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Abstract

Modelling of audio data through deep learning provides a means of creating novel
sounds, processes, ideas and tools for musical creativity, yet its actual usefulness is rela-
tively underexplored. Only a handful of researcher-practitioners are using AI models in
their musical works, and artistic research into applications of deep learning modelling to
instrumental practice and improvisation currently occupies an even smaller niche.

The research presented in this thesis and accompanying portfolio is an examination of
potential creative applications of statistical modelling of audio data, through deep learning
processes, to instrumental music practice; these processes are classification of a live input,
generation of raw audio samples and sequential prediction of pitch. The goal of this work
is, through the development of processes and creation of musical works, to generate knowl-
edge concerning the practicality of modelling the systematic aspects of an instrumental
improvised practice, the creative usefulness of such models to the practitioner, and the
musical and technical ‘behaviours’ of specific classes of deep learning architecture with
respect to the data on which the models are trained.

These concerns are addressed through a practice-based research methodology consisting
of multiple steps: recording original audio datasets; pre-processing audio data as appro-
priate to model architecture and task; training statistical models; artistic experimentation
and development of software, resulting in novel processes for musical creativity; and cre-
ation of artistic outputs, resulting in a portfolio of recordings and notated scores.

This project finds that deep learning can play useful roles in both technical and creative
processes: classification can not only form the basis of interactive systems for improvisation
but also be suggestive of new compositional structures; outputs of generative models of
raw audio not only return valuable information about the training data but also generate
useful source material for technical instrumental practice, improvisation and composition;
notated outputs from symbolic-domain predictive models can also be richly suggestive of
compositional ideas and structures for electroacoustic improvisation. This rich diversity of
applications found posits AI as creative assistant, teacher and as deeply personalised tool
for the instrumental practitioner.

When considering the utility of this work to others, there will be specific variances not
covered by this project: appropriate choices of data representations, data-preprocessing
techniques, model architectures and their training parameters will vary according to task,
instrument, genre and taste, as will of course the character of others’ creative outputs.
However, the abundance of affordances and future directions this work uncovers gives con-
fidence of its utility for other instrumental practitioners and researchers.

Given the pace of ongoing development of deep learning methods for modelling of
audio and their still-limited adoption by creative practitioners, I hope that this thesis
will motivate further explorations of the unique creative potential of these technologies by
instrumental practitioners, improvisers and practice-based researchers in the wider field of
AI for musical creativity.
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Chapter 1

Introduction

1.1 Overview

The work presented in this thesis concerns computational modelling of systematic mu-
sical processes for creative purposes. It presents multiple approaches to the creative ap-
plication of statistical models of original audio data in the areas of instrumental practice,
improvisation and composition for improvisation. Examples of such applications are pre-
sented in a portfolio of musical works, accompanied by a written commentary drawing out
the research elements embedded in the portfolio and giving insights about the technical
and creative processes.

Recent advancements in the computer science sub-field of deep learning have resulted
in and continue to generate a plethora of new approaches to and architectures for creating
statistical models of data. Those featured in this work, which were among the most popu-
lar model architectures at the outset of this project, include convolutional neural networks
(CNNs), typically used for discriminative tasks such as image classification1, generative
adversarial networks (GANs), in which a discriminative model and a mirror-image gener-
ator model are trained in parallel most often to perform a range of image-domain tasks
including synthesis, style transfer and super-resolution2, and recurrent neural networks
(RNNs), commonly used for predictive modelling of sequential data3.

Through combination with music information retrieval technologies, adaptations of
these innovations to the audio domain offer music practitioners the ability to model large
bodies of recorded audio, opening up new creative possibilities. The field of AI-driven
practice-based music research is still small and emerging but is growing, with contemporary
classical composers and practitioners of electronic and pop music in particular beginning
to use AI-based tools in their work. Research into applications of deep neural networks
to improvisation and instrumental practice is, however, harder to find, with the majority
of current practitioners tending to train their models on already-completed musical works.
Example practitioners who exhibit this predominant tendency are composers Rob Laid-
low and Emily Howard: the former based new compositional ideas in his work ‘Silicon’
on samples generated from SampleRNN models of BBC Philharmonic Radio Broadcasts,
while the latter trained models of recordings of their own string quartets to generate new

1Rawat, Waseem and Zenghui Wang, ‘Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review’, Neural Computation 29, Issue:9, MIT Press, Sep, 2017, 2352-2449.

2Creswell, Antonia, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta and Anil A.
Bharath, ‘Generative Adversarial Networks: An Overview’, IEEE Signal Processing Magazine 35, Issue:1,
IEEE, Jan 2018, 53-65.

3Lipton, Zachary C., John Berkowitz and Charles Elkan, ‘A Critical Review of Recurrent Neural Net-
works for Sequence Learning’, unpublished paper, May 2015, arXiv:1506.00019.
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compositional ideas4 5; another is Dadabots, whose ongoing live streams of AI-generated
death metal and free jazz are effectively concatenated outputs of SampleRNN models of
recordings by death metal band Archspire6 and John Coltrane and Rashid Ali’s seminal
free jazz album ‘Interstellar Space’7 respectively. It is with this somewhat surprising gap
in mind that the work presented here aims to address the following research questions:

• What are the practical implications of using recordings of systematic instrumental
practice on the saxophone as training data for deep learning models for applications
in creative music practice?

• To what creative ends can these models be applied in the context of improvisation,
instrumental practice and composition for improvisation? To what extent do they
contribute to these applications and in what specific ways?

• What are the qualities and behaviours of specific model architectures in relation to
the data on which they are trained?

1.2 Motivation

The initial impulse for this project was a curiosity about relationships between system-
atic processes and creative outputs within my practice. Before my acquaintance with deep
learning, this simply meant the relationships between the systems of musical information I
was practising privately and the content of my improvisations in common playing situations
such as rehearsals, performances and recordings. As an obsessive practiser of musical sys-
tems I was bemused that what I worked on privately and what I played when improvising
either unaccompanied or in group settings seemed only tenuously correlated. Additionally
inspired by Douglas Hofstadter’s notion of a system acquiring a self 8, I wanted to investi-
gate this apparent disconnect further.

This initial idea is propogated throughout the work presented here. It is especially
relevant to the core methodology of recording audio datasets of instrumental practice
sessions, training deep learning models of them and observing what kind of selfhood they
acquire. This idea of throwing ideas or concepts I find initially attractive or interesting
into the ‘black box’ of deep learning (an over-used term to describe the - overstated, I
now realise - inaccessibility of deep learning models to human inspection) and fine-tuning
the result for creative ends strongly resonates with how I approached my improvisational
practice at the outset of this research: practicing material I’m attracted to, throwing it
into the black box and finding ways of working with what comes out.

1.3 Aims and Objectives

The aims of this work are:

• To explore and generate knowledge of the creative applications of various classes of
deep learning architecture to instrumental practice, solo- and computer-augmented
improvisation and composition for improvisation;

4Emily Howard, ‘shield for String Quartet’, musical score, 2022,
https://www.editionpeters.com/product/shield/ep73579.

5Robert Laidlow, ‘Robert Laidlow (2022): Silicon’, YouTube video, posted by ‘RNCM PRiSM’, Mar 18
2023, https://youtu.be/3xmpywK0ACA.

6Carr, C.J. and Zack Zukowski, ‘RELENTLESS DOPPELGANGER’, YouTube video, posted by Dad-
abots, Sep 4, 2019, https://www.youtube.com/live/MwtVkPKx3RA?feature=share.

7Carr, C.J. and Zack Zukowski, ‘OUTERHELIOS - Free Jazz - neural generated - Coltrane’, YouTube
video, posted by Dadabots, Jan 28, 2020, https://youtu.be/C0dOin79Hm0.

8Hofstadter, Douglas, Goedel, Escher, Bach: An Eternal Golden Braid (Twentieth Anniversary Edi-
tion), Basic Books, 1999, 8
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• To explore and generate knowledge of the ways in which machine learning models can
augment and influence approaches to improvisation and composing for improvisation;

• To develop a portfolio of machine learning-augmented musical works for solo saxo-
phone that reflect these explorations;

• To develop and signpost processes and musical works that other researchers and mu-
sicians will find useful for engagement with AI for musical exploration and creation.

The objectives through which these aims are to be achieved are as follows:

• To create a substantial original repository of audio data comprised of recordings of
instrumental practice sessions;

• To develop understanding of and proficiency in the computational aspects of this
work such that a meaningful, in-depth engagement with deep learning processes can
be made;

• To develop machine learning pipelines for pre-processing and training statistical mod-
els of the datasets;

• To develop additional processes for working with the trained models’ outputs, such
as pitch-based onset detection, automated notation and real-time interactive loops;

• To make code and data for these processes available for others to use;

• To investigate creative applications of the trained models through a period of artistic
experimentation;

• To create audio recordings of musical works that reflect these experiments, with
accompanying notated scores where appropriate;

• To document and reflect on these processes and the insights generated through a
written commentary.

The creative outputs are intended to be a significant extension of my existing practice.
It is my hope that other researcher-practitioners, musicians and developers working in
or seeking to work in the field of machine learning for musical creativity will find these
outputs, along with the the datasets and programs generated through the research process,
useful. These outputs represent my first recorded works of solo improvisation and my first
recorded works made in collaboration with computers.

1.4 Methodology

The research methodology through which the work in this thesis and portfolio was car-
ried out is described in this section. The steps described from 1.4.2 (‘Data Pre-Processing’)
onwards recur in the structure of each of the core research chapters.

1.4.1 Dataset Creation

At this early stage of the project, it was necessary to create a repository of audio
datasets on which various AI models could be trained in order to carry out this work.
Doing so entailed a period of recording known material derived from various aspects of
my instrumental practice, from purely systematic technical exercises to broadly defined
approaches to improvisation. The process and outputs of this phase of the project are
described in detail in chapter 3 (‘Datasets’).
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1.4.2 Data Pre-Processing

Data pre-processing varies according to which model architecture the data transforma-
tion was intended for, but can be summarised as experimentation with data representations
of audio and with techniques for data augmentation. Examples of audio representations
used in this thesis are:

• Time-frequency spectrograms, in which changes over time in an audio signal’s fre-
quency components are represented in a 2-dimensional image. These are the primary
data representation used in the work presented in Chapter 4;

• Raw audio waveforms, a high-resolution format comprising discreet amplitude mea-
surements over time. This data representation is used throughout the work presented
in Chapter 5;

• Symbolic representation of pitch, a reductive format in which only notes considered to
be melodically relevant are represented numerically then converted to strings (com-
putational representation of text). This data representation is used and discussed
further in Chapter 6.

Data augmentation techniques are common machine learning practice for artifically
inflating the size of a dataset while still adding ‘unseen’ data to the training set; this is
appropriate when wishing to perform deep learning modelling of relatively small datasets9.
Common techniques in other domains include rotation of image data10 and the use of
synonyms in text data11. Augmentations used in this thesis were typically done at an
early stage on the raw data and include the following:

• Pitch shifting (raising and/or lowering the pitch of the data by a semitone/half-step);

• Time stretching (slightly speeding up and/or slowing down the data without changing
the pitch);

• Inverting the waveform (flipping the polarity of the waveform’s samples, creating a
new data representation that is perceptually indistinguishable from the original; this
technique is only suitable when modelling raw audio data).

These transformed copies of the original data are then recombined with it, enlarging
the dataset considerably. Further details on data augmentations are discussed in chapters
4 and 5.

1.4.3 Training and Testing the Models

Model training was an experimental process in which training statistics such as loss
calculations - measures of the distance between model performance and the ground-truth
data - were monitored to ensure that the data was being succesfully modelled to some
degree. Assuming the loss calculations were indicative of this, judgement of a training
run’s success was determined through its real-world usefulness. What this looked like
in practice varied according to task and model architecture: for the classification tasks
described in Chapter 3, ‘model performance’ constitutes whether the trained model can
reliably classify my live input correctly; for raw audio generation and melodic prediction
tasks in Chapters 5 and 6, subjective evaluation of the outputs’ quality and/or degree of

9Taylor, Luke and Geoff Nitchke, ‘Improving Deep Learning with Generic Data Augmentation’, IEEE
Symposium Series on Computational Intelligence (SSCI), IEEE, 2018.

10Shorten, Connor and Taghi M. Khoshgoftaar, ‘A survey on Image Data Augmentation for Deep Learn-
ing’, Journal of Big Data 6, 60, SpringerOpen, 2019.

11Liu, Pei, Xuemin Wang, Chao Xiang and Weiye Meng, ‘A Survey of Text Data Augmentation’, 2020
International Conference on Computer Communication and Network Security (CCNS), (IEEE, Aug 2020).
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novelty and interest seemed the best approach. This approach is what I deemed most
appropriate for the creative context: while I felt loss statistics were well worth tracking in
all training experiments, ‘real-world performance’ hinged more on questions such as ‘is it
good enough to begin to make creative work with?’ and ‘do these outputs interest me?’
rather than empirical measures of model performance.

1.4.4 Artistic Experimentation and Software Development

This phase of the research involved concurrent processes of idea-forming, developing
code scripts to help realise these ideas, and periods of play through which the ideas would
be realised. For ideas that were persevered with and not abandoned, typical research out-
puts from this phase were short recordings that served as indicators of creative potential
and prototypes of later portfolio pieces. There was considerable trial-and-error at this
stage of the research process: if the creative application of a trained model through devel-
opment of these computer programs and artistic experiments did not seem to be as fruitful
as hoped, then alternative applications would be explored.

As will be explored in Chapters 4, 5 and 6, development of additional scripts beyond
those required to simply run inference on a trained model proved central to the artistic
process at this stage. Since inferring on a trained statistical model by itself was not
sufficient for useful creative work, it proved necessary to create additional structures around
the models before an idea could be realised musically. This created an iterative development
process in which an idea would be developed and tested cyclically, sometimes looping back
to the earlier ‘idea’ phase if abandoned.

1.4.5 Creation of Artistic Outputs

In this phase of the research, processes and experiments developed in the previous
phase were consolidated into more substantial creative outputs. Here, the process comes
full circle back to a music-making setup, augmented by the technologies developed in
previous stages. Processes of creative consolidation at this stage include what to me are
long-familiar ways of working such as the creation of notated scores and using these scores
as a basis for instrumental improvisation, as seen in the work in Chapters 5 and 6; more
newly-developed processes are recording in real-time co-creation with interactive computer
programs (such as in ‘SoloSoloDuo’ in Chapter 4 and ‘b.io’ in Chapter 5) and live digital
audio effects processing (as heard in the outputs of Chapter 6).

1.5 Contributions

The main contributions of this thesis are:

• A set of original, publicly available audio datasets containing recordings of my in-
strumental practice;

• A set of publicly-available code bases for recreating the deep learning models and
engaging with the processes developed throughtout this thesis;

• A range of strategies for applying AI to instrumental practice, improvisation and
composition for improvisation, described in Chapters 4, 5 and 6 of this written com-
mentary;

• A portfolio of original recordings and scores created using outputs of deep learning
models trained on the aforementioned datasets and employing the aforementioned
strategies;
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• Broader reflections on the applications of AI for musical creativity arising from this
work, presented through the written commentary.

In the following sections I provide detail on the contents of each of the key contributions
of datasets, portfolio and written commentary.

1.5.1 Datasets

This section is an overview of the audio datasets I created in order to carry out this
work; a more in-depth view is provided in Chapter 3.

• ‘Exercises’ consists of two recorded datasets of me practicing exercises on tenor
saxophone.

– ‘Tone Rows’, contains 12-tone exercises derived from the ‘Tone Rows’ section
of Slonimsky’s Thesaurus of Scales and Melodic Patterns12.

– ‘Scales and Arpeggios’ is recordings of me practicing various technical scale
and arpeggio exercises.

• ‘Registers’ consists of three sub-datasets of recorded exercises, improvised varia-
tions on these exercises and outright improvisation confined to specific registers of
the tenor saxophone. These are named as ‘Lower Register’, ‘Middle Register’
and ‘Upper Register’.

• The ‘Improvisation’ datasets are recordings of me improvising long-form solos.

– ‘Melodic Improvisation’ contains improvisation with a conventional instru-
ment technique and a melodic-rhythmic focus.

– ‘Timbral Improvisation’ dataset is based on extended techniques with a
particular focus on the use of multiphonics.

• The ‘G Major’ dataset contains improvisation and loosely defined exercises in the
key of concert G major. Recorded in response to a collaborative project towards an
entry to the 2021 AI Song Contest, it is the only dataset in this project with a fixed
tempo and tonal center.

A selection of these datasets is publicly available to download and re-use:
https://huggingface.co/datasets/markhanslip/markhanslip_phd_saxophone_data.

1.5.2 Code

• The folder ‘Ch4_Classification_Code’ contains the code used in Chapter 4 to
create the portfolio piece ‘SoloSoloDuo’.

– ‘CNN.py’ contains code for training and running inference on a convolutional
neural network architecture for 64x64 pixel-sized images;

– ‘DataProcessing.py’ contains code for pre-processing audio data in spectro-
grams suitable for discriminative modelling with the convolutional neural net-
works in ‘CNN.py’;

– ‘PitchExtraction.py’ and ‘Timbral Extraction.py’ contain code for logging
machine listening data for improved interactions;

– ‘train.py’ contains the necessary code for training a convolutional neural net-
work on the spectrogram data outputted by calling the ‘DataProcessing.py’
class;

12Slonismky, Nicolas, ‘Twelve-Tone Patterns’, Thesaurus of Scales and Melodic Patterns, Scribner, 1947,
173-175
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– ‘interact.py’ allows the user to interact on-the-fly with the trained model.

The above processes formed the basis of version 2 of portfolio piece ‘SoloSoloDuo’,
described below and in Chapter 4.
The code is publicly available: https://github.com/markhanslip/PhD_Ch4_CNN.

• The folder ‘Ch5_SampleRNN_Code contains a Colab notebook containing code
blocks for the following processes:

– Downloading datasets from the provided HuggingFace repository;

– Pre-processing and augmenting the data to make it suitable for modelling with
the SampleRNN architecture;

– Configuring and training a SampleRNN model;

– Selecting trained models from checkpoints in the training process and generating
new audio files from them.

SampleRNN models trained via the above processes formed the basis of the portfolio
pieces ‘b.io’, ‘Workshop II’, ‘Lrrning’ and ‘The Lows’ described below and in Chapter 5.
The code used to augment the data, train a SampleRNN model and generate new outputs
is publicly available, as is the code used in the interactive system for portfolio piece ‘b.io’:
https://github.com/markhanslip/PhD_Ch5_SampleRNN.

• The folder ‘Ch6_Char-RNN_Code contains a Colab notebook with code for the
following processes:

– Downloading data from the provided HuggingFace repository;

– Cloning the GitHub repo containing code for the following steps;

– Pre-processing and (optionally) augmenting the data into text format to make
it suitable for modelling with the modified Char-RNN architecture;

– Defining the modified Char-RNN architecture;

– Training a Char-RNN model;

– Predicting streams of pitches from the trained model, wrapping them in Lily-
pond code and rendering them to notation in PDF format.

The notation generated via the above processes formed the basis of the portfolio pieces
‘i prompt u’, ‘Taps’ and ‘Strange Loops’ described below and in Chapter 6. The code for
preprocessing the data to text, modelling it with the RNN and generating notation from
it is publicly available: https://github.com/markhanslip/PhD_Ch6_Char_RNN.

1.5.3 Portfolio of Creative Outputs

• ‘SoloSoloDuo’ is a structured improvisation for improviser and laptop in which
two contrasting improvised solos are segmented into a sample library. These samples
become the computer output component of an interactive duet in which sample
choice is mediated by audio classification and frequency analysis. I recorded two
versions which illustrate progression in the software development process and in my
understanding of how to navigate the interactions. An audio-visual rendering of the
first version of this piece was premiered online at AIMC 2022 in September 202213.

13Mark Hanslip, ‘SoloSoloDuo’, YouTube video, posted by ‘AI Music Creativity 2022’, Sep 20 2022,
https://youtu.be/Nin8GIIZW-4.
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• ‘b.io’ is a short interactive duet with banks of pre-generated samples generated
from SampleRNN14 models of the ‘Register’ datasets. Choice of sample playback
is informed by on-the-fly frequency analysis. An audio-visual version of this output
was premiered under the name ‘b.io’ at ISMIR 2022 in Bangalore, India in December
202215.

• ‘Duo with WaveGAN’ is a short interactive duet in which a WaveGAN16 gener-
ator trained on the ‘Melodic Improvisation’ dataset is placed in an interactive loop
and prompted for on-the-fly sample generation. Interaction and sample playback is
mediated through use of frequency analysis of both live input and generated sample.

• ‘Workshop I’ and ‘Workshop II’ are electroacoustic compositions that represent
the use of samples generated from WaveGAN (piece I) and SampleRNN (piece II)
models of the ‘Exercises’ datasets as material for technical practice. Recordings of
the looped samples and of myself practising along with them are layered on top of
sine tones, the frequencies of which are determined by analysis of the samples. Un-
derpinning each piece is an environmental recording of a weaving workshop sampled
from the publicly-available BBC Sound Effects Archive17.

• ‘Lrrning’ is a composition intended for use as a springboard for solo improvisa-
tion. The melodies, played in a set sequence and with repetitions in the manner of
many Steve Lacy compositions, are notated from curated samples generated from a
SampleRNN model of the ‘Tone Rows’ dataset.

• ‘The Lows’ is a composition for solo improvisation focused on the lower register of
the tenor saxophone. It’s melodies are notated from curated samples generated from
a SampleRNN model of the ‘Lower Register’ dataset.

• ‘Fake Gander’ and ‘Gander’ are effectively the same composition, made of curated
samples generated from a WaveGAN model trained on both ‘Exercises’ datasets.
‘Fake Gander’ includes an ‘improvisation’ generated from the WaveGAN model,
whereas ‘Gander’ is an acoustic performance in which the composition serves as
a framing for solo improvisation.

• ‘Major Piece’ is a composition made up of curated samples generated from a Wave-
GAN model of the ‘G Major’ dataset. The performance features a looping environ-
ment written in SuperCollider. The improvised section takes place over a loop of the
main melody; looping is also used in the out-head in which the three main phrases
are dubbed on top of each other.

• ‘Gandering 1’ is an audiovisual piece consisting of layered samples generated from
WaveGAN models of externally-sourced audio datasets of improvisation. The only
output in the portfolio to be based on other musicians’ data, it warrants inclusion
both for the additional insights generated to model architecture behaviour when
training on recordings of improvisation and for the additional example of Wave-
GAN’s affordance as a tool for sample-based music creation. The piece was part of

14Mehri, Soroush, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron
Courville and Yoshua Bengio. ‘SampleRNN: An Unconditional End-to-End Neural Audio Generation
Model’, (conference paper, ICLR 2017: Fifth International Conference on Learning Representations, Palais
des Congrès Neptune, Toulon, France, April 24-26, 2017).

15Mark Hanslip, ‘b.io’, webpage, Dec 6 2022, https://ismir2022program.ismir.net/music_346.html
16Donahue, Chris, Julian McAuley and Miller Puckette. ‘Adversarial Audio Synthesis‘ (conference pa-

per), ICLR 2019: Seventh International Conference on Learning Representations, Ernest N. Morial Con-
vention Center, New Orleans, May 6-9, 2019.

17https://sound-effects.bbcrewind.co.uk/
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a Manchester Jazz Festival 2021 Digital Originals commission and premiered online
in early 2022 on the festival’s digital media channels18.

• ‘i prompt u’ is a composition created from curated outputs of a predictive RNN
trained on a composite text dataset created through frequency and onset analysis
of all datasets (except ‘Timbral Improvisation’). The model is trained using an
implementation of a character-level RNN19 that I adapted for numeric strings and
further adapted for automated notation of its outputs. Melodic phrases are ordered
so as to progress from clearly implied tonal centers to atonality. Granular delay and
pitchshift effects are applied, with the type and degree of effect varied to reflect the
tonal progression of the phrases.

• ‘Taps’, another composition created from Char-RNN outputs, is an atonal piece
in which staccato melodies are interspersed with short, improvised sounds; these
sounds are explicitly derived from the final, repeated notes of each composed phrase.
A multi-tap delay effect is used throughout, with transitions from composed melody
to improvisation additionally delineated by changes in the effect parameters.

• ‘Strange Loops’ is another composition for improvisation created from curated
Char-RNN outputs. The outputs were chosen for their shared implied tonal center
of E harmonic major. The piece employs a pedal-based environment for looping and
granulation written in SuperCollider.

1.5.4 Written Commentary

The written contributions by chapter are as follows:

• Chapter 3 (Datasets) is a discussion of the dataset contents and their relationship to
my practice.

• Chapter 4 (Audio Classification in Practice) discusses the process of training an
image-domain CNN adapted to audio to computationally model my perception of
my instrumental approaches and embedding of the trained model in a real-time
interactive loop. The resulting program’s creative application in the form of two
iterations of ‘SoloSoloDuo’, a structured improvisation for saxophone and computer
is presented.

• Chapter 5 (Generative Modelling of Raw Audio in Practice) describes the use of
WaveGAN and SampleRNN architectures for generative modelling of my datasets in
raw audio form. This prompts discussion of the generated samples’ characteristics
in relation to their respective architectures and the ground truth data, leading to as-
sumptions of model architecture ‘behaviours’. Their creative application to real-time
interactive duos (in the form of ‘Duo I’ and ‘Duo II’) is presented and behaviours of
each model architectures in this context and influence of the samples on my playing
are discussed. My experience of using generated samples as material for technical
practice is discussed and presented creatively in the form of ‘Workshop’, an elec-
troacoustic composition. Applications of SampleRNN and WaveGAN outputs to
compositions for solo improvisation in the form of ‘Lrnning’, ‘The Lows’, ‘Gander’
and ‘Major Piece’ are described and discussed.

• Chapter 6 (Symbolic-Domain Melodic Prediction in Practice) presents an exploration
of the adaptation of an early deep learning model architecture for text prediction as a

18Mark Hanslip, ‘Gandering 1’, YouTube video, posted by ‘Manchester Jazz Festival’, Jan 18 2022,
https://youtu.be/5dIxUWNGndc.

19Andrej Karpathy, ‘The Unreasonable Effectiveness of Recurrent Neural Networks’, blog post, Andrej
Karpathy Blog, May 21, 2015, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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means to generated notated pitches, which become the basis for three semi-structured
electroacoustic improvisations. A novel, fully automated process is presented in
which rhythmically salient pitches are extracted from a composite dataset made up
of several of those presented in Chapter 3. A character-level recurrent neural network
is trained, output predictions are generated by prompting the trained model, and
these outputs are piped to notation software. Creative applications of this process
in which the raw notated outputs are hand-curated and used as the basis for three
works for solo improviser, ‘i prompt u’, ‘Strange Loops’ and ‘Taps’, are presented
and discussed.

• Chapter 7 (Conclusions) summarises the work presented and its key themes and
outline some steps for further development.

1.6 Conclusion

In this chapter I outlined the rationale for this research, presented the core research
questions this work seeks to answer and described the motivations that led to seeking to
carry out this research in the first instance. I enumerated the aims of this research and the
objectives to be fulfilled in order to meet the proposed aims, and described the methodology
through which the research was carried out. I then outlined the core contributions to
existing knowledge this thesis and portfolio aims to make. The following chapter provides
a more comprehensive view of the wider context in which this project takes place.



Chapter 2

Background

2.1 Introduction

The following sections describe the musical context and academic research that this
project builds upon. First, I discuss the history of solo improvisation on the tenor sax-
ophone to provide context for the material presented in the datasets. I discuss specific
practitioners of solo improvisation on tenor saxophone and of solo electro-acoustic saxo-
phone practice, and their relevance to the creative outputs in the portfolio. This leads
to a discussion of innovations in the computer science field of deep learning and of the
specific model architectures used to train the statistical models as part of this research. I
then conclude this chapter with a view of practitioner-researchers currently working in the
emerging field of AI for musical creativity in order to better locate the portfolio outputs
in their research context.

2.2 Musical Context

In this section I will first describe the historicalcontext and history of solo improvisa-
tion on the tenor saxophone to provide context for the datasets of instrumental practice
presented in Chapter 3. I discuss several key practitioners of solo improvisation on tenor
saxophone and the influence they bring to bear on both the datasets and some of the
creative portfolio outputs. I then offer a look at saxophonists with a solo electro-acoustic
practice to provide further context for electro-acoustic pieces in the portfolio outputs, be-
fore concluding this section with a theory of ideas generation in solo improvisation; this
theory provides additional context for material contained in the more improvisation-focused
datasets and several of the portfolio outputs.

2.2.1 Solo Improvisation and the Tenor Saxophone

Of the multiple recordings of solo saxophone improvisation throughout the histories
of jazz, free jazz and improvised musics, the majority of those considered seminal were
recorded on members of the saxophone family besides the tenor. These include influential
recordings such as Evan Parker’s ‘Monoceros’1 (on soprano saxophone), Anthony Brax-
ton’s ‘For Alto’2 (on alto saxophone), John Zorn’s ‘The Classic Guide to Strategy’3 (on
mostly dismantled clarinet and alto saxophone parts and objects), Hamiet Bluiett, Jr.’s
‘Birthright: A Solo Blues Concert’4 (on baritone saxophone) and a number of Steve Lacy’s
solo soprano saxophone albums. Joe McPhee’s ‘Tenor’, generally considered to be a his-
torically important recording of solo saxophone improvisation, is a rare example of such

1Evan Parker, Monoceros, Incus Records, 1978, LP (since reissued).
2Anthony Braxton, For Alto, Delmark Records, 1971, LP.
3John Zorn, The Classic Guide to Strategy: VOLUMES ONE AND TWO, Tzadik Records, 1996, CD.
4Hamiet Bluiett, Jr., Birthright: A Solo Blues Concert, India Navigation, 1977, LP.
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an album recorded on tenor saxophone.

This paucity of the instrument’s representation in solo improvisation is surprising con-
sidering its long-term ubiquity in jazz: the main instrument of choice for Lester Young,
Chu Berry, Paul Gonsalves, John Coltrane, Sonny Rollins, John Gilmore, Warne Marsh,
Joe Henderson and so many others, it continues to be a prominent instrument in jazz and
improvised music today. It is also interesting to note that what is generally acknowledged
to be the first recording of unaccompanied improvisation on the saxophone was Coleman
Hawkins’ ‘Picasso’5, on tenor saxophone.

The history of improvised music is still being written though, and many recordings of
unaccompanied improvisation on tenor saxophone have been made in more recent years.
These include David Liebman’s ‘Colors’6, an explicitly emotional, expressionist outing, and
Bill McHenry’s ‘Solo’7, a more contained affair focused on strict motivic development of
compositional themes. Some of those that bear specifically on my practice and the work
in this project include the first half of John Butcher’s ‘Bell Trove Spools’8 (he switches to
soprano for the second half), Evan Parker’s ‘Chicago Solo’9 and Ellery Eskelin’s ‘Solo Live
at Snug’s’10, as well as their practices in general.

John Butcher’s ‘Bell Trove Spools’ exemplifies the use of multiphonics in solo saxo-
phone improvisation. Multiphonics are generated by non-standard combinations of keys
and concurrent manipulations of the breath and embouchure. This mode of sound produc-
tion is one of the characteristic features of the ‘Timbral Improvisation’ dataset discussed
in Chapter 3. A deeply embedded part of my practice, having been worked on and used
in my performances and recordings since the mid-2000s, it also appears in many of the
creative outputs in this work, particularly ‘SoloSoloDuo’ in Chapter 4, ‘Gander’ and ‘The
Lows’ in Chapter 5 and ‘Taps’ and ‘Strange Loops’ in Chapter 6.

Evan Parker’s ‘Chicago Solo’, which unusually for him consists solely of solo improvisa-
tions on tenor saxophone, contains features that I have adapted to my own practice. This
includes the use of multiphonics as described above but also the use of repeated circular
phrases incorporating overtones - tones of the harmonic series produced by effectively over-
blowing a fundamental pitch. This technique can be heard in the ‘Timbral Improvisation’
dataset. Evan’s personal practice of sections of the Slonimsky Thesaurus of Scales and
Melodic Patterns11 has also influenced this work: the contents of the ‘Tone Rows’ dataset
are adapted from the ‘Tone Rows’ section of the Slonimsky book12.

Ellery Eskelin’s ‘Solo Live at Snugs’ showcases a melody-centred approach to solo im-
provisation that informs my approach to creating the ‘Melodic Improvisation’ dataset
presented in Chapter 3. Eskelin’s near-total eschewal of extended techniques such as mul-
tiphonics and over-blowing on this record (which he was previously well-known as an ex-
ponent of) provides a strong example of how one can restrict oneself to specific aspects of
ones vocabulary without sacrificing musical interest. His successful merging of jazz-based
language with more abstract intervallic constructions have influenced my own efforts to do
the same.

5Coleman Hawkins, ‘Picasso’, The Verve Story - Disc One: 1944-53, Verve Records, 1994, CD.
6David Liebman, Colors, Hatology, 2003, CD.
7Bill McHenry, Solo, Underpool, 2018, CD.
8John Butcher, Bell Trove Spools, Northern Spy, 2012, CD and Digital,

https://johnbutcher.bandcamp.com/album/bell-trove-spools-2
9Evan Parker, Chicago Solo, Okkadisk, 1997, CD.

10Ellery Eskelin, Solo Live at Snug’s, hatOLOGY, 2015, CD.
11Evan Parker, interviewed by Frances-Marie Uitti, Contemporary Music Review 25, Issues 5-6, Oct-Dec

2006, 411-416.
12Nicolas Slonimksy, Thesaurus of Scales and Melodic Patterns.



24

2.2.2 Composition for Solo Saxophone Improvisation

These last three albums would typically be considered examples of ‘free’ improvisation,
being absent of any explicit compositional statements. By contrast, a defining feature of
Steve Lacy’s solo albums such as ‘Clinkers’13 and ‘November’14 is the use of compositions
consisting of repeated motifs as springboards for solo improvisation. Bill McHenry’s afore-
mentioned album ‘Solo’ also features the use of repetitious compositional statements, but
unlike Lacy, who departs significantly from the compositional statement as soon as it ends,
McHenry’s improvisations often consist of subtle continuations of and variations on the
pre-composed material. Lacy and McHenry’s approaches to composition for improvisation
inform my solo works ‘Lrrning’, ‘The Lows’ and ‘Gander’ in Chapter 5. Lacy’s use of inter-
vallic construction of melody in both composition and solo improvisation is also a strong
influence on these works and on the melodic aspect of my improvising, an influence that
can be heard in the above-mentioned works and also in ‘Taps’ and ‘i prompt u’ in Chapter
6.

2.2.3 Electro-acoustic Saxophone Improvisation

While these last examples pay attention to acoustic solo playing, part of the musical
context of this project is electro-acoustic saxophone improvisation. When discussing ex-
amples of electro-acoustic saxophone improvisation in practice, I find it useful to make
a distinction between saxophonists who take full responsibility for the ‘electro’ aspect of
their electro-acoustic music, and those who are collaborating with computer musicians.
This distinction matters because it seems clear that a saxophonist would make different
choices of electronic augmentation of their own sound than would a computer musician
asserting their own musical choices. Additionally, the dynamic created by playing solo is
quite distinct from the dynamic of a duo, in which two musicians with their own aesthetics
engage in a dialogue. Since the outputs of this research occupy the former dynamic, I will
start by paying attention to practitioners specifically engaged in it, before discussing some
interesting examples of the latter formation.

Examples of saxophonists combining their practice with electronics in a self-directed
manner are rare: for the quality of both instrumental improvisation and use of electronics
the work of Jorrit Dijkstra stands out, his solo electro-acoustic albums ‘30 Micro-Stems’15

and ‘Never Odd or Even’16 being exemplars of solo saxophone improvisation augmented
with electronics. His use of looping as a primary tool on several tracks of ‘30 Micro-Stems’
informs ‘Major Piece’ in Chapter 5 and ‘Strange Loops’ in Chapter 6; his use of pitch
shifting and delay on ‘Toodeledoo’ on ‘Never Odd or Even’ informed the effects used in ‘i
prompt u’ and his use of multi-tap delay effects in ‘Mind The Gaps’ on ‘30 Micro-Stems’
informed my use of the same in ‘Taps’, both in Chapter 6 also. Dijsktra’s music sounds
as though it could have been made in a modern digital environment such as Max/MSP or
SuperCollider but all of the electronic augmentation in his music is made via an analog
setup. Another example of an accomplished saxophonist expanding their practice out-
wards by adding electronic augmentation is Sam Gendel, whose recorded output is almost
exclusively electro-acoustic. His extensive use of drone-like loops on tracks ‘East LA Haze
Dream’ and ‘ZeroZero’ on his album ‘Pass If Music’ informs my use of the same on ‘Strange
Loops’ in Chapter 6.17

13Steve Lacy, Clinkers, HatHut, 1978, CD
14Steve Lacy, November, Intakt Records, 2010, CD and Digital https://steve-

lacy.bandcamp.com/album/november
15Jorrit Dijkstra, 30 Micro-Stems, TryTone Records, 2002, CD and Digital,

https://jorritdijkstra.bandcamp.com/album/30-micro-stems.
16Jorrit Dijkstra, Never Odd or Even, Driff Records, 2015, CD and Digital,

https://jorritdijkstra.bandcamp.com/album/never-odd-or-even.
17Sam Gendel, Pass If Music, Leaving Records, 2018, Cassette and Digital,
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A less well-known example is Floros Floridis’s ‘F.L.O.R.O. IV - Future Learning of
Radical Options’18. A more aggressively experimental outing than either of Dijsktra’s solo
albums, an especially interesting aspect of this work is Floridis’ use of samples of pre-
existing albums on the tracks ‘Post-traditional mood’ and ‘Stones,breaths,drops...name
it’, playbacks of which are triggered by playing long notes. This adds a poly-stylistic as-
pect to the music which is further enhanced by the clear influence of traditional Greek
music on Floridis’ playing, bringing further stylistic reference and cultural flavour to this
often resolutely abstract domain. While Floridis’ music here is much more polystylistic
and inclusive of non-saxophone-generated sounds than the works in this project’s portfolio,
his roughly equal prioritisation of instrumental improvisation and electronic augmentation
resonates with the interactive duets ‘b.io’ and ‘Duo with WaveGAN’ in Chapter 5 and
‘Strange Loops’, ‘Taps’ and ‘i prompt u’ in Chapter 6.

Moving onto saxophonists working with computer musicians, Guillaume Orti’s collab-
oration with Olivier Sens, ‘Reverse’ 19 illustrates well the distinction between an instru-
mentalist choosing their own electronic augmentations vs the choices a computer musician
might make. Here, while Sens does process Orti’s sound directly, on tracks such as ‘Miss
Ann - fragmentation’, ‘Freedom jazz dance - équivalence’ (covers of well-known jazz com-
positions by Eric Dolphy20 and Eddie Harris21, respectively) and ‘Drift - dream drum’,
he also functions almost as a drummmer in his use of drum-like (possibly drum-derived)
timbres and rhythmic sequences; his software is designed such that he is able to be signif-
icantly interactive from this aesthetic position.

Cecilia Lopez and Ingrid Laubrock’s ‘Maromas’22 is a more recent electro-acoustic
collaboration between an improvising saxophonist and a technologist that highlights, in
a different way to ‘Reverse’, the additional material a second participant brings to the
‘electro’ element, as contrasted with a solo electro-acoustic effort. While there is plenty of
real-time effects processing that could conceivably have been controlled by Laubrock had
this been a solo album, there is significant additional intervention by Lopez with material
that sounds and feels very independent of Laubrock’s input, regardless of how it might
have been generated. Lopez’s inputs and processing tend towards the distorted and have a
more modular synth-type feel than Sens’ more delicate interventions, resulting in a harsher
soundworld and more unrestrained improvising.

2.2.4 Ideas Generation in Solo Improvisation

Moving away from musical practitioners and towards academic research, one domain-
specific framework for ideas generation in solo improvisation stands out in the literature
and provides an invaluable framework for consideration of many the above-described works
and some of those created during this project. Jeff Pressing’s model of ideas generation
in solo improvisation described in the article ‘Improvisation: Methods and Models’23 con-
textualises structural techniques he had observed in solo improvisation by arguing that
generation of ideas in this context can be essentially boiled down to one of two approaches:

https://leavingrecords.bandcamp.com/album/pass-if-music.
18Floros Floridis, F.L.O.R.O. IV - Future Learning of Radical Options, To Pikap Records, 2019, Vinyl

and Digital, https://topikaprecords.bandcamp.com/album/f-l-o-r-o-iv-future-learning-of-radical-options.
19Guillaume Orti & Olivier Sens, Reverse, Quoi de neuf docteur, 2009, CD and Digital.
20Eric Dolphy, ‘Miss Ann’, Far Cry, New Jazz Records, 1962.
21Eddie Harris, ‘Freedom Jazz Dance’, The In Sound, Atlantic Records, 1965.
22Cecilia Lopez & Ingrid Laubrock, Maromas, Relative Pitch Records, 2023, CD and Digital,

https://relativepitchrecords.bandcamp.com/album/maromas.
23Jeff Pressing, ‘Improvisation: Methods and Models’ in Generative Processes in Music: The Psychology

of Performance, Improvisation, and Composition ed. John Sloboda (Oxford University Press, 2001), 129-
156.
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associate-type generation, in which the content of the previous idea markedly informs the
next; and interrupt-type, in which the content of the previous idea is discarded in favor
of new, contrasting material. While this concept may seem reductive, it can be deployed
subtly: interruptive generation can add variety within a larger section of similar (or more
‘associative’) material; associations in the mind of the improviser can also be made between
aesthetically divergent musical ideas. Additionally, Pressing proposes that these modes can
occur at various structural levels: mid-phrase, between phrases and between sections.

This concept provided valuable context for engagement with solo improvisation at the
outset of my research and its influence can be heard throughout the datasets and portfolio
of outputs. These ideas prompted reflections on how other improvisers approach ideas
generation in their own work. For example, in ‘Solo Live at Snug’s’, Eskelin’s use of
what Jeff Pressing would term ‘associate-type’ generation of ideas, which takes the form of
repeating phrase gestures with modifications to content, and beginning new phrases with
ideas from the end of the previous phrase, also provides context for my own generation of
ideas in the melodic domain. In addition to the ‘Melodic Improvisation’ dataset in Chapter
3, these concepts appear in ‘SoloSoloDuo’ in Chapter 4, ‘Lrrning’, ‘The Lows’, ‘Gander’ in
Chapter 5 and ‘i prompt u’ in Chapter 6. In John Butcher’s solo work such as that heard on
‘Bell Trove Spools’, his tendency to sustain and deploy subtle variations of a specific cluster
of similar multiphonics on the tenor saxophone can be contextualised as ‘associate-type’
generation whereas his abandonment of the idea in favour of a highly contrasting timbre
can be considered more ‘interruptive’, an approach I adopted when recording the ‘Timbral
Improvisation’ dataset. In Orti/Sens’ ‘Trio - Event Process’24, Orti’s saxophone inputs are
continually interrupted, thwarted even, by the computer’s interventions; this interruptive
human-computer dynamic is also heard in my interactive pieces ‘SoloSoloDuo’, ‘b.io’ and
‘Duo with WaveGAN’.

2.3 Statistical Modelling of Audio with Deep Learning

Having established the musical background of this research, I will now examine the
computer science innovations in the fields of deep learning for classification, generation
and prediction upon which the AI aspects of this project draw.

Deep learning can be defined as a subset of machine learning characterised by densely
layered neural network architectures whose large weight spaces are capable of modelling
complex relationships within correspondingly large datasets. These advancements are
made possible by a confluence of statistical innovations such as backpropogation25 (a re-
versal of the ‘chain rule’ in mathematics in which a reverse calculation is performed back
along the path traced by the ‘forward pass’, the outputs of which are then saved to the
trained weight space; this calculation is essentially the where the ‘learning’ in deep learning
happens) and new loss functions26 (measures of the distance between the model’s knowl-
edge of the dataset and the ‘ground truth’ data); the adaptation of existing computer
graphics hardware (GPUs) to the dense matrix operations deep learning tasks necessitate
has also been a significant factor in recent advancements in the field. These innovations
have led to a surge in new model architectures for diverse applications, one that is ongoing:
during the time spent on this project, significant new architectures for a range of audio
tasks were released, some of which are described in the section ‘Ongoing Innovations in
Machine Learning for Audio’ below.

24Guillaume Orti & Olivier Sens, ‘Trio - Event Process’, Reversed, Quoi de neuf docteur, 2009.
25Rojas, Raúl, ‘The Backpropagation Algorithm’ in Neural Networks, Springer, 1996, 149–182.
26Wang, Qi, Yue Ma, Kun Zhao and Yingjie Tian, ‘A Comprehensive Survey of Loss Functions in

Machine Learning’ in Annals of Deep Learning 9, Springer, 2022, 187–212.
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2.3.1 Discriminative Modelling of Audio Spectrogram Data with CNNs

Convolution Neural Network architectures are an innovation in the field of machine
learning that, through the use of convolution operations in place of standard dense layers,
have expanded the possibilities of image modelling in particular 27. A benchmark example
often used to illustrate their power is the discriminative modelling of large image datasets
such as ImageNet, which consists of over 1 million images belonging to 1000 object classes;
deep convolutional model architectures such as ResNets28 have made accurate discrimina-
tive modelling of such datasets possible.

At the outset of this research it was common practice to co-opt these model archi-
tectures intended for image classification for the task of audio classification by using pre-
categorised spectrogram representations of audio signals - most commonly time-frequency
representations such as mel and STFT spectrograms - in place of a regular image dataset.
Digging into this trend, in ‘Comparison of Time-Frequency Representations for Environ-
mental Sound Classification using Convolutional Neural Networks’29, Muhammad Huzaifah
presented an empirical study of the performance of various time-frequency representations
for audio classification. The paper shows mel spectrograms to outperform STFT spec-
trograms and wavelet transforms while motivating further investigation of the constant-Q
transform (CQT) for musically-focused classification tasks. As a result of this work my
own choice of audio representation for classification in the work presented in Chapter 4
was made more straightforward, beginning with mel spectrograms and changing to CQTs
upon noticing a performance improvement.

Audio classification with convolutional architectures and spectrograms has been shown
to work quite well, such as in Bian, Wang et al’s ‘Audio-Based Music Classification with
DenseNet And Data Augmentation’ and in the technique’s appearance in popular tech-
nologies such as Cornell University’s BirdNET app 30. However, doubts are being cast on
the fundamental suitability of convolutional architectures to classification of audio spectro-
grams. While it is not questioned that CNNs are highly effective at complex discriminative
modelling tasks and that spectrograms are the least-lossy audio representation after the
raw signal and an obvious choice for such tasks in the audio domain, there is a suspected
mismatch between architecture, which is optimised for object classification within natural
images, and time-frequency audio representations. It is additionally interesting to note that
audio classification functionality in the Flucoma toolkit31 is restricted to multi-layer per-
ceptron or k-nearest neighbours models: simpler, less intensive methods that the authors
deemed sufficient and appropriate for fast audio classification. Clearly, optimal methods
for audio classification with machine learning are both context-dependent and an open
question.

27Rawat, Waseem and Zenghui Wang, ‘Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review’, Neural Computation 29, 2352-2449.

28He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun, ‘Deep Residual Learning for Image Recog-
nition’, unpublished paper, arXiv:1512.03385.

29Huzaifah, Muhammad, ‘Comparison of Time-Frequency Representations for Environmental Sound
Classification using Convolutional Neural Networks’, (unpublished paper, arXiv:1706.07156).

30Kahl, Stefan, Connor M. Wood, Maximilian Eibl and Holger Klinck,‘BirdNET: A deep learning solution
for avian diversity monitoring’ in Ecological Informatics 61, Mar 2021, ScienceDirect, 101236.

31Tremblay, Pierre Alexandre, Owen Green, Gerard Roma, Alexander Harker, ‘From collections to cor-
pora: Exploring sounds through fluid decomposition’, paper presented at ICMC 2019: 45th International
Computer Music Conference, Elmer Holmes Bobst Library, MORE, New York University, USA, Jun 16-23,
2019.
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2.3.2 Generative Modelling of Audio Data with GANs

Generative Adversarial Networks (GANs) are a startling innovation first proposed by
Goodfellow et al in 201432 and optimised for image generation tasks through the use of con-
volutional layers by Radford et al in their DCGAN (Deep Convolutional Generative Adver-
sarial Network) model architecture33. DCGAN consists of a discriminative convolutional
architecture whose role is to learn the ground truth data and distinguish it from outputs
generated by a second ‘generator’ model whose architecture mirrors that of the discrimi-
nator model. While the generator initially outputs gaussian noise vectors, its weights are
continually updated with the discriminator’s outputs in a process of adversarial training,
the goal of which is for the generator to create samples the discriminator cannot differen-
tiate from the ground truth data. Once something close to this goal has been reached, the
trained generator weights can be used to generate plausible recombinations of the dataset.34

In ‘Adversarial Audio Synthesis’35, Donahue et al present WaveGAN, an adaptation of
this DCGAN architecture for modelling raw audio signals in which fixed-length raw audio
signals are modelled through the use of 1-dimensional convolutional layers. This model
architecture is used throughout much of the work in Chapter 5 as a framework for creating
statistical models of several of the datasets presented in Chapter 3. Novel audio samples
are generated from these models and are applied creatively in a variety of ways. In the
paper the authors also discuss their preceding work on SpecGAN, an adaptation of DC-
GAN for modelling audio data from time-frequency spectrograms, noting that WaveGAN’s
outputs are considered to be of higher quality and highilghting the difficulty of restoring
the generated spectrograms back to raw audio. Marafioti et al address this problem to
an extent in their TiFGAN architecture36, with which 1 second-long invertible log-scaled
STFT spectrograms are generatively modelled, by using state-of-the-art algorithms for
phase recovery and STFT reconstruction and arguably outperforming WaveGAN as a re-
sult. I unfortunately encountered difficulty getting their implementation to run and chose
to focus my efforts on modelling my datasets with WaveGAN for straightforward practical
reasons.

2.3.3 Generative and Predictive Modelling of Raw and Symbolic Audio
Data with RNNs

Recurrent Neural Networks (RNNs) are intended for modelling of sequential data typ-
ically used for prediction of text and numerical data in which tokenized representations of
fixed-length randomised chunks of the data set are learned through the use of either LSTM
(long-short-term memory) or GRU (gated recurrent unit) cells37. In the fast-growing field
of language modelling they have long been superseded by the advent of transformer models

32Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville and Yoshua Bengio, ‘Generative Adversarial Nets’ (conference paper, NIPS 2014: 28th
Conference on Neural Information Processing Systems, Palais des Congrès de Montréal, Canada, Dec 8-13,
2014).

33Radford, Alex, Luke Metz and Soumith Chintala, ‘Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks’, (poster presentation, ICLR 2016: 4th International Con-
ference of Learning Representations, Caribe Hilton, San Juan, Puerto Rico, May 2-4, 2016).

34Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville and Yoshua Bengio, ‘Generative adversarial networks’ in Communications of the ACM
63, No. 11, ACM Digital Library, Nov 2020, 139-144.

35Donahue, McAuley and Puckette. ‘Adversarial Audio Synthesis’.
36Marafioti, Andrés, Nicki Holighaus, Nathanaël Perraudin and Piotr Majdak,‘Adversarial Generation

of Time-Frequency Features with Application in Audio Synthesis’, paper presented at ICML 2019: 36th
International Conference on Machine Learning, Long Beach Convention Centre, Long Beach, California,
USA, Jun 9-15, 2019.

37Cahuantzi, Roberto, Xinye Chen and Stefan Güttel, ‘A comparison of LSTM and GRU networks for
learning symbolic sequences’, unpublished paper, Sep 2019, arXiv:2107.02248.
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38 but for audio practitioners they still hold significant creative potential. Below I describe
an early innovation in RNNs and its adaptation to musical data, followed by a unique
adaptation of RNNs to modelling of raw audio signals.

In ‘The Unreasonable Effectiveness of Recurrent Neural Networks’39, Andrej Karpathy
presents an architecture for learning text data at the character level and, once trained,
predicting continuation of text strings from a given prompt. This model architecture
is adapted for conditional generation of melodic material in the form of string-recasted
MIDI-note representations of pitch in Chapter 6. A precedent for adapting Char-RNN
for music generation has been set by Sturm et al in their work on ‘Folk-RNN’40, which
has proven itself capable of generating outputs closely akin to Irish folk music in style
Google Magenta’s Performance RNN41 uses an LSTM-based RNN to model MIDI data of
piano performances that includes expressive timing and dynamics, and notably is capable
of generating polyphonic outputs. While Performance RNN focuses on tonal classical pi-
ano music, in ‘Towards a Deep Improviser: A Prototype Deep Learning Post-tonal Free
Music’42, Dean et al model symbolic representations of post-tonal and post-metric piano
music with a view to creating a virtual free improvising pianist. Other examples of adapt-
ing RNNs for symbolic-domain music generation include Eck and Schmidhuber’s modelling
of improvisation on a 12-bar blues structure in an attempt to move beyond note-event-
level prediction and towards modelling larger-scale sequences with recognisable structural
patterns.43

It should be noted here that the above examples of symbolic audio data modelling
with RNNs are engineered for the automated prediction of listenable musical sequences,
the work I present in Chapter 6 takes a more stripped-back approach, generating only
sequences of pitches. While this might appear to be a backwards step compared with
the above approaches, it emerges that these minimally-specified sequences are sufficient to
spark creative action. I also take the approach of engineering an end-to-end pipeline for
data pre-processing, modelling, prediction and notation which represents a further diver-
gence from the above approaches.

Mehri et al present in ‘SampleRNN: An Unconditional End-To-End Neural Audio Gen-
eration Model’44 a multi-layer recurrent neural network architecture for unconditional gen-
eration of raw audio signals. This model architecture is also used for modelling the raw
audio signals of my datasets, generated outputs of which form the basis of various creative
outputs. I favour the ‘prism-samplernn’ implementation developed at RNCM’s PRiSM lab
by Sam Salem and Christopher Melen45. A prominent example of SampleRNN’s creative
application is described in ‘Generating Albums with SampleRNN to Imitate Metal, Rock

38Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin, ‘Attention is All You Need’, unpublished paper, arXiv:1706.03762.

39Andrej Karpathy, ‘The Unreasonable Effective of Recurrent Neural Networks’.
40Sturm, Bob, Joao Felipe Santos and Iryna Korshunova, ‘Folk Music Style Modelling by Recurrent

Neural Networks with Long Short TermMemory Units’ (conference paper), ISMIR 2015: 16th International
Society for Music Information Retrieval Conference, Hotel NH Malaga, Malaga, Spain, Oct 26-30, 2015.

41Simon, Ian and Sageev Oore, ‘Performance RNN: Generating Music with Expressive Timing and
Dynamics’, Magenta Blog, 2017, https://magenta.tensorflow.org/performance-rnn.

42Dean, Roger T. and Jamie Forth, ‘Towards a Deep Improviser: a prototype deep learning post-tonal
free music generator’ in Neural Computing and Applications 32, 2020, 969–979.

43Eck, Douglas and Jurgen Schmidhuber, ‘A First Look at Music Composition using LSTM Recurrent
Neural Networks’, technical report, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, Mar 2002.

44Mehri, Soroush, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron
Courville and Yoshua Bengio. ‘SampleRNN: An Unconditional End-to-End Neural Audio Generation
Model’.

45Christopher Melen and Sam Salem, ’PRiSM SampleRNN’, code repository, https://github.com/rncm-
prism/prism-samplernn
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and Punk Bands’ by CJ Carr and Zach Zuckowski aka Dadabots46; while my creative
approaches diverge significantly from theirs, Dadabots’ work provided initial inspiration
for my first experiments with this model architecture and their informal but valuable and
generous advice for dataset creation and parameter tuning with SampleRNN during this
project (via their Discord forum and during informal online meetups) is gratefully noted.

2.3.4 Behaviours of Deep Generative Models

With respect to the behavioural characteristics of both Recurrent Neural Networks and
Generative Adversarial Networks described above, Google DeepMind researcher Sander
Dieleman’s blog post ‘Generating music in the waveform domain’47 offers invaluable de-
scriptors and observations: mode-covering behaviour, in which a generative model tries
to account for the entire dataset in its trained distribution, and mode-seeking behaviour,
in which the trained distribution tends to converge around certain features of the dataset
at the expense of others. These behaviours are representative of those of RNNs (such as
Char-RNN and SampleRNN, described above) and GANs (such as WaveGAN, described
above) respectively and are helpful when trying to reason about relationships between
trained models’ generated samples and the ground truth data on which they were trained.
The practical effects of these behaviours on models of my data are discussed in Chapters
5, 6 and 7, as are their implications for dataset creation and creative applications.

2.3.5 Generative Modelling of Image Data for Audio Visualisation

An additional deep learning task which I have used in this work is image generation
applied to visualisation of audio, which, while tangential to the core research questions,
deserves mention by virtue of the research innovations that made interesting visualisation
of some of the portfolio pieces, for the purposes of online
replacedpresentationinnovation, possible. In their implementation of the work presented
in the paper ‘Training Generative Adversarial Networks with Limited Data’48, Karras et
al presented an adaptation of StyleGAN2, a pre-existing GAN architecture for image gen-
eration. A key feature of their adaptation is the ability to achieve high-quality image
generation using models trained through ‘transfer learning’, a process in which the later
layers of a trained model are ‘unfrozen’ and re-trained on new data. While this model
architecture has since been superseded by StyleGAN3 and to a greater extent by the ad-
vent of diffusion models for image generation, I have found it a valuable and enabling tool
for creative engagement with images: its ability to create smooth interpolations between
images makes it a tool with unique capabilities and one that is relatively straightforward
to use thanks to this transfer learning functionality, which makes it possible to train on a
relatively small dataset by retraining only the final layers of a provided, larger pre-trained
model. Models that I trained with this architecture were used in conjunction with Mikael
Alafriz’s ‘Lucid Sonic Dreams’ program49 to visualise creative outputs ‘SoloSoloDuo’ in
Chapter 3 and ‘Duo I’ and ‘Gandering 1’ in Chapter 5 for the purposes of online presen-
tation.

46CJ Carr and Zach Zukowski, ‘Generating Albums with SampleRNN to Imitate Metal, Rock, and Punk
Bands’ (conference paper), MUME 2018: 6th International Workshop on Musical Metacreation, University
of Salamanca, Spain, Jun 25-26, 2018

47Sander Dieleman, ‘Generating Music in the Waveform Domain’, blog post Latest Posts - Sander Diele-
man, March 24, 2020, https://sander.ai/2020/03/24/audio-generation.html.

48Karras, Tero, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen and Timo Aila, ‘Training
Generative Adversarial Networks with Limited Data’, unpublished paper, arXiv:2006.06676

49Alafriz, Mikael, ‘Introducing “Lucid Sonic Dreams”: Sync GAN Art to Music with a Few Lines of
Python Code!’, blog post at Towards Data Science, https://towardsdatascience.com/introducing-lucid-
sonic-dreams-sync-gan-art-to-music-with-a-few-lines-of-python-code-b04f88722de1.
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2.3.6 Ongoing Innovations in Machine Learning for Audio

As should be clear by now, innovation in deep learning architectures across multiple
domains and tasks continues apace. In the audio domain it is interesting to note some
divergence in recent trends. Generative models of audio continue, for the most part, to
become larger, deeper, more data-hungry and energy-intensive, the most extreme example
being OpenAI’s Jukebox50. Antoine Caillon’s RAVE51 architecture is intended more for
usage by practitioners than Jukebox, but still requires larger datasets and much longer
training runs than any of the architectures explored in this thesis. Both models share the
use of Variational Auto-Encoders (VAEs) as a first step for learning latent representations
of the input data before any learning for generative modelling begins. An unusual addition
to currently available audio generation architectures is ‘Catch-A-Waveform’52, a GAN de-
signed to model and generate variations on as little as a few seconds of audio data. At the
lighter end of the computational scale, the Flucoma53 toolkit, as noted earlier, encourages
creative practitioners to find applications of long-established, lightweight machine learning
algorithms such as k-means clustering, linear regression and non-negative matrix factori-
sation.

Innovations in deep learning for tasks not covered in this thesis continue apace. One
of the more startling of these is source separation, in which a stereo mix is ‘stemmed’ into
its individual constituent tracks, currently exemplified for application to popular music
by Meta AI’s Demucs54 architecture. Another is timbre transfer, in which the timbre of
an instrument is modelled such that the sound of an unseen input can be transformed
to that the modelled signal, even in real-time; the autoencoder part of aforementioned
RAVE architecture and Google Magenta’s DDSP55 are the leading architectures for this
task. Most recently, there has been a significant focus among AI companies on developing
very large, language-prompted generative models. Examples of these in the audio domain
are Stability AI’s Stable Audio56 and Udio’s AI Music Generator57. While impressive in
the quality of their outputs, these companies have also generated significant controversy
owing to a perceived lack of transparency around ownership and consent for usage of the
music on which they have trained their models. They are also clearly not targeted at music
practitioners looking to incorporate AI into their workflows, so I won’t dwell on them any
further here.

2.4 AI for Musical Creativity

The portfolio outputs of this project are broadly situated in the emerging field of AI
for Musical Creativity. Here I identify practitioner-researchers using AI in their musical
workflows in order to better locate the portfolio outputs.

50Dhariwal, Prafulla, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford & Ilya Sutskever,
‘Jukebox: A Generative Model for Music’, unpublished paper, arXiv:2005.00341.

51Caillon, Anton and Philippe Esling, ‘RAVE: A variational autoencoder for fast and high-quality neural
audio synthesis’, unpublished paper, arXiv:2111.05011.

52Greshler, Gal, Tamar Rott Shaham and Tomer Michaeli, ‘Catch-A-Waveform: Learn-
ing to Generate Audio from a Single Short Example’, DeepAI, blog post, Jun 11, 2021,
https://deepai.org/publication/catch-a-waveform-learning-to-generate-audio-from-a-single-short-example.

53Tremblay, Pierre Alexandre, Owen Green, Gerard Roma, Alexander Harker, ‘From collections to cor-
pora: Exploring sounds through fluid decomposition’, paper presented at ICMC 2019: 45th International
Computer Music Conference, Elmer Holmes Bobst Library, MORE, New York University, USA, Jun 16-23,
2019.

54Rouard, Simon, Francisco Massa & Alexandre Défossez, ‘Hybrid Transformers for Music Source Sep-
aration’, unpublished paper, arXiv:2211.08553.

55Engel, Jesse, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, Adam Roberts, ‘DDSP: Differentiable Digital
Signal Processing’, paper presented at ICLR 2020: Eighth International Conference on Learning Repre-
sentations, Online, Apr 26 - May 1, 2020.

56stability.ai, Stable Audio, version 2.0, web service, https://stability.ai/stable-audio.
57Udio, AI Music Generator, beta version, web service, https://www.udio.com/.
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2.4.1 AI, Instrumental Practice and Improvisation

As was the case with finding practitioners of electro-acoustic improvisation on the
saxophone, examples of instrumentalists directly applying machine learning methods to
their own practice are rare. Jack Walker’s ‘Power Trio’58, in which a KNN (or ‘k nearest
neighbours’) classifier is used to mediate interactions between his Derek Bailey-influenced
guitar playing and audio samples derived from recordings of bass and drums, is notable for
the composer-improviser’s instrumental abilities and for being a strong example of using
machine learning classification as the backbone of an interactive system for improvisation.
In chapter 3 I take a different approach to a similar idea, opting to interact with audio
samples of greater length so as to accomodate entire phrases, using a convolutional neural
network trained on spectograms in order to classify a larger window of musical content,
and opting to write the software in Python rather than Walker’s use of MaxMSP/Flucoma.

In ‘Dialogues with Folk-RNN’59, Luca Turchet presents a composition setting his own
playing on augmented mandolin alongside outputs of a trained Folk-RNN model. Over the
course of the piece, improvisatory sections played on his self-designed ‘Smart Mandolin’
alternate with sonifications of the model’s MIDI outputs. It is unclear whether the ‘di-
alogues’ element referenced in the piece’s title stretches as far as prompting the trained
model on the fly with outputs from the improvised sections; the element of dialogue might
be limited to his own improvised responses to the generated material. Turchet’s use of
real-time digital effects and of a character-level RNN mirrors my own in the portfolio
outputs discussed in chapter 6. At points in the research process I did investigate using
Char-RNN in a similar fashion, dialoguing with sonifications of its outputs, but disliked
the robotic-sounding nature of its outputs and found duetting with them unenjoyable,
opting to connect the trained model’s outputs to notation software and pursuing creative
application of those outputs instead.

A different application of AI to an improvisational instrumental practice is Guilherme
Coelho’s ‘DDSP études for Tenor Saxophone & Violin’60 in which a pre-trained model
of solo violin recordings provided in Google Magenta’s DDSP library is used to map the
timbre of the violin timbre to the tenor saxophone. While applications of timbre transfer
do not feature in this thesis, the work warrants inclusion here for the composer’s direct
application of AI to instrumental practice and for the obvious presence of improvisation
on tenor saxophone in the work.

Practitioners of improvisation using machine learning technologies are, unsurprisingly,
easier to find when looking past players of conventional musical instruments and to-
wards computer musicians. Here, notable practitioners include Ted Moore, whose custom-
designed software has included his own implementation of a multi-layer perceptron in
SuperCollider which can be regarded as a precursor to the FluCoMa toolkit which he also
worked on. An example of his use of machine learning in live improvisation can be heard
in the piece ‘shadow’, co-improvised with saxophonist Kyle Hutchins in the group ‘Binary
Canary’61. Here Moore maps timbral analysis (using the mel frequency cepstral coefficient,
a measure of the rate of frequency change in a window of sound typicaly used to describe
timbre) of the outputs of a no-input mixing board to four distinct sound categories using
a multi-layer perceptron classifier. These categories are then mapped to changes in the

58Jack Walker, ‘Power Trio’, YouTube video, posted by ‘AI Music Creativity 2022’, Sep 20 2022,
https://youtu.be/U7S8quow0_U.

59Luca Turchet, ‘Dialogues with Folk-RNN: Smart Mandolin performance at NIME 2018’, YouTube
video, posted by Luca Turchet, Jul 3 2018, https://youtu.be/VmJdLqejb-E

60Guilherme Coelho, ‘AIMC 2021 | DDSP études for Tenor Saxophone & Violin’, Vimeo video, posted
by Guilherme Coelho, Jul 2021, https://vimeo.com/677268564/709378c6cf.

61Ted Moore & Kyle Hutchins, ‘shadow’, YouTube video, posted by ‘Ted Moore’, 10 June 2021,
https://youtu.be/CgALDzMYcbc?si=QfCjxILzPrl9lJnq
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lighting in the room. Another practitioner of computer improvisation beginning to incor-
porate deep learning models into their work is laptop musician Federico Reuben; his recent
work in duo with saxophonist Franziska Schroeder features live processing of the outputs
of RAVE models trained on her improvising into an improvised duo context.62

2.4.2 AI and Composition

The use of generative and predictive machine learning in the context of classical com-
position has increased recently. This is thanks in large part to the development of an up-
to-date, straightforward-to-use and well-documented implementation of the SampleRNN
architecture by the Christopher Melen at Royal Northern College of Music’s PRiSM lab63

which is helping to put AI sample generation into the hands of more composers.

An example of the use of SampleRNN as a compositional assistant is in the processes
behind Emily Howard’s ‘Shield’64 for string quartet. Howard’s process here was to create a
custom dataset of string quartet performances of her previous works, train a SampleRNN
model of this data and transcribe selections of the generated samples. I follow a compa-
rable process in portfolio outputs ‘Lrrning’ and ‘The Lows’ described in chapter 5. An
interesting observation gleaned from observing a research presentation about this work is
Howard’s openness to including as the basis of her composed work outputs from earlier
training checkpoints when the model is under-trained, and more generally to SampleRNN’s
quirks, such as its tendency to intersperse periods of grainy near-silence with sudden onsets
of noise. In my own work with SampleRNN presented here, while novelty is absolutely a
key criterion for sample selection and SampleRNN’s self-evident weirdness is enjoyed, I try
to prioritise timbral plausibility.

In movement III (‘Soul’) of Robert Laidlow’s orchestral work ‘Silicon’65, playbacks of
samples generated from a SampleRNN model of a very large dataset consisting of old BBC
Philharmonic radio broadcasts are incorporated to the score, played by the same orchestra.
Similarly to Howard, Laidlow’s process of sample curation appears to be more open-ended
than my own: some of the selected samples feature content modelled from spoken dialogue
present in the dataset; this also speaks to a more cavalier approach to dataset building than
my own! Also of interest in ‘Silicon’ is Laidlow’s use of symbolic-domain AI in movements I
and II (‘Mind’ and ‘Body’ respectively) in which he uses outputs from aforementioned Folk-
RNN models and also MuseNet (a very large model released by OpenAI, based on their
previous language-domain GPT-2 model and trained on a MIDI dataset) as compositional
material.

2.4.3 AI and Popular Music

The popular music industry has long embraced new audio technologies, and as such it
would be reasonable to expect that this affluent sector would embrace AI-driven innova-
tions. However, popular music’s relationship to AI-driven innovations in digital audio looks
set to be more complicated, in part because of the sector’s affluence compared with the
improvised and contemporary musics already discussed: artists, copyright holders (many

62Franziska Schroeder & Federico Reuben, ‘AI Music Improvisation by Franziska Schroeder and Fed-
erico Reuben using RAVE model/Stable Diffusion’, YouTube video, posted by ‘freuPinta’, 22 April 2024,
https://youtu.be/tI6BMrEf4jU?si=nbw8anNr1XBG6ieG

63Melen, Christoper, prism-samplernn, code repository, https://github.com/rncm-prism/prism-
samplernn

64Emily Howard, ‘shield for String Quartet’, musical score, 2022,
https://www.editionpeters.com/product/shield/ep73579.

65Robert Laidlow, ‘Robert Laidlow (2022): Silicon’, YouTube video, posted by ‘RNCM PRiSM’, Mar 18
2023, https://youtu.be/3xmpywK0ACA.
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of which are record labels) and even sound engineers are on course to see their indus-
tries disrupted if innovations in deep learning for audio - particularly language-prompted
generative models and AI-automated mixing and mastering - continue at pace. While in-
teresting examples of high-profile pop artists embracing AI can be found, such as Grimes’
Elf project66added (a public experiment with vocal timbre transfer in which she invites
anyone to map what sounds like a DDSP model of her voice onto their own), much of the
serious engagement with AI as a creative tool in popular music genres is happening at a
lower level of public exposure.

A good place to find examples of this kind of work is in the annual AI Song Contest, in
which teams of practitioner-researchers present innovative applications of machine learning-
based technologies and, often, technologies they have implemented themselves, to the realm
of songwriting. Examples include:

• ‘Circus’ by a group named ‘The elephants and the’, who used Tom Collins’ Maia
Markov algorithm to generate melodies, chords, basslines and beats and combine the
resulting song with saxophone riffs and ‘improvisation’ generated from a WaveGAN
model;67

• ‘echoes from the distance’ by ki, who used Google Magenta tools to compose a melody
before taking the unusual step of using large language model ChatGPT to suggest
chords to accompany the melody;68

• ‘Noise to Water’ by the satirically-named Aiphex Twins, who trained WaveGAN
models on kick drum sample packs as well as recordings by Steve Reich, Aphex
Twin and Boards of Canada. Leaving aside any potential copyright violation, an
interesting aspect of their entry was their conclusion that this approach of using
custom WaveGAN models afforded them greater artistic independence and freedom
than out-of-the-box tools such as those engineered by Google Magenta.69

2.4.4 AI and NIMEs

The field of New Interfaces for Musical Expression shows diverse applications of new
machine learning technologies for creative musical workflows. While the work in this thesis
focuses on applications of deep learning data models trained on high-performance hardware,
the NIME field’s tendency to target low-latency, real-time applications is also reflected in
its approaches to AI. This prioritisation was evident in Pelinski et al’s 2022 workshop ‘Em-
bedded AI for NIME: Challenges and Opportunities’70, in which the difficulties inherent
in running machine learning algorithms on memory- and compute-constrained hardware
were discussed alongside the potential rewards of doing so. Accordingly, recent projects
in the area of AI for NIME such as Hantrakul and Kondak’s GestureRNN71, an LSTM-
type RNN that targets the proprietary Roli Lightblock hardware, Martin and Torresen’s

66Grimes, elf.tech, web service, https://elf.tech/connect.
67Tom Collins, Hanslip, Mark, Maloney, Liam, Quek, Lynette, Rime, Jemily, Zongyu (Alex) Yin, ‘Cir-

cus’, entry to AI Song Contest 2021, https://www.aisongcontest.com/participants/theelephantsandthe-
2021.

68Ivana Shishoska & Kiril Trbojevikj, ‘echoes from the distance’, entry to AI Song Contest 2023,
https://www.aisongcontest.com/participants-2023/ki.

69Phillipp Stolberg & Edgar Eggert, ‘Noise to Water’, entry to AI Song Contest 2022,
https://www.aisongcontest.com/participants-2022/aiphex-twins.

70Pelinski, Teresa, Victor Shepardson, Steve Symons, Franco Santiago Caspe, Adan L Benito Temprano,
Jack Armitage, Chris Kiefer, Rebecca Fiebrink, Thor Magnusson, Andrew McPherson, ‘Embedded AI for
NIME:Challenges and Opportunities’ in Proceedings of NIME 2022: New Interfaces for Musical Expression,
Waipapa Taumata Rau, Aotearoa, University of Auckland, New Zealand and online, 28 Jun - 1 Jul 2022.

71Hantrakul, Lamtharn and Zachary Kondak, ‘GestureRNN: A neural gesture system for the Roli Light-
pad Bloc’ in Proceedings of NIME 2018: New Interfaces for Musical Expression, Campus of Virginia Tech,
Blacksburg, Virginia, USA, June 3-6 2018.
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mixed-density RNN72 for predicting control parameters and Caramiaux et al’s adaptation
of a Monte Carlo technique for real-time classification of motion sensor data73, all target
low-dimensionality spaces such as movements and parameter controls that occur during
creative acts with technologies.

This is a point of both divergence and similarity with the work in this thesis. The
majority of this research project focuses on non-real-time approaches to the use of deep
learning in the creative process, and broadly takes a ‘money is no object’ approach to com-
putational needs. However, a point of similarity is in the targeting of parts of the creative
process besides generation of the final product: outputs of the data models created in the
following chapters are enablers of instrumental practice, improvisation and composition
rather than generators of it.

2.5 Conclusion

This chapter has provided additional context for this project through a tour of the
academic research and musical practices upon which this project builds. I began by de-
scribing the historical and current state of the primary musical contexts of solo tenor
saxophone improvisation and electro-acoustic saxophone improvisation, in order to pro-
vide background for the datasets and portfolio outputs. I then described the technical
innovations in the field of deep learning that directly bear on this research. I concluded
with a view of practitioner-researchers in the emerging field of AI for musical creativity in
order to provide additional context for the portfolio outputs.

The next four chapters (and the datasets and portfolio materials they comment on)
constitute the core research carried out as part of this submission. These chapters will be
followed by a concluding chapter in which the insights generated through this work will be
described.

72Charles P. Martin and Toressen, Jim, ‘An Interactive Musical Prediction System with Mixture Den-
sity Recurrent Neural Networks’ in Proceedings of NIME 2019: New Interfaces for Musical Expression,
Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil, 3-6 June, 2019.

73Baptiste Caramiaux, Montecchio, Nicola, Atau Tanaka, Atau and Bevilacqua, Frédéric, ‘Adaptive Ges-
ture Recognition with Variation Estimation for Interactive Systems’ in ACM Transactions on Interactive
Intelligent Systems, Volume 4, Issue 4, 1–34.



Chapter 3

Datasets

3.1 Introduction

This chapter provides detailed views of the audio datasets I created to carry out this
research. For each dataset, I first discuss musical and conceptual reasonings behind choices
made regarding the recorded content. I then discuss specific aspects of each dataset’s
musical contents; notated examples further elucidate these choices and better inform the
reader of its characteristics. The work in this chapter addresses the first of my research
objectives outlined in Chapter 1 of creating a substantial repository of audio data comprised
of instrumental practice sessions; it also fulfils the first stage of my research methodology
(also outlined in Chapter 1) of ‘Dataset Creation’, and begins to address the first research
question, ‘To what extent can recordings of systematic instrumental practice be modelled
computationally..?’.

3.2 Rationale

The common aim across all of these datasets was to establish a repository of original
raw audio content that would provide a solid foundation for a personal artistic engagement
with deep learning. While I acknowledge that personal creative work can also be made
using externally-sourced datasets or pre-trained models, a motivator for this project was
to explore and learn more about the space in which my own music resides and, in doing
so, expand my creativity outwards and yield insights to the usefulness of deep learning
to other practitioners. It therefore seemed clear that using my own data would be an
essential part of the process. More broadly, I reasoned that using personal data makes
for inherently more personal model outputs and speaks to a human-centred approach to
AI than simply modelling externally-sourced data; doing so also sidesteps any potential
ethical issues arising from using datasets containing copyrighted materials.1

3.2.1 Process of Recording Datasets

When recording each dataset I followed some informal, self-imposed guidelines intended
to ensure a baseline of quality and cohesion of the raw data. These can be summarised as
ensuring that each dataset is cohesive in musical content, pertain to a specific aspect of
my practice and that the recorded sound should be, as far as reasonably practical, clean,
consistent across all datasets (thus allowing for potential recombinations) and free of ex-
traneous sounds.

The first and second points are closely related: since the aim was to create compu-
tational models of specific aspects of my practice, addressing the second aim to a degree

1Franceschelli, Giorgio and Mirco Musolesi, ‘Copyright in generative deep learning’ in Data and Policy
4, Cambridge University Press, 25 May 2022.
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also addresses the first. The last point was addressed by using the same microphone, au-
dio interface and software for all datasets (DPA 4099 clip microphone, Audient iD4 and
Audacity respectively). My choice of microphone was informed by being advised by two
sound engineers I had previously worked with, Miles Ashton (resident engineer at Ronnie
Scott’s Jazz Club in London) and Alex Fiennes (experienced and respected freelance sound
engineer), of its strong off-axis rejection, which I reasoned would be helpful in mitigating
the effect of recording in different rooms should that necessarily be the case. Additionally,
I was working under the assumption that a clip microphone would result in greater consis-
tency of signal than a stand-mounted microphone, since consistency with the latter would
be more vulnerable to changes of standing position. I had also heard highly favourable
reports of its sound quality from musical colleagues such as cellist Ecka Mordecai and reeds
player Michael Perrett.

As we will see in the chapters on generative modelling, the initial confidence I took
from this setup turned out to be slightly mistaken. The DPA 4099 is indeed an excellent
microphone and was a solid practical choice for its room rejection, portability and ease of
setup, but in reality it is not feasible to capture the full complexity of the tenor saxophone’s
acoustic output with a single microphone and certainly not with one that is attached to
the bell section. The saxophone projects sound in myriad directions depending on what
register of the instrument one is playing in. Capturing the sound around the bell section
overly privileges the lower notes at the expense of more ‘vented’ notes, the sound of which
escapes from open holes across the length of the instrument’s body. I will revisit this point
in Chapter 5, where this initial choice has implications for creating statistical models of
the raw signals.

3.3 Musical Contents of Datasets

3.3.1 Exercises Datasets

As discussed in the Chapter 1, the initial impulse for this project was a curiosity
about the relationships between systems of musical information in my private practice and
creative outcomes when I improvised; this idea provided a starting point for recording the
Exercises Datasets described below.

Tone Rows

The first dataset I created consists of exercises extrapolated from Nicolas Slonimsky’s
Thesaurus of Scales and Melodic Patterns2. I was first made aware of this book through
hearing about its importance to historically significant improvising saxophonists such as
Charlie Parker, John Coltrane and later Evan Parker3. Within my own practice I be-
came most absorbed in the 12-tone row section of the book. What attracted me was its
organisational principle of basing each row on a single interval and how this lent itself
to a structured practice routine. The motivation behind incorporating 12-tone rows into
my practice routine was a desire to bring a greater degree of abstraction to the kinds of
melodies I was improvising. This kind of practicing correlates with what Derek Bailey de-
scribes as ‘exercises worked out to deal specifically with the manipulative demands made
by new material’4.

Initially I recorded permutations of tone row exercises explicitly based on those in
Slonimsky’s volume. To maintain some consistency and quality, I first created a set of
play-along tracks of these rows using functionality of SuperCollider’s pattern classes. First,

2Slonimsky, Nicolas, Thesaurus of Scales and Melodic Patterns.
3Evan Parker, interviewed by Frances-Marie Uitti, Contemporary Music Review.
4Bailey, Derek, Improvisation, Da Capo Press, 1992, 110.
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I programmed midi note array representations of each row, before wrapping these arrays
in a pattern-generating function and recording a basic synthesised output to play along
with at recording time. While only published beginning on low B-flat in the thesaurus,
all tone rows adapted from the thesaurus appear in the dataset in all their 12 possible
permutations and across different registers of the saxophone as well as in alternate vari-
ations throughout the Tone Rows dataset: every permutation of each row was looped 4
times, starting on low B-flat and transposing the entire row up a semitone each time as
far as my range on the tenor saxophone permitted. Rows were recorded as far as altissimo
F-natural one octave above the saxophone’s non-altissimo register. Seeking variation and
challenge, I then returned to the pitch sequences written in SuperCollider and proceeded
to generate variations on them using randomisation. I also composed a tone row based on
intervals of minor 9ths organised by the same logic as the major 7ths row (see Figure 3.11)
of transposing three ascending interval pairs by ascending major thirds followed by three
descending interval pairs by descending major thirds, effectively a tritone transposition
of the first three pairs. By the time I recorded the randomised equivalents of the rows
based on intervals of 7ths and 9ths I decided to raise the level of difficulty by transposing
randomly selected notes by one or more octaves.

Below are notated examples of each of these rows starting at the lowest point of the
saxophone’s range, with its corresponding randomised tone row.

Figure 3.1: The original ‘3rds’ tone row from Nicolas Slonimsky’s Thesaurus of Scales and
Melodic Patterns.

Figure 3.2: An example of a variation on Figure 3.1 that appears in the Tone Rows Dataset.

Figure 3.3: The original ‘4ths’ tone row from Nicolas Slonimsky’s Thesaurus of Scales and
Melodic Patterns.

Figure 3.4: A variation on the ‘4ths’ tone row generated using randomisation of the pitches
seen in Figure 3.3.
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Figure 3.5: The original ‘6ths’ tone row from Nicolas Slonimsky’s Thesaurus of Scales and
Melodic Patterns.

Figure 3.6: A variation on the ‘6ths’ tone row generated using randomisation of the pitches
seen in Figure 3.5.

Figure 3.7: The original ‘minor 7ths’ tone row from Nicolas Slonimsky’s Thesaurus of
Scales and Melodic Patterns.

Figure 3.8: A variation on the ‘minor 7ths’ tone row generated using randomisation of the
pitches seen in Figure 3.7, with additional randomised octave displacement of the pitches
for greater interest and technical challenge.

Figure 3.9: The original ‘major 7ths’ tone row from Nicolas Slonimsky’s Thesaurus of
Scales and Melodic Patterns.

Figure 3.10: A variation on the ‘major 7ths’ tone row generated using randomisation of the
pitches seen in Figure 3.9. As with the previous minor 7ths row, I saw fit to increase the
difficulty and interest level by displacing randomly chosen pitches up or down an octave.
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Figure 3.11: A tone row based on the interval of a minor 9th featuring the same structural
logic as seen in Figure 3.9.

Scales and Arpeggios

Around the same time as creating the ‘Tone Rows’ dataset, I created another focusing
on a more mundane aspect of my practice routine: scales. For a long time, a cornerstone
of my routine had been to practise the overtone series starting on each note in the lower
register followed by exercises based on the fundamental pitch’s lydian dominant scale. The
choice of scale was informed by its correspondence to the sequence of pitches in the overtone
series:

Figure 3.12: notes of the overtone series beginning on low b-flat

Figure 3.13: Lydian dominant scale starting on low b-flat, corresponding to the notes of
the overtone series beginning on low b-flat.

This aspect of practicing correlates with what Derek Bailey describes as ‘the musical
equivalent of running on the spot, the sort of thing which might be useful to any player
of any music’5. Since this practice sequence was well embedded in my regular routine
committing it to recording seemed a straightforward and natural choice.

I initially recorded the Lydian dominant scale beginning on all notes between low Bb
and E-natural, both staccato and legato. I then recorded the melodic minor scale beginning
on low B, rising a semitone each time as far as low E. In doing so I covered most of the
saxophone’s range and in all 12 keys.

5Bailey, Derek, Improvisation, 110.
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Figure 3.14: Lydian dominant scale, played staccato and legato.

Figure 3.15: Lydian dominant scale in 3rds, played staccato.

Figure 3.16: Lydian dominant scale in 3rds, played legato.

I then recorded some arpeggiated exercises based on these scales:

Figure 3.17: Arpeggiated B-flat lydian dominant exercise, played staccato.
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Figure 3.18: Arpeggiated B-flat lydian dominant exercise, played legato.

Figure 3.19: Inverse arpeggiated B-flat lydian dominant exercise, played staccato.

In the case of both the ‘Tone Rows’ and ‘Scales and Arpeggios’ datasets, my motivations
were twofold. Firstly, I wished to build on my practice routine by factoring in additional
challenges. Mainly though, I was motivated by the idea outlined in Chapter 1 of building
computational models of the process of practising and of the impact a practice routine has
on creative outputs. The possibility of modelling this process was an attractor to working
with the generative and predictive machine learning architectures explored in Chapters 5
and 6. I also simply wanted to create as much original training data as reasonably possible
so as to have multiple options for modelling later in the project.

3.3.2 Register-Specific Exercises and Improvisation

Lower Register Exercises and Improvisation

This dataset was the first of three in which I chose to focus exclusively on a specific
register of the saxophone.

The following two examples show the range of musical freedoms exercised within the
dataset, from stricter routines such as that in the first figure, to the more freely improvised
material in the following figure, where the only constraints are to use melodic material (as
opposed to timbrally-focused material) and to stick to the bottom (below middle-D) key
register of the tenor saxophone:
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Figure 3.20: In this example from the lower register dataset a cell of ‘1-2-4-5’ interval
structure is transposed up a semitone on each iteration.

Figure 3.21: More freely improvised material from the ‘Lower Register’ dataset.

Middle Register Exercises and Improvisation

In the sub-dataset focusing on the middle register there was a mix of exercise-like
material and more freely improvised phrases, with the two often combined. In figure 3.22
below, a semi-improvised phrase from the dataset is clearly based on a 1-2-4-5 melodic
shape (previously shown in an explicitly exercise-like format in Figure 3.20):

Figure 3.22: An example from the middle register dataset in which an improvised phrase
contains transpositions of a cell of ‘1-2-4-5’ interval structure.

A section of the dataset also contains quarter tone exercises as a precursor exercise to
the use of microtones in my improvisations, a fairly niche endeavour owing to the musical
territory microtones inhabit. Notably championed in improvised music by violist Mat
Maneri who was introduced to the concept by his reeds-playing father Joe, microtonal
pitch deviations on the saxophone can be achieved through contortion of the embouchure
and through non-standard fingerings, my preference being towards the latter. At the time
of recording this dataset I was trying to internalise a set of non-standard physical key
combinations that seemed to me the most immediately practical options for passing easily
between adjacent quarter tones. I did not manage to find a key combination for G quarter
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sharp, hence in the example below I skip between G sharp to G natural before resuming
the exercise.

Figure 3.23: A descending quarter tone scale exercise from the middle register dataset.

Upper Register Exercises and Improvisation

The upper register-focused portion of this dataset is significantly less improvisatory
than those focused on the lower or middle, for straightforward reasons. The most glaring
of these is that my technical flexibility in the false upper region of the saxophone is sig-
nificantly less than in the lower and middle registers. Secondly, my vocal range does not
extend upwards to anywhere near this portion of the instrument’s range, which results in a
less resonant tone than I am able to achieve in the lower regions of the instrument. Lastly,
I simply don’t hear much in the way of improvisatory material in this region, possibly
owing to it sitting so far outside of my vocal range (I like to be able to sing the things I
play). Much of my engagement with this region of the instrument is more motivated by a
desire for technical completeness and to keep up with the expected professional technical
standard on the instrument than by any wish to spend much time up there. For these
reasons, purely technical exercises make up the majority of this dataset.

In the examples below, exercises based explicitly on intervals of a major seventh and
major sixth respectively are practiced into the false upper register:

Figure 3.24: An ascending major 7ths exercise from the upper register dataset.

Figure 3.25: An ascending major 6ths exercise from the upper register dataset.
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3.3.3 Improvisation Datasets

These datasets contain recordings of the practise of solo improvisation, focused on two
distinct aspects of my practice which can most straighforwardly be characterised as melodic
and timbral improvisation.

There were several motivations for making these recordings. Balancing the content
of all my datasets was one: since those I had created up to this point consisted either
wholly or partially of exercises, it made sense to also have some consisting more of impro-
vised material. Another motivation concerned specific deep learning tasks that I was at
an early stage of acquiring knowledge of: for real-time discriminative tasks, for example,
it seemed important to have data that was representative of material I would realistically
play in a performance context; I was additionally excited by the possibility of generative
modelling of improvisation, unaware at this point of the practical challenges of modelling
more diverse audio datasets. An additional musical motivator, first signposted in Chapter
1, was a desire to engage more deeply with solo improvisation, an endeavour I had found
challenging. This area of practise correlates with what Bailey calls ‘the bridge between
technical practice and improvising’6.

In the following sections I will describe the characteristic contents of each dataset as
well as their idiomatic and cultural associations.

Melodic Improvisations

This dataset is comprised of mainly melodic musical material played with a largely
conventional instrumental technique. The content of this material is derived from a vari-
ety of sources. The post-bop vernacular, where chromatic enclosures decorate otherwise
recognisably tonal passages, pentatonic motifs frequently subjected to transpositions per-
taining to their implied key centres, and more abstract intervallic melodies inhabiting a
language closer to that of Schoenberg’s serialism and of course derived from my afore-
mentioned practice of tone rows. While examples of phrases based solely on each type of
material can be found, phrases are also often made up of combinations of these approaches.

In the extract below, a phrase clearly derived from combining ideas from the ‘6ths’ and
‘3rds’ tone rows illustrated in figures 3.1 and 3.4 is then answered with a second phrase
still referencing the ‘3rds’ tone row but clearly suggestive of a C major tonality with an
augmented fifth, providing some resolution to end the answering phrase:

Figure 3.26: A pair of tone-row derived question-and-answer phrases from the ‘Melodic
Improvisation’ dataset.

In this example, an E-flat minor pentatonic shape gives way to post-bop lines suggesting
B major, F minor and G melodic minor tonalities:

6Bailey, Derek, Improvisation, 110.
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Figure 3.27: A more post-bop-style phrase from the ‘Melodic Improvisation’ dataset that
passes through a number of implied key centers.

Where instrumental technique in this category could be said to deviate from the purely
conventional is in the use of the altissimo or ‘false’ upper register and in the occasional
use of microtones. False upper register playing requires the use of non-standard finger-
ings to exceed the saxophone’s intended upper register limit, but its use among tenor
saxophonists operating across musical genres is now so ubiquitous that to describe it as
a non-conventional technique seems outdated (use of microtones in improvisation on the
saxophone is described above in relation to figure 3.23 from the ‘Middle Register’ dataset).
The extract below, which is derived from the ascending major 7ths exercise shown in fig-
ure 3.24 earlier, illustrates my general approach to altissimo playing as a means to simply
extend the range of my usual phrases rather than as a distinct timbral effect or means of
projecting emotional intensity:

Figure 3.28: An example from the ‘Melodic Improvisation’ dataset with respect to figure
3.24 from the ‘Upper Register’ dataset.

Timbral Improvisations

This dataset is principally composed of a more timbre-based mode of improvisation in
which the ‘extended’ vocabulary of the saxophone, most commonly multiphonics gener-
ated by non-standard combinations of keys and concurrent manipulations of the breath and
embouchure, is emphasised. I present this aspect of my practice separately from melodic
improvisation not simply because of its ‘extended technique’ classification but also because
it represents an alternative way of thinking about the instrument: considering the saxo-
phone as a closed tube first from which holes are then vented. The musical territory these
techniques open up is quite distinct from jazz, sharing more in common with contempo-
rary music, sound art and free improvisation, and is an additional reason to consider them
separately.

A defining feature of this aspect of my practice is my tendency to either deploy these
sounds in a drone-like fashion or to apply rhythmic variations to multiphonics. In the first
figure below, a lower-register multiphonic is sustained, whereas in the second figure small
rhythmic variations are applied to the same multiphonics by quickly venting and re-closing
keys.
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Figure 3.29: A sustained multiphonic.

Figure 3.30: A multiphonic with rhythmic activity through key-venting.

A feature of multiphonics on the saxophone is their tendency to reveal themselves in
‘clusters’: once you find one, there is a good chance you will find others nearby. Another is
their tendency to bear close similarity either through pitch content or fingering to regular
notes on the saxophone, allowing for associations to be made. An example of both of these
features is notated below, in which a low E-flat is used as a springboard to multiphonics
both containing E-flat and with closely related fingerings:

Figure 3.31: A phrase containing three related multiphonics stemming from the conven-
tional E-flat fingering, as played in the Timbral Improvisation dataset.

Other multiphonics, however, bear little relation to conventional fingerings, have a
less rational spread of pitches and are probably better found through more randomised
experimentation:
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Figure 3.32: One of the more obscure multiphonics from the Timbral Improvisation dataset.

While I have personally found it preferable to discover multiphonics on the saxophone
through a mix of controlled and more randomised experimentation, others may find peda-
gogical texts to be useful resources; Daniel Kientzy’s ‘Les sons multiples aux saxophones’
stands out among available texts for its remarkable thoroughness and coverage of five
members of the saxophone family.7

3.3.4 Major-Key Fixed-Tempo Improvisation and Exercises

This dataset was created in response to the remit of contributing AI-generated saxo-
phone phrases to a pop song for submission to the 2021 AI Song Contest. A mix of loosely
defined exercises and more improvisational material was recorded according to the param-
eters of the proposed song, which were a tonal centre of concert G major and a tempo of
120 beats per minute.

Although I have significant past experience of playing and recording strictly tonal music
over the years in more commercial idioms than those I choose for my creative practice, I
have more recently grown accustomed to the tonal and rhythmic freedoms afforded by free
jazz and improvised music. As such, playing unaccompanied in the same key at the same
tempo for long stretches of time quickly became tedious. To add stimulation, I recorded
otherwise-similar material in the keys of concert G flat and A flat major before adjusting
their pitch to G major using Audacity’s built-in pitch shift algorithm.

The resulting raw dataset was just over 50 minutes of harmonically and rhythmically
consistent saxophone phrases and exercises.

In this first example a phrase derived from the dominant bebop scale on E7 gives way
to B minor pentatonic shapes. A rhythmic device popular with many contemporary jazz
saxophonists is used in which an eighth-note phrase is grouped by a compound rhythm, in
this case triplets:

Figure 3.33: An improvised phrase in concert G major with triplet groupings.

In this second example, a post-bop-styled phrase with chromatic enclosures around
7Kientzy, Daniel, Les sons multiples aux saxophones : pour saxophones sopranino, soprano, alto, ténor

et baryton’, Salabert, 1982.
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an Ama7 (at instrument pitch) tonality gives way to a descending 5-3-2-1 melodic shape
through the A major (at instrument pitch) scale in a style derived from Ornette Coleman:

Figure 3.34: An improvised phrase in concert G major.

3.4 Conclusion

In this chapter, I have provided insight to the musical contents of the audio datasets I
created for this project. The practical work described in this chapter fulfils the first of my
research objectives: it has resulted in several hours of audio data to work with and, cru-
cially, covers a range of aspects of instrumental practice, ranging from the purely technical
(as in the ‘Scales and Arpeggios’ and ‘Tone Rows’ datasets) through to the practice of solo
improvisation (as in the ‘Melodic Improvisation’ and ‘Timbral Improvisation’ datasets)
and points on the spectrum in between the purely technical and the improvisational (as in
the register-focused datasets and the ‘G Major’ dataset).

In fulfilling this first objective, the groundwork has been laid for answering the first
research question, ‘What are the practical implications of using recordings of systematic
instrumental practice on the saxophone as training data for deep learning models for ap-
plications in creative music practice?’ - having established a repository of recordings of
instrumental practice, it is now possible to move forward onto answering this question
more fully through experiments with modelling the data, and to address the remaining
two research questions outlined in 1.1. These datasets will be referenced throughout the
remainder of this thesis when discussing their use as training data for creating a variety of
statistical models through deep learning. Selected models trained on these datasets will in
turn form the basis for the creative works in the accompanying portfolio.

A selection of the datasets described in this chapter are available for others to download
and use at this HuggingFace repository:

https://huggingface.co/datasets/markhanslip/markhanslip_phd_saxophone_data



Chapter 4

Audio Classification in Practice:
‘SoloSoloDuo’

4.1 Introduction

This chapter presents an enquiry into the application of deep neural audio classification
to improvised instrumental practice. The goal here was to create a computational tool able
to distinguish the fundamental idioms within my practice with a view to this tool being
used to mediate interactions. I begin by discussing the musical rationale behind the choices
of categories in ‘SoloSoloDuo’ and for including the process of dataset creation within the
final piece. I then describe the various processes involved such as data preprocessing,
choosing an appropriate audio data representation and tuning its parameters, model ar-
chitecture and training parameters in light of their intended purpose. I then present two
versions of ‘SoloSoloDuo’, a structured improvisation for saxophone and computer which
represents these processes.

The research described in this chapter represents the first attempt to provide answers
to the first two research questions in 1.1, regarding the practicalities of training useful
machine learning models of instrumental practice and the potential creative applications
thereof. It represents the beginning of my efforts to address the second research objec-
tive of developing my understanding of and proficiency in the computational aspects of
this research - since classification tasks are often regarded as the ‘Hello World’ of ma-
chine learning1, it seemed a sensible place to start. Following on from this, the research
presented in this chapter and Chapters 5 and 6 fulfils the subsequent objectives of develop-
ing machine learning pipelines, training models, developing additional scripts for working
with the models, investigation of creative applications of the models and creation of audio
recordings and accompanying scores. It also begins to address the objective of develop-
ing code for the processes outlined in this thesis and making those available to others.
The processes described in this chapter can be found in the accompanying folder or at
https://github.com/markhanslip/PhD_Ch4_CNN.

4.2 Rationale

In this section I will discuss distinctions between the modes of improvisation that char-
acterise the ‘Melodic Improvisation’ and ‘Timbral Improvisation’ datasets and why these
distinctions translate to a valid use-case for neural audio classification.

The distinction between these two broad areas of my practice is, from my perspective
as the player, strongly embodied and based on my subjective experience. replacedTthe

1Unknown author, ‘Say hello to the "Hello, World" of machine learning’, webpage,
https://developers.google.com/codelabs/tensorflow-1-helloworld.
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distinction between conventional and so-called ‘extended’ instrumental techniques - stan-
dard and idiosyncratic – correlates with the contrasting physical sensations experienced
while improvising in each mode. The former, being more rhythmically active and based
largely on pitch relationships, emphasises technical fluency and dexterity in the hands,
with the fundamental concerns of breath and embouchure feeling more automatic and
subconscious. The latter relies more on internalisation of unconventional, comparatively
static finger positions and emphasises the role of the breath and embouchure, with non-
conventional manipulations of each required to produce certain sounds.

These experiential contrasts in turn speak to how I perceive these areas of my practice
and how I perceive my practice as a whole, much less to an analytical perspective. It
then follows that the task of creating an algorithm capable of delineating these two areas
is an appropriate one for deep learning processes. ‘Human-level’ tasks such as this that
would seem unreasonably complex to computationally model via a hand-coded program
are especially suitable for deep learning-based approaches, the thinking being that if a
human can differentiate between two approaches, then a deep learning model can also be
trained to do so. It seemed therefore clear to me that differentiating these two musical
areas was a valid use case for neural audio classification.

4.3 Technical Processes

In this section I will describe steps taken to create a discriminative model of the melodic
and timbral improvisation datasets. These include preparing the raw audio files to make
them suitable for use as classification data, augmenting the data to improve model per-
formance, selecting an appropriate input representation and parameters thereof, and some
practicalities of model training.

4.3.1 Data Pre-Processing

It stands to reason that the dataset should not contain any significant periods of si-
lence, as they are tangential to the core task of differentiating musical content and would
negatively impact model performance. Recalling the initially proposed use case of real-
time inference over a live audio input, there are straightforward means by which silences,
which would not be passed to the classifier, can be detected and filtered, such as using loud-
ness analysis in combination with an amplitude threshold. Therefore the first preprocessing
step was to remove any periods of silence according to given amplitude and time thresholds.

To maximise dataset size and hopefully improve model performance, the input audio
was augmented by pitch shifting it by one semitone in either direction and concatenating
the resulting audio, effectively increasing dataset size by a factor of three.

4.3.2 Data Representation

When choosing an audio representation and parameters therein, a key factor was per-
ceptual validity: ensuring that the musical content contained within the representation
is preserved. To first choose which input representations to experiment with, I consulted
existing research on audio classification.

Muhammed Huzaifah surveyed a range of input representations for environmental au-
dio classification tasks2, favouring the commonly-used mel spectrograms but also positing
that constant-Q transform (CQT) spectrograms may be better suited to musically focused
discrimination tasks. After a period of my own experimentation with a range of input

2Huzaifah, Muhammed, ‘Comparison of Time-Frequency Representations for Environmental Sound
Classification using Convolutional Neural Networks.’



52

Figure 4.1: Flow diagram showing all stages of pre-processing the training data for this
audio classification task.
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representations, while mel spectrograms performed significantly better than STFT spec-
trograms there was a further improvement in classification accuracy when using the CQT
for this task.

This makes sense considering that the CQT transform’s use of variably-sized wavelets
takes into account the greater perceptual significance of lower frequencies (i.e. the gap be-
tween two lower frequencies is perceptually and musically more important than the equiv-
alent gap between two higher frequencies). This musically- and perceptually- motivated
variable time/frequency resolution would appear to be the CQT transform’s advantage
over other input representations for my use-case and I would imagine other musically- and
perceptually- motivated classification tasks.

When experimenting with input representations and tuning their parameters, a key to
ensuring preservation of musical content was the use of the Griffin-Lim method3 4 to check
for invertibility, ensuring audio spectrograms could be rendered back to their original audio
content without excessive distortion of musical content.

Source audio from each class is separated into 32768-sample-long segments. Parameters
for spectrogram generation are set to hop length 512, with the minimum frequency set at
50Hz to accommodate the lowest register of the tenor saxophone and ensure preservation
of musical information, and resulting in 64x64 pixel-sized CQT spectrograms. Since at the
time I was developing this process with the idea of training a model for live performance,
I was keen to minimise spectrogram processing times as much as possible; to this end, I
wanted a package that would improve on Librosa’s5 speeds, since the CQT is computation-
ally intensive and time-consuming. This is not to criticize Librosa - their library contains
ingenious use of the Numba project6 for just-in-time compilation - but I found that spec-
trogram calculation and render time could be significantly lowered by using the nnAudio
library7 which offers a speedup versus Librosa of around a factor of 4 in this instance as it
is able to leverage GPU computation.

CQT parameters used were tested to ensure that the spectrogram transforms could
be inverted and rendered back to audio (using Librosa’s Griffin-Lim CQT method) while
preserving the core musical information, the intention again being to ensure all data passed
to the model for training is perceptually representative.

Figure 4.2: CQT spectrograms of melodic saxophone improvisation.
3Griffin, D.W and J. S. Lim, ‘Signal estimation from modified short-time Fourier transform,’ ASSP 32,

no.2, EEE Trans., Apr, 1984, 236-243
4Perraudin, N., P. Balazs and P.L. Søndergaard, ‘A fast Griffin-Lim algorithm,’ IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, Oct, 2013, 1-4
5McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol

Nieto, ‘Librosa: Audio and Music Signal Analysis in Python.’, Proceedings of the 14th Python in Science
Conference, pp. 18-25. 2015.

6Kwan Lam, Siu, Antoine Pitrou and Stanley Seibert, ‘Numba: a LLVM-based Python JIT compiler’
in LLVM ’15: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, ACM
Digital Library, Nov 2015, Article 7, 1-6.

7Cheuk, Kin Wai, Hans Anderson, Kat Agres and Dorien Herremans, ‘nnAudio: An on-the-Fly GPU
Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks’, IEEE Vol. 8, Aug
24, 2020, 161981-162003.
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Figure 4.3: CQT spectrograms of timbral saxophone improvisation.

In the second iteration of this work a further data preprocessing step was taken in
the form of applying salience modelling to the transformed CQT data, a technique more
commonly used in polyphonic music transcription tasks8. This was in response to an issue
encountered whereby an accurate classifier could be trained and interacted with in one
session, but then the same model would not perform as well when I came back to use it
in a different session. This I attributed to CQT’s inherent sensitivity to variables such as
environmental conditions, recording levels, microphone position, my reed, etc. As can be
seen in the spectrograms in the figures 4.2 and 4.3 above, a good deal of noise is captured in
addition to more pertinent musical information. Using Librosa’s ‘harmonic salience’ func-
tion filters out this extraneous information, as can be seen in the salience spectrograms
below.

Figure 4.4: salience-modelled CQT spectrograms of melodic saxophone improvisation.

Figure 4.5: salience-modelled CQT spectrograms of timbral saxophone improvisation.

Curiously, the difference between the two categories is, looking at the salience spectro-
grams above, much less clear to the human eye than in the CQT spectrograms in figures
4.2 and 4.3. Training statistics were also not especially encouraging when I trained a model
on this variant of my data. In practice though, it proved possible to train a classifier on
salience spectrogram data that was sufficiently robust in practice - besides basic classifica-
tion accuracy being ‘good enough’, it was also, crucially, less sensitive to acoustic variations
than those trained on ‘normal’ CQT spectrograms. It proved possible to train a usable clas-
sifier with this approach on data recorded three years prior using a different microphone,
saxophone and reed-mouthpiece configuration, effectively providing a workable solution to
the issue of acoustic sensitivity of spectrograms for on-the-fly audio classification.

4.3.3 Model Architecture

After early experimentation with deep model architectures such as DenseNets9 and
ResNets10, I opted for a 2-layer convolutional neural network architecture optimised for
64x64 images. This choice was informed by not wishing to resize the spectrograms and by

8Bittner, Rachel, Brian McFee, Justin Salamon, Peter Li and Juan P. Bello, ‘Deep Salience Represen-
tations for F0 Estimation in Polyphonic Music’, Proceedings of ISMIR 2017: 18th International Society
for Music Information Retrieval Conference, Suzhou, China, Oct 23-27, 2017.

9Huang, Gao, Zhuang Liu, Laurens van der Maaten and Kilian Q. Weinberger, ‘Densely Connected
Convolutional Networks’, unpublished paper, arXiv:1608.06993.

10He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun, ‘Deep Residual Learning for Image Recog-
nition’, unpublished paper, arXiv:1512.03385.
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an approach recommended by Andrej Karpathy11 of ensuring that the dataset and train-
able model weights are of similar size; taken at face value this suggests that roughly 60
minutes of audio data (after resampling, augmentation, and conversion to spectrograms) is
an appropriate amount to the model’s 4.36MB of trainable parameters, which in practice
I think should be considered a bare minimum.

The commonly used Adam optimizer is favoured, the learning rate of which is set to
1e-4; further compensation for the small dataset size is added to the optimizer in the form
of an L2 penalty value of 1e-4. While CUDA acceleration can be used to keep training
times low, the model architecture is sufficiently shallow to be trainable in a modern CPU.

4.3.4 Inferring the Class of a Live Input Segment

When inferring over a live input, an audio stream is opened from which a 32768-long
window is preserved. This audio segment is first analysed for loudness. If the loudness ex-
ceeds a given threshold then the program effectively determines that the input corresponds
to musical action on the part of the improviser proceeds to the next stage; otherwise, no
further consideration is given to the current input segment, the program loop reverts to
the beginning and a new audio segment is recorded.

If the next stage is reached, the segment is converted to CQT spectrogram using the
same parameters as those the model was trained on, and the model infers which solo the
segment is most similar to. To mitigate false classifications and improve robustness, only
the second consecutive classification of the same category is deemed to be definitive and al-
lows progression to sample playback, otherwise the loop reverts as if no input was received
or as if no class was confidently inferred. This step is necessary since there is no guarantee
that the recorded window leading to the first classification contains enough relevant musi-
cal information to confidently predict the mode of playing; using the second classification
improves confidence in the classifier’s output.

Figure 4.6 describes the inference process in the context of the live interactive loop per
the first iteration of SoloSoloDuo (‘SoloSoloDuo_v1.wav’ and ‘SoloSoloDuo_v1.mp4’).

Additional Filtering and Differentiation

In the first version of ‘SoloSoloDuo’ interactivity is almost entirely driven by the clas-
sification output alone, as described in figure 4.6. While there is a pre-classification filter
in the form of a loudness threshold to ensure that a process would not be triggered by an
environmental sound, sample selection is only governed by the classifier’s output and the
system’s response was only randomly selected from the samples within the inferred class’s
corresponding sample folder.

The lack of any additional differentiation of samples meant the system was, in this first
iteration, unpleasantly jarring to play with, to a degree that made putting this work into
practice not especially enjoyable. While I could see some musical interest in the inter-
ruptive modality generated by this environment, I wanted to make the system feel more
natural to play with and the generated outputs more musically coherent. To this end I
added analyses of both the sample sets and live input.

At the stage of sample set creation and model training, two lookup tables are created
into which key-value pairs of filename:analysis are entered. For the melodic category, fre-
quency analysis is performed on each sample; for a single sample, the resulting frequency
array is converted to MIDI note format for linearity and rounded to one decimal place

11Karpathy, Andrej, ‘The Unreasonable Effectiveness of Recurrent Neural Networks’.
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Figure 4.6: Flow diagram showing the inference process in the first iteration of SoloSolo-
Duo.
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to accomodate the quarter tones I preferred. Discrete differences along the length of this
array are calculated, resulting in an array of values for the change between one pitch value
and the next. This array is then parsed pair-wise according to the rule set below.

For a given pitch:

• If the next pitch is greater or less than the previous by 0.5 or less (equivalent to a
quarter tone), then 0 (ie no onset detected);

• If the next pitch is greater or less than the previous by more than 0.5, then 1 (onset
detected);

• If the current pitch is 0 (no pitch found, ie silence) and the next pitch is 0, then 0
(no onset detected);

• If the current pitch 0 and next pitch is 44 (bottom b-flat on tenor saxophone) or
greater, then 1 (onset detected)

The underlying assumption here is that a substantial change of pitch (i.e. close to a
semitone) in either direction represents an onset. This could equally be described as a note
of melodic-rhythmic significance or a ‘note event’.

The binary array this effective pitch-based onset detector outputs is then padded with
a single zero at each end to make it the same length as the original pitch array. It is then
multiplied element-wise by the pitch array. This processing stage outputs an array of zeros
(no musically-significant pitch detected) and MIDI note values which are effectively the
melodically salient note events. 12

Here it is used to extract the first significant pitch, last significant pitch and number
of significant pitches in a given phrase sample. This process is repeated over the entire
melodic sample set and the resulting data is saved in a lookup table.

During interaction, the same process is applied on-the-fly to the recorded live input
segment. If the classifier deems the input to be ‘melodic’, the program then performs this
same process of pitch-based onset detection to the live input segment. It then tries to find
a close match between the last pitch of my live input and the first pitch of a sample in the
‘melodic’ category’s sample set and selects it for playback.

While this process was effective in creating a more natural-feeling interaction when
playing melodically, finding an equivalent method for mediating sample selection from the
‘timbral’ category proved more challenging. The seemingly obvious choice of Mel Fre-
quency Cepstral Coefficients (MFCCs), which return information about the rate of change
in a signal’s frequency and are widely considered a useful measure of timbre, turned out
to be a mismatch with my preferred window size of 32768 samples or approximately 1.4
seconds, since a core assumption of using MFCCs for timbre analysis is that the content
within a given window consists of a single sound.

In the end I opted for simple amplitude analysis over more sophisticated feature ex-
traction. While amplitude alone does not typically return much useful information about a
signal’s perceptual content, here it is appropriate given the somewhat fixed nature of multi-
phonics on the saxophone; given the necessary manipulation of air stream and embouchure
required to generate many of my preferred multiphonic timbres in the first instance, there
is then very little room for further manipulation of the sound and so the majority of these

12This method of extracting musically salient information using only frequency analysis has also proved
useful for dataset creation in the symbolic domain and will be revisited in Chapter 6.
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sounds tend to occupy their own somewhat narrow and inflexible amplitude range.

To extract the most salient amplitudes of each sample I opted for isolating its loudest
window given a window size of 160 milliseconds (the Praat-Parselmouth analyzer13 14 I used
measures analysis step size in time, not samples). Similarly to the steps outlined above, this
value is stored in a lookup table; during interaction the same analysis is performed on the
live input and used to find the closest match. While not quite as effective as the equivalent
process for finding more musically appropriate playback samples for the melodic category,
this process mitigated the jarring effects of only relying on the classifier’s inferred class
output for sample selection in the timbral category and made the system more enjoyable
to play with.

4.4 Musical Applications

4.4.1 ‘SoloSoloDuo’

‘SoloSoloDuo’ is an interactive structured improvisation that consolidates the processes
described in this chapter. Each section is improvised according to its place in the schema
which can be seen in its corresponding score. The first improvised ’Solo’ section is in a
style consistent with the ‘Melodic Improvisation’ dataset while the second is in the manner
of the ‘Timbral Improvisation’ dataset. The third ‘Duo’ section is an interactive duet with
samples taken from each ‘Solo’ section, with the interactions mediated by the classifier
and, in version 2, additional frequency analysis and pitch-based onset detection of both
the live input and samples.

The goal of this piece was, initially, to create a virtual improvising partner with whom I
could at least practice or ideally make music with. Later in the process, once the interactive
loop needed for the duo section was fully functioning, my focus shifted towards realising
the piece and the goal became more about creating a musical representation of processes
behind deep learning classification. As such, the influence of the discriminative model on
this musical output goes beyond its role as the central component of the interactive software
created to realise it. The process of pre-assigning data classes, creating the training data,
training the model and using it to classify unseen inputs (commonly referred to in machine
learning-speak as ‘inference’) defines the structure of the piece itself, in which the two solo
sections can be seen to represent dataset creation and the duo section representing the
inference process.

Version 1

Version 1 of ‘SoloSoloDuo’ was premiered at the AIMC 2022 conference, organised by
researchers based at the Riken Institute in Japan but hosted online owing to the uncer-
tainties around Covid regulations at the time of planning. In order to present this work in
a format suitable for online presentation I created an audiovisual version.

The visual aspect was achieved with a combination of technologies. Fistly I created an
amended version of Derrick Schultz’s ‘Rocks’ dataset, re-rendering the images in grayscale,
inverting them and enhancing the black background where necessary; I did this so that im-
ages could be faded to black to correspond with the ends of musical phrases. I then trained
a StyleGAN215 model on this dataset using transfer learning from a pretrained model of

13Boersma, Paul and David Weenink, Praat, version 6.3.09, computer software,
https://www.fon.hum.uva.nl/praat/

14Jadoul, Jannick, Bill Thompson and Jan de Boer, ‘Introducing Parselmouth: A Python Interface to
Praat’, Journal of Phonetics 71 (2018): 1-15.

15Karras, Tero and Janne Jellsten, ‘Training Generative Adversarial Networks with Limited Data’
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the ffhq-1024 dataset. I then used this model in combination with Mikael Alafriz’s ‘Lucid
Sonic Dreams’ program16 and the recorded audio to create the raw audiovisual output
before editing the videos so that the rocks only appear during musical events.

When recording version 1, I felt that the interactions, despite the mediating influence
of the classifier, were jarring and frequently too tangential to the input. In order to remedy
this I added the processes described in the section ‘Additional Filtering and Differentiation’
to the interactive loop script and re-recorded ‘SoloSoloDuo’, the result of which is described
in the section on version 2.

Version 2

Version 2 of ‘SoloSoloDuo’ follows the same schema as version 1 and in fact begins with
a very similar phrase. This use of a stable starting point for improvisation hints at the use
of composition as a jumping-off point for improvisation that will be explored in Chapter
5’s outputs ‘Lrrning’, ‘Gander’ and ‘The Lows’.

Of the additional filtering incorporated to the interactive loop in this version, I found
the pitch-based onset detection used to mediate melodic interactions to be successful.
Finding an output response sample with a starting pitch as close as could be found to the
end pitch of the last input segment made the interactions feel significantly more natural
and made for a more enjoyable playing experience. The amplitude-based filtering used to
mediate playing in the timbral category was less succesful however, at first resulting in
only a narrow range of the sample outputs ever being used. To mitigate this I expanded
the threshold for finding an amplitude-based match to a degree where it was questionable
that the filtering was really playing that much of a role in the interactions. Overall though,
both melodic and timbral interactions felt significantly more natural than in version 1.

The time period between recording the two versions of ‘SoloSoloDuo’ allowed for some
emotional distance from the feeling of my improvisational efforts being thwarted by the
insensitive computer in version 1. This perspective led me to reflect that what had been
perceived as overly jarring could be reframed as being in a permanent mode of ‘interrupt-
type’ ideas generation. Looking at the interactions in this way helped me to compose myself
during the interactive phase of version 2 and to embrace this interruptive modality as part
of the piece’s aesthetic. Combined with the more natural-feeling interactions effected by
the additional filtering, this resulted in both a more enjoyable playing experience and better
musical outcome in my view.

Further Reflection

When considering how the process of creatively engaging with deep learning classifica-
tion and machine listening has influenced both the compositional structure of ‘SoloSoloDuo’
and its aesthetic, I find resonance with Mark Fell’s assertion that ‘for [him], aesthetic po-
sitions are just a side effect of using technologies - of exploring materials, processes, tools
and their interactions’17. The aesthetic of ‘SoloSoloDuo’ is effectively the result of an ex-
ploration of how these technologies intersect with fundamental aspects of my instrumental
practice. How the use of a classifier with a large analysis window, combined with phrase-
level chunking for playback, creates an angular, interruptive aesthetic and, at points, the
effect of having been multi-tracked; how the representation of the data classes in the solo
sections give the piece its structure and define, to varying degrees, the content of each sec-
tion; how my emotional responses to the interruptive modality of the ‘Duo’ section create

16Alafriz, Mikael, ‘Introducing ‘Lucid Sonic Dreams’: Sync GAN Art to Music with a Few Lines of
Python Code!’.

17Fell, Mark, Structure and Synthesis: The Anatomy of Practice (Urbanomic, 2021), 20
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space and contrast: these are interactions between the familiar materials of an existing
practice and unfamiliar processes and tools.

Andrea Parkins’ description of her own journey from playing acoustic piano to working
with custom-made software resonates with this last point about emotional responses to the
technology shaping the music’s character: she describes noticing ‘the effort a (my) body
must make in order to play my instruments, and how .. an immediate electronic gesture
.. can thwart this effort .. creating new (unforeseen) ways to make sound and to listen.’18

Given my own past as a predominantly acoustic instrumentalist, barring occasional perfor-
mances with electronic musicians such as Federico Reuben, and that ‘SoloSoloDuo’ repre-
sents one of my first self-directed forays into the use of digital technology and custom-made
software, this description of the the jarring nature of early encounters with such technolo-
gies and of the new artistic territory they can eventually open up feels especially apt.

Fell’s positioning of aesthetic outcomes as being a side effect of exploring technolo-
gies, processes and materials and Parkins’ experiences of opening up unfamiliar modes of
music-making through (not always easy) encounters with new technologies are, for me,
intertwined. While I am in agreement with Fell’s position on aesthetic outcomes, his
work tends to centre consistently around certain processes (granular synthesis) and tools
(MaxMSP and associated external plugins) in which he is well-versed, whereas this thesis
is in part an exploration of the interaction of familiar materials with less-familiar processes
and tools. Parkins’ more open, experimental approach, taking in a more diverse range of
technologies and resulting in a diversity of uncomfortable-yet-creative encounters, has more
in common with my approach on the processes and tooling side. These ideas are pertinent
to the majority of work in the portfolio in the sense that their aesthetic positions are the
results of exploring the interaction of deeply familiar materials and unfamiliar technologies,
through a series of not-always-comfortable creative encounters.

4.5 Conclusion

By now it should be apparent that this initial interaction with the world of machine
learning and making digital tools for music was a fairly uncomfortable music-making ex-
perience, and the chapters that follow can be seen to represent a journey of seeking out
more rewarding encounters with deep learning technologies. That said, there is reward in
reflecting on the artistic and technical insights generated through making of this piece.

Artistically speaking, this encounter with deep learning classification for musical in-
teraction, while uncomfortable for reasons already explored, represents what to me is an
important first step into an experimental music-making modality in which the aesthetic
outcome is essentially the result of sometimes difficult interactions between my existing
musical materials and unfamiliar technologies and processes. While it might seem odd for
an improviser to speak of ‘experimental music-making’ as a new process it occurs to me
that the acoustic group improvised music with to which I was already habituated is in
some ways less experimental than the approach taken in this chapter. Generally speaking,
in group improvised music the aesthetic positions of the players are well known in advance,
and while the course that the music will take is unknown, an amount of what the perfor-
mance will sound like can often be inferred in advance, especially when participants have
shared histories. Interacting with a new technology forced me to adjust my expectation
of what musical interactions feel like, and the interruptive modality the majority of these
interactions inhabited is I think, on reflection, one of the more interesting aspects of the
piece. A less fraught way in which the technology influenced the piece is in the classification

18Parkins, Andrea, ‘Nothing To Be Scared Of’ in Grounds For Possible Music: On Gender, Voice,
Language and Identity ed. Julia Eckhardt (Errant Bodies, 2018), 132.
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process’s suggestion of compositional structure; in this sense, the piece is less experimental
than an improvisation in which the overarching structure of a piece is, generally speaking,
not known in advance.

On the technical side, a clear application of neural audio classification to interactive
improvised practice is the reduction of need to hand-craft a machine listening process for
cases where a solution would be prohibitively difficult or where the user does not feel
equipped or motivated to engage in such work. Such tools can form the basis of new inter-
faces for human-computer interactions and the development of compositional structures,
an example of which has been presented in this chapter.

For interactive application, it is of course necessary to train the classifier on the kinds
of material it will be expected to differentiate at the point of usage. While this implies to
a degree that one can improvise naturally when recording classification datasets, there is a
need to provide clarity that in practice implies constraining oneself in order to stay within
the bounds of what is being classified. Some improvisers might object to this curtailing
of their natural playing instincts and to placing aspects of their practice within rigid cat-
egories, but for me it has proved a worthwhile and instructive exercise.

The process of building and interacting with the tools used in ‘SoloSoloDuo’, where
the use of the trained classifier implies the ability to switch freely between categories and
have the computer respond in kind, encouraged me to do exactly that, suggesting fresh
recombinations of familiar improvisational material. This raises the idea of deep learning
models of audio as teachers.

As can be seen in the programs developed in this chapter, a trained classifier can form
the basis for and backbone of an interactive tool, but in my case and in likelihood others, it
is insufficient by itself in practicality. Both before and following the classification process it
proved necessary to add machine listening functionality such as amplitude thresholding to
filter out silences and frequency and amplitude analysis for further differentiation of each
category. Programmatic techniques such as the counter used to mitigate the unwanted
effect of false categorisations were also found to be necessary. However what the trained
model does do that these filtering steps do not is be suggestive of musical structures that
in its absence would not have occurred to me. This again raises the idea of using an audio
model as a creative assistant: as a generator of ideas and conceptsreplaced.; I will return
to this theme in the next chapters.



Chapter 5

Generative Modelling of Raw Audio
in Practice: Interactive Duos,
‘Workshop’ pieces, Compositions for
Solo Improvisation

5.1 Introduction

This chapter presents an inquiry into creative musical applications of two deep learn-
ing architectures for unconditional raw audio generation, SampleRNN and WaveGAN. I
train SampleRNN and WaveGAN models of datasets presented in Chapter 3, exploring
training parameters and arriving at assumptions about training configurations in the pro-
cess. Model architecture behaviours are discussed in light of their generated samples and
how these relate to the ground truth data; lessons from modelling some external datasets
are also outlined. Outputs from each model architecture are first applied in interactive
contexts that draw upon the work in Chapter 4. They are then used as bases for elec-
troacoustic compositions ‘Workshop I’ and ‘Workshop II’ which illustrate the process of
using curated samples as source material for practice exercises. Samples from WaveGAN
and SampleRNN models of external datasets are layered and looped in ‘Gandering 1’, an
audiovisual composition. Finally, generated samples are transcribed and arranged into
compositions that act as springboards for solo improvisation. The work in this chapter
generates knowledge of good practices for creating datasets for generative modelling, of
these model architectures’ behaviours and of their applications to a range of experimental
music practices; these insights have the potential to help make dataset creation, model
training and useful creative work with their outputs more reasonably practical endeavours.
It also generates knowledge of the potential applications of this category of deep learning
architecture to instrumental practice, improvisation and composition.

5.2 Rationale

Generative deep learning can be characterised as the process of seeking a generalised
probability distribution over a given dataset1 and prompting the resulting statistical model
to generate new material; in the best case, this new material is not simply a regurgitation
of the input dataset but possesses some novelty of content and/or character. Similarly, Yin
et al characterise this distinction as the difference between a generative model’s outputs
‘imitating’ and ‘stealing’ from the dataset, which are cast in a positive and negative light
respectively. In their formulation, the desired ‘imitative’ result implies sounding like but

1Sander Dieleman, ‘Generating Music in the Waveform Domain’, https://sander.ai/2020/03/24/audio-
generation.html.
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not copying from the dataset2.

To a practitioner of improvisation, the process of generative deep learning is attractive
in that it offers the potential to generate outputs which, while based on recordings of in-
strumental practice, are a product of those inputs that I would not necessarily think to
play myself. As noted in Chapter 1, an early motivator for this project was the idea of
building computational models of the process of practising and the impact practising has
on improvised outputs. The possibility of modelling this process to generate new musical
ideas was a strong attractor to generative machine learning models: I consider it a great
strength and appeal of the generative modelling process to be the opportunity to explore
a dataset and by implication the musical space the data inhabits. I will consider this idea
further as inputs and outputs are discussed.

Statistical models of raw audio also offer the musician the enticing possibility of greater
‘expressive’ potential in computer generated samples, since the raw signal contains all of
the complexity and nuance of instrumental timbre and the instrument’s ‘action space’3.
This is especially important when attempting synthesis of the sound of an instrument
as complex as the tenor saxophone, whose lack of uniformity of sound production and
complexity of transients are not well captured by conventional synthesis methods.

5.2.1 Early Experiments

In my earliest experiments with WaveGAN, its capacity to generate fake saxophone
samples that, while noise-laden, are both musically plausible and, crucially, novel, was ev-
ident; through the noise I could hear the content of my practice being recombined in ways
that sounded fresh, exciting and unfamiliar to me. The simple fact that it was generating
surprising saxophone lines that were of course based on a probability model of my own
recorded inputs was plenty justification for pursuing working with this model architecture
further.

Another aspect of WaveGAN that struck me early on was its speed of sample generation.
While training a model takes several hours even when using relatively efficient parameters
and downsampled data, the process of passing a noise vector through the trained genera-
tor weights resulting in a usable audio vector is trivially fast - measurable in milliseconds
rather than seconds, assuming that the trained generator has already been loaded into
RAM. This is obviously attractive from a simple efficiency and convenience perspective,
but it also meant that samples could be generated on-the-fly inside an interactive loop.
This idea of having a trained model that could generate content very quickly on demand
further underlined this model architecture’s potential as a creative tool.

By contrast, early experiments with training SampleRNN models on my data revealed
almost an opposite set of attributes. This model architecture’s ability to render clean,
realistic-sounding waveforms, particularly in the lower register of the tenor saxophone,
was striking; the presence of breath and key-click sounds in the rendered waveforms con-
tribute a lot to this realism. Initial outputs also had a naive, undemonstrative character
that I found pleasant to listen to and a welcome contrast with WaveGAN’s noisy, more
aggressive-sounding outputs. However, these initial SampleRNN outputs were poor in
terms of modelling musical content: content-rich melodies were reduced to vague, scribbly
gestures and the more subtle 2- and 3-note multiphonics were rendered as single notes, a

2Yin, Zongyu, Federico Reuben, Susan Stepney and Tom Collins, ‘Measuring When a Music Generation
Algorithm Copies Too Much: The Originality Report, Cardinality Score, and Symbolic Fingerprinting by
Geometric Hashing’ in SN Computer Science 3:340, SpringerLink, Jun 2022.

3Sander Dieleman, ‘Generating Music in the Waveform Domain’, https://sander.ai/2020/03/24/audio-
generation.html.
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consequence of SampleRNN’s small context window.

On balance though, there was more than sufficient interest in the generated outputs
from models trained using each of these architectures to justify further investigation into
their possibilities.

5.2.2 Practical and Environmental Issues with Modelling Raw Audio

Generative models of raw audio are energy-hungry4. Since the raw audio waveform,
consisting of tens of thousands of amplitudes per second, results in very large datasets by
default, successfully building computational models of these datasets requires model ar-
chitectures with a correspondingly high number of trainable weights. For the practitioner
wishing to explore these tools, this translates to needing access to high-performance GPUs
and being able to run them for several hours at a time. An additional complicating factor
was a need, in the early stages of engaging with these large model architectures, for fast
experimentation, a need incompatible with the use of HPC cluster infrastructure. Training
generative machine learning models of raw audio therefore raised practical issues of access
to the required hardware and electricity and some additional discomfort around the
replacedenvironmentalethical issues concerning their energy consumption.

To address the need for fast experimentation, I took the step of building a Linux ma-
chine with a 24GB Nvidia RTX Titan GPU. Once I felt I had a handle on the process of
training these models, I then decided to use Google’s Colab service5. Using this service
in conjunction with a Google Drive account also provided a convenient storage solution
and allowed me to train multiple models simultaneously, speeding up the process of exper-
imenting with parameters and finding a good model. My move to Colab was also partly
motivated by recent increases in energy costs. Using GPUs provided by Google’s cloud
services at least partly addresses the environmental issue by using pre-existing hardware
infrastructure located in Google’s data centres; these are subject to environmental reg-
ulations and, being industry servers, are designed with efficiency in mind. According to
the online machine learning emissions calculator tool presented by Lacoste et al6, they are
also apparently carbon-offset. By way of addressing the practical issue of time and further
mitigating the emissions issue, I resolved to find training parameters that, as far as was
reasonable without compromising audio output quality, minimised training times.

5.2.3 Related Model Architectures

Developments in the field of deep learning research for audio, as with most fields in
which it is being applied, are at the time of writing fast-moving. When I began this work,
WaveGAN and SampleRNN were, along with WaveNet7 (a functioning implementation of
which I struggled to find during this period of my research), the clearest available options
for training generative models of raw audio.

Since that time other model architectures have emerged. The most visible and talked-
4Douwes, Constance, Philippe Esling and Jean-Pierre Briot, ‘Energy Consumption of Deep Generative

Audio Models’, proceedings of ICASSP 2022: EEE International Conference on Acoustics, Speech and
Signal Processing, Sand Expo and Convention Centre, Singapore, 22027 May 2022.

5Unknown author, webpage, https://colab.google
6Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres, ‘Quantifying the Carbon

Emissions of Machine Learning’, unpublished paper, arXiv:1910.09700.
7van den Oord, Aaron, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal

Kalchbrenner, Andrew Senior and Koray Kavukcuoglu, ‘WaveNet: A Generative Model for Raw Audio’,
Deepmind, blog post, September 8, 2016 https://www.deepmind.com/blog/wavenet-a-generative-model-
for-raw-audio.
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about of these is RAVE from IRCAM’s ACIDs team8. Despite a strong urge to engage
with RAVE, finding sufficient research time to experiment with and create music using
this model proved tricky. This is in part because RAVE is significantly more data-hungry
than WaveGAN or SampleRNN, requiring datasets of several hours in length and careful
curation of data content. Training times can also vary between 3 or 4 to 7 or 8 days
depending on the size of the dataset, whereas it is possible to train WaveGAN and Sam-
pleRNN models in a few hours.

These practical considerations have led me to consider that while, based on its appar-
ent capabilities and publicly available results with the author-created ‘Darbouka’ dataset,
RAVE is a highly compelling model architecture that deserves investigation of its possibil-
ities by musicians and practitioner-researchers, the practical obstacles to creating suitable
datasets and training RAVE models on them make it almost deserving of a dedicated re-
search project.

Another very different option for modelling raw audio signals is Catch-A-Waveform9,
an adaptation of the SinGAN10 image-generating model architecture which generates vari-
ations on a single image input. While the convenience of this model architecture’s low
data length requirements - it can be trained on a single audio file lasting a few seconds -
was initially attractive, I found in early experiments that despite its long training times
it only generated minimal variations on the input material, with those variations insuffi-
ciently interesting to my ears to be creatively useful. Early experiments with longer inputs
resulted in GPU out-of-memory errors. However in more recent experiments, aided by the
advent and availability of Nvidia’s 40GB A100 GPU, I have been able to train models
of longer inputs with a longer context window that generate more interesting variations.
These recent outputs also have better audio fidelity than WaveGAN, despite their archi-
tectural similarities. A fuller exploration of Catch-A-Waveform’s potential as a creative
tool is outside of the scope of this thesis and is a strong candidate for future work.

5.3 Technical Processes

5.3.1 Dataset Pre-Processing

A principal challenge of training large generative models is acquiring or creating co-
herent datasets of sufficient size. To this end, I applied processes of data augmentation to
each dataset. In earlier experiments I pitch-shifted each dataset by a semitone in either
direction, the rationale being that doing so increases data size while retaining musical plau-
sibility, and without introducing digital artefacts as would be the result of more drastic
pitch shifting by a wider interval. Doing so increases the quantity of input data by a factor
of 3, albeit artificially; in the case of a very short initial recording, this could be pushed
further by applying an additional semitone in either direction to increase dataset size by
a factor of 5. In later experiments I found that when training models with SampleRNN,
time stretch augmentation yielded much better outcomes than pitch shifting, a point I will
return to in the ‘Behaviour’ section later in this chapter.

Additional augmentation can be applied by inverting the audio waveform’s polarity.
The rationale here is that although polarity-inverted audio is perceptually indistinguish-
able from its inverse, the resulting sequences are novel in terms of their data content; this

8Anton Caillon and Philippe Esling, ‘RAVE: A variational autoencoder for fast and high-quality neural
audio synthesis’.

9Gal Greshler, Tamar Rott Shaham and Tomer Michaeli, ‘Catch-A-Waveform: Learning to Generate
Audio from a Single Short Example’.

10Rott Shaham, Tamar, Tali Dekel, Tomer Michaeli, ‘SinGAN: Learning a Generative Model from a
Single Natural Image’, unpublished paper, arXiv:1905.01164
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approach effectively increases the dataset size by a further factor of two. As an example,
applying this process to 30 minutes’ worth of recordings, after two pitch-shift or time-
stretch augmentations, results in 3 hours of input data.

The rationales for these augmentations are twofold. Firstly, enlarging my datasets in
this fashion accords with my own observations of achieving better training metrics and
results when erring on the side of more data and greater cohesion of input data; it also
follows a general good-practice principle established by Andrej Karpathy of ensuring that
the dataset and the trainable model weights are of a roughly similar order of magnitude11

(for example, the combined trainable weights of WaveGAN generator and discriminator
networks with a dimensionality multipler of 32 total roughly 150MB). Secondly, ensuring
that each dataset has a distinct character – as opposed to simply combining less closely
related datasets – retains coherence, allows for better judgement of outcomes, and at least
somewhat simplifies the learning task. A more diverse dataset runs a greater risk of poor
generalisation and poor outcomes.

Once the data has been augmented, silences exceeding a specified length and loudness
threshold are truncated to a specified shorter length to remove unnecessary periods of si-
lence. These thresholds are chosen carefully to retain coherence of musical phrases.

The data files are segmented according to each model architecture’s implementation. In
the case of WaveGAN, its reference implementation offers flexibility in this regards thanks
to its streaming dataloader, the only constraint being to ensure that the length of each
chunk exceeds the ‘data_slice_len’ parameter 12, which defines the length of the learned
window and generated samples. In theory this means one could even just pass the entire
dataset as a single file, but I eventually found it preferable to segment the input audio data
according to musical phrases where possible using the same process presented in ‘SoloSolo-
Duo’ in Chapter 4, where the input solos were chunked into musically coherent phrases
by means of frequency analysis. Doing so helped to mitigate a tendency for the input
segments to begin very abruptly, starting mid-phrase or even mid-note; when this was the
case, generated samples sounded less musically plausible and chaotic. SampleRNN data
segmentation is more straightforward, requiring the input data to be in 8 second chunks
without necessity to chunk the data according to onsets or phrases.

5.3.2 Training WaveGAN

As mentioned in the subsection ‘Practical and Ethical Issues with Modelling Raw Au-
dio’, I resolved to find parameters that kept training times reasonable without negatively
affecting sample quality. To this end, with WaveGAN I favoured setting the model to
learn and therefore generate chunks of audio with length 32768 data points, with the input
data downsampled to 22050 Hertz, resulting in generated audio segments of roughly 1.47
seconds in length. I ensured that the dimensionality multiplier parameter was reduced
from its default value of 64 to 32, resulting in a smaller number of trainable parameters
that was more appropriate for my typical dataset sizes; this also had the effect of speeding
up training times. A very significant training speedup specific to the author’s implemen-
tation was obtained by converting the audio dataset to a bit depth of 16 and including
the ‘data_fast_wav’ flag in the training parameters. These parameters combined meant
that a model could be trained for around 100000 iterations, often sufficient to obtain rea-
sonable results, in the space of a day. Earlier experiments before this discovery had taken

11Karpathy, Andrej, ‘The Unreasonable Effectiveness of Recurrent Neural Networks’, Andrej Karpathy
Blog, May 21 2015, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

12Donahue, Chris, ‘wavegan’, online code repository, posted by ‘chrisdonahue’, Apr 2018,
https://github.com/chrisdonahue/wavegan/blob/master/train_wavegan.py/



67

Figure 5.1: Flow diagram of dataset preprocessing pipeline for WaveGAN.
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Figure 5.2: Flow diagram of dataset preprocessing pipeline for SampleRNN.
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significantly longer.

Despite repeated experiments with numerous other changes to the model architecture
and training parameters, the most tangible positive effect on quality of generated outputs
was achieved through a combination of maximising dataset size within the boundaries of
similar orders of magnitude, and ensuring that the same instrumental setup, recording
environment and equipment was used to create the dataset. This need for consistency of
recorded sound could not be overstated – bundling together separately-made recordings
with even slightly diverse acoustic characteristics into one dataset negatively affected the
consistency of generated samples. However, through data augmentation, a recording of
a single session of a reasonable length such as 30 minutes can be used as a training set,
with the need for uniformity guaranteed by the homogenous recording environment. En-
suring an appropriately large dataset through the augmentation techniques outlined in the
‘Dataset Pre-Processing’ section proved important for avoiding over-fitting, in which event
the trained model simply generates material largely indistinguishable from the input data.

One adjustment made to train a WaveGAN on the more abstract musical content
found in the timbral improvisation dataset was to use a ‘leaky ReLU’ activation function
on the generator network as well as the discriminator. Doing so helped to avoid mode
collapse when training on the timbral dataset. This approach was suggested by founding
PyTorch engineer Soumith Chintala at his 2016 NIPS Workshop on Adversarial Training13,
proposing that ‘soft’ gradients that allow negative values can be a favourable choice with
generative models, as opposed to the hard ReLU activations commonly found in classifi-
cation models. This implementation change was only necessary because of the difficulty of
training on this specific dataset and was not necessary for the other melody-based datasets.
I suggest that this is because the relative lack of timbral diversity in the other datasets
equates to a simpler learning problem. That said, results from the timbral dataset did not
inspire me to create music with them, for reasons I will elaborate on in the ‘Behaviours’
section later in this chapter.

5.3.3 Training SampleRNN

In the majority of my experiments with SampleRNN I followed the above-stated prin-
ciple of finding a balance between output fidelity and training times by downsampling
my datasets to 22050Hz. This had the desired effect of keeping training times reasonable
(typically less than a day although sometimes slightly longer with larger datasets). At a
later stage of this project however I noticed the generated samples had a ‘muted’ quality
and speculated that downsampling might be the cause. When I trained a model of the
augmented Tone Rows dataset at 44100Hz this suspicion was confirmed - modelling the
timbre of the tenor saxophone with SampleRNN does benefit from a higher sample rate.
This increase in sample quality was inevitably and unfortunately associated with an in-
crease in training times.

There are adjustments to SampleRNN model architectures that I observed to have a
tangible effect on outcomes. These are in the type of RNN cell used (GRU or LSTM)
and the inclusion or not of ‘skip connections’. Adding skip connections to the architecture
reliably resulting in an extension of the number of training epochs before auto-stop kicked
in (triggered by no significant improvement in the loss for 3 epochs) but did not add any
tangible improvement to the generated samples, while the use of GRU cells tended to result
in a less attractive saxophone timbre reminiscent of excessive ‘proximity effect’, a common
result of positioning a condenser microphone too close to the sound source14. The most

13Chintala, Soumith, ‘NIPS 2016Workshop on Adversarial Training, YouTube video, Uploaded by ‘David
Lopez-Paz’, Feb 17 2017, https://www.youtube.com/watch?v=X1mUN6dD8uE

14Unknown author, webpage, posted May 2022, https://www.dpamicrophones.com/mic-
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successful SampleRNN models of my datasets were all trained using LSTM-type RNN cells
and without the use of skip connections. As a result, this is my go-to configuration for a
first training run and I only try other three possible combinations of these parameters if
results are unsatisfactory or if there is a sense that they could be improved upon with a
different configuration.

The strongeest predictor of SampleRNN outcomes on my data has been the dataset
itself. The principle considerations here are to ensure that the size of the dataset is at bare
minimum equivalent to the size of trainable model weights and that the content of the
dataset and augmentation technique used is appropriate to the model architecture’s be-
haviour. For SampleRNN models this means use of time stretch augmentation (as opposed
to pitch shifting), ensuring clarity and consistency of recorded signal, minimising diversity
of timbral and musical content. And, if it feels justifiable, maintaining the recorded sample
rate of 44100Hz.

5.3.4 Generation of Audio

Generating audio from the trained model differs by architecture in process and, im-
portantly when considering potential applications, speed. The process of generating audio
with WaveGAN essentially involves passing a gaussian noise vector forwards through the
weight space of the trained generator model; the discriminator part of the model is not
directly involved in the generation process, its purpose being to learn the dataset in order
to help train the generator. As a function of its convolutional architecture, which learns
and therefore generates a fixed time window (of 32768 samples in my experiments), all
of the individual audio samples generated with WaveGAN are effectively calculated si-
multaneously, resulting in remarkably high speed of audio sample generation. Assuming
the generator weights have already been loaded into memory, which does take some time,
multiple audio files can be generated in parallel in a fraction of a second in the GPU;
generation in the CPU is slower but still significantly faster than real time. There is a
speed-flexibility trade-off here though: while extremely fast, WaveGAN can only generate
fixed-length arrays the length of which was already determined at training time. Audio
generation with SampleRNN occurs in the time domain, a consequence of its time-based
architecture. Not surprisingly, this results in considerably longer generation times with
SampleRNN than with WaveGAN. However, unlike WaveGAN, which can only output au-
dio files of a fixed window length determined at training time, SampleRNN is more flexible,
being capable of generating audio files of arbitrary length.

5.4 Behaviours

In this section I will describe what I observed to be behaviours of each model archi-
tecture in terms of the relationships between generated samples and dataset and of the
perceived ‘character’ of their generated samples. While the focus is predominantly on
models trained on my own datasets, I also present some additional observations gleaned
from training models on externally-sourced datasets.

A general starting point for thinking about how each model architecture behaves is to
know that WaveGAN’s strength is in it ability to model complex musical content while
its weakness, beyond the obvious noisiness of the generated samples, is in its tendency to
converge on some aspects of the dataset to the detriment of others. SampleRNN, on the
other hand, prioritises realism of timbre while, on my data at least, requiring repetitions of
content in the dataset - either through recording the same content multiple times or data

university/source-dependent-proximity-effect-in-microphones
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augmentations, or both - to help it to model musical content more recognisably.

WaveGAN’s prioritisation of content is consequential of its adversarial architecture and
its according ‘mode-seeking’ behaviour: its goal is to generate plausible fixed-length win-
dows of musical content. The generator optimizes towards fooling the discriminator into
mistaking its generated samples for the ground truth data; it can more easily achieve this
by converging on specific aspects of the dataset. SampleRNN’s prioritisation of timbral
realism over content is a property of its time-domain structure and its ‘mode-covering’
behaviour: its goal is effectively to generate plausible signals that are in keeping with the
overall distribution of the dataset.

These behaviours could be clearly seen when creating models of the same datasets with
each architecture. SampleRNN models of the ‘Tone Rows’ dataset, which contains signif-
icant repetition of content, generated musically interesting content that struck a pleasing
balance between capturing some of the character of the intervallic content while retaining
some of ‘its own’ character distinct from the dataset. Especially strong SampleRNN re-
sults were obtained when I augmented this dataset by adding two time-stretched copies of
the entire dataset and a polarity-inverted copy of each, effectively increasing the dataset
size by a factor of six; the effect of doing so on the fidelity of the generated outputs can
be heard in ‘Fake Lrrning’. WaveGAN models of the same dataset, on the other hand,
frequently just regurgitated the dataset’s content.

WaveGAN exhibited strongest results - ‘strongest’ as judged by their perceived novelty
- on the ‘G Major’ and ‘Melodic Improvisation’ datasets. This was, I suspect, due to their
balance between consistency and variety of content. Neither dataset was so varied as to fall
foul of the possible pitfalls of WaveGAN’s ‘mode-seeking’ behaviour, in which case it sim-
ply generates samples relating to a small number of identified regions of the dataset. Each
of these models’ generated samples frequently-enough provided a sense of novelty from the
dataset to be considered creatively useful; an example of this novelty would be the folksy
quality of some curated phrases generated from the ‘G Major’ modelas can be heard in the
raw WaveGAN outputs on which ‘Major Piece’ is based, included in the portfolio.

Generating interesting results with either architecture on the ‘Timbral Improvisation’
dataset proved problematic, my inference being that the dataset is so timbrally diverse that
its effective statistical properties are a bit too complex and irrational for successful mod-
elling to be a reasonable prospect. WaveGAN behaviour in this instance was to converge on
a small number of the sounds in the dataset and simply recreate them, failing to generate
any meaningful novelty. SampleRNN responded better to the more rhythmically active
aspects of the dataset, generating sounds derived from instrumental key noise and the
sound of the breath that I found interesting and attractive. However, the many sustained
multiphonics in the dataset resulted in a lot of long, often single-note sounds that I found
crude and uninteresting. Despite a lot of experimentation, in neither case did I manage
to make what I felt was the beginning of successful creative work using samples generated
from models of the ‘Timbral Improvisation’ dataset trained with either architecture.

5.4.1 Observed Behaviours with External Datasets

During my research project I was involved in side projects which involved generative raw
audio modelling of externally authored datasets. Engaging with these projects generated
useful additional observations about how some of the above-mentioned model architecture
behaviours manifest in practice.



72

The first project, ‘Gandering’15, was a Manchester Jazz Festival 2021 Digital Originals
commission in which I sub-commissioned three musical colleagues, Adam Fairhall, Johnny
Hunter and Otto Willberg to record themselves improvising solo on piano, drums and
double bass respectively, with a view to creating generative models of their datasets and
creating audiovisual works out of them, using the audiovisual processes described in Chap-
ter 4 as used in version 1 of ‘SoloSoloDuo’. Training WaveGAN models of these datasets
proved a valuable demonstration of WaveGAN’s ‘mode-seeking’ behaviour as applied to
datasets of improvisation. While I encouraged the contributors to limit the degree of tim-
bral diversity in their solo sets, the three resulting datasets still contained greater diversity
of sounds than in the majority of datasets I had created for this project.

The double bass dataset was the most unruly, featuring pizzicato playing in all registers
as well as bowed playing across all registers. WaveGAN models trained on this dataset gen-
erated samples that reliably fell into a small number of categories - pizzicato mid-register,
bowed low register bowed and bowed extreme high register. The model trained on the
drums dataset exhibited similar behaviour, generated samples most strongly featuring ei-
ther mid-range toms, cymbals or rimshots. Here, WaveGAN’s observed ‘behaviour’ with
datasets of timbral diversity was to effectively hone in on a small number of identifable
regions and generate samples that sounded like them. The piano dataset fared better,
presumably owing to its relative uniformity of timbre. My feeling with all of these datasets
was that not only the diversity of timbre but also the wide range of pitch registers created
an unfeasible learning challenge.

While I had initially planned to create ‘fake’ improvised solos from each dataset, the
narrowness of scope of these generated samples prompted a rethink. In the end I created
a piece based on stacking a small number of the samples on top of each other, the result
being ‘Gandering 1’, presented in the ‘Applications’ section.

The second project was a collaboration with departmental colleagues Dr Tom Collins,
PhD candidate and singer-songwriter Jemily Rime and rap artist G-Zone. This collab-
oration resulted in ‘Nobody New’ an entry to the 2022 AI Song Contest16. One of my
contributions was to create SampleRNN models of vocal datasets contributed by Jemily
and G-Zone (I also created small language models of song lyrics and created the video for
the song).

This proved a valuable lesson in the importance of capturing a clear and direct recorded
signal when training SampleRNN models. Doing so is a more straightforward endeavour
when recording vocals since the relationship between sound source and microphone is very
considerably more direct than when recording tenor saxophone. In addition, neither of
these datasets featured significant timbral diversity and G-Zone’s recordings in particular
occupied a very narrow pitch range. The consistently high quality of the generated samples
underlined that the datasets’ shared attributes of consistency and clarity of recorded signal,
minimal timbral diversity and narrow pitch range enabled easier statistical modelling.

5.4.2 Machine Learning Libraries

It seems worth noting that the most functional implementations of WaveGAN and
SampleRNN are written in Tensorflow17 and yield results of higher fidelity than their re-

15Hanslip, Mark, ‘Gandering 1’, YouTube video, https://youtu.be/5dIxUWNGndc.
16Collins, Tom, Alex Gonzalez, Jemily Rime, Jack McNeill and Mark Hanslip, ‘Nobody New’, YouTube

video, uploaded by ‘G-Zone’, Jun 16 2022, https://youtu.be/PwBpW6LYue8.
17Abadi, Martin, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh
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spective PyTorch18 versions. When I undertook, principally as a learning exercise, to
re-implement WaveGAN in PyTorch (which is more familiar to me than Tensorflow) using
Mostafa el-Raeby’s version19 as a guide, I took pains to check that all model parameters
were identical to the reference Tensorflow version. Similarly, samples generated from mod-
els trained with the PRiSM implementation of SampleRNN are of noticeably higher fidelity
than the PyTorch version20. This would seem to suggest that in the implementation of
equivalent functions within each engine, Tensorflow’s underlying implementation might be
somehow better suited to raw audio signals than PyTorch’s.

5.4.3 WaveGAN, Noise and Loss Functions

As already mentioned, there is a noisiness in WaveGAN’s outputs that could be off-
putting to practitioners looking to engage in generative modelling of their own data. A
plausible culprit for this noisiness could be in WaveGAN’s loss calculations. As noted
in Chapter 2, the loss function in machine learning serves as a measure of the distance
between the model and ground truth data during the training process and is a critical
componennt of any machine learning architecture. Since the outputs of WaveGAN’s gen-
erator network start out from a place of random noise, it therefore stands to reason that
its outputs remain noisy because the loss functions are mistaking perceptually irrelevant
sounds for ‘real’ content, allowing them to become part of the generated outputs and even
exaggerating them in the process.

Potential solutions to this problem are available now that did not exist at the time of
WaveGAN’s authoring. One such would be the use of an audio-specific loss function such
as the error-to-signal ratio, a perceptually-motivated loss function specifically intended for
modelling 1D audio signals21. This and other audio-specific losses are available to use in
PyTorch via the ‘auraloss’ package.22

5.5 Musical Applications

5.5.1 Real-Time Interaction

In my first creative application of these models’ outputs I built on the interactive work
established in Chapter 4 by replacing the segmented phrases that acted as computer out-
put material during interaction with outputs from WaveGAN and SampleRNN.

The initial goal of this work was to build on the software created for ‘SoloSoloDuo’ by
having the system outputs be those of generative models of my data rather than simply re-

Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng, ‘TensorFlow: Large-scale machine learning on heterogeneous systems’, 2015, computer software,
tensorflow.org.

18Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai and Soumith Chintala. ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’.
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019. 8024-8035.

19el-Raeby, Mostafa, ‘pytorch-wavegan’, code repository, Jun 11, 2019,
https://github.com/mostafaelaraby/wavegan-pytorch

20Kosakowski, Piotre, Katarzina Kanzka, Joachim Rishaug, ‘samplernn-pytorch’, code repository, Nov
19, 2017, https://github.com/deepsound-project/samplernn-pytorch

21Wright, Alex, Vesa Välimäki. ‘Perceptual Loss Function for Neural Modelling of Audio Systems’ (con-
ference paper), ICASSP 2020: 45th International Conference on Acoustics, Speech, and Signal Processing,
Online/Barcelona, May 4-8 2020.

22Christian J. Steinmetz, Reiss, Joshua, auraloss: A collection of audio-focused loss functions in PyTorch,
code repository, https://github.com/csteinmetz1/auraloss.
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combined segments of my playing. I had originally sought to train generative models of the
‘Timbral Improvisation’ dataset and continue to use the classifier model used in ‘SoloSolo-
Duo’ to mediate interactions between myself and generative models of both melodic and
timbral playing. However, as noted in the ‘Behaviours’ section above, attempts to model
the ‘Timbral Improvisation’ dataset did not yield results that I deemed good enough for
inclusion in an artistic output. As a result, the following two pieces only contain gener-
ated outputs from models of datasets with a melodic focus, and pitch analysis is used for
mediating the interactions in these pieces.

‘Duo with WaveGAN’

In this piece, a trained WaveGAN generator is placed inside an interactive loop similar
to the one seen in version 2 of ‘SoloSoloDuo’ but without the trained classifier. As before,
a live input segment is checked against an amplitude threshold to determine whether or
not to proceed through the program or revert back to a new live input; also as before, the
selected segment is then subject to frequency analysis and pitch-based onset detection to
determine its last salient pitch. At this point, the WaveGAN generator is prompted with
a noise vector and generates several samples. These samples are then subject to the same
process of frequency analysis and pitch-based onset detection as the live input in order
to determine the sample whose first pitch is the closest match with the last pitch of the
live input. This sample becomes the first of the output phrase and is concatenated with
other samples to form a longer phrase. The process can be seen in the diagram in figure 5.3.

On reflection, a further development of this work would be to apply the same process of
‘last:first’ sample matching to the individual WaveGAN samples that are concatenated to
form the output phrase. This would further mitigate the interruptive and chaotic nature
of the responses. There is also scope for generating more samples than would be needed
for the response and discarding those that are not a good match. While the additional
frequency analysis would add latency to the system, the extra samples generated would
not, since WaveGAN sample generation happens in parallel on the GPU.

When developing this piece I experienced a process of accepting the discomfort of the
interactions similar to that described in Chapter 4 in the process of developing ‘SoloSolo-
Duo’. Initially, my feeling on interacting with the WaveGAN samples was one of feeling
thwarted; I felt the computer was obstructing my ability to play what I wanted. On perse-
vering though I began to see the value in the interruptive nature of the interactions, as it
was forcing me out of the comfort zone of playing my usual ideas into a state of increased
alertness that I felt was beneficial to me in terms of flexibility of ideas generation and
of technique. This state of close listening and responsiveness can be heard in the way I
respond to the generated phrases, picking up on familiarities in phrase content and making
specific pitches the bases of my responses. An uncomfortable playing experience, but a
valuable one.

‘b.io’

In ‘b.io’, source material for interactions is taken from two pools of pre-generated Sam-
pleRNN samples generated from models trained on the ‘Lower Register’ dataset and a
composite of the ‘Middle’ and ‘Upper Register’ datasets. In this piece, interactions are
mediated more simply than in the previous duet: if the mean pitch of a live input segment
is below a threshold, then a sample generated from the model trained on the ‘Lower Reg-
ister’ dataset is chosen as output; otherwise, the output sample is one generated from the
‘Middle and Upper Register’ model. This process is illustrated in figure 5.4.
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Figure 5.3: Flow diagram of the interactive process in ‘Duo with WaveGAN’.
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Figure 5.4: Flow diagram of the interactive process in ‘b.io’.
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This piece was premiered online and in-person at ISMIR 202223. To make it suitable
for online presentation I visualised the piece using the same process as in version 1 of
‘SoloSoloDuo’, passing the audio and a StyleGAN2 model trained using transfer learning
on Derrick Schultz’s ‘Rocks’ dataset to the ‘Lucid Sonic Dreams’ visualiser and adding
further edits in Kdenlive.

In the initial development of this piece it was noticeable how much less fraught the
interactions felt. I reflect that this is owing not just to the obvious spaciousness of the gen-
erated SampleRNN samples compared with those of WaveGAN but also to their timbral
realism - it simply felt much easier to interact with a more realistic-sounding simulation of
the saxophone. The surreal quality of the samples’ musical content added to the enjoyment
of playing with them; at several points I can be heard mimicking their peculiar qualities.

This raises a key point about both these model architectures’ bevaviours that will be
explored in subsequent outputs: their ability to suggest ideas that would not have occurred
to me, despite the fact they were trained on my own data. Generative models of raw audio
model these fresh ideas in the image of one’s instrumental practice. This is an important
additional affordance that adds to the sense of ownership over and surreality of these
models’ outputs: hearing unthought-of musical ideas being modelled in the sonic image of
one’s own instrumental practice is a unique experience and one richly suggestive of new
musical ideas. The following outputs explore alternative applications of this unique quality
of generative models of raw audio.

Further Reflection

Interacting in these ways with outputs from WaveGAN and SampleRNN models of my
playing resulted in two quite distinct improvisatory experiences. In a sense, ‘Duo with
WaveGAN’ was the more exciting and dynamic-feeling of the two. This feeling arises from
the greater sense of interactivity created by the pitch-matching mechanism in the pro-
gram, which simulates something akin to the kind of ‘point-to-point’ pitch-matching that
can happen in group improvisation with human instrumentalists, wherein a player begins
their current phrase on the last note or sound played by another group member. A sense
of dynamism is also created by the system’s outputs being generated on-the-fly. While the
distinction between this and a system that uses pre-generated outputs, such as the system
created for ‘b.io’, might not be apparent to the listener, to me as the system’s author it
represented a significant point of difference that subtly informed the playing experience.

This, however is not to say that it was the preferred playing experience - more that the
system created for ‘Duo with WaveGAN’ is closer to what I would consider the ideal for
an AI improvising partner in terms of the system’s construction. ‘b.io’ was significantly
more enjoyable to make, owing to several key qualities of the SampleRNN models’ outputs:
their timbral realism (breath sounds, key clicks and all), their novelty and divergence from
the content of the training data, their tendency towards long notes and what I perceive
to be their humorous, whimsical qualities. The simpler mechanism for mediating interac-
tions, distinguishing inputs and selecting outputs only by instrumental register and not
by exact pitch, also made for a less intense playing experience in ‘b.io’ than in ‘Duo with
WaveGAN’ that I found more enjoyable. Writing this with some additional hindsight, I
perceive less of a gulf in the quality of these two created works than I did at the time, but I
still perceive ‘b.io’ to be the more accessible and enjoyable of the two works to listen back to.

Improvising with the generated outputs in an interactive loop proved to be a valu-
able practice experience. Most importantly, during sessions playing with each system I

23Hanslip, Mark, ‘b.io’, webpage, Dec 6, 2022, https://ismir2022program.ismir.net/music346.html.
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observed myself mimicking the distinct expressive characters of each model’s generated
outputs: SampleRNN more whimsical-seeming phrases and WaveGAN’s more aggressive-
seeming outputs. Given time, these are gradually being absorbed into the overall fabric
of my playing. I find observation especially exciting: that a statistical model of ones own
playing has the potential to widen ones own expressive range. On a more technical level,
I observed a definite ‘sharpening’ of my ear after a session of playing with either system
but particularly the WaveGAN system, which was more challenging to navigate improvisa-
tionally. One especially valuable aspect of the challenge these systems presented was that,
while I would initially fall back on playing ‘stock phrases’ owing to the initial discomfort
I experienced, recognition of doing so forced me to dig deep and aim for a more ‘in-the-
moment’ response - that is to say, the systems were forcing me to improvise more. These
experiences feed into notions of ‘AI as creative assistant’ and ‘AI as teacher’, respectively;
notions that recur throughout this project and will be revisited in Chapter 7.

5.5.2 Source Material for Practicing

‘Workshop I’ and ‘Workshop II’

These pieces serve as a demonstration of the affordance of generated WaveGAN and
SampleRNN outputs as raw material for technical practice. The combination of novelty
of content and rendering of this content in my own sound afforded by these model ar-
chitectures, particularly in the case of SampleRNN as already discussed, provided a rich
repository of material for ear training and technical practice. This kind of practicing -
learning phrases from a recording by ear - is fairly typical of how jazz improvisers absorb
new material into the fabric of their playing, improve their ear and expand their technique.
However, most jazz musicians tend to do this using other players’ content. By contrast,
I feel a stronger sense of authorship and ownership over these generated samples, having
created the datasets and acquired the requisite skills for training models and generating
samples, than I ever did when using other players’ outputs as the basis for learning new
material.

I found practicing these outputs on my instrument highly enjoyable and valuable: a
rich resource for ear training, for technical practice and for assimilation of new material for
improvising and composing over which I felt an unusual combination of strong authorship
but also unfamiliarity. The aim of these pieces was to create a musical representation of
this process of practicing the generated outputs on my instrument, motivated by a desire
to simply reflect in a piece of music the value I found in engaging with this process.

The repetition of phrases in these pieces reflects the practice I was engaged in: I would
loop a sample (or concatenated samples) I found musically interesting and figure out its
content until I was able to play it along with the sample at full speed. In the interests of
turning this process into a somewhat listenable output, I only include a recording of me
playing along with each sample having already gone through this learning process.

I harmonized each sample-playalong pairing using the frequency analysis and pitch-
based onset detection technique introduced in Chapter 4, extracting the melodically salient
pitches and effectively stacking them into a chord. The resulting chord was rendered using
sine tones in SuperCollider. Underpinning each piece is a field recording of a weaving
workshop taken from the publicly available BBC Sound Effects archive24. As with ‘Duo
with WaveGAN’, additional effects were added to match the noisier-sounding WaveGAN
samples: pink noise was added to the sine tones, a busier environmental recording was used
and I added distortion to my recorded sound. The SampleRNN version of ‘Workshop’ is
cleaner- and more spacious-sounding in the manner of SampleRNN samples, using clean

24BBC Sound Effects, online data repository, https://www.sound-effects.bbcrewind.co.uk
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sine tones, a less intensive-sounding field recording and no additional effects on my live
sound.

Further Reflection

I have mixed feelings about this musical output. Insofar as it represents the process of
practicing in this way, one could say my initial goal was met, but as a musical output in
and of itself I see at as a starting point for future work. It lays some useful groundwork
for using generatively-modelled outputs and environmental recordings in the context of
non-realtime electro-acoustic composition, a field I hadn’t engaged with previously. Were
I to pursue this line of creative inquiry further I would use only SampleRNN outputs as
their less intense character compared with WaveGAN outputs suits the spaciousness of the
sound world. I would also pay closer attention to the sound design aspect of the piece,
more carefully considering placement and balance of the different components in the mix.
I would also make structural variations, as I now find the piece to be somewhat formulaic
in its construction.

I will take a sentence here just to restate how unique the enjoyment of practicing these
outputs was to me, and encourage any readers with an instrumental practice to try this
process out, however onerous the initial data-gathering and model training might seem. I
struggle to think of another existing method besides deep learning modelling through which
these outputs, novel and yet entirely based on the most familiar and routine aspects of my
practice, could have been made. Practicing in this way also acts as a bridge towards using
generated outputs as basis for compositions for improvisation, explored in the following
section.

5.5.3 Compositions for Solo Improviser

A fruitful application of generative models of raw audio has been in the composition of
melodies that act as jumping-off points for solo improvisation. A clear point of reference
for these works is the solo music of Steve Lacy. This association with Lacy’s work first
came about when using the generated samples for technical practice as in the ‘Workshop’
pieces: the repetition of samples brought to mind Lacy’s compositions, a consistent feature
of which is the repetition of phrases of intervallic construction; these compositions then
serve as springboards for improvisation, a way of taking the improviser, in Lacy’s own
words, ‘safely to the edge’.

This form of composition-for-improvisation has precedents within my own practice. For
example in my compositions ‘Monobrow’ which featured on ‘Revival Room’ (with organist
Adam Fairhall and drummer Johnny Hunter)25, ‘Spiders’, which featured on ‘The Adding
Machine’ by Twelves (with bassist Riaan Vosloo, guitarist Rob Updegraff and drummer
Tim Giles)26 and on ‘Outhouse’ (with reeds player Robin Fincker, bassist Johnny Brierley
and drummer Dave Smith)27, unison melodies serve as a springboard for collective impro-
visation. When using composed melody as a launchpad for improvisation in groups I and
collaborators have usually felt it appropriate to use the melodic content and implied struc-
ture of the composed sections as a basis for the improvisation to some degree, eschewing,
unless made as a deliberate choice, the tendency often seen in 1960s free jazz to play a
melody before veering off into unrelated territory. In my approach to improvising on these
compositions I have favoured a structured approach, taking account of their content in my

25Mark Hanslip, ‘Monobrow’, Revival Room, EfPi Records, CD and Digital, 2021,
https://revivalroom.bandcamp.com/album/revival-room.

26Mark Hanslip, ‘Spiders’, The Adding Machine, Babel Label, CD and Digital, 2011, https://babel-
label.bandcamp.com/album/the-adding-machine.

27Mark Hanslip, ‘Spiders’, Outhouse, Babel Label, CD and Digital, 2008, https://babel-
label.bandcamp.com/album/outhouse.
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improvisational decisions.

As has been noted in previous sections, a clear affordance of these models is in their
ability to generate musical ideas that I wouldn’t have thought of, despite their having been
trained on materials I am more than familiar with. This aspect of novelty is at the core of
the following outputs.

‘Gander’

‘Gander’ is a short composition for solo improvisation derived from curated WaveGAN
samples. The initial model was one of my earlier WaveGAN experiments, trained on a
composite ‘Exercises’ dataset consisting of both the Tone Rows and Scales & Exercises
datasets discussed in Chapter 3. This piece was the first output resulting from the above-
described association of repeated WaveGAN samples with Lacy’s compositional style. The
first iteration of ‘Gander’ was an entirely synthetic composition and improvisation, with
the composition section made up of the curated, repeated samples and the improvisation
made up of randomly concatenated generated samples from the same model. This version
can be heard in the track ‘Fake Gander.wav’. I also visualised a phrase from the ‘impro-
vised’ section of Fake Gander.

This initial fake version resulted in an ‘improvisation’ far more skewed towards the
upper register than I would ever tend to venture in practice. I did however find the ran-
domness of the phrases and, for the most part, their lack of connection to the composition
surprisingly effective and attractive. By contrast, in the ‘real’ version I stuck with a more
structure-based approach to improvising on ‘Gander’, identifying each phrase’s implied key
or internal structure and basing my improvised phrases on this.

‘Lrnning’

The phrases that make up ‘Lrnning’ are curated, notated outputs from the most ‘suc-
cessful’ SampleRNN model I managed to train, on the Tone Rows dataset discussed in
Chapter 2. Two key reasons for this success were keeping the dataset at its original sam-
plerate of 44100Hz and using time stretch data augmentation in lieu of the pitch shift I was
previously using. This meant that the model took several days to train, but also resulted
in high quality outputs in which the musical contents of the dataset were more successfully
modelled than had previously been the case.

When approaching how to improvise on ‘Lrnning’, it seemed clear to me that a kind
of musical structure was suggested by the arrangement of phrases. For example, the first
5 notes of phrase 1 suggest a melodic shape of B-Bb-F-E - a scale found in the Slonimsky
Thesaurus of Scales and Melodic Patterns28 - before giving way to notes more suggestive
of a Bb7 / Fmi7 tonality. Phrases 2 to 4 are more obviously tonal: phrase 2 clearly implies
a key center of G# minor, while phrase 3 strongly suggests Bb major and phrase 4 sug-
gests C lydian. The lower register-centred 5th phrase is more atonal, while the remaining
phrases suggest a key center of F minor.

These implied tonalities result in a loose structure that provides a useful scaffolding
for solo improvisation that I followed throughout my improvisation. In total I improvised
twice round this implied structure before returning to the composed melodies at the end.

28Slonimksy, Nicolas, Thesaurus of Scale and Melodic Patterns.
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‘The Lows’

The phrases that make up ‘The Lows’ are curated and notated outputs generated from
SampleRNN models trained on the Lower Register dataset described in Chapter 3. As dis-
cussed earlier in this chapter, SampleRNN models trained on the Lower Register dataset
yielded a more consistent quality of outputs owing to the more direct recorded signal in the
lower register of the tenor saxophone and to the amount of reiteration of similar musical
content in the dataset.

As with ‘Lrnning’, when approaching improvising on ‘The Lows’ I began by examining
the content of each phrase and identifying a structure implied by the phrases. The phrases
that make up ‘The Lows’ are, on the whole, less strongly suggestive of key centers than
in ‘Lrnning’ - my conception of their content was influenced more by melodic shapes and
direction. For example, looking at the score of ‘The Lows’, phrase 1 is marked by each
sub-phrase beginning on a lower register note the pitch of which ascends by a semitone with
each sub-phrase; phrase 2 is structured similarly, with each phrase beginning on lower reg-
ister notes B, D and C. Phrase 3 however strongly implies a whole-tone scale while phrases
4 and 5 begin with an F7-type shape. The final phrase, played only once, is intended as a
kind of ‘send-off’: a transition from the ‘in-head’ into improvisation and also an ending to
the piece’s ‘out-head’.

As with ‘Lrnning’, I improvised over two cycles of this implied structure. In keeping
with the piece, the majority of the improvisation happens in the tenor saxophone’s lower
register although I couldn’t resist venturing upwards at times.

‘Major Piece’

‘Major Piece’ is another shorter piece derived from curated WaveGAN samples, this
time generated from a model trained on the ‘G Major’ dataset discussed in Chapter 3.

When figuring out how to approach improvising on this piece, I soon became disinter-
ested; while I found the melody in and of itself attractive, its purely diatonic content felt
insufficient to spark interesting improvisation. In the end I saw this as an opportunity to
begin augmenting my solo improvisation with looping. I had been developing looping en-
vironments in SuperCollider in my spare time and ‘Major Piece’ seemed a clear candidate
for looping: since its phrases share the same tonal center, they would likely sound nice
layered on top of each other.

The final version features very little improvisation. There are four cycles through
the composition’s structure in total. Firstly, I play the melodies unaccompanied. This
first rendition is then looped, over which I play semi-improvised phrases that are close in
character and content to the original melody. This second layer is added to the loop, over
which I play a set of more freely improvised phrases. Finally, in the out-head section,
the loop is terminated and the phrases are looped individually and stacked on top of each
other. Through the piece, a point of convergence is phrase 4, played only once on each
iteration and played in unison, providing a nice structural signpost as well as a whimsical
endpoint for the phrases.

Further Reflection

While the focus thus far in these reflective passages has been what it felt like to play
with the trained models and/or their outputs, here it is more appropriate to reflect on
the experience of composing with the generated outputs, before reflecting on the improvi-
sational aspect of the resulting performances. When reflecting on how the compositional
experience compares with my previous norm of composing either on the saxophone, at
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the piano, or both, differences between that process and the one being described here are
immediately apparent. Whereas in the past I would typically take a musical idea on the
saxophone and work out variations of, accompaniments to and harmonisations of that ma-
terial at the piano, here generation of ideas is taken care of by the trained model, and the
piano is replaced with a DAW. Where I previously took note of improvised phrases that I
found pleasing while playing, I now simply choose my preferred generated samples; while
I would previously flesh out the composition at the piano, I now simply arrange them into
a sequence that I find pleasing in the DAW before transcribing the result. This is not
to say that I intend to abandon my old process, but there is appeal in the relative ease
of production conferred upon the compositional process by the technology. This further
example of AI functioning as a creative assistant demonstrates the potential of generative
deep learning to streamline musicians’ workflows.

A consistent feature of the improvisation in these pieces is how much of the ideas
generation is of the ‘associate-type’, to return to to Pressing’s formulation, and in turn,
how much of the initial idea generation is based on the compositional statement. The
degree of deviation from the composed material varies by piece. The improvisation on
‘The Lows’, for example, ends up in extended technique territory not explicitly suggested
by the composition, but arrives there via a gradual deviation from the composed material,
and even at this furthest remove is still within the overarching idea of sticking to the lower
register of the saxophone. The improvisation on ‘Lrrning’ eventually deviates from the
written material: the sequence of ascending phrases beginning at 8:32, for example, have
no particular basis in the composition itself, but they follow on naturally from the previous
idea, which in turn was arrived at through associative processes. At first listen, ‘Gander’
might seem to have the most interruptive character of these four pieces, but this quality
stems from the composition’s phrases contrasting each other - the improvisation is still
largely very self-associative, with any apparent interruption stemming from reference back
to a different phrase of the composition. ‘Major Piece’ differs here in that the limited
amount of improvisation the performance contains has strict structural boundaries around
it: the use of looping of the composed phrases confines any deviation from it to what
fits around the loops, and as such these notions of associate- and interrupt-type ideas
generation are less applicable.29

5.5.4 Sampling-based Music; Audio-visual Practices

‘Gandering 1’

An output of the ‘Gandering’ project discussed in the ‘Behaviours’ section, ‘Gandering
1’ is the first of a set of four audiovisual pieces made for a commission for the 2021 Manch-
ester Jazz Festival. My aim with the ‘Gandering’ project as a whole was to create work
that synergised the audio and video components into a whole experience. This was a new
way of thinking about making work to me - while there is precedent for the use of visual
enhancement of the music in ‘SoloSoloDuo’ and ‘b.io’, and those pieces share the same
visual aesthetic and tight coupling between audio and image, the audio-visual versions of
‘SoloSoloDuo’ and ‘b.io’ are visualisations of pre-existing musical works. By contrast, with
‘Gandering’, the audio and video components were realised in tandem. I later discovered
that this is a common approach in the audiovisual art and research community: Louise
Harris synthesises a survey of that community as highlighting the importance of ‘a syn-
ergic relationship in which the combination of the two media creates a third, audiovisual
space, .. greater than the sum of its parts.’30 I also wanted there to be a close relationship

29Jeff Pressing, ‘Improvisation: Methods and Models’ in Generative Processes in Music: The Psychology
of Performance, Improvisation and Composition ed. John Sloboda (Oxford University Press, 2001), 129-
156.

30Harris, Louise, Composing Audiovisually: Perspectives on Audiovisual Practices and Relationships,
Routledge, 2022, 43.
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between the audio and video - a tight coupling of the interactions, and some meaningful
correlation between the images themselves and the images the music implied.

The audio component consists of stacked WaveGAN samples generated from models
of solo improvisation on double bass and piano, with the initial drum sample that under-
pins the piece having been generated from a SampleRNN model of solo drum improvisation.

The visual component was created through a similar process to that used in version
1 of ‘SoloSoloDuo’ in Chapter 4. I sourced a dataset of curated floorplans scraped from
Instagram posts by Mayur Mistry, and modified the images through inversion and colour
saturation. I then trained a StyleGAN2 model via transfer learning on the transformed
dataset before visualising the audio using Mikael Alafriz’s ‘Lucid Sonic Dreams’ program.

‘Gandering’ has in common with ‘Lrrning’, ‘Major Piece’, ‘Gander’ and ‘The Lows’ sig-
nificant use of repetition-based structural development in ‘Gandering’ However, this piece
represents a significant departure from my usual processes and as such the resulting music
differs considerably from what I would usually make. A significant factor in this divergence
from my usual working practices was the decision to work with external datasets and the
openness to potential outcomes this entailed: at the time, I was still learning about the
behaviours of these architectures, both in and of themselves and with respect to different
training corpa, and as such figuring out how I was going to use the generated outputs
happened very much on a ‘let’s try this and see-what-happens’ basis. Another factor was
the decision to make an explicitly audio-visual work, as opposed to making some music and
then visualising it. This decision was very much influenced by the remarkable capabilities
of the StyleGAN2 - LucidSonicDreams software pipeline.

While I was not well versed in canonical audio-visual works at the time of making
‘Gandering’, I find some aesthetic resonance with seminal pieces from the discipline’s ear-
lier years such as Mary-Ellen Bute’s ‘Dada’ (1936)31, Norman McLaren’s ‘Blinkity Blink
(1955)32 and Len Lye’s ‘Free Radicals’ (1958)33, particularly in their combination of a
light-on-dark visual palette and tight coupling of the audible and visual elements. In ‘Gan-
dering’, the latter element was partially a by-product of LucidSonicDreams’ behaviour but
also something I was seeking out - all my experiments with alternative means of visualising
sound have sought out a high of audio-reactivity. The use of a light-on-dark visual palette
was motivated by taste but also practicality: fades to black were a practical way of de-
lineating sonic activity and silence, and omitting the RGB dimension made any necessary
array operations more straightforward.

5.6 Conclusion

As can be seen in the range of outputs from the chapter, generative modelling of raw
audio data has a diversity of applications for the creative instrumental practitioner. From
my perspective these have included real-time interactivity, generation of novel material
for practicing, use of samples in electroacoustic compositions and as source material for
composing for solo improvisation; I have confidence that other practitioners will find addi-
tional applications. As explored in the sections reflecting on the creative outputs, I found
particular value in a number of areas: enjoyable ear-training, expanding ones expressive

31Bute, Mary-Ellen, ‘Dada’, YouTube video, uploaded by ‘Musica Visual’, Jun 13 2022,
https://youtu.be/ihhJxrY3Vig?si=GQR4H5oOsBJ0kIfO.

32McLaren, Norman, ‘Blinkity Blink’, YouTube video, uploaded by ‘NFB’, May 17 2015,
https://youtu.be/q3YeWgUgPHM?si=5gcnmCgy5WBRVPgU.

33Lye, Len, ‘Free Radicals’, YouTube video, uploaded by ‘Musica Visual’, Jan 19 2023,
https://youtu.be/t5ych1ikDfI?si=CUlUEZXmYmOlFpg2.



84

range, changing ones compositional workflow and venturing into new domains of creativity.

The work in this chapter also generates valuable knowledge of how best to approach
modelling data using these architectures and of their behaviours. For the purposes of gen-
erating novel content, WaveGAN has been shown to work best with datasets that strike
a balance between consistency of musical character and some variety within that content:
best results were generated from the ‘Melodic Improvisation’ and ‘G Major’ datasets, which
achieve this balance. It fared poorly with overly diverse datasets such as ‘Timbral Impro-
visation’ and those used in the ‘Gandering’ project, resulting in modelling only of specific
regions of the dataset at the expense of others. With the ‘Tone Rows’ dataset, which
contains significant repetition of musical content, it tended to yield outcomes that, while
of higher fidelity than others owing to the easier learning task, sounded like reproductions
of the dataset and thus failed to offer much in the way of novelty. Using pitch shifting as
a data augmentation tool is a good approach when working with WaveGAN, since it effec-
tively achieves both consistency and diversity in the dataset. Since the generated samples
are invariably quite noisy, I see no reason to set the sample rate higher than 22050Hz,
especially given the environmental concerns outlined in this chapter. Parameter changes
found to have the most significant downward impact on training times have been to disable
phase shuffle, decrease the dimensionality multiplier to 32 and enable the ‘data_fast_wav’
parameter; decreasing the dimensionality multiplier to 32 positively impacted the quality
of results too.

Best results with SampleRNN have been achieved when modelling the ‘Tone Rows’
and ‘Lower Register’ datasets. Shared aspects of these two datasets are significant repe-
tition of musical content and consistency of content. SampleRNN’s time-based approach
to modelling raw audio signals effectively give it an almost opposite set of attributes to
WaveGAN. Where WaveGAN realistically models musical content, SampleRNN realisti-
cally models instrumental timbre and requires additional modifications to the dataset in
order for it to model at least somewhat plausible musical content; repetition of musical
content within the dataset clearly helps, as does time-stretch augmentation. Augmenta-
tions should be kept subtle given its sensitivity to even minor timbral variations in the
dataset. Best results tended to be with parameters of 3 RNN layers and LSTM cells;
skip connections reliably extended training lengths when used and occasionally improved
results. Again given the focus on timbre afforded by SampleRNN, there is justification
for training at 44100Hz, which resulted in a noticeable improvement in the realism of my
generated samples, though I would still only advocate this if the generated samples them-
selves are intended to appear in the creative output, given the significant additional energy
consumption.

Across both model architectures, clarity of recorded signal in the dataset has proved to
be vitally important. As noted at the beginning of Chapter 3, at the outset of my research
I had initially thought that a single microphone attached to the bell was a reasonable basis
for achieving this clarity. However, there was significant disparity in quality of SampleRNN
outputs between the lower register and higher registers of the tenor saxophone. WaveGAN
exhibited the opposite behaviour, tending to generate a clearer signal in the middle and
upper registers, suggesting it more successfully models higher-frequency content. In my
future work with these models I will adopt a dual-microphone approach to capture a fuller
picture of the tenor saxophone’s projection of sound. Similarly, while I initially thought
that pitch shifting for data augmentation was a reasonable choice, it was not clear to me
at the data pre-processing stage that this technique had significantly altered my timbre,
yet in generated SampleRNN outputs some phrases had a nasal quality that seemed to
be a result of using pitch shift. This outcome resulted in my switching to time stretch
augmentation when working with SampleRNN in later experiments.
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This points to an additional affordance of these model architectures: they return useful
information about the dataset itself. Their tendency to exaggerate aspects of the input
data in their generated outputs makes them a useful teacher of flaws in our datasets and
of how to create datasets more likely to yield improved outcomes.



Chapter 6

Symbolic-Domain Melodic
Prediction in Practice: ‘i prompt u’,
‘Strange Loops’, ‘Taps’

6.1 Introduction

This chapter presents an inquiry into creative musical applications to instrumental
practice of symbolic-domain deep learning. The problem of accurately transcribing sax-
ophone melodies in an automated fashion is addressed by means of the custom parser
for offline pitch-based onset detection first introduced in Chapter 4. This method serves
as a useful tool for text-domain dataset creation from several of the raw audio data sets
introduced in Chapter 3. A character-level recurrent neural network (or ‘Char-RNN’) is
trained on this data. The trained model is prompted to generate strings of raw melodic
material which are automatically tokenized into Lilypond1 code and rendered to notation.
The resulting notated outputs are then curated and used as the basis for ‘prompts’ for
human solo improvisation and form the basis of the portfolio outputs in this chapter. Out-
puts of this work are three semi-notated, effects-augmented, structured improvisations: ‘i
prompt u’, utilising granular pitch shifting and delay; ‘Strange Loops’, created using a
custom looping environment; and ‘Taps’, which incorporates multi-tap delay. The compu-
tational processes described in this chapter can be found in the accompanying folder or at
https://github.com/markhanslip/PhD_Ch6_Char_RNN.

6.2 Rationale

Development of this work initially came about as a result of frustration with the unre-
liability of using onset detection and frequency analysis in combination for transcription of
saxophone inputs. Owing to their real-time implementations and the difficulty of reliable
onset detection for woodwind instruments, methods such as SuperCollider’s Tartini.kr2 and
Onsets.kr3 resulted in inaccuracies such as undetected onsets and frequency errors, lead-
ing to an informal personal review of offline, open source pitch tracking methods of which

1Kastrup, David, Werner Lemberg, Han-Wen Nienhuys, Jan Nieuwenhuizen, Carl Sorensen, Janek
Warchoł, et al, Lilypond, version 2.24.1, computer software, lilypond.org

2McLeod, Philip and Geoff Wyvill, ‘A Smarter Way to Find Pitch’, proceedings of ICMC 2005: 31st
International Computer Music Conference 2005, Barcelona, Spain, Sep 4-10, 2005, 138-141.

3Stowell, Dan and Mark Plumbley, ‘Adaptive whitening for improved real-time audio onset detection’,
proceedings of ICMC 2007: 33rd International Computer Music Conference 2007, Copenhagen, Denmark,
Aug 27-31 2007.
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speech analyser Praat4 and convolutional deep learning-based method CREPE5 proved the
most reliable. Discovery of accurate methods of tracking saxophone pitches then allowed
me to build a tool to extract the most musically salient pitches by means of pitch-based
onset detection, a method first proposed by Collins6. Having crafted this tool, I then began
investigating the possibility of using machine learning to model the resulting symbolic data
and generate streams of melodic data from the model for creative ends.

While early applications of this work involved mapping the generated outputs to banks
of one-shot saxophone samples, I found the robotic, staccato character of the resulting
music unenjoyable to both listen to and interact with. A much more fruitful application
has been in notating outputs from the trained RNN. Doing so provides an alternative basis
for practising, in which I learn new phrases from notated outputs (as opposed to learning
generated samples by ear). As with outputs generated from raw audio, these strike a
balance between novelty - as defined by that which I would not necessarily think to play
myself - and relation to the ground truth data.

6.3 Technical Processes

6.3.1 Dataset Pre-Processing

In this section I present a process for extracting melodically-relevant pitch data from
my solo saxophone datasets.

First, frequency content is extracted from the file using Praat-Parselmouth7. Advan-
tages of using this library are its interoperability with my other Python-based processes,
allowing for process automation, great accuracy of frequency estimation on tenor saxo-
phone, presumably due to its proximity in timbre and register to the adult male human
voice. Praat also returns NaN values where no pitch is detected, making the resulting data
much easier to work with than data containing poor estimations. It also runs very quickly
thanks to its C++ code base.

Frequencies are extracted at a rate of one per 10 milliseconds. The resulting values
are linearly scaled through conversion to MIDI note format, allowing for straightforward
comparisons of pitches. These pitches are then analysed for melodic-rhythmic salience
through the use of a rule set. The rule set for determining melodic-rhythmic salience was
defined in Chapter 4 in the context of interactivity, so a recap will suffice here:

• A pitch deviates from its predecessor by more than a specified margin (roughly half
a semitone), or;

• A pitch is preceded by silence.

This analysis results in an array of 1s and 0s, effectively representing musical onsets.
This array is then multiplied element-wise by the pitch array, effectively discarding all
pitches lacking melodic-rhythmic salience. The intervening 0s can then be either filtered
out to return a dataset of melodically significant pitches, or counted and interleaved with

4Boersma, Paul and David Weenink. Praat, version 6.3.09, computer software,
https://www.fon.hum.uva.nl/praat/.

5Kim, Joon Wook, Justin Salamon, Peter Li, Juan Pablo Bello, ‘CREPE: A Convolutional Repre-
sentation for Pitch Estimation’ (conference paper, ICASSP 2018: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing, Calgary TELUS Convention Centre, Alberta, Canada, Apr
15-20, 2018).

6Collins, Nick, ‘Using a Pitch Detector for Onset Detection’ (conference paper, ISMIR 2005: 6th
International Conference on Music Information Retrieval, London, UK, Sep 11-15, 2005).

7Jadoul, Jannick, Bill Thompson and Jan de Boer, ‘Introducing Parselmouth: A Python Interface to
Praat’, Journal of Phonetics 71 (2018): 1-15.
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the pitches to give a set of pitch-duration pairs. In order to be consumed by the language-
domain RNN I use, the resulting data is then recast to Python strings.

Figure 6.1 shows the above-described process.

Adapting this Work for Other Instruments

If applying this process to other instruments, use of a different pitch tracker would
be necessary. To this end, the deep learning model CREPE8, which is empirically shown
to generalise to more instruments than the existing state-of-the-art methods, would be
appropriate. The process for extracting pitches using CREPE is different from a more
conventional and established approach such as Praat. First, unless using a GPU with very
large memory capacity, it is first necessary to segment the input data as long audio files
tend to result in GPU memory errors. Second, the data frames outputted by CREPE
need to be concatenated, and their contents filtered for frequencies with a high (90%+)
confidence score, with the remainder set to NaN or 0. The frequency column can then
be extracted and the remaining data pre-processing steps outlined above can be applied
in the same way. While there would be a compromise on speed and efficiency compared
with non-deep learning-based f0 estimation methods, CREPE is remarkably accurate and
generalises to a greater range of instruments than previous methods.

6.3.2 Training the Model

The text-format dataset created in the previous steps is passed through a shallow,
character-level recurrent neural network. While it was originally a side project of engineer
Andrej Karpathy9 and has long been the province of NLP (‘Natural Language Processing’,
the statistical modelling of large bodies of natural language data) tutorials rather than
being considered a serious architecture for language modelling, Char-RNN has a strong
precedent for symbolic music generation, having formed the basis of Bob Sturm’s folk-
RNN project10.

One major advantage of using RNNs for symbolic music generation over more well-
established methods such as Markov chains is that RNNs are capable of generating predic-
tions of arbitrary length from minimal inputs. Markov chains require their input to be of
equivalent length to the output, whereas with RNNs a minimal input, such as a single pitch
value in numeric form, can be used irrespective of the length of string being generated (a
small caveat to this is that prediction lengths should not exceed the ‘chunk_len’ training
parameter, less the length of the initial prompt). This makes the process of prompting a
trained RNN to generate outputs trivial to automate.

The process of training and prompting the model in a single pass is shown in Figure
6.2.

6.4 Discussion of Raw Outputs

Similarly to samples generated from SampleRNN models in Chapter 5, generated out-
puts from this RNN often relate to dataset inputs only ambiguously. Dataset-output
relationships in this context are additionally difficult to discern given the large composite
dataset used and its reduction to simply a sequence of pitches in text format. Where a

8Kim, Joon Wook et al, ‘CREPE: A Convolutional Representation for Pitch Estimation’.
9Karpathy, Andrej, ‘The Unreasonable Effectiveness of Neural Networks’.

10Sturm, Bob et al, ‘Folk Music Style Modelling by Recurrent Neural Networks with Long Short Term
Memory Units’.
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Figure 6.1: Flow diagram showing all stages of pre-processing the training data to text
format.
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Figure 6.2: Flow diagram showing the process of training and prompting the model in a
single pass.
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strong relationship can be clearly discerned however is in the presence of intervallic struc-
tures clearly derived from the Tone Rows dataset. The first three examples below, taken
directly from the raw model outputs, show material clearly derived from the 3rds (figure
6.3), 4ths (figure 6.4) and 7ths (figure 6.5) tone rows first illustrated in Chapter 3; the
fourth example below is derived from the parts of the dataset where the tone rows had
been scrambled (figure 6.6), with some containing additional displacement of octaves:

Figure 6.3: A raw Char-RNN output showing clear influence of the ‘3rds’ tone row from
the Tone Rows dataset.

Figure 6.4: A raw Char-RNN output showing clear influence of the ‘4ths’ tone row from
the Tone Rows dataset.

Figure 6.5: A raw Char-RNN output showing clear influence of the ‘major 7ths’ tone row
from the Tone Rows dataset.

Figure 6.6: A raw Char-RNN output showing clear influence of randomised tone rows from
the Tone Rows dataset.

This effectively demonstrates a similar behaviour on the part of Char-RNN to Sam-
pleRNN: dataset content such as that contained in the ‘Tone Rows’ dataset where material
is subject to repetition or close variation tends to appear more clearly in the outputs. Un-
desirable ‘over-fitting’ (where the model simply generates content identical to the dataset)
is still avoided owing to a combination of the RNN’s mode-covering behaviour and the
abundance of other material in the dataset.

Interestingly, some of the raw Char-RNN outputs also contained instances of single-
note repetition, which is generally not something I do much in my practice. This tendency
might be attributed to the presence of triple-tongued exercises in the Tone Rows dataset,
where each note of the row is effectively played three times before moving onto the next.
This is the clearest data-centred explanation I can find for why consecutive repeated notes
should be considered a strong statistical probability when predicting new material. While
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Yin et al 11 discovered a similar tendency in their transformer-based modelling of MIDI
representations of Mozart and Haydn and interpreted it as under-fitting (a tendency in
machine learning for the model to inadequately fit to the training data, resulting in vague
outputs), I made the choice to exploit it creatively in one of the phrases in portfolio output
‘i prompt u’, discussed below, and throughout ‘Taps’.

6.5 Musical Applications

6.5.1 Compositions for Solo Improvisation and Effects

The notated outputs from my Char-RNN model proved to be useful source material
for structured improvisation. These outputs’ very minimal specification, free of expressive
markings or rhythm, had the effect of affording me a greater sense of freedom to decide how
to apply them than the products of previous chapters’ work. I experienced a greater sense
of permission here than in previous chapters to imagine what additional inputs would bring
these raw materials to life. It seemed an ideal opportunity to put into practice some effects
I had been working on in SuperCollider. As a result, each piece here contains augmentation
of my acoustic sound through effects, building on the use of looping in ‘Major Piece’ in
Chapter 5, as well as on the use of compression in SoloSoloDuo and chaotic noise and
distortion in ‘Duo with WaveGAN’.

‘i prompt u’

In ‘i prompt u’, I hand-curated melodies generated from the composite model to form
a progression from tonal to atonal. The first two melodies are clearly suggestive of closely
related key centers of C major and D minor. They then diverge to more specific tonalities,
the third and fourth phrases suggesting an altered F-sharp dominant and Bmi713. The
latter phrase could also be conceived of purely as a four-note cell of ‘G-sharp-C-sharp-D-B’.
Phrase five introduces chromaticism before giving way to explicity atonal phrases in the
manner of serialist classical music and of course the Tone Rows dataset.

In this piece my acoustic sound is augmented through the use of SuperCollider’s
PitchShift.ar unit generator; effects in this piece were added post-recording as the re-
sults were better than in real-time. During the more tonal passages only the ‘windowSize’
and ‘timeDispersion’ parameters are used to create a somewhat randomised delay effect.
Window size was set to the size of the entire section plus the maximum randomised time
offset which is also passed to the timeDispersion parameter. The very large window sizes
created a clarity in the effect that I found pleasing and that was problematic to recreate in
real time due to the large window size creating a significant pause before the effect kicked in.

As the piece progresses, pitch-based effects are added. At phrase five, where chromati-
cism is first introduced, the ‘pitchRatio’ parameter is increased to shift the pitch of the
effect by a whole tone. In later phrases, ‘pitchDispersion’, a random deviation from the
pitch ratio, is added, bringing in highly unpredictable transpositions of the source material
that I found both amusing and well-suited to these later phrases’ more angular character.

Improvisation in my performance piece was restricted to variations on the written
phrases as opposed to ‘outright’ improvisation. There are more variations on the more
tonal phrases towards the beginning of the piece. This was largely a matter of taste and
practicality - I felt that variation was easier in the earlier phrases owing to the possibilities
offered by their implied tonal center. I also felt that the delay effect used on earlier phrases
lended itself more comfortably to variation than the more chaotic effects used later in the

11Yin, Zongyu, et al, ‘Measuring When a Music Generation Algorithm Copies Too Much: The Originality
Report, Cardinality Score, and Symbolic Fingerprinting by Geometric Hashing’.
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piece: given the density and unpredictability of activity created by the use of random pitch
dispersion it seemed sufficient to stick to the written melody.

‘Taps’

In the process of curating outputs for ‘i prompt u’, I noticed a tendency for the raw
Char-RNN outputs to converge to a single note that would then be repeated. As noted
in Discussion of Raw Outputs, a probable reason for the presence of repeated consecu-
tive pitches in the predicted outputs from this model is the abundance of exercises in
the ‘Tone Rows’ dataset in which each note is triple-tongued. The structure of ’Taps’
exploits this tendency. I first deliberately selected phrases with this characteristic and
what I deemed to be an interesting preceding phrase. I then developed the characterising
aesthetic and structure for the piece; staccato written phrases interspersed with equally
short, improvised sounds that are explicitly derived from the final, repeated notes of each
composed phrase. In the final output, improvisation is kept very sparse and restricted to a
single conceptual space of exploring degrees of timbral variation that can be derived from
associating a sound with a single pitch and/or the fingering of that pitch on the instrument.

A multi-tap delay effect is used throughout, with transitions from composed melody to
improvisation emphasised by changes in the effect parameters, with additional delay taps
in the improvised sections. These changes are triggered by the use of a foot pedal. These
short improvised sounds frequently involve extended techniques such as multiphonics and
unconventional manipulation of the breath, articulation and embouchure.

‘Strange Loops’

In ‘Strange Loops’, I selected outputs that implied a shared tonal center of E harmonic
major. In the first section, single notes and short melodic fragments are looped with
crossfade in order to build up texture and establish the tonality. Occasional granulation
of the live input is added for sonic interest. This section gives way to a second section
in which longer composed and improvised phrases are looped and allowed to interact in
unpredictable ways, creating a loose polyphony. The third section is more textural, building
layers of multiphonics (specified in the score with both notated pitches and key combination
charts) whose constituent pitches are representative of the tonal center. Eventually, this
texture breaks down into shorter multiphonic sounds which further deteriorate towards the
end of the piece.

Further Reflection

Creating new compositions from these predicted pitch sequences was a relatively com-
fortable experience, and a freeing one compared with the work in previous chapters. While
of course these sequences of notated pitches preserve almost none of the expressive quality
of the generative audio outputs of the previous chapter, the sense of ownership afforded
by training on one’s own data remains. The fact of the outputs being based on my data
led to a more direct association between what was on the page and what I would play
than might be the case if, say, the outputs had been created through some more abstract
generative process such as a 12-tone system. This sense of ownership and connection to
my playing, combined with the very minimal specification of the notation, created a kind
of ‘open playing field’ on which I felt a noticeable sense of freedom and agency compared
with the work in previous chapters.

This sense of ease might also be in part a function of my background and training.
The previous chapter’s outputs relied heavily on my ear training whereas this chapter’s
outputs relied on my ability to interpret notation. While I like to think I have a ‘good
ear’, a significant proportion of my formative years was spent sight-reading difficult music
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in ensembles, and as such I might simply be more comfortable working with notation than
by ear. I would also contend however that working by ear is inherently more difficult than
interpreting simple notation.

Could go into implied scales in ’i prompt u’ e.g. hira-joshi scale in first phrase, minor
pentatonic in second, whatever the fourth one is called, dominant bebop scale in the
first transposed phrase, Bartok-y-ness of the semitoney shifting phrase, implied 12-tone
stuff later on.. again, a preference for spaciousness, repetition, clarity revealing itself.
Mix of very ordered and more chaotic sections in Strange Loops and i prompt u, reflect
tendency to improvise very carefully with composed material and play more experimentally
/ chaotically when no compositional material present.

6.6 Conclusion

Generation of notated pitches at first seemed to me to be an unlikely source of ideas
for creation of new music in my creative practice. Compared with the model outputs in
Chapter 4, which often have their own expressive character, the generated outputs used in
this chapter have a relative absence of expressive or idiomatic quality beyond what I, as
their effective co-author, infer. This proved to be unexpectedly freeing - the lack of speci-
fication in the raw outputs allows me the creative agency to bring them to life however I
wish. This agency shows through the range of character in the creative outputs described
in this chapter as well as in the enjoyment I experienced in making them.

Thinking deeper than these tacit notions of freedom or agency, I now reflect that a
creative associativity drives the outputs created in this chapter. In ‘i prompt u’, the
associations of fragments of melody with tonal centers and interval structures and the cor-
responding assignment of pitch shift effects are at the core of the creative impulse behind
the piece. In ‘Taps’ I associate repetition of single notes in the generated outputs with the
timbral possibilities of those notes, creating a structure for improvisation and correspond-
ing structure for assignment of the tap delay effect used in the process. In ‘Strange Loops’
I associate common pitch groupings in the raw outputs with a specific tonal center and
further associated certain multiphonics with this tonality; effects were then deployed with
vertical (harmonic) and horizontal (melodic) emphases on this tonality in mind.

While one could argue that a more commonly-specified pitch-generating algorithm such
as a 12-tone row generator could do the same job as my RNN, the sense of authorship
afforded by training such an algorithm on ones own data outweighs mere random number
generation. Furthermore, my experiments with both SampleRNN and Char-RNN have
demonstrated their tendency to respond positively to repetition of content in the dataset.
This tendency of RNNs could be further exploited by creators by adding more of the
content they wish to see in the outputs to their datasets and creating uncertainties by
adding contrasting material, making them more flexible and experimental than rules-based
algorithms.



Chapter 7

Conclusions

7.1 Introduction

In this chapter I will discuss the insights generated through the research and outputs
presented in this thesis; I will then outline and discuss core themes that have emerged as
a result of this work.

7.2 Summary

Through this thesis and accompanying portfolio, I explored creative applications of
three machine learning tasks - classification, generation and prediction - using deep learning
model architectures to model original data drawn from my practice as an improvising
saxophonist. This was done to answer questions pertaining to the following:

• The practicalities of modelling recordings of systematic instrumental practice on the
saxophone with deep learning for applications in creative music practice;

• Potential creative applications of the resulting models to instrumental improvisation,
instrumental practice and electroacoustic improvisation and composition;

• The extent of these models’ usefulness for these applications;

• Behaviours and qualities of different deep learning architectures with respect to the
datasets on which they are trained.

In the following sections I will summarise and reflect upon the core research chapters
before more fully addressing my initial research questions in light of the work presented.

7.2.1 Datasets

In Chapter 3 I presented a number of original audio datasets created to serve as the
bases of the deep learning models trained to do this work. In keeping with the initial
motivation of exploring ’black-box’ modelling of systems of musical information to creative
ends, the datasets are a reflection, to varying degrees, of ways in which I categorise my
improvisation practise. They range from, at their most systematic, strict exercises (as
seen in the ‘Scales and Arpeggios’ and ‘Tone Rows’ datasets), to, at their most loosely
defined, improvisation within bounds (as seen in the ‘Melodic Improvisation’ and ‘Timbral
Improvisation’ datasets); the ‘Register’ and ‘G Major’ datasets occupy a space in between
these two poles, somewhere between strict exercises and improvisation.

95
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7.2.2 Classification of Spectrograms

In Chapter 4, an exploration of audio classification using constant-Q spectrograms,
I presented two versions of ‘SoloSoloDuo’, a structured improvisation for saxophone and
classifier, the format of which is a reflection of the process of creating audio datasets,
training a classifier on them and using the classifier to mediate interactions between the
live input and sample sets derived from phrase-based segmentation of the first two solo
sections. The first version of ‘SoloSoloDuo’ relied heavily on the classifier for mediation of
interactions, using only a counter method to mitigate false classifications and amplitude
filtering to help distinguish played inputs from environment sounds. The second version
featured a classifier re-trained on salience spectrograms for additional robustness to differ-
ences in acoustic conditions between training data and playing situation, and additional
input differentiation in the form of pitch and onset analysis to make system responses more
appropriate and less jarring to play with. The resulting pieces have an angular character
that reflects the sharp contrasts in improvisatory approaches between the first two solo
sections, the need to ‘speak clearly’ to the classifier and the interruptive dynamic created
by interactions with the trained classifier.

7.2.3 Unconditional Raw Audio Generation

In Chapter 5, I presented numerous applications of the outputs of deep learning models
trained using two model architectures for unconditional raw audio generation, WaveGAN
and SampleRNN.

The first outputs, ‘b.io’ and ‘Duo with WaveGAN’, represent a continuation of the
interactive work started in Chapter 4, albeit without the use of classification to mediate
interactions. In ‘b.io’, interaction with pre-generated samples from SampleRNN models of
the ‘Lower Register’ and a composite of the ‘Middle-’ and ‘Upper Register’ datasets was
mediated by a straightforward on-the-fly pitch analysis of the live input, used to deter-
mine which register of the tenor saxophone the input predominantly occupied to determine
which sample set to select a response from. Of particular interest in this piece is the way in
which the gestural, vague character of the SampleRNN samples affects my playing, opening
up a subtly different mode of expression. In ‘Duo with WaveGAN’, a WaveGAN generator
model trained on the ‘Melodic Improvisation’ dataset is placed in the interactive loop and
prompted on the fly. Its generated samples are reordered according to pitch and onset
analysis of both the live input and the samples themselves, concatenated and played back,
mitigating what would otherwise be a jarringly random virtual duo partner. In practice,
the value of this setup was more as a kind of sparring partner for working on the agility and
flexibility of one’s improvised responses. I could however see more direct creative potential
in interacting in this way with WaveGAN models trained on audio of a different instrument
such as bass. The piece also highlights WaveGAN’s generation speed which is such that
it is suitable for real-time applications, an affordance that would surely endear it to other
practitioner-researchers.

‘Workshop I’ and ‘Workshop II’ are compositions that represent the process of using
pre-generated and curated WaveGAN and SampleRNN samples as material for ear training
and technical practice. I made these pieces to highlight what I strongly feel to be a valu-
able affordance of generative models of raw audio to instrumental practitioners. Defining
features of this affordance are the way novelty of content presents a challenge to the ears
and technique, and the way familiarity of sound and expression afford enjoyment, assis-
tance in learning and a sense of ownership: my experience was of finding it significantly
easier and more enjoyable to execute and absorb this unfamiliar content because it had
been modelled in my own sound and expression. I would strongly encourage advanced
instrumental practitioners to explore this application of generative models in their own
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practice, albeit tempered with a note of caution about mitigating the environmental im-
pact of wider uptake of this method - I would encourage users to downsample their audio
data and downgrade the model dimensionality multiplier to save on computation time.

‘Lrrning’ (and its computer-generated counterpart ‘Fake Lrrning’), ‘Gander’ (and its
similarly fake counterpart ‘Fake Gander’), ‘The Lows’ and ‘Major Piece’ are compositions
for improvisation based on transcription of generated and curated SampleRNN and Wave-
GAN samples. A feature of all of these pieces is the degree to which their phrases are
loosely connected by similarity (each piece consists of samples generated from the same
model, which in turns corresponds to a single dataset) but also quite varied in content,
suggesting counterintuitive musical structures. A feature of all of the performances of these
pieces is the degree to which the improvisation follows the implied structure of the compo-
sitions. Across all four pieces, close attention is paid to the implied tonality or character
of each phrase and to the implied structure the combination of these phrases generates.

‘Lrrning’, for example, contains phrases that are clearly suggestive of atonality and
others that strongly suggest tonal centers, despite all being ultimately derived from the
12-tone ‘Tone Rows’ dataset. ‘Fake Lrrning’ is significant in that it represents arguably
the most successful sample generation of the project, a result of keeping the dataset at
the original sample rate, and the use of time stretch data augmentation. Sample quality
was also consistently high (this cannot be said for other models, outputs of which re-
quired significant curation), presumably the result of a more appropriate dataset-model
size combination. This suggests that it would have been a better choice to downgrade the
dimensionality of the model architecture when training on smaller datasets, and was borne
out by more consistent results when I did the same with the WaveGAN models.

7.2.4 Symbolic Prediction

In Chapter 6, I explored the use of a language-domain RNN adapted for symbolic
representations of pitch, using appropriate prompts to predict strings of pitch information
from a model trained on a composite of all of the datasets besides ‘Timbral Improvisation’.
This audio dataset was pre-processing using the same process as that used for pitch-based
onset detection for managing interactions in ‘SoloSoloDuo’ in Chapter 4 and ‘b.io’ and
‘Duo with WaveGAN’ in Chapter 5. The strings outputted by the model - melodic predic-
tions, effectively - were converted to Lilypond code and rendered to music notation. I then
curated the outputs, identifying which phrases were of most interest to me; this process
was governed by a combination of playing through identified notations, considering their
relationship to the dataset and imagining what can be done with them creatively.

This model’s outputs afforded me more creative agency than I had experienced in any of
the previous chapters; I now reflect that this was due to a combination of their minimalism,
the rich suggestiveness of certain phrases’ similarity to aspects of the dataset, and because
interfacing with conventional notation (as opposed to interactive systems or audio samples)
is something I have done regularly since childhood - this was ‘home territory’, in a way.
They also provided a secure basis for some rewarding experimentation with digital effects
such as multi-tap delay (in ‘Taps’), looping and granulation (in ‘Strange Loops’) and
granular pitch shifting (in ‘i prompt u’). The resulting compositions and recordings are
now a valuable basis for more improvisatory experiments with a live solo saxophone-plus-
digital-effects setup.

7.2.5 Recap of Research Questions

To address my initial research question, ‘What are the practical implications of
using recordings of systematic instrumental practice on the saxophone as train-
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ing data for deep learning models for applications in creative music practice?’,
the answers uncovered in each chapter do vary to an extent depending on the data domain
the recordings are being translated to, but before I address these specificities I will high-
light some themes that recurred across all attempts to model my recordings.

The first is that it is crucial that the audio data being modelled is recorded in a consis-
tent manner and in as noise-free an environment as is practical; this is especially pertinent
when modelling the raw signal as in Chapter 5, but really applies to any audio intended for
further analysis and modelling. The most practical solution here is to use a microphone
with strong off-axis rejection, such as one with a supercardioid pickup pattern or one with
a figure-of-eight pattern with a soundproofing buffer to prevent the rear side from picking
up room sounds.

The second practical consideration is that deep learning models of audio generally re-
quire a quantity of audio that is not straightforward to acquire; time and energy must be
fairly abundant if an instrumental practitioner is to record themselves practicing for the
hours required, especially after taking into account post-recording edits such as removing
silences and material one wouldn’t wish to be modelled. To this end, the data augmentation
techniques explored in this thesis, which vary according to task and model architecture,
are a straightforward way of balancing the time and energy demands of recording. Indeed,
in the case of SampleRNN, data augmentation proved necessary to address the balance
of data quantity and consistency of musical content required for modelling to be success-
ful. A potential method for musical practitioners seeking to accumulate their own training
data not explored in this thesis is the use of source separation; a musician could poten-
tially isolate their instrument from the mix of an existing album they played on and use
the resulting stems as training data. This method would be made more challenging by
the inevitable audio artifacts (source separation almost never results in completely ‘clean’
stems) and by the restrictions imposed by the data existing source separation models were
trained on, but this remains a plausible approach.

Specific to the work in Chapter 4, when using machine listening to extract features
for classification tasks, the choice of feature(s) is an important practical consideration. A
musically-motivated time-frequency reprentation such as the CQT turned out to be an
appropriate choice for ‘SoloSoloDuo’, particularly because I was classifying a large ( 1.4
seconds) window of content, but for others this vary according to what is being categorised.
For example, if one is seeking to differentiate the timbres of individual sounds then the Mel
Frequency Cepstral Coefficient (MFCC) would be a more approriate input representation.
This example highlights a further practical consideration of what model architecture to
use - while an image classifier was largely appropriate for the categories of spectrogram
data I was seeking to differentiate, a simpler neural network architecture such as an MLP
is typically sufficient for classifying lower-level features such as MFCCs.

Specific to the work in Chapter 5, a practical consideration is access to the required
hardware for training generative deep learning models of raw audio, the RAM and GPU
RAM requirements and training times of which make them unsuitable to be run on readily-
available and affordable consumer hardware. At the time of writing, free cloud solutions
such as Google’s Colab are a good and user-friendly option. The classification architecture
explored in Chapter 4 and the predictive text model presented in Chapter 6 can be trained
and run in reasonable time in a consumer-level CPU.

A further practical consideration that applies across all of the work presented here is
whether or not the source data itself being modelled is appropriate for the intended task
and its inverse consideration of whether or not the task you wish to engage with is appro-
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priate for the data one is working with’. The specificities of these considerations of course
vary according to data and task: in Chapter 4, it was important that the data would be
representative of what the trained classifier model would be presented with in practice,
and recordings of improvisation were used as training data; in Chapter 5, it became ev-
ident that timbrally diverse data and small datasets resulted in poor generated outputs,
therefore it was important to mode data with consistency of timbral character and to use
significant data augmentations to get better results; in Chapter 6, non-melodic recordings
were inappropriate to the data representation.

The question that follows on from this is ‘To what creative ends can these models
be applied in the context of improvisation, instrumental practice and composi-
tion for improvisation? To what extent do they contribute to these applications
and in what specific ways?’ This project has demonstrated diverse creative ends to
which these models can be applied. These have been evidenced thoroughly throughout
Chapters 4, 5 and 6 and the accompanying portfolio, but to recap, these include the gen-
eration of novel material for technical practice, ear training and use in improvisation (as
showcased in ‘Workshop I and II’), generation of compositional ideas for improvisation
(as shown in the structure of ‘SoloSoloDuo’ and the content and structure of ‘Lrrning’,
‘Gander’, ‘The Lows’, ‘Major Piece’, ‘i prompt u’, ‘Taps’ and ‘Strange Loops’) and in-
corporation into interactive systems (as showcased in ‘SoloSoloDuo’, ‘b.io’ and ‘Duo with
WaveGAN’).

The extent to which these models were found to contribute to instrumental practice,
improvisation and composition varied and should be addressed one at a time. In the do-
main of instrumental practice, there was a clear benefit from using outputs from generative
models of raw audio as material for ear training and technical practice on the instrument.
In the domain of improvisation, again ear training was a tangible benefit, as was being
forced to find non-perfunctory responses to generated outputs when improvising with them
in an interactive loop. The absorption of the contrasting expressive characters conferred by
outputs of SampleRNN and WaveGAN models into my playing was an additional benefit
to both instrumental practice and improvisation. Discriminative, generative and predic-
tive models each offered significant usefulness in the compositional process: the process
of training and interacting with a classifier defined the structure of ‘SoloSoloDuo’; using
curated outputs from generative models as the basis for compositions offered a way to
effectively outsource aspects of the compositional process, crucially in a way that did not
undermine a sense of authorship or achievement; similarly predictive modelling of text-
based representations of pitch created a fast, efficient workflow that led to three additional
compositions being written in a relatively short space of time. Additionally, the way in
which generated outputs were used within the audiovisual project ‘Gandering’ suggests
that experimentation with these models can also open up alternative domains of creative
work.

The third question, ‘How do specific classes of model architecture ‘behave’
musically with respect to the data on which they are trained?’, needs to be
answered on a case-by-case basis.

CNN

A classifier’s behaviour is, on the surface, straightforward to define owing to its sim-
plicity of function - all it does is analyse an unseen input and output a predicted class
or category to which the input most likely belongs based on the pre-categorised data on
which it was trained, often accompanied by the degree of confidence in its prediction. More
interesting is the question of how it behaves with respect to musical data and whether,
in the case of the convolutional neural network used in this thesis, it is a suitable tool
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for audio applications. Classification of audio spectrograms is fairly commonplace in audio
research and industry applications, examples being the popular birdsong identification app
‘BirdNET’, Algonaut’s AI-augmented drum sequencer software ‘Atlas’ and Musiio’s genre
recognition technology: this approach clearly ‘works’ quite well. But convolutional mod-
els per se are explicitly designed to identify features of natural images, not spectrograms,
making it not straightforward to reason about what is actually being learned. Convolu-
tional models are also intensive for real-time applications even when stripped back as I did
for Chapter 4. I circumvented this in ‘SoloSoloDuo’ further by only periodically recording
the input stream, but other practitioners may well want a more immediately responsive
application.

For these reasons it is my feeling that the lower level approach favoured by Flucoma in
their machine learning tooling, in which classification is handled by, for example, a multi-
layer perceptron, which despite its name is a much simpler model architecture than any
convolutional model, and input representations with lower computational overhead such
as MFCCs, spectral centroids and such are favoured, are going to be a more appropriate
choice for the majority of practitioners.

WaveGAN

The most striking aspects of WaveGAN’s behaviour when modelling and generating
audio signals are its ability to grasp musical content, its speed of sample generation and,
unfortunately, the noisiness of the generated samples.

Its ability to model content is a clear function of its discriminator-generator architec-
ture and adversarial training process: the generator’s effective priority is to create plausible
content. This ’mode-seeking’ behaviour has downsides: given a diverse dataset, such as
‘Timbral Improvisation’ and the ones I externally sourced during the ‘Gandering’ project,
the generator can end up simply seeking the easiest path to plausibility, which can result
in swathes of the dataset being ignored and the generator converging on a small number
of areas of the dataset; conversely, if the dataset contains repetitions of material as is the
case with the ‘Tone Rows’ dataset, the learning task becomes too easy for a GAN and
the generated samples, while of improved fidelity, are too often direct regurgitations of the
dataset. This might be fine if you only wish to generate, say, one-shot samples with a bit of
timbral variation, but for generation of novel phrases it doesn’t cut it. The implication for
creating datasets for modelling with WaveGAN - with a view to generating novel melodic
phrases - is that a balance needs to be struck between variety (or avoidance of repetition)
and cohesiveness. For this reason, if data augmentation is necessary, use of high-quality
pitch shifting is more appropriate. When this balance is achieved, as was the case with the
‘Melodic Improvisation’ and ‘G Major’ datasets, the results are more novel and compelling.

On a more purely technical level, WaveGAN’s speed of sample generation means it can
be used in real-time interactive contexts, assuming the use of a GPU (sample generation
with WaveGAN is a little slower but still reasonably fast in a CPU), as shown in ‘Duo
with WaveGAN’. This affordance has already been exploited in commercial audio plugin
‘Tensorpunk’. I believe that for this combination of generation speed and ability to model
content in novel ways, WaveGAN is an underrated creative tool compared with SampleRNN
or RAVE; I suspect reasons for its relative lack of popularity are the lack of availability
of an easy-to-use implementation (the reference version is written in a legacy version of
Tensorflow that is no longer supported in Googe Colab, usually a first port-of-call for
training models in the cloud) and the noisiness of its samples.
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SampleRNN

I find SampleRNN’s defining behaviours to be its capacity for novelty (showcased most
clearly in the Workshop pieces and in ‘Lrrning’ and ‘The Lows’) and its ability to model
the complexities of instrumental timbre to a realistic-sounding degree (heard most clearly
in ‘Fake Lrrning’). While it naturally models instrumental timbre easily, it struggles to
model content; for this reason it clearly benefits from repetition of content in the dataset
and from data augmentation through the use of time stretching. The benefits of this can
again be heard in ‘Fake Lrrning’. Timbral was realism was further improved by keeping
the sample rate at 44100Hz as opposed to downsampling to 22050Hz (again, the benefit
of this can be heard in ‘Fake Lrrning’), with the trade-off that doing so increased training
time significantly.

Char-RNN

Char-RNN exhibits a similar ‘mode-covering’ behaviour to SampleRNN, seeking a prob-
ability distribution that covers the full span of the dataset’s contents. This was borne out
in the outputs of the model I trained on a composite dataset consisting of all bar ‘Timbral
Improvisation’ and can be clearly seen in the phrases that make up ‘i prompt u’ (suggestive
of a range of inputs from tonal to atonal), ‘Taps’ (clearly derived from the ‘Tone Rows’
dataset) and ‘Strange Loops’ (clearly suggestive of tonal centers). Compared with the
language-focused original version of this model architecture, the drastically reduced ‘vo-
cabulary’ (limited to 12 characters - numbers 0 to 9 plus commas and spaces) and strictly
uniform data format simplified the learning task considerably. Strong loss statistics, en-
couraging training-in-progress outputs and clear modelling of aspects of the data shown
in generated outputs suggest this model architecture is well-suited for modelling musical
information, better than it is for language modelling; this would also be borne out, of
course, by Sturm et al’s appropriation of the architecture for Folk-RNN 1. More generally,
Char-RNN is fast to train and predict, and can be trained and inferred upon in the CPU,
making it a technologically accessible option for more practitioners.

7.3 Core Themes

In this section I enumerate and reflect upon themes and ideas that have recurred
consistently throughout this project.

7.3.1 Dataset Creation and Manipulation

In Chapter 3, I presented and discussed several original audio datasets. Following the
statistical modelling and creative work in Chapters 4-6, the work in Chapter 3 retrospec-
tively reveals some considerations when creating datasets for AI modelling. These concerns
tend to be specific to the class of model architecture and/or the intended application or
outcome.

For example, the work on audio classification in Chapter 4 revealed a need for the
dataset to be both representative of the unseen material it would classify and at least
somewhat robust to natural variation such as changes to the local acoustic, changes of
reed, variations in ones physicality (the same saxophone player will sound subtly different
from one day to the next depending on how they feel physically) and microphone position
and gain. My solution to the inherent sensitivity of CQT spectrograms to these subtle
differences, differences which affect model performance, was to use salience modelling as a
noise reduction tool. Doing so allowed me to use a model trained on data recorded 3 years

1Sturm, Bob et al, ‘Folk Music Style Modelling by Recurrent Neural Networks with Long Short Term
Memory Units’.
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prior to classify inputs played on a different saxophone and reed-mouthpiece combination
(I changed instrument in mid-2022). I make no claims of empirical proof here, but it is at
least noteworthy that I achieved tolerable classification performance that enabled me to
make version 2 of ‘SoloSoloDuo’ on this basis.

The work on applied generative modelling in Chapter 5 emphasised the need for clarity
and strength of recorded signal when creating datasets for this purpose and the impor-
tance of timbral cohesion in the dataset; this finding held true for both WaveGAN and
SampleRNN models. Beyond this finding, best results with SampleRNN were achieved
when the raw dataset contained an amount of repetition of musical content (as was the
case with the ‘Tone Rows’ and ‘Lower Register’ datasets) and had been augmented in size
with additional time-stretched copies of itself (effectively providing more of this repetition
of content without actually duplicating the data). With WaveGAN it proved necessary to
avoid repetition lest the generated samples simply replicate the dataset; here it was better
to emphasise consistency of character while avoiding actual repetition, as is the case with
the ‘G Major’ and ‘Melodic Improvisation’ datasets.

When creating the dataset used in Chapter 6, experiments with data augmentation in
the symbolic domain did not seem to improve outcomes: the generated material tended
to be more plausible from models trained on data to which no augmentations had been
applied, whereas I felt that the generated outputs from models trained on augmented
data lost their connection to the original data (which even in the best case was already
somewhat tenuous). However, the reductive nature of the data preprocessing meant that it
was necessary to combine all datasets bar ‘Timbral Improvisation’ to simply have sufficient
data to train the model. It was then interesting to inspect the raw generated outputs to
try and parse which outputs were influenced by which parts of the dataset, with the ‘Tone
Rows’ dataset proving most influential, presumably again due to the amount of repetition
of content it contains. This is in keeping with SampleRNN’s fondness for repetition of
content and no doubt a function of RNNs’ mode-covering behaviour.

7.3.2 Data Ownership = Creative Authorship; AI as Personalised Tool

An important aspect of this work is the fact that all the data on which the models used
for creative work were trained was self-authored and created specifically for this project.
New high-profile developments in AI such as large language-prompted generative models
are trained on large bodies of externally-sourced data and as such they offer very little in
the way of authorship to the creative musician. This is to say nothing of the often insuffi-
cient transparency around to how this data was sourced and whether artists and copyright
holders were compensated or even consulted. While recording at length, preprocessing the
resulting audio data and modelling it with deep learning are obviously much more onerous
tasks than entering a text prompt to an API, the reward is a highly personalised and
reusable creative tool, one that confers, as I hope has been made very clear through this
work, multiple potential applications. Engagement with deep learning models at the level
of training them on one’s own data equips the practitioner with useful tools for the gener-
ation of raw materials to use in their practice in the form of the trained model; proficiency
in the process of creating new datasets and training new models equips the practitioner to
more easily create more new tools. Such tools carry a particular sense of ownership and
authorship having been created through modelling one’s own data.

Lacking a software development background, the idea of developing my own tools for
musical creativity would have seemed fanciful before my engagement with deep learning.
By learning about how these model architectures work and behave, practitioners can ex-
pand their practice outwards as I have done. The work in this thesis makes such an
engagement a more accessible prospect.
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7.3.3 AI as Teacher

A recurrent theme throughout this work has been the notion of AI as teacher. For
example, development of the interactive pieces ‘SoloSoloDuo’, ‘b.io’ and ‘Duo with Wave-
GAN’ felt akin to practicing with the interactive equivalent of a jazz playalong. Doing so
felt difficult, but had the benefit of forcing me out of my comfort zone in numerous ways:
by thwarting any attempts on my part at linear development, setting up a more inter-
ruptive dynamic than I was initially comfortable with and sharpening my active listening
abilities.

This theme continued in Chapter 5 with the Workshop pieces: while technically de-
manding, these represented a more comfortable and enjoyable practicing situation than the
interactive duets, demanding that I simply learn to execute phrases from the generated
samples by ear. While I would consider the duet pieces to be more successful as creative
outputs than the Workshop pieces, I felt great enjoyment and benefit to my technique from
the process of learning the phrases and from further private engagement with the same.
This application of generative models of raw audio feels significant to me.

A less obvious way in which deep learning models can serve as a teacher is in the
information they return about our datasets and music. Engagement with the process
of training generative models of raw audio is almost self-improving, since the generated
samples tend to exaggerate any flaws present in the dataset. On a musical level, the
process of creating the datasets and modelling them led to re-evaluation of the distinctions
between them. I have questioned my long-held belief that there was an obvious distinction
between the ’timbral’ and ’melodic’ aspects of my practice: while this distinction forms the
structural basis of SoloSoloDuo, developing the duo section encouraged me to combine these
areas more liberally; this loosening of my boundaries can also be heard in the improvisations
in ‘Gander’ and ‘The Lows’ and seen in the compositional structures of ‘Strange Loops’
and ‘Taps’. The recogisable influence of the Tone Rows dataset on the raw Char-RNN
outputs in Chapter 6 led me to treat the 12-tone style (as distinct from actually striving
to improvise according to strict 12-tone rules) as a distinct structural region of ‘i prompt
u’; similarly pitch groupings more suggestive of tonal centers occupied their own distinct
area of the same piece and of ‘Strange Loops’.

7.3.4 AI as Creative Assistant

The use of the generative models discussed in Chapter 5 and the predictive model
in Chapter 6 as providers of substantial source material for compositional ideas and im-
provisational ‘prompts’ has at multiple points throughout this work raised the notion of
deep learning models acting as a creative assistant. This can be seen most clearly in
the compositions for solo improvisation in Chapter 5 ‘Gander’, ‘Lrrning’, ‘The Lows’ and
‘Gander’, which I can safely say contain ideas I would not have written left to my own
devices! While the connections between the generated notations and the final composed
outputs in Chapter 6 (‘i prompt u’, ‘Strange Loops’ and ‘Taps’) are slightly less explicit,
with some additional inputs such as effects, inferences about tonal centers and associations
with multiphonic pitches being brought to bear, they are still a further example of this
notion. Again, I can say with certainty that these pieces contain ideas that I would not
have come up with without the model outputs. Less explicitly again, without the trained
classifier used in Chapter 4, the idea for the structure of ‘SoloSoloDuo’ might never have
been considered, although it was borne as much from the entire process of training the
classifier as it was from the trained model itself.

The use of deep learning as a source of material for practicing, as represented in the
pieces ‘Workshop I and II’ in Chapter 5, seems to me, on reflection now, an especially
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abundant creative application of generative models. While I used to write my own exercises
or adapt my exercises from sources such as Slonimsky’s ‘Thesaurus of Scales and Melodic
Patterns’2, I feel a deeper sense of ownership of the outputs generated by deep learning
models and a greater sense of enjoyment and fun when learning to execute them on mhy
instrument.

7.3.5 Associativity

Another theme that has arisen throughout this work has been associativity. At multiple
points throughout this thesis, particularly during disussion of creative outputs, it has been
noted that association between a trained model’s behaviour or output with a pre-existing
musical idea or entity was a driver of bringing these abstracted data models to life in
the creative realm. This notion of associativity differs slightly from psychological models
in which it is connected to the idea of semantic distance, the idea being that the more
semantically distant the association, the more creatively interesting the association is3. In
my work these associations have been highly domain-specific, such as associating generated
audio samples with the work of an existing composer-improviser, generated pitch cells with
tonal centers, one improvised idea with the next, and the current improvised idea to a point
in a compositional structure. These associations have felt a necessary counterbalance to
the emphasis on process required for creating the deep learning models that underpin this
work.

7.3.6 Explainability

While not explicitly referred to during this thesis, the notion of explainability of AI
has been present throughout. As with associativity, the notion of explainability this thesis
engages with differs from existing research definitions; for example, through DARPA’s
Explainable Artificial Intelligence Program, Gunning et al propose that Explainable AI
should be able to explain to its user why it made a certain choice 4. The version of
explainability I am proposing practice-researchers and musicians consider when engaging
with AI stops short of this ambition (it is worth noting that ChatGPT5 was designed
with this feature in mind, but in reality its explanations fall short of what users might
reasonably have in mind!) but is a valuable and realistically attainable framework for
an intelligent engagement that delves deeper than the end-user paradigm. I propose the
following assumptions:

• An AI’s output is more explainable the more familiar you are with the contents of
the dataset;

• An AI’s output is more explainable when you understand the expected ’behaviours’
of the model architecture you are working with;

• An AI’s output is more explainable when you can reason about why these behaviours
are expected.

This feels important for trying to engage creative practitioners with deep learning; ap-
proaching this technology with an ‘end-user’ mindset where the practitioner expects magic
to happen without putting the necessary thought and effort into dataset content, choice
of model architecture, model size with respect to dataset size (or vice versa) and choice
of augmentation technique with respect to data representation and model architecture,

2Slonimsky, Nicolas, ‘Thesaurus of Scales and Melodic Patterns’
3Kennet, Yoed N., ‘What can quantitative measures of semantic distance tell us about creativity?’ in

Current Opinion in Behavioral Sciences Vol. 27, Jun 2019, 11-16
4Gunning, David, David W. Aha, ‘DARPA’s Explainable Artifical Intelligence Program’, AI Magazine,

40(2), https://doi.org/10.1609/aimag.v40i2.2850, 44-58.
5OpenAI, ‘GPT-4 Technical Report, unpublished paper, Mar 2023, arXiv:2303.08774.
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then efforts are likely to fail and the user will likely disengage. This in turn would add to
the narrative that only people with the necessary technical expertise can engage with AI,
which I emphatically do not believe to be the case. An intelligent approach that takes into
account the above prerequisites is more likely to lead to a personalised artistic engagement
with AI and is more likely to succeed.

7.4 Future Work

An approach to creation of datasets for classification I had not considered when un-
dertaking this work is a bag-of-frames approach: by using overlapping windows rather
than fixed-length, non-overlapping consecutive audio segments as the basis for classifica-
tion data it would be possible to considerably embiggen the dataset, give the classifier a
greater range of plausible input examples and hopefully improve classification performance.

When recording solo saxophone datasets for generative modelling in future I will cer-
tainly use a dual-microphone setup in order to capture a fuller impression of those regions
of the instrument than a single clip microphone is able to. I will also consider the compat-
ibility between the dataset and model architecture carefully, effectively creating bespoke
datasets intended for use with specific model architectures. I am especially keen to further
develop my use of SampleRNN in this regard, creating new datasets with that model archi-
tecture in mind and creating models of them. I also intend to begin creating datasets for
modelling with the RAVE and Catch-A-Waveform architectures. The former is attractive
for its state-of-the-art output quality and the latter for its ability to generate variations on
small datasets. I am especially attracted to the idea of an album of ‘fake’ saxophone solo
pieces generated from SampleRNN and other models. I will also continue to use generated
samples as sources of material for practice, composition and improvisation. I also see appli-
cations of audio generation in the field of music education research: recording instrumental
practice sessions, training models of the resulting audio data and using it to generate new
material for instrumental practice and new ideas for composition and improvisation.

I am adapting the SuperCollider patches created for the work in Chapter 6 for live per-
formance with two distinct setups - one with laptop, audio interface and USB foot pedals,
the other a more compact setup with the Bela embedded platform6, foot pedals and touch
sensors. I very much intend to take this work into the live performance space. I also intend
to adapt ‘SoloSoloDuo’ for live performance - ideally this would take the form of porting of
some of the Python scripts (for phrase-based segmentation in particular) to SuperCollider
for ease of live use; doing so would also necessitate use of the Flucoma7 toolkit for the
classification aspect of the piece. It has recently been proved possible to run this toolkit
on Bela hardware8.

Another adaptation of this work to live performance I am keen to investigate is con-
verting the visualisations used for online presentation of ‘Gandering 1’, ‘SoloSoloDuo’ and
‘b.io’ for real-time purposes. Since real-time traversal and visual rendering of a GAN’s
weight space would be computationally very expensive in an already compute-intensive
domain, image sequences created through linear interpolation of the weight space would
be pre-generated; the smooth speed-up and slow-down effects created by the Lucid Sonic

6McPherson, Andrew P. and Victor Zappi, ‘An Environment for Submillisecond-Latency Audio and
Sensor Processing on BeagleBone Black’ (conference paper, AES: 138th Convention of the Audio Engi-
neering Society, Sofitel Victoria Hotel, Warsaw, Poland, May 7–10, 2015).

7Tremblay, Pierre Alexandre, Owen Green, Gerard Roma, Alexander Harker, ‘From collections to cor-
pora: Exploring sounds through fluid decomposition’ (conference paper, ICMC 2019: 45th International
Computer Music Conference, Elmer Holmes Bobst Library, MORE, New York University, USA, Jun 16-23,
2019.

8Armitage, James, ‘flucoma-bela’, Feb 27, 2023, https://github.com/jarmitage/flucoma-bela
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Dreams program would be mimicked by skipping images in the sequence according to real-
time amplitude or other audio analysis of the live signal. I have begun to implement this
work in Python though it may be necessary to use TouchDesigner or similar video process-
ing software for the end result to be suitable for live performances.

I will continue to use my Char-RNN-based models as a means of fast generation of
musical ideas. To this end I would like to experiment with adding artificially-created data
and externally-sourced data to my own. I would also like to develop an effective data aug-
mentation technique for this context and experiment with adding symbolic representations
of a greater number of musical parameters than is currently the case.

Moving slightly away from work that direct flows from this thesis and towards other
machine learning tasks for audio, I am especially interested in the possibilities offered by
real-time timbre transfer, as made possible by Google Magenta’s DDSP9 and RAVE10, and
audio source separation, as exemplified by the Demucs11 and Wave-U-Net12 architectures.
I see potential applications of source separation in particular in the field of music education
research: using source separation to remove specific instruments from existing tracks to
provide students with customised backing tracks, for example, and usig separation as an
aid to transcription for instrumental study and analysis.

9Engel et al, ‘DDSP: Differentiable Digital Signal Processing’.
10Caillon et al, ‘RAVE: A variational autoencoder for fast and high-quality neural audio synthesis’.
11Rouard et al, ‘Hybrid Transformers for Music Source Separation’.
12Stoller, Daniel, Sebastian Ewert, Simon Dixon, ‘Wave-U-Net: A Multi-Scale Neural Network for End-

to-End Audio Source Separation’, paper presented at ISMIR 2018: 19th International Society for Music
Information Retrieval Conference, IRCAM, Paris, Sep 23-27, 2018, arXiv:1806.03185.
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