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By early 2024 they amounted to some sort of cosmic joke, best described by Carrie Fisher.

Things were getting worse faster than we could lower our standards.



Abstract

In this thesis, we study a collection of partition statistics h±x,c parameterised by a positive

real number x, which count the Betti numbers of Hilbert schemes of points on a surface,

equivariant under the action of a cyclic group Γc, giving a bijective proof that the statistics

are equidistributed over partitions of n with a fixed c-core.

We extend techniques introduced by Loehr and Warrington to work with cores and

quotients of partitions, and define a map from partitions to multigraphs (where the partition is

viewed as an Eulerian tour of the graph) that retains the relevant data on partitions, including

the c-core, size, and other statistics closely related to the h±x,c.

We then define a bijection on partitions with a fixed c-core that preserves the multigraph,

which we use to prove bijectively that the distribution of the h±x,c is independent of x and the

sign. We also compute the x = 0 case to obtain a generating function for the distribution.

As a byproduct, we give a combinatorial proof of a partition identity of Buryak-Feigin-

Nakajima that can be seen as giving the Betti numbers of C∗-equivariant Hilbert schemes.
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Chapter 1

Introduction

For this chapter, the main character will be the Hilbert Scheme of n points on A2, Hilbn

(
A2
)
.

We will discuss two parallel sets of results. Firstly, we explain a geometric argument due

to Haiman that proves that a collection of partition statistics hx, where x varies over the

positive irrationals, are equidistributed with the length of a partition by computing the class

of Hilbn

(
A2
)

in the Grothendieck ring of varieties in multiple different ways. Loehr and

Warrington [LW09] take Haiman’s result on the equidistribution of hx over partitions of n

and give a bijective proof, also extending x to range over the positive reals. We then run the

same geometric argument on the fixed point set of Hilbn

(
A2
)

under the action of a cyclic

group. The main result of this thesis, Theorem A, is to this geometric proof as Loehr and

Warrington’s result is to Haiman’s; we take the resulting equidistribution result, make it

bijective, and remove the assumption that x is irrational.

Once we have explained the storyline above, we describe a related result of Buryak,

Feigin and Nakajima [BFN15] which gives a geometric proof of a result closely related to

our Theorem B (implied by Theorem A taken together with a result of Walsh and Warnaar

[WW20]). We conclude the chapter with a description of how our results fit in with those

in [BFN15] and [WW20], before comparing and contrasting our methods with Loehr and

Warrington’s, and finally setting out the structure for the rest of the thesis.
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1.1 The Hilbert scheme and the Białynicki-Birula decom-

position

To explain the geometric arguments, we briefly describe some basic properties of Hilbn(A2),

describe a torus action on it, and introduce the Białynicki-Birula decomposition which is the

main tool in every geometric argument we discuss.

Hilbert schemes were first introduced (much more generally than needed for our purposes)

by Grothendieck in [Gro61]. As a set, the Hilbert scheme of n points on A2 consists of ideals

I ⊆ C[x,y] of colength n:

Hilbn(A2) =
{

I ⊆ C[x,y] | dimC(C[x,y])/I) = n
}
.

It comes equipped with the Hilbert-Chow morphism, defined as follows.

Definition 1.1. The Hilbert-Chow morphism π : Hilbn(A2)→ Symn(A2) sends an ideal I to

the multiset Supp(C[x,y]/I) consisting of prime ideals p ∈ C[x,y] such that the localisation

(C[x,y]/I)p ̸= 0, where the multiplicity of p is given by the length of the localisation.

Fogarty [Fog68] showed that the Hilbert-Chow morphism is a resolution of singularities

of Symn(A2), and that Hilbn(A2) is smooth, irreducible and connected of dimension 2n.

Other Hilbert schemes are not so well-behaved1.

The diagonal action of (C∗)2 on A2 induces an action on Hilbn(A2) by

(t1, t2) · I = { f (t−1
1 x, t−1

2 y) | f (x,y) ∈ I}.

Any ideal fixed under this action must be homogeneous in x and y, and therefore the fixed

points are the monomial ideals. Monomial ideals of colength n correspond to partitions of n,

as follows.

Definition 1.2. Let λ be a partition of n, so λ1 ≥ λ2 ≥ . . .≥ λl(λ ) are positive integers with

λ1 + · · ·+λl(λ ) = n, and l(λ ) is the number of parts, or the length of the partition. This

partition corresponds to the monomial ideal Iλ generated by xλ1,xλ2y, . . . ,xλl(λ )yl(λ )−1,yl(λ ).

1Murphy’s law for Hilbert schemes was first formulated by Harris and Morrison [HM98] as follows: “There
is no geometric possibility so horrible that it cannot be found generically on some component of some Hilbert
scheme.”



1.1 The Hilbert scheme and the Białynicki-Birula decomposition 3

The generating set may not be minimal; the point is that the property of a monomial not

being in the ideal is preserved by division by x or y so it suffices to find the monomials that

are in some sense the “bottom left corners” of the ideal.

Example 1.3. The partition µ = (4,2,1) corresponds to the monomial ideal

Iµ = (x4,x2y,xy2,y3).

1 x x2 x3 x4

y xy x2y

y2 xy2

y3

Fig. 1.1 The partition (4,2,1) corresponds to the monomial ideal (x4,x2y,xy2,y3).

The main geometric technique we will discuss over the next two chapters will use the

Białynicki-Birula decomposition (stated below) with different decompositions of Hilbn(A2)

or closely related spaces arising from different choices of C∗-action. As we might expect

from the above, the fixed point sets of these actions will often be indexed by partitions.

Theorem 1.4 (Białynicki-Birula). Let X be a smooth variety with a C∗-action, so that for

any x ∈ X, the limit limλ→0 λ · x exists in X, where the limit is over λ ∈ C∗. Let F = ∪i∈IFi

be the decomposition of the fixed point set into connected components and let

Ui = {x ∈ X : lim
λ→0

λx ∈ Fi}

be the set of points that flow to Fi. Then X = ⊔i∈IUi.

Moreover, each fibre of the normal bundle of Fi ⊂ X admits a C∗-action and decomposes

into C∗-eigenspaces. Letting di be the total dimension of the eigenspaces of positive weight,

Ui is a vector bundle over Fi and the fibre is an affine space of dimension di.

In the Grothendieck ring of varieties, that is, the ring generated by equivalence classes of

varieties [X ] where we impose the relation that if Y ⊂ X is a closed subvariety then [X ] =
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[Y ]+ [X \Y ], the Białynicki-Birula decomposition can be stated as [X ] = ∑[Ui] = ∑[Fi][Adi].

If the fixed points are isolated, [X ] = ∑[Adi].

Restricting the (C∗)2 action on Hilbn(A2) to a generic one-parameter subtorus C∗ =

{(tα , tβ ) | t ∈ C∗, α

β
∈ R\Q}, the fixed point set is again the monomial ideals. In particular,

Hilbn(A2) has
∣∣Par(n)

∣∣-many C∗-fixed points, where Par(n) denotes the set of partitions of

n.

The discussion above tells us that if we choose a generic C∗-subtorus of (C∗)2, Hilbn(A2)

decomposes into cells indexed by partitions of n. If the subtorus does not have isolated fixed

points, then there will be a contribution from the topology of the fixed point sets Fi. Most

times, the di and the contributions from the topology will be mixed together inextricably.

However, Buryak, Feigin and Nakajima [BFN15] use an action with non-isolated fixed points

to compute the Betti numbers of a C∗-equivariant Hilbert scheme by controlling the di - we

will discuss this argument at the end of Chapter 2.

1.2 Ellingsrud-Strømme

Next, we will exhibit different computations of [Hilbn(A2)], all of which are based on the

Białynicki-Birula decomposition. These computations make use of a result of Ellingsrud

and Strømme [ES87] on the class of the tangent space Tλ (Hilbn(A2)) at a monomial ideal

Iλ as a (C∗)2-representation. This is useful because the Białynicki-Birula decomposition

requires that we know the dimension of the positive weight space on the fibre of the normal

bundle over the fixed points, and we have seen above that the fixed points are precisely the

monomial ideals. So, given Ellingsrud and Strømme’s computation of the tangent space as a

(C∗)2-representation, we restrict to a collection of generic (C∗)-representations indexed by

an irrational number x and compute the values of di that arise in each case. Taken together,

the di for each action are a statistic on partitions hx, which a priori are unrelated. However,

since each decomposition computes the class [Hilbn(A2)], this gives an equidistribution result

for the hx as x varies.

Before we begin we recall some definitions from partition combinatorics, and then

calibrate our notation with Ellingsrud and Strømme’s via Lemma 1.7. In this section we only

state and demonstrate some applications of Ellingsrud and Strømme’s result. We prove it in

Chapter 2.
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Definition 1.5 (Arm, leg, hook length). The arm of a box □ in the Young diagram of a

partition consists of the boxes that lie strictly to the right of □ in the same row, and the leg of

□ consists of the boxes that lie strictly above2 □ in the same column. We denote the number

of boxes in the arm of □ by a(□) and the number of boxes in the leg of □ by l(□). The hook

length of □ is h(□) = a(□)+ l(□)+1.

Example 1.6. The boxes in the arm and leg of the shaded box □ in Figure 3.2 are labelled

with the corresponding body part. We have a(□) = 5 and l(□) = 1, so h(□) = 7.

Fig. 1.2 the arm and leg of □.

In [ES87] Ellingsrud and Strømme compute the cohomology of Hilbn

(
A2
)

and along

the way prove a useful formula for the class of the tangent space to Hilbn

(
A2
)

at a monomial

ideal in the representation ring of (C∗)2. In order to state Ellingsrud and Strømme’s result,

we first briefly explain a formula to count the arm and leg of the cells in a partition.

Lemma 1.7. Let λ1 ≥ ·· · ≥ λl(λ )> 0 and set λl(λ )+1 = 0. The multiset {(a(□), l(□) |□∈ λ}
is equal to the multiset

{(λi − s, j− i) | i, j,s ∈ Z, 1 ≤ i ≤ j ≤ l(λ ), λ j ≤ s ≤ λ j−1 −1}.

Referring to Example 1.8 may make the proof clearer.

Proof. Let a box □ be in row i of size λi, and let row j contain the top box in the same

column as □. Then j ≤ i. All λ j −λ j+1 of the boxes with this property have l(□) = j− i.

The arm of the rightmost of these boxes is λi −λ j, and as we scan left along the boxes

the arm increases by one with each box until we reach the leftmost one which has arm

λi −λ j−1 +1.
2This convention for drawing diagrams puts the legs above the arms, which is admittedly unusual for humans

unless they are in the circus, doing yoga, or in Australia. Offended readers are welcome to adjust their reading
position accordingly.
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Example 1.8. The figure shows the λ5 −λ6 = 3 boxes in row 2 with l(□) = 6−2−1 = 3.

λ1 = 12
λ2 = 12

λ3 = 10
λ4 = 8

λ5 = 7
λ6 = 4

λ7 = 1
λ8 = 1
λ9 = 1

λ10 = 0

We are now in a position to state Ellingsrud and Strømme’s result.

Theorem 1.9 (Ellingsrud-Strømme). Let λ be a partition with r parts and exceptionally

index λ as λ0 ≥ λ1 ≥ ·· · ≥ λr−1 > 0 and λr = 0.

In the representation ring of a two-dimensional torus (C∗)2, the tangent space at a

monomial ideal Iλ to Hilbn

(
A2
)

is given by

[
Tλ

(
Hilbn

(
A2
))]

= ∑
1≤i, j≤r

λ j−1−1

∑
s=λ j

ρ(t)i− j−1
φ(t)λi−1−s−1 +ρ(t) j−i

φ(t)s−λi−1

where t · x = φ(t)x and t · y = ρ(t)y for linearly independent characters φ and ρ of (C∗)2.

Since we count λ0 as the largest part of our partition rather than λ1, Lemma 1.7 gives us

that {(a(□), l(□)) |□ ∈ λ} can be written as

{(λi−1 − s−1, j− i) | i, j,s ∈ Z, 1 ≤ i ≤ j ≤ r, λ j ≤ s ≤ λ j−1 −1}.

Applying this to Theorem 1.9 gives[
Tλ

(
Hilbn

(
A2
))]

= ∑
□∈λ

ρ(t)−l(□)−1
φ(t)a(□)+ρ(t)l(□)

φ(t)−a(□)−1.

We prove Theorem 1.9 in Chapter 2, and just show here how the main results of interest

follow. Loehr and Warrington [LW09] allude to an unpublished argument due to Haiman

that restricts to different choices of C∗-action in Ellingsrud and Strømme’s result to show the

following.
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Lemma 1.10 (Haiman, unpublished). For a positive irrational number x, define

hx(λ ) =

∣∣∣∣{□ ∈ λ :
a(□)

l(□)+1
< x <

a(□)+1
l(□)

}∣∣∣∣ .
Then in the Grothendieck ring of varieties,[

Hilbn

(
A2
)]

= ∑
λ∈Par(n)

Ln+hx(λ )

where L denotes the class of the affine line. In particular

∑
λ∈Par

q|λ |thx(λ )

is independent of x.

We take the proof sketched in [LW09] (again attributed to Haiman) and fill in the details

below.

Proof. We use a Białynicki-Birula decomposition with different choices of C∗-action.

Restrict the (C∗)2-representation in Theorem 1.9 to a generic one-parameter subtorus

(tr+ε , ts), where we take r,s to be coprime positive integers and ε to be a small irrational

number. At the level of ideals, (tr+ε , ts) · ( fi(x,y)) = ( fi(t−(r+ε)x, t−sy)). This leaves us with[
Tλ

(
Hilbn

(
A2
))]

= ∑
□∈λ

t(r+ε)(l(□)+1)−sa(□)+ t−(r+ε)l(□)+s(a(□)+1).

We wish to count the dimension of the positive weight space, that is, the number of boxes

□ ∈ λ such that

A□ = (r+ ε)(l(□)+1)− sa(□)> 0 (1.1)

together with the number of boxes such that

B□ =−(r+ ε)l(□)+ s(a(□)+1)> 0. (1.2)

First, note that A□+B□ = r+ ε + s > 0 so for a fixed box □, at least one of A□ and B□

must be positive. Both A□ and B□ are positive if and only if

a(□)

l(□)+1
<

r+ ε

s
<

a(□)+1
l(□)

.
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So, taking x = r+ε

s , the dimension of the positive eigenspace is

|λ |+
∣∣∣∣{□ ∈ λ :

a(□)

l(□)+1
<

r+ ε

s
<

a(□)+1
l(□)

}∣∣∣∣= |λ |+hx(□).

Therefore, by Theorem 1.4, in the Grothendieck ring we have[
Hilbn

(
A2
)]

= ∑
λ∈Par(n)

[
A|λ |+hx(λ )

]
= ∑

λ∈Par(n)
L|λ |+hx(λ ).

So,

∑
n≥1

[
Hilbn

(
A2
)]

qn = ∑
λ∈Par

L|λ |+hx(λ )q|λ |.

This proves the first claim. Identifying t with L, multiplying by
(

q
t

)|λ |
and summing over n

proves the second claim: the left hand side is independent of x, so the right hand side must

be too.

The next lemma computes the class of Hilbn

(
A2
)

when x is small, which by the previous

lemma in fact computes the generating function for any x.

Lemma 1.11 (Ellingsrud-Strømme, Haiman). In the Grothendieck ring of varieties,[
Hilbn

(
A2
)]

= ∑
λ∈Par(n)

L|λ |+l(λ )

where l(λ ) denotes the number of parts of λ .

Proof. Choosing r,s,ε such that
r+ ε

s
<

1
|λ |

,

we have that s > (r+ ε)|λ | so for any box

A□ = (r+ ε)(l(□)+1)− sa(□)

≤ (r+ ε)|λ |−sa(□)

< (r+ ε)|λ |(1−a(□)).
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So, A□ is positive if and only if a(□) = 0, and the number of boxes with A□ > 0 is l(λ ).

Moreover,

B□ =−(r+ ε)l(□)+ s(a(□)+1)

>−(r+ ε)|λ |+s(a(□)+1)

> (r+ ε)|λ |a(□),

so B□ > 0 for all □ ∈ λ . Hence, the dimension of the positive eigenspace is |λ |+l(λ ).

Corollary 1.12 (Loehr-Warrington, Haiman). For a positive irrational number x

∑
λ∈Par

q|λ |thx(λ ) =
∞

∏
i=1

1
1− tqi . (1.3)

Proof. Combining the two previous lemmas, we have

∑
λ∈Par(n)

tn+hx(λ ) = ∑
λ∈Par(n)

tn+l(λ ).

So,

∑
λ∈Par(n)

thx(λ ) = ∑
λ∈Par(n)

t l(λ ).

Multiplying by q|λ | and summing over n,

∑
λ∈Par

q|λ |thx(λ ) = ∑
λ∈Par

q|λ |t l(λ ) = ∏
i≥1

1
1− tqi

where the final product formula is Euler’s formula (proved in Proposition 3.36).

At this point, the Białynicki-Birula decomposition has told us that the hx(λ ) are equidis-

tributed with l(λ ) over the partitions of n, and one could wonder if a combinatorial proof

of this equidistribution could be found. In [LW09], Loehr and Warrington give a bijective

proof of Corollary (1.12) and extend the equidistribution to non-negative rational x, with the

modification that one of the defining inequalities must be replaced by a soft inequality. This

is done by providing a bijection on Par(n) that interchanges h+x (λ ) with l(λ ), where

h+x (λ ) =
∣∣∣∣{□ ∈ λ :

a(□)

l(□)+1
≤ x <

a(□)+1
l(□)

}∣∣∣∣ .
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In particular, hx = h+x when x is irrational.

Theorem 1.13 (Loehr-Warrington). For any real number x, there is a bijection Ix on partitions

of n such that l(Ix(λ )) = h+x (λ ) and h+x (Ix(λ )) = l(λ ).

1.3 Throwing in a cyclic action

In this thesis we study a storyline parallel to that laid out in Section 1.2, where instead of

Hilbn(A2) we look at the fixed point set under the action of a cyclic group.

This next section runs the geometric argument of Section 1.2 on the irreducible compo-

nents of the fixed point sets of Hilbn

(
A2
)

under the action of a cyclic group

Γc =

{(
e

2kπi
c ,e−

2kπi
c

)
,1 ≤ k ≤ c

}
⊂
(
C∗)2

.

This leads to the equidistribution of a statistic hx,c over a subset Parc
µ(n) of partitions, indexing

the irreducible components of the fixed point sets. This allows us to state our main theorem,

which takes the geometric proof of the equidistribution result and makes it bijective, just as

Theorem 1.13 does with Lemma 1.10. One viewpoint of our main result is that we refine

Theorem 1.13 to work with the fixed points of a non-trivial cyclic action.

As with the proof of Theorem 1.13 in [LW09], with a minor modification to the statistic

we can also extend x to the rationals, which corresponds to picking a torus action with non-

isolated fixed points. A geometric argument (with restrictions on the relationship between

the rational x and c) is given in [BFN15]; a special case of our main result makes this purely

combinatorial, solving [WW20, Problem 8.9].

1.3.1 Brief interlude on c-cores and quotients

In order to describe the irreducible components of the fixed point set, we need c-core

partitions. We treat the background on cores and quotients of partitions thoroughly in

Chapter 3, but briefly recall some of the key definitions and properties here to allow us to

place our main theorem in context. Proofs are deferred to Chapter 3.

Definition 1.14 (Rimhook). A rimhook R of length c is a connected set of c boxes in λ such

that removing R gives the Young diagram of another partition, and R does not contain a

2×2 box.
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Definition 1.15. A c-core of a partition λ is a partition obtained by iteratively removing

rimhooks of length c from λ until a partition with no rimhooks of length c is obtained. A

partition µ is called a c-core if µ has no rimhooks of length c.

The key properties that we need are that rimhooks of length c are in bijection with boxes

of hook length c, and it turns out that a c-core can also be defined to be a partition with no

boxes with hook length divisible by c. The c-core of a partition is unique, independent of the

order of removing rimhooks.

We defer discussion of quotients to Chapter 3, and just note the size of the quotient

|qc(λ )| counts the number of boxes in the partition with hook length divisible by c.

Consider the action of Γc on C[x,y]/Iλ for some partition λ . The character of the action

of Γc on Cxayb is e
2πi(a−b)

c . So, we can colour boxes in the plane according to the character of

the Γc-representations on the corresponding monomials, with a box with bottom left corner

(a,b) given by (a−b) modulo c.

Definition 1.16. We say that the c-content of a partition is the multiset of colours of boxes in

its Young diagram when coloured according to the Γc-representation.

By the discussion above, then, two partitions have the same c-content if and only if the

corresponding classes in the representation ring of Γc agree.

In particular, a rimhook of length c contains exactly one box of each colour, so adding

or removing such a rimhook from a partition λ corresponds to adding or subtracting a copy

of the regular representation to C[x,y]/Iλ . In fact two partitions λ1,λ2 have the same c-core

if and only if C[x,y]/Iλ1 differs from C[x,y]/Iλ2 up to adding and subtracting copies of the

regular representation. This is a consequence of [JK81, Thm 2.7.41], which states that two

partitions of the same integer n have the same c-core if and only if they have the same

c-content.

The real content of this result is that it is enough for two partitions to have the same core

if we can obtain one from the other by subtracting and then adding sequences of any c boxes

of each colour, rather than just sequences of rimhooks (the existence of one of the former

sequences implies the existence of the latter). That is, whenever the representations C[x,y]/Iλ1

and C[x,y]/Iλ2 differ by addition and subtration of copies of the regular representation, the

c-cores will agree.

Example 1.17. See Figure 1.3: iteratively removing rimhooks of length 3 from (6,3,3,1)

shows that it has 3-core (1).



1.3 Throwing in a cyclic action 12

Fig. 1.3 As a Γ3-representation, an ideal J such that C[x,y]/J has the same basis as
C[x,y]/I(6,3,3,1) is the trivial representation plus four copies of the regular representation. The
green indicates a possible sequence of rimhooks that could be removed (first the horizontal
3 squares, then the vertical 3 squares, then the 3 squares in an L, then the 3 squares in an
upside-down L).

Two monomial ideals Iλ , Iµ belong to the same irreducible componenent of Hilbn(C[x,y])Γc

if and only if C[x,y]/Iλ
∼= C[x,y]/Iµ as Γc-representations, that is, if the coloured box count

is the same for λ and µ . Therefore, the irreducible components of Hilbn

(
A2
)

are indexed by

the c-cores of partitions of n – in fact these components are smooth and connected [MS10].

We write Hilbµ
n

(
A2
)Γc

for the irreducible component corresponding to the c-core µ: as

a set, it consists of Γc-invariant ideals I such that C[x,y]/I, as a Γc-representation, is the

representation corresponding to µ plus |qc(λ )| copies of the regular representation. The

monomial ideals are Γc-invariant and the tangent space at Iλ is

Tλ

(
Hilbn

(
A2
)Γc
)
= Tλ

(
Hilbn

(
A2
))Γc

. (1.4)

The next theorem is analogous to Lemma 1.10 (and in fact setting c= 1 recovers Lemma 1.10).

It is unclear where it originates, but it appears in [GZLMH10].

Theorem 1.18. Let c be a positive integer x a positive irrational number, and µ a c-core

partition of n and let hx,c(λ ) count the boxes of a partition λ that contribute to hx(λ ) and

have hook length divisible by c. Then,[
Hilbµ

n

(
A2
)Γc
]
= ∑

λ∈Parc
µ (n)

L|qc(λ )|+hx,c(λ ).

Proof. Since Γc is a subgroup of the torus, the actions commute and Ellingsrud-Strømme’s

result gives that, as C∗×Γc-representations,
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[
Tλ

(
Hilbn

(
A2
))]

= ∑
□∈λ

(
e

2kπi
c

)a(□)+l(□)+1
ρ(t)−l(□)−1

φ(t)a(□)

+
(

e
2kπi

c

)−a(□)−l(□)−1
ρ(t)l(□)

φ(t)−a(□)−1,

so the Γc-invariant directions correspond to boxes where the hook length is divisible by c:

[
Tλ

(
Hilbn

(
A2
))Γc

]
= ∑

□∈λ
c|h(□)

t(r+ε)(l(□)+1)−sa(□)+ t−(r+ε)l(□)+s(a(□)+1).

Exactly as in the proof of Lemma 1.10, we restrict to a generic one-parameter subtorus

with weight (r+ ε,s) as before, the total dimension of the positive eigenspace will count the

boxes with hook length divisible by c that contribute to A□ or B□ (with multiplicity).

As before, every box contributes to one of A□ or B□ and hx(λ ) counts the number of

boxes that contribute to both, but this time we only want to include boxes with hook length

divisible by c, so the dimension of the positive eigenspace is

|qc(λ )|+
∣∣∣∣{□ ∈ λ :

a(□)

l(□)+1
< x <

a(□)+1
l(□)

and c | h(□)

}∣∣∣∣ ;
we have defined hx,c to be the second term. By Theorem 1.4 the theorem them follows.

1.4 Fitting the results of this thesis into the literature

So far we have seen that Loehr and Warrington’s construction provides a bijective proof of

the equidistribution of hx over the set of partitions, first proved geometrically by Haiman

for x irrational. Loehr and Warrington’s proof extends to an equidistribution result for the

slightly modified statistic h+x as x ranges over the non-negative reals, which is genuinely an

extension because the statistic hx agrees with h+x when x is irrational. In a similar vein, for

fixed c we construct a bijection that proves that the hx,c are equidistributed over Parc
µ(n) as x

ranges over the positive irrationals, proved geometrically in Theorem 1.18. We also define

a slightly modified statistic h+x,c at the rationals, which agrees with hx,c when x is irrational,

and extend the equidistribution result to the h+x,c as x ranges over the non-negative reals.



1.4 Fitting the results of this thesis into the literature 14

Theorem A. For a real number x and positive integer c there is a bijection Ix,c : Parc
µ(n)→

Parc
µ(n) such that h+x,c(Ix,c(λ )) = h+0,c(λ ).

Walsh and Warnaar [WW20] gave a combinatorial (but not bijective) proof of a product

formula for the x = 0 case (analogous to the application of Euler’s theorem in Section 1.2),

which together with Theorem A allows us to show the following combinatorially.

Theorem B. For any x ≥ 0,

∑
λ∈Parc

µ

q|λ |th+x,c(λ ) = q|µ|∏
i≥1

1
(1−qic)c−1 ∏

j≥1

1
1−q jct

. (1.5)

Buryak, Feigin and Nakajima give a geometric proof (outlined in Chapter 2) that when

α,β are positive integers h+α
β
,α+β

depends only on the sum α +β , and go on to compute the

α = 0 case h+0,α+β
. They then sum over n to obtain the identity

∑
n≥0

[
Hilbn

(
A2
)Tα,β×Γα+β

]
qn = ∏

i≥1
(α+β )∤i

1
1−qi ∏

i≥1

1
1− tq(α+β )i

in the Grothendieck ring of complex quasi-projective varieties, where t stands in for the

class of the affine line. They also compute the singular homology of Hilbn

(
A2
)Tα,β

and

Borel-Moore homology of Hilbn

(
A2
)Tα,β×Γα+β

. A combinatorial consequence of this is

that we obtain the generating function

∑
λ∈Par

q|λ |t
h+α

β
,α+β

(λ )

= ∏
i≥1

(α+β )∤i

1
1−qi ∏

i≥1

1
1− tq(α+β )i

, (1.6)

although in [BFN15], the statistic h+α
β
,α+β

is replaced by a different statistic

bfα,β (λ ) = |{□ ∈ λ : αl(□) = βa(□)+β and (α +β ) | h(□)}|.

We show that bfα,β = h+α
β
,α+β

in the proof of Corollary (4.7).

Walsh and Warnaar [WW20, §8.2] observe that a consequence of Buryak, Feigin and

Nakajima’s proof is the combinatorial identity

∑
λ∈Parµ

q|λ |tbfα,β (λ ) = q|µ|∏
i∈Z

1
1− tqci ∏

1(
1−qc j

)c−1 (1.7)
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where c = α +β .

Walsh and Warnaar observe that the difficulty of providing a combinatorial proof of (1.7)

lies in proving that {bfα,β (λ ) : λ ∈ Par(n)} depends only on α +β . This is a special case

of what Theorem 1.4 achieves, solving problem 8.9 of [WW20]. So, another viewpoint of

Theorem B is that it makes Buryak, Feigin and Nakajima’s result combinatorial.

1.5 Overview of the construction of Ix,c

Our construction of the bijection Ix,c is similar to Loehr and Warrington’s construction of

Ix in [LW09], and setting c = 1 one recovers Loehr and Warrington’s construction. Loehr

and Warrington construct a multigraph Mr,s by identifying points in the plane (where the

Young diagram sits) via (x1,y1)∼r,s (x2,y2) when sx1 + ry1 = sx2 + ry2, and view partitions

as Eulerian tours of these multigraphs. They go on to prove that some key statistics are

independent of the choice of tour by computing explicit formulae for the relevant statistics in

terms of the multigraph.

To prove Theorem A, we refine Loehr and Warrington’s construction to also account

for c-cores by instead imposing the relation ∼r,s,c where (x1,y1)∼r,s,c (x2,y2) if sx1 + ry1 =

sx2+ ry2 and y1−x1 ≡ y2−x2 (mod c). Our proofs that the resulting multigraphs determine

the key statistics differ significantly from Loehr and Warrington’s. In particular, we do not

compute formulae for our statistics in terms of the multigraph (except for one that we need),

and instead we make heavy use of an ordering <r,s,c on multigraphs which lifts to an ordering

on partitions. We show that the way a statistic changes when taking successors with respect

to the ordering is dependent only on the multigraph, and exhibit a family of points that act as

base cases for inductive proofs that partition statistics depend only on the multigraph. This

makes some of the computations significantly shorter.

1.6 Structure of this thesis

Chapter 2 recalls some of the geometric background. We show that Hilbn(A2) is a smooth

variety (in particular, we can apply the Białynicki-Birula decomposition to it) and build to

proving Theorem 1.9 (Ellingsrud-Strømme’s description of the tangent space at a monomial

ideal) and sketching Buryak, Feigin and Nakajima’s proof that the the distribution of hx,c is

independent of x where x ranges over a finite set of rational numbers determined by c.
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Chapter 3 recalls some definitions from partition combinatorics. In particular, we recall

the abacus construction (the standard reference for this is [JK81, §2.7]) and recall some basic

generating functions. The chapter builds up to proving Theorem 3.42, which uses a map

introduced in [WW20] to compute the distribution of h+0,c over Parc
µ , the set of partitions

with c-core µ .

∑
λ∈Parc

µ

q|λ |tλh+0,c = q|µ|∏
i≥1

1
(1−qic)c−1 ∏

j≥1

1
1−q jct

. (1.8)

Chapter 4 defines the main partition statistics of interest, midx,c, crit−x,c, crit+x,c, h+x,c and

h−x,c where h±x,c = midx,c+crit±x,c. Then, we introduce our main theorem, Theorem 4.2 which

states that for all x ∈ [0,∞),

∑
λ∈Parc

µ

q|λ |th+x,c(λ ) = q|µ|∏
i≥1

1
(1−qic)c−1 ∏

j≥1

1
1−q jct

. (1.9)

In view of Theorem 3.42, it remains to prove that the left hand side is independent of x. An

argument analogous to that in [LW09] is then used to show that the independence of the left

hand side from x is implied by the following symmetry property when x is rational,

∑
λ∈Parc

µ

q|λ |wh+x,c(λ )yh−x,c(λ ) = ∑
λ∈Parc

µ

q|λ |wh−x,c(λ )yh+x,c(λ ). (1.10)

In Proposition 4.6, we use the symmetry property to give a set of criteria that constitute a

sufficient condition for a bijection to prove Theorem 4.2. Finally, the chapter concludes with

a proof that the main result of [BFN15] is a consequence of Theorem 4.2.

Chapter 5 defines the multigraph Mr,s,c(λ ) corresponding to a rational x = r
s and positive

integer c, defines an ordering <r,s,c on partitions and multigraphs, and a special set of

partitions λr,s,k. It then goes on to outline the structure of our proofs that Mr,s,c remembers

partition data. Our proof is structured somewhat differently to Loehr and Warrington’s proofs

that Mr,s remembers partition data in [LW09]. In particular, we do not prove formulae in

terms of Mr,s,c for any partition statistics except for crit+x,c+crit−x,c. Instead, the chapter works

towards providing an inductive framework to prove that Mr,s,c remembers partition data

by studying how taking successors at the level of partitions and multigraphs are related,

culminating in Proposition 5.24. One result of this chapter (Proposition 5.14) is that the map

λ 7→ Mr,s,c(λ ) is injective on the preimages of the Mr,s,c(λr,s,k), so the map does not lose any
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data at all at these points, allowing the λr,s,k to form a family of base cases. Having outlined

the key principles behind the proofs, we then defer the technical checks to Chapter 7.

Chapter 6 defines the involutions Ir,s,c : Parc
µ → Parc

µ that preserve the multigraphs

Mr,s,c(λ ), and checks that they are well-defined.

Chapter 7 studies how each statistic of interest in Proposition 4.6 changes when taking

successors with respect to the ordering <r,s,c, in particular using Proposition 5.24 to prove

that the map λ 7→ Mr,s,c(λ ) remembers the statistics midx,c(λ ) and crit+x,c+crit−x,c. It also

proves that Ir,s,c exchanges the statistics crit+x,c and crit−x,c. Together with the results of Chapter

4, this completes a combinatorial proof of Theorem 4.2.

Chapters 3–7 are a (very slightly modified) version of [Vid23].



Chapter 2

Geometric Background

The main goal of this chapter is to construct Hilbn(A2) as a variety, prove that it is smooth

(in particular, that we can apply the Białynicki-Birula decomposition to it), and compute the

tangent space, in so doing proving Ellingsrud-Strømme’s result (Theorem 1.9 in the previous

chapter).

In order to provide background on applying the Białynicki-Birula decomposition to

Hilbn(A2), we first run through the analogous constructions for the Grassmanian Grk(V ).

The reasoning for this is two-fold. Firstly, we are able to quickly give “bare hands” example

of computations using Białynicki-Birula decomposition with different C∗-actions on the

Grassmannian to give a flavour of how the computations work. In particular, we do a

computation using a C∗-action with non-isolated fixed points, which we make reference to

when discussing Buryak, Feigin, and Nakajima’s argument in which the topology of the fixed

point set contributes to the decomposition. Secondly, we make use of a map from Hilbn(A2)

into a Grassmannian when describing the structure of Hilbn(A2) as a quasi-projective variety.

Then, we follow a paper of Haiman [Hai98] to construct Hilbn(A2) explicitly, describe

the natural torus action and the Hilbert-Chow morphism, and compute the tangent space at a

monomial ideal, which paves the way for us to prove that Hilbn(A2) is smooth and prove

Ellingsrud-Strømme’s description of the tangent space as a (C∗)2-representation in [ES87].

We conclude with a description of Buryak, Feigin and Nakajima’s method in [BFN15].
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2.1 Background on Grassmannians

In this section we define Grassmannians and describe their structure as projective varieties,

because when we want to view Hilbn(A2) as a quasi-projective variety, we will make use of

an embedding into a Grassmannian.

Then, we run an example of the Białynicki-Birula decomposition on a Grassmannian

to showcase an example of how arguments using C∗-actions with non-isolated fixed points

work where we can control the normal bundle without extra geometric preparation. We will

make reference to this example when we discuss Buryak, Feigin and Nakajima’s proof of a

special case of our main theorem in [BFN15].

2.1.1 Grk(V ) as a projective variety

For V an n-dimensional complex vector space, let Grk(V ) be the Grassmannian parameteriz-

ing k-dimensional subspaces of V . Let e1, . . . ,en be a basis for V .

The Plücker map embeds Grk(V ) in the projective space P
(∧k V

)
by sending a k-

dimensional subspace W ≤V with basis {w1, . . . ,wn} to the class of w1 ∧w2 ∧ . . .∧wk. The

map is well defined: let B = {w1, . . . ,wk} and B′ = {w′
1, . . . ,w

′
k} be two choices of basis

for W and let M be the change of basis matrix from B′ to B. Then, w1 ∧w2 ∧ . . .∧wk and

w′
1 ∧ . . .∧w′

k differ only by a factor of det(M) and so coincide in P
(∧k V

)
.

We have defined Grk(V ) as a set, but we want to view it as a projective variety. Let X ≤V

be a subspace of codimension k, and let x ∈ P
(∧n−k V

)
be the image of X under the Plücker

map, and for a subspace W ≤V of dimension k, let w ∈
∧k V be the image under the Plücker

map. Then, the element x∧w ∈
∧nV ∼= C which is nonzero if and only if V = X ⊕W . Via

this mapping, x is a linear form on P
(∧k V

)
, so we may define

UX = {W |W ∈ Gk(V ) and w∧ x ̸= 0}

=
{

W |V = X ⊕W
}
.

Lemma 2.1. For any K0 ∈UX , UX ∼= Hom(K0,X)∼= Ak(n−k)

Proof. Fix a subspace K0 ∈ Grk(V ) such that V = K0
⊕

X . Then, for any Y ∈UX and y ∈Y , y

can be written as y = x+k for some unique x ∈ X and k ∈ K0. Suppose for contradiction that

some second y′ = x′+k for y′ ∈Y, x′ ∈ X and the same k. Then y−y′ = x−x′ ∈Y ∩X = {0}.

So, for each k ∈ K0 there is a unique y ∈ Y and a unique x ∈ X such that y = x+ k.
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Define ϕ(k) = x. Then ϕ is linear; if y1 = x1 + k1 and y2 = x2 + k2 then y1 + λy2 =

(x1+λx2)+(k1+λk2). So, we may associate to each Y ∈UX a linear map ϕ ∈ Hom(K0,X).

Conversely, if ϕ ∈ Hom(K0,X) then define Y = {k+ϕ(k) | k ∈ K0}. Then Y ∈ Grd(V )

and if v ∈V, v can be written uniquely as

v = k+ x

= (k+ϕ(k))+(x−ϕ(k))

and since x−ϕ(k) ∈ X , we can conclude Y ∈UX . So,

UX ∼= Hom(K0,X)∼= Ak(n−k).

We will make reference to the following example later when we explain how to view

Hilbn(A2) as a quasi-projective variety.

Example 2.2. If we regard Gk(V ) as the space of k-dimensional quotients of V , and X =

spanC({x1, . . . ,xn−k}) has codimension k, we can regard UX as the set of subspaces Y of V

for which {q(x1), . . . ,q(xn−k)} forms a basis for V/Y.

2.1.2 Example of the Białynicki-Birula decomposition on the Grass-
mannian

To prove Lemma 1.10, Haiman computes the class of Hilbn(A2) in two different ways,

using two Białynicki-Birula decompositions resulting from two different choices of generic

C∗-action. In [BFN15], Buryak, Feigin, and Nakajima use a similar method. They compute

the class of the equivariant Hilbert scheme Hilbn

(
A2
)Γα+β×Tα,β

where Tα,β = (tα , tβ ) and

α,β are non-negative integers in two different ways. However, the subtorus they use is no

longer generic, so the topology of the fixed point sets has to be controlled.

What follows in this section is an illustrative example using different C∗-actions, including

one with non-isolated fixed points, to prove combinatorial identities by computing the class

of a simpler space (the Grassmannian) in different ways.

The torus T = (C∗)n acts on V by (t1, . . . , tn) ·∑viei = ∑ tiviei, and hence acts on Grk(V ).

The fixed points of the (C∗)n-action on Grk(V ) consist of spaces spanned by k of the vectors
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e1, . . . ,en, so there are
(n

k

)
of them. If we treat a choice of k such vectors as a binary string

of length n, with an R in the positions corresponding to the k vectors we choose and a D

corresponding to those we do not, this gives a bijection between the C∗-fixed points and

partitions that fit inside a k× (n− k) box (interpreting the string as a boundary path with

instructions R for right and D for down).

If we pick any subtorus C∗, the hypotheses we need for Białynicki-Birula will be satis-

fied. If our subtorus is generic, then the C∗-fixed points will be exactly the T -fixed points.

Otherwise, the fixed point loci will be bigger. For instance, if we pick the completely

diagonal C∗ with weights (1,1,1,1,1), then we just act by scalar multiplication, and we fix

every linear subspace and Grk(n) is one big fixed point set. Unsurprisingly, this tells us that

[Grk(V )] = [Grk(V )×C0] = [Grk(V )].

In the situation of a generic C∗-action, the fixed points of the action on Grk(V ) are

just points, so each Ui is Adi , and so in the Grothendieck ring of varieties we will have

[Grk(V )] = ∑[Cdi]. Write [C] = L, so we have that

[Grk(V )] = ∑Ldi

As we understand the fixed point set, to apply the Białynicki-Birula decomposition to the

Grassmannian we need to understand how the torus acts on the normal bundle to the fixed

point sets.

For W ∈ Grk(V ), the tangent space to W in the Grassmannian is

TW Grk(V ) = Hom(W,W⊥)∼=W ∗⊗W⊥.

For W a T -fixed subspace, reorder the basis so that W is the span of {e1, . . . ,ek}, so that

TW Grk(V ) has basis {e∗i ⊗ e j | 1 ≤ i ≤ k,k+1 ≤ j ≤ n}. Then, the T -weights on TW Grk(V )

on the basis vector e∗i ⊗ e j are given by 0 in every position except i and j, the original

T -weight in the jth position and the negative of the usual T -weight in the ith position.

For our first decomposition (this one with isolated fixed points) let C∗ act on V with

weights (1,2, . . . ,n) so that t · (e1, . . . ,en) = (t · e1, t2 · e2, . . . , tn · en). Let σ be a permutation

of {1, . . . ,n} and let W be the span of {eσ(1), . . . ,eσ(k)}. We may take σ to be increasing on

the sets {1, . . . ,k} and {k+1, . . . ,n}. Then, W corresponds to the partition λ in a k× (n− k)

rectangle with boundary path a down step in every position not in σ([k]) and a right step in

every position in σ([k]). Then, the C∗-weights on the tangent space are given by σ(i)−σ( j)
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with k+1 ≤ i ≤ n and 1 ≤ j ≤ k. So, the number of positive weights on the tangent space at

W is given by the number of pairs (i, j) with 1 ≤ j ≤ k and k+1 ≤ i ≤ n so that σ( j)< σ(i).

So, the positive weights are counted by pairs of right steps (the σ( j)) and down steps (the

σ(i)) in the boundary string of λ such that the right step occurs before the down step. That

is, the number of positive weights is equal to the total number of boxes in the Young diagram

of the corresponding partition. Hence, the Białynicki-Birula decomposition with this action

gives us the identity

[Grk(V )] = ∑
λ∈Par(k,n−k)

L|λ | (2.1)

where Par(k,n− k) denotes the partitions with Young diagrams that fit inside a k× (n− k)

rectangle.

Let us introduce the notation

[n]q =
1−qn

1−q
= 1+q+q2 + · · ·+qn−1,

[n]q!=
n

∏
k=1

[k]q,(
n
k

)
q
=

[n]q!
[k]q! [n− k]q!

.

By induction (using Pascal’s identity) we have

(
n
k

)
q
= ∑

λ∈Par(k,n−k)
q|λ |. (2.2)

The next proposition computes [Grk(V )] again, this time using a decomposition arising

from a C∗-action with non-isolated fixed points.

Proposition 2.3 (q–Vandermonde Identity). For positive integers n,k, i we have

(
n
k

)
q
=

k

∑
j=0

(
i
j

)
q

(
n− i
k− j

)
q
q j(n−i−k+ j).
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Proof. Identity (2.1) tells us that

[Grk(V )] = ∑
λ∈Par(k,n−k)

L|λ |,

and using identity (2.2) (by identifying q with L), we can identify [Grk(V )] with
(n

k

)
q. This

proof uses the Białynicki-Birula decomposition of a non-generic C∗-action and finds that the

decomposition, under the same identification, gives the right hand side of the q-Vandermonde

identity.

Let C∗ act on V with weight −1 on the first i coordinates, and weight 0 on the rest, i.e.:

λ · e j =

 λ−1e j j ≤ i

e j j > i

and consider the induced action on Grk(V ). For convenience, let V1 be the span of {e1, . . . ,ei}
and V2 the span of {ei+1, . . . ,en}, and let π1 and π2 denote the projection maps from V to V1

and V2 respectively.

We begin by showing that the fixed points W ∈ Grk(V ) are the subspaces that live inside

Gr j(V1)×Grk− j(V2) for some integer j, 0 ≤ j ≤ k. Suppose that W is such a space. Then,

W has a basis consisting of j vectors in V1, and k− j vectors in V2. Acting by λ scales each

of these basis vectors (either by λ−1 or 1) and hence does not change W . Hence, all spaces

of this form are indeed fixed. Now suppose W is fixed and contains a vector of the form

v+w where v is in the span of {e1, . . . ,ei} and w is in the span of {ei+1, . . . ,en}. Then W

also contains the vector λ−1v+w, for all λ ∈ C∗, so in particular W contains −v+w, and

hence contains both v and w. That is, if W contains a vector u, then it also contains π1(u) and

π2(u), so W contains the product π1(W )×π2(W ). The containment in the other direction

always holds, so

W = π1(W )×π2(W ) ∈ Grdim(π1(W ))(V1)×Grdim(π2(W ))(V2).

Finally, note that dim(π1(W ))+dim(π2(W )) = dim(W ) = k.

In the language of Białynicki-Birula, set Fj = Gr j(V1)×Grk− j(V2) for i = 0,1, . . . ,k and

let U j be the points that flow to Fj. Then we have that U j is a bundle over Fj with fibres

affine spaces of dimension d j where d j is the dimension of the positive eigenspace of our
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C∗-action. So, we have

[Grk(V )] =
k

∑
j=0

[Gr j(V1)×Grk− j(V2)×Ad j ]

=
k

∑
j=0

[Gr j(V1)][Grk− j(V2)][L]d j .

Identifying L with q and using our previous formula for Grk(V ) where dim(V ) = n, the

above formula gives us (
n
k

)
q
=

k

∑
j=0

(
i
j

)
q

(
n− i
k− j

)
q
qd j .

Therefore, it remains to show that d j = j(n− i−k+ j). For this, let W ∈Gr j(V1)×Grk− j(V2)

be a fixed point. Let f1, . . . , f j,g1, . . .gk− j be a basis for W with the fl ∈V1 and gl ∈V2, and

extend these to bases of V1 and V2. Then the tangent space TW (Grk(V ))∼=W ∗⊗W⊥ has a

basis consisting of:

(i) vectors f ∗l ⊗ fm, with 1 ≤ l ≤ j and j+1 ≤ m ≤ i, with C∗-weight 0;

(ii) vectors f ∗l ⊗gm, with 1 ≤ l ≤ j and k− j+1 ≤ m ≤ n− i, with C∗-weight 1;

(iii) vectors g∗l ⊗ fm with 1 ≤ l ≤ k− j and j+1 ≤ m ≤ i with C∗-weight −1;

(iv) vectors g∗l ⊗gm with 1 ≤ l ≤ k− j and k− j+1 ≤ m ≤ n− i with C∗-weight 0.

The positive eigenspace is spanned by vectors of type (ii), and counting these basis vectors

we have d j = j(n− i− k+ j).

2.2 Background on the Hilbert scheme

The main aim of this section is to explain how Hilbn(A2) satisfies the conditions of The-

orem 1.4. We begin by defining candidates for affine subvarieties and the corresponding

coordinate ring. Then, we briefly recall some early results of Gordan [Gor99] and Macauley

[Mac27] in what would later become Gröbner basis theory. We use these results to show how

Hilbn(A2) is a quasi-projective variety by embedding it in a Grassmannian and using the re-

sults of the previous section. We then introduce the Hilbert-Chow morphism to contextualise

Hilbn(A2) as a resolution of singularities of Symn(A2), and compute the (co)tangent space

at a monomial ideal. Once we have computed the tangent space, we prove that Hilbn(A2)
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is smooth and prove Ellingsrud and Strømme’s characterisation of the tangent space as a

(C∗)2-representation in [ES87].

Finally, we drop some hints about Buryak, Feigin, and Nakajima’s proof of a special case

of our main theorem in [BFN15].

To develop the background, we largely follow [Hai98].

Let A2 = Spec
(
C[x,y]

)
. As a set,

Hilbn

(
A2
)
= {I ∈ C[x,y] | dim(C[x,y]/I) = n}

and the diagonal action of (C∗)2 on A2 induces an action on Hilbn

(
A2
)

by

(t1, t2) · I = { f (t−1
1 x, t−1

2 y) | f (x,y) ∈ I}.

Any ideal fixed under this action must be homogeneous in x and y, and therefore the fixed

points are the monomial ideals. We will see that there is a monomial ideal in the closure of

each torus orbit, so much can be gleaned from the local picture around the monomial ideals.

Next, we define our candidates for affine subvarieties.

For a partition µ of n, let Bµ = {(xh,yk) | (h,k) ∈ µ} and define

Uµ = {I ∈ Hilbn(A2) | Bµ spans C[x,y]/I}.

Then, Uµ contains the ideal Iµ generated by monomials not in µ .

Since dimC(C[x,y]/I) = |Bµ |, Bµ must be a basis for C[x,y]/I for any I ∈Uµ . So, for

each r,s and ideal I ∈Uµ there is a unique expansion

xrys = ∑
(h,k)∈µ

crs
hk(I)x

hyk (mod I).

The crs
hk define a collection of functions on Uµ , where (h,k) ∈ µ and (r,s) ∈ Z2.

Example 2.4. For the ideal Iµ ∈Uµ we have

crs
hk(Iµ) =

δr,sδh,k (r,s) ∈ µ

0 (r,s) ̸∈ µ.
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2.2.1 Gröbner basics

Gröbner basis theory is a thriving area of active research, but we will only need some classical

results due to Gordan [Gor99] and Macauley [Mac27]. For the rest of this chapter, let <

denote the lexicographic order where 1 < x < x2 < .. . < y < xy < .. . .

Definition 2.5 (Initial ideal, Gröbner basis). For a polynomial p ∈ C[x,y] let L<(p) denote

the leading monomial of p with respect to <. For an ideal I ⊆ C[x,y] the initial ideal of I is

L<(I) = {L<(p) | p ∈ I}.

A set G = {g1,g2, . . .gn} ⊂ I is a Gröbner basis for I if

⟨L<(gi) | gi ∈ G ⟩= L<(I).

We will make reference to the following example over the rest of the section.

Example 2.6. The ideal I = (y2 − y,y− x) has Gröbner basis (x2 − x,y− x).

Note also that I is the vanishing set of {(1,1),(0,0)} so the only polynomials less than

x2 − x that could be in I are x−1 and x. They cannot both be in I, and if just one is in I then

the vanishing set reduces to a single point. Hence all leading monomials of polynomials in I

are divisible either by y or by x2.

Note also that I ∈ U(1,1) ∩U(2), and in particular I ∈ U(1,1) but L<(I) = (x2,y) corre-

sponding to the partition (2), not (1,1).

Gröbner bases exist for any ideal in a multivariate polynomial ring (this is a consequence

of Dickson’s Lemma [Dic13], although this existence was certainly known by Gordan) and

they are useful because they give us a division algorithm for multivariate polynomial rings.

Proposition 2.7 (Gordan 1899). If G is a Gröbner basis for I and p ∈ C[x,y] then p can be

written as

p = ∑
i

pigi +h

where pi ∈ C[x,y] and no term of h is divisible by any of the L<(gi). Moreover, p ∈ I if and

only if h = 0.

Proof. Certainly p can be written p = ∑i pigi +h for some h. Let L<(g1)< L<(g2)< .. . <

L<(gn) and let j be maximal such that g j divides a term of h. Then for some polynomial q j,
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p = ∑i ̸= j pigi +(p j +q j)g j +(h−q jg j), and the maximal degree of the terms in h divisible

by one of the L<(gk) has decreased, so we may take h to not be divisible by any of the

L<(gk).

It is clear that if h = 0 then p ∈ I. If p ∈ I, then p−∑i pigi = h ∈ I so L<(h) ∈ L<(I).

But L<(h) ̸∈ ⟨G ⟩= L<(I) unless h = 0.

2.2.2 Hilbn(A2) as a quasi-projective variety

Now we are in a position to show that the Uµ cover Hilbn(A2). Once we have this, we use a

map into the Grassmannian to show that the Uµ are affine subvarieties.

Proposition 2.8 (Macauley 1927). Let I ∈C[x,y] have colength n. Then, the set of monomials

not in L<(I) are a basis for C[x,y]/I.

Proof. Let B be the set of monomials not in L<(I). They are certainly linearly independent:

if any C-linear combination of them is in I then one of the monomials has to be the leading

term of a polynomial in I. To see that B generates C[x,y]/I, let G = {g1, . . . ,gk} be a Gröbner

basis for I and let p ∈ C[x,y]. Then by Proposition 2.7 ,

p =
k

∑
i=1

pigi +h ∈ h+ I

for some pi,h ∈C[x,y] where h has no term divisible by any of the L<(gi) and so is in B.

Corollary 2.9. The Uµ cover Hilbn(A2).

Proof. This follows immediately from the previous proposition and the observation that if

xayb is not in the ideal generated by a set of monomials, then neither are xa−1yb or xayb−1, so

for an ideal of finite colength the monomials not in L<(I) must correspond to a partition.

Proposition 2.10. The Uµ are open affine subvarieties of Hilbn(A2) and the affine co-ordinate

ring is generated by the crs
hk.

Proof. Let N = n+ 1 = |µ|+1 and let MN be the set of monomials {xayb | a+ b ≤ N}
- in particular, MN contains every monomial in any of the Bµ . We can map each ideal

I 7→ CMN/(CMN ∩ I) . Since Bµ ⊆ MN , dim
(
CMN/(CMN ∩ I)

)
= n so we have a map

Hilbn(A2)→ Grk(CMN)
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where k = N(N−1)
2 −n. The above map is injective with locally closed image, and the induced

reduced subscheme structure is independent of N (see [Got78]).

The sets Uµ are then the preimages of the affine sets described in Example 2.2, and the

crs
hk are the coordinates. So, we may take {Uµ | µ ∈ Par} to be an affine cover of Hilbn(A2)

and coordinate ring on Uµ is generated by the crs
hk.

Now we show that the closure of the torus orbits contain a monomial ideal. We will use

this later when we prove that Hilbn(A2) is smooth.

Lemma 2.11. Let I ∈ Hilbn(A2). Then the limit

lim
a→0

lim
b→0

(a,b) · I = spanC({L<(p) | p ∈ I}) = Iµ

for some partition µ , where the limits are taken over C∗.

Proof. We have already seen in Proposition 2.8 and Corollary 2.9 that spanC
{

L<(p) | p ∈ I
}

is a monomial ideal Iµ and that it follows that I ∈Uµ , so it suffices to prove the left equality.

By definition of the crs
hk, we have that

xrys − ∑
(h,k)∈µ

crs
hk(I)x

hyk ∈ I.

Applying L< to this polynomial tells us that xrys must be the leading term, because spanC{L<(p) |
p∈ I} does not contain any monomials in Bµ , ruling out all of the other terms. Hence, crs

hk = 0

unless xrys > xhyk. That is, crs
hk = 0 unless k < s or k = s and h < r, so either s− k is positive

or it is 0 and r−h is positive. Hence

lim
a→0

lim
b→0

(a,b)crs
hk = lim

a→0
lim
b→0

ar−hbs−kcrs
hk = 0.

So, lima→0 limb→0(a,b) · I = Iµ .

2.2.3 The Hilbert-Chow morphism

Next, we define the Hilbert-Chow morphism to connect with the common intuition that

Hilbn(A2) parameterises collections of n points on a surface where, if points coincide, the

Hilbert scheme keeps track of how they collided.
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Definition 2.12. The Hilbert-Chow morphism π : Hilbn(A2)→ Symn(A2) sends an ideal I to

the multiset Supp(C[x,y]/I) consisting of prime ideals p ∈ C[x,y] such that the localisation

(C[x,y]/I)p ̸= 0, where the multiplicity of p is given by the length of the localisation.

Now, let J be any ideal in Hilbn(A2). A prime p ∈ Spec(C[x,y]) is in the support of

C[x,y]/J if and only if it is contains the annihilator, equivalently, it must contain J, so as a

set (rather than a multiset) π(J) consists of the prime ideals in C[x,y] containing J. In C[x,y],
the prime ideals are of one of three types:

(i) the zero ideal;

(ii) ideals ( f (x,y)) generated by a single irreducible polynomial f (x,y);

(iii) maximal ideals of the form (x−a,y−b) for some (a,b) ∈ C2.

The only prime ideals that contain ideals of finite colength are those of type (iii).

Example 2.13. Let I be any monomial ideal in Hilbn(C2). Then I must contain an element

of the form xa and another of the form yb (else C[x,y]/I would not be finite dimensional).

The only prime ideal containing both xa and yb for a,b ≥ 1 is the maximal ideal (x,y).

Localising at C[x,y]\(x,y) gives all of the rational functions that do not have a pole

at (0,0). So, as a set, π(I) = {(x,y)} and the multiplicity is given by n, for example when

I = (x2,y3) we have the chain of ideals of length 6

(0)⊊ (xy2)⊊ (y2)⊊ (xy,y2)⊊ (y)⊊ (x,y)⊊C[x,y]/I.

Example 2.14. Let K = (x4,y3 + y2), contained in the prime ideals p1 = (x,y) and p2 =

(x,y+1). Then, C[x,y]/K as a C-vector space has basis

{1,x,x2,x3,xy,x2y,x3y,xy2,x2y2,x3y2,y,y2}

so K ∈ Hilb12(A2), K ∈U(4,4,4) and

crs
hk(K) =


(−1)sδrh r ≤ 3,s > 2,k = 2

δrhδsk r ≤ 3,s ≤ 2

0 otherwise.
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Localising at p1, C[x,y]p1 again consists of rational functions with no pole at (0,0) and

so (x4,y3 + y2)p1 = (x4,y2) in C[x,y]p1 . The quotient then contains the following chain of

ideals,

(0)⊊ (x3y)⊊ (x3)⊊ (x3,x2y)⊊ (x2)⊊ (x2,xy)⊊ (x)⊊ (x,y)⊊
(

C[x,y]
(x4,y3 + y2)

)
p1

.

Localising at p2, C[x,y]p2 consists of rational functions with no pole at (0,−1) and

(x4,y3+y2)p2 = (x4,y+1) in p2, C[x,y]p2 The quotient contains the following chain of ideals

(0)⊊ (x3)⊊ (x2)⊊ (x)⊊
C[x,y]

(x4,y3 + y2)p2

.

So, the Hilbert-Chow morphism sends K to the multiset {(x,y)8,(x,y+1)4}.

2.2.4 Tangent and cotangent space

Next, we compute the cotangent space at the monomial ideal Iµ ∈ Uµ and show that the

monomial ideals are smooth points. It will then follow that Hilbn(A2) is smooth, as the

singular locus is stable under the torus action and closed, so by Lemma 2.11 must contain

one of the monomial ideals if it is nonempty.

Recall that the cotangent space at a point p is defined to be the vector space mp/m
2
p

where mp is the ideal in the coordinate ring of X vanishing at p. The tangent space of X at

p is the dual vector space, Tp(X) = (mp/m
2
p)

∗ and in general dim(Tp(X)) ≥ dim(X) with

equality when p is a smooth point. See e.g. [Har77] for further details.

As computed in Example 2.4,

crs
hk(Iµ) =

δr,sδh,k (r,s) ∈ µ

0 (r,s) ̸∈ µ.

So, mIµ
contains {crs

hk | (r,s) ̸∈ µ}∪{crs
hk | (r,s)∈ µ,(r,s) ̸= (h,k)}. The functions in the right

bracket are identically zero on Uµ . The next proposition determines two useful relations

which we will apply to compute the cotangent space.

Proposition 2.15. For (r,s) ̸∈ µ and (i, j) ∈ µ we have the relations

cr,s+1
i j = crs

i, j−1 (mod m2
Iµ
) (2.3)



2.2 Background on the Hilbert scheme 31

and

cr+1,s
i j = crs

i−1, j (mod m2
Iµ
). (2.4)

Proof. For I ∈Uµ and (r,s) ̸∈ µ we have

xrys = ∑
(h,k)∈µ

crs
hk(I)x

hyk (mod I).

Multiplying by y,

xrys+1 = ∑
(h,k)∈µ

crs
hk(I)x

hyk+1 (mod I)

= ∑
(h,k)∈µ

∑
(i, j)∈µ

crs
hk(I)c

h,k+1
i j (I)xiy j (mod I)

So,

cr,s+1
i j = ∑

(h,k)∈µ

crs
hkch,k+1

i j .

Since we have taken (r,s) ̸∈ µ, all of the crs
hk are in mIµ

and the ch,k+1
i, j are in mIµ

whenever

(h,k+1) ̸= (i, j), so reducing modulo m2
Iλ

gives

cr,s+1
i j = crs

i, j−1ci j
i j.

We have (i, j) ∈ µ so ci j
i j ≡ 1 on Uµ and we have

cr,s+1
i j = crs

i, j−1 (mod m2
Iµ
).

Multiplying through by x and doing a similar computation gives also that

cr+1,s
i j = crs

i−1, j (mod m2
Iµ
).

We may represent the tangent vector associated to crs
hk ∈ mµ as an arrow from the unit

square in the plane with bottom left corner (r,s) to the box in µ with bottom left corner (h,k).

The relations above then show that we can translate the arrows by unit steps up, down, left or

right without changing the tangent vector, as long as the tail of the arrow remains outside the
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Fig. 2.1 In this diagram for µ = (7,7,5,5,2,1,1), the blue arrows all represent the same
function in mIµ

/m2
Iµ

, and the brown arrows (which could be moved to have tails anywhere in
the green area) are all 0.

diagram and the head remains inside the diagram. Moreover, if the head of the arrow can be

moved across the coordinate axes then the arrow is zero.

Example 2.16. Figure 2.1 shows two classes of the crs
hk drawn as arrows: the blue arrows are

a nonzero class and the brown arrows are 0, as the heads can be moved across the y axis.

For arrows to be nonzero, they must point northwest or southeast (there are no northeast

arrows, and southwest arrows can trace out a path parallel to the boundary until the head

crosses the coordinate axes). Next we define unique representatives of classes of nonzero

arrows uhk and dhk. We think of the uhk as the nonzero southeast pointing arrows pushed as

far southeast as possible and the dhk as nonzero northwest arrows pushed as far northwest as

possible – in fact, this viewpoint will show that the uh,k and dh,k span m/m2.

Definition 2.17. Let □ ∈ µ have bottom left corner (h,k) and let ( f ,k), be the bottom left

corner of the rightmost box in row k and let (h,g) be the bottom left corner of the topmost

box in column h. Define uhk = ch,g+1
f ,k and dh,k = c f+1,k

h,g .

Remark 2.18. We have borrowed Haiman’s notation, but not his diagram convention, so the

us point down and the ds point up1.

Example 2.19. Figure 2.2 shows d1,3 (red) and u1,3 (blue) for the partition µ =(7,7,5,5,2,1,1)

together with the regions the tail could be dragged to without changing the point in the cotan-

gent space (green or yellow). The box with bottom left corner (1,3) is shaded grey.
1This may be some relief to those who prefer to keep their arms above their legs, who are presumably

reading upside down.
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Fig. 2.2 The arrows representing u1,3 (red) and d1,3 (blue) for µ = (7,7,5,5,2,1,1).

Proposition 2.20. The uh,k and dh,k span m/m2.

Proof. As we have already observed, any northeast pointing arrow must be zero.

If a southeast-pointing arrow is nonzero, it can be moved so that its tail lies in the

southeast-most point of the possible tails of arrows in the same class, and the head of the

arrow will be in the partition. Because the arrow cannot be moved further east, the head must

be in a box that is the last square in its row. Because the arrow cannot be moved further

down, the tail must be directly above a box in the partition. That is, it must be one of the uhk.

The same argument shows that the nonzero northwest pointing arrows all have one of the

dhk as a representative.

Proposition 2.21. The Hilbert scheme of points on A2 is smooth of dimension 2n, and the

tangent space at a monomial ideal Iµ is given by

Tµ

(
Hilbn(A2)

)
= spanC

{
u∗h,k,d

∗
h,k | (h,k) ∈ µ

}
.

Proof. It suffices to check smoothness locally at Iµ , since the singular locus is closed and

stable under the torus action and therefore contains a fixed point if it is nonempty.

The image of Uµ under the Hilbert-Chow morphism is dense in Symn(A2) so Uµ has

dimension at least 2n, and for smoothness it suffices to bound the dimension of the tangent

space above by 2n. Proposition 2.20 shows that the dimension of the cotangent space at Iµ is

at most 2n, so Hilbn(A2) is indeed smooth at Iµ , and has dimension 2n. So, the {uhk,dh,k}
are in fact a basis for the cotangent space, and hence the dual basis is a basis for the tangent

space.
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2.2.5 Ellingsrud-Strømme

With this explicit description of the tangent space, we can quickly check Theorem 1.9, which

describes the class of the tangent space at a monomial ideal in the representation ring of

(C∗)2. We restate it here for convenience.

Theorem (Ellingsrud-Strømme). In the representation ring of a two-dimensional torus (C∗)2,

the tangent space at a monomial ideal Iλ to Hilbn

(
A2
)

is given by

[
Tλ

(
Hilbn

(
A2
))]

= ∑
□∈λ

ρ(t)−l(□)−1
φ(t)a(□)+ρ(t)l(□)

φ(t)−a(□)−1.

where t · x = φ(t)x and t · y = ρ(t)y for linearly independent characters φ and ρ of (C∗)2.

Proof of Theorem 1.9. Let φ(t),ρ(t) be as in the statement and fix (h,k) the bottom left

corner of some box □∈ λ . Then, (φ(t),ρ(t)) has the same weight on u∗hk as (φ(t)−1,ρ(t)−1)

has on uhk, and

(φ(t)−1,ρ(t)−1) ·uhk = (φ(t)−1,ρ(t)−1) · ch,g+1
f ,k (2.5)

= φ(t) f−h
ρ(t)k−g−1ch,g+1

f ,k (2.6)

= φ(t)a(□)
ρ(t)−(l(□)+1)uh,k. (2.7)

Similarly, (φ(t),ρ(t)) has the same weight on d∗
hk as (φ(t)−1,ρ(t)−1) has on dhk and

(φ(t)−1,ρ(t)−1) ·dhk = (φ(t)−1,ρ(t)−1) · c f+1,k
h,g (2.8)

= φ(t)h− f−1
ρ(t)g−kc f+1,k

h,g (2.9)

= φ(t)−(a(□)+1)
ρ(t)l(□)dh,k. (2.10)

Summing over □ ∈ λ then proves the theorem.

2.2.6 Buryak-Feigin-Nakajima

Finally, we briefly explain Buryak, Feigin and Nakajima’s geometric proof in [BFN15] of

the special case of our Theorem A when c = α +β and x ranges over positive rationals r
s

with r+ s = α +β .
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We have now seen multiple instances of the Białynicki-Birula decomposition being used

as follows: identify a smooth variety with a torus action. Judiciously choose one-parameter

subtorus actions so that the corresponding decompositions encode different descriptions of

the distribution of combinatorially interesting objects, and conclude an equidistribution result.

In most cases we have used a torus action with isolated fixed points.

Buryak, Feigin and Nakajima use the Białynicki-Birula decomposition arising from the

action of Tα,β (which has non-isolated fixed points) on Hilbn(A2)Γα+β not to compute the

class of Hilbn(A2)Γα+β itself2 but to force the class of the Γα+β ×Tα,β -fixed points to appear

as some of the fixed point sets Fi j, just as the class of smaller Grassmannians showed up in

our proof of Proposition 2.3. In Proposition 2.3, we were not able to extract any information

about the individual smaller Grassmannians from the decomposition (although we could

compute them directly) because they were all weighted differently. However, Buryak, Feigin

and Nakajima are able to control the contribution from the normal bundle (using a symplectic

form) so that the connected components of the Tα,β -fixed sets of Hilbn(A2) are equally

weighted, so the decomposition gives us information about the class of the Γα+β ×Tα,β -fixed

sets, which appear on the right hand side rather than the left hand side.

Lemma 2.22 (Buryak-Feigin-Nakajima [BFN15, Lemma 3.1] ). For α,β non-negative

integers, not both zero, then in the Grothendieck ring of complex quasi-projective varieties,[(
Hilbn

(
A2
))Tα,β×Γα+β

]
=

[(
Hilbn

(
A2
))T0,α+β×Γα+β

]

Proof sketch. The fixed point set of the Γα+β -action on Hilbn(A2) is smooth. Let

Hilbn

(
A2
)Γα+β

=
⊔

i

(
Hilbn

(
A2
)Γα+β

)
i

be the decomposition into irreducible components. Let the torus Tα,β = {(tα , tβ ) | t ∈ C∗}
act on an irreducible component: Theorem 1.4 then tells us that[(

Hilbn(A2)Γα+β

)
i

]
= ∑

j
[Fi j][A]di j (2.11)

2in fact this is relatively straightforward - we already computed it in terms of a family of partition statistics
in Theorem 1.18.
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where Fi j is the jth connected component of the fixed point set of the Tα,β -action on the ith

irreducible component,

Fi j =

((
Hilbn(A2)Γα+β

)Tα,β

i

)
j
=
(

Hilbn(A2)Γα+β×Tα,β

)
i, j
.

and di j is the dimension of the positive eigenspace on the fibre of the normal bundle of

Fi j ⊂ (Hilbn(A2)Γα+β )i. We want to compute the class of the Fi j summed over i and j, which

we almost have as the right hand side of (2.11), but the contributions are weighted by the di j.

So, is we are to use (2.11) to compute the class we want, we need the di j to remain constant

as j varies.

To control the di j, Buryak, Feigin and Nakajima use a symplectic form ω on the ith

component of Hilbn(A2)Γα+β (lifted from dx∧dy on C2) with respect to which the positive

and non-positive eigenspaces of Tα,β are dual. So, each of the di j =
di
2 is half of the dimension

of the normal bundle. In particular, it only depends on α +β . Summing over j tells us that

[(
Hilbn(A2)Γα+β

)
i

]
= [A]

di
2 ∑

j

[(
Hilbn

(
A2
)Γα+β×Tα,β

)
i, j

]
(2.12)

= [A]
di
2

[(
Hilbn

(
A2
)Γα+β

)Tα,β

i

]
(2.13)

In particular, the class of the Tα,β -fixed points of the ith component of Hilbn(A2)Γα+β is

dependent only on α +β .



Chapter 3

Combinatorial Background

In this chapter, we recall first definitions in partition combinatorics, including the abacus

construction, cores and quotients. The standard reference for the abacus construction is

[JK81, §2.7], the abacus was first introduced in [Jam78], cores in [Nak41] and quotients

in [Lit51]. We take a nonstandard view of the c-core, and describe it as an equivalence

class of complete circuits of a directed multigraph Mc. The language we use to describe

the abacus is also nonstandard, but the construction is equivalent. We take this approach so

that we have descriptions of Loehr and Warrington’s construction in [LW09] and the c-core

in terms of directed multigraphs, which allows us to formulate a simultaneous refinement

of the two in Chapter 4. Once we have recalled this theory, we will recall a few standard

generating functions and define the map Gc previously defined in [WW20] and use these to

give a combinatorial proof of Theorem 3.42, which forms our base case.

3.1 Young diagrams and boundary paths

Definition 3.1 (Partition,Young diagram). A partition of an integer n ≥ 0 is a sequence of

non-increasing positive integers λ1 ≥ λ2 ≥ . . .≥ λt with sum n. The size of λ , denoted |λ |,
is n and the length of λ is the number of summands, written l(λ ) = t. The Young diagram of

λ consists of t rows of 1×1 boxes □ in R2, with λi boxes in the ith row for each 1 ≤ i ≤ t.

The bottom left corner of the diagram sits at (0,0).

Example 3.2. The partition µ = (12,12,10,8,7,4,1,1,1) of 56 has the diagram given in

Figure 3.1.
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Informally, the boundary of a partition λ is the bi-infinite path traversing the y-axis from

+∞ until it hits a box of the partition, then follows the edge of the Young diagram until it

hits the x-axis, before traversing the x-axis to +∞. We split the boundary up into unit steps

between lattice points, and view it as a directed multigraph where edges are additionally

assigned a label indicating if they are south or east.

Definition 3.3 (SE directed multigraph). A SE directed multigraph M = (V,E,s, t,d) con-

sists of a vertex set V , an edge set E, and three maps s : E → V, t : E → V and d : E →
{South,East}, called source, target, and direction respectively. We say the edge e departs

from the vertex v if s(e) = v and we say that e arrives at the vertex w if t(e) = w. We call e a

south edge if d(e) = South and an east edge if d(e) = East. We sometimes abbreviate South

to S and East to E in contexts where there is no danger of confusion with the edge set.

Definition 3.4 (Boundary graph). The boundary graph b(λ ) of a partition λ is an SE directed

multigraph. The edge set is defined as follows. For natural numbers x,y there is a south edge

e with s(e) = (x,y+1), t(e) = (x,y) if either

• x = 0 and y ≥ l(λ ), or

• x > 0 and λy+1 = x.

There is an east edge e with s(e) = (x,y) and t(e) = (x+1,y) if either

• y = 0 and x ≥ λ1, or

• y > 0 and λy+1 ≤ x < λy.

The vertex set V (b(λ )) is the union of sources and targets of the edges.

Example 3.5. Let µ = (12,12,10,8,7,4,1,1,1). The boundary graph of µ is given in

Figure 3.1, the south edges being the downward arrows and the east edges being the rightward

arrows.

Note that for any edge e in the boundary graph, the value of x− y at the target of e is one

greater than at the source, because taking a unit step south or east increases the value of x−y

by 1.

So, the value of x−y at the target of an edge indexes an Eulerian tour, or complete circuit,

of b(λ ). For clarity, we recall the definition of a complete circuit.
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Fig. 3.1 The Young diagram and boundary graph of (12,12,10,8,7,4,1,1,1).

Definition 3.6 (Complete circuit). Given a directed multigraph M, a complete circuit of M

is an ordering of E(M) such that if ei and ei+1 are consecutive with respect to the ordering,

then t(ei) = s(ei+1).

Definition 3.7 (Boundary tour, boundary sequence, index). If an edge e ∈ E(b(λ )) has

target (x,y), we say the index of e is i(e) = x− y. The boundary tour is the complete circuit

of b(λ ) where the edges are ordered by index. We write the edges in this ordering as

(. . . ,e−2,e−1,e0,e1,e2, . . .). We say an edge e j occurs before the edge ek if j < k. The

boundary sequence is the bi-infinite sequence (di)i∈Z where di = d(ei). We write S and E in

place of South and East respectively in the boundary sequence.

Example 3.8. The partition µ = (12,12,10,8,7,4,1,1,1) has boundary sequence

. . .SSSSSSESSSE0EESEEESESEESEESSEEE . . .

where d0 is indicated with a 0 suffix.

3.2 Anatomy of a Young Diagram

Next, we recall some standard partition statistics and how they relate to the boundary

sequence, define rimhooks, and connect to cores. We also introduce the notion of an SE

directed multigraph homomorphism.
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Definition 3.9 (Hand, foot, inversion, hook length, arm, leg). A box □ ∈ λ can be specified

by giving the row and column of the Young diagram that the box sits in. In particular, each

box in the Young diagram corresponds to a pair of edges: one south, at the extreme right

of the row □ lies in, called the hand of λ , and another east, at the top of the column □

lies in, called the foot of □, where the foot necessarily occurs before the hand. Conversely,

given an east edge s1 departing from (x1,y1) and arriving at (x1 +1,y1) and a south edge

s2 departing from (x2,y2) and arriving at (x2,y2 −1) such that x1 − y1 < x2 − y2,there is a

unique box in the Young diagram with bottom left corner (x1,y2 −1) such that s1 and s2 are

respectively the foot and hand of □. We call such a pair of south and east edges an inversion.

Hence, we may identify a box in the Young diagram with its hand and foot in the boundary

sequence. The arm of □ consists of the boxes that lie strictly to the right of □ in the same

row, and the leg of □ consists of the boxes that lie strictly above □ in the same column. We

denote the number of boxes in the arm of □ by a(□) and the number of boxes in the leg of □

by l(□). The hook length of □ is defined to be h(□) = a(□)+ l(□)+1.

Example 3.10. The boxes in the arm and leg of the shaded box □ in Figure 3.2 are labelled

with the corresponding body part. The foot of □ is indicated with a blue arrow, the hand

with a red arrow. We have a(□) = 5 and l(□) = 1, so h(□) = 7.

Fig. 3.2 the arm and leg of □.

Proposition 3.11. Let λ be a partition. A box in the Young diagram of λ with hook length c

corresponds to an inversion (di,d j) in the boundary sequence of λ where j = i+ c.

Proof. Let h and f be the hand and foot of □ in the boundary respectively. Consider the map

from the arm of □ to the boundary sending each box to its foot. The foot of any box in the

arm of □ is an east edge that occurs after f and occurs before h. Conversely, each east edge

that occurs after f and occurs before h is the foot of a box in the arm of □. So, a(□) counts

east edges that occur after f and before h.
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Analogously, l(□) counts south edges that occur after f and before h. Thus, a(□)+ l(□)

counts the total number of edges that occur after f and before h. There are h(□)−1 such

edges.

We now turn our attention to cores and rimhooks, first introduced by Nakayama [Nak41].

Definition 3.12 (Rimhook). A rimhook R of length c is a connected set of c boxes in λ such

that removing R gives the Young diagram of a partition, and R does not contain a 2×2 box.

Corollary 3.13. Rimhooks of length c are in bijection with boxes of hook length c.

Proof. Let R be a rimhook of length c in the diagram of a partition λ . Then, by the definition

of a rimhook, for every box □ ∈ R there is an edge in the boundary graph of λ arriving at

the top right corner of □. Let ei,ei+1, . . . ,ei+c−1 be the the set of all such edges (since R is

connected these edges are consecutive in the boundary tour), and let ei+c be the next edge in

the boundary tour.

Since R is removable, d(ei) = E.

We now check that d(ei+c) = S. Since ei+c−1 arrives at the top right corner of the south-

eastern-most square □ in R, ei+c departs from the top right corner of □. If ei+c were an east

edge, there would be another box to the right of □ in the same row, contradicting that R is

removable. Therefore, by Proposition 3.11, ei and ei+c are the foot and hand respectively of

a box of hook length c.

Conversely, if □ is a box of hook length c, with foot ei and hand ei+c then taking the

boxes with top right corners the targets of ei,ei+1, . . . ,ei+c−1 gives a rimhook of length c.

Definition 3.14. A c-core of a partition λ is a partition obtained by iteratively removing

rimhooks of length c from λ until a partition with no rimhooks of length c is obtained. A

partition µ is called a c-core if µ has no rimhooks of length c.

Applying Corollary 3.13 to c-cores gives the following.

Corollary 3.15. A partition λ is a c-core if and only if λ has no boxes of hook length c.

Our aim for now will be to redefine the c-core in the language we wish to use later, and

then use it to see that the result of iteratively removing rimhooks of length c is independent

of the order in which rimhooks are removed. In order to do so, we need the notion of an SE

directed multigraph homomorphism. Informally, these consist of two maps, one between

edges, and another between vertices. We require that these maps preserve the direction (S or

E) of the edges, and that they be compatible with the source and target maps.
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Definition 3.16 (SE directed multigraph homomorphism). Let M1 = (V1,E1,s1, t1,d1), M2 =

(V2,E2,s2, t2,d2) be SE directed multigraphs. A homomorphism of SE directed multigraphs

ϕ : M1 → M2 is a pair of maps ϕV : V1 →V2 and ϕE : E1 → E2 such that for all edges e ∈ E1,

s2(ϕE(e)) = ϕV (s1(e)) (3.1)

t2(ϕE(e)) = ϕV (t1(e)) (3.2)

d2(ϕE(e)) = d1(e). (3.3)

In other words, ϕ is a quiver homomorphism that preserves direction (S or E).

Example 3.17. Let M1 be the boundary graph of µ = (12,12,10,8,7,4,1,1,1) and let ϕV

be the map taking each vertex (x,y) to [x− y], the class of x− y modulo 2. This map induces

the homomorphism q2 illustrated in Figure 3.3, with east edges coloured red and south edges

coloured blue.

For ease of reading, we draw edges in the image of q2 from left to right in order of index

as . . . ,q2(e−2),q2(e−1),q2(e0),q2(e1),q2(e2), . . ..

[0]

[1]

Fig. 3.3 A portion of M1 and the corresponding edges in q2(M1).

We will always work with SE directed multigraph homomorphisms where the edge map

ϕE is bijective, so from now on we assume ϕE is bijective for any homomorphism ϕ. In

particular, this assumption allows us to push complete circuits through homomorphisms.

Proposition 3.18. Let ϕ : M1 → M2 be an SE directed multigraph homomorphism. Let (ei)i∈I

be a complete circuit of M1. Then (ϕE(ei))i∈I is a complete circuit of M2.
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Proof. Since ϕE is bijective, we need only check that s2(ϕE(ei+1)) = t2(ϕE(ei)) for each

i ∈ I. By definition,

s2(ϕE(ei+1)) = ϕV (s1(ei+1)) (3.4)

= ϕV (t1(ei)) (3.5)

= t2(ϕE(ei)). (3.6)

We have seen already that rimhooks of length c correspond to boxes of hook length c

which in turn correspond to inversions in the boundary sequence where, if the first term has

index i, the second has index i+ c. Intuitively enough, then, the useful homomorphism that

captures all of this information is the following.

Definition 3.19 (c-abacus tour). Let (z,w) ∼c (x,y) if z−w ≡ x− y (mod c). Then, qc :

b(λ )→ Mc is the SE directed multigraph homomorphism induced by imposing the relation

∼c on the vertices of b(λ ). The complete circuit (qc(ei))i∈Z of Mc is called the c-abacus tour

associated to λ .

Proposition 3.11 tells us that the number of boxes with hook length divisible by c can

be read off from the c-abacus tour by looking at edges that correspond to a hand and foot

arriving at the same vertex (v, [i]). So, it is sometimes useful to group the edges in a complete

circuit by target. This leads us to arrival words.

Definition 3.20 (Arrival words, departure words). Let M = (V,E,s, t,d) be a directed SE

multigraph and let (ei)i∈I be a complete circuit of M. For v ∈V, let Iv ⊂ I be the subset of

indices such that t(ei) = v. The arrival word at v, written va, is the sequence of directions

d(ei)i∈Iv . The departure word at v is defined analogously, replacing the target map with the

source map.

Notation 3.21. Given a sequence (di)i∈I of Ss and Es, we write inv(di) for the number of

inversions.

Proposition 3.22. Let λ be a partition with boundary tour (ei)i∈Z and let Mc have vertex set

{[i] | 1 ≤ i ≤ c} where [i] denotes the class of i modulo c. Then, taking arrival words with

respect to the complete circuit (qc(ei))i∈Z

|{□ ∈ λ : c | h(□)}|=
c−1

∑
i=0

inv([i]a). (3.7)
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Proof. Apply Proposition 3.11.

3.3 Alignment and charge

So far, we have associated to every partition a boundary sequence, a bi-infinite sequence of

Ss and Es such that if we travel far enough to the left in the sequence every entry is an S, and

if we travel far enough to the right, every entry is an E. We will now study these sequences

in general, and identify which of them arise as boundary sequences of a partition. Then, we

will define an equivalence relation on partitions, which we shall show is equivalent to having

the same c-core. We will use this to show that partitions have a unique c-core, to define the

c-quotients originally studied by [Lit51], and to give a bijection between partitions of fixed

c-core and c-tuples of partitions.

Definition 3.23 (Charge). Let D = (di)i∈Z be a bi-infinite sequence with di ∈ {S,E}, for

each i such that for some M ∈ N, ∀m ≥ M, d−m = S and dm = E. Fix an integer k. Let ek be

the number of Es in (di)i∈Z with index at most k,

ek =
∣∣{d j : d j = E and j ≤ k

}∣∣ . (3.8)

Similarly, let sk be the number of Ss with index greater than k,

sk =
∣∣{d j : d j = S and j > k

}∣∣ . (3.9)

Then, the k-charge of D, written chk (D) is ek − sk − k.

Proposition 3.24. If k and l are integers, and D is as in Definition 3.23, then chk(D) =

chl(D).

Proof. We check that chk+1(D) = chk(D). The proposition then follows by repeated applica-

tion of the equality. Suppose dk+1 = E. Then, ek+1 = ek +1 and sk+1 = sk. So,

chk+1(D) = ek+1 − sk+1 − (k+1) (3.10)

= ek +1− sk − (k+1) (3.11)

= ek − sk − k (3.12)

= chk(D). (3.13)
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Similarly, if dk+1 = S, then ek+1 = ek and sk+1 = sk −1, so chk+1(D) = chk(D). Therefore,

chk(D) is independent of k.

So, in place of chk(D), we may simply write ch(D).

Proposition 3.25. A sequence D as in Definition 3.23 is the boundary sequence of a partition

if and only if ch(D) = 0.

Proof. Suppose D is the boundary sequence of a partition. Let (x1,y1) be the point on the

line x− y = k on the boundary of a partition λ . Since x1 counts the number of south edges

with index greater than k, and y1 counts the number of east edges with index at most k,

ch(D) = x1 − y1 − k = 0.

If ch(D) = 0, then we may reconstruct λ from D by placing a point at (ek,sk), and

drawing the partition boundary in two halves: one as an infinite path departing from (ek,sk)

taking unit steps with orientations given by (di)i>k and the other as an infinite path arriving

at (ek,sk) taking unit steps with orientations given by (di)i≤k.

Definition 3.26 (The relation ∼c). Let λ and µ be partitions and let the arrival words taken

from the c-abacus tours of λ and µ be [0]λa , . . . , [c−1]λa , and [0]µa , . . . , [c−1]µa , respectively.

Define the relation λ ∼c µ if, for all i with 0 ≤ i ≤ c−1,

ch([i]λa ) = ch([i]µa ). (3.14)

Example 3.27. Let µ = (12,12,10,8,7,4,1,1,1) and refer to Figure 3.3. When c = 2, [0]µa
is given by

· · · S S S E S E E E | E E E S E S E E · · ·.

where the bar separates terms corresponding to edges of negative or zero index from

those of positive index.

So, ch([0]µa ) = 4−2 = 2. Analogously, [1]µa is

· · · S S S S S S E S | E S S E E S E E · · ·.

So, ch([1]µa ) = 1−3 =−2.

Proposition 3.28. If λ is a partition containing a rimhook R of length c and λ ′ is the partition

obtained from λ by removing R, then λ ∼c λ ′.
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Proof. Let the boundary tours of λ and λ ′ be (ei)i∈Z and (e′i)i∈Z. First, we analyse how the

boundary sequences (d(ei)) and (d(e′i)) differ. Let R have south-eastern most box □2 and

north-western most box □1. Let e j be the east edge traversing the top edge of □1, so that

e j+c is the south edge traversing the right of □2.

e j+c

e′j+c

e j

e′j

Since we remove □1 and □2, d(e j)=E, d(e′j)= S, and d(e j+c)= S and d(e′j+c)=E. Let

j = qc+r for 0 ≤ r ≤ c−1. Since the rimhook does not contain a 2×2 box and is connected,

the portion of the boundary of λ ′ between the lines x− y = j+1 and x− y = c+ j−1 is a

translate of the original partition boundary by (−1,−1), so d(ei) = d(e′i) for all i ̸∈ { j, j+c}.
So, for all 0 ≤ s ≤ c−1 with s ̸= r, [s]λa = [s]λ

′
a , and the arrival word

([r]λ
′

a )i =


([r]λa )q i = q+1

([r]λa )q+1 i = q

([r]λa )i otherwise.

(3.15)

So,

ch([r]λ
′

a ) = chq−1([r]λ
′

a ) (3.16)

= chq−1([r]λa ) (3.17)

= ch([r]λa ). (3.18)

Corollary 3.29. The c-core of λ is unique, and λ ∼c µ if and only if λ and µ have the same

c-core.

Proof. If λ has c-core ν , then ν is obtained from λ by iteratively removing rimhooks

of length c from R, so by Proposition 3.28, λ ∼c ν . Every partition has at least one c-
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core, so it remains to check that if µ and ν are both c-cores with µ ∼c ν then µ = ν . By

Propositions 3.11 and 3.22, if µ and ν are both c-cores then for each i, the arrival words [i]µa
and [i]νa do not contain any inversions. So, both consist of a string of Ss up to some index,

and a string of Es thereafter. Since µ ∼c ν , the charge of both [i]µa and [i]νa must be the same,

and therefore [i]µa = [i]νa .

The important consequence for us will be the following.

Corollary 3.30. Let λ and µ be partitions. Then λ and µ have the same c-core if there is a

value of m with c | m such that for each [i], both of the following hold.

• the arrival words in the c-abacus tour of λ and µ agree after the entry with index m;

• the portion of [i]λa with index at most m is a permutation of the portion of [i]µa with

index at most m.

Example 3.31. We will calculate the 2-core λ of µ = (12,12,10,8,7,4,1,1,1). By Corol-

lary 3.30 and the calculation in Example 3.27, λ is the unique 2-core with ch([0]λa ) = 2 and

ch([1]λa ) =−2.

So, placing a bar in the bi-infinite string with no inversions to separate edges with positive

index from those with negative or 0 index, the arrival words in M2(λ ) at 0 and 1 respectively,

are

· · · S S S S S S S S | S S E E E E E E · · ·
· · · S S S S S S E E | E E E E E E E E · · ·.

So, the 2-core is (3,2,1).

Proposition 3.32. There is an bijective map f from c-core partitions to a Z-module of length

c−1.

Proof. Consider the c-abacus of a c-core partition. The charges (ch([0]), . . . ,ch([c− 1]))

specify the c-core. A c-tuple of integers (a0, . . . ,ac−1) represents the charges of a partition if

and only if ∑
c−1
i=0 ai = 0. So, sending a c-core to the c-tuple of charges gives a bijective map

with the Z-module M = ⟨e1, . . . ,ec : ∑
c−1
i=0 ei = 0⟩.
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Fix a positive integer c, a c-core µ , and a non-negative integer n. Let Parc
µ(n) denote the

set of partitions of E with c-core µ . Let Parc
µ denote the set of all partitions with c-core µ ,

and let Par denote the set of all partitions.

Definition 3.33 (Quotient). The c-quotient of λ is the c-tuple (q1(λ ),q2(λ ), . . . ,qc(λ )),

where qi(λ ) is the partition with boundary sequence [i]a, with the index shifted so that the

charge is 0.

Definition 3.34 (Quotient map). The quotient map φ : Parc
µ → (Par)c sends the partition λ

to (q1(λ ), . . . ,qc(λ )).

Proposition 3.35. For λ ∈ Parc
µ ,

|λ |= |µ|+c
c

∑
i=1

|qi(λ )|. (3.19)

Proof. By Proposition 3.22, the number of boxes with hook length divisible by c are given

by ∑
c
i=1 inv[i]a. Starting from the c-abacus tour of µ , we can obtain the c-abacus tour of λ

by adding these inversions one at a time. Adding each inversion corresponds to adding a

rimhook of length c to the diagram, so contributes c to |λ |.

3.4 The map Gc

Now we set about proving Theorem 3.42. We first recall three standard generating functions.

Proposition 3.36.

∑
λ∈Par

q|λ |t l(λ ) = ∏
m≥1

1
1−qmt

(3.20)

∑
λ∈Par

q|λ | = ∏
m≥1

1
1−qm (3.21)

∑
λ∈Parc

µ

q|λ | = q|µ| ∏
m≥1

1
(1−qmc)c (3.22)

Proof. We may rewrite the right hand side of (3.20) as

∏
m≥1

1+qmt +q2mt2 +q3mt3 + . . . ,
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so that picking a term qkmtk for each m corresponds to declaring that λ contains k parts of

size m, contributing |km| to λ and k to l(λ ), giving the left hand side. Setting t = 1 in (3.20)

gives (3.21).

For (3.22), Proposition 3.35 tells us that the map φ gives a bijection between λ ∈ Parc
µ

and c-tuples of partitions (q1, . . . ,qc) where |λ |= |µ|+c∑
c
i=1|qi(λ )|. The right hand side

of (3.22) corresponds to all choices of c-tuples q1, . . . ,qc ∈ Par, and the weighting by c

corresponds to each box in qi corresponding to c boxes in λ .

Next, we define a partition statistic λ c∗
□ that arises as a special case of one of the statistics

that we study.

For a positive integer d, let md(λ ) denote the number of parts of λ of size d, and for

fixed c let λ c∗
□ denote the weighted sum

λ
c∗
□ =

∞

∑
d=1

⌊
md(λ )

c

⌋
. (3.23)

In words, λ c∗
□ counts the number of rectangles, of any width, of positive height divisible by c

in the diagram of λ such that the whole right edge of the rectangle, and at least the rightmost

step of the top edge, lies on the boundary of λ , and the left side of the rectangle sits on the

y-axis.

Example 3.37. Let c = 3. The partition λ = (7,7,4,4,4,4,4,4,4,3,2,2,2,1) has m7(λ ) = 2,

m4(λ ) = 7, m3(λ ) = 1, m2(λ ) = 3 and m1(λ ) = 1. So, the only nonzero contributions to

λ 3∗
□ are when d = 2 and d = 4, and

λ
3∗
□ =

⌊
m2(λ )

3

⌋
+

⌊
m4(λ )

3

⌋
= 1+2 = 3.

We now define the map Gc, previously defined in [WW20].

Definition 3.38 (The map Gc). The map Gc : Par→ Par×Kc, where Kc = {λ ∈ Par : λ c∗
□ = 0}

is the set of partitions with no parts repeated c or more times, maps a partition λ to (ξ ,ν)

where for each d ∈ N,

md(ξ ) =

⌊
md(λ )

c

⌋
, (3.24)

and

md(ν) = md(λ )− c
⌊

md(λ )

c

⌋
. (3.25)
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Fig. 3.4 The partition λ has G3(λ ) = ((4,4,2),(7,7,4,3,1)).

We write (Gc)
−1 for the inverse map (Gc)

−1 : Kc ×Par → Par where, for each d ∈ N

md

(
(Gc)

−1(ξ ,ν)
)
= md(ξ )c+md(ν). (3.26)

Example 3.39. As shown in Figure 3.4, the partition λ = (7,7,4,4,4,4,4,4,4,3,2,2,2,1)

has G3(λ ) = ((4,4,2),(7,7,3,4,1)).

The next proposition establishes that the c-core of a partition λ is also the c-core of the

second argument of Gc(λ ), so we may restrict Gc to Parc
µ in a way that interacts sensibly

with cores.

Proposition 3.40. If λ ∈ Parc
µ and Gc(λ ) = (ξ ,ν), then ν ∈ Parc

µ .

Proof. Suppose the proposition is false for some λ of minimal possible size. Then, we must

have λ ̸= ν , so λ must have some part of some size d repeated at least c times. The rightmost

column of the rectangle of width d and height c which has all right edges and the rightmost

top edge in the boundary of λ is a rimhook of size c. Let λ ′ be the partition formed by

deleting this rimhook. Then, λ ′ has c-core µ and Gc(λ
′) = (ξ ′,ν) for some ξ ′. So, since λ ′

is smaller than λ , ν ∈ Parc
µ .

Therefore, Gc restricts to a bijection Gc|Parc
µ
: Parc

µ → Par×(Kc∩Parc
µ). This allows us to

use Gc to prove the following.
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Proposition 3.41. For a positive integer c and a c-core µ , the following product formula

holds.

∑
λ∈Kc∩Parc

µ

q|λ | = q|µ| ∏
m≥1

1
(1−qmc)c−1 . (3.27)

Proof. Let λ ∈ Parµ
c . Then Gc

µ bijectively maps λ to a pair of partitions (ξ ,ν) with |λ |=
|ξ |+c|ν |, because each part of ν corresponds to c parts of λ of the same size. So,

∑
λ∈Parc

µ

q|λ | = ∑
ξ∈Kc∩Parc

µ

q|ξ |× ∑
ν∈Par

qc|ν |. (3.28)

Substituting (3.21) and applying Proposition 3.35 to (3.28) gives

q|µ| ∏
m≥1

1
(1−qmc)c = ∑

ξ∈Kc∩Parc
µ

q|ξ |× ∏
m≥1

1
(1−qmc)

, (3.29)

which rearranges to give (3.27).

We are now in a position to prove the following identity, which forms the base case for

Proposition 4.4. This identity follows immediately from Walsh and Waarnar’s multiplication

formula [WW20, Theorem 6.1] and was derived in the same paper [WW20, 7.1a]. The

original proof is uses essentially the same logic (though in much greater generality) than the

one we have given here.

Theorem 3.42. For a fixed positive integer c,

∑
λ∈Parc

µ

q|λ |tλ c∗
□ = q|µ|∏

i≥1

1
(1−qic)c−1 ∏

j≥1

1
1−q jct

. (3.30)

Proof. Let λ ∈ Parµ
c . Then Gc

µ bijectively maps λ to a pair of partitions (ξ ,ν) with |λ |=
|ξ |+c|ν |, where each part of ν of size d corresponds to a d × c rectangle in λ contributing

to λ c∗
□ . So,

∑
λ∈Parc

µ

q|λ |tλ c∗
□ = ∑

ξ∈Kc∩Parc
µ

q|ξ |× ∑
ν∈Par

qc|ν |t l(ν). (3.31)

Substituting (3.27) and (3.20) into (3.31) gives (3.30).



Chapter 4

Further partition statistics

In this section we define the main partition statistics of interest, h+x,c and h−x,c, where x is

a real parameter and c is a positive integer. The main aim of this thesis is to compute the

distribution of the statistics h+x,c and h−x,c over Parc
µ , given in Theorem 4.2. The previous

chapter computed the distribution of λ c∗
□ over Parc

µ , giving the right hand side in Theorem 4.2.

In this chapter, we connect to λ c∗
□ by observing that λ c∗

□ = h+0,c, and then sketch a framework

for piecing together a family of involutions Ir,s,c defined on Parc
µ to prove that the distribution

h±x,c over Parc
µ is independent of both x and the sign. The rest of the thesis will then construct

the component bijections Ir,s,c.

In order to reduce the proof of Theorem 4.2 to the construction of appropriate bijections

Ir,s,c, we first prove that Theorem 4.2 is implied by Theorem 4.3, which states that the h+x,c
and h−x,c have the same distribution over Parc

µ . Then, we introduce three other statistics midx,c,

crit−x,c and crit+x,c and decompose h+x,c and h−x,c in terms of these other statistics. Finally, we

outline sufficient conditions for the bijections Ir,s,c to prove Theorem 4.3 in terms of these

three statistics.

We conclude the chapter by explaining how the main result of [BFN15] follows from

Theorem 4.2.

Definition 4.1. For a partition λ , x ∈ [0,∞] and a fixed c ∈ N,

h+x,c(λ ) =
∣∣∣∣{□ ∈ λ : c | h(□) and

a(□)

l(□)+1
≤ x <

a(□)+1
l(□)

}∣∣∣∣ , (4.1)

and

h−x,c(λ ) =
∣∣∣∣{□ ∈ λ : c | h(□) and

a(□)

l(□)+1
< x ≤ a(□)+1

l(□)

}∣∣∣∣ . (4.2)
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We interpret a fraction with denominator 0 as +∞.

Note that a box □ contributes to h+0,c if and only if a(□) = 0 and c | (l(□)+1). That is,

□ is the rightmost box in its row, and there is some m such that the row containing □ and

exactly mc− 1 rows to the above all have the same height. The number of such boxes is

exactly λ c∗
□ .

Similarly, h−∞,c(λ ) = λ̄ c∗
□ , where λ̄ is the partition conjugate to λ .

We are now in a position to state our main result.

Theorem 4.2. For all x ∈ [0,∞) we have

∑
λ∈Parc

µ

q|λ |th+x,c(λ ) = q|µ|∏
i≥1

1
(1−qic)c−1 ∏

j≥1

1
1−q jct

, (4.3)

and for all x ∈ (0,∞],

∑
λ∈Parc

µ

q|λ |th−x,c(λ ) = q|µ|∏
i≥1

1
(1−qic)c−1 ∏

j≥1

1
1−q jct

. (4.4)

Proposition 4.4 shows that Theorem 4.2 is a consequence of the following result.

Theorem 4.3. For all positive rational numbers x and all integers n ≥ 0 we have

∑
λ∈Parc

µ (n)
th+x,c(λ ) = ∑

λ∈Parc
µ (n)

th−x,c(λ ). (4.5)

4.1 Reducing to Theorem 4.3

Proposition 4.4. Theorem 4.3 implies Theorem 4.2.

Proof. For x ∈ (0,∞), c ∈ N and δ ∈ {+,−}, or x = 0 and δ = +, or x = ∞ and δ = −,

define

Hδ
x,c(n) = ∑

λ∈Parc
µ (n)

thδ
x,c(λ ).

Suppose Hδ
x,c(n) is independent of both x and δ . Then

Hδ
x,c(n) = H+

0 (n) = ∑ th+0,c(λ ) = ∑ tλ c∗
□ .
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Theorem 4.2 then follows immediately by multiplying by qn, adding over all n ≥ 0, and

applying Theorem 3.42. So, it suffices to prove that Theorem 4.3 implies that Hδ
x,c(n) is

independent of x and δ .

For an integer n, we call a positive rational number r a critical rational for n if there is a

partition µ ∈ Par(n) and a box □ ∈ d(µ) such that h(□) is divisible by c, and a(□)
l(□)+1 = r or

a(□)+1
l(□) = r. By convention, 0 and +∞ are regarded as critical rationals for all n.

We denote the set of all critical rationals for n by C(n). Since there are finitely many

partitions of n each containing finitely many boxes in their diagrams, C(n) is finite for all

n. For a fixed n, write C(n) = {0 = r0 < r1 < · · ·< rk−1 < rk =+∞}. Define open intervals

I j = (r j−1,r j) for each 1 ≤ j ≤ k. Then [0,∞] decomposes into a disjoint union

[0,∞] = I1 ∪ I2 ∪·· ·∪ Ik ∪C(n).

Let x,x′ be two elements of the same interval I j and let δ ,δ ′ ∈ {+,−}. Suppose λ is any

partition of n. Since there are no critical rationals between x and x′, □ ∈ d(λ ) contributes to

hδ
x,c(λ ) if and only if it contributes to hδ ′

x′,c(λ ). So, thδ
x,c(λ ) = thδ ′

x′,c(λ ). Adding over all λ , we

see that if x,x′ ∈ I j,

Hδ
x,c(n) = Hδ ′

x′,c(n). (4.6)

Similarly, for all x ∈ I j,

H+
r j−1,c(n) = Hδ

x,c(n) = H−
r j,c(n). (4.7)

On the other hand, Theorem 4.3 implies that

H+
r j,c(n) = H−

r j,c(n). (4.8)

Therefore, for δ ,δ ′ ∈ {+,−} and y ≥ y′ by applying a chain of these equalities starting

with Hδ
y,c(n), one can reduce y to a critical rational and change δ to a + using (4.7), or

using (4.8) if y is already a critical rational. Then one may iteratively apply (4.8) and (4.7) to

change δ to a −, and then reduce y to the next lowest critical rational and change δ back to a

+, until an equality Hδ
y,c(n) = H−

r j,c(n) is obtained for r j−1 ≤ y′ ≤ r j. Then, applying (4.7)

again with x = y′ (and (4.8) to flip the sign of δ if y = r j−1 and δ ′ = −), one obtains

Hδ
y,c(n) = Hδ ′

y′,c(n).



4.2 Reducing to a symmetry property 55

4.2 Reducing to a symmetry property

In the case x is rational, where h+x,c and h−x,c may differ, it is useful to separate the boxes that

contribute to both statistics from those that contribute to just one. In order to do this, we

define the following statistics.

Definition 4.5. For x = r
s a rational number, we have

crit+x,c(λ ) =
∣∣∣∣{□ ∈ λ : c | h(□) and

a(□)

l(□+1)
= x
}∣∣∣∣ , (4.9)

crit−x,c(λ ) =
∣∣∣∣{□ ∈ λ : c | h(□) and

a(□)+1
l(□)

= x
}∣∣∣∣ , (4.10)

midx,c(λ ) =
∣∣{□ ∈ λ : c | h(□) and − s < sa(□)− rl(□)< r

}∣∣ . (4.11)

The next proposition shows that a bijection satisfying some constraints on its behaviour

with respect to these statistics will give a bijective proof of Theorem 4.3.

Proposition 4.6. Let r,s,c be positive integers with (r,s) = 1 and let x = r
s . Suppose there

exists a bijection Ir,s,c : Parc
µ → Parc

µ such that

1. |λ |= |Ir,s,c(λ )|,

2. midx,c(λ ) = midx,c(Ir,s,c(λ )),

3. crit+x,c(λ )+ crit−x,c(λ ) = crit+x,c(Ir,s,c(λ ))+ crit−x,c(Ir,s,c(λ )),

4. crit+x,c(λ ) = crit−x,c(Ir,s,c(λ )).

Then, Theorem 4.3 is true.

Proof. Assume that Ir,s,c exists. Then, property 3 and 4 together imply that

crit−x,c(λ ) = crit+x,c(Ir,s,c(λ )) (4.12)

so Ir,s,c exchanges crit+x,c and crit−x,c whilst preserving |λ | and midx,c .

Note that a box □ contributes to midx,c if and only if −s < sa(□)− rl(□)< r and the

c | h(□). Adding s+ rl(□), and dividing by sl(□), the left inequality is equivalent to

a(□)+1
l(□)

> x. (4.13)
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Similar manipulation of the right inequality together with (4.13) shows that □ contributes to

midx,c if and only if
a(□)

l(□)+1
< x <

a(□)+1
l(□)

. (4.14)

So, comparing the definitions of crit−x,c, crit+x,c, h+x,c, h−x,c and (4.14),

h+x,c(λ ) = midx,c(λ )+ crit+x,c(λ ) (4.15)

and

h−x,c(λ ) = midx,c(λ )+ crit−x,c(λ ). (4.16)

So, Ir,s,c exchanges h+x,c(λ ) and h−x,c(λ ) whilst preserving |λ |, and hence proves Theo-

rem 4.3.

4.3 Connecting to Buryak-Feigin-Nakajima

When c is divisible by r+ s, Theorem 4.2 implies the following product formula. In the case

r+ s = c, this is the main combinatorial result of [BFN15].

Corollary 4.7. Let r and s be coprime integers, let x = r
s and let r+ s | c. Then

∑
λ∈Par

q|λ |tcrit+x,c(λ ) = ∏
i≥1
c∤i

1
1−qi ∏

i≥1

1
1−qict

. (4.17)

Proof. First we show that under the assumption that r + s | c, then for any partition λ ,

midx,c(λ ) = 0. Suppose □ were to contribute to midx,c(λ ), then □ would have to satisfy

−s < sa(□)− rl(□)< r. (4.18)

Adding rl + sl + s,

(r+ s)l(□)< s
(
a(□)+ l(□)+1

)
< (r+ s)

(
l(□)+1

)
(4.19)

However, the upper and lower bound are consecutive multiples of r + s, and therefore

s(a(□)+ l(□)+1) cannot be a multiple of r+ s, so by assumption cannot be a multiple of c.

So, c ∤ h(□) so □ cannot contribute to midx,c(λ ).
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So in this case h+x,c(λ ) = crit+x,c(λ ) and Theorem 4.2 becomes

∑
λ∈Parc

µ

q|λ |tcrit+x,c(λ ) = q|µ|∏
i≥1

1
(1−qic)c−1

1
1−qict

. (4.20)

Summing both sides over all c-cores µ and applying Proposition 3.35,

∑
λ∈Par

q|λ |tcrit+x,c(λ ) = ∏
i≥1

(1−qic)c

1−qi
1

(1−qic)c−1
1

1−qict
(4.21)

= ∏
i≥1

(1−qic)

1−qi
1

1−qict
(4.22)

= ∏
i≥1
c∤i

1
1−qi ∏

i≥1

1
1−qict

. (4.23)



Chapter 5

The multigraph Mr,s,c

From now on, x = r
s is a rational number with r coprime to s. In this chapter we take our

first key step in the construction of the involution Ir,s,c. First, Proposition 5.1 relates the

statistics midx,c, crit−x,c and crit+x,c to the boundary graph. We use this relationship to define a

map from the boundary graph to a multigraph Mr,s,c that picks out the information relevant

to midx,c and crit+x,c, much as the c-abacus tour does for the c-core. The rest of the chapter

then outlines the method for proving that Mr,s,c retains partition data, including the proofs

that Mr,s,c retains the c-core and the area. The proof it retains the area is a particularly easy

example using the same methodology as used in the more technical proofs in Chapter 7,

which check that Mr,s,c retains midx,c(λ ) and crit+x,c(λ )+ crit−x,c(λ ).

When we define Ir,s,c as a bijection on partitions, we build into the definition that Ir,s,c

preserves Mr,s,c(λ ) for any partition λ . So, together with these results it is immediate that

Ir,s,c does map Parc
µ to Parc

µ and satisfies hypothesis 1 in Proposition 4.6.

5.1 Partition statistics and the boundary path

Proposition 5.1. Let λ be a partition and let □ ∈ λ . Let ei be the foot of □, departing from

(x1 −1,y1) and arriving at (x1,y1) and let e j be the hand of λ , departing from (x2,y2 +1)

and arriving at (x2,y2). Let t = r(y1 − y2)+ s(x1 − x2). Then

1. □ contributes to crit+x,c if and only if t = 0 and x1 − y1 ≡ x2 − y2 (mod c);

2. □ contributes to midx,c if and only if 0 < t < r+ s and x1 − y1 ≡ x2 − y2 (mod c);

3. □ contributes to crit−x,c if and only if t = r+ s and x1 − y1 ≡ x2 − y2 (mod c).
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Proof. By the definition of index, x1 − y1 = i and x2 − y2 = j. Let □ ∈ λ have bottom left

corner (x□,y□). By Proposition 3.11, □ has hook length divisible by c if and only if j ≡ i

(mod c), i.e. x1 − y1 ≡ x2 − y2 (mod c). So, assume that □ does have hook length divisible

by c.

x□

y□

x□+a(□)+1

y□+ l(□)+1

x□+1

ry+ sx = k1

ry+ sx = k2

Fig. 5.1 The box □ and the lines ry+ sx = k1 and ry+ sx = k2.

Let k1 = ry1 + sx1 and k2 = ry2 + sx2. Then,

t = k1 − k2, (5.1)

s(x□+1)+ r(y□+ l(□)+1) = k1, (5.2)

and

s(x□+a(□)+1)+ ry□ = k2. (5.3)

Subtracting (5.2) from (5.3), and substituting in (5.1)

sa(□)− rl(□) = r− t. (5.4)

By definition, □ contributes to crit+x,c if and only if sa(□)−rl(□) = r, that is, when t = 0,

proving the first claim. Similarly, □ contributes to midx,c if and only if −s< sa(□)−rl(□)<

r, or equivalently 0 < t < r+ s, proving the second claim.

Finally, note sa(□)− rl(□) =−s if and only if t = r+ s.

We define the multigraph Mr,s,c(λ ) accordingly.
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Definition 5.2 (Mr,s,c, (r,s,c)-tour). For a partition λ the SE directed multigraph Mr,s,c(λ ) is

obtained from b(λ ) by imposing the relation ∼r,s,c on the vertices, where (x1,y1)∼r,s,c (x2,y2)

if ry1 + sx1 = ry2 + sx2 and x2 − y2 ≡ x1 − y1 (mod c). Denote the equivalence class with

ry+ sx = v and x− y ≡ i (mod c) by (v, [i]). Let qr,s,c : b(λ ) → Mr,s,c(λ ) be the induced

homomorphism. The (r,s,c)-tour of Mr,s,c(λ ) associated to λ is (qr,s,c(ei))i∈Z. At each vertex

(v, [i]), we count the number of east edges arriving at (v, [i]) in the (r,s,c)-tour and denote

this quantity by Ein(v, [i]). Similarly, we count the number of east edges departing from (v, [i])

in the (r,s,c)-tour and denote this quantity by Eout(v, [i]). We define Sin(v, [i]) and Sout(v, [i])

analogously.

Now, we explain a useful way of drawing Mr,s,c(λ ) in the plane. First, we show Proposi-

tion 5.3, which says that when the plane is cut into strips of width lcm(c,r+ s) by lines with

sx+ ry constant, then there is a unique representative of each possible vertex of Mr,s,c(λ )

contained in the strip.

Proposition 5.3. If there is a lattice point (x,y) satisfying both sx+ ry = v and x− y ≡ i

(mod c), then for any real number m there is exactly one such lattice point satisfying the

inequality m ≤ x− y < m+ lcm(c,r+ s).

Proof. First, note that translating a lattice point (x,y) by (r,−s) does not change the value

of sx+ ry. Moreover, there is no lattice point on the line sx+ ry = v between (x,y) and

(x+ r,y− s), since if (x+ l1,y− l2) were such a point, we would have sl1 − rl2 = 0, so since

r and s are coprime, s | l2 and r | l1.

Secondly, note that translating by (r,−s) changes the value of x− y by r+ s. So, the

translations that preserve both the value of sx+ ry and the residue class of [y− x] modulo c

are the translations by (ar,−as) where a(r+ s) is divisible by c, that is, a(r+ s) is divisible

by lcm(c,r+ s). Exactly one of these translates lies in the region m ≤ x− y < m+ lcm(c,r+

s).

So, for a fixed integer n, we can draw the multigraph by taking the vertices to be lattice

points in the portion of R2 in between the lines x− y = n and x− y = lcm(c,r+ s)+n, with

an identification along the boundary lines given by

(x,y)∼
(

x+
r lcm(c,r+ s)

r+ s
,y− s lcm(c,r+ s)

r+ s

)
.

We identify a lattice point (x,y) with the vertex (sx+ ry, [x− y]). Then, south edges in the

multigraph from (v, [i]) to (v− r, [i+1]) are south edges between lattice points in the region
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x− y =−2

x− y =−12

(36, [0])

(33, [1])

(30, [0])

(27, [1]) (29, [0])

(26, [1])

(23, [0])

(20, [1]) (22, [0]) (24, [1]) (26, [0])

(26, [0])

(23, [1]) (25, [0])

(28, [0])

(25, [1]) (27, [0]) (29, [1])

(28, [1])

(24, [0]) (28, [0]) (30, [1]) (32, [0]) (34, [1]) (36, [0])

(39, [1])

(42, [0])

(45, [1])

(48, [0])(46, [1])(44, [0])(42, [1])(40, [0])(38,1)

...

· · ·

Fig. 5.2 M3,2,2(12,12,10,8,7,4,1,1,1).

described. Similarly, east edges from (v, [i]) to (v+ s, [i+1]) are east edges between lattice

points. Moreover, each vertex (v, [i]) corresponds to a unique lattice point in the region.

We can view the (r,s,c)-tour as the cylindrical lattice path tour obtained by collapsing the

boundary of the partition onto this cylinder.

Example 5.4. When c = 2, r = 3 and s = 2 we may draw the (r,s,c)-multigraph of µ =

(12,12,10,8,7,4,1,1,1) as in Figure 5.2.

Remark 5.5. As with the boundary graph, but unlike the c-abacus, the direction of an

edge in Mr,s,c can be read off from its source and target. If an edge e has s(e) = (v, [i]) and

t(e) = (w, [i+1]) then either d(e) = E and w = v+ s or d(e) = S and w = v− r.
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Remark 5.6. If we act on C[x,y] by T ×Z/cZ where T = {(ts, tr) : t ∈ C∗}, lift to ideals

and colour boxes according to the weight of the corresponding monomial with respect to this

representation, the colouring carries the same information as the multigraph.

The first property that we check is that Mr,s,c(λ ) determines the c-core of λ .

Proposition 5.7. If λ and µ are partitions with Mr,s,c(λ ) = Mr,s,c(µ) then λ and µ have the

same c-core.

Proof. Let v be large enough so that
(⌈

v
s

⌉
,0
)

is on the boundary of both λ and µ . Fix

m >
⌈

v
s

⌉
such that c | m. Then, in both the boundary tour of µ and the boundary tour of

λ , every edge with index at least m is an east edge. These edges account for every E in an

arrival word at a vertex (w, [ j]) with w ≥ sm.

For each [i], the number of east edges with index less than m, for both λ and µ , is given

by

∑
w<sm

Ein(w, [i]).

Therefore λ , µ and m satisfy the hypotheses of Corollary 3.30, and so λ and µ have the

same c-core.

Next, we show how to read crit+x,c(λ ) and crit−x,c(λ ) off the (r,s,c)-tour of Mr,s,c(λ ).

Rephrasing the first part of Proposition 5.1 in terms of the (r,s,c)-tour gives

Corollary 5.8. Let λ be a partition. Then

crit+x,c(λ ) = ∑
(v,[i])∈Mr,s,c(λ )

inv(v, [i])a. (5.5)

A similar formula with the departure words holds for crit−x,c(λ ).

Corollary 5.9.
crit−x,c(λ ) = ∑

(v,[i])∈Mr,s,c(λ )

inv(v, [i])d. (5.6)

Proof. By the third part of Proposition 5.1, □ contributes to crit−x,c(λ ) if and only if the foot

and hand arrive at points (x1,y1) and (x2,y2) respectively with

r+ s = r(y1 − y2)+ s(x1 − x2) (5.7)
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and

x1 − y1 ≡ x2 − y2 (mod c). (5.8)

The foot and hand arrive at (x1,y1) and (x2,y2) respectively if and only if they depart from

points (x1 −1,y1) and (x2,y2 +1) respectively. The condition (5.8) is equivalent to

(x1 −1)− y1 ≡ x2 − (y2 +1) (mod c). (5.9)

The condition (5.7) is equivalent to

r+ s = r(y1 − (y2 +1))+ s((x1 −1)− x2)+ r+ s, (5.10)

so subtracting r+ s from both sides,

r(y1 − (y2 +1))+ s((x1 −1)− x2) = 0. (5.11)

We now outline a framework for inductive proofs that the statistics in hypotheses 1–3 of

Proposition 4.6 are determined by the multigraph Mr,s,c, using an ordering <r,s,c on partitions

and multigraphs. The key result in this direction is Proposition 5.24.

5.2 The order <r,s,c

The structure of the proofs that Mr,s,c(λ ) determines each property of λ will be proven by

induction on |λ |, adding a box at each step. Since the structure of Mr,s,c(λ ) is somewhat

delicate, we have to be careful when choosing a box to add. The following ordering on

partitions gives us a framework for adding boxes.

If (x1,y1) and (x2,y2) are two points in N2, say (x1,y1) <r,s,c (x2,y2) if either of the

following hold.

• sx1 + ry1 < sx2 + ry2;

• sx1 + ry1 = sx2 + ry2, and x1 − y1 ≡ x2 − y2 (mod c), and x1 − y1 < x2 − y2.

The partial order >r,s,c on points in the plane induces a partial order >r,s,c on partitions

as follows. Say that λ ′ >′
r,s,c λ if λ ′ can be obtained from λ by adding a box with bottom
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left corner (x,y) minimal with respect to >r,s,c over all possible bottom left corners of boxes

that can be added to λ to obtain a partition. Then for partitions µ,λ say that µ >r,s,c λ if

there is a sequence of partitions λ = λ0,λ1,λ2, . . . ,λm = µ such that for each i, λi <
′
r,s,c λi+1.

If µ >′
r,s,c λ , say that µ is a successor for λ with respect to >r,s,c . Every partition has a

successor with respect to >r,s,c, but successors are not necessarily unique.

Example 5.10. Let r = 3, s = 2, and c = 2. There are three boxes that could be added to the

Young diagram of (3,1) to give another partition. They have bottom left corners at (3,0),

(1,1), and (0,2), with values of 2x+ 3y of 6,5 and 6 respectively. So (3,1) has a unique

successor with respect to <3,2,2, which is (3,2).

For (3,2), the boxes that could be added to the diagram have bottom left corners (3,0), (2,1)

and (0,2), with values of 2x+3y of 6,7 and 6 respectively. The values of x− y for (0,3) and

(2,0) have different parity so (2,0) ̸<3,2,2 (0,3), and both (4,2) and (3,2,1) are successors

of (3,2). Note that (4,1) ̸>3,2,2 (3,1).

Note that if µ >r,s,c λ , then all boxes of the Young diagram of λ are also boxes of the

Young diagram of µ , but as Example 5.10 shows the converse is not true in general.

Definition 5.11 (Accumulation point). For a partition µ with the property that whenever µ

strictly contains λ , we also have µ >r,s,c λ , we call µ an accumulation point for >r,s,c.

The next chapter describes a family of accumulation points and proves some key proper-

ties.

5.3 The accumulation points λr,s,k

Definition 5.12 (The partition λr,s,k). For a given natural number k, the partition λr,s,k is the

partition with Young diagram consisting of all boxes with top right corners on or below the

line sx+ ry = k.

Example 5.13. The Young diagram for λ3,2,54 is given in Figure 5.3.

Proposition 5.14. Let r,s,k be positive integers. Let µ be a partition with diagram strictly

contained in the diagram of λr,s,k. Then, any successor µ+ of µ with respect to >r,s,c has
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(18,0)

(0,27)

Fig. 5.3 the Young diagram of λ3,2,54.

diagram contained in the diagram of λr,s,k. In particular, λr,s,k is an accumulation point for

λr,s,c.

Proof. If (x,y) is the top right corner of a box in µ , then since the diagram for µ is contained

in the diagram of λr,s,k, sx + ry ≤ k. So, the bottom left corner of the same box is at

(x−1,y−1) with s(x−1)+ r(y−1)≤ k− r− s. Since the containment of µ in λ is strict,

there is at least one box in the diagram of λ , not contained in the diagram of µ , with bottom

left corner (x−1,y−1) satisfying s(x−1)+r(y−1)≤ k−r−s. Moreover, since translating

a box with top right corner (x,y) left or down decreases s(x−1)+ r(y−1), there is a box

□1 with bottom left corner (x− 1,y− 1) that can be added to µ to give a valid partition

diagram that satisfies s(x−1)+ r(y−1)≤ k− r− s. Now, if µ+ is not contained in λ , then

µ+ contains some box □2 with top right corner (z,w) such that sz+ rw > k, so the bottom

left corner (z−1,w−1) satisfies s(z−1)+ r(w−1)> k− r− s. This is a contradiction, as

(z−1,w−1)>r,s,c (x−1,y−1), and □1 can be added to µ .

The accumulation points λr,s,k will be extremely useful for two reasons. Firstly, as we

check in Proposition 5.18, Mr,s,c(λr,s,k) admits a unique (r,s,c)-tour whenever rsc | k, so

that Mr,s,c must determine any partition statistic in these cases, as it determines the partition

itself. Secondly, as we check in Proposition 5.16, if we take successor with respect to <r,s,c

iteratively on a given partition, we will eventually hit an accumulation point. This allows us

to use the λr,s,k as a base case for iterative proofs that statistics are independent of the choice

of (r,s,c)-tour, and reduces the problem of understanding how a statistic interacts with Mr,s,c

to understanding how it behaves when we take successor.
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The λr,s,k are not necessarily the only accumulation points. However, they suffice for our

purposes.

Example 5.15. The partition (1,1) is an accumulation point when r = s = 1 and c = 2, but

is not a λ1,1,k. Indeed, the only successor of the empty partition is (1), and the only successor

of (1) is (1,1) since the bottom left corners of the boxes addable to (1) are (1,0) and (0,1)

with 1−0 ≡ 0−1 (mod 2).

Proposition 5.16. If the diagram of a partition µ is contained in the diagram of λr,s,k for

some k, then for any sequence

µ = µ0 <
′
r,s,c µ1 <

′
r,s,c · · ·<′

r,s,c µm

where m = |λr,s,k|−|µ|, we must have µm = λr,s,k.

Proof. Applying Proposition 5.14 to µ0,µ1, . . . ,µm, the diagram of µm must be contained in

the diagram of λr,s,k, and |µm|= |µ0|+m = |λr,s,k|, so µm = λr,s,k.

We now work towards proving that, in the case rsc | k, if Mr,s,c(λ ) = Mr,s,c(λr,s,k), then

λ = λr,s,k. First, we collect some restrictions on the arrival words that arise in the (r,s,c)-tour

corresponding to λr,s,k. The condition that rsc | k does not damage the capacity of the λr,s,k to

act as base cases, as to contain the diagram of a partition we just need k to be large enough.

Proposition 5.17. Let rsc | k and let k1 =
k
rs . The vertices (v, [i]) in the multigraph of λr,s,k

all satisfy v > k− r− s. Moreover, we have the following constraints on the arrival words at

a vertex (v, [i]).

• If k− r− s < v ≤ k− r, then all letters in the arrival word are Ss.

• If k− r < v < k, all letters in the arrival word are Es.

• If v = k then the arrival word at (k, [0]) has first letter S and all other letters E. For

[i] ̸= [0], all letters in the arrival word at (k, [i]) are Es.

Proof. If a box □ has top right corner (x1,y1) with ry1 + sx1 ≤ k− r − s, then the 2× 2

box with centre (x1,y1) contains □, along with three other boxes with top right corners

(x1 +1,y1), (x1,y1 +1) and (x1 +1,y1 +1).
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x1 x1 +1

y1

y1 +1

sx+ ry = k− r− s

sx+ ry = k

These points satisfy ry1 + s(x1 +1)≤ k− r < k, r(y1 +1)+ sx1 ≤ k− s < k, and r(y1 +1)+

s(x1 + 1) ≤ k. Since λr,s,k contains all boxes with top right corners on or below the line

sx+ ry = k, the entire 2×2 box with centre (x,y) is contained in λr,s,k so the boundary never

visits (x,y).

Suppose k− r− s < v ≤ k− r. Any east letter in the arrival word at a vertex (v, [i]) is also

an east letter in the departure word of some vertex (v− s, [i−1]), but v− s ≤ k− r− s, so

there is no such vertex.

Suppose now that k− r < v ≤ k. Any south letter in the arrival word at a vertex (v, [i])

arriving at a point (x1,y1) with ry1 + sx1 = v is also a south letter in the departure word of

some vertex (v+ r, [i− 1]). We have that v+ r > k, so the south edge cannot be the right

edge of a box in the Young diagram of λr,s,k and must be along the y axis. Therefore, x1 = 0

and v = ry1 is divisible by r. However, by assumption k is divisible by r and therefore k− r

and k are consecutive multiples of r. So, this is only possible if v = k. Since the value of ry

decreases as the boundary progresses south down the y-axis, there is only one such edge,

namely, the edge departing from
(

0, k
r +1

)
and arriving at

(
0, k

r

)
.

We are now in a position to check our base case. We will show that, if rsc | k and

Mr,s,c(µ) = Mr,s,c(λr,s,k) then µ = λr,s,k. So, the accumulation point λr,s,k act as a base case

for a claim that any statistic is independent of the choice of (r,s,c)-tour.

Proposition 5.18. For fixed integers r,s,c,k with k = rsk1 and c | k1, there is a unique

(r,s,c)-tour of Mr,s,c(λr,s,k).

Proof. Suppose we pick a different (r,s,c)-tour of Mr,s,c(λr,s,k) corresponding to a partition

µ . First, we will show that the partition boundary of µ must leave the y-axis earlier than

the boundary of λr,s,k. Let (v, [i]) be the vertex with v maximal such that the arrival word

at (v, [i]) changes. Such a vertex certainly exists because any partition boundary differs in

finitely many edges from the boundary of the empty partition. Let (v, [i])λ
a and (v, [i])µ

a be the

arrival words at (v, [i]) in the tour corresponding to λr,s,k and µ respectively. Then, (v, [i])µ
a
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must be a permutation of (v, [i])λ
a , so since (v, [i])λ

a ̸= (v, [i])µ
a , (v, [i])λ

a must contain both Es

and Ss. Proposition 5.17 then tells us that either

• v > k, in which case any letter in the arrival word at (v, [i]) must correspond to an edge

on a co-ordinate axes. Since the value of v decreases as the boundary steps south along

the y axis, and increases as it steps east along the x-axis, we must have (v, [i])λr,s,k
a = SE.

• (v, [i]) = (k, [0]), in which case Proposition 5.17 implies (v, [i])λr,s,k
a is an S followed by

a string of Es, where the S corresponds to an edge on the y-axis.

In either case, (v, [i])µ
a must begin with an E. So, the boundary of µ must step east off the

y-axis before it hits the lattice point on the y-axis corresponding to (v, [i]) - otherwise (v, [i])µ
a

would have first letter S. So, the boundary of µ does step east off the axis earlier than the

boundary of λr,s,k. In particular, the boundary of µ never visits the point (0,k1s).

Now consider the arrival words (k, [0])λr,s,k
a and (k, [0])µ

a . Let Z be the set of points (x,y)

in the plane in the equivalence class (k, [0]) with respect to ∼r,s,c,

Z =
{
(x,y) : x,y ∈ Z≥0,sx+ ry = k and x− y ≡ 0 (mod c)

}
. (5.12)

The length of the arrival words (k, [0])λr,s,k
a and (k, [0])µ

a count the number of times the

boundaries of λr,s,k and µ respectively visit points in Z. Both arrival words have the same

length (they are permutations of each other) so the boundaries of λr,s,k and µ must visit the

same number of lattice points in Z. By the definition of λr,s,k, the boundary of λr,s,k visits

all of the points in Z, so the boundary of µ must also visit all |Z| of these points. But the

boundary of µ does not visit the point (0,k1s), a contradiction.

Next, we check that there is a sensible pull back of the ordering >r,s,c to (r,s,c)-

multigraphs, so that taking successor can be understood to mean something at both the

level of the partition and at the level of the multigraph. We abuse notation and write >r,s,c for

the ordering on multigraphs and partitions.

Proposition 5.19. Given an (r,s,c)-multigraph M, let VS be the set of vertices (w, [i]) with at

least one south edge arriving at (w, [i]). Let (v, [i]) ∈VS such that v is minimal. Then there is

an edge from (v, [i]) to (v+ s, [i+1]).

Proof. At least one edge arrives at (v, [i]) so at least one edge departs from (v, [i]). Any south

edge departing from (v, [i]) would arrive at (v− r, [i+1]), so (v− r, [i+1]) would be in VS,
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contradicting the minimality of v. Therefore at least one east edge departs from (v, [i]), and

arrives at (v+ s, [i+1]).

Definition 5.20 (Multigraph successors). Given an (r,s,c)-multigraph M, let (v, [i]) ∈VS as

in the previous proposition. Then we say M+ is a successor of M if M+ can be obtained from

M by deleting one south edge from (v+ r, [i−1]) to (v, [i]) and one east edge from (v, [i]) to

(v+ s, [i+1]), and adding one east edge from (v+ r, [i−1]) to (v+ r+ s, [i]) and one south

edge from (v+ r+ s, [i]) to (v+ s, [i+1]). Sometimes we emphasize the vertex (v, [i]) and say

M+ is a successor of M that changes from (v, [i]).

At the level of multigraphs, we will only need the notion of successors, but for complete-

ness we also explicitly define <r,s,c at the level of multigraphs.

Definition 5.21 (Ordering on multigraphs). Given (r,s,c)-multigraphs M = Mr,s,c(λ ) and

M′ = Mr,s,c(λ
′) we say M <r,s,c M′ if there is a sequence of (r,s,c)-multigraphs M =

M1, . . . ,Mn = M′ such that Mi+1 is a successor of M+
i for each i.

Corollary 5.22. If λ is a partition with Mr,s,c(λ ) = M and M+ is a successor of M changing

from (v, [i]), then in M, Ein(v, [i]) = Sout(v, [i]) = 0.

Proof. Identical to the proof of Proposition 5.19.

The next proposition shows that this definition of successors at the level of multigraphs

aligns with our definition at the level of partitions.

Proposition 5.23. Let λ be a partition with Mr,s,c(λ ) = M. If M+ is a successor of M that

changes at (v, [i]), then there is a unique partition λ+ such that λ+ >′
r,s,c λ and M+ =

Mr,s,c(λ
+).

Proof. Let λ ′ be any successor of λ . Then, the Young diagram of λ ′ consists of all boxes

in the Young diagram of λ and one additional box □. Let the bottom left corner of □ have

co-ordinate (x1,y1), where x1 − y1 ≡ i (mod c) and ry1 + sx1 = l. Then by definition of a

successor, if we take minima over the points (x,y) in b(λ ),

l = min(sx+ ry) (5.13)

and

x1 − y1 = min
sx+ry=l
[x−y]=[i]

(x− y). (5.14)



5.3 The accumulation points λr,s,k 70

In particular, l and [i] are sufficent to determine x1 − y1. Let s1 and s2 be the edges in b(λ )

arriving at and departing from (x1,y1) respectively, and let s′1 and s′2 be the edges in b(λ ′)

arriving at and departing from (x1 +1,y1 +1) respectively, as shown in Figure 5.4. Then, the

s1

s2

s′1

s′2

sx+ ry = l

sx+ ry = l + r
sx+ ry = l + s

sx+ ry = l + r+ s

(x1,y1)

Fig. 5.4 a partition and its successor differ by replacing s1 and s2 with s′1 and s′2.

multigraph of λ ′ differs from the multigraph of λ only in that one edge from (l+ r, [i−1]) to

(l, [i]), and one edge from (l, [i]) to (l + s, [i+1]) corresponding to s1 and s2 respectively, are

deleted, and one edge from (l + r, [i−1]) to (l + r+ s, [i]), and one edge from (l + r+ s, [i])

to (l + s, [i+1]), corresponding to s′1 and s′2 respectively are added. That is, Mr,s,c(λ
′) is the

successor of M changing from (l, [i]).

For uniqueness, given that M+ changes from M at (l, [i]), any successor of λ with

multigraph M+ must be λ ′ by (5.14) because the value of x− y increases by 1 at every

consecutive point visited in the boundary.

For existence, if M+ changes from M at (v, [ j]) then v is minimal such that there is a

south edge into (v, [ j]) and an east edge out of (v, [ j]). So, v = min(x,y)∈b(λ )(sx+ ry) and

there is at least one point (x,y) on the boundary such that [x− y] = [ j]. So, letting (x2,y2)
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minimise x− y over all such points, and adding a box with bottom left corner (x2,y2) gives a

successor λ+ of λ with multigraph M+.

We are now in a position to prove our key structural proposition.

Proposition 5.24. Let f : Par→R. Suppose there is a function g : {Mr,s,c(λ ) | λ ∈ Par}2 →R
such that, if λ is a partition, and λ+ is a successor of λ , where λ and λ+ have (r,s,c)-

multigraphs M and M+ respectively,

f (λ+)− f (λ ) = g
(
M+,M

)
. (5.15)

Then, for any partitions µ1 and µ2 with Mr,s,c(µ1) = Mr,s,c(µ2), f (µ1) = f (µ2).

Proof. Let M = Mr,s,c(µ1) = Mr,s,c(µ2). There is a sequence of multigraphs M = M0,M1, . . .

where M j is a successor of M j−1 for each j. Set λ0 = µ1 and ν0 = µ2. Then, by Proposi-

tion 5.23 there are sequences of partitions λ0,λ1, . . . and ν0,ν1, . . . such that M j =Mr,s,c(λ j)=

Mr,s,c(ν j),

λ0 <
′
r,s,c λ1 <

′
r,s,c . . . , (5.16)

and

ν0 <
′
r,s,c ν1 <

′
r,s,c . . . . (5.17)

Let k be divisible by rsc and large enough so that all boxes in the Young diagrams of

µ1 or µ2 lie below the line sx+ ry = k. By Proposition 5.16, there is some m such that

Mm = Mr,s,c(λr,s,k). By Proposition 5.18, λm = νm = λr,s,k. Then,

f (µ1) = f (λr,s,k)−
m

∑
i=1

(
f (λi)− f (λi−1)

)
(5.18)

= f (λr,s,k)−
m

∑
i=1

g(Mi,Mi−1) (5.19)

= f (λr,s,k)−
m

∑
i=1

(
f (νi)− f (νi−1)

)
(5.20)

= f (µ2). (5.21)

Armed with Proposition 5.24, checking that Mr,s,c determines the area of a partition is

particularly straightforward.
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Corollary 5.25. If λ and µ are partitions with Mr,s,c(λ ) = Mr,s,c(µ) then |λ |= |µ|.

Proof. Apply Proposition 5.24 with g(M+,M) = 1.

Having outlined the structure of the proofs that Mr,s,c determines partition statistics, we

defer the checks that Mr,s,c determines midx,c and crit+x,c+crit−x,c to Chapter 7. We now turn

our attention to defining Ir,s,c.



Chapter 6

The involution Ir,s,c

In this chapter we construct the bijection Ir,s,c and check that it is well defined. In order to do

so, we first need to understand how to recover a partition from a family of arrival words.

6.1 Recovering a partition from the arrival words

Thus far we have constructed Mr,s,c(λ ) and an (r,s,c)-tour from b(λ ). We will define Ir,s,c as

an involution that preserves Mr,s,c but changes the (r,s,c)-tour, in fact by changing the order

in which some of the letters appear in the arrival words. In order to check the result is well

defined, we need to understand how to recover a boundary sequence from a family of arrival

words, and indeed have a criterion for when it is possible to do so if the family of arrival

words does not a priori arise from a partition.

If v is minimal such that all boxes in the partition have top right corner on or below the

line sx+ ry = v, then we have that for all w > v, any arrival at a vertex (w, [i]) must be on a

co-ordinate axis. So,

(w, [i])a =



SE if r | w,s | w, w
s ≡ −w

r ≡ i (mod c)

E if s | w,c |
(

w
s − i

)
and either r ∤ w or c ∤ (−w

r − i)

S if r | w,c |
(−w

r − i
)

and either s ∤ w or c ∤ (w
s − i)

/0 otherwise.

(6.1)

Moreover, v is uniquely specified as the largest vertex where the arrival word at (v, [i]) does

not satisfy (6.1) for some i ∈ {1,2, . . . ,c}.
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So, we can identify v and fill in the co-ordinate axes above or to the right of the line

sx+ ry = v as part of the partition boundary. We may then fill in the remainder working

backwards from the arrival words - we outline the method below by example.

Example 6.1. Suppose we have r = 3, s = 2, c = 2, and the set of arrival words specified

below

(20,[1]) S (22,[0]) E (23,[0]) S (23,[1]) S

(24,[0]) S (24,[1]) E (25,[0]) E (25,[1]) S

(26,[0]) ES (26,[1]) SSE (27,[0]) E (27,[1]) SES

(28,[0]) EE (28,[1]) E (29,[0]) EE (29,[1]) E

(30,[0]) SE (30,[1]) E

Empty for all other vertices (w, [ j]) with w < 30. Then for w > 30,

(w, [ j])a =



SE if 6 | w, w
2 ≡ −w

3 ≡ j (mod 2)

E if 2 | w,2 |
(w

2 − j
)

and either 3 ∤ w or 2 ∤ (−w
3 − j)

S if 3 | w,2 |
(
−w
3 − j

)
and either 3 ∤ w or 2 ∤ (w

2 − j)

/0 otherwise.

Looking at the vertex (30, [0]), with w = 30 and j = 0 we have w
2 ̸≡ j (mod 2), so

30 is maximal such that there is vertex (30, [i]) that does not satisfy (6.1) for some i. So,

v = 30 and we draw a ray along the positive x-axis beginning at (15,0), and a ray along the

positive y-axis beginning at (0,10). It then remains to fill in the boundary between the points(⌈
v
s

⌉
,0
)
, and

(
0,
⌈v

r

⌉)
. To do this, we look first at the arrival word at

(
s
⌈

v
s

⌉
,

[⌈
v
s

⌉])
,

(30, [1]) in our example, corresponding to the point on the x-axis at which the ray begins.

The last letter of this word tells us what kind of edge we should add to the boundary to arrive

at
(⌈

v
s

⌉
,0
)

, in this case an E, so we add an edge from (14,0) to (15,0) and delete the last

E from (30, [1])a. The same logic allows the rest of the boundary to be filled out edge by

edge, as in Figure 6.1.

6.2 The first arrival tree

Next we lay out a criterion for a family of arrival words to arise from a partition. We already

know that any family of arrival words arising from a partition must satisfy (6.1) for w > v
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Fig. 6.1 the arrival words in Example 6.1 give the partition (12,12,10,8,7,4,1,1,1).
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large enough. We now give a criterion on the arrival words at the remaining vertices with

w ≤ v to arise from a partition.

Definition 6.2 (First arrival graph). Let λ be a partition and let Mr,s,c(λ ) = M. Let V and E

be the vertex set and edge set of M respectively. Let the (r,s,c)-tour of M corresponding to

λ have arrival word (v, [i])a at each vertex (v, [i]) ∈ V . Suppose there is another family of

arrival words

S = {(v, [i])′a : (v, [i]) ∈V}, (6.2)

such that for each (v, [i]), (v, [i])′a is a permutation of (v, [i])a. Denote the first letter of the

arrival word (v, [i])′a by (v, [i])′1, and let the first arrival edge e1(v, [i]) with respect to S be

any edge e with t(e) = (v, [i]) and d(e) = (v, [i])′1. Let TS be the subgraph of M with vertex

set V and directed edge set

E(TS) = {e1(v, [i])′a : (v, [i]) ∈ M}. (6.3)

In this case we call TS the first arrival graph with respect to S.

Definition 6.3 (The graphs M≤k and T≤k). For an integer k, and an (r,s,c)-multigraph M,

let M≤k be the induced subgraph of M with vertex set

V (M≤k) = {(v, [i]) : (v, [i]) ∈V (M) and v ≤ k}.

For a family of arrival words S, let T≤k
S be the induced subgraph of TS with vertex set

V (M≤k).

We require some preparation before proving Proposition 6.5, as we make use of [vAEdB51,

Thm 5]. The proof is not hard, but could possibly be disruptive to the flow, so the interested

reader is referred to [vAEdB51] for a full proof. The notion we will need is that of a T -graph.

Definition 6.4 (T -graph). A T -graph is a finite directed multigraph such that at each vertex,

the number of edges arriving is the same as the number of edges departing.

Theorem 5a of [vAEdB51] says that, given a complete circuit of a T -graph, starting and

ending at a vertex v, the set of edges given by the last departures from any given vertex

excluding v give a spanning tree of the T -graph rooted at v. Reversing the direction of all

edges, equivalently, the first arrival graph arising from a complete circuit of a T -graph is a

spanning tree. Conversely, [vAEdB51, Thm 5b] says that any spanning tree rooted at v gives
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rise to a complete circuit with last departures (or equivalently, first arrivals) agreeing with the

edges of the spanning tree.

In order to apply these theorems to our situation, we need to separate M into a T -graph

and a well understood complement, which is how we prove Proposition 6.5.

Proposition 6.5. Let λ be a partition and let Mr,s,c(λ ) = M. Suppose there is a family of

arrival words S = {(v, [i])′a : (v, [i]) ∈V} assigned to M. Let TS be the first arrival graph with

respect to S. Then there is a partition µ with an (r,s,c)-tour having arrival words S if and

only if both of the following hold.

1. There exists some v such that for all w > v, and all j, (w, [ j])′a satisfies (6.1).

2. TS is a spanning tree of M.

Proof. The first condition has already been shown to be necessary, so we prove that assuming

the first condition holds, the second condition is equivalent to the existence of µ . Fix v such

that for all w ≥ v, (6.1) holds for both (w, [ j])a and (w, [ j])′a. Let k ≥ v be such that k = rsk1

for some integer k1 with c | k1. Let M≤k and M>k be the induced subgraphs of M with vertex

sets given by

V (M≤k) = {(v, [i]) ∈V (M) : v ≤ k}, (6.4)

V (M>k) = {(k, [0])}∪{(v, [i]) ∈V (M) : v > k}, (6.5)

and let T≤k
S and T>k

S be the induced subgraphs of TS with vertex sets V (M≤k) and V (M>k).

Then T>k
S is a spanning tree of M>k.

Let x = (k1r,0) and y = (0,k1s) on the boundary. Then, the edges in M>k correspond to

the rays along the axes starting at x and y. The (r,s,c)-tour corresponding to λ restricted to

M≤k is a complete circuit starting and finishing at (k, [0]), and each edge corresponds to an

edge in the boundary of λ that occurs after the south edge arriving at y and occurs before the

east edge departing from x. So, M≤k contains |x| south edges and |y| east edges. Therefore,

there is a partition µ with arrival words S if and only if there is a complete circuit of M≤k

such that the arrival words agree with S.

Assume that a complete circuit of M≤k with arrival words as given in S exists. The

(r,s,c)-tour of M corresponding to λ consists of a circuit of M>k and M≤k, so the in-degree

of any vertex v of M≤k is equal to the out-degree of v in M≤k and M≤k is connected. In

particular, M≤k is a T -graph. So, [vAEdB51, Thm 5a] implies that T≤k
S is a tree rooted at

(k, [0]). Therefore, TS is a spanning tree of M.
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(k, [0]) (k+(cr−1)s, [0])

(k+(cr+1)s, [1]) · · · (k+(2cr−1)s, [−1])

(k+ r, [−1])

(k+2r, [−2])

...

(k+ crs, [0])

(k+ s, [1]) (k+2s, [2]) · · ·

...

Fig. 6.2 T>k
S in the case (c,r+ s) = 1.

Now assume that TS is a spanning tree of M. Then, T≤k
S is a tree rooted at (k, [0]) and

[vAEdB51, Thm 5b] implies that there is a complete circuit of M≤k with arrival words

agreeing with S.

From now on, let λ <r,s,c λr,s,k where k = rsk1 and c | k1. Let Mr,s,c(λ ) = M, let S be the

family of arrival words corresponding to λ . We will now refer to TS as the first arrival tree.

When we have a drawing of Mr,s,c(λ ) on the cylinder defined in Proposition 5.3, and a

directed path p from (v, [i]) to (w, [ j]), we define the winding number of p to be the number

of times strictly after leaving (v, [i]) and before or on arriving at (w, [ j]) that p arrives at a

vertex on the upper boundary strip. We will be particularly interested in the case where

(v, [i]) = (k, [−k1s]) and p is the unique path in the first arrival tree from (k, [−k1s]) to (w, [ j]).

Definition 6.6 (Switch, eastern, southern). Given a partition λ with λ <r,s,c λr,s,k, and (r,s,c)-

multigraph M, let T denote the first arrival tree of M corresponding to λ . Let (v, [i]) ∈V (M)

have v ≤ k and (v, [i]) ̸= (k, [0]). Then (v, [i]) is a switch if (v+ r, [i−1]) and (v− s, [i−1])1

are both vertices of M, and the distances in T from the vertex (k, [0]) to (v+ r, [i− 1]),

1these are the two equivalence classes that, if they are vertices of M, could form a tail of an edge to (v, [i])
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(v− s, [i−1]) are equal. Now drop the condition that v ≤ k and (v, [i]) ̸= (k, [0]). If (v, [i]) is

not a switch and the first letter in the arrival word is E, say (v, [i]) is eastern, and let Ea be

the set of all eastern vertices (v, [i]) with v ≤ k. If (v, [i]) is not a switch and the first letter

in the arrival word is S, say (v, [i]) is southern, and let So be the set of all southern vertices

(v, [i]) with v ≤ k.

Example 6.7. For µ = (12,12,10,8,7,4,1,1,1), the first arrival tree of M3,2,2(µ) is as in

Figure 6.3.

Fig. 6.3 The first arrival tree in M3,2,2(12,12,10,8,7,4,1,1,1) with the eastern vertices
coloured blue, the southern vertices coloured red, and the switches coloured green.

The paths in the first arrival tree from (36, [0]) to (26, [0]), (23, [1]), (28, [1]) and (25, [0])

have winding number 1, whilst the other vertices (v, [i]) for which there is a path in the first

arrival tree from (36, [0]) to (v, [i]) have winding number 0. The switches are coloured green,
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the southern vertices red, and the eastern vertices blue (compare with Figure 5.2 to verify

the colouring).

6.3 Definition of Ir,s,c

Given a partition λ with λ ≤r,s,c λr,s,k, with multigraph M and first arrival tree T , we define

the partition Ir,s,c(λ ) as follows. The multigraph of Ir,s,c(λ ) is also given by M.

Now, we obtain the (r,s,c)-tour of Ir,s,c(λ ) by, at each switch, reversing the arrival word,

and at each vertex that is not a switch, fixing the first letter of the arrival word and reversing

the rest of the arrival word.

To see that Ir,s,c(λ ) is well defined, we need to check that taking the first arrival at each

vertex of M gives a spanning tree. We do this by checking that in T , the move of deleting an

east (respectively south) edge arriving at a switch (v, [i]) and adding a new south (respectively

east) edge arriving at (v, [i]) gives another spanning tree T ′. There are still edges arriving

at every vertex we had edges arriving at before, but now the edge arriving at (v, [i]) might

be departing from a different vertex. So, it suffices to check that (v, [i]) is still connected to

each of (v− s, [i−1]) and (v+ r, [i−1]), and that we have not introduced a cycle by adding

the new edge. For the former, it suffices to check (v− s, [i−1]) and (v+ r, [i−1]) are still

connected to each other. In T , (v+ r, [i−1]) and (v− s, [i−1]) are both connected to (k, [0])

by paths. Moreover, the distance in T to (k, [0]) strictly decreases with each step along the

path we take, so (v, [i]) is not a vertex on either of these paths. So, both of these paths exist

T ′, and (v+ r, [i−1]) and (v− s, [i−1]) are connected to one another. To see that the new

edge does not introduce a cycle, observe that if we had introduced a cycle, we would now

have two distinct paths from (k, [0]) to (v, [i]). Since the only edge into (v, [i]) is from its

new neighbour, we must have had two distinct paths from (k, [0]) to the new neighbour in T

originally. But then we had a cycle in T originally, a contradiction.

Hence, we may permute the letters in any arrival word at any vertex and the result will

still correspond to a partition as long as we do not change the first letter in the arrival word at

a vertex that is not a switch. Since we defined Ir,s,c(λ ) to fix the first letter in the arrival word

at any vertex that is not a switch, Ir,s,c(λ ) is well defined. Moreover, we can recover λ from

Ir,s,c(λ ) by doing the same operation again, as each operation is self-inverse and preserves

switches.
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Since Ir,s,c does not change Mr,s,c, we can apply Proposition 5.7 and Corollary 5.25

respectively to obtain

|Ir,s,c(λ )|= |λ |, (6.6)

and

corec(Ir,s,c(λ )) = corec(λ ). (6.7)

Moreover, the map sending λ to Ir,s,c(λ ) is an involution - it is immediate from the

definition that a vertex is a switch after this reassignment if and only if it were a switch before

the reassignment.



Chapter 7

Further statistics determined by Mr,s,c

This chapter checks that Ir,s,c satisfies hypotheses 2–4 in Proposition 4.6.

First, we use the method introduced in Chapter 5 to prove that Mr,s,c determines midx,c

and crit+x,c+crit−x,c . Then we check that Ir,s,c exchanges crit+x,c and crit−x,c, concluding the

proof of Theorem 4.2. In the language of Proposition 5.24, Propositions 7.3 and 7.5 calculate

g(M+,M) for f (λ ) = midx,c(λ ) and f (λ ) = crit+x,c(λ )+ crit−x,c(λ ) respectively.

7.1 Mr,s,c determines midx,c

Notation 7.1. Let λ , M, M+, (x,y), (l, [i]), s1, s2 s′1 and s′2 be as in the proof of Proposi-

tion 5.23. For any edge e in the boundary of λ , write Ein
→e(w, [ j]) for the number of Es in

the arrival word at a vertex (w, [ j]) that correspond to east edges in the boundary of λ that

occur before e. Define Sin
→e(w, [ j]) analogously for the number of Ss. Write Ein

e→(w, [ j])

for the number of Es in the arrival word at a vertex (w, [ j]) that correspond to east edges

in the boundary of λ that occur after e. Define Sin
e→(w, [ j]) analogously for the number of

Ss. Analogously define Sout
→e(w, [ j]), Eout

→e(w, [ j]), Sout
→e(w, [ j]), and Eout

→e(w, [ j]) for

the departure words. We will use this notation with e = s1 or e = s2. Finally, write E+
in(w, [ j])

for the number of Es in the arrival word at (w, [ j]) in M+ and define analogously S+
in,E

+
out

and S+
out.

We work in the ring R of functions V (M) → Z. Practically, the only consequence of

this is that we write f g(v, [i]) for the pointwise product f (v, [i])g(v, [i]) and ( f + g)(v, [i])

for f (v, [i])+ g(v, [i]). There should be no confusion between composition and product of

functions as functions from V (M) to Z are not composable.
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s1
s2

s′1
s′2

Fig. 7.1 the partition λ with (l, [i]) = (4, [0]) and s1,s2,s′1 and s′2 labelled

Example 7.2. Let λ = (4,1), r = 3, s = 1 and c = 2. Then min(x,y)∈b(λ )(3y+x) = 4 achieved

at (4,0) and (1,1). Since 4−0≡ 1−1 (mod 2) and 1−1< 4−0, we have (1,1)<3,1,2 (4,0)

so (4,2) is the only (3,1,2)-successor of λ . So, (l, [i]) = (4, [0]). As an example of the use of

Notation 7.1, (Ein
→s1Sout

s1→+E+
out)(7, [1]) = 1×1+1 = 2.

Proposition 7.3. Let λ be a partition with Mr,s,c(λ ) = M. Let M+ be a successor of M that

changes from (l, [i]). If λ+ >′
r,s,c λ and M+ = Mr,s,c(λ

+),

midx,c(λ
+)−midx,c(λ ) =

l+s+r−1

∑
w=l+1

(Eout −Ein)(w, [i]), (7.1)

where x = r
s .

Proof. By Proposition 5.23, the Young diagram of λ+ is obtained from that of λ by adding

a box with bottom corner (x1,y1) where ry1 + sx1 = l and [x1 − y1] = [i].

Proposition 5.1 gives a formula for midx,c(λ ): it is the number of pairs of edges e1,e2

in the boundary sequence such that e1 is an east edge arriving at a point (x,y) satisfying

sx+ ry = v and [x− y] = [ j] for some j, and e2 is a south edge occurring after e1 arriving

at a point (x′,y′) satisfying ry′+ sx′ = w and [x′− y′] = [ j], where w and v satisfy −s− r <

w− v < 0.

We account for the change in the number of such pairs when changing s1 to s′1 and s2 to

s′2 below: the only changes to midx,c will be when e1 ∈ {s2,s′1} or e2 ∈ {s1,s′2}.
By adding s′1 we gain the number of south edges after s1, arriving at points (x,y) on lines

sx+ ry = w, such that −s− r < w− (l + r+ s)< 0 and [x− y] = [i]. By deleting s1 we lose

the number of east edges occurring before s1 arriving at points (x,y) on lines sx+ ry = v

such that −s− r < l − v < 0 and [x− y] = [i] So, the contribution to midx,c(λ
+)−midx,c(λ )

from switching s1 to s′1 is S1 where

S1 =
l+r+s−1

∑
w=l+1

(Sin
s1→−Ein

→s1)(w, [i]). (7.2)
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s1

s2

s′1

s′2

sx+ ry = l

sx+ ry = l + r
sx+ ry = l + s

sx+ ry = l + r+ s

(x1,y1)

Fig. 7.2 the diagrams of λ and λ+.

By adding s′2 we gain the number of east edges before s2, arriving at points (x,y) on

lines sx+ ry = v, such that −s− r < l + s− v < 0, and x− y ≡ i+1 (mod c). By deleting

s2 we lose the number of south edges occurring after s2 arriving at points (x,y) on lines

sx+ ry = w such that −s− r < w− (l + s)< 0 and [x− y] = [i+1]. So, the contribution to

midx,c(λ
+)−midx,c(λ ) from switching s2 to s′2 is S2 where

S2 =
l+r+2s−1

∑
v=l+s+1

Ein
→s2(v, [i+1])−

l+s−1

∑
v=l−r+1

Sin
s2→(v, [i+1]). (7.3)

So,

midx,c(λ
+)−midx,c(λ ) = S1 +S2. (7.4)

Now, note that an east edge into (v, [i+1]) is also an east edge out of (v− s, [i]), and a south

edge into (w, [i+1]) is also a south edge out of (w+ r, [i]). Applying this reasoning to (7.3),
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S2 =
l+r+s−1

∑
w=l+1

(Eout
→s2 −Sout

s2→)(w, [i]). (7.5)

Substituting (7.2) and (7.5) into (7.4),

midx,c(λ
+)−midx,c(λ ) =

l+s+r−1

∑
w=l+1

(Sin
s1→−Ein

→s1 +Eout
→s2 −Sout

s2→)(w, [i]). (7.6)

Since s2 is an east edge occuring immediately after s1, Sout
s2→ = Sout

s1→, and since s1 is a

south edge immediately preceding s2, Eout
→s2 = Eout

→s1. So,

midx,c(λ
+)−midx,c(λ ) =

l+s+r−1

∑
w=l+1

(Sin
s1→−Ein

→s1 +Eout
→s1 −Sout

s1→)(w, [i]). (7.7)

Now, note that at any vertex (v, [ j]) except (l, [i]), we have that

(Sin
s1→+Ein

s1→)(v, [ j]) = (Sout
s1→+Eout

s1→)(v, [ j]), (7.8)

because after s1 we depart every vertex after we arrive at it, the left hand side counting

arrivals at the vertex after s1 and the right side counting departures. Rearranging gives

(Sin
s1→−Sout

s1→)(v, [ j]) = (Eout
s1→−Ein

s1→)(v, [ j]). (7.9)

Substituting (7.9) into (7.7),

midx,c(λ
+)−midx,c(λ ) =

l+s+r−1

∑
w=l+1

(Eout
s1→−Ein

s1→−Ein
→s1 +Eout

→s1)(w, [i]). (7.10)

Since s1 is a south edge, Ein
s1→+Ein

→s1 = Ein and Eout
s1→+Eout

→s1 = Eout, so

midx,c(λ
+)−midx,c(λ ) =

l+s+r−1

∑
w=l+1

(Eout −Ein)(w, [i]). (7.11)

Corollary 7.4. If λ and µ are partitions with Mr,s,c(λ ) = Mr,s,c(µ), then midx,c(λ ) =

midx,c(µ).



7.2 Mr,s,c determines crit+x,c+crit−x,c 86

Proof. Apply Proposition 5.24 with

g(M+,M) =
l+s+r−1

∑
w=l+1

(Eout −Ein)(w, [i]), (7.12)

where M+ is the successor of M that changes from (l, [i]).

7.2 Mr,s,c determines crit+x,c+crit−x,c

Proposition 7.5. Let λ be a partition with Mr,s,c(λ ) = M and let M+ be a successor of M

that changes from (l, [i]). Then, if λ+ is the successor of λ with multigraph M+,

crit+x,c(λ
+)+ crit−x,c(λ

+)− crit+x,c(λ )− crit−x,c(λ ) (7.13)

is equal to

Sin(l, [i])−1+(Sin −Sout)(l + r+ s, [i]), (7.14)

where x = r
s .

Proof. First, we compute crit+x,c(λ
+)− crit+x,c(λ ). Corollary 5.8 implies that

crit+x,c(λ
+)− crit+x,c(λ ) = ∑

v∈Mr,s,c(λ+)

inv(va)− ∑
v∈Mr,s,c(λ )

inv(va) (7.15)

We keep the notation of the previous proposition and reference Figure 7.2 throughout.

The only nonzero terms in the difference (7.15) come from v ∈ {(l, [i]),(l + r+ s, [i]),(l +

s, [i+1])}. We work case-by-case through these vertices.

• We delete the first arrival at (l, [i]), corresponding to deleting s1. All arrivals at (l, [i])

are Ss by Corollary 5.22, so this does not affect inv(l, [i])a.

• We add an E to the arrival word at (l + r+ s, [i]), corresponding to adding s′1.

before s1 after s1
E

before s′1 s′1 after s′1
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This E is the first letter in an inversion with second letter any S occuring after s′1, so

(l + r+ s, [i]) contributes Sin
s1→(l + r+ s, [i]) to (7.15).

• We replace the first E in the arrival word at (l+ s, [i+1]) (corresponding to s2) with an

S (corresponding to s′2). Therefore, we lose all inversions with the replaced E edge as

their first letter passing from λ to λ+. There are Sin
s2→(l + s, [i+1]) such inversions.

ESSSSSSSS . . .SSSS
before s2 s2 after s2

SSSSSSSSS . . .SSSS
before s′2 s′2 after s′2

We gain no inversions from the new S edge, because s2 was the first east departure

from (l, [i]) in the tour corresponding to λ . So, (l + s, [i+1]) contributes −Sin
s2→(l +

s, [i+1]) to (7.15).

So,

crit+x,c(λ
+)− crit+x,c(λ ) = Sin

s1→(l + r+ s, [i])−Sin
s2→(l + s, [i+1]). (7.16)

A south arrival before (respectively after) s2 at (l + s, [i+1]) is a south departure before

(respectively after) s2 from (l + r+ s, [i]). Combining this logic with (7.16),

crit+x,c(λ
+)− crit+x,c(λ ) = (Sin

s1→−Sout
s2→)(l + r+ s, [i]). (7.17)

We now analyse

crit−x,c(λ
+)− crit−x,c(λ ) = ∑

v∈Mr,s,c(λ+)

inv(vd)− ∑
v∈Mr,s,c(λ )

inv(vd). (7.18)

The departure words at every vertex except for (l, [i]), (l + r+ s, [i]), and (l + r, [i−1]) are

unchanged so the only nonzero terms in (7.18) come from v ∈ {(l, [i]),(l + r+ s, [i]),(l +

r, [i−1])}. An analogous argument to the above shows that the contribution of (l + r, [i−1])

to (7.18) is (Sout
s1→−Eout

→s1)(l+r, [i−1]), the contribution of (l+r+s, [i]) is Eout
→s2(l+

r+ s, [i]), and (l, [i]) does not contribute. So,

crit−x,c(λ
+)− crit−x,c(λ ) = (Sout

s1→−Eout
→s1)(l + r, [i−1])+Eout

→s2(l + r+ s, [i]). (7.19)
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An east departure from (l + r, [i−1]) is an east arrival at (l + r+ s, [i]), so

crit−x,c(λ
+)− crit−x,c(λ ) = Sin

s1→(l, [i])− (Ein
→s1 −Eout

→s2)(l + r+ s, [i]). (7.20)

Now, since s1 is the first edge to arrive at (l, [i]),

Sin
s1→(l, [i]) = Sin(l, [i])−1. (7.21)

Since s1 does not arrive at (l + r+ s, [i]), we leave (l + r+ s, [i]) before s1 the same number

of times as we arrive before s1. So,

(Ein
→s1 +Sin

→s1)(l + r+ s, [i]) = (Eout
→s2 +Sout

→s2)(l + r+ s, [i])). (7.22)

Rearranging,

Ein
→s1(l + r+ s, [i]) = (Eout

→s2 +Sout
→s2 −Sin

→s1)(l + r+ s, [i]). (7.23)

Substituting (7.23) and (7.21) into (7.20),

crit−x,c(λ
+)− crit−x,c(λ ) = Sin(l, [i])−1+(Sin

→s1 −Sout
→s2)(l + r+ s, [i]). (7.24)

Since (l + r+ s, [i]) is not an endpoint of s1 or s2,

(Sin
→s1 +Sin

s1→)(l + r+ s, [i]) = Sin(l + r+ s, [i]) (7.25)

and

(Sout
→s2 +Sout

s2→)(l + r+ s, [i]) = Sout(l + r+ s, [i]). (7.26)

Adding (7.24) and (7.17), and then applying (7.26) and (7.25) completes the proof.

Corollary 7.6. If λ and µ are partitions such that Mr,s,c(µ) = Mr,s,c(λ ) then

crit+x,c(λ )+ crit−x,c(λ ) = crit+x,c(µ)+ crit−x,c(µ). (7.27)

Proof. Apply Proposition 5.24 with

g(M+,M) = Sin(l, [i])−1+(Sin −Sout)(l + r+ s, [i]). (7.28)
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where the calculations Sin and Sout are done with respect to the multigraph M, and M+ is the

successor of M changing from (l, [i]).

So, we know that Mr,s,c(λ ) determines the c-core of λ , |λ |, midx,c(λ ) and crit+x,c(λ )+

crit−x,c(λ ), and that any bijection preserving Mr,s,c therefore satisfies hypotheses 1-3 of

Proposition 4.6. It will be useful in our final remaining check, that Ir,s,c satisfies the fourth

criterion in Proposition 4.6, to have a formula for crit+x,c(λ )+crit−x,c(λ ) in terms of Mr,s,c(λ ).

This is what Proposition 7.7 computes.

Proposition 7.7. Let λ be a partition. If k = rsk1 where c | k1 and λ <r,s,c λr,s,k, then

(crit+x,c+crit−x,c)(λ ) = ∑
(v,[ j])
v≤k

EinSin(v, [ j])−
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
. (7.29)

Proof. First, we prove that (7.29) holds when λ = λr,s,k.

We will show that for all boxes □ ∈ λr,s,k, −s < sa(□)− rl(□)< r, and hence that the

left hand side of (7.29) is zero at λr,s,k. We will then check that the right hand side of (7.29)

is zero at λr,s,k.

The ith part of λr,s,k corresponds to a row with top right corner (xi, i) where xi is maximal

such that sxi + ri ≤ k. So,

xi =

⌊
k− ri

s

⌋
=

⌊
k1rs− ri

s

⌋
= k1r−

⌈
ri
s

⌉
. (7.30)

Similarly, the number of parts of λr,s,k of size at least j corresponds to a column with top

right corner ( j,y j) where y j is maximal such that s j+ ry j ≤ k, so

y j =

⌊
k− s j

r

⌋
=

⌊
k1rs− s j

r

⌋
= k1s−

⌈
s j
r

⌉
. (7.31)

Now, let □ ∈ λ be a box with top right corner (i, j). Then, the arm of □ is given by xi− j

and the leg of □ is given by y j − i. So,

sa(□)− rl(□) = s(xi − j)− r(y j − i) (7.32)

= k1rs− s
⌈

ri
s

⌉
− s j− k1rs+ r

⌈
s j
r

⌉
+ ri (7.33)

=

(
r
⌈

s j
r

⌉
− s j

)
−

(
s
⌈

ri
s

⌉
+ ri

)
. (7.34)
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Now, consider the two bracketed quantities separately, setting x =

(
r
⌈

s j
r

⌉
− s j

)
and

y =−
(

s
⌈

ri
s

⌉
+ ri

)
. For the first bracket we have that

r
(

s j
r

)
≤ r
⌈

s j
r

⌉
< r
(

s j
r
+1
)
, (7.35)

so

0 ≤ r
⌈

s j
r

⌉
− s j < r. (7.36)

Similarly for the second bracket,

−s < ri− s
⌈

ri
s

⌉
≤ 0. (7.37)

So, sa(□)− rl(□) can be written as x+ y for x ∈ [0,r) and y ∈ (−s,0] and therefore

−s < sa(□)− rl(□)< r.

Therefore,

crit+x,c(λr,s,k)+ crit−x,c(λr,s,k) = 0. (7.38)

Next we evaluate the right hand side of (7.29) at λr,s,k. Proposition 5.17 tells us that

for all vertices (v, [i]) such that 0 ≤ v < k, the arrival word at (v, [i]) in Mr,s,c(λr,s,k) does not

contain both an E and a S. So, for all such (v, [i]) we have EinSin(v, [i]) = 0. So, the right

hand side of (7.29) simplifies to

c−1

∑
i=0

EinSin(k, [i])−
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
(7.39)

Proposition 5.17 also tells us that Sin(k, [i]) = 0 unless [i] = [0], and that Sin(k, [0]) = 1,

so we can rewrite (7.39) as

Ein(k, [0])−
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
. (7.40)

So, it suffices to show that Ein(k, [0]) =
⌊

k1(s+r)
lcm(c,s+r)

⌋
. The east edges in the boundary of

λr,s,k arriving at vertices (k, [i]) for some i correspond to points (x,y) with x > 0 and y ≥ 0

such that sx+ ry = k. These points have coordinates {(r,s(k1−1)),(2r,s(k1−2)), . . . ,((k1−
1)r,s),(k1r,0)}. Now, Ein(k, [0]) counts the number of these points that also lie on a line
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x− y = i for [i] = [0]. The set of values of x− y for this set of points is {r+ s− k1s,2(r+

s)− k1s, . . . ,k1(r+ s)− k1s}. Letting l(r+ s) = lcm(c,r+ s), the values of x− y that give

us the same congruence class as 0 when taken modulo c are of the form ml(r+ s)− k1s for

some integer m. The number of values of this form in the given set is indeed
⌊

k1(s+r)
lcm(c,s+r)

⌋
.

Now suppose λ <r,s,c λr,s,k is maximal with respect to >r,s,c such that the proposition

is false. In particular, the proposition holds for any successor λ+ >′
r,s,c λ . Let M+ be a

successor of M that changes from (l, [i]), and let λ+ be the successor of λ with multigraph

M+. Then, (crit+x,c+crit−x,c)(λ
+)− (crit+x,c+crit−x,c)(λ ) can be written as ∆1, where

∆1 = Sin(l, [i])−1+(Sin −Sout)(l + r+ s, [i]). (7.41)

By assumption,

(crit+x,c+crit−x,c)(λ
+) = ∑

(v,[ j])
v≤k

E+
in S+

in(v, [ j])−
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
(7.42)

So, combining (7.41) and (7.42),

(crit+x,c+crit−x,c)(λ ) = ∑
(v,[ j])
v≤k

E+
in S+

in(v, [ j])−
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
−∆1. (7.43)

First, we note that a vertex (v, [ j]) contributes the same to the sums

∑
(v,[ j])
v≤k

EinSin(v, [ j])

taken over the multigraphs M or M+ unless (v, [ j]) ∈ {(l, [i]),(l+ r+ s, [i],(l+ s, [i+1])}. In

fact, since there are no east edges into (l, [i]) in M or M+, we only need consider terms with

(v, [ j]) ∈ {(l + r+ s, [i],(l + s, [i+1])}. So,

(crit+x,c+crit−x,c)(λ ) = ∑
(v,[ j])
v≤k

EinSin(v, [ j])−
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
−∆1 +∆2 (7.44)

where
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∆2 = (E+
in S+

in−EinSin)(l + r+ s, [i])+(E+
in S+

in−EinSin)(l + s, [i+1]). (7.45)

Because M+ changes from M at (l, [i]), E+
in(l + s, [i+1]) = Ein(l + s, [i+1])−1, S+

in(l +

s, [i+ 1]) = Sin(l + s, [i+ 1]) + 1, E+
in(l + r + s, [i]) = Ein(l + r + s, [i]) + 1 and S+

in(l + r +

s, [i]) = Sin(l + r+ s, [i]) so (7.45) simplifies to

∆2 = Ein(l + s, [i+1])−Sin(l + s, [i+1])+Sin(l + r+ s, [i])−1. (7.46)

A south arrival at (l + s, [i+1]) is the same as a south departure from (l + r+ s, [i]), and

an east arrival at (l + s, [i+1]) is the same as an east departure from (l, [i]), so

∆2 = Eout(l, [i])− (Sout −Sin)(l + r+ s, [i])−1. (7.47)

By Corollary 5.22, all edges leaving (l, [i]) are east edges and all edges arriving are south

edges. The same number of edges arrive and leave, so Eout(l, [i]) = Sin(l, [i]). So,

∆2 = (Sin −Sout)(l + r+ s, [i])+Sin(l, [i])−1 = ∆1. (7.48)

Substituting (7.48) into (7.44) completes the proof.

It remains to check that crit+x,c(Ir,s,c(λ )) = crit−x,c(λ ) and crit−x,c(Ir,s,c(λ )) = crit+x,c(λ ).

First, we make some make some straightforward but important observations about

Mr,s,c(λ ) and winding numbers in Proposition 7.8. Then, we apply these to the first arrival

tree to prove some formulae about distances between consecutive vertices in the (r,s,c)-tour

with respect to the first arrival tree, depending on whether the vertex is eastern, southern, or

a switch in Proposition 7.9. Finally, we apply these to proving crit+x,c(Ir,s,c(λ )) = crit−x,c(λ )

and crit−x,c(Ir,s,c(λ )) = crit+x,c(λ ) in Proposition 7.10.

Proposition 7.8. Let (v, [i]) and (w, [ j]) be two vertices of Mr,s,c(λ ), and let p1 and p2 be

directed paths between (v, [i]) and (w, [ j]). Suppose p1 is given by the sequence of vertices

(v, [i]) = (v0, [i0]), . . . ,(v|p1|,[i0+|p1|]) = (w, [ j]). Then,

1. |p1|−|p2| is divisible by lcm(c,r+ s).

2. Let (v, [i]) be m lattice steps below the upper boundary of the cylinder, and let |p1|=
q lcm(c,r+ s)+u where −m < u ≤ lcm(c,r+ s)−m. The winding number of p1 is q.
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Proof. The first point follows from Proposition 5.3: p1 and p2 are lattice paths from points

(x1,y1) and (x1+ar,y1−as) respectively to points (x2,y2) and (x2+br,y2−bs) respectively,

where lcm(c,r+ s) divides a(r+ s) and b(r+ s). We have that |p1|= x2 − x1 + y1 − y2 and

|p2|= x2 +br− x1 −ar+ y1 −as− y2 +bs, so |p1|−|p2|= (r+ s)(a−b), which is divisible

by lcm(c,r+ s).

The second point follows because as we trace out a directed path, the value of x− y

moves cyclically through the residue classes modulo lcm(c,r+ s), incrementing by 1 with

each step.

Proposition 7.9. Let (k, [0]) = v0,v1 . . . ,v(r+s)k1 = (k, [0]) be the vertices visited, in order,

by the (r,s,c)-tour, corresponding to the section of the boundary of λ between (0,k1s) and

(k1r,0). Let di denote the distance in the first arrival tree T from (k, [0]) to vi.

1. If vi is a switch, or if there is a copy of the edge (vi−1,vi) in T , then di −di−1 = 1.

2. If vi is an eastern vertex and there is no copy of (vi−1,vi) in E(T ), then di −di−1 =

1+ lcm(c,r+ s).

3. If vi is a southern vertex and there is no copy of (vi−1,vi) in E(T ), then di −di−1 =

1− lcm(c,r+ s).

Proof. Write pi for the path in T from (k, [0]) to vi, so that |pi|= di. The first point follows

immediately from the definition of a switch and the definition of T .

In general, the winding number of a vertex v is the same as the winding number of the

last vertex on the upper boundary strip that T before v. So, drawing T on the cylinder and

then forgetting the identification of the two boundary lines, the connected components form

sets of vertices of equal winding number.

Moreover, if wind(pi)=wind(pi−1), then by the second part of Proposition 7.8, ||pi|−|pi−1||<
lcm(c,r+ s). Since there is a path of length 1 (not necessarily in T ) connecting vi−1 and

vi, then by the first part of Proposition 7.8, |pi|−|pi−1|≡ 1 (mod lcm(c,r+ s)). Therefore,

di −di−1 = 1, so vi is a switch or there is a copy of (vi−1,vi) in E(T ).

For 2 and 3, we first prove that as we scan southwest along the upper boundary strip, the

winding numbers of the paths from (k, [0]) to the vertices on the strip weakly increase. We

proceed by induction.
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B A
C

B A

A′ B′

Suppose A and B are vertices on the upper boundary strip and B is southwest of A,

and let pA and pB be the paths in T from (k, [0]) to A and B respectively. We will show

wind(pB)≥ wind(pA). If A = (k, [0]) then we are done, so suppose not. There is a copy of

both A and B on the lower boundary strip, with B still southwest of A. Moreover, pA and pB

run from points A′ and B′ respectively on the upper boundary strip to A and B, where we

possibly have A′ = B′. However, A′ cannot be strictly southwest of B′, as otherwise pA and

pB would have to cross at a vertex C, introducing a cycle from (k, [0]) following pA to C and

then following pB back to (k, [0]). Let p′B and p′A be pB and pA shortened to finish at B′ and

A′ respectively. Then, by strong induction, wind(p′B)≥ wind(p′A). Adding 1 to both sides,

wind(pB)≥ wind(pA).

Now, in the case that vi is eastern, and there is no copy of (vi−1,vi) in E(T ), (vi−1,vi) must

be a south edge, and vi−1 and vi lie in different connected components. Since wind(pi) ̸=
wind(pi−1), wind(pi)> wind(pi−1). Let D and E be the last vertices on the upper boundary

strip on pi and pi−1 respectively.

D

E

vi−1
vi

Since all paths in T have vertices at lattice points and do not intersect with each other,

there can be no path that starts at a vertex on the upper boundary strip between E and D that

crosses all the way to the lower boundary strip. Hence, the copy of E on the lower boundary

strip either lies in the same connected component as D or in a component northeast of D. So,

wind(pi) = wind(pi−1)+1. Let qi be the path obtained by extending pi−1 by the south edge

(vi−1,vi). Then |qi|= di−1 +1. The second part of Proposition 7.8 tells us that |pi| and |qi|
agree modulo lcm(c,r+ s) and therefore di = di−1 +1+ lcm(c,r+ s).

An analogous argument proves the third formula.
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Proposition 7.10. Let λ be a partition. Then

crit+x,c(Ir,s,c(λ )) = crit−x,c(λ ) (7.49)

and

crit−x,c(Ir,s,c(λ )) = crit+x,c(λ ). (7.50)

Proof. We will check that crit+x,c(λ ) = (crit+x,c+crit−x,c)(Mr,s,c(λ ))− crit+x,c(Ir,s,c(λ )).

Recall that crit+x,c counts the total number of inversions in the arrival word at vertices in

Mr,s,c(λ ). Suppose the arrival word at vertex (v, [i]) has a south edges and b east edges. If v

is a switch, then I reverses the arrival word at (v, [i]), so the pairs of S,E edges that contribute

to crit+x,c(I(λ )) are exactly those that do not contribute to crit+x,c(λ ), so the contributions over

I(λ ) and λ at (v, [i]) sum to ab.

Note that if (v, [i]) ∈ Ea then I(λ ) has inversions in the arrival word at (v, [i]) using the

first E and any S in the arrival word, and then any other pair of south and east edges contribute

to I(λ ) if and only if they do not contribute to λ , so the two contributions sum to ab+a.

Similarly, if (v, [i]) ∈ So then the contributions sum to ab−b. Hence, we have that the total

crit+x,c(λ )+ crit+x,c(Ir,s,c(λ )) can be written as S1 +S2 +S3 where

S1 = ∑
(v,[i])is a switch

Ein(v, [i])Sin(v, [i])

S2 = ∑
(v,[i])∈Ea

Ein(v, [i])Sin(v, [i])+Sin(v, [i])

S3 = ∑
(v,[i])∈So

Ein(v, [i])Sin(v, [i])−Ein(v, [i]).

Now, note first that no vertex (v, [i]) with v> k contributes to any of these sums. Indeed, no

such vertex is a switch, and the arrival word at any such (v, [i]) has length 0,1 or 2, containing

at most one S and at most one E. If the arrival word is empty there is nothing to prove.

If the arrival word is E then the vertex is eastern, and Ein(v, [i])Sin(v, [i])+Sin(v, [i]) = 0.

If the arrival word is S then the vertex is southern and Ein(v, [i])Sin(v, [i])− Ein(v, [i]) =

0. The only other possible arrival word is SE, in which case the vertex is southern and

Ein(v, [i])Sin(v, [i])−Ein(v, [i]) = 1− 1 = 0. So, we may restrict our sum to vertices (v, [i])

with v ≤ k.
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Proposition 7.5 proves (7.29),

(crit+x,c+crit−x,c)(Mr,s,c(λ )) =
k

∑
v=0

c−1

∑
i=0

Ein(v, [i])Sin(v, [i])−
⌊

k1(s+ r)
lcm(c,r+ s)

⌋
.

We wish to show that (7.29) is equal to S1 +S2 +S3, and therefore it suffices to check

that

∑
(v,[i])∈So

Ein(v, [i])− ∑
(v,[i])∈Ea

Sin(v, [i]) =
⌊

k1(s+ r)
lcm(c,s+ r)

⌋
. (7.51)

Note that the east edges entering southern vertices and the south edges entering eastern

vertices are exactly the edges in Mr,s,c(λ ) arriving at non-switch vertices that are not a copy

of an edge in the first arrival tree T . Hence, if we let n0 denote the number of edges e entering

vertices (v, [i]) with v ≤ k such that either

• (v, [i]) is a switch, or

• (v, [i]) is not a switch and there is a copy of e in the first arrival tree T ,

then

n0 + ∑
(v,[i])∈So

Ein(v, [i])+ ∑
(v,[i])∈Ea

Sin(v, [i]) = k1(r+ s). (7.52)

Now, let (k, [−k1s]) = v0,v1 . . . ,v(r+s)k1 = (k, [k1r]) be the vertices visited, in order, pos-

sibly with repetition, by the (r,s,c)-tour. Let di denote the distance in the first arrival tree

from (k, [−k1s]) to vi. Now c | k1 by assumption, and thus c | (r+ s)k1, so we have that

0 = d(r+s)k1 =
(r+s)k1

∑
i=1

di −di−1. (7.53)

Substituting the formulae for di −di−1 proven in Proposition 7.9 into (7.53) and writing l

for lcm(c,r+ s),

n0 +(1+ l) ∑
(v,[i])∈Ea

Sin(v, [i])+(1− l) ∑
(v,[i])∈So

Ein(v, [i]) = 0. (7.54)

Subtracting (7.54) from (7.52) gives

k1(r+ s) = lcm(c,r+ s)

 ∑
(v,[i])∈So

Ein(v, [i])− ∑
(v,[i])∈Ea

Sin(v, [i])

 . (7.55)
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Now, since k is divisible by rsc, k1 =
k
rs is divisible by c, so lcm(c,r+ s) divides k1(r+ s).

Therefore,⌊
k1(r+ s)

lcm(c,r+ s)

⌋
=

k1(r+ s)
lcm(c,r+ s)

= ∑
(v,[i])∈So

Ein(v, [i])− ∑
(v,[i])∈Ea

Sin(v, [i])),

which is (7.51), which completes the proof.

7.3 Extended Example

Let c = 2 and n = 7, and µ = (2,1). Then

Par2
µ(7) = {(6,1),(4,3),(4,1,1,1),(2,2,2,1),(2,1,1,1,1,1)}. (7.56)

Fig. 7.3 the partitions in Par2
µ(7) with boxes of even hook length coloured yellow.

For the shaded cells, the set of values of a(□)
l(□)+1 is

{
3,1,0, 1

3

}
, and the set of values of

a(□)+1
l(□) is

{
∞,3,1, 1

3

}
. So, the critical rationals are

{
0, 1

3 ,1,3,∞
}
.

In this example, we will verify that

∑
λ∈Par2

µ (7)

th+4,2(λ ) = ∑
Par2

µ (7)

tλ 2∗
□ .

Recall

h+4,2(λ ) =
∣∣∣∣{□ ∈ λ : 2 | h(□) and

a(□)

l(□)+1
≤ 4 <

a(□)+1
l(□)

}∣∣∣∣ . (7.57)

From our computation of the critical rationals, given that 2 | h(□) for some box in a

partition λ ∈ Par2
µ(7), 4 < a(□)+1

l(□) if and only if 3 < a(□)+1
l(□) , and a(□)

l(□)+1 ≤ 4 if and only

if a(□)
l(□)+1 ≤ 3. So, h+4,2(λ ) = h+3,2(λ ). Now we use I3,1,2 : Par2

µ(7) → Par2
µ(7). Because
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mid3,2(λ ) = mid3,2(I3,1,2(λ )) and crit±3,2(λ ) = crit∓3,2(I3,1,2(λ )), I3,1,2 is a bijection exchang-

ing h+3,2 and h−3,2, so

∑
λ∈Par2

µ (7)

th+3,2(λ ) = ∑
λ∈Par2

µ (7)

th−3,2(λ ).

We now explicitly compute I3,1,2(λ ) for λ = (6,1).

The diagram of (6,1) lies below the line 3y+ x = 9. So, we choose the smallest value

k ≥ 9 such that 3×2×1 | k, k = 12. Then, k1 =
12
3 = 4.

The (r,s,c)-tour of M3,1,2((6,1)) is defined by the following family of arrival words.

(4,[0]) S (5,[1]) E (6,[0]) SES

(7,[1]) EEE (8,[0]) EE (9,[1]) SEE

and for w > 9,

(w, [i])a =



SE 3 | w,w ≡ −w
3 ≡ i (mod 2)

E 2 | (w− i) and either 3 ∤ w or 2 ∤ (−w
3 − i)

S 3 | w,2 |
(
−w
3 − i

)
,2 ∤ (w− i)

empty otherwise

. (7.58)

The multigraph is given in Figure 7.4 with the edges in the first arrival tree in bold.

After applying I3,1,2 the arrival words are

(4,[0]) S (5,[1]) E (6,[0]) SSE

(7,[1]) EEE (8,[0]) EE (9,[1]) SEE

with all arrival words at (w, [i]) with w > 9 unchanged. These arrival words correspond to the

partition (4,3). So, h+3,2((6,1)) = h−3,2((4,3)).

From our computation of the critical rationals, given that 2 | h(□) for some box in a

partition λ ∈ Par2
µ(7), 3 ≤ a(□)+1

l(□) if and only if 1 < a(□)+1
l(□) , and a(□)

l(□)+1 < 3 if and only if
a(□)

l(□)+1 ≤ 1. So, h−3,2(λ ) = h+1,2(λ ) for all λ ∈ Par2
µ(7). Now, I1,1,2 exchanges h+1,2 and h−1,2,

and I1,1,2((4,3)) = (2,2,2,1), so h+4,2((6,1)) = h+1,2((2,2,2,1)). Using the same logic again

h+1,2(λ ) = h−1
3 ,2

(λ ) for each λ ∈ Par2
µ(7). Using I1,3,2, I1,3,2((2,2,2,1)) = (2,1,1,1,1,1), so

h+4,2((6,1)) = h−1
3 ,2

((2,1,1,1,1,1)). Finally, for any partition λ ∈ Par2
µ(7),

1
3 ≤ a(□)+1

l(□) if and

only if 0 < a(□)+1
l(□) , and a(□)

l(□)+1 < 1
3 if and only if a(□) = 0, if and only if a(□)

l(□)+1 ≤ 0, so

h−1
3 ,2

(λ ) = h+0,2(λ ).
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...(12,[0])

(9,[1])

(6,[0]) (7,[1])

(4,[0])

(4,[0]) (5,[1]) (8,[0])

(8,[0]) (10,[0]) (11,[1]) (12,[0])

Fig. 7.4 M3,1,2((6,1)) with the edges of the first arrival tree in bold.

Therefore, since

I1,3,2 ◦ I1,1,2 ◦ I3,1,2((6,1)) = (2,1,1,1,1,1),

we have that h+4,2(6,1) = h+0,2(2,1,1,1,1,1). For the other partitions in Par2
µ(7),

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(4,3) = I1,3,2 ◦ I1,1,2((6,1)) = I1,3,2(2,1,1,1,1,1) = (2,2,2,1),

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(4,1,1,1) = I1,3,2 ◦ I1,1,2((4,1,1,1)) = I1,3,2(4,1,1,1) = (4,1,1,1).

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(2,2,2,1) = I1,3,2 ◦ I1,1,2((2,2,2,1)) = I1,3,2(4,3) = (4,3).

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(2,1,1,1,1,1) = I1,3,2 ◦ I1,1,2((2,1,1,1,1,1)) = I1,3,2(6,1) = (6,1).

Hence we can verify the equidistribution of h+x,2 with h−x,2 over Par2
µ(7) for each x ∈ R>0,

thus verifying Theorem 3.3 in this case.
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