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Abstract

We examine the model-theoretic properties of the induced structure on the

archimedean classes of a non-archimedean expansion of Rexp equipped with

trans-exponential functions. This is mainly done by studying Contraction

groups and Asymptotic triples.

Contraction groups are a type of model-theoretic structure introduced by F.V

Kuhlmann consisting of an ordered abelian group G along with a unary func-

tion χ : G → G which collapses entire archimedean classes to a single point.

The canonical example being the action of the logarithm on the archimedean

classes of a non-archimedean model of Rexp. In the papers F.-V. Kuhlmann,

1994 and F.-V. Kuhlmann, 1995, it was shown that the theory of centripetal

contraction groups has quantifier elimination and is weakly o-minimal.

Similarly, Asymptotic triples consist of an ordered abelian group G and a unary

function ψ : G ̸=0 → G collapsing entire archimedean classes to a point, with

the canonical example being the action of the logarithmic derivative on

the archimedean classes of the germs of functions on Rexp. In the works of

Aschenbrenner and Van den Dries it was also shown that some formulation of

these into first-order logic has quantifier elimination and is weakly o-minimal.

The works mentioned above only deal with regular logarithms and exponen-

tials. In this thesis, we extend the works above, to so-called ‘Hyper-logarithms’

and ‘Trans-exponentials’, which can intuitively be thought of as the composi-

tion of log and exp infinitely many times. The main results for this thesis are

quantifier elimination and weak o-minimality for n-contraction groups along

with quantifier elimination for θ − L-contraction groups.
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Chapter 1

Introduction

The purpose of this thesis is to examine the model theoretic properties of the induced

structure on the archimedean classes of a non-archimedean expansion of Rexp equipped

with trans-exponential functions. This is mainly done by studying Contraction groups

and Asymptotic triples.

Contraction groups are a type of model theoretic structure introduced in F.-V. Kuhlmann,

1994 consisting of an ordered abelian group G along with a unary function χ : G → G

which collapses entire archimedean classes (these will be defined later but for now think

of them as the equivalence classes under big-O-notation) to a single point. The canonical

example is the action of the logarithm on the archimedean classes of a non-archimedean

model of Rexp. In that paper, it was shown that the theory of centripetal contraction

groups has quantifier elimination and is weakly o-minimal.

Asymptotic triples were introduced in Aschenbrenner and van den Dries, 2000, similarly

consisting of an ordered abelian group G and a unary function ψ : G ̸=0 → G collapsing

entire archimedean classes to a point, with the canonical example being the action of the

logarithmic derivative on the archimedean classes of the germs of functions on Rexp.

In the initial paper, it was also shown that some formulation of these into first order logic

has quantifier elimination and is weakly o-minimal.

Note that the works mentioned above only dealt with regular logarithms and exponentials.

In this thesis, we extend the works above, to so called ‘Hyper-logarithms’ and ‘Trans-

exponentials’, which can intuitively be thought of as the composition of log and exp

infinitely many times. The main results for this thesis are quantifier elimination and weak

o-minimality for n-contraction groups (Theorem 3.4.17 and Theorem 3.5.21) along with

quantifier elimination for θ − L-contraction groups (Theorem 4.4.13).

We have just introduced two potentially unfamiliar concepts, archimedean classes and

trans-exponentials/hyper-logarithms. Let us expand on both starting with the latter.
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1. INTRODUCTION

1.1 Model theory of R

The model theory of the real numbers began with Alfred Tarski (see Vaught, 1986), who

showed that the theory of real closed fields in the language of ordered rings has quantifier

elimination and is complete. A field F is real closed if it is orderable and for every odd

degree polynomial along with every polynomial of the form x2 − a, where a ∈ F>0, has a

root in F . We can express this theory in first order logic as:

Definition 1.1.1. Let Lor := ⟨+.−, ·, 0, 1, <⟩ be the language of ordered rings. The theory

of ordered fields states that:

1. ⟨+,−, ·, 0, 1⟩ forms a field

2. < is a linear ordering

3. For any a, b > 0 and c, d < 0:

(a) −a < 0

(b) a+ b, a · b, c · d are all greater than 0

The theory of real closed fields further asserts that:

4. Every positive element in F has a square root:

∀y(y > 0 → ∃x(x2 = y))

5. Every odd degree polynomial with coefficients in F has a root in F , this can be

expressed via the collection of formulas (ϕn)n<ω where ϕn is:

∀a0, a1, . . . , an∃x

(
n∑
i=0

aix
i = 0

)

Theorem 1.1.2 (Tarski). The theory of real closed fields has quantifier elimination, is

complete and is decidable.

An immediate consequence of this result is o-minimality, which is a model theoretic prop-

erty of structures expanding dense linear orders proclaiming that every definable set in

one dimension can be described just using the ordering.

Definition 1.1.3. Let M := (M,<, . . .) expand a dense linear order. M is o-minimal

if every definable set in M1 is a finite union of points and intervals.

By quantifier elimination, every real closed field must be o-minimal. Note that o-minimality

is preserved under elementary equivalence, unlike similar model theoretic properties like

minimality or weak o-minimality. A proof can be found in van den Dries, 1998, but the

main reason is that o-minimal structures eliminate ∃∞, i.e for any formula ϕ(x, y), if for

2



1.2 Adding exponentials

all m ∈ M , the set |ϕ(M,m)| is finite, then there exists some n < ω such that for all

m ∈M , |ϕ(M,m)| < n.

O-minimality is significant because it gives a complete description of the definable sets in

all dimensions, as a finite union of ‘cells’. We give a quick definition of o-minimal cells.

Lemma 1.1.4 (Monotonicity Theorem,van den Dries, 1998). Let M := (M,<,+, 0, . . .)

be an o-minimal structure expanding an ordered abelian groups. For any definable function

f :M →M , there exists some collection of points a0 < a1 < . . . < an in M , such that on

each Ci, where:

C0 := (−∞, a0) < C1 := (a0, a1) < . . . < Cn := (an−1, an) < Cn+1 := (an,∞)

the function f | Ci is monotone and continuous.

This itself is a very strong statement, but we can use it to induct on the dimension of a

set to describe definable sets in all dimensions:

Definition 1.1.5 (O-minimal Cells). LetM := (M,<,+, 0, . . .) be an o-minimal structure

expanding an ordered abelian groups. A 0-cell is any point in M . A 1-cell is any interval

(a, b) ⊆ M . Given an n-cell X ⊆ Mm+n, and two definable functions f, g : X → M with

f(x) ≤ g(x) for all x ∈ X,

• Γ(f) := {(x, y) ∈Mm+n ×M | f(x) = y} is an n-cell in Mm+n+1

• Γ(f, g) := {(x, y) ∈Mm+n ×M | f(x) ≤ y ≤ g(y)} is an n+ 1-cell in Mm+n+1.

Theorem 1.1.6 (Cell Decomposition, van den Dries, 1998). Let M := (M,<,+, 0, . . .)

be an o-minimal structure expanding an ordered abelian groups. Any definable set in Mn

is a finite union of cells.

Hopefully the theorems above demonstrate why o-minimality is a desirable property to

have in a structure.

1.2 Adding exponentials

By o-minimality for real closed fields, we can totally classify the definable sets in R as

an ordered field and show that they are ‘tame’ in some sense. Naturally, we could then

ask if the same is true the reals expanded with an exponential function. It was proved in

Wilkie, 1996 that the theory of (R, exp) in the language Lor∪⟨exp⟩ is model complete and

o-minimal. Thus any set defined via polynomials involving exp must also be ‘tame’, in the

sense that it must a boolean combination of o-minimal cells as defined in Definition 1.1.5.

Going even further, it could then be asked what how definable sets look like when we

adjoin to R a function that grows faster than any iteration of exp. By this we mean some

function E : R → R>0 such that for any n < ω, we have:

3



1. INTRODUCTION

E(x) > expn(x) := exp ◦ . . . ◦ exp︸ ︷︷ ︸
n-times

(x)

for all sufficiently large x ∈ R. We call such a function a trans-exponential, and its

inverse a hyper-logarithm.

Before it is attempted to prove model theoretic results for structures with such functions, it

should probably be checked that such functions do exist. There are quite a few expositions

trans-exponentials, and we highlight a few that will be particularly relevant in this thesis.

The first construction was given in Boshernitzan, 1986. They proved that there exists a

‘Hardy field’ which contains a function E satisfying the functional equation:

E(x+ 1) = E(exp(x))

and that such a function is ‘obviously trans-exponential’. So what is a Hardy field? They

were initially introduced in Bourbaki, 1976, but we give a presentation from S. Kuhlmann,

2000.

Definition 1.2.1. Let C be a collection of functions from R>0 to R. Define the equivalence

relation ≈ on C as:

f ≈ g ⇐⇒ ∃N ∈ R>0 such that ∀x > N, f(x) = g(x)

Note that pointwise addition and multiplication of functions carry over to equivalence

classes of ≈. If K := C/≈ is a field under these operations and closed under derivation, we

say K is a Hardy field. Note that any Hardy field is orderable, since for [f ]≈ ∈ K, [f ]≈ ̸=
[0]≈, we must have [ 1f ]≈ ∈ K, thus f must be eventually positive or eventually negative,

hence we can assert [f ]≈ > [g]≈ if and only if f − g is eventually positive.

Examples of Hardy fields include Q,R (consider each element as a constant function) and

R(x), where each equivalence class consists solely of one polynomial. We write [f ]≈ as just

f when dealing with Hardy fields.

We say a Hardy field is exponential if it contains the function exp.

Note that the Hardy field given by Boshernitzan was not closed under composition. A

trans-exponential Hardy field that is closed under composition was constructed in Padgett,

2022. The advantage of Hardy fields over other trans-exponential constructions is that

they are in some sense explicit, rather than an arbitrary collection of formal series.

The last exposition we mention are the various forms of ‘Hyperseries’. These were initially

developed in the thesis of Schmeling, 2001, and were further developed in papers including

‘Logarithmic Hyperseries’ van den Dries, van der Hoeven, and Kaplan, 2019 and ‘Hyper-

4



1.3 Archimedean Classes

serial fields’ Bagayoko, van der Hoeven, and Kaplan, 2021). In the ‘Hyperserial fields’

paper, the authors construct a formal series, which they call ‘Hyperseries’, that forms an

ordered differential real closed field and is closed under composition, containing functions

E0 := exp, E1, E2, . . . , L0 := log, L1, L2, . . . satisfying the functional equations:

Ei(x+ 1) = Ei−1(Ei(x))

Li(Li−1(x)) = Li(x)− 1

for all i > 0 and sufficient large x.

Going forward, we assume the existence of the following fields:

Theorem 1.2.2 (Bagayoko, van der Hoeven, and Kaplan, 2021). There exists a non-

archimedean ordered differential real closed field K extending R with functions (Ei :

K>R → K>R, Li : K>R → KR)i<ω such that for all i ≥ 0, Li is the compositional

inverse of Ei and:

L1 Li+1(Li(x)) = Li+1(x)− 1 for any x > R.

L2 Li is strictly increasing.

L3 For all n ∈ N and x > R:

0 < Li+1(x) < Lni (x)

L4 Li considered as a function from K>R → K>R is surjective.

Theorem 1.2.3 (Padgett, 2022). There exists a real closed exponential Hardy field extend-

ing R(x) closed under composition, containing a trans-exponential function E. Moreover

it’s functional inverse L satisfies (L1) - (L4), where L1 := L and L0 := log.

1.2.1 O-minimal Transexponential exapansions of R

Naturally, to extend the o-minimality of Rexp, we could ask if there exists an o-minimal

expansion of R as an ordered field containing a trans-exponential function. In fact, this was

posed as an open question in Speissegger, 2002. One possible avenue to tackle this question

is to study the value group of a trans-exponential field K, prove the structure induced by

the trans-exponential is tame in some sense, specifically is weakly o-minimal, and hope

that this tameness lifts back into the underlying field. Thus we have some motivation to

study the value group of a trans-exponential field. As stated in the abstract, this is done

via contraction groups and asymptotic couples.

1.3 Archimedean Classes

Let (K,+,−, ·, 0, 1, <K) be an ordered field, then we can define the archimedean equiva-

lence relation from section (2.3.1) on K \ {0} via the ordered abelian group structure. As

5



1. INTRODUCTION

a reminder, for any pair x, y ∈ K ̸=0:

x ≍ y ⇐⇒ ∃n1, n2 ∈ N such that n1|x| > |y| and n2|y| > |x|

The quotient K ̸=0 ≍ is denoted as [K]. Moreover, ordering <K induces a linear order on

[K], denoted <[K], defined as:

[x] ≥[K] [y] ⇐⇒ ∃n ∈ N such that n|x| > |y| (1.1)

Where x, y are elements of K ̸=0. This was extracted solely from the ordered abelian group

structure on K, but since we also have a field structure, we can define an ordered abelian

group structure on [K] itself as follows:

• The group operation + on [K] is defined as [x] + [y] = [xy]

• The identity on [K] is 0 := [1], where 1 is the multiplicative identity on K

• Additive inverses are given by −[x] = [ 1x ]

This makes G := ([K], <,+, 0) an ordered abelian group. Furthermore, if K is real closed,

G is also divisible, since [x]
n = [ n

√
x] for any n ∈ N, x > 0.

Remark 1.3.1. Due to a peculiar convention in the literature, when referring to the

archimedean classes of a field, most authors order the quotient via the reversal of the

ordering in Equation (1.1). To avoid confusion, when we follow this convention, we use

value group notation for the equivalence classes. So v(x) = [x] denotes the archimedean

class of x, and v(x) + v(y) = v(x · y), but:

[x] < [y] ⇐⇒ v(x) > v(y)

We call v the natural valuation and v(K) the value group of K.

Example 1.3.2. Let consider the field R(X) with the ordering:

f(X) := anX
n + . . .+ amX

m > 0 ⇐⇒ an > 0

where m,n ∈ N, n > m, ai ∈ R and an, am ̸= 0. Then (R(X), <) is an ordered field. Write

the polynomials f, g as:

f(X) :=

n∑
i=m

aiX
i g(X) :=

n∑
i=m

biX
i

Then f ⪰ g if and only if deg(f) < deg(g). Hence the archimedean class of a polynomial

6



1.3 Archimedean Classes

f is all polynomials of the same degree, and [f ] > [g] if and only if deg(f) > deg(g). Note

that if f, g ̸= 0, then deg(fg) = deg(f) + deg(g) hence via the identification with f to it’s

degree as an integer, we have an isomorphism from [R(X)] to Z as ordered abelian groups.

Example 1.3.3 (S. Kuhlmann, 2000, p. 93). Let K be a Hardy field (Definition 1.2.1),

then for any f, g ∈ K, g ̸= 0, the function f(x)
g(x) must eventually be monotone, thus:

lim
x→∞

f(x)

g(x)
∈ R ∪ {±∞}

Consider the equivalence relation defined by the valuation:

v(f) = v(g) ⇐⇒ lim
x→∞

f(x)

g(x)
∈ R ̸=0

and the ordering on v(K ̸=0):

v(f) > v(g) ⇐⇒ lim
x→∞

f(x)

g(x)
= 0

Then ([K], <[K]), the set archimedean classes of [K], is isomorphic to (v(K), <) as ordered

sets. To see this, suppose [f ] = [g], then there exists some n1, n2 ∈ Q>0 such that for

sufficiently large x ∈ R,

n1|g(x)| < |f(x)| < n2|g(x)|

Since [g] ̸= 0, we can assume g is eventually greater than zero or eventually less than zero,

thus:

n1

∣∣∣∣g(x)g(x)

∣∣∣∣ < ∣∣∣∣f(x)g(x)

∣∣∣∣ < n2

∣∣∣∣g(x)g(x)

∣∣∣∣
so for all sufficiently large x,

n1 <

∣∣∣∣f(x)g(x)

∣∣∣∣ < n2

since
∣∣∣f(x)g(x)

∣∣∣ is an element of our Hardy field, we know it must be eventually monotone,

hence it must have a limit, so

lim
x→∞

f(x)

g(x)
∈ (−n2,−n1) ∪ (n1, n2) ⊆ R ̸=0

Conversely, suppose v(f) = v(g), i,e.

7
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lim
x→∞

f(x)

g(x)
= r ∈ R ̸=0

Then there exists some ϵ ∈ (0, r)R such that for all sufficiently large x, we have:

∣∣∣∣f(x)g(x)

∣∣∣∣ < r + ϵ

thus |f(x)| = (r + ϵ)|g(x)|, so [f ] = [g]. The homomorphism of ordered sets follows from

a similar calculation.

1.4 Contraction Groups

1.4.1 Logarithm on the Archimedean classes

Suppose further that K is a model of Th(Rexp) (but still non-archimedean i.e. v(K) has

more than one element), hence log : K>0 → K is well-defined. We can define a function

χ : v(K) → v(K) as follows:

χ (v(f)) :=


v(log(f)) if v(f) < 0 and f > 0

0 if v(x) = 0

−χ
(
v
(

1
f

))
if v(f) > 0 and f > 0

(1.2)

Since v(−f) = v(f), χ is defined on all elements of v(f), moreover, since for any f, g ∈ K>0,

v(f) = v(g) implies v(log(x)) = v(log(y)), it is well defined on v(K). We have the following

easily verifiable characteristics of χ:

Fact 1.4.1. The map χ : v(K) → v(K) as defined in (1.2) is well defined, moreover for

any f, g ∈ K ̸=0, χ satisfies the following:

• χv(f) = 0 ⇐⇒ v(f) = 0 (if and only if x is archimedean equivalent to 1K in K)

• If v(f) < v(g), then χ(v(f)) ≤ χ(v(g))

• χ(−v(f)) = −χ(v(f))

• If v(f) is archimedean equivalent to v(g) as elements of vK, then χ(v(f)) = χ(v(g)).

• χ is surjective

• For any v(f) > 0, we have 0 < χ(v(f)) < v(f)

This motivates the following definition:

Definition 1.4.2. F.-V. Kuhlmann, 1994, p. 223 Let L1 = ⟨+,−, 0, <, χ⟩ be a first order

language, where χ is a unary function. A L1-structure (G,+,−, 0, <, χ) is a precontrac-

tion group if and only if for all a, b ∈ G,

8
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CG (G,+,−, 0, <) is an ordered abelian group,

C0 χa = 0 ⇐⇒ a = 0

C≤ χ respects ≤

C− χ(−a) = −χa

CA If a is archimedean equivalent to b purely within the ordered abelian group G,

and they both have the same sign, then χa = χb.

This can be expressed in first order logic by the set for formulas; for every n ∈ N,
we have:

0 < a < b ∧ na > b −→ χa = χb

Furthermore, (G,χ) is a contraction group if the following two axioms hold:

CS χ is surjective.

CD (G,+, <, 0) is a divisible ordered abelian group.

Finally, a precontraction group is centripetal if it satisfies:

CP a > 0 −→ χa < a

and is centrifugal if:

CF a > 0 −→ χa > a

In the two contraction group papers by F.V Kuhlmann, the following was proved:

Theorem 1.4.3 (F.-V. Kuhlmann, 1994 , F.-V. Kuhlmann, 1995). The theory of cen-

tripetal contraction groups has quantifier elimination, is complete and is weakly o-minimal.

Since K is real closed as a field we know vK must be divisible as an ordered abelian

group. Combined with fact 1.4.1, we see that the action of log on the value group of a

non-archimedean model of Th(Rexp) is indeed a centripetal contraction group.

Corollary 1.4.4. The archimedean classes of a non-archimedean model of Th(Rexp) along

with the action of log is a weakly o-minimal structure.

The entirety of this thesis only concerns contraction groups that are centripetal. From

now on, we simply refer to centripetal (pre)contraction groups as (pre)contraction

groups!

1.4.2 Hyper-logarithmic Contraction Groups

Suppose further that we can define a hyper-logarithm L1 : K
>0 → K as in Theorem 1.2.2.

It turns out that L1 gives a well defined function on vK and interacts with χ, the function

induced by log in a particular way:

9
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Proposition 1.4.5. Define the function χ2 : vK → vK as:

χ2v(f) =


v (L1(f)) if v(f) > 0 and f > 0

0 if v(f) = 0

−χ2

(
v
(

1
f

))
if v(f) < 0 and x > 0

Then χ2 is well defined.

Proof. As v(−f) = v(f), it is clear that χ2 is indeed defined on all elements of vK.

To prove χ2 is well defined, it is sufficient to show that for any f ∈ K>R, v(L1(f)) =

v(L1(2f)), since the positive part of an archimedean class is convex. Since L1 is strictly

increasing, we know that v(L1(f)) ≤ v(L1(2f)). For the converse, note the following:

2L1(f) = 2(L1(e
f )− 1) Re-arrange (L1) with x := ef

= L1(e
f ) + (L1(e

f )− 2)

≥ L1(2f) + (L1(e
f )− 2) Since ef > 2f and L1 is strictly increasing

≥ L1(2f) Since L1(e
f ) > R hence L1(e

f )− 2 > R

Hence 2L1f > L1(2f), so [L1(f)] ≤ [L1(2f)].

Theorem 1.4.6. The map χ2 : vK → vK is a centripetal contraction and if χ : vK → vK

is the contraction induced by log as defined in (1.2), then for every v(f) ∈ vK>0 and n ∈ N,
the pair χ and χ2 satisfy:

(H1) 0 < χ2v(f) < χnv(f)

(H2) χ2v(f) = χ2(χv(f))

Proof. Fix some f, g ∈ K>0, we go through each of the contraction group axioms and

verify that they hold.

C0 Suppose v(f) > 0, if χ2v(f) = 0 then v(L1(f)) = 0, so L1(f) ∈ R. But we assumed

the codomain of a hyperlogarithm was KR, so this cannot happen. Since we defined

χ2 to be an odd function, we also have χ2v(f) ̸= 0 for all v(f) < 0.

C≤ Suppose v(f) > v(g) > 0. That means f, g ∈ K>R and f > g, hence L1(f) >

L1(g) > R (as L1 is strictly increasing), thus χ2v(f) ≥ χ2v(g) < 0. Combined with

χ2’s oddity, χ2v(f) ≤ χ2v(g) when v(f) < v(g) < 0. Finally, since χ2(vK
>0) > 0,

and (subsequently) χ2(vK
<0) < 0, for v(f) < 0 < v(g), we have χ2v(f) < 0 < χ2v(g)

so χ2v(f) < χ2v(g).

C− Immediate from the definition of χ2.

10
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CA It is sufficient to show that χ2v(f) = χ2(2v(f)), for all x ∈ K>R. Since L1 is

increasing on K>R, we know that

L1(x) < L1(x
2) < L1(e

x)

Hence by (C≤), we have:

χ2v(f) ≤ χ2v(f
2) = χ2(2v(f)) ≤ χ2v(e

f )

By applying (L1), and since v(L1(e
f )) > v(1), we have v(L1(f)) = v(L1(e

f )− 1) =

v(L1(e
f )), hence χ2v(f) = χ2v(e

f ), hence χ2v(f) = χ2(2v(f)).

CS This follows from the surjectivity of L1.

CP We need to show that for any f ∈ K>R that L1(f) ≺ f . But by (L3), we have:

0 < L1(f) < log(f) ≺ f

Hence L1(f) ≺ f .

H1 The following is true for f ∈ K>R and n ∈ N:

v(f) > v(log(f)) > v(log2(f)) > . . . > v(logn(f))

But L1(f) < logn(f), hence 0 > v(L1(f)) > v(logn(f)), which tells us for all a ∈ G>0,

0 < χ2(a) < χn(a).

H2 We know L1(log(x)) = L1(x) − 1, so v(L1(log(x)) = v(L1(x)), hence χ2(χ(a)) =

χ2(a).

Similar to Definition 1.4.2, the previous lemma motivates the following:

Definition 1.4.7. Let L2 = ⟨+,−, 0, <, χ1, χ2⟩ be a first order language. Define the

theory T2, the theory of 2 contraction groups as asserting:

⟨+,−, 0, <⟩ is a divisible ordered abelian group,

⟨+,−, 0, <, χi⟩ forms a centripetal contraction group for i = 1, 2,

H1 ∀a(χ2a = χ2(χ1a))

H2 For every n ∈ N, the formula (∀a > 0)(0 < χ2a < χn1a)

11
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In Section 3.3, we prove the following result analogous to Theorem 1.4.3 (see Theo-

rem 3.3.19).

Theorem 1.4.8. The theory T2 has quantifier elimination, is complete and is weakly

o-minimal.

1.4.3 Multiple contractions

By Theorem 1.4.8 know what L1 does on vK and how it interacts with log. The straight-

forward progression would be to ask what each Li does. It turns out log, L1, L2, L3, . . .

all induce well defined functions χ1, χ2, χ3, χ4, . . . on the archimedean classes of K, and

moreover each χi is a centripetal contraction. We also have the following equations, for

any i > j, m ∈ N:

χi(χj(a)) = χi(a)

0 < χi(a) < χmj (a)

This gives motivation to the following definition (which is identical to Definition 1.4.7

except we allow i to range up to any natural number):

Definition 1.4.9. Let Ln = ⟨+,−, 0, <, χ1, . . . , χn⟩ be a first order language. Define

theory of n-contraction groups Tn as:

• ⟨+,−, 0, <⟩ is a divisible ordered abelian group

• For each i ≤ n, ⟨+,−, 0, <, χi⟩ forms a centripetal contraction group

• For any j < i ≤ n, the formula ∀a(χi(χj(a)) = χi(a))

• For any j < i ≤ n and m ∈ N, the formula (∀a > 0)(χi(a) < χmj (a))

Analogously to Theorem 1.4.3 and Theorem 1.4.8, we prove the following (Theorem 3.4.17

and Theorem 3.5.21):

Theorem 1.4.10. The theory Tn has quantifier elimination, is complete, has a prime

model and is weakly o-minimal.

We should also remark that in proving weak o-minimality, we show that every definable

function f : G → G for some n-contraction group G can be finitely decomposed into

‘simple’ functions called χn-polynomials (see Theorem 3.5.20).

1.4.4 Other works on Contraction groups

We briefly highlight some other results concerning contraction groups.

In Bautista, 2019, the author examines the structure of the value group of a logarithmic

trans-series. Logarithmic trans-series can be loosely thought of as a formal series of infinite

sums closed under log, but not exp. The lack of exponentiation means log will not be

surjective on the series, thus χ will not be surjective on the value group. The author

12
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highlights that the image of χ will be a discrete set, and develops a model complete and

complete theory characterising the behaviour of χ in such a setting.

Another result on contraction groups can be found in Krapp and S. Kuhlmann, 2023.

There the authors give necessary and sufficient conditions to recover an exponential field

from a countable contraction group. They also give a method to produce a countable

centripetal contraction group, which we exploit to do the same for Tn for all n ∈ N
(Section 3.4.5).

1.5 Derivatives on the Archimedean Classes

1.5.1 Logarithmic Derivatives

Now suppose K is an exponential Hardy field expanding R(x). It turns out that the

derivative is a well defined function on vK, thus by composing the derivative with χ, we

deduce that the logarithmic derivative is well defined on vK.

Proposition 1.5.1. Let K be a Hardy field expanding R(x). Then for any f, g ∈ K ̸=0,

we have:

v(f) = v(g) =⇒ v(f ′) = v(g′)

Proof. Recall from Example 1.3.3, that:

v(f) = v(g) ⇐⇒ lim
x→∞

f(x)

g(x)
∈ R ̸=0

Suppose v(f) = v(g), so lim
x→∞

f(x)
g(x) = r ∈ R ̸=0. Then by L’Hôpital’s rule, we have:

lim
x→∞

f ′(x)

g′(x)
= r

thus v(f ′) = v(g′).

Suppose K is closed under log. Set G := vK, and consider the element v(log(f)′) in G,

where |f | is not in the convex hull of R>0 in K (which is the same as saying v(f) ̸= 0).

We calculate it to be:

v(log(f)′) = v

(
f ′

f

)
By the chain rule

= v(f ′)− v(f) Since v(f · g) = v(f) + v(g) and v(f−1) = −v(f)

By Proposition 1.5.1, we know that v(f ′) is a well defined function on G ̸=0, thus ψ :

G ̸=0 → G : v(f) 7→ v(f ′) − v(f) is also a well defined function. We call such a pair an
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asymptotic couple. As stated earlier these were initially introduced in Aschenbrenner

and van den Dries, 2000. This motivated the following definition:

Definition 1.5.2 (Aschenbrenner and van den Dries, 2000, p. 353). Let Lψ be the lan-

guage ⟨+,−, <, 0, 1, ψ, P (x), (δn)n>0⟩, where ψ and all the δn are unary functions and P

is a unary predicate. The theory of asymptotic triples, T−
ψ , is the universal theory

asserting the following:

• +,−, 0, < form a divisible ordered abelian group

• δn is the function which divides something by n

• ψ is defined on all non-zero elements (so not defined on 0),

• ψ satisfies the following:

A1 ψ(1) = 1

A2 ψ(nv) = ψ(v) for all n ∈ Z̸=0

A3 ψ(v) < ψ(w) + |w| for all v, w ̸= 0

A4 ψ is decreasing on the positive part of the ordered abelian group. (So by

(A2), it is increasing on the negative part).

• P is a downwards closed set containing the image of ψ but disjoint from the image

of |x|+ ψ(x)

The theory of closed asymptotic triples, Tψ, asserts further that:

C1 {ψ(x) | x ̸= 0} has no maximal element

C2 {ψ(x) | x ̸= 0} is everything below the image of the function (id + ψ) restricted to

positive elements, i.e:

∀y
(
∃x(y = ψ(x)) ↔ (∀w > 0)(y < w + ψ(w))

)

The theory of the value group of a Hardy field was initially developed by Rosenlicht (see

Rosenlicht, 1981), but the model theoretic properties were developed by Aschenbrenner

and van den Dries in Aschenbrenner and van den Dries, 2000. We follow the presentation

given in the former.

Remark 1.5.3. Let V := (V, ψ, PV) be an asymptotic triple, then note that the downward

closure of ψ(V ̸=0) is one possible choice for PV . But it may not be the only choice, e.g. if

there exists some a ∈ V with

ψ(V ̸=0) < a < (id+ ψ)(V >0)
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We call such an element a H-point (Definition 4.2.10) and it can be shown that at most

one can exist (Proposition 4.2.9). Note however that if V is closed, then no H-point can

exist, and the only possible value for PV is ψ(V ̸=0).

Remark 1.5.4. Th action of the derivative on G can be expressed as (id + ψ)(v(f)) =

v(f) + ψ(v(f)) = v(f) + v(f ′)− v(f) = v(f ′).

Suppose K is any exponential real closed Hardy field expanding R(x). Let us verify that

the structure introduced on G = vK is indeed an asymptotic triple.

Proposition 1.5.5. Let K be any exponential real closed Hardy field expanding R(x).
Then G := (G,ψ, ψ(G ̸=0)), where 1G := v

(
1
x

)
and ψ(v(f)) := v(f ′)−v(f), is an asymptotic

triple. Suppose further that K is closed under integration, i.e. for all f ∈ K there exists

some g ∈ K with g′ = f , then G is a closed asymptotic triple.

Proof. Since K is real closed we know that G is a divisible ordered abelian group. Let us

verify the remaining axioms:

(A1): Simply calculate the logarithmic derivative of 1
x :

ψ

(
v

(
1

x

))
= v

(
−1

x2

)
− v

(
1

x

)
= v

((
1

x2

)
·
(
1

x

))
= v

(
1

x

)

(A2): Pick some v(f) ̸= 0 and some n ∈ Z̸=0, so nv(f) = v(fn), thus:

ψ(nv(f)) = ψ(v(fn))

= v((fn)′)− v(fn)

= v(nf ′fn−1)− v(fn)

= v(f ′) + (n− 1)v(f)− nv(f)

= v(f ′)− v(f)

(A3): Pick some f, g ∈ K with f > R and 0 < g < R, so v(f) < 0 and v(g) > 0. Since log

is strictly increasing on K and log(R) = R>0, we must have log(f) > R hence [log(f)] < 0

thus by Example 1.3.3:

lim
x→∞

log f(x)

g(x)
= ∞

So by L’Hôpital’s rule, we have:
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lim
x→∞

(log f(x))′

(g(x))′
= ∞

thus [(log f)′] < v(g′). Since [(log f)′] = ψv(f) and v(g′) = v(g) + ψv(g), we are done.

(A4): We prove ψ is increasing on G<0, which will be sufficient since (A2) implies ψ is

symmetric. Pick v(f), v(g) ∈ G<0, with v(f) < v(g), so f > g > R, then since log is

strictly increasing and surjective on K>R, we must have log(f) > log(g) > R, thus:

lim
x→∞

log g(x)

log f(x)
∈ R

So by L’Hôpital’s rule, we have:

lim
x→∞

(log g(x))′

(log f(x))′
∈ R

thus v((log f)′) < v((log g)′).

(C1): Pick some v(f) ∈ G ̸=0, then note that ψv(log(f)) > ψv(f), thus P := ψ(G ̸=0) has

no max.

(C2): Suppose v(f) < (id + ψ)(G>0). We know there exists some g ∈ K with g′ = f .

Then ψv(eg) = v(g′eg)− v(eg) = v(g′), so v(f) ∈ ψ(G ̸=0).

Remark 1.5.6. While we have shown that the value group of a real closed Hardy field

forms an asymptotic triple, it is possible to show that the value group of any H-field (an

ordered differential field with a valuation that interacts nicely with the derivative) also

forms an asymptotic couple. Thus the Hyperseries mentioned in Theorem 1.2.2 will also

give an asymptotic couple when we take the action of the logarithmic derivative on the

value group.

In the paper, the following was proved:

Theorem 1.5.7 (Aschenbrenner and van den Dries, 2000, p. 355). The theory Tψ has

quantifier elimination and is complete. It is also the model completion of T−
ψ .

1.5.2 Hyper-Logarithmic Derivatives

Now suppose K is a trans-exponential Hardy field as in Theorem 1.2.3. We know that the

hyper-logarithm L satisfies the functional equation:

L(x) = L(log(x)) + 1

Thus by differentiating both sides, we get:
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L′(x) = (L(log(x)) + 1)′

= (L(log(x)))′

=
1

x
L′(log(x))

(1.3)

(1.4)

(1.5)

Thus for any non-zero f ∈ K, we have:

v
(
(L(f))′

)
= v

(
f ′

f
L′(log(f))

)
= v

(
f ′

f

)
+ v

(
L′(log(x))

)
= v(f ′)− v(f) + v(L′(log(f)))

= ψ(v(f)) + v
(
L′(log(f))

)
Since v(g′) = (id+ ψ)(v(g)) for any v(g) ̸= 0, we then have:

v(L′(log(f))) = (id+ ψ)(v(L(f)))− ψv(f)

For v(f) < 0, set θ(v(f)) := −v(L′(log(f))), then since the derivative and L are well

defined on non-zero elements of v(g), θ itself must also be well-defined, we can also char-

acterise its behaviour with respect to χ:

Proposition 1.5.8. Define the function θ : G→ G as:

θ(v(f)) :=


ψv(f)− (id+ ψ)(χ2v(f)) If v(f) < 0

0 If v(f) = 0

−θ
(
v
(

1
f

))
If v(f) > 0

(1.6)

Then θ is a centripetal precontraction on G, and satisfies the functional equation:

θ(x) = χ(x) + θ ◦ χ(x)

where χ is the action of log from Fact 1.4.1, χ2 is the action of L from Proposition 1.4.5,

and ψ is the logarithmic derivative from Proposition 1.5.5.

Proof. Axioms (C0), (C−) follow immediately from the definition. (CA) follow from (CA)

for χ2 and (A2) for ψ.

(CP): Pick some f ∈ K>R, so v(f) < 0. Thus by (L3) and (L2), we have:
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logn(f) ≻ L(f) ≻ 1

logn(f)

By L’Hôpital’s rule, the dominance relation is preserved between all three functions above

after differentiating, thus:

f ′

f

(
n−1∏
i=1

logi(f)

)−1

≻ f ′

f
L′(log(f)) ≻ f ′

f

(
n−1∏
i=1

logi(f)(logn(f))2

)−1

Thus by quotienting to the value group, we have:

v

f ′
f

(
n−1∏
i=1

logi(f)

)−1
 < v

(
f ′

f
L′(log(f))

)
< v

f ′
f

(
n−1∏
i=1

logi(f)(logn(f))2

)−1


Since v
(
f ′

f

)
= ψv(f) and v

(
1

log(f)

)
= −χv(f) > 0G, we then have,

0G < −
n−1∑
i=1

χv(f) < −θv(f) < −
n−1∑
i=1

χiv(f)− 2χnv(f) (1.7)

So,

0G >
n−1∑
i=1

χv(f) > θv(f) >
n−1∑
i=1

χiv(f) + 2χnv(f) (1.8)

Thus by (CP) for χ, we get (CP) for θ.

(C≤): Suppose v(f)v(g) < 0, so f ≻ g ≻ R. Since log is increasing, we must also have

log(f) ≻ log(g). Since log ≻ L, we must have log′ ≻ L′, so 1
x ≻ L′(x), hence:

L′(log(f)) ≺ L′(log(g))

Thus v (L′(log(f))) = −θv(f) > v (L′(log(g))) = −θv(g), so θv(f) < θv(g), thus we have

(C≤).

(CS): We know that χ is surjective on G, thus apply Lemma 4.3.5.

θ-equation: We know from the proof of (CP) that for all a > 0, χ(a) < θ(a) < 2χ(a),

so by (A2) and (CA) for χ2, we know that ψ ◦ χ(a) = ψ ◦ θ(a) and χ2 ◦ χ(a) = χ2 ◦ θ(a).
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θ(a) = (id+ ψ) ◦ χ2(a)− ψ(a) Apply Equation (1.6)

= (id+ ψ) ◦ χ2 ◦ θ(a)− ψ(a) Since χ2 ◦ θ = χ2

= (id+ ψ) ◦ χ2 ◦ θ(a)− (ψ ◦ χ(a)− χ(a)) Since ψ(x) = (id+ ψ) ◦ χ(x) for x > 0

= χ(a) + (id+ ψ) ◦ χ2 ◦ θ(a)− ψ ◦ χ(a) Rearrange the right hand side

= χ(a) + (id+ ψ) ◦ χ2 ◦ θ(a)− ψ ◦ θ(a) As [χ(a)] = [θ(a)]

= χ(a) + θ ◦ χ(a) Unapply Equation (1.6)

A similar calculation proves (Cθ) for a < 0.

This motivates the following definition:

Definition 1.5.9. Let Lψ-χ be the language ⟨+,−, <, 0, 1, ψ, P (x), (δn)n>0, χ, L, θ⟩, where
ψ and all the δn are unary functions and P is a unary predicate. The theory of asymptotic

contractions, T−
ψ-χ, is the universal theory asserting the following:

• +,−, 0, < form a divisible ordered abelian group

• δn is the function which divides something by n

• ψ is defined on all non-zero elements (so not defined on 0),

• ψ satisfies the following:

A1 ψ(1) = 1

A2 ψ(nv) = ψ(v) for all n ∈ Z̸=0

A3 ψ(v) < ψ(w) + |w| for all v, w ̸= 0

A4 v ≪ w implies ψ(v) ≥ ψ(w)

• P is a downwards closed set containing the image of ψ but disjoint from the image

of |x|+ ψ(x)

• χ,L, θ are centripetal precontractions

• χ and L form a 2-precontraction group

• For all x, θ(x) = χ(x) + θ(χ(x))

• For all x > 0, (id+ ψ)(L(x)) = ψ(x) + θ(x)

• For all x < 0, (id+ ψ)(χ(x)) = ψ(x)

Moreover, the various functions interact in the following way:

CL χ and L form a 2-precontraction group with χ1 := χ and χ2 := L

Cθ For all x, θ(x) = χ(x) + θ(χ(x))
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Cψ For all x < 0,

(id+ ψ)(χ(x)) = ψ(x)

hence for all x > 0, (−id+ ψ)(χ(x)) = ψ(x)

CI For all x < 0,

(id+ ψ)(L(x)) = ψ(x)− θ(x)

hence for all x > 0, (−id+ ψ)(L(x)) = ψ(x) + θ(x)

The theory of closed asymptotic contractions, Tψ-χ, asserts further that:

C1 P has no maximal element

C2 P is everything below the image of the function (id + ψ) restricted to positive ele-

ments, i.e:

P (x) ⇐⇒ (∀w > 0)(x < w + ψ(w))

C3 All the contractions are surjective

Note that the value group of a trans-exponential Hardy field K as in Theorem 1.2.3 is

only a model of the universal theory T−
ψ−χ, since we do not know if K is closed under

integration hence (C2) may not be satisfied. For an example of a trans-exponential field

that is closed under integration, and hence will produce a model of the theory Tψ−χ, see

Theorem 6.23 in Bagayoko, 2022.

Analogous to Theorem 4.2.40 we would expect the following result to hold for Tψ-χ.

Conjecture 1.5.10. The theory Tψ-χ has quantifier elimination and is complete.

We do not prove that in this thesis but we do have an intermediate result (Section 4.4).

Let Lθ-L := ⟨+,−, 0, <, χ, L, θ⟩, and Tθ−L be the theory asserting:

• +,−, 0, < form a divisible ordered abelian group

• χ,L, θ are centripetal contractions

• χ and L for a 2-precontraction group

• For all x, θ(x) = χ(x) + θ(χ(x))

Then we have the following result (Theorem 4.4.13):

Theorem 1.5.11. The theory Tθ−L has quantifier elimination, has a prime model and is

complete.
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Chapter 2

Preliminaries

2.1 Basics of Model theory

Definition 2.1.1. A first order language L := ⟨(fi)i, . . . , (Ri)i, (ci)i⟩ is a formal collec-

tion of symbols where:

• fi : (·)ni → (·) represent ni-ary functions

• Ri : (·)ni → {0, 1} represent ni-ary relations

• ci represent constants

An L-structure is a collection of objects M := (M, (fi)i, (Ri)i, (ci)i) is a where:

• M is a set

• fi :M
ni →M is an ni-ary function

• Ri :M
ni → {0, 1} is an ni-ary relation

• ci ∈M is a constant in M

|M| denotes M , the domain of M. We use calligraphic font to denote a structure and

standard font to denote the domain of a structure, so |M1| =M1,
∣∣M∣∣ =M and so on.

Example 2.1.2. Let L := ⟨Even(x), Odd(x)⟩ be the language containing two relation

symbols. The collection

Z := ⟨Z, EvenZ(x), OddZ(x)⟩

where for any z ∈ Z,

EvenZ(z) ⇐⇒ z is odd

OddZ(z) ⇐⇒ z is even
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Is an L-structure. This example demonstrates that the symbols in L have no meaning by

themselves aside from the number of arguments they take. Only when we interpret them

in an L-structure that the symbols in L have a semantic value.

Example 2.1.3. Let Log := ⟨+,−, 0 <⟩ be the language of ordered groups, where + is

a function with two arguments, − is a function of one argument, < is a relation of two

arguments and 0 is a constant.

• The structure Z := (Z,+,−, <, 0), where all the functions are interpreted as you

would expect, is an L-structure.

• Similarly the structures Q := (Q,+,−, <, 0), R := (R[x],+,−, <, 0) are L-structures

Definition 2.1.4. Fix some language L. An L-formula is a formal symbol made up of

finitely many applications of the symbols in the language L, variables x1, x2, x3, . . . and
the logical symbols:

∧
And

∨
And or

¬
Not

→
Implies

∀
For all

∃
Exists

=
Equals

For example, if we fix L := Log from Example 2.1.3, the following are formulas:

• (x1 + x2 = 0) ∧ ¬(x1 = −x3)

• ∀x1(x1 + x2 = 0) ∨ (0 = 0)

• (∀x1∃x2(x2 + x2 = x1)) → x4 = 0

The following is not a formula:

x1 = 0 ∨ x1 + x1 = 0 ∨ x1 + x1 + x1 = 0 ∨ . . .

since it was constructed using infinitely many applications of ∨.

A formula is a sentence if all the variables are bound by quantifiers, so:

• ∃x1(x1 + x1 = x2) is not a sentence, since x2 is not bound

• ∀x2∃x1(x1 + x1 = x2) is a sentence.

Note that within a structure, a sentence can either be true or false. Given a sentence ϕ,

and a structure M, we say M |= ϕ if ϕ is true in M.

Definition 2.1.5. Fix some language L, an L-theory T is some collection of L-sentences
closed under implication.

Definition 2.1.6. • A theory T has quantifier elimination if for all formulas ϕ(x),

there exists some quantifier free formula ψ(x) such that for any model M of T , we

have:
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M |= ∀x(ϕ(x) ↔ ψ(x))

• Let M ⊆ N be an extension of L structures. We say the extension is existentially

closed if for all quantifier free L-formulas ϕ(x, y) and a ∈ A|y|, the following holds:

M |= ∃xϕ(x, a) ⇐⇒ N |= ∃xϕ(x, a)

• Given some b ∈ B \A, we denote A⟨b⟩B as the structure generated by A and b in B,
which formally is the intersection of all substructures of B containing A, b in their

domains. When there is no ambiguity over B, we denote it as A⟨b⟩.

Types

Definition 2.1.7. Let M be an L-structure, x = (x1, . . . , xn) be a tuple of variables and

A ⊆ M . An n-type p(x) is some collection of L-formulas with parameters in A with free

variables x, such that for any finite subset ∆(x) ⊆ p(x), there exists some a ∈ Mn such

that M |= ∆(a), we say p is finitely satisfiable in this case.

If M |= p(a), then we say a is a realisation of p in M and if there exists such an a, we say

p is realised in M.

Given some b ∈M , define tp(b, A)(x) and qftp(b, A)(x) as:

• tpM(b, A) is all the set of formulas with parameters in A∪ {b} that M proves, with

the occurrences of b replaced with the variable x:

tpM(b, A) := {ϕ(x, a) | a ∈ A|a|,M |= ϕ(b, a), ϕ(x, y) is any L-formula}

• qftpM(b, A) is all the set of quantifier free formulas in tp(b, A)(x):

qftpM(b, A) := {ϕ(x, a) | a ∈ A|a|,M |= ϕ(b, a), ϕ(x, y) is any quantifier free L-formula}

When the context (i.e. the underlying structure M) is clear, we drop the subscript. We

say a type q(x) determines some other type p(x), denoted q ⊢ p, if for any ψ(x) ∈ p(x),

there exists some finite ∆(x) ⊆ q(x) such that M |= ∆(x) =⇒ M |= ϕ(x).

Definition 2.1.8. We say that a structure M is κ-saturated, for some cardinal κ, if for

any A ⊆ M with |A| < κ, and any type p(x) of M over A, there exists a realisation of p

in M.
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Factoring Property

Definition 2.1.9. Fix some language L, let T be some L-theory and let M,N be L-
structures. We say N has the factoring property over M with respect to T if:

• There exists an embedding f : M → N

• For any model O |= T and embedding g : M → O, there exists an embedding

h : N → O such that g = h ◦ f

Note that a prime model A of some theory T has the factoring property over any model

B of T .

Definition 2.1.10. Let T be any theory, and T∀ be its universal theory. For any A |= T∀,

we say some A |= T is a T -hull of A if it has the factoring property over A with respect

to T . We say T has the closure property if any model of T∀ has a T -hull. In general we

denote some T -hull of B |= T∀ as B.

Existential Closedness

Fact 2.1.11. Let A ⊆ B be structures. If B is embeddable over A in some elementary

extension of A, then A is existentially closed in B.

Conversely, if A is existentially closed in B, then there is an embedding of B into every

|B|+-saturated elementary extension of A.

Proof. Suppose B ⪯ A∗ for some elementary extension A∗ of A, and pick some formula

ϕ(x, y), and a tuple a ∈ A|y|. Suppose B |= ∃xϕ(a, a), then since B ⪯ A∗ and A ⪯ A∗, we

know A∗ |= ∃xϕ(a, a), and hence A |= ∃xϕ(a, a). Thus A is existentially closed in B.

For the second statement, fix some |B|+ saturated elementary extension A∗ of B, and
enumerate B \A as (bi)i<γ for some ordinal γ ≤ |B|+. Assume for induction that for some

α < γ, Aα := A⟨{bi | i ≤ α}⟩ embeds into A∗, so by the previous statement we know

Aα ⪯ A∗. Consider the type tp(b/Aα)(x), by |B|+ saturation it must have a realisation

b ∈ A∗. Embed Aα⟨b⟩ into A∗ via b 7→ b. The limit and base case are proved as expected,

thus by transfinite induction we know B embeds into A∗.

Fact 2.1.12. Fix some theory T such that A,B |= T . Let b ∈ B \ A, and suppose there

is some collection of formulas pb(x) that is a type of A and determines the quantifier free

type of b over A (meaning pb ⊢ qftpB(b, A)). Then A is existentially closed in A⟨b⟩B, and
hence existentially closed in any T -hull A⟨b⟩B of A⟨b⟩B.

Proof. Let A∗ be some |A|+ saturated elementary extension of A. Then since pb is a type

of A, there exists some realisation b in A∗. Since pb determines the quantifier free type of

b over A, we have an isomorphism over A of generated structures:
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A⟨b⟩B ∼= A⟨b⟩A∗ (2.1)

Hence A⟨b⟩B and A⟨b⟩B are embeddable into A∗ over A, so by fact (2.1.11), we see that

A is existentially closed in both.

Remark 2.1.13. Since b |= qftp(b, A)(x) is equivalent to the generated structures akin

to (2.1) being isomorphic over A, it is also sufficient to show that for any C with A ⊆ C
and c ∈ C with C |= pb(c), we have an isomorphism over A:

A⟨b⟩B ∼= A⟨c⟩C

and that pb is a type of A, in order to prove the conclusion of fact (2.1.12).

Criterion for Quantifier Elimination

Theorem 2.1.14. Let T be a theory. If it satisfies the following:

1. T has the closure property.

2. For any A ⊆ B which are models of T , and any b ∈ B \ A, A is existentially closed

in A⟨b⟩ and the T -hull of A⟨b⟩.

3. There exists a model I of T that embeds into every other model of T .

Then T has quantifier elimination, has a prime model and is complete.

Proof. First we show T is model complete. Pick some models A,B of T , some quantifier

free formula ϕ(x, y) and a ∈ A|y| such that:

B |= ∃xϕ(x, a)

Let b ∈ B be a realisation of ϕ(x, a) in B, then:

A⟨b⟩ |= ∃xϕ(x, a)

But we assumed that A is existentially closed in A⟨b⟩, hence:

A |= ∃xϕ(x, a)

Hence A is existentially closed in B, so T is model complete. Let I be a T -hull of I, so for

any models M,N of T , I embeds elementarily into both of them, by model completeness.

Apply this to your favourite method to prove quantifier elimination.
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Finally, notice that the T -hull of the initial structure is a prime model of T .

Sometimes we may not be able to directly show A is existentially closed in A⟨b⟩ for all

arbitrary B, so we might need to construct a chain of substructures of B:

A0 := A ⊆ A1 ⊆ . . . ⊆ An ⊇ A⟨b⟩

such that for all i ∈ [0, n − 1], Ai is existentially closed in Ai+1. So we also have the

following criterion:

Theorem 2.1.15. Let T be a theory. If it satisfies the following:

1. T has the closure property

2. For any A ⊆ B which are models of T , we can enumerate B \A as {bi}i<α such that

for all β < α, if we define Aβ as:

Aβ := A⟨{bi | i < β}⟩T

then Aβ is existentially closed in Aβ⟨bβ⟩.

3. There exists a model of I of T that embeds into every other model of T

Then T has quantifier elimination, has a prime model and is complete.

Proof. Since existential closedness is a transitive property, (2) implies that A is exis-

tentially closed in B, so we can repeat the proof of Theorem 2.1.14 to get quantifier

elimination, a prime model and completeness.

2.2 Weak o-minimality

Definition 2.2.1. A structure M := (M,<, . . .) expanding a dense linear order is weakly

o-minimal if any definable set in one variable, A ⊆ M , is a finite union of convex sets.

(Points are convex sets!)

Unlike o-minimality, weak o-minimality is not preserved under elementary equivalence,

see Macpherson, Marker, and Steinhorn, 2000. Moreover, we may not have piecewise

monotonicity as we do for o-minimal structures, but we do have local monotonicity.

2.3 Ordered Abelian Groups

2.3.1 Archimedean classes

Let G := (G,+, <, 0) be an ordered abelian group, that is an abelian group with a linear

order < such that for all x, y, z ∈ G:
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x ≤ y =⇒ x+ z ≤ x+ y

We can define the relation ⪯, of dominance on G, to say that one element is roughly as

big, or much bigger in magnitude than another. Specifically for x, y ∈ G:

x ⪰ y ⇐⇒ ∃n ∈ N such that n|x| > |y|

x ≻ y ⇐⇒ ∀n ∈ N, |x| > n|y|

Furthermore, we say x ≍ y, meaning x is archimedean equivalent to y, if and only if

x ⪯ y and y ⪯ x. Then ≍ happens to be an equivalence relation on G, so we denote the

quotient as [G], and the equivalence class of x as [x]. Note that each equivalence class

that is not [0] = {0} is made up of two convex components, one in the positive cone of G

and its reflection in the negative cone, hence we can define a linear ordering <[G] on [G]:

[x] >[G] [y] ⇐⇒ |x| ≻ |y|

Where |∆| := {|δ| | δ ∈ ∆}. Note that we could have also defined <[G] as:

[x] ≥[G] [y] ⇐⇒ x ⪰ y, [x] >[G] [y] ⇐⇒ x ≻ y

So [x] >[G] [y] can be thought of as saying “|x| is much bigger than |y|”.

Example 2.3.1. Let G := (R[X],+, <lex, 0) be the set of real polynomials with the lexi-

cographical ordering, so:

. . . <lex −X2 <lex −X <lex −1 <lex 0 <lex 1 <lex
1

2
X <lex X <lex 2X <lex X

2 <lex . . .

f(X) := anX
n + an−1X

n−1 + . . .+ a1X + a0 > 0 ⇐⇒ an > 0

Where ai ∈ R and an ̸= 0. We denote <lex as < from now on. Then for any polynomial

f(X) ∈ R[X] the class of f is:

[f(X)] = {h(X) ∈ R[X] | deg(f) = deg(g)}

and for any two f(X), g(X) ∈ R[X], we have

f(X) ≺ g(X) ⇐⇒ [f(X)] < [g(X)] ⇐⇒ deg(f) < deg(g)

where deg(r) = 0 for any r ∈ R ̸=0 and deg(0) = −1.
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Definition 2.3.2. Given two ordered abelian groups G,H, we say a group homomorphism

ϕ : G→ H is an order homomorphism if for all g1, g2 ∈ G, we have:

g1 <G g2 ⇐⇒ ϕ(g1) <H ϕ(g2)

Note that any order homomorphism must be injective, so we say G is a subgroup of H as

an ordered abelian group if such a map exists.

Fix an extension of ordered abelian groups ϕ : G→ H. Since the archimedean equivalence

relation was defined purely through the ordered group structure, it induces a map on the

quotients:

ϕ : [G] → [H] : [g] → [ϕ(g)]

It can be shown that ϕ is injective, hence we can think of [G] as lying inside [H]. Further-

more if ϕ is surjective then we say [G] = [H], or that the extension is value preserving.

Fact 2.3.3. Let G ⊆ H be an extension of ordered abelian groups, and bi ∈ H \G for all

i ∈ [0, n]. Then

[
G+

n∑
i=0

Zbi

]
\ [G]

has at most n elements.

Fact 2.3.4. The equivalence relation [·] satisfies:

[x+ y] ≤ max{[x], [y]}

We call the equation above the ultrametric inequality.

Hahn Products and sums

Hahn products and sums were originally defined by Hans Hahn in 1907, and their main

purpose is to express the Hahn embedding theorem (Theorem 2.3.8) which we state without

proof. It was originally derived in Hahn, 1995, however, that paper is in German, thus we

refer the reader to Gravett, 1956 and S. Kuhlmann, 2000.

Definition 2.3.5 (Hahn Sums and Products). Let Γ be an ordered set and {Rγ}γ∈Γ be

a collection of ordered abelian groups. The Hahn sum, denoted
∐
i∈Γ

Rγ is the set of all

functions:
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f : Γ →
⊔
γ∈Γ

Rγ

such that f(γ) ∈ Rγ for all γ ∈ Γ, and with finite support, that is the set:

supp(f) := {γ ∈ Γ | f(γ) ̸= 0γ} (2.2)

is finite. This set can be made into an ordered abelian group via component wise addition,

so for all f, g ∈ ⨿i∈Γ and δ ∈ Γ:

(i) f + g(δ) := f(δ) + g(δ)

(ii) (−f)(δ) := −rδ where f(δ) = rδ

(iii) 0 is the function that sends every δ to 0δ.

(iv) f > 0 if and only if f(δ) > 0δ where δ := max(supp(f)).

Similarly the Hahn product
∏
i∈Γ

Rγ is the set of all functions of the form (2.2) with well-

based (that is reverse well-ordered) support, equipped with an ordered abelian group

structure defined in the same way as the Hahn sum.

Notation 2.3.6. We denote arbitrary elements of a Hahn sum/product indexed by Γ as

(rγ)γ∈Γ, where rγ ∈ Rγ . Moreover we denote qγ as the function f defined as:

f(α) :=

 0 If α ̸= γ

q If α = γ

Example 2.3.7. Let Γ := {X0, X1, X2, X3, . . .} with Xi < Xi+1 be an ordered set. Then

we can think of the Hahn sum ⨿ΓR as the set of real polynomials R[X] with the ordering

defined in Example 2.3.1, so:

f(X) := anX
n + . . .+ a0X

0 > 0 ⇐⇒ an > 0

where an ̸= 0.

Theorem 2.3.8 (Hahn Embedding theorem, Gravett, 1956, p. 59). Let G be an ordered

abelian group. Then there is an order homomorphism ϕ : G ↪→
∏
[G]

R

2.3.2 Linear independence

Definition 2.3.9. Let G ⊆ H be an extension of ordered abelian groups with H divisible.

We say some collection of elements of H, B := {bi}i is linearly independent over G if

and only if for any finite subset {b1, . . . , bn} ⊆ B, and q1, . . . , qn ∈ Q not all zero, we have
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q1b1 + . . . qnbn ̸∈ G

Example 2.3.10. We list some examples:

• Let G := (R[X,X4], <lex) and H := (R[X,X2, X3, X4], <lex), and let i : G ↪→ H

be the embedding which sends 1G to 1H , X
i
G to Xi

H for i = 1, 4. Then the set

{X2, X3} ⊆ H is linearly independent over G.

• Let G := 0 and H := Π−NR. Then the collection {1−n | n ∈ N} ∪
{ ∑
n∈N

1−n

}
is

linearly independent over G, since we cannot do infinite sums between elements of

H.

• Let G := ⨿−NR and H := Π−NR. Then we can embed G into H via the embedding

1n 7→ 1n. The pair

{ ∑
n∈N

1−2n,
∑
n∈N

1−2n−1

}
is linearly independent over G, since

there every element of G must have finite support.

• Let G := Q and H := R, and embed G into H in the obvious way. Then the

set { 4
√
2, 2

√
2} is linearly independent over Q. The set {2

√
2,
√
2} is not linearly

independent over Q.

• Let G := Z and H := Q. Then 1
2 is not linearly independent over G.

Definition 2.3.11. Let (C,<) ⊆ (D,<) be an extension of ordered sets. We say d1, d2 ∈
D induce the same cut in C if and only if:

{x ∈ C | x < d1} = {x ∈ C | x < d2}

{x ∈ C | x > d1} = {x ∈ C | x > d2}

Lemma 2.3.12. Let G ⊆ H be an extension of divisible ordered abelian groups with

b ∈ H \G. Then:

[G+ Zb] = [G] ⇐⇒ ∀g ∈ G, z ∈ Z with g + zb > 0, there exists some

g ∈ G such that g <g + zb < 2g
(2.3)

Thus for any other divisible ordered abelian group H with G ⊆ H and b ∈ H \G, if b and
b satisfy the same cut in G, then:

[G+ Zb] = [G] ⇐⇒ [G+ Zb] = [G]

The same statement holds when Z is replaced with Q.

Proof. For the forward direction of (2.3), pick some g+zb ∈ (G+Zb)>0, then [g+zb] ∈ [G].

By definition, this means that there exists some h ∈ G>0 such that [h] = [g+ zb] i.e there
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exists some n1, n2 ∈ N such that n1g > g + zb and n2(g + zb) > h. Some multiple of h

involving n1 and n2 will give the appropriate g.

Conversely, if for any arbitrary g+ zb we can find some h ∈ G such that h < g+ zb < 2h,

this by definition implies that g+zb and h are archimedean equivalent, thus [g+zb] ∈ [G].

For the latter statement, suppose b satisfies the same cut in G as b. If [G + Zb] ̸= [G],

namely [b−g] ̸∈ [G] for some g ∈ G. If we assume b−g > 0 (hence b−g > 0 as well!), then

since b − g is not archimedean equivalent to any element of G, we have for all h ∈ G>0,

either nh < b− g for all n ∈ N>0, or b− g < nh for all n ∈ N>0. Since b satisfies the same

cut, then the same is true for b− g, thus it also is not archimedean equivalent to anything

in G.

Finally, if [G+Zb] = [G], then by (2.3), for any pair g ∈ G and z ∈ Z with g+ zb > 0, we

can find some h ∈ G such that h < g + zb < 2h. Since b and b satisfy the same cut, this

means h < g + zb < 2h, thus by (2.3) again, [G+ Zb] = [G].

The proof is identical when we replace Z with Q since G and H are divisible.

Lemma 2.3.13. Let G,H,H be divisible ordered abelian groups, with G ⊆ H and G ⊆ H.

Let I be some indexing set, and suppose B := {bi}i∈I ⊆ H \G, B := {bi}i∈I ⊆ H \G. If

for any tuple i1, . . . , in ∈ I, zi ∈ Z and g ∈ G, we have:

n∑
j=1

zjbij = g ⇐⇒
n∑
j=1

zjbij = g (2.4)

n∑
j=1

zjbij > g ⇐⇒
n∑
j=1

zjbij > g (2.5)

Then there exists an isomorphism of ordered abelian groups:

ϕ : Gb := G+
∑
i∈I

Zbi → Gb := G+
∑
i∈I

Zbi : g + z1bi1 + . . .+ znbin 7→ g + z1bi1 + . . .+ bin

Furthermore, if [bi] ̸= [bj ] for all i ̸= j and for each i ∈ I either:

(i) [bi] ̸∈ [G]

(ii) [G+ Zbi] = [G], and [bj ] ̸∈ [G] for all j ̸= i

Then for any i ∈ I and x ∈ Gb, we have [x] ∈ [G] ∪ {[bi] | i ∈ I} and:

[x] = [bi] ⇐⇒ [ϕ(x)] = [bi]
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The same holds when Z is replaced with Q.

Proof. To show ϕ is well defined, pick two sums from Gb,

β := gβ +

n∑
j=0

zibi γ := gγ +

n∑
j=0

wibi

Where bi ∈ B and zi, wi ∈ Z. Suppose β = γ, then β − γ = 0, thus:

n∑
j=0

(zi − wi)bi = gγ − gβ

So by (2.4), we have:

n∑
j=0

(zi − wi)bi = gγ − gβ

Thus:

ϕ(β) = gβ

n∑
j=0

zibi = gγ +
n∑
j=0

wibi = ϕ(γ)

Hence ϕ is well defined. Bijectivity follows similarly from (2.4), and (2.5) tells us it is also

an order isomorphism.

Suppose further that (i) and (ii) hold. Pick some x ∈ Gb, written as:

x :=

n−1∑
i=0

+(g + zibi) (2.6)

where g ∈ G, z0, . . . , zn−1 ∈ Z̸=0, zn ∈ Z, bi ∈ B, and [bi] ̸∈ [G] for all i ∈ [0, n − 1], and

bn satisfies (ii). Then since all the terms in Equation (2.6) are distinct, the ultrametric

inequality, tells us:

[x] = max{[b0], . . . , [bn−1], [g + znbn]}

Similarly, by applying Lemma 2.3.12, we deduce that the natural valuation of ϕ(x) is:

[ϕ(x)] = max{[b0], . . . , [bn−1], [g + znbn]}

If [x] = [bi] for i ≤ n−1, then [bi] > [bj ], [g+znbn] for all j ̸= 1, j ∈ [1, n−1], thus by (2.3)
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and (2.5), we deduce that [ϕ(x)] = [bi]. Similarly if [x] = [g+znbn] then [ϕ(x)] = [g+znbn].

The same argument applies when there is so i ∈ I satisfying (ii).

2.3.3 Pure Valuational Extensions

Definition 2.3.14. We say an extension G ⊆ H of divisible ordered abelian groups is

pure valuational if for all h ∈ H \G, there exists some g ∈ G such that [h− g] ̸∈ [G]

Proposition 2.3.15. The property of being a pure valuational extension is transitive and

hence closed under infinite chains.

Proof. To prove transitivity, suppose G ⊆ H and H ⊆ K are pure extensions. Pick some

k ∈ K \H, then there exists some h ∈ H such that [k − h] ̸∈ [H]. If h ∈ G then we are

done. If h ̸∈ G, then there exists some g ∈ G such that [h− g] ̸∈ [G]. Consider k − g:

[k − g] = [(k − h) + (h− g)]

= max{[k − h], [h− g]} Since [k − h] ̸∈ [H] and [h− g] ∈ [H]

̸∈ [G] Since both [k − h], [h− g] ̸∈ [G]

Thus for any infinite chain of pure extensions G0 ⊆ G1 ⊆ G2 ⊆ . . ., we deduce that

G0 ⊆ Gω is pure, where:

Gω :=
⋃
i∈ω

Gi

2.4 Set theory

Definition 2.4.1. An ordinal α is a transitive set (so x ∈ y ∈ α =⇒ x ∈ α) whose

elements are well ordered by the membership relation. We say an ordinal β is a successor

ordinal if it is of the form α + 1 := α ∪ {α} for some ordinal α. If no such α exists, we

say β is a limit ordinal. We can define addition, multiplication and exponentiation on

ordinals as follows:

Fix some ordinals α and β. Define α+ β as follows:

• If β = 0, then α+ β = β

• If β = γ + 1, then α+ β := (α+ γ) + 1

• If β is a limit ordinal, then α+ β :=
⋃
γ<β

α+ γ

Define α · β as:

• If β = 0, then α · β = 0
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• If β = γ + 1, then α · β := (α · γ) + α

• If β is a limit ordinal, then α · β :=
⋃
γ<β

α · γ

Define αβ as:

• If β = 0, then αβ = 1

• If β = γ + 1, then αβ := (αγ) · α

• If β is a limit ordinal, then αβ :=
⋃
γ<β

αγ

Note that for any distinct ordinals α and β, either α ∈ β or β ∈ α. We say α < β iff

α ∈ β.

Example 2.4.2. 0 := ∅ is an ordinal, 1 := 0 ∪ {0} = ∅ is also an ordinal. Thus every

natural number can be written as n := (n − 1) ∪ {n − 1} = {0, 1, . . . , n − 1}, hence is a

(successor) ordinal. Let ω := {0, 1, . . . , n, . . .}, then ω is a limit ordinal.

Addition, multiplication and exponentiation for natural numbers as ordinals work as you

would expect. However, note that 1 + ω = ω ∈ ω + 1. Similarly 2ω = ω ∈ ω2.

Definition 2.4.3. Given a cardinal κ, κ+ denotes the next cardinal.

Fact 2.4.4. Any well ordered set is order isomorphic to an ordinal. Thus assuming the

axiom of choice, we can assume any set can be enumerated by an ordinal.

Fact 2.4.5 (Cantor normal form). Let α be an ordinal less than ωω, then there exists

some n, ci ∈ ω such that:

α = ωncn + . . .+ ωc1 + c0
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Chapter 3

Just Contractions

3.1 Introduction

This section aims to study the structure induced on the value group of a trans-exponential

field by just the various logarithms. Fix a trans-exponential field K as in Theorem 1.2.2,

so a field K with functions log, L1, L2, . . . : K
>R → K>R satisfying (L1)-(L4).

As shown in Fact 1.4.1 and Theorem 1.4.6, we can show that the actions of log and L1 of

G := vK form contraction groups χ1 := [log] and χ2 := [L1]. A similar line of reasoning

will also show that L2, L3, . . . also induce centripetal contractions χ3, χ4, . . ., and the maps

together form a model of the theory Tn.

The outline of this chapter is as follows. In Section 3.2, we present a slightly different proof

of QE and completeness for 1-contraction groups to the original from F.-V. Kuhlmann,

1994. Then in Section 3.3 and Section 3.4, we show how to use that proof to prove QE and

completeness for 2 and n-contraction groups. In Section 3.4.5 we then extend the result

of Krapp and S. Kuhlmann, 2023 to construct a countable model of Tn, and in Section 3.5

we generalise the proof by F.-V. Kuhlmann, 1995 of weak o-minimality for 1-contraction

groups to n-contraction groups.

3.2 One Contractions

We give a slightly different presentation of the proof of quantifier elimination for contrac-

tion groups given by Franz-Victor Kuhlmann in F.-V. Kuhlmann, 1994, mainly so that

we can set up an inductive argument for proving quantifier elimination for groups with n-

contractions. We want to satisfy the conditions of Theorem (2.1.14), which means showing

the theory of contraction groups has the closure property, any contraction group is existen-

tially closed in the structure generated by it and one extra element from a superstructure,

and that there exists a contraction group that embeds into every other contraction group.

First, let us fix the definitions and some notation.
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3. JUST CONTRACTIONS

Definition 3.2.1. Let L1 be the language ⟨+,−, 0, <, χ⟩. The theory T1 asserts that a

structure is a contraction group, and T−
1 asserts that a structure is a precontraction group

(so we remove divisibility for the underlying group (CD) and surjectivity for χ (CS)).

Thus T−
1 is the universal theory of T1

We usually hide the ordered abelian group notation when writing down a contraction

group, so (G,χ) denotes the structure (G,+,−, 0. <, χ).

3.2.1 Closure Property

Lemma 3.2.2. Let (G,+, <, 0) ⊆ (H,+, <, 0) be an extension of ordered abelian groups,

with [G] = [H]. Suppose further we can endow G with a map χ such that G := (G,χ) |= T−
1 ,

then there is a unique extension of χ to H such that H := (H,χ) is also a model of T−
1

extending G as L1-structures. In particular:

(i) If (G,χ) is a precontraction group and G is the divisible hull of G, then there is

a unique extension of χ to G such that (G,χ) is a precontraction group extending

(G,χ).

(ii) Similarly if G is the Hahn product
∏
[G]

R, then again there is a unique extension of χ

to G such that (G,χ) |= T−
1 and (G,χ) contains (G,χ) as a substructure.

Proof. For some h ∈ H, there exists some g ∈ G such that [h] = [g] so set χ(h) := χ(g),

a routine calculation shows that H is indeed a precontraction group. Moreover, since

χ({g ∈ G | [g] = [h]}) is a single point (because of axiom (CA)), the only possible thing

we can map h to is χ(g), hence the extension of χ is unique.

Lemma 3.2.3 (F.-V. Kuhlmann, 1994, p. 227). Let G := (G,χ) be a 1-precontraction

group. There exists some 1-contraction group (H,χ) containing (G,χ) as a substructure.

Moreover, for all h ∈ H, there exists some n ∈ N such that χn(h) ∈ G.

Proof. Let G0 := G. Given some Gn with n ∈ N, define Gn+1 := (Gn+1, χ) as follows. The

ordered abelian group Gn+1 is the Hahn product:

Gn+1 :=
∏
Γ

R

Where Γ is defined as:

Γ := [Gn] ∪ (G>0
n \ χ(Gn))

The ordering on Γ is as follows. For γ1, γ2 ∈ [Gn], we say γ1 <Γ γ2 if and only if γ1 <[Gn] γ2.

Similarly for a, b ∈ G>0
n \ χ(Gn), we say a <Γ b if and only if a <Gn b. For some γ ∈ [Gn]
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and a ∈ G>0
n \χ(Gn), note that since a ̸∈ χ(Gn), either |χ(γ)| >Gn a or |χ(γ)| <Gn a. We

set a <Γ γ in the first case and a >Γ γ in the latter case.

To define a contraction χ on Gn+1, it is sufficient to fix the values of χ(1γ) for all γ ∈ Γ.

If γ ∈ [Gn], then set χ(1γ) := |χ(γ)| ∈ Gn, and when γ ∈ G>0
n \ χ(Gn), set χ(1γ) := a,

where a is the element of G>0
n we construed γ from. By the Hahn embedding theorem

(2.3.8), we see that Gn embeds into Gn+1 as an ordered abelian group, and by (CA), this

embedding is an L1-homomorphism.

Define Gω as:

Gω :=
⋃
i∈ω

Gi

Then Gω is a model of T−
1 , and since for any a ∈ Gω, we can find some n ∈ ω such that

Gn contains a preimage for a under χ, we see that Gω |= T1.

Finally, note that χ(Gn+1) ⊆ Gn, so for any h ∈ Gn, we know that χn(h) ∈ G.

Lemma 3.2.4 (F.-V. Kuhlmann, 1994, p. 228). Every precontraction group G has a T1-

hull. Moreover for any T1-hull G and for any g ∈ G, there exists some n ∈ N such that

χn(g) ∈ G.

Proof. By Lemma 3.2.2 (i), we may assume G is divisible. Via Lemma 3.2.3, embed G
into some model H of T1. We keep filling in the gaps in the image of χ on G by adding

elements of H, and show that the resulting structure has the factoring property.

Set G0 := G, and assume we have defined some Gα |= T−
1 ∪(CD) with the factoring property

over G with respect to T1 and hence embeds into H over G. If Gα is a model of T1, i.e. χ is

surjective on Gα, then stop. Otherwise, define Gα+1 as follows; pick some a ∈ G>0
α \χ(Gα),

we can find some b ∈ H such that χ(b) = a. Fix this particular b, and define Gα+1 as:

Gα+1 := Gα +Qb

Note that [b] ̸∈ [Gα], else by (CA), a would have some preimage under χ in Gα. Hence

[Gα+1] = [Gα] ∪ [b]. Once we set χα+1(γ) := χα(γ) for [γ] ∈ [Gα], and χα+1(γ) := a when

[γ] = [b], for any γ ∈ Gα+1, the Gα+1 is a model of T−
1 ∪ (CD). It remains to show that

Gα+1 has the factoring property over G with respect to T1, for which it is sufficient to show

that Gα+1 has the factoring property over Gα over T1.

Suppose Gα embeds into some contraction group K via some function i : Gα ↪→ K. Then

a ∈ K thus has a preimage under χ in K, k ∈ K. Define the map i : Gα+1 → K as

i(gα + qb) = i(gα) + qk, where gα ∈ Gα and q ∈ Q. The axiom (C≤) implies that b

and k induce the same cut in Gα, so by Lemma 2.3.13, the map i is an ordered group
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homomorphism. Since χ(b) = χ(k) = a and [k] ̸∈ [Gα], we see that it must also be an

L1-homomorphism.

For limit ordinals β, if we have already defined Gα for all α < β, set:

Gβ :=
⋃
α<β

Gα

Then again Gβ is a model of T−
1 ∪(CD), and has the factoring property over G with respect

to T1. Since H is a model of T1, for some α ≤ |H|+, Gα must be a model of T1.

To get the final statement, note that any T1-hull of G embeds into the structure (H,χ)

from Lemma 3.2.3.

Remark 3.2.5. If we examine the construction of a 1-contraction hull of some 1-precontraction

group (G,χ) (Lemma 3.2.4), we see that the 1-contraction hull constructed (G,χ) can be

written as:

G+
∑
i∈I

Qδi

where (δi)i∈I > 0 is a collection of indeterminates such that for all i, j ∈ I, i ̸= J :

• [δi] ̸∈ [G]

• [δi] ̸= [δj ]

• [δi] is not less than [G] i.e. there exists some g ∈ G with [g] < [δ]

• δi < δj if and only if χ(δi) < χ(δj) and δi < g if and only if χn(δi) <G χn(g) for

some n ∈ N.

Thus G ⊆ G is a pure valuation extension of ordered abelian groups and [G] is coinitial

in [G].

3.2.2 Existential Closedness

Fix some models G ⊆ H of T1, for any b ∈ H \G, we need to find some ‘simple’ (meaning

easy to show is finitely realised in G) set of formulas pb(x) such that pb ⊢ qftpH(b,G).

Definition 3.2.6 (F.-V. Kuhlmann, 1994, pp. 233–234). For any b ∈ H \ G, a sequence

(bi, gi)i<ω, where bi ∈ H and gi ∈ G, is a characteristic sequence of b in G if it satisfies:

• If [G] ⊊ [G+ Zb] then b0 = b− g0 and [b0] ̸∈ [G].

• If [G] = [G+ Zb] then b0 := b and g0 := 0.

• For any i ≥ 1, if bi ̸∈ G then:
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– [b0] > [b1] > . . . > [bi]

– If [G+ Zχ(bi)] = [G], then gi+1 := 0 and bi+1 := χ(bi)

– If [G+ Zχ(bi)] ̸= [G] then [χ(bi)− gi−1] ̸∈ [G] (gi+1 might still be zero!)

• For any i ≥ 1, if bi ∈ G then bj+1 = 0 and gj = 0 for all j ≥ i

For the rest of this section fix some b ∈ H \G.

Lemma 3.2.7 (F.-V. Kuhlmann, 1994, p. 233). A characteristic sequence of b in G exists.

Proof. Consider the extension of ordered abelian groups G ⊆ G+Zb. Suppose the exten-

sion is value preserving, so [G + Zb] = [G], then set b0 := b, b1 := χ(b0), and bi+2, gi := 0

for all i ∈ ω.

If the extension G ⊆ G + Zb is not value preserving, then there exists some g ∈ G such

that [b− g] ̸∈ [G]. Set g0 := g and b0 := b− g0

Assume we have defined (bj , gj)j≤i for some i ∈ ω, where bj+1 := χ(bj)− gj+1. If bi ∈ G,

then set bj , gj := 0 for all j > i. If not, consider χ(bi), and the extension:

G+
i∑

j=0

Zbj ⊆ G+
i∑

j=0

Zbj + Zχ(bi) (3.1)

• If χ(bi) ∈ G, then set bi+1 := χ(bi), bj+1, gj := 0 for all j ≥ i+ 1.

• If the extension (3.1) is value preserving, then set bi+1 := χ(bi), bi+2 := χ(bi+1) =

χ2(bi), and gj := 0 for all j ≥ i+ 1.

• If the extension (3.1) is not value preserving, then there exists some γ ∈ G+
i∑

j=0
Zbj ,

such that:

[χ(bi)− γ] ̸∈
[
G+

i∑
j=0

Zbj
]

Then since [b0] > [b1] > . . . > [bi] > [χ(bi)], with the last inequality coming from

axiom (CP), we see that γ ∈ G. Set gi+1 := γ and bi+1 := χ(bi)− gi+1

It can be verified easily that the sequence (bi, gi)i<ω satisfies the conditions of Defini-

tion 3.2.6, hence we are done.

Definition 3.2.8 (F.-V. Kuhlmann, 1994, p. 234). Fix some b ∈ H\G and 1-characteristic

sequence (bi, gi)i<ω. If bi ̸∈ G for all i < ω, we say b is 1-transcendental and say b has

1-characteritic length ω. Conversely, we call b 1-algebraic when bi = 0 for some i < ω,

and say b has 1-characteristic length α where α is the least such i (So bα−1 ∈ G ̸=0).
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We extend Kuhlmann’s definition by the following; when b is 1-algebraic with [bα−1] ∈ [G]

(so [G+Zbα−1] = [G]), we say b is 1-archimedean-algebraic, and when [bα−1] ̸∈ [G] we

say it is 1-value-algebraic.

Lemma 3.2.9. The characteristic sequences of b in G have the following properties.

(i) For any two 1-characteristic sequences (bi, gi)i∈ω and (bi, gi)i∈ω, for any α < ω, we

have:

[bα] = [bα]

(ii) If b has a 1-characteristic sequence of length α, then all it’s 1-characteristic se-

quences have length α, thus the 1-characteristic sequence length of b is well-defined,

hence so are the definitions of 1-transcendental, 1-algebraic, 1-value-algebraic and

1-archimedean-algebraic.

(iii) If (bi, gi)i<ω is a 1-characteristic sequence, then for all α < ω, the sequence (bα+i, gα+i)i<ω

is an 1-characteristic sequence of bα.

Proof. We prove (i) by induction. If [G+Zb] is value preserving, then both b0 and b0 must

be equal to b, thus [b0] = [b0]. If the extension is not value preserving, then both [b0] and

[b0] do not lie in [G]. By Fact 2.3.3 we have

|[G+ Zb] \ [G]| = 1

Thus [b0] = [b0]. Suppose [bl] = [bl] for all l < k, where k < ω. Consider the possible

configurations of bk−1 and bk−1. Either both [bk−1] and [bk−1] are outside [G], or both

are inside [G]. When they are inside [G], we may have bk−1 ∈ G or bk−1 ̸∈ G, and the

same for bk−1. We need to consider all these cases separately.

• If [bk−1] = [bk−1] ̸∈ [G], then by (CA) we have χ(bk−1) = χ(bk−1). Again from

Fact 2.3.3, we know that:

|[G+ Zχbn−1] [G]| ≤ 1

Thus by the construction of 1-characteristic sequences, we have [χ(bk−1) − gk] =

[χ(bk−1)− gk], so [bk] = [bk].

• If [bk−1] = [bk−1] ∈ [G], but bk−1 ̸∈ G, then by construction, bk−1 = χ(bk−2), but we

assumed [bk−2] = [bk−2], thus bk−1 = χ(bk−2) = bk−1, so bk = bk ∈ G.

• Similarly if [bk−1] = [bk−1] ∈ [G], but bk−1 ̸∈ G, then we would again have bk = bk ∈
G
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• Finally if bk−1 ∈ G, then bk = χ(bk−1), but we assumed [bk−1] = [bk−1], so bk =

χ(bk−1) = bk.

Thus we have proved (i). (ii) is an easy consequence of (i). (iii) is verified just by checking

the definition of 1-characteristic sequences.

Thus we can now fix a 1-characteristic sequence (bi, gi)i<ω of b in G.

Lemma 3.2.10. The structure G⟨b⟩ has domain:

Gb := G+
∑
i∈ω

Zbi (3.2)

Proof. Since each bi can be written as an L1-term with parameters in G, we have Gb ⊆
|G⟨b⟩|. To prove the converse it is sufficient to show that the Gb is closed under χ. Pick

some element x ∈ Gb, we can write it as:

x := g + z0b0 + . . .+ znbn

Where g ∈ G, zi ∈ Z and zn ̸= 0. We can further assume (by replacing g with g + znbn)

that bn ̸∈ G.

Since [b0] > [b1] > . . . > [bn−1] > [bn] and [b0], . . . , [bn−1] ̸∈ [G], we deduce that:

[x] = max{[z0b0], . . . , [zn−1bn−1], [g + znbn]}

But since χ(bi) always lands in Gb for all i ∈ [1, n], and [g + znbn] ∈ [G] ∪ [bn], we deduce

that χ(x) is also in Gb, so we are done.

Definition 3.2.11. For n ∈ ω, let xn be the term with the same form as bn but with b

replaced with the variable x, so:

x0 := x− g0

xn :=

χ(xn−1)− gn If bn−1 ̸∈ G

0 Otherwise

(3.3)

(3.4)

If we view each xn as a function G → G, then by (C≤) and (CS), xn must be increasing

and surjective.

Similarly, Define ym,n(x) to be the term bn but with the occurrence bm replaced with the

variable x, so ym,n(bm) = bn. Each ym,n is also increasing and surjective as a function to

and from G.
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Let pb be the set of formulas:

pb(x) :=
⋃
n∈ω

Dbn(xn) (3.5)

Where for some fixed constant h ∈ H and variable y, Dh(y) is defined as:

Dh(y) :=


{
g < y < g | g, g ∈ G, g < h < g

}
If h ̸∈ G{

y = h

}
If h ∈ G

(3.6)

This must be a consistent set of formulas, since b |= pb(x).

Lemma 3.2.12. For any b ∈ H \G, the ‘type’ pb is a type of G.

Proof. Suppose b is 1-algebraic with a characteristic sequence of length n + 1. We can

represent some finite subset ∆ ⊆ pb via the single formula:

∆(x) :=

( n−1∧
i=0

ai < xi < ai

)
∧ xn = an

Where ai, ai ∈ G. Define h, h as:

h := max{yi,n−1(ai) | 0 ≤ i < n} ∈ G

h := min{yi,n−1(ai) | 0 ≤ i < n} ∈ G

Then since for each i, yi,n−1 is increasing and bn−1 ̸∈ G, we must have h < bn−1 < h. Let

A := χ−1(bn) ⊆ G, then A must be a convex set. We claim that (h, h)G∩A ̸= ∅. Suppose

the intersection is empty, say because A > h, then pick some g ∈ G with

h < g < A

We can do this because A must be a collection of archimedean classes, so if for example

h > 0, then h < 2h < A. Since χ is increasing and A is the preimage of bn under χ, we

have:

χ(h) ≤ χ(g) < an

So χ(h) < an = χ(bn−1), but since χ is increasing, and h > bn−1, this is a contradiction.

Similarly, we cannot have A < h, hence A ∩ (h, h) ̸= ∅. Any element of x−1
n−1(A ∩ (h, h))

will realise ∆.

42



3.2 One Contractions

If b is 1-transcendental, then we can write ∆ as:

∆(x) :=

( n−1∧
i=0

ai < xi < ai

)

Define h, h just as before, then any element of x−1
n−1(h, h) realises ∆.

Lemma 3.2.13. Let H be some other model of T1 with G as a substructure, and b ∈ H \G
with b |= pb(x). Then there exists an isomorphism over G:

ϕ : G⟨b⟩H → G⟨b⟩H

Proof. Suppose b has characteristic sequence of length α, where α ≤ ω, and set bi := xi(b).

We see that {bi}i<α and {bi}i<α satisfy the conditions of Lemma 2.3.13 (since they both

realise pb and are strictly decreasing in valuation), thus we have an isomorphism ϕ of

ordered abelian groups:

ϕ : G+
∑
i<α

Zbi → G+
∑
i<α

Zbi : bi 7→ bi (3.7)

Note that the image of ϕ is definitely a subset of
∣∣G⟨b⟩H∣∣. If we can show that ϕ is an

L1-homomorphism, then that would automatically imply that the image of ϕ is closed

under χ, and hence we would have the equality:

∣∣G⟨b⟩H∣∣ = Gb := G+
∑
i<α

Zbi

Assume b is 1-transcendental, so α = ω and bi ̸∈ G for all i ∈ ω, then by (CA) and (CS),

[bi] ̸∈ [G] for all i. Since bi induces the same cut in G as bi, we also have [bi] ̸∈ [G] for all

i. Pick some element x ∈ |G⟨b⟩|, we can write it as:

x := g + z0b0 + . . .+ znbn

where g ∈ G, zi ∈ Z and zn ̸= 0, hence ϕ(x) can be written as:

ϕ(x) = ϕ(g + z0b0 + . . .+ znbn)

= ϕ(g) + ϕ(z0b0) + . . .+ ϕ(znbn)

= g + z0b0 + . . . znbn

Note that [x] ∈ {[g], [z0b0], . . . , [znbn]} and ϕ(x) ∈ {[g], [z0b0], . . . , [znbn]}, moreover:
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[x] = [bi] ⇐⇒ [ϕ(x)] = [bi]

[x] = [g] ⇐⇒ [ϕ(x)] = [g]

Suppose [x] = [bi], then:

χ(ϕ(x)) = χ(bi) As [ϕ(x)] = [bi] and axiom (CA)

= bi+1 + gi+1 Since bi+1 := xn+1(b)

= ϕ(bi+1) + gi+1 Since ϕ(bi+1) := bi+1

= ϕ(bi+1 + gi+1) ϕ is a group homomorphism and is constant on G

= ϕ(χ(bi)) Again by construction of characteristic sequences

= ϕ(χ(x)) As [x] = [bi] and axiom (CA)

Similarly, if [x] = [g], then:

χ(ϕ(x)) = χ(g) As [ϕ(x)] = [g] and axiom (CA)

= ϕ(χ(g)) Since ϕ is constant on G

= ϕ(χ(x)) We assumed [x] = [g] so by (CA), χ(x) = χ(g)

Thus ϕ(χ(x)) = χ(ϕ(x)) for all x in G⟨b⟩. Similarly, when b is 1-value-algebraic (so [bα−1] ̸∈
[G]), the exact same argument as above confirms that ϕ respects χ, since [bi], [bi] ̸∈ [G] for

all i ∈ [1, α− 1] and bα = bα ∈ G.

The only bothersome case is when b is 1-archimedean-algebraic (so [G + Zbα−1] = [G]).

To simplify things set α = 1 and b0 := b so b ̸∈ [G] but [G+Zb] = [G]. By Lemma 2.3.12,

we see that any b realising the same cut in G as b also satisfies [G+Zb] = [G]. Pick some

x ∈ G+ Zb, written as x = g + zb, so ϕ(x) = g + zb. Then since b and b induce the same

cut in G and [x], [ϕ(x)] ∈ [G], we see that [x] = [ϕ(x)]. Thus χ(x) = χ(ϕ(x)), and since ϕ

is constant on G, we have ϕ(χ(x)) = χ(ϕ(x)).

Thus an immediate application of Fact 2.1.12 yields us:

Proposition 3.2.14. For any extension G ⊆ H of contraction groups and b ∈ H \ G, G
is existentially closed in G⟨b⟩.

3.2.3 Initial structures

Lemma 3.2.15. There exists a model of T−
1 that embeds into every other model of T−

1

Proof. Consider Q := (Q,χ), where Q is the Hahn sum:

∐
N

Z
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With χ(1−n) := 1−n−1 for any n ∈ ω. Then for any G |= T−
1 and g ∈ G, we have an

isomorphism:

⟨g⟩ ∼= Q

3.2.4 Final Result

Since all the assumptions of Theorem 2.1.14 have been satisfied through Lemma 3.2.4,

Proposition 3.2.14 and Lemma 3.2.15, we have:

Theorem 3.2.16 (F.-V. Kuhlmann, 1994). The theory T1 has quantifier elimination, has

a prime model and is complete.

3.3 Two Contractions

As we showed in Theorem 1.4.6, the action of a hyper-logarithm on an appropriate field

K induces a centripetal contraction group which interacts with the contraction induced

by log in a particular way, and in Definition 1.4.7 we defined a theory which characterises

this action.

Definition 3.3.1. Let T2 be the theory from Definition 1.4.7. Define T−
2 be T2 but with

the axioms requiring χ and L to be surjective, and divisibility of the underlying group

erased. Say G is a 2-precontraction group if G |= T−
2 , and a 2-contraction group if

it models T2.

The purpose of this section is to prove that T2 has quantifier elimination in the language

L2. The proof has the same structure as the proof for 1-contractions from Section 3.2,

which means we need to satisfy the conditions of Theorem 2.1.14.

3.3.1 Closure operator

For some 2-precontraction group (G,χ1, χ2), we can consider the reduct to just the first

contraction χ, and take the T1 hull with respect to just that contraction.

Definition 3.3.2. Let G := (G,χ1, χ2) be a 2-precontraction group, and (G,χ1) be its

reduct to the language L1. Some L1-structure K := (K,χ1) is a 1-contraction hull of G
if K is a T1-hull of G.

As a reminder, Lemma 3.2.4 tells us that for any 1-contraction hull (G,χ) of (G,χ) and

any g ∈ G, there exists some n ∈ N such that χn(g) ∈ G. We leverage this to show that

any 2-precontraction group has a T2-hull. First, we make an easy observation:

Lemma 3.3.3. Let G be a 2-precontraction group and K := (K,χ1) be a 1-contraction hull

of G. Then there exists a unique extension of χ2 to K such that (K,χ1, χ2) is a model of
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T−
2 extending G. Moreover, the model (K,χ1, χ2) has the factoring property over G with

respect to T2.

Proof. For all x ∈ K \ G, there exists some n ∈ N such that χn1 (x) = gx ∈ G, hence by

axiom (H1), if χ2 is a 2-contraction on K over G, the value of χ2(x) is fixed and must be

χ2(gx), hence the extension of L to K must be unique. Moreover, it is easy to verify that

L is a 1-precontraction on K and interacts with χ in the right way, hence (K,χ1, χ2) is a

2-precontraction group.

To show K has the factoring property, pick some model H := (H,χ1, χ2) of T2 extending

G as L2 structures. Since (K,χ1) is a T1-hull of (G,χ1), it has the factoring property with

respect to T1, hence there exists an L1-embedding ϕ : (K,χ1) → (H,χ1) that is constant

on G, and by (H1), it must also be an L2-embedding.

We would like to show that any 2-precontraction group is embedded in some (possibly

very large) 2-contraction group.

Proposition 3.3.4. Let (G,χ1, χ2) be a 2-precontraction group. Then there is some 2-

contraction group (K,χ1, χ2) such that (G,χ1, χ2) is a substructure of (K,χ1, χ2).

Proof. Let G0 = G. We define a chain of 2-precontraction groups G0 := G ⊆ G1 ⊆ G2 ⊆ . . .

where Gn := (Gn, χ1, χ2), and our desired structure will be

K :=
⋃
n∈N

Gn (3.8)

Given G2k, choose G2k+1 to be some 1-contraction hull of (G2k, χ1), so by Lemma 3.3.3,

there is a unique extension of χ2 to G2k+1 such that G2k+1 := (G2k+1, χ1, χ2) is a model

of T−
2 containing G2k as a substructure.

Given G2k−1, set G2k to be the structure with domain G2k :=
∏
Γ

R, where

Γ = [G2k−1] ∪
(
ω × {G>0

2k−1 − χ2(G2k−1)}
)

is ordered as follows:

• For (n, a) ∈ ω × {G>0
2k−1 − χ2(G2k−1)}, β ∈ [G2k−1], we have:

(n, a) < β ⇐⇒ a < χ2β

• For (n, a), (m, b) ∈ ω × {G>0
2k−1 − χ2(G2k−1)}, a ̸= b, we have:

(n, a) < (m, b) ⇐⇒ a < b
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• For (n, a) ∈ ω × {G>0
2k−1 − χ2(G2k−1)}, we have (n+ 1, a) < (n, a), thus:

(n, a) <Γ (m, a) ⇐⇒ n < m

• For any two elements in [G2k−1], use the ordering from [G2k−1] itself.

Define the contractions on G2k as follows. Let (r)α ∈
∏
Γ

R denote the element which has

value r in the place of the ordinal α, and is 0 everywhere else. As contraction maps are

constant on archimedean classes, we only need to define χ1 and χ2 on elements of the form

(1)α.

(i) For α ∈ vG2n−1, set χi(1)α = χi(α) for i = 1, 2.

(ii) For α = (n, a) ∈ ω × {G>0
2k−1 − χ2(G2k−1)}, set χ1(1)α = (1)(n+1,a), and χ2(1)α = a.

By the Hahn embedding theorem ((2.3.8)) we see that G2k embeds into G2k+1 as ordered

abelian groups, and by (i), we see that it must be an L2-embedding. Hence define K as the

union (3.8), we see that both χ1 and χ2 are surjective on K thus it is a model of T2.

We can now show that T2 has the closure property

Proposition 3.3.5. Any 2-precontraction group G has a T2-hull.

Proof. Embed G into some model K of T2 via Proposition 3.3.4. We alternate between

taking the χ1-hull and filling in the gaps in χ2(G) with elements of K while ensuring the

factoring property still holds, and eventually after at most |K|+ steps, we end up with a

model of T2. Set G0 := G. Given some successor ordinal α = η + n, where η is a limit

ordinal and n ∈ ω, suppose we have defined some Gα |= T−
n with the factoring property

over G with respect to T2, thus embedding into K over G. Define Gα+1 as follows:

n is even: Set Gα+1 to be some 1-contraction hull of Gα. By Lemma 3.3.3, Gα+1 has the

factoring property over G with respect to T1, and hence can be thought of as an

L2-substructure of K.

n is odd: Pick some a ∈ G>0
α \ χ2(Gα) (if the set is empty then set Gα+1 := Gα). We

know there exists some b ∈ K such that χ2(b) = a, so define Gα+1 as:

Gα+1 := Gα +
∑
j∈ω

Qχj1(b)

By (H1), we have χ2(χ
i
1(b)) = a, thus by (CA) we see that [χi1(b)] ̸∈ [Gα] for all

i ∈ ω, hence:

[Gα+1] = [Gα] ∪
⋃
j∈ω

[χj1(b)]
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From which we deduce that Gα+1 is closed under χi for all i, hence Gα+1 :=

(Gα+1, χ1, χ2) is a model of T−
2 contained in K. It remains to show that it has

the factoring property over Gα with respect to T2. Pick any model H of T2 with Gα
as a substructure, and pick some b ∈ H such that χ2(b) = a. Then by (C≤), the

sets {χi1(b)}i∈ω and {χi1(b)}i∈ω satisfy the conditions of Lemma 2.3.13, thus we have

an isomorphism of ordered abelian groups over Gα:

ϕ : Gα +
∑
j∈ω

Qχj1(b) → Gα +
∑
j∈ω

Qχj1(b) : χ
i
1(b) 7→ χi1(b)

Since χ1(b) = a, we see that ϕ is also an L2-isomorphism, thus Gα+1 embeds into H
over Gα, thus Gα+1 has the factoring property over Gα with respect to T2.

For a limit ordinal β set Gβ to be the union of all the structures before it. Since K is a

model of T2, eventually Gβ must also be a model of T2, and this will be T2-hull of G.

3.3.2 Existential closedness

Fix some extension of 2-contradictions groups G ⊆ H, and some b ∈ H \ G. We want to

show that G is existentially closed in G⟨b⟩. To begin with, we find a generating set for

G⟨b⟩ as an ordered abelian group.

Definition 3.3.6. Let (G,χ) ⊆ (H,χ) be an extension of 1-contraction groups, and

b ∈ H \G have 1-characteristic sequence (bi, gi)i<ω. We say b is 1-super-transcendental

if b is 1-transcendental and the shift sequence (gi)i∈ω is eventually zero, and call i ∈ ω

the 1-null point if gi ̸= 0 but fj = 0 for all j > i. By Lemma 3.2.9, this definition is

well-defined.

Definition 3.3.7. Let G,H and b be as above. Some sequence (bi, gi)i<ω2 is a 2-characteristic

sequence of b in G if:

(a) For any m ∈ ω, the sequence (bωm+i, gωm+i)i∈ω is a 1-characteristic sequence for bωm

in (G,χ1).

(b) Fix some j ∈ ω

(i) If bωj+i is 1-super-transcendental, then bω(j+1) = χ2(bωj+k), where k the 1-null

point.

(ii) Otherwise bω(j+1)+α, gω(j+1)+α are all 0 for any α < ω2.

We say b is 2-algebraic if bα ∈ G for some α < ω2, and we say a characteristic sequence

has length α if bα = 0 and bβ ̸= 0 for all β < α.

For the rest of this section, fix some b ∈ H \G.

Lemma 3.3.8. A 2-characteristic sequence of b in G exists. Moreover for any 2-characteristic

sequence (bi, gi)i∈ω2, if α < β < ω2 and bβ ̸∈ G, then [bα] ̸∈ [G] and [bα] > [bβ].
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Proof. The construction is evident from Definition 3.3.7. To show it is decreasing in

valuation throughout its length, it is sufficient to show [bωj ] < [bω(j−1)+i] for all i, j ∈ ω,

j > 0 and bωj ̸∈ G. But this follows from axiom (H2).

Lemma 3.3.9. All 2-characteristic sequences of b in G satisfy the following.

(i) For any two 2-characteristic sequences (bi, gi)i∈ω2 and (bi, gi)i∈ω2 and α < ω2, we

have:

[bα] = [bα]

(ii) If b has a 2-characteristic sequence of length α, then all it’s 2-characteristic sequences

have length α, thus the 2-characteristic sequence length of b is well-defined, hence so

are the definitions of 2-algebraic, 2-transcendental and 1-super-transcendental.

(iii) If (bi, gi)i<ω2 is a 2-characteristic sequence, then for all α < ω2, the sequence

(bα+i, gα+i)i<ω2 is an 2-characteristic sequence of bα.

Proof. Identical to Lemma 3.2.9.

Now we can fix some 2-characteristic sequence (bi, gi)i<ω2 of b in G.

Lemma 3.3.10. Suppose b is not 1-super-transcendental in (G,χ1). Then the structure

generated by b in G, G⟨b⟩H has domain:

Gb := G+
∑
i∈ω

Zbi (3.9)

Proof. As a reminder, the 1-characteristic sequence has the following form:

b0 := b− g0

bn := χ(bn−1)− gn for n > 0

Since each element of the 1-characteristic sequence of b is made up of finitely many com-

positions of elements of G and L1-functions, we definitely know that Gb is contained in

|G⟨b⟩|. For the converse, assume b is 1-transcendental, and write an arbitrary element x

of Gb as:

x = g + z0b0 + . . .+ znbn

Where g ∈ G and zi ∈ Z. Then [x] ∈ {[g], [z0b0], . . . , [znbn]}, hence to show (3.9) is

closed under χ1 and χ2 it is sufficient to show χi(bj) lie in G for i = 1, 2 and j ∈ ω.

For i = 1 this follows from the construction of 1-characteristic sequences, specifically,
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χ1(bj) = bj+1 − gj+1. For i = 2, fix some bj , and let k > 0 be the least natural number

such that gn+k ̸= 0, which must exist since b is not 1-super-transcendental, hence:

bn+k = χk1(bn)− gn+k

We know [bn+k] ̸∈ [G], and [gn+k] ∈ [G]. Moreover, since gn+k ̸= 0, we must have

[χk1(bn)] ∈ [G]. Hence by the ultrametric inequality we have [χk1(bn)] = [gn+k], thus

χ2(bn) = χ2(χ
k
1(bn)) By axiom (H1)

= χ2(gn+k) Since [gn+k] = [χk1(bn)] and (CA)

Identical arguments apply when b is 1-algebraic, with the only modification being the

valuation of x when b is 1-archimedean-algebraic. Suppose the 1-characteristic sequence

of b has length n+ 1, then:

[x] ∈ {[g − znbn], [b0], . . . , [bn−1]}

But [g − znbn] ∈ G since [G + Zbn] = [G], and by the 1-transcendental argument we see

that χ2(bi) ∈ [G] for i ∈ [0, n− 1].

Lemma 3.3.11. No matter what the status of the 2-characteristic sequence of b, the G⟨b⟩
has domain:

G+
∑
i<ω2

Zbi (3.10)

Proof. Suppose the characteristic sequence has length α, then by Lemma 3.3.8, any ele-

ment of (3.10) has valuation lying in

[G] ∪ {[bβ] | β < α}

for some β < α, thus it is sufficient ot show χi(bj) lies in (3.10) for all i, j where i = 1, 2, j <

α. Fix j = ωm+ n. If bj is not 1-super-transcendental in (G,χ1), then by Lemma 3.3.10,

we see χi(bj) is in (3.10), so suppose b is 1-super-transcendental. If there exists some least

k ∈ ω such that gj+k+1 ̸= 0, then [χk1(bj)] = [gj+k+1], thus χ2(bj) = χ2(gj+k+1) ∈ G.

If gj+k+1 = 0 for all k ∈ ω, then by construction of 2-characteristic sequences, we have

bj+ω = χ2(bj), which must be in (3.10).

Let us extend Definition 3.2.11 to 2-contraction groups.

Definition 3.3.12. Let b ∈ H \ G have 2-characteristic sequence (bi, gi)i<ω2 . Let xα be

the term bα but with b replaced with the variable x, so:
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xα :=



0 If bα = 0

x− gα If α = 0

χ1(xα−1)− gα If α is a successor ordinal and bα ̸= 0

χ2(xβ)− gα If α is a limit ordinal, bα ̸= 0 and bα = χ2(bβ)

Given some γ < ω2 set yγ,α(x) to be the term with variable to x which returns bα when

x is substituted with bγ , so for α ≥ γ:

yγ,α :=



0 If bα = 0

x If α = γ

χ1(yγ,α−1(x))− gα If α > γ is a successor ordinal and bα ̸= 0

χ2(yβ(x))− gα If α > γ is a limit ordinal, bα ̸= 0 and bα = χ2(bβ)

As with 1-contraction groups, the functions xα, yβ,α are all surjective and increasing.

Example 3.3.13. Let b have 2-characteristic sequence as follows:

Definition 3.3.14. Let pb(x) be just as we defined in Equation (3.5) from Definition 3.2.11,

but with the index ranging though ω2 instead of ω:

pb(x) :=
⋃
n∈ω2

Dbn(xn) (3.11)

Lemma 3.3.15. The type pb is a type of G.

Proof. Suppose b is 2-algebraic, with a characteristic sequence of length α + 1 < ω2,

meaning bα lies in G but is not equal to 0. Pick some finite sequence of ordinals α1 <

. . . < αn < α, and write some finite subset of pb, ∆ as:

∆(x) := ∆1(x) ∧∆2(x)

Where the ∆i’s are defined as:

∆1(x) :=
n∧
i=1

aαi < xαi < aαi

∆2(x) := xα = bα

Define h and h as:
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h := max{yαi,α−1(aαi) | 1 ≤ i < n}

h := min{yαi,α−1(aαi) | 1 ≤ i < n}

Since each term yαi,α thought of as functions on H and G is increasing, we have:

h < bαn < h

By the same argument as in Lemma 3.2.12, we see that (h, h)G and A := χ−1
αn,α(bα) have

non-empty intersection in G, thus any element of y−1
αn

((h, h)G) ∩A realises ∆.

If b is 2-transcendental, or 2-algebraic with a characteristic sequence of limit ordinal length,

then we can write ∆ as just ∆1, thus if we define h and h as before, any element of x−1
αn

(h, h)

will realise ∆.

Lemma 3.3.16. For any other 2-contraction group H with G ⊆ H, and b ∈ H \ G with

b |= pb(x), there exists an L2 isomorphism ϕ over G:

ϕ : G⟨b⟩H → G⟨b⟩H (3.12)

Proof. By Lemma 3.3.11, we know G⟨b⟩ has domain:

G+
∑
i∈ω2

Zbi

Set bi := xi(bi) for all i ∈ ω2, then since b realises the type pb, Lemma 2.3.13 establishes

an isomorphism of ordered abelian groups:

ϕ : G+
∑
i∈ω2

Zbi → G+
∑
i∈ω2

Zbi : bi 7→ bi (3.13)

Just as in Lemma 3.2.13, it is sufficient to show ϕ is an L2-homomorphism, which will

imply that the domain of G⟨b⟩ is the image of ϕ. Pick some element x ∈ |G⟨b⟩|, then for

any i ∈ ω2 and g ∈ G:

[x] = [bi] ⇐⇒ [ϕ(x)] = [bi]

[x] = [g] ⇐⇒ [ϕ(x)] = [g]

If [x] = bi, then the same argument as in Lemma 3.2.13, tells us that χ1 ◦ϕ(x) = ϕ◦χ1(x),

thus it remains show χ2 ◦ ϕ(x) = ϕ ◦ χ2(x). Suppose i is before the 1-null point of b, i.e.

there exists some n ∈ ω, n > 0 such that gi+n ̸= 0, then:
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χ2(ϕ(x)) = χ2(bi) We assumed [ϕ(x)] = [bi]

= χ2(χ
n
1 (bi)) By (H1)

= χ2(gi+n) Since [χn1 (bi)] = [gi+n]

= ϕ(χ2(gi+n)) ψ is constant on G

= ϕ(χ2(χ
n
1 (bi))) Since [χn1 (bi)] = [gi+n]

= ϕ(χ2(bi)) By (H1)

If i is at or past the 1-null point, i.e. for all n ∈ ω n > 0 we have gi+n = 0, then:

χ2(ϕ(x)) = χ2(bi) We assumed [ϕ(x)] = [bi]

= bi+ω Since χ2(bi) = bi+ω

= ϕ(bi+ω) By the definition of ϕ

= ϕ(χ2(bi))

= ϕ(χ2(x))

When [x] = [g], then the same argument as in Lemma 3.2.13 shows χi ◦ ϕ(x) = ϕ ◦ χi(x)
for i = 1, 2.

As with the 1-contraction group case, Fact 2.1.12 gives us:

Proposition 3.3.17. G is existentially closed in G⟨b⟩.

Proof. Use Lemma 3.3.16 and Lemma 3.3.15.

3.3.3 Initial structures

Lemma 3.3.18. The theory T2 has an initial model.

Proof. Consider the Hahn sum
∐
ω2

Z, and denote the element with value r in the place of

the ordinal α but 0 everywhere else as (r)α. To give a 2-contraction group structure on

this set, we only need to define χ(1)α and L(1)α for every ordinal α < ω2. We can write

α as ωn + m, where n,m are natural numbers. Hence let χ(1)ωn+m = (1)ωn+m+1, and

L(1)ωn+m = (1)ω(n+1).

It is easy to see that this is a 2-precontraction group, it remains to show that this structure

embeds into every 2-precontraction group. Let (G,χ1, χ2) be any precontraction group,

and pick some a ∈ G. We will show that ⟨a⟩ ∼= (
∐
ω2

Z, χ, L). Using axioms (H1) and (CA)

for both χ and L, we see that:
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3. JUST CONTRACTIONS

⟨a⟩ = Za+ Zχa+ Zχ2a+ . . .

+ ZL(a) + ZχL(a) + . . .

+ ZL2(a) + ZχL2(a) + . . .

...

=
∞∑
j=0

∞∑
i=0

ZχiLj(a)

Define a map ϕ : ⟨a⟩ → (Hω2Z, χ, L) as ϕ(χiLj(a)) = (1)ωj+i. Then ϕ is an isomorphism,

hence the structure (Hω2Z, χ, L) embeds into (G,χ1, χ2). By the universal property of

2-contraction hulls, we know that any 2-contraction hull of (Hω2Z, χ, L) embeds into any

2-contraction hull of (G,χ1, χ2), hence the result is proved.

3.3.4 Final Result

By applying Proposition 3.3.5, Proposition 3.3.17 and Lemma 3.3.18 to Theorem 2.1.14,

we have:

Theorem 3.3.19. The theory of 2-contraction groups has quantifier elimination, is com-

plete and has a prime model.

3.4 Multiple Contractions

Definition 3.4.1. Let Ln be the language ⟨+,−, 0, <, χ1, . . . , χn⟩ be the language of

ordered abelian groups along with n unary functions. We will call a structure (G,+,−, 0, <
, χ1, . . . , χn), (or just (G,χ1, . . . , χn)) an n-precontraction group if (G,+,−, 0, <) is an
ordered abelian group and:

C1n For all i ≤ n, the structure (G,χi) is a precontraction group

C2n For all i < n and x ∈ G, we have χi+1(χi(x)) = χi+1(x), and hence for all i < j ≤ n,

χj(χi(x)) = χj(x)

C3n For all i < n, k ∈ N and x ∈ G, x > 0, we have χi+1(x) < χki (x)

Furthermore, if all the maps χi are surjective and G is divisible, we will call (G,χ1, . . . , χn)

an n-contraction group. Let Tn be the theory of n-contraction groups, and T−
n be the

theory of n-precontraction groups (so T−
n is the universal theory of Tn).

In this section we prove that for all n < ω, the theory Tn has QE and is complete, using

the criterion from Theorem 2.1.14.

3.4.1 Closure Operator

First, we prove that Tn has the closure property. We need to induct on the following

statement:
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3.4 Multiple Contractions

(Φ)n Any n-precontraction group G has a Tn-hull, and moreover, any Tn-hull G and g ∈ G,

there exists some k ∈ N such that χkn(g) ∈ G.

Definition 3.4.2. Assume (Φ)n−1, and let G := (G,χ1, . . . , , χn) be an n-precontraction

group. Consider the reduct of G to Ln−1, (G,χ1, . . . , χn−1). An (n−1)-contraction hull

of G is some Tn−1 hull K := (K,χ1, . . . , χn−1) of (G,χ1, . . . , χn−1).

Lemma 3.4.3. Assume (Φ)n−1. Let K be a (n − 1)-contraction hull of G. There is

a unique extension of χn to K such that (K,χ1, . . . , χn) is a model of T−
n . Moreover,

(K,χ1, . . . , χn) has the factoring property over G with respect to Tn.

Proof. Identical to Lemma 3.3.3.

Lemma 3.4.4. Assume (Φ)n−1. Any n-precontraction group G, embeds into some n-

contraction group K. Moreover, for all g ∈ K, there exists some k ∈ N such that χkn(g) ∈
G.

Proof. Set K :=
⋃
i∈ω

Gi. Define G0 := G, and for i > 0, set Gi as follows.

For odd i: Let (Gi, χ1, . . . , χn−1) be some n−1-contraction hull of Gi−1. By Lemma 3.4.3,

there exists a unique extension of χn to Gi−1 such that Gi−1 := (Gi−1, χ1, . . . , χn) is an

n-precontraction group extending Gi−1, thus Gi−1 ⊆ Gi. Moreover, we can show χn(Gi) ⊆
Gi−1: pick some g ∈ Gi, so by (Φ)n−1 there exists some k ∈ K such that χkn−1(g) ∈ G,

thus by (C2n), χn(g) = χn(χ
k
n−1(g)) ∈ G.

For even i, set Gi to be the Hahn product

Gi :=
∏
Γ

R (3.14)

Where Γ is an ordered set with domain:

[Gi−1] ∪
(
ωn−1 × (G>0

i−1 \ χn(Gi−1))

)
(3.15)

With <Γ defined as follows:

• [Gi−1] keeps its usual ordering

• ωn−1× (G>0
i−1 \χn(Gi−1)) is ordered anti-lexicographically, so for (α, a), (β, b), where

α, β ∈ ωn−1 and a, b ∈ G>0
i−1 \ χn(Gi−1), if a = b then:

(α, a) >Γ (β, b) ⇐⇒ α < β

Otherwise:
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3. JUST CONTRACTIONS

(α, a) >Γ (β, b) ⇐⇒ a > b

• For γ ∈ [Gi−1] and (α, a), note that a ̸∈ χn(Gi−1), hence set:

γ >Γ (α, a) ⇐⇒ χn(γ) > a

Define the contractions on Gi−1 as follows:

(i) For γ ∈ [Gi−1] and j ∈ [1, n], set χj(1γ) = χj(γ) i.e the point which the archimedean

class of γ maps to in Gi−1.

(ii) For (α, a) and j < n, set:

χj(1(α,a)) := 1(α+ωj−1,a)

For χn, set:

χn(1(α,a)) := a

It can be easily verified that Gi−1 := (G,χ1, . . . , χn) is an n-precontraction group. More-

over, by the Hahn embedding theorem we know Gi−1 embeds into Gi as ordered abelian

groups, and from the way we defined the contractions on Gi, we see that this embedding

is also an Ln-homomorphism, thus Gi−1 ⊆ Gi. Furthermore, note that χn(Gi+1) ⊆ Gi

Given some i and a ∈ Gi, the preimages of a under χi are added in either Gi+1 or Gi+2,

thus all the contractions must be surjective on K. Finally, note that χn(Gi+1) ⊆ Gi for

all i < ω, thus for all k ∈ Gi, we have χin(k) ∈ G, thus for all k ∈ K, there exists some

i ∈ K such that χin(k) ∈ G.

Lemma 3.4.5. (Φ)n−1 =⇒ (Φ)n

Proof. Embed some n-precontraction group G into some n-contraction group K. We define

some strictly increasing chain of n-precontraction groups Gi all contained in K. Since

K |= Tn, after atmost |K|+ steps, the resulting structure must also be a model of Tn.

Set G0 := G. Assume we have some n-precontraction group Gα with the factoring property

over Gβ for all β < α, in particular Gα embeds into K over Gβ.

When α is odd, set Gα+1 to be some n− 1-contraction hull of Gα, by Lemma 3.4.3, Gα is

an n-precontraction group with the factoring property over Gα with respect to Tn.

For even α, pick some a ∈ G>0
α \ χn(Gα). There exists some b ∈ K such that χn(b) = a.

Set the domain of Gα+1 to be:
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3.4 Multiple Contractions

Gα+1 := Gα +
∑
r∈Nn

Zχr(b)

Where for some tuple r := (r1, . . . , rn) ∈ Nn, we define χr(x) as:

χr(x) := χr11 ◦ . . . ◦ χrnn (x)

Note that by (C3n), each element of {χr(b) | r ∈ Nn} has distinct valuations, and for any

i ∈ [1, n]:

χi(χ
r)(b) = χi ◦ χr11 ◦ . . . ◦ χrii ◦ . . . ◦ χr11 ◦ (b)

= χri+1
i ◦ . . . ◦ χr11 (b)

= χs(b) ∈ Gα+1

Thus Gα+1 is closed under all contractions, hence is an n-precontraction group. It remains

to show Gα+1 has the factoring property over Gα. Let H be an arbitrary n-contraction

group, so we have an Ln-embedding Gα ↪→ H. Pick some b ∈ H with χn(b) = a, then the

sets:

B := {χr(b) | r ∈ Nn} B := {χr(b) | r ∈ Nn}

together satisfy the conditions of Lemma 2.3.13, thus we have an ordered abelian group

isomorphism:

ϕ : Gα +
∑
r∈Nn

Zχr(b) → Gα +
∑
r∈Nn

Zχr(b) : χr(b) 7→ χr(b)

The usual calculations further show ϕ is an Ln-homomorphism, thus Gα+1 embeds into H
over Gα.

For limit ordinals α set Gα to be:

⋃
β<α

Gβ

Then there must be some ordinal γ < |K|+ such that Gγ is a Tn-hull of G. Given an

arbitrary Tn-hull G of G, we know G embeds into K, thus for all g ∈ Gγ there exists some

k ∈ ω such that χkn(g) ∈ G.
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3. JUST CONTRACTIONS

3.4.2 Existential Closedness

Given two n-contraction groups G ⊆ H, and some b ∈ H \ G, we need to construct

some sequence (bi)i which gives a generating set for G⟨b⟩ as an abelian group. Again, we

induct on the number of contractions, so the base case is just the regular characteristic

sequence for 1-contraction groups, then given the n − 1-sequence, so a generating set for

(G,χ1, . . . , χn−1)⟨b⟩, we construct the n-characteristic sequence.

Definition 3.4.6. We define n-characteristic sequences as follows. For n = 1, an n-

characteristic sequence of some b is any 1-characteristic sequence of b in (G,χ1). For some

n > 1, an n-characteristic sequence of b in (G,χ1, . . . , χn) is some sequence (bi, gi)i<ωn

such that:

(I)n For any ordinal α, the sequence (bα+i, gα+i)i<ωn−1 is an (n − 1)-characteristic se-

quence of bα in (G,χ1, . . . , χn−1), in particular this holds for α = ωn−1j where

j ∈ ω.

(II)n Fix some j ∈ ω, if bωj is (n− 1)-super-transcendental then:

bω(j+1) = χn(bi+γ)

where γ is the point from which (gωj+i)i<ωn−1 is null. We say γ is the (n− 1)-null

point of b.

(III)n Otherwise, if bωj is (n−1)-algebraic or (n−1)-transcendental but not (n−1)-super-

transcendental, set bω(j+1) = 0.

The existence of n-characteristic sequences is evident from the definition. If bα = 0 for some

α < ωn, we say b is n-algebraic, and has n-characteristic sequence length α, where

α is the least such. Otherwise we say b is n-transcendental, and has n-characteristic

sequence length ωn. If b is n-transcendental but (gi)i<ωn is eventually zero, we say it is

n-super-transcendental. These are well defined because:

For the rest of this section fix some b ∈ H \G.

Lemma 3.4.7. The n-characteristic sequences of b in G satisfy the following:

(i) For any two n-characteristic sequences (bi, gi)i∈ωn and (bi, gi)i∈ωn and α < ωn, we

have:

[bα] = [bα]

(ii) If b has an n-characteristic sequence of length α, then all its n-characteristic se-

quences have length α (thus the n-characteristic length of b is well-defined, hence so

are the definitions of n-algebraic, n-transcendental and n-super-transcendental).
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3.4 Multiple Contractions

(iii) If (bi, gi)i<ωn is a n-characteristic sequence, then for all α < ωn, the sequence

(bα+i, gα+i)i<ωn is an n-characteristic sequence of bα.

Proof. Identical to Lemma 3.2.9 and Lemma 3.3.9.

Lemma 3.4.8. The n-characteristic sequences of b in G also satisfy the following:

(i) For all ordinals α < β with bβ ̸= 0 we have [bα] > [bβ]

(ii) If b is n-transcendental, or n-algebraic with an n-characteristic sequence of limit

ordinal length, then for all α < ωn,

bα ̸= 0 =⇒ [bα] ̸∈ [G]

(iii) If b is n-algebraic with an n-characteristic length α, where α is a successor ordinal,

then for all β < α, [bβ] ̸∈ [G] and

[bα] ∈ [G] ⇐⇒ [G+ Zbα] = [G]

Thus the ordered abelian group generated by G and the elements of the n-characteristic

sequence has natural valuation:

[
G+

∑
i<ωn

Zbi
]
= G ∪ {[bβ] | β < α}

where α is the length of any n-characteristic sequence.

Proof. For the first, note that [bα] > [bα+1] from the construction of 1-characteristic se-

quences, and [bα] > [bα+ωk ] for all k < n, since bα+ωk = χk+1(bα+γ) for some γ < ωk.

Points (ii) and (iii) follow from Lemma 3.4.7 and the construction of n-characteristic se-

quences. The statement about the natural valuation of the group generated by G and the

n-characteristic sequence follows from the fact that the valuations of [bα] are all distinct

from each other and [G] for α less than the n-characteristic length of b.

Lemma 3.4.9. Fix some n-characteristic sequence (bi, gi)i<ωn. Let α < β < ωn be

ordinals. Suppose gγ = 0 for all γ satisfying α < γ ≤ β. If we write β as:

β = α+ ωn−1cn−1 + . . .+ ωc1 + c0

where ci ∈ ω, then bβ can be written as:

χc01 ◦ . . . ◦ χcn−1
n (bα)
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Proof. For any k with 1 ≤ k ≤ n, let Ψk be:

Ψk For b ∈ H \G with k-characteristic sequence (bi, gi)i<ωk , and any ordinals γ < η < ωk

with η written as:

γ + ωk−1dk−1 + . . .+ ωd1 + d0

where d0, . . . , dk−1 ∈ ω, if gi = 0 for all i ∈ (γ, η], then we can write bη as:

χd01 ◦ . . . χdk−1

k (bγ)

It is sufficient to prove Ψk for all k ∈ [1, n]. Ψ1 follows from the definition of 1-characteristic

sequences, so assume Ψk−1. Fix some α < β < ωk with:

β := α+ ωk−1ck−1 + . . .+ ωc1 + c0

where c0, . . . , ck ∈ ω, and suppose gi = 0 for all i with α < i ≤ β. Let β := α+ ωk−1ck−1,

then we can write β as:

β = β + ωk−2ck−2 + . . .+ ωc1 + c0

then by Ψk−1 applied to β and β we know:

bβ = χc01 ◦ . . . ◦ χck−2

k−1 (bβ)

But from the definition of n-characteristic sequences, we know bβ = χk(bα), thus:

bβ = χc01 ◦ . . . ◦ χck−1

k (bα)

Lemma 3.4.10. For any b ∈ H \G, the structure G⟨b⟩ has domain:

G+
∑
i<ωn

Zbi

where (bi, gi)i<ωn is any n-characteristic sequence of b.

Proof. For any k ∈ [1, n], let Ψk be the statement:
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3.4 Multiple Contractions

For any b ∈ H \ G and k-characteristic sequence (bi, gi)i<ωk , the structure

(G,χ1, . . . , χk)⟨b⟩ has domain:

G+
∑
i<ωk

Zbi

We know Ψ1 is true from Lemma 3.2.10, so assume for induction that Ψk−1 holds for some

k. Fix some b ∈ H \G and some k-characteristic sequence (bi, gi)i<ωk . By Lemma 3.4.8,

to prove Ψk it is sufficient to show:

χj(bi) ∈ G+
∑
i<ωk

Zbi

for all i < ωk and j ∈ [1, k]. By Ψk−1, we know this is true for all j < k and i < ωk. Fix

some α < ωk, then (bα+i, gα+i)i∈ωk−1 is an (k − 1)-characteristic sequence of bα.

1. Suppose bα is not (k − 1)-super-transcendental.

(a) Suppose there exists some β ∈ (α, α+ ωk−1), with gβ ̸= 0, we can assume β is

the least such. Then there exists some γ ∈ [α, β) and j ∈ [1, k − 1] such that

bβ = χj(bγ)− gβ

By the construction of characteristic sequences, we know [χj(bγ)] = [gβ]. Sup-

pose we write γ as:

γ = α+ ωk−2ck−2 + . . .+ ωc1 + c0

Then by Lemma 3.4.9, we can write bγ as:

bγ = χ
ck−2

k−1 ◦ . . . ◦ χc01 (bα)

With this, we can now calculate χn(bγ):

χk(bα) = χk ◦ χj ◦ χ
ck−2

k−1 ◦ . . . ◦ χc01 (bα)

= χk(χj(bγ))

= χk(gβ) ∈ G

(b) However, if there is no β ∈ (α, α + ωk−1) with gβ ̸= 0, then since bα is not

(k−1)-super-transcendental, it must be (k−1)-algebraic. By the same argument

as the previous case, we see that χn(bα) ∈ G.
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2. If b is (k− 1)-super-transcendental, then if there exists some β ∈ (α, α+ωk−1) with

gβ ̸= 0, then repeat (1a). Otherwise, by definition of k-characteristic sequences,

we must have χk(bα) = bα+ωk−1 , thus χn(bα) is in the group generated by the

characteristic sequence.

From now on fix some n-characteristic sequence (bi, gi)i<ωn . Let us further extend Defini-

tion 3.2.11, and Definition 3.3.12 to n-contraction groups.

Definition 3.4.11. Let xα be the term obtained by replacing the occurrence of b in bα

with the variable x, so:

xα :=



0 If bα = 0

x− gα If α = 0

χ1(xα−1)− gα If α is a successor ordinal and bα ̸= 0

χk(xβ)− gα If (*)

Where (*) asserts that α is a limit ordinal, bα ̸= 0 and β ∈ [ωn, ω(n+ 1)) is past the null

point of bωn

Definition 3.4.12. Define the type pb as:

pb(x) :=
⋃
α∈ωn

Dbα(xα) (3.16)

Where Dh(y) is defined in Definition 3.2.11.

Lemma 3.4.13. p(x) is a type of G.

Proof. Let b have an n-characteristic sequence of length α. Pick some finite subset ∆ of pb.

If α is a successor ordinal, then we can find some finite sequence of ordinals α1, . . . , αn, α,

such that ∆ can be written as:

∆(x) := ∆1(x) ∧∆2(x)

Where ∆i is defined as:

∆1(x) :=

n∧
i=1

aαi < xαi < aαi

∆2(x) := xα = bα
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By the same arguments as in Lemmas (3.2.12) and (3.3.15), we see that ∆ is finitely

realised in G. Similarly, if α is a limit ordinal, then we can write ∆ as just ∆1, and again

by the same arguments as the aforementioned lemmas, we see that ∆ still must be realised

in G.

Lemma 3.4.14. For any other n-contraction group H with G ⊆ H, and b ∈ H \ G with

b |= pb(x), there exists an Ln isomorphism ϕ over G:

ϕ : G⟨b⟩H → G⟨b⟩H (3.17)

Proof. Apply Lemma 2.3.13 and Lemma 3.4.10 in the same way as in the proofs of

Lemma 3.2.13 and Lemma 3.3.16.

Thus by Fact 2.1.12 applied to Lemma 3.4.13 and Lemma 3.4.14, we have:

Proposition 3.4.15. G is existentially closed in G⟨b⟩.

3.4.3 Initial structures

Lemma 3.4.16. There is some n-contraction group that embeds into all n-contraction

groups.

Proof. Consider the set
∐
ωn R, where

χi(1[ω
n−1cn + . . .+ ωi−1ci + . . . c1]) = 1[ωn−1cn + . . .+ ωi−1(ci + 1)]

For any n-contraction group (G,χ1, . . . , χn) and a ∈ G, we see that (
∐
ωn R, χ1, . . . , χn) ∼=

(0, χ1, . . . , χn)⟨a⟩. So we just take the n-contraction hull, and the resulting structure

embeds into all n-contraction groups.

3.4.4 Final Result

By Theorem 2.1.14, combined with Lemma 3.4.5, Proposition 3.4.15 and Lemma 3.4.16,

we get:

Theorem 3.4.17. The theory of n-contraction groups has quantifier elimination, has a

prime model and is complete.

3.4.5 Countable Models

In the paper Krapp and S. Kuhlmann, 2023, the authors construct an explicit example of

a centripetal contraction group.
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Theorem 3.4.18 (Krapp and S. Kuhlmann, 2023, p. 21). There is an explicit construction

of a countable centripetal contraction group.

Proof. Let V be the Hahn sum:

∐
Q

Q

Then V is countable and [V ] is isomorphic to (Q, <). Since any two linear orders are

isomorphic, there exists an order isomorphism σ : Q → V >0. The map

χ : V >0 → V >0 : 1q 7→ σ(q) : (ri)i 7→ σ(max supp(ri))

extended to V in the expected way, is a contraction on V , but not necessarily centripetal.

To make it so, we need to choose σ in a particular way. For all z ∈ Z set σ(z) := 1z−1, and

extend σ from (z, z+1) to (1z−1, 1z−2) via any order isomorphism. Then for q ∈ [z, z+1],

we have χ(1q) ∈ [1z−1, 1z−2] < 1q−1, thus χ is centripetal.

We can extend this idea very easily to n-contraction groups.

Theorem 3.4.19. For all n ∈ ω, there exists a countable n-contraction group.

Proof. Let V be the Hahn sum:

∐
(Qn,<lex)

Q

For some i ∈ [1, n], define the map σi : Qn−i × Z → V >0 as:

σi(qn, . . . , qi+1, z) = 1qn,...,qi+1,z−10

for qj ∈ Q and z ∈ Z. Extend σ to Qn−i+1 in any order preserving way, then σ must be a

surjection, since the image of σ can get arbitrarily big in V >0. Define χi : V
>0 → V >0 as:

χi(1qn,...,q1) = σ(qn, . . . , qi)

Then each χi is a centripetal contraction, once we extend them to the entirety of V . It

remains to verify (C2n) and (C3n).

(C2n): Fix some q := qn, . . . , q1 ∈ Qn. Note that for all k ∈ N, χki−1(1q) ∈ A =

1qn,...,qi,Q,0,...,0, but χi(A) = σi(qn, . . . , qi) is a single point, thus χi(χ
k
i−1(1q)) = χ(1q).
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(C3n): Fix some q ∈ Qn as before, and remember that for all k ∈ N, χki−1(1q) ∈ A. But

χi(1q) = σ(qn, . . . , qi) < 1qn,...,qi−5,0,...,0 < A. Thus χi(1q) < χki−1(1q).

3.4.6 Infinitely many contractions

Definition 3.4.20. Let Lα be the language ⟨+,−, 0, <, {χi}i<α⟩ be the language of or-

dered abelian groups along with n unary functions, where α is an ordinal. We will call a

structure (G,+,−, 0, <, {χi}i<α), (or just (G, (χi)i<α)) an n-precontraction group if:

C1α For all i ≤ α, the structure (G, χi) is a centripetal precontraction group

C2α For all j < i < α and x ∈ G, we have χi(χj(x)) = χi(x)

C3α For all j < i < α, k ∈ N and x ∈ G, x > 0, we have χi(x) < χkj (x)

Furthermore, if all the maps χi are surjective, we will call (G, (χi)i<α) an α-contraction

group. Let Tα be the theory of α-contraction groups.

Since the reduct of an α-contraction group to finitely many contractions will be a model

of Tn, we get:

Theorem 3.4.21. For any ordinal α, Tα has quantifier elimination.

We could also replace α with any linearly ordered set and get the same result.

3.5 Weak o-minimality

It was proved by F-V Kuhlmann that contraction groups are weakly-o-minimal:

Theorem 3.5.1 (F.-V. Kuhlmann, 1995). The theory of divisible centripetal contraction

groups is weakly o-minimal.

We should mention that the proof was originally published in F.-V. Kuhlmann, 1995, but

a more complete version can be found in the appendix of S. Kuhlmann, 2000.

The goal of this section is to show that for any n, the theory of n-contraction groups is

weakly o-minimal. From now on we fix some n ∈ N and work within a model

G := (G,χ1, . . . , χn) of Tn!

Notation 3.5.2. For any two contractions η1, η2 ∈ {χ1, . . . , χn}, with η1 := χi and

η2 := χj , we say η1 > η2 if and only if i > j.

3.5.1 χn-monomials and polynomials

To examine definable sets in some contraction group, we need a concise way to de-

scribe unary functions in our theory. For 1-contraction groups, this was done using

χ-polynomials, which essentially look like nested applications of χ and translations. A

χ-monomial (F.-V. Kuhlmann, 1995, p. 8) is a function of the form:
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χ[a1, . . . , ak](x) = χ(χ . . . (χ(x− a1)− . . .− ak−1)− ak)

And a χ-polynomial is a term of the form:

k∑
i=1

ziχ[a1, . . . , ai](x) + z0x+ c

The proof of weak o-minimality for 1-contraction groups involved showing that every

definable function is piecewise equal to a χ-polynomial, then showing that χ-polynomials

were monotonic (on some sufficient region). For n-contraction groups, we will do the same.

Definition 3.5.3. For some a ∈ G, define Ma,Oa as follows:

Ma := {x ∈ G | [x] < [a]}

Oa := {x ∈ G | [x] ≤ [a]}

So Ma is the largest convex subgroup of G not containing a, and Oa is the smallest convex

subgroup that does contain a. Given this, we can define sets of the form d+Ob, d+Mb

for some d, b ∈ G as you would expect.

Fact 3.5.4. For any non-zero a, b ∈ G, either a+Ma∩ b+Mb = ∅ or a+Ma = b+Mb

Proof. If a+Ma ∩ b+Mb ̸= ∅, then we must have [a] = [b] since for all x ̸= 0, x+Mx is

contained within [x]. Fix some z ∈ a+Ma ∩ b+Mb, and let a+ γ ∈ a+Ma, so [γ] < [a],

then:

[b− (a+ γ)] = [(b− z) + (z − a) + γ]

≤ max{[b− z], [z − a], [γ]} By the ultrametric inequality

< [b] Since [b− z], [z − a] and [γ] are less than [b]

Hence a+γ ∈ b+Mb, so a+Ma ⊆ b+Mb, and by a symmetrical argument we also have

b+Mb ⊆ a+Ma.

Definition 3.5.5. The χn-monomials are a collection of terms which we define induc-

tively:

• x is a χn-monomial, with characteristic domain C(x) := G and length l(x) = 0

• If t(x) is a χn-monomial with characteristic domain C(t(x)), then for any i ≤ n,

χi(t(x)) is a χn-monomials with characteristic domain C(t), and length l(t) + 1.

• If t(x) is a χn-monomial with characteristic domain C(t), then for any i ≤ n,

χi(t(x) − a) is a χn monomial with characteristic domain C(t(x)) ∩ t−1(a + Ma)
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(this can sometimes be empty!), and length l(t) + 1. We denote the term χi(x− a)

as χi[a](x).

Note that a χn-monomial is a term and not a function! We list some examples:

Example 3.5.6. Let us again stress that χn-monomials are defined syntactically, so

two χn-monomials which have the same characteristic domain and are equal as functions

on the characteristic domain are still different χn-monomials.

• χ2(x− a) has characteristic domain a+Ma and length 1

• χ2(χ1(x− a)) has characteristic domain a+Ma and length 2. Note that this term

considered as a function on G takes the fact same values as χ2(x − a), but since

χn-monomials are terms, both are distinct as χn-monomials (but have the same

characteristic domains!).

• For some sequence of contractions δ1, . . . , δm, and constants a1, . . . , am ∈ G ̸=0, the

term:

δm[am] ◦ . . . ◦ δ1[a1](x)

is a χn-monomial of length m, and characteristic domain:

(a1 +Ma1) ∩ δ1[a1]−1(a2 +Ma2) ∩ . . . ∩ δm−1[am−1]
−1(am +Mam)

The motivation behind the definition of characteristic domains is that outside it, a χn-

monomial is piecewise equal to some ‘simpler’ χn-monomial. We will make this idea more

precise in Lemma 3.5.10, but for now consider the monomial χ1(x−a), if 0 < x < a+Ma,

then v(x− a) = v(a), so χ1(x− a) = χ1(a), hence the monomial is constant. Conversely,

if x > a+Ma > 0, then v(x− a) = v(x), hence χ1(x− a) = χ1(x).

Definition 3.5.7. Fix some sequence of contractions δ1, . . . δk, and constants a1, . . . , am ∈
G. A successive sequence of χn-monomials is some sequence (fi(x))i≤k defined as:

fi(x) := δi[ai] ◦ fi−1(x) = δ1[ai] ◦ δi−1[ai−1] ◦ . . . ◦ δ1[a1](x) (3.18)

where δi[ai] := δi(x − ai). Given such a sequence, with zi ∈ Q, zk ̸= 0 and c ∈ G, a

χn-polynomial is a term of the form:

f(x) =

k∑
i=0

zifi(x) + c =

k∑
i=0

ziδi[ai] ◦ . . . ◦ δ1[a1](x) + c

Observe that C(fk) ⊆ C(fk−1) ⊆ . . . ⊆ C(f0), so we set the characteristic domain and

length of f to be the same as fk. Unless otherwise stated, f and g will denote the χn
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polynomials:

f(x) =

k∑
i=0

zifi(x) g(x) =

l∑
i=0

zigi(x) (3.19)

fi(x) = χni(fi−1(x)− ai) gi(x) = χmi(gi−1(x)− bi)

where zi, zi ∈ Z and ai, bi ∈ G. We call (fi), (gi) the terms of a χn-polynomial, and we

say the terms of f and g coincide up to the d-th term if fi and gi are the χn-monomial

for all i ≤ d.

Definition 3.5.8. We can consider any two Ln-terms with only one free-variable t1(x)

and t2(x), as functions on G. We say they are equal on G, denoted as t1 ≡ t2 if and only

if they take the same values of each element of G. Given some M ⊆ G, we write t1 ≡M t2

if and only if they take the same values on each element of M . So to clarify:

t1 ≡ t2 ⇐⇒ For all x ∈ G, t1(x) = t2(x)

t1 ≡M t2 ⇐⇒ For all x ∈M , t1(x) = t2(x)

Example 3.5.9. Assuming all the ai are different constants and δi’s are different contrac-

tions, the following are not χn polynomials:

x+ χ1[a1] ◦ χ2[a2](x) + χ2[a2] ◦ χ1[a1](x)

x+ χ2[a1] ◦ χ1(x) + χ2[a1](x)

The following is a χn-polynomial:

x+ χ1(x− a1) + χ2(χ1(x− a1)− a2)− χ1(χ2(χ1(x− a1)− a2)− a3)

As stated earlier, the reason for defining characteristic domains is that outside of its

domain, a χn-polynomial has a different form. The following lemma makes this idea

precise.

Lemma 3.5.10. Let f(x) be a χn-polynomial with characteristic domain Cf . There

is a finite convex partition P of G \ Cf such that for each M ∈ P, there exists some

χn-polynomial FM with M ⊆ C(FM ) and f ≡M FM .

Proof. Assume f has the same form as (3.19). We construct a sequence P1,P2, . . . ,Pk
of finite convex partition of G \ C(f) such that Pi is a refinement of Pi+1, and Pk will

be our desired partition. To simplify the proof, assume ai ̸= 0 for all i ≤ k, otherwise

C(fi) = C(fi−1), so we do not need to do any partitioning at the i-th step.

Define the following partition P1 of M := G \ C(f):
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M1 := {x ∈M | |x| > |a1|+Ma1 ∧ sign(x) = sign(a1)}

M2 := {x ∈M | x ∈ a1 +Ma1}

M3 := {x ∈M | |x| < a1 +Ma1}

M4 := {x ∈M | |x| ≥ |a1|+Ma1 ∧ sign(x) = − sign(a1)}

Note that eachMi is a convex set, except in the case where Cf bisects one of them. In that

case, we split the bisected set, Mi into M
−
i ,M

+
i , into the convex components above and

below Cf (one or both may be empty!, e.g if f(x) := χ1(x − a1)). This can only happen

at the first step, and we still end up with a finite convex partition, so we can safely ignore

this case.

Fix some sequence δ = (δ1, . . . , δi−1) ∈ {1, 2, 3, 4}i−1, and suppose we have constructed

some Mδ and some successive sequence of χn-monomials (F δj )j<i (whose elements will be

denoted denote as Fj), such that fj ≡Mδ
Fj for all j < i and Fi has characteristic domain

containing Mδ. From this, we construct {Mδ,j}j=1,2,3,4 as follows:

Mδ,1 := {x ∈Mδ | |χ[ai−1](x)| > |ai|+Mai ∧ sign(χ[ai−1](x)) = sign(ai)}

Mδ,2 := {x ∈Mδ | χ[ai−1](x) ∈ ai +Mai}

Mδ,3 := {x ∈Mδ | |χ[ai−1](x)| < ai +Mai}

Mδ,4 := {x ∈Mδ | |χ[ai−1](x)| ≥ |ai|+Mai ∧ sign(χ[ai−1](x)) = −sign(ai)}

We should examine how fi behaves on each:

• x ∈ Mδ,1,Mδ,4: For any such x, we have [Fi−1(x) − ai] = [Fi−1(x)], hence fi(x) =

χni(Fi−1(x)), and the characteristic domain of χni(Fi−1(x)) is the same as the char-

acteristic domain of Fi−1(x),

• x ∈ Mδ,2: Evidently fi(x) = χni(Fi−1(x) − ai). Since Mδ is within the characteris-

tic domain of Fi−1, by definition Mδ,2 is contained in the characteristic domain of

χni(Fi−1(x)− ai).

• x ∈Mδ,3: Note that [Fi−1(x)− ai] = [ai], hence fi is constant.

Using this inductive process, we can construct P = {Mδ | δ ∈ {1, 2, 3, 4}k} which is a

convex partition of G \ C(f) (note that M2,...,2 is contained in C(f)!). It can be shown

that on every non-empty Q ∈ P, f can be written as χn-polynomial with characteristic

domain containing Q.

3.5.2 Strategy for proving Weak o-minimality

By quantifier elimination, to prove some structure is weakly o-minimal, it is sufficient to

show that for any term t(x), the sets:
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{x ∈ G | t(x) = 0}

{x ∈ G | t(x) > 0}

can be written as a finite union of open convex sets. For that, it is sufficient to show that

for any term t(x), we can form a partition of G, say P, of finitely many open convex sets

such that on each element of P, t(x) is either constant or monotonic. And for that, it is

sufficient to prove the following two statements:

• Every χn polynomial is monotonic on its characteristic domain.

• For any term t(x), we can split up G into finitely many open convex sets Q1 . . . Qk

such that for each i, there exists some χn-polynomial fi withQi ⊆ C(fi) and t ≡Qi fi.

3.5.3 Monotonicity of χn polynomials

Fix some χn-polynomial f .

Lemma 3.5.11. For all x ∈ C(f), we have :

[f1(x)] > [f2(x)] > . . . > [fk(x)]

Proof. Let 1 < i ≤ k, then:

[fi(x)] = [χni(fi−1 − ai)]

< [fi−1(x)− ai]

< [fi−1(x)]

The last inequality is true since fi−1(x) ∈ ai +Mai .

Lemma 3.5.12. Every χn-monomial is monotonic on the entirety of G.

Proof. Given some t : G → G which is monotonic on G, we know that both δ(t(x)) and

t(x)− c are also monotonic on G, where δ ∈ {χ1, . . . , χn} and c ∈ G. So we can induct on

the length of some χn-monomial to show it is monotonic.

The following is very similar to the corresponding proof for χ-polynomials (Lemma A.45

in S. Kuhlmann, 2000, p. 146)

Lemma 3.5.13. The χn-polynomial f is monotonic on its characteristic domain.

Proof. Let m ≤ k be the least integer such that zm ̸= 0, and without loss of generality

assume zm > 0. Pick any a, b ∈ C(f), we want to show that a < b =⇒ f(a) ≤ f(b).

If m = k then f is a χn-monomial so by Lemma 3.5.12 the statement is already true, so

assume 0 ≤ m < k. There are three cases to consider:
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1. [fm(a)− fm(b)] ≥ [fm+1(a)]

2. [fm(a)− fm(b)] ≥ [fm+1(b)]

3. [fm(a)− fm(b)] < [fm+1(a)], [fm+1(b)]

• Case 1: Since fm+1(a) = δm+1(fm(a)− am+1), we deduce that [fm+1(a)] < [fm(a)−
am+1]. By the ultrametric inequality, we know that any x, y and z satisfy:

[x− y] < [x− z] =⇒ [x− z] = [y − z]

hence by setting x := fm(a), y := fm(b) and z = am+1 we get:

[fm(a)− am+1] = [fm(b)− am+1]

Which tells us fi(a) = fi(b) for all i > m. Since fm(a) < fm(b), we deduce that

f(a) ≤ f(b).

• Case 2: This is symmetrical to case 1.

• Case 3: By Lemma 3.5.11, we have for all i > m:

[fm(a)− fm(b)] < [fi(a)], [fi(b)]

We know that for tuples x0, . . . , xl and x
′
0 . . . , x

′
l, the valuation v satisfies:

x0 < x′0 and [xl − x′l] < max
0<i≤l

{[xi], [x′i]} =⇒
∑
0≤i≤l

xi <
∑
0≤i≤l

x′i

From which the inequality f(a) < f(b) follows easily.

Subsequently, Lemma 3.5.10 tells us that any χn-polynomial is piecewise monotonic on

the entirety of G:

Lemma 3.5.14. Any χn-polynomial is piecewise monotonic on G.

Proof. By Lemma 3.5.10, we can partition G \ Cf into finitely many convex sets P such

that on each M ∈ P, f is equal to some χn-polynomial fM such that M ⊆ C(fM ). But

we know fM is monotonic on its characteristic domain, hence monotonic on M , hence one

each M ∈ P, f is monotonic, hence f is piecewise monotonic on G.
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3.5.4 Every term is locally a χn polynomial

The goal for this section is to show that for any term t(x), we can form a partition a

finite open convex partition P of G, such that for each M ∈ P, t(x) is equal to some χn

polynomial fM , and M is a subset of the characteristic domain of fM . We will call t(x)

P-nice if P satisfies what was just stated, and call t(x) nice if such a partition exists.

We will call a χn-polynomial nice on P , for some open convex P , if we can find an open

convex partition P of P such that f is P-nice.

Remark 3.5.15. To show a term t is nice on some set C ⊆ G, it is enough to give a finite

convex partition Q of C and show t is nice on every Q ∈ Q. Also, if t is nice on C, then

it is also nice on any D ⊆ C.

To show that every term is nice, we will induct on the terms of the language, hence it

is sufficient to show for any two χn-polynomials f(x), g(x) and contraction χi that both

f(x) + g(x) and χi(f(x)) are nice. Let us begin with the former, with the proof building

on the same proof for χ-polynomials (Lemma A.44 in S. Kuhlmann, 2000, p. 145).

Lemma 3.5.16. Let f(x), g(x) be χn-polynomials. Then f(x) + g(x) is nice on C :=

Cf ∩ Cg.

Proof. Let d be the least integer such that fd and gd do not coincide (so are different χn-

monomials). We give a finite convex partition P of C such that on each M ∈ P, we can

rewrite f, g as χn-polynomials which are equal up to the d-th terms. Then we partition

M in the same way, so f and g coincide piecewise up to the d + 1-th term, and repeat

until f + g eventually coincide piecewise up to the min(len(f), len(g))-th term.

Stated precisely, suppose we have a convex subset Q of C such that there are two χn-

polynomials F,G with terms Fi and Gi respectively, which satisfy:

• F ≡Q f , G ≡Q g and Q ⊆ C(F ), C(G).

• len(F ) ≥ len(f) and len(G) ≥ len(g).

• F and G have the same terms up to (and not including) the d-th element, so for all

i < d Fi is the same χn-monomial as Gi.

We give a finite convex partition P of Q such that on each M ∈ P, either one of the

following happens:

(I) One of Fd or Gd is constant, or

(II) We can find χn-polynomials FM , GM (with coefficients zM,i, zM,i and terms FM,i, GM,i)

such that:

(i) The terms of FM , GM coincide up to and including the d-th term

(ii) Both the characteristic domain of FM , GM contain M

(iii) The sum (F +G)(x) is equal to (FM +GM )(x) for all x ∈M
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(iv) One of the following occurs:

(II.a) len(FM ) = len(F ) + 1 and len(GM ) = len(G)

(II.b) len(FM ) = len(F ) and len(GM ) = len(G) + 1

(II.c) len(FM ) = len(F ) and len(GM ) = len(G)

By repeating this process a finite number of times (consider the pair (len(F )−d, len(G)−d),
at least one will reach 0 as d increases), we eventually get a finite convex partition P
of C such that on each Q ∈ P, we set f, g equal to some FQ, GQ whose terms coin-

cide up to the length of the smallest one (in other words FQ, GQ coincide up to the

min(len(FQ), len(GQ))-th term.)

So fix some χn-polynomials F,G (with terms (Fi)i, (Gi)i), who have the same terms up

to and not including the d-th term, and some convex set M ⊆ C. Set y(x) := Fd−1(x) =

Gd−1(x), and write F,G as follows:

Fi(x) := ηi(Fi−1(x)− ai) Gi(x) := ηi(Gi−1(x)− bi)

F (x) :=

len(F )∑
i=0

ziFi(x) G(x) :=

len(G)∑
i=0

ziGi(x)

For ease of notation write ad and bd as a and b. First, we deal with the cases when at

least one of a, b is equal to zero. Note that in these cases, we do not need to partition M

to get FM , GM equal up to and including the d-th element.

• a = 0, b ̸= 0: We know that y(x) ∈ b + Mb, hence Fd(x) ≡M ηd(y(x)) ≡M ηd(b)

which is constant, hence we are in scenario (I).

• a ̸= 0, b = 0: Same as above, so we are in scenario (I)

• a, b = 0: Since Fd and Gd are different terms, we must have ηd ̸= ηd. Suppose

ηd > ηd, then by axiom (C2n) we have Fd(x) ≡M ηdηd(y(x)). Set GM := G, and

define FM as:

FM,i(x) :=

Gi(x) if i ≤ d

Fi−1,d(ηd(y(x))) if len(G) + 1 ≥ i > d

zM,i :=


zi if i < d

0 if i = d

zi−1 if len(F ) + 1 ≥ i > d

Then we can write F +G as:
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(F +G)(x) =

d−1∑
i=0

(zi + zi)Gi(x) +

len(F )∑
i=d

ziFi(x) +

len(G)∑
i=d

ziGi(x)

=
d−1∑
i=0

(zi + zi)Gi(x) + 0Gd + zdGd +

len(F )∑
i=d

ziFi(x) +

len(G)∑
i=d+1

ziGi(x)

=
d∑
i=0

(zM,i + zM,i)GM,i(x) +

len(F )+1∑
i=d+1

zM,iFM,i(x) +

len(G)∑
i=d+1

zM,iGM,i(x)

Hence F +G = FM +GM . Since FM (x) = F (x) for any x ∈ G, FM must have the

same characteristic domain as F , and its length has only increased by one, hence we

are in scenario (II.a). Similarly, if ηd > ηd, then we are in case scenario (II.b).

• a = b ̸= 0: This is identical to the previous case.

Now suppose both a, b ̸= 0 and a ̸= b. Since y(x) lies in both a+Ma, b+Mb, Fact 3.5.4

tells us that a+Ma = b+Mb. Define M1,M2,M3,M4,M5 as follows:

M1 :=M ∩ y−1({x ∈ a+Ma | x < a+Mb−a})

M2 :=M ∩ y−1(a+Mb−a)

M3 :=M ∩ y−1({x ∈ a+Ma | a+Mb−a < x < b+Mb−a})

M4 :=M ∩ y−1(b+Mb−a)

M5 :=M ∩ y−1({x ∈ a+Ma | x > b+Mb−a})

Then {Mi | i = 1, 2, 3, 4, 5} is a finite convex partition ofM . We define new χn-polynomials

on each Mi depending on what y(x) does on each set.

• x ∈M1: We know y(x) ∈ a+Ma, and y(x) < a+Mb−a, hence we get y(x) = a− ϵ,

where [a] > [ϵ] ≥ [b− a]. This tells us that y(x)− a = −ϵ and y(x)− b = (a− b)− ϵ.

Using the ultrametric inequality, we can do the following:

[y(x)− a)] = [−ϵ]

= [(a− b)− ϵ]

= [y(x)− b]

Hence χ(y(x) − a) = χ(y(x) − b) for any contraction χ. We then split into the

following cases:

– ηd = ηd: Define FM1 as:
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FM1,i(x) :=

Gi(x) if i ≤ d

Fi,d(Gd(x)) if len(F ) ≥ i > d

zM1,i = zi

and set GM := G. Then F and FM1 have the same characteristic domain and

length, so we are in case scenario (II.c).

– ηd ̸= ηd: We apply the same argument as when a, b are both zero, so if ηd > ηd

then we are in case scenario (II.a), and if ηd < ηd then we are in scenario (II.b).

• x ∈M2: Write y(x) as a+ϵ, where [ϵ] ≤ [b−a]. Then [y(x)−b] = [(a−b)+ϵ] = [a−b],
hence ηd(y(x)− b) is constant, so we are in case scenario (I).

• x ∈M3: Write y(x) as a+ ϵ, where Mb−a < ϵ < b−a+Mb−a. Then [y(x)−a] = [ϵ],

and [y(x) − b] = [(a − b) + ϵ] = [ϵ], but y(x) − a and y(x) − b have opposite signs.

Again we split into cases depending on whether ηd and ηd are equal.

– ηd = ηd: Note that ηd(y(x) − a) = −ηd(y(x) − b). Set GM3,i := G and define

FM3 as:

FM3,i(x) :=

Gi(x) if i ≤ d

ηi(FM3,i−1(x)− (−ai)) if len(F ) ≥ i > d

Since y(x)−a and y(x)−b have the same valuation but opposite signs, we have:

FM3,d = ηd[bd] ◦ Fd−1(x)

= ηd(Fd−1(x)− bd)

= −ηd(Fd−1 − ad)

= −Fd(x)

Hence by induction, we have for all i ≥ d:

FM3,i = −Fi

So to ensure we do not change the value of the sum (F +G)(x) when replacing

F with FM3 , we need to flip the sign of the zi’s from the d-th term onwards:

zM3,i :=

 zi if i < d

−zi if len(F ) > i ≥ d

Now let us compute (F +G):
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(F +G)(x) =

d−1∑
i=0

(zi + zi)Gi(x) + zdFd(x) + zdGd(x) +

len(F )∑
i=d+1

ziFi(x) +

len(G)∑
i=d+1

ziGi(x)

=

d−1∑
i=0

(zi + zi)Gi(x)− zdGd(x) + zdGd(x) +

len(F )∑
i=d+1

ziFi(x) +

len(G)∑
i=d+1

ziGi(x)

=

d∑
i=0

(zM3,i + zM3,i)GM3,i(x) +

len(F )∑
i=d+1

zM3,iFM3,i(x) +

len(G)∑
i=d+1

zM3,iGM3,i(x)

= (FM3 +GM3)(x)

Let us verify that the characteristic domain of FM3 contains M3. Pick some

x ∈M3. Note that:

C(FM3,d) = C(Fd−1) ∩ (ηd[bd] ◦ Fd)−1(−ad+1 +Mad+1)

Since M ⊆ C(F ), we have x ∈ C(F ), so

η[ad] ◦ Fd(x) ∈ a+Ma

Since FM3,d(x) = Fd(x), we also have

η[bd] ◦ Fd(x) ∈ −ad+1 +Mad+1

Hence x ∈ C(FM3,d). By a similar calculation, we also have x ∈ C(FM3,i) for

all i ≥ d, hence M3 ⊆ C(FM3). Subsequently, we are in scenario (II.c).

– ηd ̸= ηd: Say ηd > ηd, so we have ηd(y(x)−a) = −ηd(ηd(y(x)−b). Set GM3
:= G

and define FM3 as:

FM3,i(x) :=


Gi(x) if i ≤ d

ηd(Gd(x)) if i = d+ 1

ηi−1(FM3,i−2(x)− (−ai−1)) if len(F ) + 1 ≥ i > d+ 1

So for all i > d we have FM3,i(x) = −Fi−1(x), hence we flip the sign of the

relevant zi’s.
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zM3,i :=


zi if i < d

0 if i = d

−zi if len(F ) + 1 ≥ i > d

Let us again calculate F +G:

(F +G)(x) =
d−1∑
i=0

(zi + zi)Gi(x) +

len(F )∑
i=d

ziFi(x) +

len(G)∑
i=d

ziGi(x)

=
d−1∑
i=0

(zi + zi)Gi(x) + 0Gd + zdGd +

len(F )∑
i=d

ziFi(x) +

len(G)∑
i=d+1

ziGi(x)

=
d∑
i=0

(zM3,i + zM3,i)GM3,i(x) +

len(F )+1∑
i=d+1

zM,iFM,i(x)

+

len(G)∑
i=d+1

zM,iGM,i(x)

By a calculation similar to the one done in the previous case, we see that

M3 ⊆ C(FM3), hence we are in scenario (II.a). Similarly, if ηd < ηd, then we

are in scenario (II.b).

The calculations M4,M5 are symmetrical to M2,M1 respectively, hence omitted.

Just like with Lemma 3.5.13, we use Lemma 3.5.10 to show that f +g is nice on the whole

of G.

Lemma 3.5.17. Let f(x), g(x) be χn polynomials. Then f(x) + g(x) is ‘nice’ on G.

Proof. By Lemma 3.5.10, we a finite convex partition Pf of G such that for all M ∈ Pf ,
there is some χn-polynomial fm such that f ≡M fM and M ⊆ C(fM ). Similarly, we have

another finite convex partition Pg of G. Define P as:

P := {M ∩N |M ∈ Pf , N ∈ Pg}

Then P is also a finite convex partition of G. Pick some M ∩N ∈ P, then f + g is equal

to fM + gN . Apply Lemma 3.5.16 to fM + gM , then f + g is nice on M ∩N . Hence f + g

is nice on every element of P, hence nice on G.

The following proof is almost identical to lemma A.46 in S. Kuhlmann, 2000.
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Lemma 3.5.18. Let f be a χn polynomial of the form:

f(x) =
k∑
i=0

zifi(x) + c

where c ∈ G is a constant. Then for all i ≤ n, χi(f(x)) is nice on C := C(f).

Proof. Fix some contraction χi, and to ease notation write it as χ. Let m be the least

integer such that zm ̸= 0, and let c̃ = − c
zm

. If m = k, then

χ(f(x)) = χ(fm(x)− c̃)

Consider the following partition of C:

M1 := {x ∈ C | |fm(x)| >
∣∣c̃+Mc̃

∣∣ and sign(fm(x)) = sign(c̃)}

M2 := {x ∈ C | fm(x) ∈ c̃+Mc̃}

M3 := {x ∈ C | |fm(x)| <
∣∣c̃+Mc̃

∣∣}
M4 := {x ∈ C | |fm(x)| ≥

∣∣c̃+Mc̃
∣∣ and sign(fm(x)) = −sign(c̃)}

Exactly as done in the proof of Lemma 3.5.10, we see that {M1,M2,M3,M4} is a finite

convex partition of C and on each we can write χ(f(x)) as an appropriate χn-polynomial.

So assume m < k, and set y(x) := fm(x)− am+1, hence we can write f as:

f(x) = F (y) =

k∑
i=m+2

zifi,m+2(δ(y))

+ zm+1δ(y)

+ zmy

− zm(−am+1 + c̃)

(3.20)

where η = ηm+1. Write d := c̃− am+1. If d = 0 then we have:

χ(f(x)) = χ

(
k∑

i=m+2

zifi,m+2(η(y)) + zm+1η(y) + zmy

)

Since we are assuming x ∈ C(f), we can apply Lemma 3.5.11 to get:

[
k∑

i=m+2

zifi,m+2(η(y))

]
< [η(y)] < [y]

and by applying axiom (C2n) we get:
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χ(f(x)) = χ(y(x)) = χ(fm(x)− am+1)

which is a χn polynomial with characteristic domain containing in C(f), so we are done.

So now suppose d ̸= 0, then we can partition C(f) into 5 open convex sets as follows:

M1 = C ∩ y−1(G<0 −Od)

M2 = C ∩ y−1({g ∈ Od | g < d+Md})

M3 = C ∩ y−1(d+Md)

M4 = C ∩ y−1({g ∈ Od | g > d+Md})

M5 = C ∩ y−1(G>0 −Od).

Note that M1 < M2 < M3 < M4 < M5, assuming y(x) is increasing (by Lemma 3.5.12,

y(x) must be monotonic on G). We will show how χf(x) behaves on each Mi.

• x ∈ M1: Since [y(x)] > [d], we know what χ(f(x)) = χ(y(x)), which is a χn-

polynomial with characteristic domain equal to C(fm+1), hence M1 ⊆ C(χ(y(x)))

• x ∈M2: We see that [y − d] = [v], hence χ(y(x)) = −sign(zm)χ(d)

• x ∈M4: Similar to the case for M2, we have χ(y(x)) = sign(zm)χ(d)

• x ∈M5: Similar to the case for M1, we have χf(x) = χ(y(x)).

It remains to analyse the behaviour of χ(f(x)) on M3. Since y(x) ∈ d + Md, we know

that η(y(x)) is constant on M3, hence the first two lines of equation (3.20) are constant.

Set

γ := c̃− z−1
m

k∑
i=m+1

fi,m+1(c̃)

Then we have:

χ(f(x)) = χ

(
k∑

i=m+2

zifi,m+2(η(y)) + zm+1η(y) + zmy − zm(−am+1 + c̃)

)
= χ(zm(y + am+1 − γ))

= sign(zm)χ(fm(x)− γ)

= sign(zm)χ[γ](fm(x))

Set g(x) := χ[γ](fm(x)), then it remains to show that M3 ⊆ C(g).

Claim 3.5.18.1. If M3 ̸= ∅, then (c̃+Md) ∩ C(fk,m) ̸= ∅.
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Proof. Since y(x) := fm(x)− am+1, we can write M3 as:

M3 = C(fk) ∩ f−1
m (c̃+Md)

Pick some h ∈ M3, then fm(h) ∈ c̃+Md, as h ∈ f−1
m (c̃+Md), and fm(h) ∈ C(fk,m), as

h ∈ C(fk).

■

Claim 3.5.18.2. If (c̃+Md) ∩ C(fk,m) ̸= ∅, then [γ − c̃] < [d] and [c̃] = [γ].

Proof. Pick some h := c̃+ ϵ ∈ c̃+Md, where ϵ ∈ Md. Then we have:

[h− am+1] = [c̃+ ϵ− am+1]

= [d− ϵ]

= [d]

Hence fm+1,m(x) = ηm+1(x− am+1), and subsequently fi,m(x) for all i > m are constant

on c̃+Md.

This implies that (c̃ +Md) ⊆ C(fk,m), since for any x ∈ c̃ +Md, we have fm+1,m(x) =

fm+1,m(c̃), in particular c̃ ∈ C(fk,m). Since

c̃− γ = z−1
m

k∑
i=m+1

fi,m+1(c̃)

Lemma 3.5.11 tells us that:

[c̃− γ] = [fm+1(c̃)]

But fm+1(c̃) = η(c̃− am+1) = η(d), hence

[c̃− γ] = [η(d)] < [d]

Similarly, since c̃ ∈ C(fk,m), we know that

[
k∑

i=m+1

fi,m(c̃)

]
< [c̃]

hence [γ] = [c̃]. ■
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So by combining the previous two claims, we know that M3 ̸= ∅ implies [γ − c̃] < [d] and

[c̃] = [γ]. So let us assume M3 ̸= ∅, which means:

M3 = C ∩ y−1(d+Md)

⊆ y−1(d+Md)

⊆ f−1
m (c̃+Md) as fm(x) = y(x)− am+1 and d = c̃ = am+1

⊆ f−1
m (γ +Md) as [c̃− γ] > [d] and [c̃] = [γ]

⊆ f−1
m (γ +Mγ) as γ +Md ⊆ γ +Mγ

⊆ C(g) where g(x) := η(fm(x)− γ)

Hence we are done.

Again just like Lemma 3.5.13 and Lemma 3.5.16, we now shot χ(f) is nice on the entirety

of G.

Lemma 3.5.19. Let f be a χn polynomial. Then for all i ≤ n, χi(f(x)) is ‘nice’ on G.

Proof. This is a direct application of Lemma 3.5.10. There is a finite convex partition P
of G such that for each M ∈ P, f is equal to some fM with M ⊆ C(fM ). Simply apply

Lemma 3.5.18 to each fM .

By combining lemmas 3.5.18 and 3.5.16 (and inducting on complexity), we get the follow-

ing:

Theorem 3.5.20. Let t(x) be any term. Then t is nice.

This combined with quantifier elimination gives us the following:

Theorem 3.5.21. For any n ∈ N, the theory of n-contraction groups is weakly o-minimal.

3.6 Remarks on Algebraicity

We conclude this chapter with some remarks on how the notion of n-algebraicity is different

from other notions of algebraicity.

3.6.1 Model theoretic algebraic closure

It was proven by F.V-Kulnmann in F.-V. Kuhlmann, 1995, p. 13 that the definable closure

of some subset A in some 1-contraction group G is the divisible hull of the precontraction

group generated by A. However, we only consider the notion of 1-algebraicity when we

have an extension of 1-contraction groups G ⊆ H and some b ∈ H \ G. Thus comparing

1-algebraicty to model-theoretic algebraicity is somewhat meaningless since the definable

closure G is just G itself. Suppose however we dropped the requirement that G must be

a 1-contraction group and allow it to be a 1-precontraction group. Then model-theoretic

algebraicity implies 1-algebraicity, but the converse does not hold.
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Lemma 3.6.1. Let G ⊆ H be 1-precontraciton groups, with H a 1-contraction group, and

pick some b ∈ H \ G. If b is in the (model-theoretic) algebraic closure of G, then b is

1-algebraic over G, with characteristic sequence of length 1.

Proof. By Theorem 1.3 from F.-V. Kuhlmann, 1995, we know that b is in the divisible hull

of G, thus [G+Qb] = [G], so χ(G+Q) ⊆ G, thus b is 1-algerbraic, and has characteristic

sequence (b, χ(b), 0, . . .).

To see why the converse does not hold, pick some b ∈ H with χ(b) ∈ G but [b] > [G].

Then b is 1-algebraic, with 1-characteristic sequence of length 1, but of course, b is outside

the divisible hull of G, so is not in the (model-theoretic) algebraic closure of G.

3.6.2 Transitivity of Algebraic Closure

Say an extension G ⊆ H of n-contraction groups is algebraic if every element b of H \ G
is n-algebraic over G. This definition is not immediately useful, because if we pick some

b, b′ ∈ H \G, it is not clear whether b′ is n-algebraic over Gb := G⟨b⟩. Regardless, we can

prove such a relation is transitive.

Lemma 3.6.2. Let G ⊆ H ⊆ K be n-contraction groups. If the extensions G ⊆ H and

H ⊆ K are 1-algerbaic, then the extension G ⊆ K is 1-algebraic.

Proof. Pick some k ∈ K \ H, we need to show k is n-algebraic over G. We know k is

n-algebraic over H, so has an n-characteristic sequence (kH,i, hi)i≤α, where α < ωn is

written as:

α = ωn−1cn−1 + . . .+ ω1c1 + c0

where ci ∈ ω for all i < n. Let (kG,i, gi)i<ωn be an n-characteristic sequence of k in G. We

need to show this sequence has finite length, for which it is sufficient to show kG,i ∈ H

for some i ∈ ωn. Suppose we have shown kG,i = kH,i and gi = hi for all i ≤ β, for some

β < α.

1. Suppose hi = 0 for all i ∈ [β, α], then for all i ∈ [β, α], there is no h ∈ H, and thus

no g ∈ G such that:

[(kG,i + hi)− h], [(kG,i + hi)− g] < [kG,i + hi]

Thus gi = 0 and hence kG,i = kH,i for all i ∈ [β, α], so we are done.

2. Suppose there exists some least γ ≥ β with hγ ̸= 0. Then by the same argument

as in the previous case, we see that gi = hi = 0 and kG,i = kH,i for all i ∈ [β, γ).

Furthermore, since hγ ̸= 0, we know that [kG,γ + hγ ] ∈ [H].
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(a) If is no g ∈ G with [(kG,γ + hγ) − g] < [kG,γ + hγ ], then we must have gγ = 0

and kG,γ+1 = χ(kG,γ) ∈ H by (CA), so we are done.

(b) If there is some g ∈ G with [(kG,γ + hγ)− g] < [kG,γ + hγ ], then we can assume

gγ = hγ = g. Restart this process but replace β with γ.

Due to the construction of n-characteristic sequences, this process must eventually termi-

nate, hence we see that k is n-algebraic over G.
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Chapter 4

Contractions and Derivations

4.1 Introduction

The goal of this chapter is to examine the action of the logarithmic derivative along with

various contractions on the value group of a trans-exponential expansion of R.

Let K be a trans-exponential Hardy field as in Theorem 1.2.3. Then by Proposition 1.5.5,

we know that G := v(K) along with the well defined map ψ : vf 7→ vf ′ − vf will give a

model of T−
ψ , and if K is closed under integration, then (G,ψ) is a model of Tψ. Recall

that the function (id+ ψ) : G ̸=0 → G maps v(f) to v(f ′), which suggests that the action

of log, on the value group G, must be definable in G via:

v(log(f)) = (id+ ψ)−1(ψ(v(f)))

The following proposition shows how we can make this idea precise.

Proposition 4.1.1. Let G be an asymptotic couple such that ψ(G ̸=0) has no maximal

element. If we define the map χ : G→ G as:

χ(x) :=


(id+ ψ)−1(ψ(x)) if x < 0

−χ(−x) if x > 0

0 if x = 0

Then χ is well defined and (G,χ) is a centripetal precontraction group. Moreover if ψ(G ̸=0)

is downwards closed, then χ is surjective, hence (G,χ) is a centripetal contraction group.

Furthermore, for all x < 0 and n ∈ N, the functions χ and ψ satisfy the equation:

ψ(χn(x)) = ψ(x) +

n∑
i=1

χi(x) (4.1)
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Proof. To show χ is well defined, pick some b ∈ ψ(G ̸=0). Since ψ(G ̸=0) has no maximum

element, we know there exists some c ∈ ψ(G ̸=0) such that b < c. By Lemma 4.2.7 (3b),

we know that b has a preimage under (id + ψ), thus χ is well defined on ψ−1(b) ∩ G<0,

and hence well defined on the entirety of G.

To show χ is a centripetal precontraction, we need to verify the axioms in Definition 1.4.2.

Axioms (C0), and (C−) are evident from the definition. (CA) follows from (A2) for ψ and

(C≤) follows since both ψ and (id + ψ)−1 are increasing on negative elements of G. To

prove (CP), choose some x < 0, and suppose for a contradiction that χ(x) ≤ x. Then:

(id+ ψ)−1(ψ(x)) ≤ x

So by applying (id+ ψ) to both sides we have:

ψ(x) ≤ (id+ ψ)(x)

Then if we subtract ψ(x) from both sides, we would have x ≥ 0 which is a contradiction.

If ψ(G ̸=0) is downwards closed, then again by Lemma 4.2.7, we have ψ(G ̸=0) = (id +

ψ)(G<0) from which surjectivity of χ immediately follows.

The equation (4.1) follows since (id+ ψ)(χ(x)) = ψ(x) for all x < 0.

Note that we do not need (C2) to define χ or even make χ-surjective. Moreover, if the

map χ is surjective, that does not imply that G satisfies (C2). However, if χ is surjective,

then we can deduce that ψ(G ̸=0) is downwards closed.

Proposition 4.1.2. Let G be an asymptotic triple such that ψ(G ̸=0) has no maximal

element. Define χ as in Proposition 4.1.1. If χ is surjective, then ψ(G ̸=0) is downwards

closed.

Proof. By Lemma 4.2.7 we know that (id+ψ)(G<0) is a downwards closed set, and since

χ is surjective, we also have χ(G<0) = G<0. Since ψ satisfies:

ψ(x) = (id+ ψ)(χ(x))

For all x < 0, we deduce that ψ(G<0) = ψ(G ̸=0) is downwards closed.

Hyper-logarithms

So far we know that the logarithm χ, logarithmic derivative ψ and hyper-logarithm L := χ2

are all well defined on vK. As shown in Proposition 1.5.8, we can define further structure

on the value group, via the map θ : G→ G. As a reminder, θ is a centripetal contraction

satisfying the functional equations:
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θ(x) = χ(x) + θ(χ(x))

(id+ ψ)(L(x)) = ψ(x)− θ(x)

for all x < 0. The intuition behind θ is that it is the infinite sum

θ(x) :=
∑
i<ω

χi(x)

But obviously, we do not have an operation for infinite sums in the language of ordered

abelian groups, thus it becomes necessary to add the function θ to our language, to describe

the action of the derivative of the hyper-logarithm on vK.

To check that this collection of functions describes completely the structure induced by the

hyper-logarithmic derivative on vK, we would need to show that the theory Tψ−χ described

in Definition 1.5.9 is complete. As stated in the introduction, we did not manage to do

this, but we did manage to prove quantifier elimination and completeness for the structure

with domain G and just the contractions χ,L and θ (Theorem 4.4.13).

The outline of this chapter is as follows. In Section 4.2 we present the proof of quantifier

elimination and completeness for Tψ, which was originally proved in Aschenbrenner and

van den Dries, 2000. Our exposition will be identical to that in the original paper, except

we go into more detail on a few details in certain proofs. We also highlight some potential

gaps in the original paper and provide explanations on how to get around them (see the

remarks after Lemma 4.2.19 and Theorem 4.2.40). In Section 4.3, we present a proof of

quantifier elimination and completeness for the structure containing just χ and θ, then

in Section 4.4 we do the same but with the three contractions χ,L and θ. Finally in

Section 4.5 we give a partial proof of quantifier elimination and completeness for Tψ−χ,

the theory with all the contractions and ψ.

4.2 Asymptotic Triples

In the original paper on asymptotic triples by Aschenbrenner and van den Dreis, quantifier

elimination is proved for a 2-sorted theory involving an ordered abelian group and a real

closed field, with the group being a vector space equipped with scalar multiplication over

the field. They then assert that a proof of QE for the one sorted structure defined in

Definition 1.5.2 follows easily. However, in the two sorted case, the axiom (A4) is replaced

with:

A4’ For all v, w, if [v] < [w] then ψ(v) > ψ(w)

In the one sorted structure we do not have such a powerful axiom, the most we can express

is the same statement but with non-strict inequalities. Thus some small difficulties arise

when applying the proof of QE for two sorted triples to the one sorted case. We highlight

them as they occur, and present solutions.
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Definition 4.2.1. Let Lψ be the language from Definition 1.5.2. Let L′
ψ be Lψ with the

predicate P removed. If V is a (closed) asymptotic triple, we call the reduct of V to L′
ψ

a (closed) asymptotic couple. Note that Tψ can be expressed completely in L′
ψ, since

in a model V of Tψ, the only value for PV is ψ(V ̸=0), so we denote the reduct of Tψ to L′
ψ

as Tψ | Lψ.

Notation 4.2.2. For an asymptotic triple V, we denote ΨV to be ψ(V ̸=0). When the

context is clear we just denote it as Ψ.

4.2.1 Preliminaries on asymptotic triples

Definition 4.2.3. Let C,D be ordered sets and f : C → D be a function. We say f

has the intermediate value property (IVP) if for any x, y ∈ C with f(x) < f(y) and

a ∈ (f(x), f(y)), there exists some z ∈ C between x and y such that f(z) = a.

The following lemma will be crucial in many proofs going forward.

Lemma 4.2.4 (Aschenbrenner and van den Dries, 2000, p. 319). Let (G,+, <, 0) be an

arbitrary ordered abelian group and C ⊆ G be a convex subset. Suppose for all a, x, y ∈ C,

η : C → G satisfies:

1. If x ̸= y then [x− y] > [ηx− ηy]

2. Both of the following hold

(a) If 0 < a < x < y and [y − x] < [y − a] then ηx = ηy.

(b) If 0 > a > x > y and [y − x] < [y − a] then ηx = ηy.

Then f : C → G : x 7→ x+ηx is strictly increasing and has the intermediate value property

Proof. Let x, y ∈ C with x > y, then:

f(x)− f(y) = x− y + (ηx− ηy)

But (1) states that [x− y] > [ηx− ηy], hence:

sign(f(x)− f(y)) = sign(x− y)

so f(x) > f(y), hence f is strictly increasing. To prove IVP, we can assume without loss

of generality that C is of the form [0, c] or [−c, 0] for some c ∈ G>0 and that η(0) = 0.

Thus by (1), we have for all x ∈ C ̸=0, [x] > [η(x)].

Suppose C = [0, c], pick some v ∈ G such that 0 < v < c+ ηc, then it is sufficient to prove

that there is some x ∈ [0, c] such that v = x+ ηx. Note that by (1), we have the following

series of deductions:
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[c+ ηc] = [c] =⇒ [v] ≤ [c+ ηc] = [c] =⇒ [c− v] ≤ [c]

This means we only have to consider the following two cases:

Case 1 [c] > [c − v]: Set u := v − ηc, we claim that 0 < u < c. Since v < c + ηc, we

know that u < c, so suppose u ≤ 0. Then 0 < v < ηc, which means [v] < [ηc] < [c], which

then means [c− v] = [c] by the ultrametreic inequality, which contradicts the assumption

[c] > [c− v]. Hence our goal is to show that u+ ηu = v, for which it is sufficient to show

that ηu = ηc. But note that [c− u] < [c], since:

[c− u] = [(c− v) + (v − u)] = [c− v + ηc] < [c]

with the final inequality holding since both [c − v], [ηc] < [c]. So we can apply (2.a) to

deduce ηu = ηc hence we are done.

Case 2 [c] = [c − v]: Set u := v − ηv, like before we want to show that both u ∈ (0, c)

and u + ηu = v. Since v > 0 and v ≻ ηv (recall that x ≻ y mean [x] > [y]), u must be

positive. Suppose v ≥ c, then since v < c+ ηc, , we have 0 ≤ v − c ≤ ηc ≺ c which means

[c − v] < [c] which is a contradiction. Then 0 < u < v and [u − v] = [ηv] < [v], hence

applying (2.a) yields us ηu = ηv, so we are done.

The same calculations work when C = [−c, 0], except we apply (2.b) instead.

Remark 4.2.5. If η(x) is constant on archimedean classes then η(x) and η(x − a) both

satisfy (2), for any constant a ∈ C with C−a ⊆ C. Thus we know the function x+ψ(x−a)
is strictly increasing and has the intermediate value property on both convex components

of G ̸=a.

Proposition 4.2.6 (Aschenbrenner and van den Dries, 2000, p. 320). Let V be an asymp-

totic triple and x ̸= y be non-zero elements of V , then ψ satisfies the following:

1. [x] = [y] =⇒ ψ(x) = ψ(y)

2. If x, y ∈ PV then ψ(x−y) > min{x, y}, so in particular, ψ(ψx−ψy) > min{ψx, ψy}

3. [x− y] > [ψx− ψy]

4. The function id+ ψ is increasing on V ̸=0, so x > y =⇒ (id+ ψ)(x) > (id+ ψ)(y)

Proof. Axioms (A2) and (A4) of asymptotic triples imply that ψ is constant on archimedean

classes. For (2), suppose x < y ∈ PV , then by A3, we have:

ψ(x− y) + (y − x) > y =⇒ ψ(x− y) > x = min{x, y}
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To prove (3), note that [x − y] < [x], [y] implies [x] = [y], which implies ψ(x) = ψ(y) so

the statement must be true. So assume [x− y] = max{[x], [y]} and [x] ≥ [y], so ψx ≤ ψy.

From (2) we know that

ψ(ψx− ψy) > min{ψx, ψy} = ψx

Hence the contrapositive of axiom A4 implies [ψx − ψy] < [x] = [x − y]. Finally, for (4),

use (1) and (2) to satisfy the hypotheses of Lemma 4.2.4.

Lemma 4.2.7 (Aschenbrenner and van den Dries, 2000, p. 320). Let V be an asymptotic

triple.

1. The set (id+ ψ)(V >0) is closed upwards

2. The set (−id+ ψ)(V >0) is closed downwards

3. The following equalities hold:

(a) (−id+ ψ)(V >0) = (id+ ψ)(V <0)

(b) (−id+ ψ)(V >0) = {a ∈ V | a < b for some b ∈ ΨV}

Proof. For the first two, apply Lemma 4.2.4 to show that the functions x + ψ(x) and

−x + ψ(−x) have IVP and are strictly increasing on V >0, using Proposition 4.2.6 to

satisfy the two hypotheses. The equality in (3a), follows since ψ(x) = ψ(−x). Finally, for
(3b), pick some x ∈ (id+ψ)(V >0), which by (3a) we can write x = y+ψy for some y < 0,

hence x < ψ(y). Conversely, pick some x ∈ V such that x < ψb for some b ∈ V , b > 0,

and set:

y := min{b, ψb− x} > 0

Then since 0 < y ≤ b and ψy ≥ ψb we have:

x ≤ ψb− y ≤ ψy − y

Hence by (2), we see that x ∈ (id+ ψ)(V >0).

Definition 4.2.8. Given some asymptotic triple V, an H-cut is some downwards closed

set containing ΨV but disjoint from (id+ψ)(V >0). So PV must be an H-cut and moreover

Proposition 4.2.9 (Aschenbrenner and van den Dries, 2000, p. 321). Let V be an asymp-

totic triple.

1. There is at most one v ∈ V such that
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Ψ < v < (id+ ψ)(V >0) (4.2)

Hence V has at most two H-cuts.

2. V has two H-cuts if and only if there exists some v ∈ V such that (4.2) holds.

3. If Ψ has a largest element, then V has only one H-cut.

Proof. Suppose v < v′ both satisfy (4.2), then set u := v′ − v > 0. Then since (*)

ψ(u) ∈ Ψ < v and (**) ψ(u) + u ∈ (id+ ψ)(V >0) > v′ we have:

ψ(u) <︸︷︷︸
*

v = v′ − u <︸︷︷︸
**

ψ(u) + u− u = ψ(u)

This is a contradiction, hence there is only one v satisfying (4.2). Now suppose there are

three H-cuts C1 ⊂ C2 ⊂ C3. Then pick some v ∈ C2 \ C1 and v′ ∈ C3 \ C2, we see that

both v′, v satisfy (4.2), which cannot happen.

Suppose there are two distinct C1 ⊂ C2, then any v ∈ C2\C1 will satisfy (4.2). Conversely,

if there is some v satisfying (4.2), then we can define two distinct H-cuts C1 := (−∞, v)

and C2 := (−∞, v].

If Ψ has a maximal element a and V two H-cuts, then pick some b > a satisfying (4.2),

observe that 1
2(b− a) also satisfies (4.2), contradicting (1).

Definition 4.2.10. Let V be an asymptotic triple. We say some v ∈ V is an H-point if

it lies between ψ(V ̸=0) and (id+ ψ)(V >0), so:

ψ(V ̸=0) < v < (id+ ψ)(V >0)

Subsequently, by Proposition 4.2.9, there can be at most one H-point and it exists if and

only if V has two H-cuts.

Lemma 4.2.11. Let G and H be asymptotic triples, and suppose there exists an L′
ψ-

embedding ψ : G ↪→ H. If G has only one H-cut, then the map ψ is an Lψ-embedding.

Proof. Pick some g ∈ G, we need to show:

PG(g) ⇐⇒ PH(ϕ(g))

Suppose G |= PG(g), since G has only one H-cut, this means there exists some u ∈ G>0

such that g < ψ(u), but since ϕ is an L′
ψ-embedding, we know that ϕ(g) < ψ(ϕ(u)), thus
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ϕ(g) ∈ PH. Conversely, suppose G ̸|= PG(g). Since G has only one H-cut, this must mean

that g ∈ (id+ ψ)(G>0), thus ϕ(g) ∈ (id+ ψ)(H>0), so H ̸|= PH(ϕ(g)).

Before proceeding further we should mention some notation given in the closed asymptotic

couples paper.

Notation 4.2.12 (Aschenbrenner and van den Dries, 2000, p. 337). Let G be an ordered

abelian group, f : G→ G be any function, C ⊆ G be a convex subset, p, q ∈ G and S ⊆ G

a downwards closed subset.

1. We say f increases (decreases) on C from p to q if f is increasing (decreasing) on C

and f(C) = [p, q] (f(C) = [q, p]).

2. f increases (decreases) on C from −∞ to p (from p to −∞) if f is increasing (de-

creasing) on C and f(C) = (−∞, p].

3. f increases (decreases) on C from p to S (from S to p) if f is increasing (decreasing)

on C, p ∈ S and

f(C) = {v ∈ S | v ≥ p} = S ∩ [p,+∞)

4. f increases (decreases) from −∞ to S (from S to −∞) on C if f is increasing

(decreasing) on C and f(C) = S.

We will extend this notation as follows:

Notation 4.2.13. Fix the setup as in (4.2.12).

1. We say the limit of f on the right boundary of C is p if f increases or decreases

to p on C. We denote this as:

lim
x↑C

f(x) = p

2. Similarly, we say the limit of f on the left boundary of C is p if f increases or

decreases from p on C, denoted as:

lim
x↓C

f(x) = p

3. We define the following:

lim
x↑C

f(x) = S lim
x↓C

f(x) = S lim
x↑C

f(x) = −∞ lim
x↓C

f(x) = −∞

as expected.
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Notation 4.2.14. Let G ⊆ H be an extension of divisible ordered abelian groups, and

f : H → H a function such that f(G) ⊆ G. Let SH be a downwards closed subset of H

with SG := SH ∩G, and CH a convex subset of H with CG = CH ∩G. Let ∗ be an element

of G ∪ {SH} ∪ {−∞}.

1. We say the limit of f on the right boundary of CH is ∗ if f increases or

decreases to ∗ on CH , and we will denote it as:

lim
x↑CH

f(x) = ∗

Similarly, define the following as expected:

lim
x↓CH

f(x) = ∗ lim
x↑CG

f(x) = ∗ lim
x↓CG

f(x) = ∗

2. We define lim
x↑C

= ∗ as follows:

lim
x↑C

f(x) =


p ∈ G If lim

x↑CH

f(x) = lim
x↑CG

f(x) = p

−∞ If lim
x↑CH

f(x) = lim
x↑CG

f(x) = −∞

= S If lim
x↑CH

f(x) = SH and lim
x↑CG

f(x) = SG

3. For some d ∈ H and ∗ ∈ G ∪ {S} ∪ {−∞}, define:

lim
x→+d

f(x) = ∗ ⇐⇒ For sufficiently large y ∈ G with y < d, lim
x↑(y,d)

f(x) = ∗

lim
x→−d

f(x) = ∗ ⇐⇒ For sufficiently small y ∈ G with y > d, lim
x↓(d,y)

f(x) = ∗

where CH := (d, y)H , CG := (y, d)G and C := (y, d). We simply write:

lim
x→d

f(x) = ∗

when the direction we approach d is clear or is not relevant.

Lemma 4.2.15. Let G ⊆ H be an extension of asymptotic triples. Suppose further that:

(i) G ⊆ H a pure extension of ordered abelian groups

(ii) [G] is coinitial in [H]

(iii) [G] has no minimum

(iv) G has no H-point
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Then H has no H-point.

Proof. Suppose there exists some u ∈ H such that:

ψ(H ̸=0) < u < (id+ ψ)(H>0)

Then since [G] is coinitial in [Gb] and has no minimum, we must have:

ψ(G ̸=0) < u < (id+ ψ)(G>0)

Thus by (iv), we must have u ∈ H \ G. But the extension G ⊆ H is pure, so there

exists some g ∈ G such that [u − g] ̸∈ [G]. By (ii) and (iii) we can find some ϵ ∈ G with

[ϵ] < [u− g]. Then [u− g] = [u− g + ϵ], thus u− g and u− g + ϵ induce the same cut in

G, thus:

ψ(G ̸=0) < u < u+ ϵ < (id+ ψ)(G>0)

hence:

ψ(H ̸=0) < u < u+ ϵ < (id+ ψ)(H>0)

meaning H has two H-points, a contradiction.

4.2.2 Closure operator

We show that every asymptotic triple is embeddable in some closed asymptotic triple.

As a reminder, T−
ψ is the theory of asymptotic triples, and Tψ is the theory of closed

asymptotic triples. T−
ψ is the universal theory of Tψ, and the existential formulas of Tψ

assert that the image of ψ has no max and is everything below the set x+ψ(x) for x > 0.

Definition 4.2.16. Aschenbrenner and van den Dries, 2000, p. 324 Let V be a model of

T−
ψ . We say some W |= Tψ is an H-closure of V if it has the factoring property over V

with respect to Tψ.

An asymptotic couple can fail to be closed in one of three ways, either Ψ has a max, it

is not downwards closed or an H-point exists. The following three lemmas show that if

any of these occur, we can expand V in a way which stops it. Fix some asymptotic triple

V := (V, ψV , PV).

Lemma 4.2.17 (Aschenbrenner and van den Dries, 2000, p. 325). Suppose there exists

some a ∈ V >0 such that
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PV < a < (id+ ψ)(V >0) (4.3)

(so a is a H-point), then we can extend V to an asymptotic triple Vϵ := (Vϵ, ψ, Pϵ), where

Vϵ := V +Qϵ and 0 < ϵ < V >0 is an indeterminate such that:

• a = ψ(ϵ) + ϵ, hence there is no H-point in Vϵ.

• Pϵ := {x ∈ Vϵ | x ≤ a− ϵ}

• Vϵ has the factoring property over V with respect to Tψ.

Proof. An assortment of simple calculations shows that Vϵ is a model of T−
ψ . Moreover,

since ψ(V ̸=0
ϵ ) has a maximum element, by Proposition 4.2.9 we know it has no H-point.

It remains to show that the factoring property holds. Suppose we have an Lψ-embedding

i : V ↪→ W where W |= Tψ. Since a > PV we must also have i(a) > PW . Since ΨW has

no max, W can only have one H-cut, hence i(a) ∈ (id+ ψ)(W>0). Pick some δ > 0 in W

such that δ + ψ(δ) = a, then if we set i(qϵ) = qδ, where q ∈ Q, then the map i : Vϵ ↪→ W

is an Lψ-embedding Vϵ ↪→ W.

Note that after Lemma 4.2.17, Pϵ has a maximal element, namely ψ(ϵ) = a− ϵ.

Lemma 4.2.18 (Aschenbrenner and van den Dries, 2000, p. 325). Suppose PV has a

maximal element, then we can extend V to Vϵ := (Vϵ, ψ, Pϵ), where Vϵ is as defined in

Lemma 4.2.17, such that:

• ψ(ϵ) = max(PV) + ϵ, and hence akin to Lemma 4.2.17, if V has no H-point then Vϵ
has no H-point.

• Pϵ := {x ∈ Vϵ | x ≤ ψ(ϵ)}

• Vϵ has the factoring property over V with respect to Tψ.

Proof. Again, an aggregation of similar calculations shows that Vϵ is an asymptotic triple.

Conjecture that i : V ↪→ W is an Lψ-embedding into a model W of Tψ. Set a := maxPV ,

then a ∈ PV hence i(a) ∈ PW .

Since PW has no maximum, Lemma 4.2.7 informs us that there exists an element δ > 0 of

W such that −δ+ψ(δ) = a, so ψ(δ) = a+ δ. Extend i : V →W to Vϵ by setting i(ϵ) := δ,

then i : Vϵ ↪→ W is an Lψ-embedding.

After Lemma 4.2.18, Pϵ still has a max. specifically maxPϵ is ψ(ϵ) = maxP + ϵ. However,

since ψ(V ̸=0
ϵ ) has a maximal element, Proposition 4.2.9 tells us that Vϵ only has one H-cut

hence no H-point.

Lemma 4.2.19 (Aschenbrenner and van den Dries, 2000, p. 326). Suppose there exists

some a ∈ V with a ∈ PV \ΨV , then we can extend V to Vϵ := (Vϵ, ψ, Pϵ) where Vϵ := V +Qϵ
and ϵ > 0 is an indeterminate (not necessarily infinitesimal!) such that:
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(i) {x ∈ V >0 | ψ(x) > a} < Q>0ϵ < {x ∈ V 0 | ψ(x) < a}

(ii) ψ(ϵ) = a, and ψ(qϵ) = a for all q ∈ Q̸=0.

(iii) If V has no H-point and PV has no maximum, then the same holds for Vϵ and Pϵ.

(iv) Vϵ has the factoring property over V with respect to Tψ.

Proof. First, let us verify that Vϵ is indeed an asymptotic triple. Axiom (A1) is satisfied

since we have not changed the values of ψ on V in Vϵ. Additionally, axioms (A2) and (A4)

are fulfilled due to (ii) and (i) respectively. So all that remains is to check (A3), meaning

we need to verify that all pairs v, w ∈ Vϵ such that v ̸= 0 and w > 0 satisfy:

ψ(v) < (id+ ψ)(w)

Suppose a is not an H-point, so a < ψ(b) for some b ∈ V ̸=0. Then by condition (i), ϵ

cannot be infinitesimal with respect to V , so V >0 is coinitial in V >0
ϵ , which combined

with the fact that Vϵ satisfies (A4) tells us ψ(V ̸=0) is co-final in V ̸=0
ϵ . Then, since ψ on Vϵ

satisfies the conditions of Lemma 4.2.4, id + ψ must be increasing on V >0
ϵ . Since V >0 is

co-initial in V >0
ϵ , the set (id+ψ)(V >0) is also coinitial in (id+ψ)(V >0

ϵ ). Since V satisfies

axiom (A3), we then see that ψ(V ̸=0
ϵ ) < (id+ ψ)(V >0

ϵ ).

Now suppose a is an H-point, so a > ψ(V ̸=0). Then ϵ must be infinitesimal in V , so for

any q ∈ Q>0, we have

(id+ ψ)(qϵ) = qϵ+ ψ(ϵ) = qϵ+ a > a

Hence axiom (A3) is satisfied on Vϵ.

To show that the factoring property holds over Tψ, note that any W |= Tψ extending V
must have some element δ ∈W such that ψ(δ) = a.

Finally, if V has no H-point and PV has no maximum, then any a ∈ PV \ ψ(V ̸=0), must

be in the downwards closure of ψ(V ̸=0), so [ϵ] ≥ [V ], hence [V ] is coinitial in [Vϵ], thus

ψ(V ̸=0
ϵ ) has no maximum. Moreover, since V ⊆ Vϵ is a pure valuational extension, we can

apply Lemma 4.2.15 to deduce Vϵ has just one H-cut.

In the paper, it is claimed that after some (possibly transfinite) induction, we can turn

any asymptotic triple into a closed one. It is simple to show that after one application of

Lemma 4.2.17 and then ω applications of Lemma 4.2.18 on an arbitrary asymptotic triple,

the resulting triple (V, ψV , PV) has no H point and PV has no maximum. Then presumably

we keep applying Lemma 4.2.19 until ΨV is downwards closed, hence V must be closed.

However, it is not clear that this process will ever terminate. To get around this problem,

we can just make sure the contraction χ from Proposition 4.1.1 is well defined, then take

1-contraction hull, and the resulting structure will be a Tψ-hull.
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Lemma 4.2.20. Let V0 := (V, ψV , PV) be an asymptotic triple where PV has a maximal

element. Given Vn let Vn+1 be the resulting asymptotic triple after applying Lemma 4.2.18,

and set:

Vω :=
⋃
i∈ω

Vi

Then the asymptotic couple Vω only has one H-cut and ΨVω has no maximal element.

Moreover, it has the factoring property over V with respect to Tψ.

Proof. Suppose Vω has two H-cuts, so it must have some H-point a. Pick some n ∈ ω such

that a ∈ Vn, then a must also be a H-point in Vn, but since Vn only has one H-cut, this is

a contradiction. Similarly, since

Pω :=
⋃
i∈ω

Pi+1

and each Pi+1 does not have a maximum element, Pω also has no max.

Since the factoring property is preserved under infinite chains of extensions, Vω must have

the factoring property over V with respect to Tψ.

Lemma 4.2.21. Every asymptotic triple V has an H-closure U . Moreover, the domain of

U , U can be written as:

U := V +
∑
i∈I

Qδi

where (δi)i∈I is a collection of indeterminates such that [δi] ̸∈ [G] and [δi] ̸= [δj ] for all

i, j ∈ I, i ̸= J .

Proof. Let W be an asymptotic triple. We construct some H-closure as follows:

Step 1: Suppose W has a H-point. Then apply Lemma 4.2.17 to get a new asymptotic

V with no H-point and which factors over W with respect to Tψ. Else if W only had one

H-cut, set V := W.

Step 2: Now suppose PV has a maximal element, then apply Lemma 4.2.20 to get some

asymptotic triple Vω which only has one H-cut but PVω has no max, and has the factoring

property over W with respect to T−
ψ . If PV does not have a maximal element, then like

before set Vω := V.
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Step 3: Finally, suppose ΨVω is not downwards closed. Since ψ(V ̸=0
ω ) has no maximal

element, we can use Proposition 4.1.1 to define the contraction χ well defined on Vω. Then

embed (Vω, χ) into some 1-contraction hull (U, χ). We know that for all u ∈ U , there exists

some n ∈ N such that χn(u) ∈ Vω, thus extend ψ to U via:

ψ(u) = ψ(χn(u))−
n∑
i=1

χi(u)

for u < 0. Then by Equation (4.1), (U,ψ) is an asymptotic couple, and has the factoring

property over (Vω, ψ) with respect to Tψ | L′
ψ. By Remark 3.2.5, Vω ⊆ U is a pure

valuational extension of ordered abelian groups and [Vω] is coinitial in [U ]. Moreover,

since (Vω, ψ) has no H-point, we can apply Lemma 4.2.15 to deduce that (U,ψ) also has

no H-point. Thus U := (U,ψ, PU ), where PU is the downwards closure of ψ(U ̸=0), has

the factoring property over Vω with respect to Tψ. It remains to show that U is a closed

asymptotic triple. Since χ is well defined, ψ(U ̸=0) cannot have a maximal element, and

since χ is surjective, ψ(U ̸=0) is downwards closed, thus U |= Tψ and is a Tψ-hull of Vω,
hence of W.

The statement about the domain of U follows since in step 1 and step 2, we adjoin linearly

independent indeterminates to V , and by Remark 3.2.5, the same is done in step 3.

4.2.3 Model Completeness

Classifying elementary functions

Fix an extension of closed asymptotic triples G ⊆ H.

Definition 4.2.22 (Aschenbrenner and van den Dries, 2000, p. 331). Let {a0, a1, a2, . . .}
be a collection of constants in some asymptotic couple G.

For some a ∈ G, write:

ψa(x) := ψ(x− a)

Fix some tuple a1, . . . , an ∈ Gn. The function

ψa1,...,an(x) := ψan ◦ . . . ◦ ψa1(x)

is not defined on the entirety of G, for example when x = a1, ψ(x− a1) has no value. Let

Da1,...,an(G) be the domain of ψa1,...,an , so:

Da1(G) := {x ∈ G | x ̸= a1}

Da1,...,an+1(G) := {x ∈ Da1,...,an(G) | ψa1,...,an(x) ̸= an+1}
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Note that Dn(G) is made up of at most 2n convex components. When the context is clear

we denote Da1,...,am(G) as Dn(G), ψai as ψi and ψa1,...,an as ψn.

We prove some useful lemmas regarding these functions:

Lemma 4.2.23. Let G be an asymptotic triple, a1, . . . , an ∈ G and q1, . . . , qn ∈ Q, where

not all the qi are zero. Then on each convex component C of D1,...,n(G), the function:

x 7→ x+ q1ψ1(x) + . . .+ qmψ1,...,n(x) : D1,...,n → G

is strictly increasing and has the intermediate value property.

Proof. Fix some convex component C of D1,...,n(G), and define the function η : C → G as:

η(x) := q1ψ1(x) + . . .+ qnψn(x)

We show that η satisfies the conditions of Lemma 4.2.4, from which the result immediately

follows.

Condition (1) : First we show that [ψi(x) − ψi(y)] < [x − y] for all distinct x, y ∈ C

and i ∈ [1, n]. For i = 1, we have:

[ψ1(x)− ψ1(y)] = [ψ(x− a1)− ψ(y − a1)]

< [(x− a1)− (y − a1)] By Proposition 4.2.6

= [x− y]

If we assume for some i ∈ [1, n− 1] that [ψi(x)− ψi(y)] < [x− y], then:

[ψi+1(x)− ψi+1(y)] = [ψ(ψi(x)− ai+1)− ψ(ψi(y)− ai+1)]

< [(ψi(x)− ai+1)− (ψi(y)− ai+1)] By Proposition 4.2.6

= [ψi(x)− ψi(u)]

< [x− y] By our inductive assumption

Then when we calculate the valuation of [η(x)− η(y)]:

[η(x)− η(y)] =

[
n∑
i=0

qi(ψi(x)− ψi(y))

]
≤ max

0<i≤n

[
ψi(x)− ψi(y)

]
By the ultrametric inequality

< [x− y] By Proposition 4.2.6
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Condition (2) Without loss of generality, assume C > a1, and fix x, y, a ∈ C. It is

sufficient to show that [x − a1] = [y − a1], since η(x) is determined by ψ(x − a1). Since

a < a1 we have [x− a1] > [x− a], hence [x− a1] > [x− y], which means:

[x− a1] = [(x− y)− (y − a1)] = [y − a1]

Hence η satisfies the conditions of Lemma 4.2.4 so we are done.

We should verify that the functions ψi have the intermediate value property when G is a

closed asymptotic triple:

Lemma 4.2.24 (Aschenbrenner and van den Dries, 2000, p. 332). Let a = (a1, . . . , an) ∈
Gn, then Dn(G) has at most 2n convex components, and on each the function ψn is mono-

tone and has the intermediate value property.

Proof. For n = 1, D1(G) is the union:

{x ∈ G | x < a1} ∪ {x ∈ G | x > a1}

Moreover, the image of each convex component of Da under ψ(x− a1) is ΨG , which itself

is convex (since (G,ψG ,ΨG) is closed), which combined with the monotonicity of ψ yields

us the intermediate value property for ψn.

Suppose the lemma is true for all a := (a1, . . . , an) ∈ Gn and let a := (a1, . . . , an, an+1) ∈
Gn+1, and fix some convex component C of Dn(G). Define:

C1 := {x ∈ C | ψn(x) < an+1}

C2 := {x ∈ C | ψn(x) = an+1}

C3 := {x ∈ C | ψn(x) > an+1}

It is clear that C is the disjoint union of C1, C2 and C3, and the convex components of

Dn+1(G) arise from the non-empty elements of C1 and C3, henceDn+1(G) has at most 2n+1

convex components. The intermediate value property follows from the fact that on each

Ci, where i = 1, 3, ψn(Ci) is convex and ψ(x − an+1) restricted to ψn(Ci) is a monotone

function with the intermediate value property.

Properties (A) and (B)

The proof of quantifier elimination for closed asymptotic triples essentially rests on the

following two properties holding for any extension G ⊆ H of closed asymptotic triples:

Theorem 4.2.25 (Aschenbrenner and van den Dries, 2000, p. 333). For the extension

G ⊆ H of closed asymptotic triples, the following hold:
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(A) For any a1, . . . , an ∈ G and convex component CH ⊆ H of Dn(H), we have CH∩G ̸=
∅

(B) For any x ∈ H, a1, . . . , an, g ∈ G and q1, . . . , qn ∈ Q, if there exists some b ∈ G such

that:

x+ q1ψ1(x) + . . .+ qnψn(x) = b

then x ∈ G.

Lemma 4.2.26 (Aschenbrenner and van den Dries, 2000, p. 336). Fix some p ∈ G. There

exists some γ ∈ [G] such that for all sufficiently large x ∈ ΨG + p (and thus sufficiently

large x ∈ ΨH + p), [x] = γ.

Proof. Since G is closed, either −p ∈ ΨG or −p > ΨG .

−p ∈ ΨG: Since p is sufficiently large, we see that ψ(x0) + p > 0 for all sufficiently small

x ∈ G>0. Since ψ is decreasing on G>0, we further deduce that:

[x] < [ψ(x) + p]

for all sufficiently small x ∈ G>0. Choose a sufficiently small element x0 ∈ G>0, then for

all y ∈ (0, x0)H , we have:

[ψ(x0) + p] ≤ [ψ(y) + p] As ψ(y) + p ≥ ψ(x0) + p > 0

≤ [ψ(x0) + x0 + p] Since (id+ ψ)(G>0) > ΨG

≤ [ψ(x0) + p] We assumed [x0] < [ψ(x0) + p]

Thus [ψ(y) + p] = [ψ(x0) + p], so set γ to be any element of [G] smaller than [ψ(x0) + p]

(Note that [G] has no minimum element since ΨG has no maximum).

−p > ΨG: We can find some x0 ∈ G>0 such that (id + ψ)(x0) = −p. Then for any

y ∈ (0, x0)H , we have:

[x0] = [ψ(x0) + p] Since −x0 = ψ(x0) + p

≤ [ψ(y) + p] As ψ(y) ≥ ψ(x0) > 0 and p < 0

= [(id+ ψ)(x0)− ψ(y)] We assumed (id+ ψ)(x0) = −p

= [ψ(x0)− ψ(y) + x0] Rearrange the term

≤ max{[ψ(x0)− ψ(y)], [x0]} By the ultrametric inequality

≤ max{[x0 − y], [x0]} Apply Proposition 4.2.6 to x0 and y

≤ [x0] Since x0 > y > 0
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Thus any element of [G] smaller than [x0] works as γ.

Remark 4.2.27. Lemma 4.2.26 shows us that for all p ∈ G,

lim
x↓G>0

ψ(ψ(x) + p) = lim
x↓H>0

ψ(ψ(x) + p) ∈ G

In the original paper, this is denoted as (see Aschenbrenner and van den Dries, 2000,

p. 337):

lim
y∈ΨG+p

ψ(y)

Lemma 4.2.28 (Aschenbrenner and van den Dries, 2000, p. 337). Let G ⊆ H be an

extension of closed asymptotic triples, with (a1, . . . , an) ∈ Gn. Let Dn(G) be the domain

of ψa in G and Dn(H) be the domain in H.

1. Each component CG of Dn(G) in contained in some unique component CH of Dn(H).

The map CG 7→ CH is a bijection from the convex components of Dn(G) to Dn(H),

and CG ∩G = CH .

2. Dn(G) has a unique convex component C∞
G > a1 that is unbounded above in G, and

the corresponding C∞
H > a1 is unbounded above in H. Similarly there is a unique

convex component C−∞
G < a1 that is unbounded below in G with C∞

H < a1 unbounded

below in H.

3. Let CG be a bounded component of Dn(G). There exists some p, q ∈ G such that:

(a) ψn increases on CG and CH from p to q

(b) ψn decreases on CG and CH from p to q

(c) ψn increases on CG and CH from p to ΨG and ΨH respectively

(d) ψn decreases on CG and CH from p to ΨG and ΨH respectively

4. Let C∞
G and C∞

H be the components of Da(G) and Da(H) unbounded above. There

exists some p ∈ G such that either:

(a) ψn decreases on C∞
G and C∞

H from ΨG and ΨH respectively to −∞

(b) ψn decreases on C∞
G and C∞

H from p to −∞

Similarly on C−∞
G and C∞

H , either:

(a’) ψn increases on C−∞
G and C∞

H from −∞ to ΨG and ΨH respectively

(b’) ψn increases on C−∞
G and C∞

H from −∞ to p

Thus for any component CG of Dn(G) with corresponding component CH of Dn(H), we

have:

102



4.2 Asymptotic Triples

lim
x↑CG

ψn(x) = lim
x↑CH

ψn(x)

lim
x↓CG

ψn(x) = lim
x↓CH

ψn(x)

Following the notation from (4.2.13), we have:

lim
x↑C

ψn(x) = −∞ ⇐⇒ CG and CH are unbounded above

lim
x↑C

ψn(x) ∈ G ∪ {Ψ} ⇐⇒ CG and CH are bounded above

The expected symmetrical statements also hold for lim
x↓C

ψn(x).

Proof. We induct on n. For n = 1, then both D1(G) = {x ∈ G | x ̸= a1} and D1(H) =

{x ∈ H | x ̸= a1} are both made of two unbounded convex components, on the lower

components ψ1 increases from −∞ to Ψ and on the upper components ψ1 decreases from

Ψ to −∞.

Suppose the lemma is true for all tuples (b1, . . . , bk) ∈ Gk where k < n, and let (a1, . . . , an) ∈
Gn be a tuple of length n. Pick some component CG of Dn−1(G) and let CH be the cor-

responding component of Dn−1(H). Without loss of generality, we can assume CG > a1

(thus CH > a1 as well). Set:

C1
G := {x ∈ CG | ψn−1(x) < an}

C2
G := {x ∈ CG | ψn−1(x) = an}

C3
G := {x ∈ CG | ψn−1(x) > an}

and define C1
H , C

2
H and C3

H similarly. Since by inductive assumption CH ∩G = CH and:

lim
x↕CG

ψn−1(x) = ∗ ⇐⇒ lim
x↕CG

ψn−1(x) = ∗

for any ∗ ∈ G ∪Ψ ∪ −∞, we must have:

CiG ̸= ∅ ⇐⇒ CiH ̸= ∅

for i = 1, 3. Since the components of Dn(G) and Dn(H) arise from the non-empty com-

ponents of of C1
G, C

3
G and C1

H , C
3
H , we see that (1) holds.

For i = 1, 3, CiG is unbounded above if and only if CiH is unbounded above, and that itself

can only happen when CG is unbounded above. A similar statement follows when CG is

unbounded below, thus we have (2).

Suppose CG and CH are bounded, let us analyse the behaviour of ψn on each CiG, C
i
H for
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i = 1, 3. We know that either (3a) or (3c) holds for ψn−1 on C. Without loss of generality

assume ψn−1 is increasing on CG and CH .

1. Suppose ψn−1 increases from p to q on CG and CH . Look at the position of an

compared to p and q:

(a) q ≤ an: Then C
3
G, C

3
H are both empty, and on both C1

G, C
1
H , ψn increases from

ψ(p − an). If q = an, then ψn increases to Ψ, and if q < an then ψn increases

to ψ(q − an).

(b) If p < an < q, then all of Ci, C
′
i are non-empty. On C1

G, C
1
H , ψn increases from

ψ(p− an) to Ψ, and on C3
G, C

3
H , ψn decreases from Ψ to ψ(q − an)

(c) an ≤ p < q: Both C1
G, C

1
H are empty. If p = an, then ψn decreases from Ψ to

ψ(q−an) on C3
G, C

3
H and when p > an it decreases from ψ(p−an) to ψ(q−an).

2. Suppose ψn−1 increases from p to Ψ on C and C ′.

(a) If p = an, then C1
G, C

1
H are empty and on C3

G, C
3
H , ψn decreases from Ψ to

lim
x∈Ψ

ψ(x− an), which exists by Lemma 4.2.26.

(b) If p > an then again C1
G, C

1
H are empty and ψn decreases from ψ(p − an) to

lim
x∈Ψ

ψ(x− an)

(c) If p < an ∈ Ψ then on C1
G, C

1
H , ψn increases from ψ(p − an) to Ψ, and on

C3
G, C

3
H , it decreases from Ψ to lim

x∈Ψ
ψ(x− an)

(d) If Ψ < an then C3
G, C

3
H are empty and on C1

G, C
1
H , ψn increases from ψ(p− an)

to lim
x∈Ψ

ψ(x− an).

Similarly if ψn−1 is decreasing on CG and CH , we can apply a symmetrical argument, thus

we have proved (3)

Now assume CG and CH are unbounded, since they are both bigger than a1, they must

be unbounded above but bounded below. Thus ψn must be decreasing on both, and

C1 > C2 > C3.

1. If ψn−1 decreases from some p ∈ G to ∞, then:

(a) If an ≥ p, then C3
G and C3

H are empty, and on C1
G, C

1
H , ψn decreases from

ψ(p− an) to −∞ if an < p, and when an = p, ψn decreases from Ψ to −∞.

(b) If an < p, then CiG, C
i
H are non-empty for i = 1, 3. For i = 1, ψn increases

from ψ(p− an) to Ψ, and for i = 3, ψn decreases from Ψ to −∞.

2. If ψn−1 decreases from some Ψ to ∞, then:

(a) If an > Ψ, then C3, C
′
3 are empty, and on C1, C

′
1, ψa decreases from lim

x∈Ψ
ψ(x−an)

to −∞.
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(b) If an ∈ Ψ, then on C1, C
′
1, ψa decreases from Ψ to −∞ and on C3, C

′
3 it increases

from lim
x∈Ψ

ψ(x− an) to Ψ.

A symmetrical argument applies when CG, CH are unbounded below, thus we have (4).

Lemma 4.2.29 (Aschenbrenner and van den Dries, 2000, p. 340). Let F (x) := x + η(x)

where:

η(x) :=

n∑
i=1

qiψi ◦ . . . ◦ ψ1(x)

Then for any d ∈ D′
n \Dn we have F (d) ̸∈ G

Proof. We induct on n. For n = 1, the statement follows since (id + qiψ)(x) is strictly

increasing and unbounded above on G. Suppose the statement is true for n− 1. Let CH

be the component of Dn(H) that d lies in. If d is in the convex hull of CG in H, then

the statement again follows immediately since by Lemma 4.2.4 the function F has the

intermediate value property and is strictly increasing on G and H.

So assume d is not in the convex hull of C. We know that ψn does one of three things on

the boundary of C that d lies on:

1. If lim
x→d

qnψn(x) = p ∈ G, then set:

Fn−1(x) := x+
n−1∑
i=1

qiψi ◦ . . . ◦ ψ1(x)

then by induction we know Fn−1(d) ̸∈ G, so:

F (d) = Fn−1(d) + qnψn(d)

= Fn−1(d) + p ̸∈ G Since Fn−1(d) ̸∈ G and p ∈ G

So the statement is proved.

2. If lim
x→d

qnψn(x) = −∞, then we know F has the intermediate value property and is

unbounded on C, we must have F (d) ̸∈ G.

3. If lim
x→d

qnψn(x) = Ψ then the proof is more complicated.

Claim 4.2.29.1. There exists some c in G in-between d and a1.

Proof. Suppose d > a1, the converse has a symmetrical proof. Assume there is no

c in G. Consider the convex component BH of Dn−1(H) containing d, since we

assumed there is no element of G between d and a1, we deduce that d is not in

the convex hull of BG in H. Moreover since BG > a1, we must have d < BG. By

Lemma 4.2.28, we know what ψn−1 does on BG and BH , specifically:
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lim
x→d

ψn−1(x) ∈ G ∪Ψ

(a) If the limit of ψn−1 approaching d is Ψ, then by Lemma 4.2.26, we must have:

lim
x→d

ψn(x) = lim
x∈Ψ

ψ(x− an) ∈ G

which contradicts our assumption that the limit of ψn approaching d is Ψ.

(b) If the limit of ψn−1 approaching d is an element of G, then since d ̸∈ BG, we

have:

lim
x→d

ψn−1(x) = ψn−1(d) ∈ G

Hence ψn−1(d) ̸= an, else d would not be in Dn(H). Thus:

lim
x→d

ψn(x) = ψ(ψn−1(x)− an) ∈ G

which again contradicts our assumption that the limit of ψn approaching d is

Ψ.

■

Claim 4.2.29.2. Suppose there exists some c ∈ G between d and a1. Set ϵ :=
1
2 |c− a1|, and define:

I = Ic := {x ∈ H | d− ϵ ≤ x ≤ d+ ϵ}

then I ∩ CG = ∅.

Proof. It can be verified that I is a subset of CH and ψn is constant on I. But if there

was some b ∈ I ∩CG, that would means lim
x↑C

ψn(x) = ψn(d) which is a contradiction

since we assumed ψn tends to Ψ on the boundary of C that d is on. ■

Pick any c ∈ G, then by the claim, Ic ∩C ̸= ∅. Since ψn(x) approaches Ψ as x→ d,

we know that:

lim
x→d

ψn−1(x)− an = 0

Thus pick some b ∈ CG such that:

∣∣ψn−1(b)− an
∣∣ ≤ ϵ
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Then:

[ψn(d)− ψn(b)] <[ψn−1(d)− ψn−1(b)] By Proposition 4.2.6

≤[ψn−1(b)− an] Since ψn−1(b) < ψn−1(d) < an

≤[ϵ]

Define f : I → H as:

f(x) := Fn−1(x) + qnψn(b)

Then:

Fn−1(d)− f(d− ϵ) = ϵ+ F (d− ϵ)− f(d− ϵ)

= ϵ+ qn(ψn(d)− ψn(b)) > 0

Hence F (d) > f(d− ϵ), and similarly F (d) < f(d+ ϵ). So by the intermediate value

property for Fn−1(x), there exists some x ∈ I such that F (d) = f(x). Since we are

assuming I ∩ CG = ∅, we know that x ̸∈ G, hence by induction, we have f(x) ̸∈ G,

so F (d) ̸∈ G.

Proof of Theorem 4.2.25. Property (A) follows from point (1) in Lemma 4.2.28, and prop-

erty (B) is the contrapositive of Lemma 4.2.29.

4.2.4 Existential Closedness

Lemma 4.2.30 (Aschenbrenner and van den Dries, 2000, p. 332). Let G ⊆ H be an

extension of divisible ordered abelian groups. If some element b ∈ H \G satisfies:

1. For all ϵ ∈ G>0, there exists some a, c ∈ G such that a < b < c and c− a < ϵ

2. The set {a ∈ G | a < b} has no maximum, and {c ∈ G | c > b} has no minimum

Then [G] = [G+Qb].

The following lemma is proved with respect to the natural valuation in Corollary 4.1 of

Aschenbrenner and van den Dries, 2000, p. 333, but that result cannot be applied without

the scalar field, thus we prove it with respect to the convex valuation induced by ψ.

Lemma 4.2.31. Let G ⊆ H be an extension of H-triples, where ΨG has no maximum.

For any x ∈ H with ψ(x) > ΨG, we have

[G+Qψ(x)] = [G]
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Proof. Let b := ψ(x) we show it satisfies the conditions in Lemma 4.2.30. For ϵ ∈ G>0,

since ψ is decreasing on positive elements, we have [x] < [ϵ]. Pick ϵ small enough such

that ψϵ > 0 and:

[ψ(x)− ψ(ϵ)] < [x− ϵ] = [ϵ]

Set a := ψ(ϵ)+ ϵ
4 and c := ψ(ϵ)− ϵ

4 , then b ∈ (a, c) and c− a < ϵ, hence the first condition

is satisfied, the second holds since ΨG < b < (id+ ψ)(G>0).

Definition 4.2.32. Let G ⊆ H be an extension of closed asymptotic couples, and b ∈
H \G. A sequence (bi, gi)i∈ω is a ψ-characteristic sequence of b in G if:

• If [G] ⊊ [G+ Zb] then b0 = b− g0 and [b0] ̸∈ [G].

• If [G] = [G+ Zb] then b0 = b and g0 = 0.

• For any i ≥ 1, if bi ̸∈ G then:

– If [G+ Zψ(bi)] = [G] then gi+1 = 0 and bi+1 = ψ(bi)

– If [G] ⊊ [G+ ψ(bi)], then bi+1 = ψ(bi)− gi+1 and [bi+1] ̸∈ [G].

• If bi ∈ G then bj+1, gj = 0 for all j ≥ 1.

Lemma 4.2.33. Fix an extension G ⊆ H of closed asymptotic couples. For any b ∈ H \G,
there exists a ψ-characteristic sequence (bi, gi)i<ω of b in G, and moreover, for any n < ω,

if [bn] ̸∈ [G], then [bi] ̸∈ [G] and [bi] ̸= [bj ] for all i, j ≤ n.

Proof. The construction of a ψ-characteristic sequence is evident from the definition. Sup-

pose bi, bj ̸∈ G and [bi] = [bj ] for j < i < ω. Then ψ(bi) = ψ(bj). But from the definition

of ψ-characteristic sequences, we know:

bi = ψgi−1 ◦ . . . ◦ ψgj+1 ◦ ψ(bj)− gi

Hence:

ψ(bj)− ψgi(ψgi−1 ◦ . . . ◦ ψgj+1 ◦ ψ(bj)) = 0

Which if we set x := ψ(bj) contradicts property (B), thus [bi] ̸= [bj ].

Definition 4.2.34. We say a ψ-characteristic sequence (bi, gi)i<ω of b has length α < ω if

α is the least ordinal such that bα = 0. If there is no such α then we say it has length ω.

Write Gb to be the ordered abelian group:
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G+
∑
i<ω

Qb

If b has a finite length characteristic sequence we say it is ψ-algebraic, else b is ψ-

transcendental. If b ψ-algebraic, with characteristic sequence of length α + 2, with

[G + Qbα] = [G], then we say b is ψ-archimedean-algebraic, else we say b is ψ-value-

algebraic.

Lemma 4.2.35. Let (bi, gi)i<ω be a ψ-characteristic sequence of b. Then G⟨b⟩H is the

structure:

(Gb, ψ,Gb ∩ PH)

Proof. Suppose (bi, gi)i<ω has length α, then by Lemma 4.2.33, we have:

[Gb] = [G] ∪
⋃
i∈ω

[bi]

Thus it is sufficient to show for all non-zero bi that ψ(bi) ∈ Gb. But this follows since:

ψ(bi) := bi+1 + gi+1 ∈ Gb

Lemma 4.2.36. Fix an extension G ⊆ H of closed asymptotic triples, and b ∈ H \G. If:

(i) b ∈ H \G has a characteristic sequence of length two, (so ψ(G+Qb) ⊆ G and hence

ψ(G+Qb) ⊆ ψ(G ̸=0))

(ii) G⟨b⟩ only has one H-cut.

Then G is existentially closed in G⟨b⟩.

Proof. Let pb(x) be the set of formulas:

pb(x) = Cb(x) ∪ {ψ(x− g0) = ψ(b− g0)}

Since G is closed, every finite subset ∆(x) ⊆ pb(x) is realised in G thus pb is a type of

G. Fix some other extension H ⊆ G of closed asymptotic couples with b ∈ H \ G and

b |= pb(x). By Cb(x) and Lemma 2.3.13, we have as isomorphism ψ of ordered abelian

groups:

ψ : G+Qb→ G+Qb : b 7→ b
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And the formula ψ(x − g0) = ψ(b − g0) tells us that it also respects ψ. To show it

is an isomorphism of asymptotic couples, it is sufficient to show the asymptotic couple

(G+Qb, ψ) only has one H-cut, but this follows from Lemma 4.2.15.

Lemma 4.2.37. Fix an extension G ⊆ H of closed asymptotic triples, and b ∈ H \G. If:

(i) b ∈ H \G has a characteristic sequence of length two.

(ii) G⟨b⟩ has two H-cuts.

Then G is existentially closed in G⟨b⟩.

Proof. Suppose some u := g + qb lies in the gap:

ψ(Gb) < u < (id+ ψ)(G>0
b )

where q ∈ Q̸=0 and g ∈ G. We claim that u uniquely satisfies:

ψ(G) < u < (id+ ψ)(G>0)

First, notice that ψ(Gb) = ΨG , by assumption, which combined with ΨG not having a

maximal element, tells us that [G] is co-initial in [Gb]. Hence (id + ψ)(G>0) is co-initial

in (id+ ψ)(G>0
b ), meaning for all w ∈ Gb, we have:

ΨG < w < (id+ ψ)(G>0) ⇐⇒ ψ(Gb) < w < (id+ ψ)(G>0
b ) (4.4)

Hence by Proposition 4.2.9, u must be unique. Without loss of generality, set b := u =

g + qb, and Z(x), C(x), pb(x) as follows:

Z(x) :=

P (x) if Pb(u)

¬P (x) otherwise

C(x) := {γ < x < γ | γ, γ ∈ G, γ < b < γ}

pb(x) := C(x) ∪ {Z(x)}

Let us verify that the cut C(x) determines the values of ψ on Gb. We claim that [Gb] = [G].

Suppose not, so there exists some a ∈ G such that [b − a] ̸∈ [G]. Since ψ(b − a) ∈ ΨG

and ΨG has no maximum, we can find some ϵ ∈ G>0 such that [ϵ] < [b − a]. Then there

cannot be any g ∈ G between b− a and b− a+ ϵ, else we would have [g] = [b− a] ̸∈ [G],

which means b and b+ ϵ induce the same cut in G, and this contradicts Proposition 4.2.9

via the equivalence in (4.4).
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Hence [Gb] = [G], so for all g′ + qb ∈ G, we can find some c, d ∈ G with c < |g′ + qb| < d

and [c] = [g′ + qb] = [d]. This tells us that the type pb(x) determines the quantifier free

type of b over G. To show pb is finitely realised, pick some finite subset ∆, which we can

without loss of generality, write as:

∆(x) := a < x < a ∧ Z(x)

Where a, a ∈ G. Since G is closed, we know a ∈ ψ(G ̸=0) and a ∈ (id + ψ)(G>0), thus

(a, a)G intersects both the sets ψ(G ̸=0) and (id+ψ)(G>0). Thus we can always find some

element in G satisfying ∆, so pb is a type of G. Then by applying Fact 2.1.12 we deduce

that G is existentially closed in (Gb, ψ, Pb) is existentially closed.

Lemma 4.2.38. If b is ψ-algebraic, then G is existentially closed in G⟨b⟩

Proof. Fix some ψ-characteristic sequence (bi, gi)i<ω, of length n+ 2, so bn+1 ∈ G ̸=0 and

bn ̸∈ G. We know that by either Lemma 4.2.36 or Lemma 4.2.37 that G is existentially

closed in G⟨bn⟩. Let G be some H-closure of G⟨bn⟩. Recall from Lemma 4.2.21 G can be

written as the sum:

G+
∑
i∈I

Qδi

where δi are indeterminates, we can choose an embedding ϕ : G ↪→ H such that bn−1 ∈
ϕ(G). This is because there must be some δn−1 ∈ G such that ψ(δn−1) = bn + gn−1 =

ψ(bn−1), and we can set ϕ(δn−1) := bn−1. Similarly, there must be some δn−1 ∈ Gn such

that ψ(δn−2) = δn−1 = gn−2, so we can set ϕ(δn−2) := bn−2. By repeating this, we deduce

that b ∈ ϕ(G), thus G⟨b⟩ embeds into G⟨bn⟩, thus G is existentially closed in G⟨b⟩.

Lemma 4.2.39. Suppose [G] is coinitial in [H], and b is ψ-transcendental. Then G is

existentially closed in G⟨b⟩.

Proof. Fix some ψ-characteristic sequence (bi, gi)i<ω. Let pb(x) be the set of formulas:

pb(x) :=
⋃
i<ω

Cbn(xn)

where xn is defined as expected:

xn :=

 x− gn If n = 0

ψ(xn−1)− gn If n > 0

Define some finite subset ∆ of pb as:

111



4. CONTRACTIONS AND DERIVATIONS

∆(x) :=
∧
i≤n

ai < xi < ai

Let CH be the convex component of Dn(H) that contains b, and let CG be the correspond-

ing component of Dn(G). Suppose b is in the convex hull of CG in H.

Claim 4.2.39.1. There exists some h, h ∈ CG such that for all i ≤ n:

1. If ψi−1 is increasing on CG then

ai < xi(h) < bi < xi(h) < ai

2. If ψi−1 is increasing on CG then

ai < xi(h) < bi < xi(h) < ai

Proof. We know each ψi is monotone and has the intermediate value property on CG, thus

so is xi := ψi+1(x)− gi.

Assuming xi is increasing, set hi ∈ (a1, b)G to be some element such that

ai < xi(hi) < xi(b) = bi

If xi is decreasing, choose hi so that:

xi(b) < xi(hi) < ai

Define hi conversely. Then set:

h := max{h1, . . . , hn}

h := min{h1, . . . , hn}

■

Thus h+h
2 realises ∆.

Suppose b is not in the convex hull of CG in H, then one of the following happens:

1. lim
x→b

ψn = Ψ: If this happens, then ψn+1(b) = lim
y∈Ψ−gn+1

ψ(y) ∈ G which is a contra-

diction since we assumed b was ψ-transcendental.

2. lim
x→b

ψn = p ∈ G: This is also contraidctory since it implies ψn(b) = p ∈ G which

means b is ψ-algebraic.
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3. lim
x→b

ψn = −∞. This can only happen if b > G or b < G. Either way, a sufficiently

large or negatively large element of G will realise ∆.

Thus pb is a type. We now need to show it determines the quantifier free type of b in G.
Pick some other realisation b of pb. By Lemma 2.3.13 we have an isomorphism of ordered

abelian groups:

ϕ : G+
∑
i∈ω

Qbi → G+
∑
i∈ω

Qbi : bi → bi

where bi := xi(b). Moreover, ϕ is an isomorphism of asymptotic couples. To show it is an

isomorphism of asymptotic triples, it is sufficient to show both asymptotic couples only

have one H-cut. Suppose (Gb, ψ) has more than one H-cut, so there is some g ∈ G and

qi ∈ Q not all zero such that:

ψ(Gb) < d := g + q0b0 + . . . qnbn < (id+ ψ)(G>0
b )

We assumed [G] is coinitial in [H] and since G and H are closed, both have no minimum,

thus ψ(Gb) is cofinal in ΨH and (id+ ψ)(G>0
b ) is coinitial in (id+ ψ)(H>0), thus:

ΨH < d < (id+ ψ)(H>0)

which is a contradiction since H is closed. By the same argument (Gb, ψ) also just has

one H-cut, thus by Lemma 4.2.11, the map ϕ is an Lψ-isomorphism.

Hence by Fact 2.1.12, we see that G is existentially closed in G⟨b⟩

Finally, we have:

Theorem 4.2.40 (Aschenbrenner and van den Dries, 2000, p. 355). The theory of closed

asymptotic triples has quantifier elimination.

Proof. Use the criteria in Theorem 2.1.15. The closure property follows from Lemma 4.2.21,

and Lemma 4.2.38, Lemma 4.2.39 give existential closedness for both ψ-algebraic and ψ-

transcendental elements respectively. Note that if b ∈ H \G is infinitesimal with respect

to G, then due to Lemma 4.2.30, it must be ψ-algebraic. Put all the infinitesimal elements

first in our ordering onH\G, thus when proving existential closedness for ψ-transcendental

elements we can assume [G] is coinitial in [H], hence we can apply Lemma 4.2.39. The

initial structure is the structure generated by the constant 1.

The main difference between this proof and the two-sorted proof is that in the two sorted

structure, the quantifier free type of some b ∈ H \ G is determined purely from the cut

of b, and whether or not it is an H-point. Because of (A4’), if b adds a new valuation to
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G, then it must immediately be ψ-transcendental and the cuts induced by the elements

of the ψ-characteristic sequence are determined just from the cut of b. Thus to determine

whether two structures G⟨b⟩ and G⟨b⟩ are isomorphic over G, we only need to look at the

cut induced by b and b, and can disregard (b1, b1, b2, b2 . . .). Once we weaken the strict

inequalities in (A4’), this does not happen, thus we had to look at the cuts induced by

the entire characteristic sequence.

4.3 θ-Contraction Groups

Definition 4.3.1. Let Lθ be the language ⟨+,−, <, 0, χ, θ⟩, where χ and θ are unary

functions. Let T−
θ be the universal theory asserting:

1. +,−, <, 0 form an ordered abelian group

2. χ, θ form centripetal precontraction groups

(Cθ) ∀x(θχx = θx− χx)

Let Tθ be the theory T
−
θ along with surjectivity for χ and θ and divisibility for the ordered

abelian group. We call a model of Tθ (T−
θ ) a θ-(pre)contraction group.

We prove that Tθ has quantifier elimination and is complete.

Notation 4.3.2. Sometimes we may write L1, T1 as Lχ and Tχ.

4.3.1 Closure Property

Lemma 4.3.3. Let G := (G,χ, θ) be a θ-precontraction group, and let G = (G,χ) be a

1-contraction hull. There exists a unique extension of θ to G such that (G,χ, θ) is an

θ-precontraction group.

Proof. For any g ∈ G \G, then there exists some n ∈ ω such that χn(g) ∈ G. Define θ(g)

to be:

θ(g) := χ(g) + . . .+ χn(g) + θχn(g)

It is easy to verify that (G,χ, θ) is a model of T−
θ , and by (Cθ) this is the only possible

extension.

Lemma 4.3.4. Let (G,χ, θ) be a θ-precontraction group with 1-contraction-hull G. Then

(G,χ, θ) has the factoring property over G with respect to Tθ.

Proof. Fix some (H,χ, θ) |= Tθ and an embedding f : (G,χ, θ) → (H,χ, θ). Since (H,χ)

is a contraction group, we already have some Lχ-homomorphism h : (G,χ) → (H,χ) such

that f = h◦i. It remains to show that h is a homomorphism of Lθ, for which it is sufficient

114



4.3 θ-Contraction Groups

to show that h commutes with θ. Pick some g ∈ G, and suppose χng ∈ G for some n ∈ ω,

then:

h(θg) = h(χg + . . .+ χng + θ(χng)) Repeatedly apply (Cθ)

= h(χg) + . . .+ h(χng) + h(θχng) h is a group homomorphism

= χ(h(g)) + . . .+ χn(h(g)) + θ(χn(h(g))) h is an Lχ-homomorphism

= θ(h(g)) Repeatedly un-apply (Cθ)

Lemma 4.3.5. Let G be a θ-precontraction group. If χ is surjective on G, then so is θ.

Proof. Let b ∈ G be non-zero. Since χ is surjective there exists some c ∈ G such that

χ(c) = b− θ(b). Then we have:

θ(c) = χ(c)− θ(χ(c)) By (Cθ)

= b− θ(b) + θ(b− θ(b)) Since χ(c) = b− θ(b)

= b− θ(b) + θ(b) Since [b− θ(b)] = [b] and Axiom (CA)

= b

Theorem 4.3.6. Every model of T−
θ has a Tθ-hull

Proof. Let G be a θ-precontraction group, and let G be a 1-contraction hull. Then by

Lemma 4.3.3, (G,χ, θ) is a Lθ-structure and a model of T−
θ , by Lemma 4.3.4, it has the

factoring property with respect to G, and by Lemma 4.3.5, it is a model of Tθ.

We will use the term θ-contraction hull when referring to a Tθ-hull.

4.3.2 Initial Structures

Definition 4.3.7. Pick any element a of some θ-contraction group. Then define H(a) as:

H(a) := {qoa+ q1χa+ . . .+ qnχ
na+ qn+1θχ

na | qi ∈ Z, n ∈ N}

Lemma 4.3.8. Let G be a θ-precontraction group, and a ∈ G. Then the domain of the

structure ⟨a⟩ generated by a is H(a), and hence H(a) is a θ-precontraction group.

Proof. First we verify that H(a) is an ordered abelian group. Pick any two elements

r, s ∈ H(a), written as:
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r = r0a+ r1χa+ . . .+ rnχ
ma+ rm+1θχ

ma

s = s0a+ s1χa+ . . .+ snχ
na+ sn+1θχ

na

Where ri, si ∈ Q, and m > n. Then we can write θχna as

χn+1a+ . . .+ χma+ θχma

Hence (by setting qi = qn+1 for i > n) we can write r + s as:

m∑
i=0

(ri + si)χ
ia+ (rm + sm)θχ

ma

So H(a) is indeed an ordered abelian group.

Note that [a] > [χa] > . . . > [χna] > [θχna], hence for any element

q := qoa+ q1χa+ . . .+ qnχ
na+ qn+1θχ

na

of H(a), we know [q] = [χna] where n is the least natural number such that qn ̸= 0.

Hence to show that H(a) is closed under the contractions, it is sufficient to show that

δ(χia) ∈ H(a), for any δ ∈ {χ, δ} and n ∈ N, but this is evident from the definition of

H(a), hence ⟨a⟩ = (H(a), χ, θ).

Lemma 4.3.9. There is a θ-contraction group that embeds into every other θ-contraction

group.

Proof. Let Q ⊆
∏
−N

Q be the subset of the Hahn product with eventually constant support,

so

Q := {(ri)i∈N | ∃j ∈ N, r ∈ Q such that ∀i > j, ri = r}

We can define contractions on Q in the expected way (where (r)α is the sequence with r

in the α-th spot and 0 everywhere else):

χ(1)n = (1)n+1

θ(1)n =
∑
i>n+1

(1)i

From Lemma 4.3.8 we see that (Q,χ, θ) is isomorphic to ⟨a⟩ for any element a of some θ

contraction group. So by taking a θ-hull, the lemma is proved.
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4.3.3 Existential closedness

Let G ⊆ H be an extension of θ-contraction groups, and pick some b ∈ H \ G. We need

to find a generating set for G⟨b⟩ as an ordered abelian group. Let (bi)i∈ω, (gi)i∈ω be a

1-characteristic sequence of b in G.

Lemma 4.3.10. Suppose b is not χ-super-transcendental, then G⟨b⟩ has domain:

Gb := G+
∑
i∈ω

Zbi

where (bi, gi)i<ω is any χ-characteristic sequence.

Proof. We deal with the 1-transcendental case only, the 1-algebraic case is very similar.

By Equation (3.2), we know Gb is closed under χ, so it remains to show it is also closed

under θ.

Recall from Definition 3.2.6 that Gb has natural valuation:

[G] ∪
⋃
i<ω

[bi]

so we need to show θ(bi) ∈ Gb for all i. Fix some i ∈ ω, let j ∈ ω be the least natural

number bigger than i such that gj ̸= 0, which means for all k ∈ (i, j), we have bk = χk−i(bi),

and bj = χj−i(bi)− gj thus:

θ(bi) = χ(bi) + . . .+ χj−i−1(bi) + θ(χj−i(bi))

= bi+1 + . . .+ bj−1 + θ(χ(bj−1))

But from the definition of χ-characteristic sequences, we know that [χ(bj−1)] = [gj ], hence:

θ(bi) = bi+1 + . . .+ bj−1 + θ(gj)

which is an element of Gb, so we are done.

Lemma 4.3.11. Let b be 1-transcendental with a zero shift sequence (so gi = 0 for all

i ∈ ω). Then G⟨b⟩ has domain G+K(b), where:

K(b) :=
∑
i<2
j<ω

Zθiχj(b)

Proof. For certain we know that Gb := G +K(b) ⊆ |G⟨b⟩|. For the converse we need to

show that Gb is closed under χ and θ. First we claim that the natural valuation of K(b)

is just {[bi] | i < ω}, where bi := χi(b)
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Claim 4.3.11.1. The natural valuation of K(b) is just {[bi] | i < ω}.

Proof. Pick some x ∈ K(b), written as:

n∑
i=0

(z0,ibi + z1,iθbi)

By ((Cθ)), we can write:

x := θ(bj) := θχi(b) = χi+1(bj) + . . .+ χn(bj) + θχn(bj)

Thus x can be written as:

x =

n∑
i=0

z0,i + i−1∑
j=0

z1,j

χi(b) +

(
n∑
i=0

z1,i

)
θχn(b)

But we know that [b] > [χ(b)] > [χ2(b)] > . . . > [χn(b)] > [θχn(b)] = [χn+1(b)], thus

[x] = χi(b) for some i < ω. ■

Moreover since b is χ-transcendental, we know that [χi(b)] ̸∈ [G] for all i, thus [K(b)]∩[G] =
∅, so:

[G+K(b)] = [G] ∪ [K(b)]

Hence to showG+K(b) is closed under the contractions, we need to show that χ(bi), θ(bi) ∈
Gb for all i < ω, but this follows directly from the definition of K(b).

Remark 4.3.12. The proof of Lemma 4.3.11 shows that H(a) and K(a) coincide for any

a, hence we will use them interchangeably. It also shows that:

[H(a)] = [K(a)] = {[χi(a)] | i < ω}

Hence by combining the previous two lemmas, we get the following:

Lemma 4.3.13. Let b be χ-super-transcendental, with χ-characteristic sequence (bi, gi)i<ω.

Then G⟨b⟩ has domain:

Gb := G+

n−1∑
i=0

Zbi +H(bn) (4.5)

Where n is the χ-null point of b.
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Proof. We know from the definition of χ-characteristic sequences that:

[G] ∩H(bn) = [G] ∩

[
n−1∑
i=0

Zbi

]
= ∅

Moreover by (CP), we have:

[
n−1∑
i=0

Zbi

]
> [H(bn)]

Thus all three summands in Eq. (4.5) have distinct valuations. So we can glue together

Lemma 4.3.10 and Lemma 4.3.11, to deduce that Gb is closed under the contractions, thus

we have the result.

So with θ contraction groups, we have two characteristic sequences, which we get from the

generators of K(a).

Definition 4.3.14. Let b ∈ H \G, define θ-characteristic sequences as (bi,j , gi)i<2,j<ω as:

• (b0,j , gj)j<ω is any χ-characteristic sequence

• If b is not χ-super-transcendental, then b1,j = 0 for all j < ω.

• If b is χ-super-transcendental, with null point α < ω

– For j < α, set b1,j := 0

– For j ≥ α, set bi,j := θ(b0,j)

Lemma 4.3.15. Let b ∈ H \ G, then it has a θ-characteristic sequence in G. For any

θ-characteristic sequence (bi,j , gi)i<2,j<ω, the structure G⟨b⟩ has domain:

Gb := G+
∑
i<2
j<ω

Zbi,j

Moreover, Gb has natural valuation:

[G] ∪ {[b0,j ] | j < ω}

Proof. The construction of a θ-characteristic sequence follows from the definition. Use

Lemma 4.3.10 and Lemma 4.3.13 to verify the domain of G⟨b⟩ is generated by the θ-

characteristic sequence, and the natural valuation statement follows since [b0,0] > [b0,1] >

. . . > [b0,n] > . . . and [H(b0,n)] = {[b0,n], [b0,n+1], . . .}.
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From this we define the type pb(x) to be all the cuts induced by the θ-characteristic

sequence of b:

Definition 4.3.16. Fix some θ-characteristic sequence (bi,j , gj)i<2,j<ω of b in G. For any
α ∈ {0, 1} × ω, set fα(x) to be the function taking b 7→ bα, so:

• f0,n(x) = χ(f0,n−1(x)− gn)

• f1,n(x) = θ(f0,n−1(x)), assuming b1,n is non-zero.

Let pb(x) be the collection of formulas:

pb(x) :=
⋃

α∈{0,1}×ω

{g < fα(x) < g | g < bα < g} ∪
⋃

α∈{0,1}×ω

{fα(x) = g | bα = g}

Where g, g are elements of G.

Lemma 4.3.17. Let b |= pb(x). Then (bi,j , gj)i<2,j<ω is also a θ-characteristic sequence

of b in G, where bi,j := fi,j(b), thus G⟨b⟩ has domain:

Gb := G+
∑
i<2
j<ω

Zbi,j

Proof. Use Lemma 2.3.12 and the definition of θ-characteristic sequences. Specifically, the

fact that:

[G+ Zχ(bi)] ̸= [G] ⇐⇒ [G+ Zχ(bi)] ̸= [G]

Lemma 4.3.18. Let b |= pb(x), then we have an Lθ-isomorphism ϕ over G between the

structures generated by b and b in G:

ϕ : Gb → Gb : bi 7→ bi

Proof. By Lemma 2.3.13, we know that ϕ is an ordered abelian group isomorphism. Recall

from Lemma 4.3.17 that Gb and Gb have natural valuations:

[Gb] = [G] ∪ {[bi] | i < ω}
[
Gb
]
= [G] ∪ {[bi] | i < ω}

Claim 4.3.18.1. For any x ∈ Gb, i < ω and g ∈ G, we have:

[x] = [g] ⇐⇒ [ϕ(x)] = [g]

[x] = [b0,i] ⇐⇒ [ϕ(x)] = [b0,i]
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Proof. When b is not χ-super-transcendental, the claim follows immediately from the extra

corresponding result for χ-contraction groups, so assume x is χ-super-transcendental. By

Definition 4.3.7, we can write any x ∈ Gb as:

x := g +

n∑
i=0

zib0,i + zn+1b1,n (4.6)

where n is past the null point of b. Thus ϕ(x) can be written as:

ϕ(x) = g +
n∑
i=0

zib0,i + zn+1b1,n

Since [b0,0] > . . . > [b0,n] > [b1,n] and [b0,0] > . . . > [b0,n] > [b1,n], and each pair [bi,j ], [bi,j ]

induce the same cut in [G], the claim follows. ■

It remains to show that ϕ commutes with χ and θ. Pick some x ∈ Gb written as in

Eq. (4.6). If [x] = [g], then for any δ ∈ {χ, θ}:

δ(ϕ(x)) = δ(g) By (CA) and since [ϕ(x)] = [g]

= δ(x) By (CA) and since [x] = [g]

= ϕ(δ(x)) Since ϕ is constant on G

Now suppose [x] = [b0,i], so by Claim 4.3.18.1, we know [ϕ(x)] = [b0,i], so:

χ(ϕ(x)) = χ(b0,i) By (CA) and since [ϕ(x)] = [b0,i]

= b0,i+1 Since b0,i+1 := χ(b0,i)

= ϕ(b0,i+1) By the definition of ϕ

= ϕ(χ(x)) Reverse the steps above

So ϕ commutes with χ. Suppose i < n, so i is before the null point of b, then there exists

some j ≥ i with gj ̸= 0 and b0,j = χj−i(bi)−gj , so in particular [χj−i(bi)] = [χj−i(bi)] = [gj ]

(since b0,j and b0,j induce the same cut in G).

θ(ϕ(x)) = θ(b0,i) By (CA) and since [ϕ(x)] = [b0,i]

= χ(b0,i) + . . .+ χ(b0,j) + θχ(b0,j) Repeatedly apply ((Cθ))

= χ(b0,i) + . . .+ χ(b0,j) + θ(gj) Since [χj−i(bi)] = [gj ]

= ϕ(χ(b0,i)) + . . .+ ϕ(χ(b0,j)) + ϕ(θ(gj)) Since ϕ commutes with χ

= ϕ(χ(b0,i) + . . .+ χ(b0,j) + θ(gj)) Since ϕ is a group isomorphism

= ϕ(θ(x)) Reverse the steps above
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Now suppose i ≥ n, so i is or is past the null point of b:

θ(ϕ(x)) = θ(b0,i) By (CA) and since [ϕ(x)] = [b0,i]

= b1,i Since b1,i := θ(b0,i)

= ϕ(b1,i) By the definition of ϕ

= ϕ(θ(b0,i)) Since b1,i := θ(b0,i)

= ϕ(θ(ϕ(x))) By (CA) and since [x] = [b0,i]

Thus ϕ commutes with χ and θ, hence is an Lθ-isomorphism.

Lemma 4.3.19. The type pb(x) is a type of G.

Proof. If b is not χ-super-transcendental, then pb only contains the cuts from the χ-

characteristic sequence, so by the corresponding result for χ-contractions groups, specifi-

cally Lemma 3.2.12, we see that pb must be a type of the reduct of G to Lχ, thus a type

of G. So suppose b is χ-super-transcendental, with null point n, then we can write pb as:

pb(x) :=

n−1⋃
j=0

{g < f0,j(x) < g | g < bj < g} ∪
⋃
i<2

n≤j<ω

{g < fi,j(x) < g | g < bi,j < g}

So we can write an arbitrary finite subset ∆ of pb as:

∆(x) :=
n−1⋃
j=0

{a0,j < f0,j(x) < a0,j} ∪
m⋃
j=n

{a0,j < f0,j(x) < a0,j , a1,j < f1,j(x) < a1,j}

Since b is χ-transcendental, we know [bi,j ] ̸∈ [G] for all i, j with bi,j ̸= 0, thus the interval

(ai,j , bi,j)G is non-empty in G. Since fi,j is increasing and surjective, we can find some

hi,j ∈ G, with a0,0 < hi,j < b0,0 such that:

ai,j < fi,j(hi,j) < bi,j

Similarly, we can find some hi,j ∈ (bi,j , ai,j)G with

bi,j < fi,j(hi,j) < ai,j

So define h and h as:
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4.4 Hyperlogarithmc-θ contraction groups

h := max{h0,0, . . . , h0,n−1, h0,n, h1,n, . . . , h0,m, h1,m}

h := min{h0,0, . . . , h0,n−1, h0,n, h1,n, . . . , h0,m, h1,m}

Then we must have h < b0,0 < h, thus h+h
2 ∈ G realises ∆.

4.3.4 Final Result

By the usual criteria mentioned in the introduction, we have:

Theorem 4.3.20. The theory of θ-contraction groups is complete and has quantifier elim-

ination.

Proof. Use Lemma 4.3.18 and Lemma 4.3.19 to deduce G is existentially closed in G⟨b⟩.
Apply that and Lemma 4.3.9, Lemma 4.4.4 to Theorem 2.1.14.

4.4 Hyperlogarithmc-θ contraction groups

Definition 4.4.1. Let Lθ−L be the language ⟨+,−, <, 0, χ, θ, L⟩, where χ and θ are unary

functions. Let T−
θ−L be the theory asserting:

• +,−, <, 0 form a divisible ordered abelian group

• χ, θ, L each form a centripetal precontraction group

• χ,L form a 2-precontraction group

• χ, θ form a θ-precontraction group

Let Tθ−L be the theory T−
θ−L along with surjectivity for χ,L and θ.

We prove that Tθ−L has quantifier elimination and is complete.

4.4.1 Initial Structures

The initial structure will just be ω copies of the structure defined in Lemma 4.3.9.

Lemma 4.4.2. There is some θ − L-precontraction group that embeds into every other

θ − L-precontraction group.

Proof. Let us remind ourselves about Q, the structure from Lemma 4.3.9:

Q := {(ri)i∈N ∈ Zω | ∃j ∈ N, r ∈ Q such that ∀i > j, ri = r}

Let R be defined as the Hahn sum of Q indexed by ω:
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R :=
∐
ω

Q

Define the contractions on R as follows:

χ(1ωn+m) = 1ωn+m+1

θ(1ωn+m) =
∑
i>m

1ωn+i

L(1ωn+m) = 1ω(n+1)+m

It is easy to check that R is a θ−L-precontraction group and moreover, for any G |= T−
θ−L

and a ∈ G, we have ⟨a⟩ ∼= (R,χ, L, θ).

4.4.2 Closure Operator

Lemma 4.4.3. Any model of T−
θ−L embeds into some model K of Tθ−L. Moreover, for all

k ∈ K, there exists some n ∈ N such that Ln(k) ∈ G

Proof. Let G0 := G. Given G2k, set G2k+1 to be the χ-hull of G2k. By Lemma 3.3.3,

Lemma 4.3.3 and Lemma 4.3.5, we know θ and L are both defined on G2k+1, θ is surjective

on G2k+1, and finally, L(G2k+1) ⊆ G2k.

Given G2k−1, we set G2k := (
∏
Γ

R, χ, L, θ), where:

Γ := [G2k−1] ∪
(
ω ×G>0

2k−1 \ L(G)
)

Order Γ in the same way as in Proposition 3.3.4, and define the contractions on G2k as:

• For γ ∈ [G2k−1], and contraction δ ∈ {χ,L, θ}, δ(1γ) = δ(a) where a ∈ G>0
2k−1 and

[a] = γ.

• For γ = (n, a) ∈ ω×G>0
2k−1 \L(G), we define χ and L as we did in Proposition 3.3.4,

and set

θ(1γ) :=
∑
i∈ω
i>n

1i,a

Again note that L(G2k) ⊆ G2k−1. It is easy to see that K =
⋃
i∈ω

Gi is a model of Tθ−L

containing G as a substructure.

Lemma 4.4.4. (i) For any Tθ−L-hull G, and g ∈ G, there exists some n ∈ N such that

Lk(g) ∈ G
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4.4 Hyperlogarithmc-θ contraction groups

(ii) Any G |= T−
θ−L has a Tθ−L-hull.

(iii) Moreover, we can choose a hull G such that G can be written as:

G+
∑
i∈I

H(δi) +
∑
j∈J

Qϵj (4.7)

Where H(x) is the divisible hull of H(x) as defined in, Definition 4.3.7 and δi, ϵj > 0

are indeterminates such that for all i, i′ ∈ I and j, j′ ∈ J :

• [H(δi)] ∩ [G] = [Qϵj ] ∩ [G] = ∅

• [H(δi)] ∩ [H(δi′)] = [Qϵj ] ∩ [Qϵj′ ] = ∅

• [H(δi)] ∩ [Qϵj ] = ∅

• γi < γj if and only if χ(γi) < χ(γj), where γi, γj ∈ {δi | i ∈ I} ∪ {ϵj | j ∈ J}

• There exists some g ∈ G such that [g] < [H(δi)], [ϵj ].

Hence G ⊆ G is a pure valuational extension of ordered abelian groups, and [G] is

coinitial in [G].

Proof. Firstly, any Tθ−L-hull G of G embeds into the structure K defined in Lemma 4.4.3,

thus we have (i).

We construct the Tθ−L-hull of G as follows. By Lemma 4.4.3 we can embed it into some

θ − L-contraction group (K,χ, θ, L). Then proceed exactly as done in Proposition 3.3.5,

which means we induct on
∣∣G∣∣+, at the α-th step, we construct some Gα, and stop when

Gα is a θ − L-contraction group.

• If α is an even ordinal, then set Gα+1 to be the θ-hull of Gα, and note that by

Remark 3.2.5, Gα+1 keeps the form in Equation (4.7), assuming Gα did.

• If α is a an odd ordinal then pick some a ∈ G>0
α \ L(Gα), and choose some b ∈ K

such that L(b) = a, then set:

Gα+1 := Gα +H(b)

It is easy to verify that [H(b)] ∩ [Gα] = ∅, and [H(b)] ≥ [Gα], so Gα+1 keeps the

form in Equation (4.7), assuming Gα did. To define the contractions on Gα+1 it is

sufficient to define them on [Gα] and [H(b)] separately.

– For [x] ∈ [Gα], define all contractions as they are in Gα.

– For [x] ∈ [H(b)], L(x) goes to b, and χ(x), θ(x) are defined as they would be in

H(b).
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Finally, for a limit ordinal β, set:

Gβ :=
⋃
γ<β

Gγ

Note that Gα has the factoring property over Gβ for all β < α. Eventually we reach an

ordinal γ < |K|+ such that Gγ is a model of Tθ−L, this will be a Tθ−L-hull satisfying

(iii).

4.4.3 Existential closedness

Fix some extension G ⊆ H of models of Tθ−L.

Definition 4.4.5. Let b ∈ H \G have 1-characteristic sequence (bi, gi)i∈ω. Define J(b) as

the group generated by the θ-characteristic sequence of b in (G,χ, θ). That means:

• If b is not χ-super-transcendental, then:

J(b) :=
∑
j<ω

Zb0,j

• Else, if b has null point n, then

J(b) :=
n−1∑
i=0

Zbi +H(bn)

Lemma 4.4.6. Let b ∈ H \ G have 2-characteristic sequence (bi, gi)i∈ω2. Then G⟨b⟩ has

domain:

Gb := G+
∑
i∈ω

Ji

where Ji := J(bωi). Moreover, the group Gb has natural valuation:

[Gb] := [G] ∪ {bi | i < ω2} (4.8)

Proof. First, let us prove Eq. (4.8). Suppose b is 2-algebraic, with characteristic sequence

of length α ∈ [ωm,ω(m+1)). Then Ji = 0 for all i > m. By Lemma 4.3.15, we know that

the natural valuation of each Ji is:

[Ji] = {[bωi+j ] | j < ω}

But remember that any 2-characteristic sequence is strictly decreasing in valuation, thus:
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[J0] > [J1] > . . . > [Jm] (4.9)

By definition of 2-characteristic sequences, we know that [bβ] ̸∈ [G] for all β < ωm, thus

[Ji] ∩ [G] = ∅ (4.10)

for all i < m. So pick any element in x ∈ Gb, and write it as:

x = z0γ0 + . . .+ zm−1γm−1 + (zmγm + g)

where zi ∈ {0, 1}. Then by Eq. (4.9), Eq. (4.10), and the ultrametric inequality, we have:

[x] = max{[z0γ0], . . . , [zm−1γm−1], [zmγm + g]}

But again by Lemma 4.3.15, we know that [γi] ∈ [G] ∪ [Ji], thus:

[x] ∈ [G] ∪
m⋃
i=0

[Ji] = [G] ∪
m⋃
i=0

⋃
j<ω

{[bωi+j ]}

When b is 2-transcendental, note that [Ji] ∩ [G] = ∅ for all i < ω, so a simpler version of

the above arguments proves the statement, thus we have (4.8).

To show |G⟨b⟩| is indeed equal to Gb, repeat the same argument as in Lemma 3.3.11.

From this, we define the θ − L-characteristic sequence:

Definition 4.4.7. Let b ∈ H\G. Define the θ−L-characteristic sequence as (bi,j , gj)i<2,j<ω2

of b in G as follows:

• (b0,j , gj)j<ω2 is any 2-characteristic sequence of b in G.

• For some fixed n ∈ ω, b1,ωn+i is a θ-characteristic sequence of bωn created from the

χ-characteristic sequence (bωn+i, gωn+i)i<ω.

Lemma 4.4.8. A θ−L-characteristic sequence of b in G exists. Given a θ−L-characteristic
sequence (bi,j , gj)i<2,j<ω2, the structure G⟨b⟩ has domain:

Gb := G+
∑

i<2,i<ω2

Zbi,j

and has natural valuation:
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[Gb] := {[b0,j ] | j < ω2}

Proof. A direct consequence of Lemma 4.4.6.

Let us extend Definition 4.3.16 to θ − L-contraction groups:

Definition 4.4.9. For ordinals α ∈ {0, 1}×ω2, set fα(x) to be term bα[x/b] i.e. the term

bα but with the occurrence of b replaced with the variable x. Stated explicitly:

• f0,n(x) = χ(f0,n−1(x)− gn)

• f1,n(x) = θ(f0,n−1(x)), assuming b1,n is non-zero.

• f0,n+ω(x) = L(f0,n0(x)) − gn+ω, where n0 is the null point of b0,ωi, where n ∈
[ωi, ω(i+ 1)).

Let pb(x) be the collection of formulas:

pb(x) :=
⋃

α∈{0,1}×ω2

{g < fα(x) < g | g < bα < g} ∪
⋃

α∈{0,1}×ω2

{fα(x) = g | bα = g}

Where g, g are elements of G.

We want to show that pb determines the quantifier free type of b over G:

Lemma 4.4.10. Let b ∈ H \ G have θ − L-characteristic sequence (bi,j , gi)i<2,j<ω2. For

any b |= pb(x), the sequence (bi,j , gi)i<2,j<ω2 is a θ − L-characteristic sequence for b in G,
where bi,j = fi,j(b).

Proof. Simply check that the conditions for θ−L-characteristic sequence are satisfied.

Lemma 4.4.11. Let b ∈ H \G, then for any b ∈ H such that b |= pb(x), there is an Lθ−L
isomorphism ϕ : G⟨b⟩ → G⟨b⟩ that is the identity on G.

Proof. By Lemma 4.4.6, we know that G⟨b⟩ has domain:

Gb := G+
∑
i<2
j<ω2

Zbi,j

Moreover, Gb and Gb have natural valuations:

[Gb] = [G] ∪ {[b0,j ] | j < ω2}

[Gb] = [G] ∪ {[b0,j ] | j < ω2}
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Since b |= pb(x), we can use Lemma 2.3.13, to get an isomorphism of ordered abelian

groups ϕ over G:

ϕ : Gb → Gb : bi,j 7→ bi,j

A routine calculation tells us that for any α < ω2:

[x] = [b0,α] ⇐⇒ [ψ(x)] = [b0,j ][x] = [g] ⇐⇒ [ϕ(x)] = [g]

Thus to show ϕ commutes with the contractions, it is sufficient to show that ϕ(η(b0,j)) =

η(b0,j) for all η ∈ {χ, θ, L} and j ∈ ω2, but this follows from the calculations in Lemma 3.2.13,

Lemma 3.3.16 and Lemma 4.3.18.

Lemma 4.4.12. The type pb is a type of G.

Proof. Suppose b is 2-archimedean algebraic, with characteristic sequence of length α+2 ∈
[ωm+ω(m+1)). That means [b0,α] ̸∈ G, but [G+Zb0,α] = [G], hence b0,α+1 := χ(b0,α) ∈ G.

Then we can write some finite subset ∆ of pb as:

∆(x) :=

n⋃
i=0

{a0,αi < f0,αi(x) < a0,i, a1,αi < f1,αi(x) < a1,i}

∪{aα < f0,α(x) < aα} ∪ {f0,α+1(x) = aα+1}

Where 0 ≤ α0 < . . . < αn < α is some sequence of ordinals, and [aα] = [aα] = [b0,α].

To ease notation further assume that bi,αj ̸= 0 for all j ≤ n. Since [bi,αj ] ̸∈ [G], and the

function fi,αj is surjective and increasing on G, we can find some hi,j ∈ (a0,0, b0,0)G such

that:

ai,αj < fi,αj (hi,j) < bi,αj

Similarly we can find some hi,j ∈ (b0,0, a0,0) such that:

bi,αj < fi,αj (hi,j) < ai,αj

Let h be the maximum of the hi,j ’s, and h the minimum of the hi,j ’s. Then any element

of (h, h)G realises the first set of formulas in ∆. Further, note that h < b < h. We claim

that f0,α((h, h)G) ∩ (aα, aα) ̸= ∅. Suppose it was, say f0,α((h, h)G) < (aα, aα), then since

f0,α is increasing and surjective, we must have:

aα ≥ f0,α(h) ≥ b0,α > aα
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hence we have a contradiction. Similarly we cannot have f0,α((h, h)G) > (aα, aα), thus they

must intersect. Pick any y ∈ (h, h)G such that f0,α(y) ∈ (aα, aα), then χ(f0,α(y)) = χ(b0,α)

thus y realises ∆.

If b is 2-value-algebraic, then we can write ∆ as:

∆(x) :=
n⋃
i=0

{a0,αi < f0,αi(x) < a0,i, a1,αi < f1,αi(x) < a1,i} ∪ {f0,α+1(x) = aα+1}

Define h and h as before, then since f0,α+1 is surjective and increasing, we must have

f0,α+1((h, h)G) ∩ {aα+1} ≠ ∅, thus a realisation of ∆ exists in (h, h)G.

If b is 2-transcendental, then we can write ∆ as:

∆(x) :=
n⋃
i=0

{a0,αi < f0,αi(x) < a0,i, a1,αi < f1,αi(x) < a1,i}

hence any element of (h, h)G realises ∆.

4.4.4 Final Result

As expected, we apply Theorem 2.1.14 to get:

Theorem 4.4.13. The theory Tθ−L has quantifier elimination, has a prime model and is

complete.

4.5 Asymptotic Triples and Contractions

Consider the structure with the contractions χ,L, θ along with ψ. Let us remind ourselves

of the axiomatization of this theory:

Let Lψ−χ, T−
ψ−χ and Tψ−χ be the language and theories from Definition 1.5.9. We call a

model of T−
ψ−χ an asymptotic contraction and a model of Tψ−χ a closed asymptotic

contraction. Let L′
ψ−χ be the sublanguage of Lψ−χ with the predicate P removed.

In this section, we give a partial proof of quantifier elimination and completeness for Tψ−χ.

Recall by Theorem 2.1.14 the three steps needed to get QE. We prove that Tψ−χ-hulls exist,

thus the theory has an initial structure (take the Tψ−χ-hull of the structure generated by

1). We then prove an analogue to properties (A) and (B) for closed asymptotic triples (see

Section 4.5.2), which we can use to show that any for any G |= Tψ−χ and any ψ−χ-algebraic
element b (a notion defined in Definition 4.5.8), G is existentially closed in G⟨b⟩. But we

encounter problems when proving G is existentially closed in G⟨b⟩ for ψ−χ-transcendental
b.

Proposition 4.5.1. The G be an asymptotic contraction. For any b ∈ G>0 and n,m ∈ N,
we have the following equality:
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ψ ◦ χn ◦ Lm(b) = ψ(b) +

m∑
i=1

(
θ ◦ Li−1(b) + Li(b)

)
+

n∑
i=1

χi ◦ Lm(b) (4.11)

Thus for all b ∈ G<0, we have:

ψ ◦ χn ◦ Lm(b) = ψ(b)−
m∑
i=1

(
θ ◦ Li−1(b) + Li(b)

)
−

n∑
i=1

χi ◦ Lm(b) (4.12)

Proof. Repeatedly apply (Cψ) and (CI).

4.5.1 Closure operator

We show that every model G of T−
ψ-χ has a Tψ-χ-hull.

Lemma 4.5.2. Let G |= T−
ψ−χ. There exists some G |= T−

ψ−χ with no H-point and with

the factoring property over G with respect to Tψ−χ. Moreover, we can write G as:

G+
∑
i∈ω

H(ϵi)

where 0 < ϵi < G>0 are indeterminates, H(ϵi) is from Lemma 4.3.9 and [H(ϵi)] >

[H(ϵi+1)].

Proof. Situations like these highlight the necessity of the predicate P . Given an H-point

u, we do not know whether it ‘should’ be in the image of ψ or the image of |id| + ψ, i.e.

there could be two extensions H,H of G such that u in in the image of ψ in H and in the

image of |id| + ψ in H, thus we would not have QE. It is the predicate P that fixes the

position of u in all extensions of G.

Suppose G has a H-point u ∈ G. Either u ∈ PG or u > PG .

u ∈ PG: This tells us that in any H |= Tψ−χ extending G, we must have u ∈ ψ(H ̸=0) =

PH. Let ϵ be an indeterminate satisfying 0 < ϵ < G>0, and consider the divisible hull of

the Lθ−L structure generated by it, R(ϵ) (see Lemma 4.4.2), so:

0 < R(ϵ) < G>0

thus [R(ϵ)] = {[χm ◦ Ln(ϵ)] | n,m ∈ ω} < [G]. Set G := G + R(ϵ), then G is closed

under contractions since χ,L, θ are defined on both [R(ϵ)] and [G]. To close make it an

L′
ψ−χ-structure, set:
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ψ(ϵ) := u

ψ ◦ χn(ϵ) := u+
n∑
i=1

χi(ϵ)

ψ ◦ χn ◦ Lm(ϵ) := u+
m∑
i=1

(
θ ◦ Li−1(ϵ) + Li(ϵ)

)
+

n∑
i=1

χi ◦ Lm(ϵ)

PG := {x ∈ G | ∃y ∈ G
̸=0 | x ≤ ψ(y)}

We claim that (G,ψ) only has one H-cut. Note that [R(ϵ)] is coinitial in [G], and both

ψ(R(ϵ)), (id+ψ)(R(ϵ)) ⊆ u+R(ϵ), thus it is sufficient to show ψ(R(ϵ))−u, (id+ψ)(R(ϵ))−u
induce a disjoint partition of R(ϵ).

As a reminder, R(ϵ) is isomorphic to the set of all function f : ω2 → Q such that for any

i ∈ ω, the sequence (fωi+j)j∈ω is eventually constant, with f > g if and only if fα > gα,

where α = min(supp(f) ∪ supp(g)). Moreover, the contractions are defined as:

χ(1α) := 1α+1

L(1α) := 1α+ω

θ(1α) :=
∑
i∈ω

1α+1+i

Thus, if we set:

A := {ψ ◦ χi ◦ L(ϵ)− u | i, j ∈ ω}

B := {(id+ ψ) ◦ χi ◦ L(ϵ)− u | i, j ∈ ω}

Then we can calculate A and B to be:

A =

f ∈ R(ϵ) | ∃α < ω2 such that fβ =

 1 If 0 < β ≤ α

0 Otherwise


B =

f ∈ R(ϵ) | ∃α < ω2 such that fβ =


1 If 0 < β < α

2 If β = α

0 Otherwise


Observe that A < B, A is cofinal in ψ

(
G
)
, B is coinitial in (id+ψ)

(
G
>0
)
−u, and there

is no element of R(ϵ) between A and B, thus G := (G,ψ, PG) only has one H-cut.

Fix some H |= Tψ−χ with G ⊆ H. Since u ∈ PG , we must have u ∈ PH, thus there exists

some δ ∈ H with ψ(δ) = u. By Lemma 2.3.13 and Proposition 4.5.1, the mapping
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ϕ : G→ H : g + θi ◦ χn ◦ Lm(ϵ) 7→ g + θi ◦ χn ◦ Lm(δ)

is an L′
ψ−χ embedding. Moreover since G only has one H-cut, Lemma 4.2.11 implies ϕ is

an Lψ−χ-embedding. Thus G has the factoring property over G with respect to Tψ−χ.

u > PG: Repeat the same argument but with (id + ψ)(ϵ) = u, so ψ(ϵ) = u − ϵ. Note

that A and B will be slightly different, for any f ∈ A,B, we would have f0 = −1, since

ψ(u)− u = −ϵ = −(21)0 ∈ R(ϵ).

The final statement about the form of G follows since

R(ϵ) =
∑
i<ω

H(Liϵ)

Lemma 4.5.3. Any G |= T−
ψ−χ has a Tψ−χ-hull. Moreover, we can choose a Tψ−χ-hull G

such that G can be written as:

G+
∑
i∈I

H(δi) +
∑
j∈J

Qϵj (4.13)

Where δi, ϵj > 0 are indeterminates such that for all i, i′ ∈ I and j, j′ ∈ J :

• [H(δi)] ∩ [G] = [Qϵj ] ∩ [G] = ∅

• [H(δi)] ∩ [H(δi′)] = [Qϵj ] ∩ [Qϵj′ ] = ∅

• [H(δi)] ∩ [Qϵj ] = ∅

• γi < γj if and only if ψ(γi) > ψ(γj), where γi, γj ∈ {δi | i ∈ I} ∪ {ϵj | j ∈ J}

• There exists some g ∈ G such that [g] < [H(δi)], [ϵj ].

Proof. By Lemma 4.5.2 we can assume G only has one H-cut Fix some H |= Tψ−χ with

G ⊆ H. Let (G,χ,L, θ) be the θ − L-contraction hull of (G,χ,L, θ). Then we have an

Lθ−L-embedding ϕ : G→ H over G.

We know for any g ∈ G, there exists some n ∈ ω such that Ln(g) ∈ G, thus we can extend

ψ to G via:

ψ(g) = ψ(Ln(g))−
n∑
i=0

(
θ ◦ Li−1(g) + Li(g)

)
It can be verified that (G,χ,L, θ, ψ) |= T−

ψ−χ | L′
ψ−χ. Moreover, since G ⊆ G is a pure

extension and [G] is coinitial in [G], we can use Lemma 4.2.15 to deduce that (G,χ,L, θ, ψ)
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only has one H-cut, thus if we set:

PG :=
{
x ∈ G | ∃y ∈ G

̸=0
such that x ≤ ψ(y)

}
then the structure G := (G,χ,L, θ, ψ, PG) is a model of T−

ψ−χ, and the map ϕ : G → H is

an Lψ−χ-embedding (by Lemma 4.2.11). Since χ is surjective, we deduce that ψ(G
̸=0

) is

downwards closed, thus G |= Tψ−χ. Since the structure H was an arbitrary model of Tψ−χ,

we conclude that G is a Tψ−χ-hull of G. The statement about the domain of G follows

from the corresponding statements in Lemma 4.4.4 and Lemma 4.5.2.

4.5.2 Properties (A) and (B) for Tψ−χ

Definition 4.5.4. Fix some closed asymptotic triple G and some (possibly trivial) exten-

sion H. We define ψ-χ-monomials as follows:

1. x is a ψ-χ-monomial in G with domain Dx(H) := H

2. Let f be a ψ-χ-monomial with domain Df (H) ⊆ H, then for any a ∈ G

(a) χ(f(x) − a) and L(f(x) − a) are ψ-χ-monomials with characteristic domain

Df (H).

(b) h(x) := ψ(f(x)− a) is a ψ-χ-monomial with characteristic domain:

Dh(H) := {x ∈ H | f(x) ̸= a}

A successive sequence of ψ-χ-monomials is a collection (fi,j)0≤i≤m,0≤j≤nm of ψ-χ-

monomials, where nm ∈ ω and some collection of integers k0, . . . , km−1 with 0 ≤ ki ≤ ni

such that:

fi,j+1 := γi,j+1 ◦ fi,j
fi+1,0 := ψai ◦ fi,ki

where γi,j is of the form χ(x− ai,j) or L(x− ai,j), and f0,0 := x.

Note that for all i ∈ [0,m], the terms fi,0, . . . , fi,ni all have the same domain which we

denote as Di(H).

A ψ-χ-polynomial is a term of the form:

F (x) :=
∑

i∈[0,m]

∑
j∈[0,nm]

zi,jfi,j(x)

where zi,j ∈ Z, z0,0 = 1 and zm,nm is non-zero (so any ψ-χ-polynomial leads with the term

x). It has domain:
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DF (H) := DF (H)

We say F was generated by the sequence (fi,j) when F was instantiated this way. By

Lemma 4.2.4, any ψ-χ-polynomial is strictly increasing and has the intermediate value

property on any component of its domain. Moreover, if the component is unbounded then

so is the image of F , in the same direction as the component.

Lemma 4.5.5. Let f be a ψ-χ-monomial in G.

1. Both Df (G) and Df (H) have the same, and finitely many convex components. For

each component CH of Df (H), there exists a unique component CG of Df (G) such

that CG ⊆ CH , and moreover, it satisfies:

CG = CH ∩G

2. f has the intermediate value property on each component of Df (G) and Df (H)

3. Let CG (and hence CH) be bounded:

lim
x↑CG

f(x) = lim
x↑CH

f(x) ∈ G ∪ {Ψ}

lim
x↓CG

f(x) = lim
x↓CH

f(x) ∈ G ∪ {Ψ}

Moreover, if f is of the form γ◦f−(x), where γ(x) is of the form χ(x−a) or L(x−a),
then the limit on any boundary of CG is an element of G

Evenmoreover f is monotone in the same sense on CG and CH .

4. Let CG (and hence CH) be unbounded above but bounded below, then f is monotone

in the same sense on CG and CH , and:

lim
x↑CG

f(x) = lim
x↑CH

f(x) = −∞

lim
x↓CG

f(x) = lim
x↓CH

f(x) ∈ G ∪ {Ψ}

Similarly, if CG (and hence CH) are unbounded below but bounded above, then:

lim
x↑CG

f(x) = lim
x↑CH

f(x) ∈ G ∪ {Ψ}

lim
x↓CG

f(x) = lim
x↓CH

f(x) = −∞

And if CG (and hence CH) is unbounded above and below then:
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lim
x↑CG

f(x) = lim
x↑CH

f(x) = ∞

lim
x↓CG

f(x) = lim
x↓CH

f(x) = −∞

Proof. The lemma is true for the ψ-χ-monomial x. Assume we have proved the statement

for some ψ-χ-monomial h(x), and let f(x) := η(x− a) where a ∈ G and η ∈ {χ,L, ψ}.

Suppose η ∈ {χ,L}. Then Df (J ) = Dh(J ) for J = G,H, thus (1).

Let C be some component of ⊆ Dh(G) or Dh(H). We assumed by induction that h has

the intermediate value property on C, and η(x − a) is surjective and increasing, thus f

also has the intermediate value property on C, hence (2).

Let CG, and hence CH be bounded. By induction we assume that:

lim
x↑C

h(x) ∈ G ∪ {Ψ}

Suppose lim
x↑C

h(x) = p ∈ G. By definition (see Notation 4.2.13) this means that the limit

p is attained in CG and CH , which combined with the monotonicity of h and (C≤) for

contraction groups, implies:

lim
x↑CG

f(x) = lim
x↑CH

f(x) = η(p− a) ∈ G

An identical argument applies to the limits at the left boundaries, thus (3)

Let CG (and hence CH) be unbounded above, then by induction we assume:

lim
x↑CG

h(x) = lim
x↑CH

h(x) = ±∞

By (C≤) we then deduce:

lim
x↑CG

f(x) = lim
x↑CH

f(x) = ±∞

If CG (and hence CH) is bounded below, then repeat the argument for (3), and a sym-

metrical argument works if CG (and hence CH) is unbounded below, thus (4).

Suppose η ∈ {ψ}. Repeat exactly the same argument as Lemma 4.2.28.

Lemma 4.5.6. Let F be a ψ-χ-polynomial of the form:
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F (x) :=

n∑
i=0

zif0,i(x) + zf1,0(x) = x+

n∑
i=1

zif0,i(x) + zψ(f0,n(x)− a)

Then for any d ∈ DF (H) \DF (G), we have F (d) ̸∈ G

Proof. Firstly, observe that for J ∈ {G,H}, DF (J ) is the union C1
J < C2

J where:

C1
J := {x ∈ J | f0,n(x) < a}

C2
J := {x ∈ J | f0,n(x) > a}

Moreover, by Lemma 4.5.5, we know that CiH∩G = CiG. On each Ci, F is strictly increasing

and has the intermediate value property, as a direct consequence of Lemma 4.2.4, thus if

d is in the convex hull of CiG in H, then we automatically deduce F (d) ̸∈ G.

Note that C2 is unbounded above in G, moreover, F (C2) must also be unbounded above,

since for sufficiently large x ∈ G,

[x] > [f0,1(x)] > . . . > [f0,n(x)] = [f0,n(x)− a]

thus F (x) > (id + ψ)(f0,n(x)) which itself is unbounded above. Similarly C1 and F (C1)

are unbounded below, thus is d > C2
G or d < C1

G, then again F (d) ̸∈ G.

So the only remaining case is when d is on the inner boundary of CiG. Suppose i = 2, and

fix d ∈ C2
H , d < C2

G. Since fn is increasing and surjective on G and H, we must have:

0 < fn(d)− a < G>0 (4.14)

Claim 4.5.6.1. For all i ∈ [0, n], [f0,i(d)− a0,i+1] ̸∈ [G], where a0,n+1 := a, and:

[d− a0,0] > [f0,1(d)− a0,i+1] > . . . > [f0,n(d)− a]

Proof. By Equation (4.14), we know that [f0,n(d)−a] ̸∈ [G]. Suppose [f0,i(d)−a0,i+1] ̸∈ [G],

then f0,i(d) ̸∈ G. Since f0,i(x) is defined as:

f0,i(x) := γ(f0,i−1(x)− a0,i)

for some contraction γ, by applying (CA) and (CP), we must have [f0,i−1(d)− a0,i] ̸∈ [G]

and [f0,i−1(d)−a0,i] > [f0,i(d)]. If a0,i is non-zero, then we must have [f0,i−1(d)] = [a0,i] >

[[f0,i−1(d)− a0,i]], thus the statement is proved. ■

Suppose F (d) ∈ G, then there exists some g ∈ G such that:
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F (d) =

n∑
i=0

zif0,i(x) + zψ(f0,n(d)− a) = g

Thus by some rearranging, we get:

n∑
i=0

zi (f0,i(x)− a0,i+1) = g + zψ(f0,n(d)− a)−
n∑
i=0

z0,ia0,i (4.15)

Note that the left-hand side of Equation (4.15) has valuation outside of [G]. But since

0 < f0,n(d)− a < G>0, we deduce from Lemma 4.2.31 that:

[G+Qψ(f0,n(d)− a)] = [G]

thus the right hand side of Equation (4.15) has valuation within [G], so we have a contra-

diction, so F (d) ̸∈ G.

Lemma 4.5.7. Let F (x) be a ψ-χ-polynomial. Let CG be a component of DF (G) and CH
be the corresponding component of DF (H). For any x ∈ CH \ CG, we have F (x) ̸∈ G.

Proof. The statement is definitely true for the ψ-χ-polynomial x. The actual base case is

as follows:

Assume it is true for any ψ-χ-generated by the successive sequence f := (fi,j)0≤i≤m,0≤j≤nm ,

where m ≥ 1. We show that the statement also holds for ψ-χ-polynomials generated by

the successive sequences:

1. f1 := f ∪fm,nm+1, where fm,nm+1 := η(fm,nm(x)−a) for some η ∈ {χ,L} and a ∈ G.

2. f2 := f ∪ fm+1,0, where fm+1,0 := ψ(fm,km(x)− a), km ∈ [0, nm], and a ∈ G.

By using Lemma 4.5.6 for the base case, the two items above sufficient to prove the

statement for all ψ-χ-polynomials.

Case 1: Let F be a ψ-χ-polynomial generated by f1, written as:

F (x) := F (x) + zfm,nm+1(x)

where:

F (x) :=
∑

i∈[0,m]

∑
j∈[0,nm]

zi,jfi,j(x) (4.16)
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and z, zi,j ∈ Z z, z0,0 ̸= 0. Pick some d ∈ Df1
(H) \ Df1

(G), and suppose it is contained

in the convex component CH , with corresponding component CG. Suppose d is in the

convex hull of CG in H. Then since F has the intermediate value property and is strictly

increasing on CG, CH , we automatically deduce that F (x) ̸∈ G, else F would not be

injective. So suppose d is outside CG. From Lemma 4.5.5, we know that:

lim
x→CG

d
fm,nm+1(x) = lim

x→CH
d
fm,nm+1(x) ∈ G ∪ {±∞}

Suppose the limits are ±∞, then again by Lemma 4.5.5, we deduce that |d| > G, which

together with the unboundedness of the image of F on CG, tells us that |F (d)| > G, thus

F (d) ̸∈ G

If the limit is some p ∈ G, then since limits in G are by definition attained in both

G,H, we deduce that fm,nm+1(d) = p ∈ G. By induction we assumed F (d) ̸∈ G, thus

F (d) := F (d) + p ̸∈ G.

Case 2: Let F be a ψ-χ-generated by f2, written as:

F (x) := F (x) + zψ(fm,km(x)− a)

where F is as in Equation (4.16), and z ∈ Z̸=0. Pick some d ∈ DF (G) \DF (H), contained

in the convex component CH ⊆ H with corresponding component CG ⊆ G. Similar to the

previous case we can assume d is not in the convex hull of CG in H, thus by Lemma 4.5.5,

we know that:

lim
x→d

ψ(fm,km(x)− a) ∈ G ∪Ψ ∪ −∞

If the limit is some p ∈ G or −∞ then repeat the same argument as in Case 1. So suppose

the limit is Ψ. Note that f1,0 is of the form:

ψ(f0,km(x)− a1)

where a1 ∈ G, and remember that f0,km is just the composition of contractions and

translations in G, ψ does not appear within it. Since DF (J ) ⊆ Df0,km
(J ) for J = G,H,

we know that f0,km(d) ̸= a1. Without loss of generality, assume f0,km(d) ̸> a1.

Claim 4.5.7.1. There exists some c ∈ G such that a1 < c < f0,km(d)

Proof. Let Dm(H), Dm(G) be the domains of fm,nm in G and H, Since m ≥ 1 they both

must have at least two convex components. Let C ′
H be the component ofDm(H) containing

d, and let C ′
G be the corresponding component.
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Assume there is no such c ∈ G, then d cannot be in the convex hull of C ′
G in H, so d < C ′

G.

Consider the limit of fm,km as we approach d.

1. Suppose the limit is:

lim
x→d

fm,km(x) = Ψ

then by Lemma 4.2.26, we deduce:

lim
x→d

ψ(fm,km(x)− a) = lim
x↑Ψ

ψ(x− a) ∈ G

which contradicts out assumption that the limit of fm+1,0 := ψa ◦fm,km approaching

d is Ψ.

2. Suppose the limit is:

lim
x→d

fm,km(x) = p ∈ G

Then since the limits are attained, we must have fm,km(d) = p. Note that p ̸= a,

else d would not be in DF (H), thus by the monotonicity of fm+1,0, we must have:

lim
x→d

fm+1,0(x) = ψ(fm,km(d)− a) ∈ G

which again contradicts our assumption that the limit is Ψ.

Hence there must be some c ∈ G in-between a and f0,k0(d). ■

Claim 4.5.7.2. For any c ∈ G in-between a and f0,k0(d), if we set ϵ := 1
2 |c− a1|, and

define the convex set I as:

I = Ic := {x ∈ CH | |f0,km(x)− f0,km(d)| ≤ ϵ}

Then I ∩ CG = ∅.

Proof. Since we made ϵ small enough, we deduce that I ⊆ D1(H). Furthermore, f1,0 is

constant on I, since for any [x] ∈ I

[f0,km(x)− a1] = [f0,km(d) + γ − a1] Where |γ| ≤ ϵ

= [f0,km(d)− a1] Since |γ| < ϵ <
1

2
|f0,km(d)− a1|

Thus I ⊆ Di(H) and fi,j is constant on I for all i ∈ [0,m+ 1] and j ∈ ω.
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Suppose there was some b ∈ I ∩ CG, then since fm+1,0 is constant on I, we deduce that:

lim
x→d

fm+1,0(x) = fm+1,0(d) ∈ G

which contradicts our assumption that the limit was Ψ. ■

Since lim
x→d

fm+1,0(x) = Ψ, we know that lim
x→d

fm,km(x) = a, so pick some b ∈ CG such that:

|fm,km(b)− a| ≤ ϵ

Then:

[fm+1,0(d)− fm+1,0(b)] < [fm,km(d)− fm,km(b)] By fact (4.2.6)

≤ [fm,km(b)− a] As fm,km(d) is between a and fm,km(b)

≤ [ϵ]

Define the function f : I → H as:

f(x) := F (x) + zfm+1,0(b)

Pick γ+, γ− ∈ I such that f0,km(γ
±) = f0,km ± ϵ. Then γ− < d < γ+ and:

F (d)− f(γ−) = F (d)− F (γ−) + fm+1,0(d)− fm+1,0(b)

= d− γ− + o(d− γ−) + fm+1,0(d)− fm+1,0(b) (*)

= d− γ− + o(d− γ−) (**)

> 0

Where (*) follows since [x − y] > [fi,j(x) − fi,j(y)] for any i, j, and (**) follows since

|fm+1,0(d)− fm+1,0(b)| ≤ ϵ and [ϵ] < [d− γ−]. Thus F (d) > f(γ−), and by a symmetrical

argument, F (d) < f(γ+). By the intermediate value property for F and hence f , we

deduce that there exists some y ∈ I such that f(y) = F (d). Since I ∩ CG = ∅, we apply

the inductive assumption on F and thus f to deduce f(y) ̸∈ G, thus F (d) ̸∈ G.

4.5.3 Existential Closedness

Definition 4.5.8. Let b ∈ H \G. Define the ψ-χ characteristic sequence (bi,j , gj)i<2,j<ω3

of b in G as follows:

• (bi,α, gα) i<2
j<ω2

is any θ − L-characteristic sequence of b in G

• Suppose we have defined (bi,j , gj)i<2,j<ω2m
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– Suppose b0,ω2(m−1) is 2-super-transcendental, with null point α < ω2. Then set

set (bi,ω2m+j , gω2m+j)i<2,j<ω2 to be a θ−L-characteristic sequence of ψ(b0,ω2m+α)

in G.

– If b0,ω2(m−1) is not 2-super-transcendental, then set bi,j , gj := 0 for all i < 2, j ≥
ω2m.

We say a ψ-χ-characteristic sequence has length α < ω3 if α is the least ordinal such that

b0,α = 0 but b0,β ̸= 0 for all β < α. If no such α exists we say it has length ω3. We say

some b ∈ H is ψ − χ-algebraic if it has a characteristic sequence of length less than ω3,

and ψ − χ-transcendental otherwise.

The existence of characteristic sequences are guaranteed by the construction.

Definition 4.5.9. Fix some element b ∈ H>0 \G and some ψ−χ-characteristic sequence

(bi,j , gj)i<2,j<ω3 of b in G. As usual let xi,j be bi,j but with the occurrence of b replaced

with the variable x. Define the set of formulas qb as:

qb(x) :=
⋃
i<2
j<ω3

Dbi,j (xi,j)

4.5.4 Algebraic Elements

Lemma 4.5.10. Let G ⊆ H be an extension of closed asymptotic contractions. Fix some

b ∈ H \ G and some ψ − χ-characteristic sequence B := (bi,j , gj)i<2,j<ω3 in G. If B has

length α ≤ ω2 + 1 (so b0,ω2+1 = 0 and b0,ω2 ∈ G), then for any b |= qb(x), the structure

G⟨b⟩ has domain:

Gb := G+
∑
i<2
j<ω2

Qbi,j (4.17)

Moreover, there exists a L′
ψ−χ-isomorphism ϕ : Gb → Gb over G, with ϕ(bi,j) := bi,j.

Proof. Let pb be the type from Definition 4.4.9, containing the cuts from the θ − L-

characteristic sequence, thus:

qb(x) = pb(x) ∪ {x0,ω2 = b0,ω2 ∈ G}

By Lemma 4.4.6 it is sufficient to show that ψ(b0,j) ∈ Gb for all j < ω2, since by

Lemma 4.4.6, we know that:

[Gb] = [G] + {[b0,j ] | j < ω2}
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Fix some j < ω2, we will calculate ψ(b0,j). Suppose there exists some least α := ωmL +

mχ ∈ [1, ω2) with gj+α ̸= 0 (where mL,mχ ∈ ω). Then by construction of 2-characteristic

sequences, we must have:

b0,j+α = χmχ ◦ LmL(b0,j)− gj+α

Thus [χmχ ◦ LmL(b0,j)] = [g0,j ]. But by Proposition 4.5.1, we can write ψ(b0,j) as:

ψ(b0,j) = ψ (χmχ ◦ LmL(b0,j))−
mL∑
i=1

(
θ ◦ Li−1 + Li

)
(b0,j)−

mχ∑
i=0

χi(b0,j)

= ψ (g0,j)−
mL∑
i=1

(
θ ◦ Li−1 + Li

)
(b0,j)−

mχ∑
i=0

χi(b0,j)

∈ Gb

This covers the cases when b is not 2-super transcendental, but when b is 2-super transcen-

dental, j could be past the 2-null point γ. In that case, by Definition 4.5.8, we must have

b0,ω2 = ψ(b0,γ), so ψ(b0,γ) ∈ G. Write j := γ + ωmL +mχ, thus b0,j = χmχ ◦LmL(b0,γ), so

by applying Proposition 4.5.1, we have:

ψ(b0,j) = ψ(b0,γ) +

mL∑
i=1

(
θ ◦ Li−1 + Li

)
(b0,γ) +

mχ∑
i=0

χi(b0,γ)

∈ Gb

Thus Gb is closed under ψ, so |G⟨b⟩| = Gb. The same also show that
∣∣G⟨b⟩∣∣ = Gb

By Lemma 4.4.11, we have a Lθ−L-isomorphism ϕ : Gb → Gb, where ϕ(bi,j) = bi,j for

j < ω2. Since b |= qb, so ψ(b0,γ) = ψ(b0,γ), it is easy to show that ϕ commutes with ψ,

thus ϕ is a L′
ψ−χ-isomorphism.

Note that if the ψ − χ-characteristic sequence of b in G has length α ≤ ω2 + 1, then one

the following happens:

• b is 2-transcendental but not 2-super-transcendental

• b is 2-super-transcendental but ψ (b0,γ) ∈ G, where γ is the 2-null point of b

• b is 2-value-algebraic

• b is 2-archimedean-algebraic

In the first three cases, we can show that G⟨b⟩ only has one H-cut, thus the map ϕ

automatically becomes an Lψ−χ-isomorphism. When b is 2-archimedean-algebraic, then

we may need add a formula to qb involving the predicate P to make ϕ a Lψ−χ-isomorphism.
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Lemma 4.5.11. Suppose G ⊆ H is an extension of closed asymptotic triples and fix some

b ∈ H>0 \G. If one of the following occurs:

• b is 2-transcendental but not 2-super-transcendental

• b is 2-super-transcendental but ψ (b0,γ) ∈ G, where γ is the 2-null point of b

• b is 2-value-algebraic

Then G is existentially closed in G⟨b⟩.

Proof. Let b |= qb(x), then by Lemma 4.5.10 we have an L′
ψ−χ isomorphism ϕ : G⟨b⟩ →

G⟨b⟩. We want to apply Lemma 4.2.15 to show that G⟨b⟩ has only one H-cut, thus by

Lemma 4.2.11, ϕ will be a Lψ−χ-isomorphism. Since b is not 2-value-algebraic, we know

that the extension G ⊆ Gb is pure valuational, thus it remains to show that [G] is coinitial

in [Gb]. Suppose not, then it must be the case that b is 2-super-transcendental, with

[b0,γ ] < [G].

Claim 4.5.11.1. There exists some g ∈ G with 0 < g < b0,γ

Proof. Since G is closed, there exists some h ∈ G>0 with ψ(h) = ψ(b0,γ). Then by (Cψ)

we know ψ(χ(h)) = ψ(b0,γ)+χ(h) > ψ(h), so by (A4), we must have 0 < χ(h) < b0,γ . ■

Then because 0 < Ln(g) ≤ Ln(b0,γ) for all n < ω, we deduce that [G] is coinitial in [Gb].

Hence by the reasoning outlined earlier, we deduce that ϕ is a Lψ−χ-isomorphism.

It remains to show that qb is a type of G, after which we can apply Fact 2.1.12 to get

existential closedness. If b is not 2-super-transcendental, then qb is equal to the type pb

from Definition 4.4.9, which by Lemma 4.4.12, we know is a type in the reduct of G to

Lθ−L, so we are done.

So suppose b is 2-super-transcendental, then qb is the following:

qb(x) = pb(x) ∪ {x0,ω2 = b0,ω2 ∈ G}

Write some finite subset ∆(x) := ∆0(x) ∪∆1(x) of qb as:

∆0(x) :=
⋃
i<2
j≤n

{ai,αj < xi,αj < ai,αj}

∆1(x) := {x0,ω2 = b0,ω2}

where 0 ≤ α0 < α1 < . . . < an < ω2 and ai,αj , ai,αj ∈ G. Note that x0,ω2 := ψ(x0,γ) is a

ψ− χ-monomial. Let Dγ(H) be it’s domain in H, let CH be the component containing b,

and let CG be the corresponding component of Dγ(G).

For all i < 2, j ≤ n, pick some hi,j ∈ [a0,0, b)G such that:
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ai,j ≤ xi,j(hi,j) < bi,j

We can do this because xi,j is increasing and surjective on G. Similarly define hi,j ∈
(b, a0,0]G such that:

bi,j < xi,j(hi,j) ≤ ai,j

Define h, h as:

h := max{hi,j | i < 2, j ≤ n}

h := min{hi,j | i < 2, j ≤ n}

Then we must have h < b < h, and any element of (h, h)G realises ∆. By Lemma 4.5.5

we know that x0,γ is monotone and has the intermediate value property on CG, so by the

same argument as in Lemma 4.4.12, we can show that x0,γ(h, h)∩ψ−1(b0,ω2) is non-empty.

Pick some y ∈ x0,γ(h, h)∩ψ−1(b0,ω2) ,then any element of (h, h)G ∩ x−1
0,γ(y) will realise ∆.

So we are done.

Lemma 4.5.12. Let G ⊆ H and b ∈ H \G be 2-archimedean-algebraic over G. Then G is

existentially closed in G⟨b⟩.

Proof. Let the θ − L-characteristic sequences of b in G have length α + 2 < ω2. That

means b0,α+2 = 0, b0,α+1 ∈ G ̸=0, and bo,α ̸∈ G but [b0,α] ∈ [G].

Let b |= qb(x), then by Lemma 4.5.10, we have an L′
ψ−χ isomorphism ϕ : G⟨b⟩ → G⟨b⟩.

If G⟨b⟩ only has one H-cut, then ϕ is immediate a Lψ−χ-isomorphism, coupled with the

fact that qb is just pb from Definition 4.4.9 means we can apply Fact 2.1.12 to deduce G is

existentially closed in G⟨b⟩.

So suppose (Gb, ψ) has two H-cuts. Then there exists some unique vb ∈ Gb \G such that:

ψ(G ̸=0
b ) < vb < (id+ ψ)(G>0

b )

Since b is not 2-super-transcendental, we know that [G] is coinitial in [Gb]. Thus ψ(G
̸=0)

is cofinal in ψ(G ̸=0
b ) and (id+ ψ)(G>0) is coinitial in (id+ ψ)(G>0

b ), thus:

ψ(G ̸=0) < vb < (id+ ψ)(G>0)

Claim 4.5.12.1. The element vb is of the form g + qb0,α, where g ∈ G and q ∈ Q̸=0.
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Proof. Suppose not, then since [bi,j ] ̸∈ [G] for all bi,j ̸= 0 with i + j < α, we must have

[vb − g] ̸∈ [G]. Thus pick some ϵ ∈ G with [ϵ] < [vb − g] (which we can do since [G] has no

minimum and is coinitial in [Gb]), then vb, vb + ϵ induce the same cut in G, thus:

ψ(Gb) < vb, vb + ϵ < (id+ ψ)(G>0
b )

which means (Gb, ψ) has at least three H-cuts, which is a contradiction. ■

Thus define rb(x) as:

rb(x) := pb(x) ∪ {Z(g + qx0,α)}

Where Z(x) is as defined in Lemma 4.2.37. Pick some b |= rb(x), then since qb ⊆ rb, for

any b |= rb(x) we have a L′
ψ−χ-isomorphism ϕ from Lemma 4.5.10. To extend it to Lψ−χ,

note that vb := g + b0,α is the unique element of Gb such that:

ψ(G ̸=0

b
) < vb < (id+ ψ)(G>0

b
)

It remains to show rb is a type of G. Pick some finite subset ∆(x) := ∆0(x) ∪ ∆1(x) of

rb(x) written as:

∆0(x) :=
⋃
i<2
j≤n

{ai,αj < xi,αj < ai,αj}

∆1(x) := {Z(g + qx0,α)}

where 0 ≤ α0 < α1 < . . . < an < ω2 and ai,αj , ai,αj ∈ G. Define h, h as in Lemma 4.5.11,

then any element of (h, h) realises ∆0. Consider the interval (vh, vh)G, where:

vh := g + qx0,α(h)

vh := g + qx0,α(h)

Note that vh < b0,α < vh, so the interval in non-empty. Moreover, since G is a closed

asymptotic triple, we know that vh ∈ ψ(G ̸=0) and vh ∈ (id + ψ)(G>0), thus (vh, vh)

intersects both ψ(G ̸=0) and (id + ψ)(G>0). Thus we can always pick an element y from

the realisations of ∆0 such that Z(y) holds, hence G is existentially closed in G⟨b⟩.

By combining Lemma 4.5.11 and Lemma 4.5.12, we have:

Proposition 4.5.13. Let G ⊆ H be an extension of closed asymptotic contractions. If b

has a ψ−χ-characteristic sequence in G of length α < ω2+1, then G is existentially closed

in G⟨b⟩.
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Now we prove that adjoining any ψ−χ-algebraic element to G preserves existential closed-

ness.

Theorem 4.5.14. Let G ⊆ H be an extension of closed asymptotic contractions. Suppose

b is ψ− χ-algebraic with characteristic sequence of length α < ω3. Then G is existentially

closed in G⟨b⟩.

Proof. Say α ∈ [ω2n, ω2(n+ 1)). By Proposition 4.5.13, we know G is existentially closed

in G⟨b0,ωn⟩, hence G is existentially closed in any Tψ−χ-hull Gn of G⟨b0,ωn⟩. We claim that

b0,ω2(n−1) is ψ − χ-algebraic over Gn, with characteristic sequence of length αn ≤ ω2 + 1.

Suppose there exists some g ∈ Gn such that [g] = [b0,ω2(n−1)+β] for some β ∈ [0, ω2). Then

since Gn is of the form:

Gb0,ω2n
+
∑
i∈I

H(δi) +
∑
j∈J

Qϵj

We can assume that g = b0,ω2(n−1)+β. Thus for all β ∈ [0, ω2), we must have:

[Gn +Qb0,ω2(n−1)+β] = [Gn] ∪ {[b0,ω2(n−1)+β]}

So the ψ−χ-characteristic sequence of b0,ω2(n−1) does not increase in length when moving

from G to Gn.

Hence we apply Proposition 4.5.13 again to show Gn is existentially closed in Gn⟨b0,ω2(n−1)⟩,
so in any Tψ−χ-hull Gn−1 of Gn⟨b0,ω2(n−1)⟩. Repeat this process to get a chain of structures

G ⊆ Gn ⊆ Gn−1 ⊆ . . . ⊆ G0, where Gi is the Tψ−χ-hull of Gi+1⟨b0,ω2i⟩. Then since b ∈ G0,

we deduce that G is existentially closed in G⟨b⟩.

4.5.5 Transcendental Elements

We proved that for any extension G ⊆ H of models of Tψ−χ, if we pick some ψ−χ-algebraic
element b ∈ H\G, then G is existentially closed in G⟨b⟩. By repeatedly applying this result,

we can construct some G |= Tψ−χ with G ⊆ G ⊆ H such that any b ∈ H \ G, is ψ − χ-

transcendental over G. Note that if b is infinitesimal in G, then it must be ψ−χ-algebraic
over G by Lemma 4.2.31. Thus to prove model completeness for Tψ−χ, it is sufficient to

show that any extension G ⊆ H of models of Tψ−χ, where [G] is coinitial in [H], is model

complete.

The problem arises when trying to find a generating set for G⟨b⟩ over G when b is ψ − χ-

transcendental. Say b := b0,0 is ψ − χ-transcendental, and has 2-null point 0. It is not

possible to deduce whether or not χ(b) and ψ(b) sum together in an unknown way to

produce a new archimedean class, and it is difficult to capture that behaviour in a type

that is easy to finitely realise.
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Suppose, however, that the type qb does in fact determine this behaviour, i.e for any b |=
qb(x) we have an Lψ−χ isomorphism ϕ : G⟨b⟩ → G⟨b⟩. Then to get quantifier elimination,

all we would need to do is show that qb is finitely realised in G. But this is quite simple

due to Lemma 4.5.7.

Lemma 4.5.15. Assume b is ψ − χ-transcendental over G. Then the type qb(x) is a type

of G.

Proof. Write some finite subset ∆ as:

∆(x) :=
∧

i∈[0,m]
j∈[0,nm]

(ai,j < fi,j(x) < ai,j) ∧ (ci,j < θ ◦ fi,j(x) < ci,j)

where (fi,j) is a successive sequence of ψ-χ-monomials. Let fm,nm have domains Dm(H)

and Dm(G) in H and G. Let CH ⊆ H be the component containing b, and CG ⊆ G be

the corresponding component.

Suppose b is in the convex hull of CG in H. Then without loss of generality we can assume

a0,0, a0, 0 ∈ CG. By (2) of Lemma 4.5.5, we know that fi,j , and hence θ◦fi,j , are monotone

and have the intermediate value property on both CH and CG. Thus for all i, j, we can

pick some hi,j , ki,j ∈ CG with:

a0 < hi,j , ki,j < b

satisfying:

ai,j ≤ fi,j(hi,j) ≤ fi,j(b) ci,j ≤ θ ◦ fi,j(ki,j) ≤ θ ◦ fi,j(b) If fi,j is increasing on C

fi,j(b) ≤ fi,j(hi,j) ≤ ai,j θ ◦ fi,j(b) ≤ θ ◦ fi,j(ki,j) ≤ ci,j If fi,j is decreasing on C

Define hi,j , ki,j similarly but from above b, so:

b < hi,j , ki,j < a0

Then if we define:

h := max{hi,j , ki,j}

h := max{hi,j , ki,j}

Then h < b < h, thus 1
2(h+ h) realises ∆.

148



4.5 Asymptotic Triples and Contractions

If b is not in the convex hull of CG in H, say b > CG, then we can, without loss of

generality, assume a0 ∈ CG. Define h as before, and note that any element of CG greater

than h realised ∆, and such an element must exist since the convex components of DM (G)
are open.

So assuming that qb does determine the quantifier free type of b over G, we can show

that G is existentially closed in G⟨b⟩, hence by Theorem 2.1.15, we would have quantifier

elimination for Lψ−χ.
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Chapter 5

Conclusions

To conclude we mention some ways to continue the thesis. Of course, the main continuation

would be to finish the proof of quantifier elimination for Tψ−χ, but beyond that, the two

main directions would be examining the action of the derivative of Li on vK, and describing

algebraically the models of Tn.

5.1 n-th Hyper-logarithmic derivative

Let K be the Hyperseries mentioned in Theorem 1.2.2, so an ordered differential real

closed field with with functions log, L1, L2, . . . : K
>R → K>R satisfying (L1) - (L4). We

know that each Li induces a well defined map χi+1 : cK → vK, and we also know that

the derivative induced a well defined map id + ψ : vK ̸=0 → vK. Thus the action of the

derivative of Li on vK should be given by the map (id+ ψ) ◦ χi+1.

Remember that (id+ ψ) ◦ χ1(x) = ψ(x), and (id+ ψ) ◦ χ2(x) = ψ(x) + θ(x), where θ(x)

was effectively the infinite sum:

θ(x) ≈
∑
i<ω

χi1(x)

This suggests that when calculating (id+ψ) ◦χ3, we would need a symbol for the infinite

sum:

∑
i<ω

χi2(x)

Ideally, there would be a symmetry between the actions of the derivatives of Li and Li+1

akin to the symmetry between χi and χi+1 in Tn.
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5.2 Classifying models of Tn

This was a suggestion given to us by Sebastian Krapp. As mentioned in the introduction,

the paper Krapp and S. Kuhlmann, 2023 deals with countable models of T1 and examines

when it is possible to recover a trans-exponential field from a countable contraction group.

In doing so, they developed some understanding of the countable models of T1. If we can

give some characterisation of the countable models of Tn, this would help us understand

when we could recover a trans-exponential field with an n-th Hyper-logarithm.

5.3 Algebraicity

In Section 3.6.2 we compared the notion of n-algebraicity for n-contractin groups to model-

theoretic and field-theoretic algebraic closure. We remarked that it was not clear whether

such n-algebraicity has the monotonicity property (in the sense of pre-geometries). Thus

it would be interesting to see if the n-algebraic closure is indeed a pregeometry. Moreover,

the same could be done with ψ − χ-algebraicity for asymptotic contractions.

5.4 A funny Joke

Finally, it was intended for there to be a chapter on elimination of imaginaries in 1-

contraction groups, but due to some mistakes, it had to be cut out. All that is left is the

following:

Why did the imaginary tree fall over?

Because we moved to T eqr and eliminated the fibres of the roots!
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Gravett, K. A. H. (1956). “Ordered abelian groups”. In: Quart. J. Math. Oxford Ser.

(2) 7, pp. 57–63. issn: 0033-5606,1464-3847. doi: 10.1093/qmath/7.1.57. url:

https://doi.org/10.1093/qmath/7.1.57.
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