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Abstract

We examine the model-theoretic properties of the induced structure on the
archimedean classes of a non-archimedean expansion of Rey, equipped with
trans-exponential functions. This is mainly done by studying Contraction

groups and Asymptotic triples.

Contraction groups are a type of model-theoretic structure introduced by F.V
Kuhlmann consisting of an ordered abelian group G along with a unary func-
tion x : G — G which collapses entire archimedean classes to a single point.
The canonical example being the action of the logarithm on the archimedean
classes of a non-archimedean model of Reyp,. In the papers F.-V. Kuhlmann,
1994 and F.-V. Kuhlmann, 1995, it was shown that the theory of centripetal

contraction groups has quantifier elimination and is weakly o-minimal.

Similarly, Asymptotic triples consist of an ordered abelian group G and a unary
function ¢ : G*0 — G collapsing entire archimedean classes to a point, with
the canonical example being the action of the logarithmic derivative on
the archimedean classes of the germs of functions on Rexp,. In the works of
Aschenbrenner and Van den Dries it was also shown that some formulation of

these into first-order logic has quantifier elimination and is weakly o-minimal.

The works mentioned above only deal with regular logarithms and exponen-
tials. In this thesis, we extend the works above, to so-called ‘Hyper-logarithms’
and ‘Trans-exponentials’, which can intuitively be thought of as the composi-
tion of log and exp infinitely many times. The main results for this thesis are
quantifier elimination and weak o-minimality for n-contraction groups along

with quantifier elimination for & — L-contraction groups.
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Chapter 1

Introduction

The purpose of this thesis is to examine the model theoretic properties of the induced
structure on the archimedean classes of a non-archimedean expansion of Rey, equipped
with trans-exponential functions. This is mainly done by studying Contraction groups

and Asymptotic triples.

Contraction groups are a type of model theoretic structure introduced in F.-V. Kuhlmann,
1994 consisting of an ordered abelian group G along with a unary function xy : G - G
which collapses entire archimedean classes (these will be defined later but for now think
of them as the equivalence classes under big-O-notation) to a single point. The canonical
example is the action of the logarithm on the archimedean classes of a non-archimedean
model of Reyp. In that paper, it was shown that the theory of centripetal contraction

groups has quantifier elimination and is weakly o-minimal.

Asymptotic triples were introduced in Aschenbrenner and van den Dries, 2000, similarly
consisting of an ordered abelian group G and a unary function ¥ : G*0 — G collapsing
entire archimedean classes to a point, with the canonical example being the action of the
logarithmic derivative on the archimedean classes of the germs of functions on Reyp.
In the initial paper, it was also shown that some formulation of these into first order logic

has quantifier elimination and is weakly o-minimal.

Note that the works mentioned above only dealt with regular logarithms and exponentials.
In this thesis, we extend the works above, to so called ‘Hyper-logarithms’ and ‘Trans-
exponentials’, which can intuitively be thought of as the composition of log and exp
infinitely many times. The main results for this thesis are quantifier elimination and weak
o-minimality for n-contraction groups (Theorem 3.4.17 and Theorem 3.5.21) along with

quantifier elimination for § — L-contraction groups (Theorem 4.4.13).

We have just introduced two potentially unfamiliar concepts, archimedean classes and

trans-exponentials/hyper-logarithms. Let us expand on both starting with the latter.
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1.1 Model theory of R

The model theory of the real numbers began with Alfred Tarski (see Vaught, 1986), who
showed that the theory of real closed fields in the language of ordered rings has quantifier

elimination and is complete. A field F' is real closed if it is orderable and for every odd

2

degree polynomial along with every polynomial of the form z? — a, where a € F>°, has a

root in F. We can express this theory in first order logic as:

Definition 1.1.1. Let L, := (+.—,+,0, 1, <) be the language of ordered rings. The theory
of ordered fields states that:

1. (+,—,-,0,1) forms a field
2. < is a linear ordering
3. For any a,b > 0 and ¢,d < 0:
(a) —a <0
(b) a+b,a-b, c-d are all greater than 0
The theory of real closed fields further asserts that:

4. Every positive element in F' has a square root:

Vy(y > 0 — Jz(2? = y))

5. Every odd degree polynomial with coefficients in F' has a root in F', this can be

expressed via the collection of formulas (¢y,)n<, where ¢, is:

n
Yag, a1, ...,ay3T (Z a;zt = O)
i=0

Theorem 1.1.2 (Tarski). The theory of real closed fields has quantifier elimination, is

complete and is decidable.

An immediate consequence of this result is o-minimality, which is a model theoretic prop-
erty of structures expanding dense linear orders proclaiming that every definable set in

one dimension can be described just using the ordering.

Definition 1.1.3. Let M := (M, <,...) expand a dense linear order. M is o-minimal

if every definable set in M! is a finite union of points and intervals.

By quantifier elimination, every real closed field must be o-minimal. Note that o-minimality
is preserved under elementary equivalence, unlike similar model theoretic properties like
minimality or weak o-minimality. A proof can be found in van den Dries, 1998, but the

main reason is that o-minimal structures eliminate 3°°, i.e for any formula ¢(z,y), if for
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all m € M, the set |¢p(M,m)| is finite, then there exists some n < w such that for all
m e M, |p(M,m)| < n.

O-minimality is significant because it gives a complete description of the definable sets in

all dimensions, as a finite union of ‘cells’. We give a quick definition of o-minimal cells.

Lemma 1.1.4 (Monotonicity Theorem,van den Dries, 1998). Let M = (M, <,+,0,...)
be an o-minimal structure expanding an ordered abelian groups. For any definable function
f: M — M, there exists some collection of points ag < a1 < ... < ap in M, such that on

each C;, where:

Co = (=00,a9) < C1 = (ap,a1) < ... < Cp = (an-1,an) < Cpy1 = (an, 00)

the function f | C; is monotone and continuous.

This itself is a very strong statement, but we can use it to induct on the dimension of a

set to describe definable sets in all dimensions:

Definition 1.1.5 (O-minimal Cells). Let M := (M, <, +,0,...) be an o-minimal structure
expanding an ordered abelian groups. A 0-cell is any point in M. A 1-cell is any interval
(a,b) € M. Given an n-cell X C M™*" and two definable functions f,g: X — M with
f(x) < g(zx) for all x € X,

o I'(f) = {(z,y) € M™™ x M | f(z) =y} is an n-cell in M™+"+1
o I'(f.9) = {(z,y) € M™" x M | f(z) <y < g(y)} is an n + 1-cell in M™+7+1.

Theorem 1.1.6 (Cell Decomposition, van den Dries, 1998). Let M = (M, <,+,0,...)
be an o-minimal structure expanding an ordered abelian groups. Any definable set in M"™

s a finite union of cells.

Hopefully the theorems above demonstrate why o-minimality is a desirable property to

have in a structure.

1.2 Adding exponentials

By o-minimality for real closed fields, we can totally classify the definable sets in R as
an ordered field and show that they are ‘tame’ in some sense. Naturally, we could then
ask if the same is true the reals expanded with an exponential function. It was proved in
Wilkie, 1996 that the theory of (R, exp) in the language L, U (exp) is model complete and
o-minimal. Thus any set defined via polynomials involving exp must also be ‘tame’, in the

sense that it must a boolean combination of o-minimal cells as defined in Definition 1.1.5.

Going even further, it could then be asked what how definable sets look like when we
adjoin to R a function that grows faster than any iteration of exp. By this we mean some

function E : R — R>Y such that for any n < w, we have:
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E(z) > exp,(z) = expo...oexp(z)
—_————

n-times

for all sufficiently large * € R. We call such a function a trans-exponential, and its

inverse a hyper-logarithm.

Before it is attempted to prove model theoretic results for structures with such functions, it
should probably be checked that such functions do exist. There are quite a few expositions

trans-exponentials, and we highlight a few that will be particularly relevant in this thesis.

The first construction was given in Boshernitzan, 1986. They proved that there exists a

‘Hardy field’ which contains a function E satisfying the functional equation:

B(z + 1) = E(exp(x))

and that such a function is ‘obviously trans-exponential’. So what is a Hardy field? They
were initially introduced in Bourbaki, 1976, but we give a presentation from S. Kuhlmann,
2000.

Definition 1.2.1. Let C be a collection of functions from R>° to R. Define the equivalence

relation ~ on C as:

f~g <= 3N € R% such that Vz > N, f(z) = g(x)

Note that pointwise addition and multiplication of functions carry over to equivalence
classes of ~. If K := C/~ is a field under these operations and closed under derivation, we
say K is a Hardy field. Note that any Hardy field is orderable, since for [f]~ € K, [f]~ #
[0]~, we must have [%]z € K, thus f must be eventually positive or eventually negative,

hence we can assert [f]~ > [g]~ if and only if f — g is eventually positive.

Examples of Hardy fields include @Q, R (consider each element as a constant function) and
R(z), where each equivalence class consists solely of one polynomial. We write [f]~ as just
f when dealing with Hardy fields.

We say a Hardy field is exponential if it contains the function exp.

Note that the Hardy field given by Boshernitzan was not closed under composition. A
trans-exponential Hardy field that is closed under composition was constructed in Padgett,
2022. The advantage of Hardy fields over other trans-exponential constructions is that

they are in some sense explicit, rather than an arbitrary collection of formal series.

The last exposition we mention are the various forms of ‘Hyperseries’. These were initially
developed in the thesis of Schmeling, 2001, and were further developed in papers including

‘Logarithmic Hyperseries’ van den Dries, van der Hoeven, and Kaplan, 2019 and ‘Hyper-
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serial fields’ Bagayoko, van der Hoeven, and Kaplan, 2021). In the ‘Hyperserial fields’
paper, the authors construct a formal series, which they call ‘Hyperseries’, that forms an
ordered differential real closed field and is closed under composition, containing functions

Ey =exp, E1, FEs, ..., Ly :=log, L1, Lo, . .. satisfying the functional equations:

Ei(x +1) = E;_1(E;i(x))
Li(Li—1(z)) = Li(z) — 1

for all ¢ > 0 and sufficient large x.

Going forward, we assume the existence of the following fields:

Theorem 1.2.2 (Bagayoko, van der Hoeven, and Kaplan, 2021). There exists a non-
archimedean ordered differential real closed field K extending R with functions (E; :
K>R o K>R L, « K°R — KR®),_, such that for all i > 0, L; is the compositional

inverse of E; and:
L1 Liy1(Li(z)) = Liy1(z) — 1 for any x > R.
L2 L; is strictly increasing.

L3 For alln € N and x > R:

0< Li_H(I) < L?(az)

L4 L; considered as a function from K>® — K>R is surjective.

Theorem 1.2.3 (Padgett, 2022). There exists a real closed exponential Hardy field extend-
ing R(x) closed under composition, containing a trans-exponential function E. Moreover
it’s functional inverse L satisfies (L1) - (L4), where Ly := L and Lo := log.

1.2.1 O-minimal Transexponential exapansions of R

Naturally, to extend the o-minimality of Reyp, we could ask if there exists an o-minimal
expansion of R as an ordered field containing a trans-exponential function. In fact, this was
posed as an open question in Speissegger, 2002. One possible avenue to tackle this question
is to study the value group of a trans-exponential field K, prove the structure induced by
the trans-exponential is tame in some sense, specifically is weakly o-minimal, and hope
that this tameness lifts back into the underlying field. Thus we have some motivation to
study the value group of a trans-exponential field. As stated in the abstract, this is done

via contraction groups and asymptotic couples.

1.3 Archimedean Classes

Let (K,+,—,-,0,1,<gk) be an ordered field, then we can define the archimedean equiva-

lence relation from section (2.3.1) on K \ {0} via the ordered abelian group structure. As



1. INTRODUCTION

a reminder, for any pair z,y € K#0:

r <y <= Ini,n2 € N such that ni|z| > |y| and naly| > |z|

The quotient K79 < is denoted as [K]. Moreover, ordering < induces a linear order on
[K], denoted <[, defined as:

[z] >x] [y] <= 3n € N such that n|z| > [y (1.1)

Where z, y are elements of K7#°. This was extracted solely from the ordered abelian group
structure on K, but since we also have a field structure, we can define an ordered abelian

group structure on [K] itself as follows:
e The group operation + on [K] is defined as [z] + [y] = [zy]

e The identity on [K] is 0 := [1], where 1 is the multiplicative identity on K

e Additive inverses are given by —[z] = [2]

This makes G := ([K], <,+,0) an ordered abelian group. Furthermore, if K is real closed,
G is also divisible, since 12 = [¥/x] for any n € N, x > 0.

n

Remark 1.3.1. Due to a peculiar convention in the literature, when referring to the
archimedean classes of a field, most authors order the quotient via the reversal of the
ordering in Equation (1.1). To avoid confusion, when we follow this convention, we use
value group notation for the equivalence classes. So v(z) = [z] denotes the archimedean

class of x, and v(z) + v(y) = v(x - y), but:

[2] < [y] <= v(z)>0(y)

We call v the natural valuation and v(K) the value group of K.

Example 1.3.2. Let consider the field R(X) with the ordering:

f(X)=a, X"+...+anX" >0 < a, >0

where m,n € Nyn > m, a; € R and ay, a,,, # 0. Then (R(X), <) is an ordered field. Write
the polynomials f, g as:

f(X) ::ZaiXi 9(X) ::ZbiXi

Then f = g if and only if deg(f) < deg(g). Hence the archimedean class of a polynomial
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f is all polynomials of the same degree, and [f] > [g] if and only if deg(f) > deg(g). Note
that if f, g # 0, then deg(fg) = deg(f) + deg(g) hence via the identification with f to it’s

degree as an integer, we have an isomorphism from [R(X)] to Z as ordered abelian groups.

Example 1.3.3 (S. Kuhlmann, 2000, p. 93). Let K be a Hardy field (Definition 1.2.1),
then for any f,g € K, g # 0, the function % must eventually be monotone, thus:

lim @) e RU{£o0}

z—o0 g(x)

Consider the equivalence relation defined by the valuation:

v = im 7]”(3:) #0
and the ordering on v(K70):
o flx)
v(f) >v(g) <= xh_)rglom =0

Then ([K7, <[k)), the set archimedean classes of [K], is isomorphic to (v(K), <) as ordered
sets. To see this, suppose [f] = [g], then there exists some ni,ny € QY such that for

sufficiently large x € R,

nalg(x)] < [f(x)] < nalg(x)]

Since [g] # 0, we can assume g is eventually greater than zero or eventually less than zero,
thus:

L5

g9(z)

g9(z)

ny < N9

so for all sufficiently large x,

f(z)

g9(z) =

n1<’

since ‘% is an element of our Hardy field, we know it must be eventually monotone,

hence it must have a limit, so

A ;ég € (=ng, —n1) U (n1,n2) C R7"

Conversely, suppose v(f) = v(g), i,e.
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lim @ =r e R
v—o0 ()

Then there exists some € € (0,r)r such that for all sufficiently large x, we have:

<r-+e

‘f(ﬂf)
g9(z)

thus |f(x)| = (r + €)|g(x)|, so [f] = [g]. The homomorphism of ordered sets follows from

a similar calculation.

1.4 Contraction Groups

1.4.1 Logarithm on the Archimedean classes

Suppose further that K is a model of Th(Reyp) (but still non-archimedean i.e. v(K) has
more than one element), hence log : K> — K is well-defined. We can define a function
X : v(K) — v(K) as follows:

v(log(f)) if v(f) <Oand f >0
X (v(f)) =140 if v(z) =0 (1.2)
—X<v<%)> ifo(f)>0and f >0
Since v(—f) = v(f), x is defined on all elements of v(f), moreover, since for any f,g € K>°,

v(f) = v(g) implies v(log(z)) = v(log(y)), it is well defined on v(K). We have the following

easily verifiable characteristics of y:

Fact 1.4.1. The map x : v(K) — v(K) as defined in (1.2) is well defined, moreover for
any f,g € K70, x satisfies the following:

e \v(f) =0 < v(f) =0 (if and only if x is archimedean equivalent to 1k in K )

o Ifu(f) <w(g), then x(v(f)) < x(v(g))

Ifv(f) is archimedean equivalent to v(g) as elements of vK, then x(v(f)) = x(v(g)).
® Y S surjective
o For any v(f) > 0, we have 0 < x(v(f)) < v(f)

This motivates the following definition:

Definition 1.4.2. F.-V. Kuhlmann, 1994, p. 223 Let £; = (+, —,0, <, x) be a first order
language, where x is a unary function. A L;-structure (G, +, —,0, <, x) is a precontrac-

tion group if and only if for all a,b € G,
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CG (G,+,—,0,<) is an ordered abelian group,
CO xa=0 <= a=0

C< x respects <

C— x(—a) = —xa

CA If a is archimedean equivalent to b purely within the ordered abelian group G,

and they both have the same sign, then ya = xb.

This can be expressed in first order logic by the set for formulas; for every n € N,

we have:
0<a<bAna>b— xa=xb

Furthermore, (G, x) is a contraction group if the following two axioms hold:
CS  is surjective.
CD (G,+,<,0) is a divisible ordered abelian group.
Finally, a precontraction group is centripetal if it satisfies:
CPa>0—xa<a
and is centrifugal if:
CF a>0—=xa>a
In the two contraction group papers by F.V Kuhlmann, the following was proved:

Theorem 1.4.3 (F.-V. Kuhlmann, 1994 , F.-V. Kuhlmann, 1995). The theory of cen-

tripetal contraction groups has quantifier elimination, is complete and is weakly o-minimal.

Since K is real closed as a field we know vK must be divisible as an ordered abelian
group. Combined with fact 1.4.1, we see that the action of log on the value group of a

non-archimedean model of Th(Reyp) is indeed a centripetal contraction group.

Corollary 1.4.4. The archimedean classes of a non-archimedean model of Th(Rexp) along

with the action of log is a weakly o-minimal structure.

The entirety of this thesis only concerns contraction groups that are centripetal. From
now on, we simply refer to centripetal (pre)contraction groups as (pre)contraction

groups!

1.4.2 Hyper-logarithmic Contraction Groups

Suppose further that we can define a hyper-logarithm L; : K> — K as in Theorem 1.2.2.
It turns out that L gives a well defined function on vK and interacts with x, the function

induced by log in a particular way:
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Proposition 1.4.5. Define the function xo : vK — vK as:

v (Li(f)) if v(f) >0 and f >0
x2v(f) = {0 if o(f) =
X2 (v (})) ifo(f) <0 and z > 0

Then xo is well defined.

Proof. As v(—f) = v(f), it is clear that x2 is indeed defined on all elements of vK.
To prove xo is well defined, it is sufficient to show that for any f € K>R, v(Li(f)) =
v(L1(2f)), since the positive part of an archimedean class is convex. Since L; is strictly

increasing, we know that v(L1(f)) < v(L1(2f)). For the converse, note the following:

2L1(f) = 2(Ly(ef) — 1) Re-arrange (L1) with z == e/
= Li(e) + (L1(ef) - 2)
> Li1(2f) + (L1(ef) — 2) Since e/ > 2f and L; is strictly increasing
> L1(2f) Since L;(e) > R hence Li(e/) —2 > R
Hence 2L1 f > L1(2f), so [L1(f)] < [L1(2f)]- O

Theorem 1.4.6. The map x2 : vK — vK is a centripetal contraction and if x : vK — vK
is the contraction induced by log as defined in (1.2), then for every v(f) € vK>° andn € N,
the pair x and xo satisfy:

(H1) 0 <x2v(f) < x"v(f)
(H2) x20(f) = x2(xv(f))

Proof. Fix some f,g € K~°, we go through each of the contraction group axioms and
verify that they hold.

CO0 Suppose v(f) > 0, if xov(f) = 0 then v(L1(f)) =0, so L1(f) € R. But we assumed
the codomain of a hyperlogarithm was K=, so this cannot happen. Since we defined

X2 to be an odd function, we also have xov(f) # 0 for all v(f) < 0.

C< Suppose v(f) > v(g) > 0. That means f,g € K>® and f > g, hence Li(f) >
Li(g) > R (as Ly is strictly increasing), thus y2v(f) > x2v(g) < 0. Combined with
x2's oddity, x2v(f) < x2v(g) when v(f) < v(g) < 0. Finally, since x2(vK>?) > 0,
and (subsequently) x2(vK<%) < 0, for v(f) < 0 < v(g), we have x2v(f) < 0 < x2v(g)
so x2v(f) < x2v(g)-

C— Immediate from the definition of xo.

10
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CA

CS

CP

H1

H2

It is sufficient to show that xov(f) = x2(2v(f)), for all x € KR Since L is

increasing on K% we know that

Ll(fl,‘) < Ll(x2) < Ll(ex)

Hence by (C<), we have:

x20(f) < x20(f?) = x2(2v(f)) < xav(ef)

By applying (L1), and since v(Li(ef)) > v(1), we have v(L1(f)) = v(Li(ef) — 1) =
v(L1(e?)), hence x2v(f) = xzv(e), hence x2v(f) = x2(2v(f))-

This follows from the surjectivity of L.

We need to show that for any f € KR that Li(f) < f. But by (L3), we have:

0 < Li(f) <log(f) < f

Hence Li(f) < f.

The following is true for f € K>F and n € N:

v(f) > v(log(f)) > v(log®(f)) > ... > v(log"(f))

But L1 (f) < log™(f), hence 0 > v(L1(f)) > v(log"(f)), which tells us for all a € G>°,
0 < x2(a) < x™(a).

We know Lj(log(z)) = Li(x) — 1, so v(L1(log(z)) = v(Li(x)), hence x2(x(a)) =
xa(a).

Similar to Definition 1.4.2, the previous lemma motivates the following:

Definition 1.4.7. Let Lo = (+,—,0,<,x1,x2) be a first order language. Define the

theory T3, the theory of 2 contraction groups as asserting;:

(+,

—,0, <) is a divisible ordered abelian group,

(+,—,0,<,x;) forms a centripetal contraction group for i = 1,2,

H1 Va(x2a = x2(x10))

H2 For every n € N, the formula (Va > 0)(0 < x2a < x}a)

11



1. INTRODUCTION

In Section 3.3, we prove the following result analogous to Theorem 1.4.3 (see Theo-
rem 3.3.19).

Theorem 1.4.8. The theory T has quantifier elimination, is complete and is weakly
o-minimal.
1.4.3 Multiple contractions

By Theorem 1.4.8 know what L; does on vK and how it interacts with log. The straight-
forward progression would be to ask what each L; does. It turns out log, L1, Ls, L3, . ..
all induce well defined functions x1, x2, X3, X4, ... on the archimedean classes of K, and
moreover each x; is a centripetal contraction. We also have the following equations, for

any ¢ > j, m € N:

Xi(x;(a)) = xi(a)
0 < xi(a) < xj'(a)

This gives motivation to the following definition (which is identical to Definition 1.4.7

except we allow i to range up to any natural number):

Definition 1.4.9. Let £, = (+,—,0,<,X1,...,Xn) be a first order language. Define

theory of n-contraction groups T, as:
e (+,—,0,<) is a divisible ordered abelian group
e For each i <mn, (+,—,0,<,y;) forms a centripetal contraction group
e For any j < i < n, the formula Va(x;(x;(a)) = xi(a))
e For any j <i <n and m € N, the formula (Ya > 0)(x:(a) < x}'(a))

Analogously to Theorem 1.4.3 and Theorem 1.4.8, we prove the following (Theorem 3.4.17
and Theorem 3.5.21):

Theorem 1.4.10. The theory T,, has quantifier elimination, is complete, has a prime

model and is weakly o-minimal.

We should also remark that in proving weak o-minimality, we show that every definable
function f : G — G for some n-contraction group G can be finitely decomposed into

‘simple’ functions called x,,-polynomials (see Theorem 3.5.20).
1.4.4 Other works on Contraction groups

We briefly highlight some other results concerning contraction groups.

In Bautista, 2019, the author examines the structure of the value group of a logarithmic
trans-series. Logarithmic trans-series can be loosely thought of as a formal series of infinite
sums closed under log, but not exp. The lack of exponentiation means log will not be

surjective on the series, thus x will not be surjective on the value group. The author

12
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highlights that the image of x will be a discrete set, and develops a model complete and

complete theory characterising the behaviour of x in such a setting.

Another result on contraction groups can be found in Krapp and S. Kuhlmann, 2023.
There the authors give necessary and sufficient conditions to recover an exponential field
from a countable contraction group. They also give a method to produce a countable
centripetal contraction group, which we exploit to do the same for 7;, for all n € N
(Section 3.4.5).

1.5 Derivatives on the Archimedean Classes

1.5.1 Logarithmic Derivatives

Now suppose K is an exponential Hardy field expanding R(z). It turns out that the
derivative is a well defined function on vK, thus by composing the derivative with x, we

deduce that the logarithmic derivative is well defined on v K.

Proposition 1.5.1. Let K be a Hardy field expanding R(z). Then for any f,g € K70,

we have:

Proof. Recall from Example 1.3.3, that:

f(z)

v(f) =v(g) <— lim - e R7C
(1) = vle) = Jim L2
Suppose v(f) = v(g), so li_>m % = r € R70. Then by L’Hépital’s rule, we have:
[
z—o0 ¢'(x)
thus v(f") = v(g). O

Suppose K is closed under log. Set G := vK, and consider the element v(log(f)’) in G,
where |f| is not in the convex hull of R>? in K (which is the same as saying v(f) # 0).
We calculate it to be:

v(log(f)) =wv (?) By the chain rule

=o(f)—v(f)  Since v(f-g) =v(f) +v(g) and v(f!) = —v(f)
By Proposition 1.5.1, we know that v(f’) is a well defined function on G79, thus 1 :

G70 = G :vu(f) = v(f") — v(f) is also a well defined function. We call such a pair an

13



1. INTRODUCTION

asymptotic couple. As stated earlier these were initially introduced in Aschenbrenner

and van den Dries, 2000. This motivated the following definition:

Definition 1.5.2 (Aschenbrenner and van den Dries, 2000, p. 353). Let Ly be the lan-
guage (+,—,<,0,1,v, P(x), (dp)n>0), where ¢ and all the d,, are unary functions and P
is a unary predicate. The theory of asymptotic triples, 7", is the universal theory

asserting the following:
e +. — 0,< form a divisible ordered abelian group
e §, is the function which divides something by n
e ¢ is defined on all non-zero elements (so not defined on 0),
e 1 satisfies the following:
Al (1) =1
A2 ¢(nv) = (v) for all n € Z79
A3 Y(v) < Y(w) + |w]| for all v,w # 0

A4 1 is decreasing on the positive part of the ordered abelian group. (So by

(A2), it is increasing on the negative part).

e P is a downwards closed set containing the image of 1 but disjoint from the image
of |z| +¢(x)

The theory of closed asymptotic triples, Ty, asserts further that:
C1 {¢(x) | x # 0} has no maximal element

C2 {¢(x) | x # 0} is everything below the image of the function (id + 1) restricted to

positive elements, i.e:

vy (ax@ — (z)) & (Vw > 0)(y < w+ w<w>>)

The theory of the value group of a Hardy field was initially developed by Rosenlicht (see
Rosenlicht, 1981), but the model theoretic properties were developed by Aschenbrenner
and van den Dries in Aschenbrenner and van den Dries, 2000. We follow the presentation

given in the former.

Remark 1.5.3. Let V := (V, 1), Py) be an asymptotic triple, then note that the downward
closure of ¢(V79) is one possible choice for Py. But it may not be the only choice, e.g. if

there exists some a € V' with

Y(V70) < a < (id + ) (V>9)

14



1.5 Derivatives on the Archimedean Classes

We call such an element a H-point (Definition 4.2.10) and it can be shown that at most
one can exist (Proposition 4.2.9). Note however that if V is closed, then no H-point can

exist, and the only possible value for Py is ¢ (V7Y).

Remark 1.5.4. Th action of the derivative on G can be expressed as (id + ¢)(v(f)) =
v(f) + ¢ ((f) = v(f) +v(f) —v(f) = v(f).

Suppose K is any exponential real closed Hardy field expanding R(x). Let us verify that

the structure introduced on G = vK is indeed an asymptotic triple.

Proposition 1.5.5. Let K be any exponential real closed Hardy field expanding R(x).
Then G = (G, 1, (G70)), where 1¢ = v (L) and ¥(v(f)) = v(f)—v(f), is an asymptotic
triple. Suppose further that K is closed under integration, i.e. for all f € K there exists
some g € K with ¢ = f, then G is a closed asymptotic triple.

Proof. Since K is real closed we know that G is a divisible ordered abelian group. Let us

verify the remaining axioms:

(Al): Simply calculate the logarithmic derivative of %:

(0G) = () 6)

(A2): Pick some v(f) # 0 and some n € Z7°, so nv(f) = v(f™), thus:

Y(no(f)) = ¢(o(f*))
(f)") = o(f"

( )
(nf' 1) = v(f")
(f

(f

I
<

I
<

v

f)+(n=1)o(f) —no(f)
o(f) = v(f)
(A3): Picksome f,g € K with f >Rand 0 < g <R, sov(f) < 0andwv(g) > 0. Since log

is strictly increasing on K and log(R) = R>?, we must have log(f) > R hence [log(f)] < 0
thus by Example 1.3.3:

i 108/ (@) _
w00 g(x)

So by L’Hopital’s rule, we have:

15
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(log f(x))" _

A gy

thus [(log f)] < v(¢'). Since [(log )] = vv(f) and v(g’) = v(g) + Yv(g), we are done.

(A4):  We prove 1 is increasing on G<°, which will be sufficient since (A2) implies 1 is
symmetric. Pick v(f),v(g) € G<°, with v(f) < v(g), so f > g > R, then since log is
strictly increasing and surjective on K> we must have log(f) > log(g) > R, thus:

log g()
r00 log f ()

So by L’Hopital’s rule, we have:

thus v((log f)') < v((log 9)’):

(C1): Pick some v(f) € G7°, then note that v (log(f)) > v (f), thus P = )(G7°) has

no max.

(C2):  Suppose v(f) < (id + ¥)(G>?). We know there exists some g € K with ¢’ = f.
Then $o(e?) = v(g'e?) — v(e?) = v(g'), 50 v(f) € H(GH). 0

Remark 1.5.6. While we have shown that the value group of a real closed Hardy field
forms an asymptotic triple, it is possible to show that the value group of any H-field (an
ordered differential field with a valuation that interacts nicely with the derivative) also
forms an asymptotic couple. Thus the Hyperseries mentioned in Theorem 1.2.2 will also
give an asymptotic couple when we take the action of the logarithmic derivative on the

value group.
In the paper, the following was proved:

Theorem 1.5.7 (Aschenbrenner and van den Dries, 2000, p. 355). The theory Ty has

quantifier elimination and is complete. It is also the model completion of T,[;.

1.5.2 Hyper-Logarithmic Derivatives

Now suppose K is a trans-exponential Hardy field as in Theorem 1.2.3. We know that the

hyper-logarithm L satisfies the functional equation:

L(z) = L(log(z)) + 1

Thus by differentiating both sides, we get:

16



1.5 Derivatives on the Archimedean Classes

L'(z) = (L(log(z)) + 1) 1.3
= (L(log(x))) (14)
= I/ (log()) (15)

(o))

+v (L' (log()))

v(f) +v(L'(log(f)))
)) + v (L'(log(f)))

\_/

= o
e

(!
f
NEAW
f
)~
(f

Since v(g’) = (id + ) (v(g)) for any v(g) # 0, we then have:

v(L'(log(f))) = (id +¥)(v(L(f))) — v (f)

For v(f) < 0, set O(v(f)) = —v(L'(log(f))), then since the derivative and L are well
defined on non-zero elements of v(g), € itself must also be well-defined, we can also char-

acterise its behaviour with respect to x:

Proposition 1.5.8. Define the function 0 : G — G as:

Yu(f) — (id + ) Ov(f))  Ifv(f) <0
O(v(f)) =140 Ifv(f) =0 (1.6)

—6 (v (%)) Ifv(f) >0

Then 0 is a centripetal precontraction on G, and satisfies the functional equation:

0(z) = x(x) + 0 o x()

where x 1s the action of log from Fact 1.4.1, x2 is the action of L from Proposition 1.4.5,

and Y is the logarithmic derivative from Proposition 1.5.5.

Proof. Axioms (C0), (C—) follow immediately from the definition. (CA) follow from (CA)
for x2 and (A2) for 9.

(CP): Pick some f € K>®, so v(f) < 0. Thus by (L3) and (L2), we have:

17
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log"(f) = L(f) >~

log™(f)

By L’Hopital’s rule, the dominance relation is preserved between all three functions above

after differentiating, thus:

; [/n—1 -1 -
J}(Hlogi(f)> >J;L’(log <Hlog ) (log"( ))2)

; /n—1 -1 / 1l B
(J} <Hllogi(f)> )<U<J;L’(1og(f> (f (Hlog )log™( >>2) )

Since v (J%) = ¢u(f) and v (logl(f)> = —xv(f) > O¢, we then have,

n—1 n—1
O < =Y xv(f) < —=0u(f) <= x'v(f) = 2x"v(f) (1.7)
=1 =1
So,
n—1 n—1 '
0 > > xv(f) > 00(f) > D> xXv(f) +2x"v(f) (1.8)
i=1 i=1

Thus by (CP) for x, we get (CP) for 6.

(C<): Suppose v(f)v(g) <0, so f > g > R. Since log is increasing, we must also have
log(f) > log(g). Since log > L, we must have log’ = L', so 1 = L/(z), hence:

L'(log(f)) < L'(log(g))

Thus v (L' (log(f))) = —0v(f) > v (L'(log(g))) = —0v(g), so Bv(f) < v(g), thus we have
(C).

(CS):  We know that x is surjective on G, thus apply Lemma 4.3.5.

f-equation: We know from the proof of (CP) that for all a > 0, x(a) < 6(a) < 2x(a),
so by (A2) and (CA) for y2, we know that ¢ o x(a) = ¥ 0 6(a) and x2 o x(a) = x2 0 0(a).
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1.5 Derivatives on the Archimedean Classes

0(a) = (id+ 1) o x2(a) — ¥(a) Apply Equation (1.6)
= (id 4+ ) o x2 0 0(a) — (a) Since x2 060 = X2
= (id+ ) ox206(a) — (Y o x(a) —x(a)) Since ¢(x) = (id + ) o x(x) for z > 0
= x(a) + (id + 1) o x2 0 0(a) — 1 o x(a) Rearrange the right hand side
=x(a) + (id+¢)oxz08(a) —vobla)  As[x(a)] = [0(a)]
= x(a) + 0o x(a) Unapply Equation (1.6)
A similar calculation proves (C#) for a < 0. O

This motivates the following definition:

Definition 1.5.9. Let Ly, be the language (+, —, <,0,1,%, P(x), (0p)n>0, X, L, 0), where
1 and all the d,, are unary functions and P is a unary predicate. The theory of asymptotic

contractions, TJ_ " is the universal theory asserting the following:
e +,— 0,< form a divisible ordered abelian group
e J, is the function which divides something by n
e ¢ is defined on all non-zero elements (so not defined on 0),
e 1) satisfies the following:
Al (1) =1
A2 p(nw) = 1p(v) for all n € Z7°
A3 P(v) < Y(w) + |w| for all v,w # 0

A4 v < w implies ¥ (v) > Y(w)

P is a downwards closed set containing the image of ¥ but disjoint from the image
of |z| + ¢(x)

X, L, 0 are centripetal precontractions

x and L form a 2-precontraction group

For all z, 0(z) = x(x) + 0(x(z))

For all x > 0, (id +v¢)(L(x)) = ¥(x) + 0(z)
e For all z <0, (id + ¢)(x(x)) = ¥(z)
Moreover, the various functions interact in the following way:
CL x and L form a 2-precontraction group with y; := x and xs = L

C6 For all z, 0(x) = x(z) + 0(x(x))
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C1y For all z <0,

hence for all z > 0, (—id + ¥)(x(x)) = ¥ (z)

CI For all z < 0,

(id + ¢)(L(x)) = P(z) — 0(x)

hence for all z > 0, (—id + ¢)(L(z)) = ¥(x) + 6(z)
The theory of closed asymptotic contractions, T, asserts further that:
C1 P has no maximal element

C2 P is everything below the image of the function (id + 1) restricted to positive ele-

ments, i.e:

P(z) <= (Vw > 0)(z < w+ ¢(w))

C3 All the contractions are surjective

Note that the value group of a trans-exponential Hardy field K as in Theorem 1.2.3 is
only a model of the universal theory T__X, since we do not know if K is closed under
integration hence (C2) may not be satisfied. For an example of a trans-exponential field
that is closed under integration, and hence will produce a model of the theory Ty,_,, see
Theorem 6.23 in Bagayoko, 2022.

Analogous to Theorem 4.2.40 we would expect the following result to hold for T)-,.
Conjecture 1.5.10. The theory Ty, has quantifier elimination and is complete.

We do not prove that in this thesis but we do have an intermediate result (Section 4.4).
Let Lo == (+,—,0,<,x, L,0), and Ty_1, be the theory asserting:

e + — 0,< form a divisible ordered abelian group
e \, L, 0 are centripetal contractions
e Y and L for a 2-precontraction group
e For all z, 6(z) = x(z) + 0(x(x))
Then we have the following result (Theorem 4.4.13):

Theorem 1.5.11. The theory Ty_1 has quantifier elimination, has a prime model and is

complete.
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Chapter 2

Preliminaries

2.1 Basics of Model theory

Definition 2.1.1. A first order language £ = ((f)i,. .., (Ri)i, (¢i)i) is a formal collec-

tion of symbols where:
e fi: ()™ — () represent n;-ary functions
e R;: ()™ — {0,1} represent n;-ary relations
e (; represent constants
An L-structure is a collection of objects M = (M, (f;)i, (Ri)i, (¢i)i) is a where:
e M is a set
e fi: M™ — M is an n;-ary function
e R;: M™ — {0,1} is an n;-ary relation
e ¢; € M is a constant in M

|M| denotes M, the domain of M. We use calligraphic font to denote a structure and
ﬂ’ = M and so on.

standard font to denote the domain of a structure, so |[M1| = M,

Example 2.1.2. Let £ = (Even(z),0dd(x)) be the language containing two relation

symbols. The collection

Z = (Z, Evenz(x),0ddz(x))
where for any z € Z,

Evenz(z) <= zis odd

Oddz(z) <= zis even
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Is an L-structure. This example demonstrates that the symbols in £ have no meaning by
themselves aside from the number of arguments they take. Only when we interpret them

in an L-structure that the symbols in £ have a semantic value.

Example 2.1.3. Let £,, = (+,—,0 <) be the language of ordered groups, where + is
a function with two arguments, — is a function of one argument, < is a relation of two

arguments and 0 is a constant.

e The structure Z = (Z,+, —,<,0), where all the functions are interpreted as you

would expect, is an L-structure.
e Similarly the structures Q = (Q, +, —, <,0), R .= (R[z], +, —, <,0) are L-structures

Definition 2.1.4. Fix some language £. An L-formula is a formal symbol made up of
finitely many applications of the symbols in the language L, variables x1,x2,23,... and

the logical symbols:

—

A Y — v 3 =
And And or Not Implies For all Exists Equals

For example, if we fix £ := L,, from Example 2.1.3, the following are formulas:
o (x1+x2=0)A~(x) =—x3)
o Vzi(z1+22=0)V(0=0)
o (Vridwe(xg+a0=21)) 2> 24 =0

The following is not a formula:

z1=0Vzx14+21=0Vz14+21+21=0V...

since it was constructed using infinitely many applications of V.

A formula is a sentence if all the variables are bound by quantifiers, so:
e Jri(x1 + x1 = x9) is not a sentence, since x is not bound
e Vrodxi(xy + 21 = x2) is a sentence.

Note that within a structure, a sentence can either be true or false. Given a sentence ¢,
and a structure M, we say M = ¢ if ¢ is true in M.

Definition 2.1.5. Fix some language £, an L-theory T is some collection of L-sentences

closed under implication.

Definition 2.1.6. e A theory T has quantifier elimination if for all formulas ¢(Z),
there exists some quantifier free formula ¢ (Z) such that for any model M of T', we

have:
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M EVT($(T) & (7))

e Let M C N be an extension of £ structures. We say the extension is existentially

closed if for all quantifier free L-formulas ¢(x,7) and @ € AlY!, the following holds:

M E Jzp(x,a) <= N | Jzd(z,a)

e Given some b € B\ A, we denote A(b)p as the structure generated by A and b in B,
which formally is the intersection of all substructures of B containing A, b in their
domains. When there is no ambiguity over B, we denote it as A(b).

Types

Definition 2.1.7. Let M be an L-structure, T = (x1,...,2,) be a tuple of variables and
A C M. An n-type p(T) is some collection of L-formulas with parameters in A with free
variables Z, such that for any finite subset A(Z) C p(T), there exists some @ € M™ such
that M = A(a), we say p is finitely satisfiable in this case.

If M = p(@), then we say @ is a realisation of p in M and if there exists such an @, we say

p is realised in M.
Given some b € M, define tp(b, A)(x) and qftp(b, A)(z) as:

e tpy (b, A) is all the set of formulas with parameters in AU {b} that M proves, with

the occurrences of b replaced with the variable x:

(b, A) = {d(x,a) | @ € A", M = ¢(b,a), ¢(x,7) is any L-formula}

o qftp,,(b, A) is all the set of quantifier free formulas in tp(b, A)(x):

aftp (b, A) == {¢(z,a) | a € AT, M = ¢(b,a), ¢(x,7) is any quantifier free L-formula}

When the context (i.e. the underlying structure M) is clear, we drop the subscript. We
say a type ¢(Z) determines some other type p(Z), denoted ¢ F p, if for any ¥ (7) € p(T),
there exists some finite A(Z) C ¢(Z) such that M = A(Z) = M [ ¢(T).

Definition 2.1.8. We say that a structure M is k-saturated, for some cardinal , if for
any A C M with |A| < k, and any type p(Z) of M over A, there exists a realisation of p
in M.
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Factoring Property

Definition 2.1.9. Fix some language £, let T' be some L-theory and let M, N be L-
structures. We say N has the factoring property over M with respect to T if:

e There exists an embedding f: M — N

e For any model O = T and embedding g : M — O, there exists an embedding
h: N — O such that g = ho f

Note that a prime model A of some theory T has the factoring property over any model
BofT.

Definition 2.1.10. Let T be any theory, and T be its universal theory. For any A = Ty,
we say some A =T is a T-hull of A if it has the factoring property over A with respect

to T. We say T has the closure property if any model of T has a T-hull. In general we
denote some T-hull of B |= Ty as B.

Existential Closedness

Fact 2.1.11. Let A C B be structures. If B is embeddable over A in some elementary

extension of A, then A is existentially closed in B.

Conversely, if A is existentially closed in B, then there is an embedding of B into every

|B|"-saturated elementary extension of A.

Proof. Suppose B < A* for some elementary extension A* of A, and pick some formula
¢(z,7), and a tuple @ € Al Suppose B |= Jzp(a, @), then since B < A* and A < A*, we
know A* |= Jzé(a,a), and hence A = Jz¢p(a,a). Thus A is existentially closed in B.

For the second statement, fix some |B|" saturated elementary extension A* of B, and
enumerate B\ A as (b;)i<~ for some ordinal v < |B|*. Assume for induction that for some
a <7, Ay = A{{b; | i < a}) embeds into A*, so by the previous statement we know
A, = A*. Consider the type tp(b/Ay)(x), by |B|" saturation it must have a realisation
b € A*. Embed A, (b) into A* via b+ b. The limit and base case are proved as expected,

thus by transfinite induction we know B embeds into A*. O

Fact 2.1.12. Fiz some theory T such that A,B = T. Let b € B\ A, and suppose there
is some collection of formulas py(z) that is a type of A and determines the quantifier free
type of b over A (meaning py - qftpg(b, A)). Then A is existentially closed in A(b)p, and

hence existentially closed in any T-hull A(b)p of A(b)g.
Proof. Let A* be some |A|" saturated elementary extension of A. Then since py, is a type

of A, there exists some realisation b in A*. Since p;, determines the quantifier free type of

b over A, we have an isomorphism over A of generated structures:
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A(b)s = A(b) 4+ (2.1)

Hence A(b)p and A(b)g are embeddable into A* over A, so by fact (2.1.11), we see that
A is existentially closed in both. O

Remark 2.1.13. Since b = qftp(b, A)(x) is equivalent to the generated structures akin
to (2.1) being isomorphic over A, it is also sufficient to show that for any C with 4 C C
and ¢ € C with C |= py(c), we have an isomorphism over A:

and that pj is a type of A, in order to prove the conclusion of fact (2.1.12).

Criterion for Quantifier Elimination
Theorem 2.1.14. Let T be a theory. If it satisfies the following:
1. T has the closure property.

2. For any A C B which are models of T, and any b € B\ A, A is existentially closed
in A(b) and the T-hull of A(b).

3. There exists a model I of T that embeds into every other model of T'.

Then T has quantifier elimination, has a prime model and is complete.

Proof. First we show T is model complete. Pick some models A, B of T', some quantifier
free formula ¢(z,7) and a € A such that:

B | Jzé(x,a)

Let b € B be a realisation of ¢(z,a) in B, then:

A(b) = Jxop(z,a)

But we assumed that A is existentially closed in A(b), hence:

A = Jzp(x,a)
Hence A is existentially closed in B, so T is model complete. Let Z be a T-hull of Z, so for

any models M, N of T, T embeds elementarily into both of them, by model completeness.

Apply this to your favourite method to prove quantifier elimination.
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Finally, notice that the T-hull of the initial structure is a prime model of T'. O

Sometimes we may not be able to directly show A is existentially closed in A(b) for all

arbitrary B, so we might need to construct a chain of substructures of B:

Agi=AC A C...C A, D A
such that for all i € [0,n — 1], A; is existentially closed in A;+1. So we also have the
following criterion:
Theorem 2.1.15. Let T be a theory. If it satisfies the following:
1. T has the closure property

2. For any A C B which are models of T, we can enumerate B\ A as {b;}i<a such that
for all B < a, if we define Ag as:

, T
Ag = A{bi [ i < B})
then Ag is existentially closed in Ag(bg).

3. There exists a model of T of T that embeds into every other model of T
Then T has quantifier elimination, has a prime model and is complete.
Proof. Since existential closedness is a transitive property, (2) implies that A is exis-

tentially closed in B, so we can repeat the proof of Theorem 2.1.14 to get quantifier

elimination, a prime model and completeness. ]

2.2 Weak o-minimality

Definition 2.2.1. A structure M = (M, <, ...) expanding a dense linear order is weakly
o-minimal if any definable set in one variable, A C M, is a finite union of convex sets.

(Points are convex sets!)

Unlike o-minimality, weak o-minimality is not preserved under elementary equivalence,
see Macpherson, Marker, and Steinhorn, 2000. Moreover, we may not have piecewise

monotonicity as we do for o-minimal structures, but we do have local monotonicity.

2.3 Ordered Abelian Groups

2.3.1 Archimedean classes

Let G :== (G,+,<,0) be an ordered abelian group, that is an abelian group with a linear
order < such that for all z,y, 2z € G:
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r<y = x+z<zx+y

We can define the relation <, of dominance on G, to say that one element is roughly as

big, or much bigger in magnitude than another. Specifically for z,y € G:

x =y <= 3dn € N such that n|z| > |y|

r =y <= VneN,|z| > nly|

Furthermore, we say = < y, meaning z is archimedean equivalent to y, if and only if
x =y and y = x. Then < happens to be an equivalence relation on G, so we denote the
quotient as [G], and the equivalence class of x as [z]. Note that each equivalence class
that is not [0] = {0} is made up of two convex components, one in the positive cone of G

and its reflection in the negative cone, hence we can define a linear ordering <(g on [G]:

[2] >16) [yl = || = |y

Where |A| == {|| | 6 € A}. Note that we could have also defined <g as:

[2] 2 V] = v =y, 2] > Y] <= v~y

So [z] > [y] can be thought of as saying “|z| is much bigger than |y[”.

Example 2.3.1. Let G := (R[X], +, <jesx,0) be the set of real polynomials with the lexi-

cographical ordering, so:

1
2 2
coe <lex -X <lex -X <lew -1 <lex 0 <lex 1 <lew §X <lex X <lex 2X <lex X <lex - --

fX)=a X" +an 1 X" '+ . +aX +ag>0 <= a, >0

Where a; € R and a, # 0. We denote <, as < from now on. Then for any polynomial
f(X) € R[X] the class of f is:

[f(X)] = {h(X) € R[X] | deg(f) = deg(9)}

and for any two f(X),g(X) € R[X], we have

fF(X) < 9(X) = [f(X)] <[g(X)] < deg(f) < deg(g)

where deg(r) = 0 for any r € R7? and deg(0) = —1.
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Definition 2.3.2. Given two ordered abelian groups G, H, we say a group homomorphism

¢ : G — H is an order homomorphism if for all g1, g2 € G, we have:

91 <c g2 <= 9(g1) <m ¢(g2)

Note that any order homomorphism must be injective, so we say G is a subgroup of H as

an ordered abelian group if such a map exists.

Fix an extension of ordered abelian groups ¢ : G — H. Since the archimedean equivalence
relation was defined purely through the ordered group structure, it induces a map on the

quotients:

It can be shown that ¢ is injective, hence we can think of [G] as lying inside [H]. Further-

more if ¢ is surjective then we say [G] = [H], or that the extension is value preserving.

Fact 2.3.3. Let G C H be an extension of ordered abelian groups, and b; € H \ G for all
i € [0,n]. Then

has at most n elements.

Fact 2.3.4. The equivalence relation || satisfies:

[z + y] < max{[z], [y]}
We call the equation above the ultrametric inequality.

Hahn Products and sums

Hahn products and sums were originally defined by Hans Hahn in 1907, and their main
purpose is to express the Hahn embedding theorem (Theorem 2.3.8) which we state without
proof. It was originally derived in Hahn, 1995, however, that paper is in German, thus we
refer the reader to Gravett, 1956 and S. Kuhlmann, 2000.

Definition 2.3.5 (Hahn Sums and Products). Let I' be an ordered set and {R,},cr be

a collection of ordered abelian groups. The Hahn sum, denoted [] R is the set of all
el

functions:
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f:r =R,

vel’

such that f(y) € R, for all v € I', and with finite support, that is the set:

supp(f) == {y €T | f(v) # 0,} (2.2)

is finite. This set can be made into an ordered abelian group via component wise addition,
so for all f,g € ll;cr and § € I™:

(i) f+9(0) = f(d) +9(5)
(ii) (=£)(8) = —rs where £(5) =15
(7i) 0 is the function that sends every § to 0Os.
(iv) f > 0 if and only if f(J) > 05 where § := max(supp(f)).
Similarly the Hahn product H R is the set of all functions of the form (2.2) with well-
based (that is reverse Well—of"(eil;red) support, equipped with an ordered abelian group

structure defined in the same way as the Hahn sum.

Notation 2.3.6. We denote arbitrary elements of a Hahn sum/product indexed by I' as

(ry)~er, where 7, € R.. Moreover we denote ¢, as the function f defined as:

0 If
fla) = 7
qg Ifa=~

Example 2.3.7. Let T' == {X° X! X2 X3 ...} with X? < X! be an ordered set. Then
we can think of the Hahn sum IR as the set of real polynomials R[X] with the ordering
defined in Example 2.3.1, so:

f(X)=a, X" +...+aoX°>0 <= a, >0

where a,, # 0.

Theorem 2.3.8 (Hahn Embedding theorem, Gravett, 1956, p. 59). Let G be an ordered

abelian group. Then there is an order homomorphism ¢ : G — [[R
[G]

2.3.2 Linear independence

Definition 2.3.9. Let G C H be an extension of ordered abelian groups with H divisible.
We say some collection of elements of H, B := {b;}; is linearly independent over G if

and only if for any finite subset {b1,...,b,} C B, and q1, ..., ¢, € Q not all zero, we have
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qib1 +...qguby € G

Example 2.3.10. We list some examples:

o Let G = (R[X, X?], <jez) and H = (R[X, X%, X3, X4, <je), and let i : G — H
be the embedding which sends 1g to 1p, X}; to X}I for ¢ = 1,4. Then the set
{X?2, X3} C H is linearly independent over G.

e Let G == 0 and H = II_yR. Then the collection {1_, | n € N} U { > 1_n} is
neN
linearly independent over (G, since we cannot do infinite sums between elements of

H.

e Let G =1I_yR and H = II_yR. Then we can embed G into H via the embedding

1, — 1,. The pair { > 1loon, Do 1_2n_1} is linearly independent over G, since
neN neN
there every element of G must have finite support.

e Let G = Q and H = R, and embed G into H in the obvious way. Then the
set {v/2,v/2} is linearly independent over Q. The set {2v/2,1/2} is not linearly

independent over Q.
e Let G:=7 and H = Q. Then % is not linearly independent over G.
Definition 2.3.11. Let (C, <) C (D, <) be an extension of ordered sets. We say d;,ds €
D induce the same cut in C' if and only if:
{relCle<di}={zeC|z<dy}

{zeClx>di}={reC|x>d}

Lemma 2.3.12. Let G C H be an extension of divisible ordered abelian groups with
be H\G. Then:

G+ Zb] = [G] <= Vg€ G,z €Z with g+ zb > 0, there exists some 2:3)
g € G such that g <g + zb < 2g '

Thus for any other divisible ordered abelian group H with G C H and b€ H\ G, if b and

b satisfy the same cut in G, then:

(G +7Zb] = [G] <= [G+Zb] = [G]
The same statement holds when Z is replaced with Q.

Proof. For the forward direction of (2.3), pick some g+2b € (G+7Zb)>, then [g+2b] € [G].
By definition, this means that there exists some h € G>9 such that [h] = [g + 2b] i.e there
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exists some ny,ne € N such that n1g > g + zb and na(g + zb) > h. Some multiple of h

involving n; and no will give the appropriate g.

Conversely, if for any arbitrary g 4+ zb we can find some h € G such that h < g+ zb < 2h,
this by definition implies that g+ zb and h are archimedean equivalent, thus [g+ zb] € [G].

For the latter statement, suppose b satisfies the same cut in G as b. If [G + Zb] # [G],
namely [b— g] € [G] for some g € G. If we assume b—g > 0 (hence b—g > 0 as well!), then
since b — g is not archimedean equivalent to any element of G, we have for all h € G,
either nh < b— g for all n € N>, or b — g < nh for all n € N>, Since b satisfies the same
cut, then the same is true for b — g, thus it also is not archimedean equivalent to anything
in G.

Finally, if [G + Zb] = [G], then by (2.3), for any pair g € G and z € Z with g+ zb > 0, we
can find some h € G such that h < g+ zb < 2h. Since b and b satisfy the same cut, this
means h < g + zb < 2h, thus by (2.3) again, [G + Zb] = [G].

The proof is identical when we replace Z with QQ since G and H are divisible. O
Lemma 2.3.13. Let G, H, H be divisible ordered abelian groups, with G C H and G C H.

Let I be some indexing set, and suppose B == {b;}ic; C H\ G, B == {b;}ie; C H\ G. If
for any tuple iy, ...,i, € 1, z; € Z and g € G, we have:

n n
szbij =g <= ZZ]'BL']. =g (2.4)
j=1 j=1

n no

szbij > g < szbij >q (2.5)
j=1 j=1

Then there exists an isomorphism of ordered abelian groups:

(ﬁ:GbZ:G—i—ZZbi—)GEI:G—FZZBZ‘2g+Zlbi1+...+anin0—>g+2152‘1+...+5in
icl el

Furthermore, if [b;] # [b;] for all i # j and for each i € I either:

(1) [bi] € [G]
(i1) |G+ Zb;] = [G], and [bj] & [G] for all j # i

Then for any i € I and x € Gy, we have [z] € [G]|U{[b;] | i € I} and:
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The same holds when Z is replaced with Q.

Proof. To show ¢ is well defined, pick two sums from Gp,

n n
Bi= g,8+zzz‘bi ’73:974‘2@02'5@
=0 =0

Where b; € B and z;, w; € Z. Suppose 8 = 7, then § —~ = 0, thus:

n

> (2 — wi)bi = gy — g

Jj=0

So by (2.4), we have:

j=0
Thus:
o(B) = gp Z ziby = gy + Z wib; = é(7)
7=0 7=0

Hence ¢ is well defined. Bijectivity follows similarly from (2.4), and (2.5) tells us it is also

an order isomorphism.

Suppose further that (i) and (i7) hold. Pick some x € Gy, written as:

i
L

T = +(g + zibs) (2.6)

i

Il
o

where g € G, 20,...,2n_1 € Z7°, 2, € Z, b; € B, and [b;] € [G] for all i € [0,n — 1], and
b, satisfies (7). Then since all the terms in Equation (2.6) are distinct, the ultrametric

inequality, tells us:

[z] = max{[bo], ..., [bn-1], [g + 2nbn]}
Similarly, by applying Lemma 2.3.12, we deduce that the natural valuation of ¢(z) is:

[6(2)] = max{[bo], ..., [bn-1], [g + 2nbn]}

If (] = [b;] for i <n—1, then [b;] > [b;], [+ 2Dy ] for all j # 1, j € [1,n—1], thus by (2.3)
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and (2.5), we deduce that [¢(z)] = [b;]. Similarly if [x] = [g+ 2,,b,) then [¢p(2)] = [g+ 2nbn].
The same argument applies when there is so ¢ € I satisfying (). O
2.3.3 Pure Valuational Extensions

Definition 2.3.14. We say an extension G C H of divisible ordered abelian groups is
pure valuational if for all h € H \ G, there exists some g € G such that [h — g] & [G]

Proposition 2.3.15. The property of being a pure valuational extension is transitive and

hence closed under infinite chains.

Proof. To prove transitivity, suppose G C H and H C K are pure extensions. Pick some
k € K\ H, then there exists some h € H such that [k — h| € [H]. If h € G then we are
done. If h & G, then there exists some g € G such that [h — g| € [G]. Consider k — g:

[k —g]=I[(k—h)+ (h—g)]

= max{[k — h],[h — ¢]} Since [k — h] & [H| and [h — g] € [H]
¢ [G] Since both [k — k], [h — g] & [G]
Thus for any infinite chain of pure extensions Gy C G; C Go C ..., we deduce that

Gy C Gy, is pure, where:

2.4 Set theory

Definition 2.4.1. An ordinal « is a transitive set (so z € y € « = = € «) whose
elements are well ordered by the membership relation. We say an ordinal j is a successor
ordinal if it is of the form a+ 1 := aU {a} for some ordinal . If no such « exists, we
say (8 is a limit ordinal. We can define addition, multiplication and exponentiation on

ordinals as follows:

Fix some ordinals o and 3. Define o + 3 as follows:
o If 3=0,thena+ =7
e Iff=7y+1,thena+p:=(a+v)+1

e If 8 is a limit ordinal, then o + 3= |J a+ 7~
v<p

Define o - 3 as:

o If 3=0,thena-8=0
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elff=~y+1,thena-f:=(a-v)+a

e If 5 is a limit ordinal, then a- 8= |J a7~
y<B

Define o as:
e If 3=0, then &’ =1
o If 3=~ +1, then o == () -«

e If 3 is a limit ordinal, then o := |J o
7<B

Note that for any distinct ordinals o and f, either o € S or § € a. We say a < S iff
a € pS.

Example 2.4.2. 0 := @ is an ordinal, 1 :== 0U {0} = & is also an ordinal. Thus every
natural number can be written as n == (n — 1)U {n — 1} = {0,1,...,n — 1}, hence is a

(successor) ordinal. Let w :={0,1,...,n,...}, then w is a limit ordinal.

Addition, multiplication and exponentiation for natural numbers as ordinals work as you

would expect. However, note that 1 + w = w € w + 1. Similarly 2w = w € w2.
Definition 2.4.3. Given a cardinal x, k™ denotes the next cardinal.

Fact 2.4.4. Any well ordered set is order isomorphic to an ordinal. Thus assuming the

aziom of choice, we can assume any set can be enumerated by an ordinal.
Fact 2.4.5 (Cantor normal form). Let o be an ordinal less than w*, then there exists

some n,c; € w such that:

a=w"c, +...+wecl + ¢
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Chapter 3

Just Contractions

3.1 Introduction

This section aims to study the structure induced on the value group of a trans-exponential
field by just the various logarithms. Fix a trans-exponential field K as in Theorem 1.2.2,
so a field K with functions log, L1, Lo, ... : K>® — K>® satisfying (L1)-(L4).

As shown in Fact 1.4.1 and Theorem 1.4.6, we can show that the actions of log and L; of
G = vK form contraction groups xi := [log] and x2 = [L1]. A similar line of reasoning
will also show that Lo, Lg, ... also induce centripetal contractions xs, x4, ..., and the maps

together form a model of the theory T,.

The outline of this chapter is as follows. In Section 3.2, we present a slightly different proof
of QE and completeness for 1-contraction groups to the original from F.-V. Kuhlmann,
1994. Then in Section 3.3 and Section 3.4, we show how to use that proof to prove QE and
completeness for 2 and n-contraction groups. In Section 3.4.5 we then extend the result
of Krapp and S. Kuhlmann, 2023 to construct a countable model of T},, and in Section 3.5
we generalise the proof by F.-V. Kuhlmann, 1995 of weak o-minimality for 1-contraction

groups to n-contraction groups.

3.2 One Contractions

We give a slightly different presentation of the proof of quantifier elimination for contrac-
tion groups given by Franz-Victor Kuhlmann in F.-V. Kuhlmann, 1994, mainly so that
we can set up an inductive argument for proving quantifier elimination for groups with n-
contractions. We want to satisfy the conditions of Theorem (2.1.14), which means showing
the theory of contraction groups has the closure property, any contraction group is existen-
tially closed in the structure generated by it and one extra element from a superstructure,

and that there exists a contraction group that embeds into every other contraction group.

First, let us fix the definitions and some notation.
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Definition 3.2.1. Let £; be the language (+,—,0,<, x). The theory T3 asserts that a
structure is a contraction group, and 7 asserts that a structure is a precontraction group
(so we remove divisibility for the underlying group (CD) and surjectivity for y (CS)).
Thus T is the universal theory of T}

We usually hide the ordered abelian group notation when writing down a contraction

group, so (G, x) denotes the structure (G, +, —,0. <, x).

3.2.1 Closure Property

Lemma 3.2.2. Let (G,+,<,0) C (H,+,<,0) be an extension of ordered abelian groups,
with [G] = [H]. Suppose further we can endow G with a map x such that G .= (G, x) = 17 ,
then there is a unique extension of x to H such that H = (H,x) is also a model of T}

extending G as L1-structures. In particular:

(i) If (G,x) is a precontraction group and G is the divisible hull of G, then there is

a unique extension of x to G such that (é, X) is a precontraction group exrtending
(G.x)-
(ii) Similarly if G is the Hahn product [[ R, then again there is a unique extension of x
[G]
to G such that (G,x) E Ty and (G,x) contains (G,x) as a substructure.

Proof. For some h € H, there exists some g € G such that [h] = [g] so set x(h) = x(9),
a routine calculation shows that H is indeed a precontraction group. Moreover, since
x({g € G | [g] = [h]}) is a single point (because of axiom (CA)), the only possible thing

we can map h to is x(g), hence the extension of x is unique. O

Lemma 3.2.3 (F.-V. Kuhlmann, 1994, p. 227). Let G = (G, x) be a 1-precontraction
group. There exists some 1-contraction group (H,x) containing (G, x) as a substructure.
Moreover, for all h € H, there exists some n € N such that x"(h) € G.

Proof. Let Gy = G. Given some G,, with n € N, define G,,+1 = (Gp+1, x) as follows. The
ordered abelian group G,41 is the Hahn product:

Gn+1 = H R
r

Where I' is defined as:

I =[Gl U (G \ x(Gn))

The ordering on T' is as follows. For 1,72 € [Gy], we say v1 <r 72 if and only if y1 <(g,,] 72-
Similarly for a,b € G;,°\ x(Gy), we say a <r b if and only if a <¢, b. For some v € [G,)]
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and a € G;°\ x(G,,), note that since a ¢ x(Gy,), either |x(y)| >a, a or |x(7)| <g, a. We
set a <r 7y in the first case and a >r 7 in the latter case.

To define a contraction x on Gy41, it is sufficient to fix the values of x(1,) for all y € T
If v € [Gy), then set x(1,) = |x(7)| € Gn, and when v € G;°\ x(Gy), set x(1,) = a,
where a is the element of G¥ we construed v from. By the Hahn embedding theorem
(2.3.8), we see that Gy, embeds into G,,11 as an ordered abelian group, and by (CA), this

embedding is an £i-homomorphism.

Define G, as:

gw = U g’L

€W

Then G, is a model of T, and since for any a € G, we can find some n € w such that

G, contains a preimage for a under y, we see that G, = T7.

Finally, note that x(Gn+1) C Gy, so for any h € G, we know that x"(h) € G. O

Lemma 3.2.4 (F.-V. Kuhlmann, 1994, p. 228). Every precontraction group G has a Ti-
hull. Moreover for any Ti-hull G and for any g € G, there exists some n € N such that

X"(9) € G.

Proof. By Lemma 3.2.2 (i), we may assume G is divisible. Via Lemma 3.2.3, embed G
into some model ‘H of T7. We keep filling in the gaps in the image of x on G by adding

elements of H, and show that the resulting structure has the factoring property.

Set Gy == G, and assume we have defined some G, |=T7 U(CD) with the factoring property
over G with respect to 77 and hence embeds into H over G. If G, is a model of 17, i.e. x is
surjective on Gy, then stop. Otherwise, define G, 11 as follows; pick some a € G2%\ x(G.),
we can find some b € H such that x(b) = a. Fix this particular b, and define G, as:

Gat1=Ga +Qb

Note that [b] € [G,], else by (CA), a would have some preimage under y in G,. Hence
[Ga+1] = [Ga] U [b]. Once we set xa+1(7) = Xal(7y) for [7] € [G4], and xa+1(7y) = a when
[v] = [b], for any v € Gu1, the Go11 is a model of 7] U (CD). It remains to show that
Ga+1 has the factoring property over G with respect to 11, for which it is sufficient to show
that Go41 has the factoring property over G, over T7.

Suppose G, embeds into some contraction group K via some function ¢ : G, < K. Then
a € K thus has a preimage under y in K, k € K. Define the map i : Goy1 — K as
i(ga + gb) = i(ga) + gk, where g, € G, and ¢ € Q. The axiom (C<) implies that b

and k induce the same cut in G, so by Lemma 2.3.13, the map ¢ is an ordered group
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homomorphism. Since x(b) = x(k) = a and [k] € [G,], we see that it must also be an

L1-homomorphism.

For limit ordinals 3, if we have already defined G, for all a < 3, set:

gﬁ = U ga

a<f

Then again G is a model of 7, U(CD), and has the factoring property over G with respect

to T7. Since H is a model of T, for some o < |H|+, G, must be a model of T7.

To get the final statement, note that any 77-hull of G embeds into the structure (H, x)
from Lemma 3.2.3. O

Remark 3.2.5. If we examine the construction of a 1-contraction hull of some 1-precontraction
group (G, x) (Lemma 3.2.4), we see that the 1-contraction hull constructed (G, x) can be

written as:
G+ Qs
i€l
where (0;);er > 0 is a collection of indeterminates such that for all 4,5 € I, i # J:

* [0i] £ [G]

[0;] is not less than [G] i.e. there exists some g € G with [g] < [d]

d; < ¢; if and only if x(;) < x(d;) and 9; < g if and only if x"(d;) <¢ x"(g) for

some n € N.
Thus G C G is a pure valuation extension of ordered abelian groups and [G] is coinitial

in [G].

3.2.2 Existential Closedness

Fix some models G C H of T, for any b € H \ G, we need to find some ‘simple’ (meaning
easy to show is finitely realised in G) set of formulas py(z) such that p, - qftpy (b, G).

Definition 3.2.6 (F.-V. Kuhlmann, 1994, pp. 233-234). For any b € H \ G, a sequence

(bi, gi)i<w, where b; € H and g; € G, is a characteristic sequence of b in G if it satisfies:
o If [G] C [G + Zb] then by = b — go and [bo] & [G].
e If [G] = [G + Zb] then by :== b and gy := 0.

e For any ¢ > 1, if b; ¢ G then:
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3.2 One Contractions

— [bo] > [b1] > ... > [b]]
— It [G + Zx(b;)] = [G], then git1 = 0 and bit1 = x(b;)
— If [G 4+ Zx(b;)] # [G] then [x(b;) — gi—1] € [G] (gi+1 might still be zero!)
e For any ¢ > 1, if b; € G then bjy; =0 and g; = 0 for all j > ¢
For the rest of this section fix some b € H \ G.

Lemma 3.2.7 (F.-V. Kuhlmann, 1994, p. 233). A characteristic sequence of b in G exists.

Proof. Consider the extension of ordered abelian groups G C G + Zb. Suppose the exten-
sion is value preserving, so [G + Zb] = [G], then set by := b, by := x(by), and b;12,¢g; == 0

for all 7 € w.

If the extension G C G + Zb is not value preserving, then there exists some g € G such
that [b— g] € [G]. Set go = g and by := b — go

Assume we have defined (bj, gj),<; for some i € w, where b1 = x(b;) — gj+1. If b; € G,
then set bj, gj := 0 for all j > i. If not, consider x(b;), and the extension:

G+ Zb CG+ > Zh; + Zx(b;) (3.1)
j=0 =0

o If x(b;) € G, then set b1 := x(b;), bj+1,9; =0 for all j > i+ 1.

e If the extension (3.1) is value preserving, then set bj+1 = x(b;), bi+2 == x(bi+1) =
x?(b;), and gj == 0 for all j > i+ 1.

i
e If the extension (3.1) is not value preserving, then there exists some v € G+ ) Zb,
j=0
such that:

) =) ¢ [+ gzm]

Then since [by] > [b1] > ... > [b;] > [x(b;)], with the last inequality coming from
axiom (CP), we see that v € G. Set g;+1 = and b1 = x(b;) — gi+1

It can be verified easily that the sequence (b;,g;)i<. satisfies the conditions of Defini-

tion 3.2.6, hence we are done. ]

Definition 3.2.8 (F.-V. Kuhlmann, 1994, p. 234). Fix some b € H\G and 1-characteristic
sequence (b;, g;)i<w- 1f b; & G for all i < w, we say b is 1-transcendental and say b has
1-characteritic length w. Conversely, we call b 1-algebraic when b; = 0 for some i < w,

and say b has 1-characteristic length o where « is the least such i (So by_1 € G7?).
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We extend Kuhlmann’s definition by the following; when b is 1-algebraic with [by—1] € [G]
(so [G+ Zby—1] = [G]), we say b is 1-archimedean-algebraic, and when [b,_1] & [G] we

say it is 1-value-algebraic.

Lemma 3.2.9. The characteristic sequences of b in G have the following properties.

(i) For any two 1-characteristic sequences (bi, g;)icw and (b;,G;)icw, for any a < w, we

have:

[boz] = [Ba]

(i) If b has a 1-characteristic sequence of length o, then all it’s 1-characteristic se-
quences have length «, thus the 1-characteristic sequence length of b is well-defined,
hence so are the definitions of 1-transcendental, 1-algebraic, 1-value-algebraic and

1-archimedean-algebraic.

(iii) If (bs, gi)i<w 5 a 1-characteristic sequence, then for all o < w, the sequence (bo+i, Jo+i)i<w

is an 1-characteristic sequence of b,

Proof. We prove (i) by induction. If [G +Zb] is value preserving, then both by and by must
be equal to b, thus [bg] = [bo]. If the extension is not value preserving, then both [by] and
[bo] do not lie in [G]. By Fact 2.3.3 we have

G+ 28\ [6]] = 1

Thus [bg] = [bo]. Suppose [b;] = [b] for all I < k, where k < w. Consider the possible
configurations of by_; and bj,_;. Either both [b;_1] and [b;_1] are outside [G], or both
are inside [G]. When they are inside [G], we may have by_1 € G or by_1 & G, and the

same for b,_;. We need to consider all these cases separately.

o If [by_1] = [bk_1] & [G], then by (CA) we have x(bx_1) = x(bx_1). Again from
Fact 2.3.3, we know that:

G + Zxbn] [G]| <1

Thus by the construction of 1-characteristic sequences, we have [x(bg—1) — gr] =
[X(bk—1) — Gy, s0 [bx] = [bg].

o If [by_1] = [br—1] € [G], but bx_1 &€ G, then by construction, bx_1 = x(bg_2), but we
assumed [by_o] = [bp_2], thus br_1 = x(br_2) = b_1, 50 b, = by, € G.

e Similarly if [by_1] = [br_1] € [G], but by_1 € G, then we would again have by = by, €
G
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e Finally if by_1 € G, then by = x(br_1), but we assumed [by_1] = [bx_1], so by =
X(Ekfl) = bk.

Thus we have proved (i). (ii) is an easy consequence of (i). (iii) is verified just by checking
the definition of 1-characteristic sequences. O
Thus we can now fix a 1-characteristic sequence (b;, g;)i<w of b in G.

Lemma 3.2.10. The structure G(b) has domain:

Gy=G+ Y Zb, (3.2)

€W

Proof. Since each b; can be written as an L£i-term with parameters in G, we have Gy C
|G(b)|. To prove the converse it is sufficient to show that the Gy is closed under x. Pick

some element x € Gy, we can write it as:

T =g+ zobg + ...+ zpbn
Where g € G, z; € Z and z, # 0. We can further assume (by replacing g with g + z,b,)
that b, € G.

Since [bg] > [b1] > ... > [bp—1] > [bn] and [bo], ..., [bn—1] & [G], we deduce that:

[z] = max{[z0b0], - -, [Zn—1bn—1], [g + 2nbn]}

But since x(b;) always lands in Gy for all i € [1,n], and [g + zp,b,] € [G] U [by], we deduce

that x(x) is also in Gj, so we are done. O

Definition 3.2.11. For n € w, let x,, be the term with the same form as b,, but with b

replaced with the variable x, so:

xo =1 — go (3.3)

Tpo1)—9gn Wb, 1 €G
Ty = X( =g 1 ¢ (3.4)
0 Otherwise

If we view each z,, as a function G — G, then by (C<) and (CS), z,, must be increasing

and surjective.

Similarly, Define y, ,(x) to be the term b, but with the occurrence b,, replaced with the
variable z, S0 Y n(bm) = by. Each yp, , is also increasing and surjective as a function to

and from G.
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Let py be the set of formulas:
po(@) = | Do, (xn) (3.5)
necw

Where for some fixed constant h € H and variable y, Dp(y) is defined as:

g<y<g!g,g€G,g<h<g} Ith¢ G

Dp(y) = (3.6)
y = h} IfheG

This must be a consistent set of formulas, since b = py(z).

Lemma 3.2.12. For any b € H \ G, the ‘type’ py is a type of G.

Proof. Suppose b is l-algebraic with a characteristic sequence of length n + 1. We can

represent some finite subset A C pp via the single formula:
n—1
A(zx) = < /\ a; < T; <ai> A Zp = Gy
i=0

Where a;,a; € G. Define h, h as:

h=max{y;n-1(a;) |0<i<n}eG

h=min{y;n—1(@) |0<i<n}eqG

Then since for each 4, y; ,—1 is increasing and b,_1 ¢ G, we must have h < b,_1 < h. Let
A= x"1(b,) C G, then A must be a convex set. We claim that (h,h)gNA # @. Suppose
the intersection is empty, say because A > h, then pick some ¢ € G with

h<g<A
We can do this because A must be a collection of archimedean classes, so if for example

h > 0, then h < 2h < A. Since Y is increasing and A is the preimage of b, under y, we

have:

x(h) < x(g) < an
So x(h) < an = x(bn_1), but since x is increasing, and h > b,_1, this is a contradiction.

Similarly, we cannot have A < h, hence AN (h,h) # @. Any element of z*,(A N (h,h))

will realise A.
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If b is 1-transcendental, then we can write A as:

Ax) = (n/\1 a; < x; < ai>

i=0
Define h, h just as before, then any element of x;il(h,ﬁ) realises A.
O

Lemma 3.2.13. Let H be some other model of Ty with G as a substructure, and b € H\ G

with b = py(z). Then there exists an isomorphism over G:

¢+ G(b)yn — G{b)y

Proof. Suppose b has characteristic sequence of length a, where o < w, and set b; := x;(b).
We see that {b;}i<q and {b;}i<q satisfy the conditions of Lemma 2.3.13 (since they both
realise p, and are strictly decreasing in valuation), thus we have an isomorphism ¢ of

ordered abelian groups:
GG+ Zh— G+ Zb;: b b (3.7)
<o <o

Note that the image of ¢ is definitely a subset of |Q <5>H} If we can show that ¢ is an
L1-homomorphism, then that would automatically imply that the image of ¢ is closed

under x, and hence we would have the equality:
G(d)u| =Gy =G+ Zb,
1<a

Assume b is 1-transcendental, so a = w and b; € G for all i € w, then by (CA) and (CS),
[bi] € [G] for all i. Since b; induces the same cut in G as b;, we also have [b;] € [G] for all

i. Pick some element x € |G(b)|, we can write it as:

T =g+ zobg + ...+ zpbn

where g € G, z; € Z and z, # 0, hence ¢(x) can be written as:

¢(x) = (g + 20b0 + ... + 2by)
= ¢(g) + ¢(20b0) + - .. + P(21bn)

=g+ 20bo+ ... 2abn

Note that [z] € {[g], [20b0], - - - » [2nbn]} and ¢(x) € {[g], [20b0], - - - , [2nbn]}, moreover:

43



3. JUST CONTRACTIONS

[z] = [bi] <= [p(x)] = [bi]
[z] = [g] = [o(2)] = [g]
Suppose [z] = [b;], then:
X(#(x)) = x(b) As [¢(x)] = [bi] and axiom (CA)
= Bi—i—l + gi+1 Since Bi—&-l = xn+1(5)

= ¢(bir1) + git1 Since ¢(bi+1) = bit1

¢(biy1 + giv1) ¢ is a group homomorphism and is constant on G
o(x(bi)) Again by construction of characteristic sequences
o(x(x)) As [z] = [b;] and axiom (CA)
Similarly, if [z] = [g], then
A(6(x)) = x(9) As [¢(2)] = [g] and axiom (CA)
= ¢(x(9)) Since ¢ is constant on G
= o(x(x)) We assumed [x] = [g] so by (CA), x(x) = x(9)

Thus ¢(x(x)) = x(¢(x)) for all z in G(b). Similarly, when b is 1-value-algebraic (so [bo—1] &
[G]), the exact same argument as above confirms that ¢ respects x, since [b;], [b;] & [G] for
alli € [1,a — 1] and b, = b, € G.

The only bothersome case is when b is 1-archimedean-algebraic (so [G + Zby—1] = [G]).
To simplify things set « = 1 and by := b so b & [G] but [G + Zb] = [G]. By Lemma 2.3.12,
we see that any b realising the same cut in G as b also satisfies [G + Zb] = [G]. Pick some
x € G+ Zb, written as x = g + zb, so ¢(x) = g + zb. Then since b and b induce the same
cut in G and [z], [¢(z)] € [G], we see that [z] = [¢(x)]. Thus x(x) = x(¢(z)), and since ¢
is constant on G, we have ¢(x(x)) = x(¢(z)). O

Thus an immediate application of Fact 2.1.12 yields us:

Proposition 3.2.14. For any extension G C H of contraction groups and b € H\ G, G

is existentially closed in G(b).

3.2.3 Initial structures

Lemma 3.2.15. There exists a model of T that embeds into every other model of T}

Proof. Consider Q = (Q, x), where @ is the Hahn sum:
11z
N
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With x(1-5) == 1_,-1 for any n € w. Then for any G |= T} and g € G, we have an

isomorphism:

3.2.4 Final Result

Since all the assumptions of Theorem 2.1.14 have been satisfied through Lemma 3.2.4,

Proposition 3.2.14 and Lemma 3.2.15, we have:

Theorem 3.2.16 (F.-V. Kuhlmann, 1994). The theory Ty has quantifier elimination, has

a prime model and is complete.

3.3 Two Contractions

As we showed in Theorem 1.4.6, the action of a hyper-logarithm on an appropriate field
K induces a centripetal contraction group which interacts with the contraction induced
by log in a particular way, and in Definition 1.4.7 we defined a theory which characterises

this action.

Definition 3.3.1. Let T3 be the theory from Definition 1.4.7. Define T}, be T5 but with
the axioms requiring x and L to be surjective, and divisibility of the underlying group
erased. Say G is a 2-precontraction group if G =T, , and a 2-contraction group if
it models T5.

The purpose of this section is to prove that 75 has quantifier elimination in the language
Lo. The proof has the same structure as the proof for 1-contractions from Section 3.2,

which means we need to satisfy the conditions of Theorem 2.1.14.

3.3.1 Closure operator

For some 2-precontraction group (G, x1, x2), we can consider the reduct to just the first

contraction y, and take the 77 hull with respect to just that contraction.

Definition 3.3.2. Let G = (G, x1, x2) be a 2-precontraction group, and (G, x1) be its
reduct to the language £1. Some Li-structure K = (K, x1) is a 1-contraction hull of G
if K is a Ty-hull of G.

As a reminder, Lemma 3.2.4 tells us that for any 1-contraction hull (G, x) of (G, x) and
any g € G, there exists some n € N such that x"(g) € G. We leverage this to show that

any 2-precontraction group has a T»-hull. First, we make an easy observation:

Lemma 3.3.3. Let G be a 2-precontraction group and K :== (K, x1) be a 1-contraction hull
of G. Then there exists a unique extension of x2 to K such that (K, x1,x2) is a model of
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T, extending G. Moreover, the model (K, x1,x2) has the factoring property over G with
respect to Ts.

Proof. For all x € K \ G, there exists some n € N such that x}(x) = g» € G, hence by
axiom (H1), if x2 is a 2-contraction on K over G, the value of x2(x) is fixed and must be
X2(gz), hence the extension of L to K must be unique. Moreover, it is easy to verify that
L is a 1-precontraction on K and interacts with x in the right way, hence (K, x1, x2) is a

2-precontraction group.

To show K has the factoring property, pick some model H = (H, x1, x2) of T extending
G as Ly structures. Since (K, x1) is a T1-hull of (G, x1), it has the factoring property with
respect to 77, hence there exists an £i-embedding ¢ : (K, x1) — (H, x1) that is constant
on G, and by (H1), it must also be an Ls-embedding. O

We would like to show that any 2-precontraction group is embedded in some (possibly

very large) 2-contraction group.

Proposition 3.3.4. Let (G, x1,Xx2) be a 2-precontraction group. Then there is some 2-
contraction group (K, x1,x2) such that (G, x1,x2) s a substructure of (K, x1,X2).

Proof. Let Gg = G. We define a chain of 2-precontraction groups Gg =G C Gy C Gy C ...

where G,, .= (G, X1, X2), and our desired structure will be

K:=1{]JGn (3.8)

neN

Given Go, choose Gop41 to be some 1-contraction hull of (Gag, x1), so by Lemma 3.3.3,
there is a unique extension of x2 to Gaogt1 such that Gogiq = (Gag+1, X1, X2) i a model

of Ti, containing Goi, as a substructure.

Given Gop_1, set Goi to be the structure with domain Ggf, := [[R, where
I

T = [Gop_1] U (w x {G3 | — XQ(GQk—l)}>
is ordered as follows:
e For (n,a) € wx {G5? | — x2(G2k—1)}, B € [Gax_1], we have:
(n,a) < B <= a< x2f

e For (n,a),(m,b) € wx {G5 | — x2(Gar—1)}, a # b, we have:

(nya) < (m,b) <= a<b
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e For (n,a) € w x {G5? | — x2(G2k—1)}, we have (n +1,a) < (n,a), thus:

(nya) <r (m,a) <= n<m

e For any two elements in [Ga_1], use the ordering from [Gog_1] itself.

Define the contractions on Gy, as follows. Let (1), € [[R denote the element which has
r

value 7 in the place of the ordinal «, and is 0 everywhere else. As contraction maps are

constant on archimedean classes, we only need to define x; and y2 on elements of the form

(1)q-

(i) For a € vGap_1, set xi(1)a = xi(a) for i =1, 2.
(ii) For a = (n,a) € w x {G2>k0—1 —x2(Ga2r—-1)}, set x1(1)q = (1)(n+1,a), and x2(1)q = a.

By the Hahn embedding theorem ((2.3.8)) we see that Gai embeds into Gy as ordered
abelian groups, and by (i), we see that it must be an L9-embedding. Hence define K as the

union (3.8), we see that both x; and y2 are surjective on K thus it is a model of T,. [

We can now show that 75 has the closure property

Proposition 3.3.5. Any 2-precontraction group G has a To-hull.

Proof. Embed G into some model K of T, via Proposition 3.3.4. We alternate between
taking the xi-hull and filling in the gaps in y2(G) with elements of K while ensuring the
factoring property still holds, and eventually after at most |K |+ steps, we end up with a
model of T5. Set Gy := G. Given some successor ordinal a = n + n, where 7 is a limit
ordinal and n € w, suppose we have defined some G, = T, with the factoring property

over G with respect to T5, thus embedding into K over G. Define G,41 as follows:

n is even: Set G,41 to be some 1-contraction hull of G,. By Lemma 3.3.3, G,+1 has the
factoring property over G with respect to 77, and hence can be thought of as an

Lo-substructure of K.

n is odd: Pick some a € GZ°\ x2(G,) (if the set is empty then set Goi1 == Go). We
know there exists some b € K such that x2(b) = a, so define G4 as:

Ga-‘rl = Ga + Z @X{(b)

JEW

By (H1), we have y2(x%(b)) = a, thus by (CA) we see that [xi(b)] & [Ga] for all

1 € w, hence:
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From which we deduce that G,41 is closed under yx; for all i, hence G,i1 =
(Gat1, X1, Xx2) is a model of T, contained in K. It remains to show that it has
the factoring property over G, with respect to T5. Pick any model H of Ty with G,
as a substructure, and pick some b € H such that x2(b) = a. Then by (C<), the
sets {x4(b) }icw and {x} () }ic, satisfy the conditions of Lemma 2.3.13, thus we have

an isomorphism of ordered abelian groups over G,:

¢:Ga+ > Qx](b) = Ga+ D Qu|(d) : x5 (b) = xi(D)

JEwW JEW
Since x1(b) = a, we see that ¢ is also an Le-isomorphism, thus G,4+1 embeds into H
over G,, thus G,11 has the factoring property over G, with respect to T5.
For a limit ordinal 3 set Gz to be the union of all the structures before it. Since K is a
model of T, eventually Gg must also be a model of T3, and this will be T5-hull of G. [
3.3.2 Existential closedness

Fix some extension of 2-contradictions groups G C H, and some b € H \ G. We want to
show that G is existentially closed in G(b). To begin with, we find a generating set for

G(b) as an ordered abelian group.

Definition 3.3.6. Let (G,x) C (H,x) be an extension of l-contraction groups, and
b € H\ G have 1-characteristic sequence (b;, g;)i<.- We say b is 1-super-transcendental
if b is 1-transcendental and the shift sequence (g;)ie,, is eventually zero, and call i € w
the 1-null point if g; # 0 but f; = 0 for all j > i. By Lemma 3.2.9, this definition is
well-defined.

Definition 3.3.7. Let G, H and b be as above. Some sequence (b;, ¢;); .2 is a 2-characteristic

sequence of b in G if:

(a) For any m € w, the sequence (buym+i, Gum-+i)icw 18 @ 1-characteristic sequence for by,
in (G> Xl)

(b) Fix some j € w

(i) If byj+i is 1-super-transcendental, then b, 1) = X2(bwj1k), where k the 1-null

point.
(ii) Otherwise by, (j41)+as Jw(j+1)+a are all 0 for any a < w?.

We say b is 2-algebraic if b, € G for some o < w?, and we say a characteristic sequence
has length a if b, = 0 and bg # 0 for all 8 < a.

For the rest of this section, fix some b € H \ G.
Lemma 3.3.8. A 2-characteristic sequence of b in G exists. Moreover for any 2-characteristic

sequence (bi, gi)icw?, if @ < B < w? and bg & G, then [by] € [G] and [by] > [bs].
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Proof. The construction is evident from Definition 3.3.7. To show it is decreasing in
valuation throughout its length, it is sufficient to show [b;] < [by(j—1)44) for all 4,5 € w,
j >0 and b,; € G. But this follows from axiom (H2). O

Lemma 3.3.9. All 2-characteristic sequences of b in G satisfy the following.

(i) For any two 2-characteristic sequences (bi, §i)icw2 and (b;,7;)icn2 and a < w?, we

have:

(i) If b has a 2-characteristic sequence of length «, then all it’s 2-characteristic sequences
have length «, thus the 2-characteristic sequence length of b is well-defined, hence so

are the definitions of 2-algebraic, 2-transcendental and 1-super-transcendental.

2

(ii3) If (bi,gi)icw? S a 2-characteristic sequence, then for all o < w®, the sequence

(Datis Gati)icw? @8 an 2-characteristic sequence of by,.
Proof. Identical to Lemma 3.2.9. O

Now we can fix some 2-characteristic sequence (b;, ¢;);<.2 of bin G.

Lemma 3.3.10. Suppose b is not 1-super-transcendental in (G, x1). Then the structure

generated by b in G, G(b)y has domain:

Gy =G+ Zb, (3.9)

€W

Proof. As a reminder, the 1-characteristic sequence has the following form:

bo ==b—go
bn, = x(bp—1) — gn, for n. >0
Since each element of the 1-characteristic sequence of b is made up of finitely many com-
positions of elements of G and Li-functions, we definitely know that G is contained in

|G(b)|. For the converse, assume b is 1-transcendental, and write an arbitrary element z
of Gy as:

r=g+ 20bp + ...+ 2,bp
Where g € G and z; € Z. Then [z] € {[g],[20b0]---,[2nbn]}, hence to show (3.9) is

closed under x; and x» it is sufficient to show x;(b;) lie in G for ¢ = 1,2 and j € w.

For i = 1 this follows from the construction of 1-characteristic sequences, specifically,
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X1(bj) = bjy1 — gj+1. For i = 2, fix some b;, and let & > 0 be the least natural number

such that g, # 0, which must exist since b is not 1-super-transcendental, hence:

anrk = X]f(bn) — In+k

We know [b,4+x] & [G], and [gnir] € [G]. Moreover, since g,ir # 0, we must have
[x%(b,)] € [G]. Hence by the ultrametric inequality we have [x¥(b,)] = [gnix], thus

X2(bn) = x2 (X (bn)) By axiom (H1)
= X2(gn+t) Since [gn+1] = [X1(bs)] and (CA)
Identical arguments apply when b is l-algebraic, with the only modification being the

valuation of x when b is 1-archimedean-algebraic. Suppose the 1-characteristic sequence
of b has length n + 1, then:

[x] € {[g - ann]7 [bO]a trey [bn—l]}

But [g — z,,bn] € G since [G + Zb,] = [G], and by the 1-transcendental argument we see
that x2(b;) € [G] for i € [0,n — 1]. O

Lemma 3.3.11. No matter what the status of the 2-characteristic sequence of b, the G(b)

has domain:

G+ > Zb (3.10)
i<w?
Proof. Suppose the characteristic sequence has length «, then by Lemma 3.3.8, any ele-

ment of (3.10) has valuation lying in

[GlU{lbs] | B < a}

for some B < «, thus it is sufficient ot show x;(b;) lies in (3.10) for all 7, j where i = 1,2, j <
a. Fix j = wm +n. If b; is not 1-super-transcendental in (G, x1), then by Lemma 3.3.10,
we see x;(b;) is in (3.10), so suppose b is 1-super-transcendental. If there exists some least
k € w such that gjirr1 # 0, then [X¥(b;)] = [gj4k+1), thus x2(b;) = x2(gj4k+1) € G.
If gj4rx+1 = 0 for all £ € w, then by construction of 2-characteristic sequences, we have
bjt+w = x2(bj), which must be in (3.10). O

Let us extend Definition 3.2.11 to 2-contraction groups.

Definition 3.3.12. Let b € H \ G have 2-characteristic sequence (b;, gi);-2. Let z, be

the term b, but with b replaced with the variable z, so:
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0 If by =0

T — ga Ifa=0
Lo =
X1(Za-1) — go  If a is a successor ordinal and b, # 0

x2(25) — 9a If o is a limit ordinal, b, # 0 and by = Xx2(bg)

Given some v < w? set y, () to be the term with variable to 2 which returns b, when

x is substituted with b,, so for o > :

0 If by =0

T fa=vy
Yy, =
X1(Yy,a—1(x)) — ga  If @ > 7 is a successor ordinal and b, # 0

x2(ys(x)) — ga If @ > « is a limit ordinal, b, # 0 and by = x2(bg)

As with 1-contraction groups, the functions z., Y are all surjective and increasing.
Example 3.3.13. Let b have 2-characteristic sequence as follows:

Definition 3.3.14. Let p,(x) be just as we defined in Equation (3.5) from Definition 3.2.11,

but with the index ranging though w? instead of w:
py(x) = U Dy, (zy,) (3.11)
new?
Lemma 3.3.15. The type py is a type of G.

Proof. Suppose b is 2-algebraic, with a characteristic sequence of length o + 1 < w?,

meaning b, lies in G but is not equal to 0. Pick some finite sequence of ordinals a; <

... < ap < a, and write some finite subset of py, A as:

A(z) = A1(x) AN Ag(x)

Where the A;’s are defined as:

n
Aq(x) = /\ Go; < T, < Qg
i=1

Ag(x) == xq = by

Define h and h as:
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3. JUST CONTRACTIONS

h = max{ya, a-1(aa,;) | 1 <i<n}

h = min{ya; a—1(@a;) | 1 <i<n}

Since each term y,, o thought of as functions on H and G is increasing, we have:

h <bgy, <h

By the same argument as in Lemma 3.2.12, we see that (h,h)g and A == x;! (bs) have
non-empty intersection in G, thus any element of y,((h, h)c) N A realises A.

If b is 2-transcendental, or 2-algebraic with a characteristic sequence of limit ordinal length,
then we can write A as just Ay, thus if we define h and h as before, any element of z ! (h, h)
will realise A. O

Lemma 3.3.16. For any other 2-contraction group H with G C H, and b € H \ G with

b |= pu(x), there exists an Lo isomorphism ¢ over G:

6 Glbhw — G0)g (3.12)
Proof. By Lemma 3.3.11, we know G(b) has domain:
G+ > b
1Ew?

Set b; == x;(b;) for all i € w?, then since b realises the type pp, Lemma 2.3.13 establishes

an isomorphism of ordered abelian groups:

¢:G+ZZ[)¢—>G+ZZE¢ZZ)¢'—>B¢ (3.13)

i€w? i€w?

Just as in Lemma 3.2.13, it is sufficient to show ¢ is an Le-homomorphism, which will
imply that the domain of G(b) is the image of ¢. Pick some element x € |G(b)|, then for
any i € w? and g € G:

If [x] = b;, then the same argument as in Lemma 3.2.13, tells us that x;o¢(z) = ¢poxi(x),
thus it remains show x2 o ¢(x) = ¢ o xa(z). Suppose i is before the 1-null point of b, i.e.
there exists some n € w,n > 0 such that g;+, # 0, then:
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x2(¢(x)) = x2(b:) We assumed [¢(z)] = [bi]
= x2(x1 (b)) By (H1)
= x2(9i+n) Since [x7 (bs)] = [gi+n]
= o(x2(Git+n)) 1 is constant on G
= o0x2(x7'(b2))) Since [x7 (bi)] = [gitn]
= ¢(x2(b:)) By (H1)

If 7 is at or past the 1-null point, i.e. for all n € w n > 0 we have g;+,, = 0, then:

x2(6(@)) = x2(bs) We assumed [¢(z)] = [bi]
= bitu Since x2(bi) = bt
= ¢(bitw) By the definition of ¢
= ¢(x2(bi))
= ¢(x2(2))

When [z] = [g], then the same argument as in Lemma 3.2.13 shows y; o ¢(z) = ¢ o x;(x)
fori=1,2. 0

As with the 1-contraction group case, Fact 2.1.12 gives us:

Proposition 3.3.17. G is existentially closed in G(b).

Proof. Use Lemma 3.3.16 and Lemma 3.3.15. 0

3.3.3 Initial structures

Lemma 3.3.18. The theory Ty has an initial model.

Proof. Consider the Hahn sum [[Z, and denote the element with value r in the place of
0.)2
the ordinal o but 0 everywhere else as (7),. To give a 2-contraction group structure on

this set, we only need to define x(1), and L(1), for every ordinal v < w?. We can write

a as wn + m, where n,m are natural numbers. Hence let x(1)wntm = (1)wntm+1, and
L(l)wn+m = (1)w(n+1)-

It is easy to see that this is a 2-precontraction group, it remains to show that this structure

embeds into every 2-precontraction group. Let (G, x1,x2) be any precontraction group,

and pick some a € G. We will show that (a) = (][] Z, x, L). Using axioms (H1) and (CA)
w2

for both x and L, we see that:
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(a) = Za + Zxa + Zx*a+ ...
+ZL(a) + ZxL(a) + ...
+ ZL*(a) + ZxL*(a) + . ..

o0

=3 ") Zx'L(a)

§=0 i=0

Define a map ¢ : (a) — (Hy2Z, x, L) as ¢(x"L/(a)) = (1)wjts- Then ¢ is an isomorphism,
hence the structure (H 2Z,x, L) embeds into (G, x1,x2). By the universal property of
2-contraction hulls, we know that any 2-contraction hull of (H2Z, x, L) embeds into any

2-contraction hull of (G, x1, x2), hence the result is proved. O

3.3.4 Final Result

By applying Proposition 3.3.5, Proposition 3.3.17 and Lemma 3.3.18 to Theorem 2.1.14,

we have:

Theorem 3.3.19. The theory of 2-contraction groups has quantifier elimination, is com-

plete and has a prime model.

3.4 Multiple Contractions

Definition 3.4.1. Let £, be the language (+,—,0,<,Xx1,...,Xn) be the language of
ordered abelian groups along with n unary functions. We will call a structure (G, +, —, 0, <
s X1y -5 Xn), (or just (G, x1,...,Xn)) an n-precontraction group if (G, +, —,0, <) is an

ordered abelian group and:
C1,, For all i < n, the structure (G, x;) is a precontraction group

C2,, Foralli <n and z € G, we have x;+1(xi(z)) = xi+1(x), and hence for all i < j < n,
x;(xi(#)) = x;()

C3, Foralli<n,keNandz € G, x>0, we have y;+1(z) < x¥()

Furthermore, if all the maps y; are surjective and G is divisible, we will call (G, x1,...,Xn)
an n-contraction group. Let T;, be the theory of n-contraction groups, and 7, be the

theory of n-precontraction groups (so 7, is the universal theory of T},).

In this section we prove that for all n < w, the theory T, has QE and is complete, using
the criterion from Theorem 2.1.14.

3.4.1 Closure Operator

First, we prove that T,, has the closure property. We need to induct on the following

statement:
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(®),, Any n-precontraction group G has a T},-hull, and moreover, any T,,-hull G and g € G,
there exists some k € N such that x*(g) € G.

Definition 3.4.2. Assume (®),_1, and let G := (G, x1,--.,,Xn) be an n-precontraction
group. Consider the reduct of G to L1, (G, x1,---,Xn—1)- An (n—1)-contraction hull
of G is some T;,—1 hull K = (K, x1,.--,Xn-1) of (G, X1, Xn-1)-

Lemma 3.4.3. Assume (®),_1. Let K be a (n — 1)-contraction hull of G. There is
a unique extension of xn to K such that (K, x1,...,Xn) 15 a model of T, . Moreover,

(K, X1,---,Xn) has the factoring property over G with respect to T,,.
Proof. Identical to Lemma 3.3.3. O

Lemma 3.4.4. Assume (®),_1. Any n-precontraction group G, embeds into some n-
contraction group K. Moreover, for all g € K, there exists some k € N such that X% (g) €
G.

Proof. Set K := |J G;. Define Gy := G, and for ¢ > 0, set G; as follows.

1EW
For odd i: Let (G, x1,---,Xn—1) be some n — 1-contraction hull of G;_;. By Lemma 3.4.3,
there exists a unique extension of x, to G;_1 such that G;_1 = (G;_1,Xx1,---,Xn) IS an
n-precontraction group extending G;_1, thus G;_1 C G;. Moreover, we can show x,(G;) C

Gi_1: pick some g € G, so by (®),,_1 there exists some k € K such that x*_,(g) € G,
thus by (C2,), xa(9) = xn(x5s-1(9)) € G.

For even i, set GG; to be the Hahn product

Gi=][® (3.14)

Where IT' is an ordered set with domain:

(Gi] U (w”-l < (G2 \xn<Gi_1>>) (3.15)

With < defined as follows:

o [G;_1] keeps its usual ordering

Uy (G7°% \ xn(Gi—1)) is ordered anti-lexicographically, so for («, a), (3, b), where

a,f€w ! and a,b e Giol \ xn(Gi—1), if @ = b then:

o W™

(aya) >p (B,b) <= a<f

Otherwise:
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(a,a) >r (B,b) <= a>b

e For v € [G;_1] and (a, a), note that a & x,(Gi—1), hence set:

v >r (a,a) <= xa(y) >a

Define the contractions on GG;_1 as follows:

(i) Fory € [Gi—1] and j € [1,n], set x;(1,) = x;(7) i.e the point which the archimedean

class of v maps to in G;_1.

(7)) For (a,a) and j < n, set:

Xj(l(a,a)) = 1(a+wj*1,a)

For x,, set:

Xn(L(a,a) =a

It can be easily verified that G;—; = (G, x1,...,Xn) IS an n-precontraction group. More-
over, by the Hahn embedding theorem we know G;_; embeds into G; as ordered abelian
groups, and from the way we defined the contractions on G;, we see that this embedding

is also an £,,-homomorphism, thus G;_; C G;. Furthermore, note that x,(Gi+1) C G;

Given some ¢ and a € G;, the preimages of a under x; are added in either G;;1 or G; o,
thus all the contractions must be surjective on K. Finally, note that x,(Gi+1) C G; for
all i < w, thus for all k € G;, we have X% (k) € G, thus for all k € K, there exists some
i € K such that \% (k) € G. O

Lemma 3.4.5. (®),-; = (),

Proof. Embed some n-precontraction group G into some n-contraction group K. We define
some strictly increasing chain of n-precontraction groups G; all contained in K. Since

K | T, after atmost |K|" steps, the resulting structure must also be a model of Tj,.

Set Gy := G. Assume we have some n-precontraction group G, with the factoring property

over Gg for all 8 < «, in particular G, embeds into K over Gg.

When « is odd, set Go41 to be some n — 1-contraction hull of G,, by Lemma 3.4.3, G, is

an n-precontraction group with the factoring property over G, with respect to T;,.

For even «, pick some a € G2\ x,,(G4). There exists some b € K such that y,(b) = a.
Set the domain of G411 to be:
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Ga+1 = Goz + Z Zy?(b)

TeN?

Where for some tuple 7 := (r1,...,r,) € N*, we define X" () as:

X (%) =x]"o...0ox;" ()

Note that by (C3,,), each element of {X"(b) | 7 € N} has distinct valuations, and for any
i€[l,n]:

xi(X')(b) = xioxj'o...oxiio...ox]" o (b)
:X;“Hrl O...OX'{l(b)

=X"(b) € Gat1

Thus Go+1 is closed under all contractions, hence is an n-precontraction group. It remains
to show G,+1 has the factoring property over G,. Let H be an arbitrary n-contraction
group, so we have an L,-embedding G, < H. Pick some b € H with x,,(b) = a, then the

sets:

B:={X"(b) |T € N"} B:={x(b) |7 N}

together satisfy the conditions of Lemma 2.3.13, thus we have an ordered abelian group

isomorphism:

¢:Ga+ Y IX () = Ga+ Y ZX (b) : X' (b) = X' (b)

reN™ TEN?

The usual calculations further show ¢ is an £,,-homomorphism, thus G,41 embeds into ‘H

over Gg.

For limit ordinals « set G, to be:
U s
B<a

Then there must be some ordinal v < |K|" such that G, is a T,-hull of G. Given an
arbitrary T),-hull G of G, we know G embeds into X, thus for all g € G there exists some
k € w such that x*(g) € G. O
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3.4.2 Existential Closedness

Given two n-contraction groups G C H, and some b € H \ G, we need to construct
some sequence (b;); which gives a generating set for G(b) as an abelian group. Again, we
induct on the number of contractions, so the base case is just the regular characteristic
sequence for 1-contraction groups, then given the n — l-sequence, so a generating set for

(G, X1,---5Xn-1)(b), we construct the n-characteristic sequence.

Definition 3.4.6. We define n-characteristic sequences as follows. For n = 1, an n-
characteristic sequence of some b is any 1-characteristic sequence of b in (G, x1). For some
n > 1, an n-characteristic sequence of b in (G, x1,...,Xn) is some sequence (b;, g;)i<wn
such that:

(I), For any ordinal «, the sequence (bati,gati)i<un—1 is an (n — 1)-characteristic se-
quence of b, in (G,X1,...,Xn_1), in particular this holds for & = w" !j where

JEw.

(I),, Fix some j € w, if b,,; is (n — 1)-super-transcendental then:

bu(j+1) = Xn(bitry)

where 7 is the point from which (guj+i)i<n-1 is null. We say ~ is the (n — 1)-null
point of b.

(III),, Otherwise, if b,,; is (n —1)-algebraic or (n —1)-transcendental but not (n — 1)-super-

transcendental, set by,(;11) = 0.

The existence of n-characteristic sequences is evident from the definition. If b, = 0 for some
a < w™, we say b is n-algebraic, and has n-characteristic sequence length «, where
« is the least such. Otherwise we say b is n-transcendental, and has n-characteristic
sequence length w". If b is n-transcendental but (g;)i<wn is eventually zero, we say it is

n-super-transcendental. These are well defined because:
For the rest of this section fix some b € H \ G.

Lemma 3.4.7. The n-characteristic sequences of b in G satisfy the following:

(i) For any two n-characteristic sequences (b;, gi)icwr and (b, G;)icwn and o < W™, we

have:

(i) If b has an n-characteristic sequence of length «, then all its n-characteristic se-
quences have length o (thus the n-characteristic length of b is well-defined, hence so

are the definitions of n-algebraic, n-transcendental and n-super-transcendental).
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(iii) If (bi, gi)i<cwn @S a m-characteristic sequence, then for all a < w", the sequence

(batis Gati)icwn 18 an n-characteristic sequence of by,.
Proof. Identical to Lemma 3.2.9 and Lemma 3.3.9. ]

Lemma 3.4.8. The n-characteristic sequences of b in G also satisfy the following:
(1) For all ordinals a <  with bg # 0 we have [by] > [bg]

(ii) If b is n-transcendental, or n-algebraic with an n-characteristic sequence of limit

ordinal length, then for all o < W™,

ba #0 = [ba] ¢ [G]

(#i) If b is n-algebraic with an n-characteristic length o, where « is a successor ordinal,
then for all B < «, [bg] € [G] and

[ba] € [G] — [G + Zboz] = [G]

Thus the ordered abelian group gemerated by G and the elements of the n-characteristic

sequence has natural valuation:
[G+ > Zbi] =GU{[bs] | B < a}
<wn
where « is the length of any n-characteristic sequence.

Proof. For the first, note that [by] > [ba+1] from the construction of 1-characteristic se-
quences, and [by] > [byy k] for all k < n, since by, k = Xk+1(baty) for some v < wk.
Points (ii) and (iii) follow from Lemma 3.4.7 and the construction of n-characteristic se-
quences. The statement about the natural valuation of the group generated by G and the
n-characteristic sequence follows from the fact that the valuations of [b,] are all distinct

from each other and [G] for « less than the n-characteristic length of b. O

Lemma 3.4.9. Fix some n-characteristic sequence (b, g;)icwn. Let a < f < W™ be

ordinals. Suppose g, = 0 for all v satisfying o < v < B. If we write 3 as:

B=a+w" lepo1 + ... +wer +
where ¢; € w, then bg can be written as:
X1" oo (ba)
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Proof. For any k with 1 < k < n, let ¥y, be:

V). For b € H\ G with k-characteristic sequence (b;, g;); <k, and any ordinals y < 1 < Wk

with n written as:

v+ WPy 4 . 4 wd + d

where dy, ...,dy—1 € w, if g; = 0 for all i € (v,7], then we can write b, as:

d dy._
X120 Xy (by)

It is sufficient to prove Wy, for all k € [1, n]. ¥, follows from the definition of 1-characteristic

sequences, so assume ¥, 1. Fix some a < 8 < wP with:

B::a—l—wk_lck_l—l—...—i—wcl—i—co

where cg, ..., ¢, € w, and suppose ¢; = 0 for all i with o < i < 3. Let 5= a+w* Lep_q,

then we can write 5 as:

B=B+uw2c_o+...+wei+
then by ¥,_; applied to 8 and 8 we know:
bg = X7 0...ox;" (bp)

But from the definition of n-characteristic sequences, we know b/g = xk(ba), thus:

bg=x{o... oxzk’l(ba)

Lemma 3.4.10. For any b€ H\ G, the structure G(b) has domain:

G+ > Zb

<wn
where (b, g;)i<wn 18 any n-characteristic sequence of b.

Proof. For any k € [1,n], let ¥, be the statement:
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For any b € H \ G and k-characteristic sequence (b;, gi);<», the structure

(G, x1,---,xk)(b) has domain:

G+ zb

i<wk
We know W is true from Lemma 3.2.10, so assume for induction that Wj_; holds for some
k. Fix some b € H \ G and some k-characteristic sequence (b;, g;);+. By Lemma 3.4.8,

to prove Wy, it is sufficient to show:

Xj(bi) eG+ Z Z.b;

i<wk

for all i < w* and j € [1,k]. By ¥};_1, we know this is true for all j < k and i < w*. Fix

some a < w¥, then (ba+i, Jati)icwr—1 is an (k — 1)-characteristic sequence of by,
1. Suppose b, is not (k — 1)-super-transcendental.

k:—l)

(a) Suppose there exists some 8 € (o, +w , with gg # 0, we can assume /3 is

the least such. Then there exists some 7 € [a, 5) and j € [1,k — 1] such that
bg = x;j(by) — g5

By the construction of characteristic sequences, we know [x;(by)] = [gs]. Sup-

pose we write v as:

7:a+wk_2ck_2—i—...+wcl—|—co

Then by Lemma 3.4.9, we can write b, as:

Ck—2

by =Xp.4 ©---0 X1 (ba)
With this, we can now calculate x,,(b-):
X(ba) = Xk © Xj 0 X7 0 - 0 X(° (ba)

= Xk(Xj(b'y))
= xk(95) € G

(b) However, if there is no 8 € (a,a + w*~!) with gs # 0, then since b, is not
(k—1)-super-transcendental, it must be (k—1)-algebraic. By the same argument

as the previous case, we see that x,(bs) € G.
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2. If b is (k — 1)-super-transcendental, then if there exists some 3 € (o, a + w*~1) with
gg # 0, then repeat (la). Otherwise, by definition of k-characteristic sequences,
we must have xp(ba) = by k-1, thus xn(ba) is in the group generated by the

characteristic sequence.

O]

From now on fix some n-characteristic sequence (b;, g;)i<wn. Let us further extend Defini-

tion 3.2.11, and Definition 3.3.12 to n-contraction groups.

Definition 3.4.11. Let z, be the term obtained by replacing the occurrence of b in b,

with the variable z, so:

§
0 Ifb,=0
T — go Ifa=0

X1(Ta-1) — g If « is a successor ordinal and b, # 0

Xk(25) = ga If (*)

Where (*) asserts that « is a limit ordinal, by # 0 and 8 € [wn,w(n + 1)) is past the null

point of b,

Definition 3.4.12. Define the type p; as:

po(x) = | Db, (za) (3.16)

acw™

Where Dy (y) is defined in Definition 3.2.11.
Lemma 3.4.13. p(x) is a type of G.
Proof. Let b have an n-characteristic sequence of length «. Pick some finite subset A of py.

If « is a successor ordinal, then we can find some finite sequence of ordinals asq, ..., a,, @,

such that A can be written as:

Ax) == Ar(x) A Ag(z)

Where A; is defined as:

Aq(x) = /\ Qo; < To, < Qg
i=1

Ag(x) ==z = by

62



3.4 Multiple Contractions

By the same arguments as in Lemmas (3.2.12) and (3.3.15), we see that A is finitely
realised in G. Similarly, if « is a limit ordinal, then we can write A as just A1, and again

by the same arguments as the aforementioned lemmas, we see that A still must be realised

inG.

O

Lemma 3.4.14. For any other n-contraction group H with G C H, and b € H \ G with
b |= py(x), there exists an L,, isomorphism ¢ over G:

¢: G0y — Gz (3.17)

Proof. Apply Lemma 2.3.13 and Lemma 3.4.10 in the same way as in the proofs of
Lemma 3.2.13 and Lemma 3.3.16. O

Thus by Fact 2.1.12 applied to Lemma 3.4.13 and Lemma 3.4.14, we have:

Proposition 3.4.15. G is ezistentially closed in G(b).

3.4.3 Initial structures

Lemma 3.4.16. There is some n-contraction group that embeds into all n-contraction

groups.

Proof. Consider the set [[ . R, where

xi(lw" ey + .o+ w4+ e]) = 1w ey + . F w0 (6 + 1)

For any n-contraction group (G, x1,-..,Xn) and a € G, we see that (J[ . R, x1,...,xn) =
(0,X1,---,Xxn){(a). So we just take the n-contraction hull, and the resulting structure
embeds into all n-contraction groups. O

3.4.4 Final Result

By Theorem 2.1.14, combined with Lemma 3.4.5, Proposition 3.4.15 and Lemma 3.4.16,

we get:

Theorem 3.4.17. The theory of n-contraction groups has quantifier elimination, has a

prime model and is complete.

3.4.5 Countable Models

In the paper Krapp and S. Kuhlmann, 2023, the authors construct an explicit example of

a centripetal contraction group.
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Theorem 3.4.18 (Krapp and S. Kuhlmann, 2023, p. 21). There is an explicit construction

of a countable centripetal contraction group.

Proof. Let V be the Hahn sum:

IIe

Q

Then V is countable and [V] is isomorphic to (Q,<). Since any two linear orders are

isomorphic, there exists an order isomorphism o : Q — V>°. The map

x: V70 = v 1,05 0(q) ¢ ()i = o(maxsupp(r;))

extended to V in the expected way, is a contraction on V', but not necessarily centripetal.
To make it so, we need to choose o in a particular way. For all z € Z set 0(2) := 1,1, and
extend o from (z,z+1) to (1,_1,1,_2) via any order isomorphism. Then for ¢ € [z, z+1],

we have x(14) € [1,-1,1,-2] < 14-1, thus x is centripetal. O

We can extend this idea very easily to n-contraction groups.

Theorem 3.4.19. For all n € w, there exists a countable n-contraction group.

Proof. Let V be the Hahn sum:

II ©

(Qn7<lez)

For some i € [1,n], define the map o; : Q"% x Z — V>0 as:

Ui(Qna <oy it 1, Z) = 1qn,...,q¢+1,2710

for ¢; € Q and z € Z. Extend o to Q" ! in any order preserving way, then o must be a

surjection, since the image of o can get arbitrarily big in V>0, Define y; : V>0 — V>0 as:

Xi(Lgn,qr) = 0(ns - - - @)

Then each y; is a centripetal contraction, once we extend them to the entirety of V. It
remains to verify (C2,,) and (C3,,).

(C2,): Fix some § = q,...,q1 € Q" Note that for all k € N, x¥ ,(17) € A =
Lgn.0i.0,0....0, but X3 (A) = 0i(gn, - .., ¢) is a single point, thus Xi(xf_l(la)) = x(1g).
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3.5 Weak o-minimality

(C3,): Fix some g € Q" as before, and remember that for all k € N, x¥ (1) € A. But
xi(lg) = 0 (qn, @) < lgn...qi—50...0 < A. Thus x;(15) < x*_,(17). O
3.4.6 Infinitely many contractions

Definition 3.4.20. Let £, be the language (4, —,0, <,{X:}i<a) be the language of or-
dered abelian groups along with n unary functions, where « is an ordinal. We will call a

structure (G, 4+, —,0, <, {Xi}i<a), (or just (G, (xi)i<a)) an n-precontraction group if:
C1, For all i < a, the structure (G, x;) is a centripetal precontraction group

C2, Forall j <i < aand x € G, we have x;(x;(x)) = xi(z)

C3, Forall j <i<a,keNandzeg, x>0, we have x;(z) < X?(x)

Furthermore, if all the maps x; are surjective, we will call (G, (x;)i<a) an a-contraction

group. Let T, be the theory of a-contraction groups.

Since the reduct of an a-contraction group to finitely many contractions will be a model

of T}, we get:
Theorem 3.4.21. For any ordinal o, Ty, has quantifier elimination.

We could also replace o with any linearly ordered set and get the same result.

3.5 Weak o-minimality

It was proved by F-V Kuhlmann that contraction groups are weakly-o-minimal:

Theorem 3.5.1 (F.-V. Kuhlmann, 1995). The theory of divisible centripetal contraction

groups is weakly o-minimal.

We should mention that the proof was originally published in F.-V. Kuhlmann, 1995, but

a more complete version can be found in the appendix of S. Kuhlmann, 2000.

The goal of this section is to show that for any n, the theory of n-contraction groups is
weakly o-minimal. From now on we fix some n € N and work within a model
G:=(G,x1,---,Xxn) of T),!

Notation 3.5.2. For any two contractions 71,172 € {x1,...,Xn}, With 71 = x; and
n2 = Xj, we say 11 > 12 if and only if ¢ > j.
3.5.1 y,-monomials and polynomials

To examine definable sets in some contraction group, we need a concise way to de-
scribe unary functions in our theory. For 1-contraction groups, this was done using
x-polynomials, which essentially look like nested applications of x and translations. A

x-monomial (F.-V. Kuhlmann, 1995, p. 8) is a function of the form:
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3. JUST CONTRACTIONS

xla, .. ai](x) = x(x...(x(x —a1) — ... —agp_1) — ag)

And a y-polynomial is a term of the form:

k
Z zixlai, ..., ai](z) + 20 + ¢
i=1

The proof of weak o-minimality for 1-contraction groups involved showing that every
definable function is piecewise equal to a x-polynomial, then showing that x-polynomials

were monotonic (on some sufficient region). For n-contraction groups, we will do the same.

Definition 3.5.3. For some a € G, define M?, O% as follows:

M*:={x € G|[z] <[a]}
O ={zeG|z] <[a]}

So M is the largest convex subgroup of G not containing a, and O is the smallest convex
subgroup that does contain a. Given this, we can define sets of the form d + 0%, d + M?

for some d,b € GG as you would expect.
Fact 3.5.4. For any non-zero a,b € G, either a+ M*Nb+ M> =@ or a+ M =b+ M>
Proof. If a + M*Nb+ M" # &, then we must have [a] = [b] since for all z # 0, z + M? is

contained within [z]. Fix some z € a+ M%Nb+ M®, and let a+~ € a+ M2, so [7] < [a],
then:

b=(a+)]=1[b-2)+(z=a)+1]
<max{[b—z],[z —a],[y]} By the ultrametric inequality
< [b] Since [b — z], [z — a] and [y] are less than [b]

Hence a+v € b+ M?®, so a+ M* C b+ M?, and by a symmetrical argument we also have
b+ M"Ca+ M O

Definition 3.5.5. The y,-monomials are a collection of terms which we define induc-
tively:
e 1 is a y,-monomial, with characteristic domain C(z) := G and length I(x) =0

o If ¢(x) is a xp-monomial with characteristic domain C(¢(x)), then for any i < n,

Xi(t(z)) is a y,-monomials with characteristic domain C'(¢), and length I(¢) + 1.

o If t(x) is a y,p-monomial with characteristic domain C(t), then for any ¢ < n,

xi(t(z) — a) is a x, monomial with characteristic domain C(t(z)) Nt~ (a + M?)
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3.5 Weak o-minimality

(this can sometimes be empty!), and length [(t) + 1. We denote the term x;(z — a)
as xila](z).

Note that a y,-monomial is a term and not a function! We list some examples:

Example 3.5.6. Let us again stress that x,-monomials are defined syntactically, so
two xn-monomials which have the same characteristic domain and are equal as functions

on the characteristic domain are still different x,,-monomials.
e x2(x — a) has characteristic domain a + M® and length 1

e x2(x1(xz — a)) has characteristic domain a + M® and length 2. Note that this term
considered as a function on G takes the fact same values as x2(xz — a), but since
Xn-monomials are terms, both are distinct as y,-monomials (but have the same

characteristic domains!).

e For some sequence of contractions d1, ..., 0m, and constants ai, ..., an € G7°, the

term:

Omlam] o ... o d01[a1](x)

is a xp-monomial of length m, and characteristic domain:

(ay + M) N 61a1] Hag + M) N . N e t[am—1]" (am + MO™)

The motivation behind the definition of characteristic domains is that outside it, a ;-
monomial is piecewise equal to some ‘simpler’ y,-monomial. We will make this idea more
precise in Lemma 3.5.10, but for now consider the monomial x1(z—a), if 0 < x < a+M?,
then v(x —a) = v(a), so x1(x —a) = x1(a), hence the monomial is constant. Conversely,
if 2 >a+ M® >0, then v(x — a) = v(x), hence x1(z — a) = x1(x).

Definition 3.5.7. Fix some sequence of contractions d1, ... dx, and constants a1, ..., a,, €

G. A successive sequence of x,-monomials is some sequence (f;(x));<x defined as:

f,(a:) = (Z[az] o fi_l(x) = (51 [az] o 5i_1[ai_1] ©...0 (51 [al](x) (318)

where 0;[a;] = d;(x — a;). Given such a sequence, with z; € Q,z; # 0 and ¢ € G, a

Xn-Polynomial is a term of the form:

k k

flz) = Zzlfl(x) +c= Zzidi[ai] o...001[a](z) + ¢

1=0 1=0

Observe that C(fr) € C(fr—1) C ... € C(fo), so we set the characteristic domain and
length of f to be the same as f;. Unless otherwise stated, f and g will denote the x,
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polynomials:
k !
fle)=> " zfi(x) g9(z) = Zigi(x) (3.19)
i=0 i=0
fi(z) = xn; (fim1(2) — ai) 9i(z) = Xm, (9i-1(2) — b;)

where z;,%Z; € Z and a;,b; € G. We call (f;),(g;) the terms of a y,-polynomial, and we
say the terms of f and g coincide up to the d-th term if f; and g; are the y,-monomial
for all « < d.

Definition 3.5.8. We can consider any two L£,-terms with only one free-variable ¢;(x)
and t9(x), as functions on G. We say they are equal on G, denoted as t; = to if and only
if they take the same values of each element of G. Given some M C G, we write t1 =7 to

if and only if they take the same values on each element of M. So to clarify:

t1 =ty <= Forallz € G, t1(z) = t2(x)
t1 =mta <= Forallx € M, ti(x) = ta(z)

Example 3.5.9. Assuming all the a; are different constants and ¢;’s are different contrac-

tions, the following are not y, polynomials:

z + xala1] o xala2](z) + xaaz] o xala1](x)
z + x2lar] o x1(2) + xa[a1](z)

The following is a x,-polynomial:

z+x1(r —a1) + xo(x1(z — a1) —a2) — xa(xe(x1(z — a1) — a2) — as)

As stated earlier, the reason for defining characteristic domains is that outside of its
domain, a xp-polynomial has a different form. The following lemma makes this idea

precise.

Lemma 3.5.10. Let f(x) be a xn-polynomial with characteristic domain Cy. There
is a finite convex partition P of G\ Cy such that for each M € P, there exists some
Xn-polynomial Fyr with M C C(Fy) and f =p Fg-

Proof. Assume f has the same form as (3.19). We construct a sequence Py, Po, ..., Py
of finite convex partition of G \ C(f) such that P; is a refinement of P;;1, and Py will
be our desired partition. To simplify the proof, assume a; # 0 for all i < k, otherwise

C(fi) = C(fi—1), so we do not need to do any partitioning at the i-th step.

Define the following partition P; of M = G\ C(f):
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My ={z e M| |x| > |a1] + M Asign(z) = sign(a1)}
My ={xeM|zxzea +M"}
My ={xe M| |z|<a +M*"}

My ={z € M||z| > |a| + M Asign(z) = —sign(ai)}

Note that each M; is a convex set, except in the case where C'y bisects one of them. In that
case, we split the bisected set, M; into M, M;r, into the convex components above and
below Cy (one or both may be empty!, e.g if f(z) := x1(x — a1)). This can only happen
at the first step, and we still end up with a finite convex partition, so we can safely ignore

this case.

Fix some sequence § = (01,...,6;-1) € {1,2,3,4}*"1, and suppose we have constructed
some M; and some successive sequence of x,-monomials (Ff) j<i (whose elements will be
denoted denote as Fj), such that f; =y, F; for all j < i and F; has characteristic domain

containing M;. From this, we construct {Ms ;};j—1,2.34 as follows:

Msy = {z € Ms | [x[ai-1](z)] > [a;| + M* A sign(x|ai-1](z)) = sign(a;)}
Mso = {x € Ms | x[ai-1](x) € a; + M}
Mss :={x € Ms | [x[ai-1](z)| <a;+M"}
Msa = A{z € Ms | [x|ai-1](z)| = |a;| + M A sign(x|ai-1](z)) = —sign(a;)}

We should examine how f; behaves on each:

e = € Ms,Msy: For any such x, we have [F;_i(z) — a;] = [F;—1(2)], hence fi(z) =
Xn; (Fi—1(z)), and the characteristic domain of x,, (F;—1(x)) is the same as the char-

acteristic domain of F;_j(x),

o = € Mso: Evidently fi(x) = xn,(Fi—1(x) — a;). Since Mj is within the characteris-
tic domain of F;_1, by definition M52 is contained in the characteristic domain of
X, (Fim1(2) — a5).

e = € Ms3: Note that [Fj_i(x) — a;] = [a;], hence f; is constant.

Using this inductive process, we can construct P = {Ms | § € {1,2,3,4}*} which is a
convex partition of G\ C(f) (note that My o is contained in C(f)!). It can be shown
that on every non-empty @Q € P, f can be written as y,-polynomial with characteristic

domain containing Q). O

3.5.2 Strategy for proving Weak o-minimality

By quantifier elimination, to prove some structure is weakly o-minimal, it is sufficient to

show that for any term t(x), the sets:
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{reg|t(x) =0}
{zr € G|t(z) >0}

can be written as a finite union of open convex sets. For that, it is sufficient to show that
for any term ¢(z), we can form a partition of G, say P, of finitely many open convex sets
such that on each element of P, t(x) is either constant or monotonic. And for that, it is

sufficient to prove the following two statements:
e Every x, polynomial is monotonic on its characteristic domain.
e For any term ¢(z), we can split up G into finitely many open convex sets Q1 ...Qp

such that for each ¢, there exists some x,,-polynomial f; with Q; C C(f;) and t =g, fi.

3.5.3 Monotonicity of y, polynomials
Fix some x,-polynomial f.

Lemma 3.5.11. For all x € C(f), we have :

[fi(@)] > [fa(@)] > ... > [fu(2)]

Proof. Let 1 < i <k, then:

[fi(2)] = [xn; (fic1 — ;)]
< [fi-1(x) — aj]
< [fic1(x)]

The last inequality is true since f;_i(x) € a; + M®*. O
Lemma 3.5.12. Every x,-monomial is monotonic on the entirety of G.

Proof. Given some t : G — G which is monotonic on G, we know that both §(¢(z)) and
t(x) — c are also monotonic on G, where § € {x1,...,xn} and ¢ € G. So we can induct on

the length of some Y,,-monomial to show it is monotonic. O

The following is very similar to the corresponding proof for x-polynomials (Lemma A.45
in S. Kuhlmann, 2000, p. 146)

Lemma 3.5.13. The x,-polynomial f is monotonic on its characteristic domain.
Proof. Let m < k be the least integer such that z, # 0, and without loss of generality
assume z,, > 0. Pick any a,b € C(f), we want to show that a < b = f(a) < f(b).

If m = k then f is a yx,-monomial so by Lemma 3.5.12 the statement is already true, so

assume 0 < m < k. There are three cases to consider:
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L [fm(a) = fm(0)] = [fm11(a)]
2. [fm(a) = fm(b)] = [fmt1(D)]
3. [fm(a) = fm()] < [fmr1(a)], [fmi1(0)]

e Case 1: Since fm—i—l(a) = 5m+1 (fm(a) - am—i—l)a we deduce that [fm—H (a)] < [fm(a) -
am+1]. By the ultrametric inequality, we know that any z,y and z satisfy:

-yl <lr—2 = [z—2=[y—4

hence by setting x := f,(a),y = fmn(b) and z = a,4+1 we get:

[fm(a) = ams1] = [fm(b) = am+1]

Which tells us fij(a) = fi(b) for all i« > m. Since fp,(a) < fm(b), we deduce that
fla) < f(b).

e Case 2: This is symmetrical to case 1.

e Case 3: By Lemma 3.5.11, we have for all ¢ > m:

[fm(a) = fm(D)] < [fia)], [fi(D)]

We know that for tuples zo,...,z; and ..., 2}, the valuation v satisfies:
zo < x( and [z; — 7] < max{[xl T} = Z x; < Z 5
0<i<l 0<i<l

From which the inequality f(a) < f(b) follows easily.
O
Subsequently, Lemma 3.5.10 tells us that any x,-polynomial is piecewise monotonic on
the entirety of G:
Lemma 3.5.14. Any xn-polynomial is piecewise monotonic on G.
Proof. By Lemma 3.5.10, we can partition G\ C into finitely many convex sets P such
that on each M € P, f is equal to some xj,-polynomial fj; such that M C C(fy). But

we know fjs is monotonic on its characteristic domain, hence monotonic on M, hence one

each M € P, f is monotonic, hence f is piecewise monotonic on G. O
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3.5.4 Every term is locally a yx, polynomial

The goal for this section is to show that for any term ¢(z), we can form a partition a
finite open convex partition P of G, such that for each M € P, ¢(x) is equal to some x,
polynomial fas, and M is a subset of the characteristic domain of fy;. We will call ¢(x)
P-nice if P satisfies what was just stated, and call ¢(x) nice if such a partition exists.
We will call a x,-polynomial nice on P, for some open convex P, if we can find an open

convex partition P of P such that f is P-nice.

Remark 3.5.15. To show a term ¢ is nice on some set C' C G, it is enough to give a finite
convex partition Q of C and show ¢ is nice on every @) € Q. Also, if ¢ is nice on C, then

it is also nice on any D C C.

To show that every term is nice, we will induct on the terms of the language, hence it
is sufficient to show for any two x,-polynomials f(x),g(z) and contraction x; that both
f(z) + g(x) and x;(f(x)) are nice. Let us begin with the former, with the proof building
on the same proof for y-polynomials (Lemma A.44 in S. Kuhlmann, 2000, p. 145).

Lemma 3.5.16. Let f(x),g(x) be xn-polynomials. Then f(z) + g(x) is nice on C =
CrNCy.

Proof. Let d be the least integer such that f; and g4 do not coincide (so are different x;,-
monomials). We give a finite convex partition P of C such that on each M € P, we can
rewrite f, g as xp-polynomials which are equal up to the d-th terms. Then we partition
M in the same way, so f and g coincide piecewise up to the d + 1-th term, and repeat

until f + g eventually coincide piecewise up to the min(len(f),len(g))-th term.

Stated precisely, suppose we have a convex subset ) of C such that there are two xi,-

polynomials F, G with terms F; and G; respectively, which satisfy:
e F=q f,G=ggand Q C C(F),C(G).
e len(F) > len(f) and len(G) > len(g).

e I and G have the same terms up to (and not including) the d-th element, so for all

i < d F; is the same y,-monomial as G;.

We give a finite convex partition P of @) such that on each M € P, either one of the
following happens:

(I) One of Fy or G4 is constant, or

(II) We can find xy,-polynomials Fys, G (with coefficients zpr;, Zar,; and terms Fiaz i, Giari)
such that:

(i) The terms of Fys, G coincide up to and including the d-th term
(ii) Both the characteristic domain of F;, Gy contain M

(iii) The sum (F + G)(z) is equal to (Fir + Gar)(x) for all z € M
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(iv) One of the following occurs:
(ILa) len(Fpr) =len(F') + 1 and len(G ) = len(G)
(ILb) len(Fasr) = len(F') and len(Gyr) = len(G) + 1
(ILc) len(Fy) = len(F) and len(G ) = len(G)

By repeating this process a finite number of times (consider the pair (len(F')—d, len(G)—d),
at least one will reach 0 as d increases), we eventually get a finite convex partition P
of C such that on each ) € P, we set f,g equal to some Fp,Gg whose terms coin-
cide up to the length of the smallest one (in other words Fg,Gg coincide up to the
min(len(Fp),len(Gg))-th term.)

So fix some xp-polynomials F, G (with terms (F;);, (G;);), who have the same terms up
to and not including the d-th term, and some convex set M C C. Set y(x) = Fy_1(z) =
Ga—1(x), and write F, G as follows:

Fi(z) = ni(Fi-1(z) — a;) Gi(v) =n;(Gi-1(z) — b;)
len(F) len(G)

F(z):= Y zF) G(z) = Y zGi(x)
i=0 =0

For ease of notation write ag and by as a and b. First, we deal with the cases when at
least one of a, b is equal to zero. Note that in these cases, we do not need to partition M

to get Fr, Gar equal up to and including the d-th element.

e a=0,b#0: We know that y(z) € b+ M", hence Fy(x) =y na(y(z)) =p 1a(b)

which is constant, hence we are in scenario (I).
e a # 0,b = 0: Same as above, so we are in scenario (I)

e a,b = 0: Since F; and Gy are different terms, we must have 7y # 7, Suppose
N4 > T4, then by axiom (C2,) we have Fy(x) =n ngiiy(y(x)). Set Gy = G, and
define F); as:

Gi(z) ifi <d
Fiora(Ma(y(2))) if len(G) +1>i>d

Zi ifi<d

Zvi =4 0 ifi=d

zi—1 if 16H(F)+127J>d

Then we can write F' + G as:
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U
—

len(F) len(G)
(2 +Z)Gil2) + Y zFi(x) + %:Gi(z)
i=d =d
len( len(G)
(Zi + EZ)G,(az) +0Gy +7,Gq + ZZFZ(.QJ) + Z szz(x)
i=d i=d+1
len(F)+1 len(G)
(2 + Zu0)Gari(@) + Y zniFari(r) + Y ZaiGari()
i=d+1 i=d+1

(F+G)(x)
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Hence F + G = Fyr + G- Since Fy(x) = F(z) for any x € G, Fjy must have the
same characteristic domain as F', and its length has only increased by one, hence we

are in scenario (IL.a). Similarly, if 77; > n4, then we are in case scenario (ILb).
e a = b # 0: This is identical to the previous case.

Now suppose both a,b # 0 and a # b. Since y(z) lies in both a + M® b+ M?®, Fact 3.5.4
tells us that a + M® = b+ M°". Define My, Mo, M3, My, Ms as follows:

My=Mny *({zcat+ M|z <at+ M)

My =M Ny~ a+ M9

Ms=Mny {recat+ M |a+ M~ <o<b+ M™%
My :=Mny b+ M9

Ms:=Mny '({z€at+M*|z>b+ M)

Then {M; | i =1,2,3,4,5} is a finite convex partition of M. We define new x,,-polynomials

on each M; depending on what y(x) does on each set.

e € M;: We know y(z) € a+ M?, and y(z) < a+ M"~% hence we get y(z) = a —e,
where [a] > [¢] > [b— a]. This tells us that y(z) —a = —e and y(z) —b= (a—b) —e.

Using the ultrametric inequality, we can do the following:

Hence x(y(z) —a) = x(y(z) — b) for any contraction x. We then split into the

following cases:

— ng =1y Define Fyy, as:
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Gi(x) if ¢ <d
FM1,’L’(I) =
Fia(Ga(z)) if len(F) >i>d

EMyi = i

and set Gjs = G. Then F and F)y, have the same characteristic domain and

length, so we are in case scenario (II.c).

— naq # Ny: We apply the same argument as when a, b are both zero, so if ng > 7,

then we are in case scenario (IL.a), and if 4 < 7, then we are in scenario (IL.b).

o © € My: Write y(x) as a+e, where [¢] < [b—a]. Then [y(z)—b] = [(a—b)+€] = [a—1],

hence 7j,(y(x) — b) is constant, so we are in case scenario (I).

e € M;z: Write y(z) as a+¢, where MP~ < € < b—a+M>% Then [y(z)—a] = [€],
and [y(z) — b] = [(a — b) + €] = [¢], but y(z) — a and y(x) — b have opposite signs.

Again we split into cases depending on whether 7, and 7, are equal.

— nq = 7g: Note that ng(y(z) —a) = —74(y(z) — b). Set Gy = G and define
Fyy, as:

Gi(z) ifi<d

FM&Z([E) =
0i(Fagio1(x) — (—a;))  if len(F) >i>d

Since y(z) —a and y(x) — b have the same valuation but opposite signs, we have:

Fgga = nalbd] o Fy—1(x)
= nq(Fa-1(z) — bq)
= —n4(Fa-1 — aq)
= —Fy(x)

Hence by induction, we have for all ¢ > d:

FMg,i = _E

So to ensure we do not change the value of the sum (F' + G)(x) when replacing

F with Fy,, we need to flip the sign of the z;’s from the d-th term onwards:

Z; ifi<d

ZMsi =
—z; if len(F) >i>d

Now let us compute (F + G):
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d—1 len(F') len(G)
(F+G)(x) = (2 +2)Gi(x) + 2aFa(w) + ZaGalx) + Y zFi(x)+ Y ZGi(x)
i=0 i=d+1 i=d+1
d—1 len(F) len(G)
= (2 +7)Gi(x) — 20Ga(x) + ZaGa(x) + Y ziFi(x)+ Y ZGi(x)
=0 i=d+1 i=d+1
d len(F) len(G)
= Z(ZMs,i + EMs,i)GMs,i(x) + Z ZM3,Z'FM3,1'($) + Z EM:}JGMs,i(x)
=0 1=d+1 i=d+1

= (FM3 + GMs)(x)

Let us verify that the characteristic domain of Fjz, contains Ms. Pick some
x € Ms. Note that:

C(Fatya) = C(Fy—1) N (nalba] © Fa) ™ (—ags1 + M+1)

Since M C C(F), we have z € C(F), so

nlaq] o Fy(z) € a + M*®

Since Fy, q(x) = Fy(x), we also have

n[bd] o Fd(CC) € —ag+1 + Mad+1

Hence x € C(Fpy,q4). By a similar calculation, we also have x € C(Fyy, ;) for
all i > d, hence M3 C C'(F)z). Subsequently, we are in scenario (IL.c).

— Na # Ng: Say nag > 74, so we have n4(y(z) —a) = —na(7,(y(z)—b). Set Gppy =G
and define Fyy, as:

Gi(z) ifi<d
FMg,’i(x) = nd(Gd(x)) fi=d+1
Ni—1(Fsi—2(x) — (—ai—1)) if len(F)+1>i>d+1

So for all i@ > d we have Fjp, i(v) = —F;—1(x), hence we flip the sign of the

relevant z;’s.
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Zi ifi<d
ZMg,i = 0 lf’L - d

-z if len(F)+1>i>d

Let us again calculate F' 4+ G:

d—1 len(F) len(G)
(F+G)(x)=) (zi+7z:)Gi(z) + ziFi(x) + Z ZiGi()
i=0 i=d i=d
d—1 len(F') len(G)
= (2 +7)Gi(x) + 0Gg + ZaGa+ > zFi(z)+ Y ZGi(x)
i=0 i=d i=d+1
d len(F)+1
= Z(ZMg,i + Z05,i) G s i () + Z zu,iFi ()
i=0 i=d+1
len(G)
+ Zum,iGari(T)
i=d+1

By a calculation similar to the one done in the previous case, we see that
Ms C C(Fy,), hence we are in scenario (IL.a). Similarly, if g < 7,4, then we

are in scenario (ILDb).
The calculations My, M5 are symmetrical to Mo, M, respectively, hence omitted.

O]

Just like with Lemma 3.5.13, we use Lemma 3.5.10 to show that f + g is nice on the whole
of G.

Lemma 3.5.17. Let f(x),g(x) be xn polynomials. Then f(z)+ g(z) is ‘nice’ on G.

Proof. By Lemma 3.5.10, we a finite convex partition P; of G such that for all M € Py,
there is some x,-polynomial f,, such that f = far and M C C(fpr). Similarly, we have

another finite convex partition P, of G. Define P as:

P={MNN|MePsN ecPy}
Then P is also a finite convex partition of G. Pick some M NN € P, then f + g is equal
to far +gn. Apply Lemma 3.5.16 to fas + gar, then f + g is nice on M N N. Hence f + g

is nice on every element of P, hence nice on G. O

The following proof is almost identical to lemma A.46 in S. Kuhlmann, 2000.
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Lemma 3.5.18. Let f be a x, polynomial of the form:

k
f(x) = Zzifi(x) +c
=0

where ¢ € G is a constant. Then for all i < n, x;(f(x)) is nice on C := C(f).

Proof. Fix some contraction y;, and to ease notation write it as x. Let m be the least
integer such that z,, # 0, and let ¢ = —i. If m = k, then

X(f(2)) = x(fm(x) — )

Consider the following partition of C:

My = {z € C||fm(x)] > |+ M| and sign(fin(z)) = sign()}
My = {z € C| fn(z) € é+ M}

My = {x € C | [f(2)] < |e+ M|}

My = {w € C | [fm(x)| > |&+ M| and sign(fm(x)) = ~sign()}

Exactly as done in the proof of Lemma 3.5.10, we see that { My, My, M3, My} is a finite

convex partition of C' and on each we can write x(f(x)) as an appropriate y,-polynomial.

So assume m < k, and set y(z) = fi(x) — am41, hence we can write f as:

k

f@)=Fy) = > zifimr2((y))

i=m-+2
+ 2m+16(y) (3.20)
+ Zmy

- Zm(_am+1 + 5)

where 1 = 9y,41. Write d .= ¢ — am41. If d = 0 then we have:

k
x(f(@)) = x < > zifimr2(0(v)) + zmian(y) + Zmy>

i=m+2

Since we are assuming x € C(f), we can apply Lemma 3.5.11 to get:

k
[ Z Zifi,m+2(77(y))] < [n(y)] <[yl

i=m+2
and by applying axiom (C2,) we get:
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x(f(z)) = x(y(x)) = x(fm(2) — am+1)

which is a x,, polynomial with characteristic domain containing in C(f), so we are done.

So now suppose d # 0, then we can partition C'(f) into 5 open convex sets as follows:

=Cny H(G" - 0%
=Cny t{ge0?|g<d+ M)
Ms=Cny ' (d+ M9
My=Cny t{ge 0| g>d+ M%)
=Cny NG7" - 09).

Note that M; < My < M3 < My < Ms, assuming y(x) is increasing (by Lemma 3.5.12,
y(x) must be monotonic on G). We will show how x f(x) behaves on each M;.

e © € Mj: Since [y(z)] > [d], we know what x(f(z)) = x(y(z)), which is a -
polynomial with characteristic domain equal to C(fy,+1), hence My C C(x(y(x)))

o z € My: We see that [y — d] = [v], hence x(y(z)) = —sign(zm)x(d)
e x € My: Similar to the case for Ms, we have x(y(x)) = sign(zm)x(d)
e z € Mjs: Similar to the case for M;, we have x f(z) = x(y(x)).

It remains to analyse the behaviour of y(f(x)) on Mjz. Since y(z) € d + M?, we know
that n(y(z)) is constant on Ms, hence the first two lines of equation (3.20) are constant.
Set

k
yi=é—z" Y fim(@)
i=m-+1
Then we have:

k
X(f(.’E)) =X ( Z Zifi,m-i—?(n(y)) + Zm-i—ln(y) + zZmy — Zm(_am+1 + 5))

—

= Xzm(y + ams+1 — 7))
= sign(zm) X (fm(z) — )
= sign(zm)X[V](fm(z))

Set g(z) == x[v](fm(x)), then it remains to show that Mz C C(g).

Claim 3.5.18.1. If M3 # @, then (¢ + MY N C(frm) # 2.
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Proof. Since y(x) = fm(x) — amy1, we can write M3 as:

Mz = C(f) N (6 + M%)

Pick some h € Mj, then f,,(h) € ¢+ M% as h € £,,1(é+ M%), and f,,(h) € C(frm), as
h € C(fk)-

Claim 3.5.18.2. If (¢ + M%) N C(frm) # @, then [y — & < [d] and [¢] = [1].

Proof. Pick some h = ¢+ € € &é + M?, where ¢ € M?. Then we have:
[h — am41] = [¢+ € — amy1]

= [d— €
-

Hence frm+1,m(x) = Nm41( — am41), and subsequently f; () for all i > m are constant
on ¢+ M.

This implies that (¢ 4+ M%) C C(fxm), since for any = € ¢ + M?, we have f,11.m(z) =
fm+1,m(€), in particular é € C(fk,m). Since

k
E—y=2," Y fim1(®)

i=m+1

Lemma 3.5.11 tells us that:

6 = = [fm+1(0)]

But fm+1(¢) = (¢ — amt1) = n(d), hence

Similarly, since ¢ € C( fk,m), we know that

k
[ > fi,m(é)] <1d

i=m-+1

hence [v] = [¢]. [
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So by combining the previous two claims, we know that M3 # @ implies [y — €] < [d] and

[¢] = [y]. So let us assume M3 # &, which means:

Ms=Cny ' (d+ M9

Cy Hd+ MY
C f' @+ Mm% as fm(z) = y(z) — am+1 and d = ¢ = amt1
C fu (v + M%) as [¢ —~] > [d] and [¢] = [1]
C fly + M) as v+ M Cy 4+ M7
C C(9) where g(x) = n(fm(z) —7)
Hence we are done. O

Again just like Lemma 3.5.13 and Lemma 3.5.16, we now shot x(f) is nice on the entirety
of G.

Lemma 3.5.19. Let f be a x,, polynomial. Then for all i < n, x;(f(x)) is ‘nice’ on G.

Proof. This is a direct application of Lemma 3.5.10. There is a finite convex partition P
of G such that for each M € P, f is equal to some fy; with M C C(fp). Simply apply
Lemma 3.5.18 to each fjy. O

By combining lemmas 3.5.18 and 3.5.16 (and inducting on complexity), we get the follow-
ing:

Theorem 3.5.20. Let t(x) be any term. Then t is nice.

This combined with quantifier elimination gives us the following;:

Theorem 3.5.21. For anyn € N, the theory of n-contraction groups is weakly o-minimal.

3.6 Remarks on Algebraicity

We conclude this chapter with some remarks on how the notion of n-algebraicity is different

from other notions of algebraicity.

3.6.1 Model theoretic algebraic closure

It was proven by F.V-Kulnmann in F.-V. Kuhlmann, 1995, p. 13 that the definable closure
of some subset A in some 1-contraction group G is the divisible hull of the precontraction
group generated by A. However, we only consider the notion of 1-algebraicity when we
have an extension of 1-contraction groups G C H and some b € H \ G. Thus comparing
1-algebraicty to model-theoretic algebraicity is somewhat meaningless since the definable
closure G is just G itself. Suppose however we dropped the requirement that G must be
a 1-contraction group and allow it to be a 1-precontraction group. Then model-theoretic

algebraicity implies 1-algebraicity, but the converse does not hold.
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Lemma 3.6.1. Let G C H be 1-precontraciton groups, with H a 1-contraction group, and
pick some b € H\ G. If b is in the (model-theoretic) algebraic closure of G, then b is

1-algebraic over G, with characteristic sequence of length 1.

Proof. By Theorem 1.3 from F.-V. Kuhlmann, 1995, we know that b is in the divisible hull
of G, thus [G 4+ Qb] = [G], so x(G + Q) C G, thus b is 1-algerbraic, and has characteristic
sequence (b, x(b),0,...). O

To see why the converse does not hold, pick some b € H with x(b) € G but [b] > [G].
Then b is 1-algebraic, with 1-characteristic sequence of length 1, but of course, b is outside

the divisible hull of G, so is not in the (model-theoretic) algebraic closure of G.

3.6.2 Transitivity of Algebraic Closure

Say an extension G C H of n-contraction groups is algebraic if every element b of H \ G
is n-algebraic over GG. This definition is not immediately useful, because if we pick some
bt/ € H\ G, it is not clear whether b’ is n-algebraic over Gy, := G(b). Regardless, we can

prove such a relation is transitive.

Lemma 3.6.2. Let G C H C K be n-contraction groups. If the extensions G C H and
H C K are 1-algerbaic, then the extension G C K is 1-algebraic.

Proof. Pick some k € K \ H, we need to show k is n-algebraic over G. We know k is
n-algebraic over #, so has an n-characteristic sequence (k7,hi)i<q, Where o < w™ is

written as:

a=w""te, 1 .. Fwle + e

where ¢; € w for all ¢ < n. Let (kg.i, gi)i<wr be an n-characteristic sequence of k in G. We
need to show this sequence has finite length, for which it is sufficient to show kg; € H
for some 7 € w™. Suppose we have shown kg; = ky; and g; = h; for all © < 3, for some

B < a.

1. Suppose h; = 0 for all i € [, a], then for all i € [, a], there is no h € H, and thus
no g € G such that:

[(kg,i + hi) — h], [(kg,i + hi) — g] < [kg,i + hi]

Thus g; = 0 and hence kg; = ky; for all i € [, a], so we are done.

2. Suppose there exists some least v > 3 with h, # 0. Then by the same argument
as in the previous case, we see that g; = h; = 0 and kg; = ky; for all i € [5,7).
Furthermore, since h, # 0, we know that [kg . + h,] € [H].
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(a) If is no g € G with [(kg + hy) — g] < [kg~ + h,], then we must have g, = 0
and kg ,+1 = X(kg,y) € H by (CA), so we are done.

(b) If there is some g € G with [(kg~ + hy) — g] < [kg~ + h4], then we can assume
gy = h, = g. Restart this process but replace 5 with ~.

Due to the construction of n-characteristic sequences, this process must eventually termi-

nate, hence we see that k is n-algebraic over G. O
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Chapter 4

Contractions and Derivations

4.1 Introduction

The goal of this chapter is to examine the action of the logarithmic derivative along with

various contractions on the value group of a trans-exponential expansion of R.

Let K be a trans-exponential Hardy field as in Theorem 1.2.3. Then by Proposition 1.5.5,
we know that G := v(K) along with the well defined map ¢ : vf — vf’ —vf will give a
model of TJ,
that the function (id + 1) : G — G maps v(f) to v(f’), which suggests that the action

of log, on the value group G, must be definable in G via:

and if K is closed under integration, then (G,) is a model of Tj,. Recall

v(log(f)) = (id + ¥) " ((v(f)))

The following proposition shows how we can make this idea precise.

Proposition 4.1.1. Let G be an asymptotic couple such that ¥(G7°) has no mazimal
element. If we define the map x : G — G as:

(id+ ) '((x) ifr <0
x(z) = q —x(—z) ifz>0
0 ifz =0

Then x is well defined and (G, x) is a centripetal precontraction group. Moreover if (G70)

is downwards closed, then x is surjective, hence (G, x) is a centripetal contraction group.

Furthermore, for all x < 0 and n € N, the functions x and ¢ satisfy the equation:
(X (@) = (@) + Y X'(x) (4.1)
i=1
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Proof. To show x is well defined, pick some b € ¥(G7°). Since )(G7") has no maximum
element, we know there exists some ¢ € ¥)(G7?) such that b < ¢. By Lemma 4.2.7 (3b),
we know that b has a preimage under (id 4 1)), thus y is well defined on ¢~ (b) N G<0,
and hence well defined on the entirety of G.

To show y is a centripetal precontraction, we need to verify the axioms in Definition 1.4.2.
Axioms (C0), and (C—) are evident from the definition. (CA) follows from (A2) for ¢) and
(C<) follows since both v and (id + ¢)~! are increasing on negative elements of G. To

prove (CP), choose some x < 0, and suppose for a contradiction that x(z) < z. Then:

(id +¢) " (¥(x) <z

So by applying (id + 1) to both sides we have:

W(x) < (id + ) (x)

Then if we subtract ¢(x) from both sides, we would have z > 0 which is a contradiction.

If (G7°) is downwards closed, then again by Lemma 4.2.7, we have ¥(G7°) = (id +
1) (G<Y) from which surjectivity of x immediately follows.

The equation (4.1) follows since (id + ©)(x(z)) = ¢(z) for all z < 0. O
Note that we do not need (C2) to define x or even make y-surjective. Moreover, if the

map Y is surjective, that does not imply that G satisfies (C2). However, if y is surjective,
then we can deduce that ¥(G7?) is downwards closed.

Proposition 4.1.2. Let G be an asymptotic triple such that w((ﬁéo) has no mazrimal
element. Define x as in Proposition 4.1.1. If x is surjective, then 1/1(G7£0) is downwards

closed.

Proof. By Lemma 4.2.7 we know that (id + 1)(G<") is a downwards closed set, and since

X is surjective, we also have x(G<?) = G<0. Since 1) satisfies:

W(z) = (id + ¥)(x(x))
For all < 0, we deduce that 1/(G<%) = (G7?) is downwards closed. O

Hyper-logarithms

So far we know that the logarithm x, logarithmic derivative ) and hyper-logarithm L = x2
are all well defined on vK. As shown in Proposition 1.5.8, we can define further structure
on the value group, via the map 6 : G — G. As a reminder, 6 is a centripetal contraction

satisfying the functional equations:
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0(z) = x(z) + 0(x(x))
(id +)(L(2)) = ¥ (x) — O(x)

for all x < 0. The intuition behind 8 is that it is the infinite sum

0(z) = _ x'(z)

<w

But obviously, we do not have an operation for infinite sums in the language of ordered
abelian groups, thus it becomes necessary to add the function @ to our language, to describe

the action of the derivative of the hyper-logarithm on vK.

To check that this collection of functions describes completely the structure induced by the
hyper-logarithmic derivative on v K, we would need to show that the theory T}, _, described
in Definition 1.5.9 is complete. As stated in the introduction, we did not manage to do
this, but we did manage to prove quantifier elimination and completeness for the structure
with domain G and just the contractions x, L and 6 (Theorem 4.4.13).

The outline of this chapter is as follows. In Section 4.2 we present the proof of quantifier
elimination and completeness for Ty, which was originally proved in Aschenbrenner and
van den Dries, 2000. Our exposition will be identical to that in the original paper, except
we go into more detail on a few details in certain proofs. We also highlight some potential
gaps in the original paper and provide explanations on how to get around them (see the
remarks after Lemma 4.2.19 and Theorem 4.2.40). In Section 4.3, we present a proof of
quantifier elimination and completeness for the structure containing just y and 6, then
in Section 4.4 we do the same but with the three contractions x, L and 6. Finally in
Section 4.5 we give a partial proof of quantifier elimination and completeness for Ty_,,

the theory with all the contractions and 1.

4.2 Asymptotic Triples

In the original paper on asymptotic triples by Aschenbrenner and van den Dreis, quantifier
elimination is proved for a 2-sorted theory involving an ordered abelian group and a real
closed field, with the group being a vector space equipped with scalar multiplication over
the field. They then assert that a proof of QE for the one sorted structure defined in
Definition 1.5.2 follows easily. However, in the two sorted case, the axiom (A4) is replaced
with:

A4’ For all v, w, if [v] < [w] then ¢ (v) > P (w)

In the one sorted structure we do not have such a powerful axiom, the most we can express
is the same statement but with non-strict inequalities. Thus some small difficulties arise
when applying the proof of QE for two sorted triples to the one sorted case. We highlight

them as they occur, and present solutions.
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Definition 4.2.1. Let £, be the language from Definition 1.5.2. Let Eip be L, with the
predicate P removed. If V is a (closed) asymptotic triple, we call the reduct of V to E;J}
a (closed) asymptotic couple. Note that Ty can be expressed completely in L], since
in a model V of Ty, the only value for Py is w(V7é0), so we denote the reduct of Ty, to ﬁiﬂ
as Ty | Lyp.

Notation 4.2.2. For an asymptotic triple V, we denote Wy to be ¥(V7?). When the
context is clear we just denote it as V.
4.2.1 Preliminaries on asymptotic triples

Definition 4.2.3. Let C, D be ordered sets and f : C' — D be a function. We say f
has the intermediate value property (IVP) if for any z,y € C with f(z) < f(y) and
a € (f(x), f(y)), there exists some z € C between = and y such that f(z) = a.

The following lemma will be crucial in many proofs going forward.

Lemma 4.2.4 (Aschenbrenner and van den Dries, 2000, p. 319). Let (G,+,<,0) be an
arbitrary ordered abelian group and C' C G be a convex subset. Suppose for all a,z,y € C,
n:C — G satisfies:

1. If x #y then [z —y| > [nz — ny]

2. Both of the following hold
(a) If0<a<xz<yand[y— x| <[y —a] then nz = ny.
(b) If0>a>xz>y and [y — x] < [y — a] then nx = ny.

Then f:C — G : x — x+nx is strictly increasing and has the intermediate value property

Proof. Let z,y € C with z > y, then:

f(x) = fly) =2 —y+ (nz —ny)

But (1) states that [z —y] > [nz — ny], hence:

sign(f(x) — f(y)) = sign(z — y)

so f(x) > f(y), hence f is strictly increasing. To prove IVP, we can assume without loss
of generality that C is of the form [0, c| or [—c,0] for some ¢ € G>° and that 7(0) = 0.
Thus by (1), we have for all z € C70, [2] > [n(=)].

Suppose C' = [0, ¢], pick some v € G such that 0 < v < ¢+ ¢, then it is sufficient to prove
that there is some x € [0, ¢] such that v = 4+ nz. Note that by (1), we have the following

series of deductions:
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[ctne =l = ] <lc+nd =[] = [c—v] <[]
This means we only have to consider the following two cases:

Case 1 [c] > [c—v]: Set u := v — ne, we claim that 0 < u < ¢. Since v < ¢+ ne, we
know that u < ¢, so suppose v < 0. Then 0 < v < ¢, which means [v] < [nc] < [¢], which
then means [c¢ — v] = [¢| by the ultrametreic inequality, which contradicts the assumption
[c] > [¢ — v]. Hence our goal is to show that u 4+ nu = v, for which it is sufficient to show

that nu = nec. But note that [¢ — u] < [¢], since:

[c—ul=[(c—v)+ (v—u)]=[c—v+n <]

with the final inequality holding since both [¢ — v],[n¢] < [¢]. So we can apply (2.a) to

deduce nu = nc hence we are done.

Case 2 [c] = [c —v]: Set u := v — nu, like before we want to show that both u € (0,c)
and u + nu = v. Since v > 0 and v > nv (recall that > y mean [z] > [y]), v must be
positive. Suppose v > ¢, then since v < ¢+ nc, , we have 0 < v — ¢ < ne < ¢ which means
[c — v] < [¢] which is a contradiction. Then 0 < u < v and [u — v] = [nv] < [v], hence

applying (2.a) yields us nu = nv, so we are done.

The same calculations work when C' = [—¢, 0], except we apply (2.b) instead. O

Remark 4.2.5. If n(x) is constant on archimedean classes then 7n(x) and n(z — a) both
satisfy (2), for any constant a € C with C'—a C C. Thus we know the function 2+ (z—a)
is strictly increasing and has the intermediate value property on both convex components
of G7°.

Proposition 4.2.6 (Aschenbrenner and van den Dries, 2000, p. 320). Let V be an asymp-

totic triple and x # y be non-zero elements of V', then ¥ satisfies the following:
1 [z] =] = (=) =v(y)
2. If x,y € Py then y(x —y) > min{z, y}, so in particular, V(Yx —y) > min{yz, Yy}
3. [z =yl > [x — ¢y

4. The function id + v is increasing on V70, so x >y = (id +¥)(x) > (id + ) (y)

Proof. Axioms (A2) and (A4) of asymptotic triples imply that v is constant on archimedean
classes. For (2), suppose z < y € Py, then by A3, we have:

Y(E—y)+(y—z) >y = Y(r—y)>r=min{z,y}
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To prove (3), note that [z — y| < [z], [y] implies [z] = [y], which implies 1 (z) = ¥ (y) so
the statement must be true. So assume [z — y] = max{[z], [y]} and [z] > [y], so Ya < Py.
From (2) we know that

Y(Yx — Yy) > min{ypz, Py} = Pz

Hence the contrapositive of axiom A4 implies [z — 1y] < [z] = [x — y|. Finally, for (4),
use (1) and (2) to satisfy the hypotheses of Lemma 4.2.4. O

Lemma 4.2.7 (Aschenbrenner and van den Dries, 2000, p. 320). Let V be an asymptotic
triple.

1. The set (id +)(V>?) is closed upwards
2. The set (—id +v)(V>°) is closed downwards
3. The following equalities hold:

(a) (—id +9)(VZ?) = (id + $)(V<)

(b) (—=id+)(VZ0) ={a €V |a<b for somebec ¥y}

Proof. For the first two, apply Lemma 4.2.4 to show that the functions = + ¢ (z) and
—x + (=) have IVP and are strictly increasing on V>°, using Proposition 4.2.6 to
satisfy the two hypotheses. The equality in (3a), follows since ¥ (z) = ¥(—=z). Finally, for
(3b), pick some z € (id+1)(V>?), which by (3a) we can write x = y + 1y for some y < 0,
hence x < 1 (y). Conversely, pick some x € V such that x < b for some b € V, b > 0,

and set:

y = min{b, b —z} >0

Then since 0 < y < b and ¥y > b we have:

r<b—y<ty—y
Hence by (2), we see that x € (id 4+ ¢)(V>0). O

Definition 4.2.8. Given some asymptotic triple V, an H-cut is some downwards closed

set containing Wy, but disjoint from (id +1)(V>?). So P, must be an H-cut and moreover

Proposition 4.2.9 (Aschenbrenner and van den Dries, 2000, p. 321). Let V be an asymp-
totic triple.

1. There 1s at most one v € V such that
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U <w< (id+¢)(V>0) (4.2)

Hence V has at most two H-cuts.
2.V has two H-cuts if and only if there exists some v € V' such that (4.2) holds.

3. If U has a largest element, then V has only one H-cut.

Proof. Suppose v < v' both satisfy (4.2), then set v := v/ — v > 0. Then since (*)
Y(u) € ¥ < v and (**) ¥(u) +u € (id + ) (V>Y) > v’ we have:

bu) < v=1v"—u < (u) +u—u=1(u)

* *3k

This is a contradiction, hence there is only one v satisfying (4.2). Now suppose there are
three H-cuts C; € Cy C C3. Then pick some v € Cy \ Cy and v/ € O3\ Cy, we see that
both v/, v satisfy (4.2), which cannot happen.

Suppose there are two distinct C; C Cy, then any v € Cy\ C; will satisfy (4.2). Conversely,
if there is some v satisfying (4.2), then we can define two distinct H-cuts Cy := (—o0,v)

and Cy = (—o0,v].

If U has a maximal element a and V' two H-cuts, then pick some b > a satisfying (4.2),

observe that (b — a) also satisfies (4.2), contradicting (1).

O]

Definition 4.2.10. Let V be an asymptotic triple. We say some v € V is an H-point if
it lies between (V7°) and (id + 1) (V>0), so:

Y(V70) < v < (id+ ) (V>0

Subsequently, by Proposition 4.2.9, there can be at most one H-point and it exists if and

only if V has two H-cuts.

Lemma 4.2.11. Let G and H be asymptotic triples, and suppose there exists an L’gp—
embedding v : G — H. If G has only one H-cut, then the map v is an Ly-embedding.

Proof. Pick some g € G, we need to show:

Pg(g) <= Pu(é(9))

Suppose G = Pg(g), since G has only one H-cut, this means there exists some u € G~
such that g < 1(u), but since ¢ is an L -embedding, we know that ¢(g) < ¢(¢(u)), thus
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#(g) € Py. Conversely, suppose G = Pg(g). Since G has only one H-cut, this must mean
that g € (id +)(G>?), thus ¢(g) € (id +)(H>°), so H = Pu(¢(g)). O

Before proceeding further we should mention some notation given in the closed asymptotic

couples paper.

Notation 4.2.12 (Aschenbrenner and van den Dries, 2000, p. 337). Let G be an ordered
abelian group, f : G — G be any function, C' C G be a convex subset, p,g € Gand S C G

a downwards closed subset.

1. We say f increases (decreases) on C' from p to ¢ if f is increasing (decreasing) on C'

and f(C) = [p,q] (f(C) = [g,p])

2. f increases (decreases) on C from —oo to p (from p to —oo) if f is increasing (de-

creasing) on C and f(C) = (—o0,p).

3. f increases (decreases) on C from p to S (from S to p) if f is increasing (decreasing)
on C, peS and

f(C)={veS|v>p}=9Sn][p,+x)

4. f increases (decreases) from —oo to S (from S to —oo) on C if f is increasing
(decreasing) on C' and f(C) = S.

We will extend this notation as follows:
Notation 4.2.13. Fix the setup as in (4.2.12).

1. We say the limit of f on the right boundary of C' is p if f increases or decreases
to p on C'. We denote this as:

}CiTrgf(ﬂﬂ) =p

2. Similarly, we say the limit of f on the left boundary of C' is p if f increases or

decreases from p on C, denoted as:

}%f(ﬂﬂ) =p

3. We define the following:
lim f(z) =95 lim f(z) =95 lim f(z) = —oc0 lim f(z) = —oc0

ztC z]C tC z]C

as expected.
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Notation 4.2.14. Let G C H be an extension of divisible ordered abelian groups, and
f:+ H — H a function such that f(G) C G. Let Sy be a downwards closed subset of H
with Sg := Sy NG, and Cy a convex subset of H with Cg = CygNG. Let x be an element
of GU{Sy} U {—o0}.

1. We say the limit of f on the right boundary of Cp is * if f increases or

decreases to * on Cp, and we will denote it as:

i = %
Jim f(z)

Similarly, define the following as expected:

lim f(x) = * lim f(x) = * Iim f(x) = *
z}Cy f( ) z1Cq f( ) zlCq I )

2. We define lim = x as follows:

1 C
p ITHCan(w) Jim. f@)=p
}:ITDCH‘ fz) =4 —o0 If xlTl(I/%I flz) = mlTlgg f(z) = —oc0
=5 If i = Sy and i =8
S f(z) = Sy an x%glcf(ﬂf) e

3. For some d € H and * € GU{S} U {—o0}, define:

lim f(z) =% <= For sufficiently large y € G with y < d, lim f(z) = %
z—td IT(yzd)

lim f(x) =% <= For sufficiently small y € G with y > d, lim f(x)=x
z——d Ii(d,y)

where Cy = (d,y)n, Ca = (y,d)¢ and C = (y,d). We simply write:
lim f(z) = *
when the direction we approach d is clear or is not relevant.
Lemma 4.2.15. Let G C H be an extension of asymptotic triples. Suppose further that:
(i) G C H a pure extension of ordered abelian groups
(i) [G] is coinitial in [H]
(iii) [G] has no minimum

(iv) G has no H-point
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Then H has no H-point.

Proof. Suppose there exists some u € H such that:

Y(H?) < u < (id+ ¢)(H)

Then since [G] is coinitial in [Gp] and has no minimum, we must have:

Y(G70) < u < (id + ) (G™)

Thus by (iv), we must have u € H \ G. But the extension G C H is pure, so there
exists some g € G such that [u — g] € [G]. By (ii) and (iii) we can find some € € G with
[e] < [u—g]. Then [u—g] = [u— g+ €], thus u — g and u — g + € induce the same cut in
G, thus:

V(G70) <u < u+e< (id+ ) (G

hence:

Y(H?) <u < u+e< (id+ ) (H)
meaning H has two H-points, a contradiction. O

4.2.2 Closure operator
We show that every asymptotic triple is embeddable in some closed asymptotic triple.

As a reminder, TJ is the theory of asymptotic triples, and T} is the theory of closed
asymptotic triples. de is the universal theory of Ty, and the existential formulas of T,

assert that the image of ¢ has no max and is everything below the set x + ¢ (z) for z > 0.

Definition 4.2.16. Aschenbrenner and van den Dries, 2000, p. 324 Let V be a model of
T,. We say some W = T}, is an H-closure of V if it has the factoring property over V
with respect to T,

An asymptotic couple can fail to be closed in one of three ways, either ¥ has a max, it
is not downwards closed or an H-point exists. The following three lemmas show that if

any of these occur, we can expand V in a way which stops it. Fix some asymptotic triple
V= (Viy, Py).

Lemma 4.2.17 (Aschenbrenner and van den Dries, 2000, p. 325). Suppose there exists

some a € V>0 such that
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Py <a< (id+ ) (V79 (4.3)

(so a is a H-point), then we can extend V to an asymptotic triple V. .= (Ve, v, P.), where
Vo=V + Qe and 0 < € < V> is an indeterminate such that:

e a =1(e) + €, hence there is no H-point in V..
o Po={zeV |z <a—¢€}

e V. has the factoring property over V with respect to Ty,.

Proof. An assortment of simple calculations shows that V. is a model of TJ . Moreover,
since 1/1(‘/;#0) has a maximum element, by Proposition 4.2.9 we know it has no H-point.
It remains to show that the factoring property holds. Suppose we have an L,-embedding
i:V <= W where W |= Ty. Since a > Py we must also have i(a) > Py. Since ¥)y has
no max, W can only have one H-cut, hence i(a) € (id + 1)(W>?). Pick some 6 > 0 in W
such that § + 1(6) = a, then if we set i(ge) = gd, where ¢ € Q, then the map i : V, — W
is an Ly-embedding V, — W. O

Note that after Lemma 4.2.17, P, has a maximal element, namely 1(e) = a — e.

Lemma 4.2.18 (Aschenbrenner and van den Dries, 2000, p. 325). Suppose Py has a
mazimal element, then we can extend V to V. = (Vi,¢, P.), where V¢ is as defined in
Lemma 4.2.17, such that:

e (€) = max(Py) + €, and hence akin to Lemma 4.2.17, if V has no H-point then V.
has no H-point.

o Po={xeV. |z<y(e}

e V. has the factoring property over V with respect to Ty,.

Proof. Again, an aggregation of similar calculations shows that V, is an asymptotic triple.
Conjecture that ¢ : V < W is an Ly-embedding into a model W of Tj;. Set a = max Py,
then a € Py hence i(a) € Py.

Since Py has no maximum, Lemma 4.2.7 informs us that there exists an element § > 0 of
W such that —6 +¢(0) = a, so ¥(§) =a+0. Extend i : V— W to V. by setting i(e) =9,
then ¢ : V. — W is an Ly-embedding. O

After Lemma 4.2.18, P, still has a max. specifically max P, is 1(¢) = max P +¢. However,
since w(VfO) has a maximal element, Proposition 4.2.9 tells us that V. only has one H-cut

hence no H-point.

Lemma 4.2.19 (Aschenbrenner and van den Dries, 2000, p. 326). Suppose there exists
some a € V with a € Py\ Wy, then we can extend V to V. = (V, 1, P.) where V. .=V +Qe

and € > 0 is an indeterminate (not necessarily infinitesimal!) such that:
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(i) {x € V>0 9(z) > a} < Q% < {x € VO | () < a}
(ii) 1 (€) = a, and 1 (qe) = a for all ¢ € Q7Y.
(iii) If V has no H-point and Py has no mazimum, then the same holds for V. and P..

() Ve has the factoring property over V with respect to Ty,.

Proof. First, let us verify that V. is indeed an asymptotic triple. Axiom (A1) is satisfied
since we have not changed the values of ¢ on V' in V. Additionally, axioms (A2) and (A4)
are fulfilled due to (ii) and (i) respectively. So all that remains is to check (A3), meaning
we need to verify that all pairs v, w € V¢ such that v # 0 and w > 0 satisfy:

Y(v) < (id + ¥)(w)

Suppose a is not an H-point, so a < v(b) for some b € V79, Then by condition (i), €
cannot be infinitesimal with respect to V, so V> is coinitial in V.>°, which combined
with the fact that V. satisfies (A4) tells us 1(V7?) is co-final in V7Y, Then, since 1 on V.
satisfies the conditions of Lemma 4.2.4, id + 1 must be increasing on V.>°. Since V>0 is
co-initial in V>0, the set (id +)(V>?) is also coinitial in (id + 1) (V.>?). Since V satisfies
axiom (A3), we then see that w(VfO) < (id + )(V>0).

Now suppose a is an H-point, so a > 1(V7?). Then ¢ must be infinitesimal in V', so for

any ¢ € Q°, we have

(id + 1) (qe) = qge +P(e) = qge +a > a

Hence axiom (A3) is satisfied on V..

To show that the factoring property holds over Ty, note that any W = T, extending V
must have some element § € W such that (0) = a.

Finally, if V has no H-point and P, has no maximum, then any a € Py \ @Z)(V’ég), must
be in the downwards closure of 1 (V7°), so [e] > [V], hence [V] is coinitial in [V;], thus

0 . . . . .
z,Z)(VJ"é ) has no maximum. Moreover, since V' C V, is a pure valuational extension, we can

apply Lemma 4.2.15 to deduce V, has just one H-cut. O

In the paper, it is claimed that after some (possibly transfinite) induction, we can turn
any asymptotic triple into a closed one. It is simple to show that after one application of
Lemma 4.2.17 and then w applications of Lemma 4.2.18 on an arbitrary asymptotic triple,
the resulting triple (V, ¢y, Py) has no H point and Py has no maximum. Then presumably
we keep applying Lemma 4.2.19 until ¥y, is downwards closed, hence ¥V must be closed.
However, it is not clear that this process will ever terminate. To get around this problem,
we can just make sure the contraction y from Proposition 4.1.1 is well defined, then take

1-contraction hull, and the resulting structure will be a Ty-hull.
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Lemma 4.2.20. Let Vy := (V 1y, Py) be an asymptotic triple where Py has a maximal
element. Given V, let V41 be the resulting asymptotic triple after applying Lemma 4.2.18,

and set:

Then the asymptotic couple V,, only has one H-cut and Uy, has no mazimal element.

Moreover, it has the factoring property over V with respect to Ty,.

Proof. Suppose V,, has two H-cuts, so it must have some H-point a. Pick some n € w such
that a € V,,, then a must also be a H-point in V,,, but since V,, only has one H-cut, this is

a contradiction. Similarly, since

Po=J P

€W
and each P;;; does not have a maximum element, P, also has no max.

Since the factoring property is preserved under infinite chains of extensions, V,, must have

the factoring property over V with respect to T. O

Lemma 4.2.21. FEvery asymptotic triple V has an H-closure U. Moreover, the domain of

U, U can be written as:

U=V+> Qs
icl
where (8;)icr is a collection of indeterminates such that [6;] & [G] and [6;] # [9;] for all
el il

Proof. Let W be an asymptotic triple. We construct some H-closure as follows:

Step 1: Suppose W has a H-point. Then apply Lemma 4.2.17 to get a new asymptotic
V with no H-point and which factors over W with respect to T};. Else if ¥ only had one
H-cut, set V = W.

Step 2: Now suppose Py has a maximal element, then apply Lemma 4.2.20 to get some
asymptotic triple V,, which only has one H-cut but Py, has no max, and has the factoring
property over W with respect to T w - If Py does not have a maximal element, then like
before set V,, .= V.
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Step 3: Finally, suppose Uy, is not downwards closed. Since w(Vf 0) has no maximal
element, we can use Proposition 4.1.1 to define the contraction x well defined on V,,. Then
embed (V,,, x) into some 1-contraction hull (U, x). We know that for all u € U, there exists
some n € N such that x"(u) € V,,, thus extend ¢ to U via:

Y(u) = (" () = Y _x'(u)
i=1

for u < 0. Then by Equation (4.1), (U,%) is an asymptotic couple, and has the factoring
property over (V,,,) with respect to Ty | Egp. By Remark 3.2.5, V,, C U is a pure
valuational extension of ordered abelian groups and [V,,] is coinitial in [U]. Moreover,
since (V,,, %) has no H-point, we can apply Lemma 4.2.15 to deduce that (U, 1)) also has
no H-point. Thus U = (U,4, Py), where Py is the downwards closure of 1(U7?), has
the factoring property over V, with respect to Tj,. It remains to show that ¢/ is a closed
asymptotic triple. Since x is well defined, w(U#O) cannot have a maximal element, and
since x is surjective, ¥(U7?) is downwards closed, thus U |= Ty and is a Tyy-hull of V,,,
hence of W.

The statement about the domain of U follows since in step 1 and step 2, we adjoin linearly

independent indeterminates to V', and by Remark 3.2.5, the same is done in step 3. ]

4.2.3 Model Completeness
Classifying elementary functions
Fix an extension of closed asymptotic triples G C H.

Definition 4.2.22 (Aschenbrenner and van den Dries, 2000, p. 331). Let {ag,a1,az,...}

be a collection of constants in some asymptotic couple G.

For some a € G, write:

Yo(x) = (x — a)

Fix some tuple aq,...,a, € G™. The function

¢a1,...,an (x) = wan ©0...0 'Qbal (33)

is not defined on the entirety of G, for example when = = a1, ¥(z — a;) has no value. Let
Dy, .....a,(G) be the domain of 9q, . 4,, s0:

Day(6) = {r €G |z # a1}
Day....an1(G) = {7 € Day,..a,(9) | Yay,....an (T) # a1}
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Note that D,,(G) is made up of at most 2" convex components. When the context is clear
we denote Dg,. . a,.(G) as Dy(G), ta, as ¥; and g, ._q, as ¥,,.

We prove some useful lemmas regarding these functions:

Lemma 4.2.23. Let G be an asymptotic triple, a1,...,a, € G and q1,...,q, € Q, where

not all the ¢; are zero. Then on each convexr component C of D1 . ,(G), the function:

-----

r—=x+qi(e)+ ...+ g, n(x) Dy n— G
18 strictly increasing and has the intermediate value property.

Proof. Fix some convex component C of Dy ,(G), and define the function n : C — G as:

n(x) = qpy (x) + ... + guiby, (x)

We show that 7 satisfies the conditions of Lemma 4.2.4, from which the result immediately

follows.

Condition (1) : First we show that [¢;(z) — 1,(y)] < [z — y] for all distinct z,y € C

and i € [1,n]. For ¢ = 1, we have:

[¥1(2) =1 ()] = [Y(z — a1) =9y — a1)]
<[(z—a1) — (y —a1)] By Proposition 4.2.6

= [z —y]

If we assume for some i € [1,n — 1] that [¢;(x) — ¥;(y)] < [z — y], then:

[
< [(Wi(x) — aix1) — (Wi(y) — ai+1)] By Proposition 4.2.6
= [s(@) — y(u)]
<[z -y By our inductive assumption

Then when we calculate the valuation of [n(z) — n(y)]:

() = )] = Y a(@i(@) = i(y))
=0

< fuax [Vi(z) — ¥ (y)] By the ultrametric inequality
<[z —1y] By Proposition 4.2.6
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Condition (2) Without loss of generality, assume C' > aq, and fix z,y,a € C. It is
sufficient to show that [x — a;] = [y — a1], since n(z) is determined by ¢ (z — a1). Since

a < ay we have [x — a1] > [x — a], hence [z — a1] > [x — y|, which means:

[z—a]=[z-y)—(y—a)l =y —ai]
Hence 7 satisfies the conditions of Lemma 4.2.4 so we are done. O

We should verify that the functions ¢); have the intermediate value property when G is a

closed asymptotic triple:

Lemma 4.2.24 (Aschenbrenner and van den Dries, 2000, p. 332). Let a = (ai,...,a,) €
G", then D, (G) has at most 2" convex components, and on each the function 1, is mono-

tone and has the intermediate value property.

Proof. For n =1, D1(G) is the union:

{freGlz<am}U{zeG|z>a}

Moreover, the image of each convex component of D, under (z — ay) is Wg, which itself
is convex (since (G, g, Ug) is closed), which combined with the monotonicity of ) yields

us the intermediate value property for v,,.

Suppose the lemma is true for all a := (ay,...,a,) € G" and let @ == (a1,...,an, ant+1) €

G™! and fix some convex component C of D,,(G). Define:

Cy={ze€C|9,(x) <ant1}

Cy={x € C|¢,(z) = ans1}

Cs={xeC|vY,(z) > ani1}
It is clear that C' is the disjoint union of Cy,C5 and C3, and the convex components of
D,,11(G) arise from the non-empty elements of C; and Cs, hence D,,11(G) has at most 2"+
convex components. The intermediate value property follows from the fact that on each

C;, where i = 1,3, 1,,(C;) is convex and 9(z — an41) restricted to t,,(C;) is a monotone

function with the intermediate value property. ]

Properties (A) and (B)

The proof of quantifier elimination for closed asymptotic triples essentially rests on the

following two properties holding for any extension G C H of closed asymptotic triples:

Theorem 4.2.25 (Aschenbrenner and van den Dries, 2000, p. 333). For the extension
G CH of closed asymptotic triples, the following hold:
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(A) Foranyay,...,a, € G and convex component Cy C H of D,,(H), we have CyNG #
%)

(B) Foranyx € H, a1,...,an,9 € G and q1,...,q, € Q, if there exists some b € G such
that:

T4+ vy (@) + ...+ gt (z) = b

then z € G.

Lemma 4.2.26 (Aschenbrenner and van den Dries, 2000, p. 336). Fiz some p € G. There
exists some vy € |G| such that for all sufficiently large © € Wg + p (and thus sufficiently
large x € Wy +p), [x] =7.

Proof. Since G is closed, either —p € Wg or —p > Yg.

—p € Wg: Since p is sufficiently large, we see that 1(xg) + p > 0 for all sufficiently small

x € G>Y. Since 9 is decreasing on G>°, we further deduce that:

[z] < [¥(z) + p]

for all sufficiently small 2 € G>°. Choose a sufficiently small element zg € G~°, then for

all y € (0,20) g, we have:

[ (o) +p] < [¥(y) + p] As P(y) +p > P(xo) +p >0
< [¥(w0) + w0 + ] Since (id + ¢)(G”Y) > Ug
< [¥(x0) + 1 We assumed [z0] < [¢(z0) + p]

Thus [¢(y) + p] = [¢(z0) + p], so set v to be any element of [G] smaller than [¢)(xg) + p]

(Note that [G] has no minimum element since ¥g has no maximum).

—p > W¥g: We can find some x9 € G0 such that (id + ¥)(z9) = —p. Then for any
y € (0,20) g, we have:

[o] = [¢(z0) + p] Since —zo = ¥ (z0) + p
< () + 7] AS 9(y) > $(x0) > 0 and p < 0
= [(id + ) (x0) — ¥ (y)] We assumed (id + ¢)(z¢) = —p
= [(z0) — ¥(y) + x0] Rearrange the term
< max{[¢(zo) — ¥ (y)], [xo]} By the ultrametric inequality
< max{[zg — y], [zo] } Apply Proposition 4.2.6 to zp and y
< [xo) Since 29 >y >0
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Thus any element of [G] smaller than [zo] works as 7. O

Remark 4.2.27. Lemma 4.2.26 shows us that for all p € G,

lim (¢(z) +p) = lim P(Y(z)+p) €CG

2 G>0 2 H>0

In the original paper, this is denoted as (see Aschenbrenner and van den Dries, 2000,
p. 337):

i
e g;a+p¢(y)

Lemma 4.2.28 (Aschenbrenner and van den Dries, 2000, p. 337). Let G C H be an
extension of closed asymptotic triples, with (a1,...,a,) € G". Let Dy(G) be the domain
of Yo 1 G and Dy (H) be the domain in H.

1. Each component Cg of Dy, (G) in contained in some unique component Cg of D, (H).
The map Cq — Cq is a bijection from the convex components of Dyn(G) to Dyp(H),
and Ca NG =Clyg.

2. Dy(G) has a unique convex component CZ > ai that is unbounded above in G, and
the corresponding Cg7 > ay is unbounded above in H. Similarly there is a unique
convex component C,™ < ay that is unbounded below in G with Cgf < a1 unbounded
below in H.

3. Let Cg be a bounded component of Dy,(G). There ezists some p,q € G such that:
(a) v, increases on Cg and Cy from p to q
(b) v, decreases on Cq and Cy from p to q
(c) 1, increases on Cq and Cg from p to Ug and Wy respectively
(d) 1, decreases on Cg and Cy from p to Ug and W4 respectively

4. Let C¥ and Cg be the components of Do(G) and Do(H) unbounded above. There

exists some p € G such that either:
(a) 1, decreases on CZF and C%5 from Vg and Wy respectively to —oo
1, decreases on an rom p to —oo
(b) ¥, d C and CF fi t
Similarly on C;> and CFF, either:
(a’) 1, increases on C5™ and C5¢ from —oo to Wg and Wy respectively
1, increases on C;™ an rom —oo to p
b’) i, Cs™ and CF t

Thus for any component Cq of D, (G) with corresponding component Cy of Dy,(H), we
have:
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lim ¥, (2) = lim B, ()

z1Cq z1Cy
lim = lim %
Jim V() Jim V()

Following the notation from (4.2.13), we have:

h{g@n(x) = —00 <= Cg and Cyg are unbounded above

thé@n(a:) € GU{V} <= Cg and Cg are bounded above

The expected symmetrical statements also hold for hiné@n(m)
ZX.

Proof. We induct on n. For n = 1, then both D1(G) = {x € G | x # a1} and Dy(H) =
{r € H | z # a1} are both made of two unbounded convex components, on the lower
components 1), increases from —oo to ¥ and on the upper components 1, decreases from

U to —oo0.

Suppose the lemma is true for all tuples (by, . .., b;) € G¥ where k < n, and let (a1, ..., a,) €
G" be a tuple of length n. Pick some component C¢q of D,,_1(G) and let Cy be the cor-
responding component of D,,_1(H). Without loss of generality, we can assume Cg > a1
(thus Cy > a1 as well). Set:

C(l; ={z € Cq| ¥, 1(z)
Ct ={reCq| ¥, () =an}
Cé ={xeCq| ¥, 1(z) > an}

N

S
3
——

and define C};,C% and C%; similarly. Since by inductive assumption Cy NG = Cp and:

lim v, _;(z) = <= lim ¥,_,(x) = *
ﬁlggwn 1(7) = * xilglgw 1()

for any * € G U V¥ U —oo, we must have:

Coto «— CYy#a
for i = 1,3. Since the components of D,,(G) and D,,(H) arise from the non-empty com-
ponents of of C};, C’g and CL, C%;, we see that (1) holds.

Fori=1,3, C’é is unbounded above if and only if C% is unbounded above, and that itself
can only happen when Cg is unbounded above. A similar statement follows when Cg is

unbounded below, thus we have (2).

Suppose Cg and Cy are bounded, let us analyse the behaviour of ¢,, on each C’é;, C}I for
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i = 1,3. We know that either (3a) or (3c) holds for v,,_; on C. Without loss of generality

assume 1,,_; is increasing on Cg and Cp.

1. Suppose 1, ; increases from p to ¢ on Cg and Cg. Look at the position of a,

compared to p and ¢:

(a) q¢ < a,: Then C3,, C’f{] are both empty, and on both Cé, C’}I, 1), increases from
Y(p — ay). If ¢ = a,, then 1, increases to ¥, and if ¢ < a,, then 1), increases
to (g — an).

(b) If p < a, < g, then all of C;, C! are non-empty. On C’é, C}q, 1, increases from
Y(p — a,) to ¥, and on C3,, C%;, 9, decreases from ¥ to ¥(q — ay,)

(¢) an < p < q: Both Cé, C’Il{ are empty. If p = a,, then 9,, decreases from ¥ to
¥(g—ayn) on C3, C% and when p > a, it decreases from 1 (p—ay) to ¥(q—an).

2. Suppose 1,1 increases from p to ¥ on C and C’.

(a) If p = ay, then Cé,C}{ are empty and on Cé,C?I, 1, decreases from ¥ to

liﬂqu (x — ayp), which exists by Lemma 4.2.26.
re

(b) If p > a, then again C}, C}, are empty and 1, decreases from ¥ (p — a,) to

li —
liy (o —an)

(c) If p < a, € VU then on C,Ck, 1, increases from 9 (p — a,) to ¥, and on

C2,,C3,, it decreases from VU to lin\lll U(x —ap)
e

(d) If ¥ < ay,, then C3,, C3; are empty and on Cé, C}, 1, increases from ¥ (p — ay,)

to glclenql; P(x — ap).

Similarly if +,,_; is decreasing on Cg and Cy, we can apply a symmetrical argument, thus

we have proved (3)

Now assume Cg and Ci are unbounded, since they are both bigger than a1, they must
be unbounded above but bounded below. Thus 1, must be decreasing on both, and
cl>C? > Cs.

1. If 4,,_; decreases from some p € G to oo, then:

(a) If a, > p, then C’g and C’?{ are empty, and on Cé, C}_I, 1), decreases from

Y(p — ay) to —oo if a, < p, and when a,, = p, ¥,, decreases from ¥ to —oc.

(b) If a, < p, then C§, C% are non-empty for i = 1,3. For i = 1, 1,, increases

from ¥(p — a,) to ¥, and for i = 3, 1),, decreases from ¥ to —oo.
2. If 1, decreases from some ¥ to oo, then:

(a) If an > W, then Cs3, Cf are empty, and on C, C1, 1, decreases from lirg Y(x—ay)
xe

to —oo.

104



4.2 Asymptotic Triples

(b) If a,, € ¥, then on Cy, C}, ¢, decreases from ¥ to —oo and on C5, C% it increases

from ilenqu Y(x — ay) to V.

A symmetrical argument applies when Cg, Cy are unbounded below, thus we have (4). O

Lemma 4.2.29 (Aschenbrenner and van den Dries, 2000, p. 340). Let F(z) := x + n(x)

where:

n(x) = Z%% o...0t(x)
i=1

Then for any d € D), \ D,, we have F(d) ¢ G

Proof. We induct on n. For n = 1, the statement follows since (id + ¢;v)(z) is strictly
increasing and unbounded above on G. Suppose the statement is true for n — 1. Let Cy
be the component of D, (H) that d lies in. If d is in the convex hull of Cg in H, then
the statement again follows immediately since by Lemma 4.2.4 the function F' has the

intermediate value property and is strictly increasing on G and H.

So assume d is not in the convex hull of C. We know that v,, does one of three things on
the boundary of C that d lies on:

1. If lim g,%,,(z) = p € G, then set:
z—d

n—1
Foi(z) =z + Z qiio...o1(x)
i=1
then by induction we know F,_1(d) € G, so:

F(d) = Fp-1(d) + gnty (d)
=F,1d)+pé€G Since Fy,—1(d) ¢ Gand pe G
So the statement is proved.

2. If lirrb qnt, () = —o0, then we know F has the intermediate value property and is
x—
unbounded on C, we must have F(d) € G.

3. If linrb qnt, () = ¥ then the proof is more complicated.
T—
Claim 4.2.29.1. There exists some ¢ in G in-between d and a.

Proof. Suppose d > a1, the converse has a symmetrical proof. Assume there is no
¢ in G. Consider the convex component By of D,,_1(H) containing d, since we
assumed there is no element of G between d and a;, we deduce that d is not in
the convex hull of Bg in H. Moreover since Bg > a1, we must have d < Bg. By
Lemma 4.2.28, we know what v, ; does on Bg and By, specifically:
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lim ¢, _,(z) € GUW
z—d
(a) If the limit of ¢,,_; approaching d is ¥, then by Lemma 4.2.26, we must have:

aljlirb@n(m) = hn’\ll] Y(x—ap) €G

xe

which contradicts our assumption that the limit of 1),, approaching d is W.

(b) If the limit of v,,_; approaching d is an element of G, then since d ¢ Bg, we

have:

ilirb@nfl(l‘) = Enfl(d) €G

Hence 1,,_1(d) # ay, else d would not be in D,,(H). Thus:

lim En(x) = w(in—l(x) - an) €G
r—d
which again contradicts our assumption that the limit of v,, approaching d is
v,
|

Claim 4.2.29.2. Suppose there exists some ¢ € G between d and a;. Set € =

3lc — a1, and define:

I=I.={reH|d—e<z<d+e}

then INCqg = 2.

Proof. It can be verified that I is a subset of Czy and v,, is constant on I. But if there
was some b € I N Cg, that would means liTrg ), (x) = 1,,(d) which is a contradiction
X

since we assumed 1,, tends to ¥ on the boundary of C that d is on. |

Pick any ¢ € G, then by the claim, I.NC # @. Since v,,(x) approaches ¥ as z — d,

we know that:

lim ¢,,_1(7) — an =0

r—d

Thus pick some b € Cg such that:

‘Jnfl(b) - a’n‘ <e€
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Then:
[V (d) = 0, ()] <[¢—1(d) = ,_1(b)] By Proposition 4.2.6
<[Yp_1(b) — an] Since ¥,_1(b) < ¥,_1(d) < ay,
<le]

Define f: I — H as:

f(x) = Fuo1(2) + gnthy, ()
Then:

Fooa(d) = fld—e)=e+ F(d—¢) — f(d—¢)
= 6+Qn(@n(d) _Jn(b)) >0

Hence F(d) > f(d—e), and similarly F(d) < f(d+€). So by the intermediate value
property for F,,_1(z), there exists some x € I such that F'(d) = f(z). Since we are
assuming I N Cg = &, we know that x ¢ G, hence by induction, we have f(z) € G,
so F(d) ¢ G.

O

Proof of Theorem 4.2.25. Property (A) follows from point (1) in Lemma 4.2.28, and prop-
erty (B) is the contrapositive of Lemma 4.2.29. O
4.2.4 Existential Closedness

Lemma 4.2.30 (Aschenbrenner and van den Dries, 2000, p. 332). Let G C H be an

extension of divisible ordered abelian groups. If some element b € H \ G satisfies:

1. For all e € G=, there exists some a,c € G such thata <b < c andc—a < €

2. The set {a € G | a < b} has no mazimum, and {c € G | ¢ > b} has no minimum
Then [G] = [G + Qb].

The following lemma is proved with respect to the natural valuation in Corollary 4.1 of
Aschenbrenner and van den Dries, 2000, p. 333, but that result cannot be applied without

the scalar field, thus we prove it with respect to the convex valuation induced by .

Lemma 4.2.31. Let G C H be an extension of H-triples, where g has no mazimum.

For any x € H with ¢(z) > Vg, we have

G+ Qi(a)] = [G]
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Proof. Let b := 1(x) we show it satisfies the conditions in Lemma 4.2.30. For ¢ € G>°,
since v is decreasing on positive elements, we have [z] < [¢]. Pick € small enough such
that e > 0 and:

[Y(x) = ()] < [z — ] = [¢]

Set a := vY(€) + § and ¢ = 1)(e) — 7, then b € (a,c) and ¢ —a < ¢, hence the first condition
is satisfied, the second holds since Ug < b < (id + ¥)(G>?). O

Definition 4.2.32. Let G C H be an extension of closed asymptotic couples, and b €

H\ G. A sequence (b;, gi)icw is a ¥-characteristic sequence of b in G if:
o If [G] C [G + Zb] then by = b — go and [by] & [G].
o If [G] = [G + Zb] then by = b and go = 0.
e For any i > 1, if b; & G then:
— If [G + Zap(b;)] = [G] then g1 = 0 and by 1 = P (b;)
— If [G] € [G +4(bi)], then b1 = ¢(bi) — giv1 and [bi1] & [G].
o If b; € G then bj1,g; =0 for all j > 1.

Lemma 4.2.33. Fiz an extension G C H of closed asymptotic couples. For anyb € H\G,
there exists a -characteristic sequence (b, g;)i<w of b in G, and moreover, for any n < w,

if [bn] € [G], then [b;] € [G] and [b;] # [b;] for alli,j < n.
Proof. The construction of a y-characteristic sequence is evident from the definition. Sup-

pose b;,b; & G and [b;] = [b;] for j < i < w. Then 9(b;) = ¢ (b;). But from the definition

of 1-characteristic sequences, we know:

bi =g, ,0...0 Vg1 © ¥(bj) — gi

Hence:

1/}(()]') - ¢Qi(w9i—1 0...0 1/}9j+1 © w(bj)) =0
Which if we set  := 1(b;) contradicts property (B), thus [b;] # [b;]. O

Definition 4.2.34. We say a i-characteristic sequence (b;, g;)i<w of b has length o < w if

« is the least ordinal such that b, = 0. If there is no such a then we say it has length w.

Write Gy to be the ordered abelian group:
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G+> Qb

<w

If b has a finite length characteristic sequence we say it is w-algebraic, else b is -
transcendental. If b v-algebraic, with characteristic sequence of length o + 2, with
[G 4+ Qb,] = [G], then we say b is -archimedean-algebraic, else we say b is ¢-value-

algebraic.

Lemma 4.2.35. Let (b;, gi)i<w be a -characteristic sequence of b. Then G(b)y is the

structure:

(Gba wv Gb N PH)

Proof. Suppose (b;, gi)i<w has length «, then by Lemma 4.2.33, we have:
(Gy] = [G]U | [b]
IS

Thus it is sufficient to show for all non-zero b; that ¢ (b;) € Gy. But this follows since:

Y(b;) = bit1 + giv1 € Gy
]

Lemma 4.2.36. Fiz an extension G C H of closed asymptotic triples, and b € H \ G. If:

(i) b€ H\ G has a characteristic sequence of length two, (so (G +Qb) C G and hence
$(G +Qb) € %(G7?))

(ii) G(b) only has one H-cut.

Then G is existentially closed in G(b).

Proof. Let py(x) be the set of formulas:

po(x) = Cyp(x) U{Y(x — go) = (b —go)}
Since G is closed, every finite subset A(z) C pp(z) is realised in G thus py is a type of
G. Fix some other extension H C G of closed asymptotic couples with b € H \ G and

b = pp(x). By Cp(z) and Lemma 2.3.13, we have as isomorphism v of ordered abelian

groups:

w:G+Qb— G+Qb:bb
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And the formula ¥(z — go) = (b — go) tells us that it also respects 1. To show it
is an isomorphism of asymptotic couples, it is sufficient to show the asymptotic couple
(G + Qb, %) only has one H-cut, but this follows from Lemma 4.2.15. dJ

Lemma 4.2.37. Fiz an extension G C H of closed asymptotic triples, and b € H \ G. If:
(i) b€ H\ G has a characteristic sequence of length two.
(i) G(b) has two H-cuts.

Then G is existentially closed in G(b).

Proof. Suppose some u := g + ¢b lies in the gap:

() < u < (id +1)(G;°)

where ¢ € Q70 and ¢ € G. We claim that v uniquely satisfies:

V(G) < u < (id+¥)(G™0)

First, notice that (Gp) = Wg, by assumption, which combined with Wg not having a
maximal element, tells us that [G] is co-initial in [G}]. Hence (id + 1)(G>?) is co-initial

in (id 4+ ¢)(G;?), meaning for all w € G, we have:

Vg <w < (id+9) (G <= ¥(Gy) <w < (id+¢)(Gy°) (4.4)

Hence by Proposition 4.2.9, u must be unique. Without loss of generality, set b = u =
g+ qb, and Z(x),C(x), pp(x) as follows:

Z() = P(x) if Pb(u)'
—P(xz) otherwise

Cla)={y<z<7y[7,7€G,y<b<7}
po(x) = C(x) U{Z(x)}

Let us verify that the cut C(z) determines the values of 1) on Gj,. We claim that [G}] = [G].
Suppose not, so there exists some a € G such that [b —a] ¢ [G]. Since ¥(b —a) € ¥g
and ¥g has no maximum, we can find some ¢ € G such that [¢] < [b — a]. Then there
cannot be any g € G between b — a and b — a + ¢, else we would have [g] = [b — a] € [G],
which means b and b + € induce the same cut in GG, and this contradicts Proposition 4.2.9

via the equivalence in (4.4).
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Hence [Gy] = [G], so for all ¢’ + gb € G, we can find some ¢,d € G with ¢ < |¢' 4+ ¢b| < d
and [¢] = [¢' + ¢b] = [d]. This tells us that the type py(z) determines the quantifier free
type of b over G. To show py is finitely realised, pick some finite subset A, which we can

without loss of generality, write as:

Alx) =a<z<alZ(z)

Where a,@ € G. Since G is closed, we know a € (G7Y) and @ € (id + ¢)(G>Y), thus
(a,@)¢ intersects both the sets 1¥(G70) and (id +1)(G>P). Thus we can always find some
element in G satisfying A, so py is a type of G. Then by applying Fact 2.1.12 we deduce
that G is existentially closed in (Gy, 1, Pp) is existentially closed. O

Lemma 4.2.38. If b is ¢-algebraic, then G is existentially closed in G(b)

Proof. Fix some 1)-characteristic sequence (b;, g;)i<w, of length n + 2, so b1 € G790 and
b, € G. We know that by either Lemma 4.2.36 or Lemma 4.2.37 that G is existentially
closed in G{b,). Let G be some H-closure of G(b,). Recall from Lemma 4.2.21 G can be

written as the sum:
G+ Qs
i€l

where §; are indeterminates, we can choose an embedding ¢ : G < H such that b,_1 €
#(G). This is because there must be some &, 1 € G such that 9(6,_1) = by + gn_1 =
¥(bp—1), and we can set ¢(d,—1) = by—1. Similarly, there must be some d,,_1 € G,, such
that ¥ (0p—2) = 0n—1 = gn—2, SO we can set ¢(d,—_2) = b,_2. By repeating this, we deduce
that b € ¢(G), thus G(b) embeds into G(b,), thus G is existentially closed in G(b). O

Lemma 4.2.39. Suppose [G] is coinitial in [H], and b is y-transcendental. Then G is

existentially closed in G(b).

Proof. Fix some 1)-characteristic sequence (b;, g;)i<w- Let pp(z) be the set of formulas:

pp(x) = U Ch, (zn)

<w

where x,, is defined as expected:

T — gn Ifn=0
V(@p-1)—gn In>0

Define some finite subset A of py as:
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A(z) = /\ai < x; < a

i<n

Let C'ir be the convex component of D,,(H) that contains b, and let C be the correspond-
ing component of D, (G). Suppose b is in the convex hull of Cg in H.

Claim 4.2.39.1. There exists some h,h € Cg such that for all i < n:

1. If 1, is increasing on Cg then

a; < zi(h) < b; <zi(h) <a
2. If ¢, 4 is increasing on Cg then

a; < .’Bz(h) <b; < .%'Z(h) < a;

Proof. We know each v, is monotone and has the intermediate value property on Cg, thus
80 is z; = ;4 () — gi-

Assuming x; is increasing, set h; € (a1,b)q to be some element such that

a; < I‘Z(hz) < xz(b) =1b

If x; is decreasing, choose h; so that:

l‘l(b) < l’l(hl) < a;
Define h; conversely. Then set:

h =max{hi,..., h,}
h=min{hy, ..., h,}

Thus h%h realises A.

Suppose b is not in the convex hull of C'¢ in H, then one of the following happens:

lim ¢(y) € G which is a contra-
YeEV—gnit1

diction since we assumed b was -transcendental.

1. lirri@n = U: If this happens, then 9, (b) =
r—r

2. lin}) 1, = p € G: This is also contraidctory since it implies v,,(b) = p € G which
T—

means b is -algebraic.
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3. limb 1), = —oo. This can only happen if b > G or b < G. Either way, a sufficiently
T—

large or negatively large element of G will realise A.

Thus pp is a type. We now need to show it determines the quantifier free type of b in G.
Pick some other realisation b of py. By Lemma 2.3.13 we have an isomorphism of ordered

abelian groups:

¢:G+Y Qb= G+ Qb b — b

€W 1EW

where b; := z;(b). Moreover, ¢ is an isomorphism of asymptotic couples. To show it is an
isomorphism of asymptotic triples, it is sufficient to show both asymptotic couples only
have one H-cut. Suppose (Gp, ) has more than one H-cut, so there is some g € G and

q; € Q not all zero such that:

W(Gy) < d =g+ qobo + - - - b < (id + ¢)(G7°)

We assumed [G] is coinitial in [H] and since G and H are closed, both have no minimum,
thus ¢(Gp) is cofinal in Wy and (id + ¢)(G3°) is coinitial in (id + ) (H>?), thus:

Uy < d < (id+ ) (H>?)

which is a contradiction since H is closed. By the same argument (Gy,) also just has

one H-cut, thus by Lemma 4.2.11, the map ¢ is an Ly-isomorphism.

Hence by Fact 2.1.12, we see that G is existentially closed in G(b) O

Finally, we have:

Theorem 4.2.40 (Aschenbrenner and van den Dries, 2000, p. 355). The theory of closed

asymptotic triples has quantifier elimination.

Proof. Use the criteria in Theorem 2.1.15. The closure property follows from Lemma 4.2.21,
and Lemma 4.2.38, Lemma 4.2.39 give existential closedness for both -algebraic and -
transcendental elements respectively. Note that if b € H \ G is infinitesimal with respect
to GG, then due to Lemma 4.2.30, it must be ¢-algebraic. Put all the infinitesimal elements
first in our ordering on H\ G, thus when proving existential closedness for ¢-transcendental
elements we can assume [G] is coinitial in [H], hence we can apply Lemma 4.2.39. The

initial structure is the structure generated by the constant 1. ]

The main difference between this proof and the two-sorted proof is that in the two sorted
structure, the quantifier free type of some b € H \ G is determined purely from the cut

of b, and whether or not it is an H-point. Because of (A4’), if b adds a new valuation to
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G, then it must immediately be -transcendental and the cuts induced by the elements
of the v-characteristic sequence are determined just from the cut of b. Thus to determine
whether two structures G({b) and G(b) are isomorphic over G, we only need to look at the
cut induced by b and b, and can disregard (by,b1,b2,bo...). Once we weaken the strict
inequalities in (A4’), this does not happen, thus we had to look at the cuts induced by

the entire characteristic sequence.

4.3 6-Contraction Groups

Definition 4.3.1. Let Ly be the language (+,—,<,0,x,#), where y and 6 are unary

functions. Let T, be the universal theory asserting:
1. +,—,<,0 form an ordered abelian group

2. x, 0 form centripetal precontraction groups

(CO) Vz(Oxz = b0z — xx)

Let Tjy be the theory T, along with surjectivity for x and 6 and divisibility for the ordered
abelian group. We call a model of Ty (T,) a 6-(pre)contraction group.

We prove that Ty has quantifier elimination and is complete.

Notation 4.3.2. Sometimes we may write L1, T1 as £, and 7).

4.3.1 Closure Property

Lemma 4.3.3. Let G := (G, x,0) be a 0-precontraction group, and let G = (G,x) be a
1-contraction hull. There exists a unique extension of 6 to G such that (G,x,0) is an

0-precontraction group.
Proof. For any g € G \ G, then there exists some n € w such that x"(g) € G. Define 0(g)
to be:

0(g) = x(g9) + ...+ x"(9) + 0x"(9)

It is easy to verify that (G, x,0) is a model of T, and by (C6) this is the only possible

extension. 0

Lemma 4.3.4. Let (G, x,0) be a 0-precontraction group with 1-contraction-hull G. Then
(G, x,0) has the factoring property over G with respect to Tp.

Proof. Fix some (H,x,0) = Ty and an embedding f : (G, x,0) — (H, x, ). Since (H, )
is a contraction group, we already have some £,-homomorphism & : (G, x) = (H, x) such

that f = hoi. It remains to show that h is a homomorphism of Ly, for which it is sufficient
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to show that h commutes with @. Pick some ¢ € G, and suppose x"g € G for some n € w,
then:

h(0g) = h(xg+ ...+ x"g+0(x"9)) Repeatedly apply (C6)
=h(xg)+...+h(x"9) +h(0x"g) h is a group homomorphism
=x(h(9)) + ...+ x"(h(9)) +0(x"(h(g))) h is an L,-homomorphism
=0(h(g)) Repeatedly un-apply (C6)

O
Lemma 4.3.5. Let G be a 0-precontraction group. If x is surjective on GG, then so is 0.

Proof. Let b € G be non-zero. Since Yy is surjective there exists some ¢ € G such that
x(c) = b—6(b). Then we have:

0(c) = x(c) = 0(x(c)) By (C0)
=b—0(b)+6(b—0(b)) Since x(c) = b — 6(b)
=b—6(b)+6(b) Since [b — 6(b)] = [b] and Axiom (CA)
=0

Theorem 4.3.6. Every model of T, has a Ty-hull

Proof. Let G be a f-precontraction group, and let G be a l-contraction hull. Then by
Lemma 4.3.3, (G, x,0) is a Ly-structure and a model of T, , by Lemma 4.3.4, it has the
factoring property with respect to G, and by Lemma 4.3.5, it is a model of Tp. 0

We will use the term #-contraction hull when referring to a Tp-hull.

4.3.2 Initial Structures

Definition 4.3.7. Pick any element a of some -contraction group. Then define H(a) as:

H(a) = {ga+ qxa+...+gX"a+ qu10x"a | ¢ € Z,n € N}

Lemma 4.3.8. Let G be a 0-precontraction group, and a € G. Then the domain of the

structure (a) generated by a is H(a), and hence H(a) is a O-precontraction group.

Proof. First we verify that H(a) is an ordered abelian group. Pick any two elements

r,s € H(a), written as:
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r=roa+rixa+ ... +rpX"a+ rme10x"a

s=5s0a+ sixa+ ...+ spx"a+ spr10x"a

Where 7;,s; € Q, and m > n. Then we can write 6x"a as

X" a4 . 4+ x"a+ 0x™a
Hence (by setting ¢; = gn+1 for i > n) we can write r + s as:

m
Z(m +si)x'a+ (rm + sm)0x™"a
=0

So H(a) is indeed an ordered abelian group.

Note that [a] > [xa] > ... > [x"a] > [#x"a], hence for any element

q=qoa+qxa+ ...+ agux"a+ q10x"a

of H(a), we know [q] = [x"a] where n is the least natural number such that ¢, # 0.
Hence to show that H(a) is closed under the contractions, it is sufficient to show that
§(x'a) € H(a), for any 6 € {x,d} and n € N, but this is evident from the definition of
H(a), hence (a) = (H(a), x,0). O

Lemma 4.3.9. There is a 0-contraction group that embeds into every other 0-contraction

group.

Proof. Let Q C J] Q be the subset of the Hahn product with eventually constant support,
-N

SO

Q = {(ri)ien | 3j € N,r € Q such that Vi > j,r; = r}

We can define contractions on @ in the expected way (where (r), is the sequence with r

in the a-th spot and 0 everywhere else):

X(Dn = (Dns1
6(1)71 = Z (1)z

i>n+1

From Lemma 4.3.8 we see that (@, x, 6) is isomorphic to (a) for any element a of some 6

contraction group. So by taking a 6-hull, the lemma is proved. O
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4.3.3 Existential closedness

Let G C H be an extension of #-contraction groups, and pick some b € H \ G. We need
to find a generating set for G(b) as an ordered abelian group. Let (b;)icw, (¢i)icw be a

1-characteristic sequence of b in G.

Lemma 4.3.10. Suppose b is not x-super-transcendental, then G(b) has domain:

Gy:=G+ Y Zb,

1EW
where (b, g;)i<w 18 any x-characteristic sequence.

Proof. We deal with the 1-transcendental case only, the 1-algebraic case is very similar.
By Equation (3.2), we know Gy is closed under x, so it remains to show it is also closed

under 6.

Recall from Definition 3.2.6 that G} has natural valuation:
[G1u | b
1<w

so we need to show 6(b;) € Gy for all i. Fix some i € w, let j € w be the least natural
number bigger than i such that g; # 0, which means for all k € (i, j), we have by, = x*7%(b;),
and b; = x7"(b;) — g; thus:

0(bi) = x(bi) + ...+ X7 (b) + 00 (b))
= bi+1 + ...+ bj_l + H(X(bj_l))

But from the definition of x-characteristic sequences, we know that [x(b;—1)] = [g;], hence:

G(bz) =bj1+...+ bj_l + H(Qj)
which is an element of Gy, so we are done. O

Lemma 4.3.11. Let b be 1-transcendental with a zero shift sequence (so g; = 0 for all
i € w). Then G(b) has domain G + K(b), where:

K(b) =) 76X/ (b)
i<2
I<w
Proof. For certain we know that Gy = G + K(b) C |G(b)|. For the converse we need to
show that G} is closed under x and . First we claim that the natural valuation of K (b)
is just {[b;] | i < w}, where b; :== x*(b)
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Claim 4.3.11.1. The natural valuation of K(b) is just {[b;] | i < w}.
Proof. Pick some x € K (b), written as:

Z (20,ibi + 21,:0b;)

=0

By ((C#)), we can write:

Thus = can be written as:

n i—1 n
T = Z 20,i + Z 21,5 Xl(b) + (Z Zl,i) OXn(b)
i=0 3=0 i=0

But we know that [b] > [x(b)] > [2()] > ... > [X(b)] > [0x"(b)] = [x"1(b)], thus
[z] = x*(b) for some i < w. [ |

Moreover since b is x-transcendental, we know that [x!(b)] & [G] for all i, thus [K (b)]N[G] =
J, so:
[G+ K(b)] = [G]U[K(b)]

Hence to show G+ K (b) is closed under the contractions, we need to show that x(b;),6(b;) €
Gy for all i < w, but this follows directly from the definition of K (b). O

Remark 4.3.12. The proof of Lemma 4.3.11 shows that H(a) and K(a) coincide for any

a, hence we will use them interchangeably. It also shows that:

[H(a)] = [K(a)] = {[X'(a)] | i <w}

Hence by combining the previous two lemmas, we get the following:

Lemma 4.3.13. Let b be x-super-transcendental, with x-characteristic sequence (b;, g )i<w-
Then G(b) has domain:

n—1
Gy =G+ Y Zb + H(by) (4.5)
=0

Where n is the x-null point of b.
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Proof. We know from the definition of y-characteristic sequences that:

[G] N H(by) = [G] N

n—1
Z Zbi] -
=0

Moreover by (CP), we have:

> [H (bn)]

n—1
[Z Zb;
1=0

Thus all three summands in Eq. (4.5) have distinct valuations. So we can glue together
Lemma 4.3.10 and Lemma 4.3.11, to deduce that Gy is closed under the contractions, thus

we have the result. O

So with # contraction groups, we have two characteristic sequences, which we get from the

generators of K(a).
Definition 4.3.14. Let b € H \ G, define #-characteristic sequences as (b; j, ¢i)i<2,j<w as:
e (boj,95)j<w is any x-characteristic sequence
e If b is not y-super-transcendental, then by ; = 0 for all j < w.
o If b is x-super-transcendental, with null point o < w
— For j <a,set by; =0
— For j > a, set b; ; == 0(bo;)

Lemma 4.3.15. Let b € H \ G, then it has a 0-characteristic sequence in G. For any

0-characteristic sequence (b; j, g;i)i<2 j<w, the structure G(b) has domain:

Gb =G+ Z Zbi,j
1<2
JI<w

Moreover, Gy has natural valuation:

(Gl UA{[bo] | j < w}

Proof. The construction of a #-characteristic sequence follows from the definition. Use
Lemma 4.3.10 and Lemma 4.3.13 to verify the domain of G(b) is generated by the 6-
characteristic sequence, and the natural valuation statement follows since [bg o] > [bo,1] >
...>[bop] > ... and [H(bon)| = {[bonl, [bont1]s---}- O]
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From this we define the type py(x) to be all the cuts induced by the f-characteristic

sequence of b:

Definition 4.3.16. Fix some #-characteristic sequence (b; j, g;j)i<2,j<w of b in G. For any
a € {0,1} X w, set fo(x) to be the function taking b — by, so:

o fon(®) = x(fon-1(2) — gn)
o fin(z) =0(fon-1(z)), assuming by 5 is non-zero.

Let pyp(z) be the collection of formulas:

pb(fL‘) = U {g<fa(w)<§|g<ba<§}u U {fa(x):g|ba:g}

ae{0,1} xw ae{0,1} xw

Where g, g are elements of G.

Lemma 4.3.17. Let b |= py(z). Then (bij, g;)i<2j<w is also a O-characteristic sequence
of b in G, where b; ; == f; ;(b), thus G(b) has domain:

GE = G + Z Zbiyj
<2
I<w

Proof. Use Lemma 2.3.12 and the definition of #-characteristic sequences. Specifically, the
fact that:

G+ Zx(bi)] # [G] <= [G +Zx(b)] # [G]

O]

Lemma 4.3.18. Let b |= py(z), then we have an Lg-isomorphism ¢ over G between the

structures generated by b and b in G:

¢2Gb—>Gg:bi'—>bi

Proof. By Lemma 2.3.13, we know that ¢ is an ordered abelian group isomorphism. Recall

from Lemma 4.3.17 that G and Gy have natural valuations:

[Go] = [GTUA{[bi] [ # <w} [Gy] = [GIU{[b] | i <w}

Claim 4.3.18.1. For any x € Gp,i < w and g € G, we have:
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Proof. When b is not x-super-transcendental, the claim follows immediately from the extra
corresponding result for y-contraction groups, so assume x is y-super-transcendental. By

Definition 4.3.7, we can write any « € Gy as:

n
r=g+ Z zibo,i + Zn41b1n (4.6)
=0

where n is past the null point of b. Thus ¢(x) can be written as:
n p— p—
Plx) =g+ Z 2ibo,i + Znt1b1,n
=0

Since [bo,o] > ... > [bon] > [b1,n] and [5070] > > [BO,n} > [Elm], and each pair [b; ;], [b; ;]

induce the same cut in [G], the claim follows. [

It remains to show that ¢ commutes with x and 6. Pick some x € G} written as in
Eq. (4.6). If [x] = [g], then for any § € {x,6}:

6((x)) = d(g) By (CA) and since [¢(x)] = [g]
= 6(x) By (CA) and since [z] = [g]
= ¢(0(x)) Since ¢ is constant on G

Now suppose [z] = [by ], so by Claim 4.3.18.1, we know [¢(x)] = [bo,], so

X(¢(x)) = x(bo,i) By (CA) and since [¢(x)] = [bo,]
= bo,i+1 Since boi+1 = x(bo,i)
= ¢(boiv1) By the definition of ¢
= ¢(x(z)) Reverse the steps above

So ¢ commutes with x. Suppose i < n, so ¢ is before the null point of b, then there exists
some j > i with g; # 0 and by ; = X7 ~*(b;)—g;, so in particular [x7~*(b;)] = [x’~*(b;)] = [g;]

(since bp,; and EOJ induce the same cut in G).

0(¢(x)) = O(bo;) By (CA) and since [¢(x)] = [bo.i]
= X(bo,) + ...+ x(boz) + Ox(bo;) Repeatedly apply ((C0))
= x(boi) + - -+ x(bo) + 0(g5) Since [\’ (b:)] = [g]
 (x{Boa)) -+ Bxos)) + 6(0(¢y))  Since 6 commutes with x
= ¢(x(boi) + ..+ x(bo,j) +6(g5)) Since ¢ is a group isomorphism
= ¢(0(x)) Reverse the steps above
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Now suppose i > n, so i is or is past the null point of b:

O(o(x)) = 60(bos) By (CA) and since [¢(z)] = [bo,i]
=by, Since by ; = 0(bo ;)
= p(b1,5) By the definition of ¢
= ¢(0(bo)) Since by ; == 0(bo ;)
= ¢(0(p(x))) By (CA) and since [z] = [by ]
Thus ¢ commutes with x and 6, hence is an Ly-isomorphism. O

Lemma 4.3.19. The type py(x) is a type of G.

Proof. If b is not x-super-transcendental, then p; only contains the cuts from the x-
characteristic sequence, so by the corresponding result for y-contractions groups, specifi-
cally Lemma 3.2.12, we see that p, must be a type of the reduct of G to L, thus a type

of G. So suppose b is x-super-transcendental, with null point n, then we can write p; as:

n—1
po(x) = (J{g < fo () <glg<bj<gtu |J {9<fijx)<glg<bi <7}
§=0 i<2

n<j<w

So we can write an arbitrary finite subset A of p, as:

n—1 m
A(x) = | J{aos < fo(@) <o} U |J{ao, < fo (@) < aoja1; < fij(z) < ary}
j=0 Jj=n

Since b is x-transcendental, we know [b; ;| € [G] for all 4, j with b; ; # 0, thus the interval
(@i j,b;ij)c is non-empty in G. Since f;; is increasing and surjective, we can find some
hi,j € G, with ap,0 < hi,j < bo70 such that:

aij < fij(hiz) <bij

Similarly, we can find some Ei,j € (bij,ai;)q with

bij < fij(hij) < aij

So define h and h as:
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h = max{ho,o, e ,h07n_1, ho’n, hl,n, ce ,ho}m, hl,m}

h = min{hop, ..., homn—1,h0m; A1, -5 homs P1m}

Then we must have h < bg o < h, thus h%ﬁ € G realises A.

4.3.4 Final Result
By the usual criteria mentioned in the introduction, we have:

Theorem 4.3.20. The theory of O-contraction groups is complete and has quantifier elim-

nation.

Proof. Use Lemma 4.3.18 and Lemma 4.3.19 to deduce G is existentially closed in G(b).
Apply that and Lemma 4.3.9, Lemma 4.4.4 to Theorem 2.1.14. O

4.4 Hyperlogarithmc-6 contraction groups

Definition 4.4.1. Let £y, be the language (+, —, <,0, x, 0, L), where x and 6 are unary
functions. Let T,” ; be the theory asserting:

e |+, —, <, 0 form a divisible ordered abelian group
e Y\, 0, L each form a centripetal precontraction group
e , L form a 2-precontraction group
e x, 0 form a #-precontraction group
Let Tp_ 1, be the theory T,_; along with surjectivity for x, L and 6.

We prove that Ty_;, has quantifier elimination and is complete.

4.4.1 Initial Structures
The initial structure will just be w copies of the structure defined in Lemma 4.3.9.

Lemma 4.4.2. There is some 0 — L-precontraction group that embeds into every other

0 — L-precontraction group.

Proof. Let us remind ourselves about (), the structure from Lemma 4.3.9:

Q = {(ri)ieny € Z¥ | 3j € N,r € Q such that Vi > j,r; =}

Let R be defined as the Hahn sum of ) indexed by w:
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R::HQ

w

Define the contractions on R as follows:

X(lwn+m) = 1wn+m+1

0(1wn+m) — Z 1wn+’i

i>m

L(lwn+m) = 1w(n+1)+m

It is easy to check that R is a § — L-precontraction group and moreover, for any G |= T,_ ,
and a € G, we have (a) = (R, x, L, 0). O

4.4.2 Closure Operator
Lemma 4.4.3. Any model of T;,” ; embeds into some model K of Ty_1,. Moreover, for all

k € K, there exists some n € N such that L"(k) € G

Proof. Let Go = G. Given Gof, set Gorpi1 to be the y-hull of Gox. By Lemma 3.3.3,
Lemma 4.3.3 and Lemma 4.3.5, we know 6§ and L are both defined on Gog 11, 8 is surjective
on Gogy1, and finally, L(Gag11) € G-

Given Gop_1, we set Gop, == (][R, x, L, 6), where:
r

[ = [Gop-1] U (wx G3) \ L(G))

Order I in the same way as in Proposition 3.3.4, and define the contractions on Ggy as:
e For 7 € [Gay_1], and contraction & € {x, L,0}, d(1,) = d(a) where a € G5 | and
[a] = 1.

e For v = (n,a) € wx G52 |\ L(G), we define y and L as we did in Proposition 3.3.4,

and set

0(1y) => lia

1Ew
>n

Again note that L(Gar) C Gar_1. It is easy to see that K = |J G; is a model of Ty_p,

1EWw
containing G as a substructure. O

Lemma 4.4.4. (i) For any Ty_p-hull G, and g € G, there exists some n € N such that
L*g) e @
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(i) Any G =T, ; has a Tp_p-hull.
(iii) Moreover, we can choose a hull G such that G can be written as:
G+> H(S:)+ Y Qg (4.7)
el jed

Where H(z) is the divisible hull of H(z) as defined in, Definition 4.3.7 and &;,€; > 0

are indeterminates such that for all i,7' € I and j,j' € J:

o [H(6:)]N[G]=[Qg]N[G] =2
o [H(6:)]N[H(d7)] = [Qe;] N [Qejr] = &
o [H(0:)]N[Q¢] =2

e i <75 if and only if x(vi) < x(v;), where vi,v; € {0 |i € [} U{e; [ j € J}
o There exists some g € G such that [g] < [H(5;)],[€;].
Hence G C G is a pure valuational extension of ordered abelian groups, and [G] is
coinitial in [G).
Proof. Firstly, any Ty_-hull G of G embeds into the structure K defined in Lemma 4.4.3,

thus we have (i).

We construct the Ty_j-hull of G as follows. By Lemma 4.4.3 we can embed it into some
6 — L-contraction group (K, x,0,L). Then proceed exactly as done in Proposition 3.3.5,

+, at the a-th step, we construct some G,, and stop when

which means we induct on ‘Q

G, is a 0 — L-contraction group.

e If o is an even ordinal, then set G,41 to be the #-hull of G,, and note that by
Remark 3.2.5, G441 keeps the form in Equation (4.7), assuming G, did.

e If o is a an odd ordinal then pick some a € G2\ L(G,), and choose some b € K
such that L(b) = a, then set:

Goi1 = Go+ H(D)

It is easy to verify that [H(b)] N [G.] = @, and [H(b)] > [Gal, s0 Ga+1 keeps the
form in Equation (4.7), assuming G, did. To define the contractions on Gg4; it is
sufficient to define them on [G,] and [H (b)] separately.

— For [z] € [G,], define all contractions as they are in G,.

— For [z] € [H(b)], L(x) goes to b, and x(x), () are defined as they would be in
H(b).
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Finally, for a limit ordinal 3, set:
G = U Gy
y<B

Note that G, has the factoring property over Gg for all 8 < a. Eventually we reach an
ordinal v < |K|" such that G, is a model of Tp_z, this will be a Tp_z-hull satisfying
(iii). O

4.4.3 Existential closedness
Fix some extension G C H of models of Ty_7..

Definition 4.4.5. Let b € H \ G have 1-characteristic sequence (b;, g;)ic,- Define J(b) as
the group generated by the §-characteristic sequence of b in (G, x, ¢). That means:

e If b is not y-super-transcendental, then:

J(b) =" Zhy,

j<w

e Else, if b has null point n, then

n—1
J(b) = Zb; + H(by)
=0

Lemma 4.4.6. Let b € H \ G have 2-characteristic sequence (b;, gi);c.2- Then G(b) has

domain:

Gy=G+> Ji

1Ew

where J; == J(by;). Moreover, the group Gy has natural valuation:

[Gy] = [G]U {b; | i <w?} (4.8)

Proof. First, let us prove Eq. (4.8). Suppose b is 2-algebraic, with characteristic sequence
of length o € [wm,w(m+1)). Then J; = 0 for all i > m. By Lemma 4.3.15, we know that

the natural valuation of each J; is:

[Ji] = {[bwirj] | 7 < w}

But remember that any 2-characteristic sequence is strictly decreasing in valuation, thus:
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[Jo] > [J1] > ... > [Jm)] (4.9)

By definition of 2-characteristic sequences, we know that [bg] € [G] for all § < wm, thus

[Ji]Nn[Gl =2 (4.10)

for all ¢ < m. So pick any element in z € Gy, and write it as:

r=2"+t. .-+ 2Zm-1Ym-1+ (Zm’)/m + 9)

where z; € {0,1}. Then by Eq. (4.9), Eq. (4.10), and the ultrametric inequality, we have:

[:L'] = max{[ZO'YOL ) [zm—lf)/m—l]; [Zm’)/m + g]}

But again by Lemma 4.3.15, we know that [y;] € [G] U [J;], thus:

2] € [GIu 7] = [G1u [ U {Ibwirs]}
i=0 i=0 j<w

When b is 2-transcendental, note that [J;] N [G] = @ for all i < w, so a simpler version of

the above arguments proves the statement, thus we have (4.8).

To show |G(b)| is indeed equal to Gy, repeat the same argument as in Lemma 3.3.11. [

From this, we define the § — L-characteristic sequence:

Definition 4.4.7. Let b € H\G. Define the §— L-characteristic sequence as (b; j, gj)i<2,j<w?

of bin G as follows:
e (boj,9j)j<w2 is any 2-characteristic sequence of b in G.

e For some fixed n € w, b1 wn4q is a O-characteristic sequence of b, created from the

x-characteristic sequence (buyn+i, Gunti)i<w-

Lemma 4.4.8. A 60— L-characteristic sequence of b in G exists. Given a 0— L-characteristic

sequence (bi j, gj)i<a j<w?, the structure G(b) has domain:

Gb = G + Z Zb@j

1<2,i<w?

and has natural valuation:
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[Gy] = {[bo] | j < ?}
Proof. A direct consequence of Lemma 4.4.6. O

Let us extend Definition 4.3.16 to 8 — L-contraction groups:

Definition 4.4.9. For ordinals a € {0, 1} x w?, set fo() to be term by[z/b] i.e. the term
b but with the occurrence of b replaced with the variable z. Stated explicitly:

4 fO,n(x) = X(fo,n—1(95) — 9n)
o fin(z)=0(fon—1(x)), assuming by 5 is non-zero.

o fontw(®) = L(fony (%)) — gntw, where ng is the null point of by, where n €
[wi,w(i +1)).

Let py(x) be the collection of formulas:
)= |J {9<fa@)<glg<ba<gtu |J {fal@)=g]ba=g}
aef{0,1} xw? aef{0,1} xw?
Where g, g are elements of G.

We want to show that p, determines the quantifier free type of b over G:

Lemma 4.4.10. Let b € H \ G have 6 — L-characteristic sequence (b; j, gi)i<2 j<w2- For
any b = py(z), the sequence (Bi,j,gi)i<2’j<wz is a @ — L-characteristic sequence for b in G,
where BL‘J‘ = fz,](b)

Proof. Simply check that the conditions for § — L-characteristic sequence are satisfied. [

Lemma 4.4.11. Let b € H\ G, then for any b € H such that b = py(x), there is an Lo_,
isomorphism ¢ : G(b) — G(b) that is the identity on G.

Proof. By Lemma 4.4.6, we know that G(b) has domain:

GE =G+ E Zb@j
<2
j<w?

Moreover, Gy, and Gy have natural valuations:
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4.4 Hyperlogarithmc-6 contraction groups

Since b = py(x), we can use Lemma 2.3.13, to get an isomorphism of ordered abelian

groups ¢ over G:

(,b : Gb — Gg : bi,j — Bi,j
A routine calculation tells us that for any o < w?:

(2] = [bo] <= [W(2)] = [bollz] = lg] = [o(2)] = [g]

Thus to show ¢ commutes with the contractions, it is sufficient to show that ¢(n(bg ;)) =
n(bo,;) for alln € {x, 0, L} and j € w?, but this follows from the calculations in Lemma 3.2.13,
Lemma 3.3.16 and Lemma 4.3.18. 0

Lemma 4.4.12. The type py is a type of G.

Proof. Suppose b is 2-archimedean algebraic, with characteristic sequence of length a+2 €
[wm~+w(m+1)). That means [by o] € G, but [G+Zbg | = [G], hence by o4+1 = x(bo,a) € G.

Then we can write some finite subset A of p; as:

n
Az) = (J{aoa, < fo (@) <0 a10, < frai (@) <a@ia)
i=0

U{aa < fo,u(®) < 8o} U{fo,a+1(x) = Gat1}

Where 0 < ag < ... < a, < « is some sequence of ordinals, and [aq] = [@a] = [bo.a]-
To ease notation further assume that b; o, # 0 for all j < n. Since [b;q;] ¢ [G], and the
function f; o, is surjective and increasing on G, we can find some h; ; € (@0,0,b0,0)c such
that:

Qo < fi,oéj (h‘i,j) < bi,aj

Similarly we can find some EJ’ € (bo,0,a0,0) such that:

bia; < fia;(Rij) < @i,

Let h be the maximum of the h; ;’s, and h the minimum of the E’,j’s. Then any element
of (h,h)g realises the first set of formulas in A. Further, note that h < b < h. We claim
that fo.o((h,h)G) N (@, @a) # . Suppose it was, say fo.o((h,h)c) < (Ga;Ta), then since

fo,o is increasing and surjective, we must have:

o = fO,a(h) > bO,a > Qg
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hence we have a contradiction. Similarly we cannot have fo o ((h, h)G) > (G, @a), thus they
must intersect. Pick any y € (h, h)g such that fo o (y) € (aa,@a), then X(fo.a(v)) = x(bo.a)
thus y realises A.

If b is 2-value-algebraic, then we can write A as:

n

A(x) = [ J{a0,a; < foo(r) <0, 01,0, < fro(@) <T1i} U{foar1(a) = aat1}
=0

Define h and h as before, then since fo,a+1 is surjective and increasing, we must have

fo.at1((h,h)c) N{aa+1} # @, thus a realisation of A exists in (h,h)g.

If b is 2-transcendental, then we can write A as:

n
Ax) = | J{a0.a; < foa; () < T4, a1,0; < fra;(x) <1}
=0

hence any element of (h, h)g realises A. O

4.4.4 Final Result
As expected, we apply Theorem 2.1.14 to get:

Theorem 4.4.13. The theory Ty_1 has quantifier elimination, has a prime model and is

complete.

4.5 Asymptotic Triples and Contractions

Consider the structure with the contractions y, L, 6 along with ¢. Let us remind ourselves

of the axiomatization of this theory:

Let Ly, TJ_X and T, be the language and theories from Definition 1.5.9. We call a
model of Td;x an asymptotic contraction and a model of T),_, a closed asymptotic

contraction. Let 'Cgﬂ—x be the sublanguage of L£,_, with the predicate P removed.

In this section, we give a partial proof of quantifier elimination and completeness for Ty, .
Recall by Theorem 2.1.14 the three steps needed to get QE. We prove that Ty, -hulls exist,
thus the theory has an initial structure (take the T3_,-hull of the structure generated by
1). We then prove an analogue to properties (A) and (B) for closed asymptotic triples (see
Section 4.5.2), which we can use to show that any for any G = Ty,_, and any 1)— x-algebraic
element b (a notion defined in Definition 4.5.8), G is existentially closed in G(b). But we
encounter problems when proving G is existentially closed in G(b) for 1) — y-transcendental
b.

Proposition 4.5.1. The G be an asymptotic contraction. For any b € G=° and n,m € N,

we have the following equality:
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4.5 Asymptotic Triples and Contractions

pox o L™(b) =1(b) + > (0o L' (b) + LI(b)) + > _ x" o L™(b) (4.11)
i=1 =1
Thus for all b € G<9, we have:
pox o L™(b) =1(b) = > (0o L' (b) + LI(b)) — > x" o L™(b) (4.12)
i=1 i=1
Proof. Repeatedly apply (Ct) and (CI). O

4.5.1 Closure operator
We show that every model G of TJ_ X has a Ty, -hull.

Lemma 4.5.2. Let G | TJ_X. There exists some G = TJ_X with no H-point and with

the factoring property over G with respect to Ty—. Moreover, we can write G as:

G+ > Hie)

S

where 0 < ¢ < GO are indeterminates, H(e;) is from Lemma 4.3.9 and [H(e;)] >

[H (€i+1)]-

Proof. Situations like these highlight the necessity of the predicate P. Given an H-point
u, we do not know whether it ‘should’ be in the image of 1) or the image of |id| + 1, i.e.
there could be two extensions H,H of G such that u in in the image of ¢ in H and in the
image of |id| + v in H, thus we would not have QE. It is the predicate P that fixes the

position of u in all extensions of G.
Suppose G has a H-point u € G. Either u € Pg or u > Fg.
u € Pg: This tells us that in any # = Tjy_, extending G, we must have u € Y(H7?) =

Py. Let € be an indeterminate satisfying 0 < ¢ < G>Y, and consider the divisible hull of
the Ly_r, structure generated by it, R(e) (see Lemma 4.4.2), so:

0 < R(e) < G™°
thus [R(e)] = {[x™ o L"(¢)] | n,m € w} < [G]. Set G := G + R(e), then G is closed

under contractions since x, L, are defined on both [R(¢)] and [G]. To close make it an

L'ib_x—structure, set:
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P(e) =u
pox™(e) =u+ Y x'(e
i=1

pox"oL™(e) =u+ Y (0oL e)+Li(e) + > x' o L™(e)
i=1 =1
Pg::{$€é|3y€é¢0|x§w(y)}

We claim that (G,) only has one H-cut. Note that [R(e)] is coinitial in [G], and both
Y(R(€)), (id+)(R(€)) C u+R(e), thus it is sufficient to show 1 (R(e)) —u, (id+)(R(€))—u

induce a disjoint partition of R(e).

As a reminder, R(e) is isomorphic to the set of all function f : w? — Q such that for any
i € w, the sequence (fuitj)jecw is eventually constant, with f > g if and only if fo > ga,

where o = min(supp(f) Usupp(g)). Moreover, the contractions are defined as:

X(la) = lat1
L(la) = 1a+w
0(1a) = Lagi4i

1EW

Thus, if we set:

A={pox'oL(e)—uli,jecw}
B:={(id+¢)ox o L(e) —u|i,j € w}

Then we can calculate A and B to be:

9 Ifo<pg<a
A=( f€R(e) | Ja < w” such that fz =
Otherwise
1 Ifo<p<a
B={f€R(e)|Ja<w?suchthat fs=42 IfB=a
0  Otherwise

Observe that A < B, A is cofinal in 1 (@), B is coinitial in (id+ ) (@>0) _ u, and there
is no element of R(e) between A and B, thus G == (G, v, Pg) only has one H-cut.

Fix some H = Ty—, with G C H. Since u € Pg, we must have u € P, thus there exists
some 0 € H with ¢(§) = u. By Lemma 2.3.13 and Proposition 4.5.1, the mapping
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4.5 Asymptotic Triples and Contractions

¢:G—H:g+600ox"oL™(e)— g+ 6 ox™oL™()

is an Eipfx embedding. Moreover since G only has one H-cut, Lemma 4.2.11 implies ¢ is

an L,_,-embedding. Thus G has the factoring property over G with respect to Ty_,.

u > Pg: Repeat the same argument but with (id + 1)(€) = u, so ¥(e) = u — €. Note
that A and B will be slightly different, for any f € A, B, we would have fy = —1, since
(u) —u=—e=—(21)9 € R(e).

The final statement about the form of G follows since

R(e)=> H(L')

<w

O]

Lemma 4.5.3. Any G = Tv/j—x has a Ty_-hull. Moreover, we can choose a Ty_,-hull G

such that G can be written as:

G+ H(E:)+ > Qe (4.13)

iel jed
Where §;,¢; > 0 are indeterminates such that for all i,i' € I and j,j' € J:
o [H(6:)]N[G] =[Q¢|N[G] =2
o [HO)IN[H(r)] = [Qe;] N [Qey] = &

o [H(6)]N[Qe)) = 2

vi < vj if and only if (vi) > (), where vi,v; € {6; |i € [} U{¢; | j€J}

There exists some g € G such that [g] < [H(9;)], [€;].

Proof. By Lemma 4.5.2 we can assume G only has one H-cut Fix some H |= Ty, with
G C H. Let (G,x,L,0) be the § — L-contraction hull of (G, x, L,0). Then we have an
Lo_r-embedding ¢ : G — H over G.

We know for any g € G, there exists some n € w such that L"(g) € G, thus we can extend
Y to G via:

n

(@) =(L™(g)) — Y (0oL (g) + L(g))

=0

It can be verified that (G, x, L,0,v%) = T, | E%_X. Moreover, since G C G is a pure
extension and [G] is coinitial in [G], we can use Lemma 4.2.15 to deduce that (G, x, L, 0,1)
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only has one H-cut, thus if we set:

Py = {x €G|Iye G such that z < w(y)}

then the structure G == (G, x, L, 0,v, Pg) is a model of Td;x’ and the map ¢ : G — H is
an Ly_,-embedding (by Lemma 4.2.11). Since x is surjective, we deduce that w(éﬂ)) is
downwards closed, thus G = T, w—y- Since the structure H was an arbitrary model of Ty, ,
we conclude that G is a Ty—y-hull of G. The statement about the domain of G follows

from the corresponding statements in Lemma 4.4.4 and Lemma 4.5.2. 0

4.5.2 Properties (A) and (B) for T}_,

Definition 4.5.4. Fix some closed asymptotic triple G and some (possibly trivial) exten-

sion H. We define 9-y-monomials as follows:
1. z is a ¢-x-monomial in G with domain D,(#H) = H
2. Let f be a 1p-x-monomial with domain D;(H) C H, then for any a € G

(a) x(f(z) —a) and L(f(x) — a) are ¥-x-monomials with characteristic domain
Dy(H).

(b) h(x) =¥(f(x) — a) is a 1-x-monomial with characteristic domain:

Dy(H) = {x € H| f(z) #a}

A successive sequence of i-y-monomials is a collection (f; ;)o<i<m0<j<n,, of ¥-X-
monomials, where n,, € w and some collection of integers ko, ..., kn—1 with 0 < k; < n;
such that:

fij+1 = Yig+10 fi
fix1,0 = Va; © fik,
where ; ; is of the form x(z — a; ;) or L(z — a;;), and foo = x.

Note that for all i € [0,m], the terms f;,..., fin, all have the same domain which we
denote as D;(H).

A Y-x-polynomial is a term of the form:

Fz)= > > z;fijk)

1€[0,m] 7€[0,nm]

where 2; ; € 7,200 = 1 and 2y, p,, is non-zero (so any v-x-polynomial leads with the term

x). It has domain:
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DF(H) = DF(H)

We say F' was generated by the sequence (f; ;) when F' was instantiated this way. By
Lemma 4.2.4, any -x-polynomial is strictly increasing and has the intermediate value
property on any component of its domain. Moreover, if the component is unbounded then

so is the image of F', in the same direction as the component.
Lemma 4.5.5. Let f be a v-y-monomial in G.

1. Both D¢(G) and Ds(H) have the same, and finitely many convex components. For
each component Cy of Dy(H), there exists a unique component Cg of D¢(G) such
that Cg C C'y, and moreover, it satisfies:

Co=CygndG

2. f has the intermediate value property on each component of D(G) and Dy¢(H)

3. Let Cg (and hence Cp) be bounded:

lim f(x) = xlTICD'(;I f(z) e GU{¥}

z1Cqa
li = i cGuU{T
Y f(x) Jim f(z) {v}

Moreover, if f is of the form vyo f~(x), where y(x) is of the form x(x—a) or L(z—a),

then the limit on any boundary of Cq is an element of G
Evenmoreover f is monotone in the same sense on Cg and Cy.
4. Let Cq (and hence Cr) be unbounded above but bounded below, then f is monotone

in the same sense on Cg and Cyg, and:

lim f(z) = lim f(z) = -0

z1Cq z1Cy
lim f(x)= lim f(x) e GU{¥
xwaf( ) waf( ) {v}

Similarly, if Ca (and hence Cp) are unbounded below but bounded above, then:

z1Cqa 1 Cy
lim f(x)= lim f(z)=—o0
Jim. (z) waf( )

And if Cq (and hence Cy ) is unbounded above and below then:
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lim f(z) = lim f(z) =00

1 Cq 1 Cy
li = i - _
Jm f(z) Jim f(z) = —o0

Proof. The lemma is true for the -y-monomial x. Assume we have proved the statement

for some 1-x-monomial h(x), and let f(x) := n(xz — a) where a € G and n € {x, L, }.

Suppose n € {x,L}. Then D(J) = Dy(J) for J =G, H, thus (1).

Let C be some component of C Dy (G) or Dp(H). We assumed by induction that h has
the intermediate value property on C, and n(z — a) is surjective and increasing, thus f

also has the intermediate value property on C, hence (2).

Let Cg, and hence C be bounded. By induction we assume that:

]#g h(z) e GU{T}

Suppose hTIg h(z) = p € G. By definition (see Notation 4.2.13) this means that the limit
x

p is attained in Cg and Cp, which combined with the monotonicity of h and (C<) for

contraction groups, implies:

Jim f(@) = Jm fle)=nlp—a) e G

An identical argument applies to the limits at the left boundaries, thus (3)

Let Cg (and hence Cp) be unbounded above, then by induction we assume:

lim A(z) = lim h(x) = +oo
z1Cq z1Cy

By (C<) we then deduce:

lim f(x) = lim f(x) =400
lim () = lim /()

If C¢ (and hence Cp) is bounded below, then repeat the argument for (3), and a sym-

metrical argument works if Cg (and hence Cp) is unbounded below, thus (4).
Suppose 1 € {¢b}. Repeat exactly the same argument as Lemma 4.2.28. O

Lemma 4.5.6. Let F' be a v¥-x-polynomial of the form:
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F(z) =Y zifoi()+2fio(x) =2+ zfoilx) + 20(fon(z) — a)
i=0 i=1
Then for any d € Dp(H) \ Dr(G), we have F(d) ¢ G

Proof. Firstly, observe that for J € {G, H}, Dp(J) is the union C} < C% where:

C} ={zxeJ| fon(r) <a}
03- ={zxeJ| fon(r) >a}

Moreover, by Lemma 4.5.5, we know that C%,NG = Cé;. On each C?, F is strictly increasing
and has the intermediate value property, as a direct consequence of Lemma 4.2.4, thus if
d is in the convex hull of Cf, in H, then we automatically deduce F(d) ¢ G.

Note that Cy is unbounded above in G, moreover, F'(C2) must also be unbounded above,

since for sufficiently large x € G,

[2] > [foa(@)] > ... > [fon(@)] = [fon(z) — a]

thus F(x) > (id + ¢)(fon(x)) which itself is unbounded above. Similarly Cy and F(Ch)
are unbounded below, thus is d > C% or d < C},, then again F(d) ¢ G.

So the only remaining case is when d is on the inner boundary of CiG. Suppose i = 2, and

fix d e C%I, d< C’(Q;. Since f), is increasing and surjective on G and H, we must have:

0< fu(d) —a< GO (4.14)

Claim 4.5.6.1. For alli € [0,n], [fo,i(d) — ao,i+1] € [G], where agpni1 = a, and:

[d — ao,0] > [fo,1(d) — aoit1] > ... > [fon(d) — a]
Proof. By Equation (4.14), we know that [fy »(d)—a] & [G]. Suppose [fo.i(d)—aoi+1] € [G],
then foi(d) € G. Since fpi(x) is defined as:
foi(@) = v(foi-1(z) — aos)
for some contraction +y, by applying (CA) and (CP), we must have [fo;—1(d) — ao;] € [G]
and [fo,i—1(d) —aos] > [fo,i(d)]. If ap,; is non-zero, then we must have [fo;—1(d)] = [ao ] >

[[fo,i—1(d) — ao]], thus the statement is proved. [ |

Suppose F(d) € G, then there exists some g € G such that:
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F(d) =) zifoi(@) + 2¢(fon(d) —a) =g

1=0

Thus by some rearranging, we get:

>z (foi(z) — agit1) = g + 20 (fon(d) —a) = Y z0.a0, (4.15)
1=0 =0

Note that the left-hand side of Equation (4.15) has valuation outside of [G]. But since
0 < fon(d) —a < GZ° we deduce from Lemma 4.2.31 that:

(G +Q(fon(d) —a)] = [G]

thus the right hand side of Equation (4.15) has valuation within [G], so we have a contra-
diction, so F'(d) ¢ G. O

Lemma 4.5.7. Let F(x) be a 1-x-polynomial. Let Cq be a component of Dp(G) and Cy
be the corresponding component of Dp(H). For any x € Cy \ Cq, we have F(z) ¢ G.

Proof. The statement is definitely true for the 1-y-polynomial z. The actual base case is

as follows:

Assume it is true for any 1)-y-generated by the successive sequence f = ( fi.5)0<i<m,0<j<nm
where m > 1. We show that the statement also holds for ¥-x-polynomials generated by

the successive sequences:
L. f1 = fUfmnm+1, where fon. +1 = 0(fmn, (r)—a) for some n € {x, L} and a € G.
2. fo = fU fmt10, where fri1,0 = V(fmk, (¥) — @), km € [0,nm], and a € G.

By using Lemma 4.5.6 for the base case, the two items above sufficient to prove the

statement for all i-y-polynomials.

Case 1: Let F be a 1-x-polynomial generated by f;, written as:

F(z) = F(z) + 2 fmn,+1(7)

where:

Fla)= Y Y zijfijx) (4.16)

1€[0,m] 7€[0,nm]
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and z,2;j € Z 2,200 # 0. Pick some d € Dy, (H) \Dfl(g), and suppose it is contained
in the convex component Cpr, with corresponding component Cg. Suppose d is in the
convex hull of Cq in H. Then since F has the intermediate value property and is strictly
increasing on Cg, Cp, we automatically deduce that F(z) ¢ G, else F' would not be

injective. So suppose d is outside Cg. From Lemma 4.5.5, we know that:

lim dfm,nm+1($) = lim dfm,nm+1(x) €eGU {:EOO}

-Z‘)CG :L‘HCH

Suppose the limits are +o0, then again by Lemma 4.5.5, we deduce that |d| > G, which
together with the unboundedness of the image of F' on Cg, tells us that |F(d)| > G, thus
Fld) ¢ G

If the limit is some p € @G, then since limits in G are by definition attained in both
G,H, we deduce that fy,n,,+1(d) = p € G. By induction we assumed F(d) ¢ G, thus

F(d)=F(d)+p¢G.

Case 2: Let F be a t-y-generated by f,, written as:

F(x) = F(z) + 29 (fm k.. (x) — a)

where F is as in Equation (4.16), and z € Z7°. Pick some d € Dp(G)\ Dr(H), contained
in the convex component Ciy C H with corresponding component C C . Similar to the
previous case we can assume d is not in the convex hull of C¢ in H, thus by Lemma 4.5.5,

we know that:

m Y(fr k() —a) € GUW U —o0
T—d

If the limit is some p € G or —oo then repeat the same argument as in Case 1. So suppose
the limit is W. Note that f1 o is of the form:

Y (fokn (T) — a1)

where a1 € G, and remember that foj, is just the composition of contractions and
translations in G, 1 does not appear within it. Since Dp(J) C Dy, , (J) for 7 = G, H,
we know that fy 1, (d) # a1. Without loss of generality, assume fo . (d) # a1.

Claim 4.5.7.1. There exists some ¢ € G such that a1 < ¢ < fo,,(d)

Proof. Let Dy,(H), Dy (G) be the domains of f, p,, in G and H, Since m > 1 they both
must have at least two convex components. Let C’; be the component of D,,, () containing

d, and let Cf, be the corresponding component.
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Assume there is no such ¢ € G, then d cannot be in the convex hull of Cf; in H, so d < Cf,.

Consider the limit of f,, 1,. as we approach d.

1. Suppose the limit is:

lim fm,km (33) =V
z—d

then by Lemma 4.2.26, we deduce:

i ¢ (f i, () = @) = lim v ) € G

which contradicts out assumption that the limit of f,, 1,0 = ¥4 © fim k,, approaching
dis W,

2. Suppose the limit is:

im fo . (x) =p € G
r—d

Then since the limits are attained, we must have f,, s . (d) = p. Note that p # a,

else d would not be in Dp(#), thus by the monotonicity of fy, 41,0, we must have:

JPLIZZ ferl,O(x) = d}(fm,km (d) - a) €eG

which again contradicts our assumption that the limit is .

Hence there must be some ¢ € G in-between a and fy x, (d). [

Claim 4.5.7.2. For any ¢ € G in-between a and fo,(d), if we set € = 3|c —a1|, and

define the convex set I as:

I=1I.= {2 €Cx [|fosm(z) = for,(d] < e}
Then INCq = 2.

Proof. Since we made e small enough, we deduce that I C D(#). Furthermore, fi ¢ is

constant on I, since for any [z] € T

[fo,km () — a1] = [fok,, (d) + v — a1] Where |7 < e

. 1
= [fo.k, (d) — a1] Since |y| < € < §|f0,km(d) —aq|

Thus I C D;(H) and f;; is constant on I for all i € [0,m + 1] and j € w.
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Suppose there was some b € I N Cg, then since f,,11, is constant on I, we deduce that:

lim fin41,0(2) = fimt1,0(d) € G
z—d
which contradicts our assumption that the limit was W. |

Since lirré Jm+1,0(z) = ¥, we know that lirrgi fm k() = a, so pick some b € Cg such that:
T T—

’j%@km(b)_'a’fge

Then:

[fm+1,0(d) = fn41,00)] < [fin ke (d) = firn ke (b)] By fact (4.2.6)
< [fm e (b) — @ AS fon i (d) is between a and fy, 1, (b)
<l

Define the function f: I — H as:

f(x) = F(x) + 2fmi10(D)

Pick v*,7~ € I such that fo, (Y5) = fox,, £ € Then v~ <d <~ and:

F(d) = f(y7)=F(d) = F(v") + fm10(d) = frns1,0(b)

=d—~ 4+o(d—7")+ fmt+1,0(d) — fin+1,0(b) (*)
=d—7 +o(d—7") (**)
>0

Where (*) follows since [z —y] > [fij(x) — fij(y)] for any 4,7, and (**) follows since
| frn+1,0(d) — fn+1,0(0)| < € and [¢] < [d —~~]. Thus F(d) > f(vy7), and by a symmetrical
argument, F(d) < f(y"). By the intermediate value property for F' and hence f, we
deduce that there exists some y € I such that f(y) = F(d). Since I N Cg = &, we apply
the inductive assumption on F and thus f to deduce f(y) € G, thus F(d) ¢ G. O

4.5.3 Existential Closedness

Definition 4.5.8. Let b € H \ G. Define the -y characteristic sequence (b; j, g;j)i<2 j<ws
of bin G as follows:
o (bia,9ga) i<2 is any 6§ — L-characteristic sequence of b in G
j<w?

e Suppose we have defined (b, 9j);<2 j<w?m
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— Suppose by 2 (m—1) is 2-super-transcendental, with null point o < w?. Then set
set (b; w2t js Ju?mej)ic2,j<w? t0 be a —L-characteristic sequence of ¥ (by 2 +a)
ing.

— If by o2 (m—1) 1s not 2-super-transcendental, then set b; ;,g; =0 for all ¢ < 2,5 >

me.

We say a 1)-y-characteristic sequence has length o < w? if « is the least ordinal such that
bo = 0 but by g # 0 for all 3 < a. If no such « exists we say it has length w3. We say
some b € H is 1) — x-algebraic if it has a characteristic sequence of length less than w3,

and v — x-transcendental otherwise.
The existence of characteristic sequences are guaranteed by the construction.

Definition 4.5.9. Fix some element b € H>?\ G and some v — y-characteristic sequence
(bij, 9j)ic,j<ws Of bin G. As usual let z; ; be b;; but with the occurrence of b replaced

with the variable . Define the set of formulas g as:

qp () = U Dbi,j(%‘,j)
i<2
j<w?

4.5.4 Algebraic Elements

Lemma 4.5.10. Let G C H be an extension of closed asymptotic contractions. Fir some
b€ H\ G and some ¢ — x-characteristic sequence B = (b;j,9;)i<2.j<ws ™ G. If B has
length o < w? + 1 (s0 by241 =0 and by 2 € G), then for any b |= qy(z), the structure

G(b) has domain:

GE =G+ E @Bi,j (4.17)
1<2
j<w?

Moreover, there exists a E%_X—isomorphism ¢ : Gy, — Gy over G, with ¢(b; ;) = Bm-.

Proof. Let p, be the type from Definition 4.4.9, containing the cuts from the 6 — L-

characteristic sequence, thus:

Qb(x) = pb(l‘) U {:Z"O,o.)2 = b(),o.)2 € G}

By Lemma 4.4.6 it is sufficient to show that ¥ (by;) € Gy for all j < w?, since by

Lemma 4.4.6, we know that:

[Ge] = 1G]+ {[bo] | J < w?}
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Fix some j < w?, we will calculate Y(bo ;). Suppose there exists some least o = wmp +
my € [1,w?) with gj1a # 0 (where m, m, € w). Then by construction of 2-characteristic

sequences, we must have:

boj+a = X" 0 L™ (boj) — gjta

Thus [x™x o L™~ (b ;)] = [go,;]- But by Proposition 4.5.1, we can write ¢(bg ;) as:

Y(bos) = (X™ 0 L™ (bog)) — Y (0o L+ L) (boy) — Y x'(bo,y)
=1 i=0
=¥ (g0s) — > (B L+ L) (boy) — > X' (boy)
i—1 =0

€ Gy

This covers the cases when b is not 2-super transcendental, but when b is 2-super transcen-
dental, j could be past the 2-null point +. In that case, by Definition 4.5.8, we must have
bo w2 = P (boy), 80 Y(boy) € G. Write j := v+ wmp +my, thus by ; = X" o L™~ (bg ), s0
by applying Proposition 4.5.1, we have:

P(bos) = ¥(boy) + > (B0 L+ L) (bon) + > X' (boy)
=1 1=0

e Gy

Thus G} is closed under ), so |G(b)| = G}. The same also show that |g<5>\ =Gy

By Lemma 4.4.11, we have a Ly_r-isomorphism ¢ : G, — Gy, where ¢(b;;) = Bi,j for
j < w?. Since b = gy, 50 ¥(bo) = ¥(bos), it is easy to show that ¢ commutes with v,
thus ¢ is a £;, -isomorphism. O

Note that if the 1) — y-characteristic sequence of b in G has length o < w? 4 1, then one
the following happens:

e b is 2-transcendental but not 2-super-transcendental

e b is 2-super-transcendental but 1 (by ) € G, where + is the 2-null point of b

e b is 2-value-algebraic

e ) is 2-archimedean-algebraic

In the first three cases, we can show that G(b) only has one H-cut, thus the map ¢
automatically becomes an L, _,-isomorphism. When b is 2-archimedean-algebraic, then

we may need add a formula to g, involving the predicate P to make ¢ a Ly,_,-isomorphism.
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Lemma 4.5.11. Suppose G C H is an extension of closed asymptotic triples and fix some
be H>°\ G. If one of the following occurs:

e b is 2-transcendental but not 2-super-transcendental
o b is 2-super-transcendental but v (bo) € G, where v is the 2-null point of b
e b is 2-value-algebraic

Then G is existentially closed in G(b).

Proof. Let b = qy(z), then by Lemma 4.5.10 we have an Eip—x isomorphism ¢ : G{b) —
G(b). We want to apply Lemma 4.2.15 to show that G(b) has only one H-cut, thus by
Lemma 4.2.11, ¢ will be a L,_,-isomorphism. Since b is not 2-value-algebraic, we know
that the extension G C G} is pure valuational, thus it remains to show that [G] is coinitial

in [Gp]. Suppose not, then it must be the case that b is 2-super-transcendental, with
[bo~] < [G].

Claim 4.5.11.1. There exists some g € G with 0 < g < by 4

Proof. Since G is closed, there exists some h € G™% with ¢(h) = ¥(by). Then by (C))
we know ¢(x(h)) = ¥(bo) +x(h) > ¥(h), so by (A4), we must have 0 < x(h) < by,. W

Then because 0 < L™(g) < L™(bo) for all n < w, we deduce that [G] is coinitial in [G).

Hence by the reasoning outlined earlier, we deduce that ¢ is a £,_,-isomorphism.

It remains to show that ¢, is a type of G, after which we can apply Fact 2.1.12 to get
existential closedness. If b is not 2-super-transcendental, then ¢ is equal to the type py
from Definition 4.4.9, which by Lemma 4.4.12, we know is a type in the reduct of G to

Lo_1,, so we are done.

So suppose b is 2-super-transcendental, then g, is the following:

a(w) = pp(w) U {zo02 = by 2 € G}

Write some finite subset A(x) = Ag(x) U Aj(x) of g as:

Ag(z) = U {Gi0; < Tio; < T, )
i<2
j<n

Al(x) = {*’EO,w2 = bO,wQ}

where 0 < o < o < ... < a,, < w? and Ui, i, € G. Note that xg 2 = ¥(z0,) is a
Y — x-monomial. Let D~(#) be it’s domain in H, let Cy be the component containing b,
and let Cg be the corresponding component of D.(G).

For all i < 2, j < n, pick some h; ; € [ag,0,b)q such that:
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aij < xij(hij) < bij

We can do this because x;; is increasing and surjective on G. Similarly define E-’j €
(b, ap,0]e such that:

bij < wij(hij) < aij
Define h, h as:

h=max{h;; |i<2,j <n}
h:=min{h;; |i<2,j <n}

Then we must have h < b < h, and any element of (h,h)g realises A. By Lemma 4.5.5
we know that x(, is monotone and has the intermediate value property on Cg, so by the
same argument as in Lemma 4.4.12, we can show that z¢ (h, h) ﬂ@!)_l(bovwz) is non-empty.
Pick some y € g (h,h) N1~ (by,,z2) ,then any element of (h, h) N xa}y(y) will realise A.

So we are done.

O]

Lemma 4.5.12. Let G CH and b € H \ G be 2-archimedean-algebraic over G. Then G is

existentially closed in G(b).

Proof. Let the 6 — L-characteristic sequences of b in G have length o + 2 < w2. That
means by a2 = 0, bo.at1 € G70, and by o & G but [by ] € [G].

Let b = gy(z), then by Lemma 4.5.10, we have an L, isomorphism ¢ : G(b) — G(b).
If G(b) only has one H-cut, then ¢ is immediate a L_,-isomorphism, coupled with the
fact that g is just p, from Definition 4.4.9 means we can apply Fact 2.1.12 to deduce G is

existentially closed in G(b).

So suppose (G, ¥) has two H-cuts. Then there exists some unique v, € G} \ G such that:

D(GTY) < vy < (id + ) (GFO)

Since b is not 2-super-transcendental, we know that [G] is coinitial in [G}]. Thus ¢(G70)
is cofinal in ¢(G7") and (id + ¢)(G>°) is coinitial in (id + ¢)(G;°), thus:

W(G7Y) < vy < (id + ¥)(G™0)

Claim 4.5.12.1. The element vy ts of the form g + gbo o, where g € G and q € Q0.
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Proof. Suppose not, then since [b; ;] ¢ [G] for all b;; # 0 with i + j < a, we must have
[vp — g] & [G]. Thus pick some € € G with [¢] < [vp — g] (which we can do since [G] has no

minimum and is coinitial in [G}]), then vy, v, + € induce the same cut in G, thus:

$(Gy) < vy, 05+ € < (id +9)(G;)
which means (Gyp, 1)) has at least three H-cuts, which is a contradiction. |

Thus define r(x) as:

rp(z) = pp(z) U{Z(9 + qm0,0)}

Where Z(z) is as defined in Lemma 4.2.37. Pick some b = 74(x), then since g, C 3, for
any b |= () we have a L’ib_x—isomorphism ¢ from Lemma 4.5.10. To extend it to Ly—y,
note that vy == g + BO,a is the unique element of G such that:

W(GZ) < vy < (id + ) (G2°)

It remains to show 7, is a type of G. Pick some finite subset A(z) = Ag(z) U Ai(x) of

rp(z) written as:

Ag(z) = U{awj < Ty < dmj}
i<2
j<n

Aj(x) ={Z(9+ qxo0.a)}

where 0 < ap < a1 < ... < ap < w? and Qi Gia; € G. Define h,h as in Lemma 4.5.11,

then any element of (h, k) realises Ag. Consider the interval (vp,, vy )a, where:

vp = g + qz0,a(h)

v = g+ q0,a(h)
Note that vy < bp,o < vy, so the interval in non-empty. Moreover, since G is a closed
asymptotic triple, we know that v, € ¥(G7Y) and vy € (id + ¢)(G>0), thus (vp,vy)

intersects both 1(G7°) and (id + 1)(G>?). Thus we can always pick an element y from
the realisations of Ay such that Z(y) holds, hence G is existentially closed in G(b). O

By combining Lemma 4.5.11 and Lemma 4.5.12, we have:

Proposition 4.5.13. Let G C H be an extension of closed asymptotic contractions. If b

has a 1 — x-characteristic sequence in G of length o < w?+1, then G is existentially closed

in G(b).
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Now we prove that adjoining any 1 — y-algebraic element to G preserves existential closed-

ness.

Theorem 4.5.14. Let G C H be an extension of closed asymptotic contractions. Suppose

3

b is ¥ — x-algebraic with characteristic sequence of length o < w®. Then G is existentially

closed in G(b).

Proof. Say a € [w?n,w?(n + 1)). By Proposition 4.5.13, we know G is existentially closed
in G(bown), hence G is existentially closed in any Ty, -hull G, of G(by ). We claim that
bow?(n—1) 18 ¢ — x-algebraic over G, with characteristic sequence of length a, < w2+ 1.
Suppose there exists some g € G, such that [g] = [bg 2(n—1)4 ] for some 3 € [0, w?). Then

since G, is of the form:

Gy o T2 HOG) + Qe

icl jeJ

We can assume that g = by 2(,—1)45- Thus for all 3 € [0, w?), we must have:

[Gn + (@bo,w2 (n—l)—l—ﬁ} = [Gn] U {[bO,wQ(n—l)-f—ﬁ]}

So the 1 — x-characteristic sequence of by ,2(,,—1) does not increase in length when moving
from G to G,,.

Hence we apply Proposition 4.5.13 again to show G, is existentially closed in Gy, (by .2(n—1))>
so in any Ty y-hull G;,—1 of Gy, (by 2(—1)). Repeat this process to get a chain of structures
GCGyCGu1C...C Go, where G; is the Ty_,-hull of G;11(bg2;). Then since b € Gy,
we deduce that G is existentially closed in G(b). O

4.5.5 Transcendental Elements

We proved that for any extension G C H of models of Ty, _,, if we pick some 1) — x-algebraic
element b € H\G, then G is existentially closed in G(b). By repeatedly applying this result,
we can construct some G = Ty—\ with G C G C H such that any b € H \ G, is ¢ — x-
transcendental over G. Note that if b is infinitesimal in G, then it must be 1) — y-algebraic
over G by Lemma 4.2.31. Thus to prove model completeness for Ty_,, it is sufficient to
show that any extension G C H of models of T}, where [G] is coinitial in [H], is model

complete.

The problem arises when trying to find a generating set for G(b) over G when b is 1) — x-
transcendental. Say b = by is ) — x-transcendental, and has 2-null point 0. It is not
possible to deduce whether or not x(b) and (b) sum together in an unknown way to
produce a new archimedean class, and it is difficult to capture that behaviour in a type

that is easy to finitely realise.
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Suppose, however, that the type g, does in fact determine this behaviour, i.e for any b |=
qv(z) we have an L,_, isomorphism ¢ : G(b) — G(b). Then to get quantifier elimination,
all we would need to do is show that g, is finitely realised in G. But this is quite simple
due to Lemma 4.5.7.

Lemma 4.5.15. Assume b is 1) — x-transcendental over G. Then the type qy(x) is a type
of G.

Proof. Write some finite subset A as:
Ax) = /\ (aw‘ < fi’j(x) < Ew‘) A (Ci,j <fo fi7j<x) < Ew‘)

1€[0,m]
J€[0,nm]

where (f; ;) is a successive sequence of -y-monomials. Let f, ,,. have domains D,,(H)
and D,,(G) in H and G. Let Cy C H be the component containing b, and Cg C G be

the corresponding component.

Suppose b is in the convex hull of Cg in H. Then without loss of generality we can assume
ap 0, a0, 0 € Cg. By (2) of Lemma 4.5.5, we know that f; j, and hence fo f; ;, are monotone
and have the intermediate value property on both Ci and Cg. Thus for all 4, j, we can

pick some h; j, k; ; € Cg with:

ag < hi,j,ki,j <b
satisfying:
Qg5 S fi,j(hi,j) S fl,j(b) Cij S 0o fi,j(ki,j) S 0o fz,](b) If fi,j is increasing on C
fi,j(b) S fi,j(hi,j) S aijj 0o fz,](b) S 0o ij(ki,j) S Ci,j If fi,j is decreasing on C
Define EJ,EW similarly but from above b, so:

b < hi,j7 k@j < agp
Then if we define:

h == max{h; j, ki ;}
h == max{h; j, ki ;}

Then h < b < h, thus 5(h + h) realises A.
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If b is not in the convex hull of Cg in H, say b > Cg, then we can, without loss of
generality, assume ag € Cg. Define h as before, and note that any element of Cg greater
than h realised A, and such an element must exist since the convex components of Dy, (G)

are open. O

So assuming that g, does determine the quantifier free type of b over G, we can show
that G is existentially closed in G(b), hence by Theorem 2.1.15, we would have quantifier

elimination for Ly_,.
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Chapter 5

Conclusions

To conclude we mention some ways to continue the thesis. Of course, the main continuation
would be to finish the proof of quantifier elimination for Ty, , but beyond that, the two
main directions would be examining the action of the derivative of L; on vK, and describing

algebraically the models of T,,.

5.1 n-th Hyper-logarithmic derivative

Let K be the Hyperseries mentioned in Theorem 1.2.2, so an ordered differential real
closed field with with functions log, L1, Lo, ... : K°® — K>F satisfying (L1) - (L4). We
know that each L; induces a well defined map x;+1 : cK — vK, and we also know that
the derivative induced a well defined map id + 1) : vK#9 — vK. Thus the action of the
derivative of L; on vK should be given by the map (id + ¥) o x+1.

Remember that (id + 1) o x1(z) = ¥(z), and (id + ) o x2(x) = ¥ (x) + 6(z), where 0(z)

was effectively the infinite sum:
O(x) ~ Y xi(@)
1<w

This suggests that when calculating (id + 1) o x3, we would need a symbol for the infinite

sum:
> xb()
<w

Ideally, there would be a symmetry between the actions of the derivatives of L; and L;;

akin to the symmetry between y; and x;4+1 in 75,.

151



5. CONCLUSIONS

5.2 Classifying models of T,

This was a suggestion given to us by Sebastian Krapp. As mentioned in the introduction,
the paper Krapp and S. Kuhlmann, 2023 deals with countable models of 77 and examines
when it is possible to recover a trans-exponential field from a countable contraction group.
In doing so, they developed some understanding of the countable models of T;. If we can
give some characterisation of the countable models of T},, this would help us understand

when we could recover a trans-exponential field with an n-th Hyper-logarithm.

5.3 Algebraicity

In Section 3.6.2 we compared the notion of n-algebraicity for n-contractin groups to model-
theoretic and field-theoretic algebraic closure. We remarked that it was not clear whether
such n-algebraicity has the monotonicity property (in the sense of pre-geometries). Thus
it would be interesting to see if the n-algebraic closure is indeed a pregeometry. Moreover,

the same could be done with 1) — y-algebraicity for asymptotic contractions.

5.4 A funny Joke

Finally, it was intended for there to be a chapter on elimination of imaginaries in 1-
contraction groups, but due to some mistakes, it had to be cut out. All that is left is the

following:
Why did the imaginary tree fall over?

Because we moved to T2 and eliminated the fibres of the roots!
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