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Abstract

As the proliferation of IoT devices and smart technologies continues, their potential

remains underutilised due to significant privacy and data sensitivity concerns. In this

thesis, I present a secure, decentralised, and intelligent framework designed to optimise

diverse problems through Federated Learning (FL) schemes and machine learning models

on endpoint devices. Unlike traditional centralised approaches, this framework enables

collaborative problem-solving without data sharing, relying instead on the exchange of

model updates to refine a global solution. The key to this decentralised model is the

establishment of robust and efficient communication networks that manage interactions

and data exchanges between devices.

This work explores Decentralised Federated Learning (DFL), which enhances partici-

pant collaboration while ensuring privacy and mitigating the communication bottlenecks

inherent in Centralised Federated Learning (CFL). By improving inter-device communi-

cation within the DFL network and optimising the associated learning models, I aim to

boost overall system performance and reliability. Furthermore, the presence of adversar-

ial devices poses significant threats; thus, strategies to exclude untrustworthy devices are

critical to maintaining the integrity and efficiency of the network.

This thesis contributes towards a comprehensive analysis of network communication, ge-

ometric configurations, and system robustness. I introduce innovative DFL models and

simulation techniques, demonstrating a robust and server-free FL process. Enhance-

ments in model accuracy have been achieved, leading to an intelligent, low-latency, and

adaptable framework suitable for various important applications, including Autonomous

v



Vehicles (AVs) and IoT systems.

While further advancements are necessary, this thesis marks substantial progress towards

a flexible and distributed DFL scheme. It is anticipated that this foundational work will

encourage continued enhancements in communication efficiencies, fostering more effective

collaboration and sustained privacy in FL environments.
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Chapter 1

In recent years, the proliferation of the Internet of Things (IoT) and smart wearable

technologies has significantly expanded across various sectors, including wearable devices,

home automation, autonomous vehicles, health monitoring systems, fitness trackers, etc.

The wireless devices within these sectors’ landscape are generating vast quantities of

data, necessitating extensive processing. Typically, in a star network configuration where

devices are linked to a central server, as depicted in Fig. 1.1, this data is routed to cen-

tralised servers for analysis in the traditional cloud computing framework. Subsequently,

processed results are dispatched back to the originating devices, placing a considerable

strain on network resources. Moreover, the transmission of data can demand significant

bandwidth and incur costs related to resource utilisation, such as energy expenditure, po-

tentially leading to diminished network efficiency as data volumes expand [1]. In response

to these issues inherent in standard cloud computing, edge computing has surfaced as a

viable solution, positioning processing and data storage capabilities closer to the source

devices [2]. Within this context, machine learning (ML) emerges as a key technique for

digesting data generated at the edge [3]. Applications span a broad spectrum, including

vehicle networks, smart urban development, self-driving cars, security surveillance, dig-

ital health solutions, drones, protective robots, and a range of industrial IoT scenarios

[4].

The voluminous data collected by sensors and edge devices holds paramount importance.

Leveraging advanced ML techniques, this data can be harnessed to develop classification

models capable of learning and making predictions to fulfil end-user demands efficiently.

ML algorithms are pivotal in enabling a wide array of applications, such as home automa-

tion control, autonomous vehicle operation, and health monitoring for seniors, including

heart rate and fall detection. However, edge device generated data often contains highly

personal details, raising substantial concerns regarding data privacy and security. The

reluctance to centralise sensitive information underscores the need for privacy-preserving

solutions.

Federated Learning (FL) [5], a collaborative learning approach, has been introduced

to mitigate privacy and security concerns by allowing for model development across dis-

2
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Autonomous Vehicles

Edge devices

Wearable devices

Unmanned Ariella Vehicles UAVs 

Central Server 
Computers

Mobile devices

Figure 1.1: Example of the traditional centralised system layout

tributed ML frameworks. This method enables the construction of models from disparate,

sensitive local datasets, facilitating distributed training while ensuring user data remains

confidential [5], [6].

FL’s capacity to safeguard client data privacy by sharing only model parameters derived

from local training rather than the raw data itself has garnered considerable interest. Fig-

ure 1.2 illustrates a typical deployment scenario within a healthcare context, highlighting

how entities such as Community Hospitals, Research Medical Centres, and Cancer Treat-

ment Centres can independently train models on their respective confidential datasets

and collectively enhance system performance by aggregating the model parameters to

forge a comprehensive global model.

While FL systems hold considerable promise, they encounter numerous obstacles, chiefly

due to their dependence on a central FL server. A paramount issue within FL is es-

tablishing efficient communication to ensure connectivity among all devices and maintain

optimal performance [8]. This challenge is particularly pronounced in environments where

securing a dependable central server proves challenging, such as in entirely autonomous

networks. Additionally, the reliance on a singular server introduces the risk of a single

point of failure, potentially leading to communication bottlenecks. Consequently, this

study investigates the potential of Decentralised Federated Learning (DFL) as a strategy

3



Chapter 1

Privacy 
Preservation

Local 
Model

Private 
Data

Community Hospital

Privacy 
Preservation

Local 
Model

Private 
Data

Research Medical Center

Privacy 
Preservation

Local 
Model

Private 
Data

Cancer Treatment Center

Global Model

Federated 
Server

Figure 1.2: Federated learning example diagram [7]

to surmount these hurdles. In the DFL framework, devices exchange model parameters

directly via peer-to-peer communication, with each device functioning as a mini-server,

aggregating and averaging parameters from its neighbours to refresh a local sub-global

model accessible within a one-hop communication radius.

So one of the objectives of this thesis is to assess the practicality of implementing the

DFL methodology amidst varying spatio-temporal conditions. In Chapter 2, I deploy

DFL algorithms within mesh networks situated in diverse settings, leading to two distinct

practical deployment strategies: 1) Autonomous Decentralised IoT Networks, typical of

scenarios requiring intrinsic decentralisation due to limited device capabilities, such as

wearable technologies or remote medical applications, and 2) Edge/Fog-Assisted IoT Net-

works, hierarchical structures where IoT data is initially processed by edge/fog gateways

before forming a mesh network for DFL application, with agricultural IoT systems and

smart city initiatives serving as prime examples [9], [10].

Furthermore, in this thesis, I pioneer the formulation of communication and computa-
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tional efficiency in DFL across wireless networks through the implementation of efficient

methodologies. These methodologies eliminate the need for information about future

training data. I explore the integration of DFL with some protocols as a mechanism

to probe network performance and ideal configurations within these models. Therefore,

I delve into the creation of methods that efficiently handle both communication and

computation, encapsulating the overarching expenses associated with conducting DFL in

wireless networks, independent of the particular protocol used for exchanging parameters

between the participant devices. Consequently, the theoretical findings in Chapter 2 and

Chapter 3 hold broad relevance across a spectrum of wireless communication protocols,

including Slotted-ALOHA and Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA), respectively. Given the versatility of my proposed approaches across vari-

ous wireless communication frameworks, this research holds substantial promise for fur-

ther exploration and application by both the academic and industrial sectors. To the

best of my knowledge, this thesis presents research at the forefront of leveraging geomet-

ric analysis and a variety of aggregation techniques. The aim is to markedly enhance

both communication efficiency and learning effectiveness within DFL systems.

Proposing the integration of DFL with the slotted ALOHA protocol is designed to bol-

ster network flexibility as devices collaborate in a peer-to-peer fashion. This protocol

aligns well with a broad spectrum of existing applications and devices. Additionally,

the DFL framework aims to strengthen data privacy, enhance the protection of sensi-

tive information, and elevate the predictive precision of algorithms in use. Consequently,

this approach seeks to establish a robust system architecture that is resilient in the face

of challenges. Such a framework promises to leverage a broader spectrum of user data

for training, refining a global model to augment local models across participant devices,

thereby obviating the need to exchange any data other than local model parameters.

5



Chapter 1 1.1 Background

1.1 Background

This section presents a brief summary of the basic principles and previous steps taken

in DFL. It briefly outlines the evolution of machine learning techniques that facilitate

the execution of learning tasks directly on distributed devices, focusing on the shift from

centralised to decentralised approaches. The discussion highlights key technological ad-

vancements and theoretical underpinnings that have shaped current practices and re-

search directions. While this section provides the necessary context to understand the

scope of the thesis, a more comprehensive exploration of related works and detailed dis-

cussions of specific methodologies and their applications are presented in the subsequent

Chapters. This structure ensures a foundational understanding before delving into the

in-depth analyses and novel contributions of the included papers.

1.1.1 Distributed Machine Learning

There are a variety of machine learning (ML) and deep learning algorithms employed

across numerous studies. For example, Convolutional Neural Networks (CNNs) are ex-

tensively used for image classification and other similar tasks due to their demonstrated

capability to achieve high accuracy and effectively learn from extensive datasets of thou-

sands of images [11].

In the era of the IoT, where many devices collect a large amount of data through dif-

ferent services and applications, integrating efficient wireless networks for the modern

distributed ML is highly important [12]. Furthermore, the ever-increasing use of data for

wireless communications has made it almost impossible to transfer local rows of data to

central servers due to security and privacy issues, as well as the potential to massively

transfer a large data size. Hence, FL offers a solution to lower data transfers and decrease

bandwidth consumption in wireless communication networks.

FL can be defined as a distributed ML approach that enables devices to collaborate with-

out sharing personal or sensitive information. In this model, data remains on the device,
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and only the model parameters are shared with others. To deploy traditional FL, also

referred to as centralised FL (CFL), along with its alternative, Decentralised DFL, it is

crucial to embed local machine learning algorithms within the terminal devices (partic-

ipants). This setup allows each device to train the algorithm locally on its data before

parameters are shared either with a central server in CFL or directly with neighbouring

devices in DFL. In this thesis, I aim to apply both CFL and DFL strategies to tackle a

classification problem. Therefore, the CNN algorithm will serve as the primary method

for training local models within the proposed systems. This choice is predicated on CNN’s

ability to efficiently handle large volumes of data and its effectiveness in extracting mean-

ingful patterns from complex datasets, thereby enhancing the overall performance and

reliability of the FL framework.

1.1.2 Centralised Federated Learning (CFL)

The primary goal of CFL systems is to train a global model for optimising a certain ML

algorithm performance via collaboration between participating devices through a central

server that performs model aggregation from these participants, where each device is

represented as a local learner [5]. Figure 1.2 illustrates the essential architecture of CFL

and outlines the four key phases involved in training a CFL network, which is repeated

until the system achieves convergence [13]:

1. Local Learning: Each edge device processes its own data to train the model locally,

updating crucial model parameters like neural biases and weights.

2. Uploading Parameters: Devices send their updated model parameters to the central

server through communication channels.

3. Global Aggregation: Upon receiving the parameters, the central server combines

them to refresh the global model.

4. Model Synchronisation: The updated global model is then broadcast back to the

devices. The cycle returns to the first step and continues until the system converges

[14].

7



Chapter 1 1.1 Background

In CFL, local algorithms on each device typically employ optimisation techniques like

Stochastic Gradient Descent (SGD) to iteratively refine the model. The global model

is then formed by aggregating these locally updated parameters, potentially weighting

them based on the quality of the updates [11]. A key feature of CFL is that it keeps

user data on the device, minimising data transmission and addressing privacy concerns.

Nevertheless, CFL can encounter scalability problems due to its reliance on a central

server. Despite optimisation of the server’s hardware and software, performance issues

may arise as the number of client nodes grows [15]. This can lead to communication bot-

tlenecks as traffic volumes increase, overloading the system. Moreover, accessing a central

node may not always be feasible, for example, in scenarios involving autonomous vehicles

or high-mobility sensor systems. To circumvent these issues, decentralised architectures

have been proposed, eliminating the need for a central server. In these systems, devices

communicate only with their immediate neighbours, sharing and updating models locally

[16]–[18].

The training process is initiated by the initial model parameter (W0). At the beginning

of each CFL iteration k = 1, . . . , K, the server shares Wk−1 with all participating devices.

Each device j ∈ {1, 2, . . . ,M} holds a subset Dj = {(xj
n, y

j
n)}

Nj

n=1 of the entire dataset

D, with D = ∪Mj=1Dj, where Nj denotes the dataset size of the j-th device. Each device

engages in Stochastic Gradient Descent (SGD) on the local loss function. The device

subsequently updates its local model weights using the following equation:

Wj
k = Wk−1 −

αk

Nj

Nj∑
n=1

∇Wf(h(xj
n,Wk−1), y

j
n), k = 1, . . . ,K, (1.1)

here αk represents the learning rate. Subsequently, each device transmits its local model

parameters Wk
j to the server for global aggregation. This update step, known as the

global update, is defined by the equation:

Wk =
M∑
j=1

ρjW
j
k, k = 1, . . . , K, (1.2)
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where ρj :=
Nj

N
denotes the weight of the j-th device’s dataset size relative to the total

dataset size N . Furthermore, each device j updates its local parameters by performing

a single iteration of the Stochastic Gradient Descent (SGD) algorithm [19] on a subset

of its local data. This approach, where local SGD updates are used, is referred to as

Federated SGD (FedSGD) [5] [20].

Federated Averaging (FedAvg) is an advanced adaptation of FedSGD, featuring distinct

computations for local parameters. In FedAvg, the server dispatches Wk−1 to the devices

at the start of each iteration k = 1, . . . , K. Each device j ∈ {1, 2, . . . ,M} maintains a

subset Dj = {(xjn, yjn)}
Nj

n=1 of the collective dataset D, where D =
⋃M

j=1 Dj, and executes

E local iterations of SGD, i = 1, . . . , E, on a subset of N j
k ≤ Nj data points. The local

parameter W j
i,k is updated as follows:

Wj
i,k = Wj

i−1,k −
αk

N j
k

Nj
k∑

n=1

∇Wf(h(xj
n,W

j
i−1,k), y

j
n), k = 1, . . . , K, (1.3)

where Wj
k = Wj

E,k [21]. This updated formula corresponds to the global update previ-

ously described in Eq. 1.2.

Practically, not all devices (clients) participate in each FedAvg iteration due to bandwidth

or network congestion. Consequently, only a subset of potentially influential devices is

chosen for training in each iteration, a process known as client selection. The goal of

client selection is to identify informative clients that contribute to faster convergence and

reduced communication costs in the early training stages [22].

While FedSGD requires less computational effort due to its single local iteration, Fe-

dAvg effectively reduces the communication iterations required for training by a factor

of E. This reduction significantly lowers the communication demands, particularly in

decentralised data scenarios involving deep neural networks (DNNs) [6].

Several features distinguish FL from other parallel optimisation methods [23]. Notably,

in extensive networks generating large data volumes, the connection speed between the

central server and devices may slow, leading to delayed communications crucial in latency-
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Figure 1.3: Decentralised federated learning layout [7]

sensitive applications such as intelligent healthcare systems [24]. Hence, there is a pressing

need to develop communication-efficient FL approaches and overcome the bottleneck issue

in the FL approach. These issues will be elaborated upon in the following section of this

thesis.

1.1.3 Decentralised Federated Learning (DFL)

The DFL framework operates without a central server and involves only terminal partic-

ipants (nodes) [15], as illustrated in Fig. 1.3. This setup facilitates parameter exchanges

directly between peers. Additionally, the FedAvg algorithm or any other global aggre-

gator algorithms can be used at each node to develop global models independently in

the DFL system. Every participant refines its model locally based on its data and then

integrates this with models from neighbouring nodes using the global aggregator algo-

rithm. This collective model is then shared back to the peers in subsequent iterations

until convergence is achieved.
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In [25], the Combo algorithm introduces a technique where only a segment of the model

parameters is shared and averaged, effectively reducing communication bandwidth de-

mands without compromising system performance or convergence speed.

Although DFL addresses several limitations of conventional FL systems (e.g., CFL) re-

quiring a central server, it primarily uses local model averaging for model integration on

the client side, which may not be efficient in scenarios with heterogeneous data. Here,

each local update pushes the model towards an individual optimum and averaging across

diverse client models might lead to suboptimal global solutions, especially when training

data varies significantly across clients [26]–[28].

Moreover, prior research often overlooks the nuances of wireless communication environ-

ments, neglecting factors like channel fading, link blockages, and interference. Commonly,

participant selection does not account for the limitations imposed by the communication

medium, which can affect the reliability and adaptability of real-time scenarios such as

autonomous vehicles and UAV networks.

1.2 Challenges

FL is distinguished by unique challenges not typically encountered in broader distributed

learning contexts. This section outlines the main principal challenges that uniquely

characterise the FL environment, extending beyond general distributed optimisation and

privacy-focused data analytics:

1.2.1 Communication Bottleneck

The primary challenge in FL is the high cost of communication, often emerging as a sig-

nificant bottleneck. Unlike intra-data or inter-data centre communications that benefit

from high speed and bandwidth, end-user connections, such as wireless links used in FL,

are generally slower, more costly, and less reliable, particularly in remote locations. Con-

sequently, the communication between clients and the central server may significantly lag

behind the speed of local computations at times [29]. Moreover, while FL networks, espe-
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cially in cross-device settings, may comprise millions of clients, the system’s architecture

and the server’s capacity usually limit the number of clients that can actively partici-

pate in each communication round. To efficiently accommodate models on decentralised

devices within such networks, the development of methods to enhance communication

efficiency is crucial. Literature suggests several strategies to mitigate this challenge, in-

cluding:

i. Communication compression: This involves reducing the size of the data transmitted

in each communication round.

ii. Enhanced efficiency methods: These strategies aim to decrease the total number of

necessary communication rounds.

iii. Client weights: This technique scales the clients’ contributions to the learning process

in each communication round.

1.2.2 Device Distribution and Systems Heterogeneity

Unlike traditional cloud-based distributed training, which leverages high-end computa-

tional architectures [30], FL operates under the constraints of data locality, with clients

often being resource-limited, heterogeneous, and unreliable devices. This unique de-

ployment scenario of FL is significantly challenged by the extensive diversity in client

hardware, which can drastically vary in processing capabilities and reliability [31]–[33].

For instance, hardware heterogeneity may lead to notable disparities in processing speeds

[34], potentially slowing down the aggregation process as the server waits for slower, less

capable devices, termed stragglers. Furthermore, devices with modest memory and pro-

cessing power might struggle to handle larger models, leading to their exclusion from the

FL process due to capacity limitations or timeouts, thus discarding their unique data,

which could be valuable. Intriguingly, the technical capabilities of devices might also re-

flect the demographic and socio-economic status of their owners, rendering the exclusion

of such devices not only a technical decision but also a socio-economic concern [35].

The training process in FL is further complicated by challenges in both downstream

12



1.3 Contributions Chapter 1

(model) and upstream (update) network communications, which can severely bottleneck

the training procedure [36]. Consequently, FL methods must be designed to be resilient

to:

• The heterogeneity of devices, including variations in network connection speed,

bandwidth, storage capacity, compute power, and battery life.

• The partial participation of clients in the learning process.

• The presence of stragglers and the potential for device dropout.

1.2.3 Network Security and Reliability

FL for dynamic networks grapples with significant robustness challenges, notably vul-

nerability to Byzantine attacks during the model training phase. Byzantine nodes, char-

acterised by their potentially malicious behaviour, can lead to severe consequences such

as model corruption or targeted disruptions of the learning process. Although research

on Byzantine-resilient FL is advancing, decentralised implementations often receive less

focus, heightening the risk in scenarios where network integrity is critical.

This expanded version incorporates a broader explanation of the challenges and strate-

gic responses to Byzantine attacks, particularly in DFL, emphasising the importance of

network integrity in safety-critical applications, such as autonomous vehicles.

1.3 Contributions

This thesis aims to introduce several original models using various communication tech-

niques, such as resource optimisation, clustering and multi-paths protocol, which are

highlighted in the Chapters [2-5], that accommodate decentralised setups and heteroge-

neous data. It will also thoroughly evaluate the communication dynamics among par-

ticipants, considering the potential interference and noise that may affect transmissions,

to realistically simulate communication links during the learning process. Furthermore,

considering the significant challenges posed by adversarial attacks on the learning process,

13



Chapter 1 1.3 Contributions

particularly within DFL frameworks, there is a pressing need for the development of ro-

bust and dependable defences. Accordingly, these challenges and the proposed solutions

will be discussed in Chapter 4.

The specific contributions of this PhD thesis are summarized in Table 1.1 below and

detailed in the following descriptions:

Chapter no. Key Contribution Comments Published
Work

Chapter 2 Geometric analysis for DFL
network and optimisation
of communication during
the learning process using
Slotted-ALOHA.

Simulate the dynamic of
clients and consider real-
world communication con-
straints to define the actual
number of clients for each it-
eration.

[7]

Chapter 3 Further optimisation of DFL
learning by implementing
various aggregation methods
and minimising the com-
munication overhead using
an efficient compression
approach for the local algo-
rithm.

Improves the global model
and increases robustness,
particularly in non-iid client
scenarios. The imple-
mented compression mech-
anism significantly reduces
the local model size without
affecting the learning per-
formance.

[37]

Chapter 4 Enhancing Byzantine Re-
silience in DFL network,
particularly in environments
with dynamic clients.

Implements a novel aggre-
gation policy designed to
mitigate and neutralize the
adverse effects of potential
poisoning attacks.

Under
review

Chapter 5 Integration of a model-based
Multipath TCP (MPTCP)
in the DFL framework to
improve communication re-
liability during the learning
process.

Effectively uses the avail-
able communication re-
sources by maximising
the utilisation of available
MPTCP subflows.

Under
review

Table 1.1: Summary of the specific contributions of this PhD thesis.

Chapter 2, Decentralised Federated Learning over Slotted ALOHA Wireless Mesh Net-

working [7], introduces a proposal design of the DFL framework, which operates flexibly

without a central server and instead uses direct collaboration among one-hop neighbours.

This collaboration is sensitive to the dynamics of communication networks, including

network topology, MAC protocols, and both large-scale and small-scale fading on links. I
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apply stochastic geometry to explicitly model these dynamics, enabling precise quantifi-

cation of the DFL’s performance. The primary goal is to evaluate the impact of the com-

munication between devices during the learning process and then enhance it to improve

the classification accuracy of the model without compromising privacy and effectively

managing network dynamics.

Chapter 3, Decentralised Federated Learning on the Edge over Wireless Mesh Networks

[37], where I introduced a further optimisation of DFL performance by implementing var-

ious aggregation methods and minimising the communication overhead using an efficient

compression approach for the local algorithm. System simulations are conducted to eval-

uate the proposed decentralised architecture under a variety of network parameters and

different aggregation methods such as FedAvg, Krum, and Median methods. The model

is trained on the widely recognised EMNIST dataset for benchmarking handwritten digit

classification and incorporates a state-of-the-art compression technique based on genetic

algorithms. This approach significantly reduces the size of the models shared over the

wireless channel, compressing participants’ local model sizes to nearly half of their origi-

nal size relative to baselines. This effectively diminishes complexity and communication

overhead.

Chapter 4, Enhancing Byzantine-Resilience in Decentralised Federated Learning for Dy-

namic Networks [38], under review as of May 2024, in which this chapter tackles the

challenge of enhancing DFL performance, particularly in environments with Byzantine

devices. The goal is to develop a robust model for ad hoc networks that leverage the

CSMA/CA protocol for secure data transmissions. The proposed DFL model, which

is Byzantine-resilient and designed for wireless networks, identifies and eliminates un-

trustworthy devices using a novel DFL reputation scoring system. It also incorporates

advanced aggregation methods and spatial analysis to sustain throughput. I assess the

DFL network’s performance through two critical metrics: 1) robustness against adversar-

ial attacks and 2) high accuracy and low loss, considering both complexity and network

dynamics. Therefore, Chapter 4 is assigned to address the susceptibility of DFL networks

to adversary attacks by devising a comprehensive adversary optimisation strategy aimed
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at enhancing network security and reliability. This approach includes:

(i) Implementing advanced anomaly detection techniques to identify and isolate adver-

sary (e.g., Byzantine) nodes or clients effectively.

(ii) Deploying mitigation strategies that leverage device-weighted assessments and rep-

utation scoring mechanisms alongside robust aggregation methods to reduce the

influence of compromised nodes on the overall model.

(iii) Ensuring the maintenance of high model accuracy and overall network performance

despite the presence of Byzantine faults, thus safeguarding the integrity of the learn-

ing process.

Further, this work explores the integration of these strategies within dynamic networks,

where rapid and reliable decision-making is paramount. I aim to demonstrate that a well-

protected DFL framework can significantly enhance the trustworthiness and efficacy of

machine learning deployments in safety-critical environments such as autonomous driving.

Chapter 5, Enhancing Reliability and Efficiency in Collaborative Learning through De-

centralised Federated Learning using MPTCP [39], under review as of May 2024, which

advances DFL effectiveness by improving communication reliability during the learning

process. With the increasing integration of Multipath TCP (MPTCP) in devices, includ-

ing those from Apple, I propose its combination with DFL to enhance throughput, reduce

latency, and achieve superior collaborative learning outcomes suited for real-world appli-

cations. I introduce three unique DFL network topologies: Simultaneous Subflows Util-

isation, Strategic Subflow Allocation, and Master Subflow Priority. This study presents

a novel approach for dynamically selecting the optimal DFL network topology, adopt-

ing Reinforcement Learning algorithms to identify the most effective network configu-

ration for managing data flow across available subflows with an MPTCP-based model.

Through comprehensive system simulations, I evaluate the proposed decentralised frame-

work against contemporary FL models, demonstrating its potential in real-world scenar-

ios. Thus, further advances in the DFL network are introduced by enhancing communica-

tion reliability throughout the learning process, focusing on the potential to enhance data
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transmission efficiency and reduce latency in DFL environments. The discussion delves

into how MPTCP’s capability to manage multiple data paths can significantly improve

the robustness and speed of model training in DFL setups.

1.4 Summary

In summary, the objective was (and continues to be) to develop a robust DFL framework

that enables devices to collaborate securely and privately with an efficient and adapt-

able wireless communication design resilient to adversarial and Byzantine attacks. This

innovative topic has afforded me the opportunity to publish several papers during my

PhD, resulting in a thesis by publication. The main body of the thesis (Chapters 2 - 5)

comprises reformatted but otherwise verbatim reproductions of my published works—two

journal papers [7][37] and one conference paper [40], along with two additional journal

papers currently under review (i.e., Chapter 4 and Chapter 5).
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Abstract

Federated Learning (FL) presents a mechanism to allow decentralised training for ma-

chine learning (ML) models inherently enabling privacy preservation. The classical FL is

implemented as a client-server system, which is known as Centralised Federated Learning

(CFL). There are challenges inherent in CFL since all participants need to interact with

a central server resulting in a potential communication bottleneck and a single point of

failure. In addition, it is difficult to have a central server in some scenarios due to the

implementation cost and complexity. This study aims to use Decentralised Federated

learning (DFL) without a central server through one-hop neighbours. Such collaboration

depends on the dynamics of communication networks, e.g., the topology of the network,

the MAC protocol, and both large-scale and small-scale fading on links. In this paper, we

employ stochastic geometry to model these dynamics explicitly, allowing us to quantify

the performance of the DFL. The core objective is to achieve better classification with-

out sacrificing privacy while accommodating for networking dynamics. In this paper, we

are interested in how such topologies impact the performance of ML when deployed in

practice. The proposed system is trained on a well-known MINST dataset for bench-

marking, which contains labelled data samples of 60K images each with a size 28×28

pixels, and 1000 random samples of this MNIST dataset are assigned for each partici-

pant. The participants implement a CNN model as a classifier model. To evaluate the

performance of the model, a number of participants are randomly selected from the net-

work. Due to randomness in the communication process, these participants interact with

the random number of nodes in the neighbourhood to exchange model parameters which

are subsequently used to update the participants’ individual models. These participants

connected successfully with a varying number of neighbours to exchange parameters and
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update their global models. The results show that the classification prediction system

was able to achieve higher than 95% accuracy using the three different model optimisers

in the training settings (i.e., SGD, ADAM, and RMSprop optimisers). Consequently,

the DFL over mesh networking shows more flexibility in IoT systems, which reduces the

communication cost and increases the convergence speed which can outperform CFL.

2.1 Introduction

In recent years, the number of Internet of Things (IoT) and smart wearable devices have

witnessed an increased proliferation in several vertical domains (e.g., wearables, home

automation systems, smart glasses, health monitors, health-fitness trackers, smart grids,

etc). These devices use a variety of wireless technologies and thus manifest different

topological properties. For instance, LoRa deployment support one hop connection to

the gateway with a distance-dependent spreading factor manifesting star topology. In

contrast, Thread, Zigbee, and BLE Mesh manifest the mesh topology. The Mesh de-

ployment for local connectivity is gaining extra momentum with the rapid evolution of

standards.

The huge amount of data that sensors and edge devices collect is critical. It can be gath-

ered and analysed using modern ML techniques to build a classification model that can

learn, predict, and meet the end user’s requirements optimally. ML algorithms can en-

able various applications. These include controlling and monitoring the home appliance,

controlling autonomous vehicles, and monitoring various health parameters of the elderly

such as heart rate, fall detection, etc. However, the data from an edge device may carry

very personal information. Thus, data privacy and security are significant challenges as

users usually do not allow sharing of sensitive information and data by putting it all in

one central location.

Now, Federated Learning (FL) [1] has recently emerged to address this issue and solve

participants’ essential requirements and concerns to preserve privacy and data security.

FL has developed as a new paradigm in building models from distributed ML setups that
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Figure 2.1: A federated learning approach

can offer the opportunity to learn a model from multiple disjoint sensitive local datasets

while keeping the user data private through distributed training [1] and [2].

FL has attracted much attention because of its ability to preserve the privacy of the

client’s data by sharing only the locally trained model parameters instead of the local

data itself. Figure 2.1 shows a reference deployment scenario for a healthcare application.

This example shows how the Community Hospital, the Research Medical Centre, and the

Cancer Treatment Centre all train their local models using their local private data and

share only the model parameters to create a global model in order to improve the system

performance.

Thus, FL performs the aggregation and analysis of the local models and updates the

models on the participants’ devices or servers without sharing any devices’ data with

others, thus keeping the private data protected. So, each participating device will train a

model exploiting its local data usually using classification or regression algorithms (i.e.,

employing a Deep Neural Network (DNN)), and only share the model parameters with a
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central server. Afterwards, the FL central server will aggregate the parameters of these

local models to process and create a global model. The FL server broadcasts the global

model to update the local models. The system will iterate the same procedure until the

system achieves a convergence state [3]. This paradigm of FL is also known as Centralised

Federated Learning (CFL).

2.1.1 Motivation

The data generated by IoT devices and smartphone terminals has become essential for

driving intelligent services through applications of Machine Learning (ML). Various ap-

plications ranging from healthcare to autonomous vehicles are rapidly deploying IoT

solutions. It is thought that FL can offer more secure and shared security services for

a wider range of applications, helping to support the steady growth of distributed ML

applications [4]. Although the CFL systems are indeed promising, they face several lim-

itations and challenges as they require a central FL server. Efficient communication is a

critical challenge that needs to be addressed in FL to ensure that all participating devices

are connected and that performance is not compromised [5]. Furthermore, in particular,

it is hard to implement in some scenarios where a reliable and robust central server is

difficult to find (e.g., a fully self-driving and autonomous network). Moreover, the CFL

network faces the limitation of a single point of failure (communication bottleneck) at

the central server. Therefore, this research will study a Decentralised Federated Learning

(DFL) approach to overcome these challenges. In the DFL model, all neighbouring de-

vices share their model parameters directly in a peer-to-peer manner. In this case, each

device acts as a server by aggregating the parameters from neighbours and then averaging

them to update a sub-global model that can be shared with others within one hop of a

communication link.

The aim of this paper is to evaluate the feasibility of the implementation of the DFL

approach under spatio-temporal dynamics. DFL algorithms are implemented using clus-

ters of mesh networking groups located in different environments. Our system model

can be translated into two practical deployment modalities: 1) Autonomous and Decen-
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tralised IoT networks: these are the networks formed by limited capability IoT and edge

devices where decentralised FL is required intrinsically. For instance, networks formed

by wearable IoT devices in battlefields or remote hospitals. 2) Edge/Fog-Assisted IoT

networks: these are the hierarchical networks where the data from IoT devices is collected

and processed by the edge/fog gateways [6]. These gateways then form a mesh network

where DFL must be implemented. A typical example of such deployment is in agricul-

tural IoT setup [7] or other smart city IoT applications. Both cases can be translated

into the system model considered in this paper. In addition, this study will implement

an FL network based on the slotted ALOHA protocol as a sub-optimal MAC protocol to

evaluate the performance of the network and optimal configuration under the proposed

setup.

The combination of the DFL with the slotted ALOHA mesh networking protocol is pro-

posed to satisfy the users’ privacy preservation, increase the protection for confidential

data, increase the prediction accuracy of the implemented algorithms and build a robust

system. This system can help us exploit a greater percentage of the users’ data that will

be trained to create a global model that can improve the local models in each partici-

pating device without sharing any data with other participants except the local model

parameters.

2.1.2 Key Contributions

Limited studies were conducted using FL with a central server to achieve better results.

The objectives of this study are to introduce and stimulate the Centralised and Decen-

tralised FL’s wireless communication stage between the devices in the learning process

based on qualitative examinations of the CFL approach with a central server and the

DFL approach over a Wireless Mesh Networking (WMN) without a central server. Fur-

thermore, this study aims to simulate the communication network for the CFL and DFL

models to design a robust wireless communication network during the training process,

which helps to evaluate how the model can perform in different network conditions, such

as congestion and interference.
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2.1.3 Paper Organisation

The rest of the paper is organised as follows. In Section 2.2, the related work on the

FL approach is provided. Background and challenges for DFL over WMN are presented

in Sec. 2.3. Section 2.4, introduces the system model in terms of theoretical analysis

of device communication in the network and learning metrics for DFL over WMN. The

learning criteria for DFL are demonstrated in Sec. 2.5. The proposed framework simu-

lation and results are summarised in Sec. 2.6. Finally, a summary of this research and

future work is presented in Sec. 2.7.

2.2 Related Work

Many recent papers have investigated the fundamentals of CFL algorithms [8]–[11] and

[12]. CFL and its central server algorithm are called the Federated averaging (FedAvg)

algorithm and were first proposed and implemented in [1]. The FedAvg algorithm is

implemented to create a global model by averaging the aggregated parameters from the

participants [1].

In [8], comprehensive research of CFL for mobile-edge networks was presented. The au-

thors examined the critical implementation issues with existing solutions and potential

applications of CFL in IoT and mobile edge networks. In addition, some existing limita-

tions and challenges in CFL are highlighted, such as the difficulty of aggregating sufficient

data, real applications’ heterogeneous data distribution, and theoretical analysis of device

communication and convergence. The work [9] reviewed the challenges in implementing

CFL, future research directions and the existing CFL approaches. In [10] and [12] the

authors surveyed the CFL implementations, devised a taxonomy, and overviewed the

currently proposed solutions and their challenges in the CFL framework. They presented

the essentials of preserving privacy and checking fairness in CFL.

The study in [13] conducted a thorough and comprehensive examination of the architec-

ture, design, and deployment of FL, comparing it to centralised and distributed on-site
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ML-based systems. Furthermore, the challenges and potential future directions for re-

search in FL were discussed, where some classification problems of FL topics and research

fields were also presented, based on a thorough literature review, including taxonomies

for its important technical and emerging aspects, such as the core system model and

design, application areas, privacy and security, and resource management.

The authors in [11] examined the “In-Edge-AI” model for edge networks to allow for

efficient collaboration between terminal devices and terminal servers to exchange learning

model parameter updates. They explored two use scenarios: edge caching and compute

offloading. To efficiently support these scenarios, they trained a double deep Q-learning

(DDQN) model via CFL. Lastly, the authors in [8]–[11] and [12] addressed several existing

issues in CFL for actual applications, such as the ability of mobile devices to handle a

high computation process and the power consumption and battery life to keep connected

to a central server. Furthermore, CFL raises concerns about flexibility because it may

cease to function due to the aggregation server’s failure (i.e., due to a malicious assault

or physical flaw). Moreover, training CFL models via IoT networks necessitates many

communication resources to allow participants to communicate with a central server [14].

Most existing DFL systems are based on gossiping schemes, and the number of neigh-

bours in the learning process are chosen regardless of communication challenges, end-user

capability and network capacity. For instance, the works in [15] and [16] implement a

classic DFL algorithm that allows a user to aggregate the model parameters from an

estimated number of multiple neighbouring devices, and Ramanan et al. [17] propose an

alternative approach that uses a blockchain-based FL scheme to aggregate updates for the

participants’ devices. However, these approaches suffer from several limitations related

to the communication constraints in the real environment applications, the data size and

the terminal capability (i.e., energy consumption and computation cost) of blockchain-

based transactions. In summary, we list some existing works on FL-related topics with

our paper’s contribution in Table 2.1.

31



Chapter 2 2.3 Background and Challenges

Table 2.1: Existing works on FL-related topics with our paper’s contribution.

Related
works

Key topic Evaluate recent advances design of the network in FL approaches
Resource
management
and system
cost

Security
and
privacy

Users’
distribution
analysis

Comms.
in the
network

FL Network
intensity and
performance

Central
Server-
free

[22] DFL concept x ✓ x ✓ x ✓
[23] FL concept x ✓ x ✓ x ✓

[24] Distributed
ML ✓ x x ✓ x x

[25] Security and
privacy in FL x ✓ x x x ✓

[8] FL in edge
networks ✓ ✓ x x x x

[26] FL for IoT ✓ ✓ x ✓ x x
[27] FL for IIoT ✓ ✓ x x x x

[28] FL for health
informatics ✓ ✓ x ✓ x x

[29] Decentralised
Wireless FL x ✓ x ✓ x ✓

[30] DFL
framework ✓ ✓ x x x ✓

[31] Blockchain-
based FL ✓ ✓ x x x ✓

This
work

DFL over
WMN ✓ ✓ ✓ ✓ ✓ ✓

2.3 Background and Challenges

The implementation of the DFL approach over a WMN is supposed to reduce communi-

cation costs, cope with the single point of failure issue in CFL, and provide innovative

capabilities in a range of aspects, including healthcare systems (e.g., monitoring physiolog-

ical data like heart-rate variability [18] to classify various cardiac pathologies), industry,

and smart homes [19]–[21].

In addition, the combination of DFL and WMN using mesh protocols will likely be helpful

in preserving privacy, guaranteeing a robust network, and improving the battery life of

the devices by reducing communication costs. Instead of transferring data from the device

to the central server provider, which will need large bandwidth and consume high power

on the edge device, the decentralised approach can be applied to minimise these back-

and-forth journeys of data. This decentralised fashion is implemented by processing the

data into the edge device and communicating with the other neighbours using the mesh

networking links to exchange and update the model parameters.

This paper will simulate and implement the DFL model over WMN system protocols.

The model and the system performance will be evaluated by training the model using
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a dataset divided into training data, validation data, and test data. The performance

metrics of the algorithms will be prediction accuracy, communication cost, and latency.

Both DFL and WMN protocols are implemented in some applications separately and

individually.

This research proposes integrating DFL and WMN into one intelligent system to optimise

for robust communication networks that could be applied in many IoT applications to

ensure participant privacy preservation and data security. Although DFL and WMN have

impressive characteristics and features, they reveal several challenges and problems faced

by engineers that can influence the model’s accuracy. The following is a short summary

of those limitations:

I. The network will be designed for low-power IoT devices under IEEE 802.15.4-2006

and WMN would need to be designed to coexist in IoT systems with other tech-

nologies, and not to replace them [32].

II. Convergence speed: DFL algorithms usually adopt a peer-to-peer one-layer archi-

tecture. Each participant collects and aggregates all the local model updates of

one-hop neighbours in a CFL architecture. With such multi-hop architecture, the

wireless routing paths between participants can be easily saturated, resulting in a

slower convergence speed [33].

III. Unbalance: the amount of data varies at each participant resulting in different local

training data quality.

IV. Lack of stability and flexibility in communication networks of a massive number of

devices in real-time applications.

The communication stage is one of four main steps in the learning process that cannot

be neglected, and most researchers do not consider it analytically in their research. In

this paper, this stage will be addressed in detail. We propose using mesh networking

to maximise the communication stage’s flexibility and the channel’s capacity during the

learning process. The motivation for this is the fact that the DFL algorithms can effi-
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ciently update the terminal edge with the parameters through the Thread protocol or

any other mesh networking protocols (e.g., ZigBee or Bluetooth). This will allow us to

design and develop a global model that can precisely analyse the end-users data without

sharing the data with a central server or any other devices within the network. In other

words, the data stays protected locally and never leaves the device itself and this will

achieve personalisation and guarantee high Quality of Service (QoS) as well as enhance

the performance of devices in IoT applications.

To the best of our knowledge, this research is the first work that combines DFL and WMN

using the slotted ALOHA protocol. The model results verify the intuition, showing that

implementing DFL over mesh networks can offer more flexibility as no central server is

required and promises more communication channels available to communicate. More

participants can be involved in the learning process in the form of neighbour groups. The

rest of this paper will introduce the wireless communication characteristics for the mesh

networking and DFL criteria. The wireless communication constraints will be considered

and CFL and DFL models will be implemented by simulations.

2.3.1 Traditional Machine Learning (ML) on Edge Devices

There are different kinds of ML and deep learning algorithms used in various proposals.

For instance, Convolution Neural Network (CNN) algorithms are powerful tools widely

used in image classification processing and other classification problems [34] since CNN

has a proven ability to achieve higher accuracy, and can efficiently learn from thousands

of image datasets. To implement CFL and DFL algorithms, the local ML algorithms are

required to be embedded in the terminal devices (participants) to train the algorithm on

the local data before sharing the parameters with the server in a CFL approach or with

the neighbours in a DFL approach. Details on ML-enabled edge devices challenges and

opportunities have been addressed in many research papers in the recent past [35], [36]

and they are out of the scope of this paper. In this research, the CFL and DFL models

will be implemented for a classification problem, and the CNN algorithm will be the main

algorithm that is used to train the local models on the proposed system.
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2.3.2 Centralised Federated Learning (CFL)

The main objective of CFL systems is to train, in coordination with a central server for

model aggregation, a shared global model from participating devices that act as local

learners. Figure 2.2 shows the fundamental CFL architecture and the main four steps to

train a CFL network, where these steps are iterated until reaching the convergence status

[12]:

I. Local learning where each edge device uses its local dataset to train the model locally

and update the parameters of the ML model (e.g., neural biases and weights).

II. Upload model parameters to the central server: participants upload (transmit) their

parameters to the central server via communication channels.

III. Global aggregation: the central server aggregates the local models’ parameters from

those successfully received to update a new version of the global model on the server.

IV. Download (broadcast) and synchronise the devices with the latest global model

updates [14], and then back to step 1 and repeat until system convergences.

In the CFL process, each device’s local algorithm has an optimisation technique to update

the model iteratively, such as Stochastic Gradient Descent (SGD). Afterwards, the global

model emerges from aggregating the local parameters from participants’ devices, which

can then be weighted according to the perceived quality of the updates of the devices [34].

One crucial property of CFL is that the participant user data never transfers between

devices and the server, which reduces communication costs and data sharing privacy con-

cerns. However, due to the central server node, the CFL system will run into scalability

issues. Even if the server node’s hardware and software capabilities have been optimised,

the server node’s performance will not improve when thousands of client nodes join [37].

Communication bottlenecks may appear due to the amount of traffic that is increasing

exponentially, and the system becomes overburdened. Furthermore, accessing a central

node cannot be possible in some scenarios, for instance, self-driving vehicles and high mo-

bility sensor systems. Decentralised architectures have recently been proposed to avoid
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Figure 2.2: CFL framework over an IoT network.

communication bottlenecks and protect data privacy [38], [39]. Remove the centralised

server, and each participant only communicates with its one-hop neighbours in its local

area and exchanges their local models and updates parameters [40].

2.3.3 Decentralised Federated Learning (DFL)

As shown in Figure 2.3, the DFL framework does not need a central server to coordinate

the training tasks and contains only terminal participants (nodes) [37]. The idea is

that each participant exchanges parameter updates with neighbours in a peer-to-peer

manner. Besides the local model algorithm, the FedAvg algorithm is employed on each

terminal participant to create its global models in the DFL approach with no central

server. Each participant trains on its local data and averages it within the aggregated

models’ parameters from the selected neighbours using the FedAvg algorithm to broadcast
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an updated global model to the neighbours again at each iteration. Afterwards, the same

procedure is applied to all other participants until the system converges.

In [41], the Combo algorithm proposed an approach in which the participants send and

average a segment of the models’ parameters to reduce the required communication band-

width without affecting the system performance and convergence rate. Even though the

proposed DFL algorithms overcome some of the problems associated with general FL

systems that require a central server, they use model averages to fuse models at the lo-

cal clients, which is not always very efficient in heterogeneous data scenarios. For each,

local model parameters are updated toward the local optimum, and averaging the model

parameters from different clients leads to the averaged outcome of each client’s local opti-

mum being used. The optimum of each participant’s loss function may be quite far from

the others, which is also far from the global optimum due to different participants owning

different sets of training data. Thus, those datasets typically have different distributions

or even no overlap, which is defined as data heterogeneity [42]–[44].
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Furthermore, most prior works do not consider the wireless environment in the communi-

cation network, so they do not account for wireless impairments caused by channel fading,

link blockages, and wireless interference. Most researchers choose the number of partic-

ipants by estimation without concerning the communication medium constraints, which

is not always very efficient in terms of reliability and flexibility for real-time applications

(e.g., AV and UAV networks).

Therefore, this study will focus on designing a model based on the gossipy method [45]

that can deal with decentralised approaches and heterogeneous datasets, and it will pre-

cisely analyse the communication process between the participants in the network, con-

sidering the interference and the noise in the transmission medium to simulate a real sce-

nario of the communication connection between the terminal devices through the learning

process.

2.3.4 Wireless Mesh Networking (WMN)

Nowadays, many access points have overlapping areas, and almost every traditional wire-

less network has to be connected to the wired network. In this scenario, the cost of

installing IoT devices is costly and extremely difficult. Thus, a WMN will benefit from

its flexibility to connect the devices within the network and offer a different perspective

than non-mesh networks. The connectivity needs in wireless mesh networks are reduced

mainly because the devices within the network have a multi-route capability to send and

receive packets. In addition, the WMN also has a range of advantages, such as self-healing

and self-organising, attracting a vast number of investigations and research developments

[46]. Furthermore, WMN can reduce the networking cost for innovative home applications

using low-profile hardware.

The routing protocols significantly contribute to WMNs as they help find the best path

between multi-hop networks in unreliable wireless media. The WMN protocols have been

widely investigated to achieve higher throughput, low latency and low power consumption

[46], [47]. According to some related research, ZigBee, Bluetooth Low Energy BLE, Z-
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wave, and Thread protocols are the most common protocols used in many wireless mesh

networking applications. Each protocol has its own unique specification for particular

implementation depending on the user requirement. For instance, the Z-wave protocol

is advantageous for long-range coverage because of its low-frequency band (900 MHz)

compared to others with a 2.4 GHz band (i.e., Bluetooth and Thread). According to [48],

all protocols achieve similar performance (i.e., latency and throughput) for small networks

and small payloads. By contrast, for large mesh networks with multi-hop nodes between

the transmitter and the receiver, the Thread protocol achieves better performance metrics

in terms of latency and efficiency.

2.4 System Model

2.4.1 Communication in WMN

In this paper, a typical receiver is considered that is connected to a corresponding desired

transmitter. A Rayleigh fading channel is adopted for the small-scale path-loss model

and complemented with a single slope large-scale path-loss. Hence, the received power

at the typical receiver from the desired transmitter is (Pkhkod
−α
ko ) [49], where Pk is the

signal transmit power from the desired transmitter device k, hko is the fading coefficient

for the channel between device k to the target destination, dk0 is the distance between

the desired transmitter k and the corresponding receiver and (α ≥ 2) is the path-loss

exponent.

The signal can be correctly decoded at the typical receiver if the corresponding SINR

(Signal to Interference plus Noise Ratio) is higher than a certain threshold Tk. Therefore,

the probability that SINR ≥ Tk is defined as:

P (SINR ≥ Tk) = P

(
Pkhk0d

−α
k0∑

i∈φ Ii +N0

≥ Tk

)
(2.1)

where Ii is the interference from the device i in the network (Ii = Pihi0d
−α
i0 ai), with

i = 1, 2, ...,M , M is the total number of active devices within the desired receiver coverage
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area and i ∈ φ where φ represents the number of all participant devices within the whole

target area. Now ai is a binary random variable that defines the state of the device,

whether in a transmitting state or ready to receive such that PA =Probability{ai = 1}

represents the device is in transmitting state and 1−PA = Probability{ai = 0} represents

the device is ready to receive and is not transmitting.

The proposed IoT network is assumed to have a small thermal noise power variance N0

in comparison with the cumulative interference power (i.e., interference-limited network).

Therefore, the noise effect in the network is negligible, and so Eq. (2.1) can be re-written

as:

P (SIR ≥ Tk) ∼= P

(
Pkhk0d

−α
k0∑

i∈φ Ii
≥ Tk

)
(2.2)

∼= P

(
hk0 ≥

Tkd
α
k0

∑
i∈φ Ii

Pk

)
. (2.3)

Since the proposed IoT device network has Rayleigh fading channels, and for the sake of

simplicity, the hk0 term is assumed to be an exponentially distributed random variable

with a unit mean. The probability distribution function (PDF) of an exponential random

variable X with unit mean can be expressed in the form of fX(x) = exp(−x), and thus,

Eq. (2.3) can be reformulated as:

P (SIR ≥ Tk) ∼= Eai

(
Ehi0

(ˆ +∞

(Tkdα
k0

∑
(i∈φ) Ii)

Pk

(e−xdx)
))

(2.4)

∼= Eai

(
Ehi0

(
exp(−

Tkd
α
k0

∑
(i∈φ) Ii

Pk

)
))

(2.5)

∼=Eai

(
Ehi0

(
Π(i∈φ)exp(

Tkd
α
k0Ii

Pk

)
))

(2.6)

∼=Eai

(
Ehi0

(
Π(i∈φ)exp(

−Tkd
α
k0Pihiod

−α
k0 ai

Pk

)
))

(2.7)

where Eai is the expectation with respect to the random variable ai and Ehi0
denotes the

expectation of the fading coefficients from the devices i to the desired receiver.

The Bernoulli distribution property can be used to simplify Eq. (2.7), Eaiexp(aix) =
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(1− PA + PA × exp(x)), and according to [49] Ehi0
(exp(−hi0 × y)) ∼= 1/(1 + y).

Consequently, the probability of successful transmission for the participant devices within

the network area can be explicitly obtained as:

P (SIR ≥ Tk) ∼= Π(i∈φ)

(
1− PA +

PA

(1 + Tk(
dαk0
di0

)(γki)

)
(2.8)

where γki = Pi/Pk is the power ratio.

2.4.2 Achievable Transmission Capacity over Slotted-ALOHA

The ALOHA protocol is a class of fully decentralised MAC protocols [50] that does not

perform carrier sensing and attempts to avoid packet collision. The slotted-ALOHA

protocol was introduced to enhance the utilisation of the shared communication medium

and reduce the chances of collisions for multiple transmitting devices by synchronising

the transmission of devices at the beginning of discrete time slots.

In the WMN, the probability for each device sending a packet to neighbours is PA and the

probability of being ready to receive a packet is (1 − PA). Therefore, the probability of

every mesh node getting a packet from one of its neighbours is PA(1− PA)P (SIR ≥ Tk)

where Tk is the predefined SINR threshold, and P (SIR ≥ Tk) represents the success-

ful transmission probability. Based on Shannon’s Theorem, the achievable transmission

capacity increases when the transmit power increases, and the packet can carry up to

log(1 + SIR) (bits/second/hertz) data [49]. Thus, the capacity CALOHA for the mesh

network can be written as:

CALOHA = PA(1− PA)log(1 + SIR)P (SIR ≥ Tk). (2.9)

From Eq. (2.8), the outage probability (θk) constraints concerning PA, TK and γki can be

obtained as follows:
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1− Πi∈φ

1− PA +
PA

(1 + Tk(
dαk0
dαi0

)( Pi

Pk
)

 ≤ θk. (2.10)

To simplify Eq. (2.9), a natural logarithm is applied to compute the maximum achievable

transmission capacity with respect to PA. Hence, we use an auxiliary function f(PA) =

ln (CALOHA(PA)) to simplify the search of the optimal value PA that maximises CALOHA.

Then, the problem formulation can be written as:

argmax
PA

f(PA) = argmax
(

ln(PA) + ln(1− PA)

+ln(log(1 + Tk))

+
∑
(i∈φ)

ln
(
1− PA +

PA

(1 + Tk(
dαk0
dαi0

)γki)

))
(2.11)

s.t. εk ≤
∑
(i∈φ)

ln

1− PA +
PA

(1 + Tk(
dαk0
dαi0

)γki)

 . (2.12)

where εk = ln(1−θk), derived from Eq. (2.10), is used to ensure that the system maintains

a minimum level of reliability and performance, which is crucial for robust and efficient

communication in our system.

With a Taylor series expansion, which is ln(1−x) = −x−x2/2−x3/3−. . . ∼= −x, (|x| < 1),

so Eq. (2.12) can be simplified to:

εk ≤
∑
(i∈φ)

−PA

(
1− 1

(1 + Tk(
dαk0
dαi0

)γki

) . (2.13)
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Thus, Eq. (2.11) can be reformulated as:

argmax
PA

f(PA) = argmax
PA

(
ln
(
PA

)
+ ln

(
1− PA

)
+ ln

(
log(1 + Tk)

)
+
∑
(i∈φ)

(
− PA +

PA

(1 + Tk(
dαk0
dαi0

)γki)

))
. (2.14)

Hence, Eq. (2.14) can be written as:

argmax
PA

f(PA) =argmax
PA

(
ln(PA) + ln(1− PA)

+ ln
(
log(1 + Tk)

)
− PAf2

)
(2.15)

where f2 =
∑

(i∈φ)[1 −
1

(1+Tk(
dα
k0

dα
i0

)γki)
], and therefore a partial derivative of f(PA) will be

taken to find PA that will maximise the function f(PA) in Eq. (2.15):

∂f(PA)

∂PA

=

(
1

PA

− 1

(1− PA)
− f2

)
.

The probability of being in transmitting mode using the slotted ALOHA protocol at
∂f(PA)
∂PA

= 0 is defined as PA(0) and obtained as:

PA(0) =
f2 + 2−

√
f 2
2 + 4

2f2

so, ∂f(PA)
∂PA

> 0, when 0 ≤ PA < PA(0) and ∂f(PA)
∂PA

< 0 when PA(0) < PA < 1. Con-

sequently, if the system is assumed to have a constant threshold Tk and power ratio

γki, then f(PA) will increase when PA is increased within the range of 0 to PA(0), and by

contrast, it will decrease when PA > PA(0).

A special case has been adopted by setting the system’s outage probabilities equal to its

SINR threshold values to find the maximum transmission capacity based on the slotted

ALOHA protocol for the wireless mesh networks. Then Eq. (2.9) can be reformulated to
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restate the maximum achievable transmission capacity as follows:

max(CALOHA) = PA(1− PA)log(1 + Tk)(1− θk),

=

(
PA(1− PA)log(1 + Tk)

× Π(i∈φ)

(
1− PA +

PA

(1 + Tk(dαk0/d
α
i0)

(γki)
))

. (2.16)

From this analysis, the intuition is provided as to what extent the network parame-

ters Tk, PA and γki effect the maximum achievable transmission capacity of the slotted-

ALOHA mesh network.

2.4.3 Latency

The required time to achieve a convergence state in any FL model plays a key role in

evaluating the system’s performance. Therefore, the average learning latency for the

participants will be one of the performance metrics. Latency in the proposed centralised

and decentralised FL will be defined as the expected time duration (in seconds) required

for the model to complete learning in a typical one-hop mesh communication network.

Let R denotes the smallest number of iterations to meet the convergence criterion. The

expected learning latency (Ttotal) is a function in the computation time (Tcomputation)

which is the required time for the device to run and update the local model, the server to

devices (participants) broadcast communication time (Tbroadcast) and the device to server

communication time (Tcmm) over a number of iterations R for the number of successful

transmit participants Ai in the learning process:

Ttotal = R

Ai∑
(si=1)

(
T (si)
cmm

)
+R(Tcomputation + Tbroadcast). (2.17)

The summation of the communication process time Tcmm in real applications is slightly

variable depending on the number of participants in each iteration. In order to simplify

the calculation, it will be assumed that the network has a fixed average number of suc-

cessful transmission participants Ai for the whole process in centralised and decentralised
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FL.

2.4.4 Accuracy and Loss

Accuracy and loss functions are the two main model metrics that are mainly applied

to adjust the model weights during the training process and to measure the system

performance in order to optimise a model (e.g., a convolution neural network model) and

solve, for example, a face recognition problem. Accuracy is calculated as follows:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

. (2.18)

Loss is a measure of the difference between the actual output value and the predicted

output value by the implemented model. In the classification models whose output values

are an array of probability values between 0 and 1, the most common loss function applied

is the cross-entropy loss function. The cross-entropy loss function is also known as logistic

loss, log loss or logarithmic loss. The probability of each predicted value is weighed against

the actual desired output 0 or 1, and a loss is measured based on how far it is from the

actual expected value for each sample. A larger loss for significant differences close to 1

and more, and a slight loss for minor differences tending to 0, and therefore, the overall

cross-entropy loss of 0 means the model is perfect. The cross-entropy loss function is

defined as:

Loss = −
m∑
j=1

n∑
i=1

y(i,j)log(p(i,j)), (2.19)

for n classes and m samples

where y(i,j) is the actual output and p(i,j) is the softmax probability of the model output

for the ith class in the classification problems and jth instance sample.

Therefore, the objective is almost always to increase the accuracy and minimise the loss
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of the FL models or any other implemented models.

2.5 The Learning Criterion for DFL

The designed system considers a group of φ individual participants nodes (i.e., edge

devices) in which set φ = 1, . . . , K is randomly located as a spatial point process following

a stationary Poisson Point Process PPP [51] with intensity (λ) in disk cells with uniformly

distributed over a large-scale network. In supervised learning, each node i ∈ φ has access

to a dataset O(i) consisting of k instance-label pairs of samples (Xn
i , Y

n
i ), where Xn

i

and Y n
i represent the labelled sample input and output for the device i, respectively

and n = 1, ...., k. The samples are a subset of heterogeneous or homogeneous datasets

that follow an unknown probability distribution p(x, y) and possibly have non-empty

interaction for different sets (i.e., O(i) and O(j) where i ̸= j). Each instance Xn
i ∈ Xi ⊆ X,

where Xi denotes the local instance space of node i and X denotes a global instance space,

which satisfies X ⊆
⋃φ

i=1Xi.

Similarly, let y denote the set of all possible labels over all the nodes. Some examples

include y = 0, 1 for binary classification learning and y = R for regression learning.

There are X(1)
i , X

(2)
i , ....., X

(k)
i i.i.d samples at each participant node, and the total number

of examples k is a variable depending on the size of the local datasets for each one.

All participants’ devices have to have the same machine-learning model (e.g., a CNN),

which have a common weight parameters matrix (W). The main aim of the designed

model is to minimise the cross-entropy loss function between the expected (actual) output

and the predicted output:

argmin
W

F (W) ≜
1

Ai

∑
(i∈φ)

fi(W) (2.20)

where F (W) denote the global loss function, fi(W) represents the local loss for the device

i, si represents the set of active devices that succeed in transmitting to the ith participant
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at each iteration in the training process and Ai is the length of the si set as:

si = 1, 2, . . . .., Ai,∀ SINR ≥ Tk.

The local loss function for the ith device is calculated by the model cross-entropy loss for

the local training dataset O(i) as follows:

fi(W) =
1

M

M∑
(m=o)

l(hW(Xm
i ), ymi ), (2.21)

m = 0, 1, 2, ...,M

where m ⊆ n is the subset of the total number of local training datasets and M is equiv-

alent to the length of the participant datasets divided by the batch size as follows ( |O(i)|
Bi

),

and l(hW(X
(m)
i ), y

(m)
i ) denotes the cost function for the weights matrix W evaluated on a

hypothesis hW(Xm
i ) With data samples Xm

i . For instance, the hypothesis for the simple

linear regression is defined as hW(X) = W0 + W1X.

At the tth iteration of the DFL process, each device i ∈ φ has a local parameters weights

matrix W(t)
i that is updated to maximise the model accuracy and to find an optimum

solution to the target problem.

In the CFL models, there will be two optimiser levels. First is the local model level;

the local optimiser in each device to update the local parameters based on the local

dataset can use a common machine learning optimiser called Stochastic Gradient Descent

algorithm SGD. Second is the global model level; a global model optimiser uses the

aggregated parameters from neighbours (i.e., Federated Averaging algorithm (FedAvg))

to create and update the global model.

Each participant i makes M training passes over its local datasets O(i) to update its

local model weights simultaneously via SGD with learning rate (η) and batch Bi which
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is shown as follows:

∇f i(W
t
i) =

1

M

M∑
(m=0)

∇l(h(Wt
i)
(Xm

i , ymi ), (2.22)

∀m = 1, . . . ,M and i ∈ φ

Wt
i := Wt

i − ηi∇fi(Wt
i). (2.23)

Here ∇fi(Wt
i) denotes the gradient matrix obtained from the batch Bi of the device i ’s

local samples after M local training on the local data at each iteration t. The gradient

∇fi(Wt
i) expresses the rate of change of fi with respect to the model parameters W at

the iteration t.

The total number of local training M is equivalent to the participant datasets length

divided by the batch size (M = |O(i)|/Bi) in order to train the model locally on its

datasets before sharing the parameters with neighbours. After a certain number of it-

erations for each participant device trained a model on its local dataset with sufficient

hyper-parameters, the models’ parameters are shared with other neighbours via a one-hop

communication process following the mesh topology.

For all participants, the updates are simultaneously done where each participant receives

the other neighbours’ weights and gradients and averages them with the local weights

and gradients.

In the next step, each participant in the network successfully aggregates the local parame-

ters Wt
i from the trusted neighbours who satisfied the wireless communication constraints

to execute the Federated Averaging (FedAvg) algorithm in order to obtain a new global

model at each tth iteration. Then, each authorised participant sends a broadcast contain-

ing the latest global model weights matrix to all participants located within a one-hop

mesh network and starts the next iteration. Figure 2.3 illustrates the proposal DFL net-

work architecture and the learning process steps. The global model which can be denoted

as Ŵ
t

i is executed by averaging the local model with the aggregated model weights from

the neighbours si (the set of active devices whose received their weights successfully) at
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the iteration t.

These weights are then applied on the local model using the device dataset O(i) and batch

size Bi to create an updated weights matrix W(t+1)
i and broadcast it to the neighbours

in the next iteration as follow:

Ŵ
t

i =
1

Ai + 1

(
Wt

i +

Ai∑
(si=1)

Ŵ
t

si

)
(2.24)

∇̂f(Ŵ
t

i) =
1

M

M∑
(m=1)

∇̂l
(
h
(Ŵt

i)
(Xm

i , ymi )
)
; (2.25)

Ŵ
t

i = W(t+1)
i . (2.26)

Then these new parameters W(t+1)
i at the device i will be used to train the local model

in the next iteration and also share W(t+1)
i with all participants within one-hop commu-

nication range to repeat the same procedure at each device until achieving the predefined

convergence bound εk of the implemented model. The convergence is determined by

measuring the average loss function of all active device (si = 1, ..., Ai) whose successful

transmission to the ith device at each iteration as follows:

argmin
W

∇Fi(W) ≜
[( 1

(Ai + 1)
(∇̂fi(Ŵ

t

i)

+

Ai∑
si=1

∇̂fsi(Ŵ
t

si
)
)∣∣∣Ai ≥ 1

]
≤ εk. (2.27)

The participants will communicate and exchange the parameters and the system loss

function’s values over a wireless mesh network via a peer-to-peer manner. The number

of successful transmit devices (participants) is subject to wireless communication con-
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Algorithm 2.1 Decentralised Federated Learning
1: All participants have initial weights with W(0)
2: for each iteration t = 1, 2, 3, . . . ..R do
3: for each device i = 1, 2, 3, . . . ..K do {in parallel}
4: for m = 1, 2, 3, . . .M , where M =

|O(i)|
Bi

(Local training steps)
5: ∇fi(Wt

i) =
1
M

∑M
(m=1)∇l(h(Wt

i)
(Xm

i , ymi ))

6: Wt
(i) ←−Wt

(i) − ηti∇fi(Wt
i;Bi)

7: end
8: from the ith device’s neighbours si = 1, 2, . . . ..Ai do {in parallel}
9: receive Ŵ

t

si
, ∇̂fsi(Ŵ

t

si
),

10: Ŵ
t

i ←− 1
(Ai+1)

(Wt
i +
∑Ai

si=1(Ŵ
t

si
))

11: ∇̂fi(Ŵ
t

i) =
1
M

∑M
(m=1) ∇̂l(h(Ŵt

i)
(Xm

i , ymi ))

12: If 1
(k+1)

(∇̂fi(Ŵ
t

i) +
∑Ai

si=1 ∇̂fsi(Ŵ
t

si
)) |Ai ≥ 1 ] ≤ εk

13: Yes: end process (Gradient Convergence)
14: No: continue
15: W(t+1)

i ←− Ŵ
t

i

16: end
17: end

straints. Consequently, it is possible to show that every device i in the network, after

receiving the latest global model update, can train its model using the latest update and

then evaluate how the model performance improved in terms of the loss functions and

accuracy.

To sum up, the DFL process is divided into t iterations. At each iteration, each ith

participant performs local learning and exchanges their parameters Ŵ
t

i in parallel with

other cooperative neighbours si to create global models at each device in a central server-

free manner. The R symbol in pseudocode represents the total number of iterations the

system needs to achieve the consensus and meet the gradient divergence condition in Eq.

(2.27). Finally, the DFL learning steps are presented in Algorithm 2.1.

2.6 Simulations and Results

2.6.1 The Simulation of the Network Communication

The proposal network for the CFL and DFL approaches will have many participants

distributed on a two-dimensional bounded space. A large-scale circular area with radius
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Figure 2.4: (a) The distribution for random participants around the CFL centre server.
(b) Example of three participants communicating with neighbours in DFL approach.

Rr > 0 is proposed for notational simplicity, but a hexagonal one can also be applied, as

the outcomes will differ slightly by a very small constant. The number of participants is

distributed according to the Poisson distribution with network intensity λ and area A.

In other words, the number of participants within A can be defined as a Poisson random

variable with mean λA, where λ > 0 is the network intensity, and A is the network

circular area (A = 2πR2
r).

On the one hand, the central point in a two-dimensional bounded space will be the

position for the central server of the network in the CFL model as illustrated in Fig. 2.4

(a), and the participants will be randomly distributed within the target area. However,

the successful transmission and participation in the learning process will be subject to

wireless communication constraints (see Sec. 2.4.1) to approximate the real situation

applications.

On the other hand, in DFL, each point (participant) i will define each neighbour based

on a one-hop communication link within the device signal coverage that will be a smaller

circle with a radius ri < Rr. For instance, the wireless mesh connections for three DFL

participants with a Rayleigh fading are illustrated in Fig. 2.4 (b).

The positions of the participants are independently and randomly distributed within
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Figure 2.5: The simulation (markers) and theoretical results (solid lines) of the rela-
tionship between the SINR threshold and the probability of success for the participants
within different network intensities.

the network area (circular area), where the distance for each participant i to the centre

point (central server) is dk0 ≤ Rr. In the simulation, the relationship between the SINR

threshold Tk and the probability of successful transmission P (SINR ≥ Tk) of the network,

participants will be found based on this study analysis as in Eq. (2.1) from Sec 2.4.1

and the total number of participants is a random variable in the network space radius

Rr = 1000 m and the intensity λ = 0.1.

The participants are assumed to have equal transmit power (0.8 Watts). Only a finite

number of participants can simultaneously exchange and update their parameters based

on the slotted ALOHA protocol. When the given parameters (i.e., signal power, distance,

and interference) were applied in Eq. (2.8), the theoretical results matched the simulation

results, and both proved that the number of successful transmitter devices decreased when

the SINR threshold increased for different intensity of users in the network, as shown in

Fig. 2.5.

In contrast, reducing the SINR threshold allows more participants to involve in the learn-

ing process, but the required bandwidth and the system’s latency will also increase.

Therefore, there is a need to examine the trade-off between the probability of success and
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the SINR threshold to achieve higher throughput and capacity and acceptable latency.

Consequently, the proposed wireless communication model outcomes in Fig. 2.5 confirm

the conclusions of the theoretical analysis in Eq. (2.8) and Eq. (2.16) where a trade-off

between the probability of success transmit and the SINR threshold is required to satisfy

the FL network target in term of the capacity and the number of users (participants)

within the network during the learning process.

2.6.2 CFL Setup and Simulation

The simulation settings are proposed for implementing an FL with a central server de-

ployed in the centre of the target disk area with a radius Rr. It has been assumed that the

network has a large-scale massive IoT and edge devices network following the PPP with

intensity λ and the total number of participants is N, the distance from any participant

i to the server is ri < Rr.

To simplify the simulation, all participants are assumed to have the same transmit power

and are all randomly distributed around the centre within the network area. The system

will be trained using Python and TensorFlow API frameworks, the well-known MNIST

dataset and a local algorithm on the edge devices to perform digit number recognition

from handwritten images. While this is a simple and well-understood problem, it is being

used here to illustrate the principle. The MNIST dataset contains labelled data samples

of 60k images, each with a size of 28×28 pixels. This dataset was shuffled to distribute

randomly for the participants, where each participant had 200 random samples. The edge

devices will implement a CNN algorithm as a classifier model to evaluate the outcome

results and the system performance metrics. Large-scale massive IoT networks are used

to validate the algorithm, and thus the network has two cases:

I. Low mobility scenarios where the number of participants’ success transmitted in the

system can be the same for all iterations until the system convergences.

II. High mobility scenarios where participants move in a wide geometric area and many

participants are IN and OUT of the network during the learning processes, such as
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autonomous vehicles and Unmanned Aerial Vehicle (UAV) networks. Thus, the

number of successful transmits is usually different in each learning iteration.

This simulation will implement the first case, low mobility scenarios, and we will leave

the second case for subsequent works. In both cases, the number of successful transmit

participants in the system is subject to the communication network constraints (described

in Sec. 2.4.1) and the effect of network parameters in terms of the devices’ intensity and

participants’ distribution.

Based on the proposed wireless communication model in Sec. 2.6.1, the system will be

allocated the target SINR threshold (−10 dB) in order to achieve a higher transmission

capacity, the probability of the participant to be in a transmit mode PA = 0.5 and the

intensity of users’ devices λ = 0.1 to increase the number of participants. This results

in having around 80% probability of successful transmit devices (P (SINR ≥ Tk)) in the

network as shown in Fig. 2.5.

Consequently, the total number of participants within the target area is 80 devices, but

the average number of successful transmit participants in the CFL process was 65 par-

ticipants.

In this study, the CFL with a central server is designed by using the FedAvg algorithm as

a global model optimiser. The main function of the server algorithm is to aggregate and

average the participants’ parameters to update the new global model at each iteration

and then measure the accuracy and the loss of the model outcomes.

The system evaluation for the CFL network optimisation regarding the accuracy and

loss used the cost function Cross-Entropy. The simulated system in Sec. 2.6.1 has 65

successful transmit participants as regards the communication constraints in Sec. 2.4.1.

It can be noted from Fig. 2.6 that the procedure moved progressively towards the global

minimum dramatically in the first 50 epochs, where the accuracy increased from 17%

to 90%. After 200 iterations, the model moved progressively and achieved the conver-

gence state with the accuracy and loss of 98.1% and 0.15, respectively. The latency
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Figure 2.6: The accuracy and loss for the CFL network.

of the model was 1850 seconds, which was the required time to achieve the predefined

convergence bound. Despite having applied constraints for the proposed CFL model to

build a robust CFL network by considering the communication constraints and real en-

vironment scenarios in the simulation, the model was capable of converging faster and

achieving slightly higher accuracy and lower loss than the FL baselines that have not con-

sidered the communication constraints in practice. In other words, the baselines estimate

a fixed number of participants in the learning process without considering the network

challenges, which cannot be reliable in real applications. In contrast, our proposed CFL

model defines the participants based on the communication model and considers the real

applications environment’s constraints to obtain a trustworthy and robust network while

achieving high accuracy and low loss.
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Although the system achieved high accuracy and reached convergence after around 200

iterations in the designed simulation, there is potentially a single point of failure at the

central server. The system, in reality, could be completely down if any failure occurs in

the central server or the link to the server is blocked (communication bottleneck).

2.6.3 DFL Setup and Simulation

The set-up simulation uses Python and TensorFlow API frameworks to implement and

evaluate the design of the DFL system over a WMN for IoT devices. In order to make

an accurate comparison, we concentrate on the same previous CFL design in terms of

the communication links constraints, and the parameters model optimises, low mobility

(fixed) and the same total number of participants in the learning process but without a

central server. The system was evaluated based on performance metrics; the validation

accuracy, the latency and the convergence speed rate. The simulation settings are listed

as follows:

• Training settings

The participants trained a classification CNN model on the MNIST datasets. As in

CFL, each participant will have 1000 random samples to train the local models, but the

parameters in this DFL approach will be shared directly with neighbours to create and

update the global models at each device without needing a central server.

The local models of each participant were trained and updated using a stochastic gradient

descent (SGD) optimiser with the same learning rate of 0.01 and batch size 32 (hyper-

parameters) in CFL simulation.

Furthermore, the designed system also used another two different local models optimiser’

algorithms, the Adam algorithm [52] and Root Mean Square Propagation (RMSProp)

optimiser [53], to observe how the performance of the DFL model gets affected by imple-

menting different optimiser’ methods.

• Network Settings
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In the simulation, the network is designed to simulate the communication stage between

the participants’ devices in a peer-to-peer manner over wireless mesh networking, avoiding

the communication bottleneck challenge in the central server in the CFL scenario. Each

participant will successfully communicate and exchange the parameters with neighbours

if the desired transmitters have an SINR over the target threshold and no collision occurs.

The number of successful transmits participants is configured to be variable between the

participants in an asymmetric manner. For instance, there are two participants, A and

B, within the network, and participant A can receive parameter updates from participant

B. In contrast, participant B does not have to successfully obtain the parameters update

from Participant A unless he satisfies the network communication constraints.

• Comparison Setting

The DFL system outcomes will be compared with the CFL outcomes in terms of system

performance. Both DFL and CFL were implemented to train their models on the same

factors (i.e., the dataset, the total number of participants within the network and the

network geographic area) in order to make them comparable. Thus, the accuracy, loss

and latency and convergence speed were measured.

• Simulation Results

Based on the successful transmit conditions and the network capacity, every device within

the network created its one-hop neighbours’ group to exchange parameters and performed

the CFL model training. The model results have been recorded for some random partic-

ipants in the DFL simulation as an example to evaluate the system behaviour.

The designed network shows that these random recorded participants are connected suc-

cessfully with a variant number of neighbours (who meet the communication constraints

and they are able to exchange parameters and update their global models).

The DFL’s simulated system has shown that the classification prediction achieved about

90% accuracy in the first 20 iterations for all these recorded participants with any of

the three different model optimises mentioned in the training settings (SGD, ADAM and
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Figure 2.7: The DFL model outcomes (Accuracy and Loss) for four random participants.

RMSprop optimises).

The results and statistics of some participants within the network are illustrated in Fig.

2.7, and Table 2.2. The results for the DFL approach without a central server show high

accuracy and low cross-entropy loss in predicting the digit number from the handwritten

samples after 135 iterations.

In this study, the wireless mesh networking model in Sec. 2.6.1 is integrated with the

DFL model to verify the number of successful participants during the learning process.

The system shows that each client (i.e., participant) will be able to communicate with

particular neighbours depending on the neighbours’ locations, the desired participant

transmit power and other devices’ power interference.

The latency for each participant varies slightly depending mainly on the number of it-

erations that each participant is required to achieve the system convergence status. In

this study, the results have shown that the average latency for the participants was 420

seconds with the assumption the computation and broadcast time are equal for all par-

ticipants. The expected system convergence in the DFL model is around 130 iterations

on average.
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Table 2.2: Simulation results for some random participants of the designed DFL model.

No. of Succ. Iterat
Transmit ions Accuracy Cross-Entropy Loss

Neighbours
Optimiser ADAM SGD RMSprop ADAM SGD RMSpropAlgorithm

Participant 1 15 135 0.982 0.966 0.969 0.088 0.214 0.149
Participant 2 17 135 0.979 0.964 0.974 0.094 0.200 0.138
Participant 3 22 135 0.970 0.948 0.965 0.133 0.270 0.237
Participant 4 27 135 0.962 0.951 0.957 0.164 0.218 0.178
Participant 5 13 135 0.979 0.957 0.974 0.131 0.2673 0.2346
Participant 6 24 135 0.981 0.959 0.976 0.132 0.266 0.2341
Participant 7 22 135 0.986 0.971 0.981 0.092 0.197 0.136
Participant 8 19 135 0.974 0.961 0.964 0.125 0.268 0.231
Participant 9 10 135 0.977 0.956 0.963 0.093 0.187 0.211
Participant 10 24 135 0.983 0.951 0.972 0.161 0.256 0.236
Participant 11 18 135 0.975 0.946 0.969 0.171 0.218 0.198

As shown in Fig. 2.7, the system achieved sufficiently high accuracy and low loss in the

data predictions. The randomly chosen participants’ records show that the participants

can learn in parallel and follow similar progress toward convergence in terms of accuracy

and loss. The designed system offers the benefits of utilising the DFL framework, where

the data never leaves the participants’ devices, and privacy restrictions exist. In com-

parison with the centralised model, the decentralised model achieved competitive results

without needing a central server. For instance, participant 1 reached 98.2% accuracy and

0.088 cross-entropy loss after only 135 iterations.

In contrast, after more than 200 iterations, the centralised model achieved the convergence

state with accuracy and loss of 98.1% and 0.15, respectively. Based on the latency criteria

in the Sec. 2.4.3, CFL has higher latency than DFL as the system outcomes find that

the communication cost and the number of iterations of CFL were higher than the DFL

approach.

Thus, DFL can reduce the latency and loss and increase the convergence speed in which

they can outperform CFL.

From these results, we can conclude that the DFL models over WMN produced significant

developments in classification prediction using sufficient datasets. In this study, the DFL

framework is combined with the wireless mesh networking using the Slotted-ALOHA

protocol to improve communication between the participants during the learning process.
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The DFL approach over WMN using the slotted-ALOHA protocol could be very compet-

itive to the CFL. The simulated models prove that the designed DFL system can achieve

better latency, more flexibility, and similar accuracy without installing a central server

in the network.

2.7 Conclusions

To sum up, DFL reduced the communication cost compared to CFL as the participants’

devices communicate directly and send the packets of their parameters and updates with

only one-hop neighbours using slotted-ALOHA as the devices’ MAC protocol. The net-

work topology was a mesh network topology. In this study, the network communication

model simulated the real scenario of the mesh networking topology considering the fre-

quency interference in the network environment and then combined it with the DFL

model to train the network efficiently and reliably. The effectiveness of combining the

DFL framework and the mesh networking protocol results in a comprehensive improve-

ment in the model performance, and the DFL approach is becoming very competitive

compared to CFL.

The following is a summary of this research and future work:

1. Analysis of the wireless communication stage between the participants during the

learning process in order to simulate the real scenarios of interaction between the

IoT devices, reducing the communication resources and increasing the system flex-

ibility.

2. Implementing the DFL system using the FedAvg algorithm to enforce consensus

techniques by sharing local model updates; established gossip methods are also

extended by consensus.

3. Emphasis on an experimental IoT setup, considering convergence speed, complex-

ity, communication cost, and average prediction accuracy on the DFL embedded

devices.
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4. The CFL and DFL algorithms were implemented by considering the communication

stage challenges in the simulation to calibrate the real environment scenarios and

the real applications.

5. In the future, DFL models need to be designed for high-mobility sensors and devices

in the wireless mesh networking system to build a robust system, increase the system

flexibility and scalability and enhance the performance for some applications, such

as a Driverless Transport System.
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Abstract

The rapid growth of Internet of Things (IoT) devices has generated vast amounts of data,

leading to the emergence of federated learning as a novel distributed machine learning

paradigm. Federated learning enables model training at the edge, leveraging the process-

ing capacity of edge devices while preserving privacy and mitigating data transfer bottle-

necks. However, the conventional centralised federated learning architecture suffers from

a single point of failure and susceptibility to malicious attacks. In this study, we delve into

an alternative approach called decentralised federated learning (DFL) conducted over a

wireless mesh network as the communication backbone. We perform a comprehensive

network performance analysis using stochastic geometry theory and physical interfer-

ence models, offering fresh insights into the convergence analysis of DFL. Additionally,

we conduct system simulations to assess the proposed decentralised architecture under

various network parameters and different aggregator methods such as FedAvg, Krum

and Median methods. Our model is trained on the widely recognised EMNIST dataset

for benchmarking handwritten digit classification. To minimise the model’s size at the

edge and reduce communication overhead, we employ a cutting-edge compression tech-

nique based on genetic algorithms. Our simulation results reveal that the compressed

decentralised architecture achieves performance comparable to the baseline centralised

architecture and traditional DFL in terms of accuracy and average loss for our classifica-

tion task. Moreover, it significantly reduces the size of shared models over the wireless

channel by compressing participants’ local model sizes to nearly half of their original size

compared to the baselines, effectively reducing complexity and communication overhead.

69



Chapter 3 3.1 Introduction

3.1 Introduction

In recent years, the proliferation of Internet of Things (IoT) devices has been remarkable,

largely driven by advancements in 5G technology and beyond. The global IoT market

is projected to grow to a market value of 1.567 trillion US dollars by 2025 [1]. The ar-

chitecture of IoT, which incorporates spectrum and energy management mechanisms, is

designed to optimise both spectral and energy efficiencies to their maximum potential [2].

Alongside this, breakthroughs in semiconductor technology have enabled the fabrication

of transistors with sub-10 nanometre gate lengths, drastically improving processing ca-

pacity while reducing power consumption [3]. These developments play a crucial role in

the extensive adoption of embedded devices, including smartphones, sensors and tablets.

These devices require powerful microprocessors capable of delivering high performance

while adhering to stringent energy consumption limitations.

The substantial volume of data generated by embedded sensor devices at the periphery

of IoT systems has given rise to the field of Big Data, which focuses on devising effec-

tive methods for processing, disseminating, and analysing extensive datasets. In typical

IoT setups, data initially collected by sensors at the edge are transmitted through a

central network to a cloud server as shown in Fig. 3.1, where various data preprocess-

ing techniques (such as data cleansing, feature extraction, denoising, etc.) are applied.

Subsequently, this processed data is employed for training machine learning models tai-

lored to the specific application domain [4]. These trained models serve various machine

learning tasks, including classification, clustering, anomaly detection, and regression, fa-

cilitating precise and optimal decision-making. The data flow structure described above

in IoT systems has benefited from advancements in High-Performance Computing (HPC)

systems, enabling real-time and low-latency solutions across diverse industry sectors.

Despite its widespread adoption, the conventional centralised cloud processing architec-

ture has several limitations when considering practical scenarios.

Firstly, the reliance on transferring a large volume of data from edge devices to the cloud
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Device Device Device
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Cloud Model Training
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Figure 3.1: Typical data flow and analysis in IoT systems.

for analysis introduces significant challenges related to communication channel capacity

and system latency. This becomes particularly problematic for IoT systems that utilise

low-power, low-data-rate communication protocols such as Zigbee and LoRa [5].

Secondly, the nature of the data collected by embedded sensor devices often involves

privacy-sensitive information, making the transmission of raw data over potentially in-

secure network connections a significant concern. Data breaches can have severe conse-

quences for the data owners and are strictly regulated by international legislation such

as the European General Data Protection Regulation (GDPR) [6].

Furthermore, the increased processing capacity of edge devices remains underutilised as

they are primarily used for data gathering and transmission purposes, neglecting their

potential for local computation and analysis.
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3.1.1 Motivation

In 2017, Google researchers introduced an enhancement to the traditional centralised

data flow architecture by proposing Federated Learning (FL) as an innovative distributed

model learning framework that operates across the entire system [7], [8]. FL revolutionises

the model training process by ensuring that raw data remains localised on the device

where it is generated, thereby preserving privacy and enhancing data security. In this

approach, a global model is periodically updated by a centralised server in the cloud

and shared with edge devices during each training iteration. Each device independently

refines the global model using its local dataset and transmits only the updated model

parameters back to the cloud server. The server then aggregates these model parameter

updates from all participating devices to perform a global model update. This iterative

process continues until the global model converges based on a predefined threshold value.

Figure 3.2 illustrates the structure of a typical FL system with a central coordinating

server.

Although the initial FL architecture represents a substantial advancement, particularly

in terms of privacy and overall system efficiency, it has notable limitations, primarily

stemming from its centralised design. One significant drawback is the central server,

which serves as a singular point of failure, compromising the system’s resilience. This

vulnerability is especially concerning for time-sensitive IoT applications, as any temporary

server downtime can lead to severe disruptions. Additionally, the centralisation of data,

even if limited to transmitting model updates, escalates the risk of malicious attacks [9].

In this work, a fully decentralised FL architecture is proposed and analysed to overcome

the centralised FL limitations. In our system, there exists no central coordinating en-

tity, such as a cloud server, and the model learning process is fully distributed among

network participants, namely the edge devices. More specifically, each individual edge

device is responsible for maintaining and updating its local model. Unlike the traditional

centralised FL architecture, there is no overarching global model in our approach. During

each training iteration, every device shares its current local model parameters with neigh-
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Figure 3.2: Centralised FL system architecture.

bouring devices and receives their respective updates in return. Subsequently, it performs

a local model update using its unique dataset. The device then aggregates the received

model parameters with its own, calculating the local model parameters for the next it-

eration. This decentralised learning architecture has been empirically demonstrated to

converge to an equivalent central model through the application of gossip training theory

in distributed network learning [10] and [11], as illustrated in Fig. 3.3.

In the realm of Decentralised Federated Learning (DFL) on edge devices within wireless

mesh networks (WMNs), we believe that our paper makes significant contributions on

several fronts. Our primary focus is on reducing communication overhead through the

application of cutting-edge compression techniques. Finally, we believe this work makes

significant contributions in the area of Federated Learning and network performance

analysis.
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Figure 3.3: Decentralised FL system architecture.

3.1.2 Key Contribution

In this paper, we present a comprehensive description of the DFL architecture within the

context of the Internet of Things (IoT) and edge devices while emphasising the significance

of the underlying core communication network. Our unique approach is distinct from

much of the existing literature, as we aim to provide an all-encompassing perspective

on the decentralised FL paradigm while considering the performance implications of the

communication network that facilitates data transfer among IoT edge devices. We have

chosen wireless one-hop mesh networking as the foundational network infrastructure,

aligning with the distributed nature of IoT network learning. The rationale behind this

choice is twofold.

Firstly, mesh networking possesses the adaptive capability to reconfigure their routing

graph in real-time, particularly when faced with link interruptions [12], [13]. This adap-

tive characteristic proves invaluable in real-world scenarios where edge devices are often
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Table 3.1: An assessment of surveys exploring CFL and DFL studies
.

Ref. Year
FL
Appr-
oach

Device
& Area

Various
Aggreg-
ators

Frame-
works

Appli-
cation Focus and Solution Categorisation

[14] 2020 CFL Mobile
networks ✓ ✓ x A survey on FL and edge computing

in mobile networks.

[15] 2021 CFL IoT devices x x ✓
A review of FL in the context of IoT,
data distribution, privacy and ML
models architectural.

[16] 2021 CFL IoT devices ✓ x ✓
A systematic review of FL in IoT,
detailing limitations and applications.

[9] 2021 CFL Security &
Privacy x ✓ x A survey of FL security and privacy,

defining secure protocols.

[17] 2022 CFL FL baselines ✓ ✓ ?
A survey on the FL baselines with a
basic introduction to definitions
and architectures.

[18] 2022 CFL Healthcare ✓ x ✓
An overview of the implement of FL as
a tool in the healthcare scenarios.

[19] 2022 CFL Framework
review ✓ ✓ ? An overview of frameworks for deploying

DFL-based architectures.

[20] 2022 DFL DLT x x ? A description of the challenges and
applications of Blockchain.

[21] 2022 DFL IoV x ✓ ? A brief description of FL in fog radio
access networks.

[22] 2022 DFL Wireless
comms x x ✓

A review of the techniques for adapting
FL to distributed environments.

[23] 2022 DFL UAV devices x x ✓
A brief survey on the application of FL
in UAV networks.

[24] 2023 DFL DFL baselines x x ✓
A study of optimised DFL models and
algorithms focusing on network
topologies.

[25] 2023 DFL DFL baselines x ? ✓
A comparison of CFL and DFL feder-
ation architectures regarding topologies,
privacy, and security.

This
work 2023 DFL Edge and

IoT devices ✓ ✓ ✓

Analysed CFL and DFL fundamentals,
communication management, geometric
network analysis and employed diverse
aggregator methods.

deployed in challenging environments, prone to link failures. By harnessing the dynamic

nature of the mesh networks, we ensure consistent and reliable data transfer, even in

the presence of intermittent connectivity or link disruptions. This resilience is critical to

maintaining the integrity of the decentralised FL process, enabling the system to grace-

fully handle disruptions without compromising learning.

This work combines the DFL architecture with wireless mesh networking, establishing a

robust and efficient framework for collaborative learning within IoT systems. Our analysis

delves beyond the FL architecture’s performance, encompassing the unique attributes

of the communication networks. We use one-hop communication mesh networking to

ensure efficient data transfer among edge devices. Additionally, we employ different

aggregator methods to update the global model and achieve optimum performance. This

comprehensive perspective enhances our understanding of the overall system behaviour.
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Our research aims to contribute valuable insights into the design and optimisation of DFL

systems in IoT environments, promising improved performance and scalability in real-

world applications. Moreover, we harness the innate strengths of the mesh networks, such

as resilience to single-point failures and heightened data privacy, fortifying the security

and reliability of FL within IoT systems. This crucial aspect of our research addresses

the mounting complexity and risk factors in large-scale distributed learning applications

effectively.

To further enhance our model and minimise communication overhead, we have imple-

mented a state-of-the-art compression technique, as exemplified by the genetic algorithm-

based approach [26], to reduce the dimensions of terminal models at the edge. In the

case of the Convolutional Neural Network (CNN) model, this reduction entails selecting

a subset of convolutional filters and nodes within the dense layers while ensuring that the

original models’ accuracy levels remain intact.

3.1.3 Organisation

The rest of this report is organised as follows: In Section 3.2, background and related

work from literature is presented, and a complete theoretical analysis of the performance

of wireless mesh networks and the convergence criteria of the proposed DFL system ar-

chitecture is carried out. Section 3.4 introduces the methodology for the learning process,

network topology, communication methods, and the optimal approach for selecting highly

reliable devices to update the global model that is updated using a compressed model

at the edge and a range of aggregator methods. In Section 3.5, the simulation setup is

described, and the corresponding results are presented along with their interpretation.

Section 3.6 presents the results of the simulations and in-depth discussions, offering in-

sights and analysis of the findings. Finally, in Section 3.7 a summary of the work is

provided, and future work directions and milestones are proposed.
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3.2 Background and Related Work

Ever since its introduction in [7], Federated Learning (FL) has gained considerable atten-

tion and has become one of the most extensively researched machine learning paradigms.

The literature surrounding FL is expansive, encompassing diverse architectures, analyses

of learning performance, and investigations into data privacy concerns. While the ma-

jority of research initially gravitated towards the conventional centralised architecture of

FL, recent efforts have increasingly shifted their focus towards decentralised alternatives

called decentralised FL (DFL), where basically no central server is needed [27].

Related work on DFL can be distinguished into two main design philosophies. The primer

approach to achieving decentralisation involves harnessing blockchain technology, a highly

promising avenue. In these blockchain-based systems, participants fall into two categories:

standard edge devices and miners. Each edge device establishes communication with

nearby miners, who assume the role of model aggregators during particular training

rounds. Depending on the employed consensus algorithm, the miner that successfully

solves the hashing problem earns the privilege of atomically updating the distributed

ledger with the new global model update. In the study [28], the limitations of centralised

federated learning (CFL) are addressed by proposing a decentralised federated learning

(DFL) approach that eliminates the need for a central server and instead relies on one-

hop neighbours for collaboration in the communication network. They use stochastic

geometry to model the dynamics of the network topology, MAC protocol, and fading

on links, allowing them to evaluate the performance of DFL while preserving privacy

and accommodating networking dynamics. However, this study primarily focuses on the

evaluation of DFL without considering its application on the edge and evaluating the

network intensities for multi-hop wireless mesh networks.

Furthermore, in our research efforts, we have undertaken an extensive assessment of

relevant literature and surveys pertaining to both CFL and DFL. This comprehensive

evaluation is meticulously presented in Table 3.1, which delves into several facets of
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CFL and DFL, including global model aggregation methods, foundational frameworks,

application domains, and categorisations based on proposed solutions. To facilitate easy

interpretation, symbols have been employed within the table to signify the status of each

aspect: a checkmark (✓) indicates full coverage, a question mark (?) denotes partial

coverage, and a multiplication symbol (x) signifies that the particular aspect has not

been addressed.

In [27], authors aimed at optimising the overall average number of parameter trans-

missions only in the CFL approach, including shallow and complete transmissions, while

maintaining a predefined ratio between them. To offer a thorough analysis of DFL within

the context of core communication network performance, Table 3.2 has been compiled

to provide an overview of recent developments in CFL and DFL, which serves as an

overview of recent developments in the field and their primary focus areas. This table

provides a critical evaluation of contemporary advancements in FL network design, span-

ning multiple dimensions such as resource management, system cost, security, privacy,

user distribution analysis, communication network characteristics, FL network intensity,

performance, and central server-free approaches.

The works in [29] and [30] investigate the challenges posed by the widespread deployment

of Internet of Things (IoT) devices in the 5G era, particularly in the context of software-

defined networks (SDNs). It highlights the importance of cache management at the edge

of the network and explores emerging edge resources like mobile device clouds and micro-

edge data centres. The goal is to optimise content placement based on user demand

and cost considerations. The study also addresses security and seamless data delivery

in mobile IoT networks and introduces federated learning (FL) as a key framework to

harness data and computational resources from end-user devices for training machine

learning models. The paper’s main focus is on centralised federated learning in the 5G

network, leaving potential opportunities in decentralised learning methods, particularly

in Ad-hoc networks, relatively unexplored.
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Table 3.2: Summary on FL-related topics with our paper’s contribution.

Related
research

Research
area

Assessment of recent developments in the design of FL networks
Allocation
of resources
and cost
manage-
ment

Privacy and
security

Analysing
the distri-
bution of
users

The net-
work
communi-
cation

FL Network
intensity
and perfor-
mance

Central
Server-
free

[31] DFL con-
cept

x ✓ x ✓ x ✓

[15] FL concept x ✓ x ✓ x ✓
[32] Distributed

ML
✓ x x ✓ x x

[9] Security
and Privacy
in FL

x ✓ x x x ✓

[14] FL in Edge
Networks

✓ ✓ x x x x

[16] FL for IoT ✓ ✓ x ✓ x x
[33] FL for IIoT ✓ ✓ x x x x
[34] FL for

Health In-
formatics

✓ ✓ x ✓ x x

[35] decentralised
Wireless FL

x ✓ x ✓ x ✓

[36] DFL frame-
work

✓ ✓ x x x ✓

[37] Blockchain-
based FL

✓ ✓ x x x ✓

This
work DFL on the

Edge
✓ ✓ ✓ ✓ ✓ ✓

3.3 Wireless Mesh Network Performance Analysis

In this section, an analytical approach is employed to assess the performance of a wireless

mesh network, utilising the physical interference model [38] to quantify the likelihood of

successful data transmission between a transmitting node and a receiving node within the

network. Our theoretical analysis draws heavily from principles of stochastic geometry

and random point processes [39], [40]. According to the physical interference model,

the probability of successful transmission hinges on the Signal-to-Interference-and-Noise

Ratio (SINR) observed at the receiver. A transmission is classified as successful if the

SINR meets or exceeds a predefined threshold value. A notable advantage of the physical

interference model is its comprehensive evaluation of total interference emanating from

all nodes except the transmitter [41]. Subsequently, we establish the network topology

employing the Poisson point process (PPP) theory.

1. Poisson Point Process: In our analysis, we assume that the edge devices within

the network are distributed based on a stationary homogeneous Poisson Point Pro-
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cess (PPP) with an intensity of λ. These devices are distributed within a disk

D ⊂ R2 with a radius of R, centred at the origin of the two-dimensional plane R2.

According to the properties of a Poisson point process, the expected number N of

devices falling within the disk D can be calculated as N = λ|D|, where |D| = πR2

[39].

An important characteristic of the homogeneous PPP, as per Palm probability the-

ory, is that adding an extra point at the origin in a specific realisation of the process

does not affect the distribution of the remaining points in the process (Slivnyak the-

orem [42]). Consequently, interference statistics can be measured equivalently by

assuming that the typical receiver is a point within the process located at the ori-

gin [43]. In the network, each device is denoted by i with 1 ≤ i ≤ N , where N

represents the total number of active devices within the desired receiver coverage

area. Additionally, i ∈ φ, which φ encompasses all participants within the entire

target area.

2. Successful Transmission Probability: In the subsequent analysis of the prob-

ability of successful transmission, a slotted ALOHA medium access control scheme

is considered. In this scheme, each device independently decides to transmit with a

probability of p, without coordination with other devices. Additionally, we assume

Rayleigh fading for the propagation channel, where the transmission power of each

device has a zero mean. The SINR measured at the receiver located at the origin

is calculated using the following equation:

SINR =
S

N + I
(3.1)

Here, S represents the signal power emitted by the intended transmitter, N stands

for the noise power, and I corresponds to the cumulative interference power stem-

ming from other transmitters.

For simplicity, we can theoretically assume that the noise power N is significantly
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lower than the total interference power. Therefore, we will employ the Signal-to-

Interference Ratio (SIR) for the remainder of our analysis, as defined below:

SIR =
S

I
(3.2)

The received signal power Si at the receiver from a transmitter i is [39], [41]:

Si = Pihr
−α
i (3.3)

In this context, Pi represents the transmission power of transmitter i, h denotes the

fading factor in accordance with the Rayleigh fading model, ri stands for the dis-

tance from transmitter i to the origin, and α characterises the path loss parameter,

which reflects the attenuation of signal power with distance. The total interfer-

ence power I observed at the receiver results from the summation of all Si values,

where i corresponds to all transmitting devices except the intended transmitter.

According to the Rayleigh fading model, the received signal power Si follows an

exponential distribution [44], and with the assumption of unit transmission power,

its distribution is defined by Eq. (3.4) [39]:

fSi
(x) = rαi exp

(
− rαi x

)
, x ≥ 0 (3.4)

The successful transmission probability, as per the physical interference model, can

be described as the likelihood that the Signal-to-Interference Ratio (SIR) exceeds

or equals a predefined threshold:

psucc = P (SIR ≥ θ)

= P (
S

I
≥ θ)

= P (S ≥ θI)
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= exp(−θrαI) (3.5)

where r is the distance between the desired transmitter and the receiver.

3. Laplace Transform of Interference: The successful transmission probability, as

expressed in Eq. (3.5), is equivalent to the Laplace transform of the cumulative

interference observed at the receiver when evaluated at (s = θrα) [39].

psucc = LI(s)|s=θrα = E
(
exp(−sI)

)
|s=θrα (3.6)

Following established analytical methods from stochastic geometry and probability-

generating functional, as outlined in references [39], [40], we can deduce a closed-

form expression for the successful transmission probability as follows:

LI(s) = E
(

exp(−sI)
)

= E
(

exp(−s
∑
x∈Φ

hr−α
x )

)

= EΦ

(∏
x∈Φ

Eh[exp(−shr−α
x )]

)

This leads to the following expression for the successful transmission probability:

psucc = exp
(
−λpπR2s

2
a

2π
α

sin(2π
α
)

)
(3.7)

Here, p represents the probability of an individual transmitter deciding to transmit

independently (ALOHA), (λ) stands for the intensity of the Poisson Point Process

(PPP), R signifies the radius of the PPP disk, (r) denotes the distance between the

transmitter and the receiver, and (α) represents the path loss parameter.

Consequently, from Eq. (3.6) and (3.7), we can derive the following expression for

the successful transmission probability:
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psucc = exp
(
− λpπR2r2θ

2
α

2π
α

sin(2π
α
)

)
(3.8)

3.4 Methodology

Our system model encompasses various critical perspectives to optimise decentralised

learning: We start from a system perspective, optimising a decentralised model by col-

laborating between several distributed edge devices without direct access to their local

data. Communication among devices occurs in a peer-to-peer manner, eliminating the

need for a central server. From a spatial perspective, we leverage geometric patterns

to efficiently manage multi-user communication. Each communication round identifies

successful transmitter devices based on interactions with neighbours. Considering con-

vergence, our approach incorporates theoretical analysis to define the target convergence

state of the model. Furthermore, we introduce novel aggregator methods and employ

Hidden Markov Models (HMM) for device evaluation. Historical performance guides the

selection and weighting of edge devices in the learning process.

3.4.1 System Architecture

In a typical Federated Learning (FL) training process, the following three key steps are

involved. It’s important to distinguish between the local model, which is the model trained

on each participating device, and the global model, which is the model aggregated by the

FL server. The following are the main learning steps:

1. Task Initialisation (Step 1): At the beginning, the server determines the training

task, which refers to the specific application and its data requirements. The server

also sets certain hyperparameters for the global model, such as the learning rate.

Afterwards, the server shares the initial global model W0
G and the task details with

selected participants.

2. Local Model Training and Update (Step 2): Building on the current global

model denoted as Wt (with t as the iteration index), each participant individually
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utilises their local data and device to update their local model parameters, denoted

as Wi
t. In each iteration, participant i strives to find optimal parameters, Wt, that

minimise the loss function L(.). The loss function varies depending on the problem

and the model employed, as illustrated in Table 3.3. In essence, they aim to find

Wi
t

∗ such that it minimises L(.). After updating, the local model parameters are

then transmitted back to the server.

3. Global Model Aggregation and Update (Step 3): In this final step, the server

aggregates the local models received from all participants. After aggregating, the

server generates updated global model parameters Wt+1
G and sends them back to

the respective data owners.

In contrast to traditional Centralised Federated Learning (CFL) systems, the proposed

Decentralised Federated Learning (DFL) architecture distinguishes itself by eliminating

the need for a central aggregating server. Our target model revolves around a network

of edge devices communicating through a wireless mesh infrastructure. The primary

objective of this system is the collaborative optimisation of parameters W for a global

model represented as ŷ = f(W, x), where ŷ represents the model’s predicted output, and

x denotes input data. Each individual device possesses its distinct dataset Di consisting

of input data xi, and this dataset remains private, not shared with other devices within

the network.

The local loss function at each device can be defined as:

Li(W) =
1

|Di|
∑

x,y∈Di

l

(
ŷ − y;W, x

)
(3.9)

In this equation, |Di| represents the size of the local dataset, and l(ŷ − y) is the loss

function that quantifies the disparity between the model’s predicted output and the actual

output corresponding to input x. It is important to note that we assume the local loss

function to be both convex and smooth.

At the outset of each training iteration t, let Wti represent the local model weights for
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each device i. Employing its local dataset, each device engages in Stochastic Gradient

Descent (SGD) [7] on the local loss function. The device subsequently updates its local

model weights using the following equation:

Wti+1 = Wti − µ∇Li(Wti) (3.10)

Here, µ denotes the learning rate, carefully selected to ensure the convergence of the SGD

algorithm to a minimum.

Model Name Loss Function
Neural Network [45] (classification)

Li(W) =
1

|Di|
∑

x,y∈Di

l

(
ŷ − y;W, x

)

Linear Regression [46] Mean Squared Error (MSE): (Regression)

LLR(y, ŷ) =
1

2
(y − ŷ)2

K-means [47] Sum of Squared Distances: (Clustering)

LK-means(x, c) =
K∑
i=1

||x− ci||2

Squared-SVM [48] Squared Hinge Loss: (Binary classification)

LSVM(y, ŷ) = max(0, 1− y · ŷ)2

Table 3.3: Loss functions for different models

In the subsequent phase, each device transmits its recently updated local model weights

Wti+1 to its immediate one-hop neighbours within the wireless mesh network. Simulta-

neously, it receives updated local model weights from its corresponding one-hop neigh-

bours. Subsequently, each device executes a local aggregation process on these received

local model weights, typically involving straightforward averaging. This results in the

creation of the initial updated local model weights that will be utilised in the subsequent

iteration [49].
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The process outlined above facilitates the "diffusion" of each device’s local model weight

parameters throughout the network during each iteration. Essentially, this diffusion mech-

anism involves the dissemination of the impact of each device’s local training dataset

across the network through the transmission of local model weights. Notably, prior re-

search, such as [11], has demonstrated that this collaborative learning network converges

to the same global optimum and at a similar convergence rate when compared to a con-

ventional centralised cloud-server approach.

The main objective of DFL is to discover model parameters (W) that minimise the aver-

age loss function (also known as an object function or cost function) across all neighbour

participating devices as follows:

min
W∈Rd

L(Wt) =
1

N

N∑
i=1

ζiLi(Wt) (3.11)

In this context of the loss function in Eq. (3.11), each device indexed as i is assigned a

weight denoted by ζi > 0. In practical scenarios, these weights ζi are typically determined

in proportion to the amount of data residing on each respective device. This means that

devices with more data contribute more significantly to the overall objective, as repre-

sented by the optimisation problem expressed in Eq. (3.11). Furthermore, we assume

that the edge devices are capable of running the model within a certain time slot at each

epoch.

3.4.2 Communication System

In our model, the Wireless Mesh Networks (WMNs) approach is proposed as a funda-

mental communication technique that allows devices to share their model parameters

in a peer-to-peer manner. Our proposal results from the popularity that WMN have

gained due to their cost-effectiveness, which makes them an attractive option for wire-

less connectivity in the DFL network. WMNs exhibit dynamic self-organisation and

self-configuration, allowing network nodes to establish and maintain mesh connections

autonomously. This characteristic bestows several advantages upon WMNs, including
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low initial expenses, efficient network upkeep, resilience, and consistent service coverage

[12]. In addition, this low-cost WMN infrastructure is well-suited for establishing a DFL

network that can span across community networks, metropolitan areas, municipalities,

and enterprise networks.

3.4.3 Learning Convergence Criterion

Consider a scenario with N edge devices participating in the learning network. For this

analysis, we make the assumption that these edge devices are distributed according to

a homogeneous PPP (Poisson Point Process) with an intensity measure denoted as λ.

Furthermore, these devices are confined within a circular region D centred at the origin

and having a radius of R. Within the scope of a typical receiver positioned at the origin,

the probability of successful data transmission from a transmitter located at a distance

r from the origin can be determined using Eq. (3.8).

The devices that successfully transmit data to the receiver also follow a homogeneous

PPP, but with an intensity measure of λpsucc [45]. Consequently, the number of devices

that succeed in transmitting their data to the receiver, denoted as Ñ , can be expressed

as:

Ñ = |D|λpsucc = πR2λ exp

(
−λpπR2r2θ

2
α

2π
α

sin
(
2π
α

)) (3.12)

The distribution of the number m of devices successfully transmitting can be described

as [45]:

P (m = l) =
exp(−Ñ)Ñ l

l!
(3.13)

Let mt,j represent the number of devices successfully transmitting their updated local

model weights to the receiving device j during training iteration t, resulting in the global

model Wj. Additionally, let Nj denote the total number of training iterations out of t,

in which at least one device successfully transmitted local model weights to receiver j.
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We can now introduce the convergence condition for the model training procedure within

the DFL network, adapted from [45] and configured to suit the described decentralised

architecture:

argmin
Wj

(
1

Nj

Nj∑
j=1

∥∇Lj(Wt)∥
)
≤ ϵ0 (3.14)

The learning convergence condition can be expressed as follows: The network achieves

convergence after R training iterations when the maximum expectation of the average gra-

dient, taken across all participating devices denoted as Nj, does not exceed a predefined

convergence threshold ϵ0. This expectation is calculated with respect to the distribution

of the input dataset. In essence, this convergence criterion ensures that if even the device

with the poorest performance, in terms of the expected average gradient after R rounds,

meets the convergence threshold, then all other devices should also meet it. In such a

scenario, the DFL network is considered to have converged to the optimal model weight

parameters.

3.4.4 Device Selection and Models Aggregator Method

In the context of FL, participant selection is a crucial aspect as it determines which

edge clients or devices in the network will contribute to the collaborative model training

process. In the literature, different methodologies are used to evaluate the distributed

devices and choose the most appropriate group based on the required purpose. In FL,

Hidden Markov Models (HMMs) [50], which are probabilistic models widely used in var-

ious fields, can be utilised to make well-informed choices concerning participant selection

by modelling the past behaviour and performance of devices and thus regularly assign

the weights (ζi) in Eq. (3.11) for each connected device.

In the DFL approach, the master devices (i.e., main devices) responsible for aggregat-

ing models from other neighbours at iteration t must meet specific specifications and

requirements to efficiently manage the learning process during that iteration.
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Initially, the central server in CFL or main device in the DFL approach initialises a global

model w0 randomly. Subsequently, in each communication round, the following sequence

of steps is executed to achieve the learning objective, as illustrated in Fig. 3.2:

1. Step I: Broadcast Latest Model. The central server (in CFL scenario) or the main

device (in DFL scenario) disseminates the most recent global model wt to all clients

(neighbours) (typically in cross-silo FL) or a subset of clients (Nt) chosen for par-

ticipation in the current training round (commonly in cross-device FL).

2. Step II: Clients Compute Local Updates. Each client (i.e., edge device) utilises its

compressed proposal model to calculate the model update based on its local dataset

by performing multiple iterations of gradient descent; wi
t+1 ← wi

t+1−η∇wL(w
i
t, Di),

with η representing the learning rate.

3. Step III: Aggregate Client Updates. The server or the main device updates the

global model by combining the local updates using a specific aggregation rule A(·):

(wt+1 ← A({wi
t+1 : i ∈ φ}).

The most widely-used aggregation rule for communication-efficient Federated Learning

(FL) is Federated Averaging (FedAvg) [7], which aggregates the client updates by com-

puting a weighted average:

wt ←
1

Nt

∑
i∈φ

wi
t (3.15)

However, FedAvg is not fault-tolerant, and even a single faulty/malicious client can pre-

vent the global model from converging [51]. Although this work does not specifically

address malicious attacks and model protection, it is important to mention that there are

existing robust aggregation techniques designed for these purposes:

Krum, as described in [52], operates in each communication round by selecting m local

model updates out of the total available Nt updates to compute the global model update.

This selection is based on comparing the similarity between these local updates. Assuming

we have f clients out of Nt are malicious, Krum assigns a score to each local model

update wi by calculating the sum of Euclidean distances between wi and the m nearest
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neighbouring local updates among Nt − f − 2. The m local model updates with the

smallest scores are then chosen, and their average is calculated to determine the global

model update.

Median [51]: The Median aggregation method is a coordinate-wise aggregation rule that

operates independently on each model parameter. To determine the ith parameter of the

global model update, the server arranges the ith parameter values from the submitted Nt

local model updates in ascending order and selects the median value. Median aggregation

can achieve an order-optimal statistical error rate when dealing with strongly convex loss

functions.

Various other aggregation methods have been proposed apart from the previously men-

tioned ones. For example, Bulyan [53] employs an iterative approach with aggregation

rules like Krum for enhanced robustness, but it suffers from computational inefficiency

and lacks scalability. Zeno [54] assigns scores to updates and aggregates the top Nt − b

updates with the highest scores, where Nt represents the total number of clients, and

b is a predefined hyperparameter, typically set equal to or greater than the number of

malicious clients.

Another recent approach uses variations of auto-encoders to project client updates into a

latent space for malicious update detection, but it relies on the unrealistic assumption of

having access to data matching the client’s private data distribution for training. Some

studies focus on achieving robust federated learning by identifying and blocking malicious

clients through adaptive model quality estimation [55] or clustered federated learning [56].

However, it is important to note that some of these methods have predominantly been

tested in the context of centralised federated learning, specifically in the straightforward

cross-silo scenario. Their applicability to the more complex and dynamic cross-device

scenarios, which are characteristic of DFL approaches, has seen limited exploration. This

limitation is part of our work to investigate.
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3.5 Model Simulation

The Simulation section of this work encompasses the following components:

(i) Simulation of a Wireless Mesh Network: We simulate a wireless mesh network in

which participants are distributed according to a Poisson Point Process (PPP), as

discussed in our theoretical analysis of wireless mesh network performance. This

simulation allows us to model communication dynamics and evaluate network per-

formance across various scenarios.

(ii) Simulation of the baseline Centralised Federated Learning (CFL) architecture: Our

simulations replicate the baseline centralised FL architecture. In this setup, a multi-

layered Convolutional Neural Network (CNN) is subjected to compression using

the state-of-the-art genetic algorithm-based approach (SOTA compression method).

The EMNIST benchmarking dataset [57] is employed for training and validation.

The primary objective is to minimise communication overhead while enhancing

the performance of the compressed CNN model for categorical digit classification

with the existence of a central server. This improvement is achieved by enabling

collaborative learning among multiple participants within the CFL framework.

(iii) The simulations evaluated the proposed DFL architecture, which incorporates a

state-of-the-art compression method. Specifically, a multi-layered Convolutional

Neural Network (CNN) was compressed using a genetic algorithm-based approach

at the edge. Additionally, various aggregation methods, such as Krum and Median,

were employed, mirroring the approach used in the centralised setup. These simula-

tions facilitated a performance comparison between the centralised and decentralised

architectures, allowing us to assess the effectiveness and potential advantages of the

DFL approach, which has no need for a central server and network infrastructure,

taking into account the communication overhead and the complexity. Importantly,

this work introduces the novel application of Krum and Median aggregation meth-

ods within the realm of DFL.
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Through these simulations, we aim to gain insights into the performance, accuracy, and

efficiency of both CFL and DFL architectures within the context of wireless mesh net-

works. The simulation results will provide valuable information for understanding the

feasibility and practical implications of implementing DFL in real-world scenarios.

Moreover, the primary objective of the simulation component in this project was to ex-

plore the relative performance of two FL architectures, (a) conventional centralised (CFL)

and (b) fully decentralised (DFL), while considering the success probability of each data

transmission between any two network participants. Notably, this work represents the

first instance of providing system simulations where each communication step is com-

pleted with a specific success probability, accounting for the underlying communication

network’s performance within the physical interference model. These results measure

the realistic performance of practical FL systems, avoiding the assumption of faultless

communications.

To incorporate the communication success probability parameter into the algorithms

for both FL architectures, we encountered challenges. Existing FL software libraries,

such as TensorFlow Federated [58], and PySyft [59], do not offer the flexibility to de-

fine precisely how that network participants communicate during the learning process.

Therefore, we developed a fully customised software solution based on the FedML FL and

torch frameworks, which provided the most flexibility in defining and implementing cus-

tom FL network designs [60]. Specifically, after acquiring average successful transmission

probabilities for various wireless mesh networking configurations through corresponding

simulations, we integrated this parameter into the FL systems (i.e., CFL and DFL sys-

tems) simulation. This approach effectively incorporates the communication network

aspect into the learning procedure.

In the following subsections, we provide further detailed descriptions of the simulation

setups in other related aspects and present the corresponding results.
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3.5.1 Wireless Mesh Network Simulation

To simulate the wireless mesh network that constitutes the backbone for communications

across both centralised and DFL architectures, we assume that the participating edge

devices are placed randomly in a bounded two-dimensional area of a circle according to

a PPP. The communication medium is characterised by an inverse square path loss law

and by the presence of Rayleigh fading modelled by an exponential random variable.

In the case of the proposed decentralised architecture, it is assumed that each edge device

transmits and receives local model updates only from one-hop neighbours with regard to

the wireless mesh network connectivity graph. The simulation of this one-hop neighbour-

hood is implemented by considering a disk D of radius roh around the typical receiver

and including a communication link for every transmitting device that falls inside this

area. In other words, each edge device transmits to other devices with a distance less

than roh. Moreover, the medium access control (MAC) scheme is Slotted Aloha with the

probability of transmission p in each slot. It is further assumed that there are k avail-

able frequency levels spanning the allocated bandwidth, which are used for concurrent

transmissions from transmitters to receivers, with k = λpπr2oh equal to the mean value

of the number of transmitting devices falling inside the one-hop neighbourhood disk area

of the typical receiver. Therefore, the desired one-hop-neighbouring transmitting devices

do not interfere with each other with respect to the typical receiver.

As previously stated, the aim of the network simulation is to find the mean value of the

successful transmission probability between a transmitting node placed inside the area

of the circle and the typical receiver situated without loss of generality at the origin of

the two-dimensional plane. In order to calculate the target probability, the following

procedure is followed:

1. Generate a Poisson distributed for a random number of edge devices inside a disk

of radius R with a mean value equal to the process intensity λ times the area of the

disk A = πR2.
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2. Split all generated edge devices into transmitters and receivers for a specific round

of communications, i.e. perform thinning of the main PPP with parameter p.

3. For a typical receiver placed at the origin, find the number of transmitters that are

less than roh distance away.

4. Calculate the Signal to SINR for each of the transmitting devices, considering as

interference all transmitters that are outside the one-hop neighbourhood radius. If

the SINR is above the threshold γ the transmission is considered successful.

5. Repeat the above steps for N rounds and calculate the successful transmission

probability for a specific threshold γ as the total number of successful transmissions

over the total number of transmissions.

3.5.2 Centralised Federated Learning (CFL)

In simulating the fundamental CFL architecture as proposed in [7], the central server node

is assumed to be positioned at the origin of the two-dimensional plane, as previously

described in our wireless mesh network simulation setup. Within this setup, the edge

devices participating in the learning process are located within a one-hop neighbourhood

region of a disk, utilising some distinct frequency bands for simultaneous transmission.

Each training iteration involves the following sequence of actions:

• The central server disseminates the global model to all participating devices.

• Every edge device employs Stochastic Gradient Descent with its own local dataset

to adjust the weights of the convolutional neural network and subsequently uploads

these updated weights to the central server.

• Finally, the server consolidates the received local models from each edge device us-

ing the Federated Averaging, Krum and Median aggregator aggregators algorithm,

applying straightforward one of these aggregators methods for the global model

update.

Following is a description of the convolutional neural network used for classifying hand-
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written digits trained on the EMNIST dataset. The input of the neural network is a

28×28 pixels image depicting a handwritten digit in grayscale. The model is compressed

using the output layer consisting of 10 outputs corresponding to each handwritten digit,

whereas the genetic algorithm is used to minimise the overall model size. The EMNIST

benchmarking dataset [57] contains 60K grayscale images of handwritten digits. For sim-

ulation purposes, the dataset is split into random-sized parts and allocated among the

participating edge devices.

3.5.3 Decentralised Federated Learning (DFL)

In order to facilitate a meaningful comparison of results, the simulation setup for the

fully decentralised FL system mirrors the configuration of the baseline centralised sys-

tem, maintaining consistent setup parameters such as learning rate, stochastic gradient

descent batch size, and the density of participating devices. Analytically, for a given

edge device density (the total number of participating devices in the learning network),

the objective is to train the convolutional neural network with the EMNIST benchmark

dataset evenly distributed among all participating devices. Below, we outline the typical

training iteration process for the fully decentralised algorithm:

• Initialisation: At the onset of each training round, each local edge device possesses

the current convolutional neural network weights.

• Local Model Update: Each device independently performs stochastic gradient de-

scent to update its local model weights using its local dataset.

• Communication and Model Exchange: Following the identification of one-hop neigh-

bours within the wireless mesh network connectivity graph for the specific training

iteration (as previously noted, this graph is dynamically reconfigurable), each de-

vice initiates a broadcast. During this broadcast, it shares its intermediate updated

local model with these neighbouring devices and, in turn, receives updated local

models from them.

• Aggregation with Robust Methods: Each edge device aggregates the received local
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models with its own, employing a straightforward non-weighted average of each

model weight, akin to Federated Averaging for the centralised case. Additionally,

our work extends beyond traditional aggregation methods and evaluates the model

using various robust aggregator methods, such as Krum and Median. This multi-

faceted approach aims to enhance performance and resilience in the face of adver-

sarial behaviour, contributing to the robustness of the DFL framework.

This training iteration cycle, orchestrated collaboratively by the participating edge de-

vices, enables the fully DFL system to continually refine its global model. Importantly,

it mirrors the core concept of FL, leveraging the collective knowledge of decentralised

devices while preserving data privacy and security. The synchronisation and aggrega-

tion of local models among neighbouring devices foster collaborative learning without

the need for a centralised server, emphasising the robustness and decentralised nature of

this approach.

Furthermore, the powerful benefit in our DFL model, particularly in high-intensity net-

works, is designed to leverage the collective computational power of edge devices effi-

ciently. By distributing tasks, minimising data transfer, and promoting parallel process-

ing, this approach inherently leads to reduced latency, making it well-suited for scenarios

where low-latency responses are essential.

3.6 Results and Discussion

In this section, we provide a detailed overview of the simulation parameters and present

the results of our wireless mesh network simulation.

For the wireless mesh network simulation, we selected a disk radius of R = 500 me-

ters, defining the total simulation area. The intensity of the Poisson Point Process

(PPP), representing the density of participating edge devices, was varied, with values

λ = 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, resulting in average numbers of participating

devices (Ñ) is varied.
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Figure 3.4: The theoretical (solid lines) and simulation (dashed with markers) successful
transmission probability as a function threshold values γ in dB.

To emulate the behaviour of devices following the slotted Aloha Medium Access Control

(MAC) scheme, we set the probability of a transmitting device deciding to transmit in

a specific slot to p = 0.3. The one-hop neighbourhood disk radius was set to roh = 200

meters.

We conducted SINR calculations for several threshold (γ) values, spanning from -20 dBm

to +20 dBm, with Nsim = 105 simulation rounds for each threshold setting. Additionally,

we assumed that each device transmitted with the same power level of Ptx = 1 Watt.

The diverse set of simulation parameters employed here enables us to comprehensively

explore the performance of our wireless mesh network under various conditions. By

systematically varying λ and γ, we gain insights into the network’s robustness, scalability,

and reliability, shedding light on its behaviour across different device densities and signal-

to-noise environments.

This detailed analysis serves as a strong foundation for our subsequent discussion and

allows us to draw meaningful conclusions about the suitability of our proposed approach

for real-world scenarios.

With regards to the FL network training parameters for both centralised and decentralised
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Figure 3.5: Performance metrics for CFL for various network intensities, (a) Model ac-
curacy and (b) Model cross-entropy loss

architectures, the EMNIST dataset was initially split into training and validation sets,

comprising 50,000 and 10,000 samples, respectively. In configuring the stochastic gradient

descent algorithm’s hyperparameters, we selected a learning rate (µ) of 0.015 and a batch

size (nbatch) of 32 samples. The performance metrics under consideration include model

accuracy and cross-entropy loss, specifically tailored for categorical data.

In Figure 3.4, we present the calculated successful transmission probability as a func-

tion of varying γ threshold values, encompassing different PPP intensity values in both

theoretical and simulation contexts. A discernible trend emerges, showcasing that as the

participating device density increases, the resulting mean value of the successful transmis-

sion probability experiences a non-linear decrease. This relationship can be attributed to

the escalating total interference power at the typical receiver, resulting from more devices

transmitting data, driven by a constant slotted Aloha transmission probability (p).

It’s noteworthy that, in both CFL and DFL systems, we adopted an SINR threshold

(γ) value of -16 dBm as the criterion for deeming a transmission successful. This choice

of threshold ensures that our evaluation remains consistent across different scenarios,

providing a clear basis for comparative analysis.

Below in Table 3.4, the convolutional neural network model accuracy and cross-entropy

loss for centralised and DFL architectures are presented for increasing model training

epochs and device density λ = 0.01.
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Figure 3.6: Performance metrics for the proposed DFL model for various network inten-
sities, (a) Model accuracy and (b) Model cross-entropy loss

The simulations were conducted in 200 epochs (iterations), and the average values for

each metric are presented here. In the case of decentralisation, performance metrics

are derived by averaging the individual metrics of each participating device across the

entire network. It is worth noting that in the centralised scenario, the model achieves

a convergence threshold of over 95% model accuracy after an average of 152 training

epochs. Conversely, in the decentralised scenario, the predefined threshold is reached

after an average of 173 epochs. This represents a 13.8% increase in the required number

of training iterations, consequently impacting the overall system latency to the same

degree.

The increase in training epochs can be attributed to the diffusion delay introduced by

the decentralised architecture. In the decentralised approach, the contributions of each

device’s local dataset to the local model update are not immediately transferred across

the network. This is in contrast to the centralised approach, where a single aggregator

collects all individual contributions in each round to update the global model. Thus,

this trade-off becomes evident when transitioning to a fully decentralised solution with a

realistic model of the core communication network.

Despite the trade-off of increased training epochs, the advantages of data security and re-

silience make DFL a compelling choice for collaborative machine learning in decentralised

settings. This phenomenon highlights the practical modelling of the core communica-
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Table 3.4: FL simulation results

Iterations CFL DFL

Accuracy Loss Accuracy Loss

10 0.7987 0.8743 0.7764 0.9321
20 0.8453 0.4422 0.8351 0.5276
30 0.8662 0.2917 0.8497 0.3344
40 0.8877 0.2587 0.8723 0.2897
50 0.9012 0.2492 0.8903 0.2632
75 0.9249 0.2314 0.9122 0.2471
100 0.9388 0.2265 0.9276 0.2384
125 0.9464 0.2075 0.9304 0.2172
150 0.9497 0.1794 0.9415 0.1964
175 0.9753 0.1623 0.9511 0.1742
200 0.9892 0.1428 0.9759 0.1515

tion between devices in DFL scenarios, where the network topology and communication

mechanisms play an important role in shaping the learning dynamics. Understanding

and addressing these challenges are essential steps toward optimising DFL frameworks

for real-world applications.

Figures 3.5a, 3.5b, 3.6a, and 3.6b illustrate the accuracy and cross-entropy loss of both ar-

chitectures concerning varying network intensities (λ). These charts clearly demonstrate

an inverse relationship between model accuracy and network device density. This outcome

emphasises the significance of considering the communication network’s performance in

the analysis of an FL system. Interestingly, an increased number of devices participating

in the learning process, while expected to enhance convergence, actually leads to reduced

model accuracy due to elevated interference from additional transmitters.

Furthermore, it is noteworthy that the rate of increase in accuracy until the 90% threshold

is nearly identical between the baseline centralised solution and the proposed DFL system.

This observation is of particular significance, indicating that by slightly adjusting the

convergence threshold criterion, there’s no compromise in performance when transitioning

to the proposed DFL framework.

Our model employs a genetic algorithm-based approach to optimise model size, making it

suitable for resource-constrained IoT and wearable devices. This model compression con-
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Figure 3.7: Comparative analysis of DFL and CFL performance metrics using various
aggregator methods.

tributes to reducing the complexity as the model size decreases, enhancing its applicability

in such constrained environments. Despite this reduction and local model compression

to minimise communication overhead and complexity, our approach excels in achieving

high model performance. It competes effectively with traditional DFL models, as demon-

strated in Fig. 3.7. This highlights the efficiency and promise of our approach in striking

a balance between model size and performance.

Our study conducts a comprehensive evaluation of the proposed model, considering vari-

ous aggregator methods applicable across a spectrum of use cases. Notably, we integrate

Median and Krum aggregator methods into the DFL framework, making our work a pi-

oneering effort in this regard. Fig. 3.7 presents a comparative analysis of DFL and CFL

performance metrics over multiple training iterations, employing a diverse set of aggre-

gator methods, including FedAvg, Median, and Krum. Subplot (a) provides insight into

DFL’s accuracy trends, while subplot (c) showcases CFL’s accuracy trends. Subplots (b)

and (d) delve into the corresponding loss trends for DFL and CFL, respectively. This in-

depth analysis offers a window into the intricacies of training dynamics and convergence

101



Chapter 3 3.7 Conclusions and Future Work

behaviour inherent to both approaches.

Lastly, our results consistently demonstrate that the DFL model consistently achieves

accuracy rates exceeding 93% and exhibits lower loss across all our proposed aggregator

methods. This makes it a versatile and suitable model for various purposes. These find-

ings emphasise the inherent advantages of DFL, especially in decentralised settings where

concerns about data privacy and distribution are paramount. Moreover, they underscore

DFL’s potential as a robust and versatile framework perfectly suited for collaborative

applications across edge devices.

3.7 Conclusions and Future Work

In conclusion, our study explores a contemporary approach to distributed machine learn-

ing, providing an alternative to traditional Internet of Things (IoT) model learning sys-

tems. We prioritise data security by keeping raw edge device data local and sharing

only model parameters. Recognising limitations in CFL systems, such as single points of

failure and susceptibility to malicious attacks, we embrace a DFL architecture.

Our work addresses DFL framework limitations through convergence analysis and com-

prehensive performance assessment of the communication network, utilising wireless mesh

networking. Our theoretical analysis employs stochastic geometry to derive a closed-form

equation for successful transmission probability in wireless mesh networks. We present a

detailed DFL architecture description and training procedure, establishing a learning con-

vergence criterion. Simulations compare our DFL architecture to the conventional CFL

model. Using practical slotted Aloha wireless mesh networks and the EMNIST dataset

for handwritten digit classification, we extract the successful transmission probability,

accounting for potential transmission failures.

Results demonstrate that our decentralised architecture closely matches centralised coun-

terparts in terms of accuracy and average loss. Importantly, our study integrates geo-

metric analysis and diverse aggregator methods (Krum and Median) over compressed

models, achieving high performance while significantly reducing the communication over-
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head. This approach highlights the practicality of decentralised architectures and offers

an efficient framework for future IoT systems, potentially scalable in real-world applica-

tions.

Future work for this project will focus on the following areas:

(i) Investigation of suitable networking protocols: Further research will explore net-

working protocols specifically tailored for wireless mesh networks, such as the Thread

protocol. The aim is to identify protocols that support low-power, low-data rate

transmissions, which are particularly well-suited for IoT system solutions. This

research will contribute to the development of more efficient and optimised commu-

nication mechanisms within wireless mesh networks.

(ii) Exploration of blockchain-enabled solutions: Future research could investigate the

integration of blockchain technology into the compressed DFL architecture. As

blockchain technology matures, it presents opportunities for enhancing data secu-

rity, privacy, and trust in the context of FL. The exploration of blockchain-enabled

solutions can contribute to the development of more robust and resilient DFL sys-

tems, providing additional layers of data integrity and transparency.
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Abstract

Decentralised Federated Learning (DFL) has emerged as a promising approach for pri-

vacy preservation in dynamic networks. Unlike traditional data sharing, it facilitates

the direct exchange of model parameters among users in a peer-to-peer paradigm. DFL

plays a pivotal role in distributed machine learning (ML), presenting a dynamic interplay

between communication and ML performance in wireless networks. Nevertheless, Byzan-

tine participants in DFL networks can seriously disrupt the system, potentially leading to

model divergence. This study addresses this challenge by enhancing DFL’s performance,

especially in Byzantine-device scenarios. The purpose is to establish a resilient model

over ad hoc networks while employing the CSMA/CA protocol for data transmissions.

Our proposed DFL Byzantine-resilient model, tailored for wireless networks, identifies and

eliminates untrusted devices using our novel DFL reputation score technique and leverages

ingenious aggregation techniques and spatial analysis methods to maintain throughput.

We present two essential metrics to evaluate the DFL network performance: 1) robustness

against adversarial attacks and 2) attainable high accuracy and low loss, considering

complexity and network dynamics. Through comprehensive simulation utilising the well-

known MNIST dataset as a benchmark dataset for such classification problems, even in

the existence of up to 35% Byzantine devices within the network, our model was able to

achieve 94% accuracy and low loss. Our model acclimates effectively to various adversarial

attacks, improving security, convergence rate, and performance. This improvement offers

a reliable solution for collaborative learning in distributed networks without a central

infrastructure.

Future research may explore scalability and optimisation in scenarios involving a multi-
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tude of participating devices, further enhancing DFL systems.

4.1 Introduction

The rise of Intelligent Connected Vehicles (ICVs) is transforming the Internet of Vehicles

(IoV), with various online gadgets and edge devices like smartwatches, house assistants,

security systems, and autonomous vehicles (AVs) joining the network. Technologies like

vehicle-to-everything (V2X) communication through dedicated short-range communica-

tion (DSRC) and cellular V2X (C-V2X) have facilitated seamless connectivity among

vehicles.

ICVs face challenges in tasks like driving trajectory prediction, traffic flow prediction,

and intelligent V2X communication within dynamic environments. Data-driven machine

learning (ML) solutions have gained traction to address these complexities, enhancing

ICVs’ capabilities in predicting driving trajectories, forecasting traffic flow, and enabling

intelligent V2X communication.

Equipped with sensors like cameras, GPS, and LiDAR, ICVs and AVs generate real-

time data, providing valuable inputs for ML algorithms. However, centralised training

approaches are impractical due to communication costs and privacy concerns associ-

ated with transferring large volumes of distributed data to a cloud server. Conventional

centralised cloud processing architectures face limitations in communication channel ca-

pacity, system latency, and privacy-sensitive data transmission over potentially insecure

network connections.

Federated Learning (FL) [1] is a promising solution, coordinating the collaborative train-

ing of neural network (NN) models across multiple end devices in a distributed manner

as shown in Fig. 4.1. Challenges persist in the realm of ICVs, encompassing factors

like vehicle mobility, constrained computing and communication resources, and notably,

the potential threat posed by Byzantine attackers and untrusted devices within the IoV

environments.
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Figure 4.1: An example of a traditional FL framework.

To overcome these challenges, a DFL Byzantine-resilience approach efficiently facilitates

real-time data sharing among vehicles without relying on centralised systems. DFL ad-

dresses FL limitations, ensuring privacy and security in dynamic environments like AVs

and ICV networks. This collaborative strategy presents benefits such as enhanced traffic

flow management and optimised parking space allocation. To illustrate both the trans-

formative potential and the challenges associated with this DFL approach, we provide a

theoretical analysis and simulations of the DFL framework in the presence of Byzantine

and malicious devices in order to optimise real-world network performance.

4.1.1 Motivation

FL effectively reduces server workload and data transmission needs, addressing privacy

concerns by enabling ML model training on local data. Centralised Federated Learning

(CFL), depicted in Fig. 4.1, poses challenges such as communication bottlenecks and a

single point of failure. Moreover, deploying a central server can be complex and costly.

This research aims to overcome these limitations by employing DFL, eliminating the need

for a central server through peer-to-peer communication.

DFL implementation on wireless nodes introduces challenges influenced by propagation,
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topology, and medium access dynamics. In DFL, models are shared in a defined neigh-

bourhood in a peer-to-peer manner, accelerating ML task learning locally without a

central server. However, simultaneous uplink transmissions may cause interference, ex-

tending convergence time for ML algorithms.

To address these challenges, co-designing communication medium access control (MAC)

protocols (e.g., CSMA/CA) with DFL is crucial. Optimising the design space could

yield significant performance gains. CSMA/CA, the primary MAC protocol in 802.11

networks, may suffer interference in DFL model transmission, impacting real-environment

applications.

DFL for AV networks faces robustness concerns, vulnerable to Byzantine attacks dur-

ing training. Byzantine nodes exhibit potentially malicious behaviour, leading to issues

like model corruption or deliberate attacks. Despite Byzantine-resilient FL exploration,

decentralised scenarios receive less attention.

Thus, efforts are made to address Byzantine attacks in DFL networks in this work,

introducing a Byzantine optimisation strategy to:

(i) Detect Byzantine nodes or clients using anomaly detection methods.

(ii) Mitigate impact through device-weighted and reputation score mechanisms and ro-

bust aggregation methods.

(iii) Maintain model accuracy despite Byzantine faults.

This paper proposes a DFL model to enhance the efficiency and application of Au-

tonomous Vehicles (AVs) in the V2X network. The model executes learning processes

locally across AV users, preserving privacy by gathering only model parameters from

neighbours. The DFL framework benefits traffic flow monitoring and road safety in the

V2X topology. Figure 4.2 illustrates a V2X DFL network layout, featuring both trusted

and Byzantine clients.

The proposed approach promises performance and safety enhancements even with un-

trusted devices, extending benefits beyond AV users to pedestrian safety and road in-
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Untrusted Client

DFL Model Updates
Poisoning Attack
Untrusted Client

Untrusted Client

Figure 4.2: An example of V2X DFL network layout that contains trusted and untrusted
clients.

frastructure. DFL presents critical benefits in AV applications, including Self-Driving,

Advanced Driver Assistance Systems (ADAS), Computer Vision, and the following:

i Preserving Privacy: DFL protects user information by keeping local data on de-

vices, addressing privacy concerns.

ii minimise Latency: DFL reduces communication costs, specifically latency, by

avoiding large data offloading and the need for a central server in dynamic V2X

or V2V networks.

iii Improved Learning Quality: DFL accelerates training, convergence rates, and

scalability by leveraging significant dataset resources from sensors in a large-scale AV

network. This surpasses traditional centralised FL methodologies.

4.1.2 Key Contribution

Our research introduces an improved DFL model that is able efficiently to address mali-

cious attacks on Intelligent Connected Vehicles (ICVs) within Autonomous Vehicle (AV)
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networks. A novel DFL reputation score model is developed, leveraging client activity

records as weights in the aggregation process. The robustness of our model is rigorously

tested against various scenarios and attack types.

1. We propose an intuitive approach to identify malicious clients attacking the DFL

model in ICVs within AV networks. The rarity of certain patterns of gradient

similarity across multiple parameters and clients serves as a detection criterion.

2. A reputation score model is employed to track client activity, influencing the ag-

gregation process. Our unique reputation model enhances convergence using a

weighted averaging approach.

3. Our DFL model is evaluated on the proposed AV network, outperforming baseline

models against adaptive white-box attacks. Resilience is maintained up to a 35%

malicious client ratio.

4. The DFL model mitigates communication bottlenecks by decentralising the learning

process in AV networks, distributing communication load, and eliminating depen-

dence on a central server. This enhances model resilience in adverse conditions or

malicious attacks.

Additionally, our model optimises the communication between clients using CSMA/CA

protocols, minimising collisions and interference rates in DFL implementation for AV net-

works. DFL surpasses standard methodologies through geometric models and frequency

allocation mechanisms, providing accurate wireless communication evaluations.

4.1.3 Paper Organisation

In this paper, we organise our content into several sections to ensure a systematic pre-

sentation of our research. Section 4.2 provides the foundational knowledge about DFL

in dynamic networks, highlighting its importance and addressing challenges posed by

Byzantine participants. Following that, Sec. 4.3 thoroughly details the architecture of

our DFL network and the methodologies employed to create a resilient model in dynamic
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wireless networks. Moving forward, Sec. 4.4 presents our extensive simulation outcomes

and provides a comprehensive analysis of our proposed DFL Byzantine-resilient model’s

performance across various scenarios and network dynamics. Finally, in Sec. 4.5, we

summarise our key findings, draw conclusions, discuss the implications of our research

within the DFL context, and outline potential avenues for future research.

4.2 Background

This section offers a concise overview of the leading defences in the field of DFL with

Byzantine attacks. Recent demonstrations have revealed their susceptibility to state-of-

the-art untargeted model poisoning attacks, as demonstrated in prior work [2]. In this

type of malicious activity, the attacker aims to degrade the overall performance of the

model without specifically targeting specific predictions.

Setup and Notations. Our analysis considers a total of φ workers, categorised into a

set of total workers denoted as G ⊆ {1, . . . , φ}. Our primary objective is to minimise the

following function:

f(W) :=
1

|G|
∑
i∈G

fi(W), (4.1)

where fi represents the loss function associated with worker i, operating under a distinct

and heterogeneous data distribution ξi.

The stochastic gradient computation by a worker i using a minibatch ξi is defined as

gi(W, ξi) := Fi(W; ξi). Here, Fi represents the function that computes the gradient, and

gi is the resulting gradient value.

It’s important to note that stochastic gradients are unbiased estimators of the true gra-

dients, meaning that:

Eξi [gi(W, ξi)] = fi(W), (4.2)
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where the expectation is taken over the distribution of minibatches ξi. Additionally, the

variance of these gradients is bounded:

Eξi [∥gi(W, ξi)− fi(W)∥2] ≤ σ2. (4.3)

To ensure data consistency among workers, we assume a certain threshold (ζ) to constrain

the heterogeneity across their data as follows:

Ej∼G ∥∇fj(W)−∇f(W)∥2 ≤ ζ2, ∀W. (4.4)

When clarity permits, we refer to the gradient computed at time step t as gt or simply

gi.

Byzantine Attack Model. In the Byzantine attack model, a subset of Byzantine

workers is represented by B ⊂ G, while the remaining workers are classified as good. This

yields G = B
⊎
N , where N = {1, 2, . . . , Nn} is the trustee clients subset. To quantify

the impact of Byzantine elements, we introduce δ as the fraction of Byzantine workers,

where |B| =: q ≤ δNn. Byzantine workers possess the capability to deviate from the

established protocol, transmitting arbitrary updates to the collaborative neighbours in

the DFL network. Remarkably, they can collaborate and may even possess complete

knowledge of the states of all other workers.

4.2.1 Decentralised Federated Learning (DFL)

In continuation of the introduction, this section outlines a fully decentralised architecture

for FL. The proposed system is investigated in terms of the updating process of model

weight parameters and their transmission across network devices.

In our decentralised system, a network of edge dynamic devices (e.g., AV clients) is

envisioned to be connected through a wireless mesh infrastructure. Unlike conventional

FL setups, the DFL architecture has no central aggregation server. The objective of
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this system is to collaboratively optimise the parameters W of a global model (e.g.,

ŷ = f(W, x), where ŷ represents the model’s predicted output and x denotes the input

data). Each device (i.e., AV client) possesses its private dataset Di of input data xi,

which remains inaccessible to other devices within the network. The local loss function

at each device is defined as [3]:

Li(W) =
1

|Di|
∑

x,y∈Di

l

(
ŷ − y;W, x

)
(4.5)

Here, |Di| denotes the size of the local dataset, and l(ŷ − y) quantifies the difference

between the model’s predicted output and the actual output for input x. The local loss

function is assumed to be both convex and smooth [3].

During each training iteration k, the local model weights Wki
of each device i at the

iteration’s start are considered. Employing its local dataset, each device conducts a

specific aggregation rule on the local loss function and updates its local model weights such

as Stochastic Gradient Descent [1], which is a common aggregation rule in FL paradigm,

and can be implemented by applying the following equation:

Wki+1 = Wki
− µ∇Li(Wki

) (4.6)

In this context, µ represents the learning rate which is chosen to facilitate the convergence

of the SGD algorithm towards a minimum.

Afterwards, each device transmits its updated local model weights Wki+1 to its neigh-

bours within the accessible wireless network. Additionally, it receives the updated local

model weights from its corresponding neighbours. A local aggregation process is then em-

ployed, involving a simple averaging mechanism for these updated local model weights.

This step generates the initial updated local model weights for the subsequent iteration

[4].

The above process yields the diffusion of local model weight parameters across the network
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during each iteration. This diffusion process involves sharing the impact of each device’s

local training dataset with the network through the transmission of local model weights.

Research conducted in [5] demonstrates that this cooperative learning network attains

convergence towards the identical global optimum with a comparable convergence rate

in contrast to traditional CFL methodologies.

Therefore, this study aims to combine DFL and Byzantine-resilient mechanisms into

a single intelligent system, enhancing the robustness of networks for various practical

applications. The goal is to ensure the privacy and security of participants’ information.

Network security significantly influences the learning process in DFL, yet researchers often

overlook it. This paper extensively addresses this aspect and proposes using a Byzantine-

resilient DFL network to bolster security during the learning process. The rationale

behind this approach is that DFL algorithms can effectively update the edge terminals

with parameters via reliable aggregation rules. This enables the creation of a global

model capable of analysing end-users data accurately, all while preserving data locally and

without sharing it with a central server or other devices on the network. Essentially, the

data remains safeguarded within individual devices, leading to personalisation, assured

Quality of Service (QoS), and improved performance for several Autonomous Vehicles

(AVs) applications.

4.2.2 Byzantine-resilient Aggregation Rules

This work introduces an overview of various key aggregation methods implemented in FL

and outlines their inherent strengths and potential weaknesses. For instance, FedSGD

[1] represents a rudimentary aggregation approach, implementing a weighted mean ag-

gregation of gradients. The weights are proportional to the quantity of data samples each

client maintains. Notably, FedSGD’s vulnerability lies in its susceptibility to a solitary

malicious client sending amplified malevolent gradients. In contrast, both Trimmed

Mean and Median methodologies [6] operate independently to aggregate parameters.

Specifically, the Trimmed Mean technique omits the maximum of users who can behave
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maliciously (Bmax) at both lower and higher extremes for each parameter. Conversely,

the Median method extracts the median from each parameter update across all received

gradients from the clients. These aggregation techniques are susceptible to what is known

as the Full-Trim attack [2]. Meanwhile, the Krum technique [7] designates a single local

model to become the subsequent global model. The selection is based on the client that

exhibits the smallest Euclidean distance from its nearest neighbours, which is then cho-

sen as the local model. The Full-Krum attack [2] is specifically designed to compromise

this approach. Bulyan [8] employs a combination of the previous techniques. It utilises

Krum [7] in an iterative fashion to choose a specific number of models and then applies

the Trimmed Mean technique to the chosen ones.

Notably, the Full-Trim attack is also effective against Bulyan. FABA [9] functions in

an iterative manner, eliminating models that are the farthest from the mean of the

remaining unfiltered models. This process occurs Bmax times before the mean of the

residual gradients is returned. In an attempt to defend against Sybil clone poisoning

attacks, FoolsGold [10] identifies clients with similar cosine similarity as malicious. Such

clients have their reputation penalised, and a weighted mean of the gradients is returned,

weighed by this adjusted reputation.

In addition, FLTrust [11] seeks to establish client trust by presuming server access to

a clean, albeit small, validation dataset. The method returns a weighted mean of the

gradients that are weighed by this acquired trust. However, it is worth noting that it

may not be realistic to access such a clean dataset, particularly considering the non-iid

nature of the local datasets at the clients.

Nevertheless, FL offers a variety of methodologies to aggregate client-provided data and

navigate potential threats. Each method comes with unique advantages and its own set

of potential vulnerabilities to malicious interference, particularly in a decentralised FL

approach where there is no central server that can monitor the connected devices’ be-

haviour. Thus, an understanding of various protection techniques is crucial in developing

a robust and secure DFL system, particularly in scenarios where malicious attacks are a
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concern.

Notably, [12] introduces a novel approach in their FLAIR framework, computing reputa-

tion scores using flip-scores of local gradients. Their results in terms of accuracy and loss

have shown superior performance relative to other reputation score methods. Inherent to

the structure of the DFL model is the absence of a central server. Consequently, strategies

like the one implemented in [12], which relied heavily on a central server for evaluating

participating clients based on their behaviour during training, become unfeasible.

4.2.3 Threat Scenario: Cutting-Edge Model Poisoning Attack

In the context of DFL algorithms, the following discussion in this work delves into a

critical threat model. This model considers scenarios where adversaries compromise a

subset of distributed devices collaborating to optimise learning in a peer-to-peer manner

in the DFL network, and thus, the adversaries target this network in order to impact

the integrity of the DFL process via data poisoning attacks such as Sybil-based attacks

[13]. This threat model’s implications become particularly significant when considering

the potential consequences of compromised devices and the nuances of advanced model

poisoning attacks. To elucidate this further, we explore these state-of-the-art untargeted

model poisoning attacks: the Full-Trim attack [2], the Full-Krum attack [2] and the

Shejwalkar attack [14].

The principal focus of our study centres on advanced untargeted model poisoning attacks,

specifically examining the Full-Trim attack, the Full-Krum attack and the Shejwalkar

attack. These attacks fall within the category of directed deviation attacks (DDAs),

which possess the capability to circumvent all recognised defence mechanisms. DDAs

are characterised by their strategic manipulation of the local models on compromised

decentralised devices. This manipulation is executed systematically, frequently involving

the resolution of constrained optimisation problems. The ultimate objective is to induce

the global model to deviate in a direction contrary to the anticipated benign global model

updates.
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The exploration of Byzantine resilient systems and reputation score techniques is widespread

in the literature. Studies such as [15] and [16] use reputation scores as an incentive for

clients to maintain system fidelity. Conversely, the works of [10] and [17] calculate repu-

tation scores based on the cosine similarity between client gradients, while [11] employs

cosine similarity in comparison with trusted gradients obtained from a clean validation

dataset at the server.

In light of this, the present work advocates for the amalgamation of the reputation-based

approach with the Byzantine-resilient decentralised stochastic optimisation [18] method-

ology. This proposition aims to construct a robust Byzantine-resilient DFL framework

capable of efficiently mitigating Byzantine influences. It accomplishes this by dynamically

determining optimal aggregation weights for each participating client (e.g., Autonomous

Vehicles) within the DFL network during the learning process at each iteration. This

strategy serves as a promising countermeasure against various untargeted model poison-

ing attacks, mitigating the potential adverse effects of Byzantine devices and thereby

optimising the overall DFL model performance.

4.3 System Model

The key goal of this work is to explore techniques and algorithms that enhance the

resilience of DFL systems against Byzantine attacks, maintain the integrity of the learning

process and protect the privacy of participants’ data in a decentralised and distributed

setting. In our system model, We make the assumption that the attacker or Byzantine

possesses control over certain participants’ devices and can manipulate the local model

parameters sent from these devices to the main device (i.e., master device) during the

learning process. In our model, the main device is the device that has been chosen by the

group based on its capability and availability to aggregate local models from neighbours

at that certain iteration in order to train and update the global model of the DFL model.

In the proposed network, the attacker’s knowledge of the aggregation rule used by the

main device can vary, as they may or may not be aware of it.
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In the context of the DFL learning process, our version of DFL involves a random number

of AVs. Each AV has its local data. At each round, each AV communicates with its

neighbours’ users (i.e., users within its reachable area). They all should share the same

model architecture and implement the same ML algorithm. Within this AV group, there

is a potential of having several users considered Byzantine users B. The assumption in

our model is that up to a maximum of Bmax users can behave maliciously in any given

round, where the total number of Byzantines B ≤ Bmax. To tackle the Byzantine issue

in the DFL network, we utilise dynamic aggregation rules that consider the behaviour of

neighbouring devices in each iteration. This includes both the device’s behaviour in prior

iterations and the similarity of model parameters in the current iteration.

4.3.1 Byzantine-Resilient DFL

Byzantine devices refer to faulty or malicious participants in the DFL network that can

intentionally send incorrect or misleading updates to compromise the learning process.

The system design is based on an undirected graph G, represented as G := (N ∪ B, E),

where N and B correspond to sets of trust and Byzantine devices, respectively. E refers

to a subset of the Cartesian product (N ∪ B)× (N ∪ B), which constitutes the edges or

connections among vehicle devices and does not include any self-links.

Importantly, the trusted devices are unaware of both the number and identities of Byzan-

tine devices within the network. In this context, a terminal AV or device link (n, v) ∈ E

given the undirected nature of the graph, propose a bi-directional communication link

between vehicle n and vehicle v. For any specific device n, we can denote the sets of its

trusted and Byzantine neighbours as Nn := {v|(v, n) ∈ E , v ∈ N} and Bn := {v|(v, n) ∈

E , v ∈ B}, respectively. N and B represent the total numbers of trusted and Byzantine

devices, defined as N := |N | and B := |B|. Similarly, for any device n, Nn = |Nn|

and Bn = |Bn| ascertain the number of its trusted and Byzantine neighbours’ links,

respectively.

In our proposed design, we have made an assumption that there is a number of Byzantine
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attackers with control over certain participants’ devices, where the maximum number of

Byzantine clients is capped at Bmax < vn
3

. This assumption suggests that when trusted

clients outnumber Byzantine ones, the Byzantine group will face a challenging recovery

process, and then the model will be able to work efficiently and reliably. Here, vn signifies

the total number of the neighbours connected to participant n.

At the steady state, participants engage in a process where they train their local models

using their respective datasets. Subsequently, they send a matrix of updated parame-

ters to a master device during a randomly selected time slot. The master device then

aggregates these local models to create a global model. In this context, the aggregated

parameters are treated differently and independently. The individual user ID consistently

assigns a weight that reflects the degree of trustworthiness and reliability of the device.

This weight is determined by the device’s reputation score within the network.

However, it is crucial to acknowledge a potential limitation of this approach. A Byzantine

neighbour within the network possesses the capability to maliciously manipulate the

model updates. For instance, such a neighbour could nullify the weighted average by

sending 0s values for the model weights update (W), effectively rendering the model

meaningless. Conversely, they could intentionally send messages with infinitely large

elements, leading to an inflated global model. Compounding the concern, the impact of a

malicious user is not confined to direct interactions but can also affect honest neighbours

throughout the information diffusion process [19] via intermediate users. This creates a

challenge in ensuring the integrity and security of the learning process, especially in the

presence of adversarial elements.

Therefore, our model is thoughtfully crafted to effectively eliminate any devices that

transmit either 0s or weight values exceeding a specified threshold deemed impractical

for the learning process. Such devices are not counted as active participants in the

learning process to ensure the integrity and accuracy of the global model’s construction.

Furthermore, to manage the behaviour of the remaining devices, a sophisticated algorithm

is employed, which incorporates two distinct rewards score values denoted as W(m, t).
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These scores serve a dual purpose: the first applies penalties to Bmax devices that most

exhibit excessive or insufficient scores, while the other rewards devices based on their

individual scores during each iterative phase.

At each time point t, the primary user, denoted as n, assigns the score W(nm, t) cumu-

latively to every neighbouring user m. These scores increase by 1 if the device receives

a reward and 0 if the device receives a penalty, as shown in Eq. (4.7). This reward and

penalty mechanism considers the probability of the device being trustworthy, which is

based on the model similarity derived from the pairwise cosine similarities between the

parameter updates of the master device and each neighbouring participant.

To clarify, penalties are selectively imposed on a subset of Bmax clients displaying the

most insufficient scores, while the remaining clients are rewarded. Here, the identity

of the master model aggregator AV is represented by n, and m symbolises the active

connected neighbours to n at time t.

The reward and penalty mechanism is defined as follows:

W(m, t) :=


0, if P(m|N ) < γ ( Penalised m)

+1, if P(m|N ) ≥ γ ( Rewarded m)

(4.7)

P(m|N ) =
P(N|m) · P(m)

P(N )
(4.8)

where P(m|N ) denotes the probability trustworthiness of a device m based on prior

beliefs about trustworthiness and observed evidence such as device behaviour, history

reputation score and model similarity, and (γ) is the trust threshold that defines the

minimum cumulative score required for a device to be considered trustworthy.

In this context, further refinement of the analysis is required. Assuming P(m) is the prior

probability that device m is trustworthy, P(N ) is the probability that a device is trusted,

and P(N|m) is the likelihood that a device is trusted given its behaviour, we can rewrite
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the inequality penalty condition accordingly:

P(N|m) · P(m)

P(N )
< γ (4.9)

Given that P(N ) can be expressed as a number of iterations over all devices i, and

assuming independence between devices, it becomes:

P(N|m) · P(m)∑
i P(N|i) · P(i)

< γ (4.10)

In the context of the Byzantine-resilient DFL paradigm, a pivotal element emerges in

the form of reputation scores which are allocated to each neighbour, denoted as R(m, t).

These scores play a critical role in assessing the contributions of each neighbour device

(m) within the network, all of which are connected to the master client n. Notably, these

reputation scores are intricately linked to the individual client IDs (m) as well as the

progression of time (t). This dynamic link to identity and temporal evolution gives these

scores the ability to evolve, adapt, and consistently mirror the behaviour and engagement

of network devices.

R(m, 0) ≥ 0,

R(m, t) := αR(m, t− 1) +
W(m, t)

W(t)
, t > 0 (4.11)

where W(t) is the summation of all weighted scores for all participants at time t.

This model articulates the progression of reputation scores within the DFL network over

time and ensures that the participants are engaged with respect to their quality of contri-

butions and behaviour, thereby nurturing a dynamic environment of trust and collabora-

tion. An important element in Eq. (4.11) is the parameter α, which takes values between

0 and 1. This parameter delicately modulates the equilibrium between the preceding
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iteration’s reputation score, R(m, t− 1), and the current session’s weighted contribution,

W(m, t). A higher α value leans more towards valuing the anterior reputation score,

which is beneficial for reinforcing consistent, positive participation over time. In con-

trast, a lower α value diminishes the weight of past scores, favouring a more significant

impact from recent activities on the reputation. Thus, α navigates the delicate balance

between preserving reputation continuity and adaptability, with higher values anchoring

the reputation in historical performance and lower values enabling smooth recalibrations

to acknowledge recent actions.

In our framework, we apply the softmax function to normalise the reputation score

R(m, t), which reflects the quality of contributions and behaviour of participants in the

DFL network. With each iteration, summing these normalised scores from all intercon-

nected devices (i.e., participant nodes) results in a total of one. This approach effectively

represents the changing dynamics of reputation scores. Specifically, the normalised rep-

utation score for a node m at a given time t is represented as R̂(m, t), which is achieved

through softmax normalisation, as illustrated below:

R̂(m, t) =
eR(m,t)∑

all connected
neighbours to n

eR(t)
, t > 0. (4.12)

This formulation clarifies the mechanism through which participant reputation is refined

and adapted over successive iterations, essentially influencing the network’s overall trust

dynamics.

Furthermore, we examine the general format of the robust aggregation rule denoted as

An, designed for an honest worker n within the set N . This rule is expressed as follows:

An(Wn, {W̃m,n}m∈Nn∪Bn) (4.13)

:= (1− rn)A(Wn, {W̃m,n}m∈Nn∪Bn) + rnWn

In this context, A represents a base aggregation method (e.g., FedSGD and Krum, see

129



Chapter 4 4.3 System Model

Sec. 4.2.2 shared across all honest workers, and rn ∈ [0, 1) denotes an individual-specific

constant. The base aggregator, working with the available model weights, generates a

D-dimensional vector RD. However, it is possible for the base aggregator’s output to

lack model information W̃m,n from neighbours m that an honest worker n should rely

on. To address this, we explore a convex fusion of the base aggregator’s output and Wn,

controlled by rn as shown in Eq. (4.13). Thus, a lower value of rn signifies a greater

reliance on the base aggregator.

Here, we examine several well-known base aggregation methods as baselines in the context

of Byzantine-resilient optimisation. These serve as illustrative instances. For ease of

notation, we define the input of aggregator A as {W1, . . . ,WS}, and the total number

of devices excluding the master device denotes as S = Nn + q, where |N | = Nn, |B| =:

q ≤ δNn and δ represents the fraction of Byzantine workers as discussed in Sec. 4.2.

The Coordinate-wise median (CooMed) aggregation algorithm calculates the median value

for each individual coordinate d = 1, . . . , D as follows [6]:

CooMed(W1, . . . ,WS)d = Median([W1]d, . . . , [WS]d) (4.14)

where [W]d refers to the d-th element of vector W.

The Geometric median (GeoMed) identifies a point that minimises the sum of distances

to all input vectors [20], [21]:

GeoMed(W1, . . . ,WS) = argmin
Wn

S∑
m=1

∥Wn −Wm∥2. (4.15)

Another common aggregator method is called Robust Federated Averaging (RFA) [22].

This method calculates the geometric median between the latest global model (V ) with

the current neighbours’ model updates as follows:

RFA(W1, . . . ,Wm) := argmin
V

m∑
i=1

∥V −Wi∥2. (4.16)
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Figure 4.3: Illustration of the proposed aggregation and model update layout in DFL.

The RFA method, as detailed above, employs the geometric median to integrate model

updates from various devices in an FL network. By minimising the sum of Euclidean

distances (∥V −Wi∥2) between the global model (V ) and each local model update (Wi),

RFA effectively finds a central point that represents the most robust consensus among the

distributed models. While the geometric median lacks a closed-form solution, the RFA

work in [22] approximates it using multiple iterations of the smoothed Weiszfeld algorithm

[23]. This method employs an iterative approach, iteratively refining the geometric me-

dian estimate. Importantly, each iteration of this technique demands a relatively efficient

O(n) computational effort.

Furthermore, the Krum method, pioneered by Blanchard et al. [7], proves to be a valu-

able tool when it is possible to estimate the number of Byzantine workers accurately,

represented as q. This method identifies the input vector with the shortest distance to

the S − q − 2 nearest vectors in the dataset, offering a robust solution in such scenarios.

Thus, for n ̸= m, let m→ n denotes that the aggregated models Wm from subset m are

transmitted to and received by the master device n. These models are selected from a

set of S− q−2 closest vectors to Wn. Then, the base aggregation of models in the Kurm

method is described as follows:
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Krum(W1, . . . ,WS) = arg min
Wn,m

∑
m∈U

∥Wn −Wm∥22 (4.17)

|U| = S − q − 2.

Nevertheless, the methodologies of Krum and aggregation techniques entail notable com-

putational intricacies. These intricacies either demand the computational capabilities

of a potent central server or impose substantial processing burdens on the master de-

vice within the context of DFL. Such resource-intensive operations have the potential to

undermine the efficacy of the resultant model in real-world applications.

In our design, we introduce a novel aggregation rule that aligns with the principles of DFL.

This aggregation rule incorporates a predefined threshold (γ) to optimise the weighted

score at each iteration, as illustrated in Eq. (4.7). This predefined threshold is meticu-

lously calibrated in advance, and the master devices have the flexibility to fine-tune it in

response to real-time network conditions as the operation progresses. Moreover, our ag-

gregation rule enables the model to regulate the influence of connected neighbour devices,

taking into account their reputation scores and the correlation between the participant

model and the local model of the master device n, as shown in Fig. 4.3. By factoring

in reputation scores, we aim to reduce the adverse impact of potentially malicious and

Byzantine devices within the DFL network at each iteration, denoted as t. As a result, our

robust aggregation rule An,t(.) applied by the master device n at time t is fine-tuned to

address suspicious devices by utilising the weighted score in Eq. (4.7) and the reputation

score in Eq. (4.11). The rule can be summarised as follows:

An,t(Wn, {W̃m,n}m∈Nn∪Bn) (4.18)

:= (1− rn)A(Wn, {R̂(m, t)× W̃m,n}) + rnWn

Our approach utilises the integration of the proposed reputation score R(m, t) with vari-

ous aggregation methods in the DFL model, including the Federated Averaging (FedAvg)
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[1] algorithm introduced by McMahan et al. [1]. While FedAvg calculates the anticipated

mean value of aggregated models for global updates, our novel approach introduces a

unique twist. We incorporate individual normalised reputation scores R̂(m, t), resulting

in a weighted aggregation scheme as depicted in Eq. (4.19). This novel approach en-

hances the aggregation process by considering the reputation of individual models based

on the client history records and received model correlation and similarity to the master

devices, as shown in Fig. 4.3. Additionally, we introduce a parameter rn that determines

the degree of influence exerted by the updated global model An,t for the master client

n at each time sequence t. This parameter plays a pivotal role in shaping the influence

dynamics within our aggregation process, as elaborated in Eq. (4.18).

A(.) =
vn∑

m=1

R̂(m, t)× W̃m,n (4.19)

As a consequence, the global model within our Byzantine-resilient DFL framework under-

goes iterative updates. These updates are guided by the aggregator rule, as defined in Eq.

(4.18). This rule is systematically applied to the selected master device, denoted as n,

during each iteration, resulting in the update of the global model. Thus, the aggregator

method mechanism for updating the global model can be expressed as follows:

An,t(.) := (1− rn)
vn∑

m=1

R̂(m, t)× W̃m,n + rnWn (4.20)

While the reputation score and similarity approach may initially lead to a slower rate of

updating the global model updates, it ensures consistent progress and provides significant

enhancements in model performance, including accelerated convergence throughout the

entire training process. In addition, the influence of neighbours’ updates can be controlled

by adjusting the value of rn, which is a constant value 0 < rn < 1. A smaller rn emphasises

the base aggregator’s contribution, while a larger rn gives more weight to the local update

of the master device model.

Furthermore, the aggregation mechanism that is used to update the global model can be
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implemented using a variety of existing aggregation methods as a baseline to evaluate the

improvement that our approach can achieve. The choice to employ various alternative

aggregation methods, including the well-known FedAvg [1] and the state-of-the-art Krum

method, serves the purpose of evaluating the performance enhancement of our models

in comparison to alternative approaches. This evaluation primarily focuses on aspects

of model efficiency, taking into consideration both complexity and power consumption,

particularly in the context of our design for the classification benchmark datasets.

Consequently, our proposed system does not rely on a central server and employs an

approach that simplifies a robust DFl model and reduces its dependence on external

factors. As a result, the DFL model can collaboratively update parameters in real-time

applications, even when in the presence of Byzantine devices, and does not require a

connection to a central server to monitor and manage the training process. This setup

fosters a robust and flexible peer-to-peer approach.

4.3.2 DFL Learning Criteria

In the DFL approach, all participating devices must possess an identical machine-learning

model, for instance, a Convolutional Neural Network (CNN) that contains a shared weight

parameters matrix, denoted as W, which is considered as an optimisation variable for

the model. The primary goal of the model design is to reduce the cross-entropy loss

function’s discrepancy between the expected and predicted outputs, expressed as:

argmin
W

F (W) ≜
1

vn

∑
(m)

fm(W) (4.21)

In this context, the notation F (W) represents the global loss function, and fm(W) cor-

responds to the local loss for the neighbour devices, where m represents the set of active

AVs neighbours or devices that successfully transmit to the master device n during each

iteration of the training process. Furthermore, vn denotes the length of the active devices
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set m, defined as:

m = 1, 2, . . . .., vn.

The local loss function for device m is derived from the cross-entropy loss of the local

training dataset O(m), expressed as:

fm(W) =
1

D

D∑
i=o

l(hW(X i
m), y

i
m), (4.22)

Here, i signifies a subset of the total count of local training datasets, D corresponds to

the length of the participant datasets O(m) divided by the batch size as follows ( |O(m)|
Bm

),

and l(hW(X
(i)
m ), y

(i)
m ) represents the cost function for the weights matrix W evaluated on

a hypothesis hW(X i
m) with data samples X i

m. For example, the hypothesis for the simple

linear regression is defined as hW(X) = W0 + W1X.

During the tth step of the DFL process, each device m possesses a local parameters

weights matrix W(t) that is revised to optimise model accuracy and find a fitting solution

to the problem, repeating the models’ exchange process until the model achieving the

convergence state ε as follows:

1

vn
(

vn∑
m=1

∇fm(Wt
m)) < ε (4.23)

s.t. vn >> 1

Then, a chosen master device at time t aggregates the local models from the connected

devices, which will be defined based on a spatial and communication model at a time t

(i.e., iteration), to update the global model based on the proposed aggregation techniques

in Sec. 4.3.1 and then shared the updated global model with others in the network for

a new iteration in DFL learning process. These proposed techniques (i.e., aggregation
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Algorithm 4.1 Byzantine Resilient DFL Network
1: φ = N ∪ B –»Total number of participants
2: All participants have initial weights with W(0)
3: for iteration (time) t = 1, 2, . . . ..R do
4: for each Master device (n) do in parallel

5: Aggregate models and define N and B devices

6: for all n’s active nodes m = 1, 2, . . . ..vn do

7: W(m, t) :=

{
Penalty m, if P(m|N ) < γ

Reward m, if P(m|N ) ≥ γ

8: for i = 1, . . . samples of dataset O(m), where

9: D =
|O(m)|
Bm

, where Bm is Batch size do

10: ∇fm(Wt
m) = 1

D

D∑
i=1

∇l(h(Wt
m)(X

i
m, yim))

11: Wt
(m) ←−Wt

(m) − ηtm∇fm(Wt
m;Bm)

12: end for

13: end for

14: Master device n at iteration t receives Wt
m and

15: ∇fm(Wt
m) from vn active neighbours clients:

16: while 1
vn
(
∑vn

m=1∇fm(W
t
m)) > ε & vn > 1:

17: (i.e., Convergence state ε is not achieved yet)

18: R(m, t) := αR(m, t− 1) +W(m, t), t > 0

19: Ŵ
t

n ←− (An,t(Wn, {W̃m,n})
20: := (1− rn)A(Wn, {R̂(m, t)W̃m,n}) + rnWn

21: A(.) =
∑vn

m=1 R̂(m, t)× W̃m,n

22: W(t+1)
n ←− Ŵ

t

n do

23: end while

24: return end the training (Gradient Convergence)

25: end for

26: Master device broadcast Ŵ
t

m, and then go to Step 3
27: end for
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methods using DFL reputation score and model similarity) give our approach the priv-

ilege of offering a significant advantage by removing potentially untrustworthy models

and devices from consideration. It achieves this by placing the highest trust in master

devices and others whose model parameters have demonstrated strong correlations over

time. This correlation-based approach builds a reputation score database, ensuring the

reliability of trusted participants.

The summary of the implemented algorithm is given in Algorithm 4.1.

4.3.3 Spatial and Communication Models

We consider that wireless nodes (i.e., autonomous vehicles) are randomly scattered in a

2-D plane. Their location can be modelled in different models such as cluster processes or

queuing theory-based models that can be used for more accurate representation in these

scenarios, but for simplicity, one of the most representative distribution models that can

be used for vehicle networks, or more specifically, Vehicular Ad Hoc Networks (VANETs),

is the Poisson Point Process (PPP) model [24].

The Poisson Point Process model is widely used to represent the spatial distribution

of AVs and other related participants in a network due to its simplicity and analytical

tractability [24]. It assumes that AVs are randomly and independently distributed across

the network, following a Poisson process.

Each point in the PPP represents an AV or another related participant, and the process

determines the probability of finding a participant in any given area. This will be particu-

larly useful for analysing and simulating wireless communication within our V2X network,

including some other factors such as signal coverage, interference, and connectivity.

The density of the PPP is represented by λ, with an assumption that each device collab-

oratively shares model parameters with its neighbours.

In the proposed model, it is assumed that there exist multiple subchannels available for

communication between AVs and other related participants during the learning process.
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These subchannels allow for multiple AVs to transmit and receive data simultaneously,

thus improving the efficiency and speed of communication. The Carrier Sense Multi-

ple Access with Collision Avoidance (CSMA/CA) protocol is utilised in this multi-user

communication scenario. Under this protocol, an AV can share parameters with its neigh-

bouring AVs only when no other AV within the same subchannel is transmitting. If a

transmission is already in progress, the AV must wait and then attempt to transmit again

after a random backoff time. This multi-user, multi-channel communication setup allows

for effective and efficient learning processes, where parameters can be shared, and global

model updates can be propagated rapidly across predefined channels.

In this study, we focus on a typical receiver that is linked to the desired transmitter.

For the small-scale path-loss model, we adopt a Rayleigh fading channel combined with a

single slope large-scale path-loss. Consequently, the signal received from the desired trans-

mitter (i.e., the receiver connected to typical neighbours) is represented as (Pkhkod
−α
ko )

[25]. Here, Pk denotes the power of the signal transmitted by the desired transmitter

device k, and α ≥ 2 represents the path-loss exponent. Additionally, dk0 and hko indicate

the distance and fading coefficient, respectively, for the channel between device k and the

target neighbours.

To assess the real-world interference scenario within the network and explicitly quantify

the number of AV clients that successfully transmit, we can employ a physical interference

model based on the widely recognised signal-to-interference-plus-noise ratio (SINR). We

express the probability of successful transmission (Ps) for transmitter k during the DFL

training process as follows:

Ps = P(SINR ≥ T ) = P

(
Pkhk0d

−α
k0∑

i∈φ Ii +N0

≥ T

)
(4.24)

where Ps represents the probability (P) of successful transmission, which is determined

by the probability of SINR exceeding a predefined threshold T . Here, Ii and N0 represent

the interference from other devices i and the noise in the channel, respectively. The noise
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is assumed to be significantly lower in comparison to interference. Consequently, the

equation can be expressed as follows:

Ps = P(SINR ≥ T ) = P

(
Pihi0d

−α
i0 ai∑

i∈φ Ii
≥ T

)
(4.25)

The interference originating from device i in the network is Ii = Pihi0d
−α
i0 ai with i =

1, 2, ..., vn. The binary variable ai indicates whether the device is transmitting (i.e.,

ai = 1) or ready to receive (ai = 0). The summation of interference (
∑

i∈φ Ii) encompasses

interference from surrounded active devices (vn) within the desired coverage area. The

set φ, defined as the union of N and B, represents the total number of AV clients across

the entire target area.

Furthermore, various communication techniques can be employed to enhance communi-

cation reliability among devices. One of our proposed approaches is the utilisation of

MultiPath TCP (MPTCP) [26], where devices can share model updates using diverse

sub-flows for reliable transmission. It considers factors like network conditions, available

bandwidth, and congestion levels to select the most suitable path for each subflow. This

is particularly beneficial in cases where a single network path might be experiencing con-

gestion or unreliability. MPTCP allows for improved fault tolerance and load balancing

by distributing model updates across multiple network paths. This technique contributes

to the robustness of the communication infrastructure within the network, enhancing the

reliability of model sharing and collaborative learning among connected devices.

The DFL approach is mainly tailored for dynamic wireless networks lacking a centralised

server, which traditional FL relies on to handle the aggregation of model updates across

the network [27]. In the DFL scenario, devices communicate peer-to-peer to construct

an optimised global model. Consequently, the design of the DFL network must prioritise

maximising communication reliability and minimising the risk of unauthorised devices

launching attacks or poisoning the model. This is an essential objective that ensures the

dependability and effectiveness of the DFL algorithm.
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4.3.4 Performance Metrics

In this work, we introduce a framework tailored for optimising a classification problem

within a V2X network. Consequently, our assessment of the DFL model’s effectiveness is

based on two widely recognised performance metrics frequently utilised in ML models:

(a) Categorical Cross-Entropy Loss: This loss function is a main model metric that is

mainly applied to adjust the model weights during the training process and is commonly

used for classification problems. Typically, the cross-entropy loss function, also known

as logistic or log loss, is prevalent in such cases. It evaluates the probability of each

prediction against the binary actual output, assigning higher loss to larger deviations

and minimal loss to smaller ones, with a total loss of 0 indicating a perfect model. The

function is given by:

Loss = −
m∑
j=1

n∑
i=1

y(i,j) log(p(i,j)), (4.26)

where y(i,j) and p(i,j) are the actual output and predicted probability for class i and sample

j, respectively.

(b) Accuracy: It is a common metric for examining the performance of various ML

models. Accuracy is determined in the following manner:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

. (4.27)

It quantifies the proportion of correctly classified instances, encompassing true positives

and true negatives, among all instances in the dataset. In DFL, accuracy plays a sig-

nificant role in improving system performance by identifying and addressing potential

issues with the model’s predictions. The accuracy value is computed by comparing the

model’s predictions to the actual labels in the dataset and dividing the number of correct

predictions by the total number of instances in the dataset.

(c) Model Complexity: Estimating the complexity of a DFL model involves evaluating
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various aspects, such as the model architecture, the learning process, and the commu-

nication patterns between the distributed devices. The model’s size plays a crucial role

in model architecture complexity, as larger models with more parameters tend to be

more complex. Furthermore, communication complexity is another crucial factor to con-

sider, where an increase in the number of distributed devices participating in the learning

process and the number of communication rounds needed for training can escalate com-

plexity. As such, it is essential to consider a trade-off balancing between the complexity

of the DFL model and the target accuracy during the model’s configuration.

4.4 Simulation Results

In this section, we assess the effectiveness and performance of our introduced Byzantine-

resilient DFL model through comprehensive simulation experiments. The simulation of

malicious users involves executing various attack types, which are detailed in Sec. 4.2.3.

These malicious users are programmed to randomly employ different attack strategies to

disrupt the model’s performance.

In the proposed network, a cellular frequency reuse technique (i.e., N frequencies for the

whole network) is used over a large-scale network of uniform cells in order to increase

the capacity without increasing its allocated bandwidth during the learning process. The

simulated network consists of random participants of both AV clients (i.e., trusted clients)

and other untrusted devices (i.e., militia and Byzantine devices) that have a Poisson dis-

tribution within the target areas. Initially, the potential of having data collisions during

the learning process in our large-scale network is mitigated through the utilisation of

CSMA/CA as the fundamental communication protocol. This protocol adeptly manages

multi-user communications across different network intensity levels denoted by λ in our

network simulation.

Since the participants’ devices possess diverse computational capacities, the complexity of

the deployed DFL model also varied accordingly. Due to restricted processing capabilities,

a significant increase in device numbers consistently raised the complexity of the DFL
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Figure 4.4: The average and standard deviation of the assigned normalised reputation
score for untrusted and trusted devices during the DFL learning process under various
attacks.

model, potentially exceeding the capabilities of some devices.

In general, as the number of trusted devices increased, the amount of trained data also

increased, resulting in a steady enhancement of recognition accuracy. Thus, there is

a necessity to strike a balance between the number of collaborating devices and the

achievable accuracy in the model’s design. Moreover, the CNN model, a widely acclaimed

tool for image classification [28], has been selected as the local machine learning (ML)

model of our classification problem using the MNIST dataset for benchmarking the model

(i.e., the summary details of MNIST is described in Table 4.1.

Clients leverage this robust tool to train their models with their local datasets, benefiting

from our optimisation efforts in terms of the hyperparameters setting, such as model size

and layer count. This optimisation is geared towards achieving an acceptable level of ac-

curacy while simultaneously maintaining low computational requirements and complexity

at the edge, thereby streamlining the overall complexity of the proposed DFL model.

To simplify matters, considering that each device shares an identical local model archi-
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Table 4.1: The benchmark dataset details

Dataset # Train # Test Feature Class Model
MNIST 60,000 10,000 784 10 CNN

Table 4.2: Comparison of the complexity and performance improvement in our model
over the Krum model at various network intensities.

Network
Intensity Krum Model Our Model

Func. Calls Time (s) Accuracy Loss Func. Calls Time (s) Accuracy Loss
0.01 19549602 26.5 86.5 0.098 19548731 29.838 94.3 0.034
0.05 21037066 27.94 87.2 0.068 20992056 28.997 92.2 0.051
0.1 22986612 33.094 88.1 0.0.52 22796069 31.568 93.9 0.063
0.15 25036039 39.941 86.3 0.095 24600214 33.356 91.5 0.057
0.2 27185901 45.218 90.2 0.073 26404326 34.298 92.7 0.052
0.25 29435537 53.261 89.8 0.090 28208340 38.05 93.1 0.049
0.3 31785116 69.608 88.9 0.080 30012534 39.525 92.5 0.063
0.35 34234619 85.177 87.5 0.108 31816619 43.361 91.8 0.081
0.4 36784225 90.731 85.7 0.209 33620909 43.805 93.5 0.105

tecture, complexity can be assessed in terms of the learning process (i.e., the aggregation

and optimisation model processes computation) function in the number of communica-

tion epochs necessary to reach the predefined convergence threshold ε that is described

in Eq. (4.23).

In this work, we introduced a novel score reputation model that contributed significantly

to the convergence of our DFL model. This reputation model was instrumental when

employing a weighted averaging approach during the model aggregation process. By

assigning reputation scores to individual clients based on their historical behaviour and

performance, we not only improved convergence but also added an additional layer of

security.

The reputation score model excels in gauging the trustworthiness of clients within the

DFL network by diligently monitoring and archiving their historical activities. This model

played a significant role in enhancing the security and reliability of the DFL system. By

maintaining a record of client behaviour, we were able to detect anomalies and potentially

malicious activities.

Unlike certain existing defences that perform well only under specific configurations,

such as specific combinations of attacks and models, our DFL model has demonstrated a

robust defence mechanism that was adaptable across various aggregation methods against
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Figure 4.5: (a) Accuracy and (b) loss comparison between our DFL model and various
baseline models under different attack scenarios in the proposed network.

various state-of-the-are Byzantine attacks. Importantly, our DFL model has maintained

its resilience even when up to 35% of the clients within the network were potentially

malicious, as our model eliminates the negative effect of the suspension and untrusted

devices using our proposed score reputation and weighted mechanisms to minimise the

untrusted devices’ contribution, which are described in Sec. 4.3.1 and the assigned weights

for the network devices during the DFL training are shown in Fig. 4.4.

In this study, we conducted an extensive evaluation of model complexity under diverse

network intensity scenarios. Table 4.2 serves as a crucial tool for visually illustrating the

performance of our model when compared to the Krum model. This state-of-the-art FL

model uses the Krum aggregator method for processing the models’ aggregations. This

performance evaluation encompasses various levels of network intensity and user counts.

The metric function calls quantify the frequency with which system functions are invoked

and executed throughout the operation of our model. This metric offers valuable insights

into the computational and complexity demands placed on the model. Importantly,

our model showcases significant reductions in complexity and execution time, as vividly

demonstrated in the table, especially under high-intensity network conditions. These

findings underscore the distinct advantages and suitability of our proposed model when

dealing with substantial network intensity scenarios.

These enhancements in our model are primarily attributed to the well-tuned model fa-
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cilitated by the reputation score derived from the model similarity and weighted score

mechanism in Eq. 4.7, which optimises the model performance by enabling a flexible

and reliable system. The implementation of the accumulated trust level, determined by

assessing model similarity between the master device and participant neighbours, along

with the novel DFL reputation scoring system, had several positive impacts on our model

performance and can be summarised as follows:

1. Enhanced Security: The score reputation weights allowed us to identify and flag

potentially malicious clients, contributing to the overall security of the DFL net-

work. By addressing security concerns proactively, we reduced the vulnerability of

the system to adversarial attacks.

2. Improved Model Convergence: Our reputation scoring model played a significant

role in enhancing the convergence of our DFL model by amplifying the value of

incorporating trusted model updates during the learning process. This enhancement

is instrumental in ensuring the effective integration of model updates, ultimately

resulting in improved model performance in key metrics such as accuracy and loss,

as shown in Fig. 4.5.

3. Comparative Performance and Robustness: In our evaluation of the DFL model,

we conducted a performance analysis that involved comparing our model with var-

ious baseline models, including networks with Byzantine devices, while employing

different aggregation methods such as Krum and FedAvg. As illustrated in Fig.

4.5, our model consistently outperformed others, exhibiting steady improvement

and delivering high performance under these challenging conditions.

These results signify a substantial advancement in the field of DFL security and perfor-

mance. Our aggregation method and reputation scoring system not only contribute to

the convergence of the DFL model but also provide robust defences against adversarial

attacks, making our DFL system a reliable and secure choice for collaborative learning

in distributed networks. Lastly, the optimisation in our DFL framework enhances model

performance by facilitating a system that is flexible, computationally efficient, and highly
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reliable.

4.5 Conclusions

The adoption of a reputation-scoring system greatly enhances the convergence of our

DFL model. By giving precedence to reliable model updates, our methodology facilitates

efficient integration, leading to enhanced model effectiveness in accuracy and loss metrics.

A thorough comparative analysis against a state-of-the-art baseline model was performed

to evaluate our DFL model. These assessments underscored the model’s exceptional

robustness. Significantly, the model’s efficacy was tested in various conditions, including

networks compromised by Byzantine devices, and compared using different aggregation

techniques like Krum and FedAvg. Across the board, the model consistently surpassed

its peers, showing continuous progress and high-performance levels.

To sum up, this work introduces a robust and secure DFL model designed to excel in

challenging environments. By prioritising trusted updates and showcasing superior per-

formance, this approach contributes to the advancement of secure DFL systems. These

findings present promising opportunities for the deployment of DFL in real-world ap-

plications, as no central server and infrastructure are required, even in the presence of

adversarial actors.

In the future, further investigation into the scalability of our model is warranted, es-

pecially in scenarios with a large number of participating devices. Optimising resource

allocation and communication protocols in such contexts can be a valuable research di-

rection.
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Abstract

Establishing reliable connectivity in dynamic Decentralised Federated Learning (DFL)

networks presents significant challenges due to frequent topological changes and unpre-

dictable participant movements. Continuous communication, essential for the learning

process within the DFL framework, is greatly enhanced by adopting multipath connec-

tivity facilitated by Multipath TCP (MPTCP). This approach addresses the inherent

limitations of serving access technologies that often lead to frequent disconnections as

participants move across coverage areas. To ensure robust communication in such dy-

namic environments, we propose an advanced subflows management algorithm that is

seamlessly integrated with our topology optimisation algorithm, termed the Dynamic

Network Topology Algorithm (DNTA). DNTA employs a dynamic and sophisticated net-

work selection strategy, utilising Reinforcement Learning (RL) algorithms to discern the

most effective network configuration.

In contrast to existing solutions, our proposed approach introduces a DFL model that

dynamically leverages the 4 available subflows of MPTCP, ensuring adaptive and efficient

network usage to enhance the learning process. Through extensive system simulations,

we evaluate our decentralised framework against state-of-the-art federated learning (FL)

benchmark models, leveraging the CIFAR-10 dataset to benchmark image classification

performance. Our findings indicate that our decentralised setup achieves up to 96.5%

accuracy and a loss of only 0.038%, outperforming the benchmark models. It also sig-

nificantly enhances latency (less than 15 ms) and data throughput on wireless channels.

By optimally utilising parallel subflows of the proposed multipath scheme, our approach

significantly mitigates outages and connection instability by up to 35% improvement in
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comparison to a single-path approach, underscoring its potential for real-world applica-

tions in the evolving landscape of distributed learning.

5.1 Introduction

In the dynamic landscape of collaborative Machine Learning (ML) and smart collabora-

tion across mobile and wearable devices, efficient and reliable communication is essential.

The transport layer plays a pivotal role in ensuring these communication demands are

met. However, as these devices become increasingly prevalent, traditional transport pro-

tocols struggle to meet the demands of enhanced connectivity and reliability required for

dynamic networks [1]. In response, Multipath TCP (MPTCP) emerges as a transforma-

tive solution [2], optimising the use of multiple network paths can improve data flow and

resilience for advanced collaborative learning applications [2], such as DFL [3] for dynamic

environments. MPTCP has been officially recognised by the Internet Engineering Task

Force (IETF) RFC 6182 as a standard tool for bandwidth utilisation [4]. This approach

not only enhances data transmission efficiency but also supports the sustainable integra-

tion of emerging technologies by ensuring robust and adaptable network connections [5]

[6].

Furthermore, as we progress towards increasingly autonomous and sophisticated collabo-

rative applications nowadays [7], the necessity for advanced resource management strate-

gies becomes paramount, especially with the increasing dependence on cellular and ad-hoc

networks for these applications. This shift underscores the need to move beyond tradi-

tional centralised architectures to address vulnerabilities such as single points of failure

and concentrated cyber threats.

Therefore, DFL emerges as a flexible scheme to overcome some limitations in the conven-

tional FL framework, such as communication bottleneck [3], where devices collaborate in

a peer-to-peer manner in order to optimise a global model without the need for a central

server. This enables resilient and intelligent collaborative systems as the data processing

is distributed across multiple devices (see Sec. 5.3.4 for more details on the DFL learn-
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ing process). This distribution is vital for further mitigating the risks associated with

centralised systems and enhancing data privacy and security. Despite its potential, the

reliability of DFL networks in mobile environments is yet to be fully realised, often ham-

pered by issues such as random packet loss, network congestion, and user mobility [8] [9]

[10]. In this regard, MPTCP can be adopted to optimise the DFL network by providing

various available subflows and aggregating bandwidth across these network subflows [2].

As a result, utilising MPTCP can significantly enhance the management of multiple data

streams on mobile devices, reduce costs and improve network efficiency, which leads to

enhancing the DFL user experience in terms of learning performance and accuracy.

In response, this research focuses on enhancing the reliability and connectivity of the DFL

network through the strategic use of MPTCP. By integrating MPTCP, this study aims to

ensure robust and efficient data handling in mobile networks, particularly enhancing load

balancing, throughput and resilience against package drops and link failures during the

learning process in the traditional single-path protocols. This approach not only supports

the operational demands of modern mobile and edge devices but also addresses critical

concerns of data privacy, low latency, and resource efficiency in decentralised learning

environments.

The remainder of this work is structured as follows. Section 5.2 provides an overview

of MPTCP technology and its advantages for enhancing the DFL framework. In Sec-

tion 5.3, we detail the system architecture, focusing on a theoretical exploration of client

communication within the network and the evaluation metrics employed for DFL en-

hanced by MPTCP. Section 5.4 describes the simulation setup and parameters chosen to

assess the performance of DFL when integrated with MPTCP, contrasting these findings

against benchmark conventional FL models based on traditional TCP connections under

a similar network design. The paper concludes with a summary of our findings and the

advancements achieved through this research in Sec. 5.5.
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5.2 Background and Motivation

In a DFL scenario involving multiple clients communicating in a peer-to-peer manner,

the communication of model parameters of the DFL participants typically relies on the

Transmission Control Protocol (TCP) to ensure reliable transmission. The DFL process

can be categorised into three phases:

1. Stable Phase: Model parameters of the DFL user are transmitted to the target

neighbours without issues during this phase. There are no delays or packet losses

in the transmission process.

2. Congestion phase: In the congestion phase, delays in model update transmission

may occur due to excessive data traffic. Potential packet loss can occur as a result

of buffer overflow. To address packet loss, TCP initiates the retransmission of lost

model updates. However, even with prompt retransmission, clients may experience

an additional delay of at least one Round-Trip Time (RTT).

3. Disconnected phase: The disconnected phase encompasses scenarios such as con-

nection loss, retransmission timeout (RTO), and the appearance of three duplicated

ACKs. During this phase, the transmission of model updates faces significant delays

or may fail entirely.

Issues in a DFL network using a single-path TCP scenario arise when continuous trans-

mission becomes impractical, requiring a client to either wait for an extended period or

promptly establish another connection. Disconnections of DFL users are more prevalent

in dynamic wireless communication networks, multi-hop networks, and other wireless ac-

cess networks. Several researchers have conducted studies to enhance and optimise DFL

for various scenarios [11]. Nonetheless, these studies have not explored the use of MPTCP

for managing the utilisation of multiple network communication interfaces simultaneously.

This gap highlights the need for a multipath approach that can effectively manage and

control subflows, thereby improving reliability and connectivity without compromising

the users’ privacy.
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Figure 5.1: An overview of MPTCP stack for DFL

Therefore, MPTCP employs multiple connections to mitigate congestion and discon-

nected phases [12] in the DFL networks. This strategy aims to minimise the impact of

these challenges, especially when operators significantly impact the learning process.

In addition, various multipath protocols of the transport layer are available for imple-

mentation in DFL networks, including multipath quick UDP internet connection protocol

(MPQUIC) [13], concurrent multipath transmission based on stream control transmission

protocol (CMTSCTP) [14], and multipath transmission control protocol (MPTCP) [15].

In particular, MPTCP, an extension of the widely adopted TCP, has achieved the IETF

standard status [15] and has been seamlessly integrated by major smartphone manufac-

turers such as Apple, Samsung, and Huawei [16], [17], [18]. This integration makes it

feasible for real-world applications, allowing for seamless coordination during the DFL

model updates, resilience in the face of network failures, and the effective aggregation of

bandwidth from multiple network interfaces.

MPTCP approach is proposed to operate for the establishment of multiple connections

simultaneously for the DFL users by utilising multiple available interfaces, which the

number of these interfaces can be denoted as N, as shown in Fig. 5.1. Based on network
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Figure 5.2: Successful Transmission Probability with Multipath Transmission

policy and design, these N interfaces generate N − 1 replicated control packets, each of

which is simultaneously transmitted through its respective interface [19]. Upon success-

ful transmission of any control packet, MPTCP proceeds to transmit the next one in

sequence. Assuming an average transmission failure probability of Pf i for each process,

the overall successful transmission probability Psuccess of the system can be computed as:

Psuccess = 1− Pf 1 × Pf 2 × Pf 3 × . . .× PfN = 1−
N∏
i=1

Pf i. (5.1)

This equation is commonly observed in parallel systems. In the case of MPTCP, where

multiple interfaces are utilised simultaneously and assuming equal transmission failure

probabilities Pf for each interface, Eq. (5.1) simplifies to:

Psuccess ≈ 1− Pf
N . (5.2)

The analysis presented in Eq. (5.2) is depicted in Fig. 5.2. For example, if the probability

of transmission failure for a single connection is 8%, the theoretical analysis indicates a
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successful control packet transmission probability of 0.920 with a single TCP connection in

the DFL network. When employing MPTCP with two subflows, the probability increases

to 0.9872, and with three subflows, it further rises to 0.99744. These encouraging findings

demonstrate that even with just two connections, a significant reduction in packet losses

can be achieved in standard DFL network communication. Thus, it can be inferred that as

the possible number of interfaces (N) that the network can adopt increases, the successful

transmission probability of the system (Psuccess) also increases, and this underscores the

motivation behind our proposed model DFL over MPTCP.

Therefore, this study aims to enhance the DFL framework by integrating MPTCP mech-

anisms into a unified intelligent system in several ways:

1. Improved Reliability: MPTCP allows data to be transmitted over multiple paths

simultaneously. In the context of DFL, this can enhance reliability by mitigating

the impact of packet losses or failures on a single path. Using multiple paths,

the system becomes more robust against network disruptions, ensuring that model

updates can be successfully transmitted even under challenging network conditions

[20].

2. Reduced Latency: The use of MPTCP results in lower latency because multiple

network paths can be used at the same time [21]. For DFL, it is important to have a

low latency. With low latency, convergence is faster and more efficient learning can

be achieved since edge devices may communicate through various wireless signal

strengths and potential communication delay scenarios.

3. Bandwidth Aggregation: The aggregation of bandwidth from several subflows

can be realised by MPTCP, which leads to more wider available bandwidth, and

therefore the model updates to be delivered in a DFL setup would find enough

capacity [20]. This improvement is more beneficial, especially when dealing with

large models and situations where quick transmission is necessary for successful

cooperation at edge devices.

4. Adaptability to Network Changes: DFL systems operate in highly dynamic
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environments where network conditions can change rapidly. In such adaptive sce-

narios, the ability to dynamically select paths for data transmission from various

sources is crucial. MPTCP plays a significant role in ensuring resilience in these

situations. This is particularly important given that the movement of edge devices

can result in a completely new topology of signal strengths or changes in network

topologies. These changes reflect the evolving realities of our surroundings [5].

Consequently, the main motivation for developing our DFL framework is to enhance

privacy and security for all clients. By leveraging the capabilities of MPTCP, our frame-

work enables efficient collaboration across clients, achieving superior network and learning

performance. Effective communication within the network is crucial for attaining robust

collaborative learning outcomes, such as high accuracy and minimal latency. These ad-

vancements are particularly vital for real-world applications requiring rapid and reliable

data processing, such as Autonomous Vehicles (AV), where decision-making speed and

data integrity are paramount.

However, it is crucial to acknowledge that the benefits of MPTCP are contingent upon

compatibility with the existing physical bandwidth capacities of the network infrastruc-

ture. This ensures that the aggregated bandwidth effectively utilised does not surpass the

physical limitations of network components. Furthermore, our framework presumes that

both devices and network infrastructures are equipped to execute multiple algorithms

concurrently. Consequently, while optimising our approach, we may not fully address the

complexities and synchronisation challenges associated with multipath aggregation. This

simplification is intended to focus on the primary benefits of MPTCP, recognising that

practical deployments may require additional considerations for managing these technical

intricacies.

5.3 System model

In this study, our aim is to train personalised models on edge nodes (i.e., clients) utilising

heterogeneous data from the participants’ clients while considering critical communication
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constraints.

To achieve our goal within an edge computing environment that includes a total of K

clients, represented by the set φ = {1, . . . , K}, we focus on minimising the empirical

loss function F (.) of DFL model. This set includes both edge-connected clients (k) and

a designated primary client. The primary client is the client that is assigned to play a

critical role by aggregating local updates directly from neighbouring clients to update the

global model during each specific iteration of DFL. Our objective is to learn an optimal

weight vector Wk for each client by minimising the loss function f , which is defined as

follows:

arg min
f(Wk)

1

|Dk|

|Dk|∑
i=1

F (Wk; (xi, yi)) (5.3)

where xi represents the prior client data, yi is the target value, and F (Wk; (xi, yi)) signifies

the loss relative to the model Wk. Dk = {(xi, yi)}|Dk|
i=1 denotes the training set of edge

client k following a distinct distribution.

Given that each client has its optimisation objective, we simplify the problem by defining

the objective function as minimising the sum of all clients’ loss functions. This can be

represented as:

arg min
W

K∑
i=1

f(Wi), (5.4)

where W = {W1,W2, ...,WK} denotes a set of weight vectors containing all clients’

models. In addition to minimising the objective function, we aim to increase commu-

nication reliability and reduce the total communication rounds (CR) and latency in the

decentralised learning framework.

To address these limitations, our system model proposes a DFL approach leveraging

MPTCP to optimise model update exchange among clients as illustrated in Fig. 5.3.

The design encompasses three distinct scenarios aimed at maximising throughput, band-

width efficiency, and adaptability to varying network conditions. The scenarios involve

simultaneous exchange through available subflows, prioritising a master subflow based on
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Figure 5.3: Proposed architecture of the DFL framework leveraging MPTCP

connection quality, and assigning subflows for sharing local and global model updates, as

explained below:

5.3.1 Network scenarios for DFL through MPTCP

In DFL networks over MPTCP, clients have multiple avenues for peer-to-peer communi-

cation. Thus, this work introduces innovative topologies designated to satisfy the DFL

requirement, such as sharing the local and global model updates efficiently, as shown in

Fig. 5.3. The topologies are proposed to enhance the efficiency of subflow use within our

DFL network operating over the proposed MPTCP architecture. The proposed topolo-

gies are adaptable to various distinct scenarios, denoted as s, offering robust solutions for

diverse network conditions as follows:

1. Simultaneous Subflows Utilisation Scenario :

In this scenario, clients engage in concurrent model update exchanges with their
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neighbours through multiple available subflows. The objective is to increase through-

put and optimise bandwidth utilisation by leveraging the parallel transmission

capabilities of MPTCP. This approach promotes efficient communication among

neighbouring clients, fostering collaborative learning while minimising the impact

of network delays.

2. Subflow Allocation for Model Sharing Scenario:

In the second scenario, clients strategically allocate subflows for different purposes.

Particular subflows are dedicated to sharing the local model’s updates with other

clients, while others are designated for global model updates. This fine-grained

allocation optimises the utilisation of network resources, facilitating efficient col-

laboration and knowledge exchange within the DFL framework.

3. Master Subflow Priority Scenario:

The third scenario introduces a master subflow that serves as the primary com-

munication channel for model updates unless the connection quality through this

master subflow deteriorates. In the event of poor master subflow conditions, clients

dynamically switch to utilising available subflows, ensuring a seamless transition

to maintain communication reliability. This adaptive approach aims to balance

the benefits of a consistent communication channel with the flexibility to address

suboptimal network conditions.

Through these scenarios, we explore a variety of communication strategies within the

DFL network over MPTCP, providing a preliminary glimpse into how network topologies

can be optimised to enhance collaborative learning in distributed environments.

Given this context, a thorough understanding of network topology is crucial to fully grasp

the dynamics of these interactions. Our analysis delves into the effectiveness of MPTCP

within the DFL framework, highlighting how the network’s structural design influences

the efficiency of collaborative learning processes.

Figure 5.3 illustrates our proposed model architecture. The network features a primary
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client responsible for aggregating updates from neighbours to update the global model

during each epoch. Simultaneously, other clients collaborate to enhance overall model

performance. Each client processes its local data, trains the model locally, and uploads

the updated parameters to the primary client. This primary client then integrates these

contributions into the global model and redistributes it (download) to all clients for the

subsequent training iteration. These exchanges leverage MPTCP, with the communica-

tion topology dynamically optimised using the network topology algorithm outlined in

Algorithm 5.2.

Building on this foundation, our research specifically aims to identify and address poten-

tial network challenges in typical DFL setups. We evaluate whether adopting different

MPTCP topologies can mitigate these challenges, thereby improving the network’s re-

silience and performance.

5.3.2 Optimise Transmission Reliability in DFL Networks over

MPTCP

The transport layer primarily employs two protocols: UDP (User Datagram Protocol)

and TCP (Transmission Control Protocol). UDP is connectionless, offering no guarantees

on packet delivery or order and lacks rate adaptation based on available bandwidth. In

contrast, TCP is connection-oriented, ensuring packets are delivered successfully and in

order to their destination. Additionally, TCP includes congestion control mechanisms to

limit the volume of data in the network by adjusting the congestion window (CWND)

[22].

In this work, we focused on the transport layer for our proposed DFL using MPTCP;

we examined how MPTCP enhances the success rate of transmitting updates for DFL

models. Employing system reliability theory [23], we investigated the time needed to

transmit model updates and multiple interfaces’ impact. Various failures may occur

during the transmission of model update packets, including unintended packet losses

or delays in their arrival. As shown in Fig. 5.3, the proposed architecture contains
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several clients; one of these clients is assigned as a primary client in this round, and this

primary client is responsible for performing the aggregating process of the local models’

parameters from others to update the global model. The local model parameters result

from training the local ML algorithm using the local data. In our architecture, each client

can use multiple subflows to share the model parameters. Furthermore, we optimise the

way that we can utilise the available subflows by implementing our network topology

optimisation algorithm called Dynamic Network Topology Algorithm (further details will

be introduced in Sec. 5.3.3 and in Algorithm 5.2).

In this work, we examine a diverse wireless setting that integrates a number of access

network subflows (N) among communicating terminals. Wireless access networks serve as

communication routes in MPTCP, encompassing both wired and wireless domains. Each

communication subflow p ∈ N functions as an autonomous transport link, possessing the

following attributes.

Property 1 (Round trip time, RTTp): The time taken for a packet to reach its

destination, along with the delay in receiving an acknowledgement of that packet. Thus,

RTTp comprises the packet transmission time and the path propagation delay.

Property 2 (Packet loss rate): The average percentage of data packets that fail to

reach the destination while traversing the communication paths. These packet losses may

stem from network congestion, wireless channel fading, external interference, etc.

Property 3 (Available bandwidth, BWp): The maximum transmission rate offered

by the end-to-end communication path for the data flow. In HTTP/TCP data streaming

systems, the available bandwidth can be estimated based on the observed TCP through-

put for each subflow.

A significant attribute of MPTCP, in general, involves its congestion control mechanism,

which is essential to maintain network stability during periods of increased load. Conges-

tion control schemes play pivotal roles in achieving optimal bandwidth utilisation [24].

Congestion Avoidance Algorithms are introduced within the framework of optimising

DFL through MPTCP, representing a valuable strategy for enhancing communication
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efficiency in decentralised systems. The study harnesses MPTCP’s capability to regu-

late congestion windows using various algorithms. Similar to individual TCP flows, each

MPTCP subflow maintains its congestion window and retransmission strategy throughout

data transfer, commencing with a slow-start phase and transitioning to the congestion

avoidance phase per Round-Trip Time (RTT ) [25]. In the framework of DFL utilis-

ing MPTCP, various model-based congestion control algorithms like CUBIC, BBR, and

OLIA stand as viable options. Each offers distinct mechanisms for handling congestion

and optimising throughput across multiple network paths.

CUBIC [26], a predominant Linux algorithm, utilises packet losses as a congestion in-

dicator, transforming window growth into a cubic function for enhanced adaptability.

Decoupling window growth from RTT ensures consistent bandwidth distribution, mak-

ing CUBIC flexible and stable in scenarios with non-negligible network bandwidth and

latency.

BBR (Bottleneck Bandwidth and Round-trip propagation time) [27], introduced by

Google, excels in networks with elevated latency and packet loss ratios. BBR periodi-

cally evaluates the available bandwidth and RTT , relying on an estimate of the bottleneck

bandwidth to calculate the congestion window.

Based on empirical findings from experiments [28], BBR’s performance varies depend-

ing on the combination of RTT , bandwidths, and buffer size values. This enables the

identification of network conditions where BBR exhibits higher throughput compared to

TCP congestion control algorithms like CUBIC. In some scenarios, such as a highway

driving scenario [29], CUBIC and BBR generally demonstrate similar throughput, but

BBR displays significantly reduced self-inflicted delays compared to CUBIC. These obser-

vations align with reports in [30], affirming that, in TCP simulations on highways, BBR

outperforms in scenarios involving packet loss on communication links with low Signal to

Interference plus Noise Ratio (SINR).

OLIA (the Opportunistic Linked-Increases Algorithm) developed by Khalili [31], ad-

dresses MPTCP’s non-Pareto-optimal behaviour, especially its aggressiveness toward
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Algorithm 5.1 DFL using MPTCP Rewards Algorithm
Evaluation on DFL Network Scenarios (s):
Rewards are evaluated based on path performance over any of these distinct scenarios
(s) of DFL network using MPTCP, including:

1. Simultaneous Subflow Exchange Scenario
2. Subflow Allocation for Model Sharing Scenario
3. Master Subflow Priority Scenario

Parameters:
xs
i ∈ [0, 1]: current reward of action i in the DFL Network scenarios s

xs
i ∈ [0, 1]: average reward of action i in the DFL Network scenarios s

ns
i : the number of times the action i is chosen in the DFL Network scenarios s

ts: the overall number of trials in DFL Network scenarios s

Function Initialization():
1: Take each action once and set the parameters.

end
Function based on UCB1 MainLoop():

1: Take action i that maximises xs
i +
√

2log(ts)
ns
i

2: Get reward xs
i .

3: Update the parameters.
end

TCP users. Crafted as a Pareto-optimal algorithm, OLIA is responsive and nonflappy,

ensuring optimal traffic distribution across different paths. In the context of DFL opti-

misation, OLIA contributes to enhancing the efficiency of MPTCP Congestion Avoidance

Algorithms. Congestion avoidance control is a decentralised algorithm that adjusts pa-

rameters such as congestion window, round trip time, and loss in a feedback loop. For

simplicity, we omit the time variable in the expressions.

In this work, the proposal DFL over MPTCP design incorporates a reward monitor Al-

gorithm 5.1 and reinforcement learning (RL) control mechanisms in order to optimise

the network performance over the selected subflow during the learning process, and thus

further technique details are described in Sec. 5.3.3. Therefore, we improve the network

performance by integrating this reward monitor Algorithm 5.1 and the RL-based MPTCP

design, which functions to continuously monitor the dynamics of the network and traffic

and regularly work on finding the optimum topology for the DFL network. Moreover, cal-

culate the effective congestion window ω̂i and schedule for all paths, periodically enforcing

them to ensure the target delay while accommodating transient network variations. The
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inner optimisation then adopts the enforced ω̂i (i.e., ωi ← ω̂i) and fine-tunes it using Eq.

(5.7) until the next reinforcement from the outer optimisation (see Sec. 5.3.3 for more

details). This yields a reinforced total rate from client k over all paths, denoted as (θ̂k)

and then utilised for enforcing the new schedule (hk̂) and the round trip time τi for the

path i, and these can be calculated as follows:

θ̂k =
∑
i

ω̂i,k/τi, (5.5)

hk̂ = θ̂i,k/θ̂k. (5.6)

This revised formulation for the scheduling strategy is crucial in determining the necessary

time-frame to assess network performance, thereby enabling our model to make informed

decisions about whether to initiate a handover to a different network topology or to

continue with the existing one

Furthermore, this work involves a model-based MPTCP algorithm (e.g., OLIA), serving

as an inner control optimisation stage. A further discussion on this is available in Sec.

5.3.3. Upon detecting packet loss indication or observing round trip time on path i,

it triggers a multiplicative decrease, halving the congestion window ωi. In contrast,

upon receiving an acknowledgement from path i, it employs a continuous increase in ωi

calculated as ω′
i ← ω′

i +min{1/ω′
i, α(ω

′
i)}, where:

α(ω′
i) =

maxj{ω′
j/τ

2
j }(∑

j ω
′
j/τj

)2 . (5.7)

This approach ensures that the CNWD adapts to the network conditions, balancing

between efficient throughput and network stability.
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5.3.3 Topological Analysis in DFL

The learning process in the proposed DFL framework over MPTCP can manifest in one

of three distinct scenarios, as described in Sec. 5.3.1.

In the first scenario, simultaneous utilisation of all subflows, clients simultaneously ex-

change model updates with their neighbours via multiple available subflows. The main

aim in this scenario is to optimise bandwidth utilisation and increase throughput by

using MPTCP’s parallel transmission capabilities. By allowing clients to communicate

simultaneously through different subflows, this approach promotes efficient communica-

tion between clients within our network, improving DFL learning while minimising the

impact of network latency.

The total number of clients participating in the DFL process is denoted as K. In this

context, each client communicates with its neighbours through N available subflows.

Therefore, the overall throughput T achieved in the network can be represented as:

T = K ×N × Throughput per subflow (5.8)

This illustrates how the overall throughput increases linearly with the number of clients

and the number of available subflows, demonstrating the potential improvement in net-

work efficiency by leveraging MPTCP’s parallel transmission capabilities. In the context

of the DFL framework, this scenario involves clients engaging in concurrent model update

exchanges through multiple available subflows.

In the second scenario, clients have opted to strategically allocate subflows for different

purposes, aiming to optimise the dissemination of model updates and foster collaboration

within the DFL framework. Each client dynamically allocates subflows based on its role

in the learning process and the specific communication requirements. In this context,

particular subflows are dedicated to transmitting and receiving local model updates within

neighbouring clients. These dedicated subflows ensure an efficient and timely exchange

of information, allowing clients to update their models based on the latest insights from
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nearby peers. In contrast, other subflows are assigned for global model updates, which

involve broadcasting the latest global model update across the network. In a stable

network, sharing model updates on specific subflows can optimise network resources and

streamline communication for higher efficiency.

Lastly, the Master Subflow Priority Scenario involves assigning communication resources

based on a predefined priority list. In this scenario, clients select a certain communication

channel, known as the master subflow, for sharing model updates (both local model

and also global model updates in case the client is the primary client in this iteration).

The master subflow acts as the main path unless its connection strength weakens and

becomes below the accepted threshold, prompting a transition to backup subflows, which

is the second option in the priority list. The reason behind this approach is to maintain

less complexity and a consistent communication channel whenever possible, optimising

bandwidth utilisation and minimising network instability. Moreover, the system can

adjust to network situations smoothly switching to alternative subflows when necessary.

This flexibility guarantees communication and mitigates the impact of potential changes

in network conditions on the learning process.

By balancing the benefits of a stable communication channel with the flexibility to adapt

to changing network dynamics, the master subflow priority scenario enhances the effi-

ciency and robustness of DFL over MPTCP. This approach optimises resource utilisation

and minimises complexity while prioritising communication reliability, thereby facilitating

collaborative learning in dynamic network environments.

To improve how we use subflows in the learning process within the DFL network, we

suggest a method called the Dynamic Network Topology Algorithm (DNTA) for our

DFL framework. This strategy breaks down system optimisation into two stages. The

layout of these stages and our proposed DFL framework is shown in Fig. 5.4, and can be

described as follows:

1. Inner Stage (Subflows use optimisation): The main goal in this stage is to

improve the selection of the subflows for communication between clients in DFL
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Figure 5.4: The stages and framework layout of our proposed DFL over MPTCP

network during the learning process. This phase uses methods to guarantee that

the effective subflows are located and used, thereby enhancing the performance and

efficiency of the DFL network.

2. Outer Stage (Network topology optimisation): This stage concentrates on

dynamically and regularly adopting the most suitable network topology for the DFL

operations over MPTCP. This involves enhancing network reliability and learning

performance.

Subflows use optimisation: This stage uses the concept of the model-based MPTCP

algorithm, combined with our reward-based criteria detailed in Algorithm 5.1. This

method, inspired by the Upper Confidence Bound (UCB1) algorithm from [32], aims to

maximise the efficiency of using multiple subflows in the DFL network. It tackles packet

scheduling, a method commonly employed to address the well-known multi-armed bandit

problem, aiming to optimise path selection to reduce delays and improve data throughput.

In our approach, time is partitioned into scheduling intervals (SI), with each SI comprising

multiple epochs. Within a complete cycle of DFL, multiple SIs may occur. During each

epoch, every client representing a client in the collaborative network probabilistically

selects one of N potential actions. Here, each action in the DFL over MPTCP corresponds
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to the selection of subflows for model updates. These actions, denoted by integers i

where 1 ≤ i ≤ N , signify the available subflows for a particular network topology, with

the total number of actions N equivalent to the total number of available subflows.

After performing an action, each client receives a reward assignment, which forms an

infinite sequence denoted as {x(1), x(2), . . .}, representing the rewards associated with

each action over time. We assume that each client is only aware of the rewards obtained

from previously selected actions within its vicinity. The rewards for each action are

independently and identically distributed according to an unknown distribution with an

unknown expected value µi.

Each client employs an algorithm, denoted A, can determine the next action based on its

past actions and the rewards received from its neighbours. Let Ti(n) denote the number

of times the action i has been selected by the client A after n tests. A common metric for

evaluating the performance of multi-armed bandit algorithms is a regret metric, which

measures the potential loss in reward due to not always choosing the optimal action. For

a given client A, the regret after n trials is quantified by the difference between the total

expected reward of always selecting the optimal action and the accumulated expected

rewards from the actions taken, as follows:

R(n) = µ∗ · n−
N∑
j=1

µj · E[Tj(n)], (5.9)

where:

• R(n) is the total regret after n trials.

• µ∗ = max
1≤i≤N

µi represents the maximum expected reward among all actions, indicat-

ing the reward of the optimal action.

• N is the total number of available actions or arms (i.e., number of available sub-

flows).

• µj is the expected reward of action j.
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• E[Tj(n)] denotes the expected number of times action j has been selected up to

trial n.

Network topology optimisation: The external phase incorporates Reinforcement Learn-

ing (RL) techniques to continuously evaluate and adapt to the prevailing network condi-

tions. This RL-based approach constructs an optimal network scenario policy tailored for

DFL users, empowering the system to dynamically respond to fluctuations and uphold

superior learning and communication efficacy across diverse network conditions. In our

research, we delineate three specific scenarios’ options, as elaborated in Sec. 5.3.1.

The foundation of our network performance optimisation strategy lies in the application

of the Q-Learning algorithm (i.e., a common RL model), as encapsulated by Eq. (5.10):

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)], (5.10)

where Q(St, At) represents the value of taking action At in state St, α is the learning

rate determining the weight of new information over past knowledge, Rt+1 is the reward

received after taking action At, γ is the discount factor that balances the importance of

immediate versus future rewards, and maxa Q(St+1, a) denotes the maximum reward that

can be achieved from the next state St+1, considering all possible actions a.

Therefore, our model proposes the utilisation of a combination of our reward monitors

algorithm and experience replay [33] for optimising decision-making algorithms and pro-

viding smart learning at the outer optimisation stage by allowing the algorithm to not

only learn from its current actions (and their immediate outcomes) but also from a

broader set of past experiences. This can lead to a more informed and nuanced approach

to minimising regret. Experience replay is a strategy utilised in reinforcement learning

and a fundamental component of Q-Learning. It revolves around storing experiences,

like sequences of state-action-reward-state, encountered during interactions with an envi-

ronment within a designated replay buffer. This combination facilitates efficient and fair

bandwidth allocation of DFL, steering clear of instability and oscillations. The proposed

approach effectively integrates successful features of RL in continuous multipath band-
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Algorithm 5.2 Dynamic Network Topology Algorithm for our DFL using MPTCP
(DNTA)
Require: Incorporate reward monitor Algorithm 5.1 and reinforcement learning (RL)

mechanisms.
1: Initialise:

• Set the scheduling intervals (SI) time.
• Set the network architecture scenarios.
• Set the potential actions for each client.

2: Subflows’ Selection Stages (Inner Stage):
3: for each epoch in the DFL learning process do

- Model-based MPTCP algorithm (e.g., OLIA) as inner control optimisation stage.
- Upon packet loss or RTT observation on path i, trigger multiplicative decrease.
- Upon receiving acknowledgment from path i, employ continuous increase in ωi.

4: end for
5: Network Scenario Stage (Outer Stage):
6: Initialise the network topology.
7: Set up the initial state with all MPTCP connections.
8: Dynamically switch among the following scenarios:

• Simultaneous Subflows Utilisation Topology.
• Strategic Subflow Allocation Topology.
• Master Subflow Priority Topology.

9: for each scheduling interval do
- Initialise: The Q-table for the Q-learning algorithm.
- Explore Actions: For the current state St, select a topology scenario action.
- Transition to Next State St+1: Implement action and transition to new state
St+1.

- Select Action with Highest Q-value: From state St+1, choose the action
with the highest Q-value.

- Update the Q-table using Eq. (5.10).
- Update the Network State: Set St+1 as the new current state.

10: end for
11: Return: Optimal network scenario from step 8 and then repeat step 2.
12: Repeat the Process: Continue until the optimisation goal is achieved.

width allocation and intelligent scheduling while benefiting from fairness and stability

offered by model-based MPTCP mechanisms.

Consequently, upon detecting discrepancies between network conditions and learned poli-

cies, our model swiftly abandons outdated strategies in favour of new ones. Thus, this

algorithm is proposed as it not only incorporates the optimal path chosen by the client

but also assesses its efficiency across three distinct scenarios elucidated at the outset of

Sec. 5.3.1. By evaluating the efficacy of the selected path within these scenarios, we gain

invaluable information on the performance of DFL under diverse network conditions.
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5.3.4 Learning Criteria and Framework Architecture of DFL

This section delineates an overview of DFL architecture, emphasising the model weight

parameter updating and transmission process across networked edge clients’ devices. To

further augment the efficiency of the DFL learning setup, our approach integrates the use

of optimised MPTCP, a significant enhancement over traditional TCP, allowing multiple

parallel data streams to increase the reliability and throughput of communication be-

tween devices. This is achieved by adeptly managing the available subflows, ensuring an

optimised use of network resources, which in turn facilitates a more efficient and reliable

model training and data exchange process within the DFL framework.

Our architecture utilises a collection of K edge devices, each denoted as a client within

a set φ = {1, . . . , K}, strategically dispersed across a vast network in accordance with a

stationary Poisson Point Process (PPP) [34], characterised by a density parameter (λ).

These clients are situated within disk cells, uniformly spread out to ensure comprehensive

coverage. Each client i ∈ φ is equipped with a dataset O(i), which comprises m pairs

of instance-label samples (Xn
i , Y

n
i ). Here, Xm

i and Y m
i signify the input and output for

the ith device, sequentially, with m = 0, . . . ,M . These samples originate from datasets

that are either homogeneous or heterogeneous in nature, adhering to an undisclosed

probability distribution p(x, y), and might exhibit interactions among distinct sets (e.g.,

O(i) and O(j), for i ̸= j). Each instance Xn
i falls within Xi, a subset of the global

instance space X, which collectively forms the basis for our supervised learning models,

accommodating both binary classification and regression tasks.

To enhance communication reliability and throughput among the clients within the DFL

network, we introduce the implementation of an optimised MPTCP. This innovative

approach leverages multiple available network paths (subflows) to facilitate efficient and

reliable data exchange across the network, ensuring seamless and robust interactions

among the clients.

Within this system, all clients are synchronised to operate on a consistent machine-

learning model, such as a Convolutional Neural Network (CNN) [35], which incorporates
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a shared matrix of weight parameters W. The primary ambition of our system design

is to diminish the cross-entropy loss function’s variance between anticipated and actual

outputs as follows:

arg min
W

F (W) ≡ 1

Ai

∑
i∈φ

fi(W), (5.11)

where F (W) represents the overarching loss function and fi(W) the localised loss per

device i, with a total number of devices achieving successful transmission to the ith

participant across each training iteration can be denoted as (Ai).

The local loss function for device i is derived from the cross-entropy loss pertinent to its

dataset O(i), calculated as:

fi(W) =
1

M

M∑
m=0

l(hW(Xm
i ), ymi ), (5.12)

m = 0, 1, 2, ...,M

where m represents a subset of the overall number of local datasets, and M equals the size

of the dataset for participant i normalised by the batch size (B), that is (M =
|O(i)|
Bi

). The

function l(hW(X
(m)
i ), y

(m)
i ) signifies the cost function associated with the weights matrix

W when evaluated against a hypothesis hW(Xm
i ) using data samples Xm

i , exemplified in

the case of simple linear regression as hW(X) = W0 +W1X.

During the tth iteration of the DFL process, each device i ∈ φ updates its local parameter

weights matrix W
(t)
i to enhance model accuracy and pinpoint the most suitable solution

for the problem at hand.

The DFL methodology incorporates a dual-level optimisation strategy: at the local model

level, each device employs a conventional machine learning optimiser, such as the Stochas-

tic Gradient Descent (SGD) algorithm, to adjust local parameters according to its dataset.

At the global model level, a global optimiser aggregates parameters from neighbouring

devices using the Federated Averaging algorithm (FedAvg) or any other suitable optimiser
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techniques to refine and update the global model.

Each participating device i undertakes M training iterations over its local dataset O(i) to

contemporaneously modify its local model weights via SGD, employing a learning rate η

and batch size Bi, demonstrated as follows:

∇fi(Wt
i) =

1

M

M∑
m=0

∇l(h(Wt
i)
(Xm

i , ymi )), (5.13)

Wt
i := Wt

i − ηi∇fi(Wt
i), (5.14)

∀ m = 0, . . . ,M and i ∈ φ.

Here, ∇fi(Wt
i) indicates the gradient matrix derived from the device i’s batch Bi after M

training iterations on local data at iteration t, expressing the rate of fi’s change relative

to Wi.

After completing a predefined number of iterations, each device having trained its model

with adequate hyperparameters shares its model parameters with neighbouring devices

via one-hop communication, following a mesh network topology. During the learning pro-

cess, a single client assumes the role of the main client, which is responsible for aggregating

the models from others and updating the global model accordingly. This collaborative

approach ensures that each participant not only updates its local parameters based on

direct observations but also integrates insights gathered from neighbours, thereby collec-

tively enhancing the global model accuracy and reliability through the efficient utilisation

of MPTCP for improved communication efficacy.

In subsequent phases, participants aggregate these updated parameters Wt
i from their

neighbours, adhering to wireless communication standards, to perform FedAvg, thereby

generating a new, refined global model at each iteration. This continuous exchange and

aggregation foster a dynamic, server-free learning environment, incrementally improving

model performance towards a predetermined convergence threshold εk, as depicted in the
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following condition:

arg min
W

∇Fi(W) ≜

[(
1

(Ai + 1)
(∇̂fi(Ŵt

i)+

Ai∑
si=1

∇̂fsi(Ŵt
si
))
∣∣∣Ai ≥ 1

]
≤ εk. (5.15)

where Ai is the expected number of devices achieving successful transmission to the main

client at each epoch, and the convergence threshold εk can be determined based on the

target outcomes of the model.

In any case, clients are assumed to proceed to share these parameters and loss function

metrics over a wireless network, employing a peer-to-peer communication scheme, thereby

collectively advancing towards achieving the system’s defined objectives.

Our proposal stands to significantly enhance the DFL process through the integration of

MPTCP and the strategic use of available network subflows. This optimisation not only

fosters a more efficient data exchange but also reinforces the communication backbone

of our distributed learning architecture, thereby elevating the network’s reliability and

throughput.

A synopsis of the algorithm deployed is presented in Algorithm 5.3.

5.3.5 Performance Metrics

To evaluate the effectiveness of our DFL for solving the proposed classification problem,

we employ two key metrics commonly utilised in the realm of Machine Learning (ML):

1. Categorical Cross-Entropy Loss: This metric quantifies the divergence between

the actual probability distribution of target categories and the model’s predicted

probability distribution. It is a crucial measure for evaluating the performance of

classification models. The calculation of this loss is as follows:

Loss = −
D∑
i=1

C∑
j=1

yij log(ŷij) (5.16)
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Algorithm 5.3 Local Update Algorithm and FL Training (Procedure in each client k)
Require: Set subflows selection policy based on Algorithm5.2
Require: Local training set Dk, Test set Dtest,k, threshold β
Ensure: Local weight vector Wk

1: Initialise t← 0, W(0)
k ← 0

2: Initialise β as a constant
3: repeat
4: Server aggregates model updates W(t) from clients
5: Compute global model
6: Share global model to update local model
7: for each client k, each local epoch do
8: for samples Dk train the model locally do
9:

W(t+1)
k = W(t)

k − η 1
B

∑
(xi,yi)∈b∇F (W(t)

k ; (xi, yi))
10: t = t+ 1
11: accuracy = Test(W(t)

k , Dtest,k)
12: if Accuracy < β then
13: Send W(t)

k to server
14: end if
15: end for
16: end for
17: until Accuracy ≥ β return Wk

where D represents the total number of observations in the dataset, C is the count

of distinct classes, yij denotes the actual probability that the ith observation belongs

to the jth class, and ŷij is the corresponding predicted probability. Lower scores of

loss are indicative of superior classification performance by the model.

2. Accuracy: It measures the proportion of correct predictions made by the model,

which includes both true positive and true negative predictions, relative to all pre-

dictions made on the dataset. The formula for calculating accuracy is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.17)

where TP denotes the number of true positives, TN denotes the number of true

negatives, FP represents the number of false positives, and FN signifies the number

of false negatives.

Additionally, we consider model complexity and latency as integral metrics for assessing
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our DFL model. This encompasses an examination of the model’s structure, the learning

dynamics, and the inter-device communication mechanisms through MPTCP. The latency

refers to the time it takes for model updates to be communicated between participating

clients in the network. Due to the decentralised nature, there is no central server, and

clients often communicate directly with each other, potentially over multiple network

paths simultaneously. On the other hand, the complexity of the model’s architecture,

notably the quantity of parameters in the global model, significantly influences overall

complexity. This effect is particularly pronounced in larger models, where an increased

parameter count typically indicates greater complexity. The communication process is a

further complexity factor, influenced by the number of devices contributing to the learning

process and the requisite communication iterations for model training, is another critical

factor. Execution duration further contributes to an understanding of model complexity.

Hence, it is imperative to achieve an optimal balance between model complexity and

achievable accuracy during the design phase of the DFL model.

In our model, we acknowledge that the latency in TCP connections is primarily affected

by two factors: the Round Trip Time (RTT) and the congestion control mechanism.

Furthermore, we extend our analysis to include the impact of the model size and dataset

size on latency. The foundational equation to represent the latency encountered by a

data packet is:

LTCP = RTT +
C + δ(M,D)

CW
, (5.18)

where:

• LTCP represents the latency experienced in TCP protocols.

• RTT denotes the round trip time.

• C symbolises a coefficient reflecting the effects of congestion control techniques,

such as slow start and congestion avoidance phases.

• CW indicates the size of the congestion window.
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• δ(M,D) is an additional delay factor introduced by the size of the ML model (M)

and the dataset (D), accounting for data preprocessing and model loading times.

On the other hand, MPTCP uses multiple subflows to reduce total latency, enhancing

load balancing and redundancy. Thus, the determination of latency in MPTCP requires

a careful approach because it considers numerous paths in its workings and also involves

large ML models and dataset sizes. The estimated latency for MPTCP is given as:

LMPTCP = min(RTT1, . . . ,RTTn) +
C + δ(M,D)

CW1 + . . .+ CWn

, (5.19)

• LMPTCP indicates the latency in MPTCP configurations.

• RTTi is the round trip time for the i-th path.

• CWi denotes the congestion window size for the i-th path.

• n is the number of paths.

• δ(M,D), as before, represents the delay factor due to the ML model and dataset

size.

Consequently, the primary objective is to boost network performance and decrease la-

tency through the deployment of our DFL model leveraging based-model MPTCP. This

approach aims to enhance the accuracy and minimise the loss of DFL models, thereby

optimising overall system efficiency.

5.4 Simulation results and discussion

In our study, we propose the implementation of the based-model MPTCP within a DFL

framework to augment throughput, reduce operational costs, and enhance system flexi-

bility, all the while achieving competitive and often superior results compared to other

benchmarked models. This advancement is particularly significant given that, although

benchmark systems relying on a central server may exhibit fluctuating accuracy levels

that often do not meet our model’s performance, the central server architecture is in-
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herently vulnerable to being a single point of failure. This vulnerability is critical to

recognise, as system failures or communication blockages in centralised models could lead

to significant downtime.

In our model, the main advantage lies in effectively managing simultaneous, reliable

communication across diverse network subflows. As leveraging the parallel transmission

capabilities of MPTCP can potentially increase throughput and optimise bandwidth util-

isation. Therefore, we utilise the MPTCP approach, which envisages engaging numerous

participants scattered across a two-dimensional confined space. For ease of represen-

tation, a sizable circular zone with a radius R > 0 is suggested; however, a hexagonal

pattern is also viable and would result in marginally differing outcomes by an insignificant

constant. The participants’ distribution follows a Poisson pattern with network density

λ over an area A, meaning the count within A is given as a Poisson random variable with

an average λA, where λ > 0 is the network density, and A denotes the circular network

area A = 2πR2.

The system’s central client, situated at the core of this two-dimensional boundary, serves

as the nexus for the DFL model, with participants randomly dispersed in the designated

zone. The efficiency of participation and transmission in the learning processing is con-

ditioned by wireless communication constraints, such as channel fading and interference,

to closely resemble real-world scenarios.

In DFL, each client i identifies its neighbours via a one-hop communication link, confined

within a signal coverage area marked by a radius ri < R.

Participants are independently and arbitrarily positioned within the circular network

zone, ensuring each one’s distance to the main client is dk0 ≤ R. The simulations quan-

tify the probability of a successful transmission P (SINR ≥ Tk) by assessing the Signal

to Interference plus Noise Ratio (SINR) against the network’s threshold (Tk). A partic-

ipant is deemed successfully connected if the SINR exceed the predefined threshold Tk,

considering a network space radius R = 1000 meters and an intensity λ = 0.1.

The participants are assumed to be equipped with 4 subflows and varying transmission
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powers per subflow, and thus, only a finite number can concurrently share and update

their parameters, influenced by the network’s topology. Diminishing the SINR threshold

invites more participants into the learning process but escalates the bandwidth require-

ment and system latency, necessitating a balance between the success probability and the

SINR threshold for optimal throughput, capacity, and acceptable latency.

In this study, we benchmark our model against widely recognised FL frameworks, in-

cluding the FedAvg model [36], which is introduced by Google and other state-of-the-art

models such as FLAIR [37] and Greedy FL [38]. These models have been assumed to

use the traditional single path protocol (i.e., TCP) and a central server for exchanging

the model updates during the learning process. Our evaluation criteria encompass both

the model performance and the system efficiency, comparing our approach with these FL

architectures. The simulation setup for these benchmarks FL models involves positioning

a central server at the core of a designated circular area with radius R, serving as a hub

for a comprehensive network of edge devices and clients.

The network designs are similarly simulated for both our proposal model and the bench-

mark models (i.e., FedAvg, FLAIR and Greedy FL models), where the clients are rep-

resented as a Poisson Point Process (PPP) characterised by a density λ and a total of

N participants. The simulation for the benchmark models adopts a simplified approach

where all clients, each within a distance ri < R from the server, have identical transmis-

sion power and are randomly arrayed around the centre within the network area. The

system leverages Python and Pytorch APIs [39] to train a classification algorithm on

the widely recognised CIFAR-10 dataset comprising 60,000 colour images categorically

distributed across 10 distinct image classifications.

By aggregating participants’ parameters and utilising diverse methodologies (i.e., cen-

tralised and decentralised FL), the proposed algorithms aim to allow the clients to train

the model locally their datasets and share only the model parameters with either a cen-

tral server in the traditional FL approach or with the neighbours directly in the DFL

approach, and these occur iteratively to update the global model, primarily focusing on
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Figure 5.5: Comparison of outage probabilities for exchanging model parameters during
DFL.

optimising both the model’s accuracy and its loss.

In the optimisation phase of our network, specifically during network topology selection

(i.e., Outage stage as outlined in Algorithm 5.2), we assess the connectivity performance

within the chosen network topology. This evaluation employs a rewards-based approach

regularly at every scheduling interval, leveraging the Q-learning algorithm to incorporate

communication reliability and network parameters, including device density and partici-

pant distribution, and thus dynamically assign the optimum network topology based on

a rewards-penalty mechanism that uses the Q-learning algorithm as shown in Eq. (5.10).

Based on the assigned topology, the proposed model-based MPTCP in our algorithm, as

described in Algorithm 5.2, utilising efficiently the available subflows for exchanging the

models’ updates with the neighbours to update the global model. Thus, the results of our

proposed model for dynamic selecting MPTCP network topology, as illustrated in Fig.

5.5, confirm its efficacy in maintaining lower outage rates by achieving a higher success

probability relative to the SINR threshold. This ensures optimal network capacity and

robust client connectivity throughout the learning process.
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Figure 5.6: Comparative analysis of average latency in DFL models employing TCP and
MPTCP protocols for various models’ sizes.

Latency per client varies slightly, primarily depending on the iterations needed to reach

system convergence. Our findings reveal an average client latency below 15 ms, as shown

in Fig. 5.6, assuming uniform computation and broadcast times across clients. Despite

leveraging multiple subflows for parallel data transmission and network performance op-

timisation, the system’s flash memory requirements and power consumption determined

by GPU usage during the training process remain comparable to other models. It is con-

sidered relatively low, particularly since our training can be completed in a few minutes,

as illustrated in Fig. 5.7.

Given the criteria for successful transmissions and network capacity, each device within

the network autonomously forms a one-hop neighbour group every round to facilitate

parameter exchange and collaboratively refine the global model, aiming to enhance model

performance. To illustrate system behaviour, results from randomly selected participants

in the DFL simulation serve as examples.

Our network design ensures significantly high connectivity success in the DFL model, with

every participant capable of collaborating with at least one neighbour. This contrasts

with centralised FL models, where the ability of clients to meet communication require-
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Figure 5.7: Comparative analysis of our model’s GPU power consumption and data
storage utilisation against other relevant models.
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Figure 5.8: Comparative performance of our model’s accuracy and loss against other
relevant models.

ments and connect with the server for parameter exchange varies. The DFL simulation

demonstrates a classification accuracy exceeding 95% within the initial 200 iterations,

displaying minimal variance among the participating devices and maintaining latency

under 15 ms. Conversely, alternative models report marginally slightly lower accuracy,

increased variability between the participants, and heightened latency, attributed to their

reliance on a singular communication path during learning.

Results and statistical analyses for the average network performance are depicted in Fig.

5.8 and Table 5.1. Without a central server, the DFL approach records high accuracy

and minimal cross-entropy loss. Integrating the MPTCP-based networking model with

the DFL framework boosts communication reliability and the count of successfully par-

ticipating clients.
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Model
Client
Algo. Dataset Accuracy Loss

Standard
Deviation

Latency
(ms)

Power
Consum. (W)

Flash memory
size (MB)

Our Model CNN CIFAR-10 96.50 0.038 0.115 15 ↓ 22.80 1.20

FLAIR CNN CIFAR-10 94.10 0.042 0.32 100 ↑ 22.80 1.90

FedAvg CNN CIFAR-10 85.30 0.085 0.40 100 ↑ 21.50 1.02

Greedy FL CNN CIFAR-10 90.20 0.093 0.29 100 ↑ 23 4.90

Table 5.1: Comparison of our DFL model using MPTCP against other relevant models’
performance and system metrics.

Figure 5.8 highlights the proposed model’s achievement of high accuracy and low loss

through MPTCP integration. Client records using available subflows indicate parallel

learning capabilities, demonstrating consistent progress towards convergence in accuracy

and loss. The DFL framework’s advantage lies in data retention on participant devices,

bolstering privacy. Compared to centralised benchmarks, our decentralised model delivers

competitive outcomes without a central server, achieving 95% accuracy, a cross-entropy

loss of 0.088, and 15 ms latency over 500 iterations. In contrast, benchmark FL models

such as FedAvg, FLAIR, and Greedy FL demonstrate slightly lower accuracy, higher

loss, and substantially increased outage probability and latency exceeding 100 ms as

depicted in Fig. s 5.5 and 5.6. These issues occur from the reliance on single-path

models, which incur higher communication costs and greater instability compared to our

optimised multipath approach.

Consequently, integrating DFL with MPTCP minimises latency and loss while accelerat-

ing convergence, outperforming traditional FL methods. These findings underscore the

DFL model’s substantial advancements in classification prediction accuracy using ade-

quate datasets, and thus further enhanced by MPTCP to facilitate more reliable client

communication during the learning and collaboration processes.

5.5 Conclusions

Our decentralised learning approach not only mitigates the risks associated with connec-

tion instability prevalent in traditional FL approach by eliminating the central point of
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failure but also demonstrates the potential to exceed the performance of conventional

models through enhanced data throughput, cost efficiency, and system flexibility. In

effect, our model is capable of achieving competitive outcomes and, in many cases, sur-

passing the accuracy of other benchmark models in this study, thereby underscoring the

efficacy of DFL in addressing the complexities of real-world communication challenges.

To sum up, the DFL model introduced in this study, which utilises MPTCP, capitalises

on the available subflows within the assigned network topology to facilitate efficient data

transmission and higher throughput. As a consequence, the system secures enhanced

reliability in connectivity throughout the learning process, and this leads to rapid con-

vergence, higher accuracy and lower latency, markedly overcoming conventional base-

lines that struggle to address the challenges of connection instability in DFL networks

inherent in real-world communication environments. Although the study employs a rela-

tively straightforward classification problem for illustrative purposes, it carefully examines

various efficient models to accurately assess performance outcomes. The improvement

achieved by our proposed model is particularly crucial in real-time applications, where

both latency and accuracy are essential metrics.

Integrating the DFL methodology with the MPTCP protocol has shown the potential

to rival traditional FL frameworks. Simulation results indicate that our developed DFL

architecture attains improved latency, enhanced system adaptability, and marginally su-

perior accuracy. All this is accomplished without sharing personal data to preserve the

client’s privacy, as only the model updates are shared, and without the need for a central

server to manage the learning within the network.
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6.1 Conclusions

In the four years since I commenced my research, the project has evolved significantly

from its initial focus on addressing specific limitations to enhancing the development of

DFL through geometric models, advanced communication protocols, and robust various

aggregation methods. My journey started with the exploration of existing DFL models,

which notably lacked simulation capabilities for dynamically modelling device distribution

and had no substantial actuation systems for reliable performance. From these early

challenges, I adopted stochastic geometry to precisely model these dynamics, enabling

a quantifiable performance assessment of the DFL scheme. The primary goal was to

enhance classification accuracy without compromising privacy and to ensure adaptability

to network dynamics. This research has led to significant publications, including works

that detail how network topologies influence FL performance in practical deployments

[1], as well as innovations in aggregation methods tailored for edge computing within

DFL frameworks [2].

This study has also tackled the challenges of Byzantine device scenarios within the

DFL network, aiming to establish a robust model over ad hoc networks. I developed

a Byzantine-resilient DFL model that employs a novel reputation scoring system to de-

tect and eliminate untrustworthy devices while using advanced aggregation and spatial

analysis techniques to maintain network throughput. This work is currently under re-

view for publication in IEEE Transactions on Machine Learning in Communications and

Networking.

Furthermore, I have explored the integration of Multipath TCP (MPTCP) with DFL to

enhance communication reliability during the learning phase. This integration seeks to

use MPTCP’s capability to manage multiple data paths, thereby reducing latency and

improving throughput for collaborative learning applications. I proposed three distinct

DFL network topologies, Simultaneous Subflows Utilisation, Strategic Subflow Allocation,

and Master Subflow Priority, as part of an innovative strategy that uses Reinforcement

Learning algorithms to select the most effective network topology dynamically. This
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research has recently been submitted to the IEEE Open Journal of the Communications

Society and is currently under review.

I have personally written the five articles included in this thesis and collaborated on

three additional publications, with more in development. Each solution or finding in this

project tends to reveal further questions, marking the ongoing nature of research. In

the next sections, I will outline the major proposals in the DFL area and discuss any

ongoing or planned work to address these. While not all proposals can be conclusively

implemented, and new ones may undoubtedly arise, this summary should provide a clear

view of the future proposals of the DFL framework.

6.2 Future Work

The research presented in this thesis lays a strong foundation for numerous exciting

avenues of future investigation. The DFL models, as intensively explored throughout

this study, show significant potential but also open the door to several improvements and

expansions that could further enhance the utility, efficiency, and applicability of DFL

frameworks. Below are the critical areas of future work proposed based on the findings

and experiences gained during this PhD research:

1. DFL Optimisation for High-Mobility Environments: The need for robust

DFL systems capable of functioning efficiently in high-mobility environments is

paramount, especially in scenarios such as wireless mesh networks used in Driverless

Transport Systems. Future research should focus on designing DFL models that

cater specifically to the unique challenges posed by high-speed mobility, including

rapid changes in network topology and frequent interruptions. This involves not

only improving the robustness and scalability of the systems but also enhancing

their flexibility to dynamically adapt to the swiftly changing conditions without

compromising on performance.

2. Tailored Networking Protocols for DFL: Further investigation is required to

identify and develop networking protocols that are specifically tailored for DFL im-
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plementations over wireless mesh networks. Protocols such as Thread [3], which are

designed for low-power, low-data rate transmissions, could be particularly advanta-

geous for IoT systems. Future studies should aim to benchmark and optimise these

protocols within DFL contexts, enhancing the overall efficiency and effectiveness of

data communications within such networks.

3. Integration of Green Energy and Blockchain Technology: As the world

moves towards more sustainable technologies, integrating green energy solutions

[4] with blockchain technology [5] within DFL architectures offers a promising di-

rection. Blockchain technology enhances security, privacy, and trust within de-

centralised networks by providing a cryptography framework that ensures data in-

tegrity and transparency of transactions. However, it is important to note that while

blockchain offers significant advantages, such as immutability and decentralised ver-

ification [6], it also introduces challenges. These include scalability issues, energy

consumption in proof-of-work systems, and potential privacy concerns related to

the transparency of public blockchains [7]. Therefore, while blockchain can sub-

stantially improve certain aspects of security and trust in such DFL scenarios, it is

not without its trade-offs and limitations, which need to be carefully considered in

its implementation to develop greener and more robust DFL systems.

4. Advanced Network Segmentation Techniques: Integrating advanced network

segmentation techniques [8] into DFL systems could significantly improve learning

performance across the network. This approach involves dividing the network into

segments or clusters to manage communications and model updates more efficiently.

Such segmentation could lead to enhanced performance by reducing latency, man-

aging bandwidth more effectively, and aligning model training processes with the

network structure and dynamics more closely.

Each of these areas not only extends the current research but also aligns with the ongo-

ing advancements in technology and network management. By addressing these topics,

future work can lead to more sophisticated, adaptable, and efficient DFL systems, ulti-
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mately pushing the boundaries of what decentralised learning environments can achieve,

especially in dynamic and demanding applications.
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