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Abstract 

Cardiac sarcoidosis (CS) is a granulomatous inflammatory disease whose 

aetiology is unknown, which features the existence of non-caseating 

granulomas. This thesis addresses the challenge of accurately diagnosing CS 

by enhancing the diagnostic capabilities of [18F]fluorodeoxyglucose positron 

emission tomography ([18F]FDG PET) and late gadolinium-enhanced cardiac 

magnetic resonance imaging (LGE-CMR). Independently, these modalities face 

limitations in isolating CS with high specificity and sensitivity. The thesis aimed 

to improve the diagnostic efficiency by integrating [18F]FDG PET and LGE-CMR 

through advanced radiomic feature analysis. Radiomic analysis was conducted 

across various scenarios, encompassing comparisons between positive and 

negative CS groups, distinguishing between active and inactive disease states, 

and differentiating CS patients from those experiencing myocardial inflammation 

due to another cause (post-COVID-19 patients). 

 

The thesis concludes that radiomic analysis can enhance the objectivity and 

complementarity of PET and CMR in identifying cardiac sarcoidosis. While PET-

based analyses demonstrate high performance, the project underscores the 

essential role of CMR-based analysis in mitigating challenges associated with 

PET image preparation variability.  
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Chapter 1 Introduction 

1.1 Overview of Thesis 

This thesis consists of six main chapters that collectively explore the theme of 

radiomic analysis in cardiac sarcoidosis (CS) to assist in the diagnosis. Each 

chapter provides a distinct perspective on the subject, as outlined below. 

 

Chapter 2 Background 

This chapter provides an overview of the fundamental knowledge related to this 

thesis. It covers the physics of the diagnostic tests that are used in the thesis 

and their role in the diagnosis of cardiac sarcoidosis. In addition, the hybrid 

PET/MR imaging and its considerations is provided. Moreover, the chapter 

discusses radiomic analysis and the process of feature selection. 

 

Chapter 3 Exploring the Utility of Radiomic Feature Extraction to Improve 

the Diagnostic Accuracy of Cardiac Sarcoidosis Using FDG PET 

In this chapter, the study aimed to examine the diagnostic efficacy of radiomic 

features extracted from [18F]FDG PET in comparison to conventional metrics. 

Additionally, the study sought to identify the most effective machine learning 

classifier for developing an automated model.  

 

Chapter 4 Exploring the Utility of Cardiovascular Magnetic Resonance 

Radiomic Feature Extraction for Evaluation of Cardiac Sarcoidosis 

The main focus of the study was to investigate the efficacy of radiomic features 

derived from LGE-CMR images in distinguishing between active and inactive 
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cardiac sarcoidosis. In addition, the study assessed the performance of 

machine learning classifiers on both individual features and principal 

components. 

 

Chapter 5 An Assessment of PET and CMR Radiomic Features for 

Detection of Cardiac Sarcoidosis 

The study investigated the utility of PET and LGE-CMR radiomic features in 

differentiating CS from other conditions characterised by myocardial 

inflammation. The primary emphasis was placed on patients who displayed 

cardiac-related symptoms following COVID-19 (referred to as PC patients). 

 

Chapter 6 Discussion  

This chapter provides a concise summary of the project's findings. The 

limitations encountered in this project are discussed. Furthermore, a 

comprehensive analysis is provided to highlight potential future directions for 

advancing this line of research. 

 

1.2 Key Contributions 

The key contributions of this thesis are listed as follows: 

I. The diagnostic utility of PET and LGE-CMR radiomic features has been 

explored from various perspectives. Numerous individual and combined 

radiomic features have demonstrated their potential value in diagnosing 

cardiac sarcoidosis across different scenarios. 
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II. The methodology employed in this project has the potential to provide 

new possibilities for utilising radiomic analysis as a valuable source of 

information in the diagnosis of cardiac sarcoidosis. 

III. The effect of two manual segmentation approaches on the robustness of 

radiomic analysis among PET images were investigated and discussed. 

The factors that affected the approaches were also discussed. 

 

1.3 Publications 

Journal Papers 

I. “An assessment of PET and CMR radiomic features for detection of 

cardiac sarcoidosis” Published 

 

Frontiers in Nuclear Medicine (https://doi.org/10.3389/fnume.2024.1324698) 

Authors: Nouf A. Mushari, George Soultanidis, Lisa Duff, Maria G. Trivieri, 

Zahi A. Fayad, Philip Robson, Charalampos Tsoumpas 

Author contributions: NAM (the candidate) segmented all datasets, extracted 

the radiomic features, performed the statistical analysis and feature selection, 

analysed the results and wrote the manuscript. GS shared datasets, reviewed 

segmentations and helped in modifying code as well as in the guidance of the 

project. LD wrote python code and helped to modify it and provide essential 

guidance on how to perform the optimisation of the radiomic analysis and 

machine learning approaches. MGT facilitated the availability of data. MGT, 

ZAF, and PR contributed to reviewing the manuscript and the overall guidance 

https://doi.org/10.3389/fnume.2024.1324698
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of the project and data. CT supervised the specific study and helped in 

restructuring and reviewing the manuscript. 

 

II. “The clinical value of quantitative cardiovascular molecular imaging: a 

step towards precision medicine” Published 

 

The British Journal of Radiology (https://doi.org/10.1259/bjr.20230704) 

Authors: Hendrea Sanne Aletta Tingen, Gijs D. van Praagh, Pieter H. 

Nienhuis, Alwin Tubben, Nick D. van Rijsewijk, Derk ten Hove, Nouf A. 

Mushari, T. Samara Martinez-Lucio, Oscar I. Mendoza-Ibañez, Joyce van 

Sluis, Charalampos Tsoumpas, Andor W.J.M. Glaudemans and Riemer H.J.A. 

Slart 

 

III. “Exploring the Utility of Cardiovascular Magnetic Resonance Radiomic 

Feature Extraction for Evaluation of Cardiac Sarcoidosis” Published 

 

Diagnostics (https://doi.org/10.3390/diagnostics13111865) 

Authors: Nouf A. Mushari, George Soultanidis, Lisa Duff, Maria G. Trivieri, 
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Author contributions: NAM (the candidate) segmented all datasets, extracted 

the radiomic features, performed the statistical analysis and feature selection, 

analysed the results and wrote the manuscript. GS shared datasets, reviewed 

segmentations and helped in modifying code as well as in the guidance of the 

project. LD wrote python code and helped to modify it and provide essential 

https://doi.org/10.1259/bjr.20230704
https://doi.org/10.3390/diagnostics13111865
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ZAF, and PR contributed to reviewing the manuscript and the overall guidance 
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restructuring and reviewing the manuscript.  

 

IV. “Exploring the utility of radiomic feature extraction to improve the 

diagnostic accuracy of cardiac sarcoidosis using FDG PET” Published 

 

Frontiers in Medicine (https://doi.org/10.3389/fmed.2022.840261) 

Authors: Nouf A. Mushari, George Soultanidis, Lisa Duff, Maria G. Trivieri, 

Zahi A. Fayad, Philip Robson, Charalampos Tsoumpas 

 Author contributions: NAM (the candidate) segmented all datasets, extracted 

the radiomic features, performed the statistical analysis and feature selection, 

analysed the results and wrote the manuscript. GS shared datasets, reviewed 

segmentations and helped in modifying code as well as in the guidance of the 

project. LD wrote python code and helped to modify it and provide essential 

guidance on how to perform the optimisation of the radiomic analysis and 

machine learning approaches. MGT facilitated the availability of data. MGT, 

ZAF, and PR contributed to reviewing the manuscript and the overall guidance 

of the project and data. CT supervised the specific study and helped in 

restructuring and reviewing the manuscript. 

 

V. “Assessment of different quantification metrics of [18F]-NaF PET/CT 

images of patients with abdominal aortic aneurysm” Published  
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Chapter 2 Background 

2.1 Overview of Cardiac Sarcoidosis 

Sarcoidosis comprises a granulomatous inflammatory disease involving multiple 

systems whose aetiology is unknown, which features the existence of non-

caseating granulomas in the impacted organs (1, 2). The organs largely 

affected by sarcoidosis are the lungs. In more than 90% of documented cases, 

the disease is observed to develop in the pulmonary system (3, 4). 

Nevertheless, extrapulmonary organs such as the heart can also be impacted 

(5). Cardiac sarcoidosis (CS) has a prevalence of 10 to 40 individuals per 

100,000 in both the United States and Europe. Notably, the prevalence among 

Blacks is higher at 35.5 per 100,000 compared to Whites at 10.9 per 100,000 

(6). In the clinical context, it is rare for cardiac involvement to occur, as it only 

manifests itself in around 5% of patients diagnosed with sarcoidosis, and 

symptoms may not be evident (i.e. ‘clinically silent’ disease), which is supported 

by the increased proportion of cardiac involvement identified in autopsy studies. 

A diagnosis cardiac involvement has been made in a minimum of 25% of 

sarcoid patients (7-9).  

 

Despite the CS aetiology not being known, it has been recognised by scientists 

that the formation of the granuloma occurs as a result of a principal inciting 

event. Sarcoid lesions are characterised by discrete, compact non-caseating 

epithelioid. There are two different types of cells contained in the granuloma: 

lymphocytes and mononuclear macrophages. Additionally, numerous possible 

antigens exist that could facilitate the creation of granuloma lesions such as 

infections and environmental agents (10). It is possible for the formation of non-
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caseating granulomas to form in distinct areas of the heart such as the left and 

right atria, right ventricle, left ventricular wall, basal ventricular septum, and 

papillary muscles (11). In cases involving medical symptoms, the disease can 

clinically manifest itself in different ways based on the site and profusion of the 

developed granulomas.  

 

Patients diagnosed with CS are often determined to have complete heart block. 

There is an increased likelihood that this will manifest in younger CS patients, 

dissimilar to other conditions, and could lead to sudden death. As reported by 

Matsui, Y. et al. (12), 23% to 30% of patients diagnosed with myocardial 

sarcoidosis were determined to have complete heart block, whereas 12% to 

32% of such cases involved bundle branch block. The causal factors include 

basal septum involvement, granulomas, or nodal artery involvement, ultimately 

causing ischaemia within the conduction system. Another condition that 

clinically manifests in cases of CS is ventricular arrhythmia. Around 25% to 65% 

of deaths caused by CS are attributed to sudden death resulting from 

ventricular arrhythmias or complete heart block (13). Around 40% of CS 

patients are observed to exhibit such manifestations as initial presentations of 

the disease. Additionally, approximately 25% to 75% of CS mortality as a result 

of cardiac issues is purely due to congestive heart failure (14). It is rare to 

observe pericardial effusion and valvular involvement, which manifests itself in 

3% to 10% of CS patients, while 10% of patients have ventricular aneurysms 

resulting from extensive ventricular lesions (15). A further clinical manifestation 

is pulmonary hypertension which can be caused by inadequate functioning of 

the left ventricular and is an indicator of a low chance of recovery. In a study 

conducted by Shorr, A.F. et al. (16) involving 363 patients with CS, it was 
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reported that pulmonary hypertension was diagnosed in 74% of them for whom 

a lung transplant was required.  

 

The diagnosis of CS can be difficult due to the absence of biomarkers or 

diagnostic tests with increased reliability. It has been shown that the specificity 

and sensitivity of frequently used invasive and non-invasive cardiac diagnostic 

tests, including endomyocardial biopsy, single-photon emission computed 

tomography (SPECT) and electrocardiogram (ECG) is reduced (17). 

Furthermore, the criterion standards for diagnosing and screening CS are 

significantly limited. The Japanese Ministry of Health and Welfare (JMHW) (18) 

initially published CS diagnosis guidelines which were subsequently revised in 

2006 (19). However, extensive validation of these guidelines has not occurred. 

One of the significant constraints of the guidelines is the necessity for cardiac 

involvement to be confirmed, whether it is through endomyocardial biopsy or by 

combining minor and major criteria. The Heart Rhythm Society published the 

criteria which comprise an expert consensus statement and incorporate the 

utilisation of state-of-the-art imaging techniques for the diagnosis of CS, 

including positron emission tomography (PET) and cardiovascular magnetic 

resonance imaging (CMR) (20). Nevertheless, one of the recommendations of 

these criteria is that extra-CS must be confirmed, which is not consistently 

feasible, particularly in cases of isolated CS. The most recent diagnostic 

guidelines for CS were published by the Japanese Circulation Society and its 

collaborative organisations (21). These guidelines provide criteria for diagnosing 

isolated CS, including confirmation of the disease through histological analysis 

using endomyocardial biopsy or clinical assessment based on abnormal uptake 

observed in [18F]FDG PET images of the heart. Additionally, the presence of at 
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least three other major criteria is required for diagnosis according to these 

guidelines, Table 2.1. 

Table 2.1 Japanese Circulation Society guidelines for isolated cardiac 
sarcoidosis diagnosis 

Criteria for cardiac involvement of sarcoidosis 

Major 
criteria 

(a)  High-grade atrioventricular block or fatal ventricular arrhythmia 
(b)  Basal thinning of the ventricular septum or abnormal ventricular wall anatomy 
(c)  Left ventricular contractile dysfunction 
(d)  67Ga citrate scintigraphy or [18F]FDG PET reveals abnormally high uptake in the heart  
(e)  Gadolinium-enhanced MRI reveals delayed contrast enhancement of the myocardium  

Minor 
criteria 

(f)  Abnormal ECG findings 
(g)  Perfusion defects on myocardial perfusion scintigraphy (SPECT) 
(h)  Endomyocardial biopsy 

Criteria for isolated cardiac sarcoidosis 
Histological diagnosis group 

Isolated cardiac sarcoidosis is diagnosed histologically when non-caseating epithelioid granulomas are 
detected in endomyocardial biopsy or surgical specimens. 

Clinical diagnosis group 

Isolated cardiac sarcoidosis is diagnosed clinically when the criterion (d) and at least three other criteria 
of the major criteria (a)-(e) are satisfied. 

 

The accuracy with which PET and CMR can effectively identify cardiac 

involvement is analogous to that of autopsy studies, while their prognostic ability 

is superior to classical clinical criteria (22, 23). The contribution of state-of-the-

art imaging techniques to enhancing the identification and treatment of CS 

patients has been identified in the literature, which will be discussed in the 

following section. Such imaging techniques currently have critical importance for 

diagnosing cases at an early stage, predicting the disease and how it will 

progress, as well as the process of monitoring the response to therapy.  

 

2.2 Diagnostic Tests for Cardiac Sarcoidosis  

2.2.1 Positron Emission Tomography (PET)   

2.2.1.1 Basic PET Principles 
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The PET camera is used to measure how positron-emitting radionuclides 

(tracers) are distributed inside an object. An advantage of PET imaging is that it 

offers metabolically significant radionuclides. Another distinctive tomographic 

ability is derived from the fact that two virtually back-to-back 511-keV gamma 

rays are simultaneously emitted after the annihilation of an electron, as well as 

the capability to facilitate precise quantitation of the uptake of tracers. PET has 

medical significance due to the existence of numerous beneficial positron-

emitting tracers, including isotopes of oxygen (15O), nitrogen (13N), and carbon 

(11C), which are fundamental elements of every living organism, as well as their 

physiologic processes. Therefore, it is possible to synthesise more tissue-

specific and chemistry-specific tracers for administration into animals or humans 

in order to conduct in vivo studies of the physiology and pathophysiology. 

Fluorine (18F) is an additional positron-emitting isotope that has importance, 

which is frequently employed for labelling the glucose analogue [18F]FDG that is 

transported via the glucose pathway on its route between plasma and tissue 

cells. Nevertheless, dissimilar to glucose, FDG is constrained within the cell and 

it is not metabolised further; therefore, it can be utilised for the purpose of 

imaging (24).  

 

Imaging techniques are generally grouped into two categories of anatomic or 

functional devices. Complementary data can be provided by these techniques 

that can be combined in order to facilitate the diagnostic process, as well as to 

plan, perform and evaluate therapy effectiveness. In fact, it is possible to 

enhance the process of interpreting functional images in the field of nuclear 

medicine by co-registering them with anatomic images.  
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The nucleus of an atom comprises neutrons and protons, collectively known as 

nucleons. While the electric charge of a proton is positive, a neutron possesses 

zero net electric charge. Two types of forces act on the neutrons and protons 

within the nucleus: a short-range powerful attractive force that serves to bind all 

nucleons together and a repulsive electric force that causes protons to repel 

each other. The stability of a nucleus rich in protons can be enhanced through a 

reduction in their surplus positive electric charge. A viable process of decay for 

a nucleus rich in protons is where a proton decays into a neutron, a neutrino, as 

well as a particle with a positive charge defined as a positron. As a proton’s 

mass is less than that of a neutron, it is only possible for the process of decay to 

occur within the nucleus. Because a neutrino comprises a particle with almost 

no mass and no electric charge, there is no interaction in the tissue that 

surrounds it. The positron (ß+) is the electron’s (ß−) antiparticle and although its 

mass is identical to an electron, the charge is opposite. It is possible to use an 

accelerator (e.g. cyclotron) to produce a proton-rich isotope in which a beam of 

high-energy deuterons or protons is generated for the purpose of penetrating 

the intended nuclei such that an increased number of protons can be embedded 

in them (25). 

 

The kinetic energy produced when the nucleus decays is distributed between 

the neutrino and positron, meaning that the distribution of the emitted positrons’ 

actual energies occurs along a continuous spectrum, ranging from close to 

zero, to the isotope’s complete decay energy. The average kinetic energies of 

the emitted positrons for various frequently utilised radionuclides are shown in 

Table 2.2 (26, 27). Subsequent to the production of a positron, the distance the 

positron is capable of travelling before most of its kinetic energy is lost as a 
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result of being scattered to adjoining tissue is relatively small (0.2 – 2 mm for 

the majority of frequently employed tracers), at which point it is combined with 

an electron via a process of annihilation. This involves the annihilation of both 

the electron and positron as well as the conversion of their mass into energy (E 

= mc2), which takes the form of a photon pair. According to the fundamental 

laws of physics, energy conservation, linear momentum and the energy of every 

gamma ray (photon) is 511 keV, which equates to a positron’s or electron’s 

mass. The emission of the two produced photons occurs virtually back-to-back 

(180 ± 0.6 degrees), meaning that two gamma rays travelling in opposite 

directions have a net momentum of zero. PET imaging has unique tomographic 

and quantitative imaging characteristics as result of the fact that the gamma pair 

is emitted in this back-to-back manner. Detection of the annihilation radiations 

occurs externally and they are utilised for determining the positron emitter’s 

location and quantity. Additionally, PET scanners leverage the fact that the 

emission occurs back-to-back to ‘electronically collimate’ the pairs of photons, 

as well as to ascertain the trajectory of the annihilation process. As event 

localisation can be achieved without a physical collimator, the sensitivity of PET 

can be 100 times higher compared with SPECT. The image resolution is also 

enhanced by the absence of a collimator (24). 

 

Table 2.2 Common positron isotopes characteristics  

Positron isotopes Half-life (min) Average positron energy (MeV) 

11C 20.4 0.3 

13N 9.96 0.4 

15O 2.07 0.6 

18F 109.7 0.2 
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The distance that emitted positrons are required to travel prior to the generation 

of a pair of gamma rays is minimal, which suggests that the site at which the 

positron is emitted, in other words the positron-labelled molecule site and the 

site where PET detects the generation of gamma rays differ slightly. The 

distance travelled by a positron prior to annihilation, known as the ‘positron 

range’, is dependent on its preliminary kinetic energy. The positron range and 

non-collinearity (the gamma ray pair are not precisely back-to-back) of the 

photon mean that an event cannot be positioned with complete certainty, which 

fundamentally limits PET resolution. Nevertheless, in standard PET employed 

for clinical scanning utilising FDG, the primary constraint to the spatial 

resolution of PET images is derived from the magnitude of the single small 

crystals utilised in the detection process.  

 

PET detectors are responsible for detecting the annihilation photons emitted by 

positron-emitting radiotracers administered to patients. The most common type 

of PET detector is the scintillation detector. Scintillation detectors consist of 

scintillator crystals coupled with photodetectors, such as photomultiplier tubes 

(PMTs) or photodiodes. The emitted photons from the annihilation process 

interact with the scintillator crystal, causing it to emit flashes of light. The 

photodetectors convert this light into electrical signals that can be processed 

and analysed to reconstruct the PET image (28, 29). Some modern PET 

systems employ time-of-flight (TOF) detectors, which measure the time it takes 

for the annihilation photons to reach the detectors. TOF information allows for 

more precise localisation of the radiotracer, resulting in enhanced image quality 

and reduced image noise. 
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The surrounding detector system is not reached by all the photons that are 

emitted within the object (body). Interactions can occur between these photons 

and the bodily tissue, or they merely traverse it with no interactions occurring. 

Such interactions between photons and body tissue largely manifest as either 

Compton scattering or photelectric interaction. Complete absorption of the 

photons engaged in photoelectric interaction occurs, meaning that they are 

incapable of reaching the detectors. Compton scattering constitutes the main 

type of interaction for photons at 511 keV in tissue, which occurs when a photon 

collides with an electron with low binding energy within an atom’s outer shell. 

The interaction between an electron and a photon causes the latter to lose a 

portion of its energy and its trajectory is changed, thus causing the number of 

photons that would have potentially reached the detectors to be reduced. The 

process by which photon flux is lost as a result of interactions within body (or an 

object of any kind) is defined as attenuation. In PET systems, the likelihood that 

a pair of photons produced during a single event (positron annihilation) is 

capable of surviving the attenuation within the body is not dependent on the 

annihilation’s location on the path that connects the two detectors. Thus, the 

attenuation effect can potentially be corrected if a transmission scan is 

performed utilising an external source. 

 

PET exploits the characteristic that the creation of the two photons produced by 

positron annihilation occurs at the same time; therefore, every other event that 

does not meet the time-coincidence criterion is rejected. Coincidence occurs 

when two photons are detected inside a particular time period called the 

coincidence window, generally a time interval of about 10 ns. After detecting a 

gamma ray, if no another gamma ray accompanies it inside this interval, the 
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event is rejected. The origins of coincidence gamma pairs detected in this way 

are not always from the identical annihilation event. Events determined to be in 

coincidence are categorised as being true, random, or scatter coincidences. 

True coincidence events originate from the identical positron annihilation 

(Figure 2.1, Event 1). Random (also known as accidental) coincidence events 

are those where the origins of the two photons detected are two distinct 

annihilation events and are detected to be in coincidence by chance as a result 

of the coincidence window’s finite nature (Figure 2.1, Event 2). Scatter 

coincidence events originate from an individual annihilation event, although 

scattering of a single or of both photons within the object occurs (Figure 2.1, 

Event 3). As a result of this process of scattering, the photon’s energy and 

direction are altered, thus causing the loss of information about its position. It is 

only possible to detect one of the photon pairs in numerous annihilation events 

which are defined as ‘singles’. Determining whether a given coincidence is a 

scatter, random or true event is not feasible with the detector. True events are 

desirable, whereas all other events (scatter and random) should be subject to 

measurement and estimation followed by removal from overall coincidence 

events (24). The energy window is typically set to a specific range of energies 

around the peak energy of the annihilation photons. This range is usually 

narrow to reduce the influence of scatter and random events, and other sources 

of noise.  

 

When performing measurements with PET, background noise is generated by 

scatter and random events. After the image has been reconstructed from the 

tracer distribution, they cause the background to be generally blurred, which 

results in a reduction in the quality of the image. The size of scatter and 
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coincidence events are influenced by how the tracer activity is distributed (within 

and external to the field of view), the composition of the object being studied 

and how the PET scanner is designed.  

 

   

Event 1  
(True coincidence) 

Event 2  
(Random coincidence) 

Event 3  
(Scatter coincidence) 

Figure 2.1 Photons coincidence events 

 

2.2.1.2 Image Quantification  

Theoretically, when imaging with PET, it is possible to accurately quantify the 

tracer uptake from the image data as a result of the attenuation-correction 

ability of this modality. Such information can enhance the ability of the observer 

to interpret the images. PET imaging using FDG which currently comprises the 

imaging tracer with the most clinical benefits for detecting cancer as well as 

many cardiovascular diseases can take advantage of the use of quantitative 

uptake measures to calculate the probability of a tumour being malignant 

according to the degree of metabolic activity, as well as to evaluate how the 

tumour responds to therapy. 
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Quantitation can be performed using various methods, including blood 

sampling, complex kinetic analysis with dynamic data acquisition, and visual 

assessment (30). The basic approach is where the images are visually 

assessed. FDG uptake is the most frequently assessed quantitative using the 

standardised uptake value (SUV), in which the fractional FDG uptake by the 

tumour is estimated (31, 32). This measure is also known as the differential 

uptake ratio (DUR) or dose uptake ratio. Measurement using SUV is frequently 

employed for the purpose of determining whether lesions are malignant or 

benign. The definition of SUV is considered to be the tissue concentration of 

tracer based on the measurement of a PET camera divided by the activity 

injected divided by the body weight:  

 

𝑆𝑈𝑉 (𝑔/𝑚𝑙) =  
𝑇𝑢𝑚𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (

𝑀𝐵𝑞
𝑚𝑙

)

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑠𝑒 (𝑀𝐵𝑞)
 ×  𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) 

Equation 2.1 

 

In addition to attenuation-correction, it necessary to precisely determine the 

dose being administered when using SUV, applying corrections for any residual 

activity that occurs in the tubing and syringe, while decay correction must be 

applied to the dose according to the imaging time. In the context of FDG, the 

uptake of tracer from 30 to 60 minutes subsequent to being injected is normally 

employed for tissue activity. Nevertheless, for a model independent assessment 

of glucose metabolism to be achieved, it is necessary to measure the SUV once 

the FDG tissue concentration has plateaued. The measurement can vary 

significantly according to how it is implemented exactly at the different clinical 

sites. In order for the variation to be minimised when making comparisons, 

identical quality control parameters should be followed when studying a given 
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site, including the time waited subsequent to injection, the imaging time, and as 

fasting protocols.  

 

Although the accuracy of SUV quantitation is inferior to that of compartmental 

analysis, it can be easily implemented and blood sampling is unnecessary, thus 

giving it increased practicality in clinical settings. Although other quantitation 

methods offer greater reliability such as kinetic analysis with parameter 

optimisation, Patlak graphical analysis and simplified kinetic analysis, they still 

have increased complexity and due to practical limitations they are currently not 

employed other than for research purposes.  

 

The image quantification affected by a phenomenon called partial volume effect 

(PVE) where the limited spatial resolution of the imaging system causes the 

mixing of signal from multiple tissue types within a single voxel. This effect 

becomes particularly relevant when small structures or lesions are imaged, as 

their boundaries may not be accurately represented due to the limited 

resolution. In cardiac PET imaging, PVE can affect the accuracy of quantitative 

measurements, such as myocardial blood flow, myocardial glucose utilisation or 

uptake values of radiotracers. The blurring and mixing of signal can lead to 

underestimation or overestimation of the true activity concentrations in the 

myocardium or lesions, leading to inaccurate in quantification. 

 

2.2.1.3 Role of PET in Cardiac Sarcoidosis Diagnosis 

The glucose analogue [18F]FDG is capable of determining whether active CS is 

present. If the uptake within the macrophage-dense regions is increased, 
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[18F]FDG PET will be capable of visualising inflammation caused by sarcoidosis. 

Nonetheless, the diagnosis of CS cannot be made purely on the basis of 

[18F]FDG uptake, as accurate diagnoses cannot be made of certain regions with 

low intensity by applying this method (33). Additionally, it is not necessarily the 

case that regions with increased uptake denote that CS is present due to the 

fact that inflammation is caused by multiple heart diseases, including ischaemia 

in coronary artery disease (CAD) patients, as well as systemic rheumatic 

disorders with cardiac involvement (34, 35). Moreover, inflammation does not 

manifest in all CS patients; hence, it is not possible to eliminate CS, but the lack 

of active myocardial inflammation can be documented (36). Inflammation and 

perfusion can be assessed using staging systems in order to increase the 

diagnostic significance, although they do not offer outcome or histological 

validation (37). For [18F]FDG PET to perform more effectively in diagnosis, it is 

critical that the usage of glucose by normal cardiomyocytes is suppressed 

because this can enhance the specificity. Although various methods have been 

suggested, including adhering to a ketogenic diet (high-fat, low-carb), extended 

fasting, intravenous heparin and, most commonly, approaches where all these 

are combined, none is specifically applicable to CS (36). Nevertheless, methods 

aimed at enhancing the diagnostic performance are not beneficial for as many 

as 25% of patients, while they have the potential to produce false-positive 

results (38) because the physiological uptake of the myocardium continues to 

occur.  

 

The benefits of PET imaging usage for diagnosis purposes have been 

documented. Patients with renal disorders or intracardiac devices can be 

exposed to PET without any concerns for their safety. Additionally, total-body 



 

 23 

PET imaging can facilitate the process of detecting different kinds of extra-CS 

(33). For instance, the lymph nodes located next to the lungs are frequently 

affected as a result of effects on the lungs, which PET can detect. Although the 

diagnostic benefits of PET imaging for the identification of CS have not 

precisely been determined, attempts to establish its accuracy have been made 

by numerous researchers. In a meta-analysis involving 164 patients, rates of 

78% and 89% were determined for the pooled specificity and sensitivity of PET 

in the diagnosis of CS (39). Kim, S.-J. et al. (40) found rates of 84% and 83%, 

respectively, for pooled sensitivity and specificity in a different meta-analysis 

involving 17 studies. Nevertheless, it is important to interpret such findings with 

caution as a result of the limited size of the studies pooled.  

 

2.2.2 Magnetic Resonance Imaging (MR)   

2.2.2.1 MR Theory  

As a medical imaging approach, MR imaging is non-ionising and non-invasive 

and draws on the nuclear magnetic resonance (NMR) principle. Dissimilar to 

other techniques in which radioactive isotopes or X-rays are employed, ionising 

radiation is not used in MR. Additionally, as a result of its excellent soft tissue 

contrast, it is more effective than different modalities and is specifically 

beneficial for diagnosing issues impacting tendons, cartilage, ligaments, and 

joints.  

 

Independent studies were conducted in which identifying the principle of MR 

caused by exciting protons immersed in a static magnetic via a radiofrequency 

field at the resonance frequency (41). Subsequently, it was found that the 
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excitation of normal tissues and tumours occurred at identical frequencies, but 

that their relaxation times differed. Such findings laid the foundation for the use 

of MR for the purpose of diagnosing diseases and monitoring treatment.  

 

MR functions according to the principle of NMR, which manifests as a result of 

the interaction between nuclei and a powerful magnetic field. It is necessary for 

these nuclei to have both a spin angular momentum and intrinsic magnetic 

momentum for this to occur (i.e. a non-zero spin must be possessed) (42). As a 

result of this characteristic, a nucleus can be positioned within a magnetic field 

for the purpose of excitation via radio waves, which results in the emission of a 

radiofrequency signal that can be detected. This property is possessed by the 

nucleus of a hydrogen atom, and due to the fact that around 70% of the human 

body is comprised of water (which contains nuclei of hydrogen), hydrogen-

based resonance is the basis of MR functioning. Both the spin and charge of 

the hydrogen nucleus are fixed and the magnetic moment that is produced is 

oriented in a random direction when no external magnetic field is present, 

Figure 2.2. When a uniform magnetic field Bo exists, the precession of the spins 

around Bo will occur in a trajectory way that describes a cone as a result of the 

spin angular momentum, Figure 2.3. 
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No external magnetic field applied External magnetic field applied 

Figure 2.2 The effect of the external magnetic field on the hydrogen nuclei 

 

 

 

 

Figure 2.3 The representation of hydrogen nucleus spins in a static 
magnetic field Bo 
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Larmor’s equation is used to calculate the angular frequency, ωo, of the 

precession: 

 

𝜔∘ =  𝛾 |𝐵∘| Equation 2.2 
 

 Furthermore, the Bloch equation describes the precession:  

 

𝑑𝜇

𝑑𝑡
=  𝜔∘ 𝜇  

 

Equation 2.3 

 

Where;  

𝛾 denotes the gyromagnetic constant (42.58 MHz/T for hydrogen).  

|Bo| denotes the strength of the magnetic field. 

μ is the magnetic moment.  

 

As the temperature of the human body is finite, the spin precession becomes 

anisotropic, thus making it more probable that the orientation of the magnetic 

moments will occur with reduced magnetic energy parallel with Bo than 

increased magnetic energy anti-parallel with Bo. This results in a net 

magnetisation, M, which is zero in the absence of an external magnetic field 

(41).  

 

When there is no radiofrequency (RF) pulse, the alignment of the initial net 

marginalisation, Mo, is with the magnetic field Bo. However, when the application 



 

 27 

of an RF pulse occurs at the Larmor frequency, this produces a resonance and 

causes Mo to tilt in the opposite direction to Bo. The Mo is comprised of two 

elements: the transverse element, Mxy, whose rotation occurs on the xy plane, 

and the longitudinal element, Mz, which is on the z-axis. As Mxy rotates around 

the z-axis, an electromagnetic field is generated that is able to induce a current 

through the receiver coil. After amplification, it is possible to detect the 

generated signal which is defined as the MR signal or free-induction decay.  

 

The application of an RF pulse causes the spin system to remain in a state of 

excitement; however, upon termination of the RF pulse, energy is lost, thus 

causing the spin to revert to its state of equilibrium. Such a process is defined 

as relaxation, while its duration is referred to as the relaxation time (T1 and T2). 

Relaxation occurs via one of two mechanisms: spin-lattice and spin-spin 

relaxation. The former comprises the longitudinal relaxation of the Mz element. 

This is represented by the time constant T1 which is defined as the rate of 

energy transferral between the nuclear spin system and the adjacent molecules, 

called the lattice. The Mxy component’s transverse relaxation is the spin-spin 

relaxation which is characterised by the time constant T2. 

 

Subsequent to a 90o pulse, precession of the spins occurs in a coherent 

manner in a uniform direction; however, loss of such coherence progressively 

occurs as a result of field inhomogeneity, as well as the fact that the spins 

interact directly with each other. Nevertheless, no energy is transferred to the 

lattice during this kind of relaxation. Dephasing that occurs as a result of the 

joint effects of T2 decay and field inhomogeneity is denoted as T2∗ and the 

duration is less than T2 (41).  
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It is important to note that the spin-spin and spin-lattice relaxation are related, 

as it is impossible for the z-magnetisation to occur if the xy-magnetisation does 

not decrease in tandem. Therefore, T2 ≤ T1 (T2 ≈ T1 in liquids, but T2 ≪ T1 in 

solids). 

 

Phase-Sensitive Inversion Recovery (PSIR) is a sequence used in CMR. It is a 

specialised imaging technique designed to enhance the visualisation of late 

gadolinium enhancement (LGE) in the myocardium. PSIR sequences are 

particularly useful for identifying areas of scar tissue or fibrosis in the heart. It 

involves acquiring images after administering a contrast agent, typically 

gadolinium-based, to the patient. It utilises an inversion recovery pulse 

sequence, where the inversion time is carefully chosen to null the signal from 

normal myocardium while retaining the signal from areas with delayed 

gadolinium enhancement. By employing the PSIR technique, CMR can provide 

detailed information about myocardial viability, scar tissue, and areas of cardiac 

pathology. This valuable imaging tool aids in the diagnosis, assessment, and 

treatment planning for various cardiovascular conditions. 

 

2.2.2.2 Image Acquisition 

In the acquisition process, spatial organisation of the raw data is performed 

such that a signal can be located in the matrix through the application of a 

method of spatial encoding grounded on the magnetic field gradient. At the 

initial step, a slice is selected for imaging. As the Larmor frequency will alter in 

this direction, it is possible to excite the individual slices through the application 
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of varying RF pulses, thus instigating resonance. According to the sequence, 

the selection of slices can be undertaken utilising the X, Y or Z gradients, which 

denote the sagittal, coronal, and axial slices, respectively (43). Nevertheless, 

the thickness of the slice is dependent on the amalgamation of two factors: the 

gradient’s steepness or strength, and the bandwidth or frequency range within 

the RF pulse (44). The slice generated is thicker when the gradient is shallow, 

whereas it is thinner when the gradient is steep.  

 

After the slice positions and thicknesses have been selected, it is then possible 

to identify the MR signal’s spatial position through the use of spatial encoding. 

The phase encoding process involves the switching on of the gradient in a 

specific orthogonal direction, which alters the frequencies of the spins in relation 

to where they are located on the gradient. Resultantly, the excited spins whose 

position is higher possess more powerful magnetic energy and gain phase in 

comparison with spins whose position is lower. This produces a phase shift of 

the spins, whereas the identification of the individual slices can be made 

according to their specific phase. In frequency encoding, the application of the 

gradient occurs in the third direction, which produces a magnetic field where the 

strength rises in a right to left direction. The frequency variation that is 

generated results in the left side spin to have slower precession compared with 

the right side spins. Subsequent to the acquisition of a broad spectrum of 

frequencies, it is possible to characterise the individual slices according to their 

individual frequencies. Every volume element (voxels) can be spatially identified 

by combining the phase and frequency results. Several iterations of the 

encoding process are performed at various gradient strengths, while the 

information that contains the MR signal is stored into K-space. The number of 
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pixels within the image is determined by the number of phase encoding steps. 

Both the image and resolution quality are improved when the number of 

encoding steps is increased, although this causes the overall duration of the 

scan to be extended (43). This is followed by the application of a Fourier 

transform to each of the raw k-space values, which ultimately produces the final 

MR image.  

 

2.2.2.3 Role of MR in Cardiac Sarcoidosis Diagnosis 

CMR comprises a non-invasive imaging technique that has considerable 

importance in the diagnosis and screening of CS patients. It is capable of 

detecting indicators of CS, including perfusion defects, myocardial oedema, and 

scarring; additionally, it is employed for assessing the function and geometry of 

the two ventricles. In certain studies, reports indicated that the CMR specificity 

and sensitivity ranged between 75% and 100% and 76% and 78%, respectively, 

for the detection of CS (45, 46). It may be possible to evaluate the inflammatory 

element of CS and oedema through the addition of parameters, including T2-

weighted imaging and T2 mapping. In other studies, it was shown that T2-

weighted imaging is a feasible option compared with [18F]FDG PET for 

inflammation assessment; nevertheless, this method has shortcomings as a 

result of the reduced signal-to-noise ratio (47, 48). LGE imaging can be used to 

evaluate myocardial scarring. In comparison with normal myocardium, the 

extracellular contrast agent gadolinium exhibits slow washout in regions 

characterised by fibrosis. While LGE can facilitate the identification of CS, 

according to the distribution and pattern of LGE (45, 49), it could be non-

specific. Furthermore, patients diagnosed with advanced renal disease must not 

be injected with gadolinium contrast (50). 



 

 31 

 

2.2.3 PET/MR Imaging 

Several comprehensive reviews and guidelines have extensively covered the 

various clinical uses of cardiac PET/MR imaging, as evidenced by a range of 

scholarly articles (51-56). These sources have reported significant 

advancements in the areas of diagnosis, prognosis, and therapy monitoring for 

a wide array of cardiac conditions, including myocardial ischemia, sarcoidosis, 

myocarditis, and cardio-oncology. It is worth noting that fully integrated PET/MR 

systems represent some of the most intricate and sophisticated devices 

employed in the field of medical imaging. The development and implementation 

of such systems have encountered substantial challenges, with the process 

spanning several decades from initial preclinical stages to their integration into 

clinical practice (57, 58). PET/MR imaging offers several advantages in 

cardiology, particularly for the evaluation of cardiac sarcoidosis. Compared to 

PET/CT, PET/MR imaging significantly reduces radiation exposure to patients. 

This is especially important for patients who require multiple imaging studies 

over time, such as monitoring disease progression or treatment response. In 

addition, MR provides excellent soft tissue contrast, allowing for the detailed 

assessment of myocardial tissue characteristics. This is particularly beneficial 

for evaluating myocardial inflammation, fibrosis, and scar tissue associated with 

cardiac sarcoidosis. However, PET/MR scanners are not as widely available as 

PET/CT or standalone MR systems. This can restrict access to this imaging 

modality for some patients and healthcare facilities. In addition, the magnetic 

field strength and inhomogeneities may influence the positron range leading to 

reduced PET spatial resolution. Furthermore, the presence of metal implants, 
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patient motion, and respiratory or cardiac motion can introduce artefacts and 

affect image quality in PET/MR.  

 

2.2.3.1 Attenuation Correction 

Attenuation correction is an important aspect to consider when discussing 

PET/MR imaging in cardiology, including the evaluation of cardiac sarcoidosis. 

Attenuation correction is the process of accounting for the attenuation or 

weakening of PET signals as they pass through different tissues in the body. In 

PET/CT imaging, attenuation correction is performed using CT data, which 

provides information about tissue density for accurate correction of PET 

images.  

 

In PET/MR, attenuation correction becomes more challenging since MR images 

do not directly provide information about tissue attenuation. However, several 

approaches have been developed to address this limitation. MR-based 

attenuation correction methods which use MR images to estimate tissue 

attenuation by assigning attenuation values to different tissue types. The 3D 

breath-hold Dixon sequence is an MR imaging technique that allows for the 

acquisition of multiple sets of images with different echo times. These images 

are used to estimate tissue properties, such as fat and water content, which can 

be utilised for various applications, including attenuation correction. These 

tissue property maps are then used to generate an attenuation map for PET 

attenuation correction in PET/MR imaging. By providing an estimation of tissue 

attenuation, the Dixon technique helps improve the accuracy of PET 

quantification and interpretation in the presence of different tissue types and 

densities (59). Several studies involving cardiac PET/MR imaging with both 



 

 33 

phantoms and cardiovascular patients have demonstrated a notable similarity 

between PET/CT and PET/MR in terms of SUV values. These findings highlight 

the validity and reliability of Dixon-based attenuation correction in PET/MR 

imaging (60-62). 

 

2.2.3.2 Motion Correction 

Respiratory, cardiac or patient motion artefacts may occur during image 

acquisition. These artefacts can lead to image blurring and misalignment, that 

can directly influence the process of attenuation correction for the 

corresponding PET images. Subsequently, affecting the accuracy of 

quantitative analysis. Various respiratory patterns during Dixon and PET 

acquisitions can result in misalignment between attenuation correction maps 

and PET images, thereby compromising the accuracy of the correction. 

PET/MR imaging presents complementary strategies to tackle this challenge, 

such as prospective or retrospective gating (63-65). In addition, by acquiring 

images during breath-holding, the 3D Dixon sequence enables the acquisition 

of images at different points in the respiratory cycle when motion is minimised 

(64). This reduces the impact of respiratory motion artefacts and improves the 

alignment of images, resulting in sharper and more accurate images for 

analysis. To correct motion in attenuation maps, these approaches make use of 

dedicated MR sequences or PET counts distributions to capture the myocardial 

motion model during image acquisition. With the integration of motion 

information, PET/MR imaging can be aligned more accurately and attenuation 

correction can be performed more accurately. 

 



 

 34 

2.2.3.3 Scatter Correction 

In addition to the attenuation of photons, the presence of scattered photons also 

introduces potential errors in accurately estimating the concentration of activity, 

thereby impacting the quantification of PET data (66). The PET/MR system 

faces specific challenges due to its relatively small PET ring diameter, large 

axial field of view, and wide PET coincidence window. Consequently, the 

likelihood of random and scatter coincidences in PET/MR is relatively high. To 

address this issue, PET/MR systems employ narrower energy windows while 

maintaining comparable energy resolution (59). This approach effectively 

manages the scattering fraction, indicating that the overall performance of PET 

detectors within MR scanners remains largely unaffected. 

 

2.3 Radiomic Analysis 

Radiomic analysis has emerged as a transformative and highly promising 

approach in the field of medical imaging, commonly known as radiomic 

features. In recent years, the field of radiomics has garnered increasing 

attention and recognition due to its ability to extract a wealth of quantitative data 

from medical images (67). Unlike traditional qualitative assessments, radiomic 

analysis delves deep into the pixel-level intricacies of these images, generating 

an extensive array of quantitative features. This wealth of information 

encompasses not only fundamental parameters such as size, volume, and 

intensity but also intricate details regarding texture, shape, and spatial 

relationships within the imaged regions (68). Such comprehensive data analysis 

offers significant potential for aiding in the diagnosis, prognosis, and treatment 

planning of various medical conditions.  
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By applying advanced computational techniques, radiomics enables the 

extraction of a multitude of quantitative features from medical images, thereby 

opening new avenues for improving decision making. The key applications of 

radiomics in medical imaging include cancer diagnosis and characterisation, 

treatment response assessment, prognosis and survival prediction, and 

neurological and cardiovascular disorders. Radiomics plays a pivotal role in 

oncology compared to other applications (69). It can aid in distinguishing 

between benign and malignant lesions, assessing tumour heterogeneity, and 

predicting the aggressiveness of cancer. This not only facilitates early detection 

but also assists in tailoring personalised treatment plans. While in neuroimaging 

and cardiovascular imaging, radiomics has the potential to identify disease-

specific biomarkers and help with early detection of conditions such as cardiac 

disorders (70). However, Rainey, C. et al. (71) highlighted the necessity of 

structured education for healthcare practitioners in artificial intelligence to equip 

the current and future workforce for the imminent clinical integration of artificial 

intelligence in healthcare. Some educational institutions have initiated this 

incorporation to stay updated with the evolving landscape (72). 

 

2.3.1 Factors Affecting Radiomic Analysis 

The processes prior to feature extraction play a crucial role in modifying the 

input image and should not be underestimated. These procedures encompass 

the image acquisition, encompassing all scanner settings; addressing 

attenuation and scatter issues; image reconstruction and image segmentation. 

Often, these steps have been fine-tuned for visual interpretation, which may not 
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necessarily yield the most favourable radiomic outcomes (73). Nevertheless, 

the imperative for maintaining consistent methodologies dictates that these 

visually optimised images must be employed. 

 

2.3.1.1 Image Acquisition and Protocol Variability 

The process of acquiring images involves multiple aspects that can introduce 

variability. For instance, the duration per bed position does have some impact, 

but it is relatively minor when compared to other factors (74), such as the time 

between the injection and the actual scan. Specific steps in the image 

acquisition process may vary based on the application or the manufacturer of 

the scanning equipment. For instance, longer scan times can potentially reduce 

image noise, although this may not always be practically feasible in a clinical 

setting (75). 

 

If the data under study are originated from different scanners/centres, a 

harmonisation technique must be applied. Harmonisation is the process of 

standardising or aligning data from different sources or formats to ensure 

compatibility and consistency. It aims to overcome issues arising from variations 

in data collection methodologies or measurement scales, which can hinder 

accurate and reliable analysis. The widely utilised technique of ComBat 

harmonisation has demonstrated its effectiveness in multiple independent 

studies (76, 77). It performs retrospective standardisation of radiomic features 

acquired using diverse protocols. ComBat achieves this by mitigating the centre 

effect, thereby ensuring consistency across datasets (78). 
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2.3.1.2 Image Reconstruction 

The process of image reconstruction in medical imaging may has an impact on 

radiomic analysis, influencing the quality, reliability, and interpretability of 

radiomic features (74, 79, 80). However, some studies showed that radiomic 

features are robust to different reconstruction algorithms (81). Image 

reconstruction transforms raw data acquired from imaging modalities into 

clinically useful images (82). However, it should take into account many 

considerations that may affected by image reconstruction and thereby radiomic 

analysis. Firstly, the image reconstruction affects the spatial resolution, which 

affects the ability to discern small structures or subtle variations within the 

imaged region (83). Higher spatial resolution can lead to more detailed radiomic 

features, potentially revealing important information for diagnosis and treatment 

planning. In addition, the reconstruction process can introduce or exacerbate 

noise and imaging artefacts (84, 85). High noise levels can compromise the 

precision of radiomic features, while artefacts may lead to incorrect or 

misleading findings. Image denoising techniques and artefact correction 

methods are often used to mitigate these issues (86). The stability of radiomic 

features is a key consideration. In some cases, different reconstruction 

algorithms or settings can yield substantially different radiomic results. This can 

impact the reproducibility and reliability of radiomic analysis, especially in multi-

centre studies. Furthermore, one of the strengths of radiomics is the ability to 

assess tissue heterogeneity. Image reconstruction can influence the 

quantification of heterogeneity-related features (87), making it vital to 

standardise reconstruction procedures for meaningful comparisons. Iterative 

reconstruction algorithms, which are increasingly used in modern imaging, can 
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enhance radiomic analysis by reducing noise and improving feature stability 

(88). 

 

In PET/MR scanners, while Fourier transform-based methods are commonly 

used for MR image reconstruction, specialised algorithms such as iterative 

techniques are typically employed for PET image reconstruction. In this thesis, 

PET images where reconstructed using one of the iterative reconstruction 

approaches called ordinary Poisson ordered subset expectation maximisation 

(OP-OSEM). This algorithm is an extension of the OSEM algorithm, which is a 

widely adopted iterative reconstruction method in PET. In OP-OSEM, the 

algorithm iteratively updates the estimated activity distribution in the image 

space based on the acquired projection data, following the principles of 

maximum likelihood estimation. It takes into account the Poisson nature of PET 

data, which arises from the random nature of positron annihilation events. OP-

OSEM can indirectly mitigate the impact of PVE to some extent through the 

iterative reconstruction process. By iteratively updating the estimated activity 

distribution based on the acquired projection data, OP-OSEM can help recover 

sharper boundaries and enhance spatial details, thereby potentially reducing 

the blurring caused by PVE. However, additional techniques specifically 

targeting PVE, such as partial volume correction algorithms, may be necessary.  

 

2.3.1.3 Image Segmentation Accuracy 

When employing radiomic analysis, it is customary to delineate a region of 

interest (ROI) for examination. While it is possible to analyse the entire imaging 

volume, this approach is often computationally demanding. Given that 
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segmentation defines the region to be studied in radiomics, it is imperative that 

the segmentation method be both precise and consistently replicable. In a 

PET/CT study using a phantom was discovered that altering the segmentation 

method resulted in stability for only 20% of the features (89). Similarly, another 

study demonstrated that whether an automatic or manual segmentation method 

was used, only 13% of the features remained unaffected (90). 

 

Numerous considerations come into play when choosing between manual and 

automated segmentation approaches. Manual methods, while potentially more 

accurate, tend to be slow, susceptible to inter/intra-observer variation, and 

demand substantial expert input. Despite these drawbacks, manual 

segmentation can prove superior in scenarios involving low resolution or non-

contrast enhanced imaging. On the other hand, automated segmentation is 

generally faster and more reproducible, facilitating the analysis of extensive 

datasets and yielding more substantial results (91). However, challenges may 

arise when dealing with images lacking high resolution or contrast. 

 

2.3.2 Feature Selection and Analysis 

Feature selection is a crucial step in machine learning and data analysis, aimed 

at identifying the most relevant and informative features from a given dataset 

and eliminating noise or irrelevant information. The goal is to reduce the 

dimensionality of the data while retaining the most discriminative features, 

which can lead to improved computational efficiency and reduced model 

complexity, thereby improving model performance and interpretability. In 

addition, feature selection can mitigate the risk of overfitting by reducing the 
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chances of the model learning from random or spurious correlations within the 

data as well as minimise the risk of Type I errors (i.e., rejecting a null hypothesis 

when it is true) (92). 

 

There are various methods and techniques available for feature selection, 

ranging from simple statistical measures to more advanced algorithms. These 

methods can be broadly categorised into filter, wrapper, and embedded 

approaches. Filter methods assess the relevance of features based on 

statistical measures such as correlation, mutual information, or chi-square tests. 

They independently evaluate each feature without considering the predictive 

model. Filter methods are computationally efficient and can be easily applied to 

large datasets. However, they may overlook interactions between features and 

rely solely on statistical properties. Unlike filter methods, wrapper methods 

assess feature subsets by using a specific machine learning algorithm as a 

black box. They create multiple feature subsets, train and evaluate the model 

on each subset, and select the one that yields the best performance. Wrapper 

methods consider the interaction between features and the performance of the 

specific model being used. However, they tend to be computationally expensive 

and may be prone to overfitting if the dataset is small. Embedded methods 

incorporate feature selection within the model training process itself. They 

typically utilise regularisation techniques, such as Lasso or Ridge regression, 

which impose penalties on the model coefficients, effectively shrinking less 

important features to zero. Embedded methods strike a balance between the 

efficiency of filter methods and the effectiveness of wrapper methods. They 

perform feature selection during model training, reducing both computation time 

and the risk of overfitting (92). 
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The choice of feature selection method depends on various factors, such as the 

dataset size, dimensionality, and the specific problem. It is essential to carefully 

evaluate the trade-offs between computational cost, model performance, and 

interpretability when selecting a feature selection technique. Furthermore, it is 

crucial to validate the selected features and assess their stability and 

generalisability using appropriate evaluation metrics and validation strategies. 

Cross-validation and independent test datasets can help ensure the robustness 

and reliability of the selected features, improving the credibility of the results. 

However, it is suggested not to split small datasets into separate training and 

testing sets. Instead, it is advised to utilise the entire small dataset for model 

development and training with some form of cross-validation. Cross-validation 

involves splitting the dataset into multiple subsets, training the model on one 

subset, and evaluating its performance on the remaining subsets (93). This 

helps estimate the generalisability of the selected features and reduce the risk 

of selecting features that are specific to the training set.  

 

Overfitting and Type I error are common concern in feature selection. To 

address this, Bonferroni correction, dimensionality reduction techniques and 

cross-validation techniques are often employed. The Bonferroni correction 

technique is a statistical method used to adjust the significance level or p-values 

in hypothesis testing when multiple comparisons are conducted simultaneously. 

When conducting multiple statistical tests, the probability of obtaining a 

significant result by chance alone increases with the number of comparisons. 

This inflation of the Type I error rate can lead to a higher likelihood of false 

positives. To apply the Bonferroni correction, the desired significance level is 
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divided by the number of comparisons being made. This adjusted significance 

level is then used as the new threshold for determining statistical significance 

for each individual test. However, it is important to note that the Bonferroni 

correction is conservative, meaning that it can be overly stringent and increase 

the risk of Type II errors (i.e., failing to reject a null hypothesis when it is false) 

(94). This is because the correction adjusts for multiple comparisons without 

considering any potential dependencies or correlations between the tests. 

 

Principal component analysis (PCA) is considered a most common 

dimensionality reduction method. It is commonly used to reduce the 

dimensionality of a dataset while retaining as much information as possible. 

PCA works by transforming the original features into a new set of uncorrelated 

variables called principal components. These principal components are linear 

combinations of the original features, and they are ordered in such a way that 

the first component captures the maximum variance in the data, the second 

component captures the second highest variance, and so on (95). The reduced-

dimensional representation can be used as input to other machine learning 

algorithms.  

 

After reducing the radiomic feature dataset, the next step involves evaluating 

the diagnostic and predictive value of the remaining extracted features. This 

evaluation might be conducted alongside the feature selection process or 

separately. Traditionally, statistical analysis techniques, such as the Mann 

Whitney U test, correlation test and Cox Regression, have been employed for 

this purpose. However, there has been a rise in popularity of machine learning 

classifiers for these tasks like linear or logistic regression. These classifiers, 
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along with others, have gained widespread acceptance in constructing 

diagnostic or predictive models. Machine learning classifiers offer a versatile 

and powerful toolset for analysing radiomic features and their relationship with 

clinical data. They encompass regression analysis, clustering, and decision 

tree-based approaches, enabling comprehensive exploration and interpretation 

of the data. 

 

Various evaluation metrics are used to assess the importance of features and 

machine learning classifiers during and after the selection process. Area under 

the curve (AUC) and accuracy are both evaluation metrics commonly used in 

machine learning, particularly for classification tasks. However, they measure 

different aspects of model performance. AUC refers to the area under the 

receiver operating characteristic (ROC) curve. The ROC curve is a graphical 

representation of the trade-off between the true positive rate (sensitivity) and 

the false positive rate (1 – specificity) as the classification threshold is varied. 

AUC is particularly useful when dealing with imbalanced datasets. On the other 

hand, accuracy is a straightforward measure that calculates the proportion of 

correctly classified instances out of the total number of instances. However, 

accuracy can be misleading in situations where the class distribution is 

imbalanced. In cases where one class dominates the dataset, a model that 

predicts the majority class for all instances can achieve high accuracy despite 

not capturing the minority class well. Therefore, accuracy may not adequately 

reflect the model's performance in situations with imbalanced classes (96). 

Correlation coefficients, p-values and feature importance scores are other 

examples of evaluation metrics. In this thesis, AUC was used as a ranking 

metric while accuracy as a confirming metric.  
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2.4 Project Justification 

The independent use of [18F]FDG PET and LGE-CMR to evaluate, respectively, 

myocardial inflammation and fibrosis as markers of CS may fail to identify isolated 

CS with high specificity and sensitivity. Focal myocardial uptake of [18F]FDG, 

highly indicative of active CS, can be confounded by high physiological [18F]FDG 

background signal from healthy cardiomyocytes. LGE-CMR alone cannot 

distinguish acute from chronic scarring, indicating, respectively, active or 

quiescent disease.  

 

The aim of this project was to increase the diagnostic efficiency of CS by using 

[18F]FDG PET and LGE-CMR. The data were analysed using advanced radiomic 

features analysis. In particular, it was hypothesised that the combined use of 

[18F]FDG PET and LGE-CMR will support and confirm each other’s findings and 

contribute to a more accurate assessment and diagnosis compared to the use of 

either technique alone. 
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Chapter 3 Exploring the Utility of Radiomic Feature Extraction 

to Improve the Diagnostic Accuracy of Cardiac Sarcoidosis 

Using FDG PET 

Abstract 

Background: This study aimed to explore the radiomic features from PET 

images to detect active cardiac sarcoidosis (CS). 

Methods: Forty sarcoid patients and twenty-nine controls were scanned using 

FDG PET/CMR. Five feature classes were compared between the groups. 

From the PET images alone, two different segmentations were drawn. For 

segmentation A, a region of interest (ROI) was manually delineated for the 

patients’ myocardium hot regions with standardised uptake value (SUV) higher 

than 2.5 and the controls’ normal myocardium region. A second ROI was drawn 

in the entire left ventricular myocardium for both study groups, segmentation B. 

The conventional metrics and radiomic features were then extracted for each 

ROI. Mann-Whitney U test and a logistic regression classifier were used to 

compare the individual features of the study groups.  

Results: For segmentation A, the SUVmin had the highest area under the curve 

(AUC) and greatest accuracy among the conventional metrics. However, for 

both segmentations, the AUC and accuracy of the TBRmax were relatively high, 

greater than 0.85. Twenty-two (from segmentation A) and thirty-five (from 

segmentation B) of 75 radiomic features fulfilled the criteria: p-value less than 

0.00061 (after Bonferroni correction), AUC greater than 0.5, and accuracy 

greater than 0.7. Principal Component Analysis (PCA) was conducted, with five 

components leading to cumulative variance higher than 90%. Ten machine 

learning classifiers were then tested and trained. Most of them had AUCs and 
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accuracies ≥ 0.8. For segmentation A, the AUCs and accuracies of all 

classifiers are greater than 0.9, but k-neighbors and neural network classifiers 

were the highest (=1). For segmentation B, there are four classifiers with AUCs 

and accuracies ≥ 0.8. However, the gaussian process classifier indicated the 

highest AUC and accuracy (0.9 and 0.8, respectively).  

Conclusion: Radiomic analysis of the specific PET data was not proven to be 

necessary for the detection of CS. However, building an automated procedure 

will help to accelerate the analysis and potentially lead to more reproducible 

findings across different scanners and imaging centres and consequently 

improve standardisation procedures that are important for clinical trials and 

development of more robust diagnostic protocols. 

 

3.1 Introduction 

Sarcoidosis is a multisystem, granulomatous inflammatory disease of unknown 

aetiology, characterised by the presence of non-caseating granulomas in the 

involved organs (1, 2). Sarcoidosis primarily affects the lungs. The development 

of this disease in the pulmonary system has been identified in more than 90% of 

reported cases (3, 4). However, it can affect the extrapulmonary organs as well, 

including the heart (5). Clinically, cardiac involvement is uncommon, 

manifesting in only approximately 5% of sarcoid patients, but it can occur 

without apparent symptoms, i.e., a ‘clinically silent’ disease, which is reflected in 

the high rate of cardiac involvement in autopsy studies. At least 25% of patients 

with sarcoidosis are diagnosed with cardiac involvement (6-8).  

The challenging in diagnosing cardiac sarcoidosis (CS) is due to the probability 

of involving any organ, leads to variability in clinical presentation (9).  In 
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addition, a lack of reliable biomarkers or diagnostic tests poses a challenge to 

diagnosing cardiac sarcoidosis. Furthermore, the role of advanced imaging 

modalities such as Cardiovascular Magnetic Resonance Imaging (CMR) with 

Late Gadolinium Enhancement (LGE) and [18F]Fluorodeoxyglucose Positron 

Emission Tomography ([18F]FDG PET) have been demonstrated in the literature 

to improve the identification and treatment of patients with CS. Currently, these 

imaging tools are critical for early diagnosis, disease prediction and 

progression, and therapeutic response monitoring.  

To increase the diagnostic performance of [18F]FDG PET, it is important to 

suppress the use of glucose by normal cardiomyocytes as this improves its 

specificity. Several approaches have been proposed, including following a 

ketogenic diet (high fats and low carbohydrates), prolonged fasting, intravenous 

heparin, and usually, a combination of these methods (10). However, strategies 

to improve diagnostic performance do not help in up to 25% of patients, which 

can result in false-positive findings (11) due to failure to suppress the 

physiological uptake of the myocardium. A semi-quantitative analysis can be 

used to diagnose CS. A common tool, a maximum standardised uptake value 

(SUVmax), can identify the highest uptake value within the region of interest 

(ROI). This can differentiate positive (CS+) and negative (CS˗) results; however, 

in the presence of high physiological uptake, this metric fails to detect 

sarcoidosis within this region (12). In addition, the maximum target-to-

background ratio (TBRmax) is more robust than SUVmax due to the effective 

normalisation for blood uptake (12, 13), which makes it more reliable for 

comparing data across patients and institutions. Radiomic features, which rely 

on the spatial correlations of image values or derived image-based metrics, 

have the potential to elucidate features robust to background physiological 
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uptake.  The purpose of this study is to explore radiomic features from PET 

images to identify potential candidate radiomic metrics.  Specifically, this study 

will characterise radiomic features that separate active CS from controls. 

 

3.2 Materials and Methods 

3.2.1 Ethical Approval  

This study was conducted with the approval of the Institutional Review Board at 

Mount Sinai (GCO # 01-1032), and all subjects gave written informed consent. 

 

3.2.2 Subject Selection 

Subjects with clinical suspicion of CS based on demonstrated clinical 

manifestations of extracardiac lesions and / or disease were recruited at Mount 

Sinai Hospital in New York, to undertake a PET/CMR examination. All subjects 

were treatment-naïve and had to avoid carbohydrate diet for 24 hours before 

the scan and fast during the last 12 hours. The preparation for imaging followed 

the recent recommendations by Ishida, Y. et al. (14). After the acquisition, the 

results were assessed by an expert cardiologist for indications of CS and had 

no indications of failed suppression of FDG uptake. Subjects were divided into 

patients and controls based on their results. Subjects with patchy FDG uptake 

were designated as CS+ and were assigned to the patient group for this study 

(15), and those without either FDG or CMR findings were designated as control 

subjects for this study. Control population had normal cardiac appearance and 

regular echocardiography.  Forty patients and twenty-nine controls met these 

criteria for this study. Exclusion criteria include insulin-dependent diabetes 
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mellitus, pretest blood glucose > 200 mmol/dl, menopausal phobia, pregnancy / 

lactation, the presence of a cardiac pacemaker or automatic implantable 

cardioverter-defibrillator, and renal dysfunction.  

 

3.2.3 Imaging Protocol  

The simultaneous CMR with LGE and [18F]FDG PET on an integrated 

PET/CMR system (BiographTM mMR, Siemens Healthcare, Erlangen, Germany) 

was used in this study. 5 MBq/kg of [18F]FDG was injected into the patients 

intravenously, who then waited for 10 minutes. Thoracic PET acquisition (one-

bed position centred on the heart) took about 90 minutes but for this study only 

a late time window (last 60 minutes) was selected. PET images were 

reconstructed using the iterative ordinary Poisson ordered subset expectation 

maximisation (OP-OSEM) with three iterations and 21 subsets on a 

344x344x129 image matrix and an isotropic voxel size of 2 mm, followed by an 

isotropic 4 mm Gaussian post-filtering. The data obtained with PET were not 

respiratory-gated or ECG-gated and were not corrected for any potential motion 

artefacts. A 3D breath-hold Dixon-based MR image was used for attenuation 

correction. Simultaneously with PET imaging, CMR was performed with 

electrocardiograph triggered; the scan included short-axis T2 mapping and cine 

images. Approximately 15 min after 0.2 mmol/kg gadolinium injection, inversion-

recovery fast gradient-echo LGE sequences were acquired. 

 

3.2.4 Segmentations 
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3D slicer software (Version 4.11.2; https://www.slicer.org) was used for the 

segmentation (16, 17). Segmentations were performed by study personnel 

according to methods used in a previous study (12). 

 

3.2.4.1 Segmentation A 

From the PET images (with use of CMR for anatomical localisation, and aiding 

in focal lesion identification when possible) of the patient group, an ROI was 

manually drawn in the hot region of the myocardium with an SUV higher than 

2.5, which is a cut-off value previously used to differentiate between benign 

(normal in cases of CS) and malignant (abnormal in cases of CS) lesions (18, 

19). For patients with more than one focal lesion, the largest and most active 

was selected. Due to the focal nature of the disease, applying a threshold 

helped ensure that the extracted features are only from voxels with abnormal 

uptakes. For the control group, an ROI was drawn manually in the normal 

myocardium. Once the SUVmax and SUVmean (in the blood pool of the right 

atrium) were extracted, the TBRmax was calculated using the following equation:  

 

𝑇𝐵𝑅𝑚𝑎𝑥 =
𝑆𝑈𝑉𝑚𝑎𝑥  (𝑡𝑎𝑟𝑔𝑒𝑡)

𝑆𝑈𝑉𝑚𝑒𝑎𝑛  (𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 Equation 3.1 

 

Thirty-five subjects out of forty who had a TBRmax within the range of 1 to 3 and 

patchy uptake were labelled as patients. The remaining five subjects who had 

TBRmax > 3 were excluded as failed suppression could not be completely 

discounted in these cases (12) even though the FDG was patchy and initially 

included in the study cohort and subsequently in the study cohort for 

segmentation B.  
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3.2.4.2 Segmentation B 

As the approach A took into account both intensity and pattern, it was useful to 

investigate a different approach that was independent of these. From the PET 

images, an ROI was drawn in the entire left ventricular myocardium for forty 

patients and twenty-nine controls regardless of the TBRmax findings and SUV 

thresholds to compare the reliability of features among segmentation 

approaches. Radiomic features and conventional metrics were then extracted. 

 

3.2.5 Feature Extraction  

PyRadiomics (Version 3.0.1) was used to extract five feature classes (75 

features in total) from the PET image ROIs of the patients and controls (20) in 

addition to the conventional metrics (7 metrics). PyRadiomics adheres to the 

image biomarker standardisation initiative (IBSI’s feature definitions). A bin width of 

0.05 was applied. All other parameters were left as default. Harmonisation was 

not required for these datasets as they originated from a single scanner. A list of 

all radiomic features and conventional metrics is shown in Supplementary 

Material 1.    

 

3.2.6 Statistical Analysis  

Statistical analyses were undertaken using Scikit-learn software (Version 

0.23.2) (21). Mann–Whitney U test was used to compare the radiomic features 

of the study groups. The p-value was adjusted using a Bonferroni correction 

approach for multiple tests (p-value [0.05] divided by the number of features 
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[82]) and the corrected p-value of < 0.00061 was considered to be statistically 

significant. Logistic regression classifiers were then trained with individual 

features. Stratified five-fold cross-validation was used to determine the mean 

area under the curve (AUC), mean accuracy, and 95% confidence intervals 

(CIs). Features with a p-value < 0.00061, AUC > 0.5, and accuracy > 0.7 were 

retained. In addition, principal component analysis (PCA) was used to identify 

highly correlated features and reduce feature redundancy. PCA reduces a large 

number of features into a small number of principal components. Components 

that explained 90% of the cumulative variance were retained. Lastly, to find the 

best machine learning (ML) algorithm, principal components were used as an 

input to test and train the following ten classifiers: Random Forest, Logistic 

Regression, Support Vector Machine, Decision Tree, Gaussian 

Process Classifier, Stochastic Gradient Descent, Perceptron Classifier, Passive 

Aggressive Classifier, Neural Network Classifier and K-neighbors Classifier with 

stratified five-fold cross-validation.  

 

3.3 Results 

3.3.1 Conventional Metrics Diagnostic Utility 

The results are relatively different by applying the Mann–Whitney U tests on the 

conventional metrics of the different study groups for each segmentation 

separately. Predictably, for segmentation A, the SUVmin had the highest AUC 

and greatest accuracy due to specifying SUV >2.5 as the minimum value for the 

patient group, while for segmentation B, the highest performance was for 

TBRmax (see Figure 3.1). However, for both segmentations, the AUC and 

accuracy of the TBRmax were relatively high and had similar results regardless of 
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the segmentation approach (AUC 0.96; accuracy 0.88–0.89 for segmentation A 

& B, respectively). This slight difference in TBRmax results between both 

segmentations came from the difference in the number of participants in the 

patient group who met the criteria for each segmentation.  

 

Figure 3.1 Area under the curve (AUC) and accuracy with stratified five-
fold cross-validation of the conventional metrics of (A) segmentation A 
and (B) segmentation B. SUV: standardised uptake value, TBRmax: 
maximum target-to-background ratio. 

 

3.3.2 Individual Radiomic Features Diagnostic Utility  

From the Mann–Whitney U tests, for segmentation A: 40 of the 75 radiomic 

features and for segmentation B: 61 of the 75 showed statistically significant 

differences between patients and controls, with a p-value <0.00061. The five 

best radiomic features based on p-values for both segmentations are shown in 

Table 3.1. After applying a logistic regression classifier, only 22 radiomic 

features for segmentation A and 35 radiomic features for segmentation B 

fulfilled the following criteria: p-value < 0.00061, AUC > 0.5, and accuracy > 0.7. 

The AUC and accuracy (95% CI for each criterion) with stratified five-fold cross-

validation of the five best-performing radiomic features based on the AUC value 

are shown in Figure 3.2. 
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Table 3.1 Conventional metrics and five best performing radiomic features 
for the different segmentations based on p-values. SUV: Standardised 
Uptake Value, TBRmax: maximum Target-to-Background Ratio, GLDM: 
Gray Level Dependence Matrix, GLCM: Gray Level Co-occurrence Matrix, 
GLSZM: Gray Level Size Zone Matrix, NGTDM: Neighbouring Gray Tone 
Difference Matrix. 

 Segmentation A Segmentation B 

 Feature p-value AUC Feature p-value AUC 

C
o

n
v
e
n

ti
o

n
a
l 
 

SUV 10 Percentile 1 x10-11 0.99 SUV 10 Percentile 6 x10-7 0.85 

SUV 90 Percentile 1 x10-10 0.96 SUV 90 Percentile 3 x10-8 0.90 

SUV maximum  3 x10-10 0.95 SUV maximum  8 x10-9 0.90 

SUV mean 1 x10-10 0.97 SUV mean 6 x10-8 0.88 

SUV median 1 x10-10 0.97 SUV median 2 x10-7 0.88 

SUV minimum 6 x10-13 1.00 SUV minimum 9 x10-3 0.71 

TBRmax 1 x10-10 0.96 TBRmax 3 x10-11 0.96 

R
a

d
io

m
ic

s
  

GLDM_Small 

Dependence Low 

Gray Level 

Emphasis 

3 x10-13 1.00 GLSZM_Low Gray 

Level Zone Emphasis 

5 x10-8 0.85 

GLCM_Inverse 

Difference 

Normalised 

1 x10-11 1.00 GLDM_Dependence 

Non-Uniformity 

1 x10-7 0.87 

GLSZM_Small Area 

Low Gray Level 

Emphasis 

1 x10-11  0.99 NGTDM_Complexity 1 x10-7 0.85 

GLSZM_Large Area 

High Gray Level 

Emphasis 

3 x10-11 1.00 GLSZM_High Gray 

Level Zone Emphasis 

1 x10-7 0.85 

GLCM_Maximal 

Correlation 

Coefficient 

5 x10-11 0.98 GLSZM_Small Area 

High Gray Level 

Emphasis 

1 x10-7 0.85 
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Figure 3.2 Area under the curve (AUC) and accuracy with stratified five-
fold cross-validation of the five best-performing radiomic features of (A) 
segmentation A and (B) segmentation B based on AUC values. GLSZM: 
Gray Level Size Zone Matrix, LAHGLE: Large Area High Gray Level 
Emphasis, GLCM: Gray Level Co-occurrence Matrix, MCC: Maximal 
Correlation Coefficient, GLCM C: Correlation, GLDM: Gray Level 
Dependence Matrix, LDHGLE: Large Dependence High Gray Level 
Emphasis, DV: Dependence Variance, DNU: Dependence Non-Uniformity, 
GLRLM: Gray Level Run Length Matrix, RLNU: Run Length Non-
Uniformity, HGLZE: High Gray Level Zone Emphasis, NGTDM: 
Neighbouring Gray Tone Difference Matrix, NGTDM C: Complexity, 
SAHGLE: Small Area High Gray Level Emphasis. 

 

 

3.3.3 Principal Component Analysis and Machine Learning  

As the SUV-related metrics tend to overperform, and to study the performance 

of non-first order features, the SUV-related metrics were excluded from the 

PCA. By applying PCA, five principal components were retained to explain 90% 

of the information. These components were used to test and train the ML 

classifiers. Most of them had AUCs and accuracies ≥ 0.8. For segmentation A, 

all classifiers showed high performance in terms of AUC (95% CI 0.88–1.00) 

and accuracy (95% CI 0.87–1.00), with values > 0.9. A k-neighbors and neural 

network classifiers showed the highest AUC and greatest accuracy, with values 

equal to 1.00, as shown in Figure 3.3. For segmentation B, there are four 
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classifiers with AUCs and accuracies ≥ 0.8, Figure 3.3. However, the gaussian 

process classifier indicated the highest AUC and accuracy (0.9 and 0.8, 

respectively). The ROC curves of the k-neighbors, neural network, and 

gaussian process classifiers are shown in Figure 3.4. The actual values of 

Figures 3.2 and 3.3 are provided in Supplementary Material 2. 

 

 

 

Figure 3.3 Areas under the curve (AUC) and accuracies of machine 
learning classifiers for (A) Segmentation A and (B) Segmentation B. rf: 
Random Forest, lgr: Logistic Regression, svm: Support Vector Machine, 
dt: Decision Tree, gpc: Gaussian Process Classifier, sgd: Stochastic 
Gradient Descent, perc: Perceptron Classifier, pasagr: Passive 
Aggressive Classifier, nnet: Neural Network Classifier, kneigh: K-
neighbors Classifier. 
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Figure 3.4 The machine learning classifiers with high performance in (A) & 
(B) Segmentation A and (C) Segmentation B. 
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3.4 Discussion 

This study aimed to explore the diagnostic utility of radiomic features compared 

to conventional metrics to distinguish between study groups and find the best 

performance ML classifier to create an automated model. From segmentation A, 

some conventional metrics like SUVmin showed high performance individually. 

These results were predictable as they are affected by the distribution of voxel 

intensities within the ROI, one of the criteria for including the patients at the first 

place. In addition, these features cannot be relied upon because they are 

greatly affected by the success of glucose suppression in normal 

cardiomyocytes. TBRmax was the most reliable metric over other conventional 

metrics among both segmentations. Although the TBRmax is sensitive to noise 

and it is not necessarily easy to harmonise across different scanners and 

imaging centres, types of data, and parameters, this is not the case in this study 

as datasets originated from a single scanner and institution. Therefore, when 

comparing TBRmax with those of the five-best performance radiomic features, 

the superiority of TBRmax over the rest of the features can be clearly seen. This 

outcome supports any previous studies that utilised TBRmax. 

 

From segmentation A, by comparing the diagnostic utility of individual radiomic 

features, GLSZM-Large Area High Gray Level Emphasis radiomic feature 

showed the best performance in terms of AUC and accuracy. This feature 

measures the proportion in the image of the joint distribution of larger size 

zones with higher gray level values. This means there is a difference in gray 

level zones between patients and controls. However, it cannot be reliable due to 

the criteria of this segmentation approach that is based on SUV threshold and 

TBRmax. On the other hand, from segmentation B, the best performing radiomic 
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feature was GLDM_Dependence Non-Uniformity with AUC (0.87) and accuracy 

(0.83). This feature measures the heterogeneity in the ROIs. The values of this 

feature are higher in sarcoid patients than controls which illustrates more 

heterogeneous regions in the group of patients. In addition, many other features 

measure heterogeneity with high AUCs and accuracies.  These features look at 

the spatial relationships rather than voxels values themselves. However, these 

features had large error bars, unlike the TBRmax which had very small bars 

regardless of the segmentation approach. 

 

Several studies of different diseases advocated the importance of radiomic 

analysis to predict outcomes (22, 23). However, the findings across these 

studies are not replicated; instead, they are conflicted. Technical issues may 

illustrate this difference in results among studies, such as ROI size, scanner 

resolution, reconstruction, and segmentation algorithms, or any other 

unrevealed factors. High scanner resolution and large number of voxels can 

affect some radiomic features by increasing their values (24). In terms of 

segmentation algorithms, numerous studies indicated that using different 

segmentation methods gave close results in survival analyses (23, 25). In 

addition, Cheng, N.-M. et al. (23) argued that no significant difference exists 

between radiomic features when using different segmentation methods, unlike 

SUVmax and SUVmean. They reported, in addition, that the effect of utilising 

different attenuation correction methods on radiomic features was not 

significant. At the same time Yip, S. et al. (26) had contrasting results, as some 

of the features were affected by the attenuation correction method. However, in 

this study, there was a clear difference between radiomic features when using 

different segmentation approaches. This may be due to the different sizes of 



 

 72 

ROIs and the voxel intensities included in each segmentation. Applying the 

approach of segmentation A, it can provide a good differentiation between study 

groups based on the conventional metrics such as SUVmin and TBRmax. 

However, this approach can be influenced by observer experience, especially 

for cases with very small hotspots. Conversely, segmentation B approach is 

more robust and efficient. 

 

This study is subject to some limitations. First, the sample size is relatively 

small, and more extensive studies are needed to confirm these results. This is 

of great significance to prevent overfitting and type I errors. Applying a 

Bonferroni correction and dimensionality reduction techniques resulted in 

reducing the effect of this issue. In addition, the lack of an automated 

segmentation, a segmentation reference to compare with, unavailability of an 

independent clinical gold standard to validate the performance of the model that 

was trained on initial input data are other limitations for this study. In addition, 

the selection of only one focal lesion per patient in segmentation A was 

considered a limitation of this approach. Furthermore, the models proposed in 

this study should be validated in normal controls showing non-specific 

physiological uptake. This study showed uncertainty results of radiomic features 

and expanding the study to test the reproducibility of the results is required. 

New knowledge gained from this study is that using radiomic analysis does not 

provide any additional information related to disease activity in these patients. 

However, building an automated model regardless of the strategies used for 

glucose suppression and/or observer experience may prove helpful in further 

studies. Furthermore, in this study, the MR acquisitions were not utilised, except 
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for providing anatomical information. In this study the main goal was the 

radiomic features on PET; the designated tool for CS. 

 

3.5 Conclusion  

Radiomic analysis of PET data may not be a useful approach to detect CS. 

Several radiomic features that were not related to first-order tracer uptake 

showed high AUC and accuracy with p-value < 0.00061. However, by 

measuring AUCs and accuracies, large error bars can weaken the results. 

TBRmax showed its superiority over all other conventional and radiomic features 

in both segmentation approaches. This methodology needs to be validated 

further in normal control subjects showing non-specific physiological uptake.  
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Supplementary Materials  

Supplementary Material 1:  

Table1: List of all conventional and radiomic features 

 
Conventional metrics 

TBRmax firstorder_Mean 

firstorder_10Percentile firstorder_Median 

firstorder_90Percentile firstorder_Minimum 

firstorder_Maximum  

 
GLCM features 

glcm_Autocorrelation glcm_Idn 

glcm_ClusterProminence glcm_Imc1 

glcm_ClusterShade glcm_Imc2 

glcm_ClusterTendency glcm_InverseVariance 

glcm_Contrast glcm_JointAverage 

glcm_Correlation glcm_JointEnergy 

glcm_DifferenceAverage glcm_JointEntropy 

glcm_DifferenceEntropy glcm_MCC 

glcm_DifferenceVariance glcm_MaximumProbability 

glcm_Id glcm_SumAverage 

glcm_Idm glcm_SumEntropy 

glcm_Idmn glcm_SumSquares 

 
GLRLM features 

glrlm_GrayLevelNonUniformity glrlm_RunEntropy 

glrlm_GrayLevelNonUniformityNor
malised 

glrlm_RunLengthNonUniformity 

glrlm_GrayLevelVariance glrlm_RunLengthNonUniformityNormali
sed 

glrlm_HighGrayLevelRunEmphasis glrlm_RunPercentage 

glrlm_LongRunEmphasis glrlm_RunVariance 

glrlm_LongRunHighGrayLevelEmp
hasis 

glrlm_ShortRunEmphasis 

glrlm_LongRunLowGrayLevelEmph
asis 

glrlm_ShortRunHighGrayLevelEmphasi
s 

glrlm_LowGrayLevelRunEmphasis glrlm_ShortRunLowGrayLevelEmphasis 

 
GLSZM features 

glszm_GrayLevelNonUniformity glszm_SizeZoneNonUniformity 

glszm_GrayLevelNonUniformityNor
malised 

glszm_SizeZoneNonUniformityNormalis
ed 

glszm_GrayLevelVariance glszm_SmallAreaEmphasis 

glszm_HighGrayLevelZoneEmphas
is 

glszm_SmallAreaHighGrayLevelEmpha
sis 

glszm_LargeAreaEmphasis glszm_SmallAreaLowGrayLevelEmpha
sis 
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glszm_LargeAreaHighGrayLevelE
mphasis 

glszm_ZoneEntropy 

glszm_LargeAreaLowGrayLevelEm
phasis 

glszm_ZonePercentage 

glszm_LowGrayLevelZoneEmphasi
s 

glszm_ZoneVariance 

 
GLDM features 

gldm_DependenceEntropy gldm_LargeDependenceEmphasis 

gldm_DependenceNonUniformity gldm_LargeDependenceHighGrayLevel
Emphasis 

gldm_DependenceNonUniformityNo
rmalised 

gldm_LargeDependenceLowGrayLevel
Emphasis 

gldm_DependenceVariance gldm_LowGrayLevelEmphasis 

gldm_GrayLevelNonUniformity gldm_SmallDependenceEmphasis 

gldm_GrayLevelVariance gldm_SmallDependenceHighGrayLevel
Emphasis 

gldm_HighGrayLevelEmphasis 
 

gldm_SmallDependenceLowGrayLevel
Emphasis 

 
NGTDM features 

ngtdm_Busyness ngtdm_Contrast 

ngtdm_Coarseness ngtdm_Strength 

ngtdm_Complexity  
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Supplementary Material 2: 

Table 1: Area under the curve (AUC) and accuracy of the five best-

performing radiomic features for the different segmentations based on 

AUC values. GLSZM: Gray Level Size Zone Matrix, LAHGLE: Large Area 

High Gray Level Emphasis, GLCM: Gray Level Co-occurrence Matrix, 

MCC: Maximal Correlation Coefficient, GLCM_C: Correlation, GLDM: Gray 

Level Dependence Matrix, LDHGLE: Large Dependence High Gray Level 

Emphasis, DV: Dependence Variance, DNU: Dependence Non-Uniformity, 

GLRLM: Gray Level Run Length Matrix, RLNU: Run Length Non-

Uniformity, HGLZE: High Gray Level Zone Emphasis, NGTDM: 

Neighbouring Gray Tone Difference Matrix, NGTDM_C: Complexity, 

SAHGLE: Small Area High Gray Level Emphasis. 

Segmentation A Segmentation B 

Feature Accuracy AUC Feature Accuracy AUC 

GLSZM_LAHGLE 0.91 1.00 GLDM_DNU 0.83 0.87 

GLCM_MCC 0.88 0.98  GLRLM_RLNU 0.81 0.86 

GLCM_C 0.89 0.96 GLSZM_HGLZE 0.78 0.85 

GLDM_LDHGLE 0.86 0.95 NGTDM_C 0.73 0.85 

GLDM_DV 0.83 0.92 GLSZM_SAHGLE 0.77 0.85 

 

 

Table 2: Area under the curve (AUC) and accuracy of the machine learning 

classifiers for the different segmentations. 

Machine Learning Classifier Segmentation A Segmentation B 

Accuracy AUC Accuracy AUC 

Random Forest 0.97 0.99 0.71 0.78 

Logistic Regression 0.99 1.00 0.74 0.79 

Support Vector Machine 0.97 1.00 0.80 0.86 

Decision Tree 0.97 0.97 0.68 0.67 

Gaussian Process Classifier 0.99 1.00 0.80 0.90 

Stochastic Gradient Descent 0.97 1.00 0.67 0.73 

Perceptron Classifier 0.94 0.96 0.63 0.72 

Passive Aggressive Classifier 0.99 1.00 0.80 0.80 

Neural Network Classifier 1.00 1.00 0.80 0.81 

K-neighbors Classifier 1.00 1.00 0.74 0.83 
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Chapter 4 Exploring the Utility of Cardiovascular Magnetic 

Resonance Radiomic Feature Extraction for Evaluation of  

Cardiac Sarcoidosis 

Abstract  

Background: The aim of this study is to explore the utility of cardiac magnetic 

resonance (CMR) imaging of radiomic features to distinguish active and inactive 

cardiac sarcoidosis (CS).  

Methods: Subjects were classified into active cardiac sarcoidosis (CSactive) and 

inactive cardiac sarcoidosis (CSinactive) based on PET/CMR imaging. CSactive 

was classified as featuring patchy [18F]fluorodeoxyglucose ([18F]FDG) uptake on 

PET and presence of late gadolinium enhancement (LGE) on CMR, while 

CSinactive was classified as featuring no [18F]FDG uptake in the presence of LGE 

on CMR. Among those screened, thirty CSactive and thirty-one CSinactive patients 

met these criteria. A total of 94 radiomic features were subsequently extracted 

using PyRadiomics. The values of individual features were compared between 

CSactive and CSinactive using the Mann–Whitney U test. Subsequently, machine 

learning (ML) approaches were tested. ML was applied to two sub-sets of 

radiomic features (signatures A and B) that were selected by logistic regression 

and PCA, respectively.  

Results: Univariate analysis of individual features showed no significant 

differences. Of all features, gray level co-occurrence matrix (GLCM) joint 

entropy had a good area under the curve (AUC) and accuracy with the smallest 

confidence interval, suggesting it may be a good target for further investigation. 

Some ML classifiers achieved reasonable discrimination between CSactive and 

CSinactive patients. With signature A, support vector machine and k-neighbors 

showed good performance with AUC (0.77 and 0.73) and accuracy (0.67 and 
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0.72), respectively. With signature B, decision tree demonstrated AUC and 

accuracy around 0.7. 

Conclusion: CMR radiomic analysis in CS provides promising results to 

distinguish patients with active and inactive disease. 

 

4.1 Introduction  

Sarcoidosis, an inflammatory multisystem disorder of unknown origin, is 

characterised by the formation of non-caseating granulomas (1). Although the 

disease affects the lungs in more than 90% of patients, other organs and 

tissues such as the heart, skin, and lymph nodes may also be affected (2). 

Despite the low incidence of clinical manifestations of cardiac disease, cardiac 

sarcoidosis can exist as a potentially fatal disease because of associated 

ventricular arrhythmias. Therefore, it is crucial to identify individuals with active 

cardiac sarcoidosis, even if they are subclinical (3). The diagnosis of cardiac 

sarcoidosis can be established with certainty by means of an endomyocardial 

biopsy if non-caseating granulomas are identified. However, an invasive 

approach poses a high degree of risk that does not yield a significant 

improvement in sensitivity because myocardial involvement is patchy (4). 

 

There has been an increase in the use of non-invasive advanced imaging 

approaches, including cardiovascular magnetic resonance imaging (CMR) and 

[18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET). 

[18F]FDG PET imaging is effective in detecting myocardial inflammation in 

cardiac sarcoidosis (5). To increase the specificity of PET imaging, it is 

important to follow a ketogenic diet 24 h before the scan. However, while dietary 
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restrictions can suppress myocardial physiological glucose uptake, they may 

not be effective, potentially resulting in false-positive results (6,7). On the other 

hand, CMR has a significant role diagnosing or screening patients with cardiac 

sarcoidosis. It can detect signs that might indicate disease, such as myocardial 

fibrosis, myocardial oedema, and perfusion defects; it is also used to assess the 

geometry and function of both ventricles. Late gadolinium enhancement (LGE) 

is a technique used to detect myocardial fibrosis in cardiac sarcoidosis which 

typically appears in a non-coronary distribution (3). Presence of fibrosis, 

however, is not capable of determining whether the disease is active or chronic.  

 

Using quantitative measurements can provide complementary information that 

may overcome limitations of non-invasive approaches (8). Radiomic analysis is 

an emerging methodology that automatically extracts high dimensional features 

from imaging data, which can later be mined and analysed for decision support 

(9). The aim of this study is to explore the utility of radiomic analysis of LGE-

CMR to separate those with active cardiac sarcoidosis, based on patchy 

[18F]FDG uptake, from those with inactive cardiac sarcoidosis, without [18F]FDG 

uptake (10). Such an outcome may prove useful in detecting active cardiac 

sarcoidosis even in the presence of inconclusive or false-positive results on 

[18F]FDG PET. 

 

4.2 Materials and Methods 

4.2.1 Ethical Approval  
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This study is an extension of a previous study (7) and was conducted with the 

approval of the Institutional Review Board at Mount Sinai (GCO # 01-1032), and 

all participants provided written informed consent. 

 

4.2.2 Subject selection 

PET/CMR imaging was performed at Mount Sinai Hospital in New York, on 

patients with clinical suspicion of cardiac sarcoidosis based on extracardiac 

disease and cardiac symptoms. All subjects were treatment-naïve. As 

recommended by Ishida et al. (11), patient preparation required 24 h of 

carbohydrate abstinence and a 12 h fast before the scan. Exclusion criteria 

included renal dysfunction, insulin-dependent diabetes, blood glucose levels 

greater than 200 mg/dL, pregnancy and lactation, the presence of a cardiac 

pacemaker or an automatic implantable cardioverter-defibrillator, as well as 

failed myocardial suppression defined by high maximum target-to-background 

ratio (TBRmax > 3) (10) with widespread uptake in a non-specific pattern as 

determined by an expert reader in the use of PET/MR to diagnose sarcoid 

cardiomyopathies. 

 

4.2.3 Imaging Protocols 

Simultaneous CMR and [18F]FDG PET was performed on an integrated 

PET/MR system (BiographTM mMR, Siemens Healthcare, Erlangen, Germany). 

5 MBq/kg of [18F]FDG was injected into the patients intravenously. After 10 min, 

thoracic PET acquisition (one-bed position centred on the heart) began and 

lasted for 90 min; for this study, one time window (40–100 min post injection) 

was reconstructed. PET images were reconstructed using the iterative ordinary 
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Poisson ordered subset expectation maximisation (OP-OSEM) with three 

iterations and 21 subsets on a 344 × 344 × 129 image matrix and an isotropic 

voxel size of 2 mm, followed by post-filtering with an isotropic 4 mm Gaussian 

kernel. The data obtained with PET were not respiratory-gated or ECG-gated 

and were not corrected for any potential motion artifacts. A 3D breath-hold 

Dixon-based MR image was used for attenuation correction. Simultaneously 

with PET imaging, CMR was performed with electrocardiograph triggering; the 

scan included short-axis T2 mapping and cine images covering the whole left 

ventricle. Approximately 15 min after injection of 0.2 mmol/kg gadolinium-based 

contrast agent (MultiHance, Bracco, NJ, USA), inversion-recovery fast gradient-

echo LGE sequences were acquired with 8 mm slice thickness and 10 mm 

spacing between short-axis slices across the entire myocardium. 

 

4.2.4 Patient Classification  

Following acquisition, a single expert cardiologist evaluated the results for signs 

of cardiac sarcoidosis. Firstly, only subjects with LGE on CMR in a non-

coronary distribution representative of cardiac sarcoidosis were selected. 

Subsequently, subjects with patchy [18F]FDG uptake on PET were classified as 

active cardiac sarcoidosis (CSactive) and those who did not show any [18F]FDG 

findings were classified as inactive cardiac sarcoidosis (CSinactive). For this study 

of 148 patients scanned at the institution, thirty CSactive and thirty-one CSinactive 

met these criteria. 

 

4.2.5 Segmentation  
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3D slicer software (Version 4.11.2; https://www.slicer.org, accessed on 1 April 

2022) was used for segmentation (12,13). Segmentations were performed by 

study personnel. From the LGE-CMR images, epicardial and endocardial 

boundaries were drawn to define a region of interest (ROI) encompassing the 

entire left ventricular myocardium. Radiomic features and conventional metrics 

were then extracted from the ROI. 

 

4.2.6 Feature Extraction  

PyRadiomics (Version 3.0.1; Harvard Medical School, Boston, MA, USA) was 

used to extract six feature classes (94 features in total) from the LGE-CMR 

images (14). The first-order statistical features consist of histogram (HISTO)-

based properties. The features in this class are used to determine the statistical 

values of voxel intensities and evaluate the shape of the histogram, regardless 

of spatial relationships (15). The second-order statistical features comprise 

features that are utilised to calculate the statistical inter-relationships between 

adjacent voxels and can be derived from the gray level cooccurrence matrix 

(GLCM) (16,17). The higher-order statistical features can be used to extract 

areas with increasingly coarse texture patterns (18). They are derived from the 

gray level run length matrix (GLRLM), gray level dependence matrix (GLDM), 

gray level size zone matrix (GLSZM), and neighbouring gray tone difference 

matrix (NGTDM) (19). PyRadiomics adheres to most of the image biomarker 

standardisation initiative (IBSI) feature definitions. All parameters were 

maintained at their default values. Harmonisation was not required for these 

datasets as they originated from a single scanner. 
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4.2.7 Statistical Analysis  

Statistical analyses were undertaken using Scikit-learn software (Version 

0.23.2) (20). The Mann–Whitney U test was used to compare the individual 

radiomic features of the study groups. The p-value was adjusted using a 

Bonferroni correction approach for multiple tests. Given an initial significance 

level of 0.05, and 94 features, a p-value of < 0.00053 was considered to be 

statistically significant. 

 

For machine learning (ML), sub-sets of radiomic features (signatures A and B) 

were selected using two approaches. For signature A, logistic regression 

classifiers were trained with individual features. Stratified five-fold cross-

validation was used to determine the mean area under the curve (AUC), mean 

accuracy, and 95% confidence intervals (CIs). Features with AUC > 0.5 and 

accuracy > 0.7 were retained. Then, Spearman correlation was used to detect 

the correlated features and the feature with the lower AUC was removed. For 

signature B, principal component analysis (PCA), which reduces a large number 

of features into a small number of principal components, was used to identify 

highly correlated features and reduce feature redundancy. Components that 

explained 90% of the cumulative variance were retained. Both signatures were 

used as input to test and train the following ten ML classifiers: random forest, 

logistic regression, support vector machine, decision tree, Gaussian process 

classifier, stochastic gradient descent, perceptron classifier, passive aggressive 

classifier, neural network classifier and k-neighbors classifier with stratified five-

fold cross-validation. 
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4.3 Results 

4.3.1 Individual Features—Diagnostic Utility 

From the univariate analysis of individual features, none of the radiomic 

features showed statistically significant differences on Mann–Whitney U tests 

between CSactive and CSinactive, with p-values > 0.00053. Furthermore, by 

measuring the effect size, the majority of the radiomic features presented small 

effect size values ≤ 0.5, which can be improved by increasing the sample size. 

The ten best-performing radiomic features based on the p-values were shown in 

Table 4.1. 
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Table 4.1 The ten best-performing radiomic features based on the p-values. CSactive: active cardiac sarcoidosis, CSinactive: 
inactive cardiac sarcoidosis, GLCM: gray level co-occurrence matrix, GLRLM: gray level run length matrix, GLDM: gray level 
dependence matrix, GLSZM: gray level size zone matrix. 

Feature CSactive Mean CSinactive Mean U Statistic p-Value Effect Size 

glcm_Cluster Shade 9.27 7.69 701 0.0007 0.09 

glcm_Cluster Prominence 79.37 85.63 693 0.0010 0.03 

firstorder_Variance 721.11 485.32 689 0.0013 0.50 

glrlm_Gray Level Variance 1.36 1.01 689 0.0013 0.38 

gldm_Gray Level Variance 1.21 0.83 677 0.0023 0.50 

glcm_Maximal Correlation Coefficient 0.43 0.36 676 0.0024 0.60 

firstorder_Mean Absolute Deviation 19.05 14.50 674 0.0026 0.75 

glcm_Correlation 0.36 0.28 673 0.0028 0.61 

glszm_Size Zone Non Uniformity 57.69 38.59 673 0.0028 0.81 

glrlm_Run Entropy 2.98 2.81 672 0.0029 0.65 
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4.3.2 Signature Building and Machine Learning Performance 

For signature A, after applying a logistic regression, only nine radiomic features 

had AUC > 0.5 and accuracy > 0.7. The correlated features were then removed 

by removing the one with the lower AUC; five were retained (Figure 4.1). One of 

the retained five features with the smallest confidence interval after correlated 

features were removed was GLCM joint entropy. The performance of GLCM 

joint entropy in distinguishing those with active disease (with [18F]FDG) from 

those with inactive disease (without [18F]FDG) is shown in Figure 4.2. Following 

a qualitative assessment, there were 31 CSinactive. Of these, 77.5% were 

distinguished as CSinactive but with a 22.5% type I error using radiomic analysis 

(GLCM joint entropy). On the other side, there were 30 CSactive based on the 

PET/CMR visual assessment. The GLCM joint entropy was able to identify two-

thirds of these subjects as CSactive. For signature B, by applying PCA, six 

principal components were retained to explain 90% of the information. These 

signatures were used to test and train the ML classifiers. 

 

Most of the ML classifiers showed poor performance in terms of AUC (95% CI 

0.09–0.95 and 0.39–0.94) and accuracy (95% CI 0.35–0.82 and 0.36–0.82), for 

signature A and signature B respectively, as shown in Figure 4.3. For signature 

A, the support vector machine and k-neighbors ML classifiers had good 

performance with AUC (0.77 and 0.73) and accuracy (0.67 and 0.72), 

respectively. For signature B, the decision tree ML classifier was the only one 

that showed good performance with AUC and accuracy ≈ 0.7, while the random 

forest, Gaussian process, and passive aggressive ML classifiers had high AUCs 

> 0.7 but poor accuracies ≤ 0.6. The performance of the best ML classifiers of 
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both signatures is shown in Figure 4.4. The values for accuracy and AUC 

presented in Figures 4.1, 4.2, and 4.4 are provided in Supplementary Material 

1. 

 

 

Figure 4.1 Radiomic features before and after removing correlated 
features with 95% confidence intervals. MAD: mean absolute deviation, IR: 
interquartile range, RMAD: robust mean absolute deviation, GLCM: gray 
level co-occurrence matrix, JE: joint entropy, SE: sum entropy, DA: 
difference average. 
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Figure 4.2 Flowchart showing the performance of the LGE-CMR based 
radiomic feature gray level co-occurrence matrix joint entropy (GLCM_JE) 
in discriminating active from inactive disease in cardiac sarcoidosis (CS). 
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Figure 4.3 Areas under the curve (AUC) and accuracies of machine 
learning (ML) classifiers of both signatures with 95% confidence intervals. 
rf: random forest, lgr: logistic regression, svm: support vector machine, 
dt: decision tree, gpc: Gaussian process classifier, sgd: stochastic 
gradient descent, perc: perceptron classifier, pasagr: passive aggressive 
classifier, nnet: neural network classifier, kneigh: k-neighbors classifier. 
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Figure 4.4 The performance of the best machine learning classifiers for 
both signatures, (a,b) for signature A, and (c) for signature B. 

 

4.4 Discussion  

This study aimed to investigate the utility of radiomic features derived from 

LGE-CMR images to distinguish active from inactive cardiac sarcoidosis. The 

univariate analysis of individual radiomic features showed that the individual 
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radiomic features were not adequate to differentiate between patients in the 

CSactive and CSinactive groups with statistical significance. However, many 

features in the GLCM class were among the top ten individual features, 

although they did not reach significance. These second-order features calculate 

the statistical inter-relationships between adjacent voxels (16,17). These 

features inform on the spatial distribution of voxel intensities and therefore are a 

measure of signal heterogeneity (21,22). It is noteworthy that these second-

order features outperformed many first-order features. Given that the presence 

of LGE (a first-order criterion) was a pre-requisite for both CSactive and CSinactive 

groups, it could be expected that first-order features would not be effective 

discriminators; however, the overall burden of fibrosis (and therefore LGE) 

would also be a likely indicator of active disease. In addition, it is interesting to 

note similar findings in the ML approach using signature A. About half of the 

features were from the GLCM class. From the uncorrelated features, GLCM 

joint entropy represented the best performing feature with the highest accuracy 

(0.72) and smallest confidence interval. The propensity for GLCM joint entropy 

to separate the study groups can be explained by the fact that joint entropy is a 

measure of the degree of randomness or variance in the pixel intensities in a 

given pixel’s neighborhood (23,24). Slightly higher values related to this feature 

were observed in the CSactive group than in the CSinactive group, pointing to the 

presence of heterogeneity, one of the characteristics of this disease (25).  

 

A number of limitations apply to this study. It should be noted, first, that the 

sample size is relatively small, and further studies would be necessary to verify 

these findings. The small sample size may lead to overfitting and type I errors. 

In order to reduce the impact of this issue, Bonferroni correction and 
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dimensionality reduction techniques were applied. Caution should be taken in 

interpreting our findings; of note, while the radiomic feature GLCM joint entropy 

showed the highest performance using logistic regression during feature 

selection for signature A, it was not among the top-ten features under univariate 

analysis, indicating that many features exhibit similar performance. Further 

limitations of this study include the lack of an automated segmentation, a 

segmentation reference, and the absence of an independent clinical gold 

standard based on biopsy to validate the model’s performance. Further studies 

are required to test the reproducibility of our findings based on radiomic 

features. 

 

The new knowledge gained from this study is that radiomic analysis of LGE-

CMR has the potential to identify active disease based on CMR alone. CMR-

based analysis of disease activity could improve management for patients who 

undergo [18F]FDG PET/CMR imaging and exhibit non-specific findings related to 

failed suppression of physiological uptake of [18F]FDG in the myocardium. Such 

non-specific findings may be present in up to 25% of PET scans (6). However, 

given the limitations of the study, the results should be interpreted with caution. 

Moreover, the trend towards successful discrimination of CSactive from CSinactive 

using second-order radiomic features such as GLCM joint entropy is 

encouraging and may indicate promising candidates for further evaluation. In 

future studies, the combined radiomic analysis of [18F]FDG PET (7) and LGE-

CMR data may further increase the accuracy of discriminating active from 

inactive disease, may be useful in determining prognosis, and may aid in clinical 

decision-making (26). 
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4.5 Conclusion  

This study explored the use of radiomic analysis of LGE-CMR images in 

patients with cardiac sarcoidosis to distinguish between active cardiac 

sarcoidosis (CSactive) and inactive cardiac sarcoidosis (CSinactive) based on LGE-

CMR data alone. Both individual radiomic features and ML classifiers based on 

groups of radiomic features showed a modest ability to separate CSactive from 

CSinactive. GLCM joint entropy (95% CI accuracy 0.68 to 0.77; AUC 0.54 to 0.85) 

emerged as the individual radiomic feature with the greatest accuracy in 

separating CSactive from CSinactive.  
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Supplementary Materials  

Supplementary Material 1: 

Table 1: Area under the curve (AUC) and accuracy of the five best-

performing radiomic features based on AUC values before and after 

correlated features removed. GLCM: Gray Level Co-occurrence Matrix. 

 Feature Accuracy AUC β p-value 
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Firstorder_Mean Absolute 
Deviation 

0.70 0.73 0.139 1.25×10-08 

Firstorder_ Interquartile Range 0.71 0.72 0.018 1.41×10-05 

Firstorder_Robust Mean 
Absolute Deviation 

0.72 0.72 - - 

GLCM_Contrast 0.70 0.71 -0.001 1.97×10-13 

Firstorder_Range 0.71 0.70 -0.185 1.24×10-02 
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Firstorder_Mean Absolute 
Deviation 

0.70 0.73 0.139 1.25×10-08 

Firstorder_ Interquartile Range 0.71 0.72 0.018 1.41×10-05 

GLCM_Contrast 0.70 0.71 -0.001 1.97×10-13 

Firstorder_Range 0.71 0.70 -0.185 1.24×10-02 

GLCM_Joint Entropy 0.72 0.70 -0.389 1.85×10-02 

 

 

 

 

Table 2: Area under the curve (AUC) and accuracy of the machine learning 

classifiers for the different signatures. 

Machine Learning Classifier 
Signature A Signature B 

Accuracy AUC Accuracy AUC 

Random Forest 0.61 0.64 0.59 0.76 

Logistic Regression 0.67 0.64 0.62 0.68 

Support Vector Machine 0.67 0.77 0.54 0.65 

Decision Tree 0.59 0.59 0.69 0.69 

Gaussian Process Classifier 0.62 0.50 0.52 0.70 

Stochastic Gradient Descent 0.53 0.55 0.58 0.61 

Perceptron Classifier 0.49 0.42 0.61 0.63 

Passive Aggressive Classifier 0.51 0.46 0.62 0.70 

Neural Network Classifier 0.48 0.46 0.54 0.62 

K-neighbors Classifier 0.72 0.73 0.56 0.64 

 



 

 103 

Chapter 5 An Assessment of PET and CMR Radiomic Features 

for Detection of Cardiac Sarcoidosis 

Abstract 

Background: Visual interpretation of PET and CMR may fail to identify cardiac 

sarcoidosis (CS) with high specificity. This study aimed to evaluate the role of 

[18F]FDG PET and late gadolinium enhancement (LGE)-CMR radiomic features 

in differentiating CS from another cause of myocardial inflammation, in this case 

patients with cardiac-related clinical symptoms following COVID-19. 

Methods: [18F]FDG PET and LGE-CMR were treated separately in this work. 

There were thirty-five post-COVID-19 (PC) and forty CS datasets. Regions of 

interest were delineated manually around the entire left ventricle for PET and 

LGE-CMR datasets. Radiomic features were then extracted. The ability of 

individual features to correctly identify image data as CS or PC was tested to 

predict clinical classification of CS versus PC using Mann–Whitney U tests and 

logistic regression. Features were retained if p-value < 0.00053, AUC > 0.5 and 

accuracy > 0.7. After applying correlation test, uncorrelated features were used 

as a signature (joint features) to train machine learning classifiers. For LGE-

CMR analysis, to further improve the results, different classifiers were used for 

individual features besides logistic regression and the results of individual 

features of each classifier were screened to create a signature that include all 

features that followed the previously mentioned criteria and use them as input 

for machine learning classifiers. 

Results: The Mann–Whitney U tests and logistic regression were trained on 

individual features to build a collection of features. For [18F]FDG PET analysis, 

the maximum target-to-background ratio (TBRmax) showed high area under the 

curve (AUC) and accuracy with small p-values (< 0.00053) but the signature 
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performed better (AUC 0.98 and accuracy 0.91). For LGE-CMR analysis, Gray 

Level Dependence Matrix (gldm)-Dependence Non-Uniformity showed good 

results with small error bars (accuracy 0.75 and AUC 0.87). However, by 

applying a Support Vector Machine classifier on individual LGE-CMR features 

and creating a signature, a Random Forest classifier displayed better AUC and 

accuracy (0.91 and 0.84, respectively). 

Conclusion: Using radiomic features may prove useful in identifying individuals 

with CS. Some features showed promising results to differentiate between PC 

and CS. By automating the analysis, the patient management process can be 

accelerated and improved. 

 

5.1 Introduction 

Cardiac sarcoidosis (CS) is a granulomatous inflammatory disease that can be 

diagnosed with [18F]-fluorodeoxyglucose positron emission tomography 

([18F]FDG PET). [18F]FDG PET is performed in suspected CS due to the avid 

uptake of glucose by the active inflammation cells in sarcoid granulomas. It is 

recommended that a low-carbohydrate, high-fat diet followed by fasting be used 

to inhibit the physiologic glucose metabolism of the heart to enable diagnostic 

imaging. Moreover, a cardiac PET with abnormal [18F]FDG uptake on 

suppressed myocardial uptake is crucial to CS diagnosis (1). A PET image can 

also be used to quantify inflammation in addition to a visual review. Several 

metrics exist to describe the intensity and heterogeneity of [18F]FDG uptake. 

PET is less specific for CS when there is no extracardiac uptake (2). In addition, 

it is critical to note that approximately 25% of cardiac PET studies fail due to the 

inadequate suppression of physiologic glucose uptake (3). 



 

 105 

 

Conversely, cardiovascular magnetic resonance (CMR) is a non-invasive 

imaging technique that plays a significant role in diagnosing or screening 

patients with CS. It can detect scar tissue that may indicate inactive CS (4). 

Myocardial scarring can be evaluated using late gadolinium enhancement 

(LGE) imaging. Gadolinium is an extracellular contrast agent that demonstrates 

a slow washout in fibrotic regions compared to the normal myocardium. 

Although LGE is helpful for identifying CS, based on the LGE distribution and 

pattern (5, 6), it is a non-specific tool. In addition, LGE-CMR has limited 

sensitivity prior to myocardial scar development (7). 

 

Moreover, [18F]FDG PET can detect the inflammation related to CS, which 

theoretically leads to its early diagnosis (8). On the other hand, CMR with LGE 

is capable of identifying myocardial scarring even in small areas, owing to its 

high spatial resolution. The specificity of CMR in diagnosing CS might be higher 

than [18F]FDG PET, however, both have high sensitivity (9). There is 

controversy among studies regarding the identification of the appropriate 

technique for diagnosing CS (10-13). Similarly, the feasibility of combining the 

findings of both [18F]FDG PET and LGE-CMR has not been adequately 

explored and could enhance the accuracy of the assessment owing to the 

identification of different pathologic features.  

 

Additionally, it may be possible to gain additional information by employing 

quantitative measurements that may supply complementary information greater 

than that provided by non-invasive methods (14). A method of analysing 
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imaging data uses radiomics to automatically extract high-dimensional features. 

Subsequently, researchers can mine and analyse these features to support 

decision making (15, 16). First-order statistical features comprise properties 

based on histograms (HISTO). Regardless of the spatial relationship between 

the voxels, these features are based on the shape of the histogram and discern 

statistical values of the voxel intensities (17, 18). Statistical inter-relationships 

between neighbouring voxels are calculated using second-order statistical 

features, which can be derived from the gray-level cooccurrence matrix (GLCM) 

(17). In addition, areas with coarser textures can be extracted using higher-

order statistical features (19). They are derived from the gray level run length 

matrix (GLRLM), gray level dependence matrix (GLDM), gray level size zone 

matrix (GLSZM), and neighbouring gray tone difference matrix (NGTDM).  

 

Correspondingly, this work investigates the precision of PET and CMR radiomic 

features in differentiating CS from another cause of myocardial inflammation, in 

this case, patients with cardiac-related symptoms following COVID-19, or post-

COVID-19 (PC) patients. Myocardial inflammation can be a symptom observed 

in some PC patients. The severity and prevalence of myocardial inflammation 

may vary among individuals, and it is one of the potential complications 

associated with COVID-19. It is important to note that not all PC patients will 

experience myocardial inflammation, and the manifestation of symptoms can 

vary widely (20). 

 

5.2 Materials and Methods 

5.2.1 Ethical Approval 
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This study was conducted with the approval of the Institutional Review Board at 

Mount Sinai Hospital (GCO # 01-1032). All the subjects supplied their written 

informed consent. 

 

5.2.2 Subject Selection 

Both PET and CMR imaging were performed at Mount Sinai Hospital in New 

York on two types of patients: patients suspected of having cardiac sarcoidosis 

based on extracardiac disease and cardiac symptoms, as well as PC patients. 

The majority of the CS cohort predates the COVID-19 era, ensuring that these 

patients did not exhibit post-COVID-19 symptoms. CS diagnosis is consistent 

with the Heart Rhythm Society (HRS) expert consensus statement (10). PC 

patients had either chest pain, palpitations, or shortness of breath following 

COVID-19 that could not be attributed to another cause. This retrospective 

study encompassed CS and PC patients exhibiting abnormal FDG uptake in the 

myocardium that were evaluated by a cardiologist who is an expert in the use of 

PET/MR to diagnose cardiomyopathies. Exclusions were made for individuals 

with renal dysfunction, insulin-dependent diabetes, blood glucose levels 

exceeding 200 mg/dL, pregnant or lactating individuals, and those with cardiac 

pacemakers or automatic implantable cardioverter-defibrillators. In preparation 

for the scan, the patient was required to abstain from carbohydrate consumption 

for 24 hours and fast for 12 hours. Initially, there were 90 suspected PC patients 

and 69 patients with CS. However, for the purpose of this study, only cases with 

myocarditis were included. Therefore, the study included thirty-five datasets 

from PC patients and forty datasets from patients with CS, as summarised in 

Figure 5.1. The demographic information of the patients is provided in Table 

5.1. 
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Figure 5.1 A flowchart of datasets selection  

 

Table 5.1 Demographic information of the study population. PC: Post-
COVID-19 Patients; CS: Cardiac Sarcoidosis Patients 

Group Sex Mean Age Standard 
Deviation 

PC 
F=19 

44.2 12.27 
M=16 

CS 
F=16 

61.35 9.41 
M=24 

 

 

5.2.3 Imaging Protocol 

An integrated PET/MR system was used to perform simultaneous CMR and 

[18F]FDG PET (BiographTM mMR, Siemens Healthcare, Erlangen, Germany). An 

intravenous injection of [18F]FDG containing 5 MBq/kg was given to the patients. 

Acquisition of thoracic PET (one-bed position centred on the heart) takes 

approximately 90 minutes to scan the patients in two phases (blood and tissue 

phases). However, for the purpose of this study, only the last 60 minutes of the 

time window were chosen because the focus of this study specifically centres 

on the tissue phase. Iterative ordinary Poisson ordered subset expectation 
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maximisation (OP-OSEM) was used to reconstruct PET images over a 

344×344×129 image matrix with 3 iterations, 21 subsets and 2 mm isotropic 

voxels, followed by post-filtering using a Gaussian kernel of 4 mm. A PET study 

was neither respiratory-gated nor electrocardiogram (ECG)-gated, and no 

motion correction was carried out. Attenuation correction was performed using a 

3D breath-hold Dixon-based MR image. Parallel to the PET scan, CMR was 

performed with ECG triggering covering the whole left ventricle. Inversion-

recovery gradient-echo LGE sequences were acquired across the entire 

myocardium approximately 15 minutes after injection of 0.2 mmol/kg 

gadolinium-based contrast agent (MultiHance, Bracco, NJ) with 8 mm slice 

thickness and 10 mm spacing between slices. Bias correction was not 

performed in CMR images. 

 

5.2.4 Segmentation 

3D slicer software (Version 4.11.2; https://www.slicer.org) was used for the 

segmentation (21, 22). Regions of interest (ROI) were drawn manually in the 

entire left ventricular myocardium for both [18F]FDG PET and LGE-CMR images 

by a junior radiographer and reviewed by a Biomedical Engineering expert with 

10 years of experience in Medical Imaging. This approach is less likely to be 

influenced by the intensity and experience of observers compared to the hot 

regions-only segmentation. The hot regions-only segmentation may exhibit bias 

and result in unreliable outcomes during testing in our prior study (23). Figure 

5.2 provides an illustrative example of the segmentation on PET/CMR image. 

Subsequently, radiomic features were extracted. 
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Figure 5.2 An example of the segmentation on PET/CMR image. 

 

To calculate the maximum target-to-background ratio (TBRmax) in PET images, 

the standardised uptake value (SUVmax) was extracted, and another ROI was 

drawn in the blood pool to extract the (SUVmean) of the background and then 

follow the following equation: 

 

𝑇𝐵𝑅𝑚𝑎𝑥 =
𝑆𝑈𝑉𝑚𝑎𝑥  (𝑡𝑎𝑟𝑔𝑒𝑡)

𝑆𝑈𝑉𝑚𝑒𝑎𝑛  (𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 Equation 5.1 

 

5.2.5 Feature Extraction 

PyRadiomics (Version 3.0.1) was used to extract six feature classes (94 

features in total) from the PET/CMR images (24). A list of all radiomic features 

is shown in Supplementary Material 1. PyRadiomics adheres to most of the 

image biomarker standardisation initiative (IBSI) feature definitions. In the case 
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of PET images, a fixed bin size of 0.075 was utilised, this gave a good number 

of bins and a good representation of the data. However, in LGE-CMR images, 

the default fixed bin size of 25 was used. The impact of gray-level discretisation 

on extracted feature values from PET images has been well-documented (25). 

Nevertheless, there is limited research exploring the effect of gray-level 

discretisation on clinical MR images. According to Duron, L. et al. (26), an 

experimental study aimed at examining the impact of gray-level discretisation 

on the reproducibility of texture features from MR images, it was found that 

utilising different fixed bin sizes had a minimal effect on the variability of these 

features. The PET images were subjected to SUV normalisation. Since the 

datasets were obtained from a single scanner, pre-processing (except post-

filtering using a Gaussian kernel in reconstruction process in PET images) and 

harmonisation were not performed. The feature extraction was conducted in 3D, 

as it provides more informative results compared to 2D analysis. In addition, to 

mitigate the risk of overfitting caused by limited data, the models were not 

optimised. 

 

5.2.6 Statistical Analysis 

Statistical analyses were undertaken using the Scikit-learn software (Version 

0.23.2) (27). The individual radiomic features of the study groups were 

compared using Mann-Whitney U test to assess their ability to separate CS 

from PC. In addition, Bonferroni correction was used to adjust the p-value for 

multiple tests. According to the significance level of 0.05, and with 94 features, 

the corrected p-value was < 0.00053. The radiomic features were then trained 

and tested using logistic regression classifiers. This analysis used stratified five-

fold cross-validation to obtain the mean area under the curve (AUC), mean 
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accuracy, and 95% confidence intervals (CIs). An AUC > 0.5 and an accuracy > 

0.7 were considered acceptable for the retention of features with a p-value of 

less than 0.00053. When 0.5 < AUC < 1, there is a high chance that the feature 

will be able to distinguish the positive class values from the negative ones. In 

addition, accuracy > 0.7 can be considered as a decent score. Subsequently, 

Spearman correlation was used to detect the correlated features with 0.70 

correlation coefficient. This threshold was selected because higher thresholds 

indicate a strong resemblance between the two features, with at least half of 

their variance being shared. Of these correlated features, the feature with the 

highest AUC was retained. Following that, the uncorrelated features where then 

used as input for machine learning classifiers to create a signature (joint 

features). In LGE-CMR features, to find a classifier that can provide high values 

of AUC and accuracy, other classifiers besides logistic regression were 

explored. The retained features were then used as input for machine learning 

classifiers. The selection of the top-performing machine learning classifier was 

based on the highest mean AUC and mean accuracy values from stratified five-

fold cross-validation. Due to the small sample size in this study, only the training 

cross-validation outcomes were documented. This approach has been 

recommended in situations where the sample size is insufficient to support an 

independent validation set (28). By using cross-validation, the potential 

overestimation of the model's performance was reduced. The workflow of the 

statistical analysis is illustrated in Figure 5.3. In this study, the PET and CMR 

datasets were analysed separately, enabling a more focused investigation of 

the specific features and characteristics inherent to each modality. This 

approach yields valuable insights into the individual contributions of PET and 

CMR, enhancing the understanding of the subject under investigation. 
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Figure 5.3 Statistical analysis workflow 

 

 

5.3 Results  

5.3.1 Individual Features Assessment 

The univariate analysis of individual features in each dataset revealed that 

[18F]FDG PET and LGE-CMR data had 5 features and 11 features, respectively, 

with p-values < 0.00053. For all datasets, Table 5.2 demonstrates the five best 

radiomic features based on the p-values. 
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Table 5.2 Five best radiomic features based on the p-values. GLSZM: gray 
level size zone matrix; GLRLM: gray level run length matrix; GLDM: gray 
level dependence matrix. 

 

5.3.2 Feature Selection 

The logistic regression was applied on individual features. [18F]FDG PET and 

LGE-CMR datasets had only three and five features, respectively, conforming to 

the inclusion criteria (p-value < 0.00053, AUC > 0.5 and accuracy > 0.7). Those 

features that met the inclusion criteria were again screened based on 

correlation. To detect the correlated features, a correlation test was conducted. 

Features with a higher AUC were retained. The number of selected features in 

the PET and LGE-CMR features decreased to two uncorrelated features for 

each one. Table 5.3 presents AUC and accuracy values, along with their 

corresponding 95% CI, for the uncorrelated features in each dataset. 

Scrutinizing PET features in greater detail, TBRmax conveyed high AUC and 

PET Features p-value LGE-CMR Features p-value 

TBRmax 1.510-11 glszm_Small Area Low Gray 

Level Emphasis 

7.210-7 

glszm_Large Area High Gray 

Level Emphasis 

210-5 gldm_Dependence Non-

Uniformity 

7.310-7 

glrlm_Gray Level Non-

Uniformity 

110-4 gldm_Small Dependence Low 

Gray Level Emphasis 

8.810-7 

gldm_Gray Level Non-

Uniformity 

1.210-4 glszm_Low Gray Level Zone 

Emphasis 

1.310-6 

glszm_Zone Variance 1.810-4 glrlm_Run Length Non-

Uniformity 

8.810-6 
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accuracy with relatively small confidence intervals while glszm_Zone Variance 

had acceptable values but with large confidence intervals. Creating a signature 

using these uncorrelated features as input for machine learning classifiers 

improved the performance. Random Forest was the best one (95% CI AUC 

0.95 – 1.00: accuracy 0.83 – 0.99). The performance of all machine learning 

classifiers is displayed in Table 5.4.  

 

Table 5.3 Areas under the curve (AUCs) and accuracies (ACC) of 
uncorrelated features. CI: confidence interval; GLSZM: gray level size 
zone matrix; GLDM: gray level dependence matrix; GLRLM: gray level run 
length matrix. 

 

 

 

 

 

 

 

 

 

 

 

 Feature ACC ACC CI AUC AUC CI Sensitivity Specificity 

P
E

T
 TBRmax 0.89 0.07 0.95 0.09 0.91 0.88 

glszm_Zone Variance 0.71 0.15 0.69 0.22 0.49 0.90 

L
G

E
-C

M
R

 

gldm_Dependence 

Non-Uniformity 

0.75 0.06 0.87 0.05 0.69 0.80 

glrlm_Long Run High 

Gray Level Emphasis 

 

0.71 0.15 0.78 0.21 0.57 0.83 
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Table 5.4 The machine learning classifiers performance of PET joint 
features with 95% confidence intervals (CI). ACC: Accuracy; AUC: area 
under the curve. 

 

 

For LGE-CMR features, gldm_Dependence Non-Uniformity presented good 

AUC and accuracy (95% CI AUC 0.82– 0.92: accuracy 0.69– 0.81). Examples 

of PET and CMR images for CS and PC with the related features are shown in 

Figure 5.4. However, to further improve the AUC and accuracy findings of LGE-

CMR, additional measures were taken. After applying many other classifiers 

besides logistic regression, Support Vector Machine showed six features 

following the criteria, Table 5.5. The total number of features were not 

normalised before applying Support Vector Machine because the focus was on 

the relative relationships between the data points rather than their absolute 

Machine Learning Classifier ACC ACC CI AUC AUC CI Sensitivity Specificity 

Random Forest 0.91 0.08 0.98 0.03 0.94 0.90 

Logistic Regression 0.87 0.09 0.96 0.07 0.83 0.90 

Support Vector Machine 0.63 0.08 0.56 0.31 0.26 0.95 

Decision Tree 0.88 0.03 0.88 0.04 0.86 0.93 

Gaussian Process  0.61 0.10 0.70 0.16 0.40 0.80 

Stochastic Gradient Descent 0.48 0.03 0.71 0.19 0.80 0.20 

Perceptron  0.44 0.07 0.69 0.22 0.94 0.00 

Passive Aggressive  0.63 0.12 0.69 0.31 0.40 1.00 

Neural Network  0.53 0.17 0.64 0.12 0.97 0.20 

K-neighbors  0.69 0.04 0.73 0.11 0.60 0.78 
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values or scales. Additionally, normalisation had the potential to modify the 

original distances and influence the underlying relationships within the data, 

which are crucial for distance-based algorithms. The retained features were 

used as input for machine learning classifiers, and Random Forest proved to 

have the greatest AUC and accuracy values (95% CI AUC 0.82 – 1.00: 

accuracy 0.73 – 0.95). The machine learning classifiers performance for joint 

features are shown in Table 5.6. 

 

 

Figure 5.4 Two cases of PET/CMR cardiac sarcoidosis (CS) and one case 
of post-COVID-19 (PC) associated with the best-performance features. 
PET/CMR CS (case 1) has significantly lower values than PC values, 
whereas (case 2) has values within the range of PC patients' values, 
potentially leading to a misdiagnosis. Display intensity of PET images is 
from 0 to 6. 
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Table 5.5 Areas under the curve (AUCs) and accuracies (ACC) of 
uncorrelated features using the Support Vector Machine (SVM) that used 
to create a CMR signature. CI: confidence interval; GLSZM: gray level size 
zone matrix; GLRLM: gray level run length matrix; GLDM: gray level 
dependence matrix. 

 

 

 

 

 

 

 

 

 

 Feature ACC ACC CI AUC AUC CI Sensitivity Specificity 

S
V

M
 C

la
s

s
if

ie
r 

glszm_Low Gray Level 

Zone Emphasis 

0.72 0.18 0.83 0.17 0.66 0.78 

glrlm_Run Entropy 0.72 0.14 0.80 0.14 0.77 0.68 

glszm_Small Area Low 

Gray Level Emphasis 

0.81 0.12 0.79 0.17 0.63 0.98 

gldm_Dependence Non-

Uniformity 

0.73 0.09 0.78 0.11 0.69 0.78 

gldm_Small 

Dependence Low Gray 

Level Emphasis 

0.76 0.12 0.77 0.17 0.60 0.90 

glrlm_Gray Level Non-

Uniformity 

0.71 0.11 0.66 0.16 0.46 0.93 
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Table 5.6 The machine learning classifiers performance of LGE-CMR joint 
features with 95% confidence intervals (CI). ACC: Accuracy; AUC: area 
under the curve. 

 

 

 

 

 

 

 

 

Machine Learning 

Classifier 

ACC ACC 

CI 

AUC AUC 

CI 

Sensitivity Specificity 

Random Forest 0.84 0.11 0.91 0.09 0.77 0.93 

Logistic Regression 0.77 0.07 0.88 0.07 0.74 0.80 

Support Vector Machine 0.72 0.15 0.79 0.15 0.51 0.90 

Decision Tree 0.75 0.11 0.75 0.11 0.74 0.75 

Gaussian Process  0.53 0.09 0.52 0.04 0.20 0.83 

Stochastic Gradient Descent 0.48 0.03 0.62 0.09 0.49 0.53 

Perceptron  0.55 0.03 0.24 0.15 0.03 1.00 

Passive Aggressive  0.49 0.04 0.58 0.34 0.54 0.45 

Neural Network  0.68 0.19 0.78 0.26 0.71 0.33 

K-neighbors  0.68 0.08 0.69 0.09 0.60 0.75 
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5.4 Discussion  

CS is an inflammatory disease with an unknown cause. To aid in the diagnostic 

process, advanced imaging techniques like [18F]FDG PET and LGE-CMR are 

recommended. [18F]FDG PET is utilised in suspected CS cases due to its ability 

to detect glucose uptake by active inflammatory cells in sarcoid granulomas 

while LGE-CMR can identify scar tissue that may indicate inactive CS. 

However, both techniques have limitations that contribute to their lack of 

specificity for CS. This study focused on investigating the potential of [18F]FDG 

PET and LGE-CMR radiomic features in differentiating CS from other causes of 

myocardial inflammation, specifically in patients with post-COVID-19 symptoms 

related to the heart. 

 

After applying several steps to filter the radiomic features of PET images, 

TBRmax succeeded in being the best performed feature. TBRmax was able to 

discriminate about 90% of CS cases from PC cases. Most of the CS cases had 

a TBRmax range between 1 to 3 while PC cases had higher values. This result is 

supported by other studies that revealed similar range values of TBRmax in CS 

patients, which were between 1 to 3 (12, 23). To some extent, TBRmax can 

make fair comparisons between institutions by looking at the equation of 

extracting their values, which essentially means a blood uptake correction (29). 

Although TBRmax has successfully discriminated about 90% of cases, there is 

still about 10% of cases that have been misdiagnosed such as the TBRmax 

value of case 2 in Figure 5.4 which provided values that were approximately 

similar to those of PC patients. glszm_Zone Variance was the second-best 

performing feature but had significant error bars that made it unreliable. 
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However, the PET features performance improved significantly after using joint 

features as input for machine learning classifiers, especially Random Forest 

classifier.  

 

For the radiomic features of CMR images, gldm_Dependence Non-Uniformity 

presented acceptable results, but with some errors. About 67.5% of CS patients 

had values less than 88.5% of PC patients (average value in CS = 205.8, 

average value in PC = 323.4). This measure determines the degree of similarity 

of dependence within an ROI (24). Therefore, the higher values of 

gldm_Dependence Non-Uniformity indicate a greater level of heterogeneity. As 

an interpretation of the values of each group, CS appears to have a lower 

variance than PC. However, it is recommended that this feature should be 

interpreted cautiously because it may contain errors especially for CS group, as 

third of CS patients had values similar to the majority of PC patients. In Figure 

5.4, there was a big difference between the feature values in the first and 

second cases, and the second case even gave higher values than the PC 

patient value. 

 

One of the approaches followed to augment the performance of the LGE-CMR 

features is creating a signature (joint features) that includes all the uncorrelated 

features with the best AUCs and good accuracies. This step was applied to the 

output of the logistic regression as well as other classifiers. The signature from 

the Support Vector Machine illustrated great results and ameliorated the 

findings compared to the individual features. The individual feature of LGE-CMR 

dataset from logistic regression, gldm_Dependence Non-Uniformity, had lower 

AUC but smaller confidence intervals than when using the signature. Employing 
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the joint features gives only a little advantage in making it the superior choice 

for LGE-CMR dataset classification. 

 

In our previous study (23), it was found that gldm_Dependence Non-Uniformity 

emerged as one of the top features in PET images for distinguishing between 

CS patients and controls. However, it exhibited larger error bars compared to 

TBRmax indicating greater variability in its measurements. In contrast, the 

evaluation of LGE-CMR radiomic features to differentiate between active CS 

and inactive CS (4) yielded different top features compared to the current study. 

This discrepancy can be attributed to the distinct types of comparisons 

conducted in each study, as well as slight variations in the methodology 

employed. These alterations resulted in improved outcomes of the analysis of 

LGE-CMR images. Radiomic analysis is affected by several factors that make 

the comparisons among studies are difficult. The findings across studies are not 

consistently replicated; instead, they often exhibit conflicting results (30, 31). 

This divergence in outcomes could potentially be attributed to technical factors. 

Efforts should be made to minimise variation up to the reconstruction step to 

ensure consistency. It is crucial to avoid introducing variation in factors that 

occur after reconstruction whenever possible. This entails making consistent 

choices, such as employing the same image segmentation algorithm and 

utilising a uniform discretisation scheme for all the data (32). In addition, the 

higher the resolution and number of voxels can impact certain radiomic features 

by inflating their values (33). By mitigating variability at these stages, the 

reliability and comparability of the results can be enhanced. 
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Several limitations are associated with this study. First, all studies evaluating 

patients with suspected CS have well-known limitations due to the absence of a 

standard for diagnosing the condition. However, it is possible to detect CS more 

effectively by combining data from both CMR and PET. This patient cohort 

routinely did not undergo endomyocardial biopsies. It is, however, difficult to 

rule out CS with an endomyocardial biopsy due to its low sensitivity and high 

sampling error rate because of its focal distribution (34). In addition, considering 

the size of the sample, further studies are needed to verify this conclusion to 

avoid overfitting and type I errors. This issue was reduced by applying the 

Bonferroni correction. Furthermore, validating the AI approach on a larger and 

diverse patient population as well as normal controls would indeed enhance the 

robustness and applicability of the results. Moreover, no automated 

segmentation was performed, and reference segmentation was not provided in 

this study.  

 

The new knowledge gained from this study is that radiomic analysis can 

enhance the objectivity and complementarity of PET and CMR in identifying CS 

from PC. PET-based analyses could effectively differentiate CS from PC. The 

PET joint features demonstrated high performance that can be used alone 

without resorting to CMR. However, CMR-based analysis is helpful when PET 

images suffer from failed suppression of the physiological uptake of [18F]FDG in 

the myocardium (3). The results may vary from one institution to another due to 

different scanning procedures and protocols, and characteristics of each 

scanner. However, the methodology is straightforward and transferable to 

PET/CT-only and MR-only studies. 
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5.5 Conclusion  

This work adds to the growing evidence that radiomic analysis may assist 

[18F]FDG PET and LGE-CMR to precisely discern cardiac sarcoidosis with a 

specific focus on TBRmax. These features hold promise for heightening the 

accuracy of diagnoses. Nonetheless, more research is warranted to validate 

and refine these results and guarantee their wider clinical applicability. 
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Supplementary Materials 

Supplementary Material 1: 

Table 1: List of all radiomic features 

   
First order features 

firstorder_10Percentile 
 

firstorder_Minimum 

firstorder_90Percentile 
 

firstorder_Range 

firstorder_Energy 
 

firstorder_RobustMeanAbsoluteDeviatio
n 

firstorder_Entropy 
 

firstorder_RootMeanSquared 

firstorder_InterquartileRange 
 

firstorder_Skewness 

firstorder_Kurtosis 
 

firstorder_TotalEnergy 

firstorder_Maximum 
 

firstorder_Uniformity 

firstorder_MeanAbsoluteDeviation 
 

firstorder_Variance 

firstorder_Mean 
 

TBRmax (for PET only) 

firstorder_Median 
 

 

 
GLCM features 

glcm_Autocorrelation 
 

glcm_Idn 

glcm_ClusterProminence 
 

glcm_Imc1 

glcm_ClusterShade 
 

glcm_Imc2 

glcm_ClusterTendency 
 

glcm_InverseVariance 

glcm_Contrast 
 

glcm_JointAverage 

glcm_Correlation 
 

glcm_JointEnergy 

glcm_DifferenceAverage 
 

glcm_JointEntropy 

glcm_DifferenceEntropy 
 

glcm_MCC 

glcm_DifferenceVariance 
 

glcm_MaximumProbability 

glcm_Id 
 

glcm_SumAverage 

glcm_Idm glcm_SumEntropy 
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glcm_Idmn 
 

glcm_SumSquares 

 
GLRLM features 

glrlm_GrayLevelNonUniformity 
 

glrlm_RunEntropy 

glrlm_GrayLevelNonUniformityNor
malised 
 

glrlm_RunLengthNonUniformity 

glrlm_GrayLevelVariance 
 

glrlm_RunLengthNonUniformityNormali
sed 

glrlm_HighGrayLevelRunEmphasis 
 

glrlm_RunPercentage 

glrlm_LongRunEmphasis 
 

glrlm_RunVariance 

glrlm_LongRunHighGrayLevelEmp
hasis 
 

glrlm_ShortRunEmphasis 

glrlm_LongRunLowGrayLevelEmph
asis 
 

glrlm_ShortRunHighGrayLevelEmphasi
s 

glrlm_LowGrayLevelRunEmphasis 
 

glrlm_ShortRunLowGrayLevelEmphasis 

 
GLSZM features 

glszm_GrayLevelNonUniformity 
 

glszm_SizeZoneNonUniformity 

glszm_GrayLevelNonUniformityNor
malised 
 

glszm_SizeZoneNonUniformityNormalis
ed 

glszm_GrayLevelVariance 
 

glszm_SmallAreaEmphasis 

glszm_HighGrayLevelZoneEmphas
is 
 

glszm_SmallAreaHighGrayLevelEmpha
sis 

glszm_LargeAreaEmphasis 
 

glszm_SmallAreaLowGrayLevelEmpha
sis 

glszm_LargeAreaHighGrayLevelE
mphasis 
 

glszm_ZoneEntropy 

glszm_LargeAreaLowGrayLevelEm
phasis 
 

glszm_ZonePercentage 

glszm_LowGrayLevelZoneEmphasi
s 
 

glszm_ZoneVariance 

 
GLDM features 

gldm_DependenceEntropy 
 

gldm_LargeDependenceEmphasis 
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gldm_DependenceNonUniformity 
 

gldm_LargeDependenceHighGrayLevel
Emphasis 

gldm_DependenceNonUniformityNo
rmalised 
 

gldm_LargeDependenceLowGrayLevel
Emphasis 

gldm_DependenceVariance 
 

gldm_LowGrayLevelEmphasis 

gldm_GrayLevelNonUniformity 
 

gldm_SmallDependenceEmphasis 

gldm_GrayLevelVariance 
 

gldm_SmallDependenceHighGrayLevel
Emphasis 

gldm_HighGrayLevelEmphasis 
 

gldm_SmallDependenceLowGrayLevel
Emphasis 

 
NGTDM features 

ngtdm_Busyness 
 

ngtdm_Contrast 

ngtdm_Coarseness 
 

ngtdm_Strength 

ngtdm_Complexity 
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Chapter 6 Discussion 

6.1 Overview of Results 

The objective of the study in Chapter 3 was to investigate the diagnostic 

effectiveness of [18F]FDG PET radiomic features in comparison to conventional 

metrics. The primary goal was to differentiate between CS patients and a 

control group who exhibited suspicion of CS but tested negative in PET 

imaging, and identify the most optimal machine learning classifier to develop an 

automated model. The study evaluated two manual segmentation approaches: 

the hot regions-only segmentation (segmentation A) and the whole left 

ventricular myocardium (segmentation B). Significant disparities in radiomic 

features were observed when employing distinct segmentation approaches. 

This discrepancy can likely be attributed to variations in the sizes of ROIs and 

the inclusion of voxel intensities within each segmentation. In addition, it should 

be noted that segmentation A may be influenced by observer experience, 

particularly in instances involving small hotspots. Moreover, the outcomes of the 

top-performing features were influenced by the criteria of segmentation A, 

introducing a level of bias that should not be overlooked. Conversely, 

segmentation B demonstrated greater resilience and efficacy in these regards. 

 

Out of all the features considered, the dominance of TBRmax stands out 

prominently. Despite TBRmax's sensitivity to noise and potential challenges in 

harmonisation across diverse scanners, imaging centres, data types, and 

parameters, such issues are not applicable in this study. The datasets were 

exclusively derived from a single scanner and institution. By applying PCA and 

using of five principal components to test and train the ML classifiers, A k-
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neighbors and neural network classifiers showed the highest AUC and greatest 

accuracy for segmentation A approach. For segmentation B approach, the 

gaussian process classifier indicated the highest AUC and accuracy. 

 

The primary objective of the study in chapter 4 was to explore the effectiveness 

of radiomic features extracted from LGE-CMR images in differentiating between 

active and inactive cardiac sarcoidosis. This study represented an advancement 

of the methodology employed in the chapter 3. To enhance reliability, the 

segmentation approach was chosen, favouring segmentation B over 

segmentation A. Furthermore, the ML classifiers were tested on individual 

features (referred to as signature A) as well as principal components (referred 

to as signature B), but it was not necessary to do so in chapter 3 since the ML 

classifiers performed well on principal components. 

 

It is notable that numerous second-order features demonstrated superior 

performance compared to many first-order features. Given that the presence of 

LGE (a first-order criterion) was a prerequisite for both CSactive and CSinactive 

groups, it was anticipated that first-order features might not serve as effective 

discriminators. However, the overall fibrosis burden, and thus LGE, could still be 

a meaningful indicator of active disease. Similarly, noteworthy findings emerged 

in the machine learning approach using signature A, where approximately half 

of the features belonged to the GLCM class. GLCM joint entropy emerged as 

the top-performing feature, exhibiting the highest accuracy and the narrowest 

confidence interval. The effectiveness of GLCM joint entropy in distinguishing 

between study groups can be attributed to its ability to measure the level of 

randomness or variance in pixel intensities within a given pixel's neighborhood 
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(1, 2). Slightly elevated values of this feature were observed in the CSactive 

group compared to the CSinactive group, indicating the presence of 

heterogeneity—a characteristic of this disease (3). 

 

The study in chapter 5 examined the role of PET and LGE CMR radiomic 

features in distinguishing CS from other conditions marked by myocardial 

inflammation. Specifically, the focus was on patients exhibiting cardiac-related 

symptoms after COVID-19 (PC patients). The methodology in this chapter was 

further enhanced to include LGE CMR radiomic features. In the quest for a 

classifier yielding the highest values for AUC and accuracy, various classifiers 

were investigated beyond logistic regression. 

 

Following a series of steps to refine the radiomic features of PET images, 

TBRmax emerged as the top-performing feature. TBRmax demonstrated the ability 

to distinguish approximately 90% of CS cases from PC cases. Notably, CS 

cases predominantly exhibited a TBRmax range between 1 to 3, while PC cases 

displayed higher values. Moreover, the performance of PET features witnessed 

a good improvement when employing joint features as input for machine 

learning classifiers, particularly the Random Forest classifier. 

 

Concerning the radiomic features extracted from CMR images, 

gldm_Dependence Non-Uniformity yielded acceptable results but with some 

discrepancies. Approximately 67.5% of CS patients exhibited values less than 

88.5% of PC patients. This metric assesses the degree of dependence similarity 

within an ROI, where higher values signify increased heterogeneity. In 
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interpreting the values for each group, it appears that CS has lower 

heterogeneity compared to PC. Nevertheless, caution is advised in interpreting 

this feature due to its errors that should not be disregarded. Furthermore, by 

creating joint features, the signature derived from the Support Vector Machine 

showcased excellent outcomes and improved the findings in comparison to 

individual features. Utilising joint features provides a slight advantage, making it 

the preferred option for LGE-CMR dataset classification. The enhanced 

outcomes of LGE-CMR radiomic features in this study, in contrast to the results 

in chapter 4, may be attributed to both the different type of comparison and the 

slight modifications made in the methodology. 

 

6.2 Limitations 

This project is accompanied by several limitations. Firstly, insufficient data with 

failed suppression of the physiological PET uptake, hindering the showcase of 

the pivotal advantage and importance of radiomic analysis. To address this, the 

same methodology can be applied to data with failed suppression, aiming to 

explore the role of radiomic analysis in detecting CS patients even under 

suboptimal preparation. In addition, as is common in investigations involving 

patients with suspected CS, there are inherent challenges due to the absence 

of a standardised diagnostic criterion for the condition. Nonetheless, the 

combination of data from both CMR and PET has demonstrated enhanced 

efficacy in detecting CS. It is noteworthy that the patient cohort in this project 

typically did not undergo endomyocardial biopsies. The utility of such biopsies in 

ruling out CS is hindered by their low sensitivity and the high sampling error rate 

attributed to the condition's focal distribution (4). Furthermore, given the sample 

size, additional studies may imperative to validate these conclusions and 
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mitigate the risks of overfitting and type I errors, a concern addressed by the 

application of the Bonferroni correction, dimensionality reduction as well as 

avoiding hyperparameters tunning. Although the risk of overfitting is still 

possible. In addition, by mitigating the risk of type I error, there could be an 

increase in the risk of type II errors (5). However, due to the rarity of the 

disease, having more data is difficult compared to oncological studies. 

Therefore, this project developed training models using cross-validation as an 

alternative method for model evaluation. This approach allows for assessing the 

statistical optimism in average predictive performance, providing a more 

realistic estimate of the model's performance. The creation of a completely 

independent validation set would have significantly reduced the amount of data 

available for model development, potentially compromising the robustness and 

generalisability of the findings (6). Additionally, the absence of automated 

segmentation and the lack of a reference segmentation introduce further 

limitations. The inclusion of these components would enhance the robustness 

and accuracy of the findings. However, the developed models in this project can 

be used as a first step towards fully automated models. Future studies are 

imperative to assess the reproducibility of the findings  across different sites, 

and different newer scanners with better sensitivity and resolution. 

 

The used scanner and the implemented imaging protocol introduced certain 

limitations that could impact the radiomic analysis conducted in this project. The 

datasets were acquired using Biograph mMR PET/MR scanner, the first fully 

integrated PET/MR model available commercially (7). While this scanner 

presents advantages in integrating functional images with high soft tissue 

resolution, it also possesses several limitations. Standalone PET scanners 
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typically utilise photomultiplier tubes (PMTs) as their photodetectors. However, 

PMTs are susceptible to magnetic fields, posing challenges for integration into 

PET/MR scanners. In contrast, the Biograph mMR employs avalanche 

photodiodes (APDs) as an alternative photodetector due to their insensitivity to 

magnetic fields, robustness, and compact design (8, 9). Nevertheless, APDs 

are constrained by their limited gain and excess noise (10), directly influencing 

the accuracy of radiomic analysis. Exploring advanced scanners, such as those 

equipped with silicon photomultipliers (11), may enhance research findings. 

Additionally, the use of APDs, characterised by poor timing capabilities (timing 

resolution of 2.9 ns), precludes the provision of TOF information (12, 13). TOF 

information is vital for precise radiotracer localisation, leading to improved 

image quality and reduced image noise. 

 

The PET datasets underwent reconstruction using the OP-OSEM algorithm, 

which, through iterative updates based on acquired projection data, aids in 

recovering well-defined boundaries and enhancing spatial details. This iterative 

approach holds promise in mitigating blurring induced by PVE. However, to 

specifically address PVE, additional techniques such as partial volume 

correction algorithms may be necessary. The OSEM algorithm, while effective, 

has a limitation of amplifying noise with each iteration. As a precaution, it is 

recommended to limit iterations to three or employ Gaussian post-filtering (14, 

15), as done in this project. In addition, motion is anticipated to impact the PET 

images, therefore motion correction may help enhance the use of radiomic 

features. 
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6.3 Future Directions and Considerations 

Future studies could address the limitations discussed above and advance the 

understanding by including failed suppression data, validating and automating 

the models as well as assessing the reproducibility of the results. Moreover, the 

enhancement of analysis could be achieved by employing more advanced 

scanners and refining imaging protocols. 

 

For additional future exploration, the presence of radiotracers that are not 

affected by the physiological activity of the myocardium may provide important 

diagnostic value (16). 68Ga-labeled somatostatin based PET imaging (e.g. 

[68Ga]DOTATATE), which is already used in oncological applications, can be 

promising radiotracers to diagnose CS due to the overexpression of the subtype 

2 of somatostatin receptor in sarcoid granulomas (17, 18). However, these 

radiotracers need more investigations, especially to evaluate in which phase of 

sarcoidosis (chronic or acute) they can offer greater value than standard 

[18F]FDG. In addition, increased cell proliferation is another feature that can be 

seen in sarcoid granulomas as opposed to the normal myocardium which lacks 

proliferative activity. This is can be detected using fluorothymidine ([18F]FLT) 

(19, 20). However, there are few studies examining the efficiency of this 

radiotracer compared to [18F]FDG.  

 

Patlak analysis (Ki) in the context of [18F]FDG PET may have been less 

sensitive to failed myocardial suppression when compared to other quantitative 

methods like SUV metrics. It is particularly advantageous in situations where 

there is incomplete or failed suppression of physiological [18F]FDG uptake in the 

myocardium, which is a common challenge in cardiac imaging. Patlak analysis 
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is a kinetic modelling approach that focuses on the late phase of [18F]FDG 

uptake, typically when the tracer has equilibrated between the blood and the 

tissue. In the myocardium, [18F]FDG uptake is influenced by both perfusion and 

metabolism. The late phase is characterised by stable kinetics, and Patlak 

analysis exploits this to estimate the metabolic rate of [18F]FDG (21-23). 

However, while Patlak analysis is more demanding than calculating SUV, it can 

pose inconvenience for patients. Nakajo, M. et al. (22) found that the analysis 

added value to the results of SUV, especially with regard to identifying clinical 

events of cardiac sarcoidosis such as arrhythmia. As Patlak analysis takes into 

account the blood input function, which helps in normalising the radiotracer 

uptake for variations in blood activity, applying radiomic analysis on Ki images 

instead of static images may provide additional information related to tissue 

characteristics and reduce potential confounding factors that may affect SUV 

measurements, such as differences in blood flow or injection dose. In addition, 

by applying a population-averaged input function, the duration of the dynamic 

imaging can be significantly reduced, which can increase patient throughput 

(24).  

 

T1 and T2 mapping are advanced CMR techniques that may play a significant 

role in the assessment of cardiac sarcoidosis, especially when combined with 

LGE imaging. These mapping techniques provide quantitative information about 

tissue characteristics and can offer valuable insights into the extent and nature 

of myocardial involvement in cardiac sarcoidosis (25). T1 mapping measures 

the longitudinal relaxation time of protons in the myocardium. In the context of 

cardiac sarcoidosis, it provides quantitative information about tissue 

composition, helping to identify areas of fibrosis (26). This distinction is crucial 
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for understanding the heterogeneity of myocardial involvement in cardiac 

sarcoidosis. T1 mapping has the potential to detect pathological changes in the 

myocardium even before the appearance of visible structural alterations on 

conventional imaging. This early detection can contribute to timely intervention 

and management. T2 mapping is sensitive to changes in tissue water content, 

making it particularly useful for detecting oedema associated with active 

inflammation. In cardiac sarcoidosis, areas of oedema may indicate ongoing 

inflammatory processes. Combining T2 mapping with LGE imaging provides a 

comprehensive assessment of cardiac sarcoidosis. While LGE highlights areas 

of irreversible fibrosis, T2 mapping identifies regions with reversible 

inflammation, offering a more complete understanding of the disease state. In 

addition, T2 mapping, in conjunction with LGE, aids in differentiating between 

active and chronic lesions. Active lesions with inflammation may exhibit 

increased T2 values, while chronic lesions with fibrosis may show LGE without 

increased T2 (27, 28). However, it exhibits constrained sensitivity in identifying 

myocardial inflammation in individuals with CS and displays a restricted 

correlation with [18F]FDG PET imaging. Extracellular volume mapping, which 

quantifies the fraction of extracellular volume (potentially elevated due to scar or 

oedema), requires further validation for its utility in detecting CS, particularly in 

patients without LGE (29). The integration of radiomic analysis using T1/T2 

mapping and LGE CMR images has the potential to offer a comprehensive 

perspective on CS assessment. This integration may even present an 

opportunity to reduce reliance on PET imaging, thereby mitigating the 

associated risks of radiation exposure. This is particularly beneficial for 

individuals requiring repeat examinations. 
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6.4 Conclusion 

In conclusion, the thesis advanced the diagnostic methodologies for CS and 

related myocardial inflammation. The incorporation of radiomic features from 

both PET and CMR, along with the exploration of various classifiers, provides a 

comprehensive perspective not presented previously for CS patients.  
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Thesis Addendum 

This addendum provides supplementary information concerning the published 

chapters (3, 4, and 5): 

 

• The ethical approval for all studies in this thesis (Chapter 3, 4 and 5) has 

been granted by the School of Medicine Research Ethics Committee 

(Reference number: MREC 20-010). 

 

• An explanation of segmentation A and B in Chapter 3 can be shown below: 
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• In all studies (Chapter 3, 4 and 5), the machine learning classifiers utilised default parameters as described in scikit-learn, version 

0.23.2 (1). 

ML Classifier Description  Parameters 

Logistic Regression Models the binary response through 
representing log odds as a linear 
combination of one or multiple 
independent variables (2) 

(penalty=’l2’, *, dual=False, tol=0.0001, C=1.0, 
fit_intercept=True, intercept_scaling=1, 
class_weight=None, random_state=None, 
solver=’lbfgs’, max_iter=100, multi_class=’auto’, 
verbose=0, warm_start=False, n_jobs=None, 
l1_ratio=None)  

Support Vector Machine Finding the optimal hyperplane that 
maximises the margin between different 
classes in the transformed feature space 
(3) 

(*, C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, 
coef0=0.0, shrinking=True, probability=True, 
tol=0.001, cache_size=200, class_weight=None, 
verbose=False, max_iter=-1, 
decision_function_shape=’ovr’, break_ties=False, 
random_state=None)  

Decision Tree Splitting the data into subsets based on 
the value of input features, creating a 
tree-like model of decisions (4) 

(*, criterion=’gini’, splitter=’best’, max_depth=None, 
min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, 
ran- dom_state=None, max_leaf_nodes=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, class_weight=None, 
presort=’deprecated’, ccp_alpha=0.0)  

Random Forest Constructing multiple decision trees 
during training and outputting the class 
that is the mode of the classes (for 
classification) of the individual trees (5) 

(n_estimators=100, *, criterion=’gini’, 
max_depth=None, min_samples_split=2, 
min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
max_features=’auto’, max_leaf_nodes=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, bootstrap=True, 
oob_score=False, n_jobs=None, random_state=None, 
verbose=0, warm_start=False, class_weight=None, 
ccp_alpha=0.0, max_samples=None)  
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Gaussian Process Classifier Uses a kernel function to define the 
similarity between points and provides 
probabilistic predictions, offering both 
mean values and uncertainties (6) 

(kernel=kernel, *, optimizer=’fmin_l_bfgs_b’, 
n_restarts_optimizer=0, max_iter_predict=100, 
warm_start=False, copy_X_train=True, 
random_state=None, multi_class=’one_vs_rest’, 
n_jobs=None)  

Stochastic Gradient Descent Using the stochastic gradient descent 
optimisation method, this approach 
updates the model parameters 
incrementally for each training example 
(7) 

(loss=’hinge’, *, penalty=’l2’, alpha=0.0001, 
l1_ratio=0.15, fit_intercept=True, max_iter=1000, 
tol=0.001, shuffle=True, verbose=0, epsilon=0.1, 
n_jobs=None, random_state=None, 
learning_rate=’optimal’, eta0=0.0, power_t=0.5, 
early_stopping=False, validation_fraction=0.1, 
n_iter_no_change=5, class_weight=None, 
warm_start=False, average=False)  

Perceptron Classifier Models the relationship between input 
features and a binary outcome using a 
single-layer neural network by adjusting 
weights iteratively based on misclassified 
examples to find a hyperplane that 
separates the two classes (8) 

(*, penalty=None, alpha=0.0001, fit_intercept=True, 
max_iter=1000, tol=0.001, shuffle=True, verbose=0, 
eta0=1.0, n_jobs=None, random_state=0, 
early_stopping=False, validation_fraction=0.1, 
n_iter_no_change=5, class_weight=None, 
warm_start=False)  

Passive Aggressive Classifier Making updates only when a prediction 
error occurs (aggressive) and otherwise 
leaves the model unchanged (passive) 
(9) 

(*, C=1.0, fit_intercept=True, max_iter=1000, 
tol=0.001, early_stopping=False, 
validation_fraction=0.1, n_iter_no_change=5, 
shuffle=True, verbose=0, loss=’hinge’, n_jobs=None, 
random_state=None, warm_start=False, 
class_weight=None, average=False)  

Neural Network Classifier Inspired by the structure and function of 
the human brain. It consists of 
interconnected layers of nodes (neurons) 
that work together to classify input data. 
Each neuron receives input, processes it 
using an activation function, and passes 
the result to the next layer (10) 

(hidden_layer_sizes=(100, ), activation=’relu’, *, 
solver=’adam’, alpha=0.0001, batch_size=’auto’, 
learning_rate=’constant’, learning_rate_init=0.001, 
power_t=0.5, max_iter=200, shuffle=True, 
random_state=None, tol=0.0001, verbose=False, 
warm_start=False, momentum=0.9, 
nesterovs_momentum=True, early_stopping=False, 
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, 
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epsilon=1e-08, n_iter_no_change=10, 
max_fun=15000)  

K-neighbours Classifier Classifing a data point based on the 
majority class among its 'K' nearest 
neighbours. The value of 'K' is a critical 
parameter that determines the number of 
neighbours to consider (10) 

(n_neighbors=5, *, weights=’uniform’, 
algorithm=’auto’, leaf_size=30, p=2, 
metric=’minkowski’, metric_params=None, 
n_jobs=None, **kwargs)  
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