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Abstract
This thesis introduces a new framework to enhance the simulation performance of switch

converters, motivated by the pursuit of more efficient energy conversion. This thesis offers

improvements in the cyclic-mode model simulation of converters. Initially, a comprehensive

review from the classification and operating principles of switch converters to their modelling

methods sets the stage for subsequent analysis. Additionally, the thesis analyses and

introduces the design methodologies for different types of switch converters. Subsequently, a

cyclic-mode model for a class EF2 inverter is constructed, and the accuracy of this

simulation method is verified. A new application of Newton's method to accurately determine

the multimode steady-state operating conditions of a switching converter by combining it

with cyclic-mode model is then demonstrated, thus extending the applicability of the

cyclic-mode model. Furthermore, a novel technique based on cyclic-mode modelling is

proposed, which allows obtaining the root-means-square values of switch converter signals

without generating waveforms, this greatly reduces the difficulty of finding the exact RMS

value of a switching power supply. Finally, this technique, combined with the Newton

method, forms a complete simulation method for power supplies. This method accurately and

swiftly analyses DC-input power supplies in multiple operating modes, precisely obtaining

their signal waveforms, periodic averages, and root-mean-square values.
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Nomenclature
��, ���: System dynamics matrix for operation mode �

��, �� �: System input vector for operation mode �

���: System matrix for operation mode �, include dynamics and input.

�: Newton’s iteration method cost vector

�: Jacobian matrix of partial derivatives of Newton iteration method

�: Inductance (H)

�: Capacitance (F)

��: Power coefficient

�: Resistance (Ω)

�: Switch

�: Diode

�in: Input voltage (V)

�dc: DC input voltage (V)

�, �: Current (A)

�, �� : Vector correcting the value of the state variable at the moment of switching

�: The amount of charge passing through a component (C)

��: Load quality factor

�: Time interval (S)

∆: The amount of change in a value over a period

�: Cycle average current (A)

�: Energy stored in a component at a point (J)

�sw, �sw: Switching frequency (rad/s, Hz)

�0, �0: Resonant frequency (rad/s, Hz)

�: Newton iteration method variables

�(��
+): Discontinuity in the state-vector at � = ��

��: The ��ℎ element in the state vector �

�: Equivalent number of turns ratio for an ideal transformer.



10

�: Impedance (Ω)

��: Normalised frequency

�out: Output power (W)

�sw: The time required for a steady-state system to operate for one cycle. (s)

��: Duty ratio of a mode of operation in a system in steady state operation

��, �� �: Matrix exponential operations product on system dynamic matrices ��

�� �:Matrix exponential operations product on system dynamic matrices ���

��, �� �: Argument input vector for ��ℎ mode of operation
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Chapter 1. Introduction
This Chapter provides an overview of the contributions made in this thesis. It includes an

introduction to the research background, the motivation for the study, and the main

innovations of this thesis. Subsequently, it lists the papers that have been published and

currently under review. Then introduces the structure of the thesis and briefly describes the

main contributions of each Chapter.

1.1 Background

In today's world, electricity is not only a basic necessity for daily life but also the driving

force behind modern industrial and technological innovations. With rapid developments in

material science and breakthroughs in advanced software technologies, we are witnessing a

fundamental transformation in the generation and use of electricity. At the heart of this

transformation, power electronic devices play a crucial role, acting as the bridge between

energy generation and consumption.

The development and application of power electronics are ubiquitous, influencing every

industry and aspect of life. Household appliances such as refrigerators, washing machines, air

conditioners, and microwaves rely on power electronics for power control and energy

efficiency [1.1]. In more advanced applications such as industrial automation [1.2], robotics

[1.3], medical imaging equipment [1.4], and aerospace engineering [1.5], power electronics

ensure precise control and high reliability of devices.

The advancement of power electronics is fundamentally a continuous pursuit of efficiency

improvements and increasing power density. Especially in the case of resonant converters,

their efficiency advantages are transforming them into key components in various energy

conversion applications [1.6]. This phenomenon has heightened academic interest in its study,

with researchers dedicated to optimizing the design and control strategies of resonant
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converters through improved models, aiming for higher energy efficiency and better

performance. This thesis proposes further research in this area.

1.2 Motivation

In recent years, with the rise of resonant converters, the field of power technology has

witnessed a new development surge. These converters, with their significant advantages in

efficiency [1.7] and electromagnetic compatibility [1.8], are beginning to replace traditional

switched-mode converters in many areas.

Resonant converters create resonant circuits by connecting inductors and capacitors in series,

parallel, or a combination of both, achieving zero-voltage switching [1.9] or zero-current

switching [1.10] (soft switching). This characteristic significantly reduces energy loss and

electromagnetic interference during switching, not only enhancing the efficiency of resonant

conversion but also laying the foundation for higher energy density and smaller sizes. The

power density can reach up to 2.5 kW/in3 [1.11].

The superior performance of resonant converters in terms of low energy loss makes them

increasingly popular in high-end applications requiring high efficiency and low

electromagnetic interference, such as in medical devices [1.12], and high-end audio

equipment [1.13]. Similarly, in the application of electric vehicles, the advantages of resonant

converters are significant. In the electric vehicle industry, the development of fast-charging

technology has raised higher demands for power technology. Resonant converters, with their

high efficiency and low heat loss, provide strong support for fast-charging technology in

electric vehicles. An example of the onboard charger application is shown in Fig. 1.1.
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Fig. 1.1. A 7-kW electric vehicle onboard charger utilizing an LLC resonant topology [1.14]

However, with the increasing complexity of converter structures and diversifying application

requirements, precisely predicting their performance behaviour has become a challenge.

While simulation technologies for hard-switching converters are relatively mature, simulating

resonant converters faces more challenges. Existing simulation methods often rely on specific

assumptions about converter behaviours. For example, state-variable averaging assumes that

the internal dynamic frequency of the system is much smaller than the switching frequency.

This can be achieved for some hard switched converters such as buck converters, but for

resonant converters, where the system dynamic frequency is close to the switching frequency,

this assumption will no longer holds, resulting in an inability to fully capture their true

performance and leading to discrepancies [1.15][1.16].

The cyclic-mode model, as an innovative modelling approach, has drawn extensive academic

interest due to its advantages in precision and simulation speed [1.17] [1.18]. This thesis

provides a detailed exploration of the cyclic-mode model's potential and limitations in

accurately simulating switch converter performance. It further proposes innovative solutions

to overcome current technological deficiencies, aiming to enhance the precision and speed of

resonant converter simulations.
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The significance of the root mean square (RMS) value in the modeling analysis of new

converters, including resonant converters, is paramount. It is crucial for calculating converter

losses, selecting essential components, and planning the spatial layout of the converter.

Consequently, an accurate and rapid estimation of the RMS value can significantly streamline

these processes. This thesis thoroughly examines existing techniques for calculating the RMS

value, highlighting their benefits and drawbacks. Then, it proposes a modeling framework

designed to quickly and accurately determine the RMS values of critical parameters in the

converter model. This framework aims to provide easier access to RMS values, thereby

enhancing the analysis and design process for users.

In the modelling analysis of new converters, including resonant converters, the importance of

the root mean square (RMS) value cannot be overstated. It plays a key role not only in

converter loss calculation but also in the selection of key components and spatial planning of

the converter. Therefore, accurate and fast estimation of the RMS value is crucial for these

processes. The thesis will discuss and study in detail the accurate and fast calculation of the

RMS value of converters, providing insights and methodologies to greatly facilitate the

aforementioned processes.

1.3 Novelty

The novelty of the work described in this thesis focuses on improvements to the cyclic-mode

model. Cyclic-mode modelling is a technique used to estimate the values of state variables in

dc-dc and dc-ac converters during steady state operation, which is based on an accurate

determination of the converter's operating state. To precisely determine the converter's

operating state of the cyclic-mode model, a combined approach with Newton's method has

been proposed, allowing for accurate identification of the circuit's operating states.

Subsequently, cyclic-mode modelling technique was improved so that the root mean square

(RMS) values of the state variables (typically inductor currents and capacitor voltages) could

be obtained without the need to generate waveforms, making it easier and quicker to obtain
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these RMS values and extending the scope of the cyclic-modelling. Finally, the simplification

of the modelling approach reduces the extensive time required for modelling across different

converters. Finally, a comprehensive RMS modelling process based on the cyclic-mode

model has been established, allowing more convenient modelling of different types of

converters with multiple operating modes.

1. Development of a cyclic-mode model for class ��� Inverters with a Piezoelectric

Resonator as the auxiliary Network

The class EF resonant inverters, formed by paralleling an LC series auxiliary network with

the switch in class E inverters, can reduce voltage stress on the switch. Chapter 4 introduces a

cyclic-mode model designed to predict the behaviour of the class EF inverters operating in

2-mode with a piezoelectric resonator replacing the auxiliary resonant circuit. The

performance of the proposed model is demonstrated using a class EF2 resonant inverter,

wherein the piezoelectric resonator’s resonant frequency is tuned to twice the resonant

frequency of the main branch.

2. Demonstrating the application of Newton's method to a particular converter

cyclic-mode model

Chapter 5 introduces a technique combining the Newton-Raphson method with the

cyclic-mode model. It can precisely determine circuits operating states. This technique

enables the cyclic-mode model to accurately simulate converters with multiple operating

modes (circuit configurations). This technique has been applied to various switch converters

in Chapter 5, Chapter 6, and Chapter 8, respectively.

3. Evaluating state variables root mean square values in switching converters using

cyclic-mode modelling
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Chapter 6 introduces a novel technique for evaluating Root Mean Square (RMS) values in

switch converters, which is also the major contribution of this thesis. The technique

employing cyclic-mode modelling and matrix operations represented by state variables. This

approach leads to a generalized expression that is applicable to a variety of switch converters,

facilitating the estimation of RMS current and voltage values without the need for generating

waveforms prior to RMS calculation. The effectiveness of this technique is further validated

across various types of converters in Chapters 7 and 8.

1.4 List of publications

Conference paper:

Wang, Yuqing, Jonathan N. Davidson, and Martin P. Foster. "Cyclic-mode modelling of

class EF 2 inverters featuring a piezoelectric resonator as the auxiliary network." 11th

International Conference on Power Electronics, Machines and Drives (PEMD 2022). Vol.

2022. IET, 2022.

1.5 Thesis structure

The thesis is divided into eight Chapters, each interconnected. The publications

corresponding to each Chapter are listed in Section 1.4. A complete list of references can be

found at the end of each Chapter. Below is a brief introduction to each Chapter:

Chapter 1 explains the crucial role of power electronics in modern society, the overall

background of the study, and the research motivation. The thesis structure section offers a

brief overview of each Chapter.

Chapter 2 reviews the work reported in the literature, divided into two main parts. The first

part includes a background introduction to switch converters, their classification, and an
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introduction and analysis of the operational principles of the converter topologies addressed

in this thesis. The second part is a review of mainstream switch converter modelling methods.

This includes basic concepts, as well as their advantages and disadvantages. It also explains

why these modelling methods are ineffective for simulating resonant converters.

Chapter 3 introduces the design methodologies for various switch converter topologies, along

with the associated modelling processes. In the boost converter section, a method

decomposing the circuit based on the switch's conducting state is used to analyse typical

current and voltage waveforms. The class EF2 inverter section makes a series of assumptions

to model class EF2 inverters, employing descriptive functions. For LLC converters design

section, fundamental mode analysis techniques are applied in their simulation and design.

Chapter 4 establishes a cyclic-mode model for class EF inverters and applies it to the optimal

switching operations class EF2 inverters which piezoelectric transformer (PT) as auxiliary

resonant branch. The effectiveness of the cyclic-mode model through validation with SPICE

simulation models. Additionally, the feasibility of replacing traditional LC series branch with

PT is proven by comparing the results with practical models.

Chapter 5 introduces a technique using the Newton-Raphson method with the cyclic-mode

model for determining the steady-state operating conditions of switch converters. This

technique uses the Newton method, based on numerical Jacobian matrices, to correlate the

cyclic-mode operating conditions with the mode switching conditions of the converter.

Through iteration, it determines the converter's steady-state operating conditions. The method

was tested under suboptimal operation in a class E inverter.

Chapter 6 describes the main contribution of the thesis which is a new technique to evaluate

RMS values based on cyclic-mode modelling. As previous chapters have already described

how the cyclic-mode can be used to integrate signals through the use of an augmented model,

thereby providing the mean (average) section of the RMS calculation. The squared section of

the RMS calculation is determined by linearising term that is somewhat similar to x2.
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However, this is not straightforward, and it is necessary to use Hadamard and Kronecker

products of matrices and vectors to obtain an algebraic solution. Although the derivation

process is detailed and lengthy the final set of equations (termed the cyclic-RMS framework)

can be used by just providing the framework with piecewise linear models for each mode, the

mode duration times and the cyclic-mode initial condition thereby, resulting in a generalized

expression applicable to various switch converters.

Chapter 7 applies the Newton method techniques described in Chapter 5 and the RMS

cyclic-mode modelling techniques from Chapter 6, sequentially to a boost converter

operating in discontinuous mode. Initially, it uses the Newton method and cyclic-mode

modelling to determine the steady-state operating conditions of the converter under given

parameter conditions. Subsequently, it constructs the RMS cyclic-mode model of the

converter based on these steady-state operating conditions. The effectiveness of these two

techniques is validated through SPICE simulations and practical models.

Chapter 8 introduces a simulation technique named 'cyclic RMS technique', which combines

the Newton method from Chapter 5 with the RMS cyclic-mode modelling technique from

Chapter 6. This technique accurately predicts the signal waveforms and precise RMS values

of DC-input switch converters operating in multiple modes. This technique is sequentially

applied to a class E inverter in suboptimal operation, a class EF2 inverters in suboptimal

operation, and an LLC converter in discontinuous operation condition. The effectiveness of

this simulation technique is validated through both simulation models and practical

experiments.
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Chapter 2. Review of switching converters, their modelling

and applications

This Chapter reviews the classification of switching converters, various topologies, their

operating principles, and applications. It also covers the latest techniques in converter

modelling, including their fundamental principles and characteristics. This Chapter provides

readers with the foundational knowledge needed to understand the current research in this

field. Some of this content will be utilized in subsequent Chapters.

2.1 Introduction

Switching converters, fundamental to modern electronics, have experienced a significant

increase in applications, extending from everyday consumer devices to advanced industrial

machinery. Their versatility and efficiency are highlighted by the variety of available

topologies, each meticulously tailored to specific operational needs and characteristics.

Switching converters have a broad spectrum of applications, playing a pivotal role in

powering electric vehicles [2.1], battery charging [2.2], and optimal power management [2.3].

Another growing area is the integration of renewable energy sources, like solar photovoltaic

(PV) systems, into microgrids, which necessitates efficient power conversion and integration

[2.4]. Additionally, the introduction of wide-bandgap materials such as silicon carbide (SiC)

in power devices has significantly expanded the capabilities of switching converters.

SiC-based devices are able to operate at higher switching speeds, voltages, and temperatures,

thereby offering enhanced efficiency and power density across various applications, further

broadening the range of switching converter applications [2.5].

As the technological landscape advances, so does the need for more sophisticated and

efficient power conversion solutions. This demand has placed converter design at the

forefront, where engineers contend with a complex array of parameters. The design of these
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converters varies widely, influenced by numerous specific parameters such as output voltage

and power [2.5]-[2.8], as well as optimization objectives like size [2.9] and cost [2.10], or a

combination of those objectives [2.11][2.12]. These parameters, encompassing output voltage

and power specifications to complex optimization goals, are fundamental to any converter

design.

At the heart of converter design process is the accurate estimation of currents and voltages

during operation. These estimations are crucial, impacting the converter's performance,

reliability [2.13], and lifespan [2.14]. For example, the loss in an inductor is intricately linked

to the frequency and shape of its current waveform. As the field of power electronics expands,

traditional modelling techniques, while foundational, often fail to adequately capture the

subtleties of contemporary converter topologies. This has led to the development of advanced

modelling techniques, with cyclic-mode modelling standing out as a notable advancement

[2.15].

This review explores the operational principles of selected hard-switching and resonant

converters and outlines the current mainstream methods of switching converter modelling.

The aim is to provide a comprehensive understanding of the existing approaches to switching

converters modelling and their application, highlighting their benefits and limitations.

2.2 Hard switching converters

2.2.1 Introduction

Hard-switching converters, a cornerstone in modern power electronics [2.16], function by

toggling switching devices between on and off states under conditions of non-zero voltage or

current. This operational mode, generally simpler and more cost-effective than soft-switched

alternatives, presents unique challenges. The simplicity of hard-switching converters, marked

by fewer components, leads to straightforward design and implementation, making them

well-suited for a wide range of applications.
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In renewable energy, particularly in high-gain DC-DC converters like boost converters,

hard-switching converters have established a significant presence. For example, in

photovoltaic (PV) systems, assessments of hard-switching converters with Silicon and GaN

switches have demonstrated that GaN-based options provide enhanced efficiency and power

density [2.17].

However, it is important to note that the inherent simplicity of hard-switching converters

often leads to increased switching losses [2.18], particularly at higher frequencies. This not

only impacts system efficiency and complicates thermal management but also presents

challenges like electromagnetic interference (EMI) in applications [2.19].

2.2.2 Classification of hard-switching converters

In contemporary power electronics, traditional hard-switching converters are key components,

each designed for specific voltage transformations. Based on their input and output voltage

characteristics, these converters can be broadly classified into four categories:

1. DC-DC Converters: These converters are designed to adjust DC voltage levels. The buck

converter, a prime example, efficiently reduces a higher input voltage to a lower output

level. Cui, et al., [2.20] demonstrate their application in complex systems, including

microprocessors and LiDAR.

2. DC-AC Converters: These converters transform DC voltage into an AC waveform.

Single phase full-bridge inverter, as detailed by Zhu, et al., [2.21], is a notable example,

characterized by its four-switch configuration that facilitates DC to AC conversion.

3. AC-DC Converters: Tasked with converting AC voltage into a rectified DC output, the

Full-Wave Rectifier is a prime example. Using four diodes, it is mainly used in power

adapters and battery charging systems[2.22].
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4. AC-AC Converters: These converters are designed to change one AC voltage frequency

to another. The Cycloconverter, for instance, directly converts a high-frequency AC

input to a lower frequency AC output, eliminating the need for an intermediary DC stage

[2.23].

2.2.3 Buck converter

2.2.3.1 Introduction

The Buck Converter, commonly known as the step-down converter, is a fundamental example

of the DC-to-DC converter family. Its primary role is to decrease voltage levels while

simultaneously increasing current from input to output. As a key member of the

switched-mode power supply (SMPS) systems, it is renowned for its exceptional power

efficiency can exceeding 90% [2.24]. Buck converters, along with their counterparts, boost

converters, are integral to power electronics. Their evolution, marked by significant

technological advancements, has led to their widespread use in various sectors, notably

telecommunications and automotive electronics [2.25].

2.2.3.2 Structural Overview

As depicted in Fig. 2.1, a buck converter typically comprises semiconductor components,

such as a diode D and a transistor switch S. The converter also includes energy storage

elements, namely a capacitor C and an inductor L. The inductor L is crucial in energy transfer,

storing energy when the switch is on and releasing it when off. To reduce voltage ripple,

capacitive filters are often integrated at the converter's output (load-side).
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Fig. 2.1. Circuit diagram of a buck converter

2.2.3.3 Operational Dynamics

Buck converters operate predominantly in two operation condition: Continuous Conduction

Mode (CCM) and Discontinuous Conduction Mode (DCM) [2.26] . In CCM, the inductor

current does not drop to zero, maintaining a constant flow of current throughout the switching

cycle and resulting in a stable output voltage and current. However, this mode may lead to

increased switching losses. In contrast, in DCM, the inductor current reduces to zero during

each cycle, resulting in intermittent current flow. While CCM provides stable output due to

continuous current flow, it might incur higher switching losses. DCM, with its intermittent

current, can lead to output instability but usually has lower switching losses. The efficiency

of a buck converter depends on its conduction mode, with transitions between CCM and

DCM largely dictated by the load conditions.

2.2.3.3.1 Continuous Conduction Mode Operation analysis

CCM is commonly chosen for applications with higher inductor currents, as it ensures that

the inductor current remains non-zero throughout the switching cycle. The operational

dynamics of this condition can be segmented into two phases: the 'switch turned on' state

(also referred to as Mode 1) and the 'switch turned off' state (or Mode 2), as illustrated in Fig.

2.2,
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Fig. 2.2. Buck converter’s switch state, inductor current iL and inductor voltage vL
waveforms in CCM operation

The rate of change of �� can be calculated by the following equation,
d��

dt
=

��

�
(2.1)

Mode 1 (�0 ≤ � < �1): In this phase, the switch is on. The input voltage source supplies

power to both the load and the inductor, causing the inductor to store energy and its current to

increase linearly. Concurrently, the diode is reverse-biased. The increase in inductor current

during the conduction state is given by:

∆�� on =
��

�
�on =

�in − �out

�
�on (2.2)

where �on = �on�sw.
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Mode 2 (�1 ≤ � < �2): In this operational phase, the switch is turned off while the diode

transitions to a forward-biased state. The energy previously stored within the inductor is

channelled through the diode to supply the load. This results in a linear decrement in the

inductor current. If the forward voltage drop of the diode is ignored, the change in inductor

current is

∆�� off =
��

�
�off =−

�out

�
�off (2.3)

where

�off = �off�sw = (1 − �on)�sw (2.4)

in this case.

Assuming that the converter operates in a cyclic steady state, then at the end of an operational

cycle �sw, the energy stored in each element is equal to the energy at the beginning of the

cycle, which means,

�� �0 = ��(�0 + �sw) (2.5)

Thus, the change in inductor current �� should be consistent in both modes,

∆�� on + ∆�� off = 0 (2.6)

Substitute (2.2) and (2.3) into (2.6) ,
�in − �out

�
�on −

�out

�
�off = 0 (2.7)

Substitute (2.4) into (2.7) gives ratio between voltage gain and duty cycle of buck converter

under CCM ,
�out

�in
= �on (2.8)

2.2.3.3.2 Discontinuous Conduction Mode operation analysis

In DCM operation, the inductor current intermittently drops to zero during the switching

cycle. This mode often occurs in systems with lighter load current, causing the inductor's

stored energy to be fully discharged before the cycle's end [2.27]. Despite these dynamics, the

converter maintains a steady state, meaning the energy in the inductor is consistent at both the
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beginning and the end of the cycle. DCM is typically initiated under low load currents, and its

operation can be divided into three modes, as shown in Fig. 2.3.

Fig. 2.3. Buck converter’s switch state, inductor current iL and inductor voltage vL
waveforms in DCM operation

Mode 1 (�0 ≤ � < �1): The switch is turned on. Similar to CCM, the input source powers the

load and charges the inductor. The operational state of the converter in this mode is similar

with Mode 1 in CCM.

Mode 2 (�1 ≤ � < �2): When the switch is off, the energy stored in the inductor drives a

current through the diode to support the load. The inductor current reduces from its peak

value until zero during this phase. The duty cycle relevant to this mode is characterized by:

�2 = 1 − �1 − �3 (2.9)
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�3 representing the duration of Mode 3 (zero inductor current mode). As �� decreases to

zero at the end of Mode 2, the inductor current �� at the beginning of the cycle should be

equal to that at the end of Mode 2.

�� �0 = �� �2 (2.10)

Rearrangement of (2.7) gives relationship between two mode duty cycles and input and

output voltages,

�2 =
�in − �out

�out
�1 (2.11)

Mode 3 (�2 ≤ � < �3): In this phase, the switch remains off. Consequently, the energy in the

inductor is completely used up, resulting in zero inductor current. The load is now powered

solely by the energy previously stored in the capacitor, with the main circuitry in a quiescent

state, ready for the next switching cycle.

The cycle average inductor current �L is equal to the load current �out,

�L = �out =

1
2

�� max(�1 − �0) +
1
2

�� max(�2 − �1)

�sw

(2.12)

Simplifying (2.12) gives

�out =
1
2

�� max �1 + �2 (2.13)

Substituting (2.2) into (2.13) gives

�out =
(�in − �out)(�1���) �1 + �2

2�
(2.14)

Substituting (2.11) into (2.14) gives

�out =
(�in − �out)(�1���) 1 +

�in − �out

�out
�1

2�
(2.15)
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Finally, the equation for the voltage gain of the buck converter under DCM can be

formulated,
�out

�in
=

1

1 + 2� �out
�1

2�in�sw

(2.16)

Based on (2.8) and (2.16), it is evident that in both DCM and CCM, the output voltage

modulation is primarily governed by the switch's duty cycle. Adjusting this duty cycle allows

the buck converter to effectively regulate the output voltage.

The transition point between DCM and CCM operation occurs when the inductor current

reaches zero precisely at the end of the switching cycle. The operating state of the converter

now conforms to both CCM and DCM criteria. Hence, at the transition point, according to

(2.13) and (2.4) the output current �out,lim is given by,

�out,lim =
1
2

�� max �1 + �2 =
1
2

�� max (2.17)

Substituting (2.2) into (2.17), �out,lim become to,

�out, lim =
�in − �out

2�
�on (2.18)

Therefore, by substituting (2.4) into (2.18), we can determine the load current at this

transition point. This load current represents the threshold at which the converter transitions

from DCM to CCM.

�out, lim =
�in�sw 1 − �1 δ1

2�
(2.19)

where δ1 in this formula represents the duty ratio when the switch turned on.
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2.2.4 Boost converter

2.2.4.1 Introduction

A boost converter, a type of DC-DC power converter, is designed to step up voltage (while

stepping down current) from its input (supply) to its output (load). It consists of several

fundamental components that work in tandem to achieve the desired voltage increase. Each

component plays an integral role in the converter's functioning [2.28].

2.2.4.2 Structural overview

Fig. 2.4. Circuit diagram of a boost converter

The circuit diagram of a boost converter is illustrated in Fig. 2.4. The fundamental

components of a boost converter and their respective functions are as follows:

Inductor L: An essential component, the inductor stores energy in a magnetic field when the

switch is on. When the switch is off, the stored energy is released, resulting in a higher output

voltage. The inductor's resistance to current variations is crucial in the voltage boosting

process.

Capacitor C: The capacitor serves dual purposes: energy storage and voltage smoothing. It

absorbs energy from the inductor, ensuring a stable output voltage. By filtering voltage
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fluctuations, the capacitor maintains a nearly constant output regardless of input or load

variations.

Diode D: In a boost converter, the diode prevents current backflow from the output to the

input when the switch is on. When the switch is off, the diode conducts, allowing the inductor

to release its stored energy to the output.

Switch S: Typically, a transistor, this switch is central to the boost converter's control

mechanism. The operation of the converter is regulated by controlling the switch. When the

switch is on, energy is stored in the inductor; when it is off, this stored energy, along with the

input, is transferred to the output, leading to a voltage boost.

In a boost converter, the precise coordination and timing of these components are critical. The

duration for which the switch turned on significantly influences the voltage boost achieved.

2.2.4.3 Operating Principle

The boost converter operates based on two primary states: the "switch turned on" state and

the "switch turned off" state. The converter's behaviour in these states, combined with the

roles of its primary components, determines its performance and the resulting output voltage.

The converter's operation can be categorized into two operation conditions: Continuous

Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM).
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2.2.4.3.1 Continuous Conduction Mode Operation analysis

Fig. 2.5. Boost converter inductor current iL and inductor voltage vL waveforms in CCM
operation

In CCM operation the operation waveform is shown in Fig. 2.5, similar with buck converter,

the operation can be split into two modes:

Mode 1(Switch on state) �0 ≤ � < �1 : During this phase, the switch is turned on, allowing

the input voltage to be applied across the inductor. The inductor current increases linearly as

it stores energy. This change in inductor current can be mathematically represented as:

∆�L =
�DC�on

�
(2.20)

The diode is reverse biased during this phase, preventing the inductor current from flowing to

the output.
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Mode 2 (Switch off state) �1 ≤ � < �2 : With the switch turned off, the inductor releases its

stored energy to the load. The relationship between the output voltage, input voltage, and the

change in inductor current is given by:

�out = �DC + �
∆�L

�off
=

�DC

1 − �on
(2.21)

The diode becomes forward biased, allowing the energy to be transferred to the output. The

capacitor smoothens the output voltage by absorbing the excess energy and releasing it when

required, ensuring a steady output.

2.2.4.3.2 Discontinuous Conduction Mode operation analysis

In DCM operation, calculating the converter's output gain becomes challenging due to the

unknown duration of Mode 3, which is characterized by zero inductor current. The example

inductor current waveform of in DCM operation is illustrated in Fig. 2.6. To derive the

expression for voltage gain in DCM, an initial analysis of Mode 1 is required.

Fig. 2.6. Inductor current of a boost converter in DCM operation

When the switch turned on, similar to CCM operation, the inductor stores energy during this

state. The increase in its current can be expressed as follows:
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∆�L on =
�DC�1

�
(2.22)

After the switch is turned off, the inductor current drops to zero at the end of Mode 2 which is

�2 = �1 + �2 �sw. So, the variation of inductor current �L in Mode 2 can be obtained as

∆�L off =
�out − �DC �2�sw

�
(2.23)

The relationship between the duty cycles of the two modes and the input and output voltages

can be expressed as follows:

�2 =
�DC�1

�out − �DC
(2.24)

Consequently, the output current at the load is equal to the integral of the total current passing

through the diode �D, divided by the duration of the cycle.

�out =
�D

�sw
=

�L max�2

2
(2.25)

Substituting (2.23) and (2.24) into (2.25) gives,

�out =
�DC

2 �1
2�sw

2�(�out − �in)
(2.26)

Thus, the voltage gain is given by rearrange (2.26),

�out

�DC
= 1 +

�DC�1
2�sw

2��out
(2.27)

Then according to �out = �out
�L
, could rewrite the output voltage gain in (2.27),

�out

�DC
=

1 + 1 +
4�1

2���sw

2�
2

(2.28)
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In DCM operation, the output voltage tends to be more sensitive to variations in load and can

be less predictable compared to CCM. This sensitivity often necessitates the implementation

of control strategies to maintain operation in CCM, particularly in applications that demand

precise voltage regulation.

In both DCM and CCM, the diode is crucial for ensuring unidirectional current flow.

Meanwhile, the capacitor serves as an energy reservoir, storing and releasing energy as

needed to maintain a stable and smooth output voltage. The Boost Converter's versatility in

power electronics stems from its ability to achieve desired voltage amplification by adjusting

the duty cycle. Feedback control, often employing a PID controller, is utilized to fine-tune the

duty cycle, ensuring the output voltage remains consistent despite changes in input voltage or

load [2.28].

For hard-switching converters, it is essential to pay close attention to the average inductor

current and average output voltage. These parameters significantly affect the converter's

behaviour, efficiency, and stability. Accurate estimation of these averages is vital for

optimizing converter performance and extending its operational lifespan.

2.3 Resonant converters

2.3.1 Introduction

Hard switching is common in single-switch power supply circuits, which are widely used due

to their simplicity, fewer components, and low manufacturing costs. Ideally, in

hard-switching converters, the transition between switch states occurs instantaneously. Hard

switching involves a switch turning off by moving from a high current state to zero under

significant voltage, and turning on by transitioning from a high voltage state to zero while a

significant current starts flowing. This transition time is practically instantaneous.
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In practical applications, however, hard switching faces significant challenges. A major issue

is the discharge of parallel capacitance (whether parasitically present on the switch or

discretely present in the circuit), which reduces the converter's efficiency. When the switch

turns on with non-zero voltage across it, energy stored in the capacitance is lost as discharge

current. Additionally, turning on the switch at high voltage increases power dissipation. This

dissipation grows with higher operating frequencies, exacerbated by the trend towards

smaller, higher-frequency power electronics, where switching losses and parasitic

components become increasingly significant [2.29].

To address the challenges of hard switching, engineers have developed alternatives like

resonant converters. These inverters utilize resonant circuits to achieve Zero Voltage

Switching (ZVS) and Zero Current Switching (ZCS) [2.30]-[2.32], activating the switch

when both the voltage across it or the current through it are near zero. This approach

enhances efficiency in both the switch and the inverter, a technique referred to as soft

switching.

2.3.2 Characteristics and classification of resonant converters

Resonant converters, crucial in modern power electronics, come in various types, each with

unique features and benefits for specific applications. Resonant converters are mainly

categorized by the arrangement of their resonant tank elements: Series Resonant Converters

(SRC) and Parallel Resonant Converters (PRC), known as two-element resonant converters;

Series-Parallel Resonant Converters (LCC or LLC), known as three-element resonant

converters; and CLLC converters, known as multi-element resonant converters [2.33].
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Fig. 2.7. Example circuit diagram of a series resonant converter

SRC is a key category in power converters, as outlined in [2.33]. An example of this circuit

layout is illustrated in Fig. 2.7. Characterized by its series connected resonant components,

the SRC configuration uses ZVS or ZCS, offering multiple operational advantages [2.34].

Notably, the SRC excels in significantly reducing the switching losses common in power

converters. These attributes enhance the SRC's operational efficiency, making it ideal for

energy conservation scenarios [2.35]. As a result, the SRC has a high-power density, as cited

in [2.34]. However, the SRC is not without limitations. For example, output voltage

modulation requires a wide frequency variation range, and adjusting the voltage under

no-load or light-load conditions is challenging, as indicated in [2.33].

Fig. 2.8. Example circuit diagram of a parallel resonant converter
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In PRCs, the resonant elements are configured in parallel. An example of this circuit diagram

is illustrated in Fig. 2.8. Although PRCs and SRCs both facilitate ZVS, their operational

characteristics differ significantly. A notable feature of PRCs is their inherently high current

levels. While these high currents pose challenges, such as thermal management and increased

component stress, they are advantageous for applications requiring high current delivery, as

emphasized in [2.36]. Compared to SRCs, PRCs have some drawbacks. Under light load

conditions, PRCs exhibit increased circulating currents, leading to reduced efficiency. The

resonant circuitry can cause increased switching losses, resulting in overall reduced efficiency,

as explained in [2.37].

Fig. 2.9. Example circuit diagram of three-elements resonant converter-LLC converter

Series-parallel resonant converters, such as LCC or LLC converters, combine the attributes of

both SRC and PRC, creating a hybrid configuration, An example of this circuit layout is

illustrated in Fig. 2.9. This classification aims to take advantage of the merits of both

converter types, providing a balanced approach in performance and applicability. LCC or

LLC converters, which combine the high efficiency of SRCs with the strong current

capability of PRCs, are well-suited for a broader range of applications requiring this

synergistic combination of features.

In comparison with other resonant converters, LCC or LLC converters offer numerous

advantages, including a wide voltage range, increased efficiency, and reduced

Electromagnetic Interference (EMI), as mentioned in [2.38]. However, it is important to
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consider the complexities of these converters. LLC resonant converters, for instance, have

more complex designs due to the need to optimize resonant components for peak efficiency,

as highlighted in [2.39]. Their voltage gain is also inherently limited, posing a challenge in

applications requiring high voltage gains. LLC converters are notably sensitive to frequency

variations [2.40], demanding precise simulation models.

The CLLC resonant converter combines the benefits of LLC converters in both power

directions. It outperforms the traditional Dual Active Bridge (DAB) converter in efficiency

and power density, offering high power density and a wide regulation range, among other

benefits [2.41]. However, analysing the CLLC resonant converter is challenging due to its

complex multi-resonant nature and multiple storage elements.

In conclusion, resonant converters have a broad classification, with each type suited to

specific operating requirements and application environments. This classification is crucial

for selecting and applying resonant converters in power electronic systems to ensure optimal

system performance.

2.3.3 Class E inverter

2.3.3.1 Introduction

In modern times, where wireless infrastructure increasingly replaces wired systems, the

demand for high-frequency, low-loss power amplifiers in wireless networks is growing [2.42].

Resonant inverters, especially class E, EF, and E/F types, are emerging as optimal for

megahertz-switching power applications. Introduced by Gutmann in 1980 [2.43], class E

inverters are known for their high efficiency in the MHz range, making their design at such

frequencies and output powers less complex than expected [2.44].
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The growing interest in class E inverters stems from their ability to perform ZVS or ZCS in

each switching cycle, significantly reducing switching losses and enabling higher frequency

operation and enhanced energy output compared to other inverters. The benefits of class E

inverters include high efficiency leading to lower heat generation and reduced cooling needs

[2.45]. Its design simplicity lowers manufacturing costs and improves reliability. They are

versatile and suitable for a variety of applications from RF amplifiers to wireless power

transfer systems [2.46].

However, class E inverters have limitations. While their design is simple in terms of

components, optimizing peak performance is complex. Their performance is

frequency-dependent, with deviations from the design frequency leading to efficiency losses.

Harmonic generation necessitates filtering for clean power output, and their high switching

voltage stress demands careful device selection [2.47].

2.3.3.2 Operation principle

Fig. 2.10. Circuit diagram of a class E inverter

The class E inverter circuit, depicted in Fig. 2.10, comprises a power MOSFET functioning

as switch �, a series-resonant circuit consisting of �� − �� − ��, a shunt capacitor �0, and a

choke inductor �in. The switch � operates on and off at the operation frequency �sw.The

operation frequency �sw should exceed the resonant frequency of the ���� series-resonant
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circuit �0, which at �sw behaves like an inductive load, necessary for achieving ZVS

operating condition [2.48].

Ideal ZVS conditions in the inverter are attainable under optimal operation, which requires

precisely selected components. However, due to excessive costs, suboptimal operation is

often chosen, allowing for a broader selection of circuit loads.

Let �opt represent the load at optimal operation. If �� is less than �opt, the current

amplitude through the resonant circuit increases, resulting in a higher maximum switch

voltage ��(max) than in optimal conditions. Consequently, the voltage drops across shunt

capacitor �0 rises, and the switch voltage is below zero at turn-on. To achieve ZVS in this

scenario, an antiparallel diode is connected with the switch. This allows the duty ratio to vary

within certain limits. Once the switch voltage reaches the antiparallel diode's conduction

voltage − ��, the diode activates. This conduction clamps the switch voltage to a lower level,

typically the forward voltage drops of the antiparallel diode, reach a condition close to ZVS

upon switch activation.

However, if the load is greater than the �opt the amplitude of the current through resonant

circuit is lower than in optimum operation, so the voltage drop across to the shunt capacitor

�0 will decrease and the maximum switch voltage ��0 is lower than it in optimum operation,

voltage drop across the shunt capacitor �0 will decrease and the switch voltage is higher

than zero at turn-on. This case can be solved by impedance matching [2.48].

The operation of the inverter is divided into three modes during a single switching period, as

illustrated in Fig. 2.11.
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Fig. 2.11. Class E inverter example switch voltage waveform of suboptimal operation

Mode 1 (M1) �0 ≤ � < �1: The switch � is on for a period �1/�sw. During this mode, both

the switch voltage and the capacitor �0 voltage are zero, and the input voltage �DC is

applied to the choke inductor ���.

Mode 2 (M2) �1 ≤ � < �2: In this mode, the switch S is off. Current flows from ��� into �0

and the main resonant branch. The current ���� equals the sum of ��0 and ���. As current

flows into the resonator, its voltage rises from zero to a maximum and then decreases.

Mode 3 (M3) �2 ≤ � < �3: S remains off, and the voltage �� drops below zero, activating S

antiparallel diode D.

Fig. 2.12. Class E inverter example switch voltage waveform of optimal operation
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If the switching frequency �sw and the duty ratio �1 are chosen correctly, the inverter

operates in only two modes, alternating between M1 and M2 (M1-M2-M1-M2-…), as shown

in Fig. 2.12. ZVS is achieved when ��0(�0 + �sw) = 0. However, if ��0 drops below zero

before � = �0 + �sw, activating the antiparallel diode of the switch �, the circuit enters

Mode 3. The operational sequence then becomes M1-M2-M3-M1…, as illustrated in Fig.

2.11. In this sequence, �0 marks the cycle's beginning and the start of Mode 1. The transition

point �1 = �1 ��� indicates the end of Mode 1 and the beginning of Mode 2. The end of

Mode 2 is marked by �2. The switch antiparallel diode starts conducting at �2, and the cycle

ends at �3 when S is switched on again.

After examining the operational modes of class E inverters, it is essential to address the

challenges and limitations inherent in this technology. While class E inverters are renowned

for their efficiency and suitability for standard operations, they are not without their

drawbacks. A notable concern is the potential for the maximum switch voltage to exceed the

input voltage significantly. During typical operation, this voltage can surge to over 3.5 times

the input voltage. In scenarios involving very high frequencies, the non-linear variation in

switch capacitance can cause the voltage to rise even further, up to 4.4 times the input voltage,

as noted in [2.49]. These high voltages impose considerable stress on the switch. Moreover,

class E inverters may produce less power compared to other resonant inverters when

subjected to the same voltage and current stress conditions. These issues highlight the critical

need for strategies to mitigate voltage stress on the switch.

2.3.4 Class EF inverter

2.3.4.1 Introduction

Class E inverters, known for their ZVS capability particularly in the MHz range, are highly

efficient [2.44]. This feature ensures minimal energy losses during operation. However, these

inverters face a significant challenge: the high voltage stress on switches [2.50]. Elevated

voltage levels require switches and shunt capacitors with higher voltage ratings, resulting in

increased manufacturing costs.
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Fig. 2.13. Example of class F amplifier [2.51]

The class F amplifier architecture, shown in Fig. 2.13, were primarily developed to enhance

the efficiency of class-A/B and class-B designs. Class F amplifiers incorporate resonant

networks to shape output waveforms, enhancing efficiency by reducing voltage and current

overlap. Additional resonators in series with the load create open circuits at certain low-order

odd harmonics. As more harmonic blocking filters are added, the waveform shifts from

sinusoidal to square. In contrast, class 1/F topology open-circuits even harmonics while

short-circuiting odd ones. The novel integration of class F or 1/F amplifiers with a class E

inverter was first proposed by Kee in 2002 [2.51]. Kee’s work suggested reducing voltage

stress by adding a resonant network parallel or series with the load but lacked detailed design

equations.

To address voltage stress in class E inverters, hybrid class EF inverters were developed.

These combine a series LC branch in parallel with the switch of a class E inverter. Tuning the

auxiliary LC circuit's resonant frequency helps control peak switching voltages.
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Fig. 2.14. Example circuit diagram of a class EF2 inverter

Kaczmarczyk's research [2.52] confirmed the superior performance of class EF2 inverters,

the circuit diagram is shown in Fig. 2.14. Adjusting the shunt auxiliary branch's resonant

frequency to double the operating frequency enhanced power output compared to class E/F3

(the shunt auxiliary branch resonates at three times the inverter operating frequency) and

class E inverters. The class EF2 inverter stands out for its reduced harmonic content,

improving efficiency and EMI profile compared to class E and E/F3 inverters. Aldhaher, et

al., [2.53] further explored the voltage reduction mechanism in class EF inverters, showing

that peak switching voltage in class EF2 inverters could be reduced to about twice the input

voltage.

The class EF2 inverter represents a significant advancement in inverter technology,

effectively addressing both voltage stress and harmonic content issues prevalent in traditional

designs.

2.3.4.2 Operation principle

Fig. 2.14 illustrates the circuit of a class EF2 inverter. In this design, �s and �s form the

main resonant branch, ensuring a sinusoidal current through the load �L. The MOSFET

switch � operates at a frequency �sw, close to the �s�s resonant frequency of �0 =
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1
2π �s�s

and with a duty cycle �1. The input inductor �in acts as a filter, allowing only

DC current �Lin from the input voltage �DC. �m and �� create an auxiliary resonant

branch. This auxiliary branch aims to reduce the MOSFET voltage ��0 by injecting a current

into �0 at a frequency of 2���.

Fig. 2.15. The class EF2 inverter shunt capacitor voltage vC0 waveform at optimal
operation (a) and suboptimal operation (b)

The operation of the class EF2 inverter is similar to that of the class E inverter and can be

broken down into three modes during a single switching period, as shown in Fig. 2.15. Define

�0 as the cycle's start and the start of Mode 1, �1 as the end of Mode 1 and start of Mode 2,

�2 as the end of Mode 2 and start of Mode 3, and �3 as the end of Mode 3 and the cycle.

Mode 1 (M1): At � = �0 MOSFET S1 is switched on for a duration �1 − �0 = �1�sw. Since

S is on, ��0 = 0 and so ���� = �DC. Although ��0 = 0 the current ��� continues to flow

as �� and �� are in resonance at a frequency 2�sw.
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Mode 2 (M2): At � = �1, S1 is switched off. A current ��0 = ���� − ��� − ��� flows into �0

and its voltage increases from zero to a maximum value and then decreases. Eventually the

��0 falls below 0 V (actually − ��) turning on the MOSFET's anti-parallel diode.

�C0 �2 = ��1 �1 + �2 �sw =− �� (2.29)

The duration of Mode 2 is �2 − �1 = �2�sw.

Mode 3 (M3): Switch S’s anti-parallel diode is forward biased, and this clamps the shunt

capacitor voltage to the on-state voltage drop of the body diode, �C0 =− �d. At the end of

Mode 3, the switch voltage rises to zero to maintain steady state operation.

Similar to the operation of a class E inverter, when optimized parameter values are selected

for the class EF2 inverter, it operates in a cycle of Modes M1 and M2, alternating in a

pattern of M1-M2-M1-M2.

ZVS is achieved if ��0 equals zero at the point of ���, shown in Fig. 2.15a. However, if

��0 falls below zero before ���, it activates the antiparallel diode of switch S, transitioning

the circuit into Mode 3. This alteration changes the operating sequence to M1-M2-M3-M1, as

illustrated in Fig. 2.15b.

2.4 Modelling methods of converters

This section introduces three primary modelling approaches for power electronic converters:

Fundamental Mode Analysis (FMA), State-Space Method (SSM), and State-Space-Averaging

Method (SSAM). It outlines the modelling processes, principles, and distinct characteristics

of each method.
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2.4.1 Introduction

In power electronics, the significance of accurate modelling techniques cannot be overstated.

As power electronics emerges as a foundational technology for contemporary power systems,

the role of modelling in predicting and optimizing system performance becomes paramount

[2.54]. Power converters are increasingly employed across diverse applications, each with

varying levels of importance in power systems. Optimal decision-making for the system

manufacturing, control, operation, and maintenance necessitates a comprehensive

understanding of their operation within these systems.

Accurate modelling is essential in the converter design process. Neutral-point-clamped

(NPC)-based converters highlight the significance of capacitor voltage balancing for the

reliability of the converters [2.55]. Additionally, the design of high-gain three-phase

current-fed push–pull DC–DC converters underscore the reliance on the quality of waveform

characteristics for optimal performance [2.56].

Importance of modelling in power converters are given below:

1. Predictive performance: Modelling allows for the prediction of how power electronic

systems will perform under different conditions. This foresight is crucial for optimizing

systems before they are physically produced.

2. System design: A comprehensive modelling framework assists engineers in identifying

crucial parameters and making informed choices about components.

3. Control strategy development: Precise models are essential in developing and validating

control strategies, especially for complex power electronic systems [2.57].

4. Fault diagnosis: Comparing models with actual systems helps in identifying and resolving

potential problems or malfunctions [2.58] .
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2.4.2 Fundamental Mode Analysis

2.4.2.1 Definition and Basic Concepts

Fundamental mode analysis (FMA), also known as first harmonic approximation (FHA), is

an important technique in power electronics that converts nonlinear resonant circuits into

sinusoidal AC circuits, and the use of sinusoidal steady-state circuit analysis simplifies the

analysis and calculations. It is mainly used to analyse and simulate the steady-state behaviour

of a system. The essence of FMA lies in its focus on the primary or 'fundamental' components

of the signal in system, these typically include the dominant components of a system's

response. By dissecting these components, engineers can acquire a deeper understanding of

the system's dynamic behaviour, anticipate its performance under various conditions, and

consequently devise more effective control strategies [2.59].

In power electronics modelling, FMA typically excludes the effects of higher-order

harmonics or other non-fundamental frequency components. The primary objective of FMA

is to simplify the analysis of complex systems by focusing only on the most critical frequency

responses, capturing the system's essential behaviours and characteristics.

In the context of resonant converters or other power electronic systems, FMA equips

engineers with the tools to comprehend and predict the performance of systems operating

predominantly at their base frequency. This methodology is particularly pertinent for systems

that primarily operate at their fundamental frequency, where the influences of higher-order

harmonics can be disregarded. In essence, FMA offers a simplified avenue for understanding

and dissecting the core behaviour of power electronic systems without delving into all

potential complexities.

The FMAmethod only allowing the fundamental harmonic to transmit energy. In this process,

the frequency response of the resonant circuit modifies the input voltage spectrum to generate

the desired output spectrum. By aligning the input voltage frequency with the resonant

circuit's centre frequency, the fundamental harmonic is closely matched. This attenuation of
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higher-order harmonics results in the current through the resonant circuit become a sinusoidal

wave.

The basic assumptions of FMA are:

1. The inductors, transformers, capacitors, and switches of a resonant circuit are ideal

components.

2. Neglect the high harmonics in the circuit, only the fundamental wave transmits energy.

3. The output filter capacitance value is large enough, and the output voltage has no ripple.

Under the principles of Fourier analysis, a periodic function �(�) can be expressed as an

infinite summation of sines and cosines:

� � = �0 +
�=1

∞

(�� cos (��sw� )� + �� sin (��sw� )) (2.30)

where � is harmonic order and �sw is angular switching frequency. So, the Fourier

coefficients are given by [2.60],

�0 =
1

�sw −�sw
2

�sw
2

� �� dt (2.31)

�n =
2

�sw −�sw
2

�sw
2

� �� cos (��sw� ) dt (2.32)

�n =
2

�sw −�sw
2

�sw
2

� �� sin (��sw� ) dt (2.33)
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FMA's effectiveness is based in the band-pass filter response of the resonant circuit, which

ensures that only a specific band of frequencies contributes power to the output. Based on the

waveform's symmetry properties, and assuming that only its fundamental frequency

component flows through the circuit, the relevant coefficients are:

�1 = � �
2
π cos (�sw�) (2.34)

and

�1 = � �
2
π sin (�sw�) (2.35)

Take a DC-DC resonant converter as an example to introduce the basic concept of FMA, a

classic DC-DC resonant converter can be divided into three main parts, switching circuit,

resonant circuit and rectification and filtering circuit, as shown in the figure, the switching

circuit The input DC signal is converted to a square wave signal, and the higher harmonics

are filtered out due to the resonant circuit. The input voltage to the resonant circuit is a square

wave, but only sinusoidal current flows through the resonant circuit. The input voltage to the

rectifier is a square wave signal and the current is sinusoidal. It is assumed that only the

fundamental component of the switching frequency ��� is fed into the resonant tank.

Fig. 2.16. Simplified circuit of a DC-DC resonant converter topology

The switching circuit converts the DC voltage to a high-frequency square wave, which can be

achieved by using the Fourier series introduced earlier to expand the square wave voltage so

as to obtain the fundamental component of the square wave voltage, thus realising the
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switching circuit as an equivalent AC voltage source. Then the resonant circuit filters out the

higher harmonics so that the current in the resonant cavity is a sinusoidal waveform, and the

sinusoidal frequency is the switching frequency. Finally, the rectifier input voltage is square

wave, current is sinusoidal. Assuming that the load is resistive, continue to use the Fourier

series to expand the square wave voltage to obtain its fundamental component, thus realising

the combination of the rectifier-filtered part and the DC load part is equivalent to an AC load.

This enables the equivalence and simplification of the entire converter circuit. This enables

the derivation and calculation of the converter gain. It should be noted that the FHA has

almost no error when switching frequency equal to resonant frequency, but there is an error

when the switching frequency deviates from (above or below) the resonant frequency, and the

larger the frequency deviation, the larger the error.

2.4.2.2 Advantages and Limitations of FMA

FMA has emerged as a valuable tool in the analysis of power electronic systems. Like any

analytical method, FMA presents both advantages and limitations that influence its

applicability and effectiveness in various scenarios.

Advantages:

1. High efficiency: FMA concentrates on the fundamental mode analysis of the system,

ignoring the effects of other harmonic components on the system. This reduces the

computational complexity of the analysis.

2. Accurate prediction: FMA focuses on the main components of the system response and,

subject to key assumptions (i.e., switching frequency equal to or sufficiently close to the

resonant frequency of the system), accurately reflects the intrinsic behaviour and overall

performance of the system.
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3. Generality: Given the simplicity of the modelling, the model can be easily changed and

extended, thus allowing this analysis method to be applied to a wide range of power

electronic systems. From simple switching circuits to complex power systems, this

method can be used..

Limitations [2.61]:

1. Oversimplification: While it is beneficial to focus on the main model, real-world power

systems are subject to a variety of dynamics, such as load fluctuations and unstable power

supply. These may be reflected in the higher harmonics. The fundamental approximation

may not adequately capture these complex dynamic behaviours.

2. Limitations of assumptions: FMA usually operates on the basis of certain assumptions

about the system (e.g., ignoring the effects of higher harmonics) that do not always hold

in the real world, and when the system operates away from these assumptions this can

lead to errors that reduce the validity of the analysis.

3. Limitations for complex topologies: In power electronics, complex topologies (e.g.,

multistage converters and composite control strategies) may lead to complex interactions

between fundamental and other harmonics, and the fundamental approximation may not

be able to handle these complex interactions effectively.

The Fundamental mode analysis method significantly streamlines circuit analysis by utilizing

a set of assumptions, which offers a considerable speed advantage. When these assumptions

are satisfied, FMA can achieve high levels of analytical accuracy. However, its application is

limited in scenarios like resonant converters, where system regulation involves altering the

switching frequency. This adjustment makes it challenging to maintain the assumption that

the resonant and switching frequencies are equal, thus compromising FMA's accuracy.

Moreover, the method's oversimplification can fail to capture complex real-world changes,

further restricting its utility. Therefore, while FMA is a rapid and user-friendly approach for

power electronics modelling and analysis, its reliance on strict assumptions poses significant

limitations.
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2.4.3 State Space Averaging Method

2.4.3.1 Definition and Basic Concepts

State Space Averaging Method (SSAM) is a tailored, powerful technique for studying and

modelling power electronic systems. It is primarily utilized in the analysis and design of

switching power converters. SSAM combines state space analysis with time-domain

averaging, offering a distinct approach to capture the dynamic behaviour of systems with

switching components.

SSAM is a variant of State Space Method (SSM), centred around state variables [2.63]. These

variables define the system's state at any given moment and are organized into a state vector

that represents the system's current condition. State equations detail the dynamic changes of

these state variables in relation to time and system inputs [2.62]. All possible states of the

system are mapped in a multidimensional state space, where each unique point corresponds to

a specific state of the system.

Hard-switching converters' rapid on-off switching is aligned with SSAM's underlying

assumptions. These converters switch consistently in a set pattern each cycle, which SSAM

captures by averaging out the behaviour. SSAM's efficacy is most pronounced when the

converter's main dynamics occur at a much slower rate than its switching speed. By

simplifying the complexities of rapid switching, SSAM transforms rapid switching behaviour

into a more computationally manageable average model, thus reducing the complexity of

modelling. [2.64].

SSAM averages state-space equations over one switching cycle, offering a continuous-time

system representation. This simplification aids in analysing the dynamic behaviour of the

system. First are some key assumptions of SSAM:
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Periodic steady state assumption: It is assumed that the system reaches a steady state,

meaning the behaviour of the system is repetitive in each cycle. This assumption allows for

the prediction of average behaviour by analysing just a single cycle.

Switching device idealization: Switching elements are assumed to have no losses during

switching operations. This means there is no voltage drop when in the 'on' state and no

leakage current when in the 'off' state, effectively eliminating the impact of switching losses

on system performance.

Continuous conduction assumption: It is assumed that inductor currents and capacitor

voltages vary continuously and smoothly throughout the switching cycle. This simplifies the

analysis by avoiding the complexities associated with intermittent currents or abrupt voltage

changes.

Operating frequency assumption: It is assumed that the switching frequency of the system is

significantly higher than the system's dynamic frequency. This allows for the averaging out of

system state changes, enabling a typically nonlinear switching electronic system to be

described by a linear averaging model.

The method involves the following steps [2.65]:

1. Determine the state variables:

Firstly, similar to the SSM, SSAM employs state variables that represent the essential

quantities required to define the entire state of a system at any given moment. In power

electronics, these could encompass inductor currents and capacitor voltages.

2. Derivation of switching state equations:

(2.36)
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Then is needed to analyse the system for each of its switching states. For a fundamental

two-state system, this involves deriving both the on and off state equations. These equations

for each state should then be expressed in matrix form,

3. Averaging over one switching cycle:

This step involves averaging system variables over the entire switching period. The method

thereby transforms a switching system into an equivalent non-switching one, simplifying the

analysis. The duty cycle, represented by ��, is the ratio of the duration of state � (Mode �) to

the total switching period, ���.

(2.38)

4. Steady state analysis and solution

Equation (2.38) describes the evolution of the averaged state-vector from an arbitrary initial

condition �(�0) to its steady-state value. This equation captures the transient dynamics of the

system. By applying the condition �� av = 0, the steady-state value of the averaged

state-vector �av, denoted as �av,ss, can be determined.

(2.37)

�av,ss =− �av
−1�av�(�) (2.39)
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​ Through time-domain averaging, SSAM creates an equivalent continuous-time system,

capturing the average behaviour of the original switching system over a cycle. A key

assumption of SSAM is that the converter's main dynamics occur at frequencies much lower

than the switching frequency.

In power electronics, SSAM is particularly useful for analysing converters with rapid

switching system. It allows researchers and engineers to deeply understand system dynamics

without the complexity of switching processes. This approach simplifies the complexities of

switching activities and deepens insight into system dynamics. Like the SSM, SSAM's

representation adapts well to modern control design techniques, invaluable for developing

controllers for these systems.

2.4.3.2 Advantages and Limitations of the State Space Averaging Method

SSAM is an effective tool for analysing and modelling power switching converters. SSAM

simplifies the analysis of switching systems by converting them into their non-switching

equivalents, thus making them easier to study, as noted by Wang et al., [2.66]. It focuses the

average behaviour across a switching cycle, reducing complexities from switching events.

Additionally, SSAM's adaptability allows its application across various power electronic

systems with distinct switching characteristics. A key advantage is its ability to enhance

simulation efficiency, especially in large systems, by concentrating on averaged behaviours.

However, SSAM faces certain challenges. A crucial aspect of SSAM is its foundational

assumption that the primary dynamics' frequencies of the converter are much lower than the

switching frequency. This assumption becomes problematic in resonant converters modelling,

where the resonant frequency often close with the switching frequency, challenging SSAM's

core assumption and potentially leading to inaccuracies. In such cases, alternative

methodologies might be more effective in predicting resonant converters' operational states.

At the same time, due to its assumption of continuous conduction for inductor current and
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capacitor voltage, SSAM cannot be applied to systems operating in discontinuous mode. This

limitation restricts the scope of SSAM's applicability.

Then, its reliance on averaging can introduce approximations, affecting accuracy. While

adaptable, SSAM may not suit systems where instantaneous behaviours are crucial.

Additionally, implementing SSAM necessitates a comprehensive understanding of system

dynamics and the intricacies involved in the averaging process.

In conclusion, SSAM is well-suited for analysing the steady-state behaviour of switching

converters where the switching frequency significantly exceeds the system's internal dynamic

frequency. This method offers the benefits of simple analysis, speed, and accuracy. However,

the averaging process inherent in SSAM introduces significant limitations in analysing both

the transient behaviour and the internal dynamics of the system. Furthermore, the

assumptions regarding switching frequency result in poor performance when analysing

systems like resonant converters, where the switching frequency closely aligns with the

system's dynamic frequency.

2.4.4 Cyclic-mode Modelling

2.4.4.1 Introduction

For hard switched converters operating in continuous current mode, the SSAM analysis

method can be used. For resonant converters operating at the resonant frequency, the FMA

analysis method can be chosen. However, for analysing the behaviour of a hard switched

converter in intermittent mode versus a resonant converter operating away from the resonant

frequency, both methods still have inherent shortcomings. Thus cyclic-mode modelling was

found as a strong contender. Cyclic-mode modelling is considered to be a variant of the

Floquet based technique [2.67]. In stable dynamic systems, if the inputs to the system are

constant, the state vectors converge to specific steady state values. But in switching converter
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systems, the situation changes. Since the system parameters are constantly changing, the state

vector of the system will not converge to a specific steady-state value, but will reach a

repeated, stable state after a certain period of time, with each cycle behaving in the same way

as the previous one. The closest analogy to the concept of steady state in such systems is the

concept of cyclic-mode. A system is said to be in cyclic-mode if its state vector varies

periodically with the frequency of operation of the system.

2.4.4.2 Definition and Basic Concepts

The cyclic-mode modelling of converters begins with the derivation of the cyclic-mode

modelling process, as first presented in [2.67]. A wide variety of periodically excited DC

input power electronic converters can be assumed to be operating in a cyclic-mode once the

start-up or disturbance transient has subsided. Typically, a single operating cycle is

decomposed into several modes depending on the conduction states of the switches and

diodes. For each mode, a circuit configuration is constructed from which a system of linear

equations can be determined. Thus, the operation of the DC-DC converter in the cyclic-mode

is described by a piecewise linear model.

The key assumptions of the cyclic-mode model are:

The switching power supply system operates in periodic steady state: The method is used to

predict the behaviour of the system in long term operation and simplifies the analysis of the

dynamic characteristics of the system. The equation is expressed in (2.40),

�(�0) = �(�0 + Tsw) (2.40)

where � is the state variable of the system and Tsw is the switching frequency of the system.
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The switching duty cycle of the system is fixed: the ratio of on-time and off-time of the

switches remains constant over a switching cycle, making it unnecessary to consider the

effect of changes in duty cycle on the behaviour of the system.

The inputs to the system are DC inputs: this is to simplify the circuit analysis and thus enable

fast output of the model.

The switching components are ideal switches: the switching components are assumed to be

ideal, i.e. they have zero resistance when on and infinite resistance when off, with no voltage

drop or leakage current. This is to analyse the performance of the circuit more directly.

This analytical method consists of the following steps [2.68]:

1. Determine the state variables of the system, which, similar to SSAM, are identified as

combinations of inductive currents and capacitive voltages in the circuit.

2. Determine the number of modes, their order of occurrence and duration: In cyclic-mode

operation (steady state operation) with a fixed switching duty cycle, the circuit is broken

down into different circuit configurations based on the conduction states of the switching

devices, such as switches and diodes, and the number of modes, as well as the order and

duration of each mode, are determined by analysing the circuit operation.

3. Determine the system of segmented linear equations: Based on the circuit configuration

of each mode, a system of state variable equations corresponding to that mode is written.

This is then written in the form of a matrix to facilitate subsequent modelling work.

4. Determine the initial values of state variables: After determining the order of appearance

of each mode, the duration and the set of state variable equations for each mode, the

initial values of state variables can be obtained through matrix integration and the
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assumption of the cyclic-model operation that the initial values of state variables are

equal to the end values, i.e. (2.40).

5. Plotting the state variable waveforms: Based on the initial values, matrix integration can

be used. The value of the state variable at each time can be calculated, so as to draw the

waveform of the change of the state variable in one cycle, that is, the cycle waveform

under the steady state operation of the converter.

2.4.4.3 Advantages and limitations of Cyclic-mode Model

The advantages of the cyclic-model modelling are clear. Firstly, in the scope of application. It

is not only applicable to this kind of hard-switching converter whose switching frequency is

much larger than the dynamic frequency of the system, but also in the analyses of systems

similar to resonant converters whose switching frequency is close to the internal dynamic

frequency of the system, which is due to the fact that there is no assumption on the switching

frequency of the system. Also, in terms of analysis accuracy, it not only outputs the period

waveforms of key variables, but also obtains their period averages. This facilitates the

analysis of the dynamic behaviour of the system.

But its disadvantages are also obvious. Firstly, the assumption of DC input makes it very

difficult to simulate a switching converter system with AC input using this method. At the

same time the method requires a high degree of accuracy in the duty cycle for each mode, and

if the duty cycle data is not accurate enough this can lead to an exponential expansion of the

system error. This leads to analysis errors. Finally, there is the modelling difficulty. Due to the

complex structure of the resonant circuit and the fact that this method does not make

assumptions about the operational behaviour of the circuit, this leads to complex modelling

and an increased probability of error.
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2.4.5 Comparison of the Three Methods

1. Fundamental Mode Analysis (FMA):

FMA focuses on the primary or 'fundamental' components of a system, providing insights

into its dynamic behaviour by concentrating on dominant components. This method excels in

capturing core responses but may overlook the dynamic behaviour of internal components

due to its focus on fundamental elements. Its reliance on foundational assumptions also limits

its universal applicability. FMA is most effective in systems where behaviour is primarily

dictated by fundamental frequency components. It is suited for analysing the overall

performance of a system rather than conducting a detailed analysis of system dynamics

[2.69][2.70].

2. State-space averaging method (SSAM):

SSAM combines state space analysis and time domain averaging. It is particularly effective

for systems exhibiting high-speed switching behaviour compared to the internal behaviour of

the system. It reduces complexity and offers insights into both transient and average

behaviours. However, SSAM introduces approximations due to its averaging technique,

making it less suitable for systems requiring detailed transient analysis. Its primary

application is in systems like converters with rapid switching dynamics. A notable limitation

of SSAM is that the method requires the system's dynamic frequency to be much lower than

the switching frequency, which poses challenges for applied to like resonant converters,

where these operating frequencies closely to its system dynamical frequency [2.71].

3. Cyclic-mode modelling method

Similar to SSAM, cyclic-mode modelling is also a variant of the space state variable method.

In contrast to the other two analysis methods, it not only allows the analysis of hard-switched

converter systems, but also enables the accurate analysis of resonant switched converter

systems, regardless of their resonant and switching frequencies. The wide range of

applications is its advantage over the previous two methods. Second, very high accuracy.
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Unlike SSAM and FMA, cyclic-mode modelling does not make assumptions about the

operational behaviour of the system, which makes it possible to ensure the accuracy of the

analysis without approximate behaviour [2.72].

On the other hand, the absence of assumptions about the system operation also means that the

complexity of the modelling and the difficulty of the calculations will be much greater than

the previous two methods [2.73]. Also due to its high accuracy requirement for each mode

duty cycle. It also means that additional methods are needed to obtain the accurate duty cycle,

which further increases the difficulty of the analysis.

Overall, by comparing the three modelling methods. both FMA and SSAM have the

advantage of simplicity in modelling, but errors become inevitable due to the presence of

approximate behaviour in the analysis process. When analysing a very sensitive system like a

resonant switching converter, a small frequency error can make the analysis very wrong. So,

these two methods are not good. Although the cyclic-mode model has the requirement of

modelling high modelling complexity as well as high accuracy in duty cycle. But because of

its advantages in accurately predicting the system performance and its wide range of

applicability, the cyclic-mode model is chosen as the main research basis and its main defects

are used as the improvement direction of modelling.

2.5 Root Mean Square value calculation methods

In the analysis of a DC system, the cycle average value of key variables mainly reflects the

average performance of the power supply during the cycle, which is an important reference

for the system effectiveness and is the focus of the analysis. However, in the modelling and

analysis of resonant switching converters, many key values, such as inductor currents, the

cycle average does not represent the actual behaviour of the system, and the root mean square

value becomes an important parameter for analysis. The RMS value is a measure of the effect
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of an alternating current (AC) voltage or current in terms of power transfer, independent of

the DC component of the signal. It is equivalent to the voltage or current value of a DC

current capable of producing the same amount of thermal energy. In the design of power

converters, especially when analysing circuits that contain AC components the RMS value

are crucial for designing efficient, stable, and reliable power converter system in several

important aspects [2.74] to [2.77]:

1. Calculation of resistance (ohmic) losses for power devices: In power devices such as

MOSFETs that dissipate power, the RMS value of current is the key factor in

determining power dissipation.

2. Evaluation of copper losses in winding components: In magnetic components like

transformers and inductors, the RMS value of current, at a given resistance, primarily

determines copper losses.

3. Specification of rated current for inductors and rated voltage for capacitors: The RMS

values of voltage and current are crucial in determining the rated values of these

components.

4. Design of switch devices: Switch devices such as MOSFETs and IGBTs operate with

rapid switching transitions at high frequencies. The RMS values of voltage and current

are vital for evaluating switch losses, particularly those associated with the charging and

discharging of internal capacitors in these devices.

5. Selection and sizing of energy storage components: For energy storage components like

capacitors and inductors, the RMS values of voltage and current are important

considerations when choosing suitable energy storage components. It ensures that they

can handle the expected RMS values without exceeding their rated voltage or current

limits.
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Many studies exist for estimating RMS values for specific converter representations. Firstly,

based on the fundamental approximation method described earlier, the waveform of the

fundamental component of each key current or voltage can be obtained by eliminating the

high harmonic components, and the RMS value can be realised based on the waveform.

However, the assumptions of this method are strict, which often leads to a lack of accuracy in

practical applications due to the inability to fully satisfy the assumptions [2.78] .

A model is presented in [2.77] based on the steady-state analysis of a Dual Active Bridge

(DAB) DC-DC converter. The device and inductor current modelling assume all components

are lossless and that the inductor current waveform is piecewise linear. The authors by

assuming segmental linearity of the voltage waveforms, the differential equation for the

inductor current is written, which consists of multiple segmental linear rectangular voltage

waveforms. Afterwards, the waveform integration is used to decompose a complex waveform

into a combination of multiple bipolar triangular waves with no DC component, thus enabling

the inductor current waveform to be derived.

In solving for the root mean square (RMS) value of the current, the integration of the

expression for the inductor current is simplified using the nature of the triangular waveform

to obtain the RMS value of the current. This method does not require the use of detailed

waveforms of the current nor does it integrate the current in segments, which can

significantly reduce the computational effort in the analysis process while still maintaining a

higher accuracy than the fundamental wave approximation. However, the nature of using a

large number of rectangular and triangular waves results in a significant limitation of its

scope of application. Therefore, its applicability is limited to dual active bridge isolated

bi-directional DC/DC converters. Also, for resonant converters, the inductor current is

generally sinusoidal or sinusoidal-like, and the assumption that the inductor current is

segmentally linear is not valid, so this method is not applicable to the RMS value of resonant

converters.
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In [2.79], Kostakis et al., introduce a method to determine the RMS values of currents and

voltages for hard-switched power converters described by a second-order state variable

model. The authors outlining a framework to extract the cyclic-mode initial conditions

(referred to as singular points in [2.79]) to determine cyclic-mode state trajectories.

In the process of calculating the RMS values, the authors utilised the properties of the matrix

integral with the properties of the root mean square values. Using the nature of the

differentiation of the original variables, the integration of the cycle averaging process in the

RMS value solution process into the solution of the matrix integral is achieved by directional

generalisation of the original state matrix. Next, the differential equation of the state variable

is brought into the differential term of the square of the state variable, and the differential

equation of the square term of the state variable can be obtained, and based on this equation,

the directional generalisation of the matrix of the state variable which has been generalised

can be realised, so that the integration process in the process of solving for the

root-mean-square value can be integrated into the matrix integral of the solving matrix. This

enables the simplification of solving for the root mean square value of the state variable.

This method is applicable to second-order state variable models, i.e., conventional boost and

buck converters. For second-order models it is straightforward to obtain the exact

root-mean-square formulas for the state variables without the need to generate the periodic

waveforms of the variables, which greatly simplifies the analysis of second-order models. For

multi-order state variable models, the disadvantages of the method become apparent, as the

method requires a lot of algebra for differentiating products of state variables (e.g. Square of

the signal) and cannot be easily extended to other converters without significant mathematical

overheads. However, this method gives a very useful idea that it is possible to avoid a

complex analytical process by changing the state matrix so that some of the steps of solving

the RMS can be integrated into the matrix integration process.

The cyclic-mode model described earlier in this thesis also uses what is known as the

waveform evaluation RMS method (waveform method) to determine the root mean square
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(RMS) values. Once an accurate cyclic-mode model has been established, the model can be

used to obtain the periodic waveforms for each state variable, and then the periodic state

variable waveforms can be used to calculate the RMS values for each inductor current and

capacitor voltage. While the simplicity of the waveform method is attractive, its accuracy

depends heavily on the precision of the depicted waveforms, which is a significant limitation.

Moreover, generating highly accurate waveforms is time-consuming, especially for complex

systems with multiple modes of operation. Although this method is simple to use, its accuracy

issues make it unsuitable for use in analyses where high accuracy is required.

2.6 Conclusion

This Chapter presents a literature review of the fundamental topics related to the proposed

research. It includes an introduction to hard-switching and resonant converters. These

elements provide the basics of switching power supplies and their classification for

subsequent in-depth study. Subsequently, the operational states of buck converters, boost

converters, class E inverters, and class EF2 inverters are discussed. This lays the theoretical

foundation for the design and analysis of these types of converters in subsequent studies.

Following this, the principles of three modelling methods – fundamental harmonic

approximation method, state space variable averaging method and cyclic-mode modelling

method are elaborated, with their definitions, basic characteristics, analysis process, and the

advantages and drawbacks of each method, respectively. Through the analysis of the three

modelling methods with the advantages and disadvantages of each method, the cyclic-mode

modelling technique is identified as the main modelling method and the basis for the

improvement of the modelling technique in the subsequent studies.

Finally, after analysing various methods for calculating RMS values, cyclic-mode modelling

has been identified as the fundamental approach for determining the RMS values of
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switching power supplies. And the methodologies suggested by Kostakis et al., [2.79] will

guide future enhancements in this study.
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Chapter 3. Design of power converters

Following the description of switch converter classifications in previous Chapters, boost

converters, LLC converters, and class EF2 inverters were selected for detailed study. This

Chapter introduces the design methodologies for these three types of converters, employing

different analytical approaches for each. Additionally, this Chapter provides the design

method for converters that will be utilized in subsequent Chapters, laying the groundwork for

constructing test models later in the thesis.

3.1 Methodology for designing boost converters

3.1.1 Operating principle of a boost converter

Fig. 3.1. Circuit diagram of a boost converter

Fig. 3.1 illustrates a Boost converter consisting of the following components: a DC input

source �DC, a switch � such as a MOSFET or IGBT, an inductor � to store energy, a diode

� to ensure unidirectional current flow, a capacitor � to smooth out the output voltage, and

a load resistor �L representing the output device.

The working principle of a boost converter can be divided into two or three stages (modes):
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Energy storage mode (Mode 1): During this stage, Switch S is turned on, and the inductor �

charges from DC input �DC, increasing current ��. The inductor stores energy from the DC

source.

Energy release mode (Mode 2): When switch � turned off, inductor � discharges through

diode �, raising �out as �� decreases and energy flows to capacitor � and load ��. If

inductor current �� reaches zero while switch � is still off, the circuit transitions to the zero

current stage.

Zero current mode (Mode 3): Diode � acts as a blocker, preventing capacitor � from

discharging into inductor �. During this stage, load �� receives power only from capacitor

� until the next cycle.

This initial step lays the foundation for all subsequent design phases, ensuring matching with

expected applications and performance criteria. The analytical approach of this design is

based on the methodology outlined in [3.1].

3.1.2 Operation topology selection

Selecting an appropriate topology is fundamental in boost converter design. This section

explains the operation of the boost converter in both CCM and CCM operating condition

including factors to consider when choosing between these modes.

3.1.2.1 Continuous Conduction Mode operation

In CCM operation, the inductor current does not drop to zero throughout the cycle. The boost

converter continuously cycles between two modes in this operation. The operation in Mode 1,

where the switch is on, and all the DC input voltage is applied to the inductor, this results in
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an increase in the inductor current. In Mode 2, the switch is turning off, and the diode is

forced into conduction due to the requirement for the inductor to maintain continuous current

flow. This operating condition offers the advantages of reduced stress on components, lower

output ripple, and improved transient response.

When deciding whether to operate a boost converter in CCM, it is essential to understand its

key characteristics. Firstly, CCM operation is suited for high-current applications due to the

continuity of the current flow. However, maintaining this continuous current significantly

increases the complexity of control, necessitating the introduction of more sophisticated

control strategies. Lastly, CCM operation generally requires larger magnetic components,

resulting in increased converter size. This makes CCM less suitable for space-sensitive

applications.

3.1.2.2 Discontinuous Conduction Mode operation

In DCM operation, the inductor current falls to zero during part of the switching cycle,

resulting in three distinct modes within each period. DCM represents another operational

approach for boost converters, each with its own set of unique advantages and considerations.

It is particularly suitable for applications with low to medium load currents, improving

efficiency under such conditions. DCM enables simpler control strategies, reducing design

complexity and providing a more straightforward operational framework. However, DCM

comes with drawbacks, including increased stress on components and higher output voltage

and current ripples. The intermittent current flow in DCM can increase stress on converter

components and result in higher output ripples.

3.1.2.3 Performance benchmarking
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Efficiency: Under high-load conditions, the perpetual non-zero inductor current in CCM

generally has higher efficiency. Conversely, DCM might engender superior efficiency under

low to medium-load conditions due to the intermittent nature of the inductor current.

Output ripple: The continuous inductor current in CCM typically manifests lower output

voltage and current ripple. In contrast, DCM may engender higher output ripple.

Control complexity: The mandate for a continuous current flow necessitates a more

sophisticated control strategy, potentially increased design complexity. DCM allows for

simpler and more straightforward control strategies, which improve design and

implementation complexity.

Component size and cost: CCM requisites for larger magnetic components to accommodate

the continuous current flow could impact the overall size and cost of the converter. Under

low-to-medium-load conditions, DCM might permit the use of smaller components, thereby

decreasing size and cost.

Table 3.1. Boost converter CCM and DCM operation performance comparison

Benchmark CCM DCM

Efficiency Higher (high load) Higher (low to medium load)

Output Ripple Lower Higher

Control Complexity More Complex Simpler

Component Size Larger Smaller

Cost More Costly Less Costly

Careful consideration of these trade-offs is necessary to ensure that the selected conduction

mode matches the application's tolerance for ripple, component stress, efficiency, and control

needs.
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3.1.3 Inductor selection

In the operation of boost converters, CCM and DCM represent two distinct operational

conditions, primarily differentiated by the waveform of the inductor current. Under CCM, the

inductor current remains non-zero throughout the entire cycle, whereas in DCM, the inductor

current descends to zero within each cycle. When discussing the boundary conditions of

CCM and DCM, reference is made to a specific inductance value at which the converter

transitions from CCM to DCM, or vice versa. At this boundary point, the inductor current

precisely drops to zero as each cycle concludes. This particular inductance value serves as the

minimum inductance required to sustain operation in CCM and, concurrently, the maximum

inductance value to operate in DCM. This is attributed to the fact that, should the inductance

value fall below this point, the converter would transition into DCM as it would be unable to

maintain the continuity of the inductor current. Conversely, exceeding this inductance ensures

continuous inductor current, keeping the converter in CCM operation.

Fig. 3.2. Boost converter inductor current iL and inductor voltage vL waveform in CCM
operation
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The example inductor current waveform for a boost converter operate in CCM condition is

shown in Fig. 3.2. Initially, assuming that the converter operates in CCM case. Since the

inductor current never drops to zero during CCM, the minimum inductor current occurs at the

beginning of the cycle, which corresponds to the end of the cycle,

�� (min) = �� �0 = ��(�sw) (3.1)

Since diode � conducts only after the switch is turned off, the charge transferred through �

during a cycle, is equal to the charge transferred through � when the switch is turned off,

which is ��, and is defined as,

�� =
1
2

�sw − �on ∆�� + �� (min)(�sw − ���) (3.2)

Additionally, the charge passing through the load during a single cycle is denoted as ���, is

given by,

��� = �out�sw (3.3)

The charge transferred through � in a cycle is equal to the charge passed through the load in

a cycle, thus combining (3.2) and (3.3) can get,

�� (min) = �out
�sw

�sw − �on
−

∆��

2 (3.4)

In the case of CCM, the inductor current never drops to zero, thereby always remaining

above zero, so the inductor current change during a cycle is given by,

∆�L =
�DC�on

�
(3.5)

and substituting (3.4) with the derived inequality which �L > 0, we have,

�� (min) = �out
�sw

�sw − �on
−

�DC���

2�
> 0 (3.6)
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The collation inequality (3.6) provides the condition for the minimum inductance value to

satisfy the CCM based on the minimum output current,

�min >
�DC�on

2�out min
(1 − �on) (3.7)

Secondly, to choose an appropriate inductor, it's necessary to calculate both the peak inductor

current �� (max) and the average inductor current ���. Based on the operating waveform of the

CCM in Fig. 3.2, the maximum inductor current �� (max) is determined by adding the

inductor current variation ∆�� to the minimum inductor current �� (min),

(3.8)

The total inductor current during a cycle can be calculated in two parts: A rectangle, with the

minimum inductor current �� (min) as the length and the cycle duration �sw as the width,

and a triangle, characterized by the change in inductor current ∆�� as the height and the time

when the switch is turned off �off as the base. Therefore, the average inductor current over a

cycle ��� is the total inductor current during a cycle divided by the cycle time.

(3.9)

Simplifying (3.9) gives the average inductor current ��� based on the output current and duty

cycle,

(3.10)
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Similarly, it is also necessary to find the peak inductor current �� (max) and cycle average

inductor current ��� of the converter under DCM operation. The different operating states of

the converter can be determined from the output current by rearranging (3.7),

�out ≥
�DC�on

2�
1 − �on CCM

�out ≤
�DC�1

2�
1 − �1 DCM

(3.11)

Next, we will conduct a detailed analysis of the DCM operation. An inductor current

waveform at DCM operation is shown in Fig. 3.3,

Fig. 3.3. Boost converter inductor current iL waveform in DCM operation

When the converter operates in DCM state, the peak inductor current is the inductor current

at the end of Mode 1,

��(max) = ∆�� =
�DC(�1 − �0)

�
(3.12)

where �1 = �1�sw is based on the value of the maximum switch turned on time required to

regulate the output voltage when both the load and input voltages are varied by recalling

(2.28) from Chapter 2,
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�out

�DC
=

1 + 1 +
4�1

2���sw

2�
2

(3.13)

The cycle-averaged inductor current ��� under DCM operation can be deduced analogously

from the inductor current waveform inherent to DCM. In this scenario, the total charge

flowing through the inductor within one cycle is encapsulated by a triangular area, with the

apex representing the peak inductive current. The base of the triangle corresponds to the

cumulative duration of Mode1 and Mode2. Therefore, the cycle-averaged inductive current is

computed as the area of the triangle divided by the switch cycle time �sw,

(3.14)

Then the Mode 2 duration is equal to,

�2�sw =
∆�L�

���� − ���
(3.15)

Substituting (3.15) and (3.12) into (3.14) gives the equation for the variation of the

cycle-averaged inductor current with the converter operating parameters, switching duty

cycle and inductor value，

(3.16)

Finally, the total inductor current in a cycle is the sum of the current flowing through the

switch �� and the current flowing through the diode �� within the cycle. The RMS values of

these two currents can be determined using the formulas provided below,

(3.17)
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The inductor current RMS value can be expressed as the sum of these two RMS values,

(3.18)

In summary, the first step in selecting an inductor consists of determining the converter's

operating parameters, which include input voltage, input current, output voltage, output

current, and the converter's mode of operation, i.e., CCM or DCM. After specifying the mode

of operation, the appropriate range of inductance values can be determined based on (3.7).

The inductance value determined by this method will be the minimum inductance value in the

CCM and also the maximum inductance value in the DCM.

�min >
�DC�on

2�out min
1 − �on CCM

�max <
�DC�on

2�out min
1 − �1 DCM

(3.19)

Upon determining the inductance value range, several key parameters play a crucial role in

the selection of the inductance. The maximum inductor current �� max ​ reveals the

maximum current that the inductor may encounter, which is vital for preventing inductor

saturation and designing overcurrent protection mechanisms. In CCM or DCM, �� max can

be ascertained respectively through (3.8) and (3.12). The cycle-averaged inductor current ���

provides information on the average current within a cycle, which is essential for evaluating

the efficiency and stability of the converter. In CCM or DCM, ��� ​ can be determined

respectively through (3.10) and (3.16), respectively.

3.1.4 Capacitor selection

The primary role of capacitor � is to ensure that the measured output voltage ripple,

∆�out measured , remains below the specified design output voltage ripple, ∆�out specified .
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Initially, analysing the CCM operating condition, it is noted that the amount of charge passing

through diode � in a cycle is equivalent to the amount passing through the diode during the

switch is turned off period. The current flowing through the diode diverges into two pathways:

one channelling through the load, and the other through capacitor �. The current traversing

through capacitor C is the primary source of the output voltage ripple. Therefore, the quantity

of charge flowing through the load when the switch is turned off is given as,

�RL off = �out(�sw − �on) (3.20)

Given the conduction condition of diode � and referring to (3.2), the charge flowing through

the capacitor after the switch is turned off is determined by the difference between the charge

flowing through � and the charge flowing through the load,

(3.21)

where ∆�out measured is the measured capacitor voltage ripple, which is the measured output

voltage ripple. The measured output voltage ripple ∆�out(measured) should always be less than

the rated output voltage ripple ∆�out(specified),

(3.22)

Substituting (3.21) into (3.22) and rearranging gives,

(3.23)
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By substituting (3.4) into (3.23), the relationship between the minimum capacitance and the

switch turn on time can be derived, following the determination of the converter

specifications,

(3.24)

In the DCM case, the value of the capacitor is still determined by the rated output voltage

ripple ∆�out specified , but unlike the calculation in the CCM case, the output voltage ripple can

be calculated based on the conservation of energy principle in the DCM case.

As the converter operates in a steady-state condition, the energy input to the capacitor via the

diode during Mode 2, which results in output voltage ripple, originates from the energy stored

in the inductor during Mode 1. The energy stored in the inductor at the beginning of Mode 2

is given as,

(3.25)

In the steady-state operation of the converter, during Mode 2, the energy initially stored in the

inductor is transferred to both the capacitor and the load. This occurs as the inductor current,

��, linearly decreases to zero. Assuming a constant load current, the difference between the

inductor current and the load current results in the output voltage ripple. The current charged

the capacitor only during Mode 2, flowing from the inductor to the capacitor, leading to an

increase in output voltage. As the operation shifts to Mode 3 and then to the next cycle's

Mode 1, the load is only powered by the capacitor, causing a decrease in the output voltage.
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At the end of Mode 2, the output voltage reaches its peak, �out max , and at the conclusion of

Mode 1, it drops to its lowest point, �out min . The energy stored by the capacitor at these

maximum and minimum output voltages is calculated as follows:

�C(max) =
��out max

2

2 , �C(min) =
��out min

2

2
(3.26)

The difference between the energy stored at these two voltage levels is,

(3.27)

Meanwhile, the maximum and minimum values of the output voltage can be approximately

defined as follows:

(3.28)

where �out is the DC (average) output voltage and ∆�out is the peak-to-peak ripple voltage

superimposed on the output voltage.

So, substitute (3.28) into (3.27).

�C(diff) = ��out∆�out measured (3.29)

Assuming a scenario with the maximum output voltage ripple, which corresponds to a

condition of infinite load impedance, it is understood that all the energy accumulated in the

inductor over a cycle is directed to the capacitor, contributing to the creation of the ripple

voltage. Therefore, by combining (3.25) and (3.29),
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�� �1 = �C diff

=
�DC�1�sw

2

2�
=

��out∆�out measured

2

(3.30)

Finally, continue to use (3.22) to calculate the required capacitance value to ensure that the

output ripple voltage meets the specification.

� >
�DC�1�sw

2

2��out∆�out(specified)
(3.31)

In summary, after defining the operational state, the required minimum capacitance to

achieve the specified output voltage ripple can be determined using relevant equations. In

CCM operation, the minimum capacitance is calculated using (3.24), while in DCM

operation, (3.31) is used to determine the minimum capacitance value.

3.2 Methodology for designing LLC converters

The LLC resonant converter is increasingly used in a variety of applications, establishing

itself as a vital component in modern power supply design. Its rising popularity is due to its

unique features and benefits. These advantages include low switching losses, high power

density, and the ability to integrate three magnetic components into a single unit, making

LLC resonant converters a popular choice in the current DC-DC power supply topology

landscape [3.2].
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Fig. 3.4. Circuit diagram for the LLC resonant converter

Fig. 3.4 illustrates the circuit diagram of an LLC resonant converter. The converter employs a

half-bridge structure comprising MOSFETs �1 and �2, which converts the DC voltage �dc

into a variable frequency square wave �in. This square wave is then fed into the resonant

tank circuit, composed of series inductor �s, parallel inductor �p, and series capacitor �s.

On the secondary side of the transformer, a current, flows through the rectifier composed of

diodes �1 and �2 . This current is subsequently smoothed by the filtering capacitor ��,

resulting in the output voltage �out

3.2.1 Modelling method selection

As identified in Chapter 2, the Fundamental Mode Approximation (FMA), also referred to as

the First Harmonic Approximation (FHA), is a widely acknowledged analytical method. The

inherent band-pass filter characteristic of the resonant circuit diminishes high-order harmonic

content in the input voltage while enhancing the fundamental content. This behaviour aligns

with the fundamental assumption of FMA, which suggests that only the fundamental

harmonic transmits energy, rendering FMA especially appropriate for the analysis of LLC

converters [3.4].
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The FMAmethod attenuates high-frequency components of the square wave, allowing only

the fundamental harmonic to transmit energy. Since higher-order harmonics are attenuated,

the current through resonant circuit closely resembles a sinusoidal wave. Based on the

concept of Fourier analysis, a periodic function �(�) can be constructed from an infinite

summation of sines and cosines, as described in Chapter 2 on FMA techniques analysis,

3.2.2 AC equivalent circuit modelling

The circuit diagram of the LLC converter is shown in Fig. 3.4. It consists of a half bridge

input and a full bridge rectifier part.

Assuming a half-bridge input, the input voltage of the resonant circuit is defined as

�in � = 0 − �sw/2 < � < 0
�dc 0 < � < �sw/2 (3.32)

Given that the input waveform is an odd function, based on the properties of odd functions,

the even harmonics in its Fourier series are zero. Additionally, the cosine part is also zero.

Therefore, by substituting (3.33) and (3.35) into (3.32) , the Fourier series of �in(�) can be

obtained,

�in � = �dc
1
2

+
2
�

�=1,3,5

∞
1
�� sin ��sw� (3.33)

Next, FMA technique is used to approximate �in(�) as its fundamental component �e,

�in � ≈ �e =
2
�

�dc sin �sw� (3.34)
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Fig. 3.5. Circuit diagram for the LLC converter rectifier and output part

Based on Fig. 3.5, assuming the full-bridge rectifier operates in continuous current mode

which means the current will flow continuously between the resonant circuit and the output.

Consequently, the average current through the rectifier will be equivalent to the output

current. Due to the rectifier's constant conduction state, the voltage at its input will display a

bipolar square wave characteristic, with an amplitude represented by �out.

�� = �out 0 < � < �sw
− �out �sw/2 < � < �sw

(3.35)

FMA technique continues to be used to approximate �R as its fundamental component.

�R(�) ≈
4
�

�outsin(����) (3.36)

The DC output current �out is the cycle average of the inverter input current �R.，

�out =
1

�sw 0

�sw

�� dt� =
2
�

��(max) (3.37)

Considering �f and �L as an equivalent load impedance, denoted as �e, where the input

voltage at �e corresponds to the rectifier input voltage (��) and the input current to the

rectifier output current (��), the value of �e can be calculated as:
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�e =
�R

�R
=

4
� �outsin ����
�
2 �outsin ����

=
8
�2 �� (3.38)

Afterwards the AC equivalent circuit of the LLC converter can be drawn based on the

approximation of the input by the FMA technique and the equivalence of the load branches.

Fig. 3.6. AC equivalent circuit for the LLC resonant converter

The circuit can be further simplified by equating the equivalent load impedance �� from the

secondary side of the transformer to the primary side. The output voltage on the primary side

of the transformer is ���, and the output current is
1
�

�R, so the equivalent impedance of ��

on the primary side is,

�� primary =
��R
1
� �R

= �2�� =
8
�2 �2�� (3.39)

The transformer in Fig. 3.6 can be simplified based on (3.43) shown in Fig. 3.7
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Fig. 3.7. Simplified AC equivalent circuit for the LLC converter

3.2.3 Voltage and current gain

Based on Fig. 3.7, the equivalent input voltage for the FMA technique is ��. Therefore, the

equivalent circuit is a series combination of �p and �2�� in parallel with �� and ��, with

the total circuit impedance denoted as,

�tot = ��� + 1/��� + ���||�2�� (3.40)

Therefore, the voltage ratio across the equivalent load voltage ���� to the equivalent input

voltage � corresponds to the impedance ratio of the �p and �2�� parallel branch to the

total circuit impedance,

����

��
=

���||�2��

��� + 1/��� + ���||�2��

=
�2�����2��

�3������ + �2���2�� �� + �� + ��� + �2��

(3.41)

where � = ����.
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Afterwards, defining � as the ratio between the series inductance and the parallel inductance

� = ��/��; �0 = 2��0 as the series resonant angular frequency, �� as the quality factor of

the series resonant circuit �� = �0��
�2��

= 1
ω0���2��

thus allowing for the simplification of the

(3.43),

����

���
=

1
2�

|

�2

�0
2 �

�3

�0
3 ��� + �2

�0
2 � + 1 + �

�0
��� + 1

| (3.42)

The resonant circuit current ���, which is another key parameter of the converter, can also be

obtained from the circuit diagram Fig. 3.7,

�Ls =
��

�tot
=

2�dc

�
1

��� + 1/��� + ���||�2��
(3.43)

After that, according to Fig. 3.7, the current through the equivalent load �2�� is equal to
1
�

�out, so the ratio between the resonant circuit current with the current through �2�� can be

obtained from combine (3.47) and (3.41),

�out

��Ls
=

2
�

���

��� + �2��
= |

�
�0

��

�
�0

�� + 1
| (3.44)

Varying the switching frequency �sw, (3.46) provides the steady-state output voltage

response. And (3.48) provides the steady-state output current response. Define �out =

��out/�dc as the output voltage gain normalised by the DC input voltage, and �out =

�out ⁄��Ls as the output current gain normalised by the resonant current. The waveforms of

�out and �out can be plotted for different ranges of values of � and �� , which are shown

in Fig. 3.8 and Fig. 3.9.
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Fig. 3.8. Normalised voltage gain Mout control response waveform for different design
points

A=1 A=2

A=4 A=8
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Fig. 3.9. Normalised current gain Jout control response waveform for different design points

The first step in the design process focuses on the load-independent point. Given the input

and output voltages, the voltage gain at this point can be determined using the formula �out
�dc

=

1
2�
. This equation is instrumental in establishing the transformer's turns ratio.

In the selection of converter components, utilizing an integrated magnetic component can

reduce the number of individual components. In this setup, series and parallel inductors are

realized through the transformer's leakage inductance and magnetizing inductance,

respectively. However, this approach constrains the achievable ratio of series to parallel

inductance, which typically ranges � = 3 to 5.

A=1 A=2

A=4 A=8
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Subsequently, based on (3.46) and (3.48), a suitable combination of � and �� is determined

to maximize �out for minimal circulating current while also achieving �out. Finally, the

switching frequency �sw, along with � and ��, dictates the values of the converter's

components.

3.3 Methodology for designing class EF2 inverters

3.3.1 Operation analysis

The design process is based on several assumptions:

1. The switch is an ideal switch, which means the switch time for the switch between

turning on and turning off is zero. This also means that the resistance of the switch is

infinite when the switch is off, and the resistance is zero when the switch is on.

2. Other components in the circuit are ideal, which means the average input power is equal

to the output power.

3. The load quality factor of the LCR series branch is large enough to ensure the current

through the load is sinusoidal (�� = �sw�s
��

> 5)

4. The input inductor is an infinite inductor, which means the fluctuation of the input current

is extremely low and the input current can be seen as a DC.

5. The resonant frequency �o2 of the auxiliary resonant branch, given by �o2 = 1
2� �m�m

, is

twice the operational frequency �sw.



107

Fig. 3.10. Circuit diagram of the class EF2 inverter

The circuit diagram of the class EF2 inverter is shown in Fig. 3.10. In the operation of class

EF2 inverters, defined � is the duty ratio when the switch is turned on. The analysis method

for this part is similar to the one conducted by Aldhaher et al.,, as referenced in [3.5].

According to the circuit configurations, when the switch is turned on, the current flow

through the switch is,

�s �sw� = �Lin − �Lm �sw� − �Ls �sw� 0 < �sw� < 2�� (3.45)

Defined the current through the series resonant circuit is,

�Ls �sw� = �m sin �sw� + � (3.46)

Where �m is defined as the magnitude of series resonant current and � represents its phase,

which will be determined later based on the boundary condition equations.

�1 is defined as the ratio between the resonant frequency of �m�m combination and the

operation frequency of the inverter; in this inverter, the ratio is 2.

�1 =
1

�sw �m�m
= 2 (3.47)
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The ratio between the input current and the current flowing through the auxiliary resonant

branch �m�m is defined as,
�Lm

�Lin
(�sw�) = �1 cos �1�sw� + �1 sin �1�sw� 0 < �sw� < 2�� (3.48)

where the coefficients �1 and �1 will also be determined later based on the boundary

condition equations.

Then during 2�� ≤ �sw� < 2� the switch is turned off and hence �� become zero. The

auxiliary resonant branch current become to,

�Lm �sw� = �Lin − �Ls �sw� − �C1 �sw�

= �Lin − �m sin �sw� + � − �sw�1
d��1

d�sw�
(3.49)

The voltage across auxiliary resonant branch is equal to the voltage across shunt capacitor

�C1 can be represented by,

��1 �sw�

= �sw��
d��m �sw�

d�sw�
+

1
�sw�2 2��

�sw�
�Lm �sw�� d�sw� + ��1(2��)

(3.50)

So, the derivative of ��1 �sw� can be written as,

���1 �sw�
d�sw� = �sw�m

d2�Lm �sw�
d2�sw�

−
1

�sw�2
�Lm �sw� (3.51)

Combining (3.53) and (3.55) gives the ratio of the input current to the current through the

�m�m branch,

�Lm

�Lin
�sw� = 1 −

�m

�Lin
sin �sw� + � − �sw

2 �m�1

d2�Lm
�Lin

�sw�

d2�sw�

−
�1

�2

�Lm

�Lin
�sw� ;

(3.52)

In order to normalise the equations, define,

� =
�1

�m
(3.53)
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�2 =
1

�sw

�1 + �m

�m�1�m
= �1

� + 1
�

= 2
� + 1

�
; (3.54)

� =
1

� + 1
��
�Lin

; (3.55)

So, the general solution of (3.56) is,

��m

��in
�sw� = �2 cos �2�sw� + �2 sin �2�sw� −

�2
2�

�2
2 − 1

sin �sw� + �

+
1

� + 1
2�� ≤ �sw� < 2�

(3.56)

where the coefficients �2 and �2 will be determined later based on the boundary condition

equations.

Assuming that the converter operates under optimum operating conditions, i.e., zero voltage

switching (ZVS) and zero voltage derivative switching (ZVDS) conditions, and because the

inductor current is zero under ZVS conditions; the derivative of the inductor current is zero

under ZVDS conditions, and because of the property of the inductor current that does not

transiently change, the following six equations can be written,

��1 2� = 0 (3.57)

��1 2� = 0 (3.58)

�Lm 2��− = �Lm 2��+ (3.59)

�Lm 0 = �Lm 2� ; (3.60)

d�Lm �sw�
d�sw� ​ �sw�=2��− =

d�Lm �sw�
d�sw� ​ �sw�=2��+; (3.61)
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d�Lm �sw�
d�sw� ​ �sw�=0 =

d�Lm �sw�
d�sw� ​ �sw�=2�

(3.62)

Afterwards, it can be find from (3.52) and (3.60) that there are eight coefficients in the system

of equations, namely �1, �2, �1, �2, �, �, � and �. According to (3.61)-(3.66), once the

values of k and δ are established, the values of the other six unknowns can be determined.

Since the voltage across the switch �� �sw� does not begin to be generated until the switch

turns off. the voltage across the switch �S is equal to the voltage across the capacitor �1

during the period when the switch is turned off is,

�S �sw� = �C1 �sw� =
1

�sw�1 2��

�sw�
��1 � ��� 2�� ≤ �sw� < 2� (3.63)

The current through capacitor �1 for the period 2�� ≤ �sw� < 2� is,

�C1 �sw� = �Lin − �Ls �sw� − �Lm �sw� (3.64)

The normalizing current through �1 with respect to the input current is can be obtained by

combing (3.53), (3.57) and (3.59),
�C1

�Lin
�sw� = 1 − � � + 1 sin �sw� + � −

���

�Lin
�sw� (3.65)

To normalise the parameters, define,

�(�sw�) =
2��

�sw� ��1

�Lin
� ��� (3.66)

Then substituted (3.70) into (3.67) could get,

�� �sw� = ��1 �sw� =
�Lin

�sw�1 2��

�sw� ��1

�Lin
� ���

=
�Lin

�sw�1
� �sw� 2�� ≤ �sw� < 2�

(3.67)

The cyclic average value of switch voltage �� is equal to the input voltage �in,
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�in =
�Lin

2��sw�1 2��

2�
� �sw� ��sw�� (3.68)

So the ratio between switch voltage with input voltage at 2�� ≤ �sw� < 2� can be

obtained by combing (3.71) and (3.72),

��(�sw�)
�in

=
2�� �sw�

2��
2� � �sw� d�sw��

(3.69)

By using (3.49), (3.50) and (3.52) and simplifying parameters � and �, the switching

current �� can be normalized to the input current �Lin during 0 < �sw� < 2��,
��(�sw�)

�Lin
= 1 − � � + 1 sin �sw� + �

− �1 cos �1�sw� + �1 sin �1�sw�
(3.70)

The periodic average value of the switch current �� equals the DC input current �Lin, thus

1
2� 0

2�� ��(�sw�)
�Lin

� d�sw� = 1 (3.71)

Then combine (3.74) and (3.75) gives,
�

2�
cos 2�� + � − ���� � + 1 + �

=
1

2��1
�1 sin 2���1 + 2�1 sin2 ���1

(3.72)

Rearrange (3.76) gives,

� =
2� 1 − � + �1

�1
sin 2���1 + 2�1

�1
sin2 ���1

(� + 1)( cos 2�� + � − ����)
(3.73)

Substituting (3.59) for (3.77) gives

�m
�Lin

=
2� 1 − � + �1

�1
sin 2���1 + 2�1

�1
sin2 ���1

( cos 2�� + � − ����)
(3.74)

For the output power, based on the assumption of an ideal component, the output power is

equal to the input power, i.e.,
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�in�Lin =
1
2

�m2 �L (3.75)

Rearrange (3.79),

�in

�Lin
= �DC =

1
2

�m

�Lin

2

�L (3.76)

So,

the

load

resistance value is given by substitute (3.78) into (3.80),

3.3.2 Operation condition determination

Given the converter's requirements, it is typically necessary to achieve maximum power

output while minimizing switching current stress and switching voltage stress. This goal

corresponds to the maximum output power capability point. As � and � are adjustable

variables, this optimal power capability point can be identified by varying these two

parameters. Assuming ideal converter components, the output power equates to the input

power, �out = �in�Lin. The output power capability, denoted as ��, is defined as follows:

�� =
�in�Lin

��1(max)��,(max)
(3.78)

Upon the determination of the operational parameters of the converter, the values of � and

� are ascertained as two distinct variables, subsequently enabling the calculation of the

converter component values. Therefore, the process of identifying the point of maximum

output power capability equates to finding the combination of � and � values under which

the power coefficient �� reaches its maximum value.

�� = 2
�Lin

�m

2 �in
2

�out
(3.77)
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The process to determine the corresponding values of the power coefficient �� for various

combinations of � and � can be outlined as follows: Initially, the values of � and � are

established. Subsequently, these values are substituted into (3.61) to (3.66), facilitating the

derivation of the values of the remaining unknown variables �1, �2, �1, �2, �, and �.

Thereafter, by employing (3.73) and (3.74), the time-domain representations of the

normalized switch voltage and switch current are determined, thereby ascertaining their

respective maximal values. Upon substituting these maximal values into (3.82), the value of

�� under a specific combination of � and � can be calculated. Ultimately, by setting the

range of values for � and �, and utilizing computational software, the graphical

representation of �� across different values of � and � can be generated.

In this analysis, due to the difficulty of the calculations, a calculation software named Maple

was used to calculate the results. Maple as a complex calculation software proved to be

highly efficient in the calculation task. Variation of �� within the duty cycle range 0.35 < �

< 0.6 and � value range 0.6 < � < 1.5 as illustrated in Fig. 3.11,

Fig. 3.11. Variation of cp within the duty ratio � range of 0.35 to 0.6, and � value
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range of 0.6 to 1.5.

Consequently, the maximum value of �� occurs within the range of 0.8 to 0.9 for � and

0.37 to 0.39 for �. By refining the range of values within this interval and repeating the

graphing process, a more detailed investigation into the maximal value of �� can be

conducted in Fig. 3.12,

Fig. 3.12. Variation of Cp within the duty ratio � range of 0.37 to 0.385, and k value
range of 0.81 to 0.9

3.3.3 Components values determination

Through this plotting procedure, it can be deduced that at � = 0.867 and � = 0.375, ��

reaches its maximal value of 0.1324. Based on these values, by utilizing (3.61) to (3.66), the
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specific values of the six variables �1, �2, �1, �2, �, and � can be obtained. Subsequently,

the normalized values of �C1 and �s as functions of �sw� can be derived.

The value of 2��
2� � �sw� ��sw�� can be obtained from combine (3.60) (3.69) (3.70) and

(3.83)

The

normalised time-domain waveform of converter’s switch currents based on input currents
��(�sw�)

����
can be derived by substituting (3.83) into (3.74). Similarly, the normalized

time-domain waveform of the converter’s switch voltages, based on input voltages �s(�sw�)
�in

can be obtained by substituting (3.69), (3.70) and (3.83) into (3.73). The waveform of these is

shown in Fig. 3.13.

Fig. 3.13. Normalised time-domain switch current and switch voltage waveform at
maximum cp

Afterwards, substituting (3.84) into (3.72) yields,

�1 =− 0.9393951308, �2 =− 0.8589433256, �1 =− 1.240479342,

�2 =− 1.227583813, � = 2.570055984, � = 1.920369596
(3.79)

2��

2�
� �sw� ��sw�� = 5.3241 (3.80)
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Sub

stitu

ting (3.83) into (3.59) gives the ratio of the series resonant current amplitude �m to the input

current �Lin,

Thu

s,

combining (3.81) and (3.86) gives,

Giv

en that the converter operates under an inductive load condition, to determine the values of

the components in the series resonant part, it is defined that �� is the value of the residual

impedance, is as follows:

whe

re �� is the amplitude of the voltage across the residual impedance is equal to,

To obtain the normalised voltage across the residual impedance substituting (3.70), (3.84) and

(3.89) into (3.73) gives,

Sub

stituting (3.83) and (3.84) into (3.90) yields,

Sub

�in = 5.3241
�Lin

2��sw�1
(3.81)

�m

��in
= 3.58533 (3.82)

�in

��in
= �DC = 6.4273�� =

5.3241
2���1

(3.83)

��� =
��

�m
(3.84)

�� =
1
� 2��

2�
�� cos �sw� + � ��sw�� (3.85)

��

�in
=

2 0.75�
2� �(�sw�) cos �sw� + � ��sw��

0.75�
2� �(�sw�) ��sw��

(3.86)

��

�in
= 1.1346 (3.87)
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stituting (3.91) , (3.80) and (3.86) into (3.88) gives,

So,

the value of �sw���� is,

The

valu

e of

��

is based on the load quality factor of the ������ branch, which is,

Substituting (3.86) into (3.81) gives the relationship between load and input voltage and

outp

ut

pow

er [3.5],

In the design process of a class EF2 inverter, the first step is to obtain the inverter's working

parameters. With these parameters, the input inductor ��� can be calculated. Subsequently,

the load resistance value can be ascertained using these working parameters and (3.95). Once

the load resistance value is known, (3.85) can be used to calculate the value of shunt

capacitor �1. The parameter � is then used to deduce the value of ��. Following this, the

value of �� can be calculated based on the �1. Finally, the values of �� and �� can be

determined using (3.93) and (3.94), respectively. This sequence of calculations and parameter

assessments enables the effective design of the class EF2 inverter.

3.4 Conclusion

This Chapter provides a detailed discussion of the design rationale and processes for the

boost converter, LLC converter, and class EF2 inverter. The design approach for the boost

���

��
= 2.0339 (3.88)

�sw���� =
1

�� − 2.0339 (3.89)

�� =
����

���
(3.90)

�� = 0.156
�in

2

�out
(3.91)
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converter is analysed using steady-state analysis. This is followed by an examination of the

LLC converter with Fundamental Mode Analysis, Finally, an evaluation of the class EF2

inverter using the transfer function method.

The analysis provided methods for determining the values of components in the three types of

converters, serving as a reference for the design in subsequent Chapters. Meanwhile, the

assumptions these methods make about the converter's operating behaviours during analysis

highlight their limitations. This justifies the use of cyclic-mode modelling techniques for

further analysis.
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Chapter 4. Cyclic-mode modelling of class EF2 inverters

featuring a piezoelectric resonator as the auxiliary network

This Chapter begins by introducing the process of cyclic-mode modelling. By integrating the

Mason equivalent model of the piezoelectric resonator (PR) with cyclic-mode modelling, we

have constructed a cyclic-mode model for a class EF2 inverter operating under optimal

conditions, with PR as its auxiliary resonant branch. The model's accuracy and the feasibility

of replacing traditional auxiliary branches with a PR are validated through comparisons with

SPICE simulations and experimental tests.

4.1 Introduction

In class EF inverters, an auxiliary series LC branch is connected in parallel with the switch.

Through precise design, the resonant frequency of the auxiliary LC circuit is tuned to reduce

the peak switch voltage compared to the traditional class E inverter. Aldhaher et al., in [4.2],

discerned optimal performance in the class EF2 inverter, wherein the resonant frequency of

the auxiliary branch is doubled in comparison to the inverter operating frequency. This design

adaptation results in a reduction of the switch voltage from 3.5 times the power supply

voltage, as seen in class E inverters, to 2.1 times the power supply voltage in the class EF2

inverter. However, it is important to acknowledge that the improved performance comes at

the cost of greater volume and complexity.

Piezoelectric resonating devices offer an alternative to traditional discrete component LC

resonant networks. Piezoelectric transformers (PTs) have garnered popularity over the years,

particularly in ionizing and cold-cathode fluorescent backlighting applications, as described

in [4.3]. When compared with magnetic materials, PTs exhibit several advantages including

improved power density, approximately 40 W/��3 as indicated in [4.4], which, under

similar power transmission conditions, usually translates to a reduction in volume owing to

the absence of copper windings. The usage of PTs not only markedly decreases copper usage
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in manufacturing but also allows for a higher voltage transformation ratio than that of

magnetic transformers. Recent innovations include DC-DC power supply circuits that

integrate a piezoelectric resonator (a one-port PT) within the resonant circuit, improving

energy transfer efficiency as highlighted in [4.5]. The class EF2 inverter, which utilizes a

piezoelectric resonator in its auxiliary circuit, is detailed in [4.6].

The cyclic-mode model is a time-domain model used in state-space systems to determine the

steady-state values of state variables [4.7]. This gives a theoretical framework for analysing

and explaining periodic phenomena and can be used to simulate converters with DC inputs

under steady-state operation. Although this representation may appear similar to the

sampled-data model by Kassikian [4.8], it differs significantly. The cyclic-mode model

method employs matrix augmentation to incorporate the necessary integration for input

response evaluation directly into the matrix exponential, as shown in equation (4.2), resulting

in a more succinct representation. This approach ensures precise determination of the initial

cyclic-mode condition �(�0), without any approximation. Foster et al., in references[4.9] and

[4.10], applied cyclic-modelling to LCC and LLC resonant converters, illustrating its use in

non-hard-switched converters.

4.2 Cyclic-mode modelling process

The cyclic-mode modelling of converters begins with the derivation of the cyclic-mode

modelling process, as first presented in [4.7]. A wide variety of periodically excited DC input

power electronic converters can be assumed to be operating in a cyclic-mode once the

start-up or disturbance transient has disappeared. Typically, a single operating cycle is

decomposed into several modes depending on the conduction states of the switches and

diodes. For each mode, a circuit configuration is constructed from which a system of linear

equations can be determined. Thus, the operation of the DC-DC converter in the cyclic-mode

is described by a piecewise linear model.
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The system of linear equations during any mode can be represented in state-variable form

using,

�� = ��� + �� (4.1)

where � = � � is the state vector, �� is its time derivative, �� is a square matrix of order ℎ

representing the system dynamics and �� is the input vector for the ��ℎ mode. Equation (4.1)

can be solved to provide the state vector at time � during mode �:

� = exp �� ⋅ � − �0 � �0 +
�0

�

exp �� ⋅ � − �� ���� (4.2)

where exp ⋯ is the matrix exponential and �(��−1) represents the state vector at the end

of mode � − 1 therefore �(��−1
+ ) is the initial condition vector for the mode �. The +

superscript used for the mode start time is used where state-variables exhibit discontinuous

values between modes such as instantaneous capacitor voltage jumps due to switch

commutations.

Since the input to the converter is constant (DC), �� is constant and, therefore, (4.2) can be

evaluated at the end of any mode � as,

�(��) = ��� ��−1 + �� (4.3)

�� = exp �� �� − ��−1 = exp �����sw (4.4)

�� = ��
−1 �� − � �� (4.5)

where �� is the time at the end of the ��ℎ mode. For simplicity, �� − ��−1 may be formulated

as ���sw where �� is the duty of mode � and �sw is the switching period. � is ℎ × ℎ

identity matrix.

According to (4.3) to (4.5) and assuming a cycle consists of � modes, then the state vector

at the end of the cycle (� = �sw) can be determined by cascading solutions for each mode as

follows,

�(���) = �tot� �0 + �tot (4.6)

where
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�tot =
�=0

�−1

��−�� , �tot =
�=1

�−1

�=0

�−�−1

��−�� �� + ��� (4.7)

Since, by the definition of a cyclic-mode, the final condition must be equal to the initial state,

�(�0) = �(�0 + Tsw) (4.8)

Thus, if the mode sequence and mode durations are known a priori, then the cyclic-mode

initial conditions can be found by applying (4.8) to (4.6) and solving , giving

� �0 = � − �tot
−1�tot (4.9)

To simplify the analysis process, explicit integration evaluation can be avoided by

constructing the augmented system matrix ��� as described in the introduction.

(4.10)

where

(4.11)

where � is the 1 × ℎ zero matrix.

Equation (4.10) and the corresponding mode duty cycle can be solved for ��(��), given by,

(4.12)

(4.13)

This approach combines the calculation of � and � into a single matrix integral, thus

simplifying the modelling and analysis process. Similarly, the calculation of �tot and �tot

becomes simplified, given by,

�� �sw = �� tot�� �0 (4.14)

(4.15)

At to this point, �tot and �tot can be solved by (4.7) or (4.15). Their matrices can then be

substituted into (4.9) to obtain the initial values of the periods of the state variables � �0 .
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Once the cyclic-mode initial condition, � �0 , has been found, then the values for

state-vector at the end of any mode �(��) can get based on (4.3) and each mode duration, The

state vector at any given time point, �, can then be calculated. Firstly, the duty cycle of each

mode and the value of t can be employed to determine the mode in which t is located.

Secondly, the value of the state vector at the end of the previous mode, combine with (4.2),

enables the calculation of � � ,

� � = exp (�� � − ��−1 )� ��−1 +
��−1

�
exp (�� � − � )����� (4.16)

where � exists within mode �, (i.e., ��−1 ≤ � ≤ ��) and � ��−1 is the initial condition of

mode �.

It is important to note that if the input to the system is not a DC input which means the value

of the input matrix � is not fixed, so (4.5) will no longer hold. Consequently, the value of Γ

will become difficult to compute, rendering the analysis impossible. Therefore, a key

assumption for cyclic-mode modelling is that the system inputs are DC inputs.

Once the cyclic-mode model is established, determining the values of state variables at any

time within a cycle requires only the knowledge of the system's mode sequence and the exact

duration of each mode. Unlike SSA, this method provides exact time values instead of relying

on approximations.

4.3 Operation of the class EF2 inverter

Fig. 4.1 shows the circuit diagram of the class EF2 inverter. Components �s and �s

constitute the principal resonant branch, inducing a sinusoidal current flow through the load

�L. Q1, a MOSFET switch, operates at a frequency, �sw, close to the resonant frequency,

�0 = 1/(2� ����), of the principal resonant circuit and with duty �1. Input inductor ���
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is a filter inductor .X1 is the piezoelectric resonator with the equivalent circuit shown in Fig.

4.2. Defined ��0 is the shunt capacitor voltage which is equal to the switch voltage.

Fig. 4.1. Circuit diagram of the class EF2 inverter which PT as auxiliary resonant branch

Fig. 4.2.Mason equivalent diagram of a piezoelectric transformer[4.11]

The main assumptions for the design of the EF2 class inverter have been specified in the

converter design section of Chapter 3 and will not be repeated here. With a suitable selection

of switching frequency (�sw) and duty cycle (�), the inverter operates in a two-mode

sequence: M1-M2-M1-M2…, as depicted in Fig. 4.3.
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Fig. 4.3. Example of the switch voltage waveform for a class EF2 inverter operating in
2-modes operation

We assume the switching frequency and duty cycle are selected to ensure the class EF2

inverter operates with the two-mode operating sequence M1-M2-M1… Given that there are

only two piecewise linear state-variable models per cycle, cyclic-mode analysis enables

determination of the inverter’s initial conditions using the control input �. Subsequently, the

value of the state variable at any point during the cycle can be accurately calculated [4.7].

4.4 Derivation of cyclic-mode model for class EF2 inverter

In constructing the cyclic-model of the inverter, one needs to formulate first-order differential

equations to describing the derivatives of the capacitor voltages and the inductor currents.

Given that �0 and �in are connected in parallel, they are combined into a single equivalent

capacitor � to streamline the ensuing analysis.

� = �0 + �in (4.17)

Equation (4.18) to (4.23) shows a non-linear state-variable model for the class EF2 inverter,

where ℎ(�) is used to represent the switch controller,

��in� = �in
��

+ (ℎ � − 1) �C
��

(4.18)
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��s� = (1 − ℎ � ) �C
��

− �Cs
��

− �L�Ls
��

(4.19)

��m� = (1 − ℎ � ) �C
��

− ��m
��

− ��m�m
��

(4.20)

�C� = (1 − ℎ � )
��in − ��s − ��m

�
(4.21)

�Cs� =
��s

��
(4.22)

�Cm� =
��m

�m
(4.23)

ℎ1(�) = 1 �0 ≤ � < ����
0 ��sw ≤ � < ���

(4.24)

For Mode 1 (M1) �0 ≤ � < �1: Mode 1 (M1): �1 is switched on, thus �in is only applied to

�in. The commutation function is ℎ = 1

Mode 2 (M2): �1 is switched off. Current flows out of �in and into �0, the piezoelectric

resonator �1 and the main resonant branch. The commutation functions are ℎ = 0

Below is a piecewise linear model for the previously described operating sequence. This

model, akin to those in references [4.9] and [4.10], was developed from the non-linear

state-variable model (4.18)-(4.24), with the switch state sequence S={(1),(0)} substituted in.
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��in
��s
��m
��
��s
��m

�

=

0 0 0 0 0 0
0 − �L

�s
0 0 − 1

�s
0

0 0 − �m
�m

0 0 − 1
�m

0 0 0 0 0 0
0 1

�s
0 0 0 0

0 0 1
�m

0 0 0

�Lin
�Ls
�Lm
�C
�Cs
�Cm

+

�in
�in
0
0
0
0
0

(4.25)

Equation (4.25) can be rewritten as

�� = �1� + �1 (4.26)

where the state-vector

� = [��in ��s ��m �� ��s ��m]T (4.27)

M2 is like M1, except Q1 is off, S2 = 0. The state-variable model for Mode 2 is,

��in
��s
��m
��
��s
��m

�

=

0 0 0 − 1
�in

0 0

0 − �L
�s

0 1
�s

− 1
�s

0

0 0 − �m
�m

1
�m

0 − 1
�m

1
� − 1

� − 1
� 0 0 0

0 1
�s

0 0 0 0

0 0 1
�m

0 0 0

��in
��s
��m
��
��s
��m

+

�in
�in
0
0
0
0
0

= �2� + �2 (4.28)

Thus, (4.25) and (4.28) can be combined in a piecewise linear equation dependent on the

mode duration times.

�� � = �1� + �1 �0 ≤ � < �1
�2� + �2 �1 ≤ � < �2

(4.29)

In the cyclic-mode of the class EF2 inverter, the state variables' final conditions at the end of

a cycle, �(�2), must match their initial conditions, �(�0). Thus,

� �0 = � �2 = � �0 + ��� (4.30)

Given that �2 equals �0 + �sw and beginning with � = �0, the state vector at the end of

Mode 1 is described as follows:

� �1 = �1� �0 + �1 (4.31)
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here �1 = exp(�1 �1 − �0 ) = exp(�1��sw) and �1 = �1
−1 �1 − � �1

Similarly, the state-vector at the end of Mode 2 is given by,

� �2
− = �2� �1 + �2 (4.32)

where �2 = exp(�2 �2 − �1 ) = exp(�1(1 − �)���)and �2 = �2
−1 �2 − � �2.

To address a potential discontinuity at the end of Mode 2, it is ensured that ��(�2) is set to

zero if it is not already.

� �0 = � �2 = �� �2
− (4.33)

where,

� =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.34)

The initial condition � �0 for the cyclic-mode is determined by assessing the final

conditions of each mode [4.12]. Substituting (4.31) into (4.32) yields:

� �2
− = �2� �1 + �2 = �2�1� �0 + ���� + �� (4.35)

Combining with (4.35) and (4.33), the result is:

� �0 = � �2�1� �0 + �2�1 + �� (4.36)

So,

� �0 = � − ��2�1
−1� �2�1 + �2 (4.37)

Once the �(�0) values are obtained, � �1 can be calculated using (4.31).

Finally, the state variable value at every time can be determined based on [4.12] ,

� � =
�1(�)�(�0) + �1(�) �0 ≤ � < �1
�2(�)�(�1) + �2(�) �1 ≤ � < �2

(4.38)

where 1 and 2 is the mode index, ��(�) = exp (�� � − ��−1 ) and ��(�) = ��
−1 ��(�) −

� ��.
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4.5 Model validation

To validate the model presented in this Chapter, a prototype class EF2 inverter design

featuring a STEMiNC SMD25T85F234S piezoelectric resonator (PR) was developed [4.13].

The PR was characterised using an Omicron Bode 100 vector network analyser, which

enabled the precise determination of the resonant frequency, identified as �0 = 86.291 kHz.

Using PR Mason equivalent circuit, a systematic approach to determined components was

adopted, based on the design methodology propounded by Aldhaher, et al., in reference [4.2].

The switch is Infineon IRF530NPbF MOSFET and the values for the PR equivalent circuit

and the class EF2 are shown in Table 4.1.

Table 4.1. The class EF2 inverter components values

Component’s name Component’s value

�� 4.27 Ω

�� 8.25 mH

�� 0.412 nF

��� 1.04 nF

�0 20 nF

��� 10 mH

�� 0.9 mH

�� 22.8 nF

�� 40 Ω

�in 15 V
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Fig. 4.4. SPICE model schematic of the class EF2 inverter

The duty cycle and switching frequency parameters were set at δ = 0.36 and

�sw= 43.14 kHz, respectively. The maximum time step of the SPICE model is two

nanoseconds. Fig. 4.5 shows a comparative analysis of the experimental switch voltage

waveform and those predicted by the SPICE and cyclic-mode models. In the figure, the

experimental findings are illustrated by the solid black line, cyclic-model results by the blue

dotted line, and SPICE model results by the green dotted line. The graphical representation

reveals a notable similarity between the SPICE and cyclic-model waveforms, indicating a

high degree of concordance between the model predictions and the SPICE simulations.
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Fig. 4.5. Comparison of the switch voltage vC waveform between the LT SPICE model, the
cyclic-model, and the experimental circuit

However, there is a difference in the maximum switch voltage, the cyclic-mode model and

SPICE model suggest the value of 30.7 V, while the experimental data shows a lower value of

27.9 V. This discrepancy could be due to various factors.

1. Differences Between Ideal and Actual Components: In the comparative experiment, both

the SPICE model and the recurrent mode model initially used ideal components to

simulate the circuit, including switches, inductors, capacitors, and wires. However, the

components in the actual experimental prototype were not ideal, which could introduce

discrepancies.

2. Errors from Selecting Equivalent Circuits for Piezoelectric Resonators: Piezoelectric

resonators differ from traditional circuit structures and therefore do not have a unique

equivalent circuit model. Common models include the Krimholtz, Leedom, and Matthaei

(KLM) model, the Butterworth-van Dyke Model, and the Mason model [4.14]. For our

experiments, the Mason model was chosen due to its widespread use. Nonetheless, this
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model simplifies certain aspects, such as assuming material homogeneity and neglecting

the frequency dependence of piezoelectric material nonlinearity. These assumptions can

lead to inaccuracies in reflecting the resonator's electronic properties.

3. Measurement Errors Due to Piezoelectric Resonator Geometry: Fig. 4.6 illustrates the

geometry of the piezoelectric resonator used in the experiment. Ideally, the connection

point between the piezoelectric resonator and the circuit should be at the centre of the two

circular bottom surfaces to closely match the equivalent circuit's performance. However,

in practice, the performance is significantly affected by how the wires are welded to the

resonator. An off-centre connection point during measurements also contributes to errors.

Fig. 4.6. Pictures of the piezoelectric resonator used in the experiments

Although the physical experiment results show approximately a ten percent error in the

maximum switching voltage, the waveform trend of the inverter protype closely resembles

that of the cyclic-mode model. Additionally, the waveform of the cyclic-mode model aligns

well with that of the SPICE model. This consistency underscores the accuracy of the circular

mode model in simulating the resonant converter.
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To demonstrate the advantage of the class EF2 topology, the circuit was modified to operate

as a class E inverter by disconnecting the auxiliary network. Fig. 4.7 shows that, in this

configuration, the switch voltage peaked at 44V. In contrast, the cyclic-model of the class EF2

inverter, depicted in Fig. 4.5, indicates a much lower maximum switch voltage of 30.4V.

These two figures show the maximum voltage of the class E inverter to be 46% higher than

that of the class EF2 inverter in this case. The significant difference in these voltages

highlights the class EF2 topology's effectiveness in reducing peak switch voltage stress.

Fig. 4.7. The switch voltage of the class E inverter circuit

Fig. 4.8 presents a comparative analysis of the load voltage for the class EF2 inverter, from

cyclic-mode model, SPICE simulation and experimental model perspectives. The

experimental load voltage waveform is denoted by a black solid line, the SPICE simulation

load voltage by a green dotted line, and the cyclic-mode model load voltage by a blue dotted

line. Both the cyclic-model and the SPICE simulation predict a peak-to-peak load voltage of

17.28 V, equating to an output power of 0.93 W. Conversely, the experimental results show a

slightly lower peak-to-peak load voltage of 16.78 V, corresponding to an output power of

0.88 W. The close agreement between these values substantiates the accuracy of the

cyclic-mode model in predicting the behaviour of load voltage.
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Fig. 4.8. A comparative analysis of the load voltage waveforms vL from the LT SPICE
model, cyclic-mode model, and experimental model

To evaluate the functionality of the piezoelectric resonator (PR), it was replaced with a

combination of a traditional capacitor, an inductor, and a resistor, which were valued to match

the PR’s equivalent circuit parameters: �m, �m, and �m. Fig. 4.9 and Fig. 4.10 delineate the

SPICE model switch voltage �C and load voltage �L for the class EF2 inverter with a

standard capacitor and inductor. A peak switch voltage of 30.4 V is observed, with the

peak-to-peak load voltage registering at 16.2 V, and the output power amounting to 0.82 W.

Fig. 4.9. The switch voltage vC waveform of the class EF2 inverter SPICE model, which
uses standard inductor and capacitor as auxiliary network
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Fig. 4.10. The load voltage vL waveform of the class EF2 inverter SPICE model, which
uses standard inductor and capacitor as auxiliary network

Comparing Fig. 4.5, Fig. 4.9, Fig. 4.8 and Fig. 4.10, it is evident that substituting standard

inductors and capacitors in the auxiliary network of the class EF2 inverter with a

piezoelectric resonator results in similar switching and load voltage waveforms.

4.6 Conclusion

This chapter analyses and models the class EF2 inverter under optimal operation by applying

the cyclic-mode modelling technique. The results of the modelling analysis are compared

with the results of the corresponding SPICE simulation model and the results measured on a

physical prototype.

Firstly, and most importantly, the agreement between the cyclic-mode model results and the

SPICE simulation results proves the accuracy of the cyclic-mode modelling technique in

analysing the resonant converter, this confirms that the cyclic-mode modelling technique is a

better choice for analysing resonant switching power supplies and also provides a basis for

the subsequent use of cyclic-mode modelling as the main analytical approach. Then the use

of PR on an experimental prototype confirms the potential of PR for resonant converter

applications.
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However, the precise requirement of a fixed duty cycle and the assumption that the

components in the circuit are ideal limit the usage of cyclic-mode modelling. The main

direction of improvement is to investigate new analytical methods to obtain the duty cycle of

the modes to meet the precise duty cycle requirement of the technique. Attempts are also

made to incorporate parasitic components in the modelling process to bring the model closer

to reality.
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Chapter 5. Application of Newton's method for estimating the

mode durations and initial condition of cyclic-mode models

with specific application to the class E inverter
The previous Chapters have utilized the cyclic-mode modelling framework, as described in

[5.1], to estimate the behaviours of DC input power converters. This Chapter details the

technique of integrating the Newton method with the cyclic-mode model to ascertain the

steady-state operating conditions of converters. It then applies this technique to a class E

inverter operating under suboptimal conditions. In subsequent Chapters, the cyclic-mode

modelling framework is further extended to facilitate the determination of RMS values of

signals.

5.1 Introduction

To ensure the optimal working condition of a class E inverter, precise selection of resonant

circuit component values, operating frequency, and duty cycle is essential. However, any

change in component value can disrupt this optimal condition. Due to implementation

challenges and sensitivity to component variations, this mode is not commonly chosen in

practical applications.

On the other hand, in the suboptimal working condition, despite not fully achieving ideal

ZVS, the operational state can still significantly reduce switching losses. This condition

offers more flexibility in switch frequency and duty cycle selection and is more tolerant to

component value changes, making it a more pragmatic choice in real-world scenarios.

For modelling a class E inverter under suboptimal operation, given the accuracy of the

cyclic-mode model described in Chapter 4, this model is chosen. The cyclic-mode model
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requires determining the periodic initial values, the sequence of different modes (circuit

configurations), and each mode's duration. In optimal conditions, i.e., under a two-mode

operation, the sequence and duration of modes are controlled. Thus, the periodic initial values

of the model can be acquired through expression,

�(�0) = �(�0 + Tsw) (5.1)

However, under suboptimal operating conditions, i.e., in a three-mode operation, the

sequence of modes is known, but only the duration of Mode 1 is known, hence a method is

needed to ascertain the durations of Mode 2 and Mode 3, thereby achieving an accurate

cyclic-mode model.

If suboptimal operating conditions are chosen for the inverter's operation, then the accuracy

of the cyclic-model as demonstrated in Chapter 6 continues to be a reliable tool for predicting

the circuit behaviour. The core requisites of the cyclic-model in this case are as follows:

Firstly, an in-depth understanding of the circuit behaviour is pivotal. This can be achieved by

thoroughly comprehending circuit dynamics and employing fundamental principles like

Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL) to formulate the correct

set of differential equations.

Secondly, identifying the order of modes within a cycle is also important. This process

involves estimating the circuit behaviour using techniques.

Lastly, and most importantly, determining the duration of each mode is critical. Ensuring the

correct duration for each mode is key to the model's accuracy. The Newton-Raphson method

can be employed to obtain precise durations of each mode and the initial values for the model,

thus ensuring a precise prediction of the circuit's performance under the given operational

conditions.
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5.2 Methodology of the Newton-Raphson method

The Newton-Raphson method, often abbreviated as Newton's method, is an iterative

numerical technique that is extensively used for finding increasingly accurate approximations

of the roots (or zeros) of a real-valued function. Originating from the work of Sir Isaac

Newton and later promoted by Joseph Raphson, this method has gained attention for its rapid

convergence characteristics, particularly when approaching the true root. By employing the

Taylor series expansion of the equation, the Newton-Raphson method aims to linearize the

nonlinear algebraic equations, thereby striving to ascertain the roots of the equation, making

it an effective solution for tackling nonlinear algebraic equations [5.2].

The method hinges on the fundamental idea of linear approximation and is based on a Taylor

series expansion of the function under investigation. At each step, a function �(�) is

approximated by a tangent line, and the x-intercept of this line is taken as the next

approximation to the root. The process is then iteratively repeated using the updated value of

x until a sufficiently accurate value is achieved. The goal being to determine the value of x

such that � �� − � ��−1 < � (where ε is an error bound and k is the iteration index) and

is sufficiently close to zero for �(�(�))~0.

The formulation for Newton's method is as follows: let �(�) be a differentiable function

with continuous derivatives. The Newton method’s formula to update the approximation �

of the root is given by [5.3],

whe

re

� is

the index of current iteration step; ��+1 is the next approximation. �� is the current

approximation. �(��) is the value of the function at the present approximation ��. �'(��)

is the value of the first derivative of the function at the current approximation ��.

��+1 = �� −
� ��

�' �� (5.2)
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For the Newton's method utilizing the Jacobian matrix [5.3], (5.2) can be rewritten as

whe

re

0 <

� ≤ 1 is a relaxation factor to improve convergence and �(��) is the Jacobian matrix of

partial derivatives evaluated at ��ℎ iteration, �(�) is given by,

whe

re

�

represents the number of elements contained in vector �. Given that equation (5.4) could be

a difficult to differentiate, employing the numerical form of the Jacobian proves to be more

convenient, wherein the partial derivatives are assessed using,

��� �
���

≈
�� � + ∆�� − ��(�)

��
(5.5)

where � denotes the function index, � represents the variable index, and ��� =

0 . . . ��. . . 0 �
is a � × 1 single-element row vector with a sufficiently small increment ��

in the ��ℎ variable. The stopping criterion for the iteration is achieved when the �1-norm

diminishes below an acceptable value �,

�final − �final−1 < � (5.6)

where �final is a vector of true root of function �(�).

Proceeding with a three-mode operating class E inverter as an example, the Newton-Raphson

method based on the numerical Jacobian matrix will be utilized to obtain the initial values

and the duration of each mode under three-mode operation. Initially, a brief introduction to

the operation of the class E inverter will be provided.

��+1 = �� − �
� ��

� �� (5.3)

� � =
��

��
=

��1

��1
⋯

��1

���

⋮ ⋱ ⋮
���

��1
⋯

���

���

(5.4)
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5.3 Operation of class E inverter

Mode 1 (M1), �0 ≤ � < �1: During the interval �1/���, switch � is turned on. Throughout

this period, the switch voltage is zero, with �in being applied to �in. Consequently, the

voltage across the switch remains at zero. Since � is on the resonant current iLs that

circulates through �s, �s, and �L also flows through �.

Mode 2 (M2), �1 ≤ � < �2: � is turned off. Current flows out of �in and into �0 and the

main resonant branch. �Lin = �C0 + �Ls. The switch voltage increases from zero to a maximum

value and then reduces below zero until reach �’s forward bias voltage.

Mode 3 (M3), �2 ≤ � < �3: � remains turned off, � is conducting and the switch voltage

��0 has been clamped at �’s forward bias voltage − �d. At the end of M3, the switch voltage

��0 is forced to zero by the turn-on of �. It should be noted that ��0 =− �d is typically less

than 1 V and so switching losses are significantly reduced compared to the non-optimal,

non-ZVS operating condition.

5.4 Derivation of cyclic-mode model for the class E inverter

Fig. 5.1 shows circuit diagram of the class E inverter. �s and �s form the main resonant

branch; these force a sinusoidal shaped current to follow through the load ��. � is the

MOSFET switch and is operated at a frequency ��� and with a duty �1, and � is the

antiparallel diode of the switch. Input inductor �in is a filter inductor ensuring that only a

DC current �Lin from the input voltage �DC.
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Fig. 5.1. Circuit diagram of the class E inverter

Under sub-optimal conditions, the operation of the class E inverter during a single switching

cycle is divided into three modes. The detailed analysis of each mode has been thoroughly

covered in Chapter 2 and will not be revisited here.

The following approach is used to derive the cyclic-model for the class E inverter:

1. For each mode, determine the differential equations for the inductor current and capacitor

voltage and then form a piecewise linear state-variable model

2. Using describing functions to roughly estimate the duration of each mode. Based on

these estimates, construct the cyclic-mode model to obtain an estimate of the state

variable �(�) initial value, denoted as �(�0).

3. Construct Newton's solving equations based on the mode-switching conditions.

4. Use Newton's method to determine the precise cyclic-mode initial conditions �(�0) and

each mode duration.

5.4.1 Differential equations and piecewise state-variable model for each mode

To construct the inverter's cyclic-model, the first-order differential equations are needed to

describe the derivatives of the relevant capacitor voltages and the inductor currents.

For Mode 1 (M1) �0 ≤ � < �1:
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At t=t0, S turns on and this signifies the start of a cycle. �DC has been applied to �in, the

derivative of the input inductor current is given by,

��in� =
��in

�in
=

�DC

�in
(5.7)

With the derivative being denoted by �� ≡ ��
��
. The series inductor current is found from,

��s� =
��s

�s
=

− ��s − �L��s

�s
(5.8)

For the derivative series capacitor voltage, it is noted that �s and �s are connected in series.

Therefore,

��s� =
��s

�s
=

��s

�s
(5.9)

For the shunt capacitor C0, since the switch is turned on and so ��0 = 0. Thus,

��0� = 0 (5.10)

Combing (5.7)-(5.10) gives the state-variable model for M1,

��in
��s
��s
��0

�

=

0 0 0 0
0 − �L

�s
− 1

�s
0

0 1
�s

0 0

0 0 0 0

��in
��s
��s
��0

+

�DC
�in
0
0
0

(5.11)

(5.11) can be rewritten as,

��= �1� + �1 (5.12)

where �� is a square matrix of order ℎ representing the system dynamics and �� is the input

vector for the �th mode. The state-vector � is,

� = ��in ��s ��s ��0
T = �1 �2 �3 �4 T (5.13)

During Mode 2 (M2) �1 ≤ � < �2, At t=t1, � is turned off, so the switch voltage starts to

increase from zero, therefore the derivative of the input inductor current is given by,
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��in� =
�DC − ��0

�in
(5.14)

The derivative series inductor current is found from KVL rule,

��s� =
��0 − ��s − �L��s

�s
(5.15)

The derivative of shunt capacitor voltage �C0� , which is also equal to the MOSFET

drain-source voltage, is given by KCL rule,

��0� =
��in − ��s

�0
(5.16)

Series connection of Ls and Cs means ��s� is defined as for Mode 1,

��s� =
��s

�s
(5.17)

Combing (5.14)-(5.17) gives the state-variable model for M2,

��in
��s
��s
��0

�

=

0 0 0 − 1
�in

0 − �L
�s

− 1
�s

1
�s

0 1
�s

0 0

1
�0

− 1
�0

0 0

��in
��s
��s
��0

+

�DC
�in
0
0
0

= �2� + �2 (5.18)

For Mode 3 (M3) �2 ≤ � < �3:

The current ���� − ��� that flows through C0 drives ��0 below zero. When �C0(�2) =− �d

the switch’s antiparallel diode conducts thereby clamping �C0 =− �d and this signifies the

start of M3. The derivative of input inductor current is described by,

��in� =
�DC − �C0

�in
(5.19)

The derivative of series inductor current is found from,

��s� =
��0 − ��s − �L��s

�s
(5.20)

Assuming the body diode voltage is constant during M3, the derivative of shunt capacitor

voltage is,
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��0� = 0 (5.21)

As with the previous two modes,

��s� =
��s

�s
(5.22)

Combing (5.19)-(5.22) gives the state-variable model for M3.

��in
��s
��s
��0

�

=

0 0 0 − 1
�in

0 − �L
�s

− 1
�s

1
�s

0 1
�s

0 0

0 0 0 0

��in
��s
��s
��0

+

�DC
�in
0
0
0

= �3� + �3 (5.23)

Hence, by referring to equations (5.11), (5.18) and (5.23), along with the mode sequences, a

piecewise linear equation can be formulated, which is contingent on the duration times of the

respective modes,

�� � =

���(�0) + �� �0 ≤ � < �1

���(�1) + �� �1 ≤ � < �2

���(�2) + �� �2 ≤ � < �3

(5.24)

5.4.2 Cyclic-mode model of the class E inverter

The inverter is operating in a cyclic-mode, the final condition of state variables at the end of

cyclic �(�3) should equal the initial condition of that cyclic �(�0),

� �0 = � �3 = � �0 + ��� (5.25)

Since the input is DC, starting from � = �0, the state-vector at the end of Mode 1 is given by,

� �1 = �1� �0 + �1 (5.26)

where �1 value can be obtained from �� = exp �� �� − ��−1 , so �1 = exp �1�1�sw

and �1 value can get from �� = ��
−1 �� − � �� , �1 = �1

−1 �1 − � �1 . Similarly, the

state-vector at the end of Mode 2 is given by,
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� �2 = �2� �1 + �2 (5.27)

where �2 = exp �2�2�sw and �2 = �2
−1 �2 − � �2.

During Mode 3, �2 ≤ � < �3 , refer to the switch voltage waveform in Fig. 5.2, the switch

voltage will discontinue at the end of Mode 3. So, it needs to be forcing ��0 �3 = 0, defined

�3
− symbolised the instant before �3 . Thus, the state-vector at the end of Mode 3, prior to

discontinuity, is ascertained through a similar approach,

� �3
− = �3� �2 + �3 (5.28)

where �3 = exp �3�3�sw = exp �3(1 − �1 − �2)�sw and �3 = �3
−1 �3 − � �3.

To ensure that all state variables at time �3 , marking the end of the cycle, are equivalent to

those at the start of the cycle, it is imperative to set ��0(�3) to zero. Subsequently, � is

delineated as a unit matrix with identical dimensions to ��, with the exception that the fourth

row is zero,

Thu

s, at

time �3 , the value of the state variable �(�) is equivalent to the value of � at time �0 ,

represented as,

� �3 = �� �3
− = � �0 (5.30)

The cyclic-mode initial condition � �0 can be found by evaluating the final conditions of

each mode.

� �3 = �(�3 �2 �1� �0 + �1) + �2 + �3 = ��tot� �0 + ��tot (5.31)

�tot and �tot value is obtained from

�tot =
�=�,�−1

1

��� , �tot =
�=1

�−1

�=�,�−1

�+1

�j� �� + ��� (5.32)

� =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

(5.29)
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In this case � = 3. Thus, the expression of �tot and �tot are give by,

�tot = �3�2�1 (5.33)

and

�tot = (�3 �2 �1) + �2 + �3 (5.34)

If �1 and �2 values are known, then �3 be determined using �3 = 1 − �1 − �2 from

which the final condition �(�3) can be found. Substituting (5.29) into (5.31) and rearranging

gives the initial (final) condition,

� �3 = � − ��tot
−1 ��tot = �(�0) (5.35)

� � =
�� � � �0 + �� � �0 ≤ � < �1
�� � � �1 + �� � �1 ≤ � < �2
�� � � �2 + �� � �2 ≤ � < �3

(5.36)

where ��(�) = exp (�� �� − ��−1 ) and ��(�) = ��
−1 ��(�) − � ��.

5.4.3 Determining the cyclic-mode initial condition using Newton’s method

To accurately simulate a class E inverter operating under suboptimal conditions, it is

necessary to determine the initial conditions and the duration of each mode for the

cyclic-mode model. For this purpose, the aforementioned Newton-Raphson method can be

employed. Since the duty cycle of Mode 1 �1 is controllable, it is only necessary to

determine the duty cycle of Mode 2 �2 to establish the duration of all modes in a cycle.

Therefore, the Newton-Raphson method, based on the numerical Jacobian matrix, is utilized

to define the initial conditions of the cyclic-mode model and the duty cycle of Mode 2. The

vector � in this case comprises the combination of the initial conditions �(�0) of the

cyclic-mode model and the duty cycle of Mode 2 �2,
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� = �T(�0) �2
� (5.37)

where defined �� is the ��ℎ element of �. So, refer to (5.13) �1 = �1(�0), �2 = �2(�0),

�3 = �3(�0), �4 = �4(�0) and �5 = �2.

The matrix formulation of Newton's method, when applied to this problem is,

��+1 = �� − � �� −1
�(��) (5.38)

where � is the iteration number and �� are � values at ��ℎ iteration. � � is a vector

function that is used to determine the cyclic-mode initial conditions and �2,

� � =

�1 �
�2 �
�3 �
�4 �
�5 �

(5.39)

�1..4 � represent the error between the cyclic-mode initial condition and final condition,

�1 �
�2 �
�3 �
�4 �

= � �sw + �0 − � �0 = 0 = ��tot� �0 + ��tot − � �0 (5.40)

Duty cycles �2 is determined by the MOSFET body diode conduction as described in

converter operation section. At the end of Mode 2, the shunt capacitor voltage should equal to

the switch body diode conducting voltage,

��0 �2
− =− �d (5.41)

where represent by cyclic-mode model is,

0 0 0 1 �2(�1� �0 + �1 + �2] =− �d (5.42)

So �5(�) is based on (5.42),

�5(�) = 0 0 0 1 �2(�1� �0 + �1 + �2] + �d (5.43)

When all these conditions are fulfilled � � = 0,

� � =

�1 �
�2 �
�3 �
�4 �
�5 �

=

��tot − � � �0 + ��tot

0
0
0
1

�

�2(�1� �0 + �1 + �2 + �d
(5.44)
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Taking the partial derivative of � � with respect to each variable provides the Jacobin

matrix,

� � =

��1

��1

��1

��2

��1

��3

��1

��4

��1

��5
��2

��1

��2

��2

��2

��3

��2

��4

��2

��5
��3

��1

��3

��2

��3

��3

��3

��4

��3

��5
��4

��1

��4

��2

��4

��3

��4

��4

��4

��5
��5

��1

��5

��2

��5

��3

��5

��4

��5

��5

=

��1

��Lin

��1

��Ls

��1

��Cs

��1

��C0

��1

��2
��2

��Lin

��2

��Ls

��2

��Cs

��2

��C0

��2

��2
��3

��Lin

��3

��Ls

��3

��Cs

��3

��C0

��3

��2
��4

��Lin

��4

��Ls

��4

��Cs

��4

��C0

��4

��2
��5

��Lin

��5

��Ls

��5

��Cs

��5

��C0

��5

��2

(5.45)

As mentioned earlier, owing to the complexities of the model the numerical form of the

Jacobian is used. The procedure for determining each element of the numerical Jacobian

matrix is described below. Initially, the expression for ∆�1 is defined by (5.5).

∆�1 =

�1
0
0
0
0

(5.46)

So, the vector composed of the partial derivatives ��1 �
��1

to ��5 �
��1

as elements is obtained by

substituting equations (5.44) and (5.46) into equation (5.5), yielding,
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��1 �
��1

��2 �
��1

��3 �
��1

��4 �
��1

��5 �
��1

T

≈
� � + ∆�1 − � �

�1
(5.47)

��1 �
��1

��2 �
��1

��3 �
��1

��4 �
��1

��5 �
��1

T

≈

��tot − �

�1 + �1
�2

�3

�4

+ ��tot

0
0
0
1

�

�2 �1

�1 + �1
�2

�3

�4

+ �1 + �2 + �d

−

��tot − �

�1

�2

�3

�4

+ ��tot

0
0
0
1

�

�2 �1

�1

�2

�3

�4

+ �1 + �2 + �d

�1

(5.48)

The values of ��1
��2

to ��5
��2

; ��1
��3

to ��5
��3

and ��1
��4

to ��5
��4

can be derived by a similar approach.

For the ��5 part, given that �5 represents �2, which is the duty ratio of Mode 2, and

referring to (5.27), (5.33), and (5.34), the values of �2, �2, �tot and �tot change with �5.

So, similar to (5.47), the vector composed of the partial derivatives ��1 �
��5

to ��5 �
��5

as

elements is,

��1 �
��5

��2 �
��5

��3 �
��5

��4 �
��5

��5 �
��5

T

≈
� � + ∆�5 − � �

�5
(5.49)

where ∆�5 = 0 0 0 0 �5
T

Define the new expression of �2, �2, �tot and �tot when �5 change to �5 + �5 as

�2,new, �2,new, �tot,new and �tot,new. So, similar to (5.48), the expression of vector in (5.49)

is,
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��1 �
��5

��2 �
��5

��3 �
��5

��4 �
��5

��5 �
��5

T

≈

��tot,new − �

�1
�2
�3
�4

+ ��tot,new

0
0
0
1

�

�2,new �1

�1
�2
�3
�4

+ �1 + �2,new + �d

−

��tot − �

�1
�2
�3
�4

+ ��tot

0
0
0
1

�

�2 �1

�1
�2
�3
�4

+ �1 + �2 + �d

�5

(5.50)

After following these procedures, each value in the numerical Jacobian matrix for the Newton

method can be determined. Finally, as per equation (5.6), the criterion for ending the cycle is

when the difference between two successive iteration values of � is sufficiently small. The

defined ����� is as follows:

������ = |�1
� − �1

�−1| + |�2
� − �2

�−1| + |�3
� − �3

�−1| + |�4
� − �4

�−1| + |�5
�

− �5
�−1|

(5.51)

When �����final < �, the Newton method will end and output a vector of true initial

conditions for cyclic operation, �(�0) and �2.

5.5 Model validation

To validate the proposed model, a class E inverter simulation model was developed. Set the

circuit series resonant frequency is 100 kHz. The components were determined using

Kazimierczuk, et al., [5.4] methodology., components values for the design are listed in Table

5.1.
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Table 5.1. Components parameters of the class E inverter for the design

Parameter Value

�� (Ω) 0.611

�DC (V) 2.3

�0 (nF) 100

�� (μH) 30

�� (nF) 84.52

�d (V) 0.7

�� (mH) 3.3

�sw (kHz) 108

The initial value of Mode 2's duty ratio, �2, in the Newton iteration method is given by �2
0 =

1−�1
2
, while the initial iteration value of �(�0), denoted as �0(�0), is derived from (5.35) and

�2
0’s value.

�0 =
�0(�0)

�2
0 =

−0.3389
1.0325
6.0161

0
0.25

(5.52)

The results from Newton's method represent the true initial conditions of the cyclic-mode

model, and the duration of Mode 2 after 8 iterations, as presented in (5.53):

�final =
�final(�0)

�2
final =

0.3372
0.9050
21.2836

0
0.3327

=

��in �0

��s �0

��s �0

��0 �0

�2

(5.53)

So, the cyclic-mode model precise initial conditions and duty ratio of each mode are given by

Table 5.2.
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Table 5.2. The class E inverter cyclic-mode model initial conditions and duty ratio of each
mode after using Nethod’s method

Parameter Value

�Lin �0 (A) 0.3372 A

�Ls �0 (A) 0.9050 A

�Cs �0 (V) 21.2836 V

�C0 �0 (V) 0 V

�1 0.5

�2 0.3327

�3 0.1673

Following the determination of the model's initial values and the duration of each mode

through the Newton method, these values are then inputted into the cyclic-mode model in

(5.36). This results in the waveform of each state variable during operation. To demonstrate

the effectiveness of the Newton method, Fig. 5.2 shows the cyclic-mode model result

waveforms without using Newton’s method, meaning the model uses (5.52) as the operation

condition.

Fig. 5.2. The class E inverter three mode cyclic-mode model waveform with X0 as the
operation condition
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Subsequently, the corresponding LT SPICE simulation model of the converter is established

according to the design parameters and the circuit diagram is shown in Fig. 5.3. The accuracy

of the Newton method and the cyclic-mode model is evaluated by comparing their

operational waveforms from the SPICE simulation,

Fig. 5.3. SPICE model schematic of the class E inverter

As shown in Fig. 5.4. This comparison confirms that the combined use of the Newton method

and the cyclic-mode model effectively determines the steady-state operating conditions of the

class E inverter in three-mode operation.
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Fig. 5.4. The comparison between each inductor current and each capacitor voltage
waveforms of the cyclic-mode model (black lines) and the SPICE model (red lines)

The Newton method's accuracy depends on the predicted modes' number and order matching

those in the actual simulation, and the duty cycles of these modes being approximately

accurate. If the predictions of the converter's operating state are incorrect, leading to improper

conditions being fed into the Newton method, it will either produce erroneous results or fail

to yield any output. For this case, the circuit operating under sub-optimal conditions with

three modes (M1-M2-M3-M1). If the duty cycle of each mode is approximate estimate as 0.5,

�2 =0.25, and �3 =0.25, Newton's method can iteratively generate an accurate initial model

value. However, inaccurate predictions, such as duty cycles of �2 =0.5, and �3=0, which

wrongly assuming that the converter is running under optimal operation, will lead Newton’s

method output incorrect results as illustrated in Table 5.3.
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Table 5.3. Output of Newton's method after using misestimation

Parameter Value

�Lin �0 (A) 2.0148 A

�Ls �0 (A) 0.7260 A

�Cs �0 (V) 67.5933 V

�C0 �0 (V) 0 V

�1 0.5

�2 0.5714

�3 −0.0714

The irrational values of �2 and �3 in the table indicate that if the initial iteration value in

Newton's method deviates significantly from the correct result, the method becomes

ineffective and outputs erroneous results. This highlights the need for alternative methods to

estimate the initial values of the model and the duty cycles of each mode, thereby ensuring

the effective application of Newton's method.

In order to further validate the accuracy of the cyclic-mode model and the Newton’s method,

a comparison of the Root Mean Square (RMS) values of each state variable obtained from

both models is performed. The RMS values provide a measure of the magnitude of the

varying quantities and are useful for comparing the overall energy handling capacity among

different states of the models. By examining the RMS values from the cyclic-mode model

and LT SPICE simulation, a more quantitative assessment of the model's accuracy can be

achieved.

Using the waveforms generated by the cyclic-mode model while utilizing the definition of the

root mean square value, the RMS values of each inductor current and capacitor voltage can

be derived. The comparison between the cyclic-mode model result with SPICE model RMS

values is shown in Table 5.3.
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Table 5.4. Comparison of cyclic-mode model results and LT SPICE results RMS values

Measurement
Cyclic-mode model

results

LT SPICE

results
Error (%)

�Lin(RMS) ​ (A) 0.3382 0.3386 0.12

�Ls(RMS) ​ (A) 1.0376 1.0398 0.21

�Cs(RMS) ​ (V) 18.3093 18.238 0.39

�C0(RMS) ​ (V) 4.6464 4.6914 0.96

The maximum error rate of less than 1% demonstrates the accuracy of the RMS cyclic-mode

model and the Newton's method. This low level of error showcases the reliability of the

approaches employed, making the cyclic-mode model paired with Newton's method a

trustworthy tool for analysing and understanding the dynamics of the inverter under study.

The consistency between the modelled and simulated results affirms the validity of the

cyclic-mode model, which is crucial for further analysis, optimization, and design

modifications of the inverter system.

5.6 Conclusion

Due to the requirement of the cyclic mode model for accurate inputs, this limitation needs to

be addressed through improvements in analysis methods. This chapter proposes a new

application of Newton's method with cyclic-mode modelling to obtain the exact operating

conditions of the cyclic mode model. As an example, a class E inverter under sub-optimal

operation is used. The effectiveness of Newton's method is illustrated by comparing the

results obtained using Newton's method with those of the cyclic mode model without

Newton's method. The accuracy of Newton's method is further verified using the LT SPICE

simulation model.
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The proposed new application of Newton's method reduces the input requirements of the

cyclic-mode modelling technique. This not only provides a methodology for finding the

operating conditions for cyclic-mode models of different orders in subsequent chapters, also

extends the scope of application of the cyclic-mode modelling technique but also makes its

use more methodical, creating conditions for its wider application. While the need for

iterative initial values highlights the limitations of its application, it also provides insights

into potential improvements to the method.
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Chapter 6. A framework for determining the RMS value of

signal using cyclic-mode modelling

The previous Chapters have used the cyclic-mode modelling framework described in [6.1] to

estimate the behaviour of DC input power converters. In this Chapter, the cyclic-mode

modelling framework is extended so that it can determine the RMS values of signals.

Subsequent Chapters apply the developed RMS framework to a variety of DC input power

converters.

6.1 Cyclic-mode average and RMS calculation framework

The significance of root mean square (RMS) values in the modelling and analysis of power

electronic circuits was thoroughly addressed in Chapter 2. Progressing to a review of Chapter

2 on RMS value calculation methods, the cyclic-mode modelling technique was selected as

the foundation for developing a methodology to calculate the RMS values of key variables in

switching power supplies. Furthermore, the research approaches of Kostakis et al., were

incorporated to enhance cyclic-mode modelling [6.2]. The fundamental assumptions of this

study are the same with the assumptions of cyclic-mode modelling, include:

1. The switching power supply system is in a cyclic steady state, which also means the duty

cycle is fixed for each mode.

2. The system input is a DC input.

3. The switching elements are ideal switches.

These assumptions pave the way for establishing a modelling framework to derive the RMS

values of the state variables.
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The starting point for the cyclic-mode average that was first presented in [6.1].

6.1.1 Average values of states

The average of the state-variables, �av, are determined by evaluating

�av =
1

��� �0

�0+�sw

���� (6.1)

The need for explicit integration is eliminated because differentiating (6.1) with respect to

time yields,

�� acc =
1

�sw
� (6.2)

where �acc is the scaled and integrated (accumulated) state-variable vector from an arbitrary

start time. Starting at � = �0 and setting the initial condition �acc �0 = � and then

integrating (6.2) until � = �0 + �sw provides �acc �0 + �sw which is equal to �av after a

full cycle as shown in (6.3).

�av = �acc �0 + �sw − �acc �0 = �acc �0 + �sw (6.3)

Having reformulated the averaging operation as a differential equation, (6.2) can be

augmented with cyclic-mode state-variable model (�� = ��� + ��) to provide the new

with-averaging piecewise model

�� � = �� �� � (6.4)

(6.5)

where �� � is a square matrix of order (2ℎ + 1), � is a square identity matrix of order ℎ

and the � matrices are sized as required. The cyclic-mode initial condition for the

with-averaging model (6.4) is
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(6.6)

Using �� �sw = �� tot�� �0 and (6.3), the average value state-vector, �av, is found by

cascading mode solutions starting from the initial condition,

(6.7)

where �� � = exp �� ����sw .

To summarise:

 The technique just described provides a method for determining the average values of

the states in matrix form given the cyclic-mode initial condition

 Previous Chapters have demonstrated how to apply cyclic-mode modelling to

different converters

 Combining provides a framework method for determining the Mean operation of

the RMS calculation

6.1.2 Root-Mean Square of States

The RMS values of the state-variables can be determined by evaluating

���� =
1

��� �0

�0+���

� ∘ � d�� (6.8)

where � ∘ � represents the Hadamard product of x, i.e., it is the vector � ∘ � =

�1
2 �2

2 ⋯ �ℎ
2 �. As with (6.1), the requirement for explicit integration is unnecessary

since (6.8) can be differentiated with respect to time to give,

d
dt � ∘ � acc =

1
���

� ∘ � (6.9)
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where � ∘ � acc is a scaled accumulated value of � ∘ �, whose value is 0 at � = �0. Note

that � ∘ � acc cannot be calculated from �acc since ��dt�
2

≠ ��
2dt� for any � ∈ [1, ℎ].

Referring to (6.3),

� ∘ � av = � ∘ � acc �0 + �sw − � ∘ � acc �0 = � ∘ � acc �0 + �sw (6.10)

From (6.8), the vector of the root mean squares of the states can be calculated as

���� = � ∘ � acc �0 + ��� − � ∘ � acc �0 = � ∘ � acc(�0 + ���) (6.11)

6.1.3 Computationally efficient evaluation of the RMS

Equation (6.11) can be efficiently evaluated only if � ∘ � can be calculated directly from

the piecewise state-variable matrices �� and �� and corresponding duties �� and ���.

In the derivation that follows, a sequence of operations are defined where the � ∘ � term is

linearised allowing the cyclic averaging algorithm ((6.4)-(6.7)) to be applied to evaluate the

mean-square values of the state-variables. The starting point for this process is to expand the

derivative of the square of an individual state-variable (i.e. ��
2 = ���� where � ∈ 1, ℎ is

an index for state-variable).
d
dt

���� = ��� �� + ����� = 2����� (6.12)

It should be noted that the left-hand side of (6.12) is similar to the �� (�) vector on the left

hand side of (20) from [6.2]. Using �� = ��� + �� allows some of the terms in (6.12) to be

represented by the state-variable model,
d
dt

���� = 2�� ��� + �� � = 2�� ��� � + 2�� �� �
(6.13)

where � � represents an operator used to extract row j from �. More formally, � � =

���
�� where ��� ∈ �ℎ×1 is the �th unit vector of � (i.e. ��� is a vector of order ℎ, where all

entries are zero except for �th term which is 1). Using this notation, �� = � �. By extension,

a single element of � at index (�, �) is defined as ��,� = � �,� = ���
�����.
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Equation (6.13) is for a single state-variable and it can be re-written for all � ∈ [1, ℎ] in a

matrix form,

d
dt

� ∘ � = 2� ∘ ��� + 2� ∘ �� (6.14)

An individual row � ∈ [1, ℎ] of (6.14) can be written as,

2� ∘ (���) + 2� ∘ (��) � = 2��
�=1

ℎ

�� �,���� + �� �

= 2 �� �,1���1 + ⋯ + 2 �� �,ℎ���ℎ + 2�� �� �

(6.15)

Applying simplifications and then recombing the rows gives,

d
dt

� ∘ � = 2 �� ∘ ��T �ℎ + 2� ∘ �� (6.16)

where ��T is the outer product of � and �ℎ is the column vector of ℎ ones (and here

represents column wise summation). The term ��T as defined in (6.16) poses a problem

since, as written, it cannot be expressed in form that lends itself to cyclic-mode analysis.

However, ��T can be vectorised giving,

vec ��T = �1� �2� … �ℎ� � = � ⊗ � (6.17)

where ⊗ is the Kronecker product [6.3] and thereby provides all possible product

combinations of the state-variables. Introducing a new vector �� which contains the original

states, and their product combinations allows (6.16) to be expressed in a format compatible

with cyclic-modelling. As shown by (6.18), the derivative of the squared state-variables is

contained in the set ���

d
dt

� ∘ � ≡ ��� (6.18)

where all the terms in � ∘ � appear in � ⊗ �, so

�� =
�

� ⊗ � (6.19)

Although � applies a mapping to the elements of �� , there is no straightforward solution to

(6.18) as the left- and right-hand side vectors differ and � is not square. However, as all the

terms in � ∘ � appear in �� by virtue of the Kronecker product, an equation in the solvable
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form d�� d� = ����� + �� � can be formed and used to find the terms in � ∘ �. The first step in

forming this equation is to find the derivative of � ⊗ �.

d
dt

� ⊗ � = � ⊗ �� + �� ⊗ � (6.20)

and substituting �� = ��� + �� into (6.20) gives

d
dt

� ⊗ � = � ⊗ ��� + �� + ��� + �� ⊗ � (6.21)

It is important to note that � ⊗ � contains all the elements of � ∘ � and thus solving

(6.21) implicitly solves (6.14). Equation (6.21) may be expanded as

d
dt

� ⊗ � = � ⊗ ��� + � ⊗ �� + ��� ⊗ � + �� ⊗ � (6.22)

reordering and since �� = �,

d
dt

� ⊗ � = �� ⊗ ��� + ��� ⊗ �� + � ⊗ �� + �� ⊗ � (6.23)

Because Kronecker products have the mixed-product property � ⊗ � � ⊗ � = �� ⊗

�� [6.4],

d
dt

� ⊗ � = � ⊗ �� � ⊗ � + �� ⊗ � � ⊗ � + � ⊗ �� + �� ⊗ � (6.24)

again, using the mixed products property, � ⊗ � = � ⊗ � � = � ⊗ � � and � and ��

are vectors,

d
dt

� ⊗ � = � ⊗ �� + �� ⊗ � � ⊗ � + � ⊗ �� + �� ⊗ � � (6.25)

By the definition of the Kronecker sum ⊕ [6.3], the final form of (6.20) is given by,

d
dt

� ⊗ � = �� ⊕ �� � ⊗ � + �� ⊕ �� � (6.26)

Combining with �� = ��� + �� and (6.26) gives

d
dt

�
� ⊗ �

=
d
d�

�� = ����� + �� � (6.27)

where

(6.28)
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Equation (6.27) contains a linearised version of (6.14), augmented with the original

state-variable model from �� = ��� + �� and is somewhat similar to augmented system

matrix ��� described in [6.1],
d
dt

�� = ����� ��−1 ≤ � ≤ �� (6.29)

where

(6.30)

Applying the cyclic-average process of (6.4)-(6.7) to (6.27) defines the Mean-Square system.

(6.31)

where

(6.32)

Similar to (6.7), the average values of ��, ��av, are found by applying

(6.33)

with

(6.34)

�� � = exp �������� (6.35)

�� �0 + ��� contains ��av which is the average of all state variables and their products. To

find the root-mean-squares of the state variables, the average values of �1, �2 etc must be

extracted. �rms is the vector of the root mean squares of the states, and may be found from,

�rms � = �� �0 + �sw ℎ2+ ℎ+1 �+1 = ��av ℎ+1 � (6.36)
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where n is the index of the state-variable.

6.2 Conclusion

This chapter outlines the development of a framework for efficient RMS computation in DC

input converters, it integrates the squaring and averaging processes for calculating RMS

values into matrix integrals through matrix transformations. Despite the intricate process

involved in formulating this framework, a universal model applicable to all cyclic-mode

models has been established. This allows the user to simply obtain the RMS values for each

state variable by simply providing an accurate cyclic-mode model of a system, significantly

simplifying the RMS calculation process in switching power supply systems.

This computational framework is a significant improvement to the cyclic-mode modelling

technique. It not only extends the functionality of the cyclic mode modelling technique, but

also makes the steady-state analysis of DC input switching power supplies much simpler and

more efficient. This framework provides a methodology for the modelling and analysis of the

switching power supply systems of different orders in later chapters.
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Chapter 7. The cyclic RMS framework applied to the boost

converter

As Chapter 6 introduced the RMS cyclic-mode model framework, which is capable of

determining the RMS values of signals for DC input converters. This Chapter focuses on

integrating the Newton method, as discussed in Chapters 5, with the RMS cyclic-mode model

framework. This integration enables the determination of RMS values for the inductor current

and capacitor voltage under discontinuous operating conditions of a boost converter.

Subsequent Chapters will apply this technique to a series of more complex resonant

converters.

7.1 Operation of the boost converter

A boost converter consists of an inductor, a switch, a diode, and a capacitor. When the switch

is turned on, the inductor charges and stores energy in the form of a magnetic field. When the

switch is turned off, the energy stored in the inductor is transferred via the diode to the output

capacitor and load, resulting in a higher output voltage. Assuming the circuit operated using

PWM, the output voltage can be controlled by adjusting the duty cycle of the switch, which

determines the time the switch turned off following being turned on at the start of a PWM

cycle. The operation of a boost converter can be categorized into two operation conditions:

discontinuous operation and continuous operation [7.1].

In continuous operation (CCM), the inductor current does not drop to zero during each

switching cycle. In this mode, the inductor is always partially charged, and the peak-to-peak

ripple current is relatively low compared to the output current.

In discontinuous operation (DCM), the inductor current drops to zero during each switching
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cycle. In this mode, the inductor is allowed to discharge before the next switching cycle has

fully started. As a result, the peak-peak ripple is high compared to the load current.

A boost converter circuit diagram is shown in Fig. 7.1. It consists of an inductor � to store

the energy; a capacitor � to filter the output voltage and reduce ripple; a MOSFET switch S

is operated with a duty cycle �1 and at switching frequency �sw; a diode D to prevent

reverse current flow.

Fig. 7.1. Circuit diagram of a boost converter

Due to the computational framework's complexity outlined in Chapter 6 being directly

proportional to the original system's complexity, this chapter simplifies the validation process

by focusing on a second-order system with a less complex structure: a boost converter

operating in DCM operation. Initially, the application of Newton's method with cyclic-mode

modelling, introduced in Chapter 5, is employed to precisely calculate the duty cycle for each

mode of this system model. Following this, the RMS calculation framework presented in

Chapter 7 is utilised to generate waveform plots of key variables and calculate their RMS

values. Because the behaviours of the boost converter in DCM have been comprehensively

detailed in Chapter 2 and will not be repeated here.

7.2 Derivation of RMS cyclic-mode model for the boost converter

The following approach is used to derive the cyclic-model for the boost:
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1. For each mode, determine the differential equations for the inductor current and

capacitor voltage and then form a piecewise linear state-variable model

2. Use cyclic-mode analysis with Newton’s method to determine the cyclic-mode model

initial condition and each mode durations

3. Apply the RMS cyclic-mode modelling process described in Chapter 6 to determine

the RMS values of the state-variables

7.2.1 Differential equations and piecewise state-variable model for each mode

In Mode 1 (M1) where �0 ≤ � ≤ �1, S1 turns on. The derivative of the inductor current is

given by:

� �� =
��

�
=

�DC

�
(7.1)

The derivative of the capacitor voltage is,

��� =
��
�

=−
��

���
(7.2)

Combining equations (7.2) and (7.3) , combining provides the state-variable model for M1:

��
��

�
=

0 0
0 − 1

���

��
��

+
�DC
�
0

(7.3)

(7.4) can be rewritten as,

�� = �1� + �1 (7.4)

where the state-vector is

� = [�� �� ]T = [�1 �2 ]T (7.5)

In Mode 2 (M2) for �1 ≤ � ≤ �2, the MOSFET is off, D is on, and so the inductor current

decreases until it reaches zero. The derivative of the inductor current is described by:

� �� =
�DC − �d

� −
��

�
(7.6)

The derivative of the capacitor voltage is determined as:

��� =
��

�
=

��

� −
��

���
(7.7)

Combining (7.7) and (7.8) gives the state-variable model for M2,
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��
��

�
=

0 1
�

1
� − 1

���

��
��

+
�DC − ��

�
0

= �2� + �2 (7.8)

In Mode 3 (M3), where �2 ≤ � ≤ �3, S remains off. D turns off at t=t2 since the inductor

current �� has reached zero. The derivative of the inductor current is zero,

� �� = 0 (7.9)

For the derivative of the capacitor voltage is,

��� =
��
�

=−
��

���
(7.10)

Combining (7.10) and (7.11) provides a state-variable model for Mode 3,

��
��

�
=

0 0
0 − 1

���

��
��

+ 0
0 = �3� + �3 (7.11)

Equations (7.4), (7.9) and (7.12) can be combined to form a piecewise linear equation based

on the mode duration times.

�� � =
�1� �0 + �1 �0 ≤ � ≤ �1
�2� �1 + �2 �1 ≤ � ≤ �2
�3� �2 + �3 �2 ≤ � ≤ �3

(7.12)

7.2.2 Cyclic-mode model of the boost converter

Since the converter is operating in a cyclic-mode, the final state variables at the end of the

cycle, �(�3), should equal the cycle’s initial condition � �0 . Thus,

� �0 = � �3 = � �0 + ��� (7.13)

Since the input is DC, �� is constant, allowing the integral to be evaluated to give the time

solution,

� = ��� ��−1 + �� ��−1 ≤ � < �� (7.14)

where �� = exp �� � − ��−1 . Exp(…) represents the matrix exponential function.

Additionally, �� = ��
−1 �� − � �� and � is an identity matrix having the same dimensions

as ��.
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Starting from � = �0 and using (7.15), the state vector at the end of Mode 1 becomes:

� �1 = �1� �0 + �1 (7.15)

Similarly, the state-vector at the end of Mode 2 is given by,

� �2 = �2� �1 + �2 (7.16)

At the end of Mode 3, the state vector becomes:

� �3 = �3� �2 + �3 (7.17)

The initial condition for the cyclic-mode, � �0 , is derived from the final condition of each

mode. Combining (7.16) to (7.18) gives,

� �3 = �3 �2 �1� �0 + �1 + �2 + �3 = �tot� �0 + �tot (7.18)

where,

�tot = �3�2�1 and �tot = �3(�2 �1) + �2 + �3 (7.19)

Substituting (7.19) into (7.14) yields:

� �3 = � − �tot
−1 �tot = �(�0) (7.20)

Thus, the expand expression of (7.21) is,

� �0 = � − �3�2�1
−1(�3�2�1 + �3�2 + �3) (7.21)

Having obtained �(�0) and each mode duration, the state-variables throughout a cyclic can

be determined using:

� � =
�1� �0 + �1 �0 ≤ � ≤ �1
�2� �1 + �2 �1 ≤ � ≤ �2
�3� �2 + �3 �2 ≤ � < �3

(7.22)

where 1,2 and 3 is the mode index; �� = exp �� � − ��−1 and �� = ��
−1 �� − � ��.

7.2.3 Determining the cyclic-mode initial condition using Newton’s method

The duration of mode M1 is the control input �1 and is assumed to be known. However, the

durations of modes 2 & 3 (�2 & �3=1-�1-�2) depend on operating condition and, hence,
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they must be determined alongside � �0 . Below provides a detailed description of Newton’s

method used to determine unknown mode durations and model initial condition � �0 .

For the specified mode sequence, the converter's operation in a single cycle depends on its

initial conditions �(�0) and the duty cycles of Mode 2 �2. Defining � as a vector

representing these values:

� = �� �0 �2
� (7.23)

The initial condition model from (7.22) relates to both the initial condition and the duration of

mode 2.

�1 � �2 � � = � − �tot
−1�tot − � �0 (7.24)

Duty cycles �2 is determined by the inductor current at end of Mode 2 is zero which is,

�� �2
− = 0 (7.25)

where represent by cyclic-mode model is,

1 0 �2(�1� �0 + �1 + �2] = 0 (7.26)

So �3(�) in this case is based on (7.27),

�3 � = 1 0 �2(�1� �0 + �1 + �2] (7.27)

� � is derived from equations (7.25) and (7.28).

� � =
�1 �
�2 �
�3 �

=
� − �tot

−1�tot − � �0

1 0 �2(�1� �0 + �1 + �2 + �d
(7.28)

Then using Newton’s iterative method described in previous Chapters to estimate X,

beginning with an initial value of �0,

��+1 = �� − � �� −1
�(��) (7.29)

With � representing the current iteration step, and � �� denotes the numerical Jacobian

matrix of partial derivatives for that step.
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(7.30)

Each element of the Jacobian matrix at ��ℎ iteration is given by,

��1 ��

���
�

��2 ��

���
�

��3 ��

���
�

T

≈
� �� + ∆�� − � ��

��
(7.31)

The stopping criterion for the iteration is achieved when the �1-norm diminishes below an

acceptable value �,

�final − �final−1 < � (7.32)

where �final is a vector of true root of function �(�) which are the precise values of �(�0)

and �2.

7.2.4 RMS cyclic-mode modelling for the boost converter

The next step is to construct the Mean-Square system. As outlined in Chapter 6, the averaging

piecewise model is initially derived. The formulas to construct averaging piecewise model is

shown below,

�� � = �� �� � (7.33)

(7.34)
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where �� is ℎ × ℎ square matrix, �� � is a square matrix of order (2ℎ + 1), � is a square

identity matrix of order ℎ and the � matrices are sized as required. The cyclic-mode initial

condition for the with-averaging models (6.4) is

(7.35)

The initial step is to derive the augmented matrix �� 1 using (6.5) and (7.4).

(7.36)

Similarly, the formulas for �� 2 and �� 3 are derived using (7.9), (7.12) and (7.35). Next,

using (7.36), we determine the initial value of �(�), denoted as �(�0).

(7.37)

where �(�0) =
�1(�0)
�2(�0)

The cyclic average value of state-vector, �av, is found by cascading mode solutions starting

from the initial condition,

(7.38)

where �� � = exp �� ����sw .
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The periodic average value of the state variable � can be determined by recalling (6.7),

which is

(7.39)

where �� � = exp �� ����sw , and �av denotes the periodic average value of �.

Having obtained the cyclic averaging model, the next step is to acquire the extended

piecewise linear model which �� as the state variable, as outlined in equations below,

d
dt

�
� ⊗ �

=
d
d�

�� = ����� + �� � (7.40)

where

(7.41)

Initially, it is essential to derive the matrices ��� and �� �. Taking ��1 and ��1 as examples,

the expressions for the Kronecker sums �1 ⊕ �1 and �1 ⊕ �1 are necessary, according to

(7.42). Then based on reference [7.2] along with (7.4), the expression of �1 ⊕ �1 and

�1 ⊕ �1 can be obtained,

and (7.42)

By substituting (7.43) and (7.4) into (7.42), the expressions of ��1 and ��1 can be obtained.
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(7.43)

(7.44)

Next, using (7.41), we can obtain an expression for the derivative of ��(�) in the interval

�0 ≤ � ≤ �1,

(7.45)

Similarly, the expansion expressions for ��2, ��2, ��3 and ��3 can be derived based on

equations (7.9) and (7.12) respectively.

The piecewise linear model for �� throughout the cycle is as follows:

d
d�

�� =
d
dt

�
� ⊗ �

=
��1��(�0) + ��1 �0 ≤ � ≤ �1
��2��(�1) + ��2 �1 ≤ � ≤ �2
��3��(�2) + ��3 �2 ≤ � ≤ �3

(7.46)
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Next, by applying the cyclic averaging process in Chapter 6 (which are equations (6.4), (6.5),

(6.6) and (6.7)) to state variable ��, we can derive the mean-square system. Implementing this

model allows for the determination of the periodic average values of �1
2 and �2

2 . Finally,

the RMS values are obtained by calculating the square root of these average values.

The formulas for mean-square system are,

(7.47)

where

(7.48)

The average values of ��, ��av, are found by applying

(7.49)

where �� � = exp �������� with

(7.50)

To build the mean-square cyclic-mode model, first, using ��1 as an example. The response

matrix ��1 of the mean square piecewise linear model's structure is given by (7.49). By

substituting (7.44) and (7.45) into (7.49), we can derive the matrix expansion expression for

��1,
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(7.51)

Similarly, ��2, and ��3 can be derived using similar process. Next, the piecewise linear state

variable model of �� � can be written down.

(7.52)

where ��(�) initial value �� �0 is based on (7.36) given by，

(7.53)
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Finally, after determining the system's initial values, running this Mean-Square cyclic-mode

model system yields the periodic average value of ��, encompassing the periodic average

values of​ �1
2 and �2

2.

(7.54)

where �� � = exp ��������

The RMS values of the original state variable � can be obtained from

�rms � = �� �0 + �sw ℎ2+ ℎ+1 �+1 = ��av ℎ+1 � (7.55)

This represents the RMS values of the inductor current �� and capacitor voltage ��.

��(RMS) = �� �0 + �sw 10 = ��av 3

��(RMS) = �� �0 + �sw 13 = ��av 6

(7.56)

7.3 Model validation

To verify the accuracy of the model, a boost converter was designed to operate from �in =

12 V and provide an output voltage at 48 V. Table 7.1 lists the component values for this

design.
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Table 7.1. The boost converter components values for the design

Component's name Component's value

�� 180 Ω − 500 Ω

� 100 uH

� 470 μF

��� 25 kHz

�DC 12 V

�out 48 V

The formula to determine the output voltage ratio is:

�out

�DC
=

��sw + ��sw(��sw + 2 �1�sw
2��)

2��sw
(7.57)

The SPICE model schematics is shown in Fig. 7.3,

Fig. 7.2. SPICE model schematics of the boost converter at RL=500 Ω

For the first experiment the load is to �� = 500 Ω. The duty ratio of Mode 1 is determined

usings (7.58) and the data from Table 7.1. Thus, define �1 = 0.35. An initial estimate of δ2,

of δ2=0.15 and so δ3 = 0.5. By employing Newton’s method a refined value δ2 as 0.1153

was obtained. Fig. 7.3 shows the comparison of SPICE model output voltage with

cyclic-model output voltage, the red line represents the cyclic-mode model results, while the
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grey line depicts the SPICE model results. The cyclic-model yields an average output voltage

of 48.4207 V, nearly matching the SPICE model's 48.421 V.

Fig. 7.3. The output voltage vC waveforms of cyclic-mode model and SPICE simulation

Fig. 7.4. The inductor current iL waveforms of cyclic-mode model and SPICE simulation

Fig. 7.4 shows the inductor current waveform comparison of the SPICE model and the

cyclic-mode model. The SPICE inductor current average value is 390.9 mA, the cyclic-mode



185

model inductor current average value is 390.06 mA. The accuracy of cyclic-mode model has

been validated.

The RMS values of the cyclic-mode model, derived using the process described in

(7.34)-(7.57), are compared with the LT SPICE model RMS values in Table 7.2.

Table 7.2. The RMS values comparison between RMS cyclic-mode model with SPICE model

�� ��

RMS Cyclic-mode

model

661.62 mA 48.4207 V

SPICE model 661.32 mA 48.421 V

Error 0.045% 0.00062%

Since cyclic-mode modelling can output periodic waveforms of state variables, the accuracy

of the waveforms depends on the time step set by the plotting, if a shorter time step is taken a

more accurate waveform will be obtained, and the corresponding simulation time will

increase. Afterwards, the definition of RMS value can be used to find the RMS value from

the waveform. Similarly, the accuracy of the RMS value still depends on the time step of the

plotting. This method of plotting the waveform with the corresponding time step and then

calculating the RMS value from the waveform is known as the waveform evaluation RMS

method, or simply the waveform method.

To compare the effectiveness of calculating RMS values using the RMS calculation

framework (also known as the framework method) and the waveform method, a comparison

of the two methods performance was conducted. Since the accuracy of the framework method

has been proven through previous validations, the RMS values calculated by the framework

method were used as a benchmark to determine the relative error between the waveform

method and the framework method. Using iL as an example the calculation formula of relative

error is shown in (7.58),
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Relative error �� � =

�L waveform method RMS (�) − �L framework method RMS

�L framework method RMS
× 100%

(7.58)

where �L waveform method RMS (�) means the RMS value of iL calculated by the waveform

method after consuming t milliseconds, and �L framework method RMS means the RMS value of

iL calculated by the framework method.

The accuracy of the waveform method at different time steps can be assessed by testing the

relative error of the RMS values derived by the waveform method at various time steps

against the results of the framework method. Simultaneously, the time required for the

waveform method to find the RMS values of all state variables at different time steps is

recorded. By varying the time step of the waveform method, relative error data can be

obtained for different running times.

By continuously decreasing the time step of the waveform method, a graph can be plotted to

show the relative error as a function of the run time of the waveform method. The horizontal

axis of the graph represents the run time, while the vertical axis indicates the relative error in

the waveform method results compared to the framework method results. The plot is shown

in Fig. 7.5.
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Fig. 7.5. The relative error figure as a function of the waveform method operation time.

Each point in the graph represents the value of the relative error between the RMS value

obtained by the waveform method at that run time and the RMS value obtained by the

framework method. The blue and red lines in the figure represent the relative error of the

RMS values of iL and vC, respectively, as a function of the runtime of the waveform method.

In addition, since the running time required to calculate the RMS values of all state variables

using the framework method can be measured and it is a fixed value. A grey vertical line with

this value as the horizontal coordinate is plotted in the figure to facilitate subsequent

comparative analyses.

The grey vertical line in the figure indicates the time taken to obtain the RMS value using the

framework method, approximately 0.2 millisecond. The intersection of the blue and grey

lines indicates that, at an equal time spent to the framework method, the inductor current's

RMS value obtained by the waveform method has 5% error compared to the framework

method result. The intersection of the orange and grey lines shows that, with a similar time

investment as the framework method, the capacitor voltage's RMS value acquired by the

waveform method exhibits negligible error relative to the framework method result.



188

Both curves display a similar trend: with each increase in runtime for the waveform method,

which corresponds to enhanced waveform accuracy, the results of the waveform method

progressively approximate those obtained by the framework method. This trend validates the

accuracy of the framework method. The results are that the framework method showed a fast

run time while maintaining accuracy. Conversely, the waveform method’s accuracy directly

correlates with runtime, needs longer durations to achieve superior precision.

The figure shows that both computational methods consume time on the order of

milliseconds, which might suggest that constructing a complex modelling process for such a

small efficiency gain is not worthwhile. But we believe that this approach is significant for

several reasons.

1. The framework method minimises potential errors in the RMS calculation step, which is

crucial in applications requiring high accuracy.

2. While both methods consume milliseconds when the circuit parameters are fixed, the time

saved by the computational framework becomes significant when some parameters (e.g.,

inductance values) are variable within a range. In such cases, RMS values need to be

derived for each parameter configuration.

3. The cyclic RMS framework is straightforward to program, whereas the waveform method

is more complex. The waveform method requires determining the modes at each time

point before generating the waveform, adding to the programming complexity.

Finally, we compare the cyclic-mode model results with the results from experimental

measurements.
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The circuit functions in a discontinuous mode, maintaining a load voltage of 48 V and a load

resistance ranging from 178 to 366 ohms. Fig. 7.6, Fig. 7.7 and Fig. 7.8 display the inductor

current waveform and capacitor voltage under various load conditions: �� = 178 Ω for

condition 1, �� = 218 Ω for condition 2, and �� = 366 Ω for condition 3, with a consistent

load voltage of 48 V.

(a) (b)

Fig. 7.6. Comparison of inductor current (a) and capactor voltage (b) waveform between
cyclic-mode model and practical implementation at RL= 178 Ω
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(a) (b)

Fig. 7.7. Comparison of inductor current (a) and capactor voltage (b) waveform between
cyclic-mode model and practical implementation at RL= 218 Ω

(a) (b)

Fig. 7.8. Comparison of inductor current (a) and capactor voltage (b) waveform between
cyclic-mode model and practical implementation at at RL= 366 Ω

7.4 Conclusion

This chapter describes the process of calculating the waveforms of key variables in a

switching power supply using given parameters and finally derive their RMS values.
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Focusing on the boost converter operating in DCM, Newton's method combined with the

cycle model is first applied to obtain the converter's exact operating state. Then, the cyclic

RMS framework for this converter is constructed. By incorporating the converter's operating

states into the calculation framework, the periodic waveforms of key converter variables and

their RMS values are obtained. The accuracy of this analysis is demonstrated through

comparison with SPICE simulation results. Additionally, the comparison results show that the

cyclic RMS framework is more effective than the waveform evaluation RMS method in RMS

values calculation.

The results in this chapter demonstrate that, firstly, the cyclic RMS framework has excellent

performance and is simple to use. It can be used as an effective method to RMS values of the

key variables of the switching power supply, this effectively extends the use of cyclic-mode

modelling and makes it more competitive. Also, through the use of Newton's method, the

accuracy requirements of the framework on the inputs are reduced, making the analysis of

DC input switching power supplies simpler. The next improvement goal is to build a

complete analysis flow for switching power supplies using these two techniques as a starting

point.
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Chapter 8. Evaluation of Root-Mean-Square state variables in

class E, EF2 inverters, and LLC converters using

cyclic-mode modelling

As Chapter 7 have utilized the combination of the Newton method and the cyclic RMS

framework on a boost converter operating under discontinuous conditions, resulting in the

determination of its steady-state operating conditions and RMS values of signals. This

Chapter first consolidates this combined technique into a universal framework for accurately

computing the RMS values of the state vectors in any state-space system operating in cyclic

steady-state. Subsequently, the method is applied to class E inverter and class EF2 inverter

operating under suboptimal conditions, as well as the LLC converter in a discontinuous

operating state to provide further validation.

The process to build the cyclic RMS framework can be split into the following steps:

1. Fundamental understanding of the system: The foremost step of this method is based on a

preliminary understanding of the system, which includes its switching states, circuit

configuration, and operational waveforms.

2. Creation of a state-variable model: Develop a state variable model of the system by

analysing and utilizing the circuit's structural configuration.

3. Decompose in piecewise linear model: The operation of the system over a single cycle is

decomposed into different modes (circuit configurations), enabling the formulation of its

piecewise linear equations.
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4. Estimate mode duties: A rough prediction of the sequence and duration of different

modes is made. Techniques such as Fundamental Mode Analysis or the Describing

Function method can be employed for this purpose.

5. Estimate the cyclic-mode initial condition: Input the initial estimates of the modes' duty

cycles into the cyclic-mode model, thereby obtaining an estimate of the state variable at

the start of cyclic-mode model �(�0)

6. Using Newton's method to refine the estimated cyclic-mode initial condition and mode

sequence: Using Newton's method and initial estimates of mode durations, combined with

the cyclic-mode model, allows for precise estimation of each mode's duration and the

initial values of the cyclic-mode model �(�0).

7. Applying cyclic RMS calculation framework: After precisely defining the cyclic-mode,

the RMS cyclic-mode modelling framework is employed to obtain the signal's waveform,

periodic average values, and RMS values.

The flow chart of this process is shown in Fig. 8.1.
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Fig. 8.1. Flow chart of the RMS cyclic-mode modelling process

8.1 RMS cyclic-mode modelling of the class E inverter

This section applies the RMS cyclic-mode framework to a suboptimal operating class E

inverter, starting with the derivation of the state-variable model. Subsequently, the inverter's

piecewise linear model is constructed. As Chapter 5 has already iterated the final values of �

and � using Newton's method, constructing the cyclic-mode model is not necessary. The

following text describes the construction process of the RMS-cyclic-mode system. Finally,

the RMS values of each state variable are obtained using the results from Newton’s method.
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8.1.1 Derivation of state-variable model for the class E inverter

Fig. 8.2. Circuit diragram of the class E inverter

The inverter circuit diagram is shown in Fig. 8.2. Recalling Chapter 5 the piecewise linear

state variables model of suboptimal class E inverter are shown below.

During Mode 1, �0 ≤ � < �1: the linear state variables model is

��in
��s
��s
��0

�

=

0 0 0 0

0 −
�L

�s
−

1
�s

0

0
1
�s

0 0

0 0 0 0

��in
��s
��s
��0

+

�DC

�in
0
0
0

= �1� + �1 (8.1)

where

� = ��in ��s ��s ��0
T = �1 �2 �3 �4 T (8.2)

For Mode 2, �1 ≤ � < �2: the model is become,

��in
��s
��s
��0

�

=

0 0 0 −
1

�in

0 −
�L

�s
−

1
�s

1
�s

0
1
�s

0 0

1
�0

−
1
�0

0 0

��in
��s
��s
��0

+

�DC

�in
0
0
0

= �2� + �2 (8.3)
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During Mode 3, �2 ≤ � < �3: the model is,

��in
��s
��s
��0

�

=

0 0 0 −
1

�in

0 −
�L

�s
−

1
�s

1
�s

0
1
�s

0 0

0 0 0 0

��in
��s
��s
��0

+

�DC

�in
0
0
0

= �3� + �3 (8.4)

Hence, combining (8.1), (8.3) and (8.4), along with the mode sequences, a piecewise linear

equation can be formulated, which is contingent on the duration times of the respective

modes,

�� � =
���(�0) + �� �0 ≤ � < �1
���(�1) + �� �1 ≤ � < �2
���(�2) + �� �2 ≤ � < �3

(8.5)

Since the cyclic-mode model of the class E inverter was constructed in Chapter 5, and the

operating conditions of the inverter were obtained using a Newton's method in Chapter 5, the

next step is to perform RMS cyclic-mode modelling of the inverter.

8.1.2 RMS cyclic-mode modelling of the class E inverter

After deriving the piecewise linear state variables model for the class E inverter and

combining it with the derivation process of the RMS cyclic-mode model for the boost

converter, as detailed in Chapter 7, the derivation process for the class E inverter RMS

cyclic-mode model can be outlined as follows:

1. Derive the cyclic-mode model for �.

2. Using Newton’s method to obtain the inverter steady state operating conditions.

3. Establish the piecewise linear model with �� as the state variable.

4. Derive the cyclic-mode model for ��, then obtaining the initial value ��(�0)

5. Derive the expression of ���, and subsequently the cyclic-mode model for �� � .

6. Use ��(�0) to obtain the initial value expression for �� �0 , and get the �� �0 + ��� .
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Since the initial conditions for the three-mode operation of the class E inverter have already

been determined using the Newton method in Chapter 6, Steps 1 and 2 can be omitted.

Therefore, the modelling process begins from step 3.

First to build the piecewise linear model for ��. First is to obtain the Kronecker sum

expressions for �� ⊕ �� and �� ⊕ ��. According to the definition of the Kronecker product,

if � is an � × � matrix and � as a � × � matrix, the Kronecker product, � ⊗ � is an

�� × �� block matrix:

� ⊗ � =
�11� ⋯ �1��

⋮ ⋱ ⋮
��1� … ����

(8.6)

For � as a � × � matrix and � as a � × � matrix, the expression of Kronecker sum

� ⊕ �, is

� ⊕ � = � ⊗ �� + �� ⊗ � (8.7)

Here, the size of � (the identity matrix) changes to ensure that the dimensions of � ⊗ � and

� ⊗ � are equal, allowing for their addition.

The expressions for �� ⊕ �� and �� ⊕ �� can be derived by combining (8.6) and (8.7)

with (8.1), (8.3) and (8.4), respectively. �� ⊕ �� is ℎ2 × ℎ2 square matrix, in this case the

dimensions are 16 × 16. �� ⊕ �� is ℎ2 × ℎ matrix, in this case the dimensions of them are

16 × 4. Due to size constraints, their expanded forms are not included here.

The derivation formulas for ��� and �� � are given by (8.8)

, (8.8)
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So, we get ��� is (ℎ2 + ℎ) × (ℎ2 + ℎ) square matrix with dimensions 20 × 20 in this case,

and �� � are (ℎ2 + ℎ) × 1 matrix of size 20 × 1. After obtaining the expressions for ��� and

�� �, the piecewise linear equations of �� can be written,

(8.9)

where

�� =

�1 ⋯ �4 �1�1 ⋯ �1�4 �2�1 ⋯ �2�4 �3�1 ⋯ �3�4 �4�1 ⋯ �4�4 T
(8.10)

To facilitate the computation within the RMS cyclic-mode model, initial values �� �0 are

required. Equation (8.11) reveals that every element in the vector �� �0 results from

combining one or two elements of �(�0). If the vector �(�0) is known, the values of �� �0 's

elements are also determined, thereby establishing the values of �� �0 .

(8.11)

After acquiring the initial value �(�0) from the original cyclic-mode model, the initial value

�� � can be directly determined by (8.11). This approach eliminates the complex calculations

involved in computing �� �0 based on steady-state operating conditions and using the

extended cyclic-mode model.

After determining the initial value �� �0 , the cyclic-mode model for �� � can be

established,

�� � =
�� 1 � �� �0 + ��1 � �0 ≤ � < �1
�� 2 � �� �1 + ��2 � �1 ≤ � < �2
�� 3 � �� �2 + ��3 � �2 ≤ � < �3

(8.12)

where �� �(�) = exp (��� � − ��−1 ) and ��(�) = ���
−1 �� �(�) − � �� �.

The subsequent step involves applying the cyclic averaging method to the extended

cyclic-mode model in (8.9) . Initially, determine the expression of ��� using (8.13)
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(8.13)

��� have dimensions [2 ℎ2 + ℎ + 1] × [2 ℎ2 + ℎ + 1], which in this case is 41 × 41. Upon

deriving the expressions for ��1，��2 and ��3.

Define �� � as the state variable vector that includes �� �0 and its cumulative proportional

integral value, ��acc � , from the start �0 to end point �. The dimension of �� � is [2 ℎ2 +

ℎ + 1] × 1, which is 41 × 1.

Thus, the piecewise-linear model for the state variable �� � is formulated as follows,

(8.14)

The initial value of �� � , denoted by �� �0 , is expressed as follows:

(8.15)

The value of �� �0 can be determined by using (8.11).

The final value of �� � , represented as �� �0 + �sw , can be derived from,
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(8.16)

Utilizing equations (8.14) and (8.15), the Mean-Square cyclic-mode model for the three mode

class E inverter can be established.

(8.17)

where

�� � = exp �������� (8.18)

Consequently, (8.17) reveals that the expanded form of �� �0 + �sw is a column vector that

encompassing the periodic averages of the squares of each state variable in the initial

cyclic-mode model which is �1
2

av, �2
2

av, �3
2

av and �4
2

av.

The RMS values of the original state variable � are derived from

�rms � = �� �0 + �sw ℎ2+ ℎ+1 �+1 = ��av ℎ+1 � (8.19)

By substituting ℎ = 4 and � = 1,2,3,4 into (8.19), the RMS values for each inductor current

and capacitor voltage can be obtained.

�1(RMS) = �Lin(RMS) = �� �0 + �sw 26 = ��av 5 (8.20)
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�2(RMS) = �Ls(RMS) = �� �0 + �sw 31 = ��av 10

�3(RMS) = �Cs(RMS) = �� �0 + �sw 36 = ��av 15

�4(RMS) = �C0(RMS) = �� �0 + �sw 41 = ��av 20

After obtaining the cyclic-mode model for the three-mode operation class E inverter, we

utilize the Newton’s method combined with cyclic-mode model, as derived in earlier

Chapters, to iterate the duration of each mode within the cyclic-mode model and the model

state vector initial value �(�0). Inputting �(�0) into (8.15) determines �� �0 . Then, by

incorporating these duty ratios and �� �0 into (8.18) and using (8.17), we construct the

precise RMS cyclic-mode model. The RMS values for each inductor current and capacitor

voltage are then ascertained using (8.20). This method is referred to as the framework

method.

8.1.3 Model validation

In order to validate the accuracy of the RMS cyclic-mode model and Newton’s method, a

comparison of the RMS values of each state variable obtained from both framework method

and waveform method is performed.

The waveform method determines the RMS values from waveforms generated by the

cyclic-mode model. To obtain the RMS values, square the waveform values for one cycle of

the cyclic-mode model, sum them, divide by the number of points in the cycle, and finally

take the square root of this total.

The key operational parameters for the class E inverter are listed in Table 8.1, which are the

same as those in Chapter 5.
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Table 8.1. The Components parameters of the class E inverter

Parameter Value

�� (Ω) 0.611

�DC (V) 2.3

�0 (nF) 100

�� (μH) 30

�� (nF) 84.52

�d (V) 0.7

�� (mH) 3.3

�sw (kHz) 108

The SPICE model schematic diagram of this inverter is shown in Fig. 8.3,

Fig. 8.3. SPICE model schematic diagram of the class E inverter

The initial values of the cyclic-mode model for the inverter and the duration of each mode are

provided in Table 8.2. These values were obtained through Newton's method detailed in

Chapter 5.
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Table 8.2. The class E inverter cyclic-mode model initial conditions and duty ratio of each
mode

Parameter Value

�Lin �0 (A) 0.3372 A

�Ls �0 (A) 0.9050 A

�Cs �0 (V) 21.2836 V

�C0 �0 (V) 0 V

�1 0.5

�2 0.3327

�3 0.1673

Inserting the initial value �(�0) from Table 8.2 into (8.11) yields �� �0 . Substituting �� �0

into (8.15) results in �� �0 . Then, inputting �� �0 and each mode's duty cycle into (8.17)

results in �� �0 + �sw . Finally, (8.20) calculates the RMS values for each original state

variable, including all inductor currents and capacitor voltages. The framework method

computes the RMS values in a runtime of 1.10 milliseconds.

The RMS values, determined by the waveform method, were derived from waveforms

generated using the cyclic-mode model. Setting the waveform precision (which is the time

step) to fifty points per cycle in this case, the waveform method takes time is the time from

generate the waveforms until get the RMS values, which is 1.13 milliseconds at this level of

accuracy. The following table displays a comparison of RMS values: those obtained by the

waveform method and framework method, contrasted with the SPICE model RMS values.
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Table 8.3. Comparison of the framework method RMS values and the waveform method RMS
values with SPICE model RMS values in the class E inverter

Measurement ��in(RMS) ​ (A) ��s(RMS) ​

(A)

��s(RMS) ​

(V)

��0(RMS) ​ (V)

SPICE results 0.3386 1.0398 18.238 4.6914

Framework method

results

0.3382 1.0402 18.2436 4.6928

Error (%) 0.13 0.038 0.031 0.029

Waveform method

results

0.3382 1.0376 18.3093 4.6464

Error (%) 0.12 0.21 0.39 0.96

Table 8.3 illustrates that, for the same time spending, the framework method is more accurate

than the waveform method. The framework method maximum error below 0.2% attests to the

accuracy of the RMS cyclic-mode model combined with Newton's method. This emphasizes

the methods' reliability, positioning the RMS cyclic-mode model and Newton's method as

valuable tools for analysing the class E inverter's dynamics.

8.2 RMS cyclic-mode modelling of the class EF2 inverter

8.2.1 Derivation of state-variable model of the class EF2 inverter

The operating assumptions for the inverter are same with those outlined in Chapter 6, except

for a slight reduction in the duty cycle of Mode 1 compared to the values in Chapter 6, which

causes the inverter to shift from two-mode to three-mode operation. The circuit diagram is

shown below,
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Fig. 8.4. Circuit diagram of the class EF2 inverter

The inverter circuit diagram is illustrated in Fig. 8.4. An example of the switch voltage

waveform for the inverter in three-mode operation is illustrated in the Fig. 8.5,

Fig. 8.5. Example shunt capacitor voltage waveform of three mode operation

Defining �0 as the beginning of the cycle and the start of Mode 1, �1 as the end of Mode 1

and the start of Mode 2, �2 as the end of Mode 2 and the start of Mode 3 and finally, �3, as

the end of Mode 3 and the end of the cycle.

Mode 1 (M1) �0 ≤ � < �1: At � = �0 MOSFET S is switched on for a duration �1 − �0 =

δ1���. Since S is on, ��0 = 0 and so ��in = �DC. Although ��0 = 0, the current ���

continues to flow as �� and �� are in resonance at a frequency 2���.
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Mode 2 (M2) �1 ≤ � < �2 : At � = �1, S is switched off, and the MOSFET's anti-parallel

diode is not conducting. Current ��0 = ���� − ��� − ��� flows into �0 and its voltage

increases from zero to a maximum value and then decreases. Eventually, the ��0 falls below

0 V (actually − ��) turning on the MOSFET's anti-parallel diode. The end time of mode two

can be found by solving for the turn-on condition of D. The duration of Mode 2 is �2 − �1 =

δ2���.

��0 �2 = ��0 (δ1 + δ2)��� =− �� (8.21)

Mode 3 (M3) �2 ≤ � < �3: switch anti-parallel diode is forward biased and clamped the shunt

capacitor voltage to the on-state voltage drop of the body diode, ��0 =− ��.

To derive the inverter's cyclic-mode model, first-order differential equations are needed to

describe the derivatives of the relevant capacitor voltages and the inductor currents.

Equations (8.22) to (8.29) show a non-linear state-variable model for the class EF2 inverter,

where ℎ1 � and ℎ2 � is used to represent different states,

����� =
�in

���
+ ℎ1 � − 1

�C0

���
(8.22)

���� = 1 − ℎ1 �
�C0

��
−

�Cs

��
−

�L�Ls

��
(8.23)

���� = (1 − ℎ1 � )
�C0

��
−

��m

��
−

��m�m

��
(8.24)

�C0� = (1 − ℎ1 � − ℎ2 � )
��in − ��s − ��m

�0
(8.25)
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�Cs� =
��s

��
(8.26)

�Cm� =
��m

�m
(8.27)

ℎ1(�) = 1 �0 ≤ � < �1
0 �1 ≤ � < �3

(8.28)

ℎ2(�) = 0 �0 ≤ � < �2
1 �2 ≤ � < �3

(8.29)

For Mode 1 (M1): S is switched on, thus �DC is only applied to �in . The commutation

function is ℎ1 = 1, ℎ2 = 0

Mode 2 (M2): S is switched off. Current flows out of �in and into shunt capacitor �0 , the

auxiliary resonant branch �m�m�m , and the main resonant branch. The commutation

functions are ℎ1 = 0, ℎ2 = 0

Mode 3 (M3): S remains off, while the anti-parallel diode D is conducting. The voltage across

the switch is clamped to -�� . The commutation function is ℎ1 = 0 , ℎ2 = 1 . Using ��� =

(ℎ1 � , ℎ2 � ) to represent the switch state of mode M�, the mode sequence in this case can

be represented by �� ={(1,0), (0,0), (0,1)}.

The �� and �� matrices differ for each state and can be found using (8.22) to (8.29) and

���, as follows,
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��in
��s
��m
��0
��s
��m

�

=

0 0 0 0 0 0
0 − �L

�s
0 0 − 1

�s
0

0 0 − �m
�m

0 0 − 1
�m

0 0 0 0 0 0
0 1

�s
0 0 0 0

0 0 1
�m

0 0 0

��in
��s
��m
��0
��s
��m

+

�DC
�in
0
0
0
0
0

= �1� + �1
(8.30)

��in
��s
��m
��0
��s
��m

�

=

0 0 0 − 1
�in

0 0

0 − �L
�s

0 1
�s

− 1
�s

0

0 0 − �m
�m

1
�m

0 − 1
�m

1
�0

− 1
�0

− 1
�0

0 0 0

0 1
�s

0 0 0 0

0 0 1
�m

0 0 0

��in
��s
��m
��0
��s
��m

+

�DC
�in
0
0
0
0
0

= �2� + �2 (8.31)

��in
��s
��m
��0
��s
��m

�

=

0 0 0 − 1
���

0 0

0 − ��
��

0 1
��

− 1
��

0

0 0 − ��
��

1
��

0 − 1
��

0 0 0 0 0 0
0 1

��
0 0 0 0

0 0 1
��

0 0 0

��in
��s
��m
��0
��s
��m

+

�DC
�in
0
0
0
0
0

= �3� + �3 (8.32)

Below is a piecewise linear model for the operating sequence previously described. This

model is derived by substituting the switch state sequence �� into the non-linear

state-variable model equations (8.22) to (8.29).

�� � =
�1� �0 + �1 �0 ≤ � ≤ �1
�2� �1 + �2 �1 ≤ � ≤ �2
�3� �2 + �3 �2 ≤ � ≤ �3

(8.33)

Here
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� = [��in ��s ��m ��1 ��s ��m]T = [�1 �2 �3 �4 �5 �6]T (8.34)

8.2.2 Cyclic-mode model for the class EF2 inverter

In the cyclic-mode operation of the inverter, the final condition of state variables at the end of

a cycle, �(�3), should equal the initial condition of that cycle, �(�0):

� �0 = � �3 = � �0 + ��� (8.35)

Given that the input is DC, starting from � = �0, the state-vector at the end of Mode 1 is

given by,

� �1 = �1� �0 + �1 (8.36)

where �1 = exp �1�1�sw and �1 = �1
−1 �1 − � �1.

Similarly, the state-vector at the end of Mode 2 is given by,

� �2 = �2� �1 + �2 (8.37)

where �2 = exp �2�2�sw and �2 = �2
−1 �2 − � �2.

During Mode 3, �2 ≤ � < �3 , the switch voltage is discontinuous at the end of Mode 3. This

requires forcing ��0 �3 = 0 , defined as �3
− , symbolizing the instant before �3 . The state

vector at the end of Mode 3, prior to discontinuity, is:

� �3
− = �3� �2 + �3 (8.38)

where �3 = exp �3�3�sw = exp �3(1 − �1 − �2)�sw and �3 = �3
−1 �3 − � �3.

To ensure that all state variables at time �3 , marking the end of the cycle, are equivalent to

those at the start of the cycle, ��0(�3) must be set to zero. � is defined as a unit matrix with

the same dimensions as ��, except the fourth row is zero:

� = diag 1,1,1,0,1,1 (8.39)
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Therefore, at time �3, the value of the state variable �(�) equals the value of � at time �0:

� �3 = �� �3
− = � �0 (8.40)

The cyclic-mode initial condition � �0 can be determined by evaluating the final conditions

of each mode:

� �3 = ��tot� �0 + ��tot (8.41)

where �tot = �3�2�1 and �tot = �3(�2 �1) + �2 + �3

If �1 and �2 values are known, then �3 be determined using �3 = 1 − �1 − �2 from

which the final condition �(�3) can be found. Substituting (8.39) into (5.31) and rearranging

gives the initial (final) condition,

� �3 = � − ��tot
−1 ��tot = �(�0) (8.42)

With �(�0) obtained, the state variable value at every time can be determined by,

� � =
�1(�)� �0 + �1(�) �0 ≤ � ≤ �1
�2(�)� �1 + �2(�) �1 ≤ � ≤ �2
�3(�)� �2 + �3(�) �2 ≤ � < �3

(8.43)

Here ��(�) = exp (��(� − ��)) and ��(�) = ��
−1 ��(�) − � ��

8.2.3 Application of Newton’s method to finding the cyclic condition

To determine the initial condition, � �0 , each mode duty ratios are required. Since the

duration of Mode 1 (�1) is the control input, its value is already known. However, the

durations of modes 2 & 3 (δ2 & δ3=1-δ1-δ2) are a function of the operation condition and,

so, are affected by the initial condition and therefore need to be determined simultaneously

with � �0 . Here, the shooting method technique is used where a new system model is

formed by augmenting the initial condition model with models to determine the unknown

mode durations. Subsequently, Newton’s method is used to obtain the system solution.
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The vector � in this case comprises the combination of the initial conditions �(�0) of the

cyclic-mode model and the duty cycle of mode two �2,

� = �T(�0) �2
� (8.44)

For � � , since � comprises seven elements, � � needs to encompass seven equations,

� � =

�1 �
�2 �
�3 �
�4 �
�5 �
�6 �
�7 �

(8.45)

The initial condition model can be rewritten from (8.42) as a function of both the initial

condition and duration of each mode,

�1 � �0 , δ2 ⋯ �6 � �0 , δ2
�

= � − ��tot
−1 ��tot − � �0

(8.46)

where � = diag[1,1,1,0,1,1].

At the end of Mode 2 the switch voltage should equal to antiparallel diode conducting voltage

− ��, which can be rewritten as,

��0(�2
−) = − �� (8.47)

So, the expression for �7 � = ��0 �2
− + �� = 0 is. In matrix form this is written as,

�7 � �0 , �2 = 0 0 0 1 0 0 �2(�1� �0 + �1 + �2 + �� (8.48)

The expression for �(�) is derived by combining equations (8.46) and (8.48). When all the

requisite conditions are met, �(�) is a 7× 1 column vector.

� � = �1 � �0 , δ2 ⋯ �7 � �0 , δ2
� (8.49)
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=
� − ��tot

−1 ��tot − � �0

0 0 0 1 0 0 �2(�1� �0 + �1 + �2 + ��
=

�1 �
�2 �
�3 �
�4 �
�5 �
�6 �
�7 �

Newton's iterative method is then applied to estimate �, beginning with the initial value �0

and proceeding through iteration,

��+1 = �� − � �� −1�(��) (8.50)

Here, � denotes the index of the current iteration step, and � �� represents the Jacobian

matrix of partial derivatives, evaluated at the current iteration �.

Subsequently, the Jacobian matrix for the Newton method is constructed as follows:

� � =
��

��
=

��1

��1
⋯

��1

��7

⋮ ⋱ ⋮
��7

��1
⋯

��7

��7

=

��1

�����
⋯

��1

��2

⋮ ⋱ ⋮
��7

�����
⋯

��7

��2

(8.51)

Utilize the method described in earlier Chapters to calculate the numerical Jacobian matrix,

and then iterate. During each iteration, rederive the numerical Jacobian matrix.

The iteration halts when the L1-norm decreases below the threshold value �.

�final − �final−1 < � (8.52)

Utilizing the Newton-Raphson method alongside the numerical Jacobian matrix enables the

determination of initial values and mode durations for the class EF2 inverter's cyclic-mode

model during three-mode operation.
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8.2.4 RMS cyclic-mode modelling for the class EF2 inverter

Having obtained the expression for the class EF2 inverter's three-mode cyclic-mode model,

The subsequent step involves deriving the expression for its RMS cyclic-mode model,

following the methodology used for the class E inverter at previous section.

Initially, the Kronecker sum expressions for �� ⊕ �� and �� ⊕ �� are determined based on

equations (8.30), (8.31), (8.32) . In this instance, �� ⊕ �� are 36×36 square matrices, while

�� ⊕ �� are 36×6 matrices.

Once the expressions for �� ⊕ �� and �� ⊕ �� are acquired, the expression for ��� and �� �

can be formulated. For the class EF2 inverter, which includes six state variables, ��� is a

matrix of size 42×42. The expression for �� � is a 42×1 column vector. ��� and �� � are

derived by combining ��，��，�� ⊕ �� and �� ⊕ �� according to (8.8). Having derived the

expressions for ��� and �� �, we can now establish the piecewise linear model for the class

EF2 inverter. This model's formula is identical to (8.9) and (8.10).

The expanded form of �� in this case is shown in the following formula

�� =

[�1 … … �6 �1�1 ⋯ �1�6 �2�1 ⋯ �2�6 �3�1 ⋯ �3�6

�4�1 ⋯ �4�6 �5�1 ⋯ �5�6 �6�1 ⋯ �6�6]T

(8.53)

Equation (8.53) indicates that each element in the vector �� �0 is derived from a

combination of one or two elements from �(�0). Knowing the vector �(�0) allows for the

determination of �� �0 's elements, thus establishing �� �0 's values.

After obtaining the initial value of �� which is �� �0 , the cyclic-mode model for �� can be

written. Its structural expression is the same as (8.12). The subsequent step involves applying

the cyclic averaging method to the class EF2 inverter's square cyclic-mode model, beginning

with the determination of ��� expression from (8.13) which sized 85×85 in this instance.
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After obtaining the expressions for ��1，��2 and ��3, we define �� � as the state variable

vector that includes �� � and its cumulative proportional integral from the starting point �0

to the endpoint �, denoted as ��acc � . In this model with six state variables, �� � is an 85×1

column vector. Due to the size constrain, the expression of them can not be given in this

thesis.

Thus, the piecewise-linear state variable model for �� � is formulated as follows:

(8.54)

where � is the mode index � = 1,2,3.

The initial value of �� � , denoted as �� �0 , is expressed as:

(8.55)

where the zero-column vector � is of the same size as �� �0 . The expression reveals that it

consists of �� �0 and �, which is already established, thus allowing for the determination of

�� �0 's value.

Utilizing (8.54) and (8.55) with each mode duration, we can obtain the final value of �� � ,

represented as �� �0 + �sw , can be derived from equation (8.56),

(8.56)

where �� � = exp ��������
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As per (8.56), the expanded form of �� �0 + �sw is a column vector containing the periodic

averages of �1
2, �2

2, �3
2, �4

2, �5
2 and �6

2. The RMS values of the original state variable �(�)

can be derived from (8.19), using ℎ = 6 and � = 1, 2, 3, 4, 5, 6. This corresponds to the

RMS values of each inductor current and capacitor voltage.

�Lin(RMS) = �� �0 + �sw 50 = ��av 7

�Ls(RMS) = �� �0 + �sw 57 = ��av 14

�Lm(RMS) = �� �0 + �sw 64 = ��av 21

�C0(RMS) = �� �0 + �sw 71 = ��av 28

�Cs(RMS) = �� �0 + �sw 78 = ��av 35

��m(RMS) = �� �0 + �sw 85 = ��av 42

(8.57)

8.2.5 Model validation

To validate the accuracy of the RMS cyclic-mode model and the Newton method applied to

the class EF2 inverter. The inverter was designed to operate at an input voltage (�DC) of 15

V and with a rated output of 1 W. An LT SPICE simulation model can be constructed. The

auxiliary resonant branch of the simulation model was constructed with component values

from a STEMiNC SMD25T85F234S piezoelectric resonator [8.1] Mason equivalent circuit.

The shunt capacitor value is incorporating PT’s input capacitance �in value into the

inverter's shunt capacitor �0. The values for the main resonant branch and input inductor

were obtained using techniques described by Aldhaher et al.,. [8.2]. The switching element is

an ideal MOSFET. Component values for this design can be found in Table 8.4.
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Table 8.4. The class EF2 inverter components values for this design

Component's name Component's value

�� 4.27 Ω

�� 8.25 mH

�� 0.412 nF

�0 22.5 nF

��� 10 mH

�� 0.8 mH

�� 23 nF

�� 40 Ω

�DC 15 V

The SPICE model schematic diagram is shown in Fig. 8.6,

Fig. 8.6. SPICE model schematic diagram of the class EF2 inverter

The duty cycle and frequency were set to δ1 = 0.3 and �sw= 43.14 kHz, respectively. An

initial estimate for δ2 was set at 0.55. The rough estimation of � �0 from (8.42). Utilizing

the Newton’s method allowed for an accurate calculation of δ2, yielding a value of 0.6295,

which matches the LT SPICE model result.
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Subsequently, the class EF2 inverter cyclic-mode model can generate the waveforms for

each inductor current and capacitor voltage. Fig. 8.7 and Fig. 8.8 compare the switch voltage

and load voltage from the LT SPICE model with those from the cyclic-mode model.

Fig. 8.7. The switch voltage vC0 waveform of the cyclic-mode model and SPICE simulation
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Fig. 8.8. The load voltage vL waveform of cyclic-mode model and SPICE simulation

Table 8.5 presents a comparison of the RMS values from the cyclic-mode model with those

from the LT SPICE model.

Table 8.5. Comparison of framework method RMS values with SPICE model RMS values in
the class EF2 inverter

RMS value ���� ��� ��� ��1 ��� ���

LT SPICE

model

0.10255 A 0.19275 A 0.10122 A 20.418 V 34.323 V 453.77 V

Framework

method

0.1025 A 0.1929 A 0.1013 A 20.3945 V 34.3712 � 453.8637 �

Error 0.0488% 0.0778% 0.0791% 0.1151% 0.1405% 0.0207%

The RMS values calculated using the cyclic-mode model show good agreement with the

SPICE results, with a maximum error of 0.14 %.
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A similar approach with Table 8.3 is used to verify the performance difference between the

two methods for switching power supply systems of different orders. The results of the two

methods are compared for the same runtime by choosing a suitable time step for the

waveform method so that the runtime required by both methods is similar. The cyclic RMS

framework takes about two milliseconds to compute the RMS value. Meanwhile, the

waveform method can generate six sets of periodic waveforms, each with an accuracy of

seventy points per cycle, and calculate the RMS value of each state variable based on these

waveforms within a runtime of two milliseconds. The relative errors of the waveform method

compared to the framework method within the same running time are shown in Table 8.6.

Table 8.6. RMS values’ error of the waveform method compared with the framework method

RMS values ��in (A) ��s(A) ��m(A) ��0 (V) ��s(V) ��m(V)

Waveform method 0.1025 0.1915 0.1012 20.2483 34.8353 453.7951

Framework

method

0.1025 0.1929 0.1013 20.3945 34.3712 453.8637

Error 0.048% 0.71% 0.042% 0.72% 1.35% 0.016%

The table indicates that, within the same runtime, the waveform method still exhibits a certain

degree of error. Since the accuracy of the RMS values from the waveform method depends on

the precision of the plotted waveforms, as the simulation time increases, the precision of the

waveforms generated by the waveform method can also be improved.

In order to further examine the differences between the frame and waveform methods, Fig.

8.9.was plotted using the plotting methodology of Fig. 7.5, which show the relative errors in

the RMS values of the key parameters of the class EF2 inverter as a direct function of the run

time of the waveform method.
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Fig. 8.9. The relative error of the waveform method varies with the waveform method
operaing time

The vertical axis represents the relative error, while the horizontal axis denotes the time

consumed per simulation run. The graph's vertical black solid line indicates that a single run

of the framework method requires approximately two milliseconds. The six diagonal lines

represent the error of the waveform method results relative to the framework method as the

runtime of a single waveform method increases. This trend further substantiates the precision

of the framework method.

8.3 RMS cyclic-mode modelling of the LLC converter

The LLC resonant converter is a popular DC-DC power supply topology owing to its low

switching losses and good power density by virtue of being able to integrate three magnetic

components into a single device. In this section the RMS cyclic-mode technique is applied to
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an LLC resonant converter. The process begins with establishing a basic understanding of the

LLC resonant converter. Next, a cyclic-mode model is developed by decomposing the

state-variable model into piecewise linear equations representing each mode. Duty ratios

associated with mode are estimated using a describing function and then refined using

Newton’s method. Finally, the RMS cyclic-model is described. Comparison with LT SPICE

and experimental measure the model to provide good performance.

8.3.1 Derivation of RMS cyclic-mode model for the LLC converter

Fig. 8.10 shows the circuit diagram of an LLC resonant converter, highlighting the currents

and voltages of the state variables in red. The half-bridge, composed of MOSFETs �1 and

�2, chops the DC voltage (�DC) to generate a variable frequency square wave (�in). The

voltage �in is applied to the resonant tank circuit, which includes the inductors ��, ��, and

the capacitor ��. Through carefully design, the frequency of �in is set to excite the resonant

circuit, resulting in a sinusoidal current ��� that lags behind �in, thus ensuring zero-voltage

switching. A current, denoted as �(��� − ���), passes through the rectifier composed of �1

and �2 on the transformer's secondary side, which, after smoothing by capacitor ��,

produces the output voltage �out.
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Fig. 8.10. Circuit diagram of the LLC converter

Equations (8.58) to (8.64) form a non-linear state-variable model for the LLC resonant

converter. Here, ℎ1(�) represents the state of the half-bridge, such that �in(�) equals

�DCℎ1(�), disregarding the essential deadtime between S1 and S2 needed to prevent

shoot-through. Meanwhile, ℎ2(�) signifies the rectifier's commutation.

���� = ℎ1 �
���

��
−

���

��
−

���

��
−

�����

��
(8.58)

���� =
���(�)

��
(8.59)

���� =
���

��
(8.60)

���� = ℎ2(�)
� ��� − ���

��
−

���

����
(8.61)
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ℎ1(�) = 1 �0 ≤ � < ���/2
0 ���/2 ≤ � < ���

(8.62)

ℎ2(�) =
1
0

−1

�1 on
�1 & �2 off

�2 on
(8.63)

��� � = ℎ2 � � ��� + �d + �(��� − ���)��

+ 1 − ℎ2(�)
��

�� + ��
ℎ1(�)��� − ���

(8.64)

Here, �d refers to the diode's forward voltage drop, and �� represents the diode's on-state

resistance.

The operation of the LLC converter within a single switching cycle can be split into six

modes, based on the conduction states of S1, S2, D1 and D2. These correspond to the six

possible combinations of ℎ1 and ℎ2. An example of the operating waveforms is illustrated

in Fig. 8.11.

Fig. 8.11. Typical voltage and current waveforms for the LLC converter

The start of the cycle is defined as the instant �1 turns-on (� = �0). A single cycle runs from

�0 to �6 = �0 + ��� where �� signifies the end time mode �. The modes of the converter are

described as follows:

Mode M1 (�0 ≤ � < �1): At � = �0, switch �1 is activated for a duration of �1 − �0 =

δ1���, setting �in equal to �DC. With diodes �1 and �2 not conducting, there is no
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coupling between the primary and secondary sides of the transformer, allowing current ��� to

circulate through the resonant circuit. The commutation functions for M1 are ℎ1 = 1 and

ℎ2 = 0.

Mode M2 (�1 ≤ � < �2): This mode begins when �Lp at �1 equals �(�Cf + �d),

resulting in diode �1 becoming forward biased. A current of �(�Ls − �Lp) exits the

secondary. The commutation functions are set to ℎ1 = 1 and ℎ2 = 1.

Mode M3 (�2 ≤ � < �3 = ���/2): Mode M3 initiates when �1 turns off, which is

when ��s at �2 minus ��p at �2 equals zero. This mode is similar to M1, with commutation

functions ℎ1 = 1 and ℎ2 = 0.

Mode M4 (�3 ≤ � < �4): At � = �3, �1 is turned-off and �2 is engaged, resulting in

�in being 0 V. The commutation functions for this mode are both set to ℎ1 = 0 and ℎ2 = 0.

Mode M5 (�4 ≤ � < �5): At � = �4, ���(�4) =− �(��� + ��), triggering �2 to turn

on and facilitate energy transfer from the primary to the secondary side of the transformer.

The commutation functions are designated as ℎ1 = 0 and ℎ2 =− 1.

Mode M6 (�5 ≤ � < �6): �2 turns off once ���(�5) − ���(�5) = 0. M6 is similar to M4

and concludes at � = �6 = �0 + ���, marking the point at which the cycle restarts. The

commutation functions for M6 are ℎ1 = 0 and ℎ2 = 0.

To represent the switch state of mode M�, we use ���=(ℎ1(��−1), ℎ2(��−1). Accordingly, the

mode sequence shown in Fig. 8.11 is represented by SS= {(1,0), (1,1),(1,0),(0,0),(0,-1),(0,0)}.

Note that the LLC resonant converter may operate in various mode sequences depending on

the excitation and load conditions. For a more comprehensive description of the converter's

behaviour, refer to the work of Martinelli & Lazar [8.3].

The following is a piecewise linear model for the operating sequence previously described.

This model is derived similarly to references [8.4] and [8.5], beginning with the nonlinear

state-variable model equations (8.58) to (8.64) and incorporating the switch state sequence SS.

The model dictates identical behaviour for the circuit during modes M1 and M3 due to their
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identical switch states (�1 on, �2 off, �1 off, �2 off), represented by ��1,3=(1,0).

Likewise, the behaviour for M4 and M6 is the same. The piecewise model is characterized as

follows:

�� � =
�1�(�0) + �1 �0 ≤ � < �1

⋮ ⋮
�6�(�5) + �6 �5 ≤ � < �6

(8.65)

where

� = ��s ��p ��s ���
T

= �1 �2 �3 �4
T (8.66)

and the � and � matrices differ for each state and can be found using (8.58) to (8.64) and

�� as follows

�1 = �3 =

−
�s

�s + �p
0 −

1
�s + �p

0

−
�s

�s + �p
0 −

1
�s + �p

0

1
�s

0 0 0

0 0 0 −
1

�f�L

(8.67)

�2 =

−
�2�d + �s

�s

�2�d

�s
−

1
�s

−
�
�s

�2�d

�p
−

�2�d

�p
0

�
�p

1
�s

0 0 0

�
�f

−
�
�f

0 −
1

�f�L

(8.68)
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�4 = �6 =

−
�s

�s + �p
0 −

1
�s + �p

0

−
�s

�s + �p
0 −

1
�s + �p

0

1
�s

0 0 0

0 0 0 −
1

�f�L

(8.69)

�5 =

−
�2�d + �s

�s

�2�d

�s
−

1
�s

�
�s

�2�d

�p
−

�2�d

�p
0 −

�
�p

1
�s

0 0 0

−
�
�f

�
�f

0 −
1

�f�L

(8.70)

�1 = �3 =
�DC

�s + �p

�DC

�s + �p
0 0

T

(8.71)

�2 =
�DC − ��d

�s

��d

�p
0 0

T

(8.72)

�4 = �6 =
�DC − ��d

�s

��d

�p
0 0

T

(8.73)

�5 =
��d

�s
−

��d

�p
0 0

T

(8.74)
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8.3.2 Cyclic-mode model for the LLC converter

Based on the definition of the cyclic-mode model, the following condition holds at the end of

each mode:

� �� = ��� ��−1 + �� (8.75)

where �� = exp �����sw and �� = ��
−1 �� − � ��

Therefore, the cyclic-mode model of the state variable � is presented in (8.76).

� � =
�1(�)�(�0) + �1(�) �0 ≤ � < �1

⋮ ⋮
�6(�)�(�5) + �6(�) �5 ≤ � < �6

(8.76)

where ��(�) = exp ��(� − ��) and ��(�) = ��
−1 ��(�) − � ��

To determine initial value of the cyclic-mode model � �0 , using

� �0 = � − �tot
−1�tot (8.77)

where

�tot =
�=�,�−1

1

��� , �tot =
�=1

�−1

�=�,�−1

�+1

�j� �� + ��� (8.78)

8.3.3 Refining the cyclic-mode condition using Newton’s method

To evaluate the initial condition the mode duty ratios are required. Given the symmetry of the

two half-cycles, we have �1 = �4, �2 = �5, �3 = �6 and the sum �1 + �2 + �3 equals 1/

2. Therefore, determining �1 and �2 will yield the values for all other duty ratios. This

study derives initial estimates for the duration times from phase information, utilizing an AC

equivalent circuit model of the converter—a method akin to that outlined in [8.6]. Evaluating

(8.77) and (8.78) with initial mode times furnishes an estimate for �(�0). Subsequently, a

refinement step is undertaken, employing the Newton’s method [8.7] to enhance the estimates

of �(�0) and the duty ratios.
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The operation of the converter over a single cycle, for a specific mode sequence, is

determined by the initial conditions, �(�0), and the duty cycles, �1 and �2. Let �

represent a vector of these values:

� = �� �0 �1 �2
� (8.79)

In steady state operation, � �0 equals � �sw . The duty cycles, �1 and �2, are determined

by diode conduction, as detailed in the converter operation section. These conditions are

expressed as follows:

(8.80)

(8.81)

where, �1 = �1�sw and �2 = �1 + �2 �sw. While this model has no discontinuities,

superscripts "+" and "−" are included for completeness. We introduce the cost vector �, a

function of � derived from the steady-state conditions outlined in (8.80) and (8.81). Once all

these conditions are met, indicating steady state operation, � equals �.

(8.82)

Newton's method is subsequently employed to estimate �. The process begins with an initial

estimate, �(0), using conjectures for �1 and �2, and estimates �(�0) from (8.77). The

application of Newton’s method in matrix form to this problem is as follows:

�� = ��−1 − � � ��−1 −1�(��−1) (8.83)
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The relaxation factor, 0 < � ≤ 1, is used to enhance convergence. The current iteration

step is indexed by �, and �(��) represents the Jacobian matrix of partial derivatives

computed at the current iteration. The Jacobian, �, is defined as follows:

� � =
��

��
=

��1

��1
⋯

��1

��6

⋮ ⋱ ⋮
��6

��1
⋯

��6

��6

=

��1

����
⋯

��1

��2

⋮ ⋱ ⋮
��6

����
⋯

��6

��2

(8.84)

Due to the complexity of expression (8.84), it is advantageous to utilize the numerical form

of the Jacobian for evaluating the partial derivatives, which is using

��� �
���

≈
�� � + ∆�� − ��(�)

��
(8.85)

Here, � represents the function index, � the variable index, and ∆�� is a 6×1 vector with a

single non-zero element �� in the ��ℎ position, representing a small increment. Iteration

stops when the L1-norm drops below a predefined acceptable threshold, λ.

�final − �final−1 < � (8.86)

where �final denotes the vector of true initial conditions for cyclic operation, encompassing

�(�0) and �1 and �2.

8.3.4 RMS cyclic-mode modelling of the LLC converter

After getting the state vector initial value �(�0) and each mode duration. We can start to

build the RMS cyclic-mode model for the LLC converter, similar to the process in previous

sections on the class E and class EF2 inverters. The detail process is as follows:
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1. Derive the expression of �� ⊕ �� and �� ⊕ �� for each mode by (8.6) (8.7) and (8.67)

-(8.74)

2. Derive the expression of ��� and �� � for each mode based on (8.8), the construct the

piecewise linear model for ��.

3. Derive the expression of ��� using (8.13) and subsequently construct the mean-square

system using (8.16) (8.18).

4. Use � �0 to obtain the initial value expression for �� �0 .

5. Determine the RMS values of the original state variable � using (8.19).

8.3.5 Model validation

This section investigates the accuracy of the cyclic-mode model and the proposed root mean

square (RMS) calculation. An LLC resonant converter was designed to deliver a regulated 5V

output from an input voltage range of 45-55V, with a power rating of 25W. The converter was

constructed, and its component values were precisely measured with an LCR meter, as

presented in Table 8.7.

Table 8.7. Parameter values and operating range for the LLC converter

Parameter 's name Parameter 's value

�� (Ω) 1.6 − 40

�� (mH) 4.8

�� (nF) 66

�� (uH) 20.34

�f (uF) 10

�DC (V) 45 − 55

��� (kHz) 150 − 350

N 5.5
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The schematic diagram for the LLC converter board is shown in Fig. 8.12. As shown in Fig.

8.12, L1 and C1-C3 correspond to the LLC resonant circuit elements Ls and Cs, respectively.

Transformer TR2 establishes the turns ratio N and the shunt inductance Lp of the converter,

which is formed by inserting an air gap in the core. Transformer TR2 establishes the turns

ratio N and the shunt inductance Lp of the converter, which is formed by inserting an air gap

in the core. The secondary side of the transformer is rectified by D12. A TL431 shunt

regulator is used to form a PI controller to adjust the frequency response of the converter. The

error signal generated by the TL431 is transmitted across the isolation gate via an optocoupler

U2. The error signal is forwarded to U1 (Texas Instruments UCC25600 controller IC), which

regulates the output voltage by adjusting the frequency of the square-wave input voltage. Q1

and Q2 generate the input voltage to the resonant tank, whose gate signal is derived from the

gate drive transformer of U1. The resistance and capacitance around U3 determine the

compensation frequency response, and R9 and R14 set the bias level of the optocoupler. The

converter protype is shown in Fig. 8.13.

Fig. 8.12. Schematic diagram for the LLC converter board
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(a)

(b)

Fig. 8.13. (a) Photograph of Implemented LLC converter (b) The LLC converter PCB
silk screen layout

Operating within its specified voltage range, the converter's series inductor current (���),

series capacitor voltage (���), and operating frequency (���) were measured. Additionally, an

idealized SPICE model using identical parameters was created. Waveforms, along with

periodic RMS and average values for ��� and ���, were recorded for both the physical

converter and the SPICE model. The SPICE model schematic diagram is shown in Fig. 8.14,
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Fig. 8.14. Schematic diagram of the LLC converter SPICE model

The LLC converter model, defined by piecewise equations (4.18)-(8.64), along with its

practical implementation, was analysed under three different loads, with the mode sequences

detailed in Table 8.8.

Table 8.8. Converter operating sequences under different conditions

Load

(Ω)

�� sequences �DC (V) ��� (kHz)

40
(1,0), (1,1), (1,0), (0,0), (0,-1),

(0,0)

45 200

50 219

55 244

5.6
(1,0), (1,1), (1,0), (0,0), (0,-1),

(0,0)

45 189

50 206

55 228

1.7 (1,1), (1,0) (0,-1), (0,0)

45 168

50 182

55 201
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Mode sequences vary depending on the load. Table 8.8 lists the operating conditions for three

distinct loads across three varying input voltages. For each scenario, the table provides the

switching frequency (�sw) needed to achieve a 5 V output.

During six-mode operation, both �1 and �2 were initially set at 0.2. In contrast, for

four-mode operation, �1 was set to 0.25 with �2 being unused. The initial condition �(�0)

was estimated using equation (8.77), based on the initial duty cycle settings. These initial

values were refined by applying Newton's method, as detailed in equations (8.79) to (8.86),

with a relaxation factor � set to 0.1 for wider convergence, and a stopping criterion of λ set

to 10−8. The refined estimations are presented in Table 8.9.
Table 8.9. Steady-state initial conditions estimation results

� 45 V, 40Ω 45 V, 5.6Ω 45 V, 1.7Ω

Initial Refined Initial Refined Initial Refined

��� (A) −2.88 −1.63 −4.75 −1.84 −4.01 −1.94

��� (A) −1.96 −1.63 −2.86 −1.84 −1.96 −1.94

��� (V) 21.48 21.75 23.90 16.59 −79.43 −10.73

��� (V) 5.80 4.99 8.52 4.97 11.38 5.05

�1 0.20 0.17 0.20 0.10 0.25 0.30

�2 0.20 0.19 0.20 0.28 - -

Fig. 8.15, Fig. 8.16, and Fig. 8.17 compare the resonant inductor current ��s and the series

capacitor voltage ��s from both the cyclic-mode model and an idealized SPICE simulation,

alongside experimental data collected with a PEM CWT015 Rogowski coil and a Keysight

DSOX2002A oscilloscope, respectively. Both SPICE simulations and experimental waveform

data were captured at steady state. Each data set corresponds to a different load level at a

forty-five �DC input, demonstrating the results for both mode sequences.
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Fig. 8.15. Comparison of series inductor current iLs and series capacitor voltage, vCs at
200 kHz, 40 Ω and 45 VDC. The cyclic-mode model, SPICE model and practical
implementation are shown. t0 to t6 refer to the cyclic-model
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Fig. 8.16. Comparison of series inductor current iLs and series capacitor voltage, vCs at
189 kHz, 5.6 Ω and 45 VDC. The cyclic-mode model, SPICE model and practical
implementation are shown. t0 to t6 refer to the cyclic-model
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Fig. 8.17. Comparison of series inductor current iLs and series capacitor voltage, vCs at
168 kHz, 1.7 Ω and 45 VDC. The cyclic-mode model, SPICE model and practical
implementation are shown. t0 to t4 refer to the cyclic-model

The results indicate a negligible difference between the cyclic-mode and SPICE models, with

the cyclic-mode model also closely matching practical outcomes. The root-mean-square

errors (RMSE) for ��s in the experimental data are 0.8 V for 40 Ω, 0.8 V for 5.6 Ω, and 2.3

V for 1.7 Ω loads, relative to a 45 �DC supply. Similarly, RMSE values for the resonant

current are 0.04 A, 0.08 A, and 0.16 A for resonant currents in the range of 1-1.5 ARMS. The

larger errors, particularly evident in Fig. 8.17, are attributed to the approximation

inaccuracies of �1, where the diodes conduct for longer durations than anticipated. These

discrepancies are likely due to unmodeled parasitic elements, like transformer losses, which

have a more pronounced impact under higher loads.

Fig. 8.18 presents a comparison of RMS inductor currents across various loads and supply

voltages. The cyclic-model's results align excellently with the nine practical outcomes

displayed.
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Fig. 8.18. Comparison of series inductor current iLs RMS value versus VDC between
cyclic-mode model result with experimental circuit result for three output power levels

Table 8.10 complements Fig. 8.18 by detailing specific average and RMS values of ��s for a

particular operating condition. As expected, the average values of the signals are

approximately zero. From both the figure and the table, it can be seen that the RMS values

determined using the proposed cyclic-mode model are in strong agreement with the

measurements with an error of less than 5%.

Table 8.10. Average and comparison at VDC=45 � and RL= 40 Ω

��� (A) ��s (V)

Average
Cyclic-mode model -0.009 22.5

Practical implementation 0.005 22.2

RMS
Cyclic-mode model 1.02 25.8

Practical implementation 1.01 25.6

8.4 Conclusion

This Chapter introduces a universal method for accurately computing the RMS values of a

state vector in any DC input converter operating in cyclic steady-state, regardless of its order.



239

This technique necessitates only a piecewise state-variable model. It enables the direct

derivation of precise RMS values for each state variable and accurate mode durations, thus

circumventing complex algebraic computations.

The validity of this technique is demonstrated using three different systems: a sub-optional

operation class E inverter, a sub-optional operation class EF2 inverter, and a discontinuous

operation LLC converter. The accuracy of the waveform evaluation RMS method is critically

assessed through SPICE models, which exhibit near-perfect concordance with the proposed

approach. A practical implementation on an LLC converter indicates a root-mean-square error

of less than 5%.

Overall, although the DC input assumption limits the technique's use, it has proven to be an

effective method for analysing the steady-state behaviour of a wide range of DC-input

switching power supplies, including resonant converters. This effectiveness is due to the

significant reduction in computation time while maintaining accuracy. Future improvements

could focus on enhancing Newton's method to consistently obtain accurate circuit operating

condition.
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Chapter 9. Conclusion and future work

9.1 Discussion

This thesis proposes techniques to improve the simulation of DC-input switch converters,

focusing mainly on estimating mode durations, using models to predict circuit behaviour, and

forecasting signal root mean square (RMS) values.

Chapter 1 discusses the motivation behind this work, emphasising that advances in power

electronics aim to improve energy conversion efficiency. To achieve higher energy

conversion efficiencies, enhancing the accuracy and efficiency of switching converter

analyses has been identified as a key focus. This thesis, therefore, concentrates on and

contributes to the improvement of switching power supply modelling techniques, as outlined

below,

To familiarise the reader with the basics and state of the art in the field, Chapter 2 provides a

literature review that introduces the main classifications of converters based on the switching

principle, namely hard-switching converters, and soft-switching converters. It then describes

various converter topologies, such as the boost converter and the class E inverter,

highlighting the differences between hard-switching and soft-switching converters in terms of

their operational behaviours. Subsequently, three mainstream switching converter modelling

approaches are presented: fundamental mode analysis, state-space averaging, and

cyclic-mode modelling. The principles and modelling processes of these approaches are

described in detail, and their characteristics and applicable scenarios are analysed. Finally, the

important role of RMS values in the analysis of switching circuits is illustrated, and some of

the methods for calculating RMS are presented.

Although cyclic-mode modelling involves segmentation constant assumptions on the inputs

and complex modelling, it remains a superior method for analysing a wide range of switching

converters, including resonant converters. This is because it does not assume the operating
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behaviour of the power supply, making it suitable for hard-switching converters with

switching frequencies higher than the system's internal dynamic frequency, as well as for

resonant converters with switching frequencies close to the system's internal dynamic

frequency. By avoiding assumptions about the system's operation, cyclic-mode modelling

minimises error, resulting in analysis that closely mirrors real operation. The final section

points to RMS as a key parameter reflecting the circuit's effectiveness, and improvements to

the modelling technique should make it easier to calculate the RMS values of the circuit's key

variables. The main shortcomings of the cyclic-mode modelling approach are also identified,

some of which have been addressed in this thesis.

Chapter 3 described the switch converter design techniques used in subsequent Chapters. The

Chapter began with the design of boost converters, decomposing the circuit based on the

conducting state of the switch components. This allowed for determining the value ranges of

key components under various operating conditions. In designing class EF inverters, based on

assumptions such as sufficiently large input inductance to consider the input current as DC,

describing functions were used for modelling the converter and determining component

values. For the design of LLC converters, the fundamental mode analysis method is

employed to simplify the circuit structure, yielding gain curves under various parameter

conditions to assist in the design process.

This chapter outlines the design process by analysing different switching converters,

providing design guidelines for the creation of experimental circuits for the subsequent

validation process. It is also observed that most analysis methods for switching power

supplies make assumptions about the operational behaviour of the circuit to simplify the

analysis process. However, these assumptions can lead to errors, making the analysis

inaccurate. The analysis in this chapter represents the unique advantages of cyclic-mode

modelling, an analytical approach that does not make assumptions about the operation of the

circuit.
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Chapter 4 employed cyclic-mode modelling to analyse the operation of class EF inverters. It

was applied to class EF2 inverters with a piezoelectric transformer (PT) as the auxiliary

resonant branch, operating in an optimal state. Initially, a piecewise linear model is

established for the optimal operating state, followed by the construction of its cyclic-mode

model. The precision of the cyclic-mode model in simulating class EF2 inverters is revealed

through comparison with SPICE simulation models. Subsequently, the feasibility of replacing

the auxiliary resonant branch of class EF2 inverters with PT is demonstrated by comparing it

with converter prototypes.

The analysis and validation in this chapter firstly demonstrates the accuracy of cyclic-mode

modelling in analysing a resonant converter in steady state operation, and subsequently

demonstrates the feasibility of using a PT to replace a conventional series resonant branch

circuit, which provides ideas for a wider range of PT applications in the future. The analysis

also revealed that the inputs to the cyclic-mode modelling are the operating conditions of the

circuit, which include the number of modes, their order and the duty cycle of each mode. The

accuracy of the cyclic-mode model depends on the accuracy of its inputs, and the model's

requirement for accurate inputs points to the direction of improvement in modelling

techniques.

Chapter 5 introduced a technique used in subsequent Chapters that combines the

Newton-Raphson method with the cyclic-mode model to accurately determine the

steady-state operating conditions of switch converters. This technique expands the

application scope of the cyclic-mode model, enabling it to accurately simulate multi-mode

converters. The efficacy of this technique has been confirmed through testing on class E

inverters under suboptimal operating conditions.

This new application of Newton's method addresses the high accuracy requirement of inputs

for cyclic-mode modelling. By simply inputting the order of the modes and a rough estimate

of the duty cycle for each mode into Newton's method, the exact value of the duty cycle can

be obtained, enabling accurate cyclic-mode models. The analysis acknowledges that although
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the introduction of Newton's method increases the complexity of the modelling technique and

necessitates an additional method to make a rough estimate of circuit operation, it

significantly reduces the precision required for the inputs in cyclic-mode modelling. This

reduction in input accuracy requirements simplifies the use of the technique and enhances the

accuracy of the model. Consequently, the cyclic-mode modelling technique becomes more

comprehensive, and its range of application expands.

Based on the request for improvements in modelling techniques in Chapter 2, Chapter 6

details the process of deriving the RMS cyclic-mode modelling framework. This framework

can be applied to a cyclic-mode model to facilitate the prediction of cycle mean and RMS

values of state variables without generating waveforms. Although the framework involves a

complex derivation process, it integrates the squaring and averaging processes of RMS

calculation into matrix integral process. This greatly simplifies the computation of RMS

values for state variables using cyclic-mode models, extending the functionality of the

cyclic-mode modelling technique to a wider range of applications.

Chapter 7 combined the Newton method and RMS cyclic-mode modelling technique,

applying them to boost converters operating in discontinuous mode. The steady-state

operating conditions obtained through the Newton method are input into the RMS

cyclic-mode modelling process. This yielded an accurate RMS cyclic-mode model for the

boost converter, capable of outputting precise signal waveforms, their periodic averages, and

RMS values. Comparison with SPICE simulation models and converter prototypes validates

not only the accuracy of these methods in simulating boost converters but also highlights the

effectiveness of their combination.

The analyses in this chapter demonstrate the accuracy and speed of calculating the RMS of

key circuit variables using the cyclic RMS framework. The analysis shows that the

conventional method of calculating RMS values has a maximum error of more than 5% for

the same runtime, whereas the cyclic RMS framework method has a maximum error of less

than 1%. This chapter also illustrates both the feasibility and effectiveness of combining
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Newton's method with the cyclic RMS framework, thereby defining the basic structure of the

improved cyclic-mode modelling technique.

Chapter 8 introduced a simulation technique named 'cyclic RMS technique.' This technique is

applied to different resonant converter topologies. Comparing its simulation results with

those of SPICE models and practical implementations validates its accuracy in waveform

prediction and speed in RMS calculations for multi-mode resonant converters.

The technique requires only the circuit structure, operating parameters, and component values

as inputs. Cycle waveforms, cycle averages and RMS values can be obtained for each

inductor current and capacitor voltage in the circuit. This is achieved by using FMA,

describing function method, Newton's method, cyclic-mode modelling, and cyclic RMS

framework and integrating them. Although the technique still has shortcomings in solving the

boundary problem of circuits under different operating conditions, the presentation of this

technique represents the fulfilment of the requirements for the improvement of the circuit

analysis techniques mentioned in the literature review, which will make it possible to analyse

switching power supplies with DC inputs more accurately and quickly.

9.2 Thesis conclusion

This thesis develops and improves modelling techniques to increase the efficiency and

accuracy of analysing switching converters, achieved through the combined use of several

techniques. It describes using the Newton-Raphson method to determine the steady-state

operating conditions of a switching converter for given parametric conditions. By combining

the Newtonian method, represented by the numerical Jacobi matrix, with the cyclic-mode

model, it is possible to predict the steady-state operation of a multi-mode switching converter,

thus extending the application of the cyclic-mode model. Both simulation and practical

results demonstrate the effectiveness of these techniques.
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In order to obtain RMS values more easily and accurately, we have developed the cyclic

RMS framework. This framework, based on the concept of the cyclic-mode model, enables

the calculation of RMS values without generating signal waveforms by integrating the

squaring and averaging processes of RMS value computation into the matrix integration

process. The accuracy and speed of the method have been verified through simulation and

practical experiments. Finally, a modelling procedure called RMS cyclic-mode modelling is

proposed, integrating existing circuit analysis techniques and the techniques studied in this

thesis. This makes the analysis of switching power supplies with DC inputs easier and more

efficient.

In summary, the techniques and modelling procedure presented in this thesis enable engineers

to obtain accurate analysis results for DC-input switching power supplies more quickly.

These advances have been achieved by improving the cyclic-mode model and using a

combination of Newton's method in conjunction with established circuit analysis techniques.

Some of the research in this work has been published in a conference paper.

9.3 Suggested future work

Although the techniques in this thesis represent advanced developments in the field, further

improvements are possible. The following summarizes potential areas for further

development.

9.3.1 Improvements to the Method of Calculating the Initial Values of the

Model

After integrating the cyclic-mode model with the new application of Newton's method

introduced in Chapter 5, the accuracy requirements for inputs in cyclic-mode modelling were

reduced. However, Newton's method still necessitates a certain degree of accuracy in the

model inputs. This requires additional computational methods to provide a rough estimate of
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the converter's operating behaviour. Currently, the describing function method is used for

estimation. While it works well in most cases, its assumption of sinusoidal waveform shapes

can result in significant prediction deviations when the actual waveform deviates

substantially from a sinusoidal shape. This prevents Newton's method from iterating correctly,

leading to incorrect analyses.

The proposed improvement begins the power supply analysis with a sinusoidal waveform,

allowing Newton's method to iterate successfully. Subsequently, the circuit parameters are

finely tuned, and a reasonable prediction of the model's modes sequences for the next use of

Newton's method is made based on the results of the previous successful iteration. This

prediction is fed into Newton's method and re-iterated to obtain an accurate duty cycle for the

modes. This improved analysis is then validated against simulation results, verifying the

feasibility of the improvement.

9.3.2 Improved Analysis of Switching Behaviours in the Model

Although adding the switch on-resistance in the validation section of Chapter 8 makes the

cyclic-mode model predictions more accurate, ideal assumptions about the switching

behaviour in the model still limit the accuracy in applications requiring high precision.

To make cyclic-mode modelling more representative of real circuit operation and enhance its

accuracy further, the proposed improvement involves a deep analysis of the operational

principles of each type of switch components (including MOSFETs, transistors, diode etc.)

during switching behaviour. The switching behaviour is added as a new mode to the original

mode sequence. This improvement will be verified through comparisons with simulation and

physical prototypes, demonstrating its feasibility.
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