domain, A,

to lead into the following three equilibrium equations

∂

∂x1
(σ1ξ2)− σ2ξ1

∂f

∂x2
= 0 (B.2.18)

∂

∂x2
(σ2ξ1) + σ1ξ2

∂f

∂x1
= 0 (B.2.19)

1

ξ1ξ2

[
∂

∂x1

(
σ1ξ2
ξ1

∂w

∂x1

)
+

∂

∂x2

(
σ2ξ1
ξ2

∂w

∂x2

)]
+

p

h
= ρẅ (B.2.20)
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The internal actual work is

Wint =

∫
A
h

[
σ1ξ2
2ξ1

(
∂w

∂x1

)2

+
σ2ξ1
2ξ2

(
∂w

∂x2

)2
]
dx1dx2

+

∫
A
h

[
− ∂

∂x1
(σ1ξ2) + σ2ξ1

∂f

∂x2

]
u1 dx1dx2 +

∫
S
h [u1σ1ξ2] dx2

+

∫
A
h

[
− ∂

∂x2
(σ2ξ1)− σ1ξ2

∂f

∂x1

]
u2 dx1dx2 +

∫
S
h [u2σ2ξ1] dx1 (B.2.21)

which, in view of the first two (in-plane) equilibrium equations, simplifies to

Wint =

∫
A
h

[
σ1ξ2
2ξ1

(
∂w

∂x1

)2

+
σ2ξ1
2ξ2

(
∂w

∂x2

)2
]
dx1dx2

+

∫
S
h [u1σ1ξ2] dx2 +

∫
S
h [u2σ2ξ1] dx1 (B.2.22)

Thus, when the membrane is restrained with respect to u1 and u2 along the entire bound-

ary, i.e., when the line integrals in above vanish completely, then the internal actual work

becomes

Wint =

∫
A
h

[
σ1ξ2
2ξ1

(
∂w

∂x1

)2

+
σ2ξ1
2ξ2

(
∂w

∂x2

)2
]
dx1dx2 (B.2.23)

As can be seen from the above result, the internal work is independent of u1 and u2

whenever the normal principal stresses, σ1 and σ2, are themselves independent of those in-

plane displacements. Hence, if the principal normal stresses are considered to be constant

in a rigid-perfectly plastic membrane, then it can be said that the internal actual work,

Wint, and the transverse equilibrium equation (governing the transverse motion, w) do

not depend on the in-plane displacements, u1 and u2. For a rectangular membrane that

is expressed in the usual rectangular coordinate system, the in-plane displacements u

(measured along x) and v (measured along y) are linear combinations of the in-plane

displacements u1 and u2, which appear in the above expressions. Thus, the internal work

is independent of u and v as well.

Before closing the present subsection, it can be constructive to rewrite (or expand) the in-

plane equilibrium equations. For this, the fractions ∂f
∂x2

(in the first equilibrium equation)

and ∂f
∂x1

(in the second equation) need to be evaluated (while noting that ∂xi
∂xj

= δij , in

which δij is the Kronecker delta, due to the orthogonality of the coordinates)

∂f

∂x2
=

1

ξ1

∂ξ2
∂x1

∂f

∂x1
= − 1

ξ2

∂ξ1
∂x2
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The first two equilibrium equations, then, become

∂

∂x1
(σ1ξ2)− σ2

∂ξ2
∂x1

= 0 (B.2.24)

∂

∂x2
(σ2ξ1)− σ1

∂ξ1
∂x2

= 0 (B.2.25)

To appreciate the physical interpretation of the above in-plane equilibrium equations, con-

sider the following brief example. In an axi-symmetric membrane, the principal axes are

the radial and circumferential axes. Here x1 = r, x2 = θ. Since (x, y, z) = (r cos θ, r sin θ, z),

then

ξ1 ≡ ξr =

[(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2
]1/2

=
[
cos2 θ + sin2 θ

]1/2
= 1,

ξ2 ≡ ξθ =

[(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2
]1/2

=
[
r2
(
sin2 θ + cos2 θ

)]1/2
= r

Therefore, the first equilibrium equation (i.e., along the r-axis) becomes ∂
∂r (rσr)−σθ = 0,

and the second equilibrium equation becomes ∂
∂θ (σθ)− 0 = 0, which is an expected result

since the considered problem is axi-symmetric, i.e., all motion variables, including σθ, are

independent of θ. These are the familiar equations for axi-symmetric problems in polar

coordinates. The axi-symmetric example will not be discussed any futher.

B.2.2.3 Simpli�ed Principal Analysis

The preceding equations, in the previous subsection, for rectangular membranes might be

simplified by proceeding as follows. Let the direction of the first principal axis, x1, be

denoted with θ1 (defining the angle between the x1-axis and the rectangular Cartesian x-

axis), and likewise, let θ2 be the angle that the second principal axis, x2, makes with respect

to the x-axis. It is important to appreciate that θ1 and θ2 are not the principal coordinates

themselves, and they are measured from the same reference, i.e., the rectangular x-axis;

for the sake of completeness, θ2 = θ1 ± π/2 (since x1 and x2 are mutually orthogonal).

Thus, by emphasising that θ1 and θ2 are the angles that the x1- and x2-axes, respectively,

make relative to the Cartesian x-axis, where θ1 and θ2 are (distinct) functions of (x1, x2),
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the coordinate x might be determined from,

x =

∫ x1

0
cos θ1 dx1 +

∫ x2

0
cos θ2 dx2 + x(0), (B.2.26)

where x(0) is the x-coordinate at the origin (x1, x2) = (0, 0). Note that along the trajectory

x2 = 0, x =
∫ x1

0 cos θ1 dx1 + x(0). This expression would give x for any x1 along the

curve x2 = 0. The angle θ1 varies with x1 (and x2), since the prinicpal axes are, in

general, curved. From the above general expression, it can be found that ∂x
∂x1

= cos θ1,

and ∂x
∂x2

= cos θ2. An analogous expression can be written to determine y, given a pair

(x1, x2), which involves sin θ1 and sin θ2. Namely, it can be written that ∂y
∂x1

= sin θ1

and ∂y
∂x2

= sin θ2. However, the foregoing treatment assumes that dx1 and dx2 both have

dimensional units of length (i.e., as dx and dy). This can be justified by noting, e.g., that

dx1 is the (infinitesimal) arc length along the curve x2 = const., i.e., dx21 = dx2 + dy2.

Using the above set-up and geometrical justification, it can be written that,

∂x

∂x1
= cos θ1,

∂y

∂x1
= sin θ1,

∂z

∂x1
= 0,

∂x

∂x2
= cos θ2,

∂y

∂x2
= sin θ2,

∂z

∂x2
= 0,

thus,

ξ1 =
(
cos2 θ1 + sin2 θ1

)1/2
= 1

ξ2 =
(
cos2 θ2 + sin2 θ2

)1/2
= 1

In addition, it is found that ∂ξi
∂xj

= 0 for (i, j) = 1 and 2, which leads to ∂f
∂x1

= ∂f
∂x2

= 0.

Therefore, the equilibrium equations would take the simpler forms,

∂σ1
∂x1

= 0 (B.2.27)

∂σ2
∂x2

= 0 (B.2.28)[
∂

∂x1

(
σ1

∂w

∂x1

)
+

∂

∂x2

(
σ2

∂w

∂x2

)]
+

p

h
= ρẅ (B.2.29)

and, in view of the first two (in-plane) equilibrium equations, the third (transverse) equa-
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tion reduces to the final form,

σ1
∂2w

∂x12
+ σ2

∂2w

∂x22
+

p

h
= ρẅ (B.2.30)

According to the in-plane equilibrium equations, σ1 is constant along x1, and, likewise, σ2

is constant along x2. Since the x1-x2 space spans the entire membrane area (or domain),

the transverse motion (as given by the transverse equilibrium equation) is independent of

the in-plane displacements if it can be shown that σ1 is constant along x2 and, also, σ2 is

constant along x1.

For this purpose, the von Mises yield condition (which is assumed to govern the rigid-

perfect plasticity of the membrane)

σ2
1 − σ1σ2 + σ2

2 = σ2
0

is differentiated with respect to x2 to get

∂σ1
∂x2

(2σ1 − σ2) = 0

where the equilibrium equation in the x2-direction has been used, i.e., ∂σ2
∂x2

= 0. From the

above, it is either ∂σ1
∂x2

= 0 or 2σ1 = σ2 = (2/
√
3)σ0. Either of the two conditions indicates

that σ1 is constant along x2. This means that σ1 is constant throughout, as it is already

constant along x1 (see the first in-plane equilibrium equation).

Similarly, when the yield condition is differentiated with respect to x1, the following is

obtained
∂σ2
∂x1

(2σ2 − σ1) = 0

in view of the equilibrium equation along the x1-axis, i.e.,
∂σ1
∂x1

= 0. The last relation

requires 2σ2 = σ1 = (2/
√
3)σ0 or ∂σ2

∂x1
= 0. Hence, σ2 is, also, constant throughout.

Using the conclusion that ξ1 = ξ2 = 1, the internal actual work of the membrane (which

is assumed to be restrained along its entire boundary) simplifies to

Wint =

∫
A

[
hσ1

1

2

(
∂w

∂x1

)2

+ hσ2
1

2

(
∂w

∂x2

)2
]
dx1dx2 (B.2.31)

In summary, it is found that both σ1 and σ2 are constant throughout the membrane,

and the total plastic internal work, Wint, and the transverse motion of the membrane (as

governed by the transverse equilibrium equation) are both completely independent of the

in-plane displacements. That is the case provided that the membrane is rigid-perfectly

plastic, is restrained along its boundary, and the in-plane accelerations are negligible (and

the externally applied load is along z-axis).
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B.2.2.4 Discussion and Conclusions

The internal work is a scalar quantity, and as such, it is independent of the coordinate

system. In other words, the total contribution by the in-plane displacement to the internal

work is always zero. Namely, it is so in the (usual) rectangular Cartesian coordinate

system, i.e., in which the in-plane displacements are u and v (measured along the x-

and y-axes, respectively), and for which the in-plane shear stress σxy can be arbitrarily

non-zero.

The in-plane displacement components along the principal axes, u1 and u2, can be related

to the rectangular components, u and v by u1 = u cos (θ1)+v sin (θ1) and u2 = −u sin (θ1)+

v cos (θ1), where θ1 is the angle that the principal axis x1 makes with the rectangular x-

axis. Although, this transformation was not necessary to derive any of the above results.

The principal coordinate system was chosen for convenience as it is not clear that the usual

Cartesian components of the stresses, σx, σxy, and σy, are constants. In addition, the in-

plane shear stress in the principal in-plane space is identically zero. Once the conclusion

has been reached in the principal space for the total internal work, it should hold for any

other coordinate system, namely for the usual x-y coordinate system, due to the scalar

nature of the internal work. The approach, used herein, to utilise the principal in-plane

plane is inspired by the neat work of Cloete and Nurick (2014) when analysing the in-plane

displacement effect in rigid-perfectly plastic axi-symmetric circular membranes.

The main result achieved by the above is the generalisation of the important result of

Cloete and Nurick (2014) that the transverse motion and total internal work of mem-

branes are not affected by the in-plane displacements. It can be instructive to identify the

conditions for which the above result holds; these are: the membrane is fixed along the

entire outer boundary; the in-plane displacements accelerations, ü1 and ü2 are negligible;

and the external loading, if any, is normal to the membrane’s plane, and the principal

in-plane stresses are constant.

B.2.2.5 Closing Remarks

An additional interesting observations can be derived for the simple membrane (i.e., with-

out in-plane displacements) from the transverse equilibrium equation in the principal

plane, i.e.,
1

ξ1ξ2

[
∂

∂x1

(
σ1ξ2
ξ1

∂w

∂x1

)
+

∂

∂x2

(
σ2ξ1
ξ2

∂w

∂x2

)]
+

p

h
= ρẅ (B.2.32)

In section 3.8.2, the general stress state of the simple membrane, which is made of a von

Mises material, was derived as σ1 = (2/
√
3)σ0 and σ2 = (1/2)σ1, which are both constant

(since σ0 is so). This stress state is a direct consequence of the “total” flow rule and

the specific forms of the membrane strains, in particular when the in-plane displacements

are identically zero. For the von Mises material, the outward normal to the yield curve

in the principal stress plane at the point (σ1, σ2) =
(
2/

√
3σ0, 1/

√
3σ0
)
is parallel to the
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σ1-axis. Accordingly, the plastic strain component ε2, which is work-conjugate with σ2,

is zero, provided the total flow rule is applicable. For the present simple membrane,

ε2 = [1/(2 ξ22)]
(

∂w
∂x2

)2
. Therefore, for ε2 to be zero, then

∂w

∂x2
= 0 (B.2.33)

From the above, two results follow. First, w is constant along x2, for fixed x1 and time,

t. That is, the direction of x2 is the contour of constant transverse displacement, w.

Since x1 must be orthogonal to x2, then the x1-axis is direction of descent of w, which is

perpendicular to the contours of constant w.

The second observation is that when the last equation is substituted in the transverse

equilibrium equation, the second term in the latter vanishes, and the equation of motion

becomes
1

ξ1ξ2

[
∂

∂x1

(
σ1ξ2
ξ1

∂w

∂x1

)]
+

p

h
= ρẅ (B.2.34)

or, noting that σ1 = 2/
√
3σ0 where σ0 is a constant,

2σ0√
3ρξ1ξ2

[
∂

∂x1

(
ξ2
ξ1

∂w

∂x1

)]
+

p

ρh
= ẅ. (B.2.35)

When ξ1 = ξ2 = 1, the above becomes a one-dimensional wave equation,

2σ0√
3ρ

(
∂2w

∂x12

)
+

p

ρh
= ẅ. (B.2.36)

with
[
2σ0/

(√
3 ρ
)]1/2

as the wave speed.

The observations, which were presented throughout Section B.2.2, give profound insights

on the overall response. However, it is less practical to work with the equilibrium equations

in the principal axes as their directions are unknown in advance, and the specification of the

boundary conditions, e.g., can be difficult. Lastly, for the stress states to be determined,

and for a specific problem to be solved, the values of σ1 and σ2 must be specified.

B.2.3 A General Membrane in Which σ1 = σ2

In the previous section, it was only shown that the total plastic work is independent of

the in-plane displacements. However, the magnitude of the membrane strains, in the local

level, depends on the latter displacements. This is partly discussed in this section for

the general rectangular membranes. The following is inspired by the work of Cloete and

Nurick (2014) on the predictions of the in-plane displacements for axi-symmetric circular

membranes, which was reviewed and discussed in Section B.2.1.

The (three) equilibrium equations, in the rectangular Cartesian coordinate system, for a

general membrane (with non-zero in-plane displacements) were given in Section 3.3.2 by
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Eqs. (3.3.2), which are repeated below,

∂σx
∂x

+
∂σxy
∂y

= 0

∂σxy
∂x

+
∂σy
∂y

= 0

σx
∂2w

∂x2
+ 2σxy

∂2w

∂x∂y
+ σy

∂2w

∂y2
+

p

h
= ρẅ,

(B.2.37)

where h and ρ are the membrane’s thickness and density, respectively.

The stress state σ1 = σ2, i.e., equal in-plane principal normal stresses, directly leads to a

set of important results. First, the von Mises yield condition is satisfied, and σ1 = σ2 = σ0,

where σ0 is the tensile yield stress of the membrane’s material. Second, the radius, R, of

the Mohr’s circle, associated with the membrane stresses, is zero since R = (1/2)(σ1−σ2).

The latter, in turn, implies that σx = σy = σ1 = σ0. Since the radius of Mohr’s circle is

zero, then it must be the case that σxy = 0. Third, the total flow rule gives that εxy = 0

since σxy = 0 and, also, that εx = εy.

Now, the stress state given by σx = σy = σ0 (where σ0 is a constant) and σxy = 0 satisfies

the first two (i.e., the in-plane) equilibrium equations, in Eq. (B.2.37), identically. Note

that this state already satisfies the yield condition. In addition, the third (or transverse)

equilibrium equation simplifies to

σ0

(
∂2w

∂x2
+

∂2w

∂y2

)
+

p

h
= ρẅ, (B.2.38)

The transverse response can be found by solving the above (transverse) equation of motion

and the prescribed initial and boundary conditions on the transverse displacement, w. It

is vital to recognise that the system of the transverse motion does not depend on the

in-plane displacements, and it can be solved independently. Note that the above equation

differs only slightly from the one governing the transverse motion of the simple membrane

(in which the in-plane displacements were set zero); the difference is the factor σ0 instead

of (2/
√
3)σ0 in the simple membrane; again, this was due to the present assumption that

σ1 = σ2 (which led to σ1 = σ2 = σ0) for the general membrane in which σ1 = σ2.

Having obtained the solution of the transverse displacement, w, one might investigate the

in-plane displacements as the following. It was mentioned that εx = εy (from the total

flow rule and the condition that σx = σy), and εxy = 0 (since σxy = 0, which is due to the

assumption that σ1 = σ2 and the properties of the Mohr’s circle).

The above conditions on the in-plane strains provide two set of equations

εx = εy

εxy = 0
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which when rewritten in terms of the derivatives of the displacements (and re-arranging

terms) become

∂u

∂x
− ∂v

∂y
=

1

2

[(
∂w

∂y

)2

−
(
∂w

∂x

)2
]

∂v

∂x
+

∂u

∂y
= −∂w

∂x

∂w

∂y

(B.2.39)

Note that the right-hand sides of the above equations, in Eq. (B.2.39), are assumed already

known since w can be solved independently using Eq. (B.2.38). Thus, Eq. (B.2.39), in

addition to some appropriate initial and/or boundary conditions, provides a set of two

(linear) equations to determine the in-plane displacements, u and v.

It can be convenient to differentiate, separately, the first and second equations in Eq. (B.2.39)

with respect to x and y, respectively, add the resulting two equations to eliminate v, and

obtain a single equation involving u only. A similar operation can be done to eliminate u,

and obtain an equation in v only.

Once u and v are known, then εx (and εy = εx) can be calculated, and ε1 = εx (and

ε2 = ε1); thus, the principal membrane strains (including the contributions of the in-plane

displacement) are obtained. The maximum strains can be found and (if desirable) be

verified against material failure.

The reader is reminded that the foregoing treatment and results hinge on the validity of

the assumption that σ1 = σ2. It has been discussed that this special stress state satisfies

the yield condition and the in-plane equilibrium equation. As was shown, this special state

led to several fruitful consequences. However, the author could not find a procedure to

prove that σ1 must be equal to σ2, i.e., it is not guaranteed that the stress state σ1 = σ2 is

the only valid state that satisfies the in-plane equilibrium equations and, simultaneously,

the yield condition. Therefore, the material in this subsection was presented to highlight

the importance of proving that σ1 = σ2 in future research, again, since it directly leads to

all the above very practical results. If (σ1 = σ2) cannot be derived analytically, then its

consequences can be verified by performing numerical simulations for validation purposes.

For example, one can verify that ε1 = ε2 throughout a (von Mises) membrane, say, at

selective time instants; if this is the case, then σ1 = σ2 since the normality rule (or the

associated flow rule) requires the equality of the principal in-plane stresses. Lastly, the

interest in studying the special stress state, i.e., σ1 = σ2, became important after the neat

and attractive work of Cloete and Nurick (2014) on the in-plane displacement effect on

axi-symmetric circular membranes in which the in-plane principal stresses (which are the

circumferential and radial stresses) are made to be equal.



Appendix C

Assessment of the Error Due to

Series Truncation

Unless the specific impulse distribution identically matches the shape of a particular mode,

the exact solution, as given by Eqs. (4.4.8) and (4.4.9), requires taking an infinite number of

terms in the sum. However, in practice, a finite number of terms is used to approximate the

solution within reasonable accuracy. An appropriate measure to evaluate the sufficiency of

the approximation is the total kinetic energy. Suppose that the kinetic energy computed

by including a finite number of modes is close to the “exact” kinetic energy, which is a strict

upper bound due to the non-negativity of kinetic energies. Then, the discarded modes will

be insignificant as their total contribution is bounded from above by the implied error (or

difference). It is the initial kinetic energy that is referred to, which is

Ek =

∫ Lx

0

∫ Ly

0

1

2
ρhẇ2

0 dy dx

=
1

2ρh

∫ Lx

0

∫ Ly

0
i(x, y)2 dy dx. (C.1)

Again, this is taken as the “exact” kinetic energy at time t = 0, and it is termed the

“upper bound kinetic energy” uptake in Tyas and Pope (2003) and Rigby et al. (2019a).

Due to the assumption of deformation monotonicity, the total plastic work is associated

with the total strain at the final time (as the problem is path-independent). That is, after

t ≥ t1,1, the plastic work W ∗
p is evaluated using the final displacement field, wp(x, y), and

hence is given by

W ∗
p =

2√
3
σ0h

∫ Lx

0

∫ Ly

0

[
1

2

(
∂wp

∂x

)2

+
1

2

(
∂wp

∂y

)2
]
dy dx. (C.2)

By exploiting the modal orthogonality property and after some lengthy algebraic simpli-
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fications, the plastic work evaluates to

W ∗
p =

1

2ρh

4

LxLy

∞∑
m,n=1

I2mn. (C.3)

The above, Eq. (C.3), is precisely the expression for the (initial) kinetic energy if it would

be evaluated by time differentiating the general solution w(x, y, t), Eq. (4.4.1), then set

t = 0, which confirms that the initial kinetic energy is converted into (plastic) internal

energy.

Now, when the expressions of the exact initial kinetic energy, Ek, from Eq. (C.1), and the

final plastic work, W ∗
p , are set equal, the following condition, known as Parseval’s formula,

see Weisstein (2022), is obtained

∞∑
m,n=1

I2mn =
LxLy

4

∫ Lx

0

∫ Ly

0
i(x, y)2 dy dx = ‖φmn‖2 · ‖i‖2 , (C.4)

where ‖f(x, y)‖ =
√∫

A f(x, y)2 dA, is the norm of a function f , and ‖φmn‖ is
√

(LxLy/4).

Therefore,
∞∑

m,n=1

I2mn =

(
Ik
2

)2

, (C.5)

in which Ik is the energy-equivalent impulse due to Rigby et al. (2019a), which, for a

rectangular target with loaded area A = LxLy, is given by

Ik =

√
A

∫
A
i(x, y)2 dA (C.6)

=
√
A× ‖i‖ .

It should be noted that in Rigby et al. (2019a), Ik was derived directly from the physi-

cal problem using equivalence between kinetic energies due to non-uniform and uniform

specific impulses.

Now, defining an angular parameter, which measures how much the actual specific impulse

field is along the direction of one particular mode (in the inner product sense), by

cos θmn =
2Imn

Ik
, (C.7)

then, one reaches the following general condition,

∞∑
m,n=1

cos2 θmn = 1. (C.8)
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It is vital to recognise that there is no single component in the infinite series above,

Eq. (C.8), with a magnitude larger than unity since each term is always positive while the

right-hand side is one. Hence, if one term is identically one, then all other terms must

vanish, which is the situation when the specific impulse field matches the shape of the

surviving (or resonating) mode.

Finally, if only a finite number of terms is used to calculate wp or wc, then it is sufficient to

verify that the sum of cos2 θmn, for those modes included, is close to unity (from below).

In other words, the error, ε, due to truncation at m = M and n = N , can be estimated as

εMN = 1−
M,N∑
m,n=1

cos2 θmn ≡
∞∑

M,N

cos2 θmn. (C.9)

The quantity cos θmn, on its own, gives the absolute physical importance of the (m,n)th

mode in relation to all other modes since it compares the modal energy (through Imn) to

the strict upper bound kinetic energy, Ek, (through Ik).





Appendix D

A Practical Method to Compute Imn

for Rectangular Membranes

For smoothly varying distribution of specific impulse, Imn decreases as m and n increase

due to cancellations associated with high spatial oscillations. Thus, practically, a finite

number of modes suffices to estimate the displacement accurately.

In the expression for wc, instead of carrying out the numerical integrations directly by the

trapezoidal rule, it is observed that the two-dimensional Fast Fourier Transform (FFT)

could be utilised to reduce the computational time. However, according to the form of

Imn, the specific impulse distribution should be slightly manipulated first. The procedure

is straightforward to derive, and it is briefly described below and followed by a practical

Matlab code for the implementation.

From the actual specific impulse, i(x, y), defined on the actual membrane that spans

the domain [0, Lx] × [0, Ly], construct a fictitious specific impulse i∗(x, y) that covers an

extended rectangular region [−Lx, Lx]× [−Ly, Ly], which is defined as

i∗(x, y) =


i(x, y), (x, y) ∈ [0, Lx]× [0, Ly],

−i(−x, y), (x, y) ∈ [−Lx, 0]× [0, Ly],

−i(x,−y), (x, y) ∈ [0, Lx]× [−Ly, 0],

i(−x,−y), (x, y) ∈ [−Lx, 0]× [−Ly, 0].

(D.1)

Now, the real components of the two-dimensional discrete Fourier transform of i∗(x, y) is

denoted by bmn and given by

bmn =
1

LxLy

∫ Lx

−Lx

∫ Ly

−Ly

i∗(x, y) sin

(
2mπx

2Lx

)
sin

(
2nπy

2Ly

)
dy dx. (D.2)

It is important to note that the x-interval is 2Lx and that along y is 2Ly.

Next, bmn = b(m,n) is related to the complex Fourier coefficients by

bmn = −c(m,n) + c(−m,n) + c(m,−n)− c(−m,−n), (D.3)
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where m and n are indices corresponding to positive integers, and −m and −n are indices

corresponding to negative integers. Then, using the piecewise definition of i∗(x, y), it can

be shown that bmn reads

bmn =
4

LxLy

∫ Lx

0

∫ Ly

0
i(x, y) sin

(
mπx

Lx

)
sin

(
nπy

Ly

)
dy dx

=
4Imn

LxLy
. (D.4)

Finally,

Imn =
LxLy

4
[−c(m,n) + c(−m,n) + c(m,−n)− c(−m,−n)] . (D.5)

The values of c(m,n), c(−m,n), c(m,−n), and c(−m,−n) are the standard outputs of an

FFT, to within a constant multiplier. FFT gives the amplitudes of the modes, e.g., c(0, 0)

reflects the amplitude of the mode associated with m = 0 and n = 0. In Matlab, this is

achieved using the built-in function fft2(). Note that inMatlab, the output sorts the

number of modes in each direction in a special order: first, the zeroth mode (which we

do not need), followed by positive modes in ascending order, and lastly negative modes in

descending order.

The specific procedure to be implemented in Matlab is what follows. Let the actual

specific impulse, i(x, y), be stored in 2D array I. Further, let the plate lengths along x

and y be Lx and Ly, respectively.

Then, denote i∗(x, y) by Istar, which can easily be formed in Matlab using the built-in

function flip(). Finally, say the total modal impulse, Imn, will be stored in the array

Imn and be evaluated using FFT. The Matlab procedure is given in Script D.1.

%% start of script
% I = specific impulse matrix (2D array )...
% rows of I --> variation along x
% cols of I --> variation along y

Istar =[ flip(flip(I ,1) ,2) ,-flip(I ,1);-flip(I ,2) ,I];

C0=fft2( Istar );
C0=real(C0);
C0 =1/( numel ( Istar ))*C0; %undo multiplier
C1=C0 (2: end ,2: end); %skip zeroth mode
B= zeros (ceil (( size(C1) -1) /2));

for i=1: size(B ,1)
for j=1: size(B ,2)

B(i,j) = -C1(i,j)+C1(end -i+1,j)+C1(i,end -j+1) -C1(end -i+1,end -j+1);
end

end

Imn=Lx*Ly*B/4;

% Imn stores total modal impulses , Imn.
% Use this directly in expressions for displacement w_p or w_c.
%% end of script .

Script D.1. Matlab script to compute Imn e�ciently using FFT
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By comparing the results (not shown herein) from computing Imn via the trapezoidal rule

for many modes in each direction to those using the FFT, the observations are FFT is

superiorly efficient and very reasonably accurate. Hence, the use of FFT to evaluate Imn

is recommended. This computational strategy is rarely pointed out in the literature as an

efficient method to compute the modal amplitudes appearing in the displacement response

of plates.





Appendix E

E�ect of Work-Hardening on the

Response of an SDOF and a 2D Steel

Plate

E.1 Forced Response - SDOF

In this section, an assessment of the effect of work-hardening is presented based on the

response of a single-degree-of-freedom (SDOF). The system consists of a mass m, a mass-

less spring with resistance R, and an applied dynamic force, and its general equation of

motion is

mẍ+R = F

For simplicity, we are concerned with motion up to a half cycle beyond the first maximum

response. The SDOF is assumed as initially at rest.

The resistance R is of bilinear form during loading and has an elastic unloading

R =


kx t ≤ ty,0,

Ry,0 +H(x− xy,0) ty,0 ≤ t ≤ tm,

Ry,0 +H(xm − xy,0) + k(x− xm) tm ≤ t,

where k and H are the elastic stiffness and the hardening modulus; Ry,0, xy,0, and ty,0 are

the initial yield force, the corresponding yield displacement, and the time at which first

yielding occurs. The maximum displacement is xm. The last expression for R describes

the elastic unloading for sufficiently small-time interval after t = tm.

The applied force F is assumed to be a rectangular pulse with amplitude F0 and duration

td.

The elasto-plastic response of the SDOF was solved numerically using an explicit time

integration scheme. The solution is terminated after completing a half cycle from the
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first occurrence of maximum displacement (i.e., after sufficient time during the elastic

unloading/rebound), to obtain a sufficient response for the computation of the residual

displacement, xr.

We considered the following input data. The elastic period Te = 2π
√
m/k is 0.0811 s.

The ratio of the external force to the initial yield limit F0/Ry,0 is 5.0. The ratio of load

duration to the elastic period td/Te and the ratio of hardening modulus to elastic stiffness

H/k are varied independently; some practical ratios of H/k are considered. The results

for the normalised residual displacement xr/xy,0 are given in Fig. E.1.
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Fig. E.1. Normalised residual displacement xr/xy,0 of elasto-plastic SDOF as function of the ratios of
load duration to elastic period td/Te and hardening modulus to elastic sti�ness H/k. The grey curves are
for intermediate ratios of H/k, which are bounded by the values of the blue and red curves.

The Rigid-plastic response of the SDOF is obtained by substituting R = Ry,0 in the

equation of motion, which is valid since F0 > Ry,0, and hence it is expected that ẋ ≥ 0.

Therefore, the maximum displacement is

xm,rp = xtd + ẋtd(tm − td)−
Ry,0

2m
(tm − td)

2

where,

xtd =

(
F0 −Ry,0

2m

)
t2d, (E.1.1)

ẋtd =
F0td
m

− Ry,0td
m

, (E.1.2)

tm =
ẋtd(
Ry,0

m

) + td (E.1.3)

The maximum rigid-perfectly plastic displacement xm,rp is plotted in Fig. E.1 as a func-
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tion of the ratio of load duration to elastic period td/Te and compared to the residual

displacement of the elasto-plastic problem.

It can be seen, from the figure, that the rigid-perfectly plastic solution gives reliable

predictions as compared to the elasto-plastic solution with various work-hardening, in

particular as the load duration to elastic period ratio, td/Te, becomes very small. In

Fig. E.1, the difference between the responses for the rigid-perfectly plastic (black) and

elasto-plastic with H/k = 0.0001 (blue) is attributed to elastic deformations of the elasto-

plastic SDOF. Such difference should decrease as the external force to initial yield limit

ratio, (F0/Ry,0), increases while small td is maintained.

E.2 Impulsive Response - SDOF

In this section, we present additional assessment of the effect of work-hardening on the

response of the same SDOF as in the previous section. However, we consider the system

where the external force is absent and assume the response to be driven by initial velocity.

The initial displacement is assumed zero.

We consider the initial velocity, ẋ0, to be large enough to cause initial yielding.

Denoting the time of initial yielding by ty,0, the response for (0 ≤ t ≤ ty,0) is governed by

mẍ+ kx = 0 with initial conditions x0 = 0 and ẋ0 > 0. The response is

ωe =

√
k

m
,

x(t) =
ẋ0
ωe

sin (ωet).

From which, the state at t = ty,0 is

xy,0 =
Ry,0

k
,

ty,0 =
sin−1

(
xy,0ωe

ẋ0

)
ωe

,

ẋy,0 = ẋ0 cos (ωety,0).

Denoting the time at maximum response (i.e., just prior to elastic unloading) by tm,

the response for (ty,0 ≤ t ≤ tm) is governed by mẍ + Ry,0 +H(x − xy,0) = 0 with initial
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conditions x(ty,0) = xy,0 and ẋ(ty,0) = ẋy,0. The response is

ωH =

√
H

m
,

x(t) =xy,0 cos [ωH (t− ty,0)] +
ẋy,0
ωH

sin [ωH (t− ty,0)]+

−
(
Ry,0 −Hxy,0

H

)
{1− cos [ωH (t− ty,0)]} .

By definition, tm is the time when velocity becomes zero for the first time, i.e., ẋ(tm) = 0.

From which, the state at t = tm is

β = tan−1

 ẋy,0

ωHxy,0 +
(

Ry,0+Hxy,0

mωH

)
,

tm =
β

ωH
+ ty,0,

xm = xy,0 cos (β) +
ẋy,0

ωH
sin (β)−

(
Ry,0 −Hxy,0

H

)
[1− cos (β)] .

For (t ≥ tm), the response is an elastic rebound, which is governed by mẍ+Ry,0+H(xm−
xy,0) + k(x − xm) = 0, with initial conditions x(tm) = xm and ẋ(tm) = 0. The rebound

response, for t ≥ tm, is

x(t) =xm cos [ωe(t− tm)]+

−
(
Ry,0 +H(xm − xy,0)− kxm

k

)
{1− cos [ωe(t− tm)]} .

The residual (plastic) displacement, xr, is obtained from the above rebound solution when

the vibration terms (i.e., the cosine terms) are eliminated. With the elastic period

Te = 2π

√
m

k
,

so that the residual displacement is

xr =
2

Te

∫ tm+Te
2

tm

x(t) dt

which simplifies to

xr = − [Ry,0 +H(xm − xy,0)− kxm]

k
.
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The initial kinetic energy, Ek,0, of the SDOF is

Ek,0 =
1

2
mẋ20,

and, the maximum (initial) elastic energy, Ee,m, is

Ee,m =
1

2
k x2y,0

For a given ratio of Ek,0/Ee,m and a ratio ofH/k, one can study the response in terms of the

ratio of maximum (or residual) displacement, xm (or xr), to the initial yield displacement,

xy,0. This gives direct assessment of the influence of work-hardening.

The rigid-perfectly plastic solution is characterised by the maximum response time tm,rp

(when velocity reaches, and subsequently held constant at, zero) and the corresponding

maximum displacement xm,rp. These are defined by

tm,rp =
ẋ0(
Ry,0

m

) ,
xm,rp = ẋ0tm,rp −

1

2

Ry,0

m
t2m,rp.

The rigid-perfectly plastic response xm,rp can be compared to the response of the elasto-

plastic with hardening solutions, the maximum xm or residual xr displacements, to assess

the effects of both work-hardening and elasticity.

We consider a particular case for which the ratio of initial kinetic energy to maximum

elastic energy is large,
Ek,0

Ee,m
= 9.0. The elastic period is Te = 0.0811 [s]. Moreover,

the ratio of the hardening modulus to the elastic stiffness H/k is taken as (0.01). The

comparison of the time history responses of the elasto-plastic with hardening SDOF and

the corresponding rigid-perfectly plastic SDOF is shown for the present case in Fig. E.2.

The displacement x is normalised by xy,0, and the time axis is normalised by ty. The

figure indicates that the rigid-perfectly plastic solution is suitable and highly efficient for

response of the SDOF for the considered ratio of Ek,0/Ee,m = 9.0.

As a second example, we consider a problem with Ek,0/Ee,m = 25.0, Te = 0.1147 s,

and H/k = 0.002. The responses from the elasto-plastic with hardening model and the

rigid-perfectly plastic model are compared in Fig. E.3.
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Fig. E.2. Normalised transient displacement x(t)/xy,0 of elasto-plastic SDOF (with work-hardening) as
function of normalised time t/ty,0; hardening modulus to elastic sti�ness ratio is H/k = 0.01. The response
is for an impulsively loaded SDOF, i.e., with non-zero initial velocity and zero external force. The initial ki-
netic energy

(
Ek,0 = (1/2)mẋ2

0

)
is nine times larger than the maximum elastic energy

(
Ee,m = (1/2) k x2

y

)
.

Horizontal (blue) dashed lines are drawn at xy,0, xr, and xm for the elasto-plastic response, and the addi-
tional (red) dashed line corresponds to xm,rp for the rigid-plastic response.
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Fig. E.3. Normalised transient displacement x(t)/xy,0 of elasto-plastic SDOF (with work-hardening) as
function of normalised time t/ty,0; hardening modulus to elastic sti�ness ratio isH/k = 0.002. The response
is for an impulsively loaded SDOF, i.e., with non-zero initial velocity and zero external force. The initial
kinetic energy

(
Ek,0 = (1/2)mẋ2

0

)
is 25 times larger than the maximum elastic energy

(
Ee,m = (1/2) k x2

y

)
.

Horizontal (blue) dashed lines are drawn at xy,0, xr, and xm for the elasto-plastic response, and the
additional (red) dashed line corresponds to xm,rp for the rigid-plastic response.
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E.3 Plate Response Using LS-DYNA

In this section, results from LS-DYNA simulations are presented to assess the influence of

work-hardening on the response of a ductile thin plate loaded by a uniform impulse.

Flexural, shear, and membrane effects are all considered. Furthermore, a general elasto-

plastic material behaviour is adopted. Plasticity follows a von Mises yield function in

which the yielding stress is given by Johnson-Cook (JC) model. In this study, the hard-

ening saturation stress B is varied while all other material (and geometry and loading)

parameters fixed.

The plate is impulsively loaded using a prescribed uniform initial transverse velocity ẇ0

ẇ0 =
i0
ρh

,

where the uniform specific impulse, density, and uniform thickness are denoted by i0, ρ,

and h.

According to JC model without Voce’s hardening, the current yield stress, σy, is influenced

by current effective plastic strain εeff, the instantaneous effective plastic strain rate ε̇eff,

and the absolute temperature T using

σy = (A+B εneff)

[
1 +

(
ε̇eff
ε̇0

)]c
(1− T ∗m)

where T ∗ is

T ∗ =
T − Tr

Tm − Tr
,

in which Tm and Tr are the (absolute) melting and room temperatures.

B and n are power-law hardening parameters, c is a strain-rate sensitivity parameter. A is

the initial quasi-static yield stress at the threshold strain rate ε̇0. Note that n is typically

in the range 0 ≤ n ≤ 1, and then B could be regarded as an increase in σy (from A)

due to strain-hardening. A further strengthening in the strain-hardened σy occurs at high

strain rates. On the other hand, two softening mechanisms (thermal softening when m

is non-zero and/or damage-induced softening) can lower σy. We assume that softening is

absent for simplicity (i.e., m = 0 and damage threshold = ∞).

In the study, we considered the following values for the material constants.

Three values of B as multiples of A are considered. In particular, we consider ratios of

B/A of 1.7, 0.89, and 0.05. These ratios correspond to the (true) yield stress-effective

plastic strain curves in Fig E.4.

The other input parameters are the following. The plate is square with a side length of

0.089 [m] and thickness of 1.6 [mm]. Additionally, a total impulse of −16.1 [N.m]. is

applied uniformly to the plate to give a uniform initial transverse velocity of −162.24
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Table E.1. JC material parameters

Parameter Value Unit

E 206× 109 Pa
ρ 7830 kg/m3

ν 0.29 -
A 296× 106 Pa
n 0.5597 -
m 0 -
c 0.032 -
ε̇0 1.4× 10−6 1/s
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Fig. E.4. Variation of JC current yield stress σy versus e�ective (von Mises) plastic strain εp,e� at the
quasi-static plastic strain rate ε̇0. The curves correspond to di�erent amount of strain-hardening in terms
of B/A ratio.

[m/s]. The input values correspond to the square plate tests of Nurick et al., cited and

discussed in Section 4.4.2. All boundary nodes are restrained in all translational and

rotational degrees of freedom. A fine element mesh is selected. The plate is modelled

with two-dimensional shell elements using ELFORM=7 (selectively reduced integrated

Hughes-Liu co-rotational formulation) and 10 Gauss integration points to better represent

the extent of plasticity through the plate’s thickness.

Nodal, element, and energy databases are requested with fine sampling rates. The trans-

verse (z-) displacement and energy histories are post-processed in MATLAB. The residual

displacement is computed by time integration averaging beyond the first peak response.

The history results obtained from LS-DYNA for the three ratios of B/A are compared to

the predictions of the present model. Namely, the displacements at the plate’s centre, the

time to maximum response, and the evolution of different energies are analysed. In the

model predictions, the characteristic yield strength σ0 is taken as the static yield strength

A.
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Fig. E.5. Central transverse displacement w time history from LS-DYNA simulation (for B/A = 1.7) and
the corresponding model prediction.
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Fig. E.6. Histories of global energies from LS-DYNA (for B/A = 1.7), and the corresponding kinetic
(KE) and plastic internal (IE) energies predicted by the model. From LS-DYNA, the internal (IE), kinetic
(KE), total (TE), and hour-glass energies and external work (EW) are shown. The maximum response
time tmax predicted by the model is shown as a vertical dashed line.
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Fig. E.7. E�ect of the degree of strain-hardening (in terms of B/A ratio) on the transient and residual
central displacements from LS-DYNA. The model prediction assumes σ0 = A.
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Fig. E.8. LS-DYNA maximum (peak) and residual (res.) displacements at the plate's centre as functions
of the degree of hardening (in terms of B/A).



Appendix F

Matalb Function to Read

LS-DYNA's binout Files

F.1 Overview

A Matalb function is developed to read the whole binary data from an LS-DYNA’s

binout file. The function syntax is

binin = get_binout_data(<path/to/binout>)
where the input argument is either a char or string specifying the path (relative or

absolute) to the binout file. The output is a Matalb struct that contains all data in

the binout file (all directories, subdirectories, and their arrays). The main directories

(e.g., nodout or elout, etc) present in the binout file become the root fields of the binin
structure. The original hierarchy and variables’ labels (or names) of data in the binout

are preserved, with the exception that replacing a “-” with “ ” in some labels to make

them valid Matalb field names. For example, if the binout file has matsum and nodout
data in it, then the binin will have two root fields with names “matsum” and “nodout”,

each of which is a root structure. Each of most of these root structures has exactly two

fields: data and metadata, each of which is again a structure.

The data structure will have the actual data as arrays, with their labels borrowed from

the binout file. For example, to get the kinetic energy stored in the “matsum”, one can

use binin.matsum.data.kinetic energy, which returns the array of kinetic energy with

rows corresponding to the time states and columns (if more than one) corresponding to

the IDs of the parts whom data were requested from LS-DYNA. The time vector for all

variables present in the “matsum” can be accessed using binin.matsum.data.time. The
term “kinetic” may be replaced with “internal” or “hourglass” to get the corresponding

energy data. All numeric arrays are of Matalb type double, even if the corresponding

original data in the binout file were stored as integers or floats of “single” precision.

The metadata structure contains mostly metadata; however, it also contains important

variables, in particular the IDs of the various entities, such as those of parts, nodes, etc.

251
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For example, if there are more than one part whom data is requested, then one needs to

first get their IDs from the vector binin.matsum.metadata.ids. For example, if the 3rd

entry of the IDs vector is 99, then the 3rd column of the “kinetic energy” array is the

time-history of kinetic energy for the part with id = 99. The length of the ids vector is

also the number of columns of the kinetic energy array and of similar arrays, discussed

earlier.

Since the content of the binin merely reflects what is present in the binout, and the

field names are borrowed directly from the binout, which are almost self-explanatory,

thus detailed documentation of the binin is omitted. As a demonstration, the displace-

ment of the nodes in the x-direction can be accessed using binin.nodout.data.x dis-
placement, which returns the 2D array of x-components of displacement for all nodes

(columns map to node IDs) and at all time instants (rows map to time instants); the

vector binin.nodout.metadata.ids gives the IDs of the nodes (and the length of this

vector equals to the number of columns of arrays in binout.nodout.data, if that num-

ber is greater than one). The time vector for all arrays (i.e., displacements, coordinates,

velocities, etc) in binin.nodout.data is stored in binin.nodout.data.time.

To further illustrate how the structure of the binin is laid out in a real case, consider

the following example, which is based on an actual binout file. The latter file contained

matsum, glstat, nodout, and elout and was outputted by LS-DYNA after running a

(shell) plate model. Fig. F.1 shows the structure tree of the main binin, in which the

terminal leaves (i.e., fields under each of the data and metadata nodes) were suppressed

for clarity. On the other hand, Fig. F.2 shows the actual content (with the terminal leaves

displayed) of binin.matsum, which is representative of the other root fields under the main

binin.

binin

nodout glstat matsum elout control

meta data meta data meta data shell

meta data

initial connec id stat

Fig. F.1. A sample binin structure corresponding to a binout �le that contains matsum, glstat, nodout,
and elout databases. The elout �eld contains only shell since it is the type that was requested from
LS-DYNA in the original model. The actual data are the �elds of every data but are not shown here
for simplicity; see Fig. F.2 that provides all details for the matsum database, as an example. Note: the
control and all its children are not part of the binout, but they were retrieved from the root d3plot for
convenience for later post-processing.
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Fig. F.2. Content of the matsum database returned as part of the binin. To obtain the time vector (as
an example), use binin.matsum.data.time.

F.2 Additional Functionality

LS-DYNA binout files do not contain the element-node connectivity arrays. If this infor-

mation is needed for certain post-processing, one can either directly import this data from

the LS-DYNA keyword “.k” file, or make use of the root output d3plot file. Another

supplementary Matalb function is also developed to get all control data from the root

d3plot file. Among the control data are the element-node connectivity arrays and the

initial coordinates of the input mesh. The function that reads such control data is called

get d3plot d3thdt control data(). This function is called from within the previously

discussed binout reader function, and the control data are fed into a new field (called

control) in the binin structure, as was already shown in Fig. F.1 in the previous section.

F.3 Performance Remarks

Although the binout reader function requires the specification of the path to the (root)

binout file, it will read all binout files sequentially (if there are more than one), and all data

are stored in the single binin variable. Only the binout files sharing the same root name of

the root file will be read. It is the caller’s responsibility to ensure that the accumulated size

of data does not exceed the available RAM. Note: the function code includes commands

to pre-allocate reasonable memory before reading the data (whose exact size is initially

unknown) to speed up the execution time; however, this process is done in segments (i.e.,
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as dynamically needed) to make it as economical as possible. After completion of reading

the actual data, the remaining unused entries are eliminated before returning the output.

The reason for having to request results from LS-DYNA in binary format so that a binout

file gets written is that binary data are compact and small compared to the same data in

ASCII format. To be specific, the size of “3.1415927” is 9 bytes in ASCII (since there are

9 characters, including the period mark), while it is 4 bytes if written as a binary number

in “single” precision (any number is always 4 bytes in single precision). Furthermore, the

ASCII formatted files written by LS-DYNA have many delimiters and repeated text labels

that considerably add to the overall size of the file. This is why LS-DYNA splits data

in different ASCII files, while it combines them in the same binout file. To make certain

data written to the binout, one can use binary=2 in the *database_<option>, where
<option> can be matsum, nodout, etc.

Finally, recall that the binout reader function converts all numeric data to the type “dou-

ble”. Hence, it is not recommended to store the returned binin structure as a replace-

ment for the original binout file because, (assuming it was produced by LS-DYNA single-

precision solver), the binout file will be (by far) smaller.

F.4 Source Code of the Matalb Function

The source code for the binout reader and the root d3plot control data reader functions

have been made public and are published on GitHub.

The source code is available at the following GitHub’s binout repository:

https://github.com/saudbinayed/binout

and the direct link to the GitHub’s page of the Matalb’s get binout data.m source code

is:

https://github.com/saudbinayed/binout/blob/master/src/get binout data.m

The GitHub page includes adequate description and example of the code and its usage.

Furthermore, the Matalb source code has, also, been published on the University of

Sheffield’s Online Research Data, ORDA, repository, and it can be accessed using:

https://doi.org/10.15131/shef.data.26018836

https://github.com
https://github.com/saudbinayed/binout
https://github.com/saudbinayed/binout/blob/master/src/get_binout_data.m
https://orda.shef.ac.uk
https://doi.org/10.15131/shef.data.26018836


Appendix G

Illustration of the Solution

Termination for a Rigid-Perfectly

Plastic SDOF

G.1 Overview

The aim of the present material is to increase confidence on the importance of the concept

of the solution termination strategy for a mechanical system that is rigid-perfectly plastic.

Therefore, it is vital to focus on the most simple version of the problem without unneeded

mathematical complexity. That is, the motion of a rigid-perfectly plastic single-degree-of-

freedom (SDOF) system will be investigated. For further simplicity and direct relevance

to the membrane problem, the SDOF will be assumed to be impulsively loaded.

G.2 Problem De�nition

The SDOF is non-damped and consists of a mass, m, that is attached to a rigid-perfectly

plastic spring, whose resistance force is R; the mass is subjected to an external force, F .

The motion of the SDOF is uni-dimensional, and the mass has zero initial displacement,

x0 = 0, before the load application (or when the spring is undeformed). Therefore, the

system’s equation of motion is

mẍ+R = F (G.2.1)

As mentioned, the spring is rigid-perfectly plastic. The resultant stress is the spring

resistance force, R, and the corresponding (work-conjugate) strain measure (or resultant)

is the displacement of the mass, x. Furthermore, the strain-rate resultant is, hence, the

mass’s velocity, ẋ. The yield condition (defining the onset of plasticity of the spring) can

be written as

Y = |R| −Ry = 0, (G.2.2)

255
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where Ry is the yield limit, which is constant in tension and compression, and |z| is the

absolute value of z. Herein, Y is the relevant yield function. The spring is said to be rigid

whenever Y < 0 (or when −Ry < R < Ry), and yielding can take place only when Y = 0;

note that Y ≯ 0.

Hence, assuming the spring’s material obeys the classical associated flow rule, the incre-

ment of the resultant strain-rate is described by

ẋ = λ̇
∂

∂R
(Y )

= λ̇
∂

∂R
(|R| −Ry)

= λ̇ sgn (R)

λ̇ ≥ 0

(G.2.3)

in which, sgn (z) is the sign function which returns +1 when z > 0, −1 when z < 0, and

0 when z = 0; herein, the sign function is taken as the derivative of the absolute value

function.

In the last set of equations, λ̇ is the rate of plastic multiplier that is non-negative and

must satisfy the following consistency condition

λ̇ > 0 when Y = 0

λ̇ = 0 when Y < 0
(G.2.4)

As can be seen from Eqs. (G.2.3), a positive velocity, ẋ > 0, implies that R = Ry, and,

likewise, when ẋ < 0 implies that R = −Ry. In addition, when Y < 0 (or equivalently

when |R| < Ry), then ẋ = 0 since λ̇ = 0 because, in this case, that the yield condition is

not satisfied. Moreover, it can be inferred that whenever ẋ is non-zero (which corresponds

to the satisfaction of the yield condition), the value of λ̇ is the absolute value of ẋ; that is,

λ̇ = |ẋ| when Y = 0, (G.2.5)

otherwise, λ̇ = 0 if Y < 0.

Therefore, it can be deduced that the value of the resistance force, R, of the spring during

its plastic flow can be taken as

R = Ry sgn (ẋ) (G.2.6)

since, again, R = Ry implies ẋ > 0, and R = −Ry implies ẋ < 0. Note that when |R| < Ry

(i.e., Y < 0) corresponds to a state of rigid spring so that the mass is not moving (i.e., its

velocity and acceleration are zero). The value (Ry sgn (ẋ)) is important, since it will, at

all times, ensure that the rate of plastic work, Rẋ = Ry sgn (ẋ)ẋ = Ry|ẋ|, is non-negative
since Ry is positive. When |R| < Ry, then no plastic flow occurs, i.e., ẋ = 0, and hence
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the rate of plastic work is identically zero.

Consequently, substituting Eq. (G.2.6) into the equation of motion, Eq. (G.2.1), the latter

takes the following form

mẍ+Ry sgn (ẋ) = F (G.2.7)

where Ry is a positive constant, and the equilibrium equation applies when ẋ 6= 0.

Next, to further simplify the discussion and makes the SDOF problem more relevant to

the main work in the thesis, the external loading is assumed to be impulsive such that

during the load application the SDOF is at rest. By the end of load application, the

system acquires some non-zero initial velocity. Hence, the equilibrium equation becomes

mẍ+Ry sgn (ẋ) = 0 (G.2.8)

where motion is induced by the non-zero initial velocity, ẋ0.

G.3 Solution

In general, the above equation is non-linear differential equation in time due to sgn (ẋ). By

the definition of the sign function, the value of sgn (ẋ) can be 1, −1, or 0, depending on the

sign of the instantaneous velocity, ẋ. The non-linear equation can be solved numerically

to obtain the response (or motion) of a given system under prescribed initial velocity.

However, when the sign of the given initial velocity is known, e.g., positive, ẋ0 > 0, then

the non-linearity disappears temporarily. For such case, i.e., ẋ0 > 0, one can arrive at the

following equation

mẍ+Ry = 0 (G.3.1)

as long as ẋ > 0. The solution of the above equation can, easily, be obtained by direct

integration of ẍ = −Ry/m. Namely, the velocity of the mass is

ẋ = ẋ0 −
(
Ry

m

)
t (G.3.2)

This (analytical) solution is valid as long as the condition that ẋ > 0 is not violated.

Clearly, the critical time instant is when ẋ = 0 for the first time. Let such instant be

denoted by t∗. It is given by

t∗ =
mẋ0
Ry

. (G.3.3)

Since the analytical solution of the instantaneous velocity, as given by Eq. (G.3.2), predicts

that the velocity decreases (linearly) with time from the initial positive velocity, ẋ0, beyond

t = t∗, the current velocity would turn negative. Hence, the valid equilibrium equation

would become mẍ−Ry = 0 (for ẋ < 0). In turn, the velocity solution, for t ≥ t∗, becomes

ẋ = ẋ∗+(Ry/m)(t− t∗), where ẋ∗ ≡ ẋ(t = t∗). This latter solution is valid until ẋ = 0 for

the first time beyond t = t∗, and let such new time instant denoted by t∗∗. Hence, t∗∗ can
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be determined by the following equation, −ẋ∗ = (Ry/m)(t∗∗ − t∗). Since, by definition,

ẋ∗ = 0, then it is concluded that t∗∗ = t∗; that is, the two critical time instants coincide

with each other. Subsequently, ẋ = 0 + (Ry/m)(t∗ − t∗) = 0. In other words, the system

reached its final state, and there is no subsequent motion beyond the first occurrence of

zero velocity, i.e., when t = t∗.

Alternatively, the same conclusion can be arrived at by recalling that the non-linear equi-

librium equation, given in Eq. (G.2.8), also states that R = 0 at t = t∗ since ẋ = ẋ∗

is instantaneously zero; therefore, the instantaneous acceleration is zero, and the initial

velocity at t = t∗ is zero. The overall effect is that the (SDOF) system ceases motion at

and beyond the first critical time instant, t = t∗.

The response of the impulsively loaded SDOF is therefore

x(t) =

ẋ0t− 1
2
Ry

m t2, t < t∗

1
2 ẋ0t

∗, t ≥ t∗
(G.3.4)

G.4 Discussion

It is crucially important to note that the solution of x(t) = ẋ0t − 1
2
Ry

m t2 is valid only

conditionally; it holds, as shown above, until the time instant t∗. That is, the solution

is terminated. The subsequent solution is held constant at x = x(t∗) = 1
2 ẋ0t

∗. For the

academic sake, the problem of an impulsively loaded and rigid-perfectly plastic SDOF is

mathematically equivalent to the problem of a sliding block on frictional surface where

the block is given an initial positive velocity and allowed to slide in the presence of a

(constant) Coulomb friction force. The work done by the friction force, as the irreversible

plastic work, is dissipative. The friction force is non-zero whenever the current velocity

is non-zero; the yield force by the rigid-perfectly plastic spring in the SDOF is Ry only

whenever the current velocity is non-zero and positive. In the two problems, the problem

can be linearised and, easily, solved provided that the solution is terminated as soon as

the current velocity becomes zero for the first time (beyond this time instant, the initial

linearised problem is irrelevant, and a new linearisation should be established to account

for the new sign of the current velocity).

Therefore, given an impulsively loaded SDOF with a non-zero initial velocity, the solution

can be predicted analytically by simplifying the equation of motion based on the sign of

the initial velocity. This solution, however, is valid as long as the underlying equilibrium

equation is valid (with the assumed sign of the current velocity). The analytical solution is

terminated whenever the equation of motion becomes invalid. In this simplified analysis of

an impulsive SDOF system, the termination criterion is the first occurrence of zero current

velocity. The solution termination is, further, predicted analytically by determining the

critical time instant, t∗.

The starting equilibrium equation of the impulsive motion of the SDOF with positive
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initial velocity, in Eq. (G.3.1), is assumed to hold under the assumed condition that the

current velocity is and continues to be positive. This was done to linearise the equation of

motion, see Eq. (G.2.8). The current velocity of the SDOF problem is the version of the

strain-rate measure of the rigid-perfectly plastic spring; a non-zero current velocity, thus,

is an assumption of active yielding of the spring. In the main text of the thesis concerns

the motion of an impulsively loaded rigid-perfectly plastic membrane. The equation of

motion of the membrane, developed therein, was linearised with a subsidiary condition

that the membrane is under active yielding. Since the condition is anticipated to be

violated at some time instant as motion evolves, then the developed equation of motion

and the solution based on it were complemented by the suitable strategies to terminate

the (conditional) solution. The termination strategies were introduced and addressed in

Chapters 3, 4, and 5.

G.5 Systematic Derivation of the Non-Linear Equilibrium

Equation of the SDOF

The non-linear equation of motion for the impulsive case, in Eq. (G.2.8), will be derived

by simple application of the (rate of) virtual work principle, which states that

δW = Rδẋ+mẍδẋ = 0, (G.5.1)

where the first term is the internal virtual work, and the second is the virtual work due

to inertia. The latter will remain unaltered, and focus is made on the former. In the

internal work, R is the spring force (which needs not satisfy the yield condition, |R| = Ry,

although it cannot violate the yield inequality, |R| ≤ Ry).

The flow rule was given earlier by ẋ = λ̇ sgn (R), see Eq. (G.2.3), and recall that the

non-negative λ̇ is non-zero only if |R| = Ry, i.e., when the yield condition is satisfied.

Furthermore, λ̇ =
√
ẋ2 = |ẋ|, which is obtained by squaring both sides of the flow rule,

and solving for λ̇ while noting that λ̇ is non-negative, and [sgn (R)]2 = 1 (when R is

non-zero).

Therefore, the internal virtual work takes the form

Rδẋ = R sgn (R)δλ̇

= R sgn (R)δ(|ẋ|)
(G.5.2)

In the above, note that R sgn (R) is, identically, |R|. Hence,

Rδẋ = |R|δ(|ẋ|) (G.5.3)

Now, since λ̇ (and accordingly |ẋ|) can be non-zero only if |R| = Ry, then the internal
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virtual work is

Rδẋ = Ryδ(|ẋ|) (G.5.4)

Note that if R 6= Ry, then δλ̇ = δ(|ẋ|) ≡ 0.

The variation of |ẋ| is

δ(|ẋ|) = ∂

∂ẋ
(|ẋ|) δẋ

= sgn (ẋ)δẋ

(G.5.5)

Using the above in the internal virtual work, one gets

Rδẋ = Ry sgn (ẋ)δẋ (G.5.6)

When the last expression is substituted into the total virtual work equation, it becomes

δW = Ry sgn (ẋ)δẋ+mẍδẋ = 0, (G.5.7)

or,

[Ry sgn (ẋ) +mẍ] δẋ = 0 (G.5.8)

Then, when δẋ is made arbitrary, its coefficient vanishes, i.e.,

Ry sgn (ẋ) +mẍ = 0 (G.5.9)

The derivation is complete as the above is the equation of motion for an impulsively loaded

rigid-perfectly plastic SDOF, as given in Eq. (G.2.8). Motion is induced by any arbitrary

initial velocity, ẋ0. This equation ensures that if plastic work rate takes place, it will be,

at all times, non-negative. Again, this equation is non-linear due to the presence of sgn (ẋ)

in the first term of the left-hand side.
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