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Abstract

The main objective of dose finding trials is to find an optimal dose amongst a candidate set

for further research. The trial design in oncology proceeds in stages with a decision as to

how to treat the next group of patients made after every stage until a final sample size is

reached or the trial stopped early.

The thesis applies a Bayesian decision theoretic approach to the problem focusing on the

specification of a novel utility function and the role of correlation in the probability model.

Utility independence axioms are used to give a simplified bivariate form to the utility func-

tion based on more easily assessed univariate utility functions. Utility functions for both

efficacy and toxicity depend upon a reference point with different attitudes to risk depend-

ing upon whether above or below the point. A risk averse attitude (concave) is specified

for perceived gains and risk prone (convex) for losses. A set of questions are posed for the

utility function to be accurately elicited. A novel stopping rule derived from the utility

function is also tested.

An inspection of copula theory and a simulation study demonstrate the difficulty in estimat-

ing correlation and recommend using a more parsimonious independent model. A simulation

study demonstrates that the utility function has merit in further evaluation in this setting.

The simulation results show that the decision criteria are more sensitive in detecting the

optimal dose when candidate doses are around minimum efficacy and maximum toxicity

thresholds.

The specification of the utility function is flexible to accommodate clinical beliefs allowing

us to think about acceptable levels of patient risk. The work applies a broad framework

to give insight to existing methods and potential to adapt to different endpoints and trial

features.
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Chapter 1

Introduction

Cancer develops when abnormal cells divide and multiply in an uncontrollable way, with

many cancers eventually spreading into other tissues. Cancer continues to be the leading

cause of death in the developed world [1]. Modern cancer treatment can be placed into four

broad groups: surgery, radiotherapy, chemotherapy and targeted treatments [2]. Targeted

treatments are able to target specific proteins or a faulty process within a cancer cell while

chemotherapy or cytotoxic agents destroy both cancerous and healthy cells without distinc-

tion. Individual interventions or a combination of interventions from the four groups are

used to treat the many different types of cancer.

The development pathway for an anti-cancer treatment starts at the discovery stage, when

a biological idea is constructed and tested in cell and then animal models. Promising treat-

ments are progressed to the toxicology stage where the effect of the agent on an organism

and how the organism handles the agent are studied more closely in multiple animal mod-

els. Clinical trials for cancer treatments are almost exclusively conducted in patients rather

than healthy volunteers given many of the serious side effects associated with treatment.

The clinical development of a treatment for cancer has traditionally followed four sequential

stages, Phases I-IV:

Phase I trials primarily assess the safety, toxicity and pharmacology of a treatment usually

at multiple doses. Phase I trials are conducted in a low number of patients (typically 10-30)

with the sample size highly dependent on the number of doses to be tested. The development

of a treatment will stop at this stage if a treatment cannot be considered safe.

1



Chapter 1. Introduction

Phase II trials test to see if the regimen has sufficient activity to warrant further large scale

study. The endpoints for efficacy are typically accessed over a shorter period of time in

comparison to phase III. Phase II trials traditionally were conducted without comparison

to a concurrent control (single arm trials) instead comparing to historic control data for the

current standard of care in the specific setting. Randomisation is becoming more prominent

in this setting to provide a more representative concurrent control [3]. Phase II studies are

usually the first formal look at the efficacy of an agent, but may also look at further toxicity

and safety. Sample sizes for phase II studies range from tens to low hundreds.

Phase III trials are large randomised trials to assess if the treatment can offer a benefit

against the current standard of care. Typically this is assessed using a longer term efficacy

measure. An improvement in efficacy is usually sought but non-inferiority can also be an

objective if the new treatment is cheaper to deliver or has a more favourable toxicity profile.

The successful completion of a phase III trial would typically see the agent being adopted

into routine clinical practice. The sample size for a phase III trial are often hundreds or

thousands of patients.

Phase IV trials are post marketing trials and evaluate the long term effects of the treatment

and can change how a treatment is delivered in practice. It is also possible that the treatment

may have its license removed if new unfavourable evidence emerges.

The first two phases can be described as early phase trials, the third a confirmatory trial

and the fourth a post marketing trial. Although this appears to be a linear pathway, in

reality there is overlap and trials can be conducted in parallel in different settings. The

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for

Human Use (ICH E8) guideline on general considerations for clinical studies recognises the

difficulties in classifying trials according to a traditional pathway whilst supporting the need

for a step wise series of trials where information from early studies is used to support and

plan later stage studies [4]. A classification system that is structured around the trial’s

objective is encouraged. For example, a study that seeks to find a suitable dose may be

referred to as a phase I study in the traditional pathway whereas a dose finding study is a

less ambiguous label.

Drug discovery and development is a long and costly process, estimates of cost range from

$314 million to $2.7 billion to get a drug licensed [5, 6]. An estimate for the time it takes to

2



Chapter 1. Introduction

develop a compound before licensing is 7.3 years (range, 5.8 - 15.2 years) [7]. The large range

of time is dependent upon disease area and the nature of the drug in addition to whether the

compound was part of Fast Track, Breakthrough Therapy, Accelerated Approval, or Priority

Review statuses from the Food and Drug Administration (FDA) [8]. A drug company

will traditionally file for a patent around the discovery stage of a compound. Patents are

normally granted for 20 years which allow the patent owner to exclusively sell the drug for

this period. After the patent expires a huge proportion of sales are lost to generic competitors

and the price for the drug plummets [9]. It is imperative for the pharmaceutical company

that a drug is licensed in a timely manner in order to recoup the costs of development.

The high cost of drug development is in part due to the high failure rate during drug

development, it is estimated that 70% of research and development budget is spent on

failed projects [10]. Over the period of 2000-2015 only 3.4% of cancer drugs that made

it to clinical testing received a license [11]. Breaking this figure down using transition

probabilities; approximately 40% fail to transition to phase II testing, with less than a

third of compounds tested at phase II progressing to phase III. Of the compounds reaching

phase III only 35% successfully obtain a license. The main reasons for failure in phase III

testing are lack of efficacy (64%), safety (12%) and commercial reasons (24%) [12]. Similar

proportions, efficacy (52%), safety (24%) and commercial reasons (24%) are the estimated

failure rates at phase II [13]. A major factor in the optimisation, and subsequently the

effects, of the drug is the dose of the drug selected in the earlier stages of development.

The dose of a treatment is intrinsically linked to both the efficacy and toxicity profile of

a treatment with dose optimisation seen as a major factor in improving success rates for

phase II and phase III studies [14].

The dose selection paradigm in oncology has been shaped historically by the prognosis of

diagnosis, lack of effective treatments and the properties of cytotoxic treatments coming

through development [15]. The effectiveness and the toxicity associated with a cytotoxic

agent steeply increase with increasing dose. The highest dose of a cytotoxic agent that

can be tolerated by patients, is considered optimal to progress to phase II testing. The

trial design that developed to find the maximum tolerated dose (MTD) was to treat small

groups of patients at increasing doses over a short period of time. The staged design is

referred to as a best intention study design where a decision for the dose to treat the

3



Chapter 1. Introduction

next group of patients is made in the best interest of patients entering the study. Project

Optimus is an FDA initiative to reform the dose optimization and dose selection paradigm

in oncology drug development in response to the increased proportion of targeted treatments

coming into development [16]. The project is wide ranging to help improve overall success

rates of oncology treatments. This includes trial designs for later stage randomised studies

comparing different doses. This thesis focuses on non-randomised best intention designs with

the unique feature of optimising dosing at each stage for the benefit of patients entering the

study. This type of design is referred to as a dose finding design from hereon.

There are multiple objectives for a dose finding study in oncology. The main scientific

objective of a dose finding trial is to determine a dose for the treatment of patients in the

future [17]. This dose is referred to as the optimal dose (OD). Given the potential for serious

side effects when treating with untried cancer treatments, it is ethical to recruit patients

rather than healthy volunteers to the studies. Patients who enter the trial are typically also

seeking a therapeutic advantage. The main ethical objective therefore is to ensure patients

studied within the trial are not exposed to excessive toxicity or doses with minimal efficacy.

Lower level objectives associated with the trial design and delivery concern efficiency and

reliability: the trial should utilise the minimum number of patients and be capable of finding

an OD with a degree of statistical accuracy [18]. A dose finding trial design is a balance

between meeting each of the stated objectives.

The ability of a trial to successfully achieve its objectives lies in appropriately robust clinical

trial design. Different designs are relevant to different objectives or phases of the trial.

Adaptive designs are one specific type of clinical trial design where the key feature is to

modify an ongoing trial in a pre-planned manner after reviewing accrued data at interim

analyses. In a dose finding trial as the trial proceeds, information accumulates that reduces

uncertainty regarding optimal treatment dose; adaptive clinical trials are designed to take

advantage of this accumulating information, by allowing modification to the dose in response

to accumulating information and according to predefined rules. The use of an adaptive

design in dose finding allows a staged approach to trial design where a decision about what

dose to give the next group of patients is made after each stage. By sequentially adapting the

ethical objective of treating patients optimally at each stage can be met, while still achieving

the main scientific objective in an efficient and reliable manner. A robust adaptive design is
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Chapter 1. Introduction

intended to both enhance flexibility and efficiency without undermining the study’s integrity

and validity [19]. Efficient adaptive trial designs in early phase oncology are imperative to

maximise the scientific benefit whilst reducing the risk:benefit ratio for patients entering

such studies [20].

There are two main statistical approaches applicable to the design and analysis of a clinical

trial, frequentist (or classical) and the Bayesian approach. The majority of earlier clinical

trial methodology followed the frequentist approach with the use of the Bayesian approach

rapidly becoming more prominent [21]. Bayesian methods have and continue to make a

significant contribution to the field of health research [22]. The Bayesian approach allows a

formal mathematical approach to incorporating prior information into trial design, analysis

and decision making. The Bayesian approach is argued to be more flexible and more efficient

in the use of data in contrast to the traditional approach [23]. This flexibility approach lends

itself to adaptive design procedures [24], although many frequentist procedures also exist

[19].

Within a dose finding trial there are multiple points where a decision needs to be made con-

cerning the treatment of patients. Bayesian decision analysis is closely linked with Bayesian

inference but the two disciplines are distinct [25]. The Bayesian decision theoretic approach

is a statistical method to determine an optimal action from a set of possible actions when

there is uncertainty [26]. There are two main components: A Bayesian model representing

the structure of a system and its associated uncertainty and a utility function that is ca-

pable of measuring preferences relating to the consequence of taking a particular course of

action [25]. A fully decision theoretic approach to statistical decision making is scientifically

sound, providing coherent decisions when each of the two main components can sufficiently

be determined [27].

The main premise of this thesis is a novel Bayesian decision theoretic approach to dose

finding in oncology. It is hoped that by using a scientifically more robust method in contrast

to a more ad-hoc procedure that the objectives of a dose finding trial can be more closely

met. A key component of this is the patient objective of ensuring optimal dose allocation.

In achieving improved trial design in this setting this adds to the much bigger objective of

improving patient care through drug development. The work is split into four chapters and

a discussion chapter that are briefly introduced below.
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Chapter 2 reviews the current state of the art for statistical designs in the setting. The

chapter starts with a preliminary section to give a more detailed overview of how the objec-

tives associated with dose finding can be met with a staged design. A Bayesian approach to

analysis and decision making is highlighted as most existing designs in the literature exhibit

some features of the approach. Statistical concepts relating to defining an optimal dose with

conflicting objectives are introduced. A review of the literature highlights that designs do

not follow the Bayesian decision theoretic approach and that designs are a simplification of

clinical preferences.

Chapter 3 gives a closer inspection of modelling in the setting of dose finding as a key

component of a decision theoretic approach. Specifically how binary toxicity and efficacy

endpoints, typically used in this setting, are jointly modelled to account for any interaction,

with the possibility that an efficacy event becomes more or less likely in the presence of a

patient toxicity event. The approach is tested to understand its influence on dose finding

studies.

Chapter 4 reviews the relevant statistical literature for decision making. The purpose

of this is to understand how clinical preferences with multiple competing objectives can be

encoded into a utility function. This is necessary so that a decision theoretical approach can

be undertaken. This literature hasn’t previously been applied in the setting of dose finding

and a strong theoretical foundation yields a consistent method that can be revised and

adapted as needed for a particular application with confidence. This work has a practical

element so that a statistician can ask appropriate questions to a clinician in order to elicit

their preferences for an OD.

Chapter 5 proposes a novel Bayesian Decision theoretic approach to dose finding trials.

The method builds upon the work in the previous chapter. The new method has an accom-

panying set of questions to ask clinical experts so that the method can be practically applied.

The method is contrasted against a prominent alternative design in a worked example with

some initial evidence that significant improvement is seen on some key metrics.

Chapter 6 is a discussion chapter summarising the work in the thesis and placing it into a

wider context. The merits of the work are evaluated and recommendations for future work

are made.
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Chapter 2

Statistical designs for dose finding

studies in oncology

The literature on statistical designs for dose finding studies in studies for cancer therapeutics

is reviewed in this chapter with a particular focus on how decisions are made to determine

which dose to treat patients entering the trial and the recommendations for patients in the

future. There are two categories defined in this chapter to split designs based upon whether a

design utilises a single toxicity endpoint or both a toxicity and an efficacy outcome. Designs

that utilise a single toxicity endpoint are typically referred to as phase I trials while trials

that utilise both a toxicity and an efficacy endpoint are referred to as phase I-II or phase

I/II designs. There is an initial preliminary section to the chapter where a general approach

to dose finding trials is introduced with a closer inspection of what constitutes an OD. The

general notation for a Bayesian design to dose finding is given as it is the method utilised by

most of the designs reviewed as part of the literature review. The chapter concludes with a

motivating dose finding example for the thesis.

2.1 Preliminaries

2.1.1 An algorithm for dose finding

To satisfy the ethical objective of treating patients at doses that are not overly toxic and

(or) not efficacious the trial proceeds in stages. The design is to treat cohorts of patients

in a sequential manner with a decision as to what dose to treat the next cohort of patients
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Chapter 2. Statistical designs for dose finding 2.1. Preliminaries

made after each stage. An algorithm that encapsulates a framework for study design for

dose finding in oncology is defined in this section.

A drug is intended to have some effect on the body, with the effect changing depending

upon the dose administered. The effects of a drug at a particular dose can be considered to

affect the cancer in a positive manner or to affect the body negatively. The positive effect is

described as efficacy and the negative effect toxicity. An endpoint is defined as part of the

trial design that measures each of these effects for an individual patient. The design type

described earlier as phase I that uses a single toxicity measure only makes an assumption

about efficacy that is stated in the next section when exploring what defines an OD. The

basic algorithm for trial design remains the same however. Let D ∈ {d1 < d2 < · · · < dk}

be a set of k pre-defined doses to be studied within a dose finding trial. Let Y = (YE , YT )

where

YE =


1 if efficacy

0 otherwise

and YT =


1 if toxicity

0 otherwise

(2.1)

be Bernoulli random variables representing an efficacy and toxicity event for a patient re-

spectively following treatment at a particular dose. Binary variables are typically used to

measure the effects of treatment in this setting because they can be specified to obtain short

term measures of effect to allow the trial to adapt to accumulating evidence and complete in

an acceptable time window. Additionally it can be possible to encapsulate several measures

into a single binary effect [28]. There are alternative measures of effect that are considered

later in the chapter.

Each event definition will depend on the particular clinical setting, for example efficacy may

be measured by response or progression-free survival at a particular time point. The toxicity

event is typically described as a dose-limiting toxicity (DLT), a severe toxicity event. Such

toxicities are assessed according to the National Cancer Institute’s Common Terminology

Criteria for Adverse Events (CTCAE) classification [29], and usually encompass all grade

three or higher toxicities with some pre-specifed exceptions that can be managed [18].

The trial design for a dose finding trial will stipulate how each of the items below are

specified in the trial protocol.
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1. An initial cohort of patients are treated at a starting dose

2. Effects of the treatment for each participant in the cohort are measured by an outcome

representing toxicity, or efficacy and toxicity.

3. The study then continues iteratively as follows:

• A decision process to specify which dose to treat the next cohort of patients at

is made with respect to the effects from the previous cohort(s).

• The next cohort of patients is treated at the dose recommendation from the

decision process.

4. The trial continues until a maximal sample size is achieved or an additional rule called

a stopping rule is initiated. This stopping rule may indicate an OD has been found

or that it is no longer beneficial to continue development of the trial due to excess

toxicity and/or lack of efficacy.

5. The OD will be declared at the end of trial to treat patients in future trials. If

the design stops early because excess toxicity and/or lack of efficacy then no dose

is recommended for further study. In many designs the recommendation of an OD

will follow the previously defined decision process and the dose for the next cohort of

patients will be the OD. In other designs there may be separate criteria to the decision

process used to evaluate which dose is most appropriate to take forwards.

2.1.2 Defining an optimal dose

Traditional designs for dose finding in oncology utilised only a toxicity endpoint. This class

of design relies on an implicit assumption that more dose of the drug relates to increased

anti tumour activity. The OD in a trial that is suitable for a toxicity only design will be the

highest dose with an acceptable toxicity profile defined with respect to the trial endpoint

[30, 31]. The highest dose with an acceptable toxicity profile is referred to as the Maximum

Tolerated Dose (MTD). Designs that seek to find the MTD as the OD for further study are

referred to as phase I trial designs. The exact definition of the MTD is defined as part of the

trial design with a number of definitions existing [28]. A cytotoxic agent is toxic or deadly to

cells and is associated with early compounds in the development of cancer therapeutics [32].

Cytotoxic agents likely have a narrow range of doses that are both sufficiently efficacious
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and acceptably toxic with the OD coinciding with the MTD [33]. As such a toxicity outcome

alone can capture the OD.

A statistical design for a phase I design will define the MTD with respect to a population

level summary for the probability that a patient will experience the DLT event [18]. Let

πT = Pr(YT = 1|d) denote the probability of experiencing a toxicity event at a dose, d. A

dose toxicity relationship inspects the probabilities of efficacy and toxicity across a range

of doses. For the dose toxicity relationship the relationship is typically monotonic, i.e. the

chance of a toxic event increases with dose [34]. Assuming that the risk of toxicity increases

with dose one definition of the MTD is the dose level that results in the maximum risk of

toxicity that is no bigger than an acceptable level, p̄MTD.

MTD = max{d ∈ D : πT ≤ p̄MTD} (2.2)

Alternative definitions of the MTD may be the dose with a probability of toxicity closest

to some predefined toxicity called the target toxicity level. Assuming that efficacy also

increases with dose the minimally effective dose is the dose that gives a minimum amount

of efficacy. Doses between the minimally effective dose and the MTD are described as the

therapeutic window. When the MTD isn’t minimally effective, the therapeutic window does

not exist and the agent isn’t viable.

When extending the dose finding design to incorporate efficacy endpoints, statistical designs

will define the OD with respect to a population level summary relating to the chance of

an efficacy event occurring offset against a toxicity outcome. Designs that utilise both an

efficacy and toxicity outcome are referred to as phase I-II or phase I/II designs. Concepts

relating to defining an OD with respect to event probabilities are explored in this section.

Assuming that both efficacy and toxicity endpoints are measured over a similar time period.

Let πE = Pr(YE = 1|d) denote the probability of experiencing an efficacy event at a dose,

d, and πT = Pr(YT = 1|d) denote the probability of experiencing a toxicity event at a dose,

d. The two probabilities are a measure of effect in the wider population and are used as a

measure to decide the merits of a particular dose. The dose toxicity relationship is typically

monotonic [34]. Increasing the dose will increase the chance of a toxic event. The efficacy

relationship is less likely to be monotonic for many classes of compound and could plateau

or decrease with increasing dose [35].
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Given the risk of mortality due to cancer [36], some toxicity is deemed acceptable if the

treatment is efficacious. The OD can be considered as a compromise between the effects of

efficacy and toxicity. The definition of what constitutes “optimal” forms part of the trial

design with multiple examples given later in the chapter.

A statistical approach to defining an OD could be achieved by a mathematical function of

efficacy and toxicity. The joint probability space for efficacy and toxicity is defined over the

unit square [0, 1]2. An objective function O(πE , πT ) defines a ranking for all possible com-

binations of efficacy and toxicity. A larger magnitude of the objective function is preferred

to one that is smaller. The OD is the dose that ranks the highest. There are two properties

of any objective function that should be self-evident. More efficacy is preferred to less, if

considering two doses with the same risk of toxicity the dose with more efficacy should be

preferred. Similarly less toxicity is preferred to more. If two doses have the same efficacy

then the dose with less toxicity is preferred. Any definitions of optimal in a trial design

should possess these properties.

One example definition of the objective function could be to define the patient outcome

of efficacy without any toxicity event as the only truly successful outcome for a patient

[37]. As such, assuming that the two events are independent the dose that has the highest

probability of a successful outcome is the OD:

O(πE , πT ) = πE(1− πT ) (2.3)

with the OD satisfying

argmax
d

O(πE , πT ). (2.4)

It is possible to plot objective functions, with possible values of efficacy on the x axis

and possible values of toxicity on the y axis. Values that the objective function takes

creates a surface with larger values representing a combination of efficacy and toxicity that

is preferred. The best possible combination of efficacy and toxicity is when there is perfect

efficacy and zero chance of toxicity, i.e when πE = 1 and πT = 0. The worst possible case is

if a dose has zero chance of efficacy and guaranteed chance of toxicity i.e when πE = 0 and

πT = 1. Any function that doesn’t give these two points as the best and worst will violate

one or both of the self evident principles. All possible combinations of efficacy and toxicity
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for a dose will give a value for the objective function between these two extreme points.

As the objective function is in two dimensions there will combinations where the objective

function gives combinations of efficacy and toxicity that are equally desirable, these points of

indifference can be displayed by a line called a contour. When plotting objective functions

an arbitrary number of contours are plotted to facilitate visualising the surface that the

objective function creates, Figure 2.1.
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Figure 2.1: Example objective function. The probability space for efficacy and toxicity is
defined over the unit square [0, 1]2.Contours (solid lines) describe combinations of efficacy
and toxicity that are equally desirable. Eight contours are arbitrarily drawn to represent the
surface. In this example the surface is a ramp with the point at (1, 0) representing perfect
efficacy without toxicity as the most desirable, i.e every patient has an efficacy outcome
and no patients have a toxicity outcome. Parallel contours nearer to lower right point are
preferred to ones further away Admissibility criteria defined by π̄E = 0.5 and π̄T = 0.4
are represented by dashed lines. The admissibility criteria split the decision space into four
quadrants. Doses that are constrained within the lower right quadrant are admissible. Doses
outside of the quadrant cannot be considered to be optimal.

There may be additional constraints placed upon the objective function to define the OD.

The OD in this situation becomes the dose that maximises the objective function subject
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to satisfying a set of conditions called admissibility criteria. Doses that do not satisfy

the criteria are described as inadmissible doses. One condition relating to the probability of

toxicity would be the maximum amount of toxicity that would be deemed acceptable, πaddT .

Any dose with toxicity above this value would be deemed inadmissible. Similarly there may

be a minimum amount of efficacy required for a dose to be considered acceptable. Any dose

with efficacy below this threshold, πaddE is deemed inadmissible. An example of the two

criteria is given in Figure 2.1. Doses where πE ≤ πaddE or πT ≥ πaddT are inadmissible and

excluded when considering an OD.

This section provides a general framework for considering an OD statistically for a dose

finding trial. Many of the statistical designs that are reviewed later in the chapter will

follow these key ideas.

2.1.3 Bayesian approach to dose finding

The most common statistical approach to a trial with dose finding objectives is the Bayesian

approach. The first design to do this was the phase I design, the continual reassessment

method (CRM) [38] reviewed later in the chapter. This section gives the notation and short

overview for the Bayesian method. The section ends by defining evidence levels from the

Bayesian model to declare doses inadmissible as defined in the last section.

Features that are unknown about the external world are modelled by unknown states of

nature θ ∈ Θ. In dose finding this may be parameters πE and πT for the probability of

efficacy and toxicity at each dose or parameters associated with a dose response curve. In

the case of a toxicity only design this may be πT or parameters used to model the dose

toxicity curve. The observation Y is drawn from a distribution p(y|θ) called the likelihood.

Prior knowledge of θ ∈ Θ is incorporated via a prior p(θ). This is updated through Bayes

theorem in light of the observation(s), to give the posterior

p(θ|y) ∝ p(y|θ)× p(θ). (2.5)

This component is referred to as the statistical model with the details given as part of the

design. The posterior distribution is used to make decisions at each stage and at the end

of the trial. A utility function u(d, θ) specifies the utility of treating at dose d ∈ D if the

state of nature is θ ∈ Θ. This is similar to O(d) defined previously in that it creates an
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order of all combinations of efficacy and toxicity but the magnitude of the utility denotes

a measure of preference. A more precise description of utility and how it differs to an

objective function is the subject of Chapter 4. For this chapter, when referring to a design

that maximises the expectation of a function, “utility” is used, otherwise the term objective

function is used for consistency. There are a number of other terms that refer to functions

used for making decisions in this setting including “Gain”, “Loss” and “desirability”, all

have a similar interpretation.

The Bayes action (or decision) d∗ ∈ D is the action that maximises the posterior expected

utility:

d∗(y) = argmax
d

(Eθ[u(d, θ)|y]). (2.6)

There are a number of designs that will specify a Bayesian statistical model but differ to the

decision theoretic approach in the decision making. An alternative two stage approach used

in a number of designs is to first find the posterior mean from the statistical model and then

to use the estimate as an argument for the objective function. The dose that maximises the

objective function based upon a posterior mean estimate defines the OD at each stage. i.e.

d∗(y) = argmax
d

(O(d,E(θ|y)). (2.7)

The method is described as a hybrid Bayesian approach to decision making and is com-

mented upon in the discussion of Chapter 4.

Admissibility criteria were introduced as part of defining an OD, these criteria are typi-

cally applied as admissibility or stopping rules to limit the inclusion of doses in the decision

making. The admissibility criteria were defined earlier for πE and πT as minimum levels of

efficacy and maximum levels of toxicity respectively for a dose to be considered acceptable.

Admissibility rules formally use the Bayesian model and the criteria πaddE and πaddT to ex-

clude doses from the decision process. This is done to avoid exposing patients to excessively

toxic doses or doses that are in-efficacious. The posterior distribution given in Equation 2.5

is defined for each dose d ∈ D. It is possible to obtain marginal distributions for πE(d, θ)

and πT (d, θ) denoting the probability of efficacy at a particular dose and the probability of

toxicity. For brevity πE(d, θ) = πE and πT (d, θ) = πT . Two further constants are speci-

fied to denote evidence levels pE and pT for a dose to be considered efficacious and safe.
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Admissibility rules for efficacy and toxicity respectively are defined by

Pr {πE < πaddE | y} > 1− pE (2.8)

and

Pr {πT > πaddT | y} > 1− pT . (2.9)

If either rule is satisfied then the dose is considered inadmissible and is excluded when

determining the OD.

2.1.4 Assessing a designs performance

A specified statistical design needs to demonstrate that it is capable of meeting its objec-

tives. The primary method of doing this is by specifying some known “truths” around a

trial process and assessing what the specified design does [39]. For dose finding the primary

objective is to find an OD. How likely the design is to select the OD given some known dose

effect relationships cannot be calculated exactly and simulation is used. A single simulation

iteration mimics the proposed study but the data is generated using pseudo-random sam-

pling with a known probability distribution. The use of pseudo-random sampling is referred

to as Monte Carlo simulation. A simulation study conducts multiple iterations of the trial

from simulated data and assesses the performance of the design using summary metrics;

these are referred to as a designs operating characteristics. The use of simulation allows us

to compare metrics from different designs, or different specifications of the same design, to

demonstrate a study is capable of meetings its objectives. When different specifications of

the same design are compared to select the design with the best operating characteristics

this is described as the calibration of a design.

A data simulation model will specify the model associated with generating the binary patient

responses in Equation 2.1. The prominent method in the dose finding literature is to specify

a Bernoulli distribution with fixed probabilities for each dose. Specifying fixed effects and

inspecting long run frequencies as described above is an inherently frequentist concept, but

these can be used to assess properties of methods, even if the methods are Bayesian [40].

The fixed probabilities, known as a scenario, are chosen to represent a clinically plausible

relationship between the doses. The process is repeated for a range of scenarios. In practice
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little is known about the dose effect relationship; the number and range of scenarios should

reflect this ignorance [41].

The main metrics used in the dose finding literature to assess design operating characteristics

are described in this paragraph. The primary purpose of the simulation study in dose finding

is to assess if it is capable of determining an OD. Secondary objectives for dose finding are

linked to treating patients optimally on trial. Treating a large number of patients in and

around the OD is desirable. To assess the ability of the design to meet the primary objective

the metric of probability (or equivalently percentage) of correct selection is used. This will

be the proportion of times from the high number of replicates that a design correctly chooses

the dose that is optimal, predetermined from the scenario. Understanding the proportions

of selection across different doses will also be used to understand what the design does when

it doesn’t select the OD. For example in the toxicity only setting a design that frequently

selects a dose that is above the MTD is considered differently to one that has a tendency

to select the dose below the MTD [42]. The average number of patients treated at each

dose is used to assess how the design assigns patients to each dose level over the course of

the trial. The patient objective is to treat patients optimally at each decision point. When

trying to determine if this objective is achieved it is important to assess the proportions of

selected doses at different decision points during the trial in addition to overall. For example

a design may have a tendency to expose patients early in the trial to excessively toxic doses

but overall perform similarly to one that is slower to escalate initially.

2.2 Toxicity-based designs

This sections reviews existing designs in the literature with a toxicity only endpoint. Phase

I designs could fit into three broad categories: algorithm or rule based designs, model based

designs and model assisted designs [43]. The key features of each of these designs with

examples from the different categories of designs are explored in this section. A summary

between the designs is given at the end of the section.

2.2.1 Rule-based designs

Rule based designs assume no statistical model for the outcome Y = YT and do not have an

explicit function to define the MTD. The classical design, or 3+3, involves starting at the
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lowest dose d = 1 and following the rules of the schematic in Figure 2.2 until an MTD is

identified [44]. The trial stops when there are no more dose levels to escalate or deescalate

from. If the recommendation is to deescalate from the lowest available dose, d = 1 the

trial will stop without recommending a dose for further study. The design has evolved over

time through pragmatic considerations from treating clinicians rather than an underlying

statistical basis. A systematic review of the use of phase I oncology trial designs with dose

finding objectives found that 95% of trials in the previous two decades used the 3+3 design

[28].

It is a misconception that the 3+3 design finds a dose with a 33% or 1/3 expected toxicity

level. Simulation studies have demonstrated that the expected target toxicity of the MTD

following the 3+3 design to be monotonically decreasing from about 30% to 0% as the

number of dose levels, d ∈ D, increase from three to infinity [45]. There are many other

variants on up-down designs with fixed rules for dose escalation or de-escalation (also referred

to as A+B designs) [46]. Rule based designs are considered to be inferior to alternative

statistical designs (model based and model assisted) given in the next section [47]. Rule

based designs for phase I trials have inferior operating characteristics to alternatives with

little or no ability to be flexible or the scope for extension [28].

Enter 3 patients

< 1/3 DLTs ³ 1 /3  and < 2/3 DLTs > 2/3 DLTs

Add 3 patients

Escalate to Dose Level  i + 1 Dose Level (i-1) is MTD

³ 2/6 DLTs< 2/6 DLTs

Dose Level i

Figure 2.2: Design schematic of the classic 3+3 design
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2.2.2 Model-Based designs

Model based designs have an underlying statistical model for the dose toxicity relationship.

Decisions for each cohort and at the end of the trial will be derived from the statistical model.

One of the first statistical designs in dose finding was the continual reassessment method

(CRM) [38]. As a Bayesian design, CRM models the probability of toxicity for a given dose

covariate. The model takes the form of a number of monotonically increasing functions such

as the empirical function with the probability of toxicity at each dose equalling

πT (x, β) = xexp(β) for 0 < x < 1 (2.10)

where x represents a numeric covariate for each dose level called the “skeleton”. The values

of x at each dose are determined by initial estimates or values of the probability of DLT at

each of the dose levels prior to commencing. These are back substituted into Equation 2.10

to determine the covariate value, x. The prior for β is normal with mean α and a standard

deviation σ. The mean α is arbitrary because of the back substitution when assigning the

skeleton and is set to zero.

The design originally proposed recruiting patients in cohorts of one and giving the next

patient the dose believed to be closest to the target toxicity level, denoted by πMTD. To

achieve this a loss function is specified as follows,

L(πT ) = (πT − πMTD)
2. (2.11)

The loss function reverses the direction of the previously defined objective function in that

a smaller value is preferred. As such it is the dose that minimises the loss function that is

selected as optimal. There are two approaches to determine the dose that minimises the loss

function, A “plug-in” approach or the Bayesian method. The Bayesian method minimises

the expected posterior loss, while the plug in estimate will find the mean estimate of posterior

distribution for β and plug this back into Equation 2.10 to give an estimate of the rate of

toxicity at each dose. The dose that minimises the loss function is the dose to treat the

next patient. The trial terminates after a fixed number of patients (N) have been recruited

with the dose that would be used to treat the (N + 1) patient as per the previous decision

process declared the MTD.
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There have been multiple extensions to the original CRM design. Most notably, and often

referred to as the modified CRM (mCRM), pre-specified ad hoc rules of not skipping doses

in escalation and recruiting in different size cohorts[48, 49]. These two features are common

place in the dose finding literature, these are often imposed to reflect what would happen

in practice and reflect compromises in complexity for models and decision criterion at the

start of the trial with minimal data. Stopping rules have also been proposed to stop a trial

early when all doses are too toxic or when there is sufficient evidence for a dose being the

MTD [50, 51, 52]. The two stage CRM [53] allows a pre-specified initial escalation sequence

until a DLT is observed. The specification of the prior skeleton has also been investigated

extensively to give robust specification of the prior and skeleton [54].

The short comings of the rule based methods are strengths for the CRM method in that they

are flexible with scope for extension [28]. Comprehensive reviews of the CRM in contrast

to the 3+3 demonstrate improved ability to determine the OD and treating more patients

in and around the MTD in nearly all scenarios [55].

Decision theoretic approaches have been applied to the problem [56, 57]. A two parameter

logistic model was proposed by the authors as believed to give a wide class of sigmoidal

curves appropriate in many clinical settings.

πT (d) = logit−1η(θ, d) (2.12)

with

η(θ, d) = θ1 + θ2 log(d) (2.13)

A number of different utility functions were explored, in particular a patient and a variance

utility function. The patient utility function corresponded to that used in the CRM, al-

though maximises expected utility. The variance utility sought to minimise the variance at

each decision stage. The notion of making decisions to gain information through minimising

variance could be considered to violate the ethical principles of treating patients optimally

set out earlier in the chapter.

A pragmatic paper built upon the Bayesian approach using two parameter logistic regression

to support clinical decision making by presenting full posterior distributions [58]. The two

parameter logistic regression model was utilised although the numerical dose component
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was expressed as the log of the ratio between the dose and an arbitrary reference dose. This

was done to give the intercept the more intuitive meaning of toxicity at the reference dose.

Decisions were made according to the chance of being within four intervals to represent

under dosing, targeted dosing, excessive toxicity and unacceptable toxicity. Each of these

probabilities are inspected at each dose and depending on a decision rule the next dose

selected. One example of the decision rule from the paper is the dose that maximises

the probability of being within the targeted toxicity interval while satisfying a probability

threshold of less than 25% chance of both excessive or unacceptable toxicity. The proposal

was that full posterior distributions should be presented with an appropriate discussion

with the clinical team enabling sensible dosing decisions to be made. Full decision theoretic

utility functions were also applied to the four regions but considered to be challenging to

specify.

Escalation with overdose control (EWOC) has been proposed where a piece wise loss function

around the MTD was applied [59]:

L(πT ) =


(1− λ)(πMTD − πT ) πT ≤ πMTD

λ(πMTD − πT ) πT > πMTD

(2.14)

where λ > 1. The two cases for the function are referred to as underdose, and overdose.

The parameter λ is set to control how conservative an escalation sequence should be. The

motivation was to have a parameter that was able to control the rate of escalation. The

method specified a two parameter logistic regression function for the probability model.

This approach is similar to additional utility functions specified to be more conservative in

the additional materials (but not evaluated) in the decision theoretic approach [56]:

L(πT ) =


(πT − πMTD)

2 πT ≤ πMTD

C(πT − πMTD)
2 πT > πMTD

(2.15)

where C > 1, or

L(πT ) =


(πT − πMTD)

4 πT ≤ πMTD

(πT − πMTD)
2 πT > πMTD.

(2.16)
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The pragmatic Bayesian design, EWOC and the decision theoretic designs specify 2 pa-

rameter logistic regression models. There is some variation between how the models are

parameterised and subsequent prior distributions but all specify a more complex model

than is needed for the CRM. The one parameter model in the case of CRM is a reasonable

approximation locally around the MTD in order to make robust decisions [60]. The prag-

matic Bayesian approach to dose finding argued that many of the ad hoc rules necessary for

CRM to work were as a result of overly simplistic decision models and dose–toxicity models.

A two parameter logistic model was specified in this case to give a more accurate reflection

of the full posterior distribution for the probability of a DLT at each dose to allow for the

more complex decision making.

A relationship between conservatism in escalation at the cost of treating fewer patients at

or around the MTD has been demonstrated for designs such as escalation with over dose

control and the pragmatic Bayesian logistic regression design in comparison to CRM [59, 58].

Treating fewer patients in or around the MTD may seem something that is undesirable but

the critical element is when these patients are treated. The designs that control escalation

are slower to escalate and therefore when considering summary statistics for all trial patients

they treat fewer patients at higher doses closer to the MTD. The two designs consider that

when there is less information available to make decisions it is important to account for

uncertainty in the decision for the next cohort of patients. This links to the ethical objective

of not exposing patients to doses that are unacceptably toxic.

2.2.2.1 Model-assisted designs

This class of design could be considered a sub-set of model based designs with the major

difference in that no intrinsic relationship is assumed between the doses [61]. They can be

referred to as “short memory” designs with decisions based upon the observed data at any

given dose. Doses are ordered in terms of potential for toxicity and the decision at each

stage is made with respect to a statistical model that incorporates data from the current

dose only. There are three potential actions, escalate to the dose above in the ordered list,

remain at the current dose or de-escalate to the dose below in the ordered list. Further rules

are introduced to exclude doses due to safety and to define the OD at the end of the trial.

Two examples of a model assisted design are the modified toxicity probability interval design
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(mTPI-2) [62], and the Keyboard design [63]. Both designs were developed separately

but are equivalent. They assume Bernoulli data with independent parameters for each

dose and uniform prior distributions. Decisions are based upon specifying three regions to

represent under, correct and over dosing. The decision at each stage is deescalate, remain

or escalate. Decisions are made by segmenting the posterior into intervals of equal width to

the region of correct dosing, the highest and lowest intervals may have smaller widths. The

Keyboard design refers to the intervals as “keys”. The unit probability mass is defined by

the area under the curve contained within the interval divided by its width. The decision is

determined by the location of the interval with highest unit probability mass. If the highest

unit probability mass interval lies in the region of under, correct or overdosing the decision

is to escalate, remain or de-escalate respectively (Figure 2.3).

Figure 2.3: Posterior beta density plots of the DLT rate at the current dose level and the
dose escalation/deescalation rules of the keyboard design [63]. The decision is made in
relation to the positioning of the strongest key (red) in relation to the target key (blue).

To ensure patients are not treated at unsafe doses an admissibility rule is applied to the
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DLT rate at each dose as per equation 2.9. If all doses are unsafe the trial will stop. The

end of the trial, assuming at least one safe dose, will be declared after a fixed sample size

has been reached. The decision to decide upon an OD is determined by isotonic regression

[64]. Bayesian Optimal interval or BOIN design is similar to the Keyboard design with

the decision at each stage based upon the observed DLT rate [65]. Parameters are set

to construct an interval around the target toxicity level. Decisions then correspond with

whether the mean observed DLT rate at a dose falls within the target interval (remain)

below (escalate) or above (deescalate).

An advantage of model assisted designs is that they are simple to implement as decisions can

be pre-specified in the protocol as a tabulation of number of patients treated and the number

of DLTs observed or a simple diagram in the case of BOIN [66]. The FDA have granted

the BOIN design the fit-for-purpose designation for dose finding, which has increased its

significance and utilization in drug development programs [67]. Larger simulation studies

demonstrate that mTPI, and BOIN designs have comparable overall performance finding

the MTD reliably and treating a high number of patients in and around the MTD similar

to the CRM [68, 69]. Model assisted designs use only the data at the current dose and

ignore data from patients treated at alternative doses at each decision point. Safety rules

mean that the design will limit exposure for patients to excessively toxic doses but by only

considering data from the current dose level, it is challenging to argue that patients are

treated optimally at each stage.

2.2.2.2 Phase I - is more better?

This section has reviewed designs for phase I trials with only a toxicity endpoint. Rule based

designs were found to be unsuitable to achieve study objectives. The model based and model

assisted designs were found to be suitable designs in the setting of phase I trials. A major

considerations is whether more dose equates with preferable outcomes for patients. The

Oncology Center of Excellence Project Optimus is an FDA initiative to reform the dose

optimization and dose selection paradigm in oncology drug development [16]. This is in

response to the changing drug-dosing conundrum in oncology that with modern agents with

new mechanisms of action should not define the MTD as the OD [70]. A recent systematic

review of dose effect relationships in oncology found that the assumption of more dose

equating with improved efficacy outcomes to be violated [34]. Careful consideration should
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be given at the design stage as to whether a trial using a toxicity outcome alone is suitable.

2.3 Efficacy and toxicity dose-finding designs

Clinical trials with dose finding objectives incorporating both an efficacy and toxicity end-

point are often referred to as phase I-II or phase I/II designs. Many of the designs are an

adaptation of earlier dose finding studies incorporating a toxicity endpoint. The designs can

similarly be split into rule based, model based or model assisted designs. A particular focus

in this section is upon how the OD is defined.

The review of phase I designs found rule based designs to be unsuitable. Extensions to

incorporate efficacy have similar shortcomings when compared to model based approaches

and are briefly mentioned here for completeness. One of the first rule based dose finding

designs was an application to bone marrow transplantation where the objective was to enable

non-rejection (efficacy) without graft versus host disease (toxicity) [71]. Three different

algorithms or A+B designs based upon number of efficacy or toxicity events in a given

cohort were proposed and assessed through simulation. There was large variation between

operating characteristics of the three contrasted designs, of particular note was that the

first design based upon well-meaning heuristics performed poorly with modifications needed

in the other two designs. In a situation when it is suitable to assume that no significant

toxicity will occur other A+B designs have been proposed [72].

2.3.1 Model-based designs

2.3.1.1 Extensions to CRM

Ivanova proposed a design with an additional constraint to A+B rules incorporating the

CRM [73]. Given the most recent patient treated at dj , dose selection for the next patient

is as follows: dj−1 is selected if there was a toxic event, dj if there was a response without

toxicity and dj+1 in the absence of a response and toxicity. A CRM model was fitted to the

toxicity data as previously described and the next dose is selected as the lowest dose from

either the CRM or the algorithm. A similar design was proposed by Hardwick, described

as the directed walk design with the rule component also incorporating dj−2 [74]. The

dose toxicity and dose efficacy curves were proposed by a number of parametric and non

parametric functions with the dose maximising an estimate of the product of efficacy and
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no toxicity selected for future patients.

The CRM was extended in the setting of a phase I/II trial in a new antiretroviral treatment

for children infected with HIV [75]. The trial sought an OD based upon a maximum like-

lihood estimate of the probability of efficacy given no toxicity, π̂E|T ′ and the probability of

no toxicity (1− π̂T )

OD = argmax
d

{π̂E|T ′ ∗ (1− π̂T )} (2.17)

The likelihood for the probability for toxicity followed the CRM with the dose covariates

based upon the “skeleton”. Efficacy given no toxicity followed a similar one parameter

model. A two stage decision process was used to define doses with acceptable toxicity and

a series of hypothesis tests to determine dosing at each stage.

An extension to CRM has also been proposed in the context of a trial of allogenic cell

transplantation for high-risk Leukemia patients [76]. The joint distribution for efficacy and

toxicity was defined as follows:

π(yT , yE |d) = k(πE , πT , ψ)π
yE
E (1− πE)

1−yEπyTT × (1− πT )
1−yTψyT yE (1− ψ)1−yEyT (2.18)

where ψ represents the correlation between efficacy and toxicity and is assumed to be con-

stant across doses. The constant k(πE , πT , ψ) is a normalising constant. The prior for ψ

is Uniform(0, 1). The posterior mean of each of the parameters was calculated in order to

estimate probabilities of efficacy and toxicity at each dose, π̂E and π̂T . The trial sought to

minimise the following criterion at each stage with respect to desirable efficacy and toxicity

constants π∗E and π∗T :

OD = argmin
d

{w(π̂T − πT ∗)2 + (1− w)(π̂E − π∗E)
2} (2.19)

where w ∈ [0, 1] describes the payoff between efficacy and toxicity (Figure 2.4). Admissi-

bility rules for toxicity were part of the decision process. Here, the definition of the OD is

inconsistent with a fundamental concept that more efficacy is preferred to less. The design

implies that a dose with perfect efficacy and zero toxicity is less desirable than the target

at the centre of the circular contours.
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Figure 2.4: Braun bivariate continual reassement method with (π∗E , π
∗
T ) = (0.5, 0.35) and

w = 0.5. Lines describe equal desirability, contours closer to the point (0.5,0.35) more
desirable. This violates the fundamental idea that more efficacy is preferred to less and less
toxicity is preferred to more, with a dose having 50% efficacy and 35% toxicity preferred to
a dose with perfect efficacy and zero toxicity

2.3.1.2 EffTox design

Thall proposed a Bayesian adaptive design utilising correlated binary efficacy and toxicity

endpoints called the EffTox model [77]. The design forms the basis for multiple extensions

described in the book: Bayesian Designs for Phase I-II Clinical Trials [78]. The design was

one of the first to incorporate efficacy and toxicity endpoints modelled as binary endpoints

given in Equation 2.1. Many subsequent designs all possess the same basic structure of three

components. These are the probability model, the constraints to determine an admissible

set of doses and a objective function described as efficacy-toxicity trade off contours. The

objective function specifies the risk:benefit ratio of a given dose and is used to select the

dose after each stage and the recommended dose at the end of the trial.

The probability model is defined as follows: a set of numeric doses, d ∈ R>0, are transformed
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by centering around the geometric mean.

xj = log(dj)−
1

k

k∑
r=1

log(dr) j = 1 . . . k (2.20)

Marginal probabilities for efficacy and toxicity at each dose are defined with an inverse-logit

link function

πE,j = logit−1{µE + βE1xj + βE2x
2
j} (2.21)

πT,j = logit−1{µT + βTxj}. (2.22)

A bivariate distribution for the probability of any event Y = (YE = a, YT = b) is defined

using the Fairlie-Gumbel-Morgenstern (FGM) copula [79, 80].

πa,b = (πE)
a(1− πE)

1−a(πT )
b(1− πT )

1−b + (−1)a+bπE(1− πE)πT (1− πT )ψ (2.23)

where

ψ =
eϕ − 1

eϕ + 1
. (2.24)

Model parameters for the design are defined by θ = (µE , βE1, βE2, µT , βT , ϕ) and data by

Dn = (Yi, xi), the posterior for patients i = 1, . . . , n is given via Bayes theorem, with the

prior for θ following independent normal distributions with corresponding hyper parameters

for the mean and variance.

To create an ordering of preference over all possible combinations of πE and πT , a family

of trade-off contours is defined. The corner (1, 0) of the probability space is most desirable,

i.e every patient has an efficacy outcome and no patients have a toxicity outcome. In the

cited paper this was achieved using a quadratic function to define a contour and a Euclidean

distance to create an order. Subsequent findings from the author found that this method

led to undesirable operating characteristics and suggested that the contour be created using

Lp vector norms [81]. An objective function using Lp norms is described as follows:

O(πE , πT ) = 1−

((
πE − 1

π∗1,E − 1

)r

+

(
πT
π∗2,T

)r) 1
r

(2.25)

where r > 0 (Note the Euclidean distance is a special case with r = 2). An initial target con-

tour, C, is used to define the constants and is calculated from three elicited probability pairs
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(π∗1,E , 0), (1, π
∗
2,T ) and (π∗3,E , π

∗
3,T ) and solving O(π∗3,E , π

∗
3,T ) = 0 to find r. The objective

function defines an ordering for any combination of efficacy and toxicity in the unit square.

An example with (π∗1,E , 0) = (0.5, 0), (1, π∗2,T ) = (1, 0.65) and (π∗3,E , π
∗
3,T ) = (0.75, 0.25) to

give r = 0.848 is plotted in Figure 2.5 with an arbitrary number of parallel contours.
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Figure 2.5: EffTox trade-off contours with (π∗1,E , 0) = (0.5, 0), (1, π∗2,T ) = (1, 0.65) and
(π∗3,E , π

∗
3,T ) = (0.75, 0.25) (plotted points) to give r = 0.848. Lines describe equal desirabil-

ity, contours closer to bottom right corner (1,0) more desirable

At each decision point, admissibility rules are applied to all doses as per Equation 2.8 and

Equation 2.9. Those doses that are inadmissible are excluded from the decision making

process. The most desirable dose is determined from the posterior mean probabilities and

selecting the maximum amongst the acceptable doses according to the objective function

given in Equation 2.25, i.e.

max
j
O(E{πE,j(µE , βE1, βE2)|Dn}, E{πT,j(µT , βT )|Dn}) (2.26)

for j = 1, . . . , k. Note that this is not the Bayesian approach of maximising expected utility.
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The expectation is evaluated for the parameters of the probability model first, then the

objective function is minimised using estimates of each parameter.

2.3.1.3 EffTox utility design

Utilities designs based upon the four elementary patient outcomes have previously been

proposed as an alternative to trade off contours [82, 78]. The probability model is the same

as EffTox in the case of two binary responses but uses a decision theoretic decision process.

The utility function is defined as follows:

u(YE = a, YT = b) =



K(1, 1), for a = 1 and b = 1

K(0, 0), for a = 0 and b = 0

K(1, 0), for a = 1 and b = 0

K(0, 1), for a = 0 and b = 1

(2.27)

Constants K(a, b) are described as the numerical utilities of a patient achieving one of

the elementary outcomes, Y = (YE = a, YT = b). Given maximising expected utility is

invariable to linear transformations, the worst and best of the four possible outcomes can

be given a utility K(0, 1) = 0 and K(1, 0) = 1 with K(0, 0) and K(1, 1) to be defined. The

calculation of expected utility at each dose is

E(u(Y )) =

∫
θ

1∑
a=1

1∑
b=1

K(a, b)π(a, b) (2.28)

The utilities are elicited from the clinician as a score relative to K(0, 1) = 0 and K(1, 0) = 1

to quantify the risk-benefit trade-off under each outcome. Based on experience, clinicians

can easily comprehend the meaning of utility scores and provide specifications that align

with clinical judgments [83]. It is also suggested that K(1, 1) > K(0, 0) to reflect that

achieving a response is typically more clinically beneficial.

The correlation component of the probability model is incorporated into the utility function

as the joint probability of each patient outcome depends on this parameter (Equation 2.23).

Note that this approach is more akin to a Bayesian decision theoretic approach as the

decision rule is to maximise the expected utility at each stage.
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2.3.1.4 Robust Bayesian design

A robust Bayesian design modelling toxicity and efficacy using a flexible non-parametric

dynamic model has been proposed [84]. Here, the model borrows some information across

doses without imposing a more stringent parametric form. The utility function incorporates

aspects of the admissibility rules by creating a penalty when a toxicity threshold is surpassed

as follows:

U(πE , πT ) = πE − w1πT − w2πT I(πT > πaddT ) (2.29)

The weights w1 and w2 are constants to be determined as part of the design work up. The

function is not continuous at the threshold point with a jump in utility as shown in an

example with w1 = 0.33, w2 = 1.09 and πaddT = 0.35, Figure 2.6.
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Figure 2.6: Robust Bayesian Approach Utility function with w1 = 0.33, w2 = 1.09 and
πaddT = 0.35. Lines describe utility equal to (0.1,0.2,..0.9), utility at (1,0) is 1. The points
indicate the jump in utility
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2.3.1.5 Decision theoretic designs

The decision theoretic approach from toxicity only designs were extended by the same

corresponding author to include efficacy endpoints by utilising the ordinal outcome model

[85, 86]. The probability model for toxicity was the same as the toxicity only design given

in Equation 2.12. The efficacy component was conditional upon not having a toxicity

event and modelled using a logistic regression model. The decision rule was based upon

gaining information (variance) at each stage and a final trial stopping rule to stop the trial

once a precise enough estimate of the MTD is obtained. Stopping rules limited exposure

to doses with excessive toxicity. A patient gain function was also proposed in the latter

publication to maximise the probability of efficacy without toxicity. A similar probability

model was utilised with an objective function to balance interests of the patients both within

and outside the trial, with different weights applied to patients inside and outside of the

trial [87]. The interests were defined with respect to a reward function based around the

probability of efficacy without toxicity, and with toxicities at each dose. The utility design

described by four patient outcomes earlier could be considered a decision theoretic design

as it maximises the expected utility [82, 78]. A similar design to patient level outcomes has

also been utilised but in this case limiting the decision space to one of three possible actions:

escalate, remain or de-escalate from the current dose level [88]. The probability model was

Dirichlet at at each dose with four parameters for each of the potential patient outcomes,

with the resulting design requiring a 3 × 4 utility table to be specified. A consequence

function associated with continuous thresholds that cause each of the patient outcomes has

also been proposed as a decision theoretic design in this setting [89].

2.3.2 Model assisted designs

The mTPI/Keyboard design has been adapted to include efficacy endpoints in the toxicity

and efficacy interval design (TEPI) [90]. The toxicity rate is split into four intervals to de-

note low, moderate, high and unacceptable toxicity. The efficacy is similarly split into four

intervals to denote low, moderate, high and superb efficacy. A (4× 4) table splits the joint

outcome space into sixteen distinct regions with a corresponding decision elicited from the

clinician for each square. The possible decisions at each stage are escalate, remain or deesca-

late. The joint outcome is modelled using the product of independent beta distributions for

efficacy and toxicity. The decision rule corresponds with a region having the highest joint
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unit probability mass defined as the ratio of the probability of being within a region divided

by its area. Admissibility rules for efficacy and toxicity are imposed to restrict treatment

at a dose too toxic or not efficacious as per the admissibility rules in Equation 2.8 and 2.9.

The decision at the end of the trial is based upon the admissible dose set that maximises a

segmented joint utility function (Figure 2.7):

u(πE , πT ) = u(πE)u(πT ) (2.30)

where

u(πE) =


0, πE ∈ [0, e1]

πE−e1
e2−e1 , πE ∈ (e1, e2)

1, πE ∈ [e2, 1]

(2.31)

and

u(πT ) =


1, πT ∈ [0, t1]

πT−t1
t2−t1 , πT ∈ (t1, t2)

0, πT ∈ [t2, 1]

(2.32)

with e1, e2, t1 and t2 constants to define intervals which are specified as part of the design

process. An example is plotted in Figure 2.7, with constants set to e1 = 0.5, e2 = 0.8,

t1 = 0.15 and t2 = 0.45, representing a range of plausible efficacy and toxicity. Part of each

contour has a segment of vertical or horizontal lines. The interpretation in the case of a

vertical line is indifferent to more toxicity provided it is below 0.15 and in the case of a

horizontal line there is no merit in additional efficacy above 0.8. The utility is maximised,

u(πE , πT ) = 1, for all combinations of efficacy and toxicity in the region where πT ≤ 0.15 and

πE ≥ 0.8. The utility function does not strictly satisfy the self evident rules of preference

for any combination of values for e1, e2, t1 and t2, that is, there will be regions of the utility

function where more efficacy is not preferred to less, and regions where less toxicity is not

preferred to more. The TEPI design has been adapted to change how the intervals are

specified to improve upon operating characteristics without a change to the utility function

[91].

An extension of the TEPI design is the utility-based toxicity probability interval design

[92]. In this design the 4 patient utility function, given in Equation 2.28, is maximised to
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Figure 2.7: Toxicity and efficacy interval design final dosing decision utility function (Equa-
tion 2.30) with e1 = 0.5, e2 = 0.8, t1 = 0.15, t2 = 0.45. Lines are equal utility at
(0.1,0.2,...,0.9), contours closer to the point (1,0) have larger utility.

make decisions subject to acceptable toxicity. The design leads to superior and more robust

operating characteristics over the TEPI design. A notable feature of the design is the ability

to tabulate all possible decisions in a clinical protocol.

The BOIN design has also been extended to include an efficacy endpoint. with the observed

efficacy rate at a dose providing further rules as to whether to escalate, stay or deescalate

from the current dose level. The design is referred to as BOIN-ET [93]. The STEIN design

is very similar to BOIN-ET but differs slightly in how the interval to determine escalate,

de-escalate and stay at the same is constructed [94]. The OD is selected at the end of

the trial by non-parametric modelling for both outcomes; doses below the estimated MTD

define a subset from which the dose that maximises efficacy is selected as the OD.

Further extension to the BOIN method for efficacy and toxicity outcomes include the Utility-

BOIN or U-BOIN method [95]. The method is a two stage design, whereby a toxicity only
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dose finding design, using BOIN, is specified before preceding to a second stage, utilising

efficacy and toxicity endpoints. The use of two stage approaches is commented upon further

in Section 2.4. There are three decision functions that are specified as part of the design that

are of interest for the chapter. Decisions are made according to a hybrid Bayesian approach

whereby the expectation of parameters from the probability model is found and inputted

into the utility function. The use of “utility” in describing the method is not consistent with

the rest of this chapter, where the term has only been used when maximum expected utility

is used to make decisions. There are three decision making functions specified. The first

two were specified in earlier papers associated with parametric models and are described

in Equations 2.28 and 2.29. The last uses a single parameter to describe a payoff between

efficacy and toxicity.

u(πE , πT ) = u(πE)− ωu(πT ) (2.33)

This is shown to be a special simplified case of Equation 2.28 in the paper. The utility

function has a utility contour plot very similar to Figure 2.1 with the parameter ω responsible

for the gradient of the linear contours. Simulation studies indicate that U-BOIN is more

accurate in identifying the optimal dose and exhibits greater robustness compared to a more

complex model-based phase I/II design described in Section 2.3.1.2.

It was highlighted, when looking at model-assisted designs for toxicity only, that the dosing

decision may not be optimal at each stage. This is amplified in the setting of bivariate dose

finding where there isn’t a strict ordering of preference for the doses. The designs define

what is optimal for the dosing decision at each stage, and what is optimal for the decision

at the end of the trial, differently. Considering the objective of treating patients optimally

at each stage of a dose finding trial the proposed model assisted designs do not meet this

objective. This is because at any given stage the decision only considers data from the

current dose, it may be the case that by considering the totality of the data a different

recommendation could be made. This effect has been investigated numerically in a further

extension to the BOIN design [96], the BOIN12 design. The BOIN12 design incorporates

the utility function described Equation 2.28) to make decisions between doses at each stage.

Using the toxicity only BOIN design, if the observed toxicity rate at the current cohort is

contained or below the interval then the next cohort of patients is selected according to the

utility function.
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2.4 Extensions

The basic design follows the initial staged algorithm for binary efficacy and binary toxicity,

there are a number of extensions or changes to the algorithm that are detailed here. There

are designs that relax the component of treating each cohort of patients at the OD each

time. The declaration of Helsinki states “While the primary purpose of medical research is

to generate new knowledge, this goal can never take precedence over the rights and interests

of individual research subjects” [97]. Prioritising the scientific objective of OD optimisation

at the expense of patients on study may be challenging to justify to an ethics committee

in practice. Careful consideration is needed around the trial objectives and the evidence

base. The decision theoretic design introduced earlier gave the main approach of minimising

variance at each stage [85, 86]. This is an example of a design that could be considered

unethical due to not treating patients optimally at each stage. The original design paper

gave an example of a trial for healthy volunteers in the setting of inflammatory diseases

where this may be more acceptable due to the chronic nature of the disease. Safety rules

were additionally stipulated as part of the design. Penalised optimal designs similarly seek

to maximise information at each stage with penalties for unsafe and non-efficacious doses

[98].

The review of statistical designs in this chapter has assumed binary efficacy and toxicity

events observed over a similar relatively short time period to measure the effects at each

dose. Continuous efficacy events with a binary toxicity event is one example of an alternative

outcomes model [99]. Measuring toxicity as a ordinal variable is another possibility [100].

When events are observed over a longer period of time it is often not possible to conduct

sequential recruitment over a feasible time period. A version of the CRM that weights

events according to followup is one approach to allow decision making with incomplete data

[101]. Similar approaches have been proposed for efficacy [102].

The designs considered so far have assumed that a patient’s response is dependent upon the

dose given. A patient’s response could also additionally depend upon a covariate, such as

tumor stage. The EffTox approach was extended to allow the OD to also depend upon the

covariate [103]. Historical data in the form of informative priors helped to guide decisions

with the design allowing the elicited contour and admissibility rules to vary based upon the

covariate. An alternative design has been applied for trials where there are multiple similar
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strata, this could be indications, regions or subgroups [104]. Assuming the number of strata

is small, borrowing information across different strata could be of interest, particularly

within rare populations. The phase I approach jointly modelled patient data assuming that

patient could be both homogeneous or heterogeneous units simultaneously with a mixing

component. An example of designs accounting for additional sub groups or covariates could

be seen as a step towards a personalised dosing approach [105].

2.5 Motivating example and thesis case study

The motivation for the work in this thesis came from designing a dose finding study through

Leeds Institute of Clinical Trials Research. The study was in relapsed-refractory multiple

myeloma, a cancer of the plasma cells with an aim of investigating four doses of a treatment

in combination with fixed dose standard of care therapies. The study is used as a case study

throughout the rest of this thesis. To determine an OD it was felt that the higher doses,

if tolerated, wouldn’t necessarily give significantly more efficacy, with the interpretation

that the efficacy dose response curve isn’t monotonic. A phase I-II design was deemed

appropriate with the toxicity endpoint a binary indicator of whether a DLT is experienced

in the first two, four-week cycles. The efficacy endpoint was binary as to whether the patient

achieved a “very good partial response” or not within the same time period. The EffTox

design detailed earlier in the chapter was considered [77]. As part of the consultation with

the clinician the objective function sought answers to the following questions specified in the

paper in order to elicit three points to define the constants in Equation 2.25. The questions

were proposed to the clinical team as follows:

1. The smallest efficacy probability considered desirable if toxicity were impossible (i.e.

with no toxicity, what is the lowest chance of efficacy you would accept?).

2. The maximum toxicity probability considered acceptable if we have perfect efficacy

(i.e. with perfect efficacy, what is the maximum chance of toxicity you would accept?)

3. A point that is “equally desirable to the first two” but between them (i.e. has some

chance of toxicity, and less than perfect efficacy, but is just as desirable as the above

scenarios; what combination of toxicity and efficacy would be desirable?)

The elicitation exercise generated the three points for (efficacy, toxicity): (0.25, 0), (1, 0.4)
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and (0.5, 0.25), as answers to each of the questions. Additionally admissibility constants

were πaddE = 0.25 and πaddT = 0.3 defining the minimum efficacy and maximum toxicity

acceptable to treat patients (Equations 2.8 and 2.9). The initial objective function is plotted

in the left pane of Figure 2.8. The performance of the design was assessed by simulating

a number of scenarios with different dose efficacy and dose toxicity relationships. The

operating characteristics gave a high number of recommendations for low doses when the

higher doses were considered optimal and few patients treated at higher doses. The specified

design performed poorly with a tendency to get stuck at lower doses in scenarios where the

highest and second highest doses from the four doses were determined to be the OD.
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Figure 2.8: Left Pane: EffTox trade-off contours (solid lines) with elicited points (π∗1,E , 0) =
(0.25, 0), (1, π∗2,T ) = (1, 0.4) and (π∗3,E , π

∗
3,T ) = (0.5, 0.25). Lines describe equal desirability,

contours closer to bottom right corner (1,0) more desirable. Dashed lines represent admis-
sibility criteria πaddE = 0.25 and πaddT = 0.3. Right Pane: EffTox trade-off contours (solid
lines) with points (π∗1,E , 0) = (0.25, 0), (1, π∗2,T ) = (1, 0.7) and (π∗3,E , π

∗
3,T ) = (0.5, 0.25).

Lines describe equal desirability, contours closer to bottom right corner (1,0) more desir-
able. Dashed lines represent admissibility criteria πaddE = 0.25 and πaddT = 0.3.

In the EffTox method and the utility extension the authors stress the importance of contour

specification. Contours that are “Insufficiently steep” will lead to “pathological behaviour”.

Pathological behaviour describes the tendency of a design to repeatedly recommend a low

dose without exploring higher doses. From a visual inspection of the contours in the left pane

of Figure 2.8, the gradient of the right edge of the contours isn’t very steep in contrast to the
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left edge. This would constitute an “Insufficiently steep” contour. The individual elicited

contour described the situation where the clinician was indifferent, but further contours are

then extrapolated as part of the design to represent the objective function. The contours in

the lower right quadrant would constitute doses that are admissible. In this region the flat

right hand edge of the contour represents that a small increase in toxicity is worse than the

same increase in efficacy. If asked to consider two points on any given contour in this region

the clinician had a strong preference for doses towards the right hand side of the curve. This

suggests that the contours do not represent lines of equal preference. Indifference contours

in the lower right quadrant were better represented as steeper as plotted in the right pane of

Figure 2.8. When considering the upper right quadrant of this design however, the contours

do not represent clinical preferences, here considering doses on a given contour in the upper

right quadrant there is a strong preference for doses to the left of the contour where toxicity

is lower and more acceptable.

This created a dichotomy where the choice of which specification to choose was not clear.

It would be desirable to design a trial that captured clinical preferences in this setting.

2.6 Discussion

In this chapter statistical trial designs to meet dose finding objectives in oncology were

summarised. Broad concepts of what an OD is and the trial objectives associated with

finding the OD were given. Given the low evidence base at this early stage of development

of a compound it is imperative that patients are treated optimally. An overarching adaptive

and staged approach was stated in order to meet trial objectives. A more formal statistical,

specifically Bayesian, approach was detailed which most designs follow. The chapter has

split the literature into two major classes of dose finding designs, phase I designs with a

univariate toxicity endpoint and phase I-II designs incorporating both an efficacy and a

toxicity endpoint. The choice of phase I design depends on whether toxicity alone can be

assumed to be a surrogate endpoint for efficacy and subsequently an OD.

While this chapter focuses on the statistical designs there are pragmatic considerations of

implementing a design. A recent review of the slow uptake of novel dose finding designs

found that the main barriers to further uptake are lack of expertise in the trial and clinical

team and limited resources for study design [47]. This increased complexity is necessary
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to ensure the scientific validity of the trial and importantly ensure that patients within the

trial are treated ethically. The traditional 3+3 is arguably the most straightforward design

to implement and the reason it remains the most utilised designs [106]. This pragmatism is

offset by its vastly inferior capability of meeting the scientific and patient objectives of the

study. Model assisted designs are proposed to bridge the gap between simplicity and more

complicated statistical designs as encouragement for more practitioners to use designs that

better meet study objectives [66]. The importance of designs that are easy to implement

can be seen with the rapidly expanding literature for model assisted designs as is seen in

Section 2.3.2.

There is a rapidly expanding field of designs to meet dose finding objectives, in particular

designs with efficacy and toxicity endpoints to meet the modern drug paradigm. From this

chapter there isn’t a single “best” design to recommend for use but a collection of designs

that favour some objectives and settings more than others. The assessment involves a careful

consideration of the trial objectives and a statistical design to meet those objectives. To

meet the objectives, designing a dose finding trial is a complex and lengthy process requiring

collaboration between statistician and the clinical team. There are two major components of

the statistical designs for dose finding that feature in the designs reviewed: the probability

model and the decision process.

There are a number of approaches taken in the literature that model the relationship between

dose and toxicity, and dose and efficacy. A parametric model such as logistic regression gives

a closed form for the relationship with a number of parameters. Non parametric approaches

make fewer assumptions about the dose effect relationship. Any Bayesian model will include

priors that need to be specified before the study is initiated. In the setting of dose finding

where minimal data is available the role of the prior is important [78]. With any given design,

in particular the parametric designs there will be a number of assumptions as to how the

dose effect relationship modelled, it is important that a design is robust in performance

when misspecified.

One element of the probability model in the dose finding literature that is less well under-

stood is the role of correlation. Individual outcomes for binary toxicity and efficacy from a

given patient could be correlated. In the case of positive correlation observing both efficacy

and toxicity or neither becomes more likely. Some designs ignore correlation and simply
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model the two outcomes independently. The use of a copula as in the EffTox design (equa-

tion 2.23) seems desirable as it allows the specification of a dose efficacy relationship, a dose

toxicity relationship and a copula to model the correlation between them. The rationale

and the effect of specifying the copula isn’t justified as part of the approach. A model that

includes correlation may be more reflective of how the data is generated and lead to better

inferences and decisions. Chapter 3 investigates the role of copulas in dose finding.

The performance of statistical dose finding designs with multiple endpoints is more chal-

lenging to compare. Each new design will compare to some previous designs with some

improvement in a limited set of scenarios. Different designs propose different strategies

for how the OD is defined statistically. Given a proposed scenario one design may define

one particular dose as optimal while another design a different dose. There is a question

as to which design performs better as success is defined differently. Both designs should

recommend their respective OD. This point has been made in a recent review with the

recommendation to carefully consider and select a decision procedure that best aligns with

the specific dose-toxicity and dose-efficacy scenarios during the design stage [107]. It is

also worth noting that the optimum dose is defined with respect to both admissibility rules

and the objective function. There isn’t an agreed upon approach to defining the OD, there

are however a number of heuristics described in the next paragraph that feature in most

designs. These are described as heuristics as they are common features without a consistent

statistical approach.

The OD is typically described with respect to population level parameters. This means

that inferences at any stage are made with respect to the whole patient population entering

the study, although more personalised dosing designs exist [108]. There is a limit to the

amount of toxicity that is acceptable; toxicity only designs will explicitly target some level

of toxicity while efficacy designs will typically have a cut off using admissibility rules. This

limit is typically somewhere between 20-40% and is defined with respect to the disease area

of intervention and previous studies [109]. Many designs will also have a similar threshold

level for efficacy. How the OD is defined and how this related to the decision making a

major component of the thesis and was seen through the motivating example.

The issue highlighted as part of the motivating example isn’t a problem with the manner in

which the contour is elicited. It would be possible to reformulate the questions so that the
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initially elicited contour would be contained in the lower right quadrant. In this instance

this would produce steeper contours associated with improved operating characteristics.

The contour that was initially elicited however still represents the clinical situation. The

objective function specified as part of the EffTox method is a simplification of the situation

described in the motivating example. The methods highlighted as part of the review all

specify objective functions that cannot be specified to reflect the clinical situation in the

motivating example, this includes the 4 outcome utility function specified by a number of

recent designs (Equation 2.28). Many authors consider the objective function as part of

the statistical design with a set of components that need tuning through simulation and

less formal clinical consultation [103]. This allows specification of an objective function

that doesn’t fully reflect the clinical situation so long as the design has good operating

characteristics.

The Bayesian decision theoretical approach would suggest that preferences should be clinical

and be encoded within the utility function. Additional ad hoc rules are typically imposed

in the literature to prevent unethical choices for patients; these are included in the previous

proposed Bayesian decision theoretic approaches to dose finding also. The rules include

admissibility criteria to define an evidence level for an estimated minimum amount of efficacy

and maximum amount of toxicity in order for a dose to be considered in the decision. When

there is minimal evidence available in particular at the start of the trial the rules won’t be

efficient in excluding doses that appear to be quite toxic or not efficacious. The admissibility

rules are necessary to compensate for a simplified objective function. The use of admissibility

rules constitute a two stage approach to decision making, by restricting the decision space

according to the admissibility rules before optimising an objective function that doesn’t

fully capture the situation. This approach falls short of a fully decision theoretic approach

[89].

There is a large body of applied statistical literature surrounding the formulation of de-

cision analysis with multiple competing objectives [110]. The intention is to gain a good

understanding of this work and propose a general structural form for the utility function

that is capable of better capturing the clinical beliefs in the setting. It is hoped that a

utility function that more closely captures the situation will lead to improved performance

in terms of of correctly selecting the OD in a wider range of scenarios. Given all designs,
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whether model based or model assisted, in this setting use a function to describe clinical

preference in order to make decisions, the work could be applied to other designs. Elicita-

tion methods to reliably obtain any proposed utility function is also included in this work.

The work is restricted to efficacy and toxicity dose finding designs to reflect the current

nature of dose selection paradigm in oncology drug development [16]. Chapter 4 reviews

the statistical decision making literature with multiple objectives. Chapter 5 proposes a

novel utility function and assesses the operating characteristics in comparison to a more

established design to understand potential benefits and limitations.

The main objectives of this thesis are:

• Investigate correlation for binary endpoints through copulas to to gain insights and

make recommendations about modelling in PI-II dose finding studies

• Gain a comprehensive understanding of the applied statistical literature on decision

analysis with multiple competing objectives, that would be capable of capturing clin-

ical beliefs in this context.

• Propose a novel utility function and assess its operating characteristics in compari-

son to a more established design, in order to understand its potential benefits and

limitations.

• Develop an elicitation protocol to capture the preferences of a single decision-maker or

a team of key opinion leaders for inclusion in a utility function through a structured

set of questions.
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Chapter 3

Copula models for dose finding

3.1 Introduction

Model based approaches for phase I-II dose-finding map the relationship between response

(achieving efficacy and/or experiencing toxicity) and dose for a patient using a paramet-

ric model. One approach is to assume that efficacy and toxicity are independent and to

model the outcomes separately with respect to dose. It is possible that there may be some

dependence between the two outcomes with the chance of an individual patient having an

efficacious response changing if they also have a toxic event, for example. One approach,

utilised by the EffTox method, as in the thesis motivating example (Section 2.5), is to model

efficacy and toxicity separately and combine the two using a copula. A copula model is a

flexible framework to allow the specification of a dependence structure between separate

marginal distributions [80]. In the case of joint efficacy and toxicity modelling, in dose

finding, this allows the specification of a dose efficacy relationship, a dose toxicity relation-

ship and a copula to model the correlation between the two random variables. The main

advantage of the copula approach is that each of the separate marginal distributions are

retained which is helpful because they have an easily interpretive meaning to make decisions

concerning dose allocation. The definition of a copula function with a number of examples

will be introduced as part of this chapter. The over arching purpose of this chapter is to

inspect the statistical properties of copulas for discrete data to gain insight into their use

in dose finding.

A simulation study looking specifically at the use of copula models in phase I-II clinical

43



Chapter 3. Copula models for dose finding 3.1. Introduction

trials has previously been reported [111]. The paper is referred to as the copula simulation

study (CSS) from herein for ease of brevity. The primary goal of the paper was to assess

operating characteristics of the copula model in the dose finding setting with data simulated

with correlation. The CSS assessed the Braun [76] and the EffTox [77] models, introduced in

Chapter 2. Both designs utilise a function for a joint distribution based upon probabilities

of efficacy and toxicity at each dose, Equations 2.25 and 2.18 for the Braun and Efftox

models respectively. The CSS contrasted the two proposed designs with an independent

model (πET = πEπT i.e. no correlation). The decision rule to decide dosing at each stage

followed that specified in EffTox, Equation 2.25, with admissibility rules given in Equations

2.8 and 2.9. A number of scenarios with fixed vectors for the probability of efficacy and

toxicity with different degrees of correlation between efficacy and toxicity were evaluated for

each of the three probability models. The correlation was specified by a range of parameter

values assuming the copula probability model specified for the two designs. Specifically

when assuming the EffTox joint probability model, ψ = 0, 0.4, 0.8 with positive values of ψ

representing positive correlation and ψ = 0 the independent model.

The CSS results suggested that the copula models gave very similar operating character-

istics to a simple model assuming independence. The results were consistent even when

simulating data with larger values of the correlation parameter, representing strong positive

correlation between endpoints. In some instances marginally worse operating characteristics

were obtained for the copula models. Possible explanations for this counter intuitive result

were i) that “the likelihood may contain little information about the correlation parameter”,

and ii) any benefit to accounting for correlation was at the cost of less precision in other

parameters. This was linked to the small sample sizes typically used in dose finding studies

and an inability to identify a “correct” copula. The CSS discussed the overall purpose of

dose finding and whether it was sufficient to use a more parsimonious model, such as the

independent model in order to achieve the aim of selecting an OD. The CSS concludes that

given the empirical results, copula models are not that useful in dose finding.

The CSS did not give an interpretation as to how parameter values relating to correlation

from different models should be interpreted. Additionally, the paper did not acknowledge

that the copula used as part of EffTox belongs to a much wider class of potential copula

functions. Conclusions from the CSS are difficult to extrapolate to other phase I-II designs
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with a high degree of confidence as there isn’t theory relating to copulas underpinning the

simulation study. The CSS provides empirical results for the performance of the specific

copula model and decision function used in EffTox without a justification as to why it may

extend to other settings. This chapter adds to the literature by providing a theoretical

understanding of copulas and their use for binary data. In doing so the reasons for the find-

ings in the CSS paper are justified with a more general analytic (algebraic) understanding.

The chapter provides insight to the use of the wider class of copula models. Additionally

this provides an understanding of the potential impact of the copula model on different

decision functions in dose finding. This is achieved by introducing a consistent measure of

correlation, Kendal’s Tau, to compare the performance of different models.

The chapter starts by introducing how correlation for two binary variables can be measured.

The notation for probability and cumulative density functions are then introduced to allow

the mathematical definition of a copula. Some of the statistical properties of copulas in the

case of discrete data are given to gain insight into their use in dose finding. A simulation

study is conducted looking at the impact of different copula models on the ability to estimate

correlation and corresponding marginal distributions. The CSS paper findings are placed

in the context of the chapter with further inferences made.

3.2 Kendall’s tau

In the dependency theory, correlation is defined as a measure of dependence or statistical

relationship between two random variables [112]. Many measures of correlation depend

upon two concepts of concordance and discordance. In the general sense concordance is

when the magnitude of the random variables coincide, when one goes up the other also is

likely to go up or vice versa. For discordance the opposite is true. Kendall’s tau [113] is

a measure of correlation between two random variables. Let (X1, Y1) and (X2, Y2) be two

independent realisations from the joint distribution of (X,Y ). The population version of

Kendall’s tau is defined by

τ(X,Y ) = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0] (3.1)
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A concordant pair is when both X and Y for one pair is bigger (or smaller) than another

pair given by the first part of the equation. Discordant pairs are when one variable is bigger

while the other smaller (second part of equation). The difference between the probability

of concordant and discordant pairs is defined as Kendall’s tau which is defined on the

interval (−1, 1). For positive correlation, the chance of concordance (similarity) increases

with the opposite true for negative correlation. When τ = 0 the chance of concordance and

discordance are equal.

Kendall’s coefficient initially was proposed for continuous variables where concordance and

discordance are the only possibility for pairs of random variables. In the discrete case

there is the additional chance of pairs of observations taking the same value. A pair

{(X1, Y1), (X2, Y2)}, is said to be tied if X1 = X2 or Y1 = Y2. An adjusted version τb

is defined by

τb(X,Y ) =
τ(X,Y )√

P(X1 ̸= X2)P(Y1 ̸= Y2)
(3.2)

This allows in the discrete case, for τb to be in the range [−1, 1], corresponding to perfect

negative and positive correlation. With continuous random variables the denominator would

equal 1 and τ(X,Y ) = τb(X,Y ). Kendall’s τb is used as a consistent measure of correlation

throughout the rest of this chapter.

3.3 Copulas

3.3.1 Marginal distributions

This section introduces key properties for continuous marginal distributions and the dif-

ferences for discrete distributions. This enables a more formal definition of a copula to be

given in the next section, which relies on properties of marginal distributions.

Take a random variable Y where Y ∈ R. The cumulative density function (CDF), F is

defined by

Pr(Y ≤ y) = F (y) (3.3)

The function maps from the domain of Y to probabilities in the interval [0, 1]. The inverse

CDF maps the opposite way so that:

F−1(u) = y. (3.4)

46



Chapter 3. Copula models for dose finding 3.3. Copulas

The distribution of U = F (Y ) is Uniform(0, 1) i.e.

P [F (Y ) ≤ u] = u, u ∈ [0, 1]. (3.5)

The cumulative distribution for a discrete random variable, is defined by

F (Y ) = P (Y ≤ y) =
∑
yi≤y

P (Y = yi) =
∑
yi≤y

f(yi), (3.6)

where f is the probability mass function (PMF). The distribution is not continuous and has

plateaus for distinct values of yi.

The inverse also isn’t unique mapping 1:1 with plateaus at each distinct value of y. We

therefore define a left-continuous generalised inverse function for natural numbers as follows

F←(u) = inf{y ∈ N : F (y) ≥ u} (3.7)

or the lowest value of y that satisfies F (y) ≥ u.

The PMF is linked to the CDF in the discrete case by

Pr[Y = y] = FY (y)− FY (y′) (3.8)

where y′ is the largest value of y such that y′ < y. For Y ∈ N then y′ = y − 1.

3.3.2 Definitions

Copulas are functions that allow us to model correlation between multiple random variables.

This is achieved by decomposing the multivariate CDF into univariate marginal distributions

and then a copula that captures the dependence structure.

Consider a multivariate random variable Y = (Y1, . . . , Ym.), where Yi ∈ R. A m-variate

copula C, mapping [0, 1]m → [0, 1], is the CDF of a random vector (U1, ..., Um) with uniform

margins

C(u) = P[U1 ≤ u1, ..., Ud ≤ um], Uj ∼ Uniform(0, 1) (3.9)

Sklar [114] showed that if C is a m-variate copula and F1, ..., Fm are univariate CDFs then
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a function H exists such that

H(y) = C(F1(y1), ..., Fm(ym)) (3.10)

where H is a m-variate CDF with margins F1, ..., Fm. In addition Sklar’s second theorem

stated that if H is an m-variate CDF with univariate CDF’s F1, ..., Fm, then there exists a

copula C such that the equation above holds and that C is unique and equal to

C(u) = G(F←1 (u1), ..., F
←
m (um)) (3.11)

and that H(.) = G(.).

The Frèchet-Hoeffding Theorem states that lower and upper limits exist for the copula

function [80].

max{1−m+
∑

ui, 0} ≤ C(u1, ..., um) ≤ min{ui} (3.12)

This provides a set of conditions that a copula function needs to abide by in order for Sklar’s

theorem to hold. So for example, if u1 = 0, then any joint distribution incorporating u1

must also equal zero which is given by the limits above.

When using a copula function when at least one of the marginal distributions are discrete

the left-continuous generalised inverse function given in Equation 3.11 isn’t a unique 1:1;

instead there are a range of possible values of the CDF for a given uniform distribution. It

is still possible however to specify a copula using a parametric form with Sklar’s theorem

still holding [115].

There are several classes of parametric copula functions in the literature that satisfy the

axioms of Sklar’s theorem [80]. The bivariate case is considered from this point as it corre-

sponds with the dose finding setting. The presented material is however extendable to the

multivariate setting. Three examples of parametric forms with a single parameter θ, are

given below and with some properties explored further in the next section. The bivariate

Farlie-Gumbel-Morgenstern Copula (FGM) [79, 80] is defined by

Cθ(u1, u2) = u1u2(1 + θ(1− u1)(1− u2)), θ ∈ [−1, 1]. (3.13)
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The Plackett copula [116] defined by

Cθ(u1, u2) =
1 + (θ − 1)(u1 + u2)−

√
[1 + (θ − 1)(u1 + u2)]2 − 4θ(θ − 1)u1u2

2(θ − 1)
θ ∈ (0,∞),

(3.14)

and the bivariate Gaussian copula given by

Cθ(u1, u2) = Φθ

(
Φ−1(u1),Φ

−1(u2)
)
, (3.15)

where Φ−1 is the inverse of the cumulative standard normal and Φθ is a bivariate cumulative

normal distribution with mean vector of zeros and covariance matrix

Σ =

1 θ

θ 1

 θ ∈ [−1, 1]. (3.16)

The range of the parameters in each function has been determined so that the Frèchet-

Hoeffding bounds hold for all possible values of u1 and u2.

3.3.2.1 Copula model identifiability

The copula model itself is unidentifiable in the discrete setting, as it is not possible to

ascertain empirically which model data is generated from [117]. Table 3.1 demonstrates this

through an example. All of the copula models in the example from the table are equally

valid, all able to model the correlation. The parameter values for each copula are unique

and do not have an interpretative meaning outside of the context of the copula model. Later

in the chapter a formula to obtain Kendall’s tau is given. All three models in this instance

have the same Kendall’s tau, which highlights the necessity of a consistent measure. In this

small example it doesn’t matter which copula model was used to model the correlation.

Table 3.1: Consider a pair of Bernoulli random variables (Y1, Y1) with P(Y1 = 0) = p
and P(Y2 = 0) = q with a joint probability of r = P(Y1 = 0, Y2 = 0) ∈ [max(0, p + q −
1),min(p, q)], the Frèchet-Hoeffding bounds

Bernoulli
max(0, p+ q − 1 ≤ r ≤ min(p, q) Copula Model θ

p = 0.3, q = 0.4, r = 0.1704 FGM, θ ∈ [−1, 1] θ = 1

p = 0.3, q = 0.4, r = 0.1704 Plackett, θ ∈ (0,∞) θ = 2.693764

p = 0.3, q = 0.4, r = 0.1704 Gaussian, θ ∈ [−1, 1] θ = 0.3602642
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3.3.3 Bivariate logistic regression modelling using copulas

Consider Y1, Y2 dependent variables and x ∈ Rp explanatory variables, which may be non

mutually exclusive. In copula modeling, marginals F1(·|x), F2(·|x) are fitted and dependence

induced through a copula - a bivariate distribution function with uniform margins on [0, 1].

i.e

Pr(Y1 ≤ y1, Y2 ≤ y2|x) = C{F1(y1|x), F2(y2|x)} (3.17)

holds for a specific function C and for all values (y1, y2) ∈ {0, 1} and x ∈ Rp where p is the

number of explanatory covariates.

The probability mass function of a discrete copula is defined by a range of values (Equation

3.8) i.e.:

p(y1, y2|x) = P [Y1 = y1|x, Y2 = y2|x] (3.18)

= C(F1(y1|x), F2(y2|x))− C(F1(y1 − 1|x), F2(y2|x)) (3.19)

− C(F1(y1|x), F2(y2 − 1|x)) + C(F1(y1 − 1|x), F2(y2 − 1|x))

In a setting where response variables are dichotomous and the marginal distribution, Fj(·|x)

follows a logistic regression model, i.e. πj(x) = Pr(Yj = 1|x) for each j ∈ {1, 2} where

πj(x) =
exp(xTβj)

1 + exp(xTβj)
, (3.20)

and βj is a pj × 1 vector of parameters corresponding to the width of the design matrix x.

Both marginals follow a Bernoulli distribution with CDF:

Fj(y|x) =


0 if y < 0

1− πj(x) if 0 ≤ y < 1

1 if y ≥ 1

(3.21)

defining π̄j = 1− πj and noting that

C(u) = 0 if any uj = 0, (3.22)

C(1, uj) = uj (3.23)
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and using Equation 3.18 the PMF for the four possible outcomes are given as [118]:

Y2 = 0 Y2 = 1

Y1 = 0 C(π̄1, π̄2) π̄1 − C(π̄1, π̄2)
Y1 = 1 π̄2 − C(π̄1, π̄2) 1− π̄1 − π̄2 + C(π̄1, π̄2)

The table above or equivalently Equation 3.18 gives the probability mass function for a

joint distribution that is used to specify the likelihood when incorporating copulas into dose

finding. The quoted equation for EffTox using the FGM copula, to find the joint probability

for an observation YE = a, YT = b, is given by

πa,b = (πE)
a(1− πE)

1−a(πT )
b(1− πT )

1−b + (−1)a+bπE(1− πE)πT (1− πT )θ. (3.24)

Which is a tidy way of expressing the FGM copula in a single line (Equation 3.13) for

two binary variables. The more general equation given in Equation 3.18 and the simplified

contingency table given in Table 3.1 are equivalent. This is demonstrated below for YE =

0, YT = 0:

From EffTox equation above,

π0,0 = (1− πE)(1− πT ) + πE(1− πE)πT (1− πT )θ. (3.25)

from Equation 3.18,

π0,0 = C(1− πE , 1− πT )− C(0, 1− πT )− C((1− πE), 0) + C(0, 0) (3.26)

= C(1− πE , 1− πT ), (3.27)

as Table 3.1. Using Equation 3.13, the FGM copula,

π0,0 = (1− πE)(1− πT )(1 + πEπT )θ, (3.28)

which is equal to the EffTox equation.

When marginal distributions are specified by logistic regression different copula models will

give a different correlation structure. Extending the example given in Table 3.1, where three

different copula models were specified to the data p = 0.3, q = 0.4 and r = 0.1704. If there
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was a second Bernoulli variable (i.e a further dose) with p′ = 0.5 and q′ = 0.5 then assuming

each copula model was the correct model, this would give r′ = (0.3125, 0.3107, 0.3086) for

the FGM, Placket and Gaussian copulas respectively. These are not hugely different in the

particular example but it does demonstrate the copula is a model that implies a different

correlation structure across different doses. As such the copula is a model choice.

3.3.3.1 The range of Kendall’s tau for different copulas

Different copulas are capable of measuring different levels of correlation. In order to com-

pare different copula models a consistent measure of correlation is needed. The population

Kendall’s tau for a discrete bivariate copula was given by Nikoloulopoulos [119] as follows:

Let Yi, i = 1, 2 be integer-valued discrete random variables whose joint distribution is H,

with marginal CDFs Fi, PMFs fi, i = 1, 2 and copula C. Then the population version of

Kendall’s tau for Y1 and Y2 is given by

τ(Y1, Y2) =
∞∑

y1=0

∞∑
y2=0

h(y1, y2){4C(F1(y1−1), F2(y2−1))−h(y1, y2)}+
∞∑

y1=0

f1(y1)
2+

∞∑
y2=0

f2(y1)
2−1

(3.29)

where h(y1, y2) is the joint PMF as given previously. It is important to notice the measure

of correlation is dependent on the magnitude of each of the marginal distributions. This is

a general result rather than something that can be remedied by changing the measure of

correlation [115]. In the case when each of the marginals is Bernoulli, τ also can be derived

from the population definition

τ(Y1, Y2) = P[(Y11 − Y12)(Y21 − Y22) > 0]− P[(Y11 − Y12)(Y21 − Y22) < 0]

= 2{P[Y1 = 0, Y2 = 0]P[Y1 = 1, Y2 = 1]− P[Y1 = 1, Y2 = 0]P[Y1 = 0, Y2 = 1]}

= 2{h(0, 0)h(1, 1)− h(0, 1)h(1, 0)}

= 2{r(1− π̄1 − π̄2 + r)− (π̄1 − r)(π̄2 − r)}

= 2{r − π̄1r − π̄2r + r2 − π̄1π̄2 + π̄1r + π̄2r − r2}

= 2{r − π̄1π̄2}

(3.30)
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where r = P[Y1 = 0, Y2 = 0] = h(0, 0). The two formulas can be shown to be equivalent for

bivariate Bernoulli data. Kendall’s τb accounts for ties (Equation 3.2):

τb =
r − π̄1π̄2√

π̄1(1− π̄1)π̄2(1− π̄2)
(3.31)

Different copula models will have different ranges for possible values of τb. The parameter

range is restricted as part of the copula definition so that the Frechet-Hoeffding bounds

hold for all values of (u1, u2) ∈ [0, 1]2. Using the extreme parameter values for a given

copula gives maximum and minimum values of r as upper and lower limits that the copula

is capable of measuring at, given two probabilities of p and q. These are then converted into

the corresponding measure of τb using Equation 3.31.

The bounds of Kendall’s tau (τb) for the FGM and Gaussian copulas are plotted in Figures

3.1 and 3.2 by substituting the parameter extremes for a given copula into the formula for

Kendall’s τb. It is apparent that the FGM has a very limited range [120] unable to measure

stronger correlation.
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Figure 3.1: The range of Kendall’s tau b for the FGM bivariate copula. Contours are lines
of equal correlation, outer square has τb = 0 with increments of 0.05 moving to centre with
maximum and minimum values τb = 0.25 and τb = −0.25 at p = q = 0.5
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Figure 3.2: The range of Kendall’s tau b for the Gaussian bivariate copula. Contours are
lines of equal correlation, outer square has τb = 0 with increments of 0.1 moving to centre
with maximum and minimum values of τb = 1 and τb = −1 at p = q and p = (1 − q)
respectively

3.4 Copulas for dose finding

3.4.1 Decision functions

The choice of dose to allocate a patient at each stage of a dose finding trial using a Bayesian

approach depends upon maximising the expected utility (Equation 2.5). Many designs will

additionally sub-set the decision space using admissibility rules (Equations 2.8 and 2.9). In

the case of EffTox , as in the motivating example (Section 2.5), both of the components

of the decision process (admissibility rules and desirability contours) depend only upon the

probabilities πE and πT . Linking the more general copula notation from the previous section

π1 = πE and π2 = πT and using Table 3.1,

πE = P (YE = 1, YT = 0) + P (YE = 1, YT = 1) (3.32)

= π̄T − C(π̄E , π̄T ) + 1− π̄E − π̄T + C(π̄E , π̄T )

= 1− π̄E

= πE

The calculation of the marginal parameter πE does not depend on the copula. A similar

result can be shown for toxicity. When calculating the expectation of the decision function
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the correlation parameter is redundant as it does not feature in the decision function. As

such, an independent model and a copula model would have identical implied utility distri-

butions at each dose, if the marginal distributions for efficacy and toxicity were the same.

This statement is true for any copula function. Any impact upon the operating character-

istics utilising a decision function composed of the marginal probabilities will be down to

any differences in deriving the marginal posteriors from the same data. A simulation study

is conducted in the next section to quantify the effect of a copula model upon marginal

probabilities to explain any differences in operating characteristics.

The EffTox utility design [82, 78] introduced in the previous chapter maximises the expecta-

tion of individual patient level outcomes given in Equation 2.28 (and again below) to make

decisions.

E(u(Y )) =

∫
θ

1∑
a=1

1∑
b=1

K(a, b)π(a, b) (3.33)

where K(a, b) were constants to be specified and π(a, b) = P (YE = a, YT = b). Assuming

the use of the FGM copula as specified in EffTox, and standardising with K(0, 1) = 0 and

K(1, 0) = 1, as the best and worst of the four possible outcomes, the equation can be

rewritten as a function of πE , πT and c:

E(u(Y )) =

∫
θ
K(1, 1)πE +K(0, 0)(1−πT )+ (1−K(0, 0)−K(1, 1))(πE(1−πT )− c) (3.34)

where c = πE(1 − πE)πT (1 − πT )θ. This includes the parameter for correlation, θ. From

the equation above specifying K(0, 0) + K(1, 1) = 1 would make the expectation of the

utility function independent of the correlation component, c. If an independent model was

specified with the decision function it is possible to plot the contours in two dimensions,

Figure 3.3. The correlation component would add a further dimension to the plot. A design

with K(1, 1) = 0.5 and K(0, 0) = 0.3 has been stated as suitable in many settings [78]. The

differences in the expected utility function are plotted for extreme values of θ with these

values of the utility decision function in Figure 3.3. The correlation component for the FGM

copula is only capable of having a small impact on the utility function. This partly because

the extreme values of θ correspond with small values of Kendall’s tau for the FGM copula

(Figure 3.1). As such when specifying an FGM copula with the EffTox utility design, the

marginal probabilities of πE and πT will tend to dominate the correlation component in
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decision making. Small changes in the specifying utility constants will have a greater effect

on the decision making process in contrast to specifying the FGM copula or an independent

model. The correlation component in Figure 3.3 gives the extreme of possible values. The

conclusion here is that the correlation component as specified is going to make minimal

impact upon decision making.
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Figure 3.3: EffTox patient utility design [82, 78] utility contours with decision parameters
K(1, 1) = 0.5 and K(0, 0) = 0.3 fit with a FGM copula. Black curve is the utility for an
independent model (θ = 0), green curve when θ = 1 the maximum positive correlation
possible in the model and purple curve when θ = −1, the minimum negative correlation
possible in the model

3.4.2 Correlation

The magnitude of correlation for two binary variables is dependent upon the marginal

distributions (Equation 3.30). In dose finding little is known about the marginals prior

to the trial beyond what is informed by the data collected in the trial. With the smaller

samples sizes used in dose finding, imprecise posterior distributions for the marginals will

give further imprecision for the correlation parameter. This suggests that the precision of

correlation estimates will be limited in dose finding where the sample size is small. To get an

idea of this, the simulation also seeks to quantify the variation in calculating the posterior of

the correlation component. Given that the parameter in the copula has no meaning outside

of the copula this is expressed in terms of Kendall’s τb.

EffTox specifies a reparameterised version of the FGM copula parameter as in Equation
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3.24, where θ = eϕ−1
eϕ+1

. This is done to allow the specification of a standard normal prior on

ϕ. The reparameterisation and prior are mildly informative for independence when using

ϕ ∼ N(0, 1) as is suggested for the method (Figure 3.4). The CSS paper and the simulation

study in this chapter use an uninformative uniform prior over the range of θ.

−1.0 −0.5 0.0 0.5 1.0
 θ

D
en

si
ty

Figure 3.4: Implied prior for θ specified in EffTox method where ϕ ∼ N(0, 1) and θ =
(eϕ − 1)/(eϕ + 1). Where θ is the parameter specified in the FGM copula (Equation 3.13)/
Priors used in the CSS and this chapter follow a uniform distribution

3.4.2.1 Exchangeability

An independent model and a copula model use different levels of information from the data.

For a copula model, efficacy and toxicity pairs from patients treated at a given dose level are

exchangeable. For example a change of ordering from the three patients outcomes treated

at the same dose

(
(Y1E , Y1T ), (Y2E , Y2T ), (Y3E , Y3T )

)
and

(
(Y3E , Y3T ), (Y1E , Y1T ), (Y2E , Y2T )

)
(3.35)

will give identical posterior distributions. The independent model allows the the efficacy and

toxicity responses to also be exchangeable. To extend the previous example any ordering of

the patient outcomes (
(Y2E , Y1T ), (Y1E , Y3T ), (Y3E , Y2T )

)
(3.36)

will give the same posterior distribution in the case of independence.
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Multiple realisations from a Bernoulli distribution can equivalently be fit as a Binomial

distribution with sufficient statistics for patients treated at a particular dose are
∑
YE and∑

YT . A sufficient statistic for the copula model needs to be considered jointly at each dose,

i.e
(∑∑

YE = a, YT = b
)
for a = 0, 1 and b = 0, 1 with one of the four possibilities derivable

from the other three. In essence, for the independent model two binomial likelihoods are

specified for a particular dose while for the copula model a four parameter multinomial

likelihood is needed with the individual probabilities coming from the copula. For example,

consider data from 6 patients treated at a dose, where

Y =
(
(0, 0), (1, 1), (0, 1), (1, 0), (0, 0), (0, 0)

)
. (3.37)

The likelihood is proportional to

π
∑

YE

E (1− πE)
n−

∑
YEπ

∑
YT

T (1− πT )
n−

∑
YT = π3E(1− πE)

3π2T (1− πT )
4, (3.38)

with an independent model, and

π
∑∑

YE=0,YT=0
00 π

∑∑
YE=1,YT=1

11 π
∑∑

YE=1,YT=0
10 π

∑∑
YE=0,YT=0

01 = π300π11π10π01, (3.39)

with a copula model. The difference is a key point in reducing the computational burden

of large simulation studies in Chapter 5. The purpose of highlighting the differences here

is that the copula model uses additional information from the data in comparison to the

independent model. This constitutes counts relating to the number of ties, discordant and

concordant pairs in order to estimate correlation.

3.4.2.2 The range for copula models

In the section earlier it was shown that different copulas will give slightly different correlation

structures across doses. The major difference in the FGM and the Gaussian copula selected

however is in the range of possible values for Kendall’s tau. The FGM copula has a limited

range in contrast to the Gaussian copula. This would make the FGM model suitable to

model weak correlation only. Uniform priors over the parameter ranges have been selected

in the simulation in the next section. The transformed prior distribution for τb is over a

greater range for the Gaussian copula due to different ranges of Kendall’s tau. For example,
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if we were to fix πE = 0.5 and πT = 0.5 then the prior for τb is uniform over (−0.25, 0.25)

and (−1, 1) for the FGM and Gaussian copulas respectively.

3.5 Simulation study

To inspect the properties of copula models with binary data a simulation study was con-

ducted. The main aim of the simulation study was to investigate the effect on posterior

marginal distributions for efficacy and toxicity when fitting a copula model. The control

for this question is a simpler independent model. It is possible that by correctly modelling

correlation the variance of the marginal distributions is reduced. It is also possible that the

copula would constitute a less parsimonious model. If there is little or no difference between

marginal distributions when fit to the same data this would suggest that the copula will not

impact upon decisions. This is because in dose finding trials many decision models depend

only upon the marginal distributions for the probability of efficacy and toxicity. Given that

a copula function separates marginal distributions and correlation, the effect on marginal

distributions is expected to be negligible.

A secondary aim is to see the effect of fitting different copula models and to check whether the

model can identify correlation as intended, and to quantify this. Little is likely to be known

about the correlation prior to the start of the trial. The prior therefore is uninformative

constituting the full range of possible values. Each value will correspond with a different

measure of Kendall’s τb with the measure at a particular dose depending upon the magnitude

of marginal distributions. With small samples it is possible that little may be learnt about

the correlation given the dependence on the marginal distributions; the simulation study

will investigate this.

3.5.1 Single dose simulation

Multiple doses are evaluated in dose finding trials where marginal distributions can be

estimated using logistic regression and dependence induced through a copula. The aim of the

simulation study is to understand the effect between the marginals and the added correlation

structure. To achieve this aim, the logistic regression component can be simplified to give

greater focus on the copula component. This is achieved by looking only at a single dose.

A simulation study was conducted on 20 patients. The sample size was chosen as an upper
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estimate of the number of patients that would be treated at a single dose in a dose finding

trial, similar to the motivating example (Section 2.5). Marginal parameters πE and πT

represent the probability of any patient having an efficacy and a toxicity event respectively.

Both parameters are assumed to have uninformative uniform priors. The simulation study

will compare copula models to an independent model. The posterior distributions for the

independent model are conjugate beta distributions i.e πE ∼ Beta(1 + xe, 1 + 20− xe) and

πT ∼ Beta(1+ xt, 1+ 20− xt) where xe and xt are the total number of efficacy and toxicity

events respectively.

Two copula models are fitted, the FGM copula given in Equation 3.13 and a Gaussian

copula given in Equation 3.15. The copula parameter, θ ∈ [−1, 1], has a uniform prior

distribution, θ ∼ Uniform(−1, 1) for both copulas. The simulation study evaluates τb as a

measure of correlation; the implied prior distribution for both copulas is plotted in Figure

3.5. The increased variance for the Gaussian copula is down to its structure as previously

described. The posterior distributions for the copula models have no known closed form

and are estimated using Markov Chain Monte-Carlo integration using Stan software [121].

Given the reduced complexity of a single dose it is possible to look at this via an exact

method. This involves assessing every possible combination of the data. Given the ordering

of patient responses will give the same posterior distributions, this reduces the number

of possible combinations. This is because different orderings all give the same sufficient

statistics. There are 1771 ways of choosing 20 patients from the possible four patient

responses. The number of possible different data for the independent model is 441.

3.5.1.1 Single example

A reduced dataset is initially chosen to understand the aims of the simulation study. Let

xe = 14 and xt = 6, this corresponds with a sample estimate of π̂E = 0.7 and π̂T = 0.3

taken from scenario 1 dose level 3 of the CSS, which is reproduced in the Appendix A.1.1.

There are seven possible combinations of data that retain xe = 14 and xt = 6, these

correspond with the seven possible number of patients with both an efficacy and a toxicity

event. The number of concordant event pairs or ties ranges between 0 and 6. In the case

of the independent model given the exchangeability of individual patients, the posterior

distribution is the same for any number of ties when xe = 14 and xt = 6. Summary
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Figure 3.5: Implied prior for τb specified in the simulation study for each of the copula
models. The parameter depends upon the uniform distributions specified for πE , πT and
a uniform distribution over the parameter range in the model θ. Differences are down to
limits that the copula model imposes, see Section 3.3.3.1

statistics for the posterior distributions for πE , πT and τb from the three models are given

in Table 3.2.

Fitting a copula model has very little impact upon the marginal distributions with summary

statistics being within 1 percentage point of the independent model for both copulas at all

possible combinations of data. Efficacy and toxicity parameters medians lie in between the

prior median of 0.5 and data estimates. The upper and lower range for the FGM copula

limits its ability to estimate the correlation (Table 3.2). When the data suggest a stronger

correlation the FGM estimates the correlation close to its limit (Figure 3.1). The FGM

copula does appear to estimate the direction of correlation but makes little distinction

when the correlation is stronger in the data. For the FGM copula when the number of

ties is 1 or fewer τb = 0 is excluded from the 90% credible interval, in all other instances

τb = 0 is included. The Gaussian copula is able to model stronger correlation with many

of the credible intervals excluding τb = 0. Even if the Gaussian copula is able to suggest

the direction of correlation the credible interval is relatively wide. When there is little

correlation as measured by the data τb the FGM copula has a narrower CI; this is due to

the effect of the prior which is concentrated around independence (Figure 3.5).

The chance of the ties occurring given xe = 14 and xt = 6 is worth considering to place
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Table 3.2: Posterior distribution summaries for all possible combinations of data from a
single dose with 14 efficacy events and 6 toxicity events. Ties refers to the number of
patients with both an efficacy and a toxicity event. The independent model has same fit
independent of the number of ties. Data τb is the sample estimate of τb. Credible intervals
(CI) are equal-tailed intervals

Model fit - data Median Median Median Data
πE (90% CI) πT (90% CI) τb (90% CI) τb

Independent 0.69 (0.51, 0.83) 0.31 (0.17, 0.49)

FGM - Ties=0 0.68 (0.50, 0.83) 0.32 (0.17, 0.50) -0.16 (-0.23, -0.04) -1.00
FGM - Ties=1 0.68 (0.51, 0.83) 0.32 (0.17, 0.50) -0.15 (-0.22, -0.00) -0.76
FGM - Ties=2 0.68 (0.51, 0.83) 0.32 (0.17, 0.49) -0.13 (-0.22, 0.05) -0.52
FGM - Ties=3 0.69 (0.51, 0.83) 0.31 (0.17, 0.49) -0.09 (-0.21, 0.12) -0.29
FGM - Ties=4 0.69 (0.51, 0.83) 0.31 (0.17, 0.49) -0.02 (-0.19, 0.17) -0.05
FGM - Ties=5 0.69 (0.51, 0.83) 0.31 (0.17, 0.49) 0.06 (-0.15, 0.20) 0.19
FGM - Ties=6 0.69 (0.52, 0.84) 0.31 (0.17, 0.48) 0.12 (-0.09, 0.21) 0.43

Gaus - Ties=0 0.69 (0.51, 0.83) 0.31 (0.17, 0.49) -0.76 (-0.92, -0.49) -1.00
Gaus - Ties=1 0.68 (0.51, 0.83) 0.32 (0.17, 0.49) -0.58 (-0.80, -0.27) -0.76
Gaus - Ties=2 0.68 (0.51, 0.83) 0.32 (0.17, 0.49) -0.40 (-0.67, -0.08) -0.52
Gaus - Ties=3 0.68 (0.51, 0.83) 0.32 (0.17, 0.49) -0.22 (-0.52, 0.09) -0.29
Gaus - Ties=4 0.68 (0.51, 0.83) 0.32 (0.17, 0.49) -0.04 (-0.36, 0.25) -0.05
Gaus - Ties=5 0.69 (0.51, 0.83) 0.31 (0.17, 0.48) 0.14 (-0.17, 0.39) 0.19
Gaus - Ties=6 0.70 (0.52, 0.84) 0.30 (0.16, 0.47) 0.33 (0.08, 0.53) 0.43

these results in context. If the true underlying data mechanism had πE = 0.7, πT = 0.3 and

θ = 0.8, for the FGM copula or τb = 0.168 the chance of seeing the ties = {6, 5, 4, 3, 2, 1, 0}

would equal {0.27, 0.45, 0.23, 0.05, 0.00, 0.00, 0.00} to 2 d.p., while if the data generating

mechanism was independent this would be {0.08, 0.31, 0.39, 0.19, 0.04, 0.00, 0.00}.

3.5.1.2 Effect on marginal distributions

The single dose simulation study is now considered for all possible values of xe, xt and

number of ties. The difference in means between the independent and the copula models for

the probability of efficacy is is given in Figure 3.6. A negative value would constitute a larger

mean for the independent model. The second column of the plot gives the ratio of standard

deviations of the posterior distributions between the copula models and an independent

model fit to the same data. A value greater than 1 occurs when the independent model

has a smaller standard deviation. The equivalent plots from each of the copula models for

the probability of toxicity are given in Figure A.1.1. There is only very minor effect on the

marginal distributions by fitting a copula model as measured by the mean in all possible

outcomes of data.
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Figure 3.6: Difference in efficacy marginal distributions for all possible combination of data
for 20 patients recruited at a single dose between copula models and independent models.
First row of plots is from the FGM copula model and the second row from the Gaussian
Copula. First column is the difference in means between the Copula and independent
models. Second column in the ratio of standard deviations between copula model and
independent model fit to the same data.

There is very strong similarity in the ratio of standard deviations. A small number of data

sets result in a ratio of the standard deviation in excess of 1.05 for the Gaussian copula. This

would suggest that the standard deviation for the copula model is larger than an independent

model. An inspection of these data-points, seem to suggest this is when the correlation in the

data is large (|τb| > 0.68) and when both of the mean marginal probabilities are estimated

to be large or small i.e in the range [0, 0.15] or [0.85, 1]. Overall, the mean and the ratio of

standard deviations are very similar.

This section has so far evaluated every possible combination of data and summarised. This

will include a lot of data that is highly unlikely in a particular setting. Suppose if the true

data generating mechanism is now defined by πE = 0.7, πT = 0.3 and θ = 0.8 for the
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FGM copula or τb = 0.168 to correspond with scenario 1 of the CSS. The data generating

process could also be defined with respect to a Gaussian Copula where τb = 0.168 (See

Table 3.1). The plots can be re-plotted with the density now proportional to the chance of

any particular data set occurring under the true data generating mechanism. The efficacy

probabilities and toxicity probabilities are plotted in Figures 3.7 and A.1.2 for efficacy and

toxicity respectively. It is interesting that the skew on the means is different between the

two copula models and the skew is in the opposite direction between toxicity and efficacy.

A plot when the data generating process is independent is shown in Figures 3.8 and A.1.3

for efficacy and toxicity respectively. The Gaussian copula still has a small difference in the

model fit while the FGM copula is very similar with a mean difference close to 0 and the

ratio of standard deviations at 1.

Overall for this example the simulation study demonstrates that with small numbers of

patients the copula model does not make any meaningful difference to the marginal distri-

butions. The small effect on the marginal distributions for the FGM copula is smaller than

the normal distribution. A possible concern of the conclusion is that extending the marginal

distributions to account for the covariate of dose may have some effect. A small example

from the CSS is recreated and simulated in Appendix A to check for any evidence for this.

The results are consistent with the single dose simulation with the magnitude of difference

between copula and independent models very similar.

3.5.2 Correlation

There are two aims of the simulation study relating to correlation, these are to see whether

the copula model is capable of capturing the correlation structure and to what extent. The

small example with xe = 14 and xt = 6 would suggest that copula models can at least

capture the direction of the correlation. Figure 3.9 is a scatter plot comparing an estimate

of the correlation in the data against the mean of the posterior distribution from that data

from the two copula models. The FGM copula suggests a non-linear relationship unlike

the Gaussian Copula. The relationship is caused by the limited range of the copula, where

correlation as estimated by the data is beyond the limit imposed by the copula (Figure 3.1).

As the correlation in the data increases beyond the copula limit, the copula estimates the

correlation at its limit, to give what appears to be multiple small vertical asymptotes. The

Gaussian copula is able to estimate the stronger correlation. The Gaussian copula has a
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Figure 3.7: Difference in efficacy marginal distributions of data for 20 patients recruited
at a single dose between copula models and independent models. Data is generated from
a dose with πE = 0.7, πT = 0.3 and τb = 0.168. First row of plots is from the FGM
copula model and the second row from the Gaussian Copula. First column is the difference
in means between the Copula and independent models. Second column in the ratio of
standard deviations between copula model and independent model fit to the same data.

mean estimate nearer to zero in all instances in contrast to the data estimate. This is down

to the effect of the prior which is uniform and centred around zero.

The range of credible intervals can be used to understand how accurate the estimation of

correlation can be for a given model. Ninety percent equal tailed credible intervals are

added to Figure 3.9 in Figure 3.10. For the FGM copula, in general it is only when the

data |τb| > 0.5 is τ = 0 excluded from the credible interval. The range of the 90% credible

interval for the Gaussian copula is approximately 0.5 with |τb| > 0.3 generally excluding

τb = 0. This demonstrates that Gaussian copula model can identify correlation within the

data although credible intervals for its estimation are quite wide.
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Figure 3.8: Difference in efficacy marginal distributions of data for 20 patients recruited at a
single dose between copula models and independent models. Data is generated from a dose
with πE = 0.7, πT = 0.3 and τb = 0 or an independent data generating process. First row of
plots is from the FGM copula model and the second row from the Gaussian Copula. First
column is the difference in means between the Copula and independent models. Second
column in the ratio of standard deviations between copula model and independent model
fit to the same data.

To place this into context an example with a specified data generating process is needed.

Using the example from previous and defining the data generating mechanism to πE = 0.7,

πT = 0.3 and τb = 0.168 (or θ = 0.8 using an FGM copula). The probability of the credible

interval excluding 0 is 0.13% and 16.54% for the FGM and Gaussian copulas respectively.

When the data generating mechanism is independent with θ = 0 this becomes 0.07% and

8.09% chance. For a data generating mechanism following the Gaussian copula with πE =

0.7 and πT = 0.3, θ > 0.69 or τb > 0.36 is needed to give at least a 50% chance of the

credible interval excluding independence.

In summary there seems to be little merit in fitting the FGM copula to a limited data set
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Figure 3.9: Correlation plot between the mean of the posterior distribution for τb and the
estimate of τb from the data. Plotted for all values from the FGM copula and Gaussian
copula

to gain insight into the correlation. When there is strong correlation in the data the copula

doesn’t account for it very well, when there is little correlation credible intervals remain

quite wide relative to the prior. The small sample size isn’t sufficient to provide insight

over the FGM copulas limited range. The Gaussian copula provides better insight into the

correlation and is able to suggest stronger correlation when it is a feature. The credible

intervals are still quite wide and even for moderate correlation it is not able to provide good

insight. If the correlation is present there is still a good chance it will not appear in the

data.

3.6 Discussion

This chapter has drawn together copula theory for binary outcomes and applied it to the

setting of dose finding. Previous work in the CSS provided empirical evidence in a limited

setting that the fitting of a copula model doesn’t seem to make a difference to operating

characteristics in dose finding. There are a number of limitations to wider applicability and

explanations as to why the results occur in the CSS. This chapter explains the findings of

the CSS and adds a number of novel conclusions to the dose finding literature as follows:

1. Any study looking at correlation needs a consistent correlation measure in order to

compare different models. Kendal’s Tau has been suggested as a suitable measure.
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Figure 3.10: Correlation plot between the mean of the posterior distribution for τb and the
estimate of τb from the data. Plotted for all values from the FGM copula and Gaussian
copula. 90% equal tailed credible intervals are displayed. Light blue lines represent when
the credible interval excludes τb = 0, independence. Dark blue lines are when the credible
intervals include τb = 0, independence.

The interpretation of the correlation parameter in a copula function is specific to the

model itself.

2. In dose finding if the decision function doesn’t consider correlation, then a copula

model will have very limited effect on operating characteristics in comparison to an

independent model. As such it is suggested that the independent model is a more

parsimonious model.

3. Different copulas are able to model different levels of correlation as measured by

Kendal’s Tau. The FGM copula that has previously been used in dose finding has

a very limited ability to measure strong correlation. The Gaussian copula is more

suitable to measure stronger correlation.

4. The precision of estimating correlation within a dose finding trial is limited, pre-

dominately due to the dependence on the marginal distributions in estimating any

correlation.

The main advantage and appeal of copula models is the ability to have marginal distri-

butions which have a intuitive meaning and then model correlation separately. The CSS

describes the Braun model as a “copula”. While the model does incorporate a parameter
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to account for correlation between two patient outcomes it isn’t a bivariate function that

can be written in terms of the CDF of random vectors as given in Equation 3.9. The the-

oretical copula literature presented in this chapter doesn’t apply to the Braun model. The

efficacy component of the Braun model is conditional upon toxicity having not occurred. A

correlation measure such as Kendall’s tau is calculable for the model and will be needed to

explore if considering it against other models using correlation.

This chapter has demonstrated that fitting an independent model in favour of a copula model

has very little effect on deciding between doses. This is because marginal distributions

that are used to make these decisions are extremely similar when fitting either models.

A caveat would be if the decision model includes a correlation component then a more

detailed inspection of how this affects the operating characteristics is needed. The EffTox

individual patient utility is one such design. In this chapter the utility function was plotted

for the extreme parameter values from the FGM copula. This was shown to have a very

small effect on the utility function. The specification of the other two decision parameters

has been shown to have a large effect on operating characteristics [78]. The utility plots

from such changes are noticeably different while in the case of maximum and minimum

correlation from the FGM copula they look similar. The correlation component is difficult

to measure with accuracy as such conclusions for the EffTox utility design are similar in

that the correlation component will have only a small effect with the marginal probabilities

dominating the decision making process.

The work in this chapter provides a theoretical understanding as to why correlation is chal-

lenging in limited sample sizes. The parameter in a copula model can only be interpreted

through the specified copula. The use of a standard, such as Kendall’s tau allows com-

parison and evaluation of correlation across different models. The metric was chosen as

it corresponded with much of the literature around binary copulas. Pearson’s correlation

coefficient is a similar measure that could be used. The correlation component appears to

be estimated primarily through the number of ties in relation to what is expected from an

independent model. Estimation of correlation is dependent upon the marginal distributions.

These factors combine to yield a wide credible interval for estimating the correlation compo-

nent. The model does however correctly identify correlation, as intended. The Gaussian and

FGM copula explored in this chapter have the same parameter range but measure different
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amounts of correlation. The FGM copula has a limited range for correlation in contrast to

a different copula such as the Gaussian copula. The Gaussian copula is able to measure

stronger correlation.

There are very small differences between posterior distributions from independent and the

copula models. The term “dose ambivalence” has been introduced in the setting of dose

finding when the expected utility between doses is very similar [41]. In a situation of

dose ambivalence the error in model fitting from the same data could determine the dose

recommendation. Similarly, in the setting of using a copula or not it is possible that small

differences in posterior distributions could lead to a number of different decisions. In such

instances there isn’t a correct or incorrect decision; very minor differences in the specification

of the utility function or priors may also similarly lead to different decisions. In the context

of the the main objective of the study different factors such as the specification utility

function or the admissibility rules will induce a much larger effect on the performance of

the design.

Alternative approaches that allow modelling on the marginal scale such as a bivariate Probit

model have been applied in the setting of dose finding [98]. The correlation in this model

is applied to the link function on the continuous odds scale. The paper did not explore or

contrast the correlation component in the model. A copula approach is a general approach

not limited to two binary outcomes. Archimedean copulas have been applied to the dose

finding setting with categorical toxicity and continuous efficacy [122]. There have been a

number of uses of the structural form of a copula model for use in combination studies [123].

Here the structural form of a copula function allows MTD probabilities of individual drugs to

be combined into a single probability for a single outcome. The role of Copulas in the setting

of outcomes observed over a different time period has also been applied [124]. In theory

correlation plays a more important role in this setting. When there is strong correlation, the

observation of one component of the patient response can be more informative of the other

to allow better decision making. In practice the limited ability of estimating the correlation

as demonstrated in this chapter is likely to still dominate.

The independent model is computationally more efficient. The simulation study looking at a

single dose for 20 patients was effectively instantaneous for the independent model. Whereas

to fit the 1771 combinations took approximately half an hour (1 second per model fit) to
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fit the FGM copula and 2 and a half hours (5 seconds per model fit) to fit the Gaussian

copula due to additional evaluation of a normal integral. When evaluating a large dose

finding simulation study the ability to fit an independent model allows significant savings

in computational time (Appendix A). If the decision model for binary outcomes relies only

upon the marginal posteriors a pragmatic solution would be to apply the independent model

for the purpose of dose finding without significant impact on conclusions. A secondary or

exploratory objective as part of the study could be used to evaluate the correlation. The

remainder of this thesis utilises a more parsimonious independent model to capitalise on the

gains in computational efficiency.
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Chapter 4

Bayesian statistical decision theory

4.1 Introduction

This chapter reviews the methods of Bayesian statistical decision making. This covers

both the theory and the rationale for maximising expected utility in addition to practical

guidance in constructing and eliciting a utility function. The work is in the general setting of

clinical trials although many examples are given in dose finding. The purpose of keeping the

methods separate from the consistent theme of dose finding in this thesis is that the methods

introduced are general and apply to many different settings. Later chapters describing the

application to dose finding use a principled approach that can be used in many different

disciplines. This can give us confidence that when adapting a dose finding trial design into

a more specific individual trial setting it has strong foundations and a consistent method

that can be revised and adapted.

A Bayesian decision theoretic approach to decision making can help to decide upon an action

from a set of possible alternatives when the outcome is uncertain [27]. There are two main

components: a Bayesian model representing the structure of a system and its associated

uncertainty, and a consequence function to measure the merit of taking an action when

the future outcome is known [25]. Specifying the consequence function is the main topic of

this chapter. The problem of efficacy and toxicity dose finding involves making decisions

with two competing factors, namely maximising efficacy while having an acceptable toxicity

profile. Multi attribute decision making builds upon the key concepts that apply to the

simpler single attribute setting. The chapter introduces these key concepts before moving
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onto dealing with the bivariariate setting. Chapter 5 applies the content laid out in this

chapter.

The layout of the chapter is as follows: A preliminary stage of scoping the decision problem is

considered. This is a practical set of questions to ask in a decision analysis in order to refine it

into a mathematical framework. The formal definition of maximising expected consequence

is then restated. Formal mathematical notation of preference is given alongside an example

of the perils of maximising the expected consequence function with an inappropriate scale. A

consistent scale, utility, is then introduced to overcome the difficulties, with accompanying

notation and a method to elicit it from a decision maker. Setting a parametric utility

function is explored for a single attribute in detail by defining attitudes of a decision maker

when faced with an uncertain choice. Two approaches to defining utility when there is more

then one factor are then given.

4.2 Decision scope

A decision analysis can be used whenever a choice is to be made between at least two courses

of possible action. There are a number of qualitative factors that need to be determined

before undertaking a decision analysis. The aim of this is to understand what about the

problem is important and how a decision analysis can help. The broad specification of the

decision problem involves finding provisional answers to a number of general questions that

are later encoded using the language of mathematics [25]. Much of the initial scoping of

the decision problem is similar to the concepts in more general frameworks of creating and

defining clinical trial questions.

4.2.1 Decision terminology

A number of terms are defined in this section that are subsequently used in the rest of

the chapter associated with Bayesian decision analysis. Definitions all overlap with general

terminology used within a clinical trials setting; as such each definition is accompanied with

an example from a phase I dose finding trial. The example is a dose finding trial with binary

efficacy and toxicity endpoints using the EffTox method, as for the motivating example in

Section 2.5. The method models πE and πT , the probability of efficacy and toxicity events at

each dose, modelled through a copula with logistic regression for each marginal distribution
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(Equation 2.23). The decision to choose a dose for the next cohort at each stage is made

with respect to an objective function,

O(πE , πT ) = 1−

((
πE − 1

π∗1,E − 1

)r

+

(
πT
π∗2,T

)r) 1
r

(4.1)

with π∗1,E , π
∗
2,T and r constants pre-specified as described in 2.25.

Definition (action). An action describes one of the possible choices in a decision analysis.

In the example this would be the choice of dose at any stage of the trial. Note that the

language in the decision literature is not entirely consistent and the term, “alternative” is

often used to describe actions.

Definition (state of nature). States of nature are the different possible conditions or

scenarios in the decision analysis that may exist in the future. It represents the various

states or situations that are beyond the control of the decision-maker and are uncertain or

unpredictable.

A probability density function gives the probability of each state of nature. When this is

combined with data as part of a Bayesian model this is referred to as the posterior density

function. In the example the parameters of the probability model all represent states of

nature. The probability model for EffTox is described in 2.23. The prominent framework of

setting a research question in clinical trials is the PICO (population, intervention, control,

and outcomes) framework [125]. Part of the PICO framework is establishing objectives and

outcome measures. The term outcome is typically used to denote a measured variable, for

example a DLT event (yes/no). Endpoints refer to the analysed parameter that will be part

of the clinical trial decision.

Definition (attribute). In a decision analysis an attribute is used in a function to decide

what the optimal action is.

The definition coincides with the use of endpoints in clinical trials to establish whether

the objectives are met. The example is multi-attributed with the chance of experiencing

a toxicity event πT , and an efficacy event πE being the attributes. A level of an attribute

describes the situation when an attribute takes a particular value, for example πE = 0.5. An

attribute will be a subset or derived from the states of nature. The use of the term attribute
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allows us to refer to different components of the states of nature that will be associated with

different objectives of the decision analysis. In the example the states of nature included in

the probability model include parameters for correlation between outcomes as well as the

two attributes.

Definition (consequence). Consequence in decision analysis is a measure of the impact

of enacting one of the actions when the true state of nature takes a particular level.

In this chapter consequence is used to denote something positive with more consequence

preferred to less. A consequence function describes a function that maps all levels of an

attribute to a corresponding measure of consequence. This function is often referred to as an

“objective”, “loss”, “gain”, “value” or “utility” function within the clinical trials literature.

Formal definitions of value and utility, which are both consequence functions, are given

later in this chapter. In this example the consequence function is denoted by the objective

function which gives a numeric value for every possible combination of the attributes πE

and πT .

4.2.2 A unitary decision maker

Definition (Decision Maker (DM)). A single decision maker (DM) is responsible for

the decision analysis. In practice this means there is a single consequence function.

In dose finding all the designs reviewed in Chapter 2 had a unitary DM. This thesis follows a

normative decision theory defined by how a DM’s beliefs should be structured if they were to

follow certain elementary consistent rules which would be expected of a rational individual

[26]. A normative theory is suitable for clinical trials where decisions need to be prescribed

and justified in a trial protocol. The alternative is a descriptive decision theory; that models

how decisions are made in practice. The goal of a clinical study is objectivity and as such

a normative theory is the only sensible choice. The normative approach isn’t however an

objectively “correct” approach dictating to a DM how to act. The interpretation is that a

greater understanding of the problem is developed through a decision analysis allowing the

DM to make an informed choice.

There may however be multiple people that may input and share some of the responsibility

for making a particular decision. In addition to this there may be further experts that may

need consulting and stakeholders who will be impacted by the decision analysis. Aggregating
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multiple opinions into a single set of preferences analytically is desirable in principle but in

practice adds a further level of complexity to the problem, which cannot easily be resolved.

Given there may be a conflict of opinion, who’s opinion is more valid and who makes this

judgement? Arrow’s impossibility theorem in essence demonstrates that it is impossible to

have both a completely democratic and rational decision with a group having any conflict

of opinion [126].

The unitary DM can be thought as a concept whereby preferences are a compromise or

consensus representing the situation written in the trial protocol which encodes the choices

of multiple parties. In a slightly different setting of expert elicitation this has been encoded

and given the term of a rational impartial observer (RIO) [127]. Multiple experts are

gathered to elicit expert opinion, accepting that differences may occur, RIO sits outside of

the group and gives a single impartial judgement accounting for all of the discussion that

has been had. Scoping who the key people and stakeholders are in a decision analysis can

help in making sure that the consequence function meets its objectives. The role of the

statistician is to facilitate the discussion and obtain preferences from experts to encode this

into mathematics in the form of a decision analysis.

Patients are one of the key stake holders in dose finding. A patient may find it difficult to

comprehend the consequences of experiencing a DLT given that such an event has never

been experienced [78]. This would make it difficult for a patient to provide a suitable utility

function. In general however there is a growing acceptance that there may be disagreement

between patient reported outcomes and clinician reported outcomes [128, 129]. A number of

recent designs with a toxicity endpoint only have been proposed whereby a patient reported

outcome is considered in tandem with the clinician reported toxicity [130, 131]. The design

considers two separate attributes, the clinician reported outcomes and a further one based

upon a validated patient questionnaire. The MTD is defined with respect to each of the

endpoints, one patient MTD and one clinician MTD. The decision rule considers both

perspectives as equally valid with the goal of finding a dose that satisfies both viewpoints.

4.2.3 Maximising expected consequence

The decision theoretic approach was stated in Chapter 2 and is repeated here for complete-

ness. The fundamental principle in decision making in essence is to choose the action that
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is most likely to give the DM the greatest reward. This is encoded into mathematics fol-

lowing a Bayesian statistical paradigm as follows. A decision problem can be defined when

a DM needs to make a single action a ∈ A from a set of possible actions. Features that are

unknown about the situation before making the decision are modelled by an unknown state

of nature, θ ∈ Θ. A consequence function c(a, θ) ∈ C specifies the consequence of making

the decision a ∈ A if the future outcome is θ ∈ Θ. Before making the decision an outcome

Y = y may be observed which depends on the unknown state θ. Prior knowledge of θ ∈ Θ

is incorporated via a prior pθ(·) and this is updated through Bayes theorem in light of the

observation(s), to give the posterior distribution

pθ(θ|y) ∝ pY (y|θ)× pθ(θ). (4.2)

The Bayes decision a ∈ A is the decision that maximises the posterior expected consequence:

a(y) = argmax
a

(Eθ[c(a, θ)]). (4.3)

This method is as for the decision theoretic approaches in dose finding as given in Chapter

2, Section 2.3.1.5. Note that if consequence is initially defined so that more consequence is

worse than less then the Bayes decision is one that minimises the posterior expected conse-

quence. For example, the CRM objective function, Equation 2.11, minimises an objective

function. In principle the method is straight forward, but this misses the subtlety of defining

the consequence function and difficulties in establishing the probability model. The rest of

the chapter assumes that a DM has set up the parts of the decision analysis detailed earlier

in the chapter. This includes a set of actions, defined attributes and a probability model.

The specification of the consequence function from attributes is the focus of the rest of the

chapter.

4.3 Value

A core tenant of the theory of decision making is preference. The notation of describing

a DM’s preferences is given in this section. This is used to give a numerical quantity to

represent this preference; this is called a value function. Consider two levels x1 and x2 of an
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attribute from the domain X describing all possible attribute levels. Consider the notation

x1 ≽ x2, (4.4)

which is used when the DM considers x1 to be at least as good as x2. A stronger condition,

x1 ≻ x2 (4.5)

is when a DM strictly prefers x1 to x2. When

{x1 ≽ x2 and x2 ≽ x1} ⇒ x1 ∼ x2, (4.6)

representing that a DM is indifferent between x1 and x2.

Transitivity is the property that with a third level x3, in the domain X,

{x1 ≽ x2 and x2 ≽ x3} ⇒ x1 ≽ x3. (4.7)

The interpretation is that a DM has a fixed set of preferences that that do not change.

The property of completeness is when all levels within the domain of alternatives can be

expressed using these relationships (also called comparable). The corollary of this is that a

DM is decisive, in that given any pair of alternatives a preference (or indifference) can be

stated.

If the conditions of completeness and transitivity hold for a DM then a real valued value

function v(·) can be defined that represents preferences [27]:

∀x1, x2 ∈ X, v(x1) ≥ v(x2) ⇔ x1 ≽ x2. (4.8)

A value function is not unique; any monotonic transformation will convey the same pref-

erence structure. In many settings the identity function of an attribute will constitute a

value function. For example in the domain of clinical trials in oncology, when assessing only

one attribute, more survival is invariably preferred to less, and therefore the proportion of

patients alive at 1 year would constitute a value function. An attribute may have a nat-

ural preference structure but be non-monotonic. For example in a trial measuring blood
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insulin levels, there is a peak of the value function within an acceptable range. Defining

a value function between attribute levels above and below this range would need careful

consideration.

The value function is a numerical representation of the ranking of preference and does

not infer a measure relating to the idea of strength of preference. Consider three levels

of an attribute of survival at one year, t1 = 100%, t2 = 80% and t3 = 50%. In the

previous paragraph it was stated that the raw attribute or identity function for the attribute

constituted a value function as v(t1) ≥ v(t2) ≥ v(t3) to describe the preference t1 ≽ t2 ≽ t3.

It is not possible to infer anything from the magnitude of the differences however. It may

be that v(t1) − v(t2) < v(t2) − v(t1) but it isn’t necessarily true that t1 is preferred to t2

less than t2 is preferred to t3.

The value function is on an ordinal scale; as calculating averages of ordinal variables is

meaningless, calculating the expectation of a value function has no intrinsic meaning. Mea-

suring the strength of preference so that a value function can be defined on a ratio scale

is not an idea that is easily articulated or elicited [27]. Any value function that is able to

measure strength of preference would be defined in the context of certainty. In the next

subsection the classic example of the St Petersburg paradox is given to demonstrate that a

DMs preferences also change when faced with an uncertain situation.

4.3.1 The role of uncertainty

Maximising expected value in order to make decisions in the presence of uncertainty can lead

to poor decisions. This is made famous by the so called the St Peterburg paradox which was

first described in the 18th century [132]. The example uses the attribute of money, where we

note that a rational DM would prefer more money to less. Maximising the expected value

of different actions in order to make decisions would intuitively seem rational and sensible

in this case.

The paradox describes a game where a fair coin is flipped an indefinite number of times until

a head appears. The prize is then $2n where n is the number of times the coin is flipped.

The decision to be made is the maximum price that a DM should pay to enter the game.

The expected value of the game is infinite, calculated by summing each possible reward

multiplied by the chance of it happening. The paradox is that according to a strategy of
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maximising expected value a DM should pay any amount of money to enter the game even

though it is almost certain that they will win a small amount.

There are a number of detailed explanations and technical details surrounding the history

and development of St Peterburg paradox and accompanying development of utility theory

that are beyond the scope of this thesis [133]. Maximising expected value only makes sense

if using an appropriate scale, in the paradox the identity or raw attribute is inappropriate.

Early solutions to the St Peterburg paradox formulated the initial stake in terms of a DM’s

overall net worth [132]. This accounted for the idea that many DM’s would enter the game

for a small stake but would not if the stake was high. Any scale that is chosen to measure

strength of preference should account for the fact that a DM’s preferences may change

when faced with an uncertain outcome. Utility is defined in the next section assuming

preferences for uncertain situations from the outset. This also allows us to convey a strength

of preference or a ratio scale for consequence.

4.4 Utility

Von Neumann–Morgenstern utility theory [134] (VNM) gives four axioms of rational be-

haviour in the presence of uncertain outcomes. If these are accepted, the existence of a

utility function follows. The theory accounts for uncertain outcomes.

The theory is set up using probability density functions for a continuous attribute x. The

term lottery is used in this thesis for a finite subset of an attribute with all definitions still

holding for the subset. Let x = x1, x2, . . . , xm be a set of m possible levels of a single

attribute with xi ∈ X for i = 1, . . . ,m, where X denotes the domain of all possible values

of x. A vector of probabilities, d = d1, d2, . . . , dm, where
∑
di = 1, represents the chance

of x occurring. A degenerate lottery is used when m = 1 i.e, a single attribute level with

certainty.

Let p, q and r represent three possible probability distributions. The four axioms of Von

Neumann–Morgenstern utility state that a DM should be able to represent preferences over

the distributions as follows:

Axiom 1 (Completeness) - A DM can express any distribution p, q in the form p ≽ q or

q ≽ p.
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The DM is decisive and able to give a preference for any distribution.

Example: Suppose a DM is choosing between two treatments, p and q, where p has a 90%

survival at one year with probability 0.5 and a 70% survival at one year with probability

0.5, and q has an 80% survival at one year with certainty. The DM should be able to state

either p ≽ q or q ≽ p based on their preferences

Axiom 2 (Transitivity) - If p ≽ q and q ≽ r then p ≽ r.

The DM is consistent in stating preferences between distributions.

Example: Following the previous example, If a DM prefers p (90% survival at one year with

probability 0.5 and 70% survival at one year with probability 0.5) over q (80% survival at

one year with certainty), and prefers q over r (80% survival at one year with probability 0.5

and 60% survival at one year with probability 0.5), then the DM should also prefer p over

r.

It is possible to mix probability distributions with a mixing probability α ∈ [0, 1] to form

a new distribution. The notation αp + (1 − α)r represents a distribution mixing p with

probability α and r with probability 1− α. Note that the mixing component must sum to

one to be a further probability distribution.

Axiom 3 (Continuity) - If p ≽ q ≽ r, then there exists a probability α ∈ [0, 1] with

αp+ (1− α)r ∼ q. (4.9)

This axioms states that there is a tipping point between distributions.

Example: Consider a related but different example to above, If a DM prefers a treatment p

(90% chance of survival at one year) over treatment q (80% chance of survival at one year),

and prefers treatment q over treatment r (70% chance of survival), then there should be a

probability α where the DM is indifferent between q and a mix of p and r. For instance,

the DM might be indifferent between treatment q and a mix of p with probability 0.6 and

r with probability 0.4.

Axiom 4 (Independence) - Given a probability β ∈ [0, 1] then

p ≽ q ⇒ βp+ (1− β)r ≽ βq + (1− β)r. (4.10)
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That is, preferences between p and q are independent of the presence (or absence) of other

probability distributions.

Example: Consider a further example, If a DM prefers treatment p (70% chance of survival)

over treatment q (60% chance of survival), then if we introduce another treatment r (30%

chance of survival), the DM should still prefer a mix of p and r with probability β over a

mix of q and r with the same probability β. For instance, if β = 0.5, the DM should prefer

a mix of getting p with probability 0.5 and r with probability 0.5 over a mix of getting q

with probability 0.5 and r with probability 0.5.

The main theory of VNM is that if a DM satisfies the four axioms then there is a function u

that assigns a real value u(x) to each possible value of x such that for any two distributions

p and q,

p ≻ q ⇐⇒ Ep(u(x)) > Eq(u(x)) (4.11)

Note that in Equation 4.11 the expectation relation still holds with some linear transfor-

mations of u. As such a utility function is unique up to a positive linear transformation.

Utilities can be applied over any real number interval but more typically over the interval

[0, 1] (or [0, 100]) with u(x0) = 0 and u(x∗) = 1 where x0 and x∗ are the minimum (least

preferable) and maximum (most preferable) levels an attribute, x can take. In the case of

unbounded continuous attributes a maxima and minima need choosing.

The axioms of VNM allow a DM to make coherent decisions by maximising expected utility.

The rest of this section seeks to find a utility function that satisfies the VNM axioms.

4.4.1 Elicitation

The purpose of this section is to introduce a number of methods in order to elicit a utility

function from a DM. This is achieved by obtaining preferences over a small number of

lotteries. These are used to establish a more general preference structure in order to define

a utility function at all points. As preliminary notation consider a number of levels of

the attribute denoted by xi with xi ∈ X, the domain of all possible attribute levels. The

elicitation assessment methods will consider lotteries with two components in addition to a

mixing component α, with 0 ≤ α ≤ 1. The notation of angle brackets ⟨x1, α, x2⟩, is used

to denote a lottery between x1 and x2 with p(x1) = α and p(x2) = 1 − α. The relation
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is abbreviated to ⟨x1, x2⟩ when denoting an equal lottery with α = 0.5. The assessment

in utility elicitation used in this section will be of a comparison between the lottery and a

certain outcome:

⟨x1, α, x3⟩ R x2 (4.12)

whereR is one of the relations, {≺,∼,≻} to denote the direction of preference or indifference.

An underline is used to denote the object that is being elicited. There are four main methods

defined by which object of the lottery is being elicited.

1. preference comparison: ⟨x1, α, x3⟩ R x2

2. probability equivalence: ⟨x1, α, x3⟩ ∼ x2

3. value equivalence: ⟨x1, α, x3⟩ ∼ x2

4. certainty equivalence: ⟨x1, α, x3⟩ ∼ x2

The latter three methods use axiom 3 of VNM as there exists a value of α that satisfies

the relation. The method for preference comparison is to ask which option is preferred

by the DM. The method for the latter three is to find a suitable value for the elicited

component until the DM is indifferent between the two options. Preference comparisons

will not give a magnitude for the utility; however by proposing a large number of preference

comparisons these can be used in order to limit the utility function to be within quite tight

bounds; the method when used in this manner is described as a discrete choice experiment

[135]. Elicitation involving lotteries are routinely used in economic analysis for health states

[136, 137].

The main determinants of deciding which method to use in a given situation are the ease

of obtaining a utility whilst reducing any error or bias. Any elicitation is subject to bias or

error using appropriate methods and an awareness of the main sources of bias ensures that

a utility function is as accurate as possible. There are a number of factors that are known to

induce measurement error from the behavioural sciences including how the question is asked

[138]. Earlier in the chapter it was stated that the statistician is responsible for conducting

the elicitation to obtain preferences from a DM. A greater awareness of the major sources

of biases ensures that preferences of the DM are as accurate as possible and unintentional

biases from the statistician are not introduced.
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When choosing attribute levels they should be reasonably close together in a space that is

well understood. This is not a strict rule but deviations from this principle increase the

elicitation error [139]. For example, for an attribute representing the probability of efficacy

for a new treatment consider a lottery between perfect efficacy and zero efficacy. Such levels

are rarely encountered in practice and are hypothetical choices which are at the extremes of

the attribute space, likely to yield a biased result. Another bias is the difficulty most people

have in appreciating probabilities that are very small or very large. Assessing lotteries where

α > 0.9 or α < 0.1 is likely to increase the measurement error. Each method could produce

a slightly different bias, relying on one technique alone to elicit a number of relations could

result in a more systematic bias.

The midpoint method is a non-parametric method to ascertain a complete utility function

when the attribute is increasing. Define the maxima and minima as x0 and x∗ of the

attribute range respectively. The midpoint method initially uses the certainty equivalent

method to elicit the point x.50 defined by the lottery

⟨x0, x∗⟩ ∼ x.50. (4.13)

further points are then elicited with certainty equivalents with the range defined by the

previous elicitation

⟨x0, x.50⟩ ∼ x.25 (4.14)

and

⟨x.50, x∗⟩ ∼ x.75. (4.15)

Two steps may be a reasonable approximation to the function or a further four evaluations

(and so on) may be needed until a reasonable approximation to the utility function is

generated [25]. Points on the continuous function can be connected by interpolation to define

the function at all points. For example, consider treatments with percentage of survival at

one year. Minima and maxima are x0 = 0% and x∗ = 100%. A certainty equivalent

was posed to a DM to find where they would be indifferent to receiving a treatment with

certainty or an equal lottery to a treatment with perfect one year survival and zero survival
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at one year. The DM gave 80% for the certainty equivalent,

⟨0%, 100%⟩ ∼ 80%. (4.16)

No further steps in the elicitation were taken. Points are interpolated to define a utility

function over the entire range, which is plotted in Figure 4.1.
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Figure 4.1: Midpoint method of elicitation for an attribute percentage of survival at 1 year.
Minima and maxima of the attribute are x0 = 0% and x∗ = 100%. A certainty equivalent
elicitation, ⟨0%, 100%⟩ ∼ 80% is plotted for one step. Points are interpolated to define a
utility function over the entire range.

The midpoint method is a simple method of defining a utility function. The main issue is

however in the likely quite high elicitation error. The first elicitation is a lottery over the

entire domain space, which is known to not be best practice. Subsequent lotteries all rely

on the initial lottery. As in the earlier example elicitation in Equation 3.24, asking a DM to

weigh up treatments with perfect or zero efficacy is challenging, as they are not encountered

in practice.

An alternative to eliciting a non parametric utility function is to assign a parametric func-

tional form to define a utility function. This is particularly useful for a continuous attribute
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where interpolation is known to be an approximation. Further benefits are that it is easier

to describe a DMs attitude to risk and the use of a function makes it easier to calculate

expected utility. Parameters that define the function can be elicited by using the techniques

of this section as points elicited following the parametric function. How to decide whether

a function form captures the situation is the topic of the next section.

4.5 Parametric utility functions

The purpose of this section is to inspect a number of basic preference structures that in turn

will imply a functional form or suitable shape for the utility function. These are considered

in turn with a number of functional forms considered at the end of the section.

In many applications the raw attribute constitutes a natural ordering or a value function.

Any utility function has the property of also being a value function with a numerical rep-

resentation of preference. The basic structuring can be useful in the first steps in defining

a parametric form for a utility function. Take for example the probability of surviving one

year following diagnosis with multiple myeloma. More survival is invariably preferred to

less. Take two levels of a value function x1 and x2, where x2 > x1. The utility function for

the attribute must also be monotonically increasing so that if

⟨x2 > x1⟩ ⇔ ⟨u(x2) > u(x1)⟩. (4.17)

For a monotonically decreasing attribute

⟨x2 > x1⟩ ⇔ ⟨u(x2) < u(x1)⟩, (4.18)

This initial step greatly reduces the number of possible functions. The next section goes

through structuring a monotonically increasing utility function from a small number of

preferences. A monotonically decreasing function uses the same ideas and concepts but

many of the definitions flip; this is highlighted in the section proceeding.

4.5.0.1 Monotonically increasing utility

The general process is to inspect how a DM’s preferences change when faced with uncer-

tainty. This is described as a DM’s attitude to risk. How a DM’s attitude to risk changes
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at different points in the domain of the attribute will imply different parametric forms for

the utility function. Three attitudes to risk can be defined with respect to certainty equiv-

alents defined in the continuity axiom of VNM utility theory for an attribute x that is

monotonically increasing.

Risk aversion is when a DM prefers the expected consequence of any non degenerate lottery

to that lottery.

Risk neutrality is when a DM is indifferent between the expected consequence of the lottery

and the lottery.

Risk prone is when a DM prefers the lottery to the expectation of the lottery.

Consider the example elicitation for the midpoint method given earlier, where the attribute

was survival at one year,

⟨0%, 100%⟩ ∼ 80%. (4.19)

The expectation of the lottery is 50%. The elicitation describes Risk aversion. If the

certainty equivalent was 50% this would describe risk neutrality. If the certainty equivalent

was less than 50% this would describe risk prone.

It is important to be aware each of the definitions are made with respect to a raw attribute

that has been chosen as part of the decision problem work up. It is possible that a DM may

have a different attitude to risk if a non linear transformation of the attribute is applied. Risk

is a mathematical definition with respect to an attribute and is useful to give a consistent

approach to defining utility. It should not be confused with the everyday usage of the words

that imply an ethical judgement of a DMs preferences.

Different attitudes to risk will imply a different shape for the utility function. This can be

shown graphically in Figure 4.2, where a probability equivalent elicitation,

⟨x0, x∗⟩ ∼ x (4.20)

is shown for a number of scenarios. The maximum, x∗, and minimum. x0 levels of the

attribute are plotted by green dots. The attribute has been standardised for simplicity,

with the lowest level x0 = 0 and the highest level of the attribute x∗ = 1. The expected

value of the equal lottery is 0.5. The definitions above define that the DM is risk neutral
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if the probability equivalent is 0.5 (black dot), risk averse if the equivalent is less than 0.5

(red dot) and risk prone if the equivalent is more than 0.5 (blue dot).
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Figure 4.2: Plot of the mapping of an attribute x (x axis) onto u(x) (y axis) for a monotoni-
cally increasing attribute. Green points represent the simple lottery ⟨x = 0, x = 1⟩ ∼ x with
x the certainty equivalent. When the DM is risk neutral, the certain equivalent is equal to
the expectation of the lottery. Risk aversion is when the certainty equivalent is less than
the expected consequence of the lottery. Risk prone is when the certainty equivalent is more
than 0.5. Each of these relations imply a corresponding shape for the utility. If the DM is
risk averse at all points the shape of the utility must be concave. A risk prone DM has a
convex utility function.

The risk premium of a lottery can be defined as the difference between the expected value

that the lottery takes and the certainty equivalent. By eliciting a small number of certainty

equivalences over the domain of the attribute, it is likely in many settings that the DM

will have a consistent risk premium across the domain of the attribute [110]. If the risk

premium is consistently zero the DM preferences will be described by a linear function. If

consistently positive the DM is consistently risk averse and a concave function will describe

preferences. While if the risk premium is consistently negative (risk prone) a convex function

will describe preferences.

In order to inspect the properties of a parametric form of a utility and link back to a DMs
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preferences it is necessary first to give a further measure of risk aversion. The Arrow-Pratt

measure of absolute risk aversion (APARA) [140, 141], at a point x = b is given by

r(b) =
−u′′(b)
u′(b)

. (4.21)

where u′ and u′′ are the first and second order differentials of the function with respect to

the attribute, x. For a monotonic parametric utility function the sign of r(b) denotes the

attitude to risk, and the magnitude denotes a measure of departure from risk neutrality.

When a DM is risk neutral a DM’s utility function is linear, u(x) = x. The linear function

has a second order differential of u′′(b) = 0 at all points, so APARA will be zero. Note

that the utility is indifferent to linear transformations so u(x) = mx+ c, where m and c are

constants will yield the same result.

The following can be shown for risk aversion and risk seeking [110]:

Risk aversion has positive APARA and gives a concave shape.

Risk prone has negative APARA and gives a convex shape.

Two common utility functions are introduced with a single parameter, a. The first is the

exponential function, which has the property that a DM has a constant APARA at all points.

The second is the power function which has APARA proportional to the raw attribute b or

that br(b) = a. The exponential utility function is defined as:

u(x) =


(1− e−ax)/a a ̸= 0

a a = 0

(4.22)

Note that r(b) = a at all points for the exponential utility function. As such a DM will be

risk neutral when a = 0, risk averse when a > 0 and risk prone when a < 0. The constant

proportional risk aversion utility function or power function is defined as

u(x) =



x a = 0

(x1−a) a < 1, a ̸= 0

ln(x) a = 1

−x−(a−1) a > 1

(4.23)
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Care should be taken with the sign of the raw attribute, x as APARA is now inversely

proportional. The attitude to risk at any point now depends on the sign of the raw attribute

and the sign of constant a. For a positive attribute the attitude to risk at any point has

the same interpretation as the exponential function, but the magnitude now increases with

increasing x.

A number of preliminary elicitations were described at the start of the section that could

be used to get a sense of the attitude to risk and also a non parametric measure, the risk

premium, for a number of lotteries across the domain of the attribute. Inspecting the pattern

of the risk premium with respect to the attribute and comparing to the APARA measure for

a function allows us to obtain an appropriate corresponding function [110]. In the reference

this is quoted as an iterative and heuristic approach rather than strictly quantitative, where

a suitable function is proposed and fitted before consistency checks to see if it fits with

the preliminary elicitations. For example, a positive and constant risk premium across

the attribute domain would suggest that an exponential function is appropriate with the

parameter a > 0.

Parameters associated with a function can be obtained by using a single probability equiv-

alent, a certainty equivalent or value equivalent method and then back substituted to find

the parameter. For example if u(x) = exp(−ax), where a is the constant to be found and

the relation

⟨x1, α, x3⟩ ∼ x2, (4.24)

would be found using a certainty equivalent, then the parameter a is the value that satisfies

the equation

αe−ax1 + (1− α)e−ax3 = e−ax2 . (4.25)

Bias in the elicitation can be reduced by choosing fixed values that minimise the magnitude

between the upper and lower levels in the lottery [25]. If using a probability equivalence

elicitation the fixed values can be chosen so that α isn’t too small (or too large) in order to

minimise any elicitation error. The preferences implied by the utility at other points should

be checked via consistency checks in relation to the preliminary elicitations.

Consider the example elicitation for the midpoint method given earlier, where the attribute

was survival at one year. The certainty equivalent could be made closer to what is en-
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countered in clinical practice. In doing so the elicitation bias is reduced in contrast to the

midpoint method. The following elicitation was obtained:

⟨40%, 60%⟩ ∼ 55%. (4.26)

Assuming that the exponential utility function was appropriate, Equation 4.25 could be

used, where x1 = 40%, x3 = 60%, x2 = 55% and α = 0.5, to find the parameter a of the

utility function. The utility function is defined over the entire domain, further checks via

elicitation beyond x1 = 40% and x3 = 60% should be made to ensure this is a reasonable

approximation.

4.5.0.2 Monotonically decreasing utility

This short section highlights the differences when the attribute is monotonically decreasing.

The definitions of risk previously given still hold in the case of a monotonically decreasing

function; a DM is risk averse (neutral, seeking) when they prefer (indifferent to, do not

prefer) the expected consequence of any non degenerate lottery to that lottery. The utility

function representing these preferences must of course be reflective of this. The shape of the

utility function (concave or convex) now changes so that the definitions of risk hold, Figure

4.3. The measure of risk aversion, APARA also changes. For simplicity define mAPARA as

mr(b) = (−1)r(b), (4.27)

the negation of APARA. When working with a monotonically decreasing attribute substitu-

tion of APARA with mAPARA will ensure that all the definitions for the parametric utility

functions in the previous section still hold.

4.6 Bivariate utility

In this section it is demonstrated that definitions for univariate attributes still hold, with

a number of additional considerations needed for two attributes. The intent is to define

a utility function when there are two attributes. As a preliminary introduction to the

notation and the problem, consider two attributes X and Y , we define a point (x, y), within
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Figure 4.3: Plot of the mapping of an attribute x (x axis) onto u(x) (y axis) for a monotoni-
cally decreasing attribute. Green points represent the simple lottery ⟨x = 0, x = 1⟩ ∼ x with
x the certainty equivalent. When the DM is risk neutral, the certain equivalent is equal to
the expectation of the lottery. Risk aversion is when the certainty equivalent is more than
the expected consequence of the lottery. Risk prone is when the certainty equivalent is less
than 0.5. Each of these relations imply a corresponding shape for the utility. If the DM is
risk averse at all points the shape of the utility must be concave. A risk prone DM has a
convex utility function.

the domain of all possible outcomes X × Y , such that

x0 ≤ x ≤ x∗ and y0 ≤ y ≤ y∗ (4.28)

where x0 and y0 are the minima and x∗ and y∗ the maxima of each domain.

Following the notation in the univariate setting to represent uncertainty, define lotteries, p

and q by a probability distribution between possible outcomes, now defined by points (x, y),

within the consequence space C, now defined over the surface X × Y . The main theory of

VNM utility theory still holds,

p ≻ q ⇐⇒ Ep(u(x, y)) < Eq(u(x, y)), (4.29)
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and a DM will act rationally by maximising expected utility [27]. The bivariate utility

function is defined as u(x, y) from hereon.

It is possible to elicit the utility, u(x, y), at any point using the elicitation methods for a

simple lottery between the most and least preferable points in the consequence space. One

option could be to split the consequence space into a grid, assuming that the utility at all

points within the grid are equal. Specifying a relatively modest number of intervals for each

attribute, such as four would still result in 16 separate evaluations, with further necessity

for consistency checks. Two issues arise: the function isn’t particularly easy to assess in

a manner that reduces elicitation error, and what you end up with is in most cases an

over simplification of the problem [110]. The method doesn’t exploit any features of the

attributes, such as monotonicity, that may be known.

There are two broad approaches introduced in this section to yield a bivariate utility func-

tion. The methods have a similar approach to those proposed in the univariate setting where

basic preferences and attitudes to risk are elucidated to specify a broad form that is then

easily elicited from the DM. The first method tests to see if the joint utility can be given

functional form, f formed from separate utility functions, uX and uY of the two attributes

, i.e.

u(x, y) = f(uX(x), uY (y)). (4.30)

Certain conditions are necessary for this to be the case and imply a specific function. The

method exploits the relative ease of specifying univariate utility functions. The second

approach, which is not as prominent and is included for completeness, maps the two at-

tributes to a single scalar value function which in turn can be transformed into utility using

the methods described previously for a single attribute.

4.6.1 Utility independence

In this section a formal definition of utility independence is given. If utility independence

can be demonstrated then a simple linear relationship is implied between marginal utility

functions [142, 110]. Utility independence can be tested with a small number of elicited

lotteries as given in the previous section. Constants of the utility can also be determined

by elicitation.

93



Chapter 4. Bayesian statistical decision theory 4.6. Bivariate utility

Following Keeney, utility independence requires the inspection of uni-dimensional condi-

tional utility functions. These are defined by fixing one of the attributes and inspecting the

utility function across the other. The conditional utility function of x given y = y1, a point

in the domain of y, is denoted by u(x|y1) and similarly the conditional utility function of

y given x = x1 is denoted by u(y|x1). This can be represented in a diagram, Figure 4.4.

Define four points in the attribute space X × Y by (x1, y1), (x2, y1), (x1, y2) and (x2, y2).

Two conditional utility functions of x on y can be defined as u(x|y1) and u(x|y2) (horizontal

dashed lines in the Figure). Similarly there are two conditional utility functions of y on x,

u(y|x1) and u(y|x2) (vertical dashed lines in the Figure).

(x1,y1)(x1,y1)

(x1,y2)(x1,y2)

(x2,y1)(x2,y1)

(x2,y2)(x2,y2)

y1

y2

x1 x2

X

Y

Figure 4.4: Plot of the joint attribute space X × Y . Four points in the joint outcome space
are plotted, (x1, y1), (x2, y1), (x1, y2) and (x2, y2). Horizontal dashed lines are the domains of
two conditional utility functions u(x|y1) and u(x|y2). Vertical dashed lines are the domains
of the conditional utility functions of y on x.

Considering the utility functions u(x|y1) and u(x|y2), these can considered to be equivalent

if the utility function does not change with y. If this is true for all values of y then X can be

considered utility independent of Y . More formally, any attribute X is utility independent

of another attribute Y , when conditional preferences for lotteries on X given Y do not

depend on the particular level of y. In practice it is likely that marginal conditional utility
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functions won’t have been established at the preliminary stage of a decision analysis. To

establish whether X is utility independent of Y consider the four points and the two utility

functions u(x|y1) and u(x|y2) in Figure 4.4. Consider a certainty equivalent elicitation and

a further preference relation comprising of components of the four points as follows:

⟨(x1, y1), (x2, y1)⟩ ∼ (x′, y1)

⟨(x1, y2), (x2, y2)⟩ R (x′, y2).

(4.31)

This represents the conditional utility functions along the horizontal dashed lines and as-

sessing certainty equivalents between the two points on each line. If the second relationship

can be considered equivalent then this would imply that the conditional utility functions

are equivalent. Establishing this relation over further points and regions of the joint domain

would be convincing that X is utility independent of Y . The certainty equivalents can be

adapted to assess whether Y is utility independent of Y . For example, consider the previ-

ous elicitation in Equation 4.26, for an attribute of survival at one year, described by X,

and a second attribute, the chance of experiencing a severe infection within the same time

period, described as Y . Establishing whether X is utility independent of Y can be achieved

by taking the certainty equivalent relation and establishing whether it is appropriate when

y = 20% and y = 60%.

When X and Y are mutually utility independent we can express the utility function u(x, y)

in a multi-linear (bi-linear) form as follows [142]:

u(x, y) = kXuX(x) + kY uY (y) + kXY uX(x)uY (y) (4.32)

where

1. uX(x) is a conditional utility function on Y normalised by uX(x0) = 0 and ux(x∗) = 1.

2. uY (y) is a conditional utility function on X normalised by uY (y0) = 0 and uy(y∗) = 1.

3. kX = u(x∗, y0).

4. kY = u(x0, y∗).

5. kXY = 1− kX − kY .

If mutual utility independence can be demonstrated this greatly simplifies the problem
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of deriving joint utility functions. The marginals can be found using the methods in the

previous section, leaving only two constants kX and kY to be found. These can be established

with a minimum of two elicitations (value, certainty or probability equivalent) of simple

lotteries and back substituted to find the two constants. Given the clear importance of the

two constants on overall utility it is a number of consistency checks are advised.

The ratio kX : kY can be considered a linear payoff of the two attributes when kXY = 0 ,

i.e how much is an incremental increase in one utility worth on the scale of the other utility.

The parameter kXY makes the interpretation more challenging in general however. Given

the normalising of the conditional utility functions the parameters kX and kY will give the

utility at the point where one attribute is maximised and the other minimised (conditions

3 and 4).

Given that both conditional utility functions are normalised, −1 ≤ kXY ≤ 1. The constant

kXY comprising of the other two constants is referred to as an interaction component be-

tween the two utility functions. The interpretation of kXY > 0 is a positive interaction;

when uX gets larger, the effect of uY on the overall utility gets larger and vice versa. Al-

ternatively positive interaction would imply that both of the attributes need to have high

utility in order to consider the overall utility high. When kXY < 0 this is a negative inter-

action; interpreting a negative interaction in the context of marginal effects is essential to

distinguish between a ceiling effect and a qualitative difference. A ceiling effect indicates

that the combined impact of uX and uY is less than their additive effects due to a natural

limit, while a qualitative difference means that one variable reduces the effect of the other,

fundamentally altering the interaction. When kXY = 0 the utility independence equation

reduces to a simpler additive form.

u(x, y) = kXuX(x) + kY uY (y). (4.33)

This is described as additive utility. In order for this to be true a further condition of

additive independence also needs to hold. Using the four points in Figure 4.4, the following

preference needs to hold

⟨(x1, y1), (x2, y2)⟩ ∼ ⟨(x1, y2), (x2, y1)⟩, (4.34)
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for all values of x = (x1, x2) and y = (y1, y2). This means the overall utility is the sum of

its consistent parts. If mutual utility independence cannot be established it is still possible

that there is utility independence for one attribute. Alternative formulas can be considered

in this case see Keeny and Raiffa [110].

4.6.2 Multivariate value

A multivariate value function maps two attributes to a single scalar (value) which in turn

can be transformed into utility. The first part of the section defines the value function to

demonstrate how this can be used to give joint utility. The second part establishes a method

of indifference curves to obtain a value function.

The univariate definition of a value function given earlier in the chapter simply extends to

the bivariate setting by redefining the two points a = (x′, y′) and b = (x′′, y′′) in the domain

of all possible outcomes A = X × Y

∀a, b ∈ A, v(a) ≥ v(b) ⇔ a ≽ b. (4.35)

The bivariate value function takes the two attributes as arguments and yields a single scalar

that is monotonic (as per definition). The unidimensional value function can be considered

as a single “attribute” and used to define the joint utility,

u(x, y) = u(v(x, y)). (4.36)

The actual scalar quantity that the value function takes will not have a interpretive meaning,

only an order. This is because the attributes X and Y are measuring different things. When

taking the next step of eliciting the utility, equivalence methods will need to be evaluated

using points on the original scale.

Two attributes can be displayed graphically with each attribute corresponding with the

horizontal and vertical axes. Indifference curves are a graphical technique requiring a DM to

define a curve of indifference within the joint attribute space, X×Y . A family of indifference

curves implies an ordering of preference. This technique is not used in the application of

dose finding the next chapter. The method is touched upon here as in some simpler cases

it is natural to think of rates of payoff between attributes. A more detailed evaluation of
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the technique including multiple parametric forms is given by Keeny and Raiffa [110]. The

technique is predominately used for decision making under certainty. An example of an

application of this method in dose finding is the EffTox method [77] which was reviewed in

Chapter 2, (Figure 2.5). Note the step of defining utility was not applied in this method.

4.7 Bivariate utility function summary

A method for assessing a bivariate utility has been proposed in this chapter. The method

is briefly summarised as follows. A preliminary decision scope allows the formulation of a

research question; this includes specification of actions to decide between, finding suitable

attributes capable of measuring the trial objectives and a suitable probability model. Some

basic preference structures can initially be inspected, this includes whether the attributes

have a monotonic value function. This allows the preliminary assessment whether mutual

utility independence holds using elicitation techniques comprising of simple lotteries. If the

condition holds the individual utility functions can be created for each attribute. Each

attribute can have a number of preliminary relations inspected for simple lotteries. These

in turn will imply attitudes to risk over the attribute space. A suitable parametric form

based on the preliminary assessments can then be proposed and elicited. The process is

repeated for the second attribute. The parameters associated with the multiplicative utility

function can be ascertained with a minimum of two further elicitations. Consistency checks

are necessary to provide reassurance that the parametric utility is appropriate. It is at

this stage that the utility function is suitable for inclusion in a clinical trial protocol. The

entire process can be documented. At the analysis stage the decision corresponding with

the alternative that maximises the expected utility is the Bayes decision.

4.8 Discussion

This chapter has reviewed the statistical literature for decision making. One of the main

findings of this work is that maximising the expected consequence function with an inap-

propriate scale can lead to poor decision making. Preferences concerning a decision are

different when faced with an uncertain situation. A consistent scale, utility, overcomes the

difficulties by setting up the problem in terms of preferences for simple lotteries. No design

in the dose finding literature has been defined with respect to VNM utility theory in terms
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of preferences for lotteries. The chapter has reviewed the relevant statistical literature so

that problems incorporating multiple attributes as is the case for dose finding with efficacy

and toxicity attributes may be deconstructed and elicited from a DM.

This chapter has focused upon the Bayesian method for decision analysis. Decision analysis

not using the Bayesian method is a possibility. The change in statistical paradigm requires a

different optimisation procedure to decision making [27]. An example of this procedure has

been applied in dose finding described as the likelihood CRM [143]. The likelihood approach

is set up similarly to this chapter with a model and a consequence function but the decision

is two stage. The parameter(s) describing the states of nature is deterministic within the

frequentist paradigm and is estimated according to the maximum likelihood estimate before

the parameter estimate is inputted into a consequence function. The dose that ranks the

highest is selected for the next cohort. The method needs to have a DLT observed in order

to yield a likelihood estimate. The approach is similar to the hybrid Bayesian approach

defined in Equation 2.7. In contrast to the Decision theoretic approach uncertainty is first

aggregated by finding the mean estimates of the parameters in the model before maximising

the consequence function. The approach cannot incorporate different preferences in the

presence of uncertainty.

The reason why a frequentist analysis might be argued for is that the introduction of a

prior and the use of utilities introduces subjectivity into the analysis. Subjectivity isn’t

however absent in other procedures. Any decision with two attributes will need some form

of subjective assessment regarding preference. Take for example two treatment options,

one that is both high toxicity and high efficacy and one that is slightly lower efficacy and

lower toxicity. It is not possible to ascertain which is the preferred, even if the attribute

levels of the two treatments are known, without some subjectivity. Equation 2.3 gave one

possible definition without the need for specifying a parameter. Even in this case there is a

subjective choice that the simple payoff adequately describes the situation. Adding further

conditions such as a maximum amount of toxicity are also further subjective choices. The

method described in this chapter fully acknowledges the inherent subjectivity in any given

situation and is based on methods to reduce any bias with transparency in recording choices.

This chapter has demonstrated that making decisions in an uncertain situation is different

to when the states of nature are known. This uncertainty cannot easily be resolved outside
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of a subjective decision theoretic framework.

The next chapter applies the methodology and practical approach of this chapter in the

setting of dose finding in oncology when there is both an efficacy and a toxicity attribute.
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Chapter 5

Decision theoretic dose finding

5.1 Introduction

The previous chapter reviewed the literature for a Bayesian decision theoretic approach to

statistical decision making. The purpose of the approach is to choose an optimal action from

a set of possible actions when the outcome is uncertain [27]. There are two main components:

a Bayesian model representing the structure of a system and its associated uncertainty; and

a consequence or utility [25]. Utility is a numerical measure of consequence that follows an

axiomatic basis for rational decision making. A decision theoretic approach to statistical

decision making is scientifically sound, providing coherent decisions when each of the two

main components can sufficiently be determined.

This chapter proposes a dose finding method for phase I trials that follows the Bayesian deci-

sion theoretic approach accounting for uncertainty and is referred to as Reference Dependent

Decision Theoretic dose finding (R2DT) from hereon. Note that reference dependence is

defined for the first time later in this chapter. The motivation for this work is to propose a

utility function that better reflects clinical preferences to avoid reliance upon a two staged

approach to decision making. The two stage approach comprised of first restricting the de-

cision space with admissibility rules then maximising an over simplified objective function.

A full justification is given in the discussion of Chapter 2.

The rest of this chapter is structured as follows: The decision theoretic approach specific

to R2DT is restated. Utility functions based upon attitudes to uncertainty with individual
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attributes are then defined. Multivariate utility theory gives a broad form for the utility

function with constants to be set. A detailed elicitation protocol is then given in order to

elicit the constants as part of the proposed utility function. The R2DT method is then

applied to an example in multiple myeloma and evaluated using simulation.

5.2 Decision theoretic dose finding

The general Bayesian method to dose finding was given in Chapter 2. The approach is

restated here in this short section with specific detail for the R2DT method.

Let D = {d1 < d2 < · · · < dk} be a set of k pre-defined doses to be studied and Y = (YE , YT )

where

YE =


1 if efficacious

0 otherwise

and YT =


1 if toxic

0 otherwise

(5.1)

are Bernoulli random variables representing an efficacy and toxicity event respectively. Fea-

tures that are unknown about the external world, namely the probability of efficacy, πE

and toxicity at each dose, πT are modelled by unknown states of nature θ ∈ Θ, where θ

represents the parameters associated with data generation. The observation Y is drawn

from a distribution pY (y|θ). Prior knowledge of θ ∈ Θ is incorporated via a prior p(θ).

This is updated through Bayes theorem in light of the observation(s), to give the posterior

p(θ|y) ∝ p(y|θ)× p(θ). (5.2)

The probability model p(y|θ) for the R2DT method follows independent logistic regression

models for efficacy and toxicity and are expanded upon in the next section.

A utility function u(d, θ) specifies the utility of making the decision to treat at dose d ∈ D

if the state of nature is θ ∈ Θ. The potential actions at each stage are to assign a dose d to

treat the next cohort. The Bayes action (or decision) d∗ ∈ D is the action that maximises

the posterior expected utility:

d∗(y) = argmax
d

(E[u(d, θ)|y]). (5.3)
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The trial recruits in cohorts of size c with the posterior formed from data from each cohort.

The Bayes decision determines the dose for the next cohort. No skipping of untried doses

in escalation is stipulated as an additional safety rule outside of the probability model to

account for model misspecification in earlier cohorts [77], an additional rule typical of many

phase I designs. Specifically, if the Bayes decision is more than one dose above the highest

dose already treated at, the dose for the next cohort will be the dose above the highest dose

currently treated at. The trial continues until a maximum sample size is reached with the

Bayes decision following the final cohort determining the OD. The two attributes used to

make decisions through u(d, θ) in addition to any ad hoc procedures are πE and πT , the

probability of an efficacy event and the probability of a toxicity event at each dose.

A novel stopping rule for R2DT as well as the conventional rules to prevent treatment at

doses with unacceptable levels of toxicity or efficacy are detailed for the design in Section

5.3.4.

5.2.1 Probability model

The probability model used in R2DT follows previous work in this setting, namely logistic

regression for efficacy and toxicity [77]. Following the conclusions of Chapter 3, a bivariate

distribution for the probability of any event Y = (YE = a, YT = b) is defined independently

for efficacy, πE , and toxicity πT .

πa,b = (πE)
a(1− πE)

1−a(πT )
b(1− πT )

1−b (5.4)

The covariate for a set of numeric doses, d ∈ R>0, are transformed by centering around the

geometric mean.

xj = log(dj)−
1

k

k∑
r=1

log(dr) j = 1 . . . k (5.5)

Marginal probabilities for efficacy and toxicity at each dose are the attributes used in the

utility function, for ease in deriving these quantities an inverse-logit link function is defined

for efficacy and toxicity,

πE,j = logit−1{µE + βE1xj + βE2x
2
j} (5.6)
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πT,j = logit−1{µT + βTxj}. (5.7)

The additional squared term, βE2 in the efficacy model allows the possibility that effi-

cacy may not be monotonic in dose. Model parameters for the design are defined by

θ = (µE , βE1, βE2, µT , βT ) and data by Dn = (Yi, xi). With the prior for θ following

independent normal distributions with corresponding hyper parameters for the mean and

variance.

5.2.1.1 EffTox model priors

In Bayesian analysis an uninformative prior can be constructed for a parameter by assigning

a large variance representing little information. In logistic regression however uninformative

priors on the odds scale can lead to very informative priors on the probability scale [144].

This is particularly a problem in dose finding because decisions are based upon posteriors

containing little data. Pathological priors in this setting are described when decision making

is dominated by the prior and this leads to unusual decisions such as getting stuck at one

dose level or stopping the trial independent of accumulating data [78].

An algorithm for establishing priors using effective sample sizes was proposed to simplify the

specification of parametric priors [145]. The motivation for the method is that it is easier to

elicit a prior on a familiar scale and then transform into parameter values. Prior means are

specified on the probability scale for efficacy and toxicity at each dose. The Effective Sample

size (ESS) relates the information contained within the prior to the equivalent information

gained from a number of patients and is used to assign the variance component of priors.

The measure of ESS is calculated by simulating data for a range of sample sizes and calcu-

lating a posterior from a vague prior. These posteriors are compared to the proposed prior

by a measure of similarity between distributions. The effective sample size of the prior is

the sample size of the posterior most similar. In a simple setting a beta(a, b) distribution

has an ESS = a + b. This is argued from a beta binomial conjugate model for a binomial

outcome, with number of successes, X out of n trials and success probability π. Assuming

a beta prior gives p(π|x, n) ∼ beta(a + x, b + n − x). The prior may be identified with a

similar beta(c+x, d+m−x) posterior arising from a previous beta(c, d) prior having a very

small amount of information, with m the the effective sample size.
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The algorithm was elaborated upon as follows for the EffTox model [146]. Set the second

order parameter term for efficacy to be βE,2 ∼ N(0, 0.2). Note the method also details

setting the correlation parameter ψ ∼ N(0, 1); but R2DT doesn’t use the parameter as

independent is assumed. Elicit values for the mean toxicity and efficacy at each dose on

the probability scale and then determine mean and variance parameter hyper parameter

estimates for a given ESS. The final choice of prior is determined from simulation with good

choices of ESS between 0.5 and 1.5. The idea is to give a large enough ESS so that early

decisions are guided by sensible prior choices without pathological behaviour, but not too

strong that the posteriors are dominated by the prior irrespective of accumulating data.

The algorithm was implemented in this thesis using trialr software [147].

5.3 R2DT Utility specification

The review of dose finding methods in Chapter 2 demonstrated that objective or utility

functions are often used but not elicited carefully to reflect clinical preferences. By setting

up utilities which better reflect clinical preferences by applying methods detailed in Chapter

4 it is hoped that the proposed R2DT design will improve upon operating characteristics.

R2DT assumes some conditions to define the utility function as u(πE , πT ) = f(uE(πE), uT (πT ))

with f(·) a linear function, uE a marginal utility function of πE , and uT a marginal utility

function of πT . In allowing the parametric joint form more easily assessed marginal util-

ity functions can be considered. The marginal utilities are first defined with attitudes to

uncertainty and reference dependence. The two functions are combined in the next section

accounting for how the two utilities interact. The role of utility in stopping the trial in light

of all doses being overly toxic and/or efficacious is then expanded upon to give an additional

novel stopping rule.

5.3.1 Marginal utility functions

5.3.1.1 Attributes

In decision making, objectives are characterised by attributes; in this setting, measures of

efficacy and toxicity corresponding with the population that the treatment is intended for

are used. These are πE and πT , the probabilities of efficacy and toxicity at each dose.

The attributes are able to measure an OD at the end of the trial as well as able to guide
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decision making for an individual patient. Any utility function for efficacy must be strictly

monotonically increasing, since more efficacy is invariably preferred to less. If π∗E and π∗∗E

are two levels of the efficacy attribute then

[π∗E > π∗∗E ] ⇔ [u(π∗E) > u(π∗∗E )]. (5.8)

Similarly, any toxicity utility function must be a strictly monotonically decreasing function

as more toxicity is worse than less. If π∗T and π∗∗T are two levels of the toxicity attribute

then

[π∗T > π∗∗T ] ⇔ [u(π∗T ) < u(π∗∗T )]. (5.9)

When considering whether the ethical objective of not exposing patients to non efficacious

and toxic doses, it is not possible to ascertain this from the attributes alone, without further

constants. Admissibility criteria are typically used in the setting to define a threshold to

give context and split each attribute into regions of acceptability or unacceptability with

the intention of meeting the ethical objective. As such any utility function that aims to

incorporate the ethical objective must have some context or an additional parameter in

addition to the raw attribute. R2DT considers attributes for toxicity and efficacy against a

single reference point; πE and πT for efficacy and toxicity respectively.

In the R2DT method the efficacy reference, πE , is suggested to correspond with the current

efficacy estimates for standard of care rather than an aspirational level of efficacy associated

with the continued development of the drug, i.e. a minimum efficacy threshold. The toxicity

reference, πT is suggested to be thought as a target toxicity level, typically associated with

toxicity-only dose finding designs [109].

The attributes for efficacy and toxicity at each dose are first transformed as πE − πE and

πT − πT respectively to be arguments to the marginal R2DT utility functions. Note the

transformation of the toxicity attribute to satisfy Equation 5.9 ([1−πT ]−[1−πT ] = πT−πT ).

A negative transformed attribute is labeled a “loss” and a positive value a “gain” upon the

reference. With the labels “loss” and “gain” reflecting the basic interpretation of a bad and

a good level of the attribute respectively. For example an improvement from the reference

for efficacy is beneficial for the patient i.e a gain, with πE − πE > 0.

The merit of an incremental increase in either attribute is considered differently depending
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on whether it is considered a “gain” upon the reference or a “loss”. Increasing the distance

from the reference for a gain is more beneficial for the patient than a smaller distance with

the opposite is true for a loss. For example, considering gains, increasing efficacy beyond the

reference is increasingly beneficial. While for toxicity reducing toxicity below the reference

is similarly increasingly beneficial. The main premise is that the ethical objective of patient

benefit for each attribute is considered with respect to departure from either side of a

reference point, and this is called reference dependence. Creating a utility function for

each attribute with reference dependence allows us to incorporate the ethical objectives

directly into determination of the OD rather than with separate admissibility criteria for

each attribute.

Attitude to risk describes how a DMs preferences change in the presence of uncertainty.

Considering either attribute as reference dependent, it is likely that attitudes to risk may

be dependent upon whether considering the level of the attribute as a gain or a loss. Both

marginal utility functions for R2DT are defined using a piece-wise function that splits the

attribute into gains and losses. Prospect theory, reviewed in the next section, takes a similar

approach although uses a descriptive decision model.

5.3.1.2 Prospect theory

A consequence function with reference dependence was first described in prospect theory

[148]. The authors, Daniel Kahneman and Amos Tversky proposed the method as an

alternative to expected utility theory as a descriptive model of decision making in economics.

The method isn’t directly applicable to the setting of dose finding, as in Chapter 4, it was

stated that only a method that prescribed rationale decisions i.e. a normative theory would

be suitable for the dose finding setting. The idea to define a piece-wise function for the

marginal utility functions that splits the attribute into gains and losses came from prospect

theory. The functional form of each of the piece-wise components, utility independence

to join the two marginal distributions and maximising expected utility, all part of R2DT

method does not feature in prospect theory. The method is expanded upon further in this

section to highlight differences.

The first part of prospect theory is that value is assigned to gains and losses with respect

to some reference rather than the attribute. Prospect theory has a second component to
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account for how individuals perceive probabilities, the probability weighting function. The

theory explains that small probabilities are perceived to be higher than they actually are,

with medium to large probabilities perceived to be less. The reason for highlighting the

theory is that the value function in prospect theory takes the same shape to what has been

proposed for the R2DT method. The primary reason for the similarity is that both methods

exhibit reference dependence for a monotonically increasing attribute with broad concepts

of “gain” and “loss” coinciding. The reference dependence in prospect theory is seen as a

psychological heuristic. Individuals feel the pain of loss more intensively than the equivalent

pleasure of a gain and this is accounted for in a descriptive theory.

The development of R2DT utilises some of the language, (“losses”, “gains”) and broad ideas

from prospect theory. There is however a clear distinction between a method that is a de-

scription of how people make decisions and a normative theory of R2DT that prescribes

rationale dosing choices as introduced in the previous chapter. Prospect theory has been

previously applied in the domain of health research [149, 150, 151, 152]. In the domain of

evaluating additional life years participants were found to give preferences to risk suggesting

reference dependence with attitudes to risk similar to that of prospect theory [150]. The use

of parametric models to describe attitude to risk over the entire domain, i.e. without ref-

erence dependence was seen to be implausible[149]. Examples were applied as a descriptive

theory, but is highlighted here as evidence of reference dependence in the health domain.

5.3.2 R2DT marginal utility functions

This section gives a marginal utility function for efficacy and toxicity which should be more

capable of representing clinical preferences than the alternative designs from Chapter 2. A

parametric function allows a broad form for the utility function to be specified in different

settings without the need to restudy the basis for the function such as reference dependence

each time. Specific parameter values in the utility function can be elicited as is expanded

upon in Section 5.4.

The attitude to risk for both efficacy and toxicity utility functions is proposed to be different

depending on whether considering the attribute a gain or a loss. The power function is

specified for each segment of the utility functions as it is a parametric utility function where

the absolute risk aversion index is dependent upon the distance from the reference point
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(Equation 4.23). The power utility is a commonly used utility function when an attribute

is measured relative to a reference [110].

The efficacy utility is defined as

uE(πE) =


g
(
(πE − πE)

αGE
)

πE ≥ πE

g
(
−λE |πE − πE |αLE

)
πE < πE ,

(5.10)

with λE ≥ 0, αGE ≥ 0, αLE ≥ 0 and g(u) = [u − u(0)]/[u(1) − u(0)]. The normalising

function, g, places the utility function in the range [0, 1]. Note that utility functions are

indifferent to linear transformations. In R2DT, the scaling is necessary to ensure the utility

is on the same scale as the toxicity utility function.

The loss aversion index, λE , considers the merit of “gains” with respect to “losses” (Figure

5.1(B)). It has been argued that gains and losses are considered differently. Loss neutral,

λE = 1, considers gains and losses as equally important. Increasing the loss aversion index

so that λE > 1 represent an increasing preference of avoiding losses more so than pursuing

gains. In dose finding loss aversion corresponds with the ethical objective of avoiding expos-

ing patients to in-efficacious doses. This component of utility function is similar in form to

escalation with overdose control in the setting of toxicity only dose finding (Equation 2.14)

[59].

The parameters αLE and αGE specify the attitude to risk for losses and gains respectively;

α· = 1 would indicate risk neutrality. It is proposed αGE < 1 represents an incremental

increase in the attribute, becoming less desirable the further away from the reference; this

gives a concave (risk-averse) utility function for the gain segment. It is proposed αLE < 1

represents a convex (risk-prone) utility function for losses. This represents a preference

that an incremental increase nearer the reference has more impact than one further away.

The magnitude of the parameters coincides with admissibility rules, with the extreme when

αGE = 0 and αLE = 0, the utility function becomes a step function that is similar to the

admissibility rules.

An example of possible shapes for the utility function is plotted in Figure 5.1(A).
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Figure 5.1: Attitudes to risk and loss aversion for efficacy utility function (A): Constantly
increasing utility for efficacy attribute (probability of efficacy event) with reference proba-
bility of 0.5 defining whether a “Loss” or “Gain”. Convex shape is risk prone, concave shape
is risk averse. Figure depicts different attitudes to risk depending on the reference. R2DT
proposes a sigmoidal utility, convex for “Losses” and concave for “Gains”. (B) Loss aversion
is depicted with a risk neutral utility for efficacy attribute with reference probability of 0.5
to define whether a “Loss” or “Gain”. R2DT proposes loss aversion (stretches loss region)
to reflect ethical objective of avoiding exposure to non-efficacious doses

The following utility function is proposed for toxicity.

uT (πT ) =


h
(
(πT − πT )

αGT
)

πT ≤ πT

h
(
−λT |πT − πT |αLT

)
πT > πT

(5.11)

with λT ≥ 0, αGT ≥ 0, αLT ≥ 0 and h(u) = [u − u(1)]/[u(0) − u(1)]. The normalising

function, h, places the utility function in the range [0, 1]. It is proposed that αGT < 1,

αLT < 1 and λT > 1 with similar interpretation and attitudes to risk to the efficacy utility

function. Due to the initial transformation of the attribute the toxicity utility is proposed

to mirror the efficacy utility i.e. an inverted sigmoidal shape, Figure 5.2.

Individual utility functions have been proposed for efficacy and toxicity. These are combined

into a joint form in the next section.
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Figure 5.2: Attitudes to risk and loss aversion for toxicity utility function: (A): Constantly
decreasing utility for toxicity attribute (probability of toxicity event) with reference prob-
ability of 0.5 defining whether a “Loss” or “Gain”. Convex is risk prone, Concave is risk
averse. Figure depicts different attitudes to risk depending on the reference. R2DT proposes
an inverted sigmoidal utility, convex (red) for “Losses” and concave (blue) for “Gains”. Loss
aversion is considered to be neutral for the purpose of the figure (B) Attitudes to “Losses”
are depicted with a risk neutral utility for toxicity attribute with reference probability of 0.5
to define whether a “Loss” or “Gain”. R2DT proposes Loss aversion (stretches loss region)
to reflect ethical objective of avoiding exposure to overly toxic doses. Attitudes to risk are
considered to be neutral in the figure

5.3.3 Joint utility

R2DT assumes a number of conditions to define the utility function in the form u(πE , πT ) =

f(uE(πE), uT (πT )) with f(·) a linear function, uE a marginal utility function of πE , and uT

a marginal utility function of πT . These conditions, the functional form and interpretation

of additional parameters defined in f(·) are given in this section.

With attributes πE , efficacy, and πT toxicity, consider a point (e, t), within the domain of

all possible levels πE × πT , such that

0 ≤ e ≤ 1 and 0 ≤ t ≤ 1 (5.12)

Consider two conditional utility functions u(e′, ·) and u(e′′, ·) from two points e′ and e′′.

Defining a lottery from the conditional utility function u(e′, ·) concerning two points t1
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and t2 and associated certainty equivalent t̂. We then contrast this with the certainty

equivalent from the same lottery from the conditional utility function u(e′′, ·). If the certainty

equivalent, t̂ does not shift we can say that the two are strategically equivalent. This is

expanded upon in section 4.6.1 of previous chapter.

Efficacy is utility independent of toxicity when conditional preferences for lotteries on πE

given πT do not depend on the particular level of t. When efficacy and toxicity are mutually

utility independent we can express the utility function u(e, t) in a multi-linear (bilinear)

form as follows, Equation 4.32, [142]:

u(πE , πT ) = kE uE(πE) + kT uT (πT ) + kET uE(πE) uT (πT ) (5.13)

where

1. kE > 0 and kT > 0, and

2. uE is a conditional utility function on πT .

3. uT is a conditional utility function on πE .

4. kET = 1− kE − kT .

The conditional utility functions uE and uT do not depend on the level of the other at-

tribute, as per the condition of mutual utility independence, as such these are referred to as

efficacy and toxicity marginal utility functions for simplicity. The constant kET represents

an interaction between the two attributes. A smaller sum of kE and kT would constitute a

greater interaction and kET = 0 no interaction.

When combining two measures of consequence through a function to give a single measure

of consequence as is the case here it is necessary to have an understanding of what the

function is achieving. The key to this is the interaction term, kET . An interpretation

was given in Chapter 4 surrounding the explanation of the utility independence equation

(Equation 4.32). Here the interpretation is specific to the attributes of efficacy and toxicity.

The simplest case is the independent case, this is also called additive utility independence.

With additive utility independence there is no interaction term (kET = 0) and the relation-

ship between the two attributes is a simple linear payoff. There is only a single parameter

that needs specifying since kT = 1 − kE . A small incremental increase in efficacy utility is
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directly proportional to a increase in toxicity utility (lower toxicity) with the magnitude of

the constant dictating how much a small incremental increase in efficacy utility is worth in

terms of the same increase toxicity utility. This simple payoff remains constant at all levels

of efficacy and toxicity.

A positive interaction is when kE + kT < 1 and would imply that the higher the efficacy

utility, the greater (more positive) the effect of toxicity utility (reduction in toxicity) on

overall utility. Similarly, the higher the toxicity utility, the greater (more positive) the

effect of efficacy utility on overall utility. The opposite being true of a negative value for the

interaction parameter. This description of each possible interpretation for the interaction

term is plotted in Figure 5.3. It can be seen for the plot with no interaction that the

slope for toxicity with respect to efficacy is a constant at points within the joint domain.

For a positive interaction the slope for toxicity with respect to efficacy is initially steep at

the left hand end of the contour and reduces moving left to right. This suggests that as

toxicity increases the effect of efficacy is reduced. The interpretation is synonymous with

the clinical situation described for the motivating example in Chapter 2, with the effect

of additional efficacy when there is high toxicity being minimal. A negative interaction

describes the opposite to the situation in that the slope gets progressively steeper or the

effect of additional efficacy becomes greater with more toxicity.
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Figure 5.3: Example to visualise the effect of the interaction component of the joint utility
function. All plots follow the utility independent relation in 5.13 with simple risk neutral
marginal utility functions i.e. uE = π and uT = 1 − π. For the Positive interaction plot,
kE = 0.25, kT = 0.25 and kET = 0.5. For the no interaction plot, kE = 0.5, kT = 0.5 and
kET = 0. For the negative interaction plot, kE = 0.75, kT = 0.75 and kET = −0.5. It can
be seen how the slope of contour changes with utility for each of the different interactions.
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The Figure represents a simplification of the marginal utility functions, before stating that

the positive interaction is the only choice that fits with the clinical situation for this setting

a further example is considered. Define two 50-50 lotteries ⟨A = (e1, t2), C = (e2, t1), ⟩ and

⟨B = (e1, t1), D = (e2, t2)⟩ with points straddling the reference point, i.e e1 < πE < e2 and

t1 < πT < t2. In general for any two utilities following the utility independent equation

if ⟨A,C⟩ ∼ ⟨B,D⟩ then this would mean that there is no interaction. ⟨A,C⟩ ≻ ⟨B,D⟩ a

positive interaction and ⟨A,C⟩ ≺ ⟨B,D⟩ a negative interaction (Chapter 4).

Interpretation in this example in the context of marginal R2DT utilities for the points is

as follows: A is a loss for both efficacy and toxicity, B is loss for efficacy but a gain for

toxicity, point C is a gain for both efficacy and toxicity and D is a gain for efficacy but a

loss for toxicity. In dose finding it is proposed that the lottery involving point C, two gains,

is preferred.

⟨A,C⟩ ≻ ⟨B,D⟩ ⇔ kET > 0 (5.14)

The interpretation is that both attributes need to be ’good’ for the overall utility to be

considered likewise. In terms of losses, if one attribute is a loss this is almost as bad as if

both attributes are losses - in both cases neither would likely be suitable to treat the wider

population. With respect to the reference points the increase in efficacy cannot compensate

for high toxicity and given low efficacy this cannot be compensated with low toxicity, this

means that there is an interaction and from Equation 5.13 the direction of this interaction

implies:

kE + kT < 1 (5.15)

This is thought to be the case in oncology dose finding settings where the payoff becomes

more beneficial when both attributes improve. The parameters kE and kT and subsequently

the interaction term are ascertained by elicitation as detailed later in the chapter. One

design that is shown to be analogous to the multiplicative utility function is the EffTox

utility design.

5.3.3.1 EffTox utility design

The EffTox utility design [82, 78] introduced in Chapter 2 is used as a comparator to assess

the R2DT in the simulation study. This section shows that the EffTox utility design can

be formulated as a special case of R2DT that assumes simple risk neutral marginal utility
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functions.

The EffTox Utility design specifies a discrete utility function on the four possible individual

patient level outcomes, Y = (YE = a, YT = b), as follows

u(YE = a, YT = b) =



K(1, 1), for a = 1 and b = 1

K(0, 0), for a = 0 and b = 0

K(1, 0), for a = 1 and b = 0

K(0, 1), for a = 0 and b = 1

(5.16)

Where K(a, b) are constants to be specified. Given that utility is indifferent to linear trans-

formations, K(1, 0) = 1 and K(0, 1) = 0 can be specified as the best and worst outcomes

respectively. Expected utility is calculated by averaging the utility function over the chance

of a state of nature (each patient outcome) happening. For the EffTox utility design the

expectation is given by

E(u(Y (YE = a, YT = b)) =

∫ 1∑
a=0

1∑
b=0

K(a, b)πa,b, (5.17)

where πab represent the probability of an event happening. Assuming independence with

π11 = πEπT , π00 = (1−πE)(1−πT ), π10 = πE(1−πT ), π01 = (1−πE)πT , and standardising

with K(0, 1) = 0 and K(1, 0) = 1, the expectation equation can be rewritten as a function

of πE and πT :

E(u(Y )) = E(u(πE , πT )) =∫
θ
K(1, 1)πE +K(0, 0)(1− πT ) + (1−K(0, 0)−K(1, 1))πE(1− πT )dθ

The expected utility equation can be written as a function of the population level parameters

for the probability of an event at each dose. The specific equation has been written in this

form as it is analogous to the utility independence equation, Equation 5.13 with K(1, 1) =

kE , K(0, 0) = kT , uE = πE and uT = 1−πT . The marginal utility functions are the identity

function or the degenerate case of R2DT, λE = λT = αGE = αLE = αGT = αLT = 1, with

πT and πE becoming redundant in this special case due to the normalisation function. This

demonstrates that the EffTox utility design can be formulated as a special case of R2DT
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that assumes simple risk neutral marginal utility functions with interpretation from the

perspective of population level parameters.

When the utility independence equation was stated in the last chapter (Equation 4.32) the

constants were specified as the utility at the minimum of one attribute and the maximum of

the other. The EffTox utility method elicits the numerical consequence of each of the four

patient level outcomes. An alternative way of thinking about this in the context of event

probabilities as attributes is that after the outcome for a patient has been observed, there is

no uncertainty. The chance of the event happening therefore equals zero or one depending

on whether it happened or not. This corresponds with u(πE = 1, πT = 1) = K(1, 1) = kE

and u(πE = 0, πT = 0) = K(0, 0) = kT . In Section 5.4.3 the interpretation of utility is from

the perspective of lotteries rather than numerical consequence and this is used to define an

alternative elicitation method.

5.3.4 Stopping rule

The intention of R2DT is to move away from reliance on ad hoc admissibility rules. The

stopping rules are responsible for stopping the trial when all doses are unsuitable in addition

to limiting the decision space at each stage. The initial specification of the design still utilises

the admissibility rules, with a novel stopping rule explored as part of the design that is able

to capture dependency on both of the interplay between attributes when stopping the trial.

For example, more toxicity may be acceptable for a treatment if the efficacy is very good in

comparison to treatment with poor efficacy.

The admissibility criteria as is typical in this setting are defined separately in relation to

reference cut points πaddE and πaddT , below. If either criteria is met the dose will be excluded

from the set D.

Pr {πE(x,θ) < πaddE |D} > 1− pE (5.18)

Pr {πT (x,θ) > πaddT |D} > 1− pT (5.19)

If all doses are excluded from the set D then the trial stops.

The decision theoretic method chooses the decision that maximises the expected utility of a

set of actions, with stopping rules an addition to the theory. Within the Bayesian decision

theoretic framework, d∗ maximises the utility of all potential dosing decisions at the decision
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point. In a dose finding trial the potential actions are choosing a dose d ∈ D or the action

s to stop the trial and treat no further patients. The action s could be given a utility scale

that corresponds with the actions of choosing a dose d. The specification of a separate utility

function would however be needed as the implications of stopping the trial are different to

simply choosing a different dose. There may be a need to incorporate additional attributes

beyond those specified to limit the choice of doses, such as the cost of setting up the trial

and abandoning future development of the treatment [153]. The specification is technically

possible but may be overly complex in the context of a single trial to be practically feasible.

R2DT builds upon the work in setting up the R2DT utility function proposing a novel

stopping rule based upon the utility function. The stopping rule is applied similarly to

the admissibility rules in equations 5.18 and 5.19, in that it is an addition and separate to

maximising the expected utility to choose a dose.

The admissibility rules for efficacy and toxicity attributes used in the decision making pro-

cess are applied separately with the dose excluded if either are initiated. Constants for

admissibility criteria can be specified by considering both efficacy and toxicity at the same

time however [41]. In the cited application of Efftox, the threshold for efficacy (Equation

5.18), πaddE , was 5% above the upper bound of where the alternative standard of care

treatment was believed to be. The toxicity threshold, (Equation 5.19), πaddT , was chosen

to be the highest toxicity that would be acceptable based upon the aspirational efficacy

level. The utility function of R2DT is specified to more closely meet the joint preferences

of toxicity and efficacy in any given setting. The trial stopping decision(s) should be guided

by the same preferences between the two attributes that guide dosing decisions. A utility

function is also a value function able to rank all combinations of the attribute. By using

this property, this allows us to consider an unacceptable contour that accounts for differ-

ent levels of efficacy and toxicity. In principle the approach is to use a single contour and

evidence threshold to define unacceptability in contrast to two separate rules, Figure 5.4.

The major difference in this example is to incorporate that the toxicity threshold varies

depending upon the amount of efficacy a particular dose has.

The following stopping rule is referred to as the utility admissibility rule: If the probability

of the utility being below the equal utility contour surpasses a predefined threshold, 1− pu,

the dose is excluded from the set D. If D is an empty set, i.e. no dose satisfies the equation,
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Figure 5.4: Example to visualise the use of utility admissibility criteria. The utility admis-
sibility criteria allows us to define a single contour from the utility function (solid red line)
with any dose above deemed unacceptable. This is contrasted with the two black dashed
lines representing the conventional admissibility criteria with any dose not in the lower right
quadrant unacceptable. The quadrant is formed for efficacy as any dose to the left of the
vertical line at πaddE = 0.5 and for toxicity any dose above the line at πaddT = 0.4 is deemed
unacceptable. The contour allows us to accept different levels of an attribute depending on
the level of the other attribute. The varying rate of unacceptable toxicity depending on
efficacy is most prominent in the example. Note the example coincides with admissibility
criteria given in R2DT (1) and the utility admissibility rules inR2DT (3)(ii) given later in
chapter for the simulation study

the trial is stopped:

Pr{u(πE , πT ) < u(πUaddE , πUaddT )} > 1− pu, (5.20)

where πUaddE and πUaddT are constants that specify any point on the unacceptable contour.

Linking to the overarching trial objectives the contour should be the limit between what

would be unacceptable and what would be acceptable for a patient, in terms of efficacy and

toxicity, to be treated on trial. Specifying an aspirational level of efficacy may limit exposure

of patients to unacceptable doses but the higher bar may have a tendency to stop the trial

early based upon little data. One choice of efficacy and toxicity values for the unacceptable

contour could be the reference points πUaddE = πE and πUaddT = πT with the intuitive

interpretation that anything beyond the contour would constitute a loss. This isn’t entirely
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correct as the point πT is seen as a target toxicity level here, rather than toxicity levels

associated with other standard of care treatments. It might be the case, with an alternative

treatment that is really well tolerated, that a higher utility threshold is needed. This is

considered as part of the elicitation process later in the chapter.

To remain closer to the decision theoretic method an alternative stopping rule is also pro-

posed: the utility trial stopping rule. Here Equation 5.20 is used to stop the trial only,

rather than to limit the doses for consideration at each stage. If the criterion is surpassed

for all k doses the trial will stop, otherwise the set D contains all k doses at each stage.

Differences will only occur between the two proposed decision rules when the dose that is

the Bayes optimal action is excluded using the stopping rule while other doses are not. In

most instances it is likely when the Bayes optimal action is excluded, all other doses will be

excluded and the trial will be stopped.

5.4 R2DT elicitation

This section talks through a number of steps using the methods proposed in Chapter 4

in order to elicit the R2DT utility function. A single DM is responsible for the decision

analysis. In practice, this means that there is a single utility function. The DM would likely

be the chief investigator of the study but may be a wider team of key opinion leaders. The

methods in Section 4.2.2 of the previous chapter described a method to come to a consensus

for a group. A DM is referred to as a single entity for simplicity in the rest of this section.

The purpose of the elicitation is to obtain suitable values for parameters in the utility func-

tion and stopping rules specified in the last section. This is achieved through a conversation

with the DM with a number of precise questions detailed in this section designed to elicit a

single parameter for each question. The two attributes are the probability of efficacy, πE and

πT . Prior to the elicitation exercise it would be helpful to obtain a greater understanding

of the attributes and the interpretation of various levels in the setting. This understanding

would be gained through an evidence dossier from publications in the setting corresponding

with attributes for the group of patients.

The parameters are obtained using simple lotteries. As a brief reminder of the notation and
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method given fully in the previous chapter,

⟨x1, α, x3⟩ ∼ x2 (5.21)

denotes indifference between a simple lottery between two levels x1 and x3 of an attribute

with mixing component α and the level x2 with certainty. The purpose of an elicitation is

to fix all but one of the components of the lottery and to find the value where indifference

is satisfied. Three different methods were described depending upon which component was

being elicited. A probability equivalence method elicits α, a value equivalence method elicits

one of the attribute levels in the lottery (x1 or x3) and a certainty equivalence method elicits

x2.

For consistency, in this section we assume x1 < x2 < x3. The question for each elicitation

method is to find a suitable value for the elicited component until the DM is indifferent

between the two options. For example, to elicit x2 for the certainty equivalence method, the

question may be “what level of efficacy would you be indifferent to receiving with certainty,

compared to a 50-50 lottery between a treatment with 40% efficacy and 60% efficacy?”.

When choosing attribute levels they should be reasonably close together in a space that

is well understood, this is to reduce bias. Additionally assessing lotteries where α > 0.9

or α < 0.1 is likely to increase the measurement error. Using any one of the elicitation

methods above from Equation 5.21, the following relation is a consequence of the Von

Neumann–Morgenstern utility axioms in the last chapter and is used to establish parameters

in the utility function

αu(x1) + (1− α)u(x3) = u(x2). (5.22)

The first step of the elicitation process is to ascertain whether the utility independence

axiom is sufficient. The process is described in detail in the previous chapter by considering

a number of lotteries to ascertain whether conditional utility functions can be considered

equivalent. The preliminary work should consider lotteries at values of toxicity and efficacy

that are likely to be seen as feasible in this setting. If this condition holds then we can

consider the rest of this section in order to elicit the parameters of the utility function.
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5.4.1 Efficacy utility

This section goes through the elicitation of the parameters in the efficacy utility function

uE(πE) =


g
(
(πE − πE)

αGE
)

πE ≥ πE

g
(
−λE |πE − πE |αLE

)
πE < πE ,

(5.23)

The method proposes a number of individual relations in order to elicit parameters from

single lotteries given in Equation 5.22. There are four parameters that need to be ascer-

tained; the reference point πE , Attitudes to risk αGE and αLE in the gain and loss domains

respectively and the loss aversion parameter λE . The function g is then ascertained by

standardising values already elicited so that g(u) = [u − u(0)]/[u(1) − u(0)]. Part of the

workup in demonstrating utility independence is that it shouldn’t matter what the toxicity

level is, when eliciting the conditional efficacy utility. It might still however be useful to

keep the conversation solely focused on the efficacy component by explicitly stating at the

start that toxicity is acceptable and similar to the current standard of care.

5.4.1.1 Reference point

The first task is to obtain the reference point for efficacy, πE , in the utility function. This

parameter doesn’t need a lottery to be established as it is the tipping point of preference

where a dose of the new drug is preferred to what is available outside of the trial. This con-

versation will be informed by evidence from the literature regarding efficacy rates associated

with current standard of care treatments.

A suitable question would be “At what efficacy level is the current standard of care?”. This

could then be followed up with a similar question: “If toxicity profiles were similar between

a dose of the intended trial drug and what is available for this group of patients elsewhere, so

just considering efficacy, at what level would you be indifferent between the two treatment

options”.

5.4.1.2 Risk for gains

The next step is to elicit the attitudes to risk, denoted by the parameters αGE and αLE . This

is first considered for αGE by considering lotteries restricted to values above the previously

elicited reference point, i.e. x1 ≥ πE . As an example consider the certainty equivalent
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method. An equal lottery (α = 0.5) could have the lower point, x1 as the reference point

and a reasonable improvement such as x3 = πE + 20%. for example,

⟨πE , πE + 20%⟩ ∼ x2. (5.24)

It is expected that x2 would be less than the midpoint of this lottery to reflect the risk

averse attitude. The segment of the utility function when efficacy is higher than πE (a gain)

is given by

u(x) = (x− πE)
αGE . (5.25)

Any constants that are part of the function g will cancel at the next step. Using the utility

function, substituting into Equation 5.22 and rearranging gives

αGE =
log(1− α)

log(x2 − πE)− log(x3 − πE)
(5.26)

Note that this is only true when x1 = πE . For the case x1 > πE ,

αGE =
log(α) + log(1− α)

log(x2 − πE)− log(x1 − πE)− log(x3 − πE)
. (5.27)

This is because u(πE) = 0 from the equation above and the log transformation isn’t possible.

5.4.1.3 Risk for losses

When considering the attitude to risk in the loss domain to find the αLE , a further elicitation

exclusively in the loss domain is needed. This is similar to the elicitation of αGE and could

also incorporate the reference point as the upper point in the lottery, i.e. x3 = πE . The

method would suggest that the point x2 would be above the midpoint of the other two

lotteries if the mixing component is α = 0.5 to denote risk prone behaviour. The utility

function for lotteries in the loss domain is given by

u(x) = −λE |x− πE |αLE , (5.28)

substituting into Equation 5.22 and rearranging gives

αLE =
log(α)

log(πE − x2)− log(πE − x1)
. (5.29)
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The modulus function has been replaced since |x − πE | = (πE − x) when x ≤ πE . Again,

this is only true when x3 = πE . For the case x3 < πE we have

αLE =
log(α) + log(1− α)

log(πE − x2)− log(πE − x1)− log(πE − x3)
. (5.30)

5.4.1.4 Loss aversion

In order to elicit the loss aversion parameter a further lottery is needed such that x1 < πE

and x3 > πE . The utility function at x1 and x3 is given by Equations 5.28 and 5.25

respectively. There are two possibilities for the utility at x2 depending on whether the level

is considered to be a loss or gain. If x2 < πE (a loss) then

−λE =
(1− α)(x3 − πE)

αGE

(πE − x2)αLE − α(πE − x1)αLE
, (5.31)

whereas if x2 ≥ πE (a gain) then

−λE =
(x2 − πE)

αGE − (1− α)(x3 − πE)
αGE

α(πE − x1)αLE
. (5.32)

The parameters αGE and αLE have previously been found for the attitudes to risk in the

loss domain and need to be used in order to ascertain the value of λE .

5.4.2 Toxicity utility

The marginal utility function for toxicity is given by

uT (πT ) =


h
(
(πT − πT )

αGT
)

πT ≤ πT

h
(
−λT |πT − πT |αLT

)
πT > πT

(5.33)

The intent is to elicit the reference point πT , attitudes to risk αGT and αLT in the gain

and loss domains respectively and the loss aversion parameter λLT . The method to obtain

these parameters is broadly the same as that specified for the efficacy utility. The notation

is changed to refer to a level of the toxicity attribute as y. Simple lotteries are elicited as

previously described using one of the three methods and are of the form

⟨y1, α, y3⟩ ∼ y2 (5.34)
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where y1 < y2 < y3. The utility function is of the form u(y1) > u(y2) > u(y3). This needs

to be considered when trying to find indifference in the elicitation as the attitude to risk is

different (Figure 4.3). For example, if the certain outcome y2 is preferred this would indicate

that a larger value of y2 is needed for equivalence. If the uncertain outcome is preferred then

a smaller value of y2 would be needed to find indifference (this is the opposite to efficacy).

When indifference is achieved, equation 5.22 is valid, but now is expressed in terms of the

attribute y,

αu(y1) + (1− α)u(y3) = u(y2), (5.35)

The reference point πT is specified as a target toxicity, corresponding with target toxicity

levels that are specified in phase I toxicity-only designs. This is an acceptable level of toxicity

and isn’t necessarily the point at which the toxicity becomes non-viable or unethical. The

level depends on the population under study, treatment options available outside of the trial

and specific toxicities associated with treatment under study [109]. Using the concepts of

loss and gain that are defined as part of the transformation of the attribute, the reference

point is the point at which the attitude to risk changes and the perception of the attribute

changes.

Here is a dialogue that could be used to find the reference point. The clinician will likely

have a perception as to whether treatment available outside of the trial is considered to be

quite toxic, reasonably well tolerated, or have a good toxicity profile. The purpose is to elicit

the point at which the clinician starts to consider a treatment as increasingly toxic (but not

necessarily unacceptable). This could be achieved by initially agreeing an interval from an

initial discussion where the lower bound is a level that the DM is confident constitutes a well

tolerated treatment and an upper bound constituting a level where there is uncertainty as

to whether the treatment has an acceptable toxicity profile. In this interval there is a point

(the reference point) at which the thinking shifts and there is indifference as to whether a

particular rate is well tolerated or toxic. The tipping point corresponds with πT .

The three required parameters to be elicited follow the same rationale as the efficacy utility

function. For the parameter αGT , elicit a simple lottery in the gain domain with y3 = πT .
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Using the utility function u(y) = (πT − y)αGT and substituting into equation 5.35 gives,

αGT =
log(α)

log(πT − y2)− log(πT − y1)
. (5.36)

For the parameter, αLT , elicit a simple lottery in the loss domain with y1 = πT . Using the

utility function u(y) = (y − πT )
αLT yields

αLT =
log(1− α)

log(y2 − πT )− log(y3 − πT )
. (5.37)

For the loss aversion parameter λT , a lottery is needed such that y1 < πT and y3 > πT .

If y2 ≤ πT , (a gain), then

−λT =
(πT − y2)

αGT − α(πT − y1)
αGT

(1− α)(y3 − πT )αLT
. (5.38)

whereas if y2 ≥ πT (a loss) then

−λT =
α(πT − y1)

αGT

(y2 − πT )αLT − (1− α)(y3 − πT )αLT
. (5.39)

5.4.3 Joint utility

The joint utility function for the two attributes of πE and πT has the following form:

u(πE , πT ) = kE uE(πE) + kT uT (πT ) + (1− kE − kT ) uE(πE) uT (πT ) (5.40)

The conditional utility functions uE and uT have been established in the preceding subsec-

tions with two parameters kE and kT to be determined.

It was shown earlier that the EffTox utility method had an equivalent form as the utility

independence formula (Section 5.3.3.1 ). The method of obtaining the two parameters for

utility Efftox is to ask the DM a question based upon the four patient outcomes. This

involved the DM trying to ascertain a value as a measure of weighted preference between

patient outcomes. An alternative formulation based upon uncertainty and utility could be
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to elicit two probability equivalences

⟨(πE = 0, πT = 1), α1, (πE = 1, πT = 0)⟩ ∼ (πE = 1, πT = 1)

⟨(πE = 0, πT = 1), α2, (πE = 1, πT = 0)⟩ ∼ (πE = 0, πT = 0),

(5.41)

to obtain kE = 1− α1 and kT = 1− α2. This elicitation however involves lotteries that are

at extreme values that in nearly all situations will be hypothetical. An alternative method

and one that is recommended here would be to to find points of indifference. If the decision

maker is indifferent between any two points (πE = x1, πT = y1) and (πE = x2, πT = y2),

the utility of both points must also be equal so that:

u(x1, y1) = u(x2, y2) (5.42)

where

u(x1, y1) = kE uE(x1) + kT uT (y1) + (1− kE − kT ) uE(x1) uT (y1)

u(x2, y2) = kE uE(x2) + kT uT (y2) + (1− kE − kT ) uE(x2) uT (y2)

(5.43)

A further equivalence relation would yield a second equation which could be solved simulta-

neously to obtain the two unknown parameters. The simplest way to do this is to rearrange

the equation above so that it is of a simple linear form and then solve simultaneously,

AkE +BkT = C (5.44)

where

A = uE(x1)− uE(x1)uT (y1)− uE(x2) + uE(x2)uT (y2)

B = uT (y1)− uE(x1)uT (y1)− uT (y2) + uE(x2)uT (y2)

C = uE(x2)uT (y2)− uE(x1)uT (y1).

(5.45)

The joint reference point (πE , πT ) could be a suitable point to establish equivalence. The DM

can be asked what would constitute a substantial improvement in efficacy over the reference

for the group of patients under study. The next stage would be to offset this improvement

in efficacy against toxicity so that the DM is indifferent between the efficacious but toxic

option and the reference. This would yield two points of equal utility for the first linear
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equation. The second equation could be gained by considering the joint reference point

again but this time to enquire about a reduction in toxicity and to offset this against a

reduction in efficacy until there is indifference.

5.4.4 Stopping rule

The R2DT stopping rule involves specifying a threshold contour beyond which any treatment

with a lower utility would be considered unacceptable. Given that the full elicitation of the

parametric utility has already happened all that is needed for this elicitation is a single

point. The single point (x, y) corresponds with constants πUaddE = x and πUaddT = y given

in equation 5.20. A simple way of doing this is to consider an efficacy level that is seen as both

feasible and constitutes a significant step in improving outcomes for patients. The question

is then what is the maximum amount of toxicity that would be considered acceptable for

this level of efficacy? I.e. beyond this, toxicity would be considered unacceptable. The

value of utility at this point constitutes the utility threshold.

5.4.5 Consistency checks

The elicitation methods described in this section give the minimum number of simple lot-

teries or points of indifference that need to be elicited in order to obtain the parameters

of the utility function. At this stage a complete utility function and trial stopping rule

has been specified. The utility function by definition of a continuous attribute implies an

infinite number of other possible simple lotteries within the joint attribute space; some of

these should be checked to ensure consistency. It was suggested throughout the elicitation

that the magnitude of the difference between x1 and x3 in any lottery be kept quite small

in order to reduce elicitation bias. Using the specified parametric form for each marginal

utility allowed extrapolation beyond the range of the elicitation lottery. The implied lotter-

ies from the utility function should be considered, i.e when x < x1 and when x > x3 to see

if the parametric form is acceptable in regions beyond what was initially elicited.

The utility function was used in order to define the contour for utility stopping rule. This is a

particular feature that should be used for consistency checks. If the contour doesn’t describe

the bounds for acceptability this would imply that the utility function needs adjusting. This

process is described by an example. The joint utility space can be considered by four regions

defined for gains and losses for efficacy and toxicity. The issue identified in this example is
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when there is a gain in efficacy, and toxicity is excessive or a loss. The contour lines in this

region are too steep, and do not give a sensible contour for the stopping rules, as per the

motivating example given in Chapter 2.

The problem with contours too steep in one region could imply a number of small adjust-

ments to aspects of the utility (or combinations of) to make the contour a better approxima-

tion to the situation. One parameter that may need adjusting is the interaction component,

kET = (1 − kE − kT ), of the joint utility. The example would imply that it could be in-

sufficiently large; i.e. the low toxicity utility doesn’t interact sufficiently to counteract the

large efficacy utility. The adjustments of any parameter require revisiting the corresponding

initial elicitation to see if a shift in the elicited component of the lottery is acceptable. A

further possibility is the toxicity utility function needs adjusting. In this region the loss

aversion parameter, λT and the attitudes to risk αLT define the marginal toxicity function

for a loss. The example would imply that both parameters are too small. The attitude to

risk for efficacy, αGE , similarly may be too small. Adjusting any part of the utility function

will have an effect on other regions of the utility function and these should have further

checks.

If consistency checks suggest some aspect of the specified parametric form of the utility

function doesn’t hold then this may need changing. This should be possible to adapt as per

the general methods given in Chapter 4. While R2DT is proposed as a closer resemblance

to the general situation of dose finding in oncology, it is still a simplification. Consideration

should be given as to whether the utility is a close enough approximation to this general

situation; the purpose of the utility is to facilitate effective decision making rather than to

obtain a utility that perfectly captures the situation.

5.5 R2DT elicitation pilot study

The elicitation protocol prospectively specified in the previous section, to obtain the param-

eters of R2DT, has not previously been conducted in this setting. A novel and untried aspect

of this elicitation is that questions are framed around lotteries for uncertain outcomes. A

further consideration is that the proposed elicitation protocol has more questions than the

motivating example given in Section 2.5. This section reports on a real elicitation exercise

or pilot study to assess the feasibility of the proposed method. The key metrics to assess

128



Chapter 5. Decision theoretic dose finding 5.5. R2DT elicitation pilot study

in the pilot study are how easy the questions are to understand and the estimated time

required for a complete elicitation. Following the study, several practical improvements for

the elicitation design are proposed to enhance the design before its potential full real-world

implementation.

The minimum number of questions that need asking to obtain all the parameters of R2DT

is eight; three for each marginal utility function and a further 2 questions for the parameters

of Equation 5.13. This does not include the reference points or any subsequent consistency

checks. This is five more questions than the EffTox method used in the motivating example

and six more than the patient utility design detailed in Section 5.3.3.1. It was reported with

the motivating example that neither of these methods were capable of capturing the clinical

preferences. Whether the increased effort is justified, in an attempt to capture something

closer reflecting clinical judgment, links to any benefit in operating characteristics, reported

in Section 5.6.

To achieve the two aims of the pilot study only the elicitation of the efficacy marginal utility

function was planned to be captured. The questions to obtain the toxicity utility function

are of an identical structure, only relating to a different endpoint. The questions to capture

the joint parameters are similar to previous work in this setting. As such, this component

can already be concluded to be feasible; this is expanded upon in the discussion of this

chapter. An estimate of the total length of time to conduct the R2DT elicitation in its

entirety can also be obtained from the proposed study. Assuming that the elicitation of the

toxicity marginal utility function takes a similar amount of time.

To assess the feasibility of the R2DT elicitation protocol, the motivating example was

adapted. Dr. Chris Parish, a consultant haematologist and associate professor at the

University of Leeds Clinical Trials Research Unit, volunteered to attend a meeting to con-

duct the elicitation. The feasibility study is illustrated using a hypothetical example from

primary double-refractory multiple myeloma, based on the motivating example presented

in Chapter 2. In this context, the toxicity endpoint was defined as a binary indicator of

whether a dose-limiting toxicity (DLT) occurs within the first two four-week cycles. Efficacy

is measured by a binary variable indicating whether the patient achieves a ”very good partial

response” within the same time frame. Further details of the study, such as an intervention

and number of doses are not needed for the elicitation.
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5.5.1 Pilot study report

Study set up

The endpoints and population for the application study was agreed with the clinician prior

to the meeting. The clinician was also asked to consider what response rate, defined as the

percentage of patients achieving the efficacy endpoint, could be achieved for this patient

group. The meeting was planned to be in-person and conducted over an hour period. Dr.

Duncan Wilson, PhD supervisor, acted as an observer for the meeting. The actual elicitation

of any equal certainty equivalent, x2 ∼ ⟨x1, x3⟩, was conducted on a white board with a

visual representation as given in Figure 5.5 drawn out and specific values wiped out each

time.

x2 ∼

x1.5

x3.5

Figure 5.5: Pictorial representation of the lottery ⟨x1, x3⟩ ∼ x2

A short slide presentation was used to provide background on the purpose of the exercise.

It included the objectives of a dose-finding study in oncology and the study design detailed

in Section 2.1.1. The presentation covered endpoints and patient population, and explained

how an optimal dose for these endpoints could be defined as a payoff between the two. It

also showed how a contour plot was used under certainty to decide between doses. If the

elicitation was to be used in an actual trial, the introduction will likely be known from

preliminary discussions. A simple example of whether or not to play a lottery with a very

small chance of a winning a large amount was used to explain the idea of maximising

expected consequence, which was defined using money in the example. In a dose finding

setting, it was pointed out that a measure of consequence combining effects of efficacy and

toxicity was not easily defined. The primary purpose of the elicitation was to break this

down into a simpler set of questions to measure the consequence and aid in decision making.

The following lottery incorporating money was given to the clinician,

⟨−$5000, $5000⟩R⟨−$10, $10⟩. (5.46)

Given that both had the same expected return, the clinician was asked if there was a
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preference. The clinician agreed that there was a preference for the lottery incorporating

winning or losing $10. This was used to demonstrate that there wasn’t an objectively correct

way of assessing the answer to such a question and that choices made under uncertainty,

similar to those made in dose finding, needed to account for uncertainty. The definition

of a certainty equivalent was stated and that this was going to be the basis for all of the

questions today. The following practice example was obtained from the clinician.

⟨−$5000, $5000⟩ ∼ −$100. (5.47)

5.5.1.1 Elicitation exercise

Reference point

The current standard of care was estimated to be between 30%-40% for this group of patients

by the clinician. The question was asked that if the new drug had an identical toxicity profile

to the standard of care and had a known 40% response rate, would you choose the standard

of care or the new intervention? The response of the “new intervention” suggested that the

response rate for the standard of care was too high. Following some discussion a response

rate of 30% was concluded to be reflective of the standard of care for this group of patients

and designated as the reference point, πE .

A gain upon the reference

The clinician was asked to give a large but plausible improvement over the reference point

to inform levels of the equal lottery x1 = 30% and x3 = 60%. The clinician was asked

whether they would be happy giving a certainty equivalent, or whether an initial preference

comparison was preferred. The expected consequence of the lottery was chosen as an initial

preference comparison,

⟨30%, 60%⟩ R 45%. (5.48)

A preference for the certain 45% was given, suggesting that the clinician was risk averse

and the certainty equivalent is less than 45%. A further preference comparisons was used

with x2 = 40%, again with the certain prospect chosen to give

⟨30%, 60%⟩ ∼ 37.5%, (5.49)
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as a certainty equivalent.

A loss upon the reference

A question of a large and plausible reduction in efficacy was asked, giving x1 = 20% and

x3 = 30% as components of the lottery. More familiar with the process, the clinician

declared that they would be risk averse and would need something quite close to 30% to

justify the lottery. The following relation,

⟨20%, 30%⟩ ∼ 28%, (5.50)

was settled upon. At this point it was pointed out that the clinician was actually conveying

a risk seeking attitude rather than risk aversion. This sat uncomfortably, the clinician felt

that perhaps they had initially made an error in judgement and the certainty equivalent

was revised to

⟨20%, 30%⟩ ∼ 24%. (5.51)

A mixed lottery A lottery incorporating the extremes of the previous two lotteries was

used as a mixed lottery that would be used to obtain the loss aversion parameter.

⟨20%, 60%⟩ ∼ 45%. (5.52)

Consistency checks Three further lotteries were given to the clinician as consistency

checks. The gain lottery made x3 = 50%, the loss lottery x1 = 10% and the mixed lottery

incorporated the two new values x1 = 10% and x3 = 50%. The clinician was consistent

with attitudes to risk for these lotteries.

5.5.1.2 Feedback

The following feedback was provided by the clinician as answers to the set of questions

following the elicitation:

Did you understand the questions asked and how confident were you in answers given? I

was confident I understood what was being asked and reasonably confident of the answers

given. Considering potential losses is more mentally taxing, as everyday practice typically

focuses on improving patient outcomes.
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How variable do you think the values would be if the elicited from other clinicians? There

would be some variability among different clinicians. Some might be more willing to gamble

on potentially better treatments, while others would avoid treatments potentially worse

than the standard of care. This variability is less likely when considering treatments that

might be worse than the standard of care, as avoiding harm is a common principle in clinical

practice.

If repeating the exercise with a group of clinicians and patients do you think you could

arrive at a consensus if there was a difference in opinion? Including a diverse group of

carefully selected clinicians it would be feasible to reach a consensus. Involving patients in

the elicitation process could be valuable, though the complexity might be challenging for

some. Adjusting the framing of questions and more training could make the process more

accessible for patients.

Thoughts about answering a similar exercise for the toxicity endpoint? Repeating the exer-

cise for dose-limiting toxicities is definitely feasible and is potentially easier to think about.

5.5.2 Pilot study discussion

The internal consistency and feedback from the clinician were very positive. Suggesting that

the pilot study was a success with the conclusion that the method of elicitation proposed

in this thesis is feasible. The initial slides, practice, elicitation and consistency checks

was achieved in an hour meeting. Extrapolating would suggest that the elicitation could

be achieved in two hours. This is a more involved process than what has been proposed

elsewhere in the setting. There are a number of small enhancements to the elicitation

protocol that are detailed in subsequent paragraphs that were learnt through the exercise.

Training is important, the explanations were well understood, but the practice exercise was

easier to articulate than the lotteries in the elicitation. Speed and understanding of what

was happening seemed to improve as the meeting progressed. A further practice example

in the health domain would be useful before commencing. The pilot study only included

a single clinician, it would be useful to conduct elicitations with more than one clinician

and to conduct these separately. This would allow a better understanding of variability

and provide confidence that the utility function was reflective of the wider community. The

staged approach of preference relations in order to obtain a certainty equivalent was helpful
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in moving towards a point of indifference. The initial mixed lottery was too spread out, with

x1 = 20% and x3 = 60%, it would be preferable to consider different values to make these

closer together. Getting an idea of the reference from the literature prior to the meeting

would enable a comprehensive plan of lotteries. The values in the lottery were created in

the meeting in response to answers from the clinician. This was challenging, if feasible it

may be preferable to consult a clinician not involved in the elicitation so that these can be

pre-planned.

Elicitation in the loss domain was more challenging than mixed lotteries in the gain domain.

This was evidenced by the change in attitude to risk in the elicitation. The assessment

involved making judgements involving something that the clinician wouldn’t be comfortable

making in practice, i.e. settling for a guaranteed “loss” upon the reference. The lower option

in the initial lottery was 10% lower than the reference. Considering the initial certainty

equivalent of 28% and the latter value of 24%, in the context of the initial variability in the

reference rate, it would suggest that both values are close to clinical equivalence. A lottery

more spread apart would have been preferable. The idea of acting in a “Risk seeking”

manner, when pointed out, sat uncomfortably with the clinician and this seemed to have an

influence that the clinician perhaps feeling they “should” give a value below the reference,

to be acting in an appropriate risk averse manner. Upon reflection, the definitions are not

helpful in the elicitation. From revisiting what was said, it is plausible that the clinician

was framing the lottery with respect to “losses” rather than the percentage of patients

achieving the efficacy endpoint [154]. The clinician appeared to be seeking to minimise

losses, by giving a value closer to 30%, rather than accepting the consequences of a lottery.

If the lottery in Equation 5.52 changed so that the attribute measured a relative “loss” i.e.

πE − πE . So that x3 = 30% becomes 0%, x1 = 20% becomes 10% and x2 = 24% becomes

6% then the clinician is conveying a risk seeking attitude with respect to the loss attribute

as follows,

⟨10%, 0⟩ ∼ 6%. (5.53)

Given the increased difficulty in the loss domain there are a number of recommendations for

future work in eliciting the R2DT. Use a practice example involving losses. The statistician

should also avoid introducing terminology associated with attitudes to risk. The statistician

should also to be more prepared to explain the potential for different attitudes to risk,
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particularly in the loss domain should these discussion arise, without casting an ethical

judgement. Changing the order of the session by initially eliciting two mixed lotteries and

then conducting the lottery in the loss domain would allow for greater consistency checking

for the attitude to risk in the loss domain.

5.6 Simulation

The concept of using simulation to evaluate how well a proposed design works was intro-

duced in Chapter 2. The merits of the R2DT design are explored utilising simulation with

comparison against the efficacy toxicity utility design EffToxU, which was described earlier

in the chapter. The main hypothesis is to see if the R2DT design offers an improvement

over the more established designs and to confirm that having a consequence function that

closer resembles preferences in practice is beneficial. Secondary questions are to assess the

performance of the R2DT stopping rule.

The designs are applied to a fictitious example in primary double-refractory multiple myeloma

reflecting the motivating example given in Chapter 2. The toxicity endpoint in this setting

is a binary indicator of whether a DLT is experienced in the first two, four-week cycles.

Efficacy will be a binary variable as to whether the patient achieved a “very good partial

response” within the same time period. The trial will investigate four doses of an investi-

gational medicinal product with units mg/kg, D = (20, 30, 40, 50).

Fixed probability vectors π̃E(D) and π̃T (D) are specified for 10 clinically plausible scenarios

(Figures 5.6 and 5.7 ). The scenarios have been specified to understand the merits of the

R2DT as well as potential short comings, rather than being a favourable set of scenarios

where the R2DT design is likely to exclusively excel compared to other designs. Simulated

data comprising of efficacy and toxicity outcomes is generated for each scenario for all

patients at each dose for 2000 repeated trials. Outcomes for dummy patients are drawn

according to YE ∼ B(π̃E(dj)) and YT ∼ B(π̃T (dj)) where B is a Bernoulli distribution.

Different trial designs are applied to the simulated data with the performance of designs

assessed by operating characteristics, defined by the percentage of selection across the 2000

replicates and the average number of patients treated at each dose. An efficient simulation

technique was utilised avoiding repetition in model fitting, and is described fully in Appendix

A.
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The different trial designs in terms of the decision functions are described in subsequent

text and listed in Table 5.3. Utility contour plots for each design are plotted with stopping

rules in Figure 5.9. The trial will start at the 20mg/kg dose (the first dose level). Successive

cohorts of size c = 3 will be recruited to the trial until a pre-defined maximum sample size

of 45 is achieved or the trial stopped early. The impact of sample size on the R2DT design

is explored as part of the simulation study. The patient group is expected to have a 50%

response rate if treated outside of the trial with the standard of care established agent. The

target toxicity rate of 35% has been established.

The same probability model and priors have been specified for each of the different designs

to better understand the decision element. Efficacy and toxicity are modelled independently

as specified in Section 5.2.1.1. All of the different designs have prior hyper-parameters as

defined in Table 5.2. Priors have been specified according to a mean vector at each dose and

equivalent sample size (ESS), as per Section 5.2.1.1. The mean vector was chosen as the

mean of the first six scenarios; a range of ESS values were explored for the EffTox design

utilising EffTox software [155]. The chosen ESS was optimal from a range of 0.5 : 1.5 in

increments of 0.1 giving acceptable operating characteristics across all 10 scenarios.

5.6.1 R2DT simulation

The R2DT method, labelled R2DT (1) is used to make decisions at each stage. This is

specified using the marginal efficacy function, marginal toxicity function and joint utility

function..

The marginal toxicity utility is determined by Equation 5.10 with parameters as specified in

Table 5.1 and plotted in Figure 5.8A. The marginal toxicity utility is determined by Equation

5.11 with parameters as specified in Table 5.1 and plotted in Figure 5.8B. The joint utility

combines the two marginal utility functions following Equation 5.13, with constants specified

in Table 5.1. The joint utility function plotted in Figure 5.8C.

Admissibility rules for efficacy and toxicity are applied as per Equations 5.18 and 5.19, with

πaddE = 0.5, pE = 0.075, πaddT = 0.4 and pT = 0.075.
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Table 5.1: Short description of each of the different constants and interpretation specified
in R2DT (1)

Constant Description

Efficacy utility function 5.10

πE = 0.5 Reference point where attitude to risk changes. πE ≤ 0.5 is
described as a loss and πE > 0.5 a gain

λE = 2 Loss aversion parameter, specified so that losses are twice as
impactful as gains

αGE = 0.7 risk averse attitude to risk above the reference point (a gain)
αLE = 0.7 risk seeking attitude to risk below the reference point (a loss)

Toxicity utility function 5.11

πT = 0.35 Reference point where attitude to risk changes. πT ≥ 0.35 is
described as a loss and πT < 0.35 a gain

λT = 2 Loss aversion parameter, specified so that losses are twice as
impactful as gains

αGT = 0.7 risk averse attitude to risk below the reference point (a gain)
αLT = 0.7 risk seeking attitude to risk above the reference point (a loss)

Joint utility function 5.13

kE = 0.25 utility when πE = 1 and πT = 1
kT = 0.15 utility when πE = 0 and πT = 0
(1− kE − kT ) = 0.6 positive interaction between marginal utility functions

The comparison is the EffTox patient outcome utility design described earlier, labelled

EffToxU (2), with K(1, 1) = 0.25 and K(0, 0) = 0.15 (Figure 5.8D). Note from earlier this

a degenerate case of the R2DT design with K(1, 1) = kE = 0.25, K(0, 0) = kT = 0.15 and

uE = πE and uT = 1 − πT i.e λE = λT = αGE = αLE = αGT = αLT = 1, with πT and πE

becoming redundant in this special case due to the normalisation function. Stopping rules

are applied as per R2DT (1).

Table 5.3 summarises each of the different methods or decision functions including the stop-

ping rules. Contour plots for R2DT (1) and EffToxU (2) are plotted in Figure 5.8, all other

decision functions are plotted in Figure 5.9 and described in the proceeding paragraphs.

The effect of the R2DT stopping rules is explored by specifying the same utility function

as R2DT (1) and EffToxU (2) and adapting the stopping rule. R2DT (3) and EffToxU (5)

apply the utility admissibility rule. That is, at each decision point doses are excluded from

choosing the maximum utility if there is insufficient evidence that a dose has acceptable levels

of combined efficacy and toxicity. R2DT (4) applies the utility trial stopping rule. This

maximises the expected utility for all doses at each decision point with the trial stopping
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if all doses fail to satisfy the stopping rules given for R2DT (3) and EffToxU (5). The

threshold is pu = 0.1 for all designs according to Equation 5.20. For EffToxU (5) using the

specified utility function, u(0.5, 0.35) = 0.42. The value of 0.42 has been used to define the

acceptable contour. A number of contours are explored for R2DT since the stopping rule is

not directly comparable with the admissibility rules as part of the main comparison. Three

acceptability contours that have been specified for the R2DT design:

(i) u(uE(πE), u(uT (πT )) = u(0.5, 0.35) = 0.58 this has the additional label of (i).

(ii) u(0.7, 0.4) = 0.62 this has the additional label of (ii).

(iii) u(uE(πE), u(uT (πT )) = u(0.9, 0.4) = 0.69 this has the additional label of (iii).

The unacceptable contours for the admissibility rules are plotted in Figure 5.9. The ad-

missibility rules accept lower utility for R2DT (3i) and R2DT (3ii) in comparison to the

contour of R2DT (3iii), which declares higher utility unacceptable. Linking these differ-

ences to scenarios, some doses will be designated as acceptable according to one stopping

rule while another stopping rule may say they are not acceptable.

There are two sensitivity analyses applied to the comparative EffToxU method to demon-

strate that conclusions are not just the result of a poorly specified comparator. The design

with K(1, 1) = kE = 0.5 and K(0, 0) = kT = 0.3 has been stated as suitable in many set-

tings [78] and is specified in EffToxU (7). The ratio of of (kE : kT ) is the same as EffToxU

(2) but the magnitude of kE + kT = 0.8 is increased suggesting a smaller interaction for

kET from Equation 5.13. EffTox (6) applies the method of trade off contours [77], with

specification of the design contour corresponding with the EffToxU (2) equal utility contour

passing through the reference point defined in R2DT (1) and the points on the contour

which have no toxicity and perfect efficacy.

Subsequent pages contain all of the tables and figures associated with the set up of the

simulation study.
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Figure 5.6: Scenarios 1:6. Green line is the fixed probabilities for efficacy (π̃E(D)) and red
line for toxicity (π̃T (D)). Dashed lines represent the cut points for the admissibility rules
given in R2DT (1)
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Figure 5.7: Scenarios 7:10. Green line is the fixed probabilities for efficacy (π̃E(D)) and red
line for toxicity (π̃T (D)). Dashed lines represent the cut points for the admissibility rules
given in R2DT (1)
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Table 5.2: Listing of each of the probability and fixed trial parameters for simulation study

Notation Value Interpretation

D [20, 30, 40, 50] actual doses
x [−0.5,−0.1, 0.19, 0.41] transformed doses
x2 [0.25, 0.01, 0.04, 0.17] square of transformed doses
αT N(−3.17, 2.88) toxicity intercept
β1T N(−3.56, 2.79) toxicity slope
αE N(0.73, 2.44) efficacy intercept
β1E N(−0.11, 2.34) efficacy slope
β2E N(0, 0.2) efficacy squared slope
π̃E(D) [0.42, 0.57, 0.67, 0.72] Efficacy prior probabilities
π̃T (D) [0.14, 0.2, 0.26, 0.33] Toxicity prior probabilities

[1, 1] ESS toxicity and efficacy
20 Starting dose

N 45 Max Sample Size
3 Cohort Size
2000 Number of simulation repetitions

Table 5.3: Short description of each of the different methods in simulation study

Label Description

R2DT (1) Sigmoidal and inverted sigmoidal shaped efficacy and toxicity
marginal utility functions respectively. Joint utility kE = 0.25
and kT = 0.15. Admissibility rules applied as separate step
functions at each dose

EffToxU (2) Marginal utilities are linear. Joint utility and admissibility rules
applied as R2DT (1)

R2DT (3i) R2DT (1) but single admissibility rule based upon con-
tour,u(0.5,0.35)= 0.58

R2DT (3ii) as (i) but contour includes u(0.7,0.4)= 0.62

R2DT (3iii) as (i) but contour includes u(0.9,0.4)= 0.69

R2DT (4i) R2DT (1) but single trial stopping rule based upon u(0.5,0.35)=
0.58. All doses considered at each stage but trial stops if all
doses are admissible

R2DT (4ii) as (i) but contour includes U(0.7,0.4)= 0.62

R2DT (4iii) as (i) but contour includes U(0.9,0.4)= 0.69

EffToxU (5) EffToxU (2) single admissibility rule based upon u(0.5,0.35)=
0.42

EffTox (6) EffTox method applied defined from equal contour passing
u(0.5,0.35)= 0.42. Admissibility rules applied as separate step
functions at each dose

EffToxU (7) EffToxU (2) but with kE = 0.5 and kT = 0.3
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Figure 5.8: R2DT Utility function, Contours in the joint utility represent equal utility at
0.1,0.2,...,0.9 with the the point at guaranteed efficacy and no toxicity having utility of 1.
A,B,C depict R2DT (1) method in simulation study. D depicts joint utility function of
EffToxU (2)
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Figure 5.9: Simulation Utility Functions: Contours in the joint utility represent equal utility
at 0.1,0.2,...,0.9 with the the point at guaranteed efficacy and no toxicity having utility of 1.
Dashed lines are limits for admissibility rules. The contour plot for R2DT (3) and R2DT
(4) gives the stopping rule (i) in black (u(0.5, 0.35) = 0.58), (ii) in red (u(0.7, 0.4) = 0.62)
and (iii in Green (u(0.9, 0.4) = 0.69)
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5.6.2 Results

The results of the simulation study proposed in the previous section is presented in tables

and figures at the end of this section with interpretation and commentary preceding. Tables

and Figure present the following:

• Table 5.4 compares the operating characteristics between R2DT (1) and EffToxU (2)

for 10 scenarios.

• Figure 5.10 presents the probability of selection of each dose for Scenarios 2 - 7

forR2DT (1) and EffToxU (2) methods.

• Table 5.5 compares the the R2DT stopping rule as part of EffTox in EffToxU (5) and

EffToxU (2)

• Tables 5.6 and 5.7 compare different stopping rules for R2DT.

• Table 5.8 compares EffToxU (7) and EffTox (6), specified as a sensitivity for the

specification of EffToxU (2).

The R2DT (1) and EffToxU (2) designs are simulated and contrasted in 10 scenarios (Table

5.4). To define which dose is the most desirable in any given scenario doses are first excluded

by the stopping rule, i.e any dose that has greater than 40% toxicity or less than 50% efficacy

cannot be the optimum dose. The optimum dose is then defined by the maximum utility

value. Scenarios 1 & 2 have minimal toxicity and relatively steep efficacy with the 50mg/kg

dose optimal. Both methods have very similar percentage of selection and numbers of

patients treated at each dose. Scenarios 3 and 4 mirror the efficacy of scenarios 1 and 2 but

increase the toxicity with both methods indicating the 40mg/kg dose as optimal. R2DT

(1) recommends the optimum dose more often particularly in scenario 3.

Scenario 5 is steeply increasing with efficacy but is also very toxic, relative to the reference

point, with the 20mg/kg dose optimal according to R2DT (1) and the 50mg/kg dose ac-

cording to EffToxU (2). In this scenario EffToxU (2) has an equal utility with rounding to

2 decimal places at the 40mg/kg dose, without the rounding the 50mg/kg has a marginally

higher utility. In practice this means that in this scenario the doses are considered practi-

cally equivalent. But when combining with the toxicity admissibility rule however all but

the 20mg/kg for EffToxU(2). R2DT (1) chooses the lower two doses more often under
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this scenario. Scenario 6 is flat for efficacy with the 20mg/kg dose optimal according to

both utility functions, EffToxU (2) out performs R2DT (1) in terms of correct selection.

Scenario 7 has an efficacy plateau at the 40mg/kg dose; R2DT (1) strongly outperforms

in this scenario. Scenario 8 has a steep increase in toxicity with the 30mg/kg optimal.

R2DT (1) out performs EffToxU (2). Scenario 9 is specified with all doses overly toxic.

The two designs perform similarly despite EffToxU (2) suggesting the 40mg/kg is optimal

according to the utility function. The decision making process in this scenario is dominated

by the admissibility rules which are identical between the designs. Scenario 10 is minimally

efficacious for all doses with similar interpretation to the previous scenario.

The probability of selection of each dose for Scenarios 2 - 7 with the two methods is con-

trasted with sample size in Figure 5.10. In all scenarios after 12 patients the EffToxU (2) has

a greater proportion of simulated trials selecting the 50mg/kg dose as optimal suggesting

that the R2DT (1) method is initially more conservative in escalation. The probability of

correct selection of both methods increase with sample size. The choice of 45 patients was

deemed appropriate in this setting based upon the slower rate of improvement in accuracy

after 45 patients and is seen as a clinically realistic sample size for this number of doses and

setting.

Applying the R2DT stopping rule to EffTox in EffToxU (5), Tables 5.5, makes little dif-

ference to scenarios 1, 2, 3, 4, 6, 7 in comparison to EffToxU (2). In these scenarios some

of the lower dose levels may be unacceptable but the main driver of design performance is

the utility function, which is the same between the two designs. In Scenario 5 the contour

stipulates that all doses are acceptable and maximises more frequently to the 50mg/kg dose

which has a toxicity of 51%. Whether this is acceptable will need clinical judgement, if it

isn’t this would suggest that an inappropriate stopping rule has been specified. In scenarios

8, 9 and 10 the EffToxU (5) suggest that higher doses have acceptable toxicity given high

efficacy. Take scenario 9 for example it is only the 20mg/kg dose that has unacceptable

utility in contrast to all doses in EffToxU (2). This results in the alternative stopping rule

more frequently recommending higher doses and a lower proportion of trials stopping early

without selecting a dose. Similarly in scenario 10 the alternative stopping rule recommends

the 50mg/kg a high proportion of the time. Here the 50mg/kg is acceptable according to

the specified stopping rule. It is unlikely that a contour could be specified that accommo-
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dates a threshold for unacceptability. This set of simulations highlights the dependence of

the EffTox method on the stopping rules to restrict treating and recommending doses that

are overly toxic or (and) not efficacious enough.

Specification of different stopping rules for R2DT makes minimal difference in scenarios 1, 3

and 7, Table 5.6 and Table 5.7. In general in the other scenarios the admissibility stopping

rules (EffToxU (3)) are more likely to exclude doses and more likely to recommend stopping

the trial in contrast to the trial stopping rule in (EffToxU (4)). This is a comparison

between designs where the contour is the same, denoted by the same Roman numeral. The

difference is slightly larger in designs requiring the highest utility, (iii), but still less than

5%. This result is not unexpected as the only time that the decisions will differ is if a dose

maximises the expected utility but also meets the threshold to be classed as inadmissible.

In most instances the dose with the maximum expected utility will also be admissible. The

two designs will recommend stopping at the same point but clearly there are some different

decisions at earlier decision points.

In scenario 2 (R2DT (3iii)) recommends stopping with no dose selected in 18% of simu-

lations. This is because the utility of 0.73 is close to the stopping contour with utility of

0.69. In scenario 4 the trial is more likely to stop and select no dose with the alternative

stopping rules this is predominantly a reduced number of times selecting the 50mg/kg dose.

There appears to be a noticeable difference for Scenario 5, where the stopping rule based

upon utility for (R2DT (3i)) suggests that all doses are acceptable (Utility at each dose is

greater than the reference utility values) while the stopping rule based upon the individ-

ual probabilities would exclude all but the 20mg/kg dose. In scenarios 6, 8, 9 and 10 the

contour stopping rules are more likely to end the trial without recommending a dose. This

is proportional to how strict the stopping rule is with the designs needing a higher utility

stopping more often. The rules are not directly comparable, and in practice which one is

sensible would need clinical input for the given situation. If the utility approach cannot be

considered acceptable this would indicate that the contour needs changing.

EffToxU (7) and EffTox (6), specified as a sensitivity for the specification of EffToxU (2),

make little difference (Table 5.8). There is a difference in scenario 3 with EffToxU (7)

suggesting dose level 4 is optimal and selecting this dose level more often.

Subsequent pages contain all of the tables and figures associated with the operating charac-
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teristics of the simulation study. A summary of the key findings from each table and figure

is as follows:

• Table 5.4; the R2DT method can lead to considerable improvement in operating char-

acteristics in comparison to EffToxU.

• Figure 5.10; the R2DT method is initially more conservative in escalation than the

EffToxU method as configured.

• Table 5.5; the EffTox method has a high dependence on the stopping rules to restrict

treating and recommending doses that are overly toxic or (and) not efficacious enough.

Without them the method tends to recommend overly toxic doses.

• Tables 5.6 and 5.7; the R2DT method the new stopping rules are relatively consistent

wt.

• Table 5.8; the main conclusion for the R2DT method is consistent when comparing

with two alternative specifications of the comparator.
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Table 5.4: Comparison between RT2D and EffToxU: data of form: [utility at scenerio
probability (πE , πT )] percentage selection (average number of patients treated). Percentage
of trials with no dose selected abbreviated to NDS

Dose (mg/kg)

Method 20 30 40 50 NDS

Scenario 1 (πE , πT )
(0.3, 0.05) (0.57, 0.08) (0.75, 0.12) (0.85, 0.15)

R2DT (1) [0.41] 0.9 (5.1) [0.76] 4 (4.9) [0.85] 8.6 (5.8) [0.88] 86.2 (29.1) 0.3
EffToxU (2) [0.39] 1.5 (4.8) [0.60] 4.1 (5.3) [0.72] 3.8 (4.1) [0.77] 90.4 (30.8) 0.2

Scenario 2 (πE , πT )
(0.37, 0.05) (0.45, 0.08) (0.51, 0.12) (0.55, 0.15)

R2DT (1) [0.49] 14.1 (11.6) [0.58] 7 (6.2) [0.70] 8 (5.1) [0.73] 63.3 (20.6) 7.6
EffToxU (2) [0.45] 15.3 (11.6) [0.50] 5.8 (5.9) [0.53] 6.5 (4.2) [0.55] 65 (21.8) 7.4

Scenario 3 (πE , πT )
(0.3, 0.05) (0.57, 0.13) (0.75, 0.23) (0.85, 0.35)

R2DT (1) [0.41] 0.9 (4.9) [0.75] 11.7 (7.4) [0.80] 54.9 (16.4) [0.76] 32.2 (16.2) 0.4
EffToxU (2) [0.39] 1.2 (4.8) [0.57] 9 (6.7) [0.65] 29.2 (10.2) [0.64] 60.1 (23.1) 0.5

Scenario 4 (πE , πT )
(0.37, 0.05) (0.45, 0.13) (0.51, 0.23) (0.55, 0.35)

R2DT (1) [0.49] 14.7 (11.7) [0.57] 10.4 (7.1) [0.66] 28 (9.7) [0.63] 38.6 (14.6) 8.3
EffToxU (2) [0.45] 16.2 (11.8) [0.48] 13.3 (7.5) [0.48] 21.3 (7.4) [0.45] 40.5 (16.4) 8.7

Scenario 5 (πE , πT )
(0.55, 0.35) (0.75, 0.42) (0.85, 0.47) (0.9, 0.51)

R2DT (1) [0.63] 19.7 (8.5) [0.62] 33.2 (13.2) [0.60] 8.9 (6.5) [0.58] 29.8 (15.3) 8.3
EffToxU (2) [0.45] 14.8 (7.6) [0.54] 26.9 (11.4) [0.56] 15.6 (7.3) [0.56] 34.2 (17.2) 8.5

Scenario 6 (πE , πT )
(0.6, 0.26) (0.62, 0.35) (0.63, 0.42) (0.64, 0.48)

R2DT (1) [0.72] 31 (13.1) [0.67] 35.2 (16) [0.57] 13.5 (6.8) [0.52] 18.1 (8.6) 2.1
EffToxU (2) [0.53] 39.1 (14.8) [0.49] 24.6 (12.8) [0.46] 9.8 (5.8) [0.44] 24.3 (11.2) 2.1

Scenario 7 (πE , πT )
(0.26, 0.05) (0.6, 0.13) (0.7, 0.23) (0.7, 0.35)

R2DT (1) [0.37] 0.3 (4.4) [0.77] 15.2 (8) [0.78] 46.9 (14.9) [0.70] 36.9 (17.4) 0.8
EffToxU (2) [0.36] 0.9 (4.6) [0.59] 11.9 (7.4) [0.61] 27.9 (9.4) [0.54] 58.6 (23.4) 0.8

Scenario 8 (πE , πT )
(0.26, 0.18) (0.6, 0.35) (0.7, 0.5) (0.7, 0.62)

R2DT (1) [0.35] 3.4 (5.6) [0.66] 61.4 (18.2) [0.53] 22.2 (11) [0.44] 6.2 (8.8) 6.8
EffToxU (2) [0.32] 3.9 (6.3) [0.48] 50.8 (14.4) [0.46] 26.5 (10.6) [0.39] 11.8 (12.3) 7

Scenario 9 (πE , πT )
(0.55, 0.45) (0.75, 0.57) (0.85, 0.64) (0.9, 0.7)

R2DT (1) [0.51] 32.4 (13.1) [0.49] 10.8 (8.5) [0.46] 0.9 (4) [0.43] 2.9 (8.3) 52.9
EffToxU (2) [0.40] 29.4 (12.3) [0.45] 13.2 (8.9) [0.45] 2 (4.3) [0.43] 2.9 (8.6) 52.5

Scenario 10 (πE , πT )
(0.2, 0.05) (0.3, 0.08) (0.38, 0.12) (0.45, 0.15)

R2DT (1) [0.31] 1.6 (6.2) [0.40] 0.6 (3.7) [0.48] 0.9 (3.7) [0.57] 51.1 (21.3) 45.7
EffToxU (2) [0.31] 1.5 (6.1) [0.38] 0.9 (3.7) [0.43] 1.5 (3.6) [0.47] 51.1 (21.7) 44.9

148



Chapter 5. Decision theoretic dose finding 5.6. Simulation

Scenario 6 Scenario 7

Scenario 4 Scenario 5

Scenario 2 Scenario 3

12 18 24 30 36 42 48 54 60 12 18 24 30 36 42 48 54 60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

10

20

30

40

50

0

10

20

30

40

Maximum sample size

P
er

ce
nt

ag
e 

S
el

ec
tio

n

Method: R2DT (1) EffToxU (2)

Dose (mg/kg): NDS 20 30 40 50

Figure 5.10: Percentage selection by sample size: Each scenario is plotted separately with
solid lines representing R2DT (1) method, dashed lines EfftoxU (2) and the recommended
dose at the end of the trial by colour.
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Table 5.5: Evaluation of proposed stopping rules: data of form: [utility at scenerio prob-
ability (πE , πT )] percentage selection (average number of patients treated). Percentage of
trials with no dose selected abbreviated to NDS

Dose (mg/kg)

Method 20 30 40 50 NDS

Scenario 1 (πE , πT )
(0.3, 0.05) (0.57, 0.08) (0.75, 0.12) (0.85, 0.15)

EffToxU (2) [0.39] 1.5 (4.8) [0.60] 4.1 (5.3) [0.72] 3.8 (4.1) [0.77] 90.4 (30.8) 0.2
EffToxU (5) [0.39] 3.2 (5.3) [0.60] 4 (5.2) [0.72] 3.6 (4.1) [0.77] 89.1 (30.4) 0

Scenario 2 (πE , πT )
(0.37, 0.05) (0.45, 0.08) (0.51, 0.12) (0.55, 0.15)

EffToxU (2) [0.45] 15.3 (11.6) [0.50] 5.8 (5.9) [0.53] 6.5 (4.2) [0.55] 65 (21.8) 7.4
EffToxU (5) [0.45] 24.9 (13.2) [0.50] 6.2 (6) [0.53] 5 (3.9) [0.55] 63.5 (21.6) 0.5

Scenario 3 (πE , πT )
(0.3, 0.05) (0.57, 0.13) (0.75, 0.23) (0.85, 0.35)

EffToxU (2) [0.39] 1.2 (4.8) [0.57] 9 (6.7) [0.65] 29.2 (10.2) [0.64] 60.1 (23.1) 0.5
EffToxU (5) [0.39] 2.9 (5.2) [0.57] 8.8 (6.6) [0.65] 28.3 (10.1) [0.64] 60 (23) 0.1

Scenario 4 (πE , πT )
(0.37, 0.05) (0.45, 0.13) (0.51, 0.23) (0.55, 0.35)

EffToxU (2) [0.45] 16.2 (11.8) [0.48] 13.3 (7.5) [0.48] 21.3 (7.4) [0.45] 40.5 (16.4) 8.7
EffToxU (5) [0.45] 28.2 (14.1) [0.48] 13.5 (7.5) [0.48] 17.6 (6.7) [0.45] 38.4 (16) 2.2

Scenario 5 (πE , πT )
(0.55, 0.35) (0.75, 0.42) (0.85, 0.47) (0.9, 0.51)

EffToxU (2) [0.45] 14.8 (7.6) [0.54] 26.9 (11.4) [0.56] 15.6 (7.3) [0.56] 34.2 (17.2) 8.5
EffToxU (5) [0.45] 8.1 (6.4) [0.54] 20.6 (10.4) [0.56] 16.6 (7.8) [0.56] 54.6 (20.4) 0

Scenario 6 (πE , πT )
(0.6, 0.26) (0.62, 0.35) (0.63, 0.42) (0.64, 0.48)

EffToxU (2) [0.53] 39.1 (14.8) [0.49] 24.6 (12.8) [0.46] 9.8 (5.8) [0.44] 24.3 (11.2) 2.1
EffToxU (5) [0.53] 38 (14.6) [0.49] 22.8 (12.6) [0.46] 8.6 (5.6) [0.44] 29.8 (12) 0.8

Scenario 7 (πE , πT )
(0.26, 0.05) (0.6, 0.13) (0.7, 0.23) (0.7, 0.35)

EffToxU (2) [0.36] 0.9 (4.6) [0.59] 11.9 (7.4) [0.61] 27.9 (9.4) [0.54] 58.6 (23.4) 0.8
EffToxU (5) [0.36] 2.2 (4.9) [0.59] 11.8 (7.4) [0.61] 27.1 (9.3) [0.54] 58.6 (23.3) 0.4

Scenario 8 (πE , πT )
(0.26, 0.18) (0.6, 0.35) (0.7, 0.5) (0.7, 0.62)

EffToxU (2) [0.32] 3.9 (6.3) [0.48] 50.8 (14.4) [0.46] 26.5 (10.6) [0.39] 11.8 (12.3) 7
EffToxU (5) [0.32] 5.9 (6.5) [0.48] 28.3 (10.8) [0.46] 24.1 (10.2) [0.39] 35.7 (16.5) 5.9

Scenario 9 (πE , πT )
(0.55, 0.45) (0.75, 0.57) (0.85, 0.64) (0.9, 0.7)

EffToxU (2) [0.40] 29.4 (12.3) [0.45] 13.2 (8.9) [0.45] 2 (4.3) [0.43] 2.9 (8.6) 52.5
EffToxU (5) [0.40] 13.7 (8.6) [0.45] 20.8 (9.3) [0.45] 13.4 (6.6) [0.43] 48.9 (19.9) 3.2

Scenario 10 (πE , πT )
(0.2, 0.05) (0.3, 0.08) (0.38, 0.12) (0.45, 0.15)

EffToxU (2) [0.31] 1.5 (6.1) [0.38] 0.9 (3.7) [0.43] 1.5 (3.6) [0.47] 51.1 (21.7) 44.9
EffToxU (5) [0.31] 6.1 (8) [0.38] 1.9 (3.9) [0.43] 2.4 (3.5) [0.47] 77.8 (26.4) 11.8
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Table 5.6: Stopping rules of R2DT: data of form: [utility at scenerio probability (πE , πT )]
percentage selection (average number of patients treated). Percentage of trials with no dose
selected abbreviated to NDS

Dose (mg/kg)

Method 20 30 40 50 NDS

Scenario 1 (πE , πT )
(0.3, 0.05) (0.57, 0.08) (0.75, 0.12) (0.85, 0.15)

R2DT (1) [0.41] 0.9 (5.3) [0.76] 4.1 (5) [0.85] 8.7 (5.8) [0.88] 86.2 (29) 0.1
R2DT (3i) [0.41] 1.7 (5.5) [0.76] 4.3 (5) [0.85] 8.1 (5.8) [0.88] 85.7 (28.6) 0.3
R2DT (3ii) [0.41] 1.5 (5.3) [0.76] 4 (5) [0.85] 8.2 (5.8) [0.88] 85.9 (28.8) 0.4
R2DT (3iii) [0.41] 0.9 (5.1) [0.76] 4 (4.9) [0.85] 8.1 (5.8) [0.88] 83.9 (28.1) 3
R2DT (4i) [0.41] 3.4 (5.8) [0.76] 4 (4.9) [0.85] 8 (5.8) [0.88] 84.4 (28.5) 0.2
R2DT (4ii) [0.41] 3.2 (5.7) [0.76] 4 (4.9) [0.85] 8 (5.8) [0.88] 84.4 (28.4) 0.4
R2DT (4iii) [0.41] 3.2 (5.7) [0.76] 4 (4.9) [0.85] 8 (5.7) [0.88] 82 (27.6) 2.9

Scenario 2 (πE , πT )
(0.37, 0.05) (0.45, 0.08) (0.51, 0.12) (0.55, 0.15)

R2DT (1) [0.49] 16 (12.2) [0.58] 7.2 (6.3) [0.70] 7.8 (5) [0.73] 64.5 (20.6) 4.5
R2DT (3i) [0.49] 18 (12.6) [0.58] 7 (6.2) [0.70] 7 (5) [0.73] 62.6 (20.1) 5.3
R2DT (3ii) [0.49] 15.3 (11.8) [0.58] 6.7 (6.1) [0.70] 7 (5) [0.73] 62.4 (20.1) 8.6
R2DT (3iii) [0.49] 11.7 (10.8) [0.58] 6.6 (6) [0.70] 7.2 (4.9) [0.73] 56.5 (18.6) 18
R2DT (4i) [0.49] 21.4 (13.1) [0.58] 6.8 (6.1) [0.70] 6.8 (4.9) [0.73] 60.7 (19.8) 4.4
R2DT (4ii) [0.49] 19.9 (12.8) [0.58] 6.7 (6.1) [0.70] 6.7 (4.9) [0.73] 59.4 (19.5) 7.3
R2DT (4iii) [0.49] 18.1 (12.4) [0.58] 6.6 (6.1) [0.70] 6.7 (4.7) [0.73] 53 (17.6) 15.6

Scenario 3 (πE , πT )
(0.3, 0.05) (0.57, 0.13) (0.75, 0.23) (0.85, 0.35)

R2DT (1) [0.41] 0.9 (5) [0.75] 11.7 (7.4) [0.80] 54.9 (16.3) [0.76] 32.4 (16.2) 0.1
R2DT (3i) [0.41] 1 (5.2) [0.75] 12.5 (7.4) [0.80] 54.9 (16.3) [0.76] 30.9 (16) 0.7
R2DT (3ii) [0.41] 0.9 (5) [0.75] 12 (7.4) [0.80] 55.2 (16.3) [0.76] 30.6 (15.9) 1.2
R2DT (3iii) [0.41] 0.6 (4.7) [0.75] 11.8 (7.4) [0.80] 53.9 (16) [0.76] 28.5 (15.2) 5.1
R2DT (4i) [0.41] 2.5 (5.4) [0.75] 12 (7.4) [0.80] 54.1 (16.1) [0.76] 30.6 (15.9) 0.7
R2DT (4ii) [0.41] 2.4 (5.4) [0.75] 12 (7.4) [0.80] 53.9 (16.1) [0.76] 30.4 (15.8) 1.2
R2DT (4iii) [0.41] 2.1 (5.3) [0.75] 11.9 (7.4) [0.80] 52.6 (15.8) [0.76] 28.4 (14.9) 4.9

Scenario 4 (πE , πT )
(0.37, 0.05) (0.45, 0.13) (0.51, 0.23) (0.55, 0.35)

R2DT (1) [0.49] 17.8 (12.6) [0.57] 10.9 (7.3) [0.66] 27.4 (9.4) [0.63] 39 (14.8) 5
R2DT (3i) [0.49] 20.2 (12.8) [0.57] 9.7 (7) [0.66] 25.1 (9) [0.63] 34.6 (13.9) 10.4
R2DT (3ii) [0.49] 17.4 (12) [0.57] 9.2 (6.9) [0.66] 24.6 (9) [0.63] 33.1 (13.6) 15.8
R2DT (3iii) [0.49] 14 (10.9) [0.57] 8.7 (6.8) [0.66] 21.4 (8.4) [0.63] 25.7 (11.9) 30.2
R2DT (4i) [0.49] 24.5 (13.6) [0.57] 9.4 (7) [0.66] 23.8 (8.8) [0.63] 32.8 (13.4) 9.5
R2DT (4ii) [0.49] 23.3 (13.3) [0.57] 9.2 (6.9) [0.66] 23 (8.7) [0.63] 31 (13) 13.6
R2DT (4iii) [0.49] 20.8 (12.8) [0.57] 8.8 (6.8) [0.66] 21.2 (8.2) [0.63] 23.8 (11) 25.5

Scenario 5 (πE , πT )
(0.55, 0.35) (0.75, 0.42) (0.85, 0.47) (0.9, 0.51)

R2DT (1) [0.63] 19.2 (8.4) [0.62] 33.8 (13.2) [0.60] 9.1 (6.6) [0.58] 33.1 (16) 4.8
R2DT (3i) [0.63] 15.3 (7.8) [0.62] 29 (12.4) [0.60] 9.6 (6.8) [0.58] 40.6 (16.9) 5.6
R2DT (3ii) [0.63] 15.2 (7.7) [0.62] 28.4 (12.1) [0.60] 9 (6.7) [0.58] 36.2 (16.2) 11.1
R2DT (3iii) [0.63] 13.2 (7.4) [0.62] 23.6 (11.3) [0.60] 7.7 (6.4) [0.58] 26.1 (14.3) 29.4
R2DT (4i) [0.63] 14.2 (7.5) [0.62] 30.1 (12.6) [0.60] 9.8 (6.8) [0.58] 40.7 (16.9) 5.2
R2DT (4ii) [0.63] 13.9 (7.5) [0.62] 29.5 (12.5) [0.60] 9.4 (6.8) [0.58] 36.9 (16.1) 10.2
R2DT (4iii) [0.63] 11.7 (7) [0.62] 26 (11.9) [0.60] 8.4 (6.5) [0.58] 27.5 (14.3) 26.4
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Table 5.7: Stopping rules of R2DT: data of form: [utility at scenerio probability (πE , πT )]
percentage selection (average number of patients treated). Percentage of trials with no dose
selected abbreviated to NDS

Dose (mg/kg)

Method 20 30 40 50 NDS

Scenario 6 (πE , πT )
(0.6, 0.26) (0.62, 0.35) (0.63, 0.42) (0.64, 0.48)

R2DT (1) [0.72] 30.6 (13.2) [0.67] 35.1 (16) [0.57] 13.8 (6.8) [0.52] 19.4 (8.9) 1
R2DT (3i) [0.72] 30 (13) [0.67] 33.1 (15.6) [0.57] 12.3 (6.5) [0.52] 17.8 (8.4) 6.7
R2DT (3ii) [0.72] 30 (12.8) [0.67] 32.3 (15.3) [0.57] 11 (6.3) [0.52] 15.7 (8) 11.1
R2DT (3iii) [0.72] 27.6 (12.1) [0.67] 27.8 (14.3) [0.57] 9.2 (6) [0.52] 11.3 (7.1) 24.1
R2DT (4i) [0.72] 29.3 (12.9) [0.67] 32.9 (15.6) [0.57] 12.4 (6.5) [0.52] 18.6 (8.4) 6.8
R2DT (4ii) [0.72] 28.1 (12.5) [0.67] 32.7 (15.6) [0.57] 12.1 (6.5) [0.52] 16.4 (7.9) 10.6
R2DT (4iii) [0.72] 24.6 (11.6) [0.67] 31.6 (15.3) [0.57] 10.5 (6.1) [0.52] 10.9 (6.7) 22.4

Scenario 7 (πE , πT )
(0.26, 0.05) (0.6, 0.13) (0.7, 0.23) (0.7, 0.35)

R2DT (1) [0.37] 0.4 (4.5) [0.77] 15 (8) [0.78] 46.8 (14.9) [0.70] 37.4 (17.5) 0.3
R2DT (3i) [0.37] 0.6 (4.6) [0.77] 14.4 (7.8) [0.78] 46.2 (14.9) [0.70] 37.5 (17.3) 1.4
R2DT (3ii) [0.37] 0.5 (4.5) [0.77] 14.2 (7.8) [0.78] 46.1 (14.9) [0.70] 36.8 (17.2) 2.4
R2DT (3iii) [0.37] 0.5 (4.4) [0.77] 14.5 (7.8) [0.78] 44.9 (14.7) [0.70] 33.2 (16.1) 6.9
R2DT (4i) [0.37] 1.3 (4.8) [0.77] 14.4 (7.8) [0.78] 45.9 (14.8) [0.70] 37.1 (17.2) 1.4
R2DT (4ii) [0.37] 1.1 (4.8) [0.77] 14.3 (7.8) [0.78] 45.8 (14.8) [0.70] 36.6 (17.1) 2.2
R2DT (4iii) [0.37] 1.1 (4.7) [0.77] 14.2 (7.7) [0.78] 44.9 (14.5) [0.70] 32.8 (15.9) 7

Scenario 8 (πE , πT )
(0.26, 0.18) (0.6, 0.35) (0.7, 0.5) (0.7, 0.62)

R2DT (1) [0.35] 3.7 (5.7) [0.66] 59.4 (17.8) [0.53] 25 (11.3) [0.44] 7.9 (9.5) 4.1
R2DT (3i) [0.35] 2.5 (5.3) [0.66] 43.8 (15.4) [0.53] 18.6 (10) [0.44] 7.6 (8.6) 27.6
R2DT (3ii) [0.35] 1.9 (5.3) [0.66] 41.3 (14.9) [0.53] 14.1 (9.1) [0.44] 4.4 (7.5) 38.2
R2DT (3iii) [0.35] 2.1 (5) [0.66] 28.3 (12.4) [0.53] 7.6 (7.6) [0.44] 2.5 (6.1) 59.7
R2DT (4i) [0.35] 2.8 (5.3) [0.66] 41.3 (15.1) [0.53] 21.9 (10.5) [0.44] 9.2 (8.8) 24.8
R2DT (4ii) [0.35] 2.2 (5.2) [0.66] 39.4 (14.7) [0.53] 18 (9.8) [0.44] 5.7 (7.7) 34.8
R2DT (4iii) [0.35] 1.2 (4.8) [0.66] 32 (13.2) [0.53] 10.8 (8.1) [0.44] 2 (5.9) 54

Scenario 9 (πE , πT )
(0.55, 0.45) (0.75, 0.57) (0.85, 0.64) (0.9, 0.7)

R2DT (1) [0.51] 39.6 (14.2) [0.49] 13.6 (9.1) [0.46] 1.3 (4.1) [0.43] 4.2 (9.7) 41.2
R2DT (3i) [0.51] 21.1 (10.4) [0.49] 12.6 (8.4) [0.46] 1.8 (4.3) [0.43] 10.3 (11.5) 54.2
R2DT (3ii) [0.51] 16.7 (9.6) [0.49] 8.6 (7.4) [0.46] 1.1 (4.1) [0.43] 5.8 (9.5) 67.8
R2DT (3iii) [0.51] 8.6 (7.8) [0.49] 3.4 (6) [0.46] 0.7 (3.8) [0.43] 1.8 (7.2) 85.6
R2DT (4i) [0.51] 17.2 (9.5) [0.49] 18.2 (9.4) [0.46] 2.5 (4.4) [0.43] 13.6 (11.9) 48.5
R2DT (4ii) [0.51] 13.8 (8.6) [0.49] 14.3 (8.8) [0.46] 1.8 (4.2) [0.43] 7.6 (9.9) 62.5
R2DT (4iii) [0.51] 7.8 (7.2) [0.49] 7.8 (7.3) [0.46] 0.7 (3.8) [0.43] 2.5 (7.3) 81.2

Scenario 10 (πE , πT )
(0.2, 0.05) (0.3, 0.08) (0.38, 0.12) (0.45, 0.15)

R2DT (1) [0.31] 2.3 (6.6) [0.40] 1 (3.8) [0.48] 0.9 (3.7) [0.57] 60.5 (23.3) 35.3
R2DT (3i) [0.31] 2 (6.6) [0.40] 0.5 (3.7) [0.48] 1 (3.6) [0.57] 59.4 (22.4) 37.2
R2DT (3ii) [0.31] 1.3 (6.2) [0.40] 0.6 (3.6) [0.48] 0.9 (3.6) [0.57] 50.2 (20.5) 46.9
R2DT (3iii) [0.31] 1.2 (5.5) [0.40] 0.2 (3.6) [0.48] 0.9 (3) [0.57] 32.7 (14.8) 65
R2DT (4i) [0.31] 2.9 (7.1) [0.40] 0.6 (3.6) [0.48] 1.2 (3.6) [0.57] 60.5 (22.4) 34.8
R2DT (4ii) [0.31] 2.4 (6.8) [0.40] 0.5 (3.6) [0.48] 1.2 (3.6) [0.57] 51.6 (20.3) 44.2
R2DT (4iii) [0.31] 2.1 (6.5) [0.40] 0.5 (3.6) [0.48] 1.2 (3.1) [0.57] 34.6 (14.6) 61.5
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Table 5.8: Sensitivity of EffToxU: data of form: [utility at scenario probability (πE , πT )]
percentage selection (average number of patients treated). Percentage of trials with no dose
selected abbreviated to NDS

Dose (mg/kg)

Method 20 30 40 50 NDS

Scenario 1 (πE , πT )
(0.3, 0.05) (0.57, 0.08) (0.75, 0.12) (0.85, 0.15)

EffToxU (2) [0.39] 1.5 (4.8) [0.60] 4.1 (5.3) [0.72] 3.8 (4.1) [0.77] 90.4 (30.8) 0.2
EffTox (6) [0.55] 1.4 (4.8) [0.71] 4.2 (5.4) [0.81] 3.5 (4.1) [0.85] 90.6 (30.6) 0.2
EffToxU (7) [0.49] 1.5 (4.8) [0.67] 4.4 (5.3) [0.77] 2.2 (3.7) [0.82] 91.6 (31.2) 0.2

Scenario 2 (πE , πT )
(0.37, 0.05) (0.45, 0.08) (0.51, 0.12) (0.55, 0.15)

EffToxU (2) [0.45] 15.3 (11.6) [0.50] 5.8 (5.9) [0.53] 6.5 (4.2) [0.55] 65 (21.8) 7.4
EffTox (6) [0.59] 15.4 (11.7) [0.64] 5.9 (6.1) [0.66] 5.9 (4) [0.68] 65.6 (21.8) 7.2
EffToxU (7) [0.54] 15.3 (11.4) [0.58] 6 (6) [0.61] 6.6 (4.2) [0.62] 65 (21.9) 7.1

Scenario 3 (πE , πT )
(0.3, 0.05) (0.57, 0.13) (0.75, 0.23) (0.85, 0.35)

EffToxU (2) [0.39] 1.2 (4.8) [0.57] 9 (6.7) [0.65] 29.2 (10.2) [0.64] 60.1 (23.1) 0.5
EffTox (6) [0.55] 1 (4.8) [0.69] 8.4 (6.6) [0.76] 31 (10.6) [0.75] 59.2 (22.9) 0.4
EffToxU (7) [0.49] 1.1 (4.8) [0.64] 7.3 (6.2) [0.72] 19.9 (8) [0.73] 71.2 (25.9) 0.5

Scenario 4 (πE , πT )
(0.37, 0.05) (0.45, 0.13) (0.51, 0.23) (0.55, 0.35)

EffToxU (2) [0.45] 16.2 (11.8) [0.48] 13.3 (7.5) [0.48] 21.3 (7.4) [0.45] 40.5 (16.4) 8.7
EffTox (6) [0.59] 16.2 (11.8) [0.62] 14.1 (7.7) [0.62] 21.3 (7.5) [0.60] 39.7 (16.1) 8.6
EffToxU (7) [0.54] 17.2 (11.9) [0.56] 13.2 (7.4) [0.56] 18.4 (6.8) [0.54] 43 (17) 8.2

Scenario 5 (πE , πT )
(0.55, 0.35) (0.75, 0.42) (0.85, 0.47) (0.9, 0.51)

EffToxU (2) [0.45] 14.8 (7.6) [0.54] 26.9 (11.4) [0.56] 15.6 (7.3) [0.56] 34.2 (17.2) 8.5
EffTox (6) [0.60] 14.1 (7.6) [0.67] 27.7 (11.3) [0.69] 15.3 (7.5) [0.69] 34.4 (17.1) 8.5
EffToxU (7) [0.54] 12.4 (7.2) [0.64] 26.2 (10.7) [0.67] 14.5 (7.1) [0.69] 38.6 (18.6) 8.3

Scenario 6 (πE , πT )
(0.6, 0.26) (0.62, 0.35) (0.63, 0.42) (0.64, 0.48)

EffToxU (2) [0.53] 39.1 (14.8) [0.49] 24.6 (12.8) [0.46] 9.8 (5.8) [0.44] 24.3 (11.2) 2.1
EffTox (6) [0.66] 39.1 (14.8) [0.63] 24.8 (12.8) [0.61] 9.2 (5.8) [0.58] 25 (11.3) 2
EffToxU (7) [0.61] 40.6 (15.7) [0.59] 21.4 (11.8) [0.56] 9.7 (5.5) [0.54] 26 (11.6) 2.1

Scenario 7 (πE , πT )
(0.26, 0.05) (0.6, 0.13) (0.7, 0.23) (0.7, 0.35)

EffToxU (2) [0.36] 0.9 (4.6) [0.59] 11.9 (7.4) [0.61] 27.9 (9.4) [0.54] 58.6 (23.4) 0.8
EffTox (6) [0.52] 0.9 (4.6) [0.71] 12.7 (7.5) [0.73] 27.4 (9.4) [0.68] 58.4 (23.4) 0.7
EffToxU (7) [0.46] 0.9 (4.7) [0.66] 10.4 (6.8) [0.69] 20.2 (7.8) [0.64] 67.7 (25.5) 0.8

Scenario 8 (πE , πT )
(0.26, 0.18) (0.6, 0.35) (0.7, 0.5) (0.7, 0.62)

EffToxU (2) [0.32] 3.9 (6.3) [0.48] 50.8 (14.4) [0.46] 26.5 (10.6) [0.39] 11.8 (12.3) 7
EffTox (6) [0.49] 4.3 (6.6) [0.62] 50.3 (14.4) [0.60] 26 (10.4) [0.54] 12 (12.4) 7.2
EffToxU (7) [0.42] 4.7 (6.4) [0.57] 42.8 (12.9) [0.57] 30.8 (10.3) [0.52] 14.6 (14.2) 7.2

Scenario 9 (πE , πT )
(0.55, 0.45) (0.75, 0.57) (0.85, 0.64) (0.9, 0.7)

EffToxU (2) [0.40] 29.4 (12.3) [0.45] 13.2 (8.9) [0.45] 2 (4.3) [0.43] 2.9 (8.6) 52.5
EffTox (6) [0.55] 30 (12.5) [0.59] 13.2 (8.8) [0.60] 1.6 (4.3) [0.58] 3 (8.6) 52.1
EffToxU (7) [0.50] 28.9 (11.9) [0.57] 15 (9.1) [0.59] 2 (4.5) [0.59] 3.1 (8.8) 51

Scenario 10 (πE , πT )
(0.2, 0.05) (0.3, 0.08) (0.38, 0.12) (0.45, 0.15)

EffToxU (2) [0.31] 1.5 (6.1) [0.38] 0.9 (3.7) [0.43] 1.5 (3.6) [0.47] 51.1 (21.7) 44.9
EffTox (6) [0.49] 1.7 (6.1) [0.54] 0.7 (3.7) [0.58] 1.8 (3.6) [0.61] 51.1 (21.7) 44.8
EffToxU (7) [0.42] 1.4 (6.1) [0.48] 0.8 (3.7) [0.52] 1.8 (3.6) [0.56] 51.2 (21.7) 44.9
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5.7 Discussion

The R2DT method applies novel utility functions based upon reference dependence and

attitudes to risk for both efficacy and toxicity attributes. Efficacy and toxicity utility are

combined by consideration of payoffs and interaction effects to give a joint utility used to

determine dosing at each stage. A method to elicit the values of the utility function by the

consideration of lotteries has been proposed. The design has been compared to EffToxU,

an established method, which has been shown to be a special case of R2DT, and found

some initial evidence that the method could lead to considerable improvement in operating

characteristics. A stopping rule based upon a contour from the utility function has been

proposed which may closer resemble stopping rule preferences that consider both efficacy

and toxicity simultaneously.

The R2DT design splits the specification of the utility function into separate attributes and

whether levels of the attribute are a gain or a loss upon a reference. The approach is an

example of a reference dependent utility function similar to prospect theory; a theory of

behavioral economics and finance [148]. The two attributes are combined by consideration

of how they interact according to utility independence axioms. The use of references in the

marginal utility functions allows us to consider the joint utility from four distinct regions

defined from the combinations of gain and loss for each of the attributes. In the region of

a gain in both toxicity and efficacy the utility function takes a similar form to previously

proposed designs. When one of the attributes is a loss, this attribute dominates the utility

function and further improvement in the other attribute adds only very marginally to the

overall utility function. The interaction component of the joint utility and the loss aver-

sion parameters are predominantly responsible for this effect. The change in effect of one

attribute conditional on the level of the other captures the motivating clinical example in

Chapter 2. Where a steep contour was specified with the issue that doses with high efficacy

and unacceptable toxicity were considered equivalent to doses with acceptable efficacy and

toxicity profiles.

Admissibility criteria are typically necessary components of trial design in this setting to

prevent unethical choices for patients. Step functions that require a level of evidence that

one of the attributes is below or above a fixed probability before a dose is excluded are used

to meet this aim. This is an important part of the design process, whereby the design will
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push for higher doses until there is strong level of evidence for the dose to be excluded [41].

The EffTox design doesn’t perform well when the admissibility rules are poorly specified.

This was seen when applying the R2DT stopping rule to the EffTox utility design. The

design process is a balance between exploring untried doses by defining steep contours and

preventing unethical choices for patients with admissibility rules. The most extreme attitude

to risk in each domain for R2DT (αGE = αLE = αGT = αLT = 0) creates a step function at

the reference point. The functional form of the utility is now the same as the admissibility

rules. Sigmoidal utilities are a more coherent and less ad-hoc way of expressing the basic

type of preferences that people try to express when combining admissibility rules with risk

and loss neutral utilities. The intention of the R2DT is to shift the focus toward specification

of the utility function that reflects unethical choices for patients.

The contour stopping method appeared to be similarly effective to the more conventional

stopping rules. The major difference was that the conventional stopping rules and the

variations of the contours were declaring different things as acceptable or not. A difference

with the contour is efficacy and toxicity are being considered at the same time. A threshold

of acceptable toxicity depends upon the level of efficacy with more toxicity being acceptable

for higher efficacy. We can see with the R2DT 3(iii) design particularly that the specified

utility contour can still be quite flat, allowing approximately an additional 10% toxicity for

a jump between 60% and 100% efficacy. The use of the single stopping rule is desirable

as it simplifies the design process to specifying the utility function that reflects clinical

preferences and one additional parameter to be tuned. There was a small difference between

the trial stopping rule and the admissibility rule which excluded individual doses from the

decisions. This highlights for the R2DT design that it is the utility function that is driving

the decisions. From a theoretic point of view it is preferable to allow the utility function to

dictate decisions, in practice however a safety review committee would be provided with all

information in order to make a decision that does not harm patients.

There was some variability considered when trying to elicit the reference points. The elic-

itation procedure was designed to minimise any bias associated with determining a single

value. The Bayesian decision theoretic way of thinking about uncertainty is to consider the

parameter as something that is unknown. The alternative efficacy rate for example could

be considered an unknown state of nature with an associated distribution. The parameter
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could be updated through Bayes theorem as a control arm within the trial or be given a

distribution as a prior that reflects the uncertainty. The R2DT utility function could have

the same functional form but the reference parameter for the marginal efficacy rate would

now be the uncertain parameter. The design has good operating characteristics and the

formal elicitation process is not strictly necessary if we consider the design to have a set of

components that need tuning through simulation and less formal clinical consultation; this is

a similar approach to a practical implementation of the EffTox method [41]. An application

of the method is needed for the R2DT design to establish whether the functional form of

R2DT sufficiently captures clinical preferences. It does appear to capture the admissibility

rules that are routinely specified.

The pilot study assessed the feasibility of the R2DT elicitation protocol, demonstrating that

while the process is more involved than existing methods, it is achievable within a reasonable

time frame and was well-received by the clinician involved. Training and practice are crucial

for understanding, and further studies with multiple clinicians are recommended to capture

the broader variability and ensure the utility function reflects the wider clinical community.

Challenges in the loss domain highlight the need for careful framing of questions and avoiding

terminology related to risk attitudes. Elicitation of the R2DT method needs a far greater

understanding of utility theory and is more time consuming at the design stage than the

EffToxU patient utility. The same utility function is also used by model assisted designs

such as BOIN12 and U-BOIN detailed in Chapter 2.

The method of indifference used to elicit the joint utility function for R2DT in Section 5.4.3,

is similar to what is elicited as part of the EffTox method. There are two key differences

between what was described in the R2DT method. The first is that the suggested points

were chosen to mimic choices that are similar to those made in clinical practice, with modest

improvements in one of the attributes to reduce elicitation bias. This avoids more challenging

ideas for the DM of considering treatments that work perfectly, or treatments that don’t

have any associated toxicity. The second is about the approach to this method as a whole;

the elicitation of R2DT should reflect clinical beliefs and these beliefs should not be shifted

to give good operating characteristics. The reason for this is that EffTox is a simplification

and compromises in some regions in the domain of consequence are made so that contours

are sufficiently steep when efficacy and toxicity are both acceptable. The more complex
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structure of R2DT aims to be a far closer approximation of preference under uncertainty in

all areas of the joint consequence space.
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Chapter 6

Discussion

This thesis has proposed a novel Bayesian decision theoretic approach to dose finding based

on joint toxicity and efficacy outcomes, and this has been investigated in 3 chapters. Chapter

3 looked at a component of the joint probability model associated with dose finding, Chapter

4, the statistical theory necessary to achieve the aim of the trial (to identify an optimal dose

whilst treating patients optimally at each stage) and a novel Bayesian decision theoretic

design, R2DT, was introduced in Chapter 5. An initial literature review of dose finding

designs in oncology found that the definition of an optimal dose when using efficacy and

toxicity endpoints differed between designs. A motivating example found that there can be

conflict between clinical preferences and the ability of a statistical design to achieve the trial

objectives. It was hoped that by using a scientifically more robust method in contrast to

a more ad-hoc procedure that the objectives of a dose finding trial could be more closely

met. A particular motivation for this was to better capture clinical preferences in order to

make more informed choices for each cohort of patients. This discussion chapter starts by

providing a summary of the conclusions from each of the previous chapters and how they

contributed to the wider objectives of the thesis. The scope for the conclusions as well as

limitations of the thesis are discussed in addition to recommendations for further work.

6.1 Thesis summary

There are two separate components necessary for a decision analysis; the probability model

and a decision component. In the setting of joint outcomes to inform decision making, the
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correlation component of the probability model was investigated through copula modeling.

A copula is a multivariate distribution function that describes the dependence structure

between efficacy and toxicity outcomes. A key recommendation from this work is that

when investigating and contrasting correlation models in the setting, a consistent correlation

measure is needed. It was demonstrated that the correlation parameter used as part of a

copula model was specific to the model itself; it was proposed that Kendall’s tau provides

consistency across multiple models to enable comparison. The calculation of Kendall’s

tau is possible from different models and depends upon the probability of efficacy and the

probability of toxicity at each dose. With a low number of patients treated in a dose finding

trial the precision in estimating marginal probability distributions is limited, adding to the

lack of precision in estimating correlation. The Farlie-Gumbel-Morgenstern copula that has

previously been used in dose finding trial design [77] has a limited ability to measure stronger

correlation owing to the structural form and conditions necessary to make it a copula.

Decision making in the setting of joint outcomes is primarily made with respect to the pop-

ulation parameters for the chance of efficacy and toxicity at each dose. This is achieved

through the calculation of an expectation of a function where the two population parame-

ters are the arguments. As such any differences between operating characteristics for a dose

finding trial specifying an independent model and a copula model will be down to differences

in the posterior distributions. The simulation study performed in Chapter 3 demonstrated

that the inclusion of a copula model had minimal effect on each of the marginal posterior

distributions. The independent model was therefore concluded to be a more parsimonious

model in the setting. A similar conclusion has previously been proposed via a small sim-

ulation study [111]. This thesis adds to the existing literature by offering a theoretical

exploration of copulas and their application to binary data; providing a broader analytical

framework to offer insights into the wider applicability of copula models in the setting.

The review of the statistical methods for decision making in Chapter 4 defined a value func-

tion as a numerical scale to denote an ordering of preferences of an attribute. Considering

the attributes of efficacy and toxicity independently in dose finding, there is a coherent

ordering from the raw attribute but the difference between two levels of an attribute is not

comparable. For example, the clinical interpretation of a 10% improvement in the proba-

bility of efficacy will depend upon the probability from which the 10% is an improvement.
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A further issue is that decision making in a situation where there is uncertainty about

the possible states of nature leads to different choices than when there is certainty. Op-

timizing the expected consequence function using an unsuitable scale can result in poor

recommendations that wouldn’t be taken in practice. To mitigate these challenges, employ-

ing a consistent scale, known as utility, resolves the issue by framing the problem in terms

of lotteries between possible outcomes. The Von Neumann-Morgenstern axioms provide a

foundation for rational decision-making under uncertainty. When following these axioms

the expected utility can be used to decide between possible courses of action in a decision

analysis.

In dose finding the attributes of efficacy and toxicity are described by the population pa-

rameters describing the chance of an event for a patient occurring. Both attributes are value

functions on an ordinal scale. This feature is important when trying to combine the two

attributes into an order of preference; ideas about payoffs for one attribute with respect to

another are unlikely to be represented by a constant or a simple function. This is because

the interpretation of an incremental increase in an attribute changes depending on the at-

tribute level, as described above. This feature was apparent in the motivating example in

Chapter 2.

The novel R2DT method proposed in Chapter 5 sought to account for decision making

under uncertainty, that is most prominent early on in a dose finding trial, by using a

consistent scale - utility. The method of defining a utility function with two attributes by

direct-assessment doesn’t exploit any features of the attributes (such as monotonicity). The

requisite information is difficult to assess and the result is difficult to work with in calculating

expected utility and further sensitivity analyses [110]. The approach described in Chapter

4 to overcome these difficulties was to inspect utility independence axioms and to split the

utility function into more easily assessed separate univariate utility functions. A simple

joint utility function was shown to result from following independence axioms [142], with

two parameters to be set according to how each utility function interacts. The interaction

component was considered to be positive interaction in the dose finding setting. The main

component of the marginal utility functions in R2DT is reference dependence defining the

merit of efficacy and toxicity attributes in relation to a reference point. The attitude to risk

is determined by whether attributes are above or below this reference point. The R2DT
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utility function was used to define a novel trial stopping rule that jointly accounted for levels

of efficacy and toxicity. The proposed stopping rule appeared to be similarly effective to the

more conventional stopping rules.

There was a detailed elicitation procedure proposed to capture the extensions to the pro-

posed novel utility that were detailed in Chapter 5. The set of questions proposed in order

to obtain the parameters of the R2DT utility function were designed to minimise biases

to ensure that preferences were as accurate as possible and unintentional biases were not

introduced. Questions posed were for simple lotteries that were designed to be reflective

of choices made routinely in clinical practice (i.e around the reference). In doing so the

the bias in the elicitation process is reduced in contrast to hypothetical choices such as

perfect efficacy or zero toxicity associated with the EffTox method [25]. This procedure was

demonstrated to be feasible in a small pilot study.

6.2 Limitations and future work

The stages of development for a new method have been likened to the four conventional

stages of clinical trials [156]. This benchmark is helpful in understanding what evidence has

been produced in support of a new method and what are the next stages necessary for a new

method to be widely adopted. Methods in bivariate dose finding are not commonly used

[41]. It is hoped that following this process can increase the potential uptake of R2DT. The

R2DT trial design has been introduced from a theoretical perspective (phase I) and then

applied to a small simulation study to provide proof of concept (phase II). Further work is

needed to better characterise the design in a wider set of scenarios and settings and for the

method to be contrasted against further designs to understand its limitations better.

6.2.1 Probability model

A major component of further work is to better understand the role of the probability

model. The R2DT design was specified using the EffTox probability model. The EffTox

probability model was initially calibrated using the accompanying software to give good

operating characteristics for the simulation study, assuming the EffTox decision function.

There is some evidence (Table 5.4, Scenario 1 & Scenario 7) that both the R2DT and

EffToxU methods have a tendency to favour higher doses and that this is influenced by the
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probability model. This particular feature would need further simulations to understand if

R2DT was to be implemented and justified in a trial protocol. The EffTox approach justifies

and calibrates the model by the presence of good operating characteristics. A probability

model may need to be mildly informative or skewed towards preferences for higher doses

to ensure that it doesn’t get stuck at lower doses, whilst not producing undesirable safety

characteristics [78].

The probability model in a Bayesian decision theoretic approach should capture the uncer-

tainty of the situation and be based upon plausible facts, science, expert judgement and

available data [25]. A model that is used as an algorithm is different to one that tries to

capture the inherent uncertainty in any given situation. This point was made in Chapter 2

when contrasting the choice of one parameter or two parameter logistic regression models

for toxicity only designs. Given the increased complexity of the R2DT utility function it

is possible that a probability model that closer resembles the situation, or is more flexible,

could yield improved operating characteristics. There are two components to this: the func-

tional form of the probability model, and the specification of priors. Better understanding

of the role of the probability model and its impact upon operating characteristics of R2DT

could be the topic of further work.

There is an increased use of model assisted designs in the literature not only due to the

relative simplicity of implementation but also because of superior operating characteristics

[83]. Designs such as U-BOIN and BOIN12, detailed in Chapter 2, specify the 4-outcome

utility function to make decisions. This utility function was used as the main comparator in

this thesis, but the more complex EffTox logistic regression probability model was specified.

Further work would be needed to see if the advantages of using model assisted approaches

are further extended by the use of R2DT utility function. The motivation for using a utility

function that better captures the clinical situation, as is the aim of R2DT, remains pertinent.

The R2DT utility function is based upon outcome probabilities which are frequently used

in phase I-II designs. The Bayesian decision theoretic approach however separates the

probability and decision components [25], making R2DT method applicable in a wide variety

of settings. Changing the component of the probability model, such as a plateau ([35]), for

example, to better model the modern drug paradigm requires further evaluation, without a

change to the utility function. R2DT uses utility independence to join two separate marginal
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utility functions. The individual utility functions could be adapted to accommodate different

endpoints. Marginal, continuous and time to event outcomes could be transformed into the

utility scale [157]. Ordinal outcomes for toxicity or efficacy would first need combining into

a single measure or utility function. The methods to do achieve this can be adapted from

the methods presented in Chapter 4. This further work is important because the effect of a

targeted treatment is less likely to be accurately reflected over a short period of time [15].

6.2.2 Search strategy

The literature review in Chapter 2 was not a systematic review with pre-specified search

terms that would have enabled reproducible results. As such it is not an exhaustive review of

trial designs and did not consider every design in the setting. A systematic review can give

more reassurance in the conclusions in that the literature is considered in its entirety rather

than a potentially biased search procedure conducted to support preconceived conclusions.

A “snowballing” [158] (alternatively called “pearl growing” [159]) approach was adopted to

to identify the key work in the field. Specifically the Von Neumann–Morgenstern utility

approach inspected the references within the decision theoretic designs as a starting point

[56, 85, 86, 82, 78, 88, 89]. The copula approach inspected the references for the copula

simulation study initially identified through a search of Google Scholar. Given the similarity

in the sigmoidal shaped value function in prospect theory and its prominence in the economic

literature, a similar technique found no references for the application of prospect theory

relating to dosing in clinical trials.

6.2.3 Copulas when correlation is an attribute

The simulation study in the thesis for copulas didn’t investigate the effect on operating char-

acteristics of the copula when correlation was a component of the decision model. Instead,

conclusions were restricted to designs where efficacy and toxicity were the sole attributes

in decision making. The EffTox utility design is a design that gives a utility to each of the

separate possible outcomes for a patient. The probabilities responsible for each of these

events are defined using the marginal probabilities and a parameter for the correlation.

It was shown that the calculation for expectation of the utility function depended upon

the correlation parameter. Graphically however when specifying an FGM copula with the

EffTox utility design, the marginal probabilities of efficacy and toxicity tend to dominate
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the correlation component in the consequence function. Correlation was also shown to be

challenging to estimate in the setting to diminish any effect of correlation in decision making

further. The role of correlation as an attribute, and incorporation into the R2DT utility

function hasn’t been considered. Copulas are also able to measure the correlation between

binary endpoints and a continuous endpoint for example. The copula work presented in this

thesis could be adapted to such a setting.

6.2.4 Exploration-exploitation in decision making

Following a strategy of choosing the optimal dose at each stage introduces a possibility of

getting stuck at a sub-optimal dose and not finding the global optimal [160, 161]. This is

known as the exploration-exploitation dilemma in decision making. Changing the balance

away from exclusively optimising at each stage, exploration, may lead to finding the OD

more often at the end of the trial. This needs careful consideration at the trial design

stage as to whether it is ethical. A solution is to introduce some randomisation into the

process. A number of authors have suggested Thompson sampling [162] as a solution [82,

35]. When there is little information available at the start of the trial in-particular a

randomised approach could be seen as unethical. An approach taken by some authors is to

define two stages, with an initial period of staged dose finding (with or without an efficacy

component) before continuing with randomisation [95]. Linking this to different endpoints,

if the endpoint isn’t measurable over a shorter period of time, there won’t be information to

adapt at each stage and a randomised approach may be acceptable. There are also designs

that account for partial information that are highlighted in Chapter 2.

R2DT assumes the same utility function at each of the multiple decision points. The deci-

sion maker reference point(s) may change over time due to adaptation and shifting expec-

tations. This could be linked to the slight shift in prioritising the objectives of the trial.

An alternative approach would be to incorporate gain of information to change the balance

between the objectives of determining an optimal dose and treating patients optimally at

each decision point. In some contexts, the dose finding trial will be one trial within a larger

clinical development pathway. The merit of continuing the trial to determine more infor-

mation or deciding to initiate the next stage of clinical development isn’t specified as one

of the potential actions. The benefit of using the utility scale is that this action could be

given a utility and considered as an add on to R2DT. An alternative approach could be a
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dynamic-programming method which tries to make each decision optimally, considering all

the subsequent outcomes and decisions that will come afterwards [163]. There are increasing

calls for the next study in the clinical development pathway of an oncology agent to be a

separate randomised dose ranging study [164, 165]. The objective of the dose finding study

in this paradigm is to suggest a range of doses suitable for further study. The proposed

stopping rule given in Equation 5.20 could be used as part of the R2DT design to achieve

this aim. Individual doses studied as part of the dose finding trial are tested at the end of

the trial to see if they are acceptable for further study.

6.2.5 Computer simulation studies

The evaluation of R2DT and the copula chapter featured simulation studies that were used

to inform conclusions. It is important that a simulation study is well conducted in order to

give confidence in results. There are a number of recent guidance publications around good

practices for simulation studies [166, 39]. The simulation study did not explicitly follow

the guidance presented in these publications; rather an ad hoc approach based upon good

programming practices, reproducibility and scientific method. Retrospectively assessing

what was implemented against the guidance would suggest that the simulation study was

of high quality. The aims of each simulation study and metrics to assess performance were

stated. The data generated as part of each simulation study was created in a separate

program with a pre-specified seed. Additionally the assessment of different designs used

the same large dataset of generated data. The main metrics to assess design operating

characteristics were pre-specified and presented both in tables and figures. A seed for the

Bayesian model fitting was not specified. This was an oversight that has been corrected in

the code (Appendix B) but the simulation study has not been rerun in its entirety. Given

the high number of draws from the posterior distribution and that different methods have

the same model fitting and draws (Appendix A) the effect is likely to be negligible if rerun,

with the issue being reproducibility. Further work in the setting could be to better define

Monte Carlo errors associated with the performance measures and better understand the

number of simulated trial replicates. The number of specified repetitions, two thousand

in the case of the R2DT design,was specified to be a compromise between computational

efficiency and accuracy. A factor surrounding the uptake of novel designs is the availability

of user friendly software [47]. The R code associated with the design has been submitted
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as part of this thesis (Appendix B). Future work to put the code into a R package with

accompanying documentation would increase the chance of the work being implemented.

6.2.6 Performance measures

There is a potential need for further work in assessing the performance metrics of a phase

I-II design. The performance of the R2DT design was assessed by inspecting the operating

characteristics in contrast to an alternative design. Assessing the performance of the design

at each decision point for patient benefit doesn’t have an easy metric by which to compare

different designs. This was assessed in this thesis by studying operating characteristics

longitudinally. It was possible to observe that one design had a tendency to make different

decisions earlier in the trial. This was seen in the escalation with overdose control design

with a toxicity endpoint reviewed as part of the literature review. The design defined a

parameter that controlled how conservative escalation was. Defining exactly what is an

acceptable decision in the presence of uncertainty at a particular decision point is linked to

a utility function that is capable of reflecting clinical attitudes. This highlights the intention

of the decision theoretic method. This relies upon accurate elicitation that is expanded upon

in the next section.

The probability of correct selection is one of the main metrics used to assess whether a

design meets its objectives. What constitutes the optimal dose is used as part of this metric

to define what is “correct”. When comparing two different designs with different ways of

defining the optimal dose it is possible to create a scenario where the definition of which

dose is “correct” and the optimal dose differs between the designs. In this case, which

design describes the correct dose? This judgement is clinical and highlights the importance

of using a consequence function that captures the situation. The overall assessment across

multiple different scenarios for the R2DT was subjective. This brings up the question as to

how to compare performance across different scenarios. For some scenarios it may be more

difficult for a design to find the OD because two doses are similarly optimal in contrast to

another scenario where there is a clear OD. In the phase I setting with a single toxicity

attribute it has been proposed that the toxicity odds ratio could be used as a measure of

the difficulty of a scenario [54]. Here the odds of toxicity at a dose are contrasted with the

target toxicity level that defines the optimal dose. If two doses have very similar toxicity

close to the target toxicity level then the odds ratio would be close to 1 and the design would
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struggle to differentiate between two doses in terms of correct selection. This idea doesn’t

naturally extend to the setting with bivariate outcomes because there isn’t an agreed upon

benchmark against which to contrast.

Utility is specified on a scale that measures strength of preference, further work could be to

use this standard, defined at part of R2DT method, to compare operating characteristics.

A difficult scenario would be one where the highest utility (at a dose) is similar to another

and an easier scenario is one where there is a larger jump in utility between the two doses

with highest utility. If the utility function now represents a proportional measure of clinical

preference between doses this could be adapted to generate and assess scenarios. The

proposal depends upon the ability to accurately capture a utility function, which stresses

the importance of the elicitation methods.

6.2.7 Elicitation

Part of the motivation for the R2DT method is to more closely capture clinical preferences.

The stage of method development for the elicitation component of this thesis similarly

has been introduced from a theoretical perspective with a set of questions to elicit each

parameter of R2DT (phase I) in addition to a pilot study to demonstrate proof of principle

and feasibility (phase II). The functional form of the utility is multifaceted and has been

proposed from principles rather than specific clinical input. While the form is flexible to

accommodate different preferences, further work is needed for the R2DT design to establish

whether it fully captures clinical preferences. Particular features of this are the reference

dependence and the piece-wise power model.

Reducing bias in eliciting the parameters in the utility function and ensuring that what is

elicited reflects preferences is key. There are a number of factors that are known to induce

measurement error from the behavioural sciences including how the question is asked [138].

Elicitation methods for this aim using probability lottery equivalencies are well established

[139]. The impact of the reference point in the elicitation of utilities in the healthcare setting

has also been investigated [137]. Elicitation in the more established setting of probabilistic

judgements such as the Sheffield elicitation framework provides a far more comprehensive

package in order to obtain and document multiple expert opinions [167]. Further work could

be writing and understanding an elicitation protocol in the setting. This thesis referred to
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a single unitary decision maker, which in practice means that there is one utility function

that describes preferences. In dose finding there are multiple stakeholders interested in

any given decision. A rational impartial observer (RIO) was suggested as a possibility to

overcome difficulties in obtaining preferences for multiple experts [127]. This idea wasn’t

fully developed and further work is needed for an increased understanding of how each of

the different stake holders are impacted and any differences in opinion.

6.2.8 Patient engagement

A particularly important stakeholder is the patient. There is a strong ethical argument in

favour of involving patients in research, with the expectation that their engagement will

improve research by better addressing their concerns [168]. With complex clinical trial

design it is important that patient perspectives are not just sought but add value [169].

One of the aims of dose finding that the novel design aims to better account for is dosing

optimally at each stage. Each patient entering the trial should receive a dose believed to be

optimal and this should account for the lack of available evidence so that the risk-benefit

is acceptable. Demonstrating with patient input that this is a key objective that needs

further consideration can only enhance the importance of the R2DT design. Concepts such

as patient risk-benefit are challenging to articulate and quantify; it is hoped that the work

to elicit preference in this thesis could be adapted to help to better collaborate with patients

in clinical trial design.

6.3 Conclusion

My research has looked at a decision theoretic approach to dose finding based on joint out-

comes of toxicity and efficacy, and demonstrated its potential use in the oncology setting.

Copula models had previously been proposed in the setting to account for correlation be-

tween the binary outcomes of efficacy and toxicity without exploration as to whether they

achieved this aim and to what extent. I demonstrated using an analytical approach that

an independent model is more parsimonious in this setting. The analytical theory that I

presented explained why a consistent correlation measure was needed in order to compare

different copula models and that this parameter couldn’t be estimated accurately in small

sample sizes associated with dose finding. My work has the potential to simplify the de-
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sign process by reassuring researchers that an independent model sufficiently captures the

situation. My proposed R2DT method is a novel method of defining the utility function

as part of a decision theoretic approach to dose finding in oncology. My approach offers a

design for researchers aiming to identify an optimal dose of treatment where there is a need

to optimise and control for the risk-benefit ratio of patients entering the study. The key to

this was specifying a decision process that closer reflected preferences for the situation, in

particular using a measure that accounted for how preferences may change when faced with

an uncertain prospect. I have achieved this with respect to Von Neumann–Morgenstern

utility theory defined in terms of preferences for lotteries. Expressing utilities in this man-

ner is a more coherent and less ad-hoc way of expressing the basic type of preferences that

researchers try to express when combining admissibility rules with simpler objective func-

tions to define the optimal dose. My design has been compared to an established method

(EffToxU), which has been shown to be a special case of R2DT. I have demonstrated that

my novel method could lead to considerable improvement in operating characteristics in

the setting of dose finding with joint outcomes. I have also demonstrated that my novel

method can be used to generate a trial stopping rule that incorporates both efficacy and

toxicity measures and that this could be more reflective of clinical preferences. The work

applies a broad framework to give insight to existing methods and potential to adapt to

different endpoints and trial features. I proposed an elicitation process in order to bridge

the gap between a theoretical model and considered process to captures these preferences.

The elicitation process was demonstrated to be feasible in a small pilot study. My method

aligns with some of the goals of the wider FDA dose finding and dose optimisation initia-

tive of project Optimus [16] by using a strategy of dose selection that not only limits the

toxicity but contrasts this with the efficacy of a treatment. In the context of the clinical

trial development pathway, my method has the potential to better identify optimal doses of

treatment in the initial stages of the pathway, while meeting the treatment goals of patients

entering the study; ultimately enabling more reliable dose finding to take forward into later

stages of definitive evidence generation.

169



Bibliography

[1] Elisabeth Mahase. Cancer overtakes CVD to become leading cause of death in high

income countries. BMJ, page l5368, sep 2019.

[2] Dejene Tolossa Debela, Seke GY Muzazu, Kidist Digamo Heraro, Maureen Tayamika

Ndalama, Betelhiem Woldemedhin Mesele, Dagimawi Chilot Haile, Sophia Khalayi

Kitui, and Tsegahun Manyazewal. New approaches and procedures for cancer treat-

ment: Current perspectives. SAGE Open Medicine, 9:205031212110343, jan 2021.

[3] Michael J Grayling, Munyaradzi Dimairo, Adrian P Mander, and Thomas F Jaki. A

review of perspectives on the use of randomization in phase ii oncology trials. JNCI:

Journal of the National Cancer Institute, 111(12):1255–1262, June 2019.

[4] ICH Harmonised Tripartite Guideline. General considerations for clinical trials e8. In

International Conference on Harmonization of Technical Requirements for Registra-

tion of Pharmaceuticals for Human Use, 1997.

[5] J. A. DiMasi, H. G. Grabowski, and R. W. Hansen. Innovation in the pharmaceutical

industry: New estimates of r&d costs. J Health Econ, 47:20–33, 2016.

[6] Olivier J. Wouters, Martin McKee, and Jeroen Luyten. Estimated research and de-

velopment investment needed to bring a new medicine to market, 2009-2018. JAMA,

323(9):844, March 2020.

[7] V. Prasad and S. Mailankody. Research and development spending to bring a sin-

gle cancer drug to market and revenues after approval. JAMA Internal Medicine,

177(11):1569–1575, 2017.

[8] FDA. Fast track, breakthrough therapy, accelerated approval, priority review. https:

//www.fda.gov/about-fda/oncology-center-excellence/project-optimus,

170

https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus


BIBLIOGRAPHY BIBLIOGRAPHY

2023. [Accessed 24-Jul-2023].

[9] Yojana Gadiya, Philip Gribbon, Martin Hofmann-Apitius, and Andrea Zaliani. Phar-

maceutical patent landscaping: A novel approach to understand patents from the drug

discovery perspective. Artificial Intelligence in the Life Sciences, 3:100069, dec 2023.

[10] Asher Mullard. The high, and redundant, cost of failure in cancer drug development.

Nature Reviews Drug Discovery, 22(9):688–688, August 2023.

[11] Chi Heem Wong, Kien Wei Siah, and Andrew W Lo. Estimation of clinical trial

success rates and related parameters. Biostatistics, 20(2):273–286, January 2018.

[12] T. J. Hwang, D. Carpenter, J. C. Lauffenburger, B. Wang, J. M. Franklin, and A. S.

Kesselheim. Failure of investigational drugs in late-stage clinical development and

publication of trial results. JAMA Internal Medicine, 176(12):1826–1833, 2016.

[13] Richard K. Harrison. Phase ii and phase iii failures: 2013–2015. Nature Reviews Drug

Discovery, 15(12):817–818, November 2016.

[14] Khanh Do, Chris H. Takimoto, and Shivaani Kummar. Changing landscape of early

phase clinical trials. In Novel Designs of Early Phase Trials for Cancer Therapeutics,

pages 1–6. Elsevier, 2018.

[15] Jeanne Fourie Zirkelbach, Mirat Shah, Jonathon Vallejo, Joyce Cheng, Amal Ayyoub,

Jiang Liu, Rachel Hudson, Rajeshwari Sridhara, Gwynn Ison, Laleh Amiri-Kordestani,

Shenghui Tang, Thomas Gwise, Atiqur Rahman, Richard Pazdur, and Marc R. The-

oret. Improving dose-optimization processes used in oncology drug development to

minimize toxicity and maximize benefit to patients. Journal of Clinical Oncology,

40(30):3489–3500, October 2022.

[16] FDA. Project Optimus — fda.gov. https://www.fda.gov/about-fda/

oncology-center-excellence/project-optimus, 2023. [Accessed 24-Jul-2023].

[17] M. J. R. Healy and Richard Simon. New methodology in clinical trials. Biometrics,

34(4):709, dec 1978.

[18] Elizabeth A. Eisenhauer, Christopher Twelves, and Marc Buyse, editors. Phase I

Cancer Clinical Trials. Oxford University Press, mar 2015.

171

https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus


BIBLIOGRAPHY BIBLIOGRAPHY

[19] Philip Pallmann, Alun W. Bedding, Babak Choodari-Oskooei, Munyaradzi Dimairo,

Laura Flight, Lisa V. Hampson, Jane Holmes, Adrian P. Mander, Lang’o Odondi,

Matthew R. Sydes, Sof́ıa S. Villar, James M. S. Wason, Christopher J. Weir, Gra-

ham M. Wheeler, Christina Yap, and Thomas Jaki. Adaptive designs in clinical trials:

why use them, and how to run and report them. BMC Medicine, 16(1), feb 2018.

[20] Gail A. Van Norman. Phase ii trials in drug development and adaptive trial design.

JACC: Basic to Translational Science, 4(3):428–437, June 2019.

[21] Branimir K. Hackenberger. Bayes or not bayes, is this the question? Croatian Medical

Journal, 60(1):50–52, February 2019.

[22] Deborah Ashby. Bayesian statistics in medicine: a 25 year review: Bayesian statistics

in medicine. Statistics in Medicine, 25(21):3589–3631, August 2006.

[23] K.R.A.J.P.M. David J. Spiegelhalter, D.J. Spiegelhalter, K.R. Abrams, and J.P. Myles.

Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Statistics in

Practice. Wiley, 2004.

[24] Scott M. Berry. Bayesian adaptive methods for clinical trials. Chapman & Hall/CRC,

2011.

[25] Jim Q Smith. Bayesian decision analysis: principles and practice. Cambridge Uni-

versity Press, 2010.

[26] Tim Bedford and Roger Cooke. Probabilistic Risk Analysis. Cambridge University

Press, apr 2001.

[27] S. French and D.R. Insua. Statistical Decision Theory: Kendall’s Library of Statistics

9. Wiley, 2000.

[28] C. L. Tourneau, J. J. Lee, and L. L. Siu. Dose escalation methods in phase i cancer

clinical trials. J Natl Cancer I, 101, 2009.

[29] National Cancer Insttitute. Common terminology criteria for adverse events (ctcae).

https://ctep.cancer.gov/protocoldevelopment/electronic_applications/

ctc.htm, 2023. [Accessed 25-Jul-2023].

172

https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm


BIBLIOGRAPHY BIBLIOGRAPHY

[30] H E SKIPPER, F M SCHABEL, and W S WILCOX. Experimental evaluation of po-

tential anticancer agents. xiii. on the criteria and kinetics associated with ”curability”

of experimental leukemia. Cancer chemotherapy reports, 35:1–111, February 1964.

[31] W M Hryniuk. More is better. Journal of Clinical Oncology, 6(9):1365–1367, sep

1988.

[32] Siddhartha Mukherjee. The Emperor of All Maladies. Harper Collins Publ. UK, 2011.

[33] Pattanaik Smita, Patil Amol Narayan, Kumaravel J, and Prakash Gaurav. Thera-

peutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based

practices. Frontiers in Oncology, 12, dec 2022.

[34] Kristian Brock, Victoria Homer, Gurjinder Soul, Claire Potter, Cody Chiuzan, and

Shing Lee. Is more better? an analysis of toxicity and response outcomes from dose-

finding clinical trials in cancer. BMC Cancer, August 2020.

[35] Marie-Karelle Riviere, Ying Yuan, Jacques-Henri Jourdan, Frédéric Dubois, and Sarah

Zohar. Phase i/II dose-finding design for molecularly targeted agent: Plateau de-

termination using adaptive randomization. Statistical Methods in Medical Research,

27(2):466–479, mar 2016.

[36] Ahmedin Jemal, Freddie Bray, Melissa M. Center, Jacques Ferlay, Elizabeth Ward,

and David Forman. Global cancer statistics. CA: A Cancer Journal for Clinicians,

61(2):69–90, feb 2011.

[37] S.D. Durham, N. Flournoy, and W. Li. A sequential design for maximizing the prob-

ability of a favourable response. Canadian Journal of Statistics, 26(3):479–495, sep

1998.

[38] J. O’Quigley, M. Pepe, and L. Fisher. Continual reassessment method: a practical

design for phase i clinical trials in cancer. Biometrics, 46, 1990.

[39] Tim P. Morris, Ian R. White, and Michael J. Crowther. Using simulation studies to

evaluate statistical methods. Statistics in Medicine, 38(11):2074–2102, January 2019.

[40] Andrew P. Grieve. Idle thoughts of a ‘well-calibrated’ bayesian in clinical drug devel-

opment. Pharmaceutical Statistics, 15(2):96–108, January 2016.

173



BIBLIOGRAPHY BIBLIOGRAPHY

[41] Kristian Brock, Lucinda Billingham, Mhairi Copland, Shamyla Siddique, Mirjana

Sirovica, and Christina Yap. Implementing the EffTox dose-finding design in the

matchpoint trial. BMC Medical Research Methodology, 17(1), July 2017.

[42] Nolan A. Wages, Bethany Jablonski Horton, Mark R. Conaway, and Gina R. Petroni.

Operating characteristics are needed to properly evaluate the scientific validity of

phase i protocols. Contemporary Clinical Trials, 108:106517, September 2021.

[43] Oleksandr Sverdlov, Weng Kee Wong, and Yevgen Ryeznik. Adaptive clinical trial

designs for phase i cancer studies. Statistics Surveys, 8(0):2–44, 2014.

[44] Stephen K Carter. The phase i study. Fundamentals of Cancer Chemotherapy.

McGraw-Hill: New York, NY, USA, pp xv, 527, 1987.

[45] Zhengjia Chen, Mark D. Krailo, Junfeng Sun, and Stanley P. Azen. Range and trend

of expected toxicity level (etl) in standard a+b designs: A report from the children’s

oncology group. Contemporary Clinical Trials, 30(2):123–128, mar 2009.

[46] Y. Lin. Statistical properties of the traditional algorithm-based designs for phase i

cancer clinical trials. Biostatistics, 2(2):203–215, jun 2001.

[47] Sharon B Love, Sarah Brown, Christopher J Weir, Chris Harbron, Christina Yap,

Birgit Gaschler-Markefski, James Matcham, Louise Caffrey, Christopher McKevitt,

Sally Clive, Charlie Craddock, James Spicer, and Victoria Cornelius. Embracing

model-based designs for dose-finding trials. British Journal of Cancer, 117(3):332–

339, jun 2017.

[48] Douglas Faries. Practical modifications of the continual reassessment method for phase

i cancer clinical trials. Journal of Biopharmaceutical Statistics, 4(2):147–164, jan 1994.

[49] Steven N. Goodman, Marianna L. Zahurak, and Steven Piantadosi. Some practical

improvements in the continual reassessment method for phase i studies. Statistics in

Medicine, 14(11):1149–1161, jun 1995.

[50] J OQuigley. A stopping rule for the continual reassessment method. Biometrika,

85(3):741–748, sep 1998.

174



BIBLIOGRAPHY BIBLIOGRAPHY

[51] S Zohar and S Chevret. The continual reassessment method: comparison of bayesian

stopping rules for dose-ranging studies. Statistics in medicine, 20:2827–2843, October

2001.

[52] J. O'Quigley. Continual reassessment designs with early termination. Biostatistics,

3(1):87–99, mar 2002.

[53] John O’Quigley and Larry Z. Shen. Continual reassessment method: A likelihood

approach. Biometrics, 52(2):673, jun 1996.

[54] Ying Kuen Cheung. Dose Finding by the Continual Reassessment Method (Chapman

& Hall/CRC Biostatistics Series Book 41). Chapman and Hall/CRC, 2011.

[55] Alexia Iasonos, Andrew SWilton, Elyn R Riedel, Venkatraman E Seshan, and David R

Spriggs. A comprehensive comparison of the continual reassessment method to the

standard 3 + 3 dose escalation scheme in phase i dose-finding studies. Clinical Trials,

5(5):465–477, September 2008.

[56] JohnWhitehead and DavidWilliamson. Bayesian decision procedures based on logistic

regression models for dose-finding studies. Journal of Biopharmaceutical Statistics,

8(3):445–467, jan 1998.

[57] John Whitehead and Hazel Brunier. BAYESIAN DECISION PROCEDURES FOR

DOSE DETERMINING EXPERIMENTS. Statistics in Medicine, 14(9):885–893, may

1995.

[58] Beat Neuenschwander, Michael Branson, and Thomas Gsponer. Critical aspects of the

bayesian approach to phase i cancer trials. Statistics in Medicine, 27(13):2420–2439,

2008.
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Appendix A

Additional material

A.1 Chapter 2 supplementary material

A.1.1 Multiple dose example

Scenario 1 from the CSS paper [111] has in part been recreated as further evidence that

the mechanism for estimating the marginal distributions do not affect the findings of the

simulation study in Chapter 3. The data generating mechanism for the 4 doses had fixed

probability of efficacy at of [0.38, 0.55, 0.71, 0.83], and toxicity [0.05, 0.12, 0.27, 0.5]. The

correlation followed the FGM copula with θ = 1. The joint probability model followed an

FGM copula (Equation 3.13) with a uniform prior θ ∼ U(−1, 1). The dose level covariates

were defined as x = [0, 1, 2, 3] and x2 = [0, 1, 4, 9]. The efficacy marginal distribution

assumed logistic regression with parameters for the intercept, slope and a quadratic term.

Priors were assumed to all follow independent normal distributions with means [−1, 1, 0] and

standard deviations [3, 2, 0.25] for the intercept, slope and quadratic parameters respectively.

The toxicity probability model was logistic with intercept and slope parameters. Priors were

specified to be normal with means, [−3, 1] and standard deviations [3, 2] for the intercept

and slope respectively.

The priors for the slope parameters from both models in the CSS were specified to be from

a Gamma distribution with the same means and standard deviations. When attempting to

replicate Gamma priors, Stan produced a number of warnings that the posterior distribution

was difficult to evaluate. This may have been a symptom of the method of MCMC with
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Figure A.1.1: Difference in toxicity marginal distributions for all possible combination of
data for 20 patients recruited at a single dose between copula models and independent
models. First row of plots is from the FGM copula model and the second row from the
Gaussian Copula. First column is the difference in means between the copula and indepen-
dent models. Second column in the ratio of standard deviations between copula model and
independent model fit to the same data.

the prior placing a lot of mass just above zero and no mass below. For the purpose of this

example, Normal priors were used for the two slope parameters with the same mean and

standard deviation. Stan software was used to conduct the simulation with 3 chains, 3000

replicates and a 1000 replicate warm up.

The simulation study wasn’t a staged study example with 30 patients, 6 treated at each

dose levels 1 and 2 and 9 patients at dose levels 3 and 4. 5000 draws were made from the

data generating mechanism with the data then fit to the FGM copula and an independent

model. The posterior plots for difference between intercept and slope parameters are given

in Figure A.1.4 for the efficacy model. Equivalent plots for toxicity intercept and slope

parameters is given in Figure A.1.5. Note that in both figures the difference is on the odds
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Figure A.1.2: Difference in efficacy marginal distributions of data for 20 patients recruited
at a single dose between copula models and independent models. Data is generated from a
dose with πE = 0.7, πT = 0.3 and τb = 0.168. First row of plots is from the FGM copula
model and the second row from the Gaussian copula. First column is the difference in
means between the copula and independent models. Second column in the ratio of standard
deviations between copula model and independent model fit to the same data.

scale, 0.05 on the odds scale representing 0.012 on a probability scale. Given the values

for the covariates, the intercept is the odds at dose level 1. The maximum magnitude of

difference for the slope parameter occurs at dose level 4 where the difference is multiplied

by 3. Overall there are only very minor differences in the means and standard deviations

with the magnitude consistent with the values obtained in the single dose simulation study.
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Figure A.1.3: Difference in efficacy marginal distributions of data for 20 patients recruited
at a single dose between copula models and independent models. Data is generated from a
dose with πE = 0.7, πT = 0.3 and τb = 0 or an independent data generating process. First
row of plots is from the FGM copula model and the second row from the Gaussian Copula.
First column is the difference in means between the Copula and independent models. Second
column in the ratio of standard deviations between copula model and independent model
fit to the same data.

A.2 Chapter 4

A.2.1 Efficient simulation

Programming efficiency is the speed at which a computer can complete a task. A simple

approach to conducting a simulation study in dose finding is as follows, simulate outcome

data for the first cohort, fit this data to a probabilistic model to obtain draws from the

posterior, before using these to decide the mean utility and dose for the next cohort. This

iterative procedure would continue until the maximum sample size has been reached or the

trial stopped early. The process is repeated a high number of times for a single scenario to

evaluate the performance of a particular design (or decision function). A loop statement
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Figure A.1.4: Difference in efficacy marginal parameters of data for 30 patients recruited at 4
doses between copula models and independent models. First row of the plot is the difference
in the intercept parameter between FGM model and an independent model. Second row is
for the slope parameter. The x axis is on the odds scale with an increment of 0.05 on the
odds scale representing 0.012 on the probability scale

allows us to write the code for a single trial and then cycle back through for the given

number of simulation replicates.

There is nothing inherently wrong with this approach, however it is computationally ineffi-

cient. If each model fit takes approximately a single second, a simulation study looking at a

trial with 20 cohorts and 2000 simulations, would take approximately 12 hours to complete.

The purpose here isn’t to detail the miniature of code optimisation but how this problem

can be tackled differently in order to achieve large gains in efficiency.

Removing loops is typically a sensible first step in optimising R code [170]. In dose finding

however each trial needs to iteratively grow the data with each stage dependent on the last,

191



Chapter A. Additional material A.2. Chapter 4

−0.1 0.0 0.1
Mean Difference

D
en

si
ty

0.95 1.00 1.05 1.10
Ratio of Standard deviation

D
en

si
ty

−0.04 0.00 0.04 0.08
Mean Difference

D
en

si
ty

0.95 1.00 1.05
Ratio of Standard deviation

D
en

si
ty

Figure A.1.5: Difference in toxicity marginal parameters of data for 30 patients recruited at 4
doses between copula models and independent models. First row of the plot is the difference
in the intercept parameter between FGM model and an independent model. Second row is
for the slope parameter. The x axis is on the odds scale with an increment of 0.05 on the
odds scale representing 0.012 on the probability scale

so this isn’t easily possible. The main computational burden of simulation in this setting is

in the model fitting function. In this simulation study Stan was used for model fitting [121].

There a number of improvements, such as writing the likelihood as a vector, that can be

done to optimise Stan code that results in small improvements in the time to achieve each

model fit.

When considering a simulation study in its entirety there is a lot of repetition in fitting a

model to the same data. For example, if the cohort size is one, after the first cohort there

are only 4 possible data outcomes. The looping approach would however fit the model the

number of times that the simulation is to be replicated (2000 times). To improve on efficiency
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the approach taken for the wider simulations study is to simulate data for all simulation

repetitions, then to subset all repetitions so that the model fits once to each unique data

combination. Decisions are then made and merged back to the original simulated data set.

Efficacy and toxicity outcomes are defined in the R2DT method to be independent. Indi-

vidual patient data for efficacy and toxicity at each dose are modelled as Bernoulli random

variables but due to exchangeabilty and sufficency uniqueness of data for the model is de-

fined by the cumulative number of events and total number of patients treated at each dose

(See Chapter 3). It is the uniqueness of the efficacy and toxicity data vectors separately

that define a unique dataset and model fit. For example consider 6 patients treated at a

single dose, there are 7 possible efficacy data sets around the total number of efficacy events.

Similarly for the toxicity data there are 7 possible unique data sets to fit the toxicity model.

Considering these as combined models would result in 49 possible combinations of the data.

The strategy in separating efficacy and toxicity allows a further gain in efficiency.

A simulation study can incorporate multiple different scenarios and multiple decision func-

tions (or arguments to the same function) that all have the same probability model. This

allows further savings in efficiency by running everything at the same time and only feeding

unique data sets to the model fitting. Consider the simulation study given in Chapter 5,

each trial has 20 cohorts simulated 2000 replicates, repeated for 10 scenarios and 21 dif-

ferent decision functions. After the first cohort of three patients there are just 4 toxicity

and 4 different efficacy models possible. Contrast this to fitting everything separately, the

probability model would be fit 410000 times (10× 2000× 21) in the simple approach.

If each decision function and scenario from earlier takes 12 hours to run, this approximates

to 105 days of computing time to run the entire simulation study. This becomes only

feasible with high performance computing. Running the entire simulation with the approach

described above by only fitting unique data sets allowed the code to be run in 27 hours upon

a modest desktop computer. The bespoke software available to fit EffTox is quicker still

[155]. The software doesn’t have the ability to edit the code to be suitable to fit R2DT

however.
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Appendix B

Programming code

The R computer code used to conduct computer simulation in Chapters 3 and 5 are saved

on a Github repository here: https://github.com/medahala/PhD.git
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