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Abstract

The large-scale circulations of many geophysical and astrophysical bodies are domi-

nated by parallel flows. It is natural to enquire about the stability of these flows, and

how they depend upon background rotation, shear and stratification. In the terrestrial

atmosphere, inertial instabilities may result and are most likely to occur close to the

equator. We therefore investigate whether corresponding instabilities may occur in

stellar and planetary atmospheres, where large-scale magnetic fields may have signif-

icant dynamical effects; in particular, we focus on applications to the solar tachocline,

and the upper atmospheres of Hot Jupiters.

We investigate the axisymmetric linear stability of various parallel flows with latitu-

dinal shear in the presence of background rotation, stratification and magnetic field.

Using the Boussinesq and magnetohydrostatic approximations, we derive general sta-

bility criteria and growth rate bounds, taking account of the magnetic field. We show

that sufficiently strong magnetic field stabilises the system.

We show that a uniform shear flow on an f -plane allows magnetically modified iner-

tial instabilities and purely magnetic instabilities to occur, the latter being analogous

to magnetorotational instabilities in limiting cases. Allowing for non-zero kinematic

viscosity, thermal diffusivity and magnetic diffusivity leads to several steady and os-

cillatory stability criteria. We categorise various double-diffusive instabilities, some

of which occur at vertical wavenumbers that would otherwise be stable in the ideal

regime.

We also consider the nonlinear evolution of a hyperbolic shear layer at mid-latitudes

to understand the effect of a locally unstable region, the entire time evolution of the

nonlinear instability, the redistribution of vorticity and the resulting change to the

mean flow. The redistribution of vorticity is most substantial in the hydrodynamically

stable regime.

Finally we consider the stability of a jet profile on an equatorial β-plane, which ad-

mits localised solutions about a central latitude. For the ideal case, instabilities can

occur at any vertical wavenumber given sufficiently weak magnetic field; the most

unstable modes are found to occur for infinite vertical wavenumbers. In the presence

of diffusion, instabilities are constrained to finite vertical wavenumbers and are often

purely magnetic, occurring in the hydrodynamically stable regime.
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Chapter 1

Introduction

1.1 Zonal Jets in Stellar and Planetary Atmospheres

The large-scale circulations of many geophysical and astrophysical bodies are dominated by par-

allel flows. Examples include the zonal jets of stellar and planetary atmospheres and interiors,

and the approximately circular flow in accretion discs. It is thus natural to enquire about the sta-

bility of these flows, and how it depends upon background rotation, shear, stratification and, if

present, magnetic field. This may be important for constraining the possible flow configurations

(e.g., jet strength and location) or for understanding the development of turbulence. There is, for

example, a long-standing interest in understanding the possible role of turbulence in angular mo-

mentum redistribution in accretion discs (e.g., Kuiper, 1941; Lynden-Bell & Pringle, 1974; Balbus

& Hawley, 1991). More recently, observations of certain exoplanetary atmospheres, so-called Hot

Jupiters, have revealed the existence of unexpectedly strong equatorial jets that apparently flow

close to the speed of sound (e.g., Showman et al., 2013; Heng & Showman, 2015).

In this thesis we will be considering the effect of magnetic field on axisymmetric instabili-

ties in planetary atmospheres and stellar interiors. In Cartesian geometry, we consider the linear

and nonlinear evolution of axisymmetric instabilities in the presence of vertical magnetic field

in a planetary configuration, where background rotation (f -plane or equatorial β-plane), uniform

vertical density stratification, uniform diffusion, and the magnetohydrostatic (thin layer) approx-

imation are considered. The magnetohydrostatic approximation makes the analysis distinct from

previous studies, and allows us to investigate the large scale dynamics of stellar and planetary at-

mospheres. In this chapter we introduce a selection of astrophysical bodies relevant to this system,

inertial instability and the magnetorotational instability. We also introduce a number of other in-

stabilities that illustrate mechanisms relevant in the thesis. Finally, we discuss the aims and outline

of the thesis.

1.1.1 The Solar Tachocline

An astrophysical body that hosts a large scale magnetic field is the star of our solar system —

the Sun. The internal structure of the Sun consists of three main regions: the core (R < 0.2R⊙),

1



Figure 1.1: Helioseismological measurements of the internal angular velocity of the Sun at a
number of given latitudes against the relative radius. Image credit: NSO/GONG.

the radiative zone (0.2R⊙ < R < 0.7R⊙) and the convective zone (R > 0.7R⊙), where the

solar radius is R⊙ = 7.0 × 108m. Helioseismology (a method that measures oscillations of the

Sun caused by sound waves) indicates that the radiative zone rotates as a solid body (Gough,

2007, Chapter 1), while the external convective zone exhibits differential rotation, as illustrated

in figure 1.1. The abrupt disparity between rotation profiles gives rise to a thin interface layer,

approximately 2−5% of the solar radius in depth, with strong latitudinal and vertical shear — it is

known as the solar tachocline. The tachocline plays a crucial role in the transport of energy, mass

and magnetic field throughout the Sun, and is thought to be primarily responsible for the solar

dynamo (Gough, 2007, Chapter 1). The strong latitudinal shear of the solar tachocline may give

rise to numerous instabilities that are likely to depend on the magnetic field, the strength of which,

in the solar tachocline, is thought to be in the range 103G to 105G (Gough, 2007; Hughes et al.,

2007). It is apparent from figure 1.1 that the shear of the solar tachocline becomes more extreme

at larger latitudes. It is important to note that the angular velocity increases with increasing radius

in the near equatorial regions (i.e., latitudes less than 30◦) and decreases with increasing radius for

larger latitudes.

1.1.2 Jupiter

The gas giant Jupiter, which rotates with angular velocity Ω ≈ 1.76× 10−4s−1, exhibits approxi-

mately axisymmetric zonal flows throughout its upper atmosphere, with surface winds exceeding
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1.1 Zonal Jets in Stellar and Planetary Atmospheres

Figure 1.2: The surface zonal flow of Jupiter, the magnitude of which is illustrated by the thick
black line, as a function of latitude. This was measured during Juno’s third perijove pass on the
11th of December 2016 (Tollefson et al., 2017). The image of Jupiter was taken by the Hubble
Wide Field Camera in 2014. Image Credit: Kaspi et al. (2018).

100ms−1 (Tollefson et al., 2017; Kaspi et al., 2018; Read, 2024). There is a strong eastward

equatorial jet which extends ∼ 15◦ into the northern and southern hemispheres and is flanked by

numerous prograde and retrograde jets with varying speed and width, as illustrated in figure 1.2.

The depth of these jets has been a long-standing question (e.g., Vasavada & Showman, 2005);

however, in recent years, there has been significant development on this topic due to the recent

Juno missions (Iess et al., 2018). Kaspi et al. (2018) suggest that the jets extend to 0.96Rj before

rapidly decaying to ≃ 1% of their surface amplitude, whereRj = 69911km is the radius of Jupiter

(i.e., the jets extends ≃ 3000km into the planet’s atmosphere). The reason for this rapid decay

is still under debate, but may be due to a number of factors, including the existence of a stably

stratified layer from 0.8Rj or 0.9Rj to 0.92Rj (Debras & Chabrier, 2019; Gastine & Wicht, 2021)

or Lorentz forces (Christensen et al., 2020).Naturally, the strength of these Lorentz forces will

depend on Jupiter’s magnetic field, which is the strongest of all the planets in the solar system

(Connerney, 1993). The predominantly dipolar field is generated in the electrically conducting

“dynamo region”, where the atmosphere is composed primarily of metallic hydrogen. The upper

limit of this region occurs at ≃ 0.85Rj (French et al., 2012; Iess et al., 2018), above which

the conductivity rapidly falls to zero since Jupiter’s upper atmosphere is composed primarily of

molecular hydrogen (Guillot et al., 2004). The fall in conductivity also leads to a rapid decay

in magnetic field strength. Indeed, the maximum field strength decreases by approximately 75%

from about 80G at R = 0.85Rj to about 22.5G at R = 1.0Rj (Connerney et al., 2022). However,

these maxima occur in localised regions of magnetic flux that extend throughout Jupiter’s outer

atmosphere; the average field strength at the surface is 4.1G (Connerney et al., 2022).
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1.1.3 Hot Jupiters

Hot Jupiters are gas-type exoplanets that are somewhat similar physically to Jupiter. Their radii

range from 0.50RJ to 2.0RJ , while their masses range from 0.36MJ to 11.8MJ , where MJ =

1.9 × 1027kg is the mass of Jupiter (Winn et al., 2010; Demory & Seager, 2011). Whilst Hot

Jupiters are considered gas-giants, they have some distinctive characteristics compared with Jupiter.

Many Hot Jupiters have unusually low mean densities. For example, Mandushev et al. (2007)

observed a Hot Jupiter with mean density 222kgm−3; in comparison, Jupiter’s mean density is

1330kgm−3. This occurs as Hot Jupiters seem to have much larger radii than their mass dictates.

Although high levels of irradiation are thought to be responsible for the inflated radii, the mecha-

nism for this is still under debate (Heng & Showman, 2015).

The orbital periods of Hot Jupiters can range from 1.3 to 111 Earth days (Winn et al., 2010);

however, observations suggest that they are usually less than 10 Earth days (Berrier & Sellwood,

2015). The short orbital periods of Hot Jupiters coincide with small distances from their host stars,

the typical distance being ∼ 0.1AU.

Hot Jupiters are also typically tidally locked (Heng & Showman, 2015), with one side always

facing its host star. Thus, assuming orbital periods T < 10 Earth days, we can estimate that their

angular velocity Ω = 2π/T > 7.3 × 10−6s−1. However, we note that tides may drive planets

away from synchronous rotation (Showman & Guillot, 2002; Correia et al., 2003; Grießmeier

et al., 2004).

The close proximity and tidal locking leads to atmospheric temperatures of ∼ 1000K to 3000K

(Mayor & Queloz, 1995), which can ionise the planetary atmospheres and therefore allow large-

scale magnetic fields to develop and influence atmospheric dynamics. The magnetic field strength

of Hot Jupiters is somewhat uncertain. However, Yadav & Thorngren (2017) estimate the surface

magnetic field strength of several Hot Jupiters from 10G to 120G, consistent with observations of

the release of magnetic energy in four planet-star interactions, indicating field strengths from 20G

to 120G (Cauley et al., 2019).

Given a Hot Jupiter is tidally locked, intense stellar radiation on the permanent dayside may

drive strong zonal flows that redistribute heat to the permanent nightside (Heng & Showman,

2015). Indeed, observations of Hot Jupiters have revealed the existence of unexpectedly strong

(eastward) equatorial jets that apparently flow close to the speed of sound (e.g., Showman et al.,

2013; Heng & Showman, 2015); these were also predicted by dynamical models (Cooper & Show-

man, 2005; Rauscher & Menou, 2010). However, more recent observations found evidence of

westward travelling jets (Armstrong et al., 2016; Dang et al., 2018). It is suspected that strong

magnetic fields are largely responsible for the jet reversals. This is supported by three dimen-

sional magnetohydrodynamic (MHD) numerical models of Rogers & Komacek (2014) and Rogers

(2017); the first predicted these reversals, while the second showed moderate dipolar magnetic

field strength could drive the inferred reversals on Hot Jupiter HAT-P-7b. Using shallow water

MHD models, Hindle et al. (2019) and Hindle et al. (2021) further constrained the strength of

magnetic field and explored mechanisms for such reversals.
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1.2 Hydrodynamic and Inertial Instabilities

1.2 Hydrodynamic and Inertial Instabilities

In this thesis we consider parallel flows U(y) that exhibit latitudinal shear, from which numerous

instabilities may result. In particular, we are interested in inertial instability which is axisym-

metric in its purest form. Thus, we will assume axisymmetry to investigate inertial instability

and ensure that numerous unstable modes will not occur simultaneously and compete with one-

another, which would significantly complicate our analysis. However, since we are considering

flows in a planetary configuration, in the following subsection we provide some examples of hy-

drodynamic instabilities, which are not necessarily driven by parallel flows U(y), to illustrate the

various effects of rotation, stratification and shear. This has the benefit of introducing concepts

and mechanisms that are being neglected, and to understand what other instabilities may occur in

observations and experiments.

1.2.1 Inviscid Instabilities in Rotating Planets

There are numerous hydrodynamic instabilities present in geophysical and astrophysical bodies.

Shear flow instabilities of a flow U(y)êx are among the simplest we can consider. Many important

results have been derived within this system, such as Rayleigh’s inflexion point criterion, Fjørtoft’s

theorem and Howard’s semi-circle theorem (e.g., Rayleigh, 1880; Kuo, 1949; Drazin & Reid,

2004, and references therein). The study of parallel shear flows may be extended by considering

the influence of rotation. For example, Watson (1980) studied, in spherical geometry, a two-

dimensional shear instability in differentially rotating stars. He derived a necessary condition for

stability, governed by the ratio between the angular velocities at the pole and equator.

We can also consider the influence of stable stratification on parallel flows with vertical shear

U(z)êx, with buoyancy frequency N, where instability occurs if the Richardson number Ri =

N2/U ′2 < 1/4. This instability may be observed in a variety of geophysical flows, but is most

commonly observed as waves on the surfaces of water and clouds. Incorporating rotation into

the vertically sheared and stably stratified system, baroclinic instability can occur, a process by

which perturbations draw energy from the potential energy of the mean flow. The instability can

be observed in the mid-latitude of Earth’s atmosphere and has been subject to numerous studies

since the initial theoretical studies of Charney (1947) and Eady (1949). For example, the Eady

model considers motions on the f -plane, where the Coriolis parameter f is constant, between two

flat rigid horizontal surfaces, with vertical length scale H, and assumes the vertical shear satisfies

a thermal wind balance. Instability occurs if LD(k
2 + l2)1/2 < 2.399, where k and l are the

along-stream and cross-stream wavenumbers, respectively, and LD = NH/f is the Rossby radius

of deformation (Eady, 1949).

1.2.2 Axisymmetric Inertial Instabilities

Another distinct, purely hydrodynamic instability is the so-called inertial instability, which will

be a considerable part of this study; it is local and axisymmetric in nature. Inertial instability was
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first studied in cylindrical geometry by Rayleigh (1917), who considered an inviscid axisymmetric

swirling flow, with angular velocity Ω as a function of the radial coordinate R. Rayleigh showed

that instability is possible energetically only if the magnitude of R2Ω (which is proportional to the

angular momentum) decreases with increasing radius in some region of the flow. Often known as

the Rayleigh criterion, a necessary condition for instability is that the Rayleigh discriminant

Φ =
1

R3

d(R2Ω)2

dR
< 0, (1.1)

somewhere in the flow. Rayleigh derived the criterion (1.1) by using an energy argument to con-

sider the fluid exchange between two rings of equal volume, while assuming that their angular

momentum must be conserved. If the rings are within a domain where Φ > 0, the total kinetic

energy of the system must increase, implying stability. Any resulting instability is driven by an

imbalance between the radial pressure gradient and the centrifugal force, manifesting itself in

overturning motions in the (R, z) plane. Synge (1933) later showed that the criterion (1.1) is both

a sufficient and necessary condition for instability.

To enquire if analogous instabilities can be realised on rotating spherical planets and stars, we

consider Cartesian geometry rather than the full complexity of spherical geometry. The equivalent

necessary and sufficient condition to (1.1), in Cartesian geometry, for inviscid and axisymmetric

instability is that fQ < 0, where Q = f − U ′ is the absolute vorticity (or potential vorticity) and

U(y) is a parallel shear flow with latitudinal shear (see Appendix A for derivation). In cylindrical

geometry, Ooyama (1966) considered baroclinic circular vortices in an axisymmetric, inviscid

and incompressible fluid without boundaries, deriving a necessary and sufficient condition for the

stability of these vortices. Ooyama (1966) also predicted that inertial instability is manifested as

overturning motions in the meridional plane (analogous to the overturning motions of centrifugal

instability in the (R, z)-plane), and is primarily constrained to the local region where the total

vorticity fQ is negative.

Equatorial β-plane

The studies of inertial instabilities did not address the equatorial regime until, crucially, Dunkerton

(1981) realised that fQ > 0 is easily violated near the equator since the Coriolis effect becomes

small. This is illustrated in figure 1.3, which is a contour plot of the potential vorticity in the

northern hemisphere. Black patches indicate negative potential vorticity (so that fQ < 0 in the

northern hemisphere); indeed, it is clear that these regions of negative potential vorticity are more

prominent near the equator, but can occasionally occur in the tropics. Dunkerton (1981) considered

the inertial instabilities of a zonal flow U(y) = Λ0y, with constant shear Λ0, on the equatorial β-

plane, with Coriolis parameter f = βy, where β is the planetary vorticity gradient, in a stratified

and diffusive system. The hydrostatic (thin layer) approximation was also assumed to be valid so

that the vertical momentum equation reduces to a balance between the pressure gradient and the

buoyancy term; the approximation is valid provided the horizontal lengthscale is much larger than
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1.2 Hydrodynamic and Inertial Instabilities

Figure 1.3: Northern hemisphere Mercator maps of MERRA-2 potential vorticity in the upper
stratosphere (at height ≈ 35km) from a) November 30th to h) December 7th 2015. Black dots
indicate negative potential vorticity and therefore conditions suitable for inertial instability. Blue
and red shaded sections represent high and low levels of potential vorticity. Image credit: Harvey
& Knox (2019).

the vertical lengthscale. In the inviscid case, with uniform shear and uniform buoyancy frequency

N, axisymmetric instability on the equatorial β-plane occurs if

s2 =
Λ2
0

4
− (2n+ 1)Nβ

|k|
> 0, (1.2)

where s, k and n are the growth rate, vertical wavenumber and eigenvalue, respectively. Note

that n = 0 gives the most unstable mode. Equation (1.2) shows that the fastest growing mode

occurs as k → ∞ (i.e., the most unstable mode occurs on vanishingly small vertical scales),

which is physically undesirable. Thus, the effects of diffusion, in particular vertical diffusion, will

be important in constraining vertical wavenumbers to finite values to make the model physically

realisable.

Dunkerton (1981) also considered the role of kinematic viscosity ν and thermal diffusion κ,

with their ratio, the Prandtl number Pr = ν/κ, set to unity. The marginally stable shear becomes

|Λ0| = 2
√
5ν

1
5 (Nβ/4)2/5 and the maximum growth rate occurs at |kc|5 = Nβ/(4ν2).Dunkerton

(1982) later considered the system with Pr ̸= 1, where several steady and oscillatory stability

results were derived.

As Dunkerton predicted, inertial instabilities were later observed in the equatorial atmosphere

(e.g., Hayashi et al., 1998; Knox, 2003) and ocean (e.g., Richards & Edwards, 2003; d’Orgeville

et al., 2004). Using data from more recent satellite observations of an inertial instability, Rapp

et al. (2018) contour daily-mean temperature perturbations in the northern and southern hemi-

spheres on the 3rd December 2015, given in figure 1.4. The temperature perturbations illustrate the

typical “pancake structure” of inertial instability in the upper stratosphere and lower mesosphere

with thin modes spanning from the equator to mid-latitudes (at 50◦) with a vertical lengthscale of
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Figure 1.4: Daily-mean temperature perturbations for the longitudinal range 90◦W to 45◦E on the
3rd December. The temperature perturbations are based on METOP-A and METOP-B GPS radio
occultation data. Image Credit: Rapp et al. (2018).

O(10km) and latitudinal lengthscale of O(1000km). This agrees with prior observations of iner-

tial instability in the upper stratosphere and lower mesosphere (e.g., Hayashi et al., 1998; Knox,

2003). The inertial instability event depicted by the temperature perturbations in figure 1.4 also

coincides with negative potential vorticity seen in figure 1.3 at an altitude of 35km. These obser-

vations are non-axisymmetric, but are often interpreted in terms of axisymmetric theory owing to

the large longitudinal scales (e.g., figure 1.3 considers the mean temperature perturbations from

90◦W to 45◦E).

It is also natural to look at the nonlinear evolution of inertial instability, and, for example,

investigate the mean flow change. Griffiths (2003a,b) further extended the analysis of equato-

rial inertial instabilities to the nonlinear regime. Under the hydrostatic approximation, Griffiths

(2003a,b) considered an axisymmetric stably stratified fluid with constant buoyancy frequency N

on the equatorial β-plane with uniform shear Λ0 and Prandtl number unity. Specifically, Griffiths

(2003a) studied the interactions between inertial instability and the mean flow. The weakly non-

linear regime is considered, deriving equations for the amplitude of the most unstable mode, and

for the mean flow change; the numerical simulations agree with these analytical predictions. In

the moderately diffusive regime, the numerical simulations show that the action of instability on

the mean flow creates a latitudinal region in which fQ is homogenized to a small negative value.

Interestingly, the vertical scale of the weakly nonlinear regime agrees with observations of inertial

instability in the terrestrial equatorial atmosphere, where the vertical lengthscale is expected to be

about 10km (Hitchman et al., 1987; Hayashi et al., 1998; Smith & Riese, 1999). However, the

weakly nonlinear regime required unrealistically large vertical diffusion, and thus the inertial in-

stabilities of the equatorial atmosphere must be described by the moderately nonlinear simulations

that predict a vertical lengthscale of 1km. Clearly, for the moderately diffusive case, the vertical

scale structure is an order of magnitude smaller than those of observed inertial instabilities.

A possible mechanism to compensate for this discrepancy is suggested in Griffiths (2003b);
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1.2 Hydrodynamic and Inertial Instabilities

it is dependent on a secondary Kelvin-Helmholtz instability that develops during the evolution of

the inertial instability. By considering the redistribution of vorticity over the evolution, Griffiths

(2003b) also further investigates the difference between the dynamics and mean flow change of

the weakly nonlinear and strongly nonlinear regimes. The evolution in both regimes redistribute

vorticity over a latitudinal region in order to stabilise the flow. The dynamics of the weakly non-

linear regime are driven only by the need to reduce the maximum value of (−fQ) slightly, since

vertical diffusion can stabilise regions with fQ < 0 to a certain degree; however, the dynamics of

the strongly nonlinear regime are driven by the need to reduce the maximum of (−fQ) to a very

small value throughout the domain to stabilise the flow.

Moving back to linear stability theory, Griffiths (2008a) then considered a rotating, stably

stratified flow U(y)ex with arbitrary horizontal cross-stream shear U ′(y) and uniform buoyancy

frequency N in the context of linear normal modes. For axisymmetric disturbances the perturbed

cross stream velocity v is governed by the equation

v̂′′ − k2

N2
(s2 + fQ)v̂ = 0. (1.3)

Equation (1.3) allows for the derivation of an analytical expression known as the near-inertial

limit solution, which gives approximations as the vertical wavenumber |k| → ∞ for the discrete

eigenvalues and eigenmodes of the system, localised around the minimum of fQ, ȳ say. Indeed,

by taking the latitudinal lengthscale

L =

(
2N2

k2(fQ)′′

)1/4

, (1.4)

the following equation for the growth rate was obtained

s2 = −fQ− (2n+ 1)N

|k|

(
(fQ)′′

2

)1/2

, (1.5)

where the overbar denotes evaluation at ȳ. By decreasing |k|, the near-inertial balance is broken

by an increasing cross-stream pressure gradient that, in turn, reduces the growth rate of the inertial

instabilities and renders them stable at some critical |k|. Taking the zonal flow U(y) = Λ0y (with

constant shear Λ0) on an equatorial β-plane (f = βy) reduces (1.5) to (1.2) of Dunkerton (1981).

Many studies of inertial instability consider the hydrostatic approximation (e.g., Dunkerton,

1981; Griffiths, 2008a) and therefore, by necessity of energy conservation, the traditional ap-

proximation must be employed (i.e., terms that deflect fluid vertically in full Coriolis force are

neglected). However, it is well known that the validity of the approximation comes into question

at the equator. This is a point of interest as we will employ the magnetohydrostatic approximation

(a magnetic analogue of the hydrostatic approximation) throughout the thesis, including the anal-

ysis of flows on an equatorial β-plane. Griffiths (2008a) discusses the validity of the traditional

approximation on an equatorial β-plane; in particular, it is noted that the approximation may break

down when the vertical wavenumber k → ∞. Physically, this is not the case for inertial instabil-

ity, where observations suggest structures stretching thousands of kilometres (e.g., Hayashi et al.,
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1998; Knox, 2003) as illustrated in figure 1.4. However, mathematically, it may be of interest to

consider the full Coriolis force. Indeed, Kloosterziel et al. (2017) considers how the full Coriolis

force affects the axisymmetric inertial instabilities of an oceanic Gaussian jet on the equatorial

β-plane in the absence of stratification through the use of numerical simulations. There are a

number of significant differences to the system under the traditional approximation. For example,

the growth rate is found to approach the inviscid maximum growth rate with correction Re−1/4 as

the Reynolds number Re (the ratio of inertial forces to viscous forces) tends to infinity; under the

traditional approximation, the maximum inviscid growth rate is attained with correction Re−1/3

as Re→ ∞.

f -plane

Thus far we have primarily discussed inertial instabilities in reference to the equatorial atmosphere.

However, in the thesis, we will also consider instabilities at mid-latitudes; we therefore discuss

analysis of inertial instabilities on an f -plane, where the Coriolis parameter f takes a constant

value. Note that the following results are non-hydrostatic, and therefore do not directly relate to

the results of this thesis, but give insight into inertial instabilities at mid-latitudes.

Kloosterziel & Carnevale (2008) investigated linear inertial instabilities on an f -plane for vary-

ing Prandtl number with particular focus on the vertical scale selection (as in Griffiths, 2003a, for

the equatorial β-plane). Kloosterziel & Carnevale (2008) considered a non-hydrostatic, stratified

fluid with constant buoyancy frequency N on an f -plane with uniform shear Λ0, and, after seek-

ing axisymmetric normal mode solutions in the absence of diffusion, they derived the following

equation for the growth rate squared:

s2 = −k
2fQ+ l2N2

l2 + k2
, (1.6)

where l is the cross-stream wavenumber. Equation (1.6) was also previously derived by Hoskins

(1974). Thus, for any l, if fQ < 0, there is instability if |k| > N |l|/|fQ|1/2 and the growth rate

approaches the inviscid maximum growth rate |fQ|1/2 as the vertical scale becomes infinitesimally

small (i.e., |k| → ∞). Note once again that, physically, vanishing vertical scales are implausible,

and thus diffusion must be considered to make the model viable. Kloosterziel & Carnevale (2008)

then derived numerous conditions for steady and oscillatory stability with Pr ̸= 1, which are

noted to be qualitatively the same as for the equatorial β-plane case in Dunkerton (1981) and

Griffiths (2003a). However, in the limit of large Reynolds number for Pr = 1, the vertical scale

selection and maximum growth rate are found to be significantly different to the results of Dunker-

ton (1981) and Griffiths (2003a). That is, in the limit of large Reynolds number, Kloosterziel &

Carnevale (2008) find that the vertical wavenumber that generates the maximum growth rate, kmax

say, scales with (N2Re)1/4 on the f -plane, while Griffiths (2003a) finds that kmax ∼ (NRe)1/3

on the equatorial β-plane. Similarly, the correction to the maximum growth rate on the f -plane

scales with (N2/Re)1/2 (Kloosterziel & Carnevale, 2008), while on the equatorial β-plane the

correction to the growth rate scales with (N2/Re)1/3 (Griffiths, 2003a). This difference hinges on
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1.2 Hydrodynamic and Inertial Instabilities

normal mode solutions of the equatorial β-plane which depend upon the value of (fQ)′′. These

decay exponentially with |y| and become ever more confined to the region about the minimum of

fQ. Indeed, this constraint on the modes does not occur if fQ is constant (as on the f -plane for

uniform shear) since (fQ)′′ = 0. For Pr ̸= 1, steady instabilities occur for Pr < 1.44, while for

Pr > 1.44 it is possible for oscillatory instabilities to occur; the fastest growing modes are found

to be steady given sufficiently large Re. In the limit of large Reynolds number, the maximum

growth rate and scale selection are found to be the same as for Pr = 1.

Kloosterziel et al. (2007b) discussed the nonlinear saturation of inertial instability in a ro-

tating shear flow, focusing on how inertial instability redistributes absolute linear momentum

M(y) = U(y) − fy until the instability is neutralised. Based on total momentum conserva-

tion, it is predicted that an inertially unstable flow evolves so that dM/dy becomes zero over a

latitudinal range. Thus, in the region of constant M, Mc say, the predicted equilibrated veloc-

ity is u(y) = Mc + fy, while the initial velocity remains unchanged outside of this region (i.e.,

u(y) = U(y)). Kloosterziel et al. (2007b) note that setting M = Mc is equivalent to setting

Q = 0; however, only the condition on the total momentum conservation allows the boundaries of

the latitudinal region to be determined. The prediction is shown to be valid for a number of flows,

increasing in accuracy as the Reynolds number Re increases. It is noted that the range of y in

which the instability is neutralised is generally greater than the initially unstable region. Further to

this investigation of predicting the evolution of the mean flow, Kloosterziel et al. (2015) consider

the saturation of inertial instability for a number of flow profiles on the equatorial β-plane. How-

ever, the constraint on the conservation of angular momentum is not always sufficient to predict

the equilibrium flow; the equilibrium momentum Mc must first be determined through numerical

simulations so that the condition on the total angular momentum may be used.

1.2.3 Double-diffusive Instabilities

In this subsection we discuss the Goldreich–Schubert–Fricke (GSF) instability, which is an impor-

tant mechanism in the transfer of angular momentum in planets and stars (Goldreich & Schubert,

1967; Fricke, 1968), and depends upon distinct magnitudes of kinematic viscosity ν and thermal

diffusion κ. Note that the instability results from vertical shear (which we will not consider in this

thesis) rather than latitudinal shear; however, the instability illustrates an important mechanism

present in our analysis. The instability is essentially an axisymmetric instability enabled by the

role of thermal diffusion. That is, given a flow with fQ < 0 (which is unstable by (1.1)) that has

been stabilised by pressure gradients due to the effects of buoyancy (in a stably stratified fluid),

then sufficiently strong thermal diffusion will nullify the stabilising role of stratification and allow

the flow to be come unstable. Although Goldreich & Schubert (1967) and Fricke (1968) do not

consider Cartesian geometry, we illustrate the instability for longitudinal coordinate x, latitudinal

y and local vertical z (see also Barker et al., 2019, for a similar argument). First, we note that the

angular velocity Ω(R) can be decomposed into uniform rotation 2Ω = (0, f, 0) plus a linear radial

(local vertical) shear flow u = −Uzzex. Thus, seeking axisymmetric normal mode solutions of
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the vertical shear flow in the presence of uniform vertical buoyancy frequency N , we can obtain

the following criteria for instability:

fQ̂+
f2N2

4
Pr < 0, (1.7)

where we define Q̂ = f − Uz. In contrast to the previous definition of fQ, since the rotation is

aligned about the planetary axis rather than the local vertical, the absolute vorticity appears in a

slightly different form. However, it is important to note that throughout the thesis the absolute

vorticity will strictly be defined as Q = f − U ′, where f is the Coriolis parameter with rotation

aligned about the local vertical and U ′ is the latitudinal derivative of a parallel flow U(y). In the

absence of diffusion, stability is guaranteed if the Solberg–Høiland criterion fQ̂+f2N2/4 > 0 is

satisfied. Hence, thermal diffusion can allow instability to occur even though the Solberg–Høiland

criterion is satisfied. Specifically, the GSF instability operates when Pr < 1, N2 > 0 and fQ̂ < 0.

Recently, the GSF instability has been investigated as a mechanism to transport angular momen-

tum in the radiation zones of stars via the use of 3D numerical simulations at both the equator and

mid-latitudes (e.g., Barker et al., 2019, 2020; Dymott et al., 2023).

1.2.4 Non-axisymmetric Instabilities

In this thesis we consider only axisymmetric flows (so that inertial instability may occur in iso-

lation without competition from other instabilities); however, it is still of importance to be aware

of non-axisymmetric instabilities that can occur. We therefore discuss non-axisymmetric inertial

instability theory, inertial instabilities in experiments, and the strato-rotational instability.

Non-axisymmetric Inertial Instabilities

There have been many studies regarding non-axisymmetric inertial instabilities (e.g., Dunker-

ton, 1983, 1993; Clark & Haynes, 1996; Griffiths, 2008a). Focusing on Griffiths (2008a), non-

axisymmetric solutions are derived in the near inertial limit (|k| → ∞) with small along-stream

wavenumber m, which illustrates how the non-axisymmetric solutions smoothly transition to the

axisymmetric solutions; this confirms that the m ̸= 0 instabilities can clearly be regarded as iner-

tial instabilities. It was found that as the m increases, the stabilising effect from the cross-stream

pressure gradient increases, yielding a critical m, mc say, for which no inertial instability can

occur. Thus, provided |k| is sufficiently large and 0 < m < mc, the solutions may be classified

as inertial instabilities. However, if k → 0 with 0 < m < mc, the solutions can no longer be

classified as inertial instabilities. Note that Griffiths (2008a) illustrates these general criteria for a

shear layer on an f -plane and a uniform flow profile on an equatorial β-plane.

In regard to the physical application of the non-axisymmetric analysis, vanishing vertical

scales of symmetric theory cannot occur in reality and, thus, a finite scale is chosen by a com-

bination of vertical diffusion and nonlinear effects (Dunkerton, 1981; Griffiths, 2003b); hence,

it is possible that these non-axisymmetric instabilities become important when |k| is sufficiently
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1.2 Hydrodynamic and Inertial Instabilities

small. Griffiths (2003b) suggests that the larger vertical structure of equatorial cells found in the

numerical simulations when |k| = O(1) are indicative of a underlying Kelvin-wave instability,

which are likely to play a much more significant role at smaller vertical wavenumbers.

Experiments

Here we consider non-axisymmetric inertial instabilities found in experiments and provide an

example of how they compete with other growing modes.

The inertial instabilities studied by Rayleigh (1917) and Synge (1933) were concerned with

cylindrical geometry, as realised in the famous experiments of Taylor (1923), who considered a

viscous and rotating system, which is now known as the Taylor-Couette flow. The system consists

of fluid between two tall concentric cylinders with different radii, where the cylinders are rotated

at distinct angular velocities to stimulate the flow. The system exhibits axisymmetric inertial

instability if µ < η, where µ is the ratio of the angular momentum of the outer cylinder to the

angular momentum of the inner cylinder and η is the ratio of the radius of the inner cylinder to

the radius of the outer cylinder. The unstratified system is known to be stable for µ ≥ η2 (by

substituting Ω(R) for the Couette flow in (1.1)), which includes the domain of Keplerian flows

such as accretion discs). Indeed, in the limit of large Reynolds number (where viscous forces are

small) the stability boundary converges to the Rayleigh line, corresponding to the condition for

stability (1.1).

In more recent experimental studies, the evolution of non-axisymmetric inertial instabilities

and barotropic instabilities are investigated (see review by Carnevale et al., 2016, and references

therin). In a similar configuration to the Taylor-Couette flow, a column is inserted into a rotating

cylinder that is filled with water; the column is then rotated anticyclonically (opposite direction

to the tank) and then raised out of the cylinder, leaving behind an anticyclonic vortex. Kloost-

erziel & Van Heijst (1991) observed that after the column was raised, a turbulent motion followed

throughout the vortex, which then separated into two dipolar vortices that drifted further away as

they became more two dimensional.

The three dimensional unstratified numerical simulations of Orlandi & Carnevale (1999) could

capture all of the phenomena seen in experiments. Indeed, Orlandi & Carnevale (1999) concluded

that inertial instability was responsible for the initial turbulent stage, which, in turn, through the

redistribution of angular momentum, increases the horizontal velocity gradients in the flow, which

then allows barotropic instability to occur, forming the drifting dipolar vorticies. How inertial

instability affected the evolving flow was found to be highly dependent on the initial distribution

of vorticity, and thus, it was of interest to predict the evolution and final equilibrium state of the

flow from the initial distribution. Indeed, in the axisymmetric numerical simulations, Kloosterziel

et al. (2007a) showed that, in the large Reynolds number limit, the evolution and final stage of

the flow could be predicted from the initial distribution by considering the conservation of total

absolute angular momentum (analogous to Kloosterziel et al., 2007b). This was extended to the

fully three dimensional system in Carnevale et al. (2016), which was found to accurately predict
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the evolution of inertial and barotropic instability. Here, we note that it is also possible for inertial

instability and barotropic instability to compete (if the initial distribution allows for this), since

the growth rates of both modes are comparable (e.g., Orlandi & Carnevale, 1999; Gallaire &

Chomaz, 2003); the instabilities have also been shown to occur simultaneously in experiments

(e.g., Kloosterziel, 1990; Afanasyev & Peltier, 1998).

The Strato-Rotational Instability

Kushner et al. (1998) discussed the existence of a Kelvin wave instability in an inviscid, strati-

fied semi-geostrophic channel flow with constant shear and rotation. Kelvin waves are transverse

waves that travel alongside a boundary, driven by the combination of stratification and rotation.

Subsequently, Yavneh et al. (2001) extended these results by considering the same system, but

configured between two concentric cylinders (i.e., an idealised Taylor-Couette flow). They dis-

covered that inertially stable flows could be destabilised by vertical stratification; the instability is

now known as the Strato-Rotational Instability and crucially depends upon along-stream variation

(non-axisymmetric). Provided the Froude number Fr = |Ω|/N ≪ 1, the sufficient condition for

instability is that
dΩ2

dR
< 0, (1.8)

somewhere in the flow. Yavneh et al. (2001) concluded that the instability was driven by shear-

modified Kelvin waves.

1.3 Magnetic and Magnetorotational Instabilities

In contrast to the terrestrial atmosphere, the atmospheres of most astrophysical bodies are electri-

cally conducting. Thus, not only rotation, shear and stratification are of importance, but magnetic

field may also play a significant role. Magnetic fields can influence hydrodynamic shear instabili-

ties in a variety of ways. Instabilities can be completely altered, suppressed or even created from

hydrodynamically stable systems.

1.3.1 Ideal Instabilities in Astrophysical Bodies

Motivated by the radial and latitudinal shear of the solar tachocline, Hughes & Tobias (2001)

considered the influence of magnetic field on hydrodynamic shear flow instabilities (see also, for

example, Kent, 1968; Hunt, 1966; Adam, 1980; Cally, 1983). They found that aligned magnetic

field modifies the Howard (1961) hydrodynamic semi-circle theorem, leading to stability criteria

rather than just bounds on unstable eigenvalues. Aligned magnetic field has a stabilising effect on

the unstable hydrodynamic system, whereby sufficiently large magnetic field would completely

stabilise the instability.

Conversely, magnetic field may lead to the destabilisation of rotating shear flows that are sta-

ble in the purely hydrodynamic regime. One example of hydrodynamically stable flows being
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1.3 Magnetic and Magnetorotational Instabilities

destabilised by magnetic field is found in application to accretion discs. Accretion discs are rotat-

ing structures formed about (usually massive) rotating astrophysical bodies due to the competing

gravitational and centrifugal forces; that is, the latter inhibits matter from falling directly onto

the massive central body. Indeed, some of the most intriguing accretion discs are those centered

about galactic nuclei and quasars, both of which are likely ionised and can therefore support large

scale magnetic fields. Accretion discs have been at the centre of many studies (e.g., Kuiper, 1941;

Shakura & Sunyaev, 1973; Lynden-Bell & Pringle, 1974; Balbus & Hawley, 1991); in particular, it

is of interest to explain the inferred rate of accretion (made from observations of their luminosity),

which may only be explained by the existence of turbulence within the system. The rate of ac-

cretion cannot be explained by hydrodynamic models; indeed, accretions discs exhibit Keplerian

rotation profiles, Ω = R−3/2, which are inertially stable to axisymmetric perturbations by (1.1) of

Rayleigh (1917). The role of kinematic viscosity is also not sufficient to explain the inferred rate

of accretion (Spitzer, 2006). Thus, it is of interest to find mechanisms that allow accretion discs to

exhibit instability within inertially stable flows.

Throughout the thesis we will derive results in Cartesian geometry; however it is important,

for comparison, to consider results in cylindrical geometry. Indeed, the main body of work we

will be considering is related to the magnetorotational instability, which was first discovered in the

context of accretion discs, which are naturally modelled in cylindrical coordinates. Experiments

are also conducted in Taylor-Couette flow (Taylor, 1923) to verify these theoretical results. We

therefore review instabilities that may occur in accretion discs, with particular focus on those that

illustrate mechanisms discussed in the thesis.

1.3.2 Axisymmetric Instabilities

We now consider axisymmetric magnetic instabilities; in particular, since we will be considering

inertial instabilities in the presence of vertical magnetic field (in Cartesian geometry), we will

focus on magnetic instabilities that are generated by axial magnetic field.

Axial Magnetic Field

Chandrasekhar (1960) considered an axisymmetric, rotating, ideal and unstratified flow between

two concentric cylinders with a constant axial magnetic field Bz . The governing equation for the

perturbed radial velocity uR becomes

(s2 +Ω2
A)DD∗uR − k2

(
s2 +Φ+ Ω2

A −
4Ω2Ω2

A

s2 +Ω2
A

)
uR = 0, (1.9)

where the Rayleigh discriminant Φ is given by (1.1), D∗ = d/dR + 1/R, k is the vertical

wavenumber, s is the growth rate, Ω2
A = k2B2

z/(µ0ρ) is the Alfvén frequency squared, ρ is the

density and µ0 is the permeability of free space. Equation (1.9) is the cylindrical, non-hydrostatic

and magnetic analogue of (1.3). Chandrasekhar (1960) found, via an integral argument, that in

the limit of weak magnetic field strength a necessary condition for instability is that the angular

15



speed, |Ω|, is a monotonically decreasing function of R. Chandrasekhar (1960) also found that

magnetic field of sufficient strength will stabilise any instance of destabilising angular velocity

gradient. It is noted that the instability condition on the angular velocity does not reduce to (1.1)

in the limit of weak magnetic field. The condition for instability was also derived by Velikhov

(1959), who considered how axial magnetic field affects an ideal rotating flow between two cylin-

ders. This discovery made by Velikhov (1959) and Chandrasekhar (1960) is now known as the

magnetorotational instability (MRI).

Motivated by the inferred angular momentum transport found in accretion discs, Balbus &

Hawley (1991) revisited the problem studied by Chandrasekhar (1960) and Velikhov (1959). Bal-

bus & Hawley (1991) considered axisymmetric disturbances of an unstratified, incompressible,

ideal shear flow in a rotating thin disc with weak constant axial magnetic field Bz. They derived

the following dispersion relation:

s4 + s2(Φ + 2k2v2A) + k2v2A

(
k2v2A +

dΩ2

dlnR

)
= 0, (1.10)

where v2A = B2
z/(µ0ρ) is the Alfvén velocity squared. From (1.10), Balbus & Hawley (1991)

derived the necessary and sufficient criterion for instability, that

k2v2A < − dΩ2

dlnR
, (1.11)

somewhere in the flow. Thus, a necessary criterion for instability is that the angular velocity

decreases with increasing radius somewhere in the flow; this is a less stringent condition than the

Rayleigh criterion (1.1), which, for instability, requires that the angular momentumR2Ω decreases

with increasing radius somewhere in the flow. Thus, Balbus & Hawley (1991) showed that weak

axial magnetic field allows instability to occur within hydrodynamically stable regimes (i.e., flows

that are stable by (1.1)); in particular, an accretion disc with a hydrodynamically stable Keplerian

rotation profile could be unstable in the presence of weak axial magnetic field. Thus, the MRI

provides a mechanism for which turbulence may arise in accretion discs, possibly explaining the

observed rates of accretion.

If (1.11) is satisfied, then the system is unstable with maximum growth rate

|smax| =
1

2

∣∣∣∣ dΩdlnR

∣∣∣∣ , (1.12)

occurring at

(k2v2A)max = −
(
1

4
+

Φ

16Ω2

)
dΩ2

dlnR
. (1.13)

For a Keplerian orbit, (1.12) implies the growth rate is 3Ω/4. It is noted that this is a huge growth

rate, which, left unchecked, results in an amplification of energy of more than 104 per orbit.

Interestingly, (1.10) can also be derived in the presence of weak azimuthal field (as well as

axial); however, this generalisation does not alter the eigenvalue relation (1.10). This is a con-

sequence of the weak field assumption, which, by definition, requires that the Alfvén velocity is

much smaller than the sound speed and local rotational velocity. Thus, even though the azimuthal
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1.3 Magnetic and Magnetorotational Instabilities

field grows with the instability, it does so while still satisfying the conditions on the Alfvén ve-

locity; the axial field still has a dynamical impact due to the angular velocity gradient. We see

azimuthal field play a crucial role in an instability in a following subsection, where there is no

prior assumption of weak field.

We also note that (1.10) can be derived by considering the local behaviour of (1.9). However,

Knobloch (1992) suggested that because of this locality, expression (1.10) was erroneous, arguing

that the instability should be considered as a global shear instability instead. On account of this, he

argued that azimuthal field did in fact play an important role in the instability. Gammie & Balbus

(1994) argued that Knobloch neglected terms in his analysis, as he did not consider a rotationally

supported thin disc as Balbus and Hawley did.

Further to this, Balbus & Hawley (1991) investigated the axisymmetric disturbances of an

ideal shear flow under the Boussinesq approximation, in the presence of axial magnetic field as

well as both radial and axial stratification. For a weakly magnetised disc, the following condition

guarantees stability:

k4v4A + k2v2A

(
N2 +

dΩ2

dlnR

)
+N2

z

dΩ2

dlnR
> 0, (1.14)

where N = NR + Nz and Nz , is equivalent to the Brunt–Väisälä frequency, while NR can be

considered to be a radial analogue of Nz . The condition (1.14) holds for all vertical wavenumbers

provided
dΩ2

dR
> 0. (1.15)

We discussed this condition following equation (1.11).

Following the discovery of the magnetorotational instability, many studies investigated the

role of magnetic field in accretion discs. For example, the nonlinear evolution of the MRI is in-

vestigated in Hawley & Balbus (1991, 1992). They consider a compressible Keplerian flow in the

presence of weak axial magnetic field. The most important dynamical effect is the redistribution of

angular momentum, which radially disperses the magnetic field, leading to stabilisation. The re-

distribution of angular momentum throughout the instability supports the conjecture that the MRI

provides a mechanism to explain the inferred rate of accretion in astrophysical discs. It is noted

that the numerical simulations limit the magnetic Reynolds number Rm (the ratio of advection

due the magnetic field to magnetic diffusivity), implying that stabilisation is significantly harder

to attain in accretion discs, where Rm is orders of magnitude greater. However, this discrepancy

may be resolved by considering the effects of axial stratification which reduces the initial linear

growth and therefore contributes to the nonlinear evolution and stabilisation.

There have also been many studies that investigate the role of the magnetorotational instability

in stellar interiors. For example, Menou et al. (2004) considered the local axisymmetric stability

(with adiabatic perturbations) of a magnetised rotating flow with angular velocity Ω(R, z) in the

presence of stable stratification, kinematic viscosity ν, thermal diffusion κ, and magnetic diffusiv-

ity η. Menou et al. (2004) note that the system is a magnetised generalisation of the Goldreich-

Schubert-Fricke (GSF) instability (Goldreich & Schubert, 1967; Fricke, 1968), which requires
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kinematic viscosity and thermal diffusion to operate. Menou et al. (2004) derived a quintic dis-

persion relation which we will not give here; however, we discuss an analogue of the equation in

Chapter 4. Numerous necessary conditions for stability are derived from the quintic in the per-

fectly conducting limit η → 0 and the inviscid limit ν → 0; no necessary conditions are derived in

the triply diffusive system. Indeed, in the perfectly conducting limit (which is found to be the clos-

est analogue of Goldreich & Schubert, 1967; Fricke, 1968) a subset of the necessary conditions

for stability are that
∂Ω2

∂lnR
> 0, (1.16)

and (
R
∂Ω2

dz

)2

< 0, (1.17)

where the latter implies that marginal stability is possible only if Ω is independent of z. These

conditions are valid for finite ν and κ only. The condition (1.16) corresponds to (1.15); however, it

is important to note the condition still holds in the diffusive system. In the inviscid limit, a subset

of the necessary conditions for stability is that (1.17) holds (once again) and thatN2 > 0. Interest-

ingly, the conditions (1.16) and (1.17) are independent of diffusive parameters; however, this also

implies that they may not hold when all diffusivites are non-zero. Menou et al. (2004) discuss the

applications to the Sun’s radiative zone, where it is hypothesised that the combination of magnetic

field and multi-diffusive modes will destabilise any small instances of negative differential rota-

tion (that would otherwise be stable in strongly stratified atmospheres and interiors). Thus, as any

instances of negative differential rotation are neutralised, the Sun’s upper radiative zone is forced

into near solid body rotation (which is inferred from helioseismological observations, e.g., Schou

et al., 1998).

There have also been many studies investigating the role of the magnetorotational instability

(MRI) in the solar tachocline, where the MRI is thought to be limited by the effect of strong

stable stratification (Ogilvie, 2007). However, Parfrey & Menou (2007) suggest that the MRI can

occur at latitudes above 37◦ since the magnitude of the negative angular velocity gradients (as

illustrated by figure 1.1) in combination with triple diffusive effects (Menou et al., 2004) is just

sufficient to overcome the strong stratification. Parfrey & Menou (2007) hypothesised that the

turbulence generated by the MRI prevents solar dynamo action in these regions, consistent with

the observations of sunspots that are restricted to the equatorial region.

Azimuthal Magnetic Field

Azimuthal magnetic field may also allow instability to occur in inertially stable flows. Michael

(1954) showed that azimuthal magnetic field Bϕ altered the Rayleigh criterion (1.1), deriving the

necessary and sufficient criterion for axisymmetric instability, that

1

R3

d(R2Ω)2

dR
− R

µ0ρ

d

dR

(
Bϕ

R

)2

< 0 (1.18)
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1.3 Magnetic and Magnetorotational Instabilities

somewhere in the flow, which clearly reduces to (1.1) in the absence of field. In the absence of

angular velocity, the condition (1.18) implies that stability is guaranteed if

d

dR

(
Bϕ

R

)2

< 0 (1.19)

everywhere in the flow. Condition (1.19) has also been derived by Velikhov (1959) and Van-

dakurov (1972). Equation (1.19) shows that an azimuthal magnetic field of the form Bϕ ∝ Rn+1

is unstable if n > 0. Thus, condition (1.18) guarantees that the combination of inertially stable

flows and flows that are stable by (1.19) are stable. Similarly, (1.18) also guarantees that the com-

bination of inertially unstable flows and flows that are unstable by (1.19) are unstable. However,

if any combination of stable or unstable flows is present, then the stability of the system depends

on the magnitude of each effect. In contrast to Balbus & Hawley (1991), azimuthal field plays a

dynamical role in this system since it is not assumed to be weak.

Helical Magnetic Field

Axial and azimuthal fields can both destabilise hydrodynamic systems; thus, it is natural to con-

sider the effects of helical magnetic field (the combination of axial and azimuthal magnetic field).

Chandrasekhar (1960) showed that in the absence of angular velocity an axial fieldBz of sufficient

strength would suppress any axisymmetric instability driven by an azimuthal field Bϕ. He derived

the following necessary and sufficient condition for stability:

IB2
z >

∫
ζ2R
R2

d

dR
(RBϕ)

2dR, (1.20)

where I > 0 and ζR is a radial eigenfunction. Thus, (1.20) allows us to obtain the sufficient

condition for stability that
d

dR
(RBϕ)

2 < 0, (1.21)

everywhere in the flow. Thus, azimuthal magnetic field of the formBϕ ∝ Rn,with n < 1, guaran-

tees stability. Howard & Gupta (1962) extended the study of Chandrasekhar (1960) by including

the effects of differential rotation alongside helical magnetic field. They derived a necessary con-

dition for instability, that

R
dΩ2

dR
− 1

µ0ρR3

d

dR
(RBϕ)

2 > 0 (1.22)

is violated somewhere in the flow.

More recently, Mamatsashvili et al. (2019) investigated the axisymmetric instabilities of a ro-

tating flow with increasing angular velocity (stable to the MRI) in the presence of helical magnetic

field. The so-called type 2 super-helical magnetorotational instability can occur only provided the

magnetic Prandtl number Pm = ν/η is not too close to unity. Indeed, the instability can occur

at small or large Pm and is applicable to the equatorial region of the solar tachocline, which is

thought to be stable to the MRI and type 1 super-helical MRI, the latter being another type of

helical field instability which requires a flow with much steeper increasing angular velocity. The

timescale of the linear growth rate of the type 2 super-helical MRI is of similar order to the solar
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cycle period, suggesting the instability may influence the dynamical and magnetic activity of the

equatorial region.

1.3.3 Non-axisymmetric Instabilities

We reiterate that this thesis will consider only axisymmetric flows; however, it is still of importance

to be aware of some non-axisymmetric instabilities that may occur outside of our system. Here,

we briefly discuss non-axisymmetric instabilities that can occur in magnetohydrodynamic theory

and experiment.

Non-axisymmetric Magnetorotational Instabilities

After the discovery of the axisymmetric magnetorotational instability, Balbus & Hawley (1992)

extended the analysis to consider the non-axisymmetric model. In cylindrical geometry, Balbus

& Hawley (1992) consider an adiabatic thin disc under the Boussinesq approximation with radial

angular velocity Ω(R) in the presence of weak magnetic field of arbitrary local geometry (i.e., B =

(BR, Bϕ, Bz)). It is found that azimuthal field does not affect the fundamental mechanism of the

axisymmetric or non-axisymmetric disturbances. The weakly non-axisymmetric disturbances (i.e.,

when azimuthal wavenumber wϕ = 1) smoothly transition to the axisymmetric case, where the

presence of axial magnetic field ensures growth rates comparable to the axisymmetric theory; for

large azimuthal wavenumbers, the disturbances have a much smaller growth rate. In the absence of

axial field, purely azimuthal field is found to produce a much smaller growth rate (approximately

one order of magnitude smaller). This is in contrast to the axisymmetric case, where azimuthal

field alone cannot generate an instability due to the nature of the weak field assumption.

Furthermore, there are numerous other non-axisymmetric magnetohydrodynamic instabili-

ties. For example, Tayler (1957) and Vandakurov (1972) extended condition (1.18) to a non-

axisymmetric system, by considering a stationary flow in a vertically unbounded cylinder. It was

shown that a sufficient condition for stability is that the azimuthal wavenumber is greater than

or equal to two. However, if the azimuthal wavenumber is unity, the necessary and sufficient

condition for instability becomes
d

dR
(RB2

ϕ) > 0, (1.23)

implying azimuthal magnetic field of the form Bϕ ∝ Rn/2, with n < 1, guarantees stability.

Experiments

Following the discoveries of Balbus & Hawley (1991), many studies have taken place that incor-

porate axial, azimuthal and helical field, particularly in one of the most important paradigms of

fluid dynamics which we have already introduced, the Taylor-Couette flow. In experiments there

are many ways to configure the field (strength and orientation), flow (respective cylinder speeds)

and fluid (see, for example, the recent review Rüdiger et al., 2018). We note that the standard

MRI is difficult to observe experimentally since sufficiently large magnetic Reynolds numbers are
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1.4 Aims of the Thesis

difficult to attain because of the high levels of magnetic diffusivity in the liquid metals used for ex-

periments. However, the helical MRI, which can be observed experimentally (Stefani et al., 2006),

requires much smaller magnetic Reynolds and Hartmann numbers to operate, the latter being the

ratio of magnetic forces to viscous forces. Indeed, for Reynolds numbers ofO(103) and Hartmann

numbers of order O(10), helical magnetic field is shown to destabilise centrifugally stable flows

(i.e., stable by (1.1)).

1.4 Aims of the Thesis

Inertial instabilities in the terrestrial atmosphere are well understood (e.g., Dunkerton, 1981, 1982,

1983; Griffiths, 2003a,b, 2008a). The instabilities have been observed in the equatorial atmosphere

(e.g., Hayashi et al., 1998; Knox, 2003) and ocean (e.g., Richards & Edwards, 2003; d’Orgeville

et al., 2004); sufficiently strong shear may also lead to inertial instabilities in the extratropics (e.g.,

Potylitsin & Peltier, 1998; Shen & Evans, 2002). Thus, it is natural to consider if correspond-

ing instabilities may be realised in stellar and planetary atmospheres (e.g., the solar tachocline,

Jupiter and Hot Jupiters), which are, in general, electrically conducting and can therefore support

large-scale magnetic fields; indeed, magnetic fields can completely alter, suppress or generate new

instabilities (from hydrodynamically stable systems). The Sun, Jupiter and Hot Jupiters provide a

clear physical motivation to investigate inertial instabilities in presence of magnetic field, where

large shears can be found in the solar tachocline, the zonal bands of Jupiter’s upper atmosphere

and the intense equatorial jets of Hot Jupiters.

Inertial instabilities are also a planetary analogue of centrifugal instabilities, which are often

considered when discussing angular momentum redistribution in accretion discs (e.g., Kuiper,

1941; Shakura & Sunyaev, 1973; Balbus & Hawley, 1991). Thus, with a longstanding interest

in this topic, there are many studies related to our research (e.g., Chandrasekhar, 1960; Balbus &

Hawley, 1991; Menou et al., 2004). For example, the MRI destabilises centrifugally (inertially)

stable flows owing to weak axial magnetic field.

Hence, the aim of this thesis can be summarised into one key statement:

• We investigate if inertial instabilities may be realised in the presence of a vertical magnetic

field in stellar and planetary atmospheres, where the effects of background rotation (f -plane

or equatorial β-plane), uniform vertical density stratification, uniform vertical diffusion, and

the magnetohydrostatic (thin layer) approximation will also be important. The magnetohy-

drostatic approximation makes the analysis distinct from previous studies, and allows us to

investigate the large scale dynamics of stellar and planetary atmospheres.

However, this raises a number of questions:

• Is it possible for magnetic field to destabilise inertially stable flows in a planetary configu-

ration?

• What role will vertical magnetic field play in the inertially unstable regime?
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– Will one particular instability dominate the system?

– Can magnetic field further destabilise inertial instability?

– Is it possible that magnetic field will generate new modes, extending the instability

domain?

– How will strong magnetic field affect inertially unstable modes?

• How will diffusion affect the system?

– How significantly will inertial and magnetic modes be altered by varying levels of

kinematic viscosity, thermal conductivity and magnetic diffusion?

– Under what conditions could these instabilities occur in stellar and planetary atmo-

spheres?

Thus, we choose to consider inertial instabilities in Cartesian geometry and in the presence

of vertical magnetic field. Using Cartesian co-ordinates, we study the linear and nonlinear stabil-

ity of a steady flow, arbitrarily sheared in the horizontal cross-stream direction, in the presence

of background rotation, vertical density stratification, vertical magnetic field and diffusion. We

seek axisymmetric solutions since it allows us to isolate the effects of pure inertial instability from

other possible instabilities that may occur. Under the formulation we derive conditions on the

growth rate for arbitrary Coriolis parameter f(y), shear U ′(y) and vertical magnetic field B(y).

We consider simplified regimes on the f -plane and equatorial β-plane, where we implement uni-

form shear, shear layers and jets where appropriate; we also incorporate uniform vertical magnetic

field B0 so that analytical progress is possible. We later investigate the effects of diffusion on the

system by varying the Prandtl Pr = ν/κ and magnetic Prandtl number Pm = ν/η, where ν is

the kinematic viscosity, κ is the thermal conductivity and η is the magnetic diffusivity. We also

consider the nonlinear evolution of inertial instabilities for a hyperbolic shear profile on a f -plane.

1.5 Outline of the Thesis

In Chapter 2 we derive the equations of motion under various simplifying assumptions, includ-

ing the magnetohydrostatic approximation (thin layer approximation in the presence of magnetic

field), which reduces the vertical momentum equation to a balance between the magnetic pressure

and buoyancy. We linearise about the basic state, which allows us to derive a second order ordinary

differential equation (ODE) that forms the basis for all subsequent chapters (Chapter 5 also con-

tains nonlinear results). A condition on the validity of the magnetohydrostatic approximation is

derived from the ODE; it does not extend trivially from the hydrostatic approximation. A table of

estimated parameters, in the Earth’s upper stratosphere and lower mesosphere, the solar tachocline

and the upper atmospheres of Jupiter and Hot Jupiters, is then provided. Finally, we derive a series

of growth rate bounds and stability criteria for an ideal fluid, invoking instabilities generated by

weak axial magnetic field (e.g., Velikhov, 1959; Chandrasekhar, 1960; Balbus & Hawley, 1991).
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1.5 Outline of the Thesis

In Chapter 3 we consider the ideal linear stability of a parallel flow with uniform latitudinal

shear on an f -plane. Uniform vertical magnetic field strength is now considered in this and all

subsequent chapters. The formalisation admits sinusoidal modes in latitude y and height z, where

we first discuss the inertial and magnetically modified waves within the system, finding links to

the hydromagnetic-inertial waves found in Acheson & Hide (1973), who considered applications

to the Earth’s core. Turning our interest primarily to the unstable modes, we derive stability cri-

teria, analytically determine the maximum growth rate, and consider the effects of stratification

and magnetic field. The analogies to the magnetorotational instability (MRI) of Balbus & Haw-

ley (1991) are discussed. We also consider the dynamical balances of our system in numerous

parameter regimes.

In Chapter 4 we extend the linear stability analysis of Chapter 3 to the diffusive system, where

we consider the effects of kinematic viscosity, thermal diffusion and magnetic diffusivity. First,

we consider the hydrodynamic regime, deriving sufficient and necessary conditions for steady and

oscillatory stability. Analogies to the Goldreich-Schubert-Fricke (GSF) instability (Goldreich &

Schubert, 1967; Fricke, 1968) are discussed. In the magnetohydrodynamic regime we derive a

quintic polynomial for the growth rate. A non-magnetohydrostatic and cylindrical analogue to the

quintic can be found in Menou et al. (2004); however, the generalisation does not allow for the

derivation of many results found in our analysis. We find a necessary and sufficient condition for

steady stability (provided the mode is magnetic) independent of wavenumbers. We then consider

various constraints on the Prandtl and magnetic Prandtl numbers (e.g., Pr = ν/κ = Pm =

ν/η ̸= 1 or Pr ≪ Pm≪ 1).

In Chapter 5, we consider the ideal linear stability of a hyperbolic shear layer on an f -plane

in the presence of uniform vertical magnetic field strength, which admits localised modes. The

linear analysis follows the same structure as Chapter 3. The nonlinear evolution of the system is

investigated via numerical simulations with Pr = 1. We focus on the mean flow change and the

redistribution of the absolute vorticity fQ throughout the latitudinal domain. The most significant

redistribution of vorticity and mean flow changes are found to occur in the inertially stable regime,

even in the presence of relatively weak magnetic field.

In Chapter 6, we consider the ideal linear stability of a parallel flow with uniform latitudinal

shear on an equatorial β-plane in the presence of uniform vertical magnetic field strength. This

case is of particular interest given the previous hydrodynamic analysis of this system on an equa-

torial β-plane (e.g., Dunkerton, 1981, 1982; Griffiths, 2003a,b). We derive a parabolic cylinder

equation, which can be solved analytically to yield an eigenvalue relation (reducing to (1.2) of

Dunkerton, 1981, in the absence of magnetic field). We discuss inertial and hydromagnetic waves

and investigate the unstable domain, deriving asymptotic expansions in the weak and strong field

limits. Dynamical balances are then considered in numerous parameter regimes. A jet profile

is then considered so that the shear is no longer uniform and unbounded; there are significant

changes to the unstable domain.
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Chapter 7 extends the linear stability analysis of the jet profile in Chapter 6 to the diffusive

regime, where we consider the effects of kinematic viscosity, thermal diffusion and magnetic

diffusivity. We follow the structure of Chapter 4; however, on the equatorial β-plane, stability

criteria are significantly harder to derive. First, we consider the hydrodynamic regime, which is

closely related to the studies of Dunkerton (1982) and Griffiths (2003a, 2008a). We then focus

on the magnetohydrodynamic case, where we consider when the magnetic Prandtl number Pm =

ν/η or the Prandtl number are unity, when they are equal and when Pr ≪ Pm≪ 1.

The thesis will end with Chapter 8, where we discuss our results and possible further work.
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Chapter 2

The Governing Equations and General
Theorems

2.1 Introduction

In this chapter, we provide the framework for which the linear and nonlinear inertial instabilities

of stellar and planetary atmospheres are modelled throughout the thesis. This can be split into

three main sections: our model and the equations of motion, linearisation of these equations about

the basic state, which yields our governing equation, and, finally, general theorems regarding

conditions for linear stability, and bounds on the growth rate. Since the thesis contains primarily

linear results, we do not further describe the nonlinear framework beyond the equations of motion

and their corresponding energetics until Chapter 5.

To derive our equations of motion, we first introduce the magnetohydrodynamic equations for

an ideal gas (e.g., Priest, 2012) and seek to simplify these under a number of approximations.

Under the planar (Cartesian), Boussinesq, hydrostatic, traditional and axisymmetric approxima-

tions, the magnetohydrodynamic equations reduce to the equations of motion that will be used

within this thesis. Many of these approximations are typical in geophysical fluid dynamics (see,

Salmon, 1998; Vallis, 2017); however, some do not trivially extend to the magnetohydrodynamic

regime. In particular, we take care when discussing the magnetic analogues of the Boussinesq and

hydrostatic approximations. Throughout the thesis we will be well within the restrictions of these

approximations; however, in certain cases, we will approach limits that push the validity of some

of these approximations, which we will discuss on a case by case basis.

Under our equations of motion, we then introduce the basic state: a zonal flow u = U(y)ex

in the presence of background rotation f = f(y) and vertical field B = B3(y)ez, where x, y

and z are the longitudinal, latitudinal and vertical coordinates (with corresponding velocities u,

v, w and fields Bx, By and Bz). We also include an along-stream field as a part of the basic

state however, due to axisymmetry it has no dynamical effect on our system. Linearising about

the basic state and seeking normal mode solutions yields a second order ordinary differential

equation for the perturbed cross-stream velocity, which is the basis for all linear results throughout
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the thesis. The equation is derived with a magnetohydrostatic switch that allows us to easily

derive a condition for regarding the use of the magnetohydrostatic approximation, building on

the discussion surrounding its validity in Section 2.2. The content of the thesis however will be

entirely magnetohydrostatic, except one small excerpt in Chapter 3.

The governing equation allows for the derivation of numerous stability criteria and growth rate

bounds for an ideal fluid. These are derived for both the hydrodynamic and magnetohydrodynamic

systems, linking to previous results (e.g., Rayleigh, 1917; Chandrasekhar, 1960; Balbus & Haw-

ley, 1991; Griffiths, 2008a). Recalling that the condition fQ = f(f − U ′) < 0 on the absolute

vorticity is the Cartesian equivalent of the condition on the Rayleigh Criterion (1.1), we find that

the magnetohydrodynamic criteria for stability is found to be less constricting than this hydrody-

namic condition on fQ. Indeed, vertical magnetic field allows instability to occur within inertially

stable regimes (fQ > 0) provided that anti-cyclonic shear is present somewhere in the system

(U ′f > 0). The bound on the growth rate is also found to be less constricting in comparison to the

hydrodynamic case.

Finally, we provide a list of parameters (e.g., buoyancy frequency, angular velocity and field

strength) for the Earth’s lower mesosphere and upper stratosphere (where inertial instability is

most likely to occur in the terrestrial atmosphere), the solar tachocline as well as the upper atmo-

spheres of Jupiter and Hot Jupiters. The table includes parameters relevant to both mid-latitude

and equatorial atmospheres. We will refer back to these parameters throughout the thesis to give

insight in various regimes.

2.2 Approximations to the Magnetohydrodynamic Equations

In standard notation, the magnetohydrodynamic equations for a perfect gas in a rotating system

with velocity u, magnetic field B, angular velocity Ω, density ρ, temperature T and gas pressure

p (e.g., Priest, 2012), are

ρ

(
Du

Dt
+ 2Ω× u

)
= −∇Π− ρg +

1

µ0
(B · ∇)B+∇ · τ, (2.1)

Dρ

Dt
+ ρ∇ · u = 0, (2.2)

ρcP
DT

Dt
− Dp

Dt
= K∇2T +

η

µ0
(∇×B)2 +Φ, (2.3)

p = RρT, (2.4)

∂B

∂t
+ (u · ∇)B = (B · ∇)u− (∇ · u)B+ η∇2B, (2.5)

∇ ·B = 0, (2.6)

where ez is a unit vector in the vertical direction and Π = p+ |B|2/2µ0 is the total pressure. The

viscous stress tensor τ and viscous heating Φ are given by

τij = µ

(
∂iuj + ∂jui −

2

3
δij∂kuk

)
, Φ = τij∂iuj . (2.7)
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2.2 Approximations to the Magnetohydrodynamic Equations

We take the gravitational acceleration g, permeability of free space µ0, dynamic viscosity µ, ther-

mal conductivity K, magnetic diffusivity η, specific heat at constant volume cv, specific heat at

constant pressure cp and the gas constant R = cp − cv to be uniform.

In order to investigate the inertial instabilities of stellar and planetary atmospheres we simplify

the equations (2.1)-(2.6) under various approximations in the following subsections.

2.2.1 The Planar Approximation

In general, it is natural to model planets and stellar interiors with spherical coordinates, where

the entire atmospheric domain can be described by the coordinate system. However, this is not

always desirable as we may only want to model a specific phenomenon local to one region of the

stellar interior or planetary atmosphere, where the added complexity of spherical coordinates is

not necessary. Indeed, many waves and instabilities occur in local regions of atmospheres and

stellar interiors, including inertial instability. Hence, since we expect the latitudinal lengthscale of

inertial instabilities to be much less than the radius of the stellar or planetary atmosphere under

consideration, we may neglect the curvature of the star or planet and in turn model the fluid with a

local Cartesian system. In the thesis x, y and z are our longitudinal, latitudinal and vertical coor-

dinates. Throughout the thesis we will be well within the restrictions of the planar approximation;

however, in certain cases, we will approach limits that push its validity, in particular, when modes

become wide (i.e., for modes with large latitudinal lengthscales).

2.2.2 Boussinesq Approximation

The next approximation to the equations (2.1)-(2.6) we will consider is the Boussinesq approxi-

mation; initially, we discuss the approximation in the absence of magnetic field (i.e., B = 0), and

then extend the discussion to incorporate magnetic field.

The Boussinesq approximation (Boussinesq, 1903) is valid provided the vertical lengthscale

of the flow is much less than the scale height of any thermodynamic quantity, and the perturbations

in density, temperature and pressure that are induced by the fluid flow do not exceed, in order of

magnitude, the total background values of these quantities (e.g., density perturbations ρ̃ are much

less than the reference density ρ̄ so that |ρ̃| ≪ ρ̄). Many geophysical flows are Boussinesq, where

the approximation allow us to simplify the full Navier-Stokes equations (equations (2.1)-(2.6) in

the absence of magnetic field), as shown in Spiegel & Veronis (1960) and Salmon (1998). Under

the Boussinesq approximation, the conservation of mass equation (2.2) reduces to ∇ · u = 0 at

leading order, which is the condition for incompressible flow (even though the flow itself could

be compressible if so desired). It follows that ∇ · τ reduces to µ∇2u at leading order, and that

Φ, in the thermodynamic equation (2.9), may be neglected. Furthermore, we may neglect density

variations except in the buoyancy term of the equation of motion (i.e., we may write ρ as the

reference density ρ̄ in equation (2.1), except in the ρg term). Finally, perturbations in density that

are induced by motion result primarily from thermal (as opposed to pressure) effects; thus, density

perturbations are directly proportional to perturbations in temperature. Hence, by perturbing the
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thermodynamic equation (2.3) such that p, ρ and T take the form q = q̄+q0(z)+ q̃, with reference

state q̄, initial background state q0(z) and perturbation q̃, we obtain(
Dρ̃

Dt
+ w̃

dρ0
dz

)
− ρcv
pcp

(
Dp̃

Dt
+ w̃

dp0
dz

)
=

K

cpρ̄
∇2ρ̃, (2.8)

where have written ρ̄T̃ = −T̄ ρ̃, and used the ideal gas law on the first and final terms of (2.3).

Then, following Salmon (1998), we may neglectDp̃/Dt provided the flow is hydrostatic (or, more

generally, provided buoyancy effects are at least comparable with those of inertia). Thus, using

the vertical component of (2.1) in the absence of motion, so that dp0/dz = −(ρ̄+ρ0)g, we obtain

Dρ̃

Dt
− w̃

ρ̄N2(z)

g
= κ∇2ρ̃, (2.9)

where κ is the thermal diffusivity and

N2(z) = −g
ρ̄

(
dρ0
dz

+
(ρ̄+ ρ0)g

c2

)
(2.10)

is the squared Brunt-Väisälä frequency and c2 = p̄cp/cvρ̄.

We want to ensure the validity of the Boussinesq approximation in the presence of magnetic

field. There are numerous studies on this delicate topic, and following these we will incorporate

magnetic field in to the Boussinesq equations in the standard manner (e.g., Chandrasekhar, 1961;

Proctor & Weiss, 1982) — the so-called equations of Boussinesq magnetoconvection. Indeed,

magnetic field does not have any bearing on the thermodynamics of the system so that density

perturbations are still proportional to those of temperature. We may also neglect Ohmic heating

so that the thermodynamic equation (2.3) still reduces to (2.9) in the presence of magnetic field.

We note that under this variation of the approximation the effects of magnetic buoyancy are no

longer present. Incorporating magnetic buoyancy into the Boussinesq approximation is described

by Spiegel & Weiss (1982), Bowker et al. (2014) and Wilczyński et al. (2022).

2.2.3 Magnetohydrostatic Approximation

Many geophysical flows have a small aspect ratio; that is, the horizontal lengthscale L is much

larger than the vertical lengthscale H. This allows for the derivation, via a simple scaling ar-

gument (e.g., Vallis, 2017) of the hydrostatic approximation; it is an asymptotic model for the

Navier-Stokes equations, where the vertical momentum equation reduces to a balance between

the pressure gradient and gravitational forces. In the terrestrial atmosphere, the approximation

is widely used in meteorology and oceanography. In particular, observations of inertial instabil-

ities in the equatorial stratosphere and mesosphere with a vertical wavelength of ∼ 10km and

latitudinal lengthscale of about ∼ 30◦ (into the winter hemisphere) or, equivalently, ∼ 3000km

(Hitchman et al., 1987; Hayashi et al., 1998; Smith & Riese, 1999). Thus, since the latitudinal

lengthscale is two orders of magnitude larger than the vertical lengthscale, we can certainly justify

the use of the hydrostatic approximation when investigating inertial instability in the terrestrial

atmosphere.
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2.2 Approximations to the Magnetohydrodynamic Equations

We want to ensure the validity of the hydrostatic approximation in the presence of magnetic

field. That is, given that a magnetohydrodynamic flow has a small aspect ratio, is it possible to

show that the vertical momentum equation reduces to a balance between the magnetic pressure

gradient and gravitational forces, and if any additional assumptions are required. Thus, we con-

sider the perturbed quantities of (2.5) under the Boussinesq approximation (after dropping the

tildes introduced previously for perturbed quantities):

ρ̄

(
Dw

Dt
− 2Ωu cos θ

)
= −∂Π

∂z
− ρg +

1

µ0
(B · ∇)bz + µ∇2w, (2.11)

where θ is the latitude, bz is the z component of the perturbed magnetic field, and each term is of

the following order

O

(
ρ̄W

T

)
O

(
ρ̄Ω̂LW

H

)
O

(
Π̂

H

)
O (ρ̂g) O

(
B̂2

z

µ0H

)
O

(
µW

H2

)
,

respectively. Here, L, H , Ω̂ and T are the horizontal lengthscale (in the longitudinal and latitudinal

directions), vertical lengthscale, rotation frequency and timescale of the fluid motion, respectively.

The quantities W, Π̂ and B̂z are the characteristic perturbations of vertical velocity, total pres-

sure and vertical magnetic field, respectively. We have used the incompressibility and magnetic

sinusoidal condition in (2.2.3) to write the horizontal velocities and fields in terms of their respec-

tive vertical components (e.g., ∇ · u = 0 implies U ∼ V ∼ LW/H, where U and V are the

characteristic perturbed longitudinal and vertical velocities).

In the horizontal momentum equations (2.1) we scale the acceleration, advection, rotation,

pressure and diffusive terms with the Lorentz force, arguing that the Lorentz force must be a

part of the leading order balance to be dynamically significant. If this was not the case, given a

small aspect ratio, (2.11) would reduce to the hydrostatic balance (cf. Vallis, 2017). By denoting

Γ ∼ B̂2
z/µ0H, it follows that T−1 ∼ Γ/ρ̄W, Ω̂ ∼ Γ/ρ̄W, Π̂ ∼ ΓL2/H , and µ ∼ ΓH2/W.

Note that, aside from the pressure gradient, the corresponding terms would be trivially negligible

in (2.11) if they were not a part of the leading order balance (i.e., the scalings give the maximum

value of each quantity given magnetic field is dynamically significant).

Hence, the vertical acceleration, Coriolis, pressure, Lorentz, and diffusive terms in equation

(2.11) have the following ordering

ρ̄
Dw

Dt
∼ Γ, 2ρ̄Ωu cos θ ∼ L

H
Γ,

∂Π

∂z
∼ L2

H2
Γ,

1

µ0
(B · ∇)Bz ∼ Γ and µ∇2w ∼ Γ. (2.12)

Thus, if we now assume a small aspect ratio, so that H/L ≪ 1, it follows that all terms except

the buoyancy term in (2.11) are at least of order L/H smaller than the pressure gradient and are

therefore negligible. This yields a balance between the pressure gradient and buoyancy term to

leading order in equation (2.11) — the so-called magnetohydrostatic balance.

However, crucially, the total pressure may not necessarily scale with the Lorentz force in the

horizontal momentum equations (2.1), perhaps interfering with the magnetohydrostatic balance.
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Note that under this assumption Π/H ≪ ΓL2/H2, and thus (2.11) may still reduce to magneto-

hydrostatic balance since the second order term in (2.12)) is O(LΓ/H). Hence, for the magneto-

hydrostatic approximation to be valid, we require LΓ/H ≪ ρ̂g (∼ Π̂/H). Scaling ρ via the ther-

modynamic equation (2.9) under the Boussinesq approximation, it follows that ρ̂g ∼ ρ̄2N̄2W 2/Γ̂,

where N̄ is the scale of the buoyancy frequency (2.10). Thus, the condition LΓ/H ≪ ρ̂g implies

that ρ̄2N̄2W 2H/L ≫ Γ2 = B̂4
z/H

2µ20, and we therefore require that the magnetic field cannot

be too strong for the magnetohydrostatic approximation to remain valid.

Hence, under the assumptions that the aspect ratio is small, and the magnetic field strength is

not too strong, it follows that the vertical momentum equation (2.11) reduces to the magnetohy-

drostatic balance. This is consistent with the assumptions used to derive the magnetohydrostatic

approximation in Deluca & Gilman (1986) and Gilman (2000).

We can also derive an alternative assumption to that of a small aspect ratio. To illustrate this,

we assume that the magnetohydrostatic approximation is valid, and scale ρ via the thermodynamic

equation (2.9), so that for the pressure gradient to scale with the buoyancy term in (2.11), we

require L2/H2 ∼ N̄2T 2. Hence, assuming a small aspect ratio (H/L≪ 1) is equivalent to taking

N̄2T 2 ≫ 1, and one could therefore derive the magnetohydrostatic approximation from the latter

(instead of assumingH/L≪ 1). The condition N̄2T 2 ≫ 1 is seen later when deriving a condition

from our governing equation to determine the validity of the magnetohydrostatic approximation;

it is then used on a case by case basis throughout the thesis to ensure that the size of the neglected

terms in (2.11) remain negligible compared to the pressure gradient and buoyancy term.

2.2.4 The Coriolis Parameter and the Traditional Approximation

The planar approximation and the use of the Cartesian system have consequences for how we

consider rotation. Given that a planet or star rotates at an angular velocity Ω, then at a given

latitude θ, its components are Ω = (0,Ωcos θ,Ωsin θ). To simplify our argument, we assume the

geocentric and geodetic latitudes are equal (i.e., the normal to the surface at the latitude we are

considering passes through the centre of the planet or star). Thus, the Coriolis acceleration is 2Ω×
u = 2Ω(w cos θ−v sin θ, u sin θ,−u cos θ). This is the full form of the Coriolis acceleration in the

Cartesian model; however, in many cases we can simplify this to 2Ω×u = 2Ω(−v sin θ, u sin θ, 0)
— the so-called traditional approximation. It is useful to write the Coriolis acceleration in terms

of the Coriolis parameter f = 2Ω sin θ0, yielding 2Ω× u = (−fv, fu, 0).
The traditional approximation is widely used in the study of the terrestrial atmosphere and

oceans. That is, the cosine terms in full Coriolis acceleration are neglected (i.e., vertical induced

motions from the Coriolis force are neglected). The approximation is justified via the assumption

that the depth of the layer of atmosphere (or ocean) is small compared to the radius of the planet.

For inertial instability in the terrestrial atmosphere, which occurs in the upper stratosphere and

lower mesosphere with a vertical lengthscale ∼ 10km, this condition is certainly satisfied since

the radius of Earth is 6, 371km. Thus, the horizontal motion of fluid must be much more significant

than that of the vertical, implying that the cosine components of the full Coriolis acceleration are
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2.2 Approximations to the Magnetohydrodynamic Equations

negligible. Indeed, we can immediately neglect w cos θ in the x component of 2Ω× u since w ∼
Hv/L with H/L≪ 1. Similarly, we may neglect −u cos θ since it is negligible in comparison to

the dominant terms in the vertical momentum equation (see Tritton, 2012, for a similar derivation).

Note that under the traditional approximation the condition on the magnetic field strength not

being too strong for the magnetohydrostatic approximation to be valid reduces to ρ̄2N̄2W 2 ≫
Γ2 = B̂4

z/H
2µ20 since the second order term in (2.11) becomes O(Γ) rather than O(ΓL/H). We

will later derive an analogous condition in a following subsection.

Alternatively, we note that under the magnetohydrostatic approximation we must also take the

traditional approximation. Indeed, the magnetohydrostatic approximation implies that we must

neglect the cosine term in the x component of 2Ω× u since w ∼ Hv/L with H/L≪ 1; further-

more, to conserve the energy of the system, we must also neglect −u cos θ.

The use of the traditional approximation close to the equator is questionable (Veronis, 1968;

Gerkema et al., 2008) since the cosine term in the x component of 2Ω × u will be comparable

to w sin θ provided θ is sufficiently small. However, we may argue that the traditional approxi-

mation remains appropriate at the equator since stratification and kinematic viscosity dampen the

vertical deflection of fluid by the Coriolis force. Further justification is found in Griffiths (2008a),

where the traditional approximation is valid at the equator provided f ≪ N, which is the case

for geophysical flows. However, the approximation still breaks down as the horizontal lengthscale

L approaches zero; this is only of mathematical significance (rather than physical) since the most

unstable mode for inviscid inertial instability has latitudinal lengthscaleL ∝ 1/H1/2 for vanishing

vertical scales, thus satisfying the condition for validity.

Throughout the thesis we will use the f -plane and equatorial β-plane approximations, which

are standard under the planar and traditional approximations (see Vallis, 2017). These are derived

by Taylor expanding sin θ about a given latitude θ0.

2.2.5 Axisymmetric Assumption

The axisymmetric assumption may be applied when a given fluid flow is weakly dependent on a

coordinate (i.e., the fluid flow is almost identical when this coordinate is varied). In our Carte-

sian system we assume an axisymmetric basic state and axisymmetric perturbations about it, both

in the longitudinal direction x. Thus, we may neglect all derivatives with respect to longitude x,

simplifying our governing equations (2.14)-(2.18). Physically, we may justify this choice of ba-

sic state since many astrophysical flows are approximately axisymmetric. Indeed, seismological

observations suggest the latitudinal and vertical shear in the Solar tachocline varies weakly with

longitude; Jupiter’s surface jet streams are clearly approximately axisymmetric. Observations of

Hot Jupiters also allow us to infer that their extreme equatorial jets can span the entire day-side

of the planet, implying that the fluid flow varies slowly with longitude. In terms of inertial insta-

bilities in the terrestrial atmosphere, observations suggest inertial instabilities are approximately

axisymmetric (longitudinally) in nature (having small zonal wavenumbers) as seen in figure 1.4.
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Regarding axisymmetric perturbations, the most unstable mode of inertial instabilities are axisym-

metric provided the vertical wavenumber k → ∞ (i.e., vanishing vertical scale) and the system is

inviscid (Griffiths, 2008a). However, note that the most unstable inertial instability mode need not

be axisymmetric in the presence of diffusion. Taking axisymmetric perturbations also allows us

to study inertial instability without interference of competing modes such as the strato-rotational

instability which may occur only in a non-axisymmetric system.

2.3 Equations of Motion and the Basic State

We consider a set of Cartesian coordinates, with horizontal along-stream coordinate x, cross-

stream coordinate y and vertical-stream coordinate z, with corresponding velocity u = (u, v, w)

and magnetic field B = (Bx, By, Bz).We examine an incompressible, axisymmetric and diffusive

flow with basic state u = (U(y), 0, 0) and B = (B1(y), 0, B3(y)). The choice of B is motivated

from the studies discussed in Chapter 1; in particular, vertical magnetic field is shown to have

significant dynamical effects. The choice of u = U(y)ex is motivated by the zonal jets found in

many astrophysical bodies (e.g., Jupiter and Hot Jupiters). We also suppose the fluid is stratified

and assume the Boussinesq approximation is valid, where the constant buoyancy frequency N is

linked to the initial density stratification ρ0(z) and reference density ρ̄ via

N2 = −g
ρ̄

dρ0
dz

, (2.13)

where g is the gravitational acceleration. Hence, the magnetohydrodynamic equations for a perfect

gas (2.1)-(2.6) reduce to:

Du

Dt
− fv =

1

µ0ρ̄
(B · ∇)Bx + ν∇2u, (2.14)

Dv

Dt
+ fu = −1

ρ̄

∂Π

∂y
+

1

µ0ρ̄
(B · ∇)By + ν∇2v, (2.15)

∂Π

∂z
= −ρg +H

(
1

µ0ρ̄
(B · ∇)Bz + ν∇2w − Dw

Dt

)
, (2.16)

Dρ

Dt
+ w

dρ0
dz

= κ∇2ρ, ∇ · u = 0, (2.17)

∂B

∂t
+ (u · ∇)B = (B · ∇)u+ η∇2B and ∇ ·B = 0, (2.18)

where f = f(y) is the Coriolis parameter due to background rotation, Π(y, z, t) is the perturbed

total pressure, ρ(y, z, t) is the density perturbation, ν is the kinematic viscosity, η is the magnetic

diffusivity, κ is the thermal conductivity. The parameter H, which takes the value 0 or 1, acts as a

switch to determine whether the system is magnetohydrostatic (H = 0) or not (H = 1). We will

be primarily addressing the magnetohydrostatic system (H = 0), thus, making an obvious con-

nection to hydrostatic results for geophysical flows (Dunkerton, 1981, 1982; Griffiths, 2003a,b,

2008a). However, the validity of the magnetohydrostatic approximation does not trivially extend

from the hydrostatic approximation, which is valid provided the horizontal lengthscale is much
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2.4 Linearisation, Normal Modes and the Governing Equation

larger than the vertical lengthscale (as is the case in planetary atmospheres). Therefore, we exam-

ine the validity of the approximation on a case by case basis; we will shortly derive a condition for

the validity after linearising the system.

The basic state u = (U(y), 0, 0) and B = (B1(y), 0, B3(y)) satisfies equations (2.14)-(2.18)

provided that

f(y)U(y) = −1

ρ̄

∂Π0

∂y
, (2.19)

where is the basic state of the total pressure perturbation. Hence, the basic state is geostrophic

balance in the latitudinal direction.

2.3.1 Energetics

The evolution of energy of the system (2.14) - (2.18) is of particular importance when considering

the nonlinear evolution of the system in Chapter 5. The rate of change of the total energy E, the

derivation of which is given in Appendix A, is given by

dE

dt
=

d

dt

∫
V

(
1

2
ρ̄|u|2 + 1

2

g2

ρ̄N2
ρ2 +

1

2µ0
|B|2

)
dV = −µ

∫
V
|ω|2 dV

− g2κ

ρ̄N2

∫
V
|∇ρ|2 dV − 1

σ

∫
V
|j|2dV, (2.20)

where ω = ∇×u is the local vorticity, σ = 1/µ0η is the electrical conductivity, j = µ−1
0 (∇×B)

is the current. Note that in the derivation it is shown that the magnetic energy lost owing to the

rate of working of the Lorentz force is balanced by the rate of kinetic energy gained from the

working of the Lorentz force on the flow. We can also note that since the system is axisymmetric,

the volume and surface integrals in equation (2.20) can be equivalently written as surface and line

integrals, respectively.

2.4 Linearisation, Normal Modes and the Governing Equation

In general, the nonlinear equations (2.14)-(2.18) must be solved numerically in order to gain in-

sight into the dynamical system. However, linear stability analysis allows us to neglect the non-

linear terms and progress analytically by considering small perturbations around the basic state. It

is a fundamental tool for the investigation of geophysical and astrophysical flows; it allows us to

determine stability criteria, maximum growth rates, the form of the disturbances as well as their

role within the system. Indeed, most results in the thesis are derived using linear stability analysis.

Hence, we linearise the governing equations (2.14)-(2.18) via perturbations to the velocity,

magnetic field, pressure and density, where we seek solutions of the following form:

(ũ, b̃, θ̃, ρ̃) = Re
(
(û(y), b̂(y), θ̂(y), ρ̂(y))eikz+st

)
, (2.21)

where θ̃ is defined as the perturbation to the total pressure divided by the reference density ρ̄, k is

the vertical wavenumber and s is the growth rate. Under this formulation, (2.14)-(2.18) reduce to

the following system of linear equations (where all superscripts have been dropped):
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(s+ νk2)u−Qv =
1

µ0ρ̄

(
dB1

dy
by + ikB3bx

)
, (2.22)

(s+ νk2)v + fu = −dθ
dy

+
ikB3

µ0ρ̄
by, (2.23)

(s+ κk2)θ +

(
N2

k2
+

H(s+ κk2)

k2

(
k2v2A
s+ ηk2

+ s+ νk2
))

dv

dy
= 0, (2.24)

(s+ ηk2)bx +
dB1

dy
v =

dU

dy
by + ikB3u, (2.25)

(s+ ηk2)by = ikB3v, (2.26)

where bx and by are the along-stream and cross-stream components of the magnetic field. Note

that we neglected the horizontal component of the diffusive terms since a small aspect ratio (mag-

netohydrostatic approximation) implies d2/dy2 ≪ k2 as the latitudinal lengthscale is much larger

than the vertical lengthscale. Recall that Q = f − U ′ is the vorticity, where U ′ represents the y

derivative of U. Equation (2.24) is derived from combining the z component of the momentum

equation (2.16), the thermodynamic equation and the conservation of mass (2.17) as well as the

definition of the buoyancy frequency (2.13). We later consider these equations (in various limits)

when discussing dynamical balances.

Combining equations (2.22), (2.23), (2.24), (2.25) and (2.26) yields a second order governing

equation for the perturbed cross-stream velocity, given by

(s+ ηk2)

(s+ κk2)

(
N2

k2
+

H(s+ κk2)

k2

(
k2v2A
s+ ηk2

+ s+ νk2
))

d2v

dy2
+(

k2v2AU
′f − fQ(s+ ηk2)2 − ((s+ νk2)(s+ ηk2) + k2v2A)

2

(s+ νk2)(s+ ηk2) + k2v2A

)
v = 0, (2.27)

where v2A(y) = B2
3(y)/(ρ̄µ0) is the square of the Alfvén wave speed. We suppose the flow is in a

bounded domain, with the boundary conditions

v = 0 at y = ±yb. (2.28)

Clearly, the along-stream field does not affect the dynamics or stability of the flow, since the

governing equation (2.27) is independent of B1(y). This is unlike the cylindrical problem, in

which, as a consequence of field line curvature, azimuthal field can play an important role in

axisymmetric systems (e.g., Michael, 1954; Vandakurov, 1972). This is also the case for the

azimuthal component of helical field in axisymmetric flows; thus, instabilities that depend on both

components of field in combination can not occur within our system.

We can see that making the magnetohydrostatic approximation (i.e., setting H = 0 in (2.27))

will be valid provided that ∣∣∣∣(s+ κk2)

(
k2v2A
s+ ηk2

+ s+ νk2
)∣∣∣∣≪ N2. (2.29)

It is clear that if the hydrostatic approximation for vA = 0 is valid (|(s+ κk2)(s+ νk2)| ≪ N2),

then we can not trivially deduce the validity of the magnetohydrostatic approximation. We have
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2.5 Stability Criteria for an Ideal Fluid

already discussed this in (2.2.3) and shown that the magnetohydrostatic approximation is valid

provided that the magnetic field is not too strong. Indeed, in the absence of diffusion (2.29) re-

duces k2v2A ≪ N2 and requires that the magnetic field is not too strong. To ensure the validity of

the approximation throughout the thesis the condition (2.29) will be checked on a case by case ba-

sis. For example, for inviscid inertial modes with s2/f2 = O(1), (2.29) will be satisfied provided

f2 ≪ N2 (as is usually assumed in planetary atmospheres owing to the presence of thin strongly

stratified flows) and k2v2A ≪ N2. The latter condition implies that the magnetohydrostatic approx-

imation may break down in the large field or large vertical wavenumber limit. However, linking

to the vanishing vertical wavelength (|k| → ∞) of the most unstable modes of inertial instabilities

in inviscid systems (e.g., Dunkerton, 1981; Griffiths, 2008a), it is possible to satisfy k2v2A ≪ N2

with |k| → ∞ provided the field strength is sufficiently weak so that v2A ≪ N2/k2.

Assuming the flow is magnetohydrostatic (i.e., the condition (2.29) holds) the second order

governing equation (2.27) reduces to

N2(s+ ηk2)

k2(s+ κk2)
((s+ νk2)(s+ ηk2) + k2v2A)

d2v

dy2
+

(k2v2AU
′f − fQ(s+ ηk2)2 − ((s+ νk2)(s+ ηk2) + k2v2A)

2)v = 0. (2.30)

In the absence of magnetic field and diffusion, equation (2.30) reduces to equation (1.3) in Griffiths

(2008a). The governing equations (2.27) and (2.30) taken with the boundary conditions (2.28) will

form the basis of our linear results. We will apply (2.27) and (2.30) to problems on the f -plane

and equatorial β-plane, using analytical and numerical methods to drive results regarding inertial,

magnetic and hybrid instabilities that depend upon inertial and magnetic effects.

2.5 Stability Criteria for an Ideal Fluid

In this section, we derive a number of stability conditions and growth rate bounds for an ideal

fluid with flow U(y) and Coriolis parameter f(y). To derive these results we consider the mag-

netohydrostatic (H = 0) system only; the non-magnetohydrostatic system is used only for one

small excerpt in Chapter 3, for which stability results are not required. Note that we still provide

a non-magnetohydrostatic ideal governing equation to clearly illustrate the condition for magne-

tohydrostatic approximation to be valid. We initially derive solutions for magnetic field B3(y)

that depends on latitude, before restricting attention to the case of uniform field B0; the latter case

allows for the derivation of a stronger stability condition.

In the absence of diffusion, the second order governing equation (2.27) reduces to

(N2 +H(s2 + k2v2A))
d2v

dy2
− k2

(
s2 + k2v2A + fQ−

k2v2Af
2

s2 + k2v2A

)
v = 0, (2.31)

from which it follows that the magnetohydrostatic approximation is valid provided that

∣∣s2 + k2v2A
∣∣≪ N2. (2.32)
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The second order governing equation (2.31) with H = 1 (non-magnetohydrostatic) is the Cartesian

analogue of (1.9) of Chandrasekhar (1960). Then, assuming (2.32) holds, (2.31) becomes

d2v

dy2
− k2

N2

(
s2 + k2v2A + fQ−

k2v2Af
2

s2 + k2v2A

)
v = 0. (2.33)

This is the ideal analogue of equation (2.30) and is thus the governing equation for all of our ideal

results throughout the thesis, including the stability criteria derived in the following subsections.

2.5.1 Magnetic Field as a Function of Latitude

In the case for magnetic field depending upon latitude, equation (2.33) allows for the derivation

of numerous stability conditions as well as a hydrodynamic and magnetohydrodynamic bound on

the growth rate s.

First, we prove that s2 must be real. Multiplying (2.33) by the complex conjugate of v, v∗,

integrating over the domain and applying the boundary conditions (2.28) gives

N2

k2

∫ +yb

−yb

|v′|2dy +
∫ +yb

−yb

(s2 + fQ+ k2v2A)|v|2dy −
∫ +yb

−yb

k2v2Af
2

k2v2A + s2
|v|2dy = 0. (2.34)

Then, the imaginary part of (2.34), after multiplying the numerator and denominator of the final

term by −(k2v2A + s∗2) becomes

Im(s2)

(∫ +yb

−yb

|v|2dy +
∫ +yb

−yb

k2v2Af
2

|k2v2A + s2|2
|v|2dy

)
= 0. (2.35)

Hence, as the quantity multiplying Im(s2) in (2.35) is always positive, it follows that Im(s2) = 0.

Therefore, in the absence of diffusion, unstable modes (Re(s) > 0) are not oscillatory.

We now derive hydrodynamic and magnetohydrodynamic bounds on the growth rate. These

require conditions on the Coriolis parameter f(y) and shear U ′(y) to be satisfied. Reconsidering

(2.34), it follows that

s2
∫ +yb

−yb

|v|2dy =

∫ +yb

−yb

(
k2v2Af

2

k2v2A + s2
− k2v2A − fQ

)
|v|2dy − N2

k2

∫ +yb

−yb

|v′|2dy. (2.36)

Restricting ourselves first to the hydrodynamic case (vA = 0), equation (2.36) reduces to

s2
∫ +yb

−yb

|v|2dy = −
∫ +yb

−yb

fQ|v|2dy − N2

k2

∫ +yb

−yb

|v′|2dy, (2.37)

so that the sufficient and necessary condition for hydrodynamic stability is that

N2

k2

∫ +yb

−yb

|v′|2dy +
∫ +yb

−yb

fQ|v|2dy > 0. (2.38)

Thus, as the first term in (2.38) is always positive, it follows that if fQ > 0 everywhere in flow,

then the hydrodynamic system is stable. Equivalently, a necessary condition for hydrodynamic

instability is that fQ < 0 somewhere in the flow.
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2.5 Stability Criteria for an Ideal Fluid

Therefore, assuming fQ < 0 somewhere in the flow (so that instability is possible) we recon-

sider equation (2.37) to derive a growth rate bound for the hydrodynamic system. Removing the

negative definite term from (2.37) yields

s2
∫ +yb

−yb

|v|2dy < −
∫ +yb

−yb

fQ|v|2dy. (2.39)

Then, assuming fQ < 0 somewhere in the flow, it follows from (2.39) that any unstable mode (if

one exists) obeys

s2 < −min(fQ), (2.40)

so that the growth rate squared must satisfy s2 < max(−fQ) as seen previously in Griffiths

(2008a).

In the magnetohydrodynamic regime, equation (2.36) does not reduce as easily as in the hy-

drodynamic case. This is due to the growth rate being contained within the denominator of the first

term of the integrand on right hand side of (2.36). Writing fQ = f2 − U ′f in (2.36), collecting

the f2 terms and then removing all negative definite terms from the right hand side of (2.36) yields

s2
∫ +yb

−yb

|v|2dy <
∫ +yb

−yb

(
U ′f − s2f2

k2v2A + s2

)
|v̂|2dy. (2.41)

Hence, on rearranging (2.41), we obtain

s2
∫ +yb

−yb

(
1 +

f2

k2v2A + s2

)
|v̂|2dy <

∫ +yb

−yb

U ′f |v̂|2dy. (2.42)

Thus, assuming the system is unstable so that s2 > 0, we can divide (2.42) by the integral on the

left hand side to obtain

s2 <

∫ +yb

−yb

U ′f |v̂|2dy
/∫ +yb

−yb

(
1 +

f2

k2v2A + s2

)
|v̂|2dy . (2.43)

Hence, since the denominator on the right hand side of (2.43) is positive we can deduce, by contra-

diction, that the system is stable provided we have cyclonic shear (U ′f < 0) everywhere. There-

fore, a necessary condition for instability is that anti-cyclonic shear (U ′f > 0) occurs somewhere

in the flow.

Hence, given anti-cyclonic shear somewhere in the flow so that the assumption s2 > 0 is

satisfied, equation (2.43) implies

s2 <

∫ +yb

−yb

U ′f |v̂|2dy
/∫ +yb

−yb

|v̂|2dy . (2.44)

Therefore, given anti-cyclonic shear (U ′f > 0) somewhere in the flow, then any unstable mode (if

one exists) obeys

s2 < max(U ′f). (2.45)

Comparing the MHD results to that of the hydrodynamic regime, we found that a necessary

condition for instability in the MHD regime is that U ′f > 0 somewhere in the domain, which is

less restrictive than the necessary hydrodynamic condition for instability, that fQ < 0 somewhere
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in domain. This becomes clear when writing fQ = f2 − U ′f > −U ′f, which clearly implies

that U ′f > 0 is required for fQ < 0. Secondly, we have derived that the magnetohydrodynamic

growth rate squared is bounded by the maximum of U ′f, which is again a less restrictive condition

than that of the hydrodynamic regime which bounds s2 by the maximum of −fQ. Comparisons

may be made with the magnetorotational instability (e.g., Velikhov, 1959; Chandrasekhar, 1960;

Balbus & Hawley, 1991), where instabilities are generated by weak vertical field; indeed, the

condition (2.45) is analogous to the maximum growth rate (1.12) of Balbus & Hawley (1991).

However, one must note that the results of this section do not prove that an MRI occurs within the

system, but, instead, allow for the existence of such an instability.

2.5.2 Uniform Magnetic Field

In this section we consider uniform vertical magnetic fieldB3 = B0. This allows for the derivation

of a stronger condition for magnetohydrodynamic stability than in the previous section; it is both

necessary and sufficient. Multiplying (2.34) by s2+k2v2A (which is now constant) and rearranging

gives

s4
∫ +yb

−yb

|v|2dy + s2
(
N2

k2

∫ +yb

−yb

|v′|2dy + 2k2v2A

∫ +yb

−yb

|v|2dy +
∫ +yb

−yb

fQ|v̂|2dy
)

+ k2v2A

(
N2

k2

∫ +yb

−yb

|v′|2dy + k2v2A

∫ +yb

−yb

|v|2dy −
∫ ∞

−∞
U ′f |v̂|2dy

)
= 0. (2.46)

Thus, since (2.46) is a quadratic in s2, which is real by (2.35), given a solution v(y) that satisfies

the ODE (2.33), there must be two values of s2 provided vA ̸= 0. For stability we therefore

require that both roots of (2.46) are negative. Both roots are negative if and only if the following

two inequalities are satisfied:

N2

k2

∫ +yb

−yb

|v′|2dy + 2k2v2A

∫ +yb

−yb

|v|2dy +
∫ +yb

−yb

fQ|v̂|2dy > 0, (2.47)

k2v2A

(
N2

k2

∫ +yb

−yb

|v′|2dy + k2v2A

∫ +yb

−yb

|v|2dy
)
> k2v2A

∫ +yb

−yb

U ′f |v̂|2dy. (2.48)

Using the definition for the absolute vorticity Q = f − U ′, we can re-write (2.47) as∫ +yb

−yb

f2|v̂|2dy + N2

k2

∫ +yb

−yb

|v′|2dy + 2k2v2A

∫ +yb

−yb

|v|2dy >
∫ +yb

−yb

U ′f |v̂|2dy. (2.49)

Hence, if we assume that (2.48) holds and that the Alfvén wave speed is non-zero, we can substi-

tute (2.48), after the division of k2v2A, into (2.49) to obtain∫ +yb

−yb

f2|v̂|2dy + k2v2A

∫ +yb

−yb

|v|2dy > 0, (2.50)

which trivially holds.

Therefore, if we assume (2.48) holds and that the Alfvén wave speed is non-zero, then (2.47)

is trivially satisfied and we have real and negative s2 if and only if

N2

k2

∫ +yb

−yb

|v′|2dy +
∫ +yb

−yb

(k2v2A − U ′f)|v|2dy > 0, (2.51)
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2.6 Parameter Values in Geophysical and Astrophysical Bodies

valid for a non-zero Alfvén wave speed (due to the division of k2v2A in the derivation). Then,

assuming the maximum of U ′ and f both take finite values, the condition (2.51) allows us to

make a number of conclusions regarding the stability of the system. We find that any instance of

instability, created by anti-cyclonic shear, can be stabilised by vertical field of sufficient strength

(as in Chandrasekhar, 1960) or equivalently, for sufficiently large vertical wavenumber. This is in

contrast to the hydrodynamic result (2.38) where large vertical wavenumber implies that fQ > 0 is

a necessary and sufficient condition for stability. This also conflicts with the hydrodynamic results,

where the most unstable mode occurs at infinitesimally small vertical scales (k → ∞) (Dunkerton,

1981; Griffiths, 2008a). However, one could argue that the most unstable mode could still occur at

vanishingly small scales provided we also have infinitesimally weak field such that k2v2A ∼ U ′f.

This is clearly consistent with the hydrodynamic result that the most unstable mode occurs for

infinitesimally small scales, while invoking the weak field results of Balbus & Hawley (1991). We

also note that, in the limit k → ∞, the role of stratification is negligible (provided the integral

on the left hand side of (2.51) is bounded); thus, yielding the necessary and sufficient condition

for stability that k2v2A > U ′f as |k| → ∞. This is analogous to the criteria (1.11) of Balbus &

Hawley (1991). We must recall that (2.51) is invalid in the absence of field (v2A = 0) and instead

take (2.47), or equivalently (2.38), as the necessary and sufficient condition for hydrodynamic

stability.

2.6 Parameter Values in Geophysical and Astrophysical Bodies

To address possible physical applications of this research, we provide table 2.1, which consists of

typical parameter values such as angular velocity, buoyancy frequency and magnetic field strength,

found in the Solar tachocline, Jupiter’s upper atmosphere and Hot Jupiters. For comparison, we

also include typical values found in Earth’s upper stratosphere and lower mesosphere (where iner-

tial instability is most likely to occur). Parameters will be given that are relevant to both equatorial

and mid-latitude regions. Throughout the thesis we will refer back to the parameters in table 2.1

to give insight into various regimes.

In the terrestrial atmosphere, inertial instability is known to occur in the lower mesosphere

and upper stratosphere with a flow vertical wavelength ∼ 10km and latitudinal lengthscale L ∼
3000km (Hitchman et al., 1987; Hayashi et al., 1998; Smith & Riese, 1999); the instabilities could

occur anywhere in the atmospheric layer given sufficiently strong shear (relative to stratification,

etc.), yielding a layer depth HD ≈ 50km. Over this vertical range in the upper stratosphere and

lower mesosphere, the density of the atmospheric layer ranges from ρ̄ = 3.0 × 10−3kgm−3 to

8.1 × 10−3kgm−3. Following Griffiths (2003a) on the estimate of a diffusive parameter in the

equatorial stratosphere and mesosphere near solstice, we estimate the buoyancy frequency N =

2.0× 10−2s−1 and kinematic viscosity ν = 1.5× 10−2m2s−1. Then, as the Prandtl number Pr =

ν/κ ≈ 0.7 in the upper stratosphere and lower mesosphere, we estimate the thermal diffusivity

κ = 2.1× 10−2m2s−1. Hitchman et al. (1987) observed cross-equatorial shear Λ0 ∈ [3.5, 5.8]×
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10−5s−1 at 50km, increasing to Λ0 ∈ [4.6, 8.1] × 10−5s−1 at 70km. Hayashi et al. (1998) also

indicated that inertial instability occurs when Λ0 ∈ [2.3, 4.6] × 10−5s−1. Thus, we take Λ0 ∈
[3, 6] × 10−5s−1. The radius and angular velocity of Earth are R = 6.4 × 103km and Ω =

7.3 × 10−5s−1, respectively. Thus, we can estimate the Rossby parameter β = 2Ω/R = 2.3 ×
10−11m−1s−1 and Coriolis parameter at mid-latitude f = 2Ω sin(45◦) ≈ 1.0× 10−4s−1.

For the Solar tachocline, we refer to Hughes et al. (2007) and references therein, noting that

some parameters are estimated seismologically (Schou et al., 1998), whereas others are inferred

from the solar model presented in Christensen-Dalsgaard (2002). The parameters provided are

estimates at R = 0.7R⊙, where R⊙ = 7.0× 105km is the approximate solar radius. The angular

velocity at this radius is approximately Ω = 2.8× 10−6s−1 at the equator and Ω = 2.7× 10−6s−1

at mid-latitude (45◦), as shown in figure 1.1. The angular velocity at this radius beneath the

poles is Ω = 2.0 × 10−6s−1, provided Ω varies weakly with depth (Gough, 2007). Thus, the

Rossby parameter is β = 8.0× 10−15m−1s−1 and the Coriolis parameter at mid-latitude (45◦) is

f = 3.8 × 10−6s−1. With the difference between angular velocity at the poles and equator being

∆Ω = 8.0× 10−7s−1 it follows that the average change in zonal velocity from equator to pole is

U0 = ∆ΩR⊙ ≈ 500ms−1. Thus, taking a latitudinal lengthscale equal to a third of the solar radius

L = 2.3×108m, we obtain the latitudinal shear Λ = U0/L = 2.1×10−6s−1. Observations of the

solar tachocline show that the depth of the layer is no more than 0.05R⊙ (Christensen-Dalsgaard &

Thompson, 2007), yielding HD = 0.05R⊙ = 3.5 × 107m. The density and buoyancy frequency

across the layer are ρ̄ = 210kgm−3. and N = 8.0 × 10−4s−1, respectively (Gough, 2007).

There is considerable uncertainty regarding the magnetic field strength in the solar tachocline

(Gough, 2007), however, it is likely to be in the range 103G < B0 < 105G. The kinematic

viscosity, thermal diffusion and magnetic diffusivity in the layer are ν = 2.7 × 10−3m2s−1, κ =

1.4× 103m2s−1 and η = 4.1× 10−2m2s−1 (Gough, 2007, Table 1.1).

We will now focus on the upper atmosphere of Jupiter; that is, 0.9Rj < R < Rj , where

Rj = 7.0 × 107m is the radius of Jupiter. Thus, we take the layer depth to be the extent of

this region, yielding HD = 0.04Rj ≈ 3000km. The parameters will vary inside this region,

however to simplify our argument while still capturing their ordering, we provide the value of

these parameters at 0.98Rj . To estimate the parameters we refer to French et al. (2012), Connerney

et al. (2018), Gastine & Wicht (2021), and references therein, which include estimates from the

data gathered by the Galileo and Juno missions. The density and buoyancy frequency are taken to

be ρ̄ = 84.8kgm−3 and N = 5.0× 10−4s−1 (Debras & Chabrier, 2019; Gastine & Wicht, 2021).

We take the field strength to be B0 = 10G (Connerney et al., 2018). French et al. (2012) state

that the kinematic viscosity, thermal diffusion and magnetic diffusivity are ν = 3.9×10−7m2s−1,

κ = 1.3×10−6m2s−1 and η = 2.3×109m2s−1. The zonal flows seen at the surface extend down to

R = 0.96Rj ; thus, the zonal velocity atR = 0.98Rj may range fromU0 = 10s−1 toU0 = 150s−1

as on the surface (Tollefson et al., 2017; Kaspi et al., 2018). Thus, taking L = Rj/3 = 2.3×107m

we obtain a latitudinal shear from Λ0 = U0/L = 4.3× 10−7ms−1 to 6.5× 10−6s−1. The angular
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velocity of Jupiter is Ω ≈ 1.8 × 10−4s−1, which allows us to estimate the Rossby parameter

β = 5.0× 10−12m−1s−1, and Coriolis parameter at mid-latitude (45◦) f = 2.5× 10−4s−1.

Naturally, there are many uncertainties regarding parameter values of Hot Jupiters; however,

through the radial velocity method (Hatzes, 2016), transit photometry (Deeg & Alonso, 2018) and

other detection methods, we can infer numerous properties. The radial velocity method allows us

to determine many properties regarding star-planet orbits, such as period and eccentricity, whereas

transit photometry allows us to infer planet size, thermal radiation (of both planet and star) as well

as the atmosphere circulation of Hot Jupiters (Showman et al., 2013). Indeed, we can infer many

physical characteristics of Hot Jupiters, but it is difficult to prescribe specific parameter values

such as buoyancy frequency, kinematic viscosity, thermal diffusivity and magnetic diffusivity with

a high degree of certainty. Thus, in table 2.1 we provide a range of typical parameter values

in the upper atmospheres of Hot Jupiters (where the strong equatorial jets are present), taken

from Showman et al. (2013), Heng & Showman (2015) and references therein; for less certain

parameters we look to Jupiter as motivation for our estimates. The radii of Hot Jupiters range from

0.5Rj to 2.0Rj (Demory & Seager, 2011). Assuming that the Hot Jupiters under consideration are

tidally locked and have orbital periods from 3 to 10 Earth days (which is typically the case (Winn

et al., 2010)), it follows that their angular velocity must be in the range Ω ∈ [7.3, 24]× 10−6s−1.

Hence, we can estimate a range of Coriolis and Rossby parameters by taking the most extreme

radii and angular velocities, yielding f = [1.0, 3.4]×10−5s−1 and β = [1.0, 14]×10−13m−1s−1.

Observations of Hot Jupiters have shown that many have inflated radii when compared to Jupiter,

leading to unusually low mean densities ρ̄ = 220kgm−3 (Mandushev et al., 2007); however,

a mean density as large as ρ̄ = 2100kgm−3 has been observed (Espinoza et al., 2017). We

record both densities to give a reasonable interval, however note that we will generally take ρ̄ =

500–1000kgm−3 since we are concerned with the upper atmospheres of Hot Jupiters (where the

strong equatorial jets are present). We take the buoyancy frequency as N = 5.0 × 10−3s−1

(Tsai et al., 2014); however, it is not unreasonable to consider smaller buoyancy frequencies as in

Jupiter’s upper atmosphere (i.e.,N = 5.0×10−4s−1). The magnetic field strengths of Hot Jupiters

are largely uncertain; however, Yadav & Thorngren (2017) estimate the surface magnetic field

strength of many Hot Jupiters to be in the range 10G to 250G. This agrees with the estimates made

from the release of magnetic energy in star-planet interactions by Cauley et al. (2019), ranging

from 20G to 120G. Observations and models of Hot Jupiters have also indicated the existence of

strong equatorial jets that can flow close to the speed of sound (e.g., Showman et al., 2013; Heng

& Showman, 2015; Koll & Komacek, 2018); thus, we take a jet speed of U0 = 1000ms−1 to

U0 = 2000ms−1. We take a latitudinal lengthscale equal to a third of planetary radius, yielding

L = [1.2, 4.6]×107m, thus giving latitudinal shear in the range Λ0 = U0/L ∈ [2.1, 17]×10−5s−1.

For the remaining parameters, we take values from Jupiter: that is HD = 3.0 × 106m, ν =

3.9× 10−7m2s−1, κ = 1.3× 10−6m2s−1 and η = 2.3× 109m2s−1.
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Earth Solar
Tachocline

Jupiter Hot Jupiters

Radius (m) 6.4× 106 R⊙ = 7.0× 108 RJ = 7.0× 107 0.5RJ − 2.0RJ

Angular
Velocity Ω (s−1)

7.3× 10−5 2.8× 10−6 1.8× 10−4 7.3× 10−6 −
2.4× 10−5

Coriolis
Parameter f

(s−1)

1.0× 10−4 3.8× 10−6 2.5× 10−4 1.0× 10−5 −
3.4× 10−5

Rossby
Parameter β
(m−1s−1)

2.3× 10−11 8.0× 10−15 5.0× 10−12 1.0× 10−13 −
1.4× 10−12

Layer Depth
HD (m)

5.0× 104 3.5× 107 3.0× 106 3.0× 106

Density ρ̄
(kg m−3)

3.0× 10−3 −
8.1× 10−3

210 85 220− 2100

Buoyancy
Frequency N

(s−1)

1.0× 10−2 8.0× 10−4 5.0× 10−4 5.0× 10−4 −
5.0× 10−3

Zonal Velocity
U0 (ms−1)

30− 120 500 10− 150 1000− 2000

Latitudinal
Lengthscale L

(m)

3.0× 106 2.3× 108 2.3× 107 1.2× 107 −
4.6× 107

Latitudinal
Shear Λ0 (s−1)

3.0× 10−5 −
6.0× 10−5

1.0× 10−6 4.3× 10−7 −
6.5× 10−6

2.1× 10−5 −
1.7× 10−4

Magnetic Field
B3 (G)

0 1.0× 103 −
1.0× 105

10 10− 250

Kinematic
Viscosity ν

(m2s−1)

1.5× 10−2 2.7× 10−3 3.9× 10−7 3.9× 10−7

Thermal
Conductivity κ

(m2s−1)

2.1× 10−2 1.4× 103 1.3× 10−6 1.3× 10−6

Magnetic
Diffusivity η

(m2s−1)

0 4.1× 10−2 2.3× 109 2.3× 109

Table 2.1: Estimated parameter values in the Earth’s upper stratosphere and lower mesosphere,
the solar tachocline, and the upper atmospheres of Jupiter and Hot Jupiters.
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Chapter 3

Waves and Instabilities for a Uniform
Shear Flow at Mid-latitudes

3.1 Introduction

In this chapter we consider the linear stability of an ideal parallel flow U(y) = Λ0y with uniform

latitudinal shear U ′(y) = Λ0 on an f -plane in the presence of a uniform vertical magnetic field

of strength B3(y) = B0. This is the simplest possible configuration to study the competition

between inertial and magnetic modes. Indeed, since the Coriolis parameter, the magnetic field

strength and shear are all constant the ideal governing equation (2.31) has constant coefficients

and can therefore be solved analytically with solutions for the perturbed cross-stream velocity of

the form v ∝ exp(ily), where l is the cross-stream wavenumber.

We can further justify our model beyond the grounds of simplicity. First, if modes occur over

a sufficiently small range of latitude, the magnitude of the Coriolis parameter will not vary sig-

nificantly and thus can be approximated by some constant value f0. This is known as the f -plane

approximation and is often applied in geophysical systems (see, for example Vallis, 2017, for a

derivation). Second, we have already seen in Section 1.3.2 that even a weak uniform axial mag-

netic field can significantly influence hydrodynamic flows (e.g., Balbus & Hawley, 1991; Menou

et al., 2004) and thus, we consider uniform (local) vertical magnetic field.

We begin the chapter with Section 3.2, in which we discuss the inertial and magnetically modi-

fied waves within the system. In order to do this without interference from the unstable modes, we

make yet another simplification and consider the system in the absence of shear. This guarantees

stability by condition (2.51), which implies there must be anti-cyclonic shear (i.e., U ′f > 0) some-

where in the system for instability to occur. We begin the analysis by deriving a quadratic equation

for the frequency squared ω2, which still contains a magnetohydrostatic switch H (as the govern-

ing equation (2.31) did). We first consider the non-magnetohydrostatic system (H = 1) in order

to compare with the hydromagnetic-inertial waves found in Acheson & Hide (1973). Throughout

the thesis we will confirm the validity of the magnetohydrostatic approximation by using the con-

dition (2.29), particularly when considering asymptotic results. In the magnetohydrostatic system
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(H = 0), we introduce our nondimensional parameters A and L, which are a rescaled aspect ratio

and Lehnert number, respectively. The latter is proportional to magnetic field strength. Note that,

following Section 3.2, these parameters will be used alongside the Rossby number Λ throughout

the instability analysis of Section 3.3 and Chapter 4. We recast the quadratic equation for the

frequency squared in terms of the nondimensional parameters; the system yields inertia-gravity

waves in the absence of magnetic field and inertial-Alfvén waves for vanishing aspect ratio. We

categorise the waves of the weak and strong field limits as well as the limits of small and large

aspect ratio. We then discuss the links between the magnetohydrostatic magnetic waves in the

weak field limit to the non-magnetohydrostatic hydromagnetic-inertial waves as found in Acheson

& Hide (1973). In the following instability analysis of Section 3.3, we discuss the magnetohydro-

static waves that occur outside of the unstable domain and in the presence of shear.

In section 3.3 we consider the sheared system so that instability may occur by the condition

(2.51) since anti-cyclonic shear is now possible (i.e., U ′f > 0 in some region of the flow). Note

that all subsequent results throughout the thesis will be magnetohydrostatic (H = 0). We derive

stability criteria in terms of the nondimensional parametersA,L and Λ using condition (2.51). We

then derive the maximum growth rate, which is analogous to (1.12) of Balbus & Hawley (1991)

for Λ < 2. We consider the limit of large vertical wavenumber |k|, which yields an analogous

approximation to the “thin disc” and weak field assumptions of Balbus & Hawley (1991). For

Λ > 2, the maximum growth rate is that of the hydrodynamic system. We provide contours of

the frequencies and growth rates of the system as a function of the aspect ratio A and Lehnert

number L. These are shown for three distinct Rossby numbers Λ. The contour plots motivate an

asymptotic analysis of the weak field limit, where magnetically modified inertial instabilities are

found alongside those that are purely magnetic. We discuss the inertial and magnetic waves that

are also embodied by the weak field expansions.

The contours of the growth rate also motivate a physical discussion regarding the vertical scale

selection of the instabilities in astrophysical bodies, such as those given in table 2.1. Motivated by

the nature of the results, we investigate the small A limit of the system, where an analogue to the

magnetorotational instability (MRI) of Balbus & Hawley (1991) is found.

In Section 3.4 we consider the dynamical balances of the unstable modes of our system. We

investigate numerous parameter regimes, including the weak field limits of hydrodynamically un-

stable and stable regimes, the most unstable mode, as well as regimes of marginal stability. In

particular, we categorise the magnetorotational instability (MRI) in our system, a “stratified” MRI

and magnetically modified inertial instabilities. We also find an approximation to the dynamical

balance of the most unstable mode.

3.2 Inertial and Magnetic Waves

In order to isolate ideal inertial and magnetic waves, we will first consider the system in the ab-

sence of shear (Λ0 = 0), so that instability may no longer occur by the condition (2.51). Recall that
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3.2 Inertial and Magnetic Waves

we are considering a uniform Coriolis parameter f0 and uniform magnetic field strength B3 = B0

so that our ideal governing equation (2.31) has constant coefficients and may be solved analyti-

cally with solutions of the form v̂ ∝ eily. We consider the governing equation (2.31) so that the

parameter H allows for the derivation of some non-magnetohydrostatic results. Introducing the

frequency ω = −is, equation (2.31) reduces to the eigenvalue relation

(k2 +Hl2)(ω2 − k2v2A)
2 − (ω2 − k2v2A)(l

2N2 + k2f20 )− k4v2Af
2
0 = 0. (3.1)

Expression (3.1) is quadratic in ω2 and therefore gives the following solutions:

ω2
± = k2v2A +

1

2

(
l2N2 + k2f20
k2 +Hl2

±
(
(l2N2 + k2f20 )

2

(k2 +Hl2)2
+

4k4v2Af
2
0

k2 +Hl2

) 1
2

)
. (3.2)

The eigenvalue relations (3.1) and (3.2) can describe waves in a number of regimes, including

those that are magnetohydrostatic (H = 0) and those that are not (H = 1). We will discuss

magnetohydrostatic waves in the following subsection and then provide a small discussion of the

non-magnetohydrostatic waves found in Acheson & Hide (1973).

3.2.1 Magnetohydrostatic Waves

In the magnetohydrostatic case, which is the most relevant in planetary atmospheres and hence the

focus of this study, we set H = 0 in (3.1), yielding

ω4 − ω2

(
l2N2

k2
+ 2k2v2A + f20

)
+ k2v2A

(
l2N2

k2
+ k2v2A

)
= 0. (3.3)

To simplify the analysis we define the nondimensional parameters

ω̂ =
ω

f0
, A2 =

l2N2

k2f20
and L2 =

k2v2A
f20

, (3.4)

where 1/f0 is the chosen timescale. The Lehnert number L is the ratio between the Alfvén fre-

quency and rotation, and governs the relative magnetic field strength. The parameter A may

be interpreted as a re-scaled aspect ratio. In planetary atmospheres, the aspect ratio is compa-

rable with f0/N and hence we may consider A of order unity. Indeed, we can estimate the

value of A by recalling that the cross-stream wavenumber l = 2π/wavelength = n/R (since

the wavelength = 2πR/n), where R is the planetary radius and n ∈ [1, 10] is the planetary

wavenumber.

Mathematically, there are a number of ways to interpret the nondimensional parameters A and

L, with the only prior restriction being that l2/k2 ≪ 1 (small aspect ratio). This requirement can

be met by having vanishingly thin modes |k| → ∞ or, equivalently, modes that extend infinitely in

the latitudinal direction (|l| → 0). If we consider vanishingly thin modes,A can remain order unity

by supposing l2/k2 ∼ f20 /N
2; the small and large A limits are attained by varying the relative

size of l2/k2. The large |k| limit also has implications for the Lehnert number. Indeed, we must

take the weak field limit such that the Lehnert number is not too large (e.g., so that L = O(1)
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or L ≪ 1). The small and large Lehnert limits are then attained by considering smaller or larger

field strengths relative to f0/|k|. Alternatively, we can obtain a small aspect ratio with |l| → 0.

This has similar implications to A, where different limits are attained by varying |l|/|k|. There

are, however, no implications on L in this case, which allows us to determine a vertical scale for

the mode.

The nondimensionalisation (3.4) allow us to recast (3.3) in nondimensional form as

ω̂4 − (A2 + 2L2 + 1)ω̂2 + L2(A2 + L2) = 0. (3.5)

The condition for magnetohydrostatic validity (2.32), recast in nondimensional form, becomes

|ω̂2 − L2| ≪ N2

f20
, (3.6)

which will be checked on a case by case basis. Note that N/f0 is typically large in planetary

atmospheres.

Solving (3.5) for the two real and non-negative roots ω̂2 yields

2ω̂2
± = A2 + 2L2 + 1±

√
(A2 + 1)2 + 4L2. (3.7)

In the absence of magnetic field, equation (3.7) describes only one mode (since ω2
− = 0), which is

an inertia-gravity wave, given by

ω2
+ =

l2N2

k2
+ f20 . (3.8)

Since we obtain only one mode in the absence of magnetic field, it implies the existence of a

magnetic wave in the magnetohydrostatic system. Thus, we will examine the asymptotic limits

of L in order to classify the behaviour of the waves. However, we also find that as cross-stream

wavenumber |l| → 0 (A→ 0), where the effects of stratification are negligible, that equation (3.7)

still describes two modes. The modes are inertial-Alfvén waves with

2ω2
± = 2k2v2A + f20 ±

√
f20 + 4k2v2A. (3.9)

Thus, we will also examine the asymptotic behaviour of the parameter A in order to fully classify

the waves of the system.

The solutions (3.7) of (3.5) allows us to obtain two plots, shown in figure 3.1, for ω̂2
+ and ω̂2

− in

(L, A) space. Note that the frequency of both waves increases asA and L are increased. However,

ω̂2
− is quite insensitive to variations in the parameter A in the limit of weak magnetic field.

Limits in L

We first restrict our attention to the small and large L regimes. In the weak field limit (L ≪ 1)

with A = O(1) the two modes described by equation (3.7) are

ω̂2
+ = A2 + 1 +

A2 + 2

A2 + 1
L2 +O(L4), (3.10)
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3.2 Inertial and Magnetic Waves

Figure 3.1: The frequencies ω̂+ (left) and ω̂− (right) in (L, A) space. The maximum values of the
frequencies are ω̂+ = 4.4532 and ω̂− = 3.1623.

and

ω̂2
− =

A2

A2 + 1
L2 +O(L4). (3.11)

Here, as in Acheson & Hide (1973), at leading order we have an inertia-gravity wave (3.10)

and a hydromagnetic-inertial wave (3.11). We will discuss the latter in relation to the non-

magnetohydrostatic results of Acheson & Hide (1973) in more detail in the subsection 3.2.2. We

can see that the hydromagnetic-inertial wave (3.11) will be insensitive to varying A, provided

A2 ≫ 1, as seen in figure 3.1. Note that the expressions (3.10) and (3.11) remain valid with

A≫ 1 (or A≪ 1) since L2/(A2 + 1) remains small.

The validity of the expansions under the magnetohydrostatic approximation can be ensured

via (3.6). The first mode (3.10) is shown to be valid since it is given by ω̂2 = A2 at leading

order, so that |A2 − L2| ≈ A2 = l2N2/(k2f20 ) ≪ N2/f20 since the aspect ratio is small and

N2 ≫ f20 in planetary atmospheres. The second mode (3.11) is valid since ω̂2
− ∝ L2 ≪ 1, so that

|ω̂2 − L2| ∝ L2 ≪ N2/f20 .

Next we consider the large L limit, where the two modes described by equation (3.7) are given

by

ω̂2
± = L2 ± L+

A2 + 1

2
+O(L−1), (3.12)

which correspond to Alfvén waves (ω2 = k2v2A) at leading order. The parameter A first appears

at third order, implying that it does not have much dynamical effect on the magnetic modes, as can

be seen in figure 3.1.

The validity of the expansions under the magnetohydrostatic approximation can be ensured via

(3.6) provided L is not too large. Equation (3.12) implies ω̂2
± = L2 ± L after neglecting smaller

terms, so that |ω̂2
± − L2| ∝ |L| ≪ N2/f20 .

With the small and large limits of the parameter L described analytically, we can conclude that

both modes, ω̂2
+ and ω̂2

−, transition to Alfvén waves from inertia-gravity waves and hydromagnetic-

inertial waves, respectively, as L increases. To ensure the validity of the expansions and observe

the transition, we plot the frequency ω̂, for each expansion, with the exact value of the roots (found
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Figure 3.2: The asymptotic behaviour of ω̂+ and ω̂− plotted with the exact value of the root against
L. Plots (a) and (b) correspond to ω̂+ against L at A = 0.1 and A = 0.5, respectively. Plots (c)
and (d) correspond to ω̂− against L at A = 0.1 and A = 0.5, respectively.

by solving (3.7)) against L in figure 3.2, for both A = 0.1 and A = 0.5. The figure shows that the

small and large L expansions describe ω̂2
+ with significantly greater accuracy than ω̂2

−; in particu-

lar, the accuracy of the weak field expansion (3.11) is significantly worse than (3.10). We can also

see that as we increase A, the weak field expansions remain accurate for significantly larger L. In-

deed, expansion (3.11) is sensitive to the parameterA; however, this persists only whileA = O(1)

or smaller.

Limits in A

We now restrict our attention to the small and large A regimes. In the limit of large A, equation

(3.7) implies the existence of two modes, given by

ω̂2
+ = A2 + (1 + L2) +

L2

A2
+O(A−4), (3.13)

and

ω̂2
− = L2 − L2

A2
+O(A−4). (3.14)

The first wave, described by (3.13), is a gravity wave at leading order (ω2 = l2N2/k2). The

second wave, described by (3.14), is an Alfvén wave (ω2 = k2v2A) at leading order. Magnetic
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3.2 Inertial and Magnetic Waves

field is still dominant in ω̂2
− within the large A limit, indicating that the effects of stratification are

negligible (to O(A−2)) on the magnetic mode (at least while A is large).

The expansion (3.13) is ensured to be valid under the magnetohydrostatic approximation pro-

vided |l|/|k| ≪ 1 since ω̂2
+ = A2 at leading order, so that |ω̂2

+ − L2| ≈ A2 = l2N2/(k2f20 ) ≪
N2/f20 . Similarly, the second expansion (3.14) is valid, provided the magnetic field does not be-

comes too large, since ω̂2
− ≈ L2 − L2/A2, so that |ω̂2 − L2| ≈ L2/A2 ≪ N2/f20 .

In the small A limit, equation (3.7) implies

ω̂2
+ =

2L2 + 1 +
√
4L2 + 1

2
+

1 +
√
4L2 + 1

2
√
4L2 + 1

A2 +O(A4), (3.15)

and

ω̂2
− =

2L2 + 1−
√
4L2 + 1

2
+

√
4L2 + 1− 1

2
√
4L2 + 1

A2 +O(A4). (3.16)

The waves (3.15) and (3.16) correspond to inertial-Alfvén waves at leading order (in dimensional

terms (3.15) and (3.16) depend upon both rotation and the Alfvén wave frequency). Thus, we

have shown that by increasing the value of A, for fixed L, that one of the inertial-Alfvén waves

becomes inertial, while the other becomes Alfvénic.

The expansions (3.15) and (3.16) are valid under the magnetohydrostatic approximation since

|ω̂2
± − L2| ≈ |1 ± (4L2 + 1)1/2|/2 which is either of order unity or O(L) and is therefore much

less than N2/f20 (usually large in planetary atmospheres) provided L is not too large.

With the asymptotic behaviour of the parameter A fully defined, we can conclude that both

modes ω̂2
+ and ω̂2

− transition from inertial-Alfvén waves to inertia-gravity waves and Alfvén

waves, respectively, as A increases. To ensure the accuracy of the expansions and observe this

transition we plot the small and large A expansions of ω̂ with the exact value of the roots (from

(3.7)) against A in figure 3.2, for both L = 0.1 and L = 0.5. Note that the small and large A

expansions describe ω̂2
+ with far greater accuracy than ω̂2

−. We can also see that as we increase

L, the large A expansions require A of greater magnitude to describe the modes accurately; the

accuracy of the small A expansions (3.15) and (3.16) also degrades.

3.2.2 Non-magnetohydrostatic Waves in the Weak Field Limit

We now address the non-magnetohydrostatic (H = 1) waves of equation (3.2), which will allow us

to draw links between the magnetohydrostatic waves in this system and the hydromagnetic-inertial

waves of Acheson & Hide (1973), which are derived with application to the Earth’s core.

In the absence of magnetic field, equation (3.2) describes only one mode (since ω2
− = 0),

which is an inertial wave, given by

ω2
+ =

l2N2 + k2f20
k2 + l2

. (3.17)

This implies the existence of a magnetic wave, as only the wave described by (3.17) exists in the

absence of field. Thus, we examine the weak field regime of the system in order to see whether

the wave described by ω2
− does in fact exhibit magnetic behaviour. It is worth noting that Acheson
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Figure 3.3: The asymptotic behaviour of ω̂+ and ω̂− plotted with the exact value of the root against
L. Plots (a) and (b) correspond to ω̂+ against A at L = 0.1 and L = 0.5, respectively. Plots (c)
and (d) correspond to ω̂− against A at L = 0.1 and L = 0.5, respectively.
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3.3 Uniform Shear Instabilities

& Hide (1973) examined an unstratified (N = 0) and non-magnetohydrostatic (H = 1) sys-

tem in the weak field limit, where they found the existence of a “hydromagnetic-inertial” wave.

Hence, if the wave exists, it is also of interest to see how the wave is modified by stratification and

magnetohydrostatic affects.

The weak field limit of equation (3.2) allows us to obtain the mode

ω2
− ≈ l2N2

l2N2 + k2f20
k2v2A +

k4f40 (k
2 +Hl2)

(l2N2 + k2f20 )
3
k4v4A, (3.18)

which is indeed dependent on magnetic field and will therefore be referred to as a hydromagnetic-

inertial wave. The frequency of waves described by (3.18) crucially depends on whether the flow

is stratified or not; for example, if N ̸= 0, ω2
− ∝ k2v2A, while if N = 0, ω2

− ∝ k4v4A. Indeed, in

the case N = 0 and H = 1, the wave (3.18) reduces to

ω2
− ≈ (k2 + l2)

k2f20
k4v4A, (3.19)

which is the hydromagnetic-inertial wave derived by Acheson & Hide (1973). However, since we

are primarily concerned with planetary atmospheres, where the system is stratified (N ̸= 0), we

will consider (3.18), where the frequency of the wave scales with |k|vA.
Recasting our weak field magnetic wave (3.11) in dimensional terms, we obtain

ω2
− ≈

l2N2

k2

l2N2

k2
+ f20

k2v2A, (3.20)

which is the same as the leading order term of (3.18). Clearly, the frequency of the wave (3.20)

scales with |k|vA at leading order, instead of k2v2A, as in equation (3.19). We also note that the

change in scaling occurs for both the magnetohydrostatic and non-magnetohydrostatic system.

3.3 Uniform Shear Instabilities

In this section we again consider a uniform Coriolis parameter f0 (f -plane approximation) and

uniform field strength B0. However, in contrast to the previous section, we now consider a mag-

netohydrostatic system only (in fact, this will be the case throughout the rest of the thesis). We

will also consider a uniform parallel flow U(y) = Λ0y with constant latitudinal shear Λ0, so that

instability is possible by condition (2.51) as the system can now exhibit anti-cyclonic shear (i.e.,

U ′f = Λ0f0 > 0). With this model, the governing equation (2.33) has constant coefficients and

can therefore be solved analytically with solutions of the form v̂ ∝ e−ily, giving the eigenvalue

relation:

s4 + s2
(
l2N2

k2
+ 2k2v2A + f0Q0

)
+ k2v2A

(
l2N2

k2
+ k2v2A − Λ0

)
= 0, (3.21)

where the absolute vorticity Q0 = f0 − Λ0 and Alfvén velocity squared v2A = B0/
√
ρ̄µ0 are

uniform.
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First we recast the nondimensional parameters (3.4) alongside the Rossby number Λ :

S =
s

f0
, A2 =

l2N2

k2f20
, L2 =

k2v2A
f20

and Λ =
Λ0

f0
, (3.22)

where 1/f0 is the timescale, A is a rescaled aspect ratio and the L is the Lehnert number. In con-

trast to the previous section we are now considering the growth rate s (rather than the frequency)

and now have the nondimensional parameter Λ since the shear is non-zero.

In nondimensional form, equation (3.21) becomes

S4 + S2
(
A2 + 2L2 + 1− Λ

)
+ L2

(
A2 + L2 − Λ

)
= 0, (3.23)

which in the absence of the cross-stream wavenumber (A = 0) reduces to a Cartesian analogue

of (1.10), as seen in Balbus & Hawley (1991). Indeed, an analogous form to (1.10) can also

be attained by supposing we have a vanishing vertical scale |k| → ∞ such that A ≪ 1 and

L = O(1). The requirement L = O(1) implies that |k|vA/f0 ∼ 1 so that the Alfvén frequency

|k|vA is small in comparison to the strength of rotation. This limit is analogous to taking the “thin

disc” and weak field approximations as made by Balbus & Hawley (1991). However, as we have

already discussed, having |k| ≫ 1 does not necessarily ensure A ≪ 1; thus, the aspect ratio and

therefore the role of stratification may not be negligible. The large |k| limit is also of interest when

considering the hydrodynamic problem, where the most unstable mode in the absence of diffusion

occurs on vanishingly small scales (e.g., Dunkerton, 1981; Griffiths, 2008a).

We may solve equation (3.23) for S2, yielding two modes:

2S2
± = Λ− 1−A2 − 2L2 ±

√
(Λ− 1−A2)2 + 4L2, (3.24)

where we note that the root S− vanishes in the absence of magnetic field. Equation (3.24) has two

distinct modes: the negative root, which is always stable, and the positive root, which is either

stable or unstable, depending upon A,L and Λ. Note that, to determine that the negative root

is always stable one can set Λ − 1 − A2 − 2L2 > 0 and consider S2
− > 0, which leads to a

contradiction (similarly, assuming Λ− 1−A2 − 2L2 < 0 implies S2
− < 0 trivially).

Since anti-cyclonic shear allows instability to occur, we will find, for each value Λ, the domain

for which unstable modes can occur in (L, A) space, the growth rates of these modes and the values

of L and A that yield the maximum growth rate.

3.3.1 Stability Criteria

We now find the values of L and A where instability can occur for each Λ by considering equation

(3.24). To do this, we only consider the positive root of (3.24) since the negative root is always

stable. Thus, by considering S2
+, it follows that Λ − 1 − A2 − 2L2 > 0 is a sufficient condition

for instability. However, assuming Λ − 1 − A2 − 2L2 < 0 and considering S2
+ > 0, yields the

requirement thatA2+L < Λ for instability, which is a stronger condition than Λ−1−A2−2L2 >
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3.3 Uniform Shear Instabilities

0. Hence, the condition implies that a necessary and sufficient condition for stability is that the

following inequality is satisfied:

A2 + L2 > Λ. (3.25)

The condition (3.25) implies that instability occurs within a quarter-circle (since L, A > 0) in the

(L, A) plane, with radius
√
Λ. Instability occurs on the L axis (A = 0) if and only if L2 < Λ,

implying that the L axis is unstable given non-negative Λ. Note that (3.25) is not valid in the

hydrodynamic regime (L = 0), owing to the division by L2 in the derivation. However, by setting

L = 0 in equation (3.24), it follows that the necessary and sufficient hydrodynamic condition for

stability thatA2+1−Λ > 0,where instability can occur only if Λ > 1. Thus, by considering (3.25)

alongside the hydrodynamic condition for instability A2 + 1 − Λ > 0, it follows that instability

may occur in the magnetohydrodynamic regime for Λ < 1, while the system would otherwise be

stable in the absence of magnetic field. Hence, we may have found an MRI within the system, as

we might expect from the analogies between the eigenvalue relations (3.23) and expression (1.10)

of Balbus & Hawley (1991).

Note that the condition (3.25) may have alternatively been derived from the stability condition

(2.51); this is possible since the boundary conditions of (2.51) are either bounded (with v = 0),

unbounded (with v → 0), or periodic. In the first two cases, the boundary terms (after integration

by parts) vanish, and in the third case they cancel. Recall that the condition (2.51) also required

vA ̸= 0 (as equation (3.25) requires L ̸= 0).

3.3.2 The Maximum Growth Rate

We now focus on finding the most unstable mode of the system described by the parameters L, A

and Λ. To do this, we differentiate S2
+ with respect to A and L, which allows us to derive the

maximum and minimum values of S2
+ and where they occur in (L, A)-space.

We have to be careful about the interpretation of differentiating with respect A and L since the

vertical wavenumber is contained within both nondimensional parameters. There are two options.

First, we can consider the derivatives with respect to A as those of the cross-stream wavenumber

l and interpret the L derivatives as those of the vertical wavenumber |k|. Second, we can consider

derivatives of A as those of vertical wavenumber k and the L derivatives as those of the Lehnert

number itself (i.e., the ratio of |k|vA and f0).

By differentiating S2
+ in equation (3.24) with respect to A and L it follows that when Λ < 2,

the maximum growth rate is given by

S2 =
Λ2

4
=⇒ s2 =

Λ2
0

4
, occurring at (A2,L2) = (0,

Λ

4
(2− Λ)). (3.26)

When Λ > 2, the maximum growth rate is given by

S2 = Λ− 1 =⇒ s2 = −f0Q0, occurring at (A2,L2) = (0, 0). (3.27)

Equations (3.26) and (3.27) imply that the growth rate of the most unstable mode is dependent only

on the shear of the system. The first and last equations in (3.26) are analogous to equations (1.12)
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and (1.13) of Balbus & Hawley (1991). However, (3.27) is instead equivalent to the maximum

hydrodynamic growth rate given by (2.40). Together, the equations imply that if the absolute

vorticity Q0 = f0 − Λ0 satisfies Q0 > −Λ0/2 (or equivalently Q0 > −f0) so that Λ0 < 2f0,

then Λ < 2 and the most unstable mode is purely magnetic (requires L ̸= 0) and occurs when

A = 0 and L2 = Λ(2−Λ)/4. Thus, in dimensional terms, when Λ < 2 (Q0 > −Λ0/2), the most

unstable mode occurs when k2v2A = (2f0 − Λ0)Λ0/4, with growth rate Λ0/2. However, this also

implies that once the absolute vorticity is sufficiently negative, such that Q0 < −Λ0/2, the most

unstable mode occurs for vanishing aspect ratio in the absence of magnetic field, with growth rate

|f0Q0|
1
2 .

We can interpret the maximum growth rate when Λ < 2, given by (3.26), as occurring when

kvA/f0 = O(1) as |k| → ∞. We have already discussed how this interpretation links to both the

weak field and thin disc approximations of Balbus & Hawley (1991) as well as the hydrodynamic

results that the most unstable mode occurs on vanishingly thin scales (e.g., Dunkerton, 1981; Grif-

fiths, 2008a). Alternatively, we could interpret that the maximum growth rate occurs at infinitesi-

mal cross-stream wavenumber and critical vertical wavenumber |k|2max = Λ0(2f0 − Λ0)/v
2
A. The

maximum growth rate in the case Λ > 2 can be interpreted to occur at vanishingly small aspect

ratio and weak field strength such that vA ≪ f0/k (i.e., L = kvA/f0 ≪ 1).

3.3.3 The Stable and Unstable Modes in Parameter Space

We continue our analysis by providing plots of the stable and unstable modes, given in figure 3.4.

The left hand plots of the figure show the frequency of the stable mode in (L, A)-space. The right

hand plots show the growth rate and frequency of the unstable mode in (L, A)-space. Note that

the stable mode and unstable mode have distinct colourbars. We include the condition (3.25) in

the plots of the growth rate as a red line following the border of the unstable region to provide

a clear bound where neutral stability is found. The dashed black lines are the hyperbolas given

by A = C/L = lNvA/f
2
0L for C = 0.025 · 2j , for j = 0, 1, . . . , 7. The hyperbolas represent

lines where the only parameter that varies is the vertical wavenumber (since C is not dependent

on k). The solid black line traces the vertical wavenumbers that give the maximum growth rate for

each C in the unstable domain. We will discuss the application of the hyperbolas in the following

subsection 3.3.4.

Figure 3.4 for Λ = 0.5 illustrates a solely hydrodynamically stable regime since Λ < 1,

allowing us to conclude that weak magnetic field destabilises the system. Figure 3.4 with Λ = 1.5

also shows both a hydrodynamically unstable regime, for A = Ac <
√
Λ− 1, and a stable regime

forA > Ac. In both cases weak magnetic field, again destabilises the system, where this behaviour

persists for 1 < Λ < 2. We also find for Λ = 2.5 a hydrodynamically stable and unstable regime

separated by some critical value Ac, where weak field clearly destabilises the system for A > Ac.

However, the behaviour is less clear for A < Ac.
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3.3 Uniform Shear Instabilities

Figure 3.4: Contours of the frequencies of the stable modes (left) and the growth rates (and fre-
quencies) of the unstable modes (right). The top row corresponds to the Rossby number Λ = 0.5,

where the system is stable in the absence of magnetic field. The second and third rows correspond
to the Rossby numbers Λ = 1.5 and Λ = 2.5, respectively; in these cases the A (hydrodynamic)
axis is stable provided A2 > Λ − 1. The red line is governed by (3.25) and separates the growth
rate of the unstable region (red) from the frequency of the stable region (blue).
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3.3.4 Scale Selection in Astrophysical Bodies

To estimate the vertical scales of the unstable modes and illustrate that these instabilities may occur

in the astrophysical bodies listed in table 2.1, we focus our attention on the hyperbolasA = L/C in

figure 3.4, where C = lNvA/f
2
0 . We do this by assuming the cross-stream wavenumber l is fixed

and can be estimated by taking l = 2π/L,whereL is the latitudinal lengthscale of the flow (as seen

in table 2.1), so that the only parameter to vary in the system is the vertical wavenumber. This is

physically reasonable since possible latitudinal lengthscales could be inferred from observations,

while the vertical scales are somewhat harder to determine (e.g., there is still uncertainty regarding

the depth of Jupiter’s atmospheric jets; see Vasavada & Showman, 2005). Thus, we can estimate

the value of C in the solar tachocline, and the upper atmospheres of Jupiter and Hot Jupiters,

and depending on the resulting value of C and the Rossby number, we make use of equations

(3.26) and (3.27) to obtain the Lehnert number (and therefore vertical wavenumber) that generates

the maximum growth rate. Note that the values of the shear Λ0 and f0 will not be uniform in

observations, however these are necessary (although limiting) requirements of the model. It is

also a concern to discuss vertical scale selection in the absence of diffusion, where previous studies

find that the maximum growth rate occurs at vanishingly small vertical scales (Dunkerton, 1981;

Griffiths, 2003a); however, owing to the magnetic field, nondimensional parameter choice, and

resulting condition for stability A2 + L2 > Λ, given fixed l, N, vA and f0, then the vertical

wavenumber is finite and bounded.

For the solar tachocline we take L = 2.3× 108m, N = 8× 10−4s−1, Ω = 2.8× 10−6s−1 so

that f0 = 2Ω sin(π/3) = 4.8 × 10−6s−1 and ρ̄ = 210kgm−3 so that vA = B0/
√
ρ̄µ0 = 6.2 –

620ms−1 since the field strength in the solar tachocline is likely to be B0 = 10−1 – 10T. Together

these give the range of values C = O(1) – O(102).

For Jupiter’s upper atmosphere, we take L = 2.3 × 107m, N = 5 × 10−4s−1, f0 = 2.5 ×
10−4s−1, ρ̄ = 85kgm−3 and B0 = 10−3T so that vA = B0/

√
ρ̄µ0 = 9.7× 10−2ms−1. Together,

these values give C = O(10−4).

In Hot Jupiters, we take L = 2.3 × 107m, N = 5 × 10−4s−1, f0 = 3.4 × 10−5s−1, ρ̄ =

103kgm−3 and B0 = 10−3 – 10−2T so that vA = B0/
√
ρ̄µ0 = 0.028 – 0.28ms−1. Together,

these give the range of values C = O(10−3) – O(10−2).

Hence, for the upper atmospheres of Jupiter and Hot Jupiters, we expectC to be small, yielding

a low lying hyperbola A = C/L so that the predicted maximum growth rate and the vertical scale

for which it occurs are well estimated by (3.26) and (3.27). This is confirmed by figure 3.4, where

the lowest lying hyperbola is C = 0.025 ∼ O(10−2) for reference. For the solar tachocline,

C = O(1). However, table 2.1 suggests the Rossby number Λ = Λ0/f0 ≈ 0.21, where figure 3.4

(at a similar Rossby number) indicates that the vertical scale does not deviate too much from that of

the predicted (3.26); the deviation also becomes smaller for yet smaller Rossby number Λ. Thus,

we may use (3.26) and (3.27) to predict the vertical scales for the given C in the astrophysical

bodies we are considering.
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3.3 Uniform Shear Instabilities

In the solar tachocline, the Rossby number Λ ≈ 0.21 so that (3.26) is appropriate for estimating

the vertical scale. Recasting (3.26) in dimensional terms and dividing by v2A/f
2
0 , we obtain

k2 =
Λ0

4v2A
(2f0 − Λ0). (3.28)

Taking the latitudinal shear Λ0 = 10−6s−1 (from table 2.1) and vA = 6.2ms−1 (the lowest value

for vA), we obtain k = 2.4 × 10−7m−1 as the estimate for the vertical wavenumber. This yields

the vertical lengthscale H = 2π/k = 2.6× 107m. With the vertical extent of the solar tachocline

being 3.5 × 107m, it would be more feasible to have a slightly smaller vertical scale; however,

since C = O(1) in this case, the vertical wavenumber that generates the most unstable mode

(3.26) will be slightly larger (see solid black line in figure 3.4). The predicted vertical lengthscale

in the Solar tachocline also allows us to calculate A = NH/Lf0 ∼ O(10). This is at least an

order of magnitude too large to remain accordant with the location of the maximum growth rate

(3.26); however this is consistent in the sense that a larger vertical wavenumber would progress

towards clarifying the discrepancy as C = O(1) in this case so that the vertical wavenumber that

generates the most unstable mode (3.26) will be slightly larger (see solid black line in figure 3.4).

In Jupiter’s upper atmosphere we also expect the Rossby number Λ < 1, so that (3.26) is

appropriate for estimating the vertical scale. Taking the latitudinal shear Λ0 = 4.3×10−7s−1 (from

table 2.1) we obtain the following estimate for the vertical wavenumber: k = 7.4 × 10−5m−1,

using equation (3.28). This yields the vertical scale H = 2π/k = 8.5× 104m. This is physically

reasonable when the depth of Jupiter’s upper atmosphere is 3.0 × 106m. For this value of H we

obtain the corresponding value A = 7.4× 10−3. Hence, the parameters in table 2.1 are consistent

with the predicted scale selection (3.26).

For Hot Jupiters we expect the Rossby number Λ ∈ [0.5, 5] so that (3.26) and (3.27) may

both be appropriate for estimating the vertical scale. First, taking the latitudinal shear Λ0 =

2.1 × 10−5s−1 (from table 2.1) the Rossby number is Λ = 0.62 so that (3.26) is relevant. We

also take vA = 0.028ms−1. We obtain the following estimate for the vertical wavenumber: k =

5.6 × 10−4m−1, using equation (3.28). This yields the vertical scale H = 2π/k = 1.1 × 104m.

This is physically reasonable when considering an atmospheric depth similar to that of Jupiter’s

upper atmosphere (i.e., 3.0 × 106m). For this value of H we obtain the corresponding value

A = 7.0×10−3.Hence, the parameters in table 2.1 are consistent with the predicted scale selection

(3.26).

If the latitudinal shear in Hot Jupiters is Λ0 = 1.7 × 10−4s−1 (from table 2.1), the Rossby

number is Λ = 5 so that (3.27) is relevant. Taking vA = 0.028ms−1 we are free to take a vertical

wavenumber as small as necessary to ensure L ≪ 1 as in (3.27). Taking a vertical wavenumber

k < 10−4m−1 ensures that L = O(10−2) or smaller. Taking k = 10−4s−1 yields a vertical

lengthscale H = 6.3 × 104m, where the corresponding aspect ratio is A = 0.04. Hence, the

parameters in table 2.1 are consistent with the predicted scale selection (3.27).
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3.3.5 The Weak Field Limit

Figure 3.4 has shown that weak magnetic field induces instability within certain parameter regimes,

including the hydrodynamically stable regime (Λ < 1). Naturally, we consider the weak field

regime to categorise the behaviour of the system. For small L, equation (3.23) implies that the

roots take the form

S2
H = Λ− 1−A2 − L2(Λ− 2−A2)

Λ− 1−A2
+O(L4), (3.29)

S2
M =

L2(A2 − Λ)

Λ− 1−A2
+

L4

(Λ− 1−A2)3
+O(L6), (3.30)

where (3.29) represents the hydrodynamic root S2
H = Λ−1−A2, while (3.30) corresponds to the

magnetic root S2
M = 0.

Clearly, the expansions (3.29) and (3.30) break down when Λ − 1 − A2 = O(L), since the

leading and first order terms in L2 become comparable. We address this by supposing Λ−1−A2 =

αL for some constant α of order unity, and substitute into (3.23) to derive the expression

S2
B =

αL

2
± L

2

√
α2 + 4 +O(L2), (3.31)

where S2
B is the “breakdown” (or singular) root which is valid for Λ− 1−A2 sufficiently close to

zero. The positive sign of (3.31) corresponds to unstable modes while the negative corresponds to

stable modes. The expressions (3.29), (3.30) and (3.31) describe the weak field regime.

We will first address the use of the expressions (3.29), (3.30) and (3.31) in application to the

unstable modes that are shown in figure 3.4. Together, the expansions (3.29), (3.30) and (3.31)

indicate that if the flow is hydrodynamically stable (Λ− 1−A2 < 0), then the growth rate of the

most unstable mode is given by S2
M (equation (3.30)). Thus, when the flow is hydrodynamically

stable, the leading order term of equation (3.30) indicates that weak magnetic field increases the

growth rate if Λ − 1 < A2 < Λ (and increases the frequency if A2 > Λ). However, if the

flow is hydrodynamically unstable (Λ − 1 − A2 > 0), then the growth rate of the most unstable

mode is given by S2
H (equation (3.29)). Thus, when the flow is hydrodynamically unstable, the

second order term in equation (3.29) implies that if Λ < 2, then weak magnetic field increases

the growth rate. Similarly, if Λ > 2, weak magnetic field increases the growth rate provided

Λ− 2 < A2 < Λ− 1, and stabilises if A2 < Λ− 2.

The validity of expressions (3.29), (3.30) and (3.31) can be ensured under the magnetohy-

drostatic approximation by ensuring that the inequality (3.6) holds, which implies that we require

|S2+L2| ≪ N2/f20 . The leading order term of equation (3.29) is proportional to Λ−1−A2 > 0 so

that (3.6) implies |Λ−1−A2+L2| ≈ |Λ−1−A2| ≪ N2/f20 sinceA2 = l2N2/k2f20 ≪ N2/f20 as

the aspect ratio is small. Similarly, equation (3.30) implies that |S2 +L2| = |L2(A2 − 1−Λ)−1|
for A2 − 1 − Λ > 0. Thus, provided Λ − 1 − A2 is not sufficiently close to zero it follows

that |S2 + L2| ≪ N2/f20 . Finally, equation (3.31) implies S2
B is O(L) by construction and thus

|S2 + L2| ∝ |L| ≪ N2/f20 as we are in the weak field limit.
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3.3 Uniform Shear Instabilities

Figure 3.5: Growth rate squared against L2 in the hydrodynamically unstable regime (Λ−1−A2 >

0) for Λ = 2.5 with A = 0.25 (left) and A = 1 (right). The red line shows the value S2
H of the

weak field expansion (3.29) while the black is the exact solution (numerically determined from
(3.24)).

In figures 3.5 and 3.6 we compare the weak field expansions (3.29) and (3.30) with the exact

solution, plotting both against L2. These plots show various A with Λ = 2.5, where magnetic

field can act to decrease or increase the growth rate as well as generating instability in the hydro-

dynamically stable regime.

Figure 3.5 illustrates the hydrodynamically unstable regime (Λ−1−A2 > 0) and the expansion

(3.29) at A = 0.25 and A = 1. We find that both expansions are accurate for weak field; however,

for A = 1 the accuracy degrades much faster. This is due to the leading order term of (3.29) being

larger for A = 0.25 so that the O(L4) error is smaller. The plots confirm that weak field decreases

the growth rate for A <
√
Λ− 2, while increasing the growth rate if

√
Λ− 2 < A <

√
Λ− 1.

Figure 3.6 illustrates when Λ− 1−A2 = O(L) with L ≪ 1 as well as the hydrodynamically

stable regime (Λ − 1 − A2 < 0). The figure illustrates the breakdown expansion (3.31) at A =

1.2247 and the expansion (3.30) at A = 1. The expansions are accurate for weak magnetic field.

We can also see that magnetic field increases the growth rate in both cases, as predicted by (3.30)

and (3.31).

We find that when Λ− 1−A2 is not close to zero, the singular expansion (3.31) still describes

the exact root (3.24) in the weak field limit. The reason for this can be determined by taking the

second order correction of (3.31), which to O(L3) gives (3.24) in the small L limit. However,

this does explain why the singular root (3.31) captures the weak field behaviour of any mode with

Λ − 1 − A2 ̸= 0. To determine how the two roots of (3.31) link to (3.29) and (3.30) in the weak

field limit, we consider the large |α| limit of (3.31) and compare with the small |α| limit of (3.29)

and (3.30). Specifically, the positive root of (3.31) yields

S2

L
→ α+ |α|(1 + 2/α2 + · · · )

2
∼
{

−1/α α < 0,
α α > 0,

as |α| → ∞. (3.32)
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Figure 3.6: Growth rate squared against L2 in the hydrodynamically unstable regime (Λ−1−A2 >

0) for Λ = 2.5 with A = 1.2247 (left) and A = 1.35 (right). The cyan line shows the value S2
B

of the weak field singular expansion (3.31) while the black is the exact solution (numerically
determined from (3.24)). The blue line shows the value S2

M of the weak field expansion (3.30).

Similarly, the negative root of (3.31) yields

S2

L
→ α− |α|(1 + 2/α2 + · · · )

2
∼
{

α α < 0,
−1/α α > 0,

as |α| → ∞. (3.33)

We also find the the hydrodynamic root (3.29) yields

S2 ∼ αL as α→ 0, (3.34)

while the magnetic root (3.30) yields

S2 ∼ αL− 1

α
L ∼ −L

α
as α→ 0. (3.35)

Thus, (3.32) shows that the +ve root in (3.31) becomes the hydrodynamic root (3.29) as α→ +∞
and the magnetic root (3.30) as α→ −∞ (or, the hydrodynamic root (3.29) becomes the magnetic

root (3.30) as A decreases through Λ − 1). Likewise, (3.33) shows that the −ve root in (3.31)

becomes the magnetic root (3.30) as α→ +∞ and the hydrodynamic root (3.29) as α→ −∞ (or,

the hydrodynamic root (3.29) becomes the magnetic root (3.30) as A increases through Λ−1). So

the roots exchange identity as A passes through Λ − 1. The hydrodynamic mode is not a single

entity that can be tracked through parameter space, and neither is the magnetic mode.

3.3.6 The Small Aspect Ratio Limit

After discussing the weak field limit it is natural to investigate the small A limit of (3.24). This

limit can be attained by taking |k| → ∞ with L = O(1),which, as previously mentioned, is equiv-

alent to the weak field and “thin disc” approximations of Balbus & Hawley (1991). Equivalently,

we can just take |l| → 0 to ensure A ≪ 1, which has no constraints on the field strength and

vertical wavenumber. Note that mathematically these interpretations are satisfactory; however,

physically, modes with infinite vertical wavenumbers or infinitesimal cross-stream wavenumbers

are not feasible.
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Figure 3.7: The positive (unstable) root S2
+ of (3.36) plotted with the exact root against A2 for

Λ = 0.5 (left) and Λ = 1.5 (right), with L = (Λ(2− Λ))1/2/2 =
√
3/4.

By supposing A≪ 1 in equation (3.24), we obtain

2S2
± ≈ Λ− 1− 2L2 ±

√
(Λ− 1)2 + 4L2 +A2

(
−1± Λ− 1√

(Λ− 1)2 + 4L2

)
. (3.36)

The leading order term of (3.36) is just (3.24) in the absence of A. For Λ < 1 (which is inertially

stable since Λ − 1 < 0), the positive root of (3.36), when unstable, corresponds to the MRI

of Balbus & Hawley (1991); the maximum growth rate and the vertical wavenumber at which

it occurs are given by (3.26). In the regime Λ > 1, the L axis is inertially unstable and thus

cannot be categorised as an MRI. The negative root of (3.36) is always stable and corresponds to a

shear-modified analogue of the inertial-Alfvén wave (3.16) for L = O(1), and an Alfvén wave for

L ≫ 1 at leading order. When the positive root of (3.36) is stable, we can describe the resulting

waves in an analogous manner. For both roots of (3.36) we find that the second order term is

always negative. Thus, if the system is unstable, an increasing aspect ratio reduces the growth

rate, as stable stratification has more of an effect on the mode. If the system is stable, increasing

the aspect ratio increases the frequency of the modes.

In figure 3.7, we compare the small A expansions (3.36) with the exact solution, plotting both

against A2. We plot the positive root of (3.36) with Λ = 1.5 and Λ = 2.5 for L2 = Λ(2 − Λ) =

1/16 (i.e., where the maximum growth rate occurs for Λ = 0.5 and Λ = 1.5). As predicted,

increasing the aspect ratio decreases the growth rate of the positive root in (3.36).

3.3.7 The Weak Field and Small Aspect Ratio Limit

It is now natural to consider the dual limit of small A and small L. To do this, we suppose that

k2v2Af
−2
0 ∼ N2l2f−2

0 k−2 ≪ 1 so that A2 and L2 are small and of comparable size. We can

obtain this limit in a number of ways. For example, assuming f0 fixed, we can suppose |k| → ∞
such that L ∼ A≪ 1, again relating to the weak field and “thin disc” approximations of Balbus &

Hawley (1991). We could also leave the vertical wavenumber unconstrained and suppose |l| → 0

such that L ∼ A ≪ 1 (i.e., weak magnetic field strength). We could also consider a rapidly
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Figure 3.8: In the hydrodynamically stable regime, we plot (3.38) with the exact root against
A2 = L2 for Λ = 0.5 (left). In the hydrodynamically unstable regime, we plot (3.37) with the
exact root against A2 = L2 for Λ = 2.5 (right).

rotating astrophysical body that exhibits flows with strong latitudinal shear (e.g., Jupiter, or Hot

Jupiters) such that f0 ∼ Λ0 (so that S may remain order unity) and L ∼ A ≪ 1. Visually, these

limits can be thought of as a small increment from the origin along the line A = L in the plots of

figure 3.4.

Hence, we consider equation (3.24) when L2 ∼ A2 ≪ 1, which yields two modes. The first

is a perturbation to the hydrodynamic mode, given by

S2
H ≈ Λ− 1−A2 − 2− Λ

1− Λ
L2. (3.37)

The second is a magnetic mode, given by

S2
L ≈ Λ

1− Λ
L2. (3.38)

We could have alternatively derived (3.37) and (3.38) by considering the small A limit of (3.29)

and (3.30) or the small L limit of (3.36). The modes (3.37) and (3.38) can be categorised in a

similar manner to that of (3.29) and (3.30); that is, if the flow is hydrodynamically stable we take

(3.38) to describe the most unstable mode. Similarly, if the flow is hydrodynamically unstable,

(3.37) describes the most unstable mode. If the flow is hydrodynamically unstable (A2 < Λ− 1)

the magnetic perturbation in (3.37) is negative provided 1 < Λ < 2 and positive otherwise. Again,

increasing A acts either to decrease the growth rate of unstable modes or increase the frequency

of stable modes.

We compare the small A and L expansions (3.37) and (3.38) with the exact solution, plotting

both against A2 = L2. In the hydrodynamically stable regime with Λ = 0.5, equation (3.38)

remains accurate for a small interval of A2 = L2. In the hydrodynamically unstable regime

with Λ = 2.5, equation (3.37) remains accurate for a much larger interval of A2 = L2. Indeed,

the accuracy of (3.37) increases as we increase Λ, while the accuracy of (3.38) decreases as we

increase Λ to 1.
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3.4 Dynamical Balances

3.4 Dynamical Balances

We now consider the dynamical balances of the system, giving physical insight into the instabilities

present. This will allow us to determine the dominant terms in the perturbed equations of motion

and understand the mechanisms that drive the instabilities in the various parameter regimes of

figure 3.4.

We begin by recasting equations (2.22)-(2.26) in terms of the nondimensional parameters

(3.22). We then investigate the dynamics of hydrodynamic inertial instabilities, confirming what

drives the instability and role of the parameter A in the system. Naturally, this leads us to cate-

gorise magnetically modified inertial instabilities, illustrated by the small L limits of figure 3.4 for

Λ = 1.5 and Λ = 2.5; we focus primarily on the effect of magnetic field and why this may either

increase or decrease the growth rate. Next we consider the arguably simplest case of the purely

magnetic instabilities found in figure 3.4; that is, the onset of the MRI found in the small L limit

of figure 3.4 with Λ = 0.5 and A≪ 1. We focus on how weak magnetic field generates instability

in a hydrodynamically stable regime. The next dynamical balance we consider is that of the most

unstable mode with Λ < 2, given by (3.26) and seen in figure 3.4 with Λ = 0.5 or Λ = 1.5 (both

with A ≪ 1 and L = O(1)). The case Λ = 0.5 naturally extends from the previous dynamical

balance regarding the onset of the MRI; however, the case Λ = 1.5 is found to be a magnetically

modified inertial instability. For Λ > 2 the most unstable mode occurs in the absence of magnetic

field and is therefore described by the dynamical balance of hydrodynamic inertial instability.

Next, we consider the instabilities found in the hydrodynamically stable regime with A = O(1),

which are found in figure 3.4 for all values of Λ; however, for Λ > 1 the instabilities occur only

when A2 > Λ − 1. Naturally, we also consider the dynamical balance as the unstable modes are

about to be stabilised either by increasing L or A in figure 3.4. For completeness we also discuss

the dynamical balance of the singular expansion (3.31) which is valid forA2+1−Λ = O(L) with

L ≪ 1. Then, finally, we discuss the dynamical balance of rapidly rotating instabilities which are

otherwise concealed by the chosen timescale 1/f0 of the nondimensionalisation (3.22).

We now consider the perturbed equations (2.22), (2.23), (2.24), (2.25) and (2.26) in the absence

of diffusion and under the magnetohydrostatic approximation (H = 0). In the presence of uniform

magnetic field strength B0, uniform shear Λ0 and uniform Coriolis parameter f0, the equations

have solutions of the form v ∝ exp(i(ly + kz) + st). Thus, after neglecting B1, since it does not

affect the dynamics of the flow, equations (2.22)-(2.26) reduce to

su− (f0 −Λ0)v =
ikB3

µ0ρ̄
bx, sv+ f0u = −ilθ+ ikB3

µ0ρ̄
by, sθ =

iN2

k
w, w+

l

k
v = 0, (3.39)

sbx = Λ0by + ikB3u, sby = ikB3v, sbz = ikB3w, bz +
l

k
by = 0, (3.40)

where the incompressibility and solenoidal conditions are also given. The horizontal momen-

tum, thermodynamic and incompressibility equations are given by (3.39). The components of the

induction equation and the solenoidal condition are given by (3.40).
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It is now convenient to nondimensionalise equations (3.39) and (3.40) under the nondimen-

sional parameters (3.22) with timescale 1/f0. The cross-stream and vertical lengthscales are given

by 1/l and 1/k, respectively. We nondimensionalise the horizontal velocities with the arbitrary

constant V (with dimension of velocity). Via the incompressibility condition the appropriate

nondimensionalisation for w is V l/k. Hence, via the thermodynamic equation in (3.39), the total

pressure θ scales with N2lV/k2f0. We choose to nondimensionalise the cross-stream magnetic

field with V
√
µ0ρ̄ so that the solenoidal condition implies that the vertical magnetic field scales

with V
√
µ0ρ̄l/k. Thus, equations (3.39) and (3.40) become

Su− (1− Λ)v = iLbx, Sv + u = −iA2θ + iLby, Sθ = iw, w + v = 0, (3.41)

Sbx = Λby + iLu, Sby = iLv, bz + by = 0. (3.42)

Note that we have dropped the vertical component of the induction equation from (3.42) as it is

described by combining the cross-stream component of the induction equation and the solenoidal

condition. Note that the imaginary unit i in (3.41) and (3.42) indicates that the quantities are out

of phase. For example, in the cross-stream induction equation, v is out of phase with by; this is due

to the iLv term originating from a partial derivative with respect to z of v (i.e., from (B · ∇)v).

This nondimensionalisation allows us to easily investigate the dynamical balances in various

limits of the system, which is now defined by the three parameters A,L and Λ.

3.4.1 Hydrodynamic Inertial Instabilities

We first consider the dynamic balance of hydrodynamic inertial instability (so that L = 0), where

equations (3.41) and (3.42) reduce to

Su = (1− Λ)v, Sv + u = −iA2p, Sp = iw, w + v = 0, (3.43)

where p is the hydrodynamic pressure. Equations (3.43) allow us to describe the mechanism

of inertial instability in the absence of magnetic field; this will be useful when considering the

effects of weak magnetic field in the inertially unstable regime. Note that the cross-stream pressure

gradient can be neglected if A2 ≪ S2. This can be seen by writing u and p in terms of v using

the along-stream momentum equation, the thermodynamic equation, and the incompressibility

constraint.

We can rewrite the cross-stream pressure gradient by combining the thermodynamic equation

Sp = iw and the incompressibility condition v + w = 0, yielding the equations

Su = (1− Λ)v, Sv + u = −A
2

S
v. (3.44)

This allows us to see clearly that the cross-stream pressure gradient acts only to reduce the cross-

stream acceleration. Equations (3.44) can be combined to yield S2 = Λ − 1 − A2, implying that

an increasing aspect ratio reduces the growth rate of any unstable mode; this also implies that

the cross-stream pressure gradient always acts to reduce the growth rate of any unstable mode.
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3.4 Dynamical Balances

The stabilising effect of the cross-stream pressure gradient was also noted by Dunkerton (1981),

Stevens (1983) and Griffiths (2008a) for flows on an equatorial β-plane. Note that if Λ−1−A2 < 0

the system is stable and the dynamical balances are described by those of gravity (A≫ 1), inertia

(A ≪ 1) and inertia-gravity waves (A = O(1)). If Λ − 1 − A2 > 0 the system is inertially

unstable.

To describe inertial instability in its simplest form we first neglect the cross-stream pressure

gradient in (3.44). Thus, by taking Λ > 1 (so that the system is inertially unstable) we find,

from the along-stream momentum equation, that a positive latitudinal displacement of fluid (v >

0) drives a negative longitudinal acceleration (Su < 0). The cross-stream momentum equation

then implies that the longitudinal displacement of fluid (generated by the negative longitudinal

acceleration) is deflected by the Coriolis force, generating a positive latitudinal acceleration (Sv >

0) and further displacement of fluid in the latitudinal direction. Thus, as a positive latitudinal

displacement of fluid leads to further displacement, it follows that the process runs away.

Note that physically the horizontal motions described cannot continue indefinitely; this leads

to an alternative interpretation of the system (which is physically viable), where overturning mo-

tions in the meridional plane (i.e., (y, z)-plane) are considered, as illustrated in figure 3.9. The

overturning motions are analogous to those of centrifugal instability in the (R, z)-plane.

To understand the role of the aspect ratio A and why the perturbed cross-stream pressure

gradient reduces the growth rate of inertial instabilities, we consider overturning motions in the

meridional plane (i.e., (y, z)-plane). Consider the parcel of fluid in the bottom left corner of figure

3.9. The parcel is perturbed vertically so that denser fluid is transported up and the density of the

atmosphere increases (δρ > 0). This generates a negative vertical pressure gradient perturbation

(∂(δp)/∂z < 0), made evident from the hydrostatic balance (dp/dz = −ρg). The parcel then

moves northward (v > 0), which, assuming instability, is supported by along-stream fluid travel-

ling out of the page (u < 0) that is deflected northward (v > 0) by the Coriolis force. However,

due to vertical motions, negative and positive cross-stream pressure gradients are created (see the

parcels in the centre row of figure 3.9) that inhibit the cross-stream motions depending upon the

value of the rescaled aspect ratio A. Naturally, if the aspect ratio A is small, then the ratio of the

vertical lengthscale to the latitudinal lengthscale of the overturning cells is small; thus, even though

∂y(δp) is positive, it is also small and therefore has little dynamical effect. For increasing A, the

magnitude of ∂y(δp) increases and thus the latitudinal pressure gradients inhibit cross-stream mo-

tions. For A >
√
Λ− 1 > 0, the pressure gradient is strong enough to instead drive southward

(v < 0) cross-stream motions, rendering the system stable as the runaway process discussed in

the previous paragraph can not occur. Given A <
√
Λ− 1 the perturbed cross-stream motions are

still positive and by the mechanism that occurs in the horizontal plane, which are discussed in the

previous paragraph, are still (perhaps weakly) accelerated amplifying the overturning motions.
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Figure 3.9: Illustration of the overturning motions of inertial instability for latitude y and height z.
Arrows represent the direction of fluid motion. The quantities δρ and δp represent small variations
in density and pressure. The quantities ∂(δp)/∂y and ∂(δp)/∂z are pressure gradients in the
cross-stream and vertical directions.
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3.4 Dynamical Balances

3.4.2 Magnetically Modified Inertial Instabilities

We will now consider the magnetohydrodynamic dynamical balances of the numerous parameter

regimes illustrated in figure 3.4. First, in this section, we consider the dynamical balance of the

hydrodynamically unstable regime (Λ−1−A2 > 0, so that Λ must be greater than 1) in the limit of

weak magnetic field (L ≪ 1) with A = O(1) and S = O(1), corresponding to the small L limits

of figure 3.4 with Λ = 1.5 and Λ = 2.5. This will allow us to describe the mechanisms that allow

weak magnetic field to either increase or decrease the growth rate of the unstable hydrodynamic

regime, as shown by the weak magnetic field expansion (3.29). In this regime, the cross-stream

induction equation see (3.42) implies that by ∼ Lv, while the momentum equations and along-

stream induction equation allow us to deduce that u ∼ v and bx ∼ Lv. Hence, with these scalings,

equations (3.41) and (3.42) reduce to

Su− (1− Λ)v = 0, Sv + u = −iA2θ, Sbx = Λby + iLu, Sby = iLv. (3.45)

The leading order dynamics of the instability remain the same as the hydrodynamic case (3.44);

however, magnetic field must increase or decrease the growth rate of the already unstable modes

via second order terms, as seen in the weak field expansion (3.29). Note that, if A≪ S2, then the

balance would only be altered by neglecting the cross-stream pressure gradient.

To address the second order feedback on the growth rate from the magnetic field we evaluate

the Lorentz forces in terms of v. To do this, we substitute for by and u in the along-stream induction

equation via the cross-stream induction equation and the leading order along-stream momentum

balance. This yields Sbx = iLΛv/S + iL(1 − Λv)v/S = iLv/S so that the along-stream

Lorentz force iLbx becomes −L2v/S2. The cross-stream Lorentz force iLby can simply be re-

written in terms of v by using the cross-stream induction equation, yielding −L2v/S. Thus, for

weak magnetic field, the along-stream Lorentz force always acts to increase the growth rate (in

comparison to the hydrodynamic case) since it takes the same sign as (1− Λ)v when Λ > 1. The

cross-stream Lorentz force always acts to reduce the growth rate as it takes the same sign as the

pressure gradient. Rewriting (3.45) to include the O(L2) Lorentz forces yields

Su = −(Λ− 1)v − L2

S2
v, Sv + u = −A

2

S
v − L2

S
v, Sbx = Λby + iLu, Sby = iLv, (3.46)

where the pressure gradient has been written in terms of v to show that it acts to reduce the growth

rate. We can see that the along-stream Lorentz force increases the along-stream acceleration gen-

erated by the shear Λ dominating over the Coriolis force. This perturbation in the magnitude of

the along-stream acceleration then affects the cross-stream momentum balance due to the Coriolis

force deflecting the along-stream travelling fluid. Thus, we substitute the along-stream momen-

tum equation into the cross-stream momentum equation for u and then compare the O(L2) terms,

yielding the following O(L2) correction to the acceleration Sv :

(Sv)correction =
L2

S3
v − L2

S
v, (3.47)
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where the first and second terms on the right hand side are contributions from the along-stream and

cross-stream Lorentz forces, respectively. Assuming v > 0 without loss of generality, it is clear

that the contribution from the along-stream Lorentz force acts to give a positive correction to the

cross-stream acceleration and therefore increase the growth rate. In contrast, the contribution from

the cross-stream Lorentz force acts to give a negative correction to the cross-stream acceleration

and therefore decrease the growth rate.

It is thus not clear whether the combined effect of the along-stream and cross-stream Lorentz

forces is to enhance or suppress the instability. However, the right hand side of (3.47) is positive

if S2 < 1, and hence, upon substituting the leading order solution for the growth rate (i.e., S =
√
Λ− 1−A2) into this condition, we find that the right hand side of (3.47) is positive if A2 >

Λ−2 and negative ifA2 < Λ−2. Thus, the correction increases the growth rate ifA2 > Λ−2 and

decreases the growth rate if A2 < Λ− 2 (the first being true for all Λ < 2). This is consistent with

the results of the weak field expansion upon the hydrodynamic mode (3.29). So the question of

whether the Lorentz force is stabilising or destabilising turns out to be rather subtle, and depends

upon the values of Λ and A.

There are a number of questions left to be answered. Why does the cross-stream Lorentz force

always act to decrease the growth rate? Why does the along-stream Lorentz force always act to

increase the growth rate? Why does the sign of A−Λ+2 determine which Lorentz force is larger

in magnitude? To help answer these questions we provide figure 3.10, where vertical magnetic

field lines (in teal) have been overlayed on figure 3.9. Physically, the instability still manifests

itself in overturning motions in the meridional plane and the process is described in an analogous

manner to that of hydrodynamic inertial instability in section 3.4.1; however, magnetic field may

amplify or inhibit this dynamical process.

First, we address the stabilising effect of the cross-stream Lorentz force. Figure 3.10 illustrates

cross-stream motions interacting with vertical magnetic field lines; this creates a cross-stream

magnetic field (see cross-stream induction equation). Then, as indicated by the teal arrows in

figure 3.10, a magnetic tension is created that acts to restore the magnetic field lines to their

original (vertical) position. The magnetised fluid also feels this restoring force, slowing the cross-

stream motions, reducing the cross-stream acceleration.

Second, we address the destabilising nature of the along-stream Lorentz force by considering

the along-stream induction equation. Again, figure 3.10 illustrates cross-stream motions interact-

ing with vertical magnetic field lines; this creates a cross-stream magnetic field (see cross-stream

induction equation). This cross-stream magnetic field is then sheared into the along-stream di-

rection by the basic flow, generating an along-stream field (see Λby in the along-stream induction

equation). The cross-stream velocity is also deflected by the Coriolis force and shear which gen-

erates a net along-stream acceleration (provided Λ > 1) opposite to the direction of the along-

stream field generated by Λby. The along-stream velocity interacts with vertical magnetic field

lines, which would generate an along-stream field in the same direction as the flow (see along-

stream induction equation); however, the along-stream field generated through the Λby term leads
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Figure 3.10: Illustration of the overturning motions of inertial instability for latitude y and vertical
height z. Black arrows represent the direction of fluid motion. The quantities δρ and δp represent
small variations in density and pressure. The quantities ∂(δp)/∂y and ∂(δp)/∂z are pressure
gradients in the cross-stream and vertical directions. The teal lines represent magnetic field lines.
In the absence of fluid motion, magnetic field lines are vertical; however, these may be bent due
to the motion of electrically conducting fluid. This curvature generates magnetic tension, a force
that acts to restore the magnetic field line to a vertical position.
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to along-stream field magnetic field being generated in the opposite direction to the along-stream

velocity.

Interestingly, we could simplify this description by interpreting that the only contribution to

along-stream field generation is made by the Coriolis force deflecting cross-stream fluid in the

along-stream direction. We see this since Λby = iLΛv/S (cross-stream induction) and iLu =

iL(1−Λ)v/S (along-stream momentum at leading order) have terms including the shear Λ which

cancel so that the only term that remains is that originating from the Coriolis force.

The along-stream field generated in the opposite direction to the perturbation velocity u leads

to a magnetic tension force that acts to increase the along-stream velocity; this is why the Lorentz

force in the along-stream momentum equation takes the form −L2v/S2 in (3.46). Hence, since

there is a greater along-stream velocity than in the hydrodynamic case, due to the Lorentz force

acting with the shear term, there is also a greater cross-stream velocity owing to the Coriolis force

deflecting along-stream motions. The cross-stream velocity is then sheared into the along-stream

direction, and the process runs away.

Finally, we address why the sign of A2 − Λ + 2 determines whether weak magnetic field

increases or reduces the growth rate; indeed, if S2 − 1 = Λ − 2 − A2 < 1 then weak magnetic

field increases the growth rate, while if S2 > 1 weak magnetic field decreases the growth rate.

We saw this condition in equation (3.47), where it is clear that the contribution to the cross-stream

acceleration from the along-stream Lorentz force is a factor of S2 smaller than the contribution

from the cross-stream Lorentz force provided S2 > 1. Thus, by considering that the overturning

motions in figure 3.10 are more vigorous for modes with larger growth rates (i.e., S2 > 1), it

follows that a larger cross-stream field is generated, which, in turn, yields a larger cross-stream

Lorentz force (which acts as a magnetic tension to reduce the cross-stream accelerations). This

larger cross-stream Lorentz force then dominates over the magnetic contributions that are deflected

from the along-stream Lorentz force by the Coriolis force, as seen in equation (3.47).

In terms of the parameter A, an increasing aspect ratio reduces the growth rate and therefore

the speed of the overturning motions (since there is a larger cross-stream pressure gradient for

modes with a larger aspect ratio, as we discussed in section 3.4.1). Thus, by increasing the aspect

ratio, we reduce the magnitude of the cross-stream Lorentz force, which acts as tension to reduce

the cross-stream motions. This leads to the correction (3.47) being positive, where weak magnetic

field once again increases the growth rate. For example, if we consider figure 3.4 with Λ = 2.5,

weak magnetic field is stabilising for A < Λ − 2 (as the expansion (3.29) shows). Then, as A

increases beyond A = Λ− 2, weak magnetic field increases the growth rate instead.

3.4.3 The Onset of the Magnetorotational Instability

We now consider the simplest possible occurrence of the purely magnetic instabilities found in

figure 3.4. That is, the limit of weak magnetic field with A ≪ 1 of the hydrodynamically stable

regime (Λ < 1), which is illustrated in figure 3.4 for Λ = 0.5.
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We focus on the unstable magnetic mode (3.30) where S ≪ 1 with L ≪ 1, in which the

cross-stream induction equation in (3.42) implies by ∼ Lv/S, where, as a result, the cross-stream

momentum equation in (3.41) implies that u ∼ Sv or u ∼ L2v/S. In either case, the along-stream

induction equation (3.42) shows that S ∼ L and iLu to be negligible. Thus, by ∼ v, u ∼ Lv and

bx ∼ v/L in which case (3.41) and (3.42) reduce to

− (1− Λ)v = iLbx, Sbx = Λby, Sby = iLv, (3.48)

where the along-stream velocity u is prescribed by the cross-stream momentum equation

Sv + u = −iA2θ + iLby. (3.49)

Note that we still retain four equations for the four quantities u, v, bx, and by (recalling that the

thermodynamic equation allows us to write θ = −iv/S); however, three of these decouple (shown

in (3.48)), whilst the other prescribes the along-stream velocity u. The pressure gradient iA2θ

may be neglected if A ≪ L. This can be seen by comparing terms in (3.49) after combining

the thermodynamic equation and incompressibility condition in (3.41) yielding θ = −iv/S, and

using the cross-stream induction equation to write by = ilv/S. The equations of (3.48) imply

S2 = L2Λ/(1 − Λ), in agreement with the leading order term in the weak field expansion (3.30)

when A ≪ L ≪ 1. This implies that the cross-stream momentum equation (3.49) does not play

a role in the dynamical balance and only prescribes the along-stream velocity u. Note that usually

a balance between the Coriolis and Lorentz force is defined as magnetostrophic; however, since

the advection and Coriolis terms are always the same order of magnitude when Λ = O(1) in

this system, we assert that the along-stream momentum equation in (3.48) is in magnetostrophic

balance. We do this as the balance is repeatedly observed in the analysis of this section, and later

in Chapter 6.

To classify the dynamics of the hydrodynamically stable regime when A ≪ 1 and Λ < 1 we

consider a latitudinal displacement. The displacement yields a cross-stream velocity so that the

cross-stream induction equation in (3.48) implies that an out of phase cross-stream magnetic field

is generated due to field line stretching, as seen in figure 3.10. The cross-stream magnetic field is

then sheared by the basic flow so that an along-stream field is generated (see along-stream induc-

tion equation in (3.48)). The along-stream field generates an along-stream Lorentz force, which is

balanced by an increasing cross-stream flow (which is deflected in the along-stream direction by

the basic flow and Coriolis force) so that the magnetostrophic balance is maintained. Thus, as the

perturbed cross-stream velocity must increase to retain the balance, yet more cross-stream field is

generated and the process runs away. This describes the magnetorotational instability, in which

weak magnetic field generates instability within the hydrodynamically stable regime. The classi-

cal argument of Balbus & Hawley (1991) in which two parcels are tethered may also describe this

process, where radial displacements are considered rather than latitudinal.

We now provide contour plots of the momentum equations as well as the along-stream in-

duction equation using the nondimensional equations (3.41) and (3.42) to illustrate the dynamical
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Figure 3.11: The dynamical balance of (3.48) at A = 0.01 and L = 0.1 with Λ = 0.5, illustrating
a magnetic perturbation from the hydrodynamic regime. This is the onset of the magnetorotational
instability with growth rate S = 0.096. Plots (a), (b) and (c) show the along-stream acceleration,
advection and Coriolis terms, and Lorentz force. Plots (d), (e), (f) and (g) show the cross-stream
acceleration, Coriolis force, pressure gradient and Lorentz force. Plots (h), (i) and (j) show the
along-stream field generation, advection and tension terms.

balance (3.48) in figure 3.11 for L = 0.1 and A = 0.01 with Λ = 0.5. We find that the terms bal-

ance, as predicted by (3.48), showing that the along-stream magnetic field perturbation bx is large

enough to allow the Lorentz force in the along-stream momentum equation in (3.48) to generate

a magnetostrophic balance in which there is no along-stream acceleration. This confirms that the

cross-stream momentum equation does not affect the dynamical balance and only prescribes the

along-stream velocity u.

3.4.4 The Most Unstable Modes

The most unstable mode in the hydrodynamically stable regime occurs when A ≪ 1, with

L2 = Λ(2 − Λ)/4; however, this criteria remains the same in the hydrodynamically unstable

regime, provided Λ < 2 (see equation (3.26)). Note that, if Λ > 2, the most unstable mode is the

hydrodynamic mode with A≪ 1, which is described by the dynamical balance (3.44).

Thus, for Λ < 2, it is convenient to address the hydrodynamically stable (Λ < 1) and unstable

regimes (Λ > 1), where A ≪ 1,L = O(1) and S = O(1), as shown in figure 3.4 for Λ = 0.5

and Λ = 1.5. This regime may describe any unstable mode on the L axis, provided L is not small

or sufficiently close to
√
Λ. Under the assumptions, the cross-stream induction equation in (3.42)

implies that by ∼ v, which we can deduce from the along-stream and cross-stream momentum

equations in (3.41) and the along-stream induction equation in (3.42) that bx ∼ u ∼ v. Hence, the

balance is categorised by

Su− (1− Λ)v = iLbx, Sv + u = iLby, Sbx = Λby + iLu, Sby = iLv. (3.50)
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3.4 Dynamical Balances

Figure 3.12: The dynamical balance of (3.50) at A = 0.01 and L2 = Λ(2 − Λ)/4 with Λ = 0.5,

illustrating the most unstable mode of the MRI with growth rate S = 0.250. Plots (a), (b) and (c)

show the along-stream acceleration, advection and Coriolis terms, and Lorentz force. Plots (d),

(e), (f) and (g) show the cross-stream acceleration, Coriolis force, pressure gradient and Lorentz
force. Plots (h), (i) and (j) show the along-stream field generation, advection and tension terms.

Under our assumptions the only simplification to the dynamical balance (3.50) from equations

(3.41) and (3.42) is that the cross-stream pressure gradient may be neglected since A ≪ 1 and

therefore A ≪ L. This lack of simplification is made evident when combining the equations of

(3.50), which yields the two modes (with A neglected) of equation (3.24), one of which is always

stable. Thus, it may be possible to simplify the dynamical balance (3.50) further to describe the

unstable mode only. We investigate this by providing contour plots of the momentum equations as

well as the along-stream induction equation using the nondimensional equations (3.41) and (3.42).

This will also allow us to determine which terms in each equation are stabilising or destabilising.

Thus, we contour terms of (3.50) in figures 3.12 and 3.13 for Λ = 0.5 and 1.5, respectively, with

A = 0.01 and L2 = Λ(2 − Λ)/4, in order to address the hydrodynamically stable and unstable

regimes.

Figure 3.13 shows that the most unstable mode for Λ = 1.5 is a magnetically modified inertial

instability rather than an MRI similar to that of figure 3.12 when Λ = 0.5. This is made evident by

the contours of figure 3.13, where the along-stream acceleration (a), the along-stream advection

and Coriolis (b), the cross-stream acceleration (c), and the cross-stream Coriolis force (d) are

clearly the dominant terms in the along-stream and cross-stream momentum equations. Alone,

these four terms describe the dynamical balance of (3.44), while the weak contributions from the

Lorentz forces yield a balance similar to that of the dynamical balance of magnetically modified

inertial instabilities (3.45).

The differences between figures 3.12 and 3.13 show that we must neglect different terms in

each regime to reduce the dynamical balance (3.50) so that it describes the most unstable mode

only. In figure 3.12, when Λ = 0.5, we can observe that the cross-stream momentum equation is
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Figure 3.13: The dynamical balance of (3.50) at A = 0.01 and L2 = Λ(2 − Λ)/4 with Λ = 1.5,

illustrating the most unstable mode of the inertially unstable regime for 1 < Λ < 2 with growth
rate S = 0.750. Panel layout as in figure 3.12.

approximately in a magnetostrophic balance, motivating us to neglect the cross-stream accelera-

tion Sv. In so doing, the dynamical balance (3.50) may be solved for S, yielding

S2 = L2 (Λ− L2)

L2 + 1− Λ
, (3.51)

which reduces to the weak field expansion (3.30) in the small A limit and is unstable provided

Λ− 1 < L2 < Λ.

Using a similar justification we may also neglect the along-stream acceleration Su or the iLu

term in the along-stream induction equation alongside the cross-stream acceleration. First, if we

neglect Su and Sv the dynamical balance (3.50) may be solved for S, yielding

S2 = L2 (Λ− L2)

1− Λ
, (3.52)

which reduces to the weak field expansion (3.30) in the small A limit and is unstable provided

L2 < Λ < 1.

Neglecting Sv and iLu, the dynamical balance (3.50) may be solved for S, yielding

S2 = L2 Λ

L2 + 1− Λ
, (3.53)

which reduces to the weak field expansion (3.30) in the small A limit and is unstable provided

Λ− 1 < L2. Note that, on neglecting iLby and Su, we obtain the same expression (3.53).

Thus, to determine if neglecting these terms yields a reasonable approximation, we plot (3.51),

(3.52) and (3.53) with the exact growth rate at A = 0.01 in figure 3.14 for Λ = 0.25,Λ = 0.5

and Λ = 0.75, respectively. The figures allow us to conclude that Su, Sv, iLby and iLu are all

stabilising terms for Λ < 1 since neglecting them increases the growth rate of the system. We find

that the accuracy of the approximations reduces as we increase Λ towards unity. We expect this

since values of Λ greater than 1 make theA≪ 1 regime unstable to magnetically modified inertial
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3.4 Dynamical Balances

Figure 3.14: The exact growth rate plotted with the approximate growth rates (3.51), (3.52) and
(3.53) with A = 0.01 for Λ = 0.25, 0.5 and 0.75, respectively.

instabilities, as seen in figure 3.13. Clearly, the approximation (3.51), where a magnetostrophic

balance is taken in the cross-stream direction, is the most accurate for all values of Λ.

We can apply a similar method to figure 3.13, where the system is hydrodynamically unstable

with Λ = 1.5. On inspection of figure 3.13 it is reasonable to neglect the along-stream or cross-

stream Lorentz forces; neglecting both Lorentz forces yields hydrodynamic inertial instability,

which has been previously categorised by the balance (3.44). However, neglecting one of the

Lorentz forces yields a very inaccurate approximation. It is worth noting that for 2 > Λ > 1, the

along-stream advection term (1−Λ)v along with the along-stream and cross-stream accelerations

Su and Sv are now destabilising. This is contrary to the case for Λ < 1. Thus, when 1 < Λ < 2,

the only stabilising terms are the cross-stream Lorentz force iLby and the iLu term in the along-

stream induction equation, which is consistent with the analysis of the dynamical balances of

magnetically modified inertial instabilities.

3.4.5 Stratified Magnetic Instabilities

We now discuss the dynamical balance of the hydrodynamically stable regime in the weak field

limit (L ≪ 1) with A = O(1) such that A2 + 1 − Λ > 0. This allows us to investigate the

hydrodynamic stable regimes (A2 > Λ− 1) of figure 3.4 with Λ > 1. The assumptions also apply

to figure 3.4 with Λ = 0.5, where the system is always hydrodynamically stable since Λ < 1.

Again, we focus on the unstable modes so that S ≪ 1 when L ≪ 1 and A = O(1). Since

A = O(1), the pressure gradient will now play a significant role in the dynamical balance in

comparison to (3.49).

Under the assumptions S ≪ 1, L ≪ 1 and A = O(1), the thermodynamic and incompress-

ibility equations in (3.41) imply that θ ∼ v/S in general, in which it follows from the incompress-

ibility constraint that u ∼ v/S when A = O(1). Once again, the cross-stream induction equation

in (3.42) implies that by ∼ Lv/S, from which it follows from the along-stream induction equation

in (3.42) that bx ∼ Lv/S2. Hence, after substituting the expressions for u and bx into the along-

stream momentum equation in (3.41) we find that S ∼ L. Thus, by ∼ v, u ∼ v/L and bx ∼ v/L

so that equations (3.41) and (3.42) yield the following dynamical balance:

Su− (1− Λ)v = iLbx, u = −iA2θ, Sbx = Λby + iLu, Sby = iLv, (3.54)
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where the pressure gradient is determined by the thermodynamic and incompressibility equations

in (3.41), yielding −iA2θ = −A2v/S. Thus, comparing (3.54) to (3.49) we can see that when

A = O(1), the pressure gradient and the along-stream velocity play a significant role in the

dynamical balance. We can confirm this by combining the equations of (3.54), to obtain the

leading order term of the weak field expansion (3.30), since the equations imply S2 = (Λ −
A2)L2/(A2 + 1− Λ).

We now provide contour plots of the momentum equations, as well as the along-stream in-

duction equation using the nondimensional equations (3.41) and (3.42), to illustrate the dynamical

balance (3.54) for various Λ and A with L = 0.1. In figure 3.15 we plot the dynamical balance

(3.54) for Λ = 0.5 with A = 0.5 illustrating a stratified analogue of the MRI on the f -plane. In

particular, the analogy is made clear when comparing figure 3.15 with 3.12; the only difference

is that the cross-stream Coriolis force is being balanced by the pressure gradient in figure 3.15

(geostrophic balance) rather than the Lorentz force (magnetostrophic balance) in figure 3.12. We

also plot the dynamical balance (3.54) with A = 0.5 for Λ = 1.5 in figure 3.16, illustrating an

analogous instability to that of figure 3.15; this similarity arises as both cases are hydrodynami-

cally stable (i.e., Λ − 1 − A2 < 0). We note that a very similar dynamical balance is also found

to that of figure 3.12 with Λ = 2.5 for larger A (so that the system is hydrodynamically sta-

ble). Comparing figures 3.15 and 3.16, we find that the cross-stream momentum and along-stream

induction equations are approximately identical, while the along-stream momentum equation of

figure 3.16 differs from that of 3.15 as (1 − Λ) has changed sign to act with the Lorentz force,

thus driving a greater along-stream acceleration. Comparing figure 3.15 with figure 3.11 where

Λ = 0.5,L = 0.1 and A = 0.01, it is clear that the growth rate decreases when increasing A. This

is due to the geostrophic balance in the cross-stream momentum equation in figure 3.15, which in

turn dampens the along-stream field generation. This breaks the magnetostrophic balance in the

along-stream momentum equation, generating an along-stream acceleration, which dampens the

instability.

3.4.6 Stabilisation of the Unstable Mode

We now consider the dynamic balance when the magnetic field or pressure gradient is about to

stabilise the system, that is, when S ≪ 1, A = O(1) and L = O(1). Under these assumptions, the

cross-stream induction equation in (3.42) implies by ∼ v/S, and thus the cross-stream momentum

equation in (3.41) implies that u ∼ v/S since θ ∼ v/S. Then, the along-stream momentum equa-

tion in (3.41) implies that bx ∼ v or smaller, so that the along-stream induction equation in (3.42)

reduces to a relation between u and by. Thus, by combining the cross-stream momentum equa-

tion in (3.41) and the along-stream induction equation in (3.42) with the cross-stream induction

equation it follows that A2 + L2 ∼ Λ and bx ∼ v. Hence, the dynamical balance is given by

Su− (1− Λ)v = iLbx, u = −iA2θ + iLby, 0 = Λby + iLu, Sby = iLv, (3.55)
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3.4 Dynamical Balances

Figure 3.15: The dynamical balance of (3.54) at A = 0.5 and L = 0.1 with Λ = 0.5, illustrating
a stratified analogue of the MRI on the f -plane with growth rate S = 0.056. Panel layout as in
figure 3.12.

Figure 3.16: The dynamical balance of (3.54) at A = 1 and L = 0.1 with Λ = 1.5, illustrating
a stratified magnetic instability (similar to the stratified MRI of figure 3.15) with growth rate
S = 0.096. Panel layout as in figure 3.12.
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Figure 3.17: The dynamical balance of (3.55) at A = 0.01 and L = 0.7 with Λ = 0.5, illustrating
the stabilisation of the unstable mode on the f -plane in the hydrodynamically stable regime with
growth rate S = 0.057. Panel layout as in figure 3.12.

in which bx is prescribed by

Sbx = Λb̂y + iLû, (3.56)

where b̂y ∼ Sv and û ∼ Sv are the second order corrections for by and u, respectively. Under

these assumptions, the equations of (3.55) describe the dynamical balance at leading order; how-

ever, we are required to retain the second order along-stream induction equation (3.56) to prescribe

a value of bx and ensure the equations of (3.55) are closed. Note that, if A≪ 1, then the pressure

gradient can be neglected in the cross-stream momentum equation in (3.55) with no other change

to the dynamical balance. The equations of (3.55) and (3.56) are in line with the previous results,

where many stabilising terms are now dominating the dynamical balance. For example, iLu now

balances Λby in the along-stream induction equation, inhibiting the generation of along-stream

field.

We now provide contour plots of the momentum equations as well as the along-stream in-

duction equation using the nondimensional equations (3.41) and (3.42) to illustrate the dynamical

balance in figures 3.17 and 3.18 for A = 0.01 with Λ = 0.5 and Λ = 1.5, respectively. In both

cases, we find that the terms balance, as predicted by (3.55), where the along-stream Lorentz force

still plays a role in the along-stream momentum equation even when there is little generation of

along-stream field via the along-stream induction equation in (3.55). Thus, since there is little

generation of along-stream field, the destabilising mechanism of the along-stream Lorentz force is

very weak so that the growth rate becomes very small.

3.4.7 The Singular Expansion

We have already discussed in section 3.3.5 that neither the hydrodynamically unstable mode nor

the magnetic (hydrodynamically stable) mode are single entities that can be tracked through pa-

rameter space; instead we have a single stable mode and a single unstable mode; the nature of
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3.4 Dynamical Balances

Figure 3.18: The dynamical balance of (3.55) atA = 0.01 and L = 1.22 with Λ = 1.5, illustrating
the stabilisation the unstable mode on the f -plane in the hydrodynamically unstable regime with
growth rate S = 0.083. Panel layout as in figure 3.12.

the latter transitions from magnetically modified inertial instabilities to magnetic instabilities as

we move through parameter space. An interesting transition occurs in the weak field limit as

highlighted by the singular expansion (3.31) and the asymptotic analysis of (3.32)-(3.35).

Thus, we consider the dynamical balance when L ≪ 1 with A2 + 1 − Λ = αL for some

constant α of order unity, where the singular expansion (3.31) implies that S ∼ L1/2. Under these

assumptions, equations (3.41) and (3.42) imply that by ∼ L1/2v, u ∼ L−1/2v and bx ∼ v, so that

the dynamical balance in the limit becomes

Su− (1− Λ)v = 0, u = −iA2θ, Sbx = Λby + iLu, Sby = iLv, (3.57)

which is purely hydrodynamic at leading order, representing a neutrally stable mode. However,

upon writing −iA2θ = −A2v/S (as we have done previously) and substituting the cross-stream

momentum equation into the along-stream momentum equation in (3.57) the leading order (hy-

drodynamic) terms cancel and the left hand side of the along-stream momentum equation reduces

to (Λ − 1 − A2)v, which is O(Lv) and can therefore balance the along-stream Lorentz force.

Similarly, by writing −iA2θ = −A2v/S and substituting the along-stream momentum equation

into the cross-stream momentum equation in (3.57) yields (1−Λ+A2)v = 0, where the left hand

side is O(Lv) and is balanced by an O(Lv) cross-stream acceleration and Lorentz force.

To confirm that the dynamical balance (3.57) describes the singular expansion (3.31), we eval-

uate the Lorentz forces in terms of v, yielding iLbx = −L2(Λ− A2)v/S2 and iLby = −L2v/S.

Then, upon substitution of the along-stream momentum equation into the cross-stream momentum

equation in (3.57) and considering the O(L) terms, we do indeed obtain the singular expansion

(3.31). If we neglect the O(L) cross-stream acceleration Sv, we obtain the magnetic expan-

sion (3.29). Similarly, neglecting the correction iLbx, we obtain the leading order hydrodynamic

growth rate.
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Figure 3.19: The growth rate squared plotted against the Coriolis parameter f0. The maximum
growth rate is attained for some value f0 in the rapidly rotating limit.

Hence, the dynamical balance (3.57) describes the transition from the unstable magnetically

modified inertial mode to the unstable magnetic mode (in the limit of weak magnetic field).

3.4.8 Rapidly Rotating Instabilities

Until now we have considered a fixed Coriolis parameter due to f0 being the chosen timescale

of the nondimensionalisation (3.4). However, it is possible to consider a rapidly rotating system,

where to obtain instability we must suppose f0 ∼ k2v2A/Λ0 ≫ Λ0 (i.e., 1 ∼ L2/Λ ≫ Λ). This

limit corresponds to the bottom left corner of figure 3.4, where the instability domain is much

smaller (compressed in the bottom corner) since Λ ≪ 1; however, instability is still possible

provided L2 < Λ ≪ 1. We must also consider the stability bound (3.25), which implies that we

require A2 < Λ ≪ 1 for instability; thus, for instability to occur we require l2N2/k2 ≪ f20 .

First, to deduce the scaling of the growth rate when f0 ∼ k2v2A/Λ0 ≫ Λ0 we reconsider the

dimensional quadratic equation (3.21) for the growth rate squared, from which we can immediately

deduce that

s2(2k2v2A + f0Q0) + k2v2A(k
2v2A − Λ0f0) = 0, (3.58)

with s2 ≪ f20 . Then, since 2k2v2A ∼ f0Λ0 ≪ f20 by assumption, it follows that

s2 =
k2v2A
f20

(
Λ0f0 − k2v2A

)
=⇒ S2 = L2(Λ− L2). (3.59)

Thus, there is instability provided L2 < Λ, which is consistent with the stability condition (3.25).

Equation (3.59) implies that if f0 = 2k2v2A/Λ0, then we will attain the maximum growth rate,

which is consistent with (3.26) in the rapidly rotating limit. To illustrate this, we plot the growth

rate squared against f0 using (3.59) with k2v2A = 1 and Λ0 = 1 (arbitrary) in figure 3.19. Clearly,

there is instability in this limit since S > 0, where f02k2v2A/Λ0 = 2 yields the maximum growth

rate.
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3.4 Dynamical Balances

Figure 3.20: The dynamical balance of (3.48) at A = 10−3 and L = 7 × 10−2 with Λ = 10−2,

which illustrates the rapidly rotating instability with f0 ∼ k2v2A/Λ0 and growth rate S = 5 ×
10−3 ≈ O(Λ). These parameters illustrate the maximum growth rate of the rapidly rotating and
large field instability. Panel layout as in figure 3.12.

Equation (3.59) implies that the growth rate will be of order Λ ∼ L2. Thus, if we now recon-

sider the dimensional equations (3.39) and (3.40) with f0 ∼ k2v2A/Λ0 ≫ Λ0 and s ≪ f0, they

reduce to

− f0v =
ikB3

µ0ρ̄
bx, f0u =

ikB3

µ0ρ̄
by, sbx = Λ0by + ikB3u, sby = ikB3v, (3.60)

which balance when S2 = L2(L2 − Λ), as predicted by (3.59). Hence, in the rapidly rotating

limit, with f0 ∼ k2v2A/Λ0 ≫ 1, the system becomes magnetostrophic in the horizontal directions,

while all terms in the induction equations are retained. We can also note that the balance (3.60)

corresponds to the small Λ limit of (3.48) with A ≪ L, since f0 ∼ k2v2A/Λ0 ≫ λ0 ensures

L ≪ 1 and Λ ≪ 1. Indeed, by considering the small Λ limit of (3.48) we obtain a magnetostrophic

balance in the horizontal directions equivalent to that of (3.60). However, this also illustrates the

rapidly rotating instability governed by (3.60) may also be attained with weak magnetic field and

small shear such that L2 ∼ Λ (with f0 fixed and not large).

We now provide contour plots of the momentum equations as well as the along-stream induc-

tion equation, using the nondimensional equations (3.41) and (3.42) to illustrate the dynamical

balance (3.60) in figure 3.20 for L = 7× 10−2 and A = 10−3 with Λ = 10−2. These parameters

ensure that f0 ∼ k2v2A/Λ0 ≫ Λ0 since L2 ∼ Λ ≪ 1. Clearly, the horizontal momentum equations

are in magnetostrophic balance, while the induction equations remain unchanged. By comparing

figures 3.11 and 3.20, we can see that taking the small Λ limit of (3.48), such that L2 ∼ Λ, allows

the cross-stream momentum equation to play an important role in the instability. Similarly, we can

see the stabilising role of iLu in the induction equation since the sheared cross-stream field Λby

is now small.
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3.5 Conclusions

In this chapter we have considered the linear stability of a uniform shear flow U(y) = Λ0y in the

presence of a uniform vertical magnetic field with Coriolis parameter f0 (constant). The results

of the chapter are clearly applicable to the mid-latitudinal regions of the solar tachocline and the

flanks of the jets found in Jupiter’s upper atmosphere. We may also use this system to model the

latitudinal shear on the flanks of the strong equatorial jets found in the upper atmospheres of Hot

Jupiters, which reach upwards of 30◦ in latitude (Heng & Showman, 2015).

In Section 3.2 we discuss inertial and magnetically modified waves in the absence of shear

(so that there is no interference from unstable modes). We first introduce the nondimensional

growth rate S (under the timescale 1/f0), re-scaled aspect ratio A and Lehnert number L, where

the latter is proportional to magnetic field strength. We categorise the behaviour of the two stable

modes, finding that both are described by inertial-Alfvén waves in the small A limit and transition

to inertia-gravity waves and Alfvén waves in the large A limit. In the large L limit the modes

are described by Alfvén waves also; however, in the small L limit the modes are described by

inertia-gravity waves and a hydromagnetic-inertial waves. An analogous wave to the latter is

derived in a non-magnetohydrostatic and unstratified system in application to the Earth’s core

by Acheson & Hide (1973), leading us to determine that the frequency of the waves crucially

depends upon whether the system is stratified or not. In the limit of weak magnetic field (vA ≪ 1)

and in the absence of stratification, the frequency of the hydromagnetic-inertial wave scales with

the Alfvén velocity squared, while in the presence of stratification the frequency scales with the

Alfvén velocity vA.

In section 3.3 we consider the sheared system so that instability is possible since anti-cyclonic

shear may occur within the system. We also introduce the final nondimensional parameter of the

chapter, given by Λ which may be interpreted as a Rossby number. We determine the condition for

stability A2 + L2 > Λ, given by (3.25), which implies that instability can occur in hydrodynam-

ically stable regimes (A2 > Λ − 1) provided L2 ̸= 0 and sufficiently small. Indeed, we see that

this is the case in figure 3.4, where the growth rate is contoured in (L, A)-space for Λ = 0.5, 1.5

and 2.5, and explicitly showed instabilities in the hydrodynamically stable regime. We determined

where the maximum growth rate occurred in (L, A)-space for all Λ > 0, given by (3.26) and

(3.27). For Λ > 2 the maximum growth rate is
√
Λ− 1 and occurs at A = 0 and L2 = 0 (hy-

drodynamic); for Λ < 2 the growth rate is Λ/2 and occurs at A = 0 and L2 = Λ(2 − Λ)/4. The

latter corresponds to the maximum growth rate of the MRI and where it occurs in parameter space,

as derived by Balbus & Hawley (1991). Indeed, we may interpret the maximum growth rate for

Λ < 2 to occur as the vertical wavenumber |k| → ∞ such that L = |k|vA/f0 = O(1), where as a

result A ∝ 1/|k| ≪ 1; this is equivalent to the weak field and “thin disc” approximation made by

Balbus & Hawley (1991).

Alternatively, to estimate the vertical scales of the unstable modes in the Solar tachocline, and

the upper atmospheres of Jupiter and Hot Jupiters, we considered the hyperbolae A = C/L =
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lNvA/f
2
0L shown in figure 3.4, where only the vertical wavenumber may vary. The hyperbolae

required us to constrain the cross-stream wavenumber, which we argued is physically reasonable

since possible latitudinal lengthscales could be inferred from observations. Thus, with the resulting

estimate of C and the Rossby number Λ (using parameter values in table 2.1), we could obtain

the value of L which generates the maximum growth rate from (3.26) and (3.27), and therefore

estimate the vertical lengthscale of the modes. Note that (3.26) and (3.27) imply that the maximum

growth rate of the system always occurs as A → 0; thus, the vertical lengthscales estimated from

(3.26) and (3.27) will be most accurate for a given astrophysical body which yields small values of

C so that the hyperbolae A = C/L ≪ 1 with L = O(1). Also note that the values of the shear Λ0

and Coriolis parameter f0 used to estimate Λ will not be uniform in observations, however these

are necessary (although limiting) requirements of the model.

In the solar tachocline we considered the Rossby number Λ = 0.21, so that the system is

hydrodynamically stable. The resulting value of C is O(1)-O(102), and the chosen vertical wave-

length was estimated to be H = 2.6× 107m. With the vertical extent of the solar tachocline being

O(107m), the estimated lengthscale is presumably too large. However, it must be noted that the

consideration of diffusion will significantly alter the vertical lengthscale. Owing to the values of

C, instabilities, if they occur, may be categorised as stratified magnetic instabilities, the dynamical

balance of which we discussed in section 3.4.5.

In Jupiter’s upper atmosphere we estimated C = O(10−4) and H = 8.5× 104m with Λ < 1.

In contrast to the solar tachocline this a much more reasonable estimate given that the depth of

Jupiters atmosphere is O(106m). Since C ≪ 1 it follows that instabilities, if they occur, may be

described by the balance discussed in section 3.4.4, which can be considered to be analogous to

the MRI.

In the upper atmospheres of Hot Jupiters the Rossby number may vary significantly owing to

the strong equatorial jets. Thus, we consider Λ = 0.62 and Λ = 5 with C = O(10−2) (estimated

from parameters in table 2.1). In each case we estimated the vertical lengthscaleH to beO(104m),

which is physically reasonable. Instabilities, if they occur, for Λ = 0.62 will likely be analogous to

those described in section 3.4.4 (and relate to the MRI), while those for Λ = 0.62 are categorised

as inertial instabilities. However, given 1 < Λ < 2, we may classify resulting unstable modes as

magnetically modified inertial instabilities.

It is important to note that this problem of scale selection in this uniform shear framework is not

straightforward, and we make progress by constraining the cross-stream wavenumber. However,

this is artificial and thus motivates the more complex flows that have localised unstable regions,

which we investigate in Chapters 5, 6, and 7. We find that in most cases the vertical lengthscales

predicted by the system are appropriate in the astrophysical bodies we are considering.

In Section 3.4 we consider the dynamical balances of the various parameter regimes contained

within the unstable regions of figure 3.4. We first categorise the dynamical balance of hydrody-

namic inertial instability, given by equation (3.44). To do this, we considered overturning motions
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in the meridional plane, which are illustrated in figure 3.9, and described the physical significance

of the terms in (3.44) as well as the parameters Λ and A.

The first dynamical balance we considered in the magnetohydrodynamic regime were those of

magnetically modified inertial instabilities (see the dynamical balances (3.45) and (3.46)), which

are illustrated in figure 3.4 for Λ = 1.5 and Λ = 2, 5 (in the limit of small L). We found that

the cross-stream Lorentz force acts to decrease the growth rate, while the along-stream Lorentz

force acts to increase the growth rate; the magnitude of each effect governs whether the correction

to the growth rate is positive or negative, as seen in equation (3.47). If the growth rate S > 1,

weak magnetic field decreases the growth rate, while if S2 < 1, weak magnetic field increases the

growth rate.

We then considered the onset of the magnetorotational instability in the hydrodynamically

stable regime Λ < 1 with A ≪ 1, corresponding to the limit of small L in figure 3.4 with

Λ = 0.5. We found that weak magnetic field allowed instability to occur as the hydrodynamic

inertial wave along-stream dynamical balance (Su − (1 − Λ)v = 0) is broken as the Lorentz

force now balances the Coriolis and shear term so that there is no along-stream acceleration at

leading order (see equation (3.48)); the cross-stream momentum equation does not play a role in

the dynamical balance and only prescribes the along-stream velocity u.

Next, we considered the dynamical balance of the most unstable mode for Λ < 2 (if Λ > 2

the most unstable mode is described by the dynamical balance of hydrodynamic inertial instability

(3.43)), corresponding to the maximum growth rate on the L axis as illustrated in figure 3.4 for

Λ = 0.5 and 1.5. We found subtly different balances between the Λ = 0.5 (hydrodynamically

stable) and the Λ = 1.5 (hydrodynamically unstable) cases; even though all terms except the cross-

stream pressure gradient played a role in each dynamical balance, the Λ = 1.5 dynamical balance

was more dominated by inertial terms, while the Λ = 0.5 was more dominated by Lorentz forces

(compare figures 3.12 and 3.13). For Λ < 1 we discussed a number of possible approximations to

the dynamical balance, where we compared estimated and exact growth rates in figure 3.14.

The final balance we highlight is that of stratified magnetic instabilities, which are given by

(3.54) and correspond to the hydrodynamically stable regions (A2 > Λ − 1) of figure 3.4 (for

Λ < 1, this is the entire unstable domain with A = O(1)). There is little difference in the

dominant terms between the magnetic instabilities occurring for A2 > Λ − 1 (with Λ > 1) and

for Λ < 1 with A = O(1) (compare figures 3.15 and 3.16), allowing us to conclude that the

instabilities can both be interpreted as stratified magnetorotational instabilities.

In the following chapter we extend the analysis of Chapter 3 and investigate the role of kine-

matic viscosity ν, thermal diffusion κ and magnetic diffusivity η on the system we have consid-

ered.
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Chapter 4

Diffusive Instabilities of a Uniform
Shear Flow at Mid-latitudes

4.1 Introduction

In this chapter we extend the analysis of Chapter 3 by incorporating constant kinematic viscosity

ν, thermal diffusion κ and magnetic diffusivity η. Hence, we consider the linear instability of

the parallel flow U(y) = Λ0y with uniform latitudinal shear U ′(y) = Λ0 on an f -plane in the

presence of a uniform vertical magnetic field of strengthB3(y) = B0. This is the simplest possible

configuration to study the competition between inertial and magnetic modes in the presence of

diffusion. Indeed, since the Coriolis parameter, the magnetic field strength, shear and diffusivites

are all constant, the governing equation (2.30) has constant coefficients and can therefore be solved

analytically with solutions for the perturbed quantities being of the form v ∝ exp(ily), where l is

the cross-stream wavenumber. The consideration of diffusion stabilises modes that occur at infinite

vertical wavenumbers so that instabilities must occur with physically viable vertical scales.

In Chapter 1 we have already discussed a number of diffusive systems. Kloosterziel & Carnevale

(2008) investigate how kinematic viscosity and thermal diffusion affect the scale selection of a hy-

drodynamic non-hydrostatic uniform shear flow on an f -plane. They derive stability bounds for

steady and oscillatory modes when Pr = ν/κ ̸= 1; furthermore, they show that for Pr = 1,

in the limit of large Reynolds number Re (ratio of inertial forces to viscous forces), the vertical

wavenumber k that generates the maximum growth rate scales with (N2Re)1/4. Albeit for the

more complex hydrodynamic analysis on the equatorial β-plane, Dunkerton (1981), Dunkerton

(1982), and Griffiths (2008b), also set out the problem of scale selection in a linear framework.

For example, Dunkerton (1981) notes that it is necessary to consider diffusion in the system to ob-

tain finite scales for the mode with the maximum growth rate, whereby taking Pr = 1 transforms

the growth rate sD = s − νk2, where s is the inviscid growth rate, and therefore results in the

maximum growth rate occurring at a finite scale.

An important hydrodynamic instability that is believed to be of importance regarding the an-

gular momentum redistribution in planets and stars is the Goldreich-Schubert-Fricke (GSF) insta-
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bility (Goldreich & Schubert, 1967; Fricke, 1968). In the terminology of our system, the GSF

instability (which was originally derived in cylindrical coordinates) is essentially an axisymmetric

inertial instability enabled by the role of thermal diffusion. That is, given a flow with fQ < 0 that

has been stabilised by pressure gradients due to the effects of buoyancy (in a stably stratified fluid),

then sufficiently strong thermal diffusion will nullify the stabilising role of stratification and allow

the flow to become unstable. Menou et al. (2004) extend this analysis to the triple-diffusive mag-

netohydrodynamic regime, where the magnetic diffusivity also plays a role alongside the thermal

conductivity and kinematic viscosity. Many necessary conditions for stability are derived in either

the limit of zero kinematic viscosity or zero magnetic diffusivity. We will discuss the analogies to

these studies in more detail throughout the Chapter.

In the triple-diffusive system, equation (2.30) reduces to a quintic equation for the growth rate.

Interestingly, a non-magnetohydrostatic, cylindrical and adiabatic analogous quintic dispersion re-

lation is found in Menou et al. (2004); however, the added complexity of their system complicates

the stability analysis and does not allow for many of the derivations found in this analysis. The

nondimensionalisation (3.22) is again used (i.e., the growth rate is a function of aspect ratio A,

Lehnert number L ∝ vA, Λ and the diffusive parameters) in order to relate the results of this

chapter to the ideal results of Chapter 3. However, this choice has a number of consequences that

we will discuss in detail in the following section. Given two natural choices of nondimensional

diffusive parameters, we choose the parameters to be dependent on the cross-stream wavenumber,

which must therefore be assumed constant (and prescribed from observations), so that only the

vertical wavenumber may vary. This is equivalent to assuming the flow is confined to a channel of

fixed latitudinal lengthscale L; we see why it is reasonable to confine the cross-stream wavenum-

ber (so that the system is not free to choose any latitudinal lengthscale) in the following section.

The chosen nondimensionalisation leads to two main routes of analysis. The first aims to

address what is the most unstable mode of a given astrophysical body (e.g., those seen in 2.1)

and what the nature of that mode is (e.g., a magnetically modified inertial instability or a double

diffusive instability); we do this by providing contours of the maximum growth rate in (L, A)-

space (as seen in figure 3.4 in Chapter 3) at fixed ν, κ and η. The second aims to address the

specific role of ν, κ and η on the system; we do this by contouring the maximum growth rate as

a function of two diffusive parameters, where, at each value of the two diffusive parameters, we

have selected the A and L that maximises the growth rate.

Initially we consider the hydrodynamic regime, first with Pr = 1 and then with Pr ̸= 1, es-

tablishing links to Kloosterziel & Carnevale (2008) and the GSF instability. Conditions for steady

and oscillatory modes are derived. We contour the growth rate as a function of nondimensional

kinematic viscosity and thermal conductivity, where in order to do this, we select the aspect ratio

A that maximises the growth rate. We use this method repeatedly throughout the Chapter (in the

magnetohydrodynamic regime we must also select the Lehnert number L that generates the max-

imum growth rate) so that we can focus primarily on the effects of diffusion on the most unstable

mode.
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4.2 Formulation

In the magnetohydrodynamic regime we also derive a steady stability condition that is valid

provided the system is only unstable to magnetic instabilities on the bound; if this is not the case,

the hydrodynamic conditions of the hydrodynamic regime are used instead. We consider the case

of Pr = Pm = 1, where Pm = ν/η is the magnetic Prandtl number, which can be described

by a transformation from the ideal system of Chapter 3. Next, we consider the case of Pr ̸= 1

with Pm = 1, which is an obvious extension to both the magnetohydrodynamic regime with

Pr = Pm = 1 and the hydrodynamic regime with Pr ̸= 1. We find links to the hydrodynamic

GSF instability; however, magnetic field now modifies the instability provided the Rossby number

Λ is not too large.

We also consider the case when Pr = 1 and Pm ̸= 1. In this regime we find another double-

diffusive instability which requires κ ̸= η and is also purely magnetic. To categorise the instability

we investigate the limit of large Pm.

Next we consider the case when Pr = Pm ̸= 1 (i.e., κ = η). In the limit of large κ and η,

we obtain an analogous system to the hydrodynamic case with Pr ̸= 1; indeed, instabilities may

occur owing to the strong thermal diffusion. For large ν instability may occur only with magnetic

field present and for sufficiently small η.

Finally, we consider the case where Pr ≪ Pm ≪ 1, such that Pr = Pmp for p = 1.5 and

3. This regime is found in the Solar tachocline (see table 2.1) or in Jupiter’s interior, where the

magnitude of η is not as extreme in comparison to its upper atmosphere. The most unstable modes

under this formulation are dominated by (hydrodynamic) inertial modes. However, for p = 3,

magnetic instabilities may occur, provided Pm is sufficiently large.

4.2 Formulation

We again consider uniform f , uniform shear Λ0 and uniform magnetic field strength B0. Then

(2.30) has constant coefficients and may be solved analytically with solutions of the form v̂ ∝
e−ily, where l is the cross-stream wavenumber. We obtain the following quintic equation for the

growth rate s :

N2l2(s+ ηk2)

k2(s+ κk2)
((s+ νk2)(s+ ηk2) + k2v2A)− k2v2AU

′f

+ fQ(s+ ηk2)2 + ((s+ νk2)(s+ ηk2) + k2v2A)
2 = 0. (4.1)

4.2.1 Nondimensionalisation

We use the same nondimensionalisation (3.22) as in Chapter 3, allowing us to easily compare to

the ideal regime:

S =
s

f0
, A2 =

l2N2

k2f20
, L2 =

k2v2A
f20

and Λ =
Λ0

f0
. (4.2)

Reiterating Chapter 3, the chosen timescale is the Coriolis parameter 1/f0, the parameter S is the

nondimensional growth rate, A is interpreted as a rescaled aspect ratio, L is the Lehnert number
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(the ratio between magnetic field strength and rotation) and Λ may be interpreted as a Rossby

number.

To nondimensionalise the diffusive parameters, we require a quantity with dimension involv-

ing length. This leaves us with a few (not necessarily obvious) choices; that is, the cross-stream

wavenumber, the vertical wavenumber or the Alfven wave speed. Choosing the vertical wavenum-

ber yields {ν̂, κ̂, η̂} = k2{ν, κ, η}/f0, and is equivalent to assuming the flow lies in the vertical

channel of height H = 2π/|k|. As a result, the most unstable mode always occurs as A → 0+.

This is because the cross-stream wavenumber is still free to choose an infinite lengthscale. To

illustrate this, we consider the system with ν = κ and in the absence of magnetic field, in which

the dispersion relation (4.1) reduces to

s =

√
Λ0f0 − f20 − l2N2

k2
− νk2. (4.3)

Clearly, if one was a given an astrophysical body so that Λ0, N and ν were given, and assume

that the flow is contained within a vertical channel, then a minimum value that k can take is set,

and discretizes it above that. Thus, in a vertical channel, the maximum growth rate of (4.3) occurs

when |l| → 0, yielding an infinite lengthscale. This is not desirable as a use of diffusion is to obtain

physically reasonable scales; in addition, the role of l completely disappears from the problem,

essentially yielding a one dimensional system.

Choosing the Alfven wave speed leads to the following nondimensional parameters {ν̃, κ̃, η̃} =

f0{ν, κ, η}/v2A, and would not allow for a smooth comparison to the ideal system of Chapter 3

nor diffusive hydrodynamic results (e.g., Kloosterziel & Carnevale, 2008). This choice also still

leads to the most unstable modes of the system occurring when A → 0+ owing to infinitesimal

cross-stream wavenumbers being chosen as in the previous case.

Hence, we are left to nondimensionalise the diffusive parameters with the cross-stream wavenum-

ber, yielding

ν0 =
l2N2ν

f30
, κ0 =

l2N2κ

f30
and η0 =

l2N2η

f30
. (4.4)

Thus, given an astrophysical body, where the values of f0, N and ν can be inferred from ob-

servations, we assume that the flow is contained within a latitudinal channel with (latitudinal)

lengthscale L, yielding a minimum value for the cross-stream wavenumber l. Further to this, we

assume that the system takes this minimum value of l, then l = 2π/L, and the solutions of (2.30)

take the form v ∝ sin(2πy/L) rather than exp(ily). Under this formulation, the system can not

choose an infinite (or infinitesimal) vertical (or latitudinal) scale to maximise the growth rate. In-

deed, for example, given a flow in a latitudinal channel on astrophysical body so that |l|, Λ0, N

and ν are fixed, then equation (4.3) predicts stability at large and small k, in turn yielding more

physical relevant latitudinal and vertical lengthscales.
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4.2 Formulation

Figure 4.1: Contours of the maximum growth rate in (L, A)-space with Λ = 1.5 and ν0 = η0 =

0.5 and κ0 = 1. The red line is the inviscid stability bound (3.25). The vertical wavenumber can
only vary along hyperbolae AL = C, with C constant. The location of the maximum growth rate
is indicated by the red dot.

4.2.2 Consequences of the Nondimensionalisation

As we have already mentioned we will be analysing the system via two main routes of analysis.

The first addresses what is the most unstable mode of a given astrophysical body (e.g., those seen

in 2.1) and what the nature of that mode is (e.g., a magnetically modified inertial instability or

a double diffusive instability); we do this in part by providing contours of the maximum growth

rate in (L, A)-space (as seen in figure 3.4 in Chapter 3) at fixed values of Λ, ν0, κ0 and η0. For

illustrative purposes, we provide figure 4.1, which is a contour of the nondimensional growth rate

in (L, A)-space plotted with ν0 = η0 = 0.5, κ0 = 1 and Λ = 1.5 (the growth rate can be

numerically determined from a nondimensional analogue of (4.1)). The hyperbolae are given by

C = AL = |l|NvA/f20 , and are independent of vertical wavenumber; thus, increasing L such that

C = AL increases the chosen vertical wavenumber. Hence, by considering a flow in a latitudinal

channel on an astrophysical body and taking l = 2π/L, where L is the latitudinal scale of the

channel, then the mode of interest lies on one of the hyperbolae C = AL = |l|NvA/f20 since

we can infer (and fix) values of Λ0, N and ν from observations. Thus, the chosen vertical scale is

found by considering the point along the hyperbola that generates the maximum growth rate. Note

that we can write ν0 = A2Lf0ν/v
2
A and thus, by prescribing a value of ν0 we are considering the

hyperbolae A2L = ν0v
2
A/f0ν = C. Then, by considering a single astrophysical body we fix the

remaining parameters of C yielding a single hyperbola in (L, A)-space.

The second aim is to address the specific role of ν0, κ0 and η0 on the system; we do this by

contouring the maximum growth rate as a function of two diffusive parameters (e.g., (ν0, κ0)-
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space with ν0 = η0), where, at each value of the two diffusive parameters, we have selected the

A and L that maximises the growth rate. It is useful to do this otherwise many plots with varying

values of ν0 = η0 and κ0 (similar to figure 4.1) would need be analysed in order to categorise the

behaviour of the diffusive parameters. This process allows us to consider the role of the diffusive

parameters on the maximum growth rate only (illustrated by the red dot in figure 4.1) simplifying

the analysis. Note that we consider the optimisation of A as that of the vertical wavenumber and

the optimisation of the Lehnert number L as that of magnetic field strength.

Recasting equation (4.1) in terms of the nondimensional parameters (4.2) and (4.4) yields

A2 S + η0/A
2

S + κ0/A2

((
S +

ν0
A2

)(
S +

η0
A2

)
+ L2

)
− L2Λ

+ (1− Λ)
(
S +

η0
A2

)2
+
((
S +

ν0
A2

)(
S +

η0
A2

)
+ L2

)2
= 0. (4.5)

Equation (4.5) will be the basis for the entire chapter. However, it is useful to consider limiting

cases when either Pr and Pm (or both) are unity.

4.2.3 Analogies to Previous Studies

Note that equation (4.5) is a particular (Cartesian and magnetohydrostatic) case of the quintic

equation for the growth rate found in Menou et al. (2004), the (non-magnetohydrostatic) system

of which we discussed in Chapter 1. Specifically, recall that Menou et al. (2004) considered, in

cylindrical geometry, the local axisymmetric stability (with adiabatic perturbations) of a magne-

tised rotating flow with angular velocity Ω(R, z) in the presence of radial and axial stable stratifi-

cation, kinematic viscosity ν, thermal conductivity κ, and magnetic diffusivity η. Thus, the study

of Menou et al. (2004) also considers the role of vertical shear and axial stratification (analo-

gous to latitudinal stratification here) and is therefore a generalisation of this system; the added

complexity, however (particularly the non-magnetohydrostatic extension), makes the derivation of

analytical results very difficult. The stability analysis of Menou et al. (2004) is therefore restricted

to limiting cases, including, for example, the limit of zero kinematic viscosity and the limit of zero

magnetic diffusivity. Here we are able to derive powerful stability criteria which do not require

unrealistic additional assumptions such as vanishing kinematic viscosity or magnetic diffusivity.

In order to see the analogies with Menou et al. (2004), it is useful to recast the equation (4.5)

explicitly as a quintic polynomial for the growth rate S. Indeed, after multiplying (4.5) by the

factor S + κ0/A
2, we obtain

S5 + a4S
4 + a3S

3 + a2S
2 + a1S + a0 = 0, (4.6)

where the coefficients aj are given by

a4 =
1

A2
(2ν0 + κ0 + 2η0), (4.7a)

a3 =
1

A4
(A4(A2 + 2L2 + 1− Λ) + (ν0 + η0)

2 + 2(ν0κ0 + ν0η0 + κ0η0)), (4.7b)
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4.2 Formulation

a2 =
1

A6
(A6(ν0 + 2η0) +A4((κ0 + 2η0)(1− Λ) + 2L2(ν0 + κ0 + η0))+

ν20(κ0 + 2η0) + η20(2ν0 + κ0) + 4ν0κ0η0), (4.7c)

a1 =
1

A8
(L2A8(L2 +A2 − 1) + η0(2ν0 + η0)A

6+

((η20 + 2κ0η0)(1− Λ) + 2L2(ν0(κ0 + η0) + κ0η0))A
4+

ν0η0(ν0(2κ0 + η0) + 2κ0η0)), (4.7d)

a0 =
1

A10
(L2η0A

10 + κ0L
2(L2 − Λ)A8 + ν0η

2
0A

6 + κ0η0(2L
2ν0 + η0(1− Λ))A4 + ν20κ0η

2
0).

(4.7e)

The coefficients (4.7) of the quintic (4.6) are similar to those in the quintic equation of Menou

et al. (2004). Indeed, by writing a3 in dimensional terms, we obtain

l2N2

k2
+ 2k2v2A + f0(f0 − Λ0) + k4ν2 + . . . , (4.8)

where we have multiplied by f50 due to it being a common factor in (4.6). Then, by recognising

that

l2N2 −→ −k2Z
(

1

γρ

∂

∂R

(
P
∂

∂R
ln(Pρ−γ)

))
, (4.9)

f0(f0 − Λ0) −→
k2Z

k2R + k2Z

1

R3

∂

∂R
(R4Ω2), (4.10)

k2 −→ k2R + k2Z , (4.11)

with the latter implying that k2v2A −→ (k · vA)2, the right hand terms are those that are found in

the quintic equation of Menou et al. (2004). In order of appearance, kZ is the vertical wavenumber,

Z is the vertical coordinate, γ is the adiabatic index of the gas, R is the radial coordinate, P ≡
P (R) is the pressure, ρ ≡ ρ(R) is the density, kR is the radial wavenumber, Ω ≡ Ω(R) is the

angular velocity and k = (kR, 0, kZ). The Alfvén velocity vA is defined in terms of the basic

state magnetic field of arbitrary geometry, which is assumed weak compared to both rotation and

pressure gradients (so that it does not affect the basic state). We have neglected the Z dependence

in the pressure, density and angular velocity of the Menou et al. (2004) system to make the analogy

clearer.

We see that a number of differences exist between the two formulations. The transformations

(4.9) and (4.11) are due to Menou et al. (2004) considering adiabatic perturbations and a non-

magnetohydrostatic system, respectively. Naturally, there are also differences due to the contrast

in coordinate systems; however, for example, as shown in Appendix A, there is direct analogy

between fQ and the Rayleigh discriminant Φ, which is proportional to the right hand side of

(4.10). Menou et al. (2004) also consider a weak uniform magnetic field with radial, azimuthal

and vertical components; however, the vertical component is the only one necessary for instability.

Clearly, the system of Menou et al. (2004) is a generalisation of our system in this chapter.

However, due to the added complexity of the system, the results obtained by Menou et al. (2004)
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are obtained only for limiting regimes. For example, Menou et al. (2004) derive a number of

necessary conditions for stability in the perfectly conducting regime (η → 0) and the inviscid

regime (ν → 0). By contrast, we derive distinct conditions that do not require any additional

assumption on the kinematic viscosity, thermal conductivity or magnetic diffusivity.

4.3 Hydrodynamic Regime

It is natural to first consider the hydrodynamic system, where we determine under what conditions

the system is unstable, the vertical wavenumber at which the growth rate is maximum and the

influence of kinematic viscosity ν0 and thermal conductivity κ0.

On setting L = 0 in (4.5), we obtain the following cubic equation for the growth rate S :

(S + ν0/A
2)

(S + κ0/A2)
A2 + 1− Λ + (S + ν0/A

2)2 = 0. (4.12)

This equation is found in Dunkerton (1982), who derived marginal stability criteria for oscillatory

modes (provided Pr ̸= 1). We find this criteria and expand upon it in order to form a basis

for our magnetohydrodynamic results. In general, equation (4.12) does not allow us to obtain an

analytical expression for the growth rate and must be solved numerically. However, in the case

where Pr = 1 such an expression can be obtained.

The results of Kloosterziel & Carnevale (2008), which we have already discussed in section

1.2.2, focus on the vertical scale selection in the limit of large Reynolds number and will also be

closely related to this section.

4.3.1 Pr = 1

In the case of Pr = 1 equation (4.12) simplifies to

S = (Λ− 1−A2)
1
2 − ν0

A2
. (4.13)

We note that (4.13) implies that modes with large vertical wavenumber (A ≪ 1) are stabilised

since the diffusive term becomes large (which is always stabilising since ∂ν0S < 0); this is in

contrast to the inviscid case where the most unstable mode is found at infinite vertical wavenumber,

and where stability occurs only if A2 > Λ − 1. Thus, with ν0 ̸= 0, instability (and therefore the

maximum growth rate) must occur in a bounded region of A. We note that equation (4.13) may be

obtained from the inviscid system by transforming the inviscid growth rate from S to S + ν0/A
2,

so that the growth rate is ν0/A2 less than that of the inviscid system. Equation (4.13) also implies

that Λ > 1 +A2 is a necessary condition for instability since A ̸= 0.

It is of interest to find the vertical wavenumber for which the maximum growth rate occurs

for fixed Λ and ν0. Thus, equivalently, we want to find the A, Amax say, for which the growth rate

is maximised. We differentiate equation (4.13) with respect to A and set the derivative to zero,

yielding

∂S

∂A
= −A(Λ− 1−A2)−

1
2 + 2

ν0
A3

= 0 =⇒ A4 = 2ν0(Λ− 1−A2)
1
2 . (4.14)
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4.3 Hydrodynamic Regime

Hence, A2
max must satisfy the 4th degree polynomial:

A8
max = 4ν20(Λ− 1−A2

max). (4.15)

The polynomial (4.15) does not allow us to derive a corresponding maximum growth rate Smax =

S(Amax) for each Amax since the expression can not be solved analytically for Amax. However,

provided ν0 ≪ 1 (which is typically the case in planetary atmospheres) we may approximate

A2
max by expanding in terms of ν0 (cf. Griffiths, 2003a):

A2
max =

√
2(Λ− 1)

1
4 ν

1
2
0 − 1

2
√
Λ− 1

ν0 +O(ν
3
2
0 ). (4.16)

Hence, provided ν0 ≪ 1, the dimensional vertical wavenumber that generates the maximum

growth rate is given by

k2max ≈ 2(−f0Q0)
1/2lN

2
√
2(−f0Q0)3/4ν1/2 − lNν

. (4.17)

Note that the lNν term in the denominator results from the second order term of (4.16). Indeed,

without this second order term, equation (4.17) is analogous to the non-hydrostatic equation (4.11)

of Kloosterziel & Carnevale (2008), which implies that the vertical wavenumber scales withRe1/4

in the limit of large Reynolds numberRe. To show that this is true for equation (4.17), we compare

the acceleration and diffusive terms in the perturbed horizontal momentum equation (2.22). On

taking the Coriolis parameter as the time scale for the growth rate, equation (2.22) implies that

the Re = f0/νk
2, which under the nondimensional parameters (4.4) becomes Re = A2/ν0.

Hence, we are in the limit of large Re provided A2 ≫ ν0. Indeed, equation (4.16), at leading

order, implies A2
max ∼ ν

1/2
0 and Re =

√
2(Λ − 1)1/4ν

−1/2
0 so that Re ∼ ν

−1/2
0 ≫ 1 provided

Λ = O(1).

There is no exact analogy between (4.11) of Kloosterziel & Carnevale (2008) and (4.17). This

is due to us defining Re with the vertical lengthscale H = 2π/k, which is unavoidable since

the horizontal component of diffusion is neglected owing to the hydrostatic approximation. By

contrast, Kloosterziel & Carnevale (2008) define their Re in terms of the latitudinal lengthscale L

(i.e., Re = L2Λ0/ν) as the horizontal component of diffusion is not neglected as their system is

non-hydrostatic. However, by introducing the nondimensional parameter K = kH, writing H =

2π/k and using our nondimensional parameters (4.4), equation (4.17) implies K2 ∝ ARe1/2.

The upper atmospheres of Hot Jupiters can be hydrodynamically unstable (i.e., f0Q0 < 0) and

thus, we can also use equation (4.17) to estimate the vertical lengthscale of the possible instabilities

that can occur. Using the parameter values l = 2π/L ≈ 2.7 × 10−7m−1, f0 = 3.4 × 10−5s−1,

Λ0 = 1.7 × 10−4s−1, N = 5 × 10−4s−1 (which were also used in Section 3.3.4) and ν =

3.9 × 10−7m2s−1 (from table 2.1), we obtain the estimate kmax = 4.3 × 10−3m−1. Thus, we

obtain the vertical lengthscale H ≈ 1.5× 103m.

Next, by substituting (4.16) into (4.13), we can also derive the corresponding maximum growth

rate Smax = S(Amax) when ν0 ≪ 1, in terms of Λ and ν0 only:

Smax =
√
Λ− 1− 2√

2
(Λ− 1)−

1
4 ν

1
2
0 +O(ν0). (4.18)
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Thus, the maximum growth rate is the inviscid maximum growth rate
√
Λ− 1 dampened by a cor-

rection proportional to ν
1
2
0 . The correction becomes smaller as Λ increases, provided it is not too

large (since the expansion will break down due to ν0 appearing with
√
Λ− 1 in (4.16)). The

correction to the maximum growth rate in (4.18) is consistent with Kloosterziel & Carnevale

(2008), since the second order term may be re-written in the form = 1/Re (since Re =
√
2(Λ −

1)1/4ν
−1/2
0 ).

To derive the marginal diffusion ν0 at arbitrary A and Λ, for which no instability may occur if

surpassed, we set S = 0 in equation (4.13):

ν0 = A2(Λ− 1−A2)
1
2 > 0. (4.19)

Further to this, we can find the magnitude of diffusion νc (in terms of Λ only) for which no

instability may occur if ν0 > νc for any A at fixed Λ. To do this, we simultaneously consider

equations (4.14) and (4.19) which allows us to find the value ofA, Ac say, where the final unstable

mode yet to be stabilised occurs, given by

Ac = 2
1
6 ν

1
3
c . (4.20)

Then, by substituting (4.20) into (4.19) for A, we obtain νc in terms of Λ only:

νc = 2

(
Λ− 1

3

) 3
2

. (4.21)

Thus, νc increases with Λ, scaling with Λ
3
2 in the large Λ limit. We also find that νc remains

relatively small even for strong shears (e.g., Λ = 4); this justifies the approximation (ν0 ≪ 1)

used to derive Smax in (4.18).

We now determine an estimate for the bounded region in A where instability is possible for

arbitrary ν0 and Λ. To do this, we consider the smallA and ν0 limits of equation (4.19). Taking the

small A limit of (4.19) implies that A must be greater than ν
1
2
0 (Λ− 1)−

1
4 , forming a lower bound

on the interval of A. To find the upper bound we must consider Λ − 1 − A2 ≪ 1 with v0 ≪ 1

in (4.19). Considering the small ν0 limit of equation (4.19) with A2 = Λ − 1 + O(ν0) gives the

approximate upper bound in A :

A = (Λ− 1)
1
2 − 1

2(Λ− 1)
5
2

ν20 +O(ν40). (4.22)

Hence, instability may occur if

ν
1
2
0 (Λ− 1)−

1
4 < A < (Λ− 1)

1
2 − 1

2(Λ− 1)
5
2

ν20 . (4.23)

Note that this interval in A is only approximate. We also note that ν0 is likely to be small in stellar

and planetary atmospheres, so that (4.23) may give a very accurate interval of unstable vertical

wavenumbers.

We now provide a series of contour plots for the growth rate S in (A, ν0)-space, which will

illustrate the bounded region in A for which instability may occur, provided ν0 < νc, alongside
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4.3 Hydrodynamic Regime

Figure 4.2: Pr = 1: The growth rate S plotted in (A, ν0)-space with Λ = 1.5 (left) and Λ = 2.5

(right). The stability boundary (4.19) is shown in red. The solid and dashed black lines denote
the Amax given by (4.15) and (4.16); the first is exact, while the latter is an approximation when
ν0 ≪ 1. The magenta and green lines are the lower and upper boundary in A, for which stability
is guaranteed once surpassed, given by the approximate condition (4.23).

the maximum growth rate and the corresponding aspect ratio A at which it occurs for each ν0.

Thus, by solving equation (4.13) numerically, figure 4.2 shows the contour plots for Λ = 1.5

and Λ = 2.5. It is clear that the stability boundary estimates are accurate at small ν0 and remain

accurate as Λ increases; the upper boundary retains its accuracy even for ν0 = O(1). Figure 4.2

allows us to confirm that increasing Λ increases the critical diffusion νc required for stability, as

predicted from (4.21). Increasing Λ also increases the size of the bounded region in A as well as

the maximum growth rate at each ν0. We find that increasing A only increases the growth rate to

some Amax (given by (4.16) when ν0 ≪ 1), whereas increasing A further decreases the growth

rate. Clearly, increasing ν0 decreases the growth rate monotonically, as expected. We also find

that increasing ν0 increases the value of A at which the growth rate is maximum (the maximum of

which decreases) and reduces the bounded region in A for which instability may occur.

To confirm the last of the analytical results, we plot the estimated Smax (4.18) with the exact

maximum growth rate against ν0 for various Λ in figure 4.3. Naturally, the small ν0 expansion of

Smax is accurate with ν0 ≪ 1 and decays in accuracy as ν0 increases. We find that increasing Λ

allows the estimated Smax to remain accurate for larger ν0. This is expected since the second order

term of (4.18) becomes smaller as Λ increases.

4.3.2 Pr ̸= 1

The case Pr ̸= 1 is a natural extension to the case of Pr = 1 and allows us to consider the regime

Pr ≪ 1, which is typically the case in planetary atmospheres. We consider equation (4.12) and
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Figure 4.3: The exact maximum growth rate (4.13) plotted with the approximate Smax calculated
from the small ν0 expansion (4.18) for Λ = 1.5 and Λ = 2.5.

multiply by (S + κ0/A
2) to form the following cubic for the growth rate S :

S3 +
1

A2
(κ0 + 2ν0)S

2 +
1

A4
(2κ0ν0 + ν20 −A4(Λ− 1−A2))S

+
1

A6
(ν20κ0 + ν0A

6 − (Λ− 1)κ0A
4) = 0. (4.24)

Since equation (4.24) is a cubic in S it may have three real roots, or one real root with a pair of

complex conjugate roots. Thus, steady and oscillatory instabilities may occur (as commented on

in Dunkerton, 1982).

To derive a condition for marginal oscillatory instability we substitute S = iSi and equate

the real and complex parts. These coupled equations allow us to isolate and remove Si from the

system, yielding the condition for marginal oscillatory instability:

(κ0 + 2ν0)(2κ0ν0 + ν20 −A4(Λ− 1−A2)) = ν20κ0 + ν0A
6 − (Λ− 1)κ0A

4, (4.25)

provided S2
i > 0, which requires

2κ0ν0 + ν20 > A4(Λ− 1−A2). (4.26)

Note that the condition (4.25) is the multiple of the coefficients of S2 and S equal to the coefficient

of S0 in equation (4.24). Hence, if equation (4.25) is satisfied exactly, while (4.26) simultaneously

holds, we have two marginal oscillatory modes.

We can also set S = Si = 0 in equation (4.24), giving the criteria for marginal steady insta-

bility:

ν20κ0 + ν0A
6 = (Λ− 1)κ0A

4. (4.27)

Note that equation (4.27), if satisfied, implies that at least one root of (4.24) exists and is marginally

unstable. However, if oscillatory instability occurs, governed by equations (4.25) and (4.26),

at fixed κ0 and Λ say, then there may be unstable modes alongside the marginal mode on the
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4.3 Hydrodynamic Regime

boundary (4.27). If there are no oscillatory instabilities, at fixed κ0 and Λ say, then equation

(4.27) describes the unstable boundary exactly.

There are numerous options to analyse (4.24) in order to investigate the effects that ν0 and κ0
have on the growth rate. For example, various contour plots of the maximum growth rate could

be made in (ν0, A) and (κ0, A)-space for fixed κ0 and ν0, respectively. However, this method

requires a complex selection of contour plots (at various Λ also) and is difficult to decipher as a

whole. Thus, we solve for the maximum growth rate in (4.24) at each A, ν0, and κ0, then select

the A,Amax say, that generates the maximum growth rate (i.e., Smax = S(Amax)) for each ν0 and

κ0; we then contour the growth rate S in (ν0, κ0)-space. To reiterate our discussion around the

definition of our nondimensional parameters (4.2) and (4.4), we consider that the cross-stream

wavenumber l is fixed (since it occurs in A, ν0 and κ0) and so the maximisation of the growth rate

over A is considered an optimisation over the vertical wavenumber k only.

Oscillatory Stability Bounds Independent of A

Thus, since we are maximising the growth rate over A, we can do the same for the stability

bounds (4.25) and (4.27), which will allow us to derive conditions that depend only on ν0, κ0 and

Λ.Differentiating the condition for marginal oscillatory instability (4.25) with respect toA implies

that the aspect ratio on the stability boundary must satisfy

A2 =
4

3

(Λ− 1)ν0
κ0 + ν0

. (4.28)

The aspect ratio required so that the pressure gradient can stabilise oscillatory modes increases

with increasing Λ and ν0 while it decreases with increasing κ0.

Hence, if S = Sr+ iSi with Sr = 0 and Si ̸= 0, then A must satisfy (4.28). We can substitute

(4.28) into (4.25) in order to obtain the following necessary and sufficient condition for oscillatory

stability which is independent of A:

κ0 > ν
1
2
0

((
16

27

) 1
4

(Λ− 1)
3
4 − ν

1
2
0

)
, (4.29)

provided (4.26) is satisfied. That is, if (4.26) is not satisfied, then (4.29) is not a valid condition

for stability. Note that differentiating (4.29) with respect to ν0 implies κ0 ≡ κ0(ν0) is maximised

(i.e., the largest value at which marginal oscillatory instability can occur) at

ν0 =

(
Λ− 1

3

) 3
2

, (4.30)

which increases with increasing Λ. Hence, after substituting (4.30) into (4.29) we obtain the value

of κ0 for which marginal oscillatory instability no longer occurs

κ0 =

(
Λ− 1

3

) 3
2

, (4.31)

which also increases with increasing Λ.
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The bound (4.29) also allows us to derive the maximum value of ν0 for which no oscillatory

instability can occur:

ν0 >
4

3
√
3
(Λ− 1)

3
2 . (4.32)

Note that the conditions (4.29), (4.30) and (4.31) and (4.32) are valid only provided (4.26) holds.

Steady Stability Bounds Independent of A

We now derive the corresponding steady stability condition from the condition on S = 0 (4.27).

Note that, the condition (4.27) only corresponds to a single root with S = 0; thus, it is possible

for other roots to be unstable on the bound. We partially differentiate (4.27) with respect to A

which, after some manipulation, implies that on the steady stability boundary the aspect ratio A

must satisfy

A2 =
2(Λ− 1)κ0

3ν0
. (4.33)

The aspect ratio required for stability increases with increasing κ0 and decreases with increasing

ν0.

Thus, if S = 0 exactly (i.e., S has no complex part so the modes are steady), then A must

satisfy (4.33). We can substitute (4.33) into (4.27) in order to obtain the following steady stability

condition which is independent of A:

κ0 <
3
√
3ν20

2(Λ− 1)3/2
. (4.34)

The stability bound (4.29) κ0 cannot be maximised since it increases monotonically with increas-

ing ν0. However, this implies that for any given ν0, instability is possible for sufficiently large κ0.

Likewise, at any κ0 sufficiently large, ν0 will stabilise the steady modes, where we require a larger

value of ν0 as Λ increases.

Exchanging Roots

We have already discussed that the stability bound (4.29) only defines a single marginally unstable

root. Indeed, if S = 0 on the bound (4.29), there are two other possible roots where S may

be positive. This becomes apparent when assuming (4.27) holds in the cubic for the growth rate

(4.24), yielding

S3 +
1

A2
(κ0 + 2ν0)S

2 +
1

A4
(2κ0ν0 + ν20 −A4(Λ− 1−A2))S = 0. (4.35)

Clearly, equation (4.35) has three roots, with one being S = 0. The other two roots are given by

2SA2 = −(κ0 + 2ν0)±
√
(κ0 + 2ν0)2 − 4(2κ0ν0 + ν20 −A4(Λ− 1−A2)), (4.36)

where if the discriminant is negative, we have two stable oscillatory modes. However, if the

discriminant is positive, it is possible that one mode of (4.36) is steady and unstable. Note that

the latter part of the discriminant relates to the condition (4.26) on whether marginal oscillatory
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4.3 Hydrodynamic Regime

instability can occur. Indeed, if (4.26) holds at fixed κ0, so that oscillatory instability may occur

at that κ0, then the discriminant of (4.36) may be positive. However, the mode will always be

guaranteed to be stable since the magnitude of the first term of (4.36) will be larger than that of

the square-root term.

To see that other steady modes can occur outside of the stability bound (4.34), we substitute

the value of A from (4.33) on the stability boundary into (4.36), yielding

2SA2 = −(κ0 + 2ν0)±
√

(κ0 + 2ν0)2 − 8(2κ0ν0 − ν20), (4.37)

where we have made use of the stability boundary (4.34) to write κ0 in terms of ν0. Clearly,

we have an unstable steady mode provided 2κ0 < ν0, illustrating that (4.29) is not necessarily

a necessary and sufficient steady boundary if there are oscillatory modes that occur for ν20 >

2(Λ− 1)3/2k0/3
√
3 at fixed κ0.

Necessary and Sufficient Conditions for Stability

We can derive a necessary and sufficient stability condition on all modes (i.e., steady and oscilla-

tory); indeed, the stability bound (4.29) is both necessary and sufficient provided (4.26) is satisfied,

while the bound (4.34) is necessary and sufficient if there are no oscillatory instabilities at a fixed

κ0. However, if we take the stability bounds (4.29) and (4.34) together they form the following

sufficient and necessary condition for stability (including both steady and oscillatory modes):

ν
1
2
0

((
16

27

) 1
4

(Λ− 1)
3
4 − ν

1
2
0

)
< κ0 <

3
√
3ν20

2(Λ− 1)3/2
, (4.38)

where, if either side of the inequality is violated, then instability (either steady or oscillatory) is

guaranteed. This is a powerful condition as it requires no additional assumption and the stability

bound is independent of the vertical wavenumber. Thus, given some astrophysical body, the pa-

rameters ν0, κ0 and Λ may be estimated so that (4.38) either implies that the system is stable or

unstable.

It is possible for instability to occur regardless of the value of κ0 if the right hand term is

smaller than the left hand term of (4.38) since the inequality would never be satisfied. Thus, we

set the left hand side equal to the right hand side of (4.38) which yields the following cubic in

ν
1/2
0 :

3
√
3

2(Λ− 1)3/2
ν

3
2
0 + ν

1
2
0 −

(
16

27

) 1
4

(Λ− 1)
3
4 = 0. (4.39)

Equation (4.39) is a cubic with one real root for ν0. We know this as the right hand term of (4.38)

is a quadratic passing through (ν0, κ0) = (0, 0), while the left hand term of (4.38) is only valid for

ν0 > 0 and is only positive for ν0 < 4(Λ − 1)1/2/3
√
3 (i.e., one interval of ν0). Equation (4.39)

clearly cannot be satisfied for ν0 < 0, and thus, equation (4.39) has one real root with ν0 > 0.

Hence, once this value is surpassed, then stability is possible since (4.38) can be satisfied. Note

that for large ν0 equation (4.39) cannot be satisfied with Λ = O(1) or smaller (as we expect of
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the astrophysical bodies in table 2.1), which implies that (4.38) can be satisfied so that stability is

possible.

To make further progress, we assume Λ = O(1) (which is reasonable in astrophysical plan-

etary atmospheres, e.g., Hot Jupiters) and ν0 ≪ 1 (which is again reasonable in planetary atmo-

spheres). These assumptions allow us to justify neglecting the cubic term in ν1/20 , yielding

ν0 ≈
4√
27

(Λ− 1)
3
2 . (4.40)

Therefore, if we observe an astrophysical body with ν0 ≪ 1 and less than the value of ν0 in

equation (4.40), then we are guaranteed instability since (4.38) cannot be satisfied.

The stability bounds (4.38) and (4.40) are very useful in application to astrophysical bodies

since there is no vertical wavenumber dependence. This allows a bound on κ0 (equivalently ν0 or

Λ) to be formed using inferred values of our parameters from the astrophysical body. For example,

using observed values for Hot Jupiters (found in the previous section and table 2.1), we estimate

Λ = 5 and ν0 = 10−13. This satisfies the criteria ν0 ≪ 1 with Λ = O(1) for (4.40) and, indeed,

our observed ν0 is smaller than the critical ν0 in (4.40). Hence, (4.38) cannot be satisfied and

instability is guaranteed. However, it is possible for the parameters in astrophysical bodies (even

Hot Jupiters) to satisfy (4.38), implying stability. We also note that numerical simulations typically

run with larger values of ν0 (ν0 = O(10) in large scale numerical models for Hot Jupiters, e.g.,

Rogers & Komacek, 2014) where (4.39) cannot be satisfied and so instabilities may be artificially

suppressed.

The Maximum Growth Rate in (ν0, κ0)-space

We now provide contour plots of the maximum growth rate S (and its corresponding imaginary

part) in (ν0, κ0)-space for Λ = 1.5 and Λ = 2.5 in figure 4.4. We determine the growth rate

by arraying (4.24) over A, ν0 and κ0 at fixed Λ. Then, at each ν0 and κ0 we select the A that

generates the maximum growth rate and also plot this value in (ν0, κ0)-space for the chosen Λ in

figure 4.5. To determine the range of A that is required to maximise the growth rate at each ν0
and κ0, we undergo preliminary runs of the process described above with A ∈ [0, A+], iterating

until the value A required is less than A+. Note that, the maximisation of the growth rate over

A can be interpreted as an optimisation over the vertical wavenumber k since the cross-stream

wavenumber is assumed to be fixed (as discussed around (4.2) and (4.4) since ν0 and κ0 contain

the cross-stream wavenumber). The bounds (4.29) and (4.34) form the necessary and sufficient

boundary for stability (4.38). The intersection of (4.29) and (4.34) is given by (4.39), reducing to

(4.40) provided ν0 ≪ 1 at the point of intersection.

We find that increasing ν0 always decreases the growth rate, while increasing κ0 always in-

creases the growth rate to the maximum growth rate of the inviscid hydrodynamic regime Λ/2.

The maximum growth rate occurs in the limit Pr ≪ 1 (which is typically the case in planetary

atmospheres), and are therefore steady instabilities. In general, we find that sufficiently large κ0
guarantees instability at any value of ν0. Interestingly, at certain values of ν0, increasing κ0 first
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4.3 Hydrodynamic Regime

Figure 4.4: The maximum growth rate S (top) and corresponding imaginary part (below) in
(ν0, κ0)-space with Λ = 1.5 (left) and Λ = 2.5 (right). The black oscillatory stability bound-
ary is given by equation (4.29). The red stability boundary is given by equation (4.34).

stabilises the system and then generates instability once again. This is owing to the oscillatory

instabilities that can occur only for sufficiently weak thermal diffusivity where buoyancy effects

are still felt (i.e., increasing the magnitude of thermal diffusivity dampens buoyancy effects and

stabilises oscillatory instabilities). This is confirmed by the corresponding imaginary part of the

maximum growth rate in (ν0, κ0)-space in figure 4.4 for Λ = 1.5 and Λ = 2.5. We note that

stability is guaranteed at any value of κ0 given sufficiently large ν0.

Figure 4.5 illustrates the corresponding aspect ratio in (ν0, κ0)-space that generates the max-

imum growth rate Smax (as found in figure 4.4) for Λ = 1.5 and Λ = 2.5. The values Λ = 1.5

and Λ = 2.5 are chosen so that comparisons can be made to figure 4.2. We find that increasing

ν0 or κ0 increases the value of Amax (i.e., the critical vertical wavenumber at which the maximum

growth rate occurs decreases). Modes with Pr ≪ 1 have the largest vertical wavenumbers (small

A). This is of interest as Pr is typically small in planetary atmospheres; the maximum growth

rate of the hydrodynamic regime also occurs in the large vertical wavenumber limit (Griffiths,

2008a). The large κ0 limit also shows that instability may now occur within the stable regime

of the inviscid system. That is, instability may now occur for A2 > Λ − 1. For example, at
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Figure 4.5: The Amax that generates the maximum growth rate Smax (as seen in figure 4.4) in
(ν0, κ0)-space with Λ = 1.5 (left) and Λ = 2.5 (right). The black oscillatory stability boundary is
given by equation (4.29). The red stability boundary is given by equation (4.34).

κ0 = 4 and ν0 = 1.5 with Λ = 2.5, Amax ≈ 1.5 so that A2 = 2.25 > 1.5 = Λ − 1. This is

consistent with (4.33), which predicts that as the strength of thermal conductivity increases at a

fixed ν0, then larger A is required to stabilise the steady modes of the system. Thus, instability

can occur at larger A which were stable in the ideal regime (A >
√
Λ− 1 gives stability). This

is due to the pressure gradient (whose strength increases with increasing A) being damped by an

increasing rate of thermal diffusion (κ0 increasing). Note that these instabilities are much like the

Goldreich-Schubert-Fricke (GSF) instability (Goldreich & Schubert, 1967; Fricke, 1968), where

thermal diffusion counteracts the stabilising effect of the pressure gradient and allows instability

to occur at larger A (which would otherwise by stable in the absence of diffusion).

Limit of Strong Thermal Diffusion

Motivated by the complex behaviour found in the limit of large thermal diffusion in figures 4.4

and 4.5, we investigate the large κ0 limit of equation (4.20). However, we must also consider the

asymptotic behaviour of the growth rate S and aspect ratio A since they also vary with κ0, as seen

in figures 4.4 and 4.5. First, we address the upper left section of figure 4.4 and suppose κ0 ≫ 1

with S = S0 + S1κ
−β
0 , where S0 = O(1), S1 = O(1), and β = O(1) are yet to be determined.

We also suppose that A ∼ κ
1/8
0 (numerically determined) from which (4.20) yields:

Sκ1 =
√
Λ− 1− ν0

A2
− A4

2κ0
+O(κ−1

0 ). (4.41)

Equation (4.41) is the growth rate (4.13), found for Pr = 1, in the absence of the −A2 term (found

within the square root) that acts to reduce the growth rate. This is expected in the large κ0 limit

since effects generated by the pressure (which is stabilising) will be negligible.

We now address the upper right section of figure 4.4 by supposing A ∼ κ
1
4
0 and ν0 ∼ κ

1
2
0

(inferred from the stability bound (4.34) with its corresponding value of A (4.33)) with κ0 ≫ 1,
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4.4 Magnetohydrodynamic Regime

Figure 4.6: The exact growth rate (calculated from (4.20)) plotted with the large κ0 expansions
(4.41) and (4.42) (solid red and blue lines, respectively) at κ0 = 4 and κ0 = 105 for Λ = 2.5

against ν0. Note that, in order to do this, at each ν0 we select the A that generates the maximum
growth rate.

in which case (4.20) yields:

Sκ2 =
(Λ− 1)κ0A

4 − ν20κ0 − ν0A
6

A2(2κ0ν0 +A6)
+ . . . , (4.42)

which has been derived from a quadratic in S, where we have taken the positive sign so that

instability is possible (the negative sign guarantees the mode is stable).

To confirm the validity and assess the accuracy of the large κ0 expansions (4.41) and (4.42),

we plot them in figure 4.6 alongside the exact growth rate (calculated via (4.20)) at κ0 = 4 and

κ0 = 105 for Λ = 2.5 against ν0. Note that, in order to do this, at each ν0 we select the A that

generates the maximum growth rate so that Sκi is a function of ν0 only (since A = A(ν0)). We

observe that each expansion is accurate for some small interval of ν0, capturing the behaviour of

the unstable mode in their respective cases. We find that the accuracy of (4.41) improves as we

increase κ0 (as one would expect); however, (4.42) still only captures the unstable mode for a

small region of ν0 before stabilisation.

4.4 Magnetohydrodynamic Regime

We now consider the magnetohydrodynamic regime, where the magnetic diffusivity η must be

considered alongside ν and κ. In the following subsections we consider Pr = Pm = 1, Pr ̸= 1

and Pm = 1, P r = 1 and Pm ̸= 0 as well as Pr ̸= 0 and Pm ̸= 0. In the final case, we inves-

tigate the regime Pr ≪ Pm ≪ 1, which is typically the case in astrophysical objects. The cases

prior remain useful for analytical progress, numerical simulations and physical understanding.

4.4.1 Formulation and Stability Bounds

We first derive stability bounds from equation (4.5). In the hydrodynamic regime we derived

stability bounds independent of A, motivated by our analysis of the system (e.g., contouring the
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maximum growth rate and the value of A at which occurs in (ν0, κ0)-space); however, we will

later be maximising the growth rate over both A and the Lehnert number L. Thus, we now derive

stability bounds independent of A and L.

In the magnetohydrodynamic regime we can only make analytic progress regarding the steady

neutrally unstable mode (i.e., a0 = 0 so that the quintic equation (4.6) yields an S = 0 root);

it is impractical to analytically determine an oscillatory boundary (analogous to (4.25) of the hy-

drodynamic system) by the Routh-Hurwitz criteria (Routh, 1877; Hurwitz, 1895) owing to the six

non-zero coefficients of (4.6). However, the hydrodynamic oscillatory condition (4.29) still may

be used in certain cases (e.g., Pr ̸= 1 and Pm = 1 with sufficiently large Λ). Thus, we proceed

by deriving a steady stability boundary (S = 0) by differentiating (4.5) with respect to each A2

and L2, then setting the derivatives and S to zero. Indeed, since equation (4.5) is a quintic poly-

nomial in S, this process yields the A2 and L2 derivatives of the coefficient of S0 (since setting

S = ∂A2 = ∂L2 = 0 annihilates all other terms). That is, we obtain the A2 and L2 derivatives of

A2η0
κ0

(ν0η0
A4

+ L2
)
− L2Λ + (1− Λ)

η20
A4

+
(ν0η0
A4

+ L2
)2

= 0, (4.43)

which can be derived by setting S = 0 in the quintic polynomial (4.5). Note that, in general, the

quintic equation (4.5) may have complex roots; however, the stability bound (4.43) applies only to

steady modes.

To derive the steady stability boundary we differentiate (4.5) with respect toA2 and L2.Hence,

differentiating (4.43) with respect to L2 and setting ∂LS = 0, yields

2L2 = Λ− A2η0
κ0

− 2ν0η0
A4

. (4.44)

Note that since L2 cannot be negative, equation (4.44) holds only if the right hand side is positive.

If (4.44) implies that L2 < 0, which can not be the case, then the steady hydrodynamic bound

(4.34) must be used with L = 0.

Next, we differentiate (4.43) with respect to A2, yielding

− ν0η
2
0

κ0A4
+
η0L

2

κ0
+ 2(Λ− 1)

η20
A6

− 4ν0η0
A6

(ν0η0
A4

+ L2
)
= 0. (4.45)

Substituting (4.44) into (4.45) yields an expression independent of L2, that is

η0Λ

2κ0
− A2η20

2κ20
− 2Λν0η0

A6
− 2(1− Λ)

η20
A6

= 0. (4.46)

Next, in order to derive a stability bound in terms of ν0, κ0, η0 and Λ only, we substitute (4.44)

and (4.46) into equation (4.43), yielding the following quadratic in A2 :

Λ2κ20 + 2A4η20 − 3κ0η0ΛA
2 = 0, (4.47)

where, upon factorising (4.47), we obtain(
Λ− 2A2η0

κ0

)(
Λ− A2η0

κ0

)
= 0. (4.48)
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4.4 Magnetohydrodynamic Regime

Thus, A2 can take two values. First, if A2 = Λκ0/η0, then the corresponding L2 calculated from

(4.44) is negative. Thus, we must take the following value of A2 and L2 :

A2 =
Λκ0
2η0

=⇒ L2 =
Λ

4
− 4η30ν0

Λ2κ20
, (4.49)

where the latter is calculated by substituting A2 = Λκ0/2η0 into (4.44). The expression for L2 is

valid only if Λ3κ20 > 16η30ν0; if this is not the case, we take L = 0 and the hydrodynamic steady

stability bound (4.34). Equation (4.49) implies that on the steady stability bound the aspect ratio

A increases with increasing κ0 or Λ. This is reasonable as we expect that increasing κ0 and Λ will

increase the growth rate of unstable modes so that stronger buoyancy forces (via increasing A) are

required in order to stabilise the system. The aspect ratio A also decreases with increasing mag-

netic diffusivity η0. Indeed, the growth rate of unstable magnetic modes is already dampened (or

stabilised) by magnetic diffusivity and therefore only weak buoyancy effects are required in order

to stabilise the system. The expression for L in (4.49) is harder to interpret owing to the different

possible scalings between Λ, ν0, κ0 and η0. However, given that the value of the Lehnert number

in (4.49) is positive, so that the marginally unstable modes are magnetic on the boundary, then the

value of the Lehnert number increases with increasing Λ or κ0 and decreases with increasing η0

or ν0.

Thus, when ∂L2S = ∂A2S = S = 0 and the marginally unstable modes are magnetic, then

the values of A2 and L2 are given in (4.49). Substituting these values into equation (4.43) yields

the following criteria for stability to steady modes:

κ20 <
64η40
Λ4

(
ν0Λ

η0
+ (1− Λ)

)
, (4.50)

provided Λ3κ20 > 16η30ν0 (i.e., equation (4.49) is satisfied). If the condition (4.49) is not met, then

L = 0 and the steady hydrodynamic stability bound (4.34) is used. We will consider this on a case

by case basis when considering different constraints on the Prandtl numbers (e.g., Pr ̸= 1). Note

that, if (4.50) is satisfied, then it is still possible for oscillatory instabilities to occur since (4.50)

describes a boundary where S ≡ 0 (i.e., zero imaginary part). We also note that the bound (4.50)

corresponds to a0 = 0 and S = 0 in (4.6); however, equation (4.6) could also be satisfied with

either four complex roots, two complex and two real roots, or four real roots, and thus, in certain

cases, (4.50) may not be a necessary and sufficient condition for steady stability. We will address

the use of (4.50) in numerous Prandtl numbers regimes.

Note that since we considering a flow with a fixed latitudinal lengthscale on an astrophysical

body so that all parameters aside from the vertical wavenumber k are fixed, then we must con-

sider a single hyperbola A2L2 = C in figure 4.1; then, writing L2 = C/A2 in equation (4.43)

yields a quartic in A2, which gives the points at which the hyperbolae intersects with boundary of

the unstable domain. For example, equation (4.43) would yield two distinct real roots (and two

complex roots) if the hyperbola intersected the boundary of the unstable region in figure 4.1 at

two distinct points; alternatively, equation (4.43) would yield a double real root (and two complex
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roots) if the hyperbola intersected the unstable region once only (i.e., the hyperbolae that bound

the region from above and below). Unfortunately, writing L2 = C/A2 in equation (4.43) does

not allow for any useful analytical progress to be made; however, the roots can be determined

numerically. Further to this, note that the (L, A) given by (4.49) corresponds to the final unstable

mode that is stabilised in the (L, A)-space of figure 4.1 (e.g., owing to an increasing magnitude of

kinematic viscosity ν0 say). Thus, given contours of the maximum growth rate in diffusive space

(e.g., (ν0, κ0)-space with ν0 = η0) at fixed Λ, where A and L have been selected to maximise the

growth rate, then (4.50) bounds the steady unstable modes.

4.4.2 Pr = Pm = 1

We first consider the simplest possible choice of Prandtl numbers, where both are unity. In this

case, we write κ0 and η0 as ν0 which allows us to recast equation (4.5) as(
S +

ν0
A2

)4
+
(
S +

ν0
A2

)2 (
A2 + 2L2 + 1− Λ

)
+ L2

(
A2 + L2 − Λ

)
= 0. (4.51)

Equation (4.51) reduces to its inviscid analogue (3.23) in the absence of diffusion. However, we

can also obtain equation (4.51) from (3.23) via a transformation of the growth rate S to S +

ν0/A
2. That is, for each point in (L, A)-space we may obtain the growth rate when ν0 ̸= 0 by

subtracting ν0/A2 from the growth rate in the absence of diffusion. This transformation allows

us to use numerous results from the inviscid case such as the weak field expansions (3.29) and

(3.30) provided ν0/A2. The transformation also implies that oscillatory instabilities will not occur

in this regime, and thus weakly unstable modes within the inviscid instability domain, given by

(3.25), will be stabilised. Thus, the sufficient and necessary condition for stability (3.25) becomes

a sufficient condition only.

Stability Conditions

It is of interest to find the critical diffusion, ν0 = νc say, for which no steady unstable modes exist

(noting that there are only steady instabilities in the case Pr = Pm = 1). We obtain this value

from the stability bounds (4.34) and (4.50), where the latter is used if L > 0 in equation (4.49).

Writing κ0 and η0 as ν0 allows us to recast equation (4.49) as

L2 =
Λ

4
− 4ν20

Λ2
. (4.52)

Hence, if νc required for stabilisation becomes too large, then L will not be positive on the bound-

ary and the hydrodynamic critical diffusion must be calculated from (4.34).

In the cases where (4.52) does not predict a positive value for L, we have the steady hydrody-

namic stability bound (4.34) which implies that νc is given by

νc =
2(Λ− 1)3/2

3
√
3

. (4.53)
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4.4 Magnetohydrodynamic Regime

If equation (4.52) predicts a positive value for L, we have the magnetic steady stability bound

(4.34) which yields the critical diffusion:

νc =
Λ2

8
. (4.54)

Note that the scaling between νc and Λ differs between the two cases (4.53) and (4.54).

To determine the value of ν0 = νc (or Λ) at which the stability bound shifts from (4.53) to

(4.54) we substitute (4.54) into equation (4.52), yielding

L > 0 ⇐⇒ ν0 < 2, or equivalently, Λ < 4. (4.55)

Hence, provided Λ < 4, then the critical diffusion νc < 2 and is predicted by the magnetic bound

(4.54). If Λ > 4, then the critical diffusion νc > 4 and is predicted by the hydrodynamic bound

(4.53). Note that if either of the critical diffusions (4.53) or (4.54) are satisfied (when relevant),

then the system is stable since oscillatory instability is not possible with Pr = Pm = 1.

The Growth Rate as a function of Lehnert Number and Aspect Ratio

We continue our analysis by providing contour plots of the growth rate (calculated numerically

from (4.51)) in (L, A)-space. Naturally, we are primarily concerned with the most unstable mode;

however, it is also of interest to investigate the entire instability domain as nonlinear evolution may

allow other modes to grow more rapidly. In planetary atmospheres, it is also possible that the flow

interacts with waves of arbitrary vertical wavenumber, forcing modes to become unstable with a

non-optimal aspect ratio (i.e., the vertical wavenumber is prescribed to the mode from the wave).

Thus, modes with growth rate less than the maximum may also be relevant in understanding the

dynamics of planetary atmospheres. Recall that if we are given a flow of latitudinal lengthscale L

on an astrophysical body so that all parameters are fixed aside from the vertical wavenumber, then

we must consider a single hyperbola in (L, A)-space, where the vertical wavenumber only may

vary as they are traversed.

In figures 4.7-4.9 we contour the growth rate (calculated numerically from (4.51)) in (L, A)-

space with Λ = 0.5, 1.5 and 2.5, respectively, for multiple ν0. These are useful in order to compare

the diffusive system with that of the ideal regime, where we also include the inviscid necessary and

sufficient condition for stability (3.25), given by the solid red line. We also include dashed black

lines that represent the hyperbolae AL = C, where C incrementally doubles from C = 0.025 to

C = 3.2; large vertical wavenumbers are found in the large L limit. The red dot represents the

location of the most unstable mode in the domain.

Figure 4.7 indicates a solely hydrodynamically stable regime (since Λ < 1), allowing us to

conclude that even weak magnetic field destabilises the system. Increasing ν0 reduces the growth

rate and stabilises the system at ν0 = 0.03125, as predicted by (4.54).

Figure 4.8 shows both a hydrodynamically unstable regime, for A− < A < A+, and a stable

regime with A < A− or A > A+, where A− and A+ are approximated by the hydrodynamic

instability domain (4.23), which is valid for ν0 ≪ 1. In both cases, weak field again destabilises
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Figure 4.7: Pr = Pm = 1: The most unstable mode in (L, A)-space with Λ = 0.5 for ν0 = 10−5

(left), ν0 = 0.01 (centre) and ν0 = 0.02 (right). The red line is the inviscid stability bound (3.25).

Figure 4.8: Pr = Pm = 1: The most unstable mode in (L, A)-space with Λ = 1.5 for ν0 = 10−5

(left), ν0 = 0.05 (centre) and ν0 = 0.15 (right). The red line is the inviscid stability bound (3.25).

the system as the maximum growth rate occurs with L ̸= 0, where this behaviour persists for

1 < Λ < 2. We find that increasing ν0 reduces the growth rate and stabilises the system at

ν0 = 0.28125, as predicted by (4.54). The value of A, Amax say, where the maximum growth rate

occurs, increases with increasing ν0, while the corresponding Lmax is approximately constant.

Figure 4.9 once again shows a hydrodynamically stable and unstable regime, where weak field

clearly allows instability to occur in the hydrodynamically stable regime. For sufficiently large ν0

(ν0 ≈ 0.12) the most unstable mode occurs at L ̸= 0. This is because the hydrodynamic modes

dominate at larger Rossby number Λ but are damped by increasing kinematic viscosity, allowing

magnetic modes to have larger growth rates in comparison to the hydrodynamic modes even while

the magnitude of magnetic diffusivity is also increasing (since η0 = ν0 for Pm = 1).

The Limit of Weak Magnetic Field

Figures 4.7-4.9 have shown that weak magnetic field induces instability within certain parameter

regimes, including the entire unstable domain for Λ < 1 as this is hydrodynamically stable. Fol-

lowing the inviscid analysis we consider the weak field regime to categorise the behaviour of the

system. To investigate the small L regime we can transform the ideal weak field expansions (3.29)

and (3.30) by writing S as S + ν0/A
2 or, alternatively, consider the small L regime of equation
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4.4 Magnetohydrodynamic Regime

Figure 4.9: Pr = Pm = 1: The most unstable mode in (L, A)-space with Λ = 2.5 for ν0 = 10−5

(left), ν0 = 0.013 (centre) and ν0 = 0.5 (right). The red line is the inviscid stability bound (3.25).

(4.51). In either case, the growth rate for the modes scale as

SH = (Λ− 1−A2)1/2 − ν0
A2

− L2(Λ− 2−A2)

2(Λ− 1−A2)3/2
+O(L4), (4.56)

SL =
L(Λ−A2)1/2

(A2 − 1− Λ)1/2
− ν0
A2

− L3

2(A2 − 1− Λ)5/2(Λ−A2)1/2
+O(L5), (4.57)

where SH represents the hydrodynamic mode, while SL corresponds to the magnetic root. Clearly,

the expansions break down when Λ−1−A2 is sufficiently close to zero, since the leading and first

order terms in L become comparable. We address this regime by supposing that Λ − 1 − A2 =

αL for some constant α, of order unity (or undergo the relevant transformation of (3.31)), and

substitute into (4.51) to derive the expression

SB =

(
L

2

) 1
2 (

Λ− 1−A2 +
√
(Λ− 1−A2)2 + 4

) 1
2 − ν0

A2
, (4.58)

valid for Λ − 1 − A2 sufficiently close to zero. To derive (4.58) we took the positive sign of the

square root as it describes the most unstable mode (the negative sign would guarantee stability).

Expressions (4.56), (4.57) and (4.58) completely describe the weak field regime. Together,

they indicate that if the system is hydrodynamically stable, we must take S2
L (equation (4.57)) to

describe the most unstable mode. Thus, when the system is hydrodynamically stable, the first order

term in L of equation (4.57) indicates that weak field is destabilising if A2 < Λ, and stabilising

otherwise.

If the system is hydrodynamically unstable, we take S2
H (equation (4.56)) to describe the most

unstable mode. Thus, when the system is hydrodynamically unstable, the first order term in L of

equation (4.56) indicates if Λ < 2, then weak field increases the growth rate. Similarly, if Λ > 2,

weak field increases the growth rate provided Λ− 2 < A2 < Λ− 1, and stabilises if A2 < Λ− 2.

Note that in the case Pr = Pm = 1, the asymptotic expansions (4.56), (4.57) and (4.58)

do not invalidate the magnetohydrostatic approximation since (2.29) reduces to |(S + ν0/A
2)2 +

L2| ≪ N2/f20 . Thus, (2.29) holds since we can exploit the transformation from the ideal regime

(S → S + ν0/A
2) to consider the constraint. Hence, as in the ideal regime, provided L is not too

large, then (4.56), (4.57) and (4.58) remain valid.
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Figure 4.10: Pr = Pm = 1: The growth rate of the weak field expansions (4.56) at A = 0.8 (left)
and (4.57) at A = 1.3 (right) are plotted against the exact growth rate for various ν0 with Λ = 2.5.

Figure 4.11: Pr = Pm = 1: The growth rate of the weak field singular expansion (4.58) at A =

1.22 is plotted against the exact growth rate for various ν0 with Λ = 2.5.

In figures 4.10 and 4.11 we plot the weak field expansions (4.56), (4.57) and (4.58) with the

exact solution (calculated numerically from (4.51)) against L to ensure their accuracy. These plots

are made for various A and ν0 with Λ = 2.5 (where all magnetic effects can be visualised). Note

that the axis length and the magnitude of ν0 are altered across the figures.

Figure 4.10 shows that the expansions (4.56) and (4.57) remain accurate under the transfor-

mation of the growth rate; however, we find that the magnetic expansion (4.57) becomes invalid

when ν0 becomes too large. This is due to the expansion transformation breaking down when

S ∼ ν0/A
2. The role of magnetic field on the system remains consistent with the expansions

(4.56) and (4.57), where, for example, at A = 1.3, magnetic field increases the growth rate of the

system. Figure 4.11 shows that the expansion (4.58) remains accurate under the transformation

of the growth rate; however, we also find that the magnetic expansion becomes invalid when ν0

becomes too large.

110



4.4 Magnetohydrodynamic Regime

The Maximum Growth Rate as a Function of Diffusion

We will be maximising the growth rate over A and L at fixed ν0 and Λ, where we once again

reiterate that the cross-stream wavenumber is considered to be fixed (prescribed via our diffusive

parameters). This allows us determine the role of diffusion on the most unstable mode of the sys-

tem, and describe these results in a more rigorous and effective manner. However, it must be noted,

it is difficult to interpret these results for given astrophysical bodies since vA, ν0, and therefore

the cross-stream wavenumber, take fixed values (inferred from observations). This consequence

arises because the maximisation over A must be interpreted as an optimisation over the vertical

wavenumber k, while the maximisation over L must be interpreted as an optimisation over kvA,

where an optimal magnetic field strength is inferred (since k is already chosen via the optimisation

of A) from the quantity kvA (e.g., if k increases, but L remains constant, then vA must decrease).

Thus, since vA must vary in magnitude, we cannot consider a single astrophysical body.

Having maximised the growth rate over the parameters L and A, we provide plots of the

maximum growth rate, Lmax, and Amax against ν0 in figure 4.12, for Λ = 0.5, 1.5 and 2.5, where

Lmax and Amax are the values of L and A that generate the maximum growth rate Smax (i.e.,

Smax = S(Lmax, Amax)). The black, red and blue crosses denote the maximum growth rate, Lmax

and Amax, respectively.

As ν0 increases, the maximum growth rate monotonically decreases in all cases. For Λ = 0.5

and 1.5, the optimal Lehnert number Lmax does not vary much from L ≈ 0.4 as ν0 increases. How-

ever, the aspect ratio A increases significantly as ν0 increases, implying the vertical wavenumber

is decreasing. Hence, for L to remain approximately fixed over the domain, the optimal magnetic

field strength must be increasing to balance the decreasing vertical wavenumber. For Λ = 2.5,

the aspect ratio A and Lehnert number L increase at approximately the same rate as ν0 increases.

Thus, vertical wavenumber must decrease with increasing ν0 implying that the magnetic field

strength must increase at faster rate. Figure 4.12 suggests that the magnetic field strength scales

approximately with 1/k2. Hence, in all cases, as ν0 increases, the maximum growth rate occurs

at decreasing vertical wavenumber while the magnetic field strength increases at a rate such that

L remains fixed or increases. Physically, as ν0 increases, the most unstable mode must occur at

larger A since kinematic viscosity stabilises modes with large vertical wavenumbers. The Lehnert

number prefers to remain approximately constant and equal to 0.4 since this is close to the value

that maximises the growth rate in the ideal regime (see equation (3.26)). Hence, as increasing

strength of diffusion increases the aspect ratio of the most unstable mode, we require increasing

field strength to obtain the maximum growth rate of the system.

4.4.3 Pr ̸= 1, Pm = 1

In this section we consider the case where Pr ̸= 1 and Pm = 1. Thus, ν0 ̸= κ0 with κ0 ̸= 0

and ν0 = η0. This is a natural extension to the case Pr = Pm = 1 and allows us to make useful

analogies to the hydrodynamic case described by (4.24) where Pr ̸= 1.
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Figure 4.12: Pr = Pm = 1: Maximum growth rate Smax = S(Amax,Lmax) plotted alongside Lmax

and Amax against ν0. The Rossby number Λ = 0.5 (left), 1.5 (centre) and 2.5 (right).

Formulation and Stability Bounds

Writing η0 as ν0 in (4.5) yields the following equation for the growth rate S :

A2 S + ν0/A
2

S + κ0/A2

((
S +

ν0
A2

)2
+ L2

)
− L2Λ

+ (1− Λ)
(
S +

ν0
A2

)2
+

((
S +

ν0
A2

)2
+ L2

)2

= 0. (4.59)

We can set S = 0 in equation (4.59), giving the criterion for marginal steady instability in

terms A,L, ν0 and κ0. However, since we are optimising the growth rate over A and L, we can

use the previously derived criterion (4.50) for marginal steady instability. Recall that this criterion

only applies to steady instabilities (i.e., S ≡ 0) and therefore oscillatory instabilities may exist

while the conditions are satisfied. Note that this criterion is only valid if (4.49) predicts L > 0;

otherwise the hydrodynamic bound (4.34) must be used. Hence, after writing η0 as ν0, we recast

equation (4.49) as

L2 =
Λ

4
− 4ν40

Λ2κ20
. (4.60)

Equation (4.60) implies that the magnetic stability bound (4.50) is valid if Λ3κ20 > 16ν40 .

In the cases where (4.60) does not imply a positive value for L, we have the hydrodynamic

necessary and sufficient condition for steady stability (4.34), which we rewrite here for conve-

nience:

κ0 =
3
√
3ν20

2(Λ− 1)
3
2

. (4.61)

In the cases where (4.60) predicts a positive value for L, we have the magnetic necessary and

sufficient steady stability condition (4.50) which we recast as follows:

κ0 <
8ν20
Λ2

. (4.62)

Note that equations (4.61) and (4.62) only apply to one root and thus there may be other

steady modes with S > 0 while these conditions are satisfied; we will address this using contours

of the growth rate in (ν0, κ0)-space. The conditions (4.61) and (4.62) also only apply to steady
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4.4 Magnetohydrodynamic Regime

instabilities (i.e., S ≡ 0) and therefore oscillatory instabilities may exist while (4.61) and (4.62)

are satisfied.

To determine the value of Λ (or equivalently a relation between ν0 and κ0) at which the stability

bound shifts from (4.61) to (4.62) we substitute (4.62) into (4.60), yielding

L > 0 ⇐⇒ Λ < 4, or equivalently, 2κ0 > ν20 . (4.63)

Hence, provided Λ < 4, then the critical diffusion satisfies 2κ0 > ν20 and the relevant stability

bound is given by equation (4.62). Otherwise (i.e., Λ > 4), stability is determined by the hydrody-

namic bound (4.61). Note that if either of the stability bounds are satisfied (when relevant), then

the system is only stable to steady instabilities (i.e., instabilities may still occur with a complex

growth rate).

Now, (4.59) is a quintic in S and thus has some expression, by the Routh-Hurwitz theorem

(Hurwitz, 1895; Routh, 1877), for marginal oscillatory instability. Unfortunately, the expression is

extremely complex and cannot be easily derived or optimised overA and L, and thus an analytical

result of the oscillatory stability boundary can not be determined. However, the hydrodynamic

condition (4.29) remains valid when Λ > 2 since the most unstable mode on the boundary is

hydrodynamic. Hence, for 4 > Λ > 2, equation (4.60) implies the use of (4.62) for which we

obtain the necessary and sufficient condition for stability of all modes:

ν
1
2
0

((
16

27

) 1
4

(Λ− 1)
3
4 − ν

1
2
0

)
< κ0 <

8ν20
Λ2

. (4.64)

If Λ < 2, the hydrodynamic oscillatory condition (4.34) becomes only a necessary condition for

stability. Thus, equation (4.64) becomes a necessary condition for stability; however, the latter

inequality (κ0 < 8v20/Λ
2) still remains necessary and sufficient. For Λ > 4, equation (4.60)

implies the use of (4.61) for which we obtain the necessary and sufficient condition for stability of

all modes:

ν
1
2
0

((
16

27

) 1
4

(Λ− 1)
3
4 − ν

1
2
0

)
< κ0 <

3
√
3ν20

2(Λ− 1)
3
2

, (4.65)

which is just the hydrodynamic condition (4.38). It may seem surprising that (4.65) is both neces-

sary and sufficient in the MHD regime, however, the bound corresponds to the final modes that are

stabilised, which are hydrodynamic for sufficiently large Λ. Note that we can once again derive

a cubic in ν1/20 from (4.64); however, we can only make further analytical progress if ν0 ≪ 1,

which yields the same critical diffusion (4.40) as in the hydrodynamic case.

The Maximum Growth Rate as a Function of Aspect Ratio and Lehnert Number

Here we provide contour plots of the maximum growth rate S in (L, A)-space in order to address

what is the most unstable mode of a given astrophysical body (a single hyperbola) and what the

nature of the mode is (e.g., magnetically modified inertial or double diffusive instability).
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In figures 4.13 and 4.14 we therefore plot contours of the growth rate (calculated numerically

from (4.59)) in (L, A)-space, which are plotted with κ0 = 1 for Λ = 1.5 and Λ = 2.5, respec-

tively, and for Pr = 0.01 and Pr = 0.5.

We can see by comparing figure 4.13 to figure 4.8 at ν0 = κ0 = 0.05 (so we are comparing

figures with similar kinematic viscosity) that both the maximum growth rate increases as well as

the size of the unstable domain for larger thermal conductivity (equivalently, smaller Pr). We can

also see that for Pr = 0.01, instability can now occur for larger aspect ratios that are stable in

the inviscid system, which is implied by the ideal necessary and sufficient condition for stability

(3.25). This is similar to the double-diffusive GSF instability (Goldreich & Schubert, 1967; Fricke,

1968) and the triple-diffusive extension in Menou et al. (2004), where the stabilising effect of the

pressure gradient (which increases for increasing A) is neutralised by thermal diffusion, allowing

instability to occur at aspect ratios that would otherwise be stable in the absence of diffusion.

We can see by increasing Pr and therefore the kinematic viscosity that the number of unstable

modes decreases. Interestingly, the maximum growth rate occurs outside at a value of A that

is stable in the ideal system for Pr = 0.5, indicating that the most unstable mode occurs at

increasing values of A as Pr increases; the Lehnert number the generates the maximum growth

rate is approximately constant and is close to the selected Lehnert number in the ideal regime

(3.26). Note that an analogous plot for Λ = 0.5 shows the same effects, but has a much smaller

range of unstable aspect ratios (and Lehnert numbers) and is stabilised for Pr ≈ 0.2.

Figures 4.14 shows an analogous plot to figure 4.13 for Λ = 2.5, where inertial effects are

more prominent. Indeed, we see that for Pr = 0.01, the maximum growth rate occurs on the hy-

drodynamic axis. However, as Pr increases, the most unstable mode is generated at an increasing

Lehnert number. This is due to kinematic viscosity reducing the growth rate of the hydrodynamic

inertial modes such that the magnetic growth rates become larger in comparison. We see that

as Pr increases, L approaches the value which generates the maximum growth rate in the ideal

regime (3.26). We also observe many of the effects described previously for figure 4.13.

The Maximum Growth Rate as a Function of Diffusivities

In figure 4.15, we provide contour plots of the maximum growth rate S and its corresponding

imaginary part in (ν0, κ0)-space for Λ = 0.5, Λ = 1.5 and Λ = 2.5. We determine the growth

rate via (4.59) for each A,L, ν0 and κ0 at fixed Λ. Then, for each ν0 and κ0, we select the values

of A and L for which the growth rate is maximised and plot the maximum growth rate in (ν0, κ0)-

space for the chosen Λ. Again, we note that the maximisation of the growth rate is one of the

vertical wavenumber (via the aspect A) and the quantity kvA (via the Lehnert number L); the

latter allows us to infer an optimal magnetic field strength as k is already chosen (via A). We note

that the oscillatory hydrodynamic bound (4.34) is indeed only a necessary condition for stability

for Λ = 0.5 and Λ = 1.5, while it is necessary and sufficient for Λ = 2.5.
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4.4 Magnetohydrodynamic Regime

Figure 4.13: Pr ̸= 1, Pm = 1: Growth rate in the (L, A)-space with κ0 = 1 and Λ = 1.5 for
Pr = 0.01 (left) and Pr = 0.5 (right). The red line is the ideal necessary and sufficient boundary
(3.25). The dashed black lines represent hyperbolae AL = C, where C incrementally doubles
from C = 0.025 to C = 3.2. The red dot represents the location of the most unstable mode.

Figure 4.14: Pr ̸= 1, Pm = 1: The maximum growth rate in (L, A)-space with κ0 = 1 and
Λ = 2.5 for Pr = 0.01 (left) and Pr = 0.5 (right). The red line is the ideal necessary and
sufficient boundary (3.25). The dashed black lines represent hyperbolae AL = C, where C
incrementally doubles from C = 0.025 to C = 3.2. The red dot represents the location of the
most unstable mode.
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Figure 4.15: Pr ̸= 1, Pm = 1: The maximum growth rate S and corresponding imaginary part
(plotted below) in (ν0, κ0)-space with Λ = 0.5 (left), Λ = 1.5 (centre) and Λ = 2.5 (right). The
black oscillatory stability boundary is described by equation (4.29). The red stability boundary is
described by equation (4.62). Note that since Λ < 4, the use of the hydrodynamic boundary (4.61)
is not necessary.

Immediately one can notice that the instability domain is extended when compared to the

hydrodynamic regime since (4.29) is contained within the bound (4.62). This implies purely mag-

netic instabilities exist once (4.29) is surpassed; thus, magnetic field allows modes to remain

unstable for larger ν0 in comparison to the hydrodynamic case. We note the discrepancy between

(4.29) and (4.62) decreases as we increase Λ, which is expected since (4.60) implies (4.29) re-

places (4.62) at Λ = 4 as the necessary and sufficient steady stability bound.

It is clear that ν0 always decreases the growth rate, while the behaviour of increasing κ0 is

more complex. If the system is unstable to oscillatory instabilities (where (4.15) exhibits com-

plex growth rates), then increasing thermal diffusion decreases the growth rate until the system is

stable or steady instabilities are induced. Oscillatory instabilities can occur only for sufficiently

weak thermal diffusion where buoyancy effects are still felt (i.e., increasing the magnitude of ther-

mal diffusivity dampens buoyancy effects). Increasing κ0 further in the stable region eventually

also induces steady instabilities. Thus, once the system exhibits unstable steady modes from suffi-

ciently large κ0, then increasing κ0 further always increases the growth rate to the maximum of the

inviscid hydrodynamic regime Λ/2. The maximum growth rates occur in the limit Pr ≪ 1, which

was the case in the hydrodynamic regime, as shown in figure 4.4. Thus, in stellar and planetary

atmospheres, where typically Pr ≪ 1, instabilities, if they occur, will be steady. In general, the

system is unstable for sufficiently large κ0 at any value of ν0; also, stability is possible at any value

of κ0 given sufficiently large ν0.
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4.4 Magnetohydrodynamic Regime

It is natural to plot the corresponding aspect ratio A and Lehnert number L, Amax and Lmax

say, in (ν0 = η0, κ0)-space that generate the maximum growth rate Smax found in figure 4.15.

Thus, we plot the value of Amax and Lmax in (ν0, κ0)-space in figure 4.16 for Λ = 0.5, Λ = 1.5

and Λ = 2.5. The red line represents the steady magnetic stability bound (4.62), while the dashed

red line represents the steady hydrodynamic stability bound (4.29). The black line represents the

hydrodynamic oscillatory stability bound (4.34). Note that we will first focus only on the steady

instabilities.

First, we comment on the discrepancy between the steady bounds (4.29) and (4.62). Clearly, as

previously mentioned, purely magnetic instabilities occur once (4.29) is surpassed, where for Λ =

0.5 this is trivial as no hydrodynamic instabilities exist. However, for Λ = 1.5 and Λ = 2.5, the

plots of the optimal Lehnert number imply that increasing magnetic field strength also increases

the growth rate of hydrodynamically unstable modes since L ̸= 0 before (4.29) is surpassed. Thus,

we obtain magnetic modified inertial instabilities in the diffusive regime similar to those described

in the ideal dynamical balance (3.50) and represented in figure 3.13.

Figure 4.16 shows, for all Λ, that increasing ν0 or κ0 increases the value of Amax until stabil-

isation. Thus, the vertical wavenumber decreases with increasing ν0 or κ0. We note that modes

with Pr ≪ 1 have the smallest aspect ratio; this is of interest as Pr is typically small in plane-

tary atmospheres. The maximum growth rate of the hydrodynamic regime also occurs in the large

vertical wavenumber (i.e., small aspect ratio) limit (e.g., Griffiths, 2008a).

For Λ = 0.5 and Λ = 1.5, figure 4.16 also suggests that the optimal Lehnert number L that

maximises the growth rate is again approximately constant over the domain, as seen previously

in figure 4.12. Thus, as ν0 or κ0 increases, the vertical wavenumber of the most unstable mode

decreases, while increasing magnetic field is required so that the Lehnert number remains constant.

For Λ = 2.5 the Lehnert number increases as ν0 increases and decreases as κ0 increases (note

that we restrict L to be no less than 10−4 so that feasible vertical wavenumbers are chosen to fit

planetary atmospheres). The Lehnert number decreases with increasing κ0 as increasing thermal

conductivity excites inertial modes until they obtain the maximum growth rate of the system Λ/2

so that magnetic field can only act to reduce the growth rate; thus, the modes choose a small

Lehnert number. Inertial modes with large vertical wavenumber are stabilised as ν0 increases, and

the most unstable modes become magnetic. Since this occurs while the aspect ratio increases,

it implies that the optimal magnetic field strength increases at a faster rate than for Λ = 0.5 or

Λ = 1.5.

For Λ = 0.5, 1.5 and 2.5 we see that Lmax either remains constant or increases (for Λ = 2.5)

with increasing ν0. This is somewhat surprising since ν0 = η0,where increasing η0 would stabilise

magnetic modes. For Λ = 0.5 and 1.5 this can be explained since the most unstable modes are

magnetic with ν0 = 0, and thus, increasing ν0 = η0 reduces the growth rate of the hydrodynamic

and magnetohydrodynamic modes such that the most unstable mode occurs at the same Lehnert

number. Interestingly, for Λ = 0.5 and 1.5, these values approximately coincide with the optimal

Lehnert number of the ideal system (see equation 3.26). For Λ = 2.5 the most unstable mode
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Figure 4.16: Pr ̸= 1, Pm = 1: The value of Amax (top) and Lmax (bottom) in (ν0, κ0)-space for
Λ = 0.5 (left), Λ = 1.5 (centre) and Λ = 2.5 (right). The black oscillatory stability boundary
is described by equation (4.29). The red stability boundary is described by equation (4.62). Note
that since Λ < 4, the hydrodynamic boundary (4.61) is not relevant.

is hydrodynamic with ν0 = 0, where upon increasing ν0 to some critical value Lmax increases

from zero. This implies that increasing ν0 = η0 reduces the growth rate of the hydrodynamic

and magnetohydrodynamic modes such that the kinematic viscosity reduces the growth rate of the

hydrodynamic modes more significantly than magnetic diffusivity reduces the growth rate of the

magnetohydrodynamic modes.

Clearly, as in the hydrodynamic case (see figure 4.5) we find that instability may occur within

the stable regime of the inviscid system. That is, instability may now occur for A2 > Λ. For

example, at κ0 = 4 and ν0 = 1.6 with Λ = 2.5, Amax ≈ 1.7 so that A2 ≈ 2.9 > 2.5 = Λ. This

is consistent with (4.49) which predicts that as the strength of thermal conductivity increases at

fixed ν0, then larger A is required to stabilise the system. As for the hydrodynamic system, we

may draw comparisons with the GSF instability (Fricke, 1968; Goldreich & Schubert, 1967) and

the magnetic extension of Menou et al. (2004). For Λ = 0.5 and Λ = 1.5 the modes in this regime

can be purely magnetic or magnetically modified inertial instabilities. In either case, we find that

the modes that are stable in the absence of diffusion become unstable owing to thermal diffusion

dampening the effects of buoyancy. Thus, instabilities can occur for A2 > Λ. For Λ = 2.5

there are both hydrodynamic modes, where thermal diffusion enables instability (as previously

discussed in section 4.3.2), and magnetically modified inertial instabilities.
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4.4 Magnetohydrodynamic Regime

4.4.4 Pr = 1, Pm ̸= 1

We now extend the previous section by considering the case where Pr = 1 (ν0 = κ0) while

Pm ̸= 1 (ν0 ̸= η0).

Formulation and Stability Bounds

Writing κ0 as ν0 allow us to rewrite the equation for the growth rate (4.5) as follows:

A2S + η0/A
2

S + ν0/A2

((
S +

ν0
A2

)(
S +

η0
A2

)
+ L2

)
− L2Λ

+ (1− Λ)
(
S +

η0
A2

)2
+
((
S +

ν0
A2

)(
S +

η0
A2

)
+ L2

)2
= 0. (4.66)

Once again we can set S = 0 in equation (4.66), yielding the criterion for marginal steady

instability in terms A,L, ν0 and κ0. However, since we are maximising the growth rate over A

and L, we can use the previously derived stability criterion (4.50). However, this criterion is valid

only if (4.49) predicts L > 0; otherwise the hydrodynamic bound (4.34) must be used. Hence,

after writing κ0 as ν0, we rewrite equation (4.49) as follows:

L2 =
Λ

4
− 4η30

Λ2ν0
, (4.67)

implying that η0 cannot become too large compared with ν0 = κ0. Physically, this is reasonable,

as we expect large η0 will suppress magnetic instabilities. Equation (4.67) therefore predicts that

the magnetic stability bound (4.50) is valid if Λ3ν0 > 16η30.

In the cases where (4.67) does not predict a positive value for L, we have the steady hydrody-

namic stability bound (4.34) which reduces to the critical diffusion:

ν0 =
2(Λ− 1)3/2

3
√
3

. (4.68)

In the cases where (4.67) predicts a positive value for L, we have the steady magnetic stability

bound (4.50), which we rewrite as a quadratic in ν0 :

ν20 − 64η30
Λ3

ν0 +
64η40
Λ4

(Λ− 1) < 0, (4.69)

with stability if the inequality is satisfied. Solving (4.69) for ν0 gives the following condition for

steady stability:

32η30
Λ3

(
1−

√
1− Λ2

16η20
(Λ− 1)

)
< ν0 <

32η30
Λ3

(
1 +

√
1− Λ2

16η20
(Λ− 1)

)
, (4.70)

where if 16η20 < Λ2(Λ − 1), equation (4.69) cannot be satisfied so that steady instability is guar-

anteed. Conditions (4.68) and (4.70) apply only to steady instabilities (i.e., S ≡ 0) and therefore

oscillatory instabilities may exist while (4.68) and (4.70) are satisfied. Note that equations (4.68)

and (4.70) are not necessarily necessary and sufficient conditions for all steady modes and only
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applies to one root of (4.66) and thus, there may be other steady modes with S > 0. We will

address this using contours of the growth rate in (ν0, η0)-space.

We now determine a relation between η0 and Λ at which the stability bound shifts from (4.68)

to (4.70). We substitute (4.70) into (4.68) which trivially yields L > 0 if we take the positive sign

of the square root; if we instead take the negative sign, then L > 0 if and only if

η20 <
Λ2(1− Λ)

7
. (4.71)

Hence, the inequality with the positive square root in (4.70) is always valid regardless of the

magnitude of ν0, η0 and Λ.However, the stability bound with negative square root in (4.70) is only

valid if η20 < Λ2(1 − Λ)/7, otherwise the hydrodynamic stability bound (4.68) is used instead.

Note that if either of the stability bounds are satisfied (when relevant), then the system is only

stable to steady instabilities (i.e., instabilities may still occur with a complex growth rate).

The Maximum Growth Rate as a Function of Aspect Ratio and Lehnert Number

Once again we provide contour plots of the maximum growth rate S in (L, A)-space in order to

address what is the most unstable mode of a given astrophysical body (a single hyperbola) and

what the nature of the mode is.

In figure 4.17 we therefore contour the growth rate (calculated numerically from (4.66)) in

(L, A)-space for Λ = 1.5. Note that in section 3.3.4 (using the parameters in table 2.1) we

estimated that C = AL ranges from O(10−4) to O(10−2) in the upper atmospheres of Jupiter and

Hot Jupiters, while ranging from O(1) to O(102) in the solar tachocline.

These plots illustrate two regimes, the left hand plot contains inertial and magnetically modi-

fied inertial instabilities, while the right hand plot contains purely magnetic instabilities. Together,

they indicate that increasing the magnitude of ν0 with κ0 (Pr = 1) leads to the stabilisation of

hydrodynamic modes, noting that we might expect thermal diffusion to allow hydrodynamic insta-

bilities to still occur. Indeed, in the right hand plot, the hydrodynamic modes have been stabilised;

however, owing to the distinct magnitudes of kinematic viscosity (and thermal conductivity since

ν0 = κ0) and magnetic diffusion, magnetic instabilities persist. The magnetic instabilities occur

for values of A outside of the ideal unstable domain, implying that thermal diffusion plays a sig-

nificant role in nullifying the stabilising role of the pressure gradient. Interestingly, the maximum

growth rate now occurs outside of the ideal unstable domain. We also note that for all values of ν0
and η0 that allow instability to occur for Λ = 0.5 we obtain an analogous plot to that seen in the

right hand panel; the only difference being that the unstable domain is much smaller owing to the

smaller Rossby number.

In figure 4.18 we plot two contours of the growth rate in (L, A)-space for Λ = 2.5. Generally,

these plots are very similar to those seen in figure 4.17 for Λ = 1.5; however, we see that the

growth rate of the hydrodynamic modes in the left hand plot is significantly larger. In both cases,

the size of the domain containing unstable modes has increased; however, for ν0 = 0.2 and

η0 = 2.0, the unstable domain is completely altered owing to the oscillatory instabilities that can
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4.4 Magnetohydrodynamic Regime

Figure 4.17: Pr = 1, Pm ̸= 1: Growth rate in the (L, A)-space for Λ = 1.5, with ν0 = 0.1 and
η0 = 1.0 (Pm = 0.1) in the left panel and with ν0 = 1 and η0 = 0.1 (Pm = 10) in the right
panel. The red line is the ideal necessary and sufficient boundary (3.25). The dashed black lines
represent hyperbolae AL = C, where C incrementally doubles from C = 0.025 to C = 3.2. The
red dot indicates the location of the most unstable mode.

now occur for Λ = 2.5. To illustrate which of the modes are oscillatory, we provide figure 4.19

which contours the frequency (noting each oscillatory mode has a complex conjugate) in (L, A)-

space for Λ = 2.5 with ν0 = 0.2 and η0 = 2.0.

The Maximum Growth Rate as a Function of Diffusivities

Once again we provide contour plots of the maximum growth rate S and the corresponding values

of A and L it occurs at in (ν0, η0)-space for Λ = 0.5, 1.5 and Λ = 2.5 in figure 4.15 and figure

4.21, respectively.

The stability bounds clearly bound the region of instability accurately. The hydrodynamic

bound (4.61) is clearly valid for η20 > Λ2(1 − Λ)/7, where only hydrodynamic instabilities are

present due to the magnitude of the magnetic diffusion. The bounds of (4.70) are also accurate

for η20 > Λ2(1 − Λ)/7. We also find that some oscillatory instabilities exist within the domain.

However, they are confined to a small region in the corner of the unstable domain. We identify

their existence for Λ = 0.5 and Λ = 1.5 only.

First, we see that the largest growth rates occur when Pm ≪ 1. For Λ < 1, increasing the

magnetic diffusivity at any ν0 decreases the growth rate until stabilisation. This is expected since

only unstable magnetic modes can occur for Λ < 1. For Λ > 1, increasing the magnetic diffusivity

at fixed ν0 either stabilises the system if the magnitude of ν0 = κ0 is beyond the critical diffusion

ν0 = κ0 = 2(Λ−1)3/2/3
√
3 of the hydrodynamic bound (4.61), or has no effect on the growth rate

if ν0 < κ0 = 2(Λ−1)3/2/3
√
3 (for sufficiently large η0). Indeed, in the latter case, this is because

all magnetic modes will have been stabilised such that the most unstable mode is hydrodynamic,

so the magnitude of magnetic diffusivity is inconsequential. If we increase the magnetic diffusivity

when ν0 > κ0 = 2(Λ− 1)3/2/3
√
3 = νc, the growth rate decreases until the system is stabilised.
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Figure 4.18: Pr = 1, Pm ̸= 1: Growth rate in the (L, A)-space for Λ = 2.5, with ν0 = 0.2 and
η0 = 2.0 (Pm = 0.1) in the left panel and with ν0 = 2 and η0 = 0.2 (Pm = 10) in the right
panel. The red line is the ideal necessary and sufficient boundary (3.25). The dashed black lines
represent hyperbolae AL = C, where C incrementally doubles from C = 0.025 to C = 3.2. The
red dot indicates the location of the most unstable mode.

Figure 4.19: Pr = 1, Pm ̸= 1: Frequency of the unstable modes in (L, A)-space for Λ = 2.5,
with ν0 = 0.2 and η0 = 2.0. The red line is the ideal necessary and sufficient boundary (3.25).
The dashed black lines represent hyperbolae AL = C, where C incrementally doubles from
C = 0.025 to C = 3.2. The red dot indicates the location of the most unstable mode.
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4.4 Magnetohydrodynamic Regime

Figure 4.20: Pr = 1, Pm ̸= 1: The maximum growth rate S with corresponding complex part
(below) in (ν0, η0)-space with Λ = 0.5 (left), Λ = 1.5 (centre) and Λ = 2.5 (right). The black line
is the hydrodynamic stability boundary (4.68). The red stability boundaries are equation (4.70).
There are no oscillatory modes for Λ = 0.5. Note that for Λ = 1.5 and Λ = 2.5 the oscillatory
instabilities are confined to a small region embedded within the red and black bounds.

This implies that for ν0 > νc there are no hydrodynamic modes that persist, since the system is

stable once the magnetic modes have been stabilised by sufficiently large magnetic diffusivity.

Varying ν0 = κ0 at fixed η0 is somewhat more complex than varying η0 at fixed ν0. For Λ < 1,

increasing ν0 from the ν0 = 0 axis ensures stability given sufficiently large η0. However, for any

value of η0 the system becomes unstable for sufficiently large ν0. This can be seen by taking the

large η0 limit of (4.70), yielding ν0 < 64η30/Λ
3 for stability. Hence, even for large η0, the system

is unstable provided ν0 > 64η30/Λ
3. This behaviour persists for Λ > 1. However, since the system

is now hydrodynamically unstable, there is instability as we increase ν0 from the ν0 = 0 axis.

Increasing ν0 then decreases the growth rate until stabilisation at the hydrodynamic bound (4.61)

for sufficiently large η0. The system is then stable until ν0 > 64η30/Λ
3, as found for Λ < 1.

However, for Λ > 1 and sufficiently small magnetic diffusivity, increasing the parameter ν0 never

stabilises the system. The growth rate in the large ν0 limit remains small due to the competing

effects of thermal diffusion and kinematic viscosity on the magnetic modes.

We now discuss figure 4.21 which illustrates the corresponding aspect ratio A and Lehnert

number L, Amax and Lmax say, in (ν0 = κ0, η0)-space that generate the maximum growth rate

Smax found in figure 4.20.

First, we comment on the modes close to the hydrodynamic steady bound (4.61) and the mag-

netohydrodynamic steady bound (4.62). Clearly, modes that are stabilised once the hydrodynamic

stability bound (4.61) is surpassed are purely magnetic as the Lehnert number on the stability
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boundary (4.62) is non-zero, while the Lehnert number is zero if the modes are stabilised along

(4.61).

Figure 4.21 shows, for all Λ, that increasing ν0 increases Amax indefinitely unless the system

is stabilised. However, as we have already discussed, given that ν0 stabilises the system for a

fixed η0, instability is obtained once again provided ν0 is sufficiently large (where Amax then

increases once again with increasing ν0). This occurs since large thermal diffusion re-excites

the stabilised magnetic modes even in the presence of strong kinematic viscosity. However, as

seen in figure 4.20, the growth rate remains small. At fixed ν0 the aspect ratio increases if the

mode is magnetic (see the plot of the Lehnert number) and remains constant if the most unstable

mode is hydrodynamic. This is to be expected since if the most unstable mode is hydrodynamic,

then magnetic diffusivity of any magnitude will not affect the mode. We can clearly see this for

sufficiently large η0 to the left of the hydrodynamic steady bound (4.61).

For Λ = 0.5, Lmax remains approximately equal to 0.4, where the ideal maximum growth rate

occurs at 0.433. However, for the magnetic instabilities that occur when Λ = 1.5 and Λ = 2.5,

the Lehnert number approaches approximately 0.5 and 0.7, respectively. This implies that the

magnetic field strength that generates the maximum growth rate increases with increasing ν0 say,

since the aspect ratio increases with increasing ν0. However, interestingly, the Lehnert number

approaches some fixed value as we increase ν0 at fixed η0 (provided the modes are magnetic).

We also see for Λ = 1.5 and Λ = 2.5, regions in (ν0, η0)-space where the maximum growth

rate is hydrodynamic. These regions occur when the kinematic viscosity is sufficiently small and

the magnetic diffusivity is large. Note that we restrict L to be no less than 10−4 so that feasible

vertical wavenumbers are chosen to fit stellar planetary atmospheres (see vertical lengthscale of

the astrophysical bodies in table 2.1).

The magnetic instability in the large ν0 = κ0 limit, which is illustrated in figures 4.20 and

4.21, requires varying magnitudes of thermal diffusion and magnetic diffusivity to operate (see

section 4.4.2 with Pr = Pm = 1). In contrast to the double-diffusive instability of the previous

section (which required Pr ̸= 1 and was linked to the GSF instability), we require magnetic field

for the instability to operate since imposing L = 0 yields the hydrodynamic system of section

4.3.1, which is stable for ν0 > 2(Λ − 1)3/2/33/2. Note that, as for the GSF instability, thermal

diffusion enables modes with large aspect ratios that would be always stable in the ideal system to

become unstable.

The Limit of Strong Kinematic Viscosity and Thermal Diffusion

It is of interest to investigate the magnetic instability in the large ν0 = κ0 limit (Pr = 1) depicted

in figures 4.20 and 4.21. Thus, we suppose ν0 ≫ 1, η0 = O(1),L = O(1) and A = O(ν
1/3
0 )

(where the latter has been numerically determined) in equation (4.66) which reduces to a quadratic

as all occurrences of (S + ν0/A
2) reduce to ν0/A2 (since S ≪ ν0/A

2), yielding the following
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4.4 Magnetohydrodynamic Regime

Figure 4.21: Pr = 1, Pm ̸= 1: The value of Amax (top) and Lmax (bottom) in (ν0, η0)-space with
Λ = 0.5 (left), Λ = 1.5 (centre) and Λ = 2.5 (right). The black line is the hydrodynamic stability
boundary (4.68). The red stability boundaries are equation (4.70).

quadratic for (S + η0/A
2) :

(
ν20
A4

+A2

)(
S +

η0
A2

)2
+AL2

(
A3

ν0
+

2ν0
A3

)(
S +

η0
A2

)
+ L2(L2 − Λ) = 0, (4.72)

which can be solved to give

S =
A2L2

2ν0

A6 + 2ν20
A6 + ν20

(
−1 +

√
1 +

4(A6 + ν20)ν
2
0

(A6 + 2ν20)
2L2

(Λ− L2)

)
− η0
A2
, (4.73)

where we have taken the positive root so that instability is possible. Equation (4.73) therefore

implies that S = O(1/A).On inspection of figure 4.21, it might be thought that analytical progress

could be made in equation (4.73) by assuming L2 ≪ Λ, so that the right hand term inside the

square-root is large. However, we numerically determine that L =
√
Λ/2+O(ν

−1/3
0 ) in the large

ν0 limit so that the right hand term within the square-root is order unity.

To illustrate the accuracy of the large ν0 expansion, we plot (4.73) with the exact growth rate

(numerically determined from equation (4.66)) against ν0 for Λ = 2.5, 1.5 and 0.5 in figure 4.22

with η0 = 0.05. Indeed, the expansion is accurate for even relatively small ν0. We also find

that as the Rossby number Λ increases, we require larger ν0 until the expansion (4.73) accurately

describes the growth rate. Note that in all cases, Lmax ≈
√
Λ/2.
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Figure 4.22: Pr = 1, Pm ̸= 1: The large ν0 expansion (4.73) plotted with the exact solution
against ν0 for Λ = 0.5, 1.5 and 2.5 with η0 = 0.05.

4.4.5 Pr = Pm ̸= 1

Formulation and Stability Bounds

We now consider the case where Pr = Pm ̸= 1, and thus by writing κ0 as η0, we rewrite equation

(4.5):

A2
((
S +

ν0
A2

)(
S +

η0
A2

)
+ L2

)
− L2Λ

+ (1− Λ)
(
S +

η0
A2

)2
+
((
S +

ν0
A2

)(
S +

η0
A2

)
+ L2

)2
= 0, (4.74)

which has now been reduced to a quartic in S. Thus, we either have four real roots for the growth

rate, two real roots and two complex roots or four complex roots.

We can set S = 0 in equation (4.74) yielding the criterion for marginal steady instability in

terms A,L, ν0 and η0. However, since we are maximising the growth rate over A and L we can

therefore use the previously derived stability criterion (4.50). However, this criterion is only valid

if (4.49) predicts L > 0, otherwise the hydrodynamic stability bound (4.34) must be used. Hence,

after writing η0 as ν0, we may rewrite equation (4.49) as follows:

L2 =
Λ

4
− 4η0ν0

Λ2
, (4.75)

implying that η0 or ν0 cannot become too large. Physically, this is reasonable as we expect large η0
will suppress magnetic instabilities and simultaneously excite inertial instabilities (since κ0 = η0).

Equation (4.75) therefore predicts that the magnetic stability bound (4.50) is valid if Λ3 > 16η0ν0.

In the cases where (4.75) does not predict a positive value for L, we have the hydrodynamic

steady stability bound (4.34), which we rewrite for convenience here:

η0 = κ0 =
3
√
3ν20

2(Λ− 1)3/2
. (4.76)

126



4.4 Magnetohydrodynamic Regime

In the cases where (4.75) predicts a positive value for L, we have the necessary and sufficient

steady stability condition (4.50) which we rewrite as follows:

ν0 >
Λ3

64η0
− 1− Λ

Λ
η0. (4.77)

Recall that the conditions (4.76) and (4.77) apply only to steady instabilities and only apply to one

root of (4.74) so that other steady modes may exist S > 0. We will address this using contours of

the growth rate in (ν0, η0)-space.

We now determine a relation between η0 and Λ at which the stability bound shifts from (4.76)

to (4.77). We substitute (4.77) into (4.76) yielding the condition

L > 0 ⇐⇒ η20 >
3Λ4

64(Λ− 1)
, or equivalently, ν20 >

Λ2(Λ− 1)

12
. (4.78)

Hence, the steady magnetic stability condition (4.77) is valid only if η20 > 3Λ/64(Λ−1), otherwise

the hydrodynamic stability bound (4.76) is used. Note that if either of the stability bounds are

satisfied (when relevant), then the system is only stable to steady instabilities (i.e., instabilities

may still occur with a complex growth rate).

The Maximum Growth Rate as a Function of Aspect Ratio and Lehnert Number

In figures 4.23 and 4.24 we contour the growth rate (calculated numerically from (4.74)) in (L, A)-

space for Λ = 1.5 and Λ = 2.5, respectively.

In figure 4.23, we again see two regimes; the left hand plot contains inertial and magnetically

modified inertial instabilities, while the right hand plot contains purely magnetic instabilities. In-

terestingly, even with larger values of η0 = κ0 in the left hand plot, magnetically modified inertial

instabilities still persist. Notably, inertial and magnetically modified instabilities occur for values

of A outside of the ideal unstable domain, implying that thermal diffusion plays a significant role

in nullifying the stabilising role of the pressure gradient. By comparing the two plots we can

see that increasing the magnitude of ν0 leads to the stabilisation of hydrodynamic modes. The

right hand plot shows that magnetic instabilities may still persist with larger ν0, provided η0 is

sufficiently small. We also note that for all values of ν0 and κ0 that allow instability to occur for

Λ = 0.5, we obtain an analogous plot to that seen in the right hand panel, the only difference

being that the unstable domain is much smaller owing to the smaller Rossby number.

In figure 4.24 we now have Λ = 2.5. The plots are very similar to those seen in figure 4.23

for Λ = 1.5; however, we see that the growth rate of the hydrodynamic modes in the left hand

plot is significantly larger. In both cases, the size of the domain containing unstable modes has

increased; however, for ν0 = 1.0 and κ0 = 0.01, the unstable domain is completely altered owing

to the oscillatory instabilities that can now occur for Λ = 2.5. To illustrate which of the modes are

oscillatory, we provide figure 4.25 which contours the frequency (noting each oscillatory mode

has a complex conjugate) in (L, A)-space for Λ = 2.5 with ν0 = 1.0 and κ0 = 0.01.
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Figure 4.23: Pr = Pm ̸= 1: Growth rate in the (L, A)-space for Λ = 1.5, with ν0 = 0.25 and κ0 =
1.5 (Pr = Pm = 1/6) in the left panel and with ν0 = 1.0 and κ0 = 0.01 (Pr = Pm = 100)
in the right panel. The red line is the ideal necessary and sufficient boundary (3.25). The dashed
black lines represent hyperbolae AL = C, where C incrementally doubles from C = 0.025 to
C = 3.2. The red dot indicates the location of the most unstable mode.

Figure 4.24: Pr = Pm ̸= 1: Growth rate in the (L, A)-space for Λ = 2.5, with ν0 = 0.25 and κ0 =
1.5 (Pr = Pm = 1/6) in the left panel and with ν0 = 1.0 and κ0 = 0.01 (Pr = Pm = 100)
in the right panel. The red line is the ideal necessary and sufficient boundary (3.25). The dashed
black lines represent hyperbolae AL = C, where C incrementally doubles from C = 0.025 to
C = 3.2. The red dot indicates the location of the most unstable mode.
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4.4 Magnetohydrodynamic Regime

Figure 4.25: Pr = Pm ̸= 1: Frequency of the unstable modes in (L, A)-space for Λ = 2.5, with
ν0 = 1.0 and κ0 = 0.01. The red line is the ideal necessary and sufficient boundary (3.25).
The dashed black lines represent hyperbolae AL = C, where C incrementally doubles from
C = 0.025 to C = 3.2. The red dot indicates the location of the most unstable mode.

Figure 4.26: Pr = Pm ̸= 1: The maximum growth rate S in (ν0, η0)-space with Λ = 0.5 (left),
Λ = 1.5 (centre) and Λ = 2.5 (right). Note that no oscillatory instabilities exist in this system.

The Maximum Growth Rate as a Function of Diffusivities

We now provide contour plots of the maximum growth rate S and the corresponding A and L at

which it occurs in (ν0, η0 = κ)-space for Λ = 0.5, Λ = 1.5 and Λ = 2.5 in figure 4.26 and 4.27,

respectively. In the previous sections we have also plotted the corresponding complex part of the

growth rare however, in this case there are none.

In this case it is clear that ν0 always decreases the growth rate, while η0 always increases the

growth rate to the maximum of the inviscid hydrodynamic regime Λ/2. We would expect this

since increasing η0 = κ0 dampens magnetic modes and excites inertial modes. It is clear that

the maximum occurs in the limit η0 ≫ ν0 (i.e., Pr = Pm ≪ 1) which is typically the case in

planetary atmospheres. In general, we find that sufficiently large η0 = κ0 guarantees instability at

any value of ν0. Interestingly, at certain values of ν0, increasing η0 = κ0 first stabilises the system

and then generates instability.

We now discuss figure 4.27 that illustrates the corresponding A = Amax and L = Lmax that

generate the maximum growth Smax as found in figure 4.26 in (ν0, η0)-space. First, we com-
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Figure 4.27: Pr = Pm ̸= 1: The value of Amax (top) and Lmax (bottom) in (ν0, η0)-space with
Λ = 0.5 (left), Λ = 1.5 (centre) and Λ = 2.5 (right).

ment on the modes close to the hydrodynamic steady bound (4.76) and the magnetohydrodynamic

steady bound (4.77). Clearly, modes that are stabilised once the hydrodynamic stability bound

(4.76) is surpassed are purely magnetic as the Lehnert number on the stability boundary (4.77) is

non-zero, while the Lehnert number is zero if the modes are stabilised along (4.76).

The plots of the Lehnert number shows that increasing η0 = κ0 at fixed ν0 decreases the

growth rate of magnetic modes until stabilisation and increases the growth rate of inertial insta-

bilities (as one might expect from increasing thermal diffusion and magnetic diffusivity). Given

sufficiently large ν0, increasing η0 stabilises all modes; however, for sufficiently large η0 (hy-

drodynamic) instability occurs. Indeed, given sufficiently large η0, the most unstable mode is

hydrodynamic, where the effects of increasing η0 become negligible. Thus, for sufficiently large

η0, we obtain hydrodynamic instabilities analogous to those discussed in section 4.3.2, where we

have already discussed the links to the GSF instability.

Figure 4.27 also shows that increasing ν0 or η0 = κ0 increases the value of Amax (so that the

vertical wavenumber decreases with increasing ν0 or η0). We note that modes with Pr ≪ 1 have

the smallest aspect ratio, which is of interest as Pr is typically small in planetary atmospheres; the

maximum growth rate of the hydrodynamic regime also occurs in the large vertical wavenumber

(i.e., small aspect ratio) limit (Griffiths, 2008a). Thus, since increasing ν0 or η0 decreases the

vertical wavenumber, it follows that the magnetic field strength must increase also so that the

optimal Lehnert number can remain approximately constant, or even increases slightly.

4.4.6 Pr ̸= Pm ̸= 1

In this section we consider equation (4.5) directly since Pr ̸= Pm ̸= 1.
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4.4 Magnetohydrodynamic Regime

Formulation and Stability Bounds

To restrict the analysis we consider the case where the Prandtl numbers are small and follow the

scaling Pr = Pmp where p is some positive power. Note that Pr ≪ Pm ≪ 1 implies that

κ0 ≫ η0 ≫ ν0. Formally, we suppose the Prandtl numbers follow the scaling

ν0
η0

= ϵ and
ν0
κ0

= ϵp with p > 0, (4.79)

where ϵ = O(1) or smaller. This formulation reduces the system to a 4 parameter problem

(L, A, ν0 and ϵ) for the growth rate. It is typical to take scalings with p = 3/2, p = 2, or

p = 3; however, we will only consider p = 3/2 or p = 3 (since there is little difference between

the p = 2 and p = 3 cases).

First, we obtain the relevant steady stability conditions from equations (4.34) and (4.50) where

the latter is used if L > 0 in equation (4.49). Writing κ0 and η0 as described in (4.79) allows us to

rewrite equation (4.49):

L2 =
Λ

4
− 4ν20

Λ2
ϵ2p−3. (4.80)

Note that ϵ is typically small in the solar tachocline as well as the upper atmospheres of Jupiter

and Hot Jupiters (see table 2.1). Thus, equation (4.80) implies that L > 0 if p > 3
2 and L < 0 if

p < 3
2 . If p = 3/2, then L > 0 if and only if Λ3 > 16ν20 . We will be solving for the growth rate

for ϵ ∈ [0.01, 1] so that L may not be positive even for p > 3
2 .

In the cases where (4.80) does not predict a positive value for L, the hydrodynamic steady

stability bound (4.34) is rewritten as the following necessary and sufficient condition for stability:

2(Λ− 1)3/2

3
√
3ϵp

< ν0, (4.81)

implying that instability occurs for ϵ≪ 1 with p > 0.

In the cases where (4.80) predicts a positive value for L, the steady magnetic stability bound

(4.50) is rewritten as the following necessary and sufficient condition for stability:

ν20 >
Λ4ϵ4−2p

64(1− Λ(1− ϵ))
. (4.82)

In the case where ϵ ≪ 1 (which is most relevant in the Solar tachocline as well as the upper

atmospheres of Jupiter and Hot Jupiters) equation (4.82) predicts instability for Λ > 1 since the

denominator is guaranteed to be negative. However, if Λ < 1, then stability is guaranteed if p < 2

and instability if p > 2. If p = 2, then there is stability if and only if ν20 < Λ4/64(1 − Λ).

Thus, together, (4.81) and (4.82) form a necessary and sufficient condition for steady instability,

where equation (4.80) indicates which bound is appropriate in parameter space. Note that the

stability conditions (4.81) and (4.82) apply only to modes with real growth rates. Thus, oscillatory

instabilities may still occur while (4.81) or (4.82) are satisfied. Note that equations (4.81) and

(4.82) only apply to one root of (4.5) and thus, there may be other steady modes with S > 0.
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We now determine a relation between ϵ and Λ at which the stability bound shifts from (4.81)

to (4.82). We substitute (4.82) into (4.81) giving the condition

L > 0 ⇐⇒ 4 >
ϵΛ

1− Λ + Λϵ
. (4.83)

Thus, when ϵ≪ 1 we must use the hydrodynamic condition (4.81) since (4.83) is always satisfied.

If ϵ is not small however, then the magnetic condition (4.81) may be used if Λ < 1/(1 − ϵ) and

ϵ > 4(Λ− 1)/3Λ (i.e., the denominator of (4.83) is positive while the inequality is satisfied).

The Maximum Growth Rate as a Function of Aspect Ratio and Lehnert Number

In figures 4.28 and 4.29 we contour the growth rate in (L, A)-space for Λ = 0.5 and Λ = 1.5,

respectively, for various values of ν0 and ϵ with p = 3. We do not provide plots with Λ = 2.5 or

p = 3/2 since there are no significant differences from the Λ = 1.5 or p = 3 cases. Note that

in Section 3.3.4 we estimated that C = AL ranges from O(10−4) to O(10−2) in the upper atmo-

spheres of Jupiter and Hot Jupiters, while ranging from O(1) to O(102) in the solar tachocline.

In figure 4.28 the instabilities are purely magnetic. However, surprisingly, instabilities persist

for large values of η0 (shown in the right hand panel) and occur at values of A far outside of the

ideal unstable domain; the instabilities are able to persist owing to the strong thermal diffusion

which reduces the stabilising role of the pressure gradient. Interestingly, owing to the values of

A at which instability can now occur, the vertical lengthscales of the most unstable modes with

Λ = 0.5 are at least 3 to 4 orders of magnitude larger than those found in the Pr = Pm = 1 case.

In figure 4.29 there magnetically modified inertial and purely magnetic instabilities. Notably,

both instabilities occur for values of A outside of the ideal unstable domain, implying that ther-

mal diffusion plays a significant role in nullifying the stabilising role of the pressure gradient. By

comparing the two plots we can see that increasing the magnitude of ν0 does not lead to the sta-

bilisation of hydrodynamic modes. Instead, owing to the strong thermal diffusion, hydrodynamic

modes and magnetically modified inertial instabilities become more prominent (shown in the right

panel of figure 4.29) and occur at larger values of A.

The Maximum Growth Rate as a Function of Diffusivities

In this section we provide contour plots of the maximum growth rate S in (ν0, ϵ)-space for various

Rossby numbers. We first focus on the case p = 3/2 and investigate how varying ν0 and ϵ effects

the modes. Then, we consider the case p = 3; however, here, owing to the similarities to the

p = 3/2 case, we focus on how the different scaling alters the nature of the most unstable mode.

We provide contour plots of the maximum growth rate S in (ν0, ϵ)-space for Λ = 1.5 and

Λ = 2.5 in figure 4.30 with Pr = Pmp, p = 3/2. We determine the growth rate via (4.5) for each

A,L, ν0 and ϵ at fixed Λ and p.

Clearly, the stability conditions (4.81) and (4.82) bound the unstable domain. The hydrody-

namic stability bound (4.81) implies that the last modes to stabilise for sufficiently small ϵ are
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4.4 Magnetohydrodynamic Regime

Figure 4.28: Pr = Pm3 ≪ 1: Growth rate in the (L, A)-space for Λ = 0.5 and p = 3 with
ν0 = 0.01 and ϵ = 0.5 (Pr = 0.125, Pm = 0.5, left panel) and ν0 = 1.0 and ϵ = 0.05

(Pr = 1.25 × 10−4, Pm = 0.05, right panel). The red line is the ideal necessary and sufficient
boundary (3.25). The dashed black lines represent hyperbolae AL = C, where C incrementally
doubles fromC = 0.025 toC = 3.2. The red dot indicates the location of the most unstable mode.

Figure 4.29: Pr = Pm3 ≪ 1: Growth rate in the (L, A)-space for Λ = 1.5 and p = 3 with
ν0 = 0.2 and ϵ = 0.8 (Pr = 0.512, Pm = 0.8, left panel) and ν0 = 2.0 and ϵ = 0.2 (Pr =

8.0 × 10−3, Pm = 0.2, right panel). The red line is the ideal necessary and sufficient boundary
(3.25). The dashed black lines represent hyperbolae AL = C, where C incrementally doubles
from C = 0.025 to C = 3.2. The red dot indicates the location of the most unstable mode.
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Figure 4.30: Pr = Pm3/2 ≪ 1: The maximum growth rate S in (ν0, ϵ)-space with Λ = 1.5 (left)
and Λ = 2.5 (right).

hydrodynamic; this is reasonable since small ϵ yields a larger magnetic diffusivity in relation to

kinematic viscosity ν0.

Figure 4.30 shows that the maximum growth rates occur for either small ϵ or small ν0. This

is expected since the small ϵ limit corresponds to large η0 and even larger κ0, implying these

instabilities are hydrodynamic in nature, where thermal diffusion allows instability to occur at

fixed kinematic viscosity (in comparison to when Pr = Pm = 1 say). In the limit of small ν0

all diffusive parameters become small (as seen in equation (4.79)) allowing large growth rates to

occur provided ϵ is not too small.

We also find that increasing ν0 (at fixed ϵ) and ϵ (at fixed ν0) decreases the growth rate; how-

ever, this occurs much more slowly in the small ϵ and ν0 limits due to large thermal diffusion that

allows modes to remain unstable and small diversities in general, respectively. Note that (4.81)

implies instability can be obtained at any ν0 given sufficiently small ϵ.

It is natural to plot the corresponding A = Amax and L = Lmax in (ν0, ϵ)-space that generate

the maximum growth rate Smax found in figure 4.30. Thus, we plotAmax and Lmax in (ν0, ϵ)-space

in figure 4.31 for Λ = 1.5 and Λ = 2.5. The black line represents the hydrodynamic stability

bound (4.81). The red line represents the stability bounds (4.82).

The first row in figure 4.31 clearly shows that for Λ = 1.5 and Λ = 2.5, Amax increases

with increasing ν0 and decreasing ϵ. This occurs due the combined effects of increasing kinematic

viscosity and thermal diffusion; large magnetic diffusivity ensures the most unstable mode is hy-

drodynamic. These are analogous to instabilities that occur in section 4.3.2, and link to the GSF

instability.

The second row in figure 4.31 clearly shows that for Λ = 1.5 and Λ = 2.5, magnetic insta-

bilities may only occur for sufficiently large ϵ = ν0/η0 since a smaller magnitude of magnetic

diffusivity allows these to occur. Otherwise, the most unstable mode is hydrodynamic in nature

within this regime.
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4.4 Magnetohydrodynamic Regime

Figure 4.31: Pr = Pm3/2 ≪ 1: The value of Amax (top) and Lmax (bottom) in (ν0, ϵ)-space with
Λ = 1.5 (left) and Λ = 2.5 (right).
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Figure 4.32: Pr = Pm3/2 ≪ 1: The maximum growth rate S (left), corresponding A (centre) and
L (right) in (ν0, ϵ)-space with Λ = 0.5.

Here we also provide contour plots of the maximum growth rate S, alongside the correspond-

ing aspect ratio and Lehnert number of the mode, in (ν0, ϵ)-space for Λ = 0.5 in figure 4.32 with

Pr = Pmp with p = 3/2. Note that the ν0 domain is on a significantly different scale to that of

figures 4.30 and 4.31. This is due to the instabilities being purely magnetic and therefore requiring

sufficiently small magnetic diffusivity (i.e., small ν0 or large ϵ). By contrast, in the hydrodynami-

cally unstable regime, the most unstable modes now occur only in the small ν0 regime rather than

both the small ν0 and ϵ regimes as in figure 4.30. The aspect ratio again decreases with increasing

ϵ as in figure 4.31 for Λ = 1.5 and Λ = 2.5. Figure 4.32 also shows that all modes are purely

magnetic, where the Lehnert number increases with increasing ϵ and decreases with increasing ν0.

We now provide contour plots of the maximum growth rate S in (ν0, ϵ)-space for Λ = 0.5,

Λ = 1.5 and Λ = 2.5 in figure 4.33 with Pr = Pmp with p = 3. We also plot the value of A

and L at which the maximum growth rate occurs for in (ν0, ϵ)-space in figure 4.34 for Λ = 0.5,

Λ = 1.5 and Λ = 2.5.

Focusing on the most unstable modes that the new scaling Pr = Pmp with p = 3 (rather than

p = 3/2), it is clear that the growth rates are generally larger in contrast to the p = 3/2 case. The

domain of instability is also larger in contrast to figure 4.30, as we would expect, as κ0 will now

be much larger for p = 3 for the same ν0. For Λ = 1.5 and Λ = 2.5, the modes are analogous

to the previous case with p = 3/2 in figures 4.30 and 4.31 which we have already discussed.

However, figure 4.34 shows for Λ = 1.5 that we can now obtain magnetic instabilities for small ν

and ϵ, implying the existence of magnetic modified inertial instabilities; this is possible since the

magnitude of magnetic diffusivity is not yet sufficient to nullify the effect of magnetic field. The

most interesting case is when Λ = 0.5, where we find that the instability domain is much larger

than in figure 4.32 for p = 3/2. Instability can even be found at any ν0 given sufficiently small ϵ;

we can see that this is the case from the magnetic stability bound (4.82) with p = 3 (as it becomes

a hyperbola in this case). This is of clear interest as we expect Rossby numbers Λ < 1 in the solar

tachocline and Jupiter’s upper atmosphere, where ϵ is also expected to be small. Importantly, as

figure 4.34 suggests, these instabilities are purely magnetic and require quite large aspect ratios,

implying that the modes have large vertical wavenumbers and small vertical scales. In contrast to

figure 4.32 with p = 3/2, instability can now occur at larger ν0 since κ0 is even larger than the
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Figure 4.33: Pr = Pm3 ≪ 1: The maximum growth rate S in (ν0, ϵ)-space with Λ = 0.5 (left),
Λ = 1.5 (centre) and Λ = 2.5 (right).

Figure 4.34: Pr = Pm3 ≪ 1: The value of Amax (top) and Lmax (bottom) in (ν0, ϵ)-space with
Λ = 0.5 (left), Λ = 1.5 (centre) and Λ = 2.5 (right).

magnitude of the magnetic diffusivity η0 when p = 3. This yields a double-diffusive instability

analogous to the magnetic instability found in the large ν0 = κ0 limit of figures 4.20 and 4.21

where Pr = 1 and Pm ̸= 1. Clearly, as the condition (4.82) suggests, we require p > 2 (i.e.,

ν0 = ϵpκ0 with p = 2) for this instability to operate.

4.5 Conclusions

In this chapter we have extended the system and analysis of Chapter 3 into the diffusive regime.

We considered the linear stability of the parallel flow U(y) = Λ0y with uniform latitudinal shear

U ′(y) = Λ0 on an f -plane in the presence of uniform vertical magnetic field strengthB3(y) = B0,

kinematic viscosity ν, thermal conductivity κ and magnetic diffusivity η. We chose this formula-

tion as it is the simplest possible configuration to study the competition between inertial and mag-

netic modes in the presence of diffusion. Under this formulation the governing equation (2.30)
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admits solutions of the form v ∝ exp(ily). The consideration of diffusion stabilises modes that

occur at infinite vertical wavenumbers so that the maximum growth rate must must occur at a finite

vertical wavenumber.

We analysed the various cases of this chapter via two main routes of analysis. The first ad-

dresses what is the most unstable mode of a given astrophysical body (e.g., those seen in 2.1)

and what the nature of that mode is; primarily, we do this by providing contours of the maximum

growth rate in (L, A)-space at fixed values of Λ, ν0, κ0 and η0. The crucial aspect of these con-

tours is the hyperbolae C = AL = |l|NvA/f20 , which are independent of vertical wavenumber.

We argued that by considering a flow in a latitudinal channel on an astrophysical body, then the

mode of interest lies on one of the hyperbolae since we can infer (and fix) values of Λ0, N and ν

from observations. The point along the hyperbola that generates the maximum growth rate yields

the chosen vertical lengthscale of the mode.

The second aim is to address the specific role of ν0, κ0 and η0 on the system; we do this by

contouring the maximum growth rate as a function of two diffusive parameters (e.g., (ν0, κ0)-

space with ν0 = η0), where, at each value of the two diffusive parameters, we have selected

the A and L, Amax and Lmax say, that maximise the growth rate. This process isolates the most

unstable modes and allows us to determine the role of diffusion on the system. However, it must

be noted, it is difficult to interpret these results for given astrophysical bodies since vA, ν0, and

therefore the cross-stream wavenumber, take fixed values. This consequence arises because the

maximisation over A must be interpreted as an optimisation over the vertical wavenumber k,

while the maximisation over L must be interpreted as an optimisation over kvA, where an optimal

magnetic field strength is inferred (since k is already chosen via the optimisation of A) from the

quantity kvA. Thus, since vA must vary in magnitude, we cannot consider a single astrophysical

body.

We derived necessary and sufficient conditions for steady stability in the hydrodynamic and

magnetohydrodynamic regimes (see equations (4.34) and (4.50), respectively). In the magnetohy-

drodynamic regime the conditions complement each other to bound the unstable domain, where

the use of each condition depends on whether the modes that are stabilised under the parameter

changes (e.g., increasing the kinematic viscosity) are hydrodynamic or magnetohydrodynamic.

The conditions are very useful since they are independent of the vertical wavenumber about

which there is considerable uncertainty in astrophysical bodies. Indeed, the conditions (4.34)

and (4.50) can be used upon estimating the Rossby number Λ = Λ0/f0 as well as the diffusive

parameters (4.4). The latter requires estimates of the buoyancy frequency N, Coriolis param-

eter f0, kinematic viscosity ν, thermal conductivity κ, magnetic diffusivity η and cross-stream

wavenumber l = 2π/L, where L is an observed latitudinal lengthscale. Indeed, by consulting

table 2.1, in terms of ordering we find ν0 = O(10−10), κ0 = O(10−4), η0 = O(10−9) in the solar

tachocline, ν0 = O(10−18), κ0 = O(10−17), η0 = O(10−2) in Jupiter’s upper atmosphere, and

ν0 = O(10−14), κ0 = O(10−13), η0 = O(102) typically in Hot Jupiters. Note that the magnitude

of η0 is very sensitive to atmospheric depth in Jupiter (and Hot Jupiters) and could vary by several
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orders of magnitude, yielding much smaller values of η0. Indeed, the magnitude of η reduces from

2.3 × 109m2s−1 (the value given in 2.1) at R = 0.98Rj to 1.2 × 105m2s−1 at R = 0.952Rj

(French et al., 2012).

Following Section 3.3.4 we take Λ = 0.21 in the solar tachocline, Λ = 0.01 in Jupiter’s upper

atmosphere and Λ ∈ [0.5, 5]. We find that the hydrodynamic steady bound (4.34) implies stability

for the solar tachocline and Jupiter’s upper atmosphere since Λ < 1, while for Hot Jupiters (4.34)

the bound implies instability provided Λ is O(10−10) larger than 1 (owing to the size of ν0 and

κ0). The condition for oscillatory stability (4.29) is also violated, implying that Hot Jupiters may

be unstable to steady or oscillatory instabilities in the absence of magnetic field. In contrast, if

we consider the magnetohydrodynamic stability condition (4.50), steady instability is implied for

the solar tachocline and Hot Jupiters (for sufficiently large Λ); instability is also possible by the

condition (4.50) in Jupiter’s upper atmosphere and Hot Jupiters (with smaller Λ) provided we

take η to be sufficiently small. However, under the larger magnetic diffusivity of Jupiter’s upper

atmosphere at R = 0.952Rj it is likely that these magnetic instabilities are suppressed. Note that

in the magnetohydrodynamic regime it is impractical to derive analytical conditions for oscillatory

instability using the Routh-Hurwitz criteria; however, the hydrodynamic condition for oscillatory

instability (4.29) may still be used in the magnetohydrodynamic regime under certain conditions

(see section 4.4.3), but this is not valid for Λ < 1, which is the case in the solar tachocline and

Jupiter’s upper atmosphere.

In the magnetohydrodynamic regime we systematically analysed every variation of Pr and

Pm being unity or non-unity. We first considered the case Pr = Pm = 1 which links to both to

the hydrodynamic regime with Pr = 1 and the ideal system of Chapter 3 via a simple transfor-

mation of the growth rate. Owing to the small values of the diffusive parameters ν0, κ0 and η0,

the chosen vertical scale remains close to that predicted by (3.26) and (3.27); however, such small

diffusive parameters are unachievable in nonlinear simulations and thus, it is useful to consider

stronger diffusive regimes. Indeed, by increasing ν0 (= κ0 = η0 in this case), Amax increased, im-

plying that a larger vertical scale was required; Lmax remained approximately constant. However,

for Λ > 2, Lmax increased (departing from L = 0 — the location of the maximum growth rate for

Λ > 2 in the ideal system of Chapter 3).

The case Pr ̸= 1 and Pm = 1 is a clear extension to the previous case and allowed us to draw

links to hydrodynamic section 4.3.2. By making use of the stability bounds (4.29), (4.34) and

(4.50), we derived the two conditions for stability (4.64 ) and (4.65), the first being necessary and

sufficient for 2 < Λ < 4 and the latter being necessary and sufficient for Λ > 4. For Λ < 2, the

stability bound (4.65) may be used as a sufficient condition for stability. Contouring the maximum

growth rate in (ν0 = η0, κ0)-space highlights a magnetic instability which requires strong thermal

diffusion to nullify the stabilising role of stratification at small vertical wavenumbers. This is

similar to the hydrodynamic GSF instability (Goldreich & Schubert, 1967; Fricke, 1968), which

we discussed in section 4.3.2. However, the instability is significantly modified by magnetic field;
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indeed, the growth rate increases at each ν0 and κ0 for Λ < 2 and, under given sufficiently large

ν0, increases the growth rate for 4 > Λ > 2.

We then considered the case Pr = 1 and Pm ̸= 1 in section 4.4.4. Figures 4.20 and 4.21

illustrate the existence of a purely magnetic instability in the large ν0 = κ0 limit. Equation (4.73)

shows that the growth rate scales with ν−1/3
0 with ν0 ≫ 1. It also confirms that the instability is

purely magnetic since setting L = 0 in (4.73) implies stability. The L that generates the maximum

growth rate of the instability is found to be uniform such that L =
√
Λ/2; the aspect ratio that

generates the maximum growth rate of the instability scales such that A ∼ ν
1/3
0 .

In the case Pr = Pm ̸= 1, we find instabilities analogous to those found in the hydrodynamic

section 4.3.2 in the large κ0 = η0 limit. In the large ν0 limit, the most unstable mode is purely

magnetic (the system would be stable for the same ν0 in section 4.3.2); however, as ν0 increases,

we require decreasing η0 for instability still to be possible.

Finally, we consider the case Pr ≪ Pm≪ 1 such that Pm = ϵ and Pr = ϵp for p = 3/2 and

p = 3 with ϵ ≪ 1. Generally, the instability domain is dominated by hydrodynamic instabilities.

However, some magnetically modified inertial instabilities are found when Λ = 1.5 and p = 3

in the small ν and ϵ limits, which will be typically the case in the astrophysical bodies we are

considering (see table 2.1). Perhaps most interestingly, we find that for p > 2 the instability

domain for Λ < 1 (shown for Λ = 0.5 in figures 4.33 and 4.34) is much larger than when p < 2

(which is also implied by the stability bound (4.82)). Indeed, for p > 2, it is possible for magnetic

instabilities to occur at much larger ν0; this due to the magnitude of thermal diffusion being much

larger than in the p = 3/2 case, enabling magnetic instabilities to occur even in the presence of

magnetic diffusivity, which would otherwise render the system stable, For both p < 2 and p > 2,

we find that given sufficiently small ν0, purely magnetic instabilities occur for Λ < 1. This is

relevant to Jupiter’s upper atmosphere and the solar tachocline, where it is expected that Rossby

numbers Λ < 1 and ϵ = Pm to be small.
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Chapter 5

Nonlinear Evolution of the Instabilities
of a Localised Shear Layer at
Mid-latitudes

5.1 Introduction

In this chapter we consider the linear and nonlinear evolution of the localised shear flow U(y) =

U0 tanh(y/L), with latitudinal scale L on an f -plane. We will also consider uniform vertical

magnetic field of strength B3(y) = B0 and uniform kinematic viscosity ν, thermal diffusion κ

and magnetic diffusivity η, such that Pr = Pm = 1 (i.e., ν = κ = η). In contrast to Chapter

3 and 4, we consider a localised shear layer rather than uniform shear flow, so that modes will

decay exponentially in the latitudinal direction. Upon linearising, the governing equation (2.30)

may still be solved analytically, yielding solutions of the form v ∼ sechα(y/L); this allows us to

investigate the linear regime of the nonlinear evolution of the flow.

Griffiths (2008a) has previously considered the axisymmetric linear stability of the localised

shear layer U(y) = U0 tanh(y/L) on an f -plane in the absence of magnetic field and diffusion

under the hydrostatic approximation. Instability occurs for Rossby numbers Λ > 1 provided

k > N((Λ − 1)f0L)
−1 (using our previous notation), with the maximum growth rate occurring

as the vertical wavenumber k → ∞. Albeit on an equatorial β-plane with uniform shear U(y) =

Λ0y, Griffiths (2003b) considers the hydrodynamic nonlinear evolution of the axisymmetric and

hydrostatic system, finding that the absolute vorticity fQ = f(f −U ′) is redistributed around the

initially unstable region (where fQ < 0) to stabilise the flow.

We begin the chapter with section 5.2 by deriving a set of nondimensional equations from the

nonlinear governing equations (2.14)-(2.18). The nondimensionalisation used is different to that

seen in chapters 3 and 4, yielding a new set of nondimensional parameters. Indeed, the magnetic

field strength is now governed by the parameter M rather than the Lehnert number L.We must also

consider the nondimensional vertical wavenumberK (defined after perturbing the nondimensional

equations). We again consider the Rossby number Λ and diffusive parameters ν0, κ0 and η0 of
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Chapter 4 that are defined in a slightly different form to (4.4) owing to the prescribed latitudinal

lengthscale L.

In section 5.3 we consider the linear system, briefly investigating the hydrodynamic and mag-

netohydrodynamic system. The primary purpose of investigating the linear system is to form a

basis for the nonlinear evolution; for instance, for each given M, Λ and ν0 (Pr = Pm = 1) we

obtain a nondimensional vertical wavenumber K that generates the maximum growth rate. This

vertical wavenumber is then used to calculate the vertical domain length H = 2π/K which we

apply in the numerical method in order to investigate the nonlinear evolution (for the same given

values M, Λ and ν0). We also consider how the linear analysis links to Chapters 3 and 4, finding

magnetically modified inertial and magnetorotational instabilities.

In section 5.4 we describe the numerical method used to solve the nonlinear equations. This

includes the motivation and explanation for domain choice, numerical scheme, periodicity and

numerical checks. We also define the Reynolds and magnetic Reynolds numbers, and describe

the energetics of the system, where we find an interesting consequence of the magnetohydrostatic

approximation; indeed, the balance between the kinetic and magnetic energy of the basic state can

not be defined. Nonetheless, after the onset of the simulation, the energy ratio is defined owing to

the non-zero perturbation energies.

In Sections 5.5, 5.6 and 5.7 we provide the results of the numerical solutions, illustrating the

nonlinear evolution of the system. We focus on the changes to the mean flow U and mean vorticity

Q, which are defined as the vertical average (mean) of U(y) and Q(y) = f − U ′(y), from their

initial states, and compare the changes at several magnetic field strengths against each other and

that of the hydrodynamic regime (when relevant).

In Section 5.5 we illustrate the hydrodynamic nonlinear evolution, each in a weakly nonlin-

ear and strongly nonlinear regime. This, in part, serves as a check against the similar systems

found in Griffiths (2003a) and Kloosterziel et al. (2007b), as their results suggest and illustrate

the latitudinal redistribution of vorticity across the domain, albeit for hydrodynamic flows on the

equatorial β-plane and non-hydrostatic flows on the f -plane, respectively. Focusing our analysis

on the strongly nonlinear regime, we describe the mean flow and mean vorticity change over the

evolution.

In following subsections we compare the hydrodynamic mean flow and mean vorticity change

against that of the magnetohydrodynamic regime. In Section 5.6 we consider the magnetohydro-

dynamic evolution in hydrodynamically unstable regimes at various strengths of magnetic field.

In Section 5.7 we consider the magnetohydrodynamic evolution at Rossby numbers at which only

magnetohydrodynamic instabilities may occur. The mean flow and mean vorticity changes are

shown to be significantly different to those seen in the previous sections.
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5.2 Formulation

5.2 Formulation

We derive a set of nondimensional equations from the nonlinear governing equations (2.14)-(2.18).

We begin by making an arbitrarily sized perturbation around the basic state u = (U(y), 0, 0) and

B = (0, 0, B0) so that equations (2.14)-(2.18) (with H = 0 so that the system is magnetohydro-

static) yield the following set of equations

∂u

∂t
= −Q∂ψ

∂z
+
B0

µ0ρ̄

∂bx
∂z

+
1

µ0ρ̄
J(ϕ, bx)− J(ψ, u), (5.1a)

∂3ψ

∂t∂z2
= f

∂u

∂z
− g

ρ̄

∂ρ

∂y
+
B0

µ0ρ̄

∂3ϕ

∂z3
+ ν

∂4ψ

∂z4
+

∂

∂z

(
1

µ0ρ̄
J

(
ϕ,
∂ϕ

∂z

)
− J

(
ψ,
∂ψ

∂z

))
, (5.1b)

∂ρ

∂t
=
N2ρ̄

g

∂ψ

∂y
+ κ

∂2ρ

∂z2
− J(ψ, ρ), (5.1c)

∂bx
∂t

= −U ′∂ϕ

∂z
+B0

∂u

∂z
+ η

∂2bx
∂z2

+ J(ϕ, u)− J(ψ, bx), (5.1d)

∂2ϕ

∂t∂z
= B0

∂2ψ

∂z2
+ η

∂3ϕ

∂z3
+ J

(
ϕ,
∂ψ

∂z

)
− J

(
ψ,
∂ϕ

∂z

)
, (5.1e)

where Q = f − U ′ is the vorticity. Note that we have differentiated (2.15) with respect to z

so that we can substitute the magnetohydrostatic balance (2.16) (after differentiation with respect

to y) into (2.15) to remove the perturbed pressure from the system of equations. Owing to the

incompressibility and solenoidal conditions, we have also introduced the streamfunction ψ and

magnetic streamfunction ϕ, which are defined as follows

v = −∂ψ
∂z
, w =

∂ψ

∂y
, by = −∂ϕ

∂z
, bz =

∂ϕ

∂y
. (5.2)

The introduction of the streamfunctions gives rise to the Jacobian terms

J(α, β) =
∂α

∂y

∂β

∂z
− ∂α

∂z

∂β

∂y
, (5.3)

which simplify the nonlinear terms of the equations (5.1).

We now nondimensionalise the equations of (5.1). We choose to nondimensionalise on the

timescale 1/f0 (analogous to Chapters 3 and 4). We also choose to nondimensionalise the cross-

stream and vertical scales with the flow lengthscale L and f0L/N, respectively; the latter is moti-

vated by the parameter A = |l|N/|k|f0 of Chapter 3 and 4, for which stable and unstable modes

could occur with A = O(1). Hence, the nondimensional time, latitude and height are given by

t̂ = f0t, ŷ =
y

L
, ẑ =

N

f0L
z. (5.4)

We choose to nondimensionalise the perturbed horizontal velocities with the flow scale U0 of the

shear layer and the perturbed horizontal fields with U0
√
µ0ρ̄. These choices lead to the following

set of nondimensional variables
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{u, v} = U0{û, v̂}, w =
U0f0
N

ŵ, ψ =
U0f0L

N
ψ̂, (5.5a)

θ = f0LU0θ̂, ρ =
ρ̄NU0

g
ρ̂, (5.5b)

{bx, by} = U0
√
µ0ρ̄{b̂x, b̂y}, bz =

U0f0
√
µ0ρ̄

N
b̂z, ϕ =

U0f0L

N

√
µ0ρ̄ϕ̂. (5.5c)

As a result of the nondimensionalisation (5.4), the velocity of the localised shear layer becomes

Û(ŷ) =
U0

f0L
tanh ŷ, (5.6)

where U = Lf0Û , since L is the chosen latitudinal lengthscale and 1/f0 is the chosen timescale.

Hence, the nondimensional parameters (5.4), (5.6) and scalings (5.5) allow us to recast equa-

tions (5.1) in the following nondimensional form (after dropping the hats):

∂u

∂t
= −(1− Λ sech2 y)

∂ψ

∂z
+M

∂bx
∂z

+ ν0
∂2u

∂z2
+ Λ

(
1

µ0ρ̄
J(ϕ, bx)− J(ψ, u)

)
, (5.7a)

∂3ψ

∂t∂z2
=
∂u

∂z
− ∂ρ

∂y
+M

∂3ϕ

∂z3
+ ν0

∂4ψ

∂z4
+ Λ

∂

∂z

(
1

µ0ρ̄
J

(
ϕ,
∂ϕ

∂z

)
− J

(
ψ,
∂ψ

∂z

))
, (5.7b)

∂ρ

∂t
=
∂ψ

∂y
+ κ0

∂2ρ

∂z2
− ΛJ(ψ, ρ), (5.7c)

∂bx
∂t

= −Λ sech2 y
∂ϕ

∂z
+M

∂u

∂z
+ η0

∂2bx
∂z2

+ Λ(J(ϕ, u)− J(ψ, bx)) , (5.7d)

∂2ϕ

∂t∂z
= M

∂2ψ

∂z2
+ η0

∂3ϕ

∂z3
+ Λ

(
J

(
ϕ,
∂ψ

∂z

)
− J

(
ψ,
∂ϕ

∂z

))
, (5.7e)

where we have also introduced the nondimensional parameters

Λ =
U0

f0L
, M =

NvA
f20L

, {ν0, κ0, η0} =
N2

f30L
2
{ν, κ, η}. (5.8)

The parameter Λ is analogous to the parameters as seen in Chapters 3 and 4, and can be interpreted

as a Rossby number. The parameter M (not previously seen in this thesis) may be interpreted as

a measure of magnetic field strength. The parameters ν0, κ0 and η0 are analogous to the diffusive

parameters (4.4) of Chapter 4; however, since here we have a prescribed latitudinal lengthscale L,

the parameters ν0, κ0 and η0 are now independent of wavenumbers. Note that the nondimensional

velocity of the localised shear layer is U(y) = Λ tanh y.
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5.3 The Linear System

5.3 The Linear System

In this section we investigate the linear stability of the localised shear layer U(y) = tanh(y) on

an f -plane in the presence of a magnetic field of uniform strength B0 and with Pr = Pm = 1.

We neglect the nonlinear terms from equations (5.7) and seek normal mode solutions of the form

(u, ψ, bx, ϕ, ρ) = Re
(
(u(Y ), ψ(Y ), bx(Y ), ϕ(Y ), ρ(Y ))eiKz+St

)
, (5.9)

where the dimensional vertical wavenumber is given by

k =
NK

f0L
, (5.10)

which results from the factor used to nondimensionalise the vertical coordinate in (5.4).

Thus, with these normal mode solutions, the equations of (5.7) may be combined to yield the

following second order equation for the streamfunction ψ (after dropping overbars):

d2ψ

dy2
−K2

(
(S + ν0K

2)2 +K2M2 +

(
1 +

K2M2

(S + ν0K2)2

)−1

− Λ sech2 y

)
ψ = 0. (5.11)

The differential equation (5.11) can in fact be solved analytically (cf. Griffiths, 2003a; Park et al.,

2020). Note that we are considering one mode only; as noted by Griffiths (2008a) in the hydrody-

namic case, taking this solution is not a concern if we are only interested in the most unstable (or

lowest frequency). Supposing the streamfunction takes the form ψ = sechα(y), where α > 0 so

that the solutions decay as |y| → ∞, equation (5.11) becomes

α
(
(α+ 1)

(
1− sech2 y

)
− 1
)
−

K2

(
(S + ν0K

2)2 +K2M2 +

(
1 +

K2M2

(S + ν0K2)2

)−1

− Λ sech2 y

)
= 0. (5.12)

In order to satisfy equation (5.12) for all latitudes we must choose α such that the coefficients of

sech2 y vanish. Thus, α must satisfy

α(α+ 1) = ΛK2 =⇒ 2α = −1 +
√

1 + 4ΛK2, (5.13)

where we have taken the positive sign of the square-root to ensure α > 0. We note that α can

be interpreted as a localisation parameter, where if α increases the mode becomes more localised

since v = sechα y. Hence, by making use of (5.13), equation (5.12) implies

(S + ν0K
2)4 + (S + ν0K

2)2
(
2M2K2 + 1− 1

4K2

(
1−

√
1 + 4ΛK2

)2)
+

M2K2

(
M2K2 − 1

4K2

(
1−

√
1 + 4ΛK2

)2)
= 0. (5.14)

Equation (5.14) is a quadratic in (S + ν0K
2)2 and thus can be solved analytically, yielding

(S + ν0K
2)2 =

1

8K2

(
1−

√
1 + 4ΛK2

)2
− 1

2
−M2K2±

1

2

√(
1− 1

4K2

(
1−

√
1 + 4ΛK2

)2)2

+ 4M2K2, (5.15)
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where the negative sign guarantees stability and the positive sign allows the system to be unstable

within certain parameter regimes.

Before analysing the magnetohydrodynamic system described by equations (5.14) and (5.15),

we first give a brief overview of the hydrodynamic system. This is in part as we have only analysed

a uniform shear flow in the thesis thus far and it is important to distinguish the two cases in the

simplest regime. The analysis will also us to determine the possible effects of magnetic field on

the hydrodynamic system.

5.3.1 The Hydrodynamic System

We first address the hydrodynamic system in the absence of diffusion, for which equation (5.15)

reduces to

S2 =
1

4K2

(
1−

√
1 + 4ΛK2

)2
− 1, (5.16)

as found in Griffiths (2008a). By setting S = 0 and manipulating, we obtain the following condi-

tion for hydrodynamic instability

K >
1

Λ− 1
with Λ > 1. (5.17)

Note that Λ < 1 guarantees stability. By differentiating (5.16) with respect to K, we find that the

maximum growth rate of the hydrodynamic system is Smax =
√
Λ− 1 and occurs in the large K

limit (i.e., vanishing vertical scales).

In the presence of diffusion, with Pr = Pm = 1, as we have already noted in Chapter 4,

we can obtain the growth rate of the diffusive system by considering the transformation SI →

S + ν0K
2, where SI is the ideal growth rate given by equation (5.16). Thus, by applying the

transformation to (5.16) we obtain the following equation for the growth rate:

(S + ν0K
2)2 =

1

4K2

(
1−

√
1 + 4ΛK2

)2
− 1. (5.18)

Note that (5.18) can also be derived by simply setting M = 0 in (5.15). It is difficult to make

analytical progress from (5.18); however, the transformation SI → S + ν0K
2 allows us to infer

that the maximum growth rate can no longer occur in the large K limit (as we would expect

since vertical diffusion will stabilise the small vertical scales) since the transformation dictates

we subtract ν0K2 from the inviscid growth rate (which is
√
Λ− 1 at its maximum). Hence, the

maximum growth rate occurs at some finite K, which is desirable physically and in nonlinear

simulations.
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5.3 The Linear System

5.3.2 The Ideal System

On returning to the magnetohydrodynamic regime we first consider the ideal system. Thus, setting

ν0 = 0 in (5.14) yields the following quadratic for the growth rate squared:

S4 + S2

(
2M2K2 + 1− 1

4K2

(
1−

√
1 + 4ΛK2

)2)
+

M2K2

(
M2K2 − 1

4K2

(
1−

√
1 + 4ΛK2

)2)
= 0, (5.19)

yielding

S2 =
1

8K2

(
1−

√
1 + 4ΛK2

)2
− 1

2
−M2K2±

1

2

√(
1− 1

4K2

(
1−

√
1 + 4ΛK2

)2)2

+ 4M2K2, (5.20)

where the negative sign guarantees stability and the positive sign allows the system to be unstable,

provided

K2 <
Λ−M

M2
. (5.21)

The stability bound (5.21) can be determined (after some manipulation) by setting S = 0 in

(5.19) or (5.20). Note that setting M = 0 in (5.21) does not allow us to derive the analogous

hydrodynamic stability bound (5.17) owing to a division by M2 within the bounds derivation.

Interestingly, (5.21) implies that given sufficiently small M with any Λ > 0, then instability is

possible for any vertical wavenumber K. This is in direct contrast to the hydrodynamic system,

where Λ > 1 is a necessary condition for instability; thus, as in Chapters 3 and 4, we have

shown that magnetic field can generate instability in the hydrodynamically stable regime. In fact,

taking M2K2 = O(1) < Λ with M ≪ 1 corresponds to the “thin disc” and “weak field” limits

considered by Balbus & Hawley (1991); we have already discussed this interpretation in Chapter

3. Thus, we expect instabilities analogous to the magnetorotational instability for Λ < 1.

Owing to the various factors of K2 that occur outside and within square-roots it is difficult to

make analytical progress, including determining the maximum growth rate. However, motivated

by the results of Chapter 3, where the maximum growth rate occurs with L = |k|vA/f0 = O(1)

and A ≪ 1, with one possible interpretation being that the vertical wavenumber k → ∞ with

k ∼ f0/vA (so that L = O(1), we suppose K → ∞ such that MK = L = O(1) (i.e., weak

magnetic field). In this limit, equation (5.20) reduces to

S2 =
Λ

2
− 1

2
−M2K2 ± 1

2

√
(1− Λ)2 + 4M2K2, (5.22)

which is equivalent to equation (3.24) of Chapter 3 upon writing M2K2 = L2 and setting A = 0

in (3.24). Indeed, differentiating (5.22) with respect to L =MK and setting the derivative to zero

implies that for Λ < 2, the maximum growth rate is Λ/2 and occurs when

M2K2 =
Λ

4
(2− Λ). (5.23)
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Figure 5.1: The growth rate in (K,M)-space for ν0 = 0 (ideal) with Λ = 0.5 (left), Λ = 1.5

(centre) and Λ = 2.5 (right). The solid red line represents the stability bound (5.21).

For Λ > 2 the maximum growth rate is S =
√
Λ− 1 and occurs when M = 0 (i.e., the maximum

growth rate of the hydrodynamic system). This criterion is entirely equivalent to the equations

(3.26) and (3.27) of Chapter 3 which give the maximum growth rates and at what points they

occur in parameter space for Λ < 2 and Λ > 2.

We contour the growth rate in (K,M)-space with Λ = 0.5, 1.5 and 2.5 in figure 5.1. The

solid red line represents the necessary and sufficient stability condition (5.21), which is valid for

all Rossby numbers Λ with M ̸= 0. For Λ = 0.5, the system is hydrodynamically stable; however,

we find for any M < Λ/2 that instability can occur for sufficiently small K. Thus, even infinites-

imally weak magnetic field strength allows instability to occur in the hydrodynamically stable

regime. The maximum growth rate occurs in the large K limit as M → 0, which is consistent

with equation (5.23). Note that this limit corresponds to the “thin disc” and “weak field” limits

considered in Balbus & Hawley (1991); the instabilities present are analogous to the magnetoro-

tational instability. For the cases Λ = 1.5 and Λ = 2, the system is hydrodynamically unstable

for K > (Λ − 1)−1 (K = 2 for Λ = 1.5 and K = 2/3 for Λ = 2.5) and hydrodynamically sta-

ble otherwise. On inspection, it is clear that even weak magnetic field generates instability in the

hydrodynamically stable regimes (K < (Λ − 1)−1). However, in the hydrodynamically unstable

regime, the effect of weak magnetic field is less clear; indeed, depending upon the value of K, it

seems that weak magnetic field can either reduce or increase the growth rate. In both cases it is

clear that the maximum growth rate occurs in the large K limit with sufficiently small M, which

is consistent with (5.23).

Figure 5.1 shows that weak magnetic field induces instability within certain parameter regimes,

including the hydrodynamically stable regime with Λ < 1. We consider the weak field regime to

categorise the behaviour of the system. For small M, equation (5.20) implies that the roots take

the form

S2
H =

1

4K2

(
1−

√
1 + 4ΛK2

)2
− 1−

2− 1
4K2

(
1−

√
1 + 4ΛK2

)2
1− 1

4K2

(
1−

√
1 + 4ΛK2

)2K2M2 +O(M4), (5.24)

148



5.3 The Linear System

S2
M =

1
4K2

(
1−

√
1 + 4ΛK2

)2
1− 1

4K2

(
1−

√
1 + 4ΛK2

)2K2M2 +O(M4), (5.25)

where SH is the hydrodynamic root at leading order (unstable if K > (Λ − 1)−1 with Λ > 1),

while SM is the magnetic root (unstable if K < (Λ− 1)−1) and reduces to SM = 0 in the absence

of magnetic field.

Clearly, the expansions (5.24) and (5.25) break down when 1−
(
1−

√
1 + 4ΛK2

)2
/4K2 is

sufficiently close to zero since the leading and first order terms in M2 become comparable. We

address this by supposing
(
1−

√
1 + 4ΛK2

)2
/4K2 − 1 = βM for some constant β of order

unity, and substitute into (5.19) to derive the expression

S2
B =

1

8K2

(
1−

√
1 + 4ΛK2

)2
− 1

2
±

1

2

√(
1

4K2

(
1−

√
1 + ΛK2

)2
− 1

)2

+ 4K2M2 +O(M2), (5.26)

or, equivalently

S2
B =

1

2
βM+

M

2

√
β2 +K2 +O(M2), (5.27)

where S2
B is the ”breakdown” (or singular) root, which is valid for χ =

(
1−

√
1 + 4ΛK2

)2
/4K2−

1 sufficiently close to zero. Note that this condition is equivalent to K being sufficiently close to

(Λ − 1)−1, where if K → (Λ − 1)−1 from above, χ → 0+, while if K → (Λ − 1)−1 from

below, χ→ 0−. The positive sign of (5.26) corresponds to unstable modes while the negative sign

corresponds only to stable modes. Expressions (5.24), (5.25) and (5.26) describe the entire weak

field regime.

Together, the expansions (5.24), (5.25) and (5.26) indicate that if the flow is hydrodynamically

stable (K < (Λ− 1)−1), then the growth rate of the most unstable mode is given by S2
M (equation

(5.25)). Thus, when the flow is hydrodynamically stable, the first order variation in M2 of equation

(5.25) indicates that weak magnetic field is destabilising. However, if the flow is hydrodynamically

unstable (K > (Λ − 1)−1), then the growth rate of the most unstable mode is given by S2
H

(equation (5.24)). Thus, when the flow is hydrodynamically unstable, the first order variation in

M2 of equation (5.24) indicates that if Λ < 2, then weak magnetic field increases the growth rate.

Similarly, if Λ > 2, weak magnetic field increases the growth rate provided K(Λ− 2) <
√
2 and

stabilises if K(Λ − 2) >
√
2. Note that we will plot the expansions alongside the exact growth

rate against M at various K to illustrate their accuracy after deriving analogous expansions in the

diffusive regime.

We are yet to consider the singular expansion (5.26) in the weak field limit and how it relates

to the hydrodynamic and magnetic expansions (5.24) and (5.25). Indeed, we find that when K

is not close to |Λ − 1|−1, the singular expansion (5.26) still describes the exact root (5.20) in the

weak field limit. The reason for this can be determined by taking the second order correction of

(5.26), which to O(M3) gives (5.20) in the small M limit. However, this does explain why the
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singular root (5.26) captures the weak field behaviour of any mode with K − |Λ − 1|−1 ̸= 0. To

determine how the two roots of (5.26) link to (5.24) and (5.25) in the weak field limit, we consider

the large |β| limit of (5.26) and compare with the small |β| limit of (5.24) and (5.25). Specifically,

the positive root of (5.26) yields

S2

M
→ β + |β|(1 + 2/β2 + · · · )

2
∼
{

−1/β β < 0,
β β > 0,

as |β| → ∞. (5.28)

Similarly, the negative root of (5.26) yields

S2

M
→ β − |β|(1 + 2/β2 + · · · )

2
∼
{

β β < 0,
−1/β β > 0,

as |β| → ∞. (5.29)

We also find that the hydrodynamic root (5.24) gives

S2 ∼ βM as β → 0, (5.30)

while the magnetic root (5.25) yields

S2 ∼ βM− 1

β
M ∼ −M

β
as β → 0. (5.31)

Thus, (5.28) shows that the +ve root in (5.26) becomes the hydrodynamic root (5.24) as β → +∞
and the magnetic root (5.25) as β → −∞ (or, the hydrodynamic root (5.24) becomes the magnetic

root (5.25) as K increases through (Λ− 1)−1). Likewise, (5.29) shows that the −ve root in (5.26)

becomes the magnetic root (5.25) as β → +∞ and the hydrodynamic root (5.24) as β → −∞ (or,

the hydrodynamic root (5.24) becomes the magnetic root (5.25) as K decreases through Λ − 1).

So the roots exchange identity asK passes through Λ−1. The hydrodynamic mode is not a single

entity that can be tracked through parameter space, and neither is the magnetic mode. This has

important implications when considering the system; instead of considering a hydrodynamic and

a magnetic mode (stable and unstable), we can consider an unstable mode and a stable mode only.

5.3.3 Contours of the Growth rate in (K,M)-space

We now return to the diffusive magnetohydrodynamic system described by equation (5.15) and

provide contours of the growth rate in (M,K)-space for various Λ and ν0. The vertical domain

length in the nonlinear simulations will be taken to be H = 2π/Kmax, where Kmax is the vertical

wavenumber at which the growth rate is maximised for given M, Λ and ν0. When relevant, we

will indicate these points in (K,M)-space (for given ν0 and Λ) with red dots so that these may be

easily distinguished when referring back from the nonlinear analysis.

We contour the growth rate in (K,M)-space for various ν0 in figures 5.2, 5.3 and 5.4 for

Λ = 0.5, Λ = 1.5 and Λ = 2.5, respectively. We can see that the maximum growth rate no

longer occurs as K → ∞, owing to vertical diffusion stabilising the small scale modes. The

maximum growth rate now occurs at a finite vertical wavenumberK (indicated by the white cross),

which is both desirable physically and when considering the nonlinear evolution numerically. In

general, as the magnitude of diffusion increases, the most unstable mode occurs at smaller vertical
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5.3 The Linear System

Figure 5.2: The growth rate in (K,M)-space for Λ = 0.5 with ν0 = 0.01 (left) and ν0 = 0.05

(right). The solid red line represents the magnetic bound (5.21). The solid white line represents the
vertical wavenumber Kmax that generates the maximum growth rate for each given M. The white
cross represents the maximum growth rate in the entire (K,M) domain. The red dots indicate
points that will be relevant in the nonlinear analysis.

Figure 5.3: The growth rate in (K,M)-space for Λ = 1.5 with ν0 = 0.02 (left) and ν0 = 0.04

(right). Other details as in figure 5.2.

wavenumber K and at a larger magnetic field strength M. Indeed, weak magnetic field always

increases the growth rate of the hydrodynamic system. The large-scale modes (small K) are

somewhat insensitive to increasing diffusion.

5.3.4 Limit of Weak Magnetic Field

In contrast to the ideal case, the effect of weak magnetic field on the hydrodynamic system in

figures 5.2, 5.3 and 5.4 is much clearer; however, it is still of interest to investigate the limit of

weak magnetic field to confirm the behaviour and determine how the growth rate scales with M

and other parameters. As we have already noted, the diffusive growth rate S can be obtained via

the transformation SI = S + ν0K
2, where SI is the growth rate of the ideal system. Thus, the
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Figure 5.4: The growth rate in (K,M)-space for Λ = 2.5 with ν0 = 0.3 (left) and ν0 = 0.5

(right). Other details as in figure 5.2.

ideal weak magnetic field expansions (5.24), (5.25) and (5.26) become

SH + ν0K
2 =

(
1

4K2

(
1−

√
1 + 4ΛK2

)2
− 1

) 1
2

+

1− 1
8K2

(
1−

√
1 + 4ΛK2

)2
(

1
4K2

(
1−

√
1 + 4ΛK2

)2
− 1

) 3
2

K2M2 +O(M4), (5.32)

SM + ν0K
2 =

1
2K

(√
1 + 4ΛK2 − 1

)
(
1− 1

4K2

(
1−

√
1 + 4ΛK2

)2) 1
2

KM+O(M3), (5.33)

SB + ν0K
2 =

(
1

2
βM+

M

2

√
β2 +K2

) 1
2

+O(M), (5.34)

where SH is the hydrodynamic root, SM is the magnetic root and S2
B is the “breakdown” (or

singular) root which is valid for
(
1−

√
1 + 4ΛK2

)2
/4K2 − 1 sufficiently close to zero, which

is when the leading and first order terms in M2 of (5.32) and (5.33) become comparable. Note that

this condition is equivalent to K being sufficiently close to |Λ− 1|−1.

In figure 5.5 we illustrate the accuracy of the expansions (5.32) and (5.33) by plotting them

with the exact growth rate (calculated numerically from (5.15)) against the magnetic field strength

M at various ν0. This also ensures the accuracy of the ideal expansions (5.24) and (5.25) since

plots are included with ν0 = 0. The expansions capture the scale of the growth rate for small

M, with the magnetic expansion (5.33) retaining accuracy for much larger M. The expansions

(5.32) and (5.33) are plotted for relatively small ν0 since these values will be used in the following

nonlinear analysis. As ν0 increases, the interval of M that the expansions accurately describe

decreases. For example, at K = 0.30 in the right panel of figure 5.4 where ν0 = 0.5,M ≈ 0.25

is required for instability. However, at this value of M the magnetic expansion (5.32) is no longer

accurate as seen in figure 5.5. Note that the singular expansion also accurately describes the growth

rate of the unstable modes.
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5.4 Nonlinear Numerical Model

Figure 5.5: The estimated growth rates SH (left panel) and SM (right panel) plotted with the exact
growth rate against M for various ν0.

5.4 Nonlinear Numerical Model

In this and following sections we discuss the nonlinear evolution of the system. Here we lay out

the numerical method used to solve the nonlinear equations (5.7).

Owing to the nature of the solutions to the perturbed quantities of the linear system, which

are periodic in the vertical and exponentially decaying in the latitudinal direction (since they are

proportional to sechα y with α > 0), we consider a double periodic domain. Assuming period-

icity in the latitudinal direction rather than considering another configuration (e.g., a model with

latitudinal boundaries) greatly simplifies the numerical scheme. The vertical domain length H is

determined for given parameters Λ, M and ν0 using the vertical wavenumber K, Kmax say, that

generates the maximum growth rate of the linear system. Hence, we take the vertical domain

length H = 2π/Kmax. One may suspect we could also use the latitudinal domain length L that

is motivated by the linear problem (via the parameter α); however, the nonlinear evolution has

a tendency to redistribute vorticity and, to a greater extent, the perturbed magnetic field quanti-

ties (bx and ϕ) latitudinally (the later being noted in Hawley & Balbus, 1992; Balbus & Hawley,

1992). Thus, the latitudinal domain lengths L chosen throughout this section are determined by

preliminary runs of the simulations, where the perturbed quantities are ensured to have decayed

sufficiently by the latitudinal boundary. We determine that the perturbed quantities have decayed

sufficiently by numerically comparing their maximum values (which are generally located in the

centre of the domain) against the maximum of the quantity at the latitudinal boundary — if the

ratio of the minimum to maximum is larger than the tolerance [O(10−5)] then a larger domain

length is used in a following simulation. A smaller tolerance is not necessary since, in general,

the magnetic perturbed quantities only violate the tolerance (at smaller values) near the end of the

simulation, where they have no dynamical significance since they decay while redistributing latitu-

dinally. Hence, given L andH , we set the domain to be y ∈ [−L/2, L/2] and z ∈ [−H/2, H/2] in

all numerical runs. In all simulations, the perturbed quantities are initialised with random “noise”
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with initial amplitude 10−5. The numerical resolution taken in each will be sufficient to ensure the

evolution is resolved, and will vary from case to case.

Two numerical schemes are employed to treat the nonlinear equations (5.7). The diffusive

terms are treated using Crank–Nicolson (CN), while the remaining linear terms and nonlinear

terms are treated using three-step Adams–Bashforth (AB3). We initialise the time-stepping with

a one-step Euler method, followed by a two-step Adams–Bashforth (AB2). Owing to the use

of the CN method we are restricted to a second order scheme; one may therefore argue that the

use of AB3 is unnecessary, however, this is implemented to ensure numerical stability provided a

sufficiently small timestep is used (Durran, 1991). If AB2 were used to treat the (non-diffusive)

linear and nonlinear terms, the scheme would be at best always weakly numerically unstable given

any timestep. Indeed, the use of AB3 yields numerical stability, given a sufficiently small timestep,

and also allows for the use of a timestep an order of magnitude larger than needed for the AB2

scheme.

5.4.1 Discretisation

Thus, by considering a double Fourier space, where nonlinear terms are calculated in real space

(and then transformed back into Fourier space), we apply the above numerical scheme to the equa-

tions of (5.7), yielding the following discretisation. The along-stream and cross-stream momentum

equations (5.7a) and (5.7b) become

un+1 − un

∆t
=

23

12
ûn − 16

12
ûn−1 +

5

12
ûn−2 − k2zν0

(
1

2
un+1 +

1

2
un
)
, (5.35)

− k2z
ψn+1 − ψn

∆t
=

23

12
ψ̂n − 16

12
ψ̂n−1 +

5

12
ψ̂n−2 + k4zν0

(
1

2
ψn+1 +

1

2
ψn

)
, (5.36)

where

ûn = −ikzQψn + ikzMbnx + Λ(Jn(ϕ, bx)− Jn(ψ, u)), (5.37)

ψ̂n = ikzu
n − ikyρ

n − ik3zMϕn + k4zν0ψ
n + ikzΛ(J

n(ϕ, ikzϕ)− Jn(ψ, ikzψ)), (5.38)

and

Jn(α, β) =
∂αn

∂y

∂βn

∂z
− ∂αn

∂z

∂βn

∂y
. (5.39)

The thermodynamic equation (5.7c) becomes

ρn+1 − ρn

∆t
=

23

12
ρ̂n − 16

12
ρ̂n−1 +

5

12
ρ̂n−2 − k2zκ0

(
1

2
ρn+1 +

1

2
ρn
)
, (5.40)

where

ρ̂n = ikyψ
n + ΛJn(ψ, ρ). (5.41)

Finally, the along-stream and cross-stream induction equations (5.7d) and (5.7e) take the form

bn+1
x − bnx

∆t
=

23

12
b̂nx − 16

12
b̂n−1
x +

5

12
b̂n−2
x − k2zη0

(
1

2
bn+1
x +

1

2
bnx

)
, (5.42)
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− k2z
ϕn+1 − ϕn

∆t
=

23

12
ϕ̂n − 16

12
ϕ̂n−1 +

5

12
ϕ̂n−2 − ik3zη0

(
1

2
ϕn+1 +

1

2
ϕn
)
, (5.43)

where

b̂nx = −ikzΛ sech2 yϕnikzMun + Λ(Jn(ϕ, u)− Jn(ψ, bx)), (5.44)

and

ϕ̂ = −k2zMψn + Λ(Jn(ϕ, ikzϕ)− Jn(ψ, ikzϕ)). (5.45)

5.4.2 Reynolds Numbers

The Reynolds number and the magnetic Reynolds number give an indication of the level of non-

linearity throughout the evolution of the flow. For example, given a small Reynolds and magnetic

Reynolds number such that instability is still possible, then we expect the evolution to be highly

diffusive and weakly nonlinear; for large Reynolds and magnetic Reynolds numbers we expect the

evolution to be strongly nonlinear.

The Reynolds number Re is defined as the ratio between advection and kinematic viscosity

and is therefore given by

Re =
[(u · ∇)u]

[ν∇2u]
. (5.46)

Typically, the lengthscales of the advection and diffusion terms are assumed to be the same; how-

ever, owing to the magnetohydrostatic approximation, we must neglect latitudinal diffusion, so

that ∇2 ∼ k2 ∼ N2/f20L
2. Hence,

Re =
[(u · ∇)u]

[ν∇2u]
=

U2
0 /L

νN2U0/f20L
2
=

U2
0 /L

ν0U0/f0
=

Λ

ν0
. (5.47)

The Magnetic Reynolds number Rm is defined as ratio between induction and magnetic dif-

fusion and is therefore given by

Rm =
[∇× (u×B)]

[η∇2B]
. (5.48)

Analogous to the derivation of the Reynolds number, here the lengthscales of the induction and

diffusion terms differ owing to the magnetohydrostatic approximation, where latitudinal diffusion

is neglected so that ∇2 ∼ N2/f20L
2. Thus,

Rm =
[∇× (u×B)]

[η∇2B]
=

U2
0

√
µ0ρ̄/L

ηU0N2
√
µ0ρ̄/f20L

2
=
U0f

2
0L

ηN2
=

U0

f0L
· f

3
0L

2

ηN2
=

Λ

η0
. (5.49)

Note that since we are considering the case Pr = Pm = 1 only, it follows that Re = Rm.

5.4.3 Energetics

In Chapter 2 we derived the dimensional equation (2.20), which governs the rate of change of

the total energy in the system for a fixed volume V and closed surface S. We can recast equation

(2.20) in nondimensional form by scaling the total energy E by the kinetic energy KE , where
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KE ∼ ρ̄U2
0 , so that E = ρ̄U2

0 Ê. Hence, after dropping the hats, the rate of change of the total

energy of the system (2.20) in nondimensional form is

dE

dt
=

1

2

d

dt

∫
V

(
|u|2 + ρ2 + |B|2

)
dV = −ν0

∫
V
|ω|2 dV

− κ0

∫
V
|∇ρ|2 dV − η0

∫
V
|j|2dV, (5.50)

where the nondimensional current, local vorticity and density gradient are given by

j =
U0N

f0L

√
ρ̄

µ0
j, ω =

U0N

f0L
ω, ∇ρ =

ρ̄N2U0

gLf0
∇ρ. (5.51)

The volume integrals in (5.50) are surface integrals over y and z due to axisymmetry.

The Basic State Energy Balance

It is important to investigate the ratio of the kinetic and magnetic energy throughout the evolution

of the system. We begin by considering the dimensional ratio of initial kinetic energy to initial

magnetic energy. The initial kinetic energy in dimensional terms is given by∫
V
ρ̄|uinitial|2dV = ρ̄U2

0

∫
V
tanh2 y dV, (5.52)

whereas initial magnetic energy in dimensional terms is given by∫
V

1

µ0
|Binitial|2dV =

1

µ0

∫
V

ρ̄µ0L
2f40

N2
M2 dV = ρ̄f20L

2δ2M2

∫
V
dV, (5.53)

where we have made use of the nondimensional scalings (5.5), nondimensional parameters (5.8)

and the definition of the Alfvén velocity v2A = B2
0/ρ̄µ0. We have also introduced the parameter

δ = f0/N.

If one were to omit the integrals in equations (5.52) and (5.53), it is clear that the relevant

quantity when considering the ratio of kinetic to magnetic energy is

ρ̄U2
0

ρ̄f20L
2δ2M2

=
Λ2

δ2M2
. (5.54)

In the absence of the parameter δ, this quantity is fully defined, however owing to the magneto-

hydrostatic approximation, δ is infinitesimal (which we noted in section 2.2.3). To see this, we

consider the dimensional full vertical momentum equation:

ρ̄

(
Dw

Dt
+ (u · ∇)w

)
= −ρ̄∂θ

∂z
− ρg + µ∇2w +

1

µ0
(B · ∇)bz, (5.55)

where the scaling (5.5) allows us to recast this as

ρ̄

(
U0f

2
0

N

Dŵ

Dt̂
+
U2
0 f0
NL

(û · ∇)ŵ

)
= −ρ̄U0N

∂̂θ

∂ẑ
− ρ̄NU0ρ̂+ µ

NU0

f0L2

∂2ŵ

∂ẑ2
+
ρ̄U2

0 f0
NL

(B̂ · ∇)b̂z,

(5.56)

which, after dividing by ρ̄U0N and using the nondimensional parameters (5.8), yields

δ2
(
Dŵ

Dt̂
+ Λ(û · ∇)ŵ

)
= −∂θ̂

∂ẑ
− ρ̂+ δ2ν0

∂2ŵ

∂ẑ2
+ δ2Λ(B̂ · ∇)b̂z. (5.57)
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It is clear from equation (5.57) that taking the magnetohydrostatic approximation is equivalent to

taking the limit δ → 0. Hence, it is not appropriate to consider the initial magnetic energy, which

is proportional to δ2 and is therefore infinitesimal, nor the ratio of initial kinetic energy to initial

magnetic energy, which is proportional to 1/δ2 and is therefore infinite.

Although the initial magnetic energy is undefined, it still has a dynamical effect, and it is

important to determine how this can occur. Hence, we consider the linear terms that include the

parameter M in the equations (5.7). For instance, M∂zbx in equation (5.7a) originates from the

along-stream Lorentz force (B · ∇)bx (dimensional), where B = (bx, by, B0 + bz). Recasting

the terms of the operator B0∂z using the nondimensional scalings (5.5) and parameters (5.8), we

obtain

B0 =
f20L

√
µ0ρ̄

N
M = δ · L

√
µ0ρ̄M, (5.58)

and
∂

∂z
=

N

f0L

∂

∂ẑ
=

1

δ
· 1
L

∂

∂ẑ
. (5.59)

So B0 ∝ δ is infinitesimal, while ∂z ∝ δ−1 is infinite. However, if one considers the terms of

the operator B0∂z together, it is independent of δ. Thus, the dynamical impact of the basic state

magnetic fieldB0 is felt (via the parameter M) since it is paired with the vertical gradient operator.

Note that an analogous argument can be made via (B·∇)v in the cross-stream momentum equation

and (B · ∇)u in the horizontal induction equations.

The ratio (5.54) and the equations (5.58) and (5.59) suggest that the quantity R = Λ/M may

provide a gauge of how relevant magnetic field will be during the evolution. This is also implied

by the ratio of the advection and Lorentz terms in the momentum equations (5.7a) and (5.7b).

Clearly, if Λ is large, the role of magnetic field will be less significant. Note that the importance

of the quantity R = Λ/M depends on whether the system is in a hydrodynamically stable or

unstable regime. For example, if Λ < 1, the system is linearly stable in the absence on magnetic

field, implying that magnetic field is crucial for instabilities to occur regardless of its magnitude.

However, in the hydrodynamically unstable regime, the ratio R = Λ/M may provide a gauge as

to whether magnetic field will significantly alter the evolution (in contrast to the hydrodynamic

evolution).

The Evolution of Kinetic and Magnetic Energy

We now consider the kinetic energy, magnetic energy and their ratio throughout the nonlinear

evolution. The kinetic and magnetic energy are given by

KE =

∫
V

1

2
ρ̄|u|2 dV =

1

2
ρ̄U2

0

∫
V
(Û(ŷ) + û2)2 + v̂2 + δ2ŵ2 dV, (5.60)

and

ME =

∫
V

|B|2

2µ0
dV =

1

2
ρ̄U2

0

∫
V
b̂2x + b̂2y + δ2

(
M

Λ
+ b̂z

)2

dV, (5.61)

where we have used the nondimensional scalings (5.5) and parameters (5.8). Clearly, under the

magnetohydrostatic approximation (δ = 0), the energies (5.60) and (5.61) are neither infinitesimal
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nor infinite and are therefore valid. Indeed, with δ = 0, the ratio of kinetic to magnetic energy is

given by
KE

ME
=

∫
V (Û(ŷ) + û)2 + v̂2 dV∫

V b̂
2
x + b̂2y dV

, (5.62)

which is clearly quantifiable (and not undefined, as is the ratio of initial kinetic to initial magnetic

energy (5.54)).

5.5 Hydrodynamic Nonlinear Evolution

We first review the hydrodynamic nonlinear evolution to ensure the validity of the numerical

method and routines through reproducing general mechanisms and results that occur in similar

non-hydrostatic studies on the f -plane (e.g., Kloosterziel et al., 2007b) and hydrostatic studies on

the equatorial β-plane (e.g., Griffiths, 2003a,b). Thus, we solve equations (5.7) with M = 0, and

present results for Λ = 1.5 and Λ = 2.5 at various ν0 in order to illustrate weakly nonlinear and

moderately-to-strong nonlinear regimes. Note that in the magnetohydrodynamic regime we will

consider the smallest value of ν0 shown for each Rossby number presented in the hydrodynamic

case.

5.5.1 Weakly Nonlinear Regime with Λ = 1.5

We will begin by presenting the evolution of the weakly nonlinear regime with Λ = 1.5 and

M = 0. We set ν0 = 0.04 (yielding Re = 37.5), and by equation (5.18), gives a nondimensional

maximum growth rate Smax = 0.0413. Clearly, since the maximum growth rate is S = 0.7071

in the absence of diffusion and Re = 37.5 we are in a weakly nonlinear regime. Indicated by

the leftmost red dot shown in the left panel of figure 5.3, Smax occurs at the vertical wavenumber

Kmax = 2.6060. Thus, the vertical domain for this simulation is chosen to be H = 2π/Kmax =

2.4110. In this simulation we take the latitudinal domain L = 14, which is large enough to ensure

the perturbed quantities have decayed sufficiently by the latitudinal boundary. Thus, as stated in

section 5.4, we take y ∈ [−L/2, L/2] = [−7, 7] and z ∈ [−H/2, H/2] = [−1.2055, 1.2055].

Also, recall that in all cases we initialise the perturbed quantities with random “noise” and initial

amplitude 10−5. In all subsequent cases, we will not repeat the respective domain sizes and

initialisation of the perturbed quantities. The grid size is 1024 × 32. The timestep is ∆t =

5.0× 10−3.

Figure 5.6 illustrates the nonlinear evolution (including the linear phase, the nonlinear satu-

ration and the nonlinear equilibrium), including plots of the perturbed along-stream velocity u,

streamfunction ψ and density ρ in (y, z)-space at various times t throughout the simulation. The

quantities are normalised by the maximum of u, ψ and ρ over the whole evolution, which in this

case corresponds to u = 0.0412 at t = 276; the same procedure is also used for all following

analogous figures.
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5.5 Hydrodynamic Nonlinear Evolution

In figure 5.7 we plot the kinetic and potential energy, for numerous vertical modes (integrated

over the entire latitudinal domain), of the perturbed quantities, illustrated by the red and cyan lines,

respectively, against time t.

Figure 5.8 shows the initial mean flow U = Λtanh y (left panel) and mean vorticity Q =

1−U ′ = 1−Λ sech2 y (right panel) alongside the final mean flow U and mean vorticityQ against

latitude y. Recall that the mean flow and mean vorticity are the vertical averages (means) of U(y)

and Q, respectively. Note that, owing to the lack of vertical diffusion, at nonlinear equilibrium the

flow U and vorticity Q are homogenized throughout the entire vertical domain, and are equal to

final mean flow U and mean vorticity Q.

First, we describe the dynamical process illustrated by the contours of figure 5.6; the descrip-

tion will not be repeated unless the process is significantly different, or, for the magnetohydro-

dynamic regime, where other perturbed quantities (bx and ϕ) evolve. The streamfunction ψ in

the panels (b) shows an overturning motion in the (y, z)-plane throughout the evolution. The

overturning motion lifts up dense fluid and brings down light fluid, giving rise to the density per-

turbations in the panels (c); the density perturbations grow and decay in the same manner as the

streamfunction perturbations, both perturbations reaching their maximum values about the nonlin-

ear saturation, which figure 5.7 implies is approximately t ∈ [240, 280]. The overturning motions

also generate latitudinal momentum, displacing fluid which is then deflected by the Coriolis force

into the along-stream direction. This leads to the change in the along-stream velocity perturbation

u, as shown in the panels (a). Finally, owing to the vertical diffusion, the along-stream velocity

perturbation separates into four stable columns (with the centre two being more prominent), which

is the nonlinear equilibrium and leads to the change in U illustrated in figure 5.8.

Figure 5.7 shows the evolution of the kinetic and potential energy throughout the evolution.

There is exponential growth of kinetic and potential energy through the linear phase until nonlinear

saturation at approximately t = 230. After saturation there is clear decay in the energy of all the

modes except the 0th mode of kinetic energy. Once reaching the nonlinear equilibrium (at t ≈ 320)

all the perturbation energy of the system is contained in the 0th mode of kinetic energy since it is

comparable in magnitude to the total perturbation energy. Note that the total perturbation energy

grows until t = 276 at which it is maximum, then decays, and then remains constant once the

system has reached nonlinear equilibrium.

Figure 5.8 shows there is very little change to the mean flow U and mean vorticity Q; this is

expected as we are in a weakly nonlinear regime (the diffusive growth rate being only 5.8% of

the inviscid growth rate). The plots illustrate points that will be relevant throughout the rest of the

Chapter. First, we see that the latitudinal shear ofU has been reduced; this occurs in all of the cases

we consider — it is the source of energy for the nonlinear evolution. Hence, for cases with stronger

nonlinearity, we may expect a significant reduction of the latitudinal shear and a more notable

change to the mean flow. Second, we see that the final minimum value ofQ is less negative than the

initial Q. This is what allows the evolution to reach an equilibrium state: that is, the vorticity is no

longer sufficiently negative to drive an instability. To understand this, recall that the hydrodynamic
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Figure 5.6: Contours in (y, z)-space of (a) the perturbed along-stream velocity u, (b) the per-
turbed streamfunction ψ and (c) the perturbed density ρ. Each row of panels is at a distinct time
t. In this simulation, Λ = 1.5, ν0 = 0.04, L = 14, H = 2.4110, and (K = 2.6060).
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5.5 Hydrodynamic Nonlinear Evolution

Figure 5.7: Evolution of kinetic and potential energy for the lowest order vertical modes against t
corresponding to the dynamical process illustrated in figure 5.6 with Λ = 1.5 and ν0 = 0.04.

condition for instability in the absence of diffusion and stratification is that the absolute vorticity

fQ < 0 (or Λ sech2 y > 1 in terms of our nondimensional parameters). However, in this case,

diffusion and stratification act to stabilise the flow so that fQ < 0 becomes a necessary but not

sufficient condition for instability. Thus, the final Q in figure 5.8 is not sufficiently negative to

drive instability.

Figure 5.8: The initial (black) and final (red) mean flow U (left) and mean vorticity Q of the
nonlinear evolution (illustrated in figure 5.6) plotted.
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5.5.2 Strongly Nonlinear Regime with Λ = 1.5

We now consider an analogous evolution with significantly stronger nonlinearity than illustrated

in figures 5.6, 5.7 and 5.8. We therefore take Λ = 1.5 and ν0 = 0.02 (Re = 75) and provide

figures 5.9, 5.10 and 5.11. Note that the growth rate is 0.1996 (which is approximately 28% of the

inviscid growth rate).

In figure 5.9, the perturbed along-stream velocity u, streamfunction ψ and density ρ are con-

toured in (y, z)-space at various times throughout the evolution. The quantities are normalised

by the maximum of u, ψ and ρ over the whole evolution, which (in this case) corresponds to

u = 0.1719 at t = 62. In this case the most unstable mode occurs at Kmax = 3.10 (shown as the

leftmost red dot in the left panel of figure 5.3), yielding H = 2π/Kmax = 2.0268; We also we set

L = 14. The grid size is 1024× 32. The timestep is ∆t = 2.0× 10−3.

The dynamical process illustrated in figure 5.9 is, for the most part, analogous to that of figure

5.6. However, it is clear that nonlinear saturation and equilibrium occur much more rapidly, as we

expect owing to the larger growth rate. As a result of the more rapid evolution, the latitudinal mo-

mentum is much more vigorous and leads to an equilibrium state where the along-stream velocity

perturbation has four stable columns, with the outer columns being significantly more prominent

than those in figure 5.6.

Figure 5.10 plots, for numerous modes (integrated over the entire latitudinal domain), the

kinetic and potential energy of the perturbed quantities against time t. The plot confirms the much

more rapid evolution in comparison to that illustrated by figures 5.6, 5.7 and 5.8. Nonlinear

saturation now occurs at t ≈ 55 (rather than t ≈ 230) and reaches equilibrium at t ≈ 80 (rather

than t ≈ 320). The total perturbation energy in this case is approximately an order of magnitude

larger than in the previous case.

Figure 5.11 shows the initial U and Q alongside their final values against latitude y. There

is a much more notable change to the U and Q over the evolution in comparison to the weakly

nonlinear case. Indeed, the shear of U has been reduced more significantly and the minimum value

of Q is Q ≈ −0.2 rather than Q ≈ −0.4. Evidently, in this more nonlinear regime, for the flow to

become stable the system requires a less negative minimum Q. If Q were more negative, then fQ

would be sufficiently negative to drive an instability.

Vorticity Cusps

Note the “spikes” in the final mean vorticity Q at |y| ≈ 1.5; these are the main limiting factor in

being able to reduce ν0 in order to obtain a larger Reynolds number and more physically realistic

system. Indeed, consider figure 5.12, which illustrates the initial and final Q against y for an

analogous simulation with Λ = 1.5 and ν0 = 0.01 (yielding the Reynolds number Re = 150).

The vorticity spikes are in fact cusps (cf. Griffiths, 2003a) and therefore can not be resolved;

increasing the resolution leads only to the code crashing owing to the increasing value of vorticity

Q at |y| ≈ 1.6. It is possible to modify the numerical method and include latitudinal diffusion so
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5.5 Hydrodynamic Nonlinear Evolution

Figure 5.9: Contours in (y, z)-space of (a) the perturbed along-stream velocity u, (b) the per-
turbed streamfunction ψ and (c) the perturbed density ρ. Each row of panels is at a distinct time
t. In this simulation, Λ = 1.5, ν0 = 0.02, L = 14, and H = 2.0268 (K = 3.10).

163



Figure 5.10: Evolution of kinetic and potential energy for the lowest order vertical modes against
t corresponding to the dynamical process illustrated in figure 5.9 with Λ = 1.5 and ν0 = 0.02.

Figure 5.11: The initial (black) and final (red) U (left) and Q (right) of the nonlinear evolution
(illustrated in figure 5.9).

164



5.5 Hydrodynamic Nonlinear Evolution

Figure 5.12: The initial and final Q against latitude y of a nonlinear evolution with Λ = 1.5 and
ν0 = 0.01. The right panel is a zoomed in version of the left panel.

that vorticity is dissipated much more rapidly so that cusps can no longer form. However, with the

latitudinal diffusion there is no analytical linear solution and it conflicts with the assumptions of

the magnetohydrostatic approximation. That is, under the magnetohydrostatic approximation, the

Laplacian operators of the diffusive terms take the form

∇2 =
1

L2

(
∂2

∂y2
+

1

δ2
∂2

∂z2

)
, (5.63)

where δ = f0/N as in section 5.4.3. Thus, under the magnetohydrostatic approximation, the lati-

tudinal diffusion is negligible since δ is infinitesimal. If one were to consider latitudinal diffusion,

we must prescribe a numerical value to δ contrary to the magnetohydrostatic approximation. How-

ever, this would also lead to concern over the neglected terms in the vertical momentum equation

(which were justified under the magnetohydrostatic approximation in equation (5.57)) that con-

tained factors of δ. Perhaps this concern could be resolved by taking a small value of δ that is

sufficient to suppress the vorticity spikes while containing to neglect the relevant terms in the ver-

tical momentum equation. However, in this thesis, we will simply consider a sufficiently small

Reynolds numbers so that the cusps in vorticity do not occur.

5.5.3 Weakly Nonlinear Regime with Λ = 2.5

We now consider the nonlinear evolution of the system with Rossby number Λ = 2.5 and ν0 = 0.5.

yielding Reynolds number Re = 5 and growth rate 0.2864 (which is approximately 23% of the

inviscid growth rate 1.2247). In figure 5.13, u, ψ and ρ are contoured in (y, z)-space at various

times throughout the evolution. The quantities are normalised by the maximum of u, ψ and ρ over

the whole evolution, which (in this case) corresponds to u = 0.4269 at t = 45. In this case the

most unstable mode occurs at Kmax = 1.0420 (shown as the leftmost red dot in the right panel of

figure 5.4), yielding H = 6.0299. The grid size is 1536× 64. The timestep is ∆t = 1.0× 10−3.

The dynamical process illustrated in figure 5.13 has only minor differences to the evolution

shown in figure 5.6 owing to the different Rossby and Reynolds numbers, and thus, we will not
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Figure 5.13: Contours in (y, z)-space of (a) the perturbed along-stream velocity u, (b) the per-
turbed streamfunction ψ and (c) the perturbed density ρ. Each row of panels is at a distinct time
t. In this simulation, Λ = 2.5, ν0 = 0.5, L = 14, and H = 6.0299.

provide figures corresponding to this (in the hydrodynamic and magnetohydrodynamic analysis)

unless there are significant differences. Figure 5.13 is included to illustrate the similarity in evo-

lution. We also see that the modes fill more of the latitudinal domain; this is to be expected owing

to the larger Rossby number, where a larger latitude y is required (in contrast to smaller values of

Λ) to reduce the magnitude of shear U ′(y) = Λ sech2 y so that it is no longer sufficient to drive an

instability.

Figure 5.14 plots, for numerous modes (integrated over the entire latitudinal domain), the

kinetic and potential energy of the perturbed quantities against time t. The plot again illustrates a

period of linear growth, nonlinear saturation and equilibrium. However, the nonlinear saturation

now occurs much earlier in the evolution in comparison to even figure 5.10 where Λ = 1.5 and

ν0 = 0.02 (Re = 75). The energy of all modes (except the 0th of kinetic energy) also decay much
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5.5 Hydrodynamic Nonlinear Evolution

Figure 5.14: Evolution of kinetic and potential energy for the lowest order vertical modes against
t corresponding to the dynamical process illustrated in figure 5.13 with Λ = 2.5 and ν0 = 0.5.

more rapidly owing to the larger magnitude of diffusion.

Figure 5.15 shows the initial and final U and Q against latitude y. There is a considerable

change to U and Q over the evolution in comparison to the highly diffusive case with Λ = 1.5

illustrated in figure 5.8. However, once again, we can see that the shear of U has been reduced as

well as the minimum value of the final mean vorticity, so that fQ is not sufficiently negative to

drive an instability. In comparison to previous cases, the minimum of the final Q is much more

negative. The shear is not sufficient to drive an instability, as it would be in previous cases, since

the magnitude of diffusion is much larger.

Figure 5.15: The initial (black) and final (red) U (left) and Q (right) of the nonlinear evolution
(illustrated in figure 5.13).
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Figure 5.16: Evolution of kinetic and potential energy for the lowest order vertical modes against
t with Λ = 2.5 and ν0 = 0.3.

5.5.4 Strongly Nonlinear Regime with Λ = 2.5

We now consider an evolution with significantly stronger nonlinearity than illustrated in figures

5.13, 5.14 and 5.15. We take Λ = 2.5 and ν0 = 0.3, yielding Re = 8.33 and growth rate 0.2864

(which is approximately 23% of the inviscid growth rate), and provide figures 5.16 and 5.17. We

do not contour the perturbed quantities in this case as they are analogous to what we have seen in

previous figures. The most unstable mode occurs at Kmax = 1.0420 (shown as the leftmost red

dot in the left panel of figure 5.4), yielding H = 6.030; we also set L = 14. The maximum of the

perturbed quantities is u = 0.4269 at t = 45. The chosen grid is 1536 in the latitudinal direction

and 64 in the vertical direction. The timestep is ∆t = 2.0× 10−3.

Figure 5.16 shows, for various modes (integrated over the entire latitudinal domain), the evo-

lution of kinetic and potential energy of the perturbed quantities against time t. The plot shows

that there is a much more rapid evolution in comparison to that illustrated by figures 5.13, 5.14 and

5.15. Nonlinear saturation now occurs at t ≈ 40 (rather than t ≈ 120) and reaches equilibrium at

t ≈ 55 (rather than t ≈ 150). The total perturbation energy in this case is approximately an order

of magnitude larger than that of the Λ = 2.5 and ν0 = 0.5 case.

Figure 5.17 shows the initial and final U and Q against latitude y. There is a considerable

change to the U and Q over the evolution in comparison to the Λ = 2.5 and ν0 = 0.5 case.

Indeed, the shear of U has been reduced more significantly and the minimum value of the final

mean vorticity is Q ≈ −0.95 rather than Q ≈ −1.2. Evidently, in this more nonlinear regime, for

the flow to become stable the system requires a less negative minimum Q. If the Q were more

negative it would be sufficient to drive an instability.
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.17: The initial (black) and final (red) U (left) and Q (right) of the nonlinear evolution
plotted with Λ = 2.5 and ν0 = 0.3.

Thus, we have shown the nonlinear evolution of the system for Λ = 1.5 with ν0 = 0.04 and

ν0 = 0.02, and Λ = 2.5 with ν0 = 0.5 and ν0 = 0.3. This illustrated for each Rossby num-

ber Λ a weakly nonlinear regime and one with significantly more nonlinearity. We described the

general dynamical process of the nonlinear evolution, where latitudinal momentum transfers fluid,

which is then deflected by the Coriolis force, driving the along-stream perturbation into two stable

columns. We also discussed the mean flow U and mean vorticity Q changes over the evolution,

where we expect more significant changes in the regimes with larger Rossby number or Reynolds

number. In general, the evolution reduces the latitudinal shear of U and increases the mean vortic-

ity (making it less negative) so that the flow reaches a stable state. In the magnetohydrodynamic

regime, we will focus on the case Λ = 1.5 and Λ = 0.5 (with a brief discussion given for Λ = 2.5).

For the Λ = 1.5 case (and Λ = 2.5) we will focus on the change to U and Q in comparison to

the hydrodynamic mean flow and vorticity change. For Λ = 0.5 no such comparison can be made

since the hydrodynamic system is stable for Λ < 1.

5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynam-
ically Unstable Regime

In this section we consider the magnetohydrodynamic nonlinear evolution of the system with

Rossby number Λ = 1.5 and Λ = 2.5, focusing on the case Λ = 1.5 since the evolutions are

largely analogous (as in the hydrodynamic case). For Λ = 1.5, we will consider ν0 = 0.02, which

is the smallest magnitude of diffusion that we presented in the hydrodynamic section, in order to

investigate the regime with largest Reynolds numbers (Re = Rm = 75) and most nonlinearity.

By the same reasoning we consider ν0 = 0.3, for Λ = 2.5.

169



5.6.1 The Nonlinear Evolution with Weak Magnetic Field and Λ = 1.5

We will begin by presenting the nonlinear evolution (using the numerical scheme described in

section 5.4 to solve the equations (5.7)) in figures 5.18, 5.19, 5.20 and 5.21 with Λ = 1.5, ν0 =

0.02 and M = 0.03. The linear growth rate under these parameters is 0.2428; the growth rate in

the absence of magnetic field is 0.1996. Thus, we expect magnetic field to have a small dynamical

effect. The maximum growth rate is generated at the vertical wavenumber Kmax = 3.0 (which

is indicated by the leftmost red dot not on the axis in the left panel of figure 5.3), yielding H =

2π/Kmax = 2.0944. In this simulation we take the latitudinal domain L = 16 which is large

enough to ensure the perturbed quantities have decayed sufficiently by the latitudinal boundary.

The grid size is 1024× 32. The timestep is ∆t = 1.0× 10−2.

Figure 5.18 includes plots of u, ψ and ρ, while figure 5.19 includes plots of the perturbed

along-stream magnetic field bx and magnetic streamfunction ψ, both of which are in (y, z)-space

at various times t. The quantities are normalised by the maximum of u, ψ, ρ, bx and ϕ over

the whole evolution, which (in this case) corresponds to u = 0.2848 at t = 74. Note that the

choice of larger L is to ensure that magnetic perturbed quantities, which have a tendency to spread

over the latitudinal domain (cf. Hawley & Balbus, 1992; Balbus & Hawley, 1992), have decayed

sufficiently. For stronger magnetic field significantly larger values of L must be taken.

In figure 5.20 we plot, for various modes (integrated over the entire latitudinal domain), the ki-

netic, potential and magnetic energy of the perturbed quantities against time t. Figure 5.21 shows

the initial (black) and final (blue) magnetohydrodynamic U and Q alongside the final hydrody-

namic (red) mean flow UH and QH .

We describe the dynamical process illustrated in the contours of figure 5.18 and 5.19; this

will not be repeated unless the process is significantly different. As in the hydrodynamic case,

we see that the streamfunction ψ in the panels (b) shows an overturning motion in the (y, z)-

plane throughout the evolution. This gives rise to the density perturbations that grow and decay

in the same manner as the streamfunction perturbations. The overturning motions lead to the

change in u as shown in the panels (a). The along-stream velocity perturbation reaches nonlinear

equilibrium by separating into stable columns; the nonlinear equilibrium leads to the change in

U illustrated in figure 5.21. In the magnetohydrodynamic regime we must now also consider the

along-stream field and magnetic stream function perturbations that grow until saturation and then

viscously decay, as illustrated in panels (d) and (e) in figure 5.19, respectively. Note that in

section 3.4 we already determined that during the linear phase of the evolution, the along-stream

field acts to increase the growth rate by increasing the along-stream acceleration via the Lorentz

force, while the cross-stream field acts to reduce the growth rate via the cross-stream Lorentz

force. Through the nonlinear evolution we see that the magnetic field perturbations continue to

increase and decrease the along and cross-stream accelerations in the same manner.

Figure 5.20 shows the evolution of the kinetic, potential and magnetic energy, which grow ex-

ponentially until nonlinear saturation at t ≈ 40. After saturation there is clear decay in the energy

of all the modes except the 0th mode of kinetic energy. Once reaching the nonlinear equilibrium
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.18: Contours in (y, z)-space of (a) the perturbed along-stream velocity, (b) the perturbed
streamfunction ψ and (c) the perturbed density ρ. Each row of panels is at a distinct time t. In this
simulation, Λ = 1.5, ν0 = 0.02,M = 0.03, L = 16, and H = 2.0944 (K = 3.0).
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Figure 5.19: Contours in (y, z)-space of (d) the perturbed along-stream magnetic field bx and
(e) the perturbed magnetic streamfunction ϕ. Each row of panels is at a distinct time t. In this
simulation, Λ = 1.5, ν0 = 0.02,M = 0.03, L = 16, and H = 2.0944 (K = 3.0).
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.20: Evolution of kinetic, magnetic and potential energy for the lowest order vertical
modes against t corresponding to the dynamical process illustrated in figures 5.18 and 5.19 with
Λ = 1.5, ν0 = 0.02 and M = 0.03.

(at t ≈ 80) all the perturbation energy of the system is contained in the 0th mode of kinetic energy

since it remains comparable to the total perturbation energy. Note that the total perturbation energy

grows until t = 60 at which it is maximum, decays, and then remains constant once the system

has reached nonlinear equilibrium. In contrast to the hydrodynamic case shown in figure 5.10,

saturation occurs at t ≈ 40 rather than t ≈ 55, and the perturbed quantities in this case take much

longer to decay. Indeed, in the hydrodynamic case the 1st mode of kinetic and potential energy

have decayed to E ∼ 10−10, compared to E ∼ 10−4.5 in this case. Note that at the nonlinear

saturation the energy contained in the 1st mode of magnetic energy is larger than that in the 1st

mode of kinetic energy; the magnetic energy of the 1st mode is also greater than the kinetic energy

of the 1st mode as they both viscously decay.

Figure 5.21 shows that for even this relatively weak magnetic field strength (the ideal system

being marginally unstable for M = Λ/2 = 0.75), there is a significant alteration to U in com-

parison to the hydrodynamic evolution. Indeed, the minimum of the final mean vorticity is now

Q ≈ 0 rather than Q ≈ −0.2. We might expect this, owing to the condition (2.43), which implies

that the ideal necessary condition for instability is that anti-cyclonic shear is present somewhere

in the system (in dimensional terms, that U ′f > 0 somewhere in the flow). This necessary condi-

tion in nondimensional terms can be re-written as Q < 1 (since 1/f = 1/f0 is the timescale and
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Figure 5.21: The mean flow (left) and vorticity (right) in their initial (black) and final hydro-
dynamic (red) and magnetohydrodynamic (blue) states of the nonlinear evolution (illustrated in
figures 5.18 and 5.19) with Λ = 1.5, ν0 = 0.02 and M = 0.03.

U ′f < 0 =⇒ f2 − U ′f < f2 =⇒ fQ < f2). Thus, since this is a less stringent condition

for instability compared to the hydrodynamic case (where fQ < 0 somewhere in the flow is a

necessary condition for instability) it is reasonable that a less negative Q is required in the mag-

netohydrodynamic case to ensure the flow is stable. With the necessary condition for instability

being Q < 1 somewhere in the flow, it is surprising that the final minimum mean vorticity is

Q ≈ 0; however, this is sufficient so that instability can no longer occur with the stabilising effects

of stratification and diffusion.

5.6.2 The Significance of Weak Magnetic Field

We have just considered the nonlinear evolution of the case with Λ = 1.5, ν0 = 0.02 and M =

0.03, where, even with relatively weak magnetic field strength (yielding R = Λ/M = 50), there

is a significant change to the final U and Q. Thus, in order to determine what may be classified as

weak magnetic field, we consider the nonlinear evolution with Λ = 1.5, ν0 = 0.02 for M = 0.01

and M = 0.02 (yielding R = 150 and R = 75). Figure 5.22 shows, for various modes, the

kinetic, potential and magnetic energy of the perturbed quantities against time t for M = 0.01

and M = 0.02. Figure 5.21 shows the initial and final U and Q for M = 0, M = 0.01 and

M = 0.02. Evidently, there is much less change to U and Q for M = 0.01 and M = 0.02 than for

M = 0.03 (which is illustrated in figure 5.21). Hence, we argue that M = 0.01 (R = 150) may be

classified as weak magnetic field, M = 0.03 (R = 75) is moderate (or, at least, no longer weak)

and M = 0.02 is a transitional case. Thus, we suppose that if R > 100, then the magnetic field

strength may be classified as weak; figure 5.20 and 5.22 agree with this classification. Indeed,

figure 5.22 shows for M = 0.01 (left panel) that after nonlinear saturation the magnetic energy of

the 1st mode decays at least an order of magnitude larger than the kinetic energy of the 1st mode.

As there is little dynamical effect made by the magnetic field in this case, we can conclude that the

effect of magnetic field is determined by the respective magnitude of the peak kinetic and magnetic
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.22: Evolution of kinetic, magnetic and potential energy for the lowest order vertical
modes against t with Λ = 1.5, ν0 = 0.02 for M = 0.01 (left) and M = 0.02 (right).

Figure 5.23: The initial (black) and final U (left) and Q (right) for various M of the nonlinear
evolution with Λ = 1.5 and ν0 = 0.02.

energies (both of which occur about nonlinear saturation). Indeed, for M = 0.01, figure 5.22

shows that the peak magnetic energy of the 1st mode is at least an order of magnitude smaller than

the peak kinetic energy of the 1st mode, implying there is minimal dynamical effect as a result of

the magnetic field, which is certainly the case. For M = 0.02 the right panel of figure 5.22 shows

that the peak kinetic and magnetic energy of the 1st mode are comparable, implying that magnetic

field may have some dynamical effect (which is indeed the case). Finally, for M = 0.03, figure

5.20 shows that the peak magnetic energy of the 1st mode is larger in magnitude than the peak

kinetic energy of the 1st mode, implying that the magnetic field does have a significant dynamic

effect, as shown by figure 5.21.

5.6.3 The Nonlinear Evolution of the Most Unstable Mode with Λ = 1.5

We now consider the nonlinear evolution of the mode with the largest linear growth rate (S =

0.4218) for Λ = 1.5 and ν0 = 0.02, occurring at M = 0.23 and indicated by the white cross

in the figure 5.3. The simulation is run with H = 2.8862 (since the maximum growth rate at
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K = 2π/H = 2.1770 for Λ = 1.5, ν0 = 0.02 and M = 0.23) and L = 30, which is sufficient to

ensure all perturbations have decayed by the boundary. The perturbed quantities are normalised

by the maximum of u, ψ, ρ, bx and ϕ over the whole evolution, which (in this case) corresponds

to u = 1.006 at t = 37. The grid size is 1536× 32. The timestep is ∆t = 5.0× 10−3.

In figures 5.24 and 5.25 we see a similar evolution of the perturbed quantities as in figures 5.18

and 5.19; however, there are also many differences. Indeed, we now see the magnetic, streamfunc-

tion and density perturbation viscously decay while spreading over the large latitudinal domain;

as before, we continue to see the general growth (until saturation) and decay of the perturbed

quantities. At saturation, we also see the central along-stream perturbation be displaced south-

ward rather than northward owing to the difference in phase of the streamfunction in panel (b).

We also see a much faster nonlinear evolution with equilibrium occurring by t = 90 rather than

t = 140 in figure 5.24 and 5.25. This is confirmed by figure 5.26, which illustrates the growth

and decay of the kinetic, potential and magnetic energy over time. Notably, figure 5.26 shows

the magnetic energy growing comparably with the kinetic energy, and upon reaching nonlinear

saturation, the magnetic energy continues to grow in magnitude beyond that of the kinetic energy

(and then continuous to viscously decay, remaining an order of magnitude larger than the kinetic

energy throughout); we have already determined that this implies that magnetic field has a strong

dynamical role throughout the evolution.

In figure 5.27 we can see that there is a substantial change to U and Q in comparison to

the previous case with M = 0.03 (and the hydrodynamic case). The shear of the mean flow is

significantly reduced. It is also clear the minimum of the final Q is significantly greater than in

the previous MHD or the hydrodynamic case. This is reasonable since presumably, for the most

unstable mode of the linear system, a larger Q is sufficient for instability. For this case we also

see the vorticity redistribute across the latitudinal domain in order to reduce more efficiently the

minimum Q and stabilise the flow.

5.6.4 The Nonlinear Evolution with Strong Magnetic Field and Λ = 1.5

Finally, we consider the nonlinear evolution of system with Λ = 1.5, ν0 = 0.02 and M = 1.0.

The maximum growth rate (S = 0.1321) for these parameters occurs atKmax = 0.5240 (indicated

by the rightmost red dot in the left panel of figure 5.3), yielding H = 11.9908. We also take

L = 40 which is sufficient to ensure all perturbations have decayed by the boundary. The perturbed

quantities are normalised by the maximum of u, ψ, ρ, bx and ϕ over the whole evolution, which

(in this case) corresponds to u = 1.2277 at t = 114. The grid size is 1536 × 64. The timestep is

∆t = 2.5× 10−3.

In figures 5.28 and 5.29 we see a very distinct evolution of the perturbed quantities in com-

parison to any other case. This becomes evident on inspection of the evolution of energy beyond

saturation in figure 5.30, where, instead of viscously decaying, the kinetic, potential and magnetic

energies oscillate in magnitude over time, implying Alfvénic behaviour. In figure 5.28 we once
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.24: Contours in (y, z)-space of (a) the perturbed along-stream velocity, (b) the perturbed
streamfunction ψ and (c) the perturbed density ρ. Each row of panels is at a distinct time t. In this
simulation, Λ = 1.5, ν0 = 0.02,M = 0.23, L = 30, and H = 2.8863 (K = 2.1770).
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Figure 5.25: Contours in (y, z)-space of (d) the perturbed along-stream magnetic field bx and
(e) the perturbed magnetic streamfunction ϕ. Each row of panels is at a distinct time t. In this
simulation, Λ = 1.5, ν0 = 0.02,M = 0.23, L = 30, and H = 2.8863 (K = 2.1770).
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.26: Evolution of kinetic, magnetic and potential energy for the lowest order vertical
modes against t corresponding to the dynamical process illustrated in figures 5.24 and 5.25 with
Λ = 1.5, ν0 = 0.02 and M = 0.23.

Figure 5.27: The mean flow (left) and vorticity (right) in their initial (black) and final hydro-
dynamic (red) and magnetohydrodynamic (blue) states of the nonlinear evolution (illustrated in
figure 5.24 and 5.25) with Λ = 1.5, ν0 = 0.02 and M = 0.23.
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again see growth of the streamfunction in panel (b) that generates latitudinal momentum and den-

sity perturbations, however, the perturbation in u (shown in panel (a)) no longer forms a set of

stable columns and instead continues to grow and decay from t ≈ 120. The streamfunction and

density perturbations also grow and decay out of phase. The reason we do not see the perturbation

in u form into stable columns at t ≈ 120 is due to the strong magnetic streamfunction perturbation

illustrated in panel (e) of figure 5.29 that continues to drive latitudinal motion.

In figure 5.31 we can see that there has been little change to U and Q, comparable to that of

figure 5.23 which illustrated the mean flow and mean vorticity change with M = 0.01. We might

expect this owing to the strong magnetic field inhibiting overturning motions via strong magnetic

tension. As a result the minimum Q required so that instability can no longer occur is much less

than in the previous case since there is diffusion, strong magnetic tension and stratification all

acting to stabilise the flow.

5.6.5 Mean Flow and Mean Vorticity Changes at Various M for Λ = 1.5

We now summarise the mean flow and mean vorticity changes for various M with Λ = 1.5 and

ν0 = 0.02 by plotting them all on a single panel in figures 5.32 and 5.33, respectively. The only

mean flow U and mean vorticity Q plots we have seen before are for the hydrodynamic case and

for M = 0.23 (where the most unstable linear mode occurs); this choice has been made as we

have already seen the mean flow and mean vorticity changes in those cases and it is of interest to

illustrate the changes for other M.

In figure 5.32 we see that the mean flow with largest reduction of shear is not that of M =

0.23 (where the most unstable linear mode occurs), but occurs for M = 0.14 instead. Indeed,

figure 5.32 shows that the minimum Q for M = 0.14 is also larger than in the M = 0.23 case.

This system is harder to stabilise through nonlinear effects for M = 0.14 since the (stabilising)

effects of stratification are less significant. This is because the maximum growth rates occur at

K = 2.6020 and K = 2.1770 for M = 0.14 and M = 0.23, respectively, and the effects of

stratification are more significant at smaller K (larger aspect ratios). Hence, the minimum Q

required to stabilise the system is less positive for M = 0.23 than M = 0.14.

Figures 5.32 and 5.33 also illustrate a continuous mean flow and mean vorticity change (along-

side the figures for other M we have already seen) as M increases. For example, in figure 5.32

there is little change to U in the hydrodynamic case (likewise with M = 0.01), then as M increases

the mean flow change becomes more severe (in order to reduce the latitudinal shear) and is max-

imum at M = 0.14. Finally, as M increases further, the mean flow change becomes less severe

(as stronger latitudinal shear is not sufficient for instability due to other stabilising effects), until

the change is almost identical to the hydrodynamic mean flow change at M = 1.0. An analogous

argument can be made for Q.
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.28: Contours in (y, z)-space of (d) the perturbed along-stream magnetic field bx and
(e) the perturbed magnetic streamfunction ϕ. Each row of panels is at a distinct time t. In this
simulation, Λ = 1.5, ν0 = 0.02,M = 1.0, L = 40, and H = 11.9908 (K = 0.5240).
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Figure 5.29: Contours in (y, z)-space of (d) the perturbed along-stream magnetic field bx and
(e) the perturbed magnetic streamfunction ϕ. Each row of panels is at a distinct time t. In this
simulation, Λ = 1.5, ν0 = 0.02,M = 1.0, L = 40, and H = 11.9908 (K = 0.5240).
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.30: Evolution of kinetic, magnetic and potential energy for the lowest order vertical
modes against t corresponding to the dynamical process illustrated in figures 5.28 and 5.29 with
Λ = 1.5, ν0 = 0.02 and M = 1.0.

Figure 5.31: The mean flow (left) and vorticity (right) in their initial (black) and final hydro-
dynamic (red) and magnetohydrodynamic (blue) states of the nonlinear evolution (illustrated in
figure 5.28 and 5.29) with Λ = 1.5, ν0 = 0.02 and M = 1.0.
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Figure 5.32: The initial (black) and final U of the nonlinear evolution for various M with Λ = 1.5

and ν0 = 0.02.

Figure 5.33: The initial (black) and final Q of the nonlinear evolution for various M with Λ = 1.5

and ν0 = 0.02.
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5.6 Magnetohydrodynamic Nonlinear Evolution in the Hydrodynamically Unstable Regime

Figure 5.34: The initial (black) and final U of the nonlinear evolution for various M with Λ = 2.5

and ν0 = 0.30.

5.6.6 Mean Flow and Mean Vorticity Changes at Various M for Λ = 2.5

We now give a brief overview of the Λ = 2.5 results since the results are largely analogous to

the case Λ = 1.5; the system is just less sensitive to changes in magnetic field strength owing to

the larger magnitude of kinetic energy. Thus, we summarise the mean flow and mean vorticity

changes for Λ = 2.5 and ν0 = 0.3 at various M in figures 5.34 and 5.35, respectively. First, note

that the Reynolds number is much smaller in this case (Re = 8.33 for Λ = 2.5 and Re = 75 for

Λ = 1.5) so that evolution is much more diffusive, where less significant changes to U and Q will

occur. However, we still find that the shear of U is reduced and the minimum Q is increased in

order to stabilise the system. We also observe a continuous mean flow and mean vorticity change,

as seen for Λ = 1.5. Indeed, the mean flow and mean vorticity changes are most significant (from

the hydrodynamic change) at values of M at which the maximum growth rate of the linear system

occurs (M = 0.58 for Λ = 2.5 and ν0 = 0.3). The mean flow and mean vorticity change is least

significant (from the hydrodynamic change) for weak and strong magnetic field. Interestingly,

the transitional case from weak magnetic field to “non-weak” (i.e., when the peak magnetic and

kinetic energy of the 1st mode are comparable) occurs at M = 0.25 yielding R = Λ/M = 10.

This does not coincide with the transitional case for Λ = 1.5, which occurred at M = 0.02 with

R = 75. However, if one normalises these quantities with the respective Reynolds number of each

case (Re = 75 for Λ = 1.5 and Re = 8.33 for Λ = 2.5), we obtain R/Re ≈ 1 = O(1) in both

cases. This critical ratio also holds for larger Rossby numbers Λ.

185



Figure 5.35: The initial (black) and final Q of the nonlinear evolution for various M with Λ = 2.5

and ν0 = 0.30.

5.7 Magnetohydrodynamic Nonlinear Evolution in the hydrodynam-
ically stable regime

In this section we consider the magnetohydrodynamic nonlinear evolution of the system with

Rossby number Λ = 0.5, where, in contrast to the previous cases (with Λ = 1.5 and Λ =

2.5), linear analysis implies hydrodynamic stability since Λ < 1. However, the linear analysis

also showed that purely magnetic instabilities can occur with Λ < 1. Thus, we may expect that

magnetic field will also play a crucial role in the nonlinear evolution.

5.7.1 The Nonlinear Evolution of the Most Unstable Mode with Λ = 0.5

We will begin by presenting the nonlinear evolution of the hydrodynamically stable regime with

Λ = 0.5, ν0 = 0.01 (Re = Rm = 50) and M = 0.16, where the most unstable mode occurs

(indicated by the white cross in the left panel of figure 5.2). The maximum growth rate S = 0.0850

is generated at the vertical wavenumber Kmax = 2.0660, yielding H = 3.0412. We also take

L = 40 which is sufficient to ensure the perturbed quantities have decayed by the latitudinal

boundary. The grid size is 1024× 32. The timestep is ∆t = 1.0× 10−2.

In figure 5.36 and 5.37 we contour u, ψ, ρ, bx and ψ in (y, z)-space at various times t. The

quantities are normalised by the maximum of u, ψ, ρ, bx and ϕ over the whole evolution, which

(in this case) corresponds to u = 0.7118 at t = 166. Figure 5.38 illustrates, for numerous vertical

modes (integrated over the entire latitudinal domain), the kinetic, potential and magnetic energy
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5.7 Magnetohydrodynamic Nonlinear Evolution in the hydrodynamically stable regime

Figure 5.36: Contours in (y, z)-space of (d) the perturbed along-stream magnetic field bx and
(e) the perturbed magnetic streamfunction ϕ. Each row of panels is at a distinct time t. In this
simulation, Λ = 0.5, ν0 = 0.01,M = 0.16, L = 40, and H = 3.0412 (K = 2.0660).

of the perturbed quantities against time t. Figure 5.39 shows the initial and final U and Q against

latitude y.

The dynamical process of the evolution is illustrated in figures 5.36 and 5.37. The process

is very similar to what we have seen before, with overturning motions driving the along-stream

perturbation u into two stable columns, which drive the change to U . However, noting that L = 40

in this case, we can infer that the latitudinal redistribution of the perturbed quantities (and therefore

the stable columns) is to a far greater extent than in previous cases.

Figure 5.20 shows the evolution of the kinetic, potential and magnetic energy throughout the

evolution. Throughout the whole evolution the magnetic energy of the 1st mode is larger than the

kinetic energy of the 1st mode, implying the crucial role of the magnetic field.

Figure 5.21 shows that there is a significant change to U and Q in comparison to any other
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Figure 5.37: Contours in (y, z)-space of (d) the perturbed along-stream magnetic field bx and
(e) the perturbed magnetic streamfunction ϕ. Each row of panels is at a distinct time t. In this
simulation, Λ = 0.5, ν0 = 0.01,M = 0.16, L = 40, and H = 3.0412 (K = 2.0660).
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5.7 Magnetohydrodynamic Nonlinear Evolution in the hydrodynamically stable regime

Figure 5.38: Evolution of kinetic, magnetic and potential energy for the lowest order vertical
modes against t corresponding to the dynamical process illustrated in figures 5.36 and 5.37 with
Λ = 0.5, ν0 = 0.01 M = 0.16.

case. Within the central region |y| < 1 there is no longer any anti-cyclonic shear present in the

mean flow — it is instead cyclonic. The latitudinal shear beyond |y| = 2 is non-zero; however,

the shear is not as strong as that for the initial mean flow in the central region |y| < 2. The right

panel of figure 5.21 shows that the minimum mean vorticity Q increases significantly with the

final maximum Q even reaching Q ≈ 1.25. Recall that the ideal necessary condition for linear

instability is that Q < 1, so that we can presume that Q is no longer sufficient to drive instability

in the presence of diffusion and stratification.

5.7.2 Mean Flow and Mean Vorticity Changes at Various M with Λ = 0.5

Even for the case M = 0.16, where the maximum growth rate occurs, it is surprising to see

such a substantial change to U and Q over the evolution. Thus, in figures 5.40 and 5.41 we

illustrate the energy evolution, mean flow and mean vorticity change for M = 0.03, M = 0.14

(for comparison), and M = 0.40. Surprisingly, for M = 0.03, figure 5.41 shows that there still

a substantial change to U and Q (only slightly different to the M = 0.14 case). We can see that

the contrast of the mean flow and mean vorticity change between M = 0.16 and M = 0.40 is

much more significant; indeed, for M = 0.40, cyclonic shear is no longer required in the central

region to stabilise the flow since strong magnetic field contributes towards stabilising the system.

Notably, the minimum final mean vorticity for all M isQ ≈ 0.8, indicating that the same minimum

Q is required to stabilise flows with Λ = 0.5 and ν0 = 0.01. The final minimum mean vorticity

for other values of M does also indicate this, however there is often some variation from Q ≈ 0.8.
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Figure 5.39: The initial (black) and final (blue) U (left) and Q (right) of the nonlinear evolution
(illustrated in figure 5.36 and 5.37) with Λ = 0.5, ν0 = 0.01 M = 0.16.

Figure 5.40: Evolution of kinetic, magnetic and potential energy for the lowest order vertical
modes against t with Λ = 0.5 and ν0 = 0.01 for M = 0.03. (left) and M = 0.40 (right).

Figure 5.41: The initial (black) and final (blue) U (left) and Q (right) of the nonlinear evolution
for various M with Λ = 0.5 and ν0 = 0.01.
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5.8 Conclusions

5.8 Conclusions

In this chapter we have considered the linear and nonlinear evolution of a localised shear layer

U(y) = U0 tanh(y/L) on an f -plane in the presence of uniform vertical magnetic field, and

uniform ν, κ and η (with Pr = Pm = 1). Although it is not the case that Pr = Pm = 1 in the

astrophysical bodies of table 2.1, we have discussed important dynamical concepts and interactions

that are likely to be applicable for other Prandtl number regimes. It is also a natural extension

to hydrodynamic nonlinear studies of similar systems with Pr = 1 (e.g., Kloosterziel et al.,

2007b; Griffiths, 2003a,b). Also note that the consideration of the localised shear layer U(y) =

U0 tanh(y/L) is a significant improvement to the model from the uniform shear flow U(y) = Λ0y

considered in Chapters 3 and 4. Physically, astrophysical flows do not extend indefinitely with

anti-cyclonic shear (Λ0f0 > 0). Indeed, the shear layer restricts the flow so that anti-cyclonic

shear (which is required for instability) is confined to a finite region.

In Section 5.3 we investigated the linear stability of the system. We initially considered the

ideal system, where, in contrast to the unbounded uniform shear flow that we considered in Chap-

ter 3, we found that instability may occur on large vertical scales given sufficiently weak magnetic

field strength. We also found that the most unstable mode occurs for the same value of the Lehnert

number L = KM as in Chapter 3 (given by equations (3.26) and (3.27)). Notably, the maximum

growth rate occurs in the large K limit (vanishing vertical scales) and small M limit such that

KM = O(1), corresponding to the “thin disc” and “weak field” approximations made by Balbus

& Hawley (1991). We consider the limit of weak magnetic field on the hydrodynamically stable

and unstable modes of (5.19), deriving the expansions (5.24), (5.25) and (5.26). In the hydrody-

namically stable regime (K < (Λ−1)−1), we find that weak magnetic field always destabilises the

system, with the growth rate scaling with KM. This may be applicable to the upper atmosphere

of Jupiter were Λ < 1. In the hydrodynamically unstable regime (K > (Λ − 1)−1), we find that

weak magnetic field increases the growth rate if K(Λ − 2) <
√
2 and decreases the growth rate

if K(Λ − 2) >
√
2. This may be applicable to the upper atmospheres of Hot Jupiters where the

Rossby number Λ ∈ [1, 4]. We extended this analysis to the diffusive regime with Pr = Pm = 1;

in this case, we can obtain the diffusive growth rate S via a transformation SI → S + ν0K
2,

where SI is the ideal growth rate. We used this transformation to derive the analogous weak field

expansions. We also provided numerous contours of the growth rate for Λ = 0.5, Λ = 1.5 and

Λ = 2.5 at various magnitudes of diffusion ν0. The contours were made with the nonlinear analy-

sis in mind, indicating points in (M,K)-space at which we consider the nonlinear evolution of the

flow. Diffusion clearly stabilises the modes with large vertical wavenumber (small vertical scales)

so that the maximum growth rate now always occurs at finite vertical wavenumber K, yielding a

finite vertical scale. In the nonlinear analysis, we use the vertical wavenumber that generates the

maximum growth rate at each M as the vertical domain size.

To investigate the nonlinear analysis of the hyperbolic shear layer, we first developed the

nonlinear numerical model used to solve equations (5.7) in Section 5.4. We also discussed the
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ratio between the initial kinetic energy of the system (prescribed by the flow U(y)) and the initial

magnetic energy (prescribed by the uniform vertical field of strength B0).

In Section 5.5 we investigated the hydrodynamic evolution of the hyperbolic shear layer for

Rossby numbers Λ = 1.5 and Λ = 2.5 in both highly diffusive and nonlinear regimes. We showed

the general evolution of the perturbed along-stream velocity, streamfunction and density in both

the hydrodynamic and magnetohydrodynamic regime. The streamfunction perturbation grows,

indicating growing density perturbations, latitudinal momentum which is then deflected by the

Coriolis force, driving the perturbed along-stream velocity into stable columns and the nonlinear

equilibrium. We also focused on the mean flow U and mean vorticityQ change over the evolution.

We found that in order for the system to reach a stable state, the latitudinal shear of the mean flow

is reduced and the minimum value of theQ is increased. To explain this it is important to recall that

the hydrodynamic necessary condition for instability is that fQ < 0 somewhere in the flow. The

nonlinear evolution stabilises the flow by redistributing the vorticity so that fQ is not sufficiently

negative to drive an instability in the presence of diffusion and stratification. This stabilisation

mechanism is well understood in the hydrodynamic regime (e.g., Griffiths, 2003a,b; Kloosterziel

et al., 2007a); however, this is not necessarily the case for magnetohydrodynamic regime.

In section 5.6 we considered the magnetohydrodynamic evolution of the hyperbolic shear layer

for Rossby numbers Λ = 1.5 and Λ = 2.5; we focused on the case Λ = 1.5 with ν0 = 0.02. We

found that the introduction of magnetic field throughout the nonlinear evolution further decreased

the latitudinal shear of U in comparison with the hydrodynamic evolution. We also found that the

evolution further reduces the minimum Q further in comparison to the hydrodynamic evolution

so that it is either less negative or even positive (in some cases). This is not surprising as one can

recall that the necessary magnetohydrodynamic condition for instability is that U ′f > 0 (anti-

cyclonic shear), which is less stringent than the hydrodynamic condition (i.e., fQ = f2 − U ′f <

0 =⇒ U ′f > 0). The smallest U and Q changes occur for relatively small and large M that

generate small growth rates; intermediate values of M generate the most change to U and Q over

the evolution. The most significant mean flow and vorticity change did not occur for the K and M

that generate the maximum growth rate. Analogous results were found for the case Λ = 2.5.

Finally, in section 5.6 we considered the magnetohydrodynamic evolution of the hyperbolic

shear layer for the Rossby number Λ = 0.5, noting that the system is hydrodynamically linearly

stable for Λ < 1. In this case even M that are weakly unstable (linearly) generate a remarkable

mean flow and mean vorticity change comparable to those that generate the maximum growth rate

in this regime. This differs from Λ = 1.5 and Λ = 2.5, where weak magnetic field only lead

to slight changes in U and Q in comparison to the hydrodynamic case. The change to U in the

central latitudinal regions, which used to exhibit anti-cyclonic latitudinal shear, instead exhibits

cyclonic shear. This behaviour is exhibited for all M, with less extreme cyclonic shear for cases

with larger M. Physically, the final mean flow, shown in figure 5.39, suggests that the nonlinear

evolution of the instability forms tightly packed jets with the north jet travelling westward and

southern jet travelling eastward.
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Chapter 6

Equatorial Instabilities of Stellar and
Planetary Atmospheres

6.1 Introduction

Recently, observations of certain exoplanetary atmospheres, so-called hot Jupiters, have revealed

the existence of unexpectedly strong equatorial jets that apparently flow close to the speed of

sound (e.g., Showman et al., 2013; Heng & Showman, 2015). The strong equatorial jets compel

us to consider the equatorial regime, where inertial instability is most likely to occur in the ter-

restrial atmosphere (e.g., Hayashi et al., 1998; Knox, 2003). Indeed, Dunkerton (1981) realised

that the necessary and sufficient condition for inviscid and axisymmetric stability fQ > 0 (where

Q = f − U ′ is the absolute vorticity and U(y) is a parallel shear flow) is easily violated near the

equator since the Coriolis parameter f becomes small. To investigate the dynamics of the equa-

torial atmosphere, Dunkerton (1981) considered the stability of a parallel flow U(y) = Λ0y with

uniform latitudinal shear Λ0 in the presence of stable stratification with Coriolis parameter f = βy

(equatorial β-plane approximation), where β is the planetary vorticity gradient. The results of this

analysis have already been discussed in section 1.2.2. As Dunkerton predicted, inertial instabili-

ties were later observed in the equatorial atmosphere (e.g., Hayashi et al., 1998; Knox, 2003) and

ocean (e.g., Richards & Edwards, 2003; d’Orgeville et al., 2004).

In this chapter we extend the system of Dunkerton (1981) by considering the effect of vertical

magnetic field of strength B0. Thus, we shall consider the linear stability of the uniform parallel

flow U(y) = Λ0y on on equatorial β-plane in the presence of vertical magnetic field of strength

B0 and in the absence of diffusion. We will also consider the jet profile U(y) = Λ0y − δβy2/2,

where δ is a real constant of order unity that governs the width of the jet (cf. Stevens, 1983). The

second of these flows ensures that anti-cyclonic shear (which is necessary for instability to occur)

is restricted to a finite latitudinal domain so that unstable modes (if they exist) must occur within

this region (as in Chapter 5).

In section 6.2 we derive a parabolic cylinder equation for the cross-stream velocity v from the

second order equation (2.30), which governs the linear stability of the perturbed quantities. To do
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this we introduce the nondimensional variable Y = (y − y0)/L, where y is the latitude, y0 is the

central latitude and L is the latitudinal lengthscale. The equation may be solved analytically, yield-

ing an eigenvalue relation with corresponding eigenfunctions v ∝ Hn(Y ) exp(−Y 2/2),where the

eigenvalue n is a non-negative integer, and Hn are Hermite polynomials of degree n.

In section 6.3 we first consider the system in the absence of shear, where stability is ensured

by equation (2.43) due to the absence of anti-cyclonic shear. We examine the role of weak and

strong magnetic field on the system, yielding equatorial magnetically modified inertial and Alfvén

waves, respectively.

Following this, we return to the sheared system, where we introduce the nondimensional pa-

rameters that will be used throughout the rest of Chapter 6 and Chapter 7: that is, the nondimen-

sional growth rate S = 2s/Λ0 (so that 2/Λ0 is the timescale), re-scaled vertical wavenumber

K = Λ2
0|k|/4Nβ and magnetic parameter M = 8NβvA/Λ

3
0. Under the chosen nondimension-

alisation the growth rate becomes a function of K, M and n; however, we take n = 0 as that

describes the most unstable mode. We contour the frequency and growth rate in (M,K)-space,

where, somewhat surprisingly, the system remains unstable in the limit of strong magnetic field.

There are two modes only, one that is always stable and one that is always unstable. We inves-

tigate both the limit of weak and strong magnetic field analytically, finding that weak magnetic

field modifies inertial instabilities as well as generating purely magnetic instabilities in the hydro-

dynamically stable regime; instability is found to always occur in the presence of strong magnetic

field.

In section 6.4 we consider the dynamical balances of the stable and unstable modes of our

system. We investigate numerous parameter regimes, including the weak field limits of the hydro-

dynamically unstable and stable regimes as well as the limit of strong magnetic field. In particular,

we categorise magnetically modified inertial instabilities, a “stratified” MRI and the instabilities

found in the limit of strong magnetic field.

Finally, in section 6.5 we consider the jet profile U(y) = Λ0y− δβy2/2, where instability can

occur only in the region 0 < y < Λ0/δβ, since these are the only latitudes where the flow exhibits

anti-cyclonic shear (U ′f > 0). We now derive stability criteria that depend upon K, M and δ,

as well as contouring the growth rate in (M,K)-space. There are no instabilities in the limit of

strong magnetic field for this flow. We analytically investigate the role of weak magnetic field and

determine the chosen vertical scale in this regime.

6.2 Formulation

In this Chapter we are considering the equatorial atmosphere and therefore apply the equatorial

β-plane approximation, where the Coriolis parameter f = βy with β > 0 constant. We also

consider uniform magnetic field strength and a flow profile of the form:

U(y) = Λ0y −
δ

2
βy2, (6.1)
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6.2 Formulation

where δ is some dimensionless positive constant that determines the width of the jet (if δ ̸= 0).

The jet profile (6.1) is considered in extension to the uniform flow so that unstable modes are

restricted to the interval 0 < y < Λ0/δβ (since cyclonic shear guarantees stability). This lati-

tudinal constraint is of importance as the uniform flow profile U(y) = Λ0y allows a somewhat

non-physical large field instability to occur, which will be discussed in detail later in the chapter.

We also recall that we are considering a magnetohydrostatic system, which is most relevant in

planetary atmospheres and is subject to the validity condition (2.32). Hence, under this formula-

tion, the eigenvalue constraints and stability results of Chapter 2 imply that the growth rate squared

s2 is real and that the system is stable in the absence of shear.

To proceed, we consider the ideal governing equation (2.33) and define the nondimensional

latitude

Y =
y − y0
L

, (6.2)

where y0 and L are the central latitude and lengthscale of the mode, respectively, and both are at

our disposal. Note that under the nondimensional latitude (6.2), the boundary conditions (2.28)

become

v̂(Y ) → 0 when |Y | → ∞, (6.3)

provided L is real.

The nondimensional latitude (6.2) allows us to recast (2.33) in terms of Y as follows:

N2

k2L2
v̂′′ + (βΛ0(LY + y0)− s2 − k2v2A)v̂ − β2(LY + y0)

2

(
δ +

s2

k2v2A + s2

)
v̂ = 0, (6.4)

which reduces to the normal form of a parabolic cylinder equation which is known to have analyt-

ical solutions (e.g., Bender & Orszag, 1978) provided we choose central latitude and lengthscale

squared as

y0 =
Λ0

2β

(
1 +

k2v2A
s2

)/(
1 + δ

(
1 +

k2v2A
s2

))
, (6.5a)

L2 =
N

kβ

(
1 +

k2v2A
s2

) 1
2

/(
1 + δ

(
1 +

k2v2A
s2

)) 1
2

. (6.5b)

Note that the choice of L2 ensures that in the absence of magnetic field we obtain the hydrody-

namic lengthscales of Stevens (1983) with δ ̸= 0, and Dunkerton (1981) with δ = 0. The central

latitude and lengthscale in (6.5) reduce equation (6.4) to the normal form of a parabolic cylinder

equation:

v̂′′ + (a− Y 2)v̂ = 0, (6.6)

where

a =
k

Nβ

(
1 +

k2v2A
s2

) 3
2
(
Λ2
0

4
− s2

(
1 + δ

(
1 +

k2v2A
s2

)))(
1 + δ

(
1 +

k2v2A
s2

))− 3
2

. (6.7)
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Then, with the boundary conditions (6.3), equation (6.6) has solutions proportional to exp(−Y 2/2)

by (Bender & Orszag, 1978), which always decay as |Y | → ∞. However, to ensure that the solu-

tions decay as |y| → ∞ we require that L2 has a positive real part since Y 2 ∝ L−2. Now, since s2

is real by (2.35), the interior of the square root which defines L2 in (6.5) must also be real. Thus,

for L2 to have a positive real part we must restrict the eigenvalues such that k2v2A/s
2 > −1 (or

equivalently s2 > 0 or s2 < −k2v2A).

The constraints on the frequency and growth rate ensures the boundary conditions (6.3) con-

tinue to decay as |Y | → ∞; hence, by Bender & Orszag (1978), equation (6.6) with boundary

conditions (6.3) admit well known eigenfunctions. The eigenfunctions consist of Hermite polyno-

mials Hn(Y ) multiplied by a Gaussian of the form exp(−Y 2/2) with corresponding discrete and

non-negative values of n, which satisfy the following eigenvalue relation:

(
1 +

k2v2A
s2

) 3
2
(
Λ2
0

4
− s2

(
1 + δ

(
1 +

k2v2A
s2

)))
=

(2n+ 1)
Nβ

k

(
1 + δ

(
1 +

k2v2A
s2

)) 3
2

. (6.8)

In the absence of magnetic field, equation (6.8) reduces to the eigenvalue relation in Stevens

(1983), and for δ = 0, to Dunkerton (1981), where the system is stable provided |k| > |kc| =
4Nβ(2n+ 1)/Λ2

0. We note that the eigenfunctions are even for even values of n and odd for odd

values of n. For example, the n = 0 (even) mode has v̂ = H0(Y ) exp (−Y 2/2) = exp (−Y 2/2),

while the n = 1 (odd) mode has v̂ = H1(Y ) exp (−Y 2/2) = Y exp (−Y 2/2).

6.3 The Equatorial Waves and Instabilities of a Uniform Shear Flow

In this section we will consider the case of uniform shear (i.e., δ = 0) so that the jet profile (6.1)

reduces to the parallel flow U(y) = Λ0y. We will discuss the equatorial waves within the system,

the instabilities present and their respective dynamical balances. When δ = 0, the eigenvalue

relation (6.8) reduces to

|k|
Nβ

(
Λ2
0

4
− s2

)(
1 +

k2v2A
s2

) 3
2

= 2n+ 1. (6.9)

The central latitude and lengthscale (6.5) also reduce, yielding

y0 =
Λ0

2β

(
1 +

k2v2A
s2

)
and L2 =

N

|k|β

(
1 +

k2v2A
s2

) 1
2

, (6.10)

where the eigenfunctions take the form Hn(Y ) exp(−Y 2/2) with Y = (y − y0)/L.

6.3.1 Equatorial Waves

To classify the waves of the system we consider (6.9) in the absence of shear (i.e., Λ0 = 0),

where stability is ensured by equation (2.43). For convenience we set s2 = −ω2, so that ω is the
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6.3 The Equatorial Waves and Instabilities of a Uniform Shear Flow

frequency, and define the nondimensional quantities

ϕ =
|k|3v2A
Nβ

and ω̂2 =
|k|
Nβ

ω2, (6.11)

where the chosen timescale is
√
|k|/Nβ, so that ω̂ is the nondimensional frequency. The param-

eter ϕ may be interpreted as magnetic field strength.

The nondimensional quantities (6.11) allow us to recast equation (6.9) in nondimensional form

as

ω̂2

(
1− ϕ

ω̂2

) 3
2

= 2n+ 1. (6.12)

Recall that we require L2 to be real so that the solutions of the parabolic cylinder equation (6.6)

continue to decay as |y| → ∞. Hence, as ω̂2 > 0 in the absence of shear, equation (6.12) can only

be satisfied if ω̂2 > ϕ (since one side of (6.12) would be complex, and the other real). Thus, the

validity of (6.12) and its subsequent results are confirmed, since ω̂ > ϕ implies that s2 < −k2v2A
is trivially satisfied.

We must also consider the validity of the magnetohydrostatic approximation, where the con-

dition (2.32) in nondimensional terms implies that we require |ω̂2 − ϕ| ≪ N |k|/β (where the

hydrostatic parameter N |k|/β ≫ 1 in planetary atmospheres) for validity.

It is natural to consider the asymptotic behaviour of ω̂2 with respect to ϕ, where the parameter

ϕ is proportional to v2A which allows us to interpret the small and large ϕ regimes as weak and

strong field limits, respectively. The weak and strong field expansions of (6.12) are

ω̂2 = (2n+ 1) +
3

2
ϕ− 3

8(2n+ 1)
ϕ2 +O(ϕ3), (6.13)

ω̂2 = ϕ+ (2n+ 1)
2
3ϕ

1
3 +

1

3
(2n+ 1)

4
3ϕ−

1
3 +O(ϕ−1). (6.14)

Note that both expansions satisfy the condition ω̂2 > ϕ. The expansions have been calculated

to third order since lower order expansions were relatively inaccurate for n > 0, particularly in

the large ϕ limit. The lack of accuracy is due to each term of the expansion being dependent on

(2n+ 1)γ for some γ.

The validity of the magnetohydrostatic approximation in the weak magnetic field expansion

(6.13) is trivial since ω̂2 ∝ (2n + 1) at leading order, so |ω̂2 − ϕ| ≈ (2n + 1) ≪ N |k|/β. The

strong field expansion (6.14) can be shown to be valid, provided the magnetic field is sufficiently

weak, since |ω̂2 − ϕ| ≈ ((2n+ 1)2ϕ)1/3 ≈ (|k|3v2A/(Nβ))1/3 ≪ N |k|/β.
At leading order, the small and large ϕ expansions (6.13) and (6.14) represent inertia-gravity

waves and Alfvén waves, respectively. To demonstrate the accuracy of the expansions, we plot the

nondimensional frequency squared ω̂2 for each expansion against the exact real and non-negative

solution of (6.12) in figure 6.1, for the first even mode (n = 0) and first odd mode (n = 1).

The figure shows that the small and large field expansions describe the mode ω̂2 almost entirely,

except for a small interval in ϕ, where ϕ = O(1), in which magnetic and inertial effects compete.

This interval may be interpreted as an equatorial analogue of the hydromagnetic-inertial waves
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Figure 6.1: Nondimensional frequency squared for equatorial inertia-gravity waves and Alfvén
waves, for the n = 0 (left) and n = 1 (right) modes. The expansions (6.13) and (6.14) are plotted
against the magnetic parameter ϕ.

(3.20) found on the f -plane (which were stratified and magnetohydrostatic analogues of (3.19)

described by Acheson & Hide, 1973). The figure also indicates that when n increases, the small

field expansion describes the mode to a greater degree of accuracy for a larger interval of ϕ.

However, the interval of ϕ that is not accurately described by the small and large expansions

increases.

6.3.2 Equatorial Instabilities

Formulation

We now consider the case of non-zero shear, where instability is possible since the system can

exhibit anti-cyclonic shear. In the following section we will focus our attention to the instabilities

present within the system. Recall that s2 is real, by (2.35), and that the hydrodynamic system is

unstable if |k| > |kc| = 4Nβ(2n+ 1)/Λ2
0 (Dunkerton, 1981).

We define a new set of nondimensional parameters (in contrast to the previous subsection) that

includes the shear Λ0:

K =
Λ2
0|k|

4Nβ
and M =

8NβvA
Λ3
0

, (6.15)

where we also define the nondimensional growth rate S = 2s/Λ0 on the timescale 2/Λ0. The

parameterK can simply be interpreted as a nondimensional vertical wavenumber. However, (6.5b)

implies that the natural equatorial latitudinal scale is (N/β|k|)1/2, which is the so-called radius of

deformation Ld (e.g., Gill, 1982). This implies thatK can alternatively be interpreted as an inverse

equatorial aspect ratio squared that is re-scaled by Λ2
0/4N

2 (which is usually large in stellar and

planetary atmospheres), since L−2
d k−2 = β/N |k| = KΛ2

0/4N
2. We interpret M as magnetic

field strength. The parameter choice (6.15) is not the only reasonable nondimensionalisation for

(6.9); however, the parameters are very easily interpreted. Note that the parameter K can never be

zero, since we require k ̸= 0 for the system to be magnetohydrostatic and Λ0 ̸= 0 by assumption.
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6.3 The Equatorial Waves and Instabilities of a Uniform Shear Flow

The nondimensional parameters (6.15) allow us to recast (6.9) in nondimensional form, yield-

ing

K(1− S2)

(
1 +

M2K2

S2

)3/2

= (2n+ 1). (6.16)

By inspection of equation (6.16), if an unstable mode exists (i.e., S2 > 0), then S2 < 1 (otherwise

(6.16) can not be satisfied). Similarly, if the system is stable (i.e., S2 < 0), then the absolute

value of S2 must be greater than M2K2 (otherwise the left hand side of (6.16) would be complex,

while the right remains real). These constraints on S coincide with the conditions that ensure the

lengthscale L is positive. Thus, we do not need to consider if the solutions of (6.16) satisfy the

condition on the horizontal lengthscale.

The validity of the magnetohydrostatic approximation must be ensured, so that (2.32) is sat-

isfied; in nondimensional terms we require |S2 +M2K2| ≪ 4N2/Λ2
0 for validity. Hence, there

are two cases to consider: the unstable case, where S2 = O(1) and the stable case, where

S2 < −M2K2. The first is trivial since |S2 +M2K2| can only be larger than order one when

M or K is large; thus, provided M and K are not too large the approximation is valid. Note that

if one parameter is large while the other is small, then the approximation remains valid provided

MK = O(1) or smaller. This also extends to the stable case; however, we must also consider

when S2 ∼ 1/K with K ≪ 1 and MK = O(1). Here, |S2 + M2K2| ∼ S2, in which case

1/K ≪ 4N2/Λ2
0 for the approximation to be valid. This holds trivially, since we can write

1/K = 4Nβ/Λ2
0|k| = (β/N |k|)(4N2/Λ2

0) ≪ 4N2/Λ2
0, since β/N |k| is the equatorial aspect

ratio squared. Hence, the magnetohydrostatic approximation is valid provided that the magnetic

field strength is not too large.

The Maximum Growth Rate

To identity the maximum growth rate and where it occurs in (M,K)-space, we differentiate (6.16)

with respect to M and K and solve for S2. This will also allow us to observe how S2 varies with

the parameters M and K. Differentiating (6.16) with respect to K yields(
1 +

M2K2

2S4
(3− S2)

)
∂S2

∂K
=

1− S2

K

(
1 +

4M2K2

S2

)
, (6.17)

where (6.16) has been used to simplify the expression. Differentiating (6.16) with respect to M

yields

∂S2

∂M
= 6MK2S2(1− S2)

(
2S4

(
1 +

M2K2

S2

) 1
2

+ 3M2K2(1− S2)

)−1

. (6.18)

We will first consider unstable modes only so that 0 < S2 < 1 by the growth rate bound (2.45).

Given that 0 < S2 < 1, it follows from equation (6.17) that ∂S2/∂K > 0 for all M and K.

Similarly, given that 0 < S2 < 1, then equation (6.18) implies that ∂S2/∂M > 0 for all M and

K. Hence, increasing either M or K when the system is unstable increases the growth rate. Thus,

the maximum growth rate will occur in the large K and M limits. Surprisingly, this is in direct
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contrast to many magnetohydrodynamic results, where strong magnetic field stabilises unstable

systems and produces Alfvén waves.

To determine the maximum growth rate we therefore take the large K and M limits of (6.16)

with 0 < S < 1, yielding (1−S2)M3K4/S3 ∼ 2n+1. Thus, sinceM andK are large, we require

S2 → 1 to balance the equation, and so S2 ∼ 1− (2n+ 1)/M3K4. Note that this can be derived

by considering a single limit (i.e., large K, or large M ). Hence, to leading order the maximum

growth rate is S = 1 (s2 = Λ2
0/4 in dimensional terms); this is also the maximum growth rate of

the hydrodynamic system (Dunkerton, 1981; Griffiths, 2003a). The maximum growth rate found

is also consistent with (6.17) and (6.18), where ∂KS2 → 0+ and ∂MS2 → 0+ as S2 → 1− in the

large K or M limits.

If instead the system is stable then S2 < −M2K2. In this case the bracketed term on the left

hand side of (6.17) must be positive, however the right hand side of (6.17) can either be negative

or positive depending on the sign of 1 + 4M2K2/S2. Thus, if the system is stable, increasing

K increases the frequency if −4M2K2 < S2 and decreases the frequency if −4M2K2 > S2.

If the system is stable, we can also deduce from equation (6.18) that increasing M increases the

frequency.

The Growth Rate as a Function of Vertical Wavenumber and Magnetic Field Strength

In order to categorise the system in (M,K)-space we solve (6.16) to provide a plot of the growth

rate and for the stable mode, the frequency, given in figure 6.2. Note that the colourbars are on

distinct scales.

Figure 6.2 shows that every value in (M,K) space with M > 0 has one unstable and one

stable mode; however, if M = 0, we retain only the hydrodynamic mode, which is unstable if

K > 2n + 1, and stable otherwise. Thus, if M > 0 we can deduce that if K > 2n + 1, the

hydrodynamic mode is unstable, while the magnetic mode is stable. However, if K ≤ 2n + 1

the hydrodynamic mode is stable, while the magnetic mode is unstable. We can also conclude

that the frequency of the stable hydrodynamic and magnetic modes increase with magnetic field

strength, which is consistent with (6.18). Similarly, we can observe that there is instability for all

values of K and M ̸= 0, where, as in the f -plane, weak magnetic field destabilises what would

be a hydrodynamically stable system. However, the figure shows that there is no sufficient field

strength that stabilises the system. In fact, increasing the magnetic field strength, at any vertical

wavenumber K, only increases the growth rate to its maximum value, given by S2 = 1 (s2 =

Λ2
0/4), as predicted by (6.18).

The Limit of Strong Field

Motivated by the surprising magnetic behaviour within the system as shown in figure 6.2, where

magnetic field of sufficient strength in both the hydrodynamically stable and unstable regimes
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6.3 The Equatorial Waves and Instabilities of a Uniform Shear Flow

Figure 6.2: The frequency (left) and growth rate S (right) in (M,K) space. Note the distinct
colourbars.

yields the maximum growth rate. Thus, we consider the large M limit of (6.16), for which there

are two modes, the first being a stable Alfvénic mode:

S2
+ = −K2M2 +O(M). (6.19)

The second mode is unstable and given by

S2
− = 1 +O(M−1), (6.20)

which is the maximum growth rate at leading order. In dimensional terms, the frequency of the

stable mode (6.19) is kvA, while the growth rate of the unstable mode (6.20) is Λ0/2. Clearly,

we wish to derive the second order terms of (6.19) and (6.20). To do this, we substitute the

leading order terms of (6.19) and (6.20) with a second order term αMγ (where α and γ are to be

determined) into (6.16). Thus, including the second order correction, the stable mode becomes

S2
+ ≈ −K2M2 − (2n+ 1)

2
3M

2
3 , (6.21)

while the unstable mode is given by

S2
− ≈ 1− (2n+ 1)

M3K4
. (6.22)

Thus, in the large M limit, the growth rate is the maximum possible (i.e., S2) as predicted by the

growth rate bound (2.45) to O(M−3). The stable mode is an Alfvén wave at leading order. Note

that the second order correction to the stable mode (6.21) is consistent with the constraint on the

eigenvalue since the positive correction ensures that K2M2/S2 < −1.

Focusing on the unstable mode (6.22), it is clear that the expansion breaks down whenM3K4 =

O(1) withM ≫ 1. Thus we investigate the asymptotic behaviour inK while in the largeM limit.

IfK ≫ 1 we retain the expansion (6.22) with a now smaller second order term. IfM3K4 = O(1),

equation (6.16) yields the following cubic in S :

(2n+ 1)S3 +K4M3S2 −K4M3 = 0, (6.23)
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where S → 1 as M3K4 increases. Equation (6.23) implies that the maximum growth rate is

damped (substituting S = 1 leads to a clear contradiction); however, the growth rate is still of

order unity. Finally, if M3K4 ≪ 1, then (6.16) yields

S ≈ K4/3M

(2n+ 1)1/3
. (6.24)

Hence, (6.22), (6.23) and (6.24) describe the large M limit entirely, where, at leading order, equa-

tions (6.22), (6.24) may be derived via (6.23). Clearly, as the vertical wavenumber decreases

(limited by the depth of the atmosphere) in the strong field limit, then the maximum growth rate

decreases in magnitude and eventually scales with K4/3M(≪ 1); however, the system can never

be stabilised.

The Limit of Weak Magnetic Field

It is natural to investigate the small M limit of figure 6.2 in order to categorise the behaviour

analytically. In the limit of weak magnetic field (M ≪ 1) the equation for the growth rate (6.16)

yields a perturbation to the hydrodynamic root:

S2 = 1− 2n+ 1

K
+O(M). (6.25)

There is also a small Alfvénic root. Indeed, assuming S2 ≪ 1 so that 1 + S2 ≈ 1 in (6.16), we

obtain

S2 =
M2K8/3

(2n+ 1)2/3 −K2/3
+ · · · . (6.26)

In dimensional terms, at large vertical wavenumber this becomes s2 ≈ −k2v2A/Λ2
0. At small

vertical wavenumber, (6.26) implies instability, where terms involving β, stratification N and

shear come into play (via K in (6.26)).

As K → 2n + 1, it is clear that the roots (6.25) and (6.26) will break down. In (6.25) the

leading-order term vanishes so that higher-order corrections become comparable in magnitude.

In (6.26) the leading-order term increases without bound. Because of this, we might anticipate

interaction between the modes when the hydrodynamic root (becoming smaller) is of the same

size as the Alfvén root (increasing in size fromO(M2)). WritingK = (2n+1)(1+µMp), where

µ measures the departure from K = 2n+1 and p > 0 is to be determined, the hydrodynamic root

then has S2 ∝ Mp and the Alfvén root has S2 ∝ M2−p. So the roots are of the same order of

magnitude when p = 1 (i.e. K within a distance of O(M) of 2n + 1), with S2 = O(M). So we

write

K = (2n+ 1) (1 + µM) , Ω̂2 =
S2

M
, (6.27)

and recast (6.16) in terms of Ω̂(µ,M), rather than S(K,M):

(1 + µM)
(
1−M Ω̂2

)(
1 +

M(2n+ 1)2

Ω̂2

)3/2

= 1, (6.28)
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where terms of order M2 have been neglected. Now, for small M , the O(1) terms cancel, and

then terms in O(M) give

µ−Ω̂2+
3(2n+ 1)2

2Ω̂2
= 0 =⇒ Ω̂4−µΩ̂2−3(2n+ 1)2

2
= 0 =⇒ Ω̂2 =

µ±
√
µ2 + 6(2n+ 1)2

2
.

(6.29)

This describes the hydrodynamic root and the Alfvén root near the critical vertical wavenumber

K = 2n+ 1.

It remains to determine how the two roots of (6.29) link to (6.25) and (6.26). To do this, we

consider the large |µ| limit of (6.29) and compare with the small |µ| limits of (6.25) and (6.26).

Specifically, the positive root of (6.29) yields

2Ω̂2 → µ+ |µ|
(
1 +

3(2n+ 1)2

µ2
+ · · ·

)
∼
{

−3(2n+ 1)2/µ µ < 0,
2µ µ > 0,

as |µ| → ∞. (6.30)

Similarly, the negative root of (6.29) yields

2Ω̂2 → µ− |µ|
(
1 +

3(2n+ 1)2

µ2
+ · · ·

)
∼
{

2µ µ < 0,
−3(2n+ 1)2/µ µ > 0.

as |µ| → ∞. (6.31)

We also find that the hydrodynamic root (6.25) yields

S2 ∼ 1− (1 + µM)−1 ∼ µM =⇒ 2Ω̂2 =
2S2

M
∼ 2µ as µ→ 0, (6.32)

while the Alfvén root (6.26) yields

S2 ∼ M2(2n+ 1)2

1− (1 + µM)2/3
∼ −3M(2n+ 1)2

2µ
=⇒ 2Ω̂2 =

2S2

M
∼ −3(2n+ 1)2

µ
as µ→ 0,

(6.33)

where we have substituted from (6.27) to evaluate (6.25) and (6.26). Thus, (6.30) shows that the

+ve root in (6.29) becomes the hydrodynamic root (6.32) as µ → ∞ and the Alfvén root (6.33)

as µ → −∞ (or, the hydrodynamic root (6.25) becomes the Alfvén root (6.26) as K decreases

through 2n+1). Likewise, (6.31) shows that the −ve root in (6.29) becomes the Alfvén root (6.33)

as µ → +∞ and the hydrodynamic root (6.32) as µ → −∞ (or, the hydrodynamic root (6.25)

becomes the Alfvén root (6.26) as K increases through 2n + 1). So the roots exchange identity

as K passes through 2n + 1. The hydrodynamic mode is not a single entity that can be tracked

through parameter space, and neither is the Alfvén mode.

With the complexities of the weak magnetic field roots categorised, we consider the original

nondimensional notation, first adopted in (6.16), to find the next order terms in (6.25) and (6.26).

Thus, we substitute (6.25) into (6.16) to find the perturbation to the hydrodynamic root, which is

proportional to M2 when M ≪ 1. Thus in the limit of weak magnetic field, the hydrodynamic

root takes the form

S2 = 1− 2n+ 1

K
+

3(2n+ 1)K2

2((2n+ 1)−K)
M2 +O(M4), (6.34)

where, if we are in a hydrodynamically stable regime it follows that the weak magnetic field

stabilises the system. However, in a hydrodynamically unstable regime the weak magnetic field

destabilises the system.
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Similarly, by substituting (6.26) into (6.16), we find the second order term in M2 for the

Alfvén root when M ≪ 1. Thus, in the limit of weak magnetic field, the Alfvén root takes the

form

S2 =
K8/3M2

(2n+ 1)2/3 −K2/3
− 2(2n+ 1)2/3K16/3M4

3((2n+ 1)2/3 −K2/3)3
+O(M6), (6.35)

where, if we are in a hydrodynamiclly stable regime, the weak magnetic field destabilises the

system. However, in a hydrodynamiclly unstable regime, the weak magnetic field stabilises the

system.

Thus, together, (6.34), (6.35) alongside the singular expansion (6.29) describe the entire sys-

tem in the limit of weak magnetic field. Thus, in the limit of weak magnetic field, if the system

is in a hydrodynamically stable regime ((2n + 1) −K > 0), equation (6.35) describes the most

unstable mode, while if the system is in a hydrodynamically unstable regime, equation (6.34) de-

scribes the most unstable mode. The expansions show that weak magnetic field both destabilises

the hydrodynamically stable system as well as increasing the growth rate of the hydrodynamically

unstable system, justifying the results of figure 6.2.

We now determine the validity of the expansions under the magnetohydrostatic approxima-

tion by using the condition (2.32), which, under this nondimensionalisation, is |S2 +M2K2| ≪
4N2/Λ2

0. The first expansion (6.34) is valid, since at leading order, it implies that |S2+K2M2| ≈
|1 − (2n + 1)/K| = |1 − (2n + 1)4Nβ/Λ2

0|k|| ≪ 4N2/Λ2
0 since N |k|/β is large in plane-

tary atmospheres. The second expansion (6.35) is also valid since |S2 +K2M2| ≈ |K2M2(2n+

1)2/3/((2n+1)2/3−K2/3)| ≪ 4N2/Λ2
0 as (2n+1)/K is not sufficiently close to 1. The singular

expansion (6.29) is by definition of order M and is thus valid provided M is not too large.

6.4 Dynamical Balances

We now categorise the dynamical balances in various limits of the system, giving physical in-

sight into equatorial instabilities present. Further analysis regarding the dynamical balances of

various hydrodynamic and magnetohydrodynamic waves is given in Appendix A. Under the as-

sumptions of uniform shear U ′(y) = Λ0, uniform vertical magnetic field of strength B0 and

Coriolis parameter f = βy, the second order equation (2.33) has solutions of the form v ∝
exp(−(y − y0)

2/2L2 + ikz + st), where v is the perturbed cross-stream velocity. Hence, under

these assumptions and by recalling that B1 does not affect the dynamics of the flow, equations

(2.22)-(2.26) reduce to

su−Qv =
ikB0

µ0ρ̄
bx, sv + fu = − 1

L

∂θ

∂Y
+
ikB0

µ0ρ̄
by, sθ =

iN2

k
w, w − i

kL

∂v

∂Y
= 0, (6.36)

sbx = Λ0by + ikB0u, sby = ikB0v, sbz = ikB0w, bz −
i

kL

∂by
∂Y

= 0, (6.37)

where we have also made use of the nondimensional parameter Y, given by (6.2), to introduce the

cross-stream lengthscale L, as seen in equation (6.5). Note that the solenoidal constraint in (6.37)
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6.4 Dynamical Balances

can immediately be dropped from the dynamical balance since it is described by cross-stream and

vertical induction equations (i.e., the induction equation preserves ∇ · b = 0).

It is now convenient to nondimensionalise equations (6.36) and (6.37) with the nondimen-

sional parameters (6.15), where the chosen timescale 2/Λ0 yields the nondimensional growth rate

S = 2s/Λ0. It is also useful to define the nondimensional frequency ω̂ = −iS. We choose L and

1/k as the cross-stream and vertical lengthscales, respectively, since these are the natural length-

scales in each direction due to the cellular structure of the modes. To nondimensionalise equations

(6.36) and (6.37) we must also determine the order of the perturbed quantities. To do this, we

nondimensionalise the horizontal velocities with the arbitrary constant V (with dimension of ve-

locity) as we are considering a linear problem. Thus, the appropriate scaling for w is found via

the incompressibility condition, given by V/kL. Then, via the thermodynamic equation in (6.36),

it follows that the appropriate scaling for the total pressure θ is given by 2N2V/k2Λ0L. Then,

resulting from the nondimensionalisation of the velocities, we choose the following scaling for the

horizontal and vertical fields, given by V
√
µ0ρ̄ and V

√
µ0ρ̄/kL, respectively. Thus, equations

(6.36) and (6.37) become

Su− (F − 2)v = iKMbx, Sv + Fu = −K−1C− 1
2
∂θ

∂Y
+ iKMby, Sθ = iw, (6.38)

w = i
∂v

∂Y
, Sbx = 2by + iKMu, Sby = iKMv, Sbz = iKMw, (6.39)

where F is the resulting nondimensionalisation of the Coriolis term (2/Λ0) · f = (2/Λ0) · βy =

2β(LY + y0)/Λ0 and C is the nondimensional central latitude (2β/Λ0) · y0, given by

F = C
1
4

(
Y√
K

+ C
3
4

)
and C = 1 +

K2M2

S2
. (6.40)

Note that we define L̂ = C1/4/
√
K as the nondimensional lengthscale (2β/Λ0) ·L, which results

from equation (6.10). This nondimensionalisation allows us to easily investigate various limits of

the system, which is now defined by the two parametersK andM. For simplicity, we will consider

the dynamical balances of the even mode only, where n = 0 and v ∝ exp(−Y 2/2).

Figure 6.3 shows the values that the nondimensional lengthscale L̂ and central latitude C

(calculated from equation (6.5)) take in the (M,K)-plane for both the stable and unstable mode

(as seen in figure 6.2). We find that the lengthscale and central latitude of the stable mode de-

creases with increasing magnetic field strength. Specifically, in the large field limit, equation

(6.21) implies that the central latitude C ∼ K−2M−4/3, where, as a result, the lengthscale

L̂ ∼ K−1M−1/3. We also find that the lengthscale and central latitude of the unstable mode in-

creases with increasing magnetic field strength. Specifically, in the large field limit, equation (6.22)

implies that the nondimensional central latitude C ∼ K2M2, so that the lengthscale L̂ ∼ M1/2.

We shall address the other asymptotic values of the lengthscale and central latitude on a case by

case basis.
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Figure 6.3: Plots for the nondimensional lengthscale L̂ = (2β/Λ0) · L = C
1
4 /
√
K (left panels)

and the nondimensional central latitude C = (2β/Λ0) · y0 (right panels) for the stable mode (top
panels) and the unstable mode (bottom panels).
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6.4 Dynamical Balances

6.4.1 Equatorial Inertial Instability

We first categorise the dynamical balance of the hydrodynamic regime of Dunkerton (1981), where

inertial instability occurs ifK > 2n+1. IfK < 2n+1 the system is stable and exhibits equatorial

gravity and inertia-gravity waves, the dynamical balance of which are derived in Appendix A. In

the hydrodynamic regime, the central latitude C = 1, while the lengthscale L̂ = 1/
√
K. Thus,

F = 1 + Y/
√
K, by which equations (6.38) and (6.39) reduce to

Su−
(

Y√
K

− 1

)
v = 0, Sv +

(
Y√
K

+ 1

)
u =

K−1

S
(Y 2 − 1)v, (6.41)

where we have evaluated the pressure gradient in terms of v via the cross-stream momentum and

thermodynamic equations in (6.38). Combining the equations of (6.41) yields the growth rate

S =
√
1− 1/K for K > 1, which is consistent with Dunkerton (1981) and with equation (6.16)

with M = 0 and n = 0. Note that if K ≫ 1, the pressure gradient can be neglected from the

balance (6.41), and gives the growth rate S = 1.

To illustrate the dynamical balance (6.41) we plot the cross-stream momentum equation for

K = 1.25 and K = 5.0 in figure 6.4. The equator, the central latitude C (given in equation

(6.5)) and latitude C = 1 (which is the minimum of the absolute vorticity fQ = βy(βy − Λ0) in

nondimensional form) are represented by a dashed line, dotted line and crosses respectively. We

shall retain this convention for all hydrodynamic and magnetohydrodynamic figures. It is impor-

tant to note that the central latitude of every hydrodynamic mode coincides with the minimum of

fQ (C = 1). Figure 6.4 shows that increasing K increases the cross-stream acceleration, since

the magnitude of the pressure gradient decreases. The maximum growth rate S = 1 occurs as

K → ∞ since the pressure gradient is then completely negligible and therefore does not damp the

cross-stream acceleration.

6.4.2 Magnetohydrodynamic Balances

We now consider the dynamical balances of the magnetohydrodynamic regime, where we shall

categorise the various limiting cases seen in figure 6.2. We will address magnetically modified in-

ertial instabilities, and purely magnetic instabilities in the weak and strong magnetic field regimes.

The dynamical balance of equatorial magnetic, Alfvén, and magnetically modified inertia-gravity

waves are considered in Appendix A.

Magnetically Modified Equatorial Inertial Instabilities

We begin by categorising the dynamic balance of the weak magnetic field limit (M ≪ 1) in the

hydrodynamically unstable regime (K > 1) with K = O(1), where an unstable mode is present,

as seen in the lower left section of figure 6.2. To isolate the unstable hydrodynamic mode, we

assume that S = O(1), which is implied by the leading order hydrodynamic growth rate, as seen
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Figure 6.4: The cross-stream momentum equations of the dynamical balance (6.41) plotted for
K = 1.25 (left) and K = 5.0 (right). The panels illustrate equatorial inertial instabilities with
growth rates S = 0.4472 (left) and S = 0.8944 (right), and respective lengthscales L̂ = 0.8944

and L̂ = 0.4472 (C = 1 in both cases). Plots (c), (d), and (e) show the cross-stream acceleration,
Coriolis force and pressure gradient.

in the expansion (6.34). With these assumptions, we can deduce from equations (6.38) and (6.39)

that u ∼ θ ∼ v and by ∼ bx ∼Mv. Thus, equations (6.38) and (6.39) reduce to

Su−
(

Y√
K

− 1

)
v = 0, Sv +

(
Y√
K

+ 1

)
u =

K−1

S
(Y 2 − 1)v, (6.42a)

Sbx = 2by + iKMu, Sby = iKMv, (6.42b)

which are hydrodynamic at leading order and are therefore described by the dynamical balance

(6.41). However, the weak magnetic field expansion of the hydrodynamic mode (6.34) implies

that weak field increases the growth rate of the hydrodynamically unstable system. Hence, we

must include the second order terms in (6.42) to categorise the destabilising mechanism. Note

that, if K → ∞, the balance (6.42) would only be altered by neglecting the cross-stream pressure

gradient and the Y/
√
K terms.

To address the destabilising mechanism, we evaluate the Lorentz forces, F and the correction

to the pressure gradient in terms of v, using the leading order hydrodynamic growth rate squared

S2 = 1−1/K and the balance (6.41). First, it follows from the cross-stream induction equation in

(6.39) that the cross-stream Lorentz force iMKby = −M2K2v/S,which is therefore stabilising

as it acts to dampen the cross-stream acceleration. Similarly, we can deduce that the O(M2)

contribution from the cross-stream pressure gradient takes the same sign as the leading order term

and therefore decreases the growth rate of the system. The along-stream Lorentz force can be
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6.4 Dynamical Balances

written as

iKMbx =
iKM

S
(2by + iKMu) = −K

2M2

S2

(
2 +

1

Y/
√
K + 1

(
(Y 2 − 1)/K − S2

))
v,

(6.43)

where, if we use the leading order expansion for the square of the hydrodynamic growth rate,

S2 = 1− 1/K, it follows that

iKMbx = −K
2M2

S2

(
1 +

Y√
K

)
v. (6.44)

Thus, the along-stream Lorentz force (6.44) acts with the term (Y/
√
K − 1)v (resulting from

the Coriolis and advection terms) when −
√
K < Y <

√
K and acts against the term otherwise.

Hence, to determine whether the sum of second order contributions from F, the Lorentz force,

and the pressure gradient increase or decrease the growth rate we must combine the momentum

equations (including their second order corrections) to categorise the role of weak magnetic field.

Thus, we expand F as

F ≈ 1 +
Y√
K

+
K2M2

S2

(
1 +

Y

4
√
K

)
, (6.45)

where, by considering all O(M2) terms in the along-stream momentum equation in (6.38), we

obtain a second order correction to the along-stream acceleration, given by

Su−
(

Y√
K

− 1

)
v = − 3K2M2

4(1− 1/K)

Y√
K
v. (6.46)

Hence, we can substitute (6.46) into the cross-stream momentum equation via Fu and equate

O(M2) terms to obtain the correction to the cross-stream acceleration, namely

(Sv)correction = − 3K

2S3
. (6.47)

Thus, for unstable modes S2 > 0, it follows that the magnetic correction to the hydrodynamic

system (6.41) increases the growth rate, since the combination of the M2 corrections from F, the

pressure gradient and cross-stream Lorentz force always act to increase the cross-stream acceler-

ation. We can also note that the correction (6.47) is valid in the hydrodynamically stable regime

(S2 < 0) as seen in Appendix A.

To confirm the dynamical balance (6.42) and determine the role of each term, we plot the

along-stream momentum, cross-stream momentum and the along-stream induction equations in

figure 6.5 with K = 1.5 and M = 0.2 (so that the effect of magnetic field can be seen). Once

again, recall that the equator, the hydrodynamic central latitude and the minimum of fQ are rep-

resented by a dashed line, a dotted line and a crossed line, respectively. In contrast to the hydro-

dynamic case, we see that the central latitude of the mode no longer occurs at the minimum of fQ

(and therefore the centre of the hydrodynamic inertially unstable modes); indeed, magnetic field

perturbs the mode to higher latitude away from the most unstable hydrodynamic latitude (C = 1).

In figure 6.5 we see that the along-stream Lorentz force acts with −(F − 2)v (the Coriolis and ad-

vection term) when −
√
K < Y <

√
K and acts with −(F − 2)v otherwise, as predicted. We can

209



Figure 6.5: The dynamical balance of (6.42) plotted for K = 1.5 and M = 0.2, illustrating
a magnetically modified equatorial inertial instability in the hydrodynamically unstable regime
(K > 1) with growth rate S = 0.6956. The mode has central latitude C = 1.1860 and lengthscale
L̂ = 0.8521. Plots (a), (b) and (c) show the along-stream acceleration, advection and Coriolis
terms, and Lorentz force. Plots (d), (e), (f) and (g) show the cross-stream acceleration, Coriolis
force, pressure gradient and Lorentz force. Plots (h), (i) and (j) show the along-stream field
generation, advection and tension terms.

also see that the cross-stream Lorentz force acts against the cross-stream acceleration and there-

fore decreases the growth rate. This is indeed the case, which can be seen when comparing the

hydrodynamic growth rate S = 1− 1/K = 1/3 for K = 1.5 to the growth rate of the instability

in figure 6.5 with K = 1.5 and M = 0.3, which is S = 0.6956.

Weak Magnetic Field Instability in the Hydrodynamically Stable Regime with K = O(1)

In this section we discuss the weak magnetic field limit (M ≪ 1) in the hydrodynamically stable

regime (K < 1) with K = O(1) and sufficiently far from K = 2n + 1 (so we do not have to

consider the singular root (6.29)), where an unstable mode is present as seen in the right panel of

figure 6.2. To isolate the unstable magnetic mode we assume that S ≪ 1, which is consistent with

the weak magnetic field expansion (6.35). Thus, we can deduce from equations (6.38) and (6.39)

that S ∼ M, so that bx ∼ u ∼ θ ∼ v/S and by ∼ v, where C and F retain all terms and are of

order unity. Hence, equations (6.38) and (6.39) reduce to

Su− (F − 2)v = iKMbx, Fu =
K−1C− 1

2

S
(Y 2 − 1)v, Sbx = 2by + iKMu, Sby = iKMv,

(6.48)

where we have evaluated the pressure gradient in terms of v via the thermodynamic and incom-

pressibility equations in (6.38). The equations of (6.48) combine to give S2 = K8/3M2/(1 −
K2/3), which is consistent with the weak magnetic field expansion (6.35) with n = 0. Thus, in the

hydrodynamically stable regime with K = O(1) and M ≪ 1, we attain geostrophic balance in

the cross-stream direction, while retaining all other terms. We can compare (6.48) to the balance
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6.4 Dynamical Balances

Figure 6.6: The dynamical balance of (6.48) plotted for K = 0.75 and M = 0.01, illustrating
a magnetohydrodynamic equatorial instability in in the hydrodynamically stable regime (K < 1)
with growth rate S = 0.0163. The mode has central latitude C = 1.2116 and lengthscale L̂ =

1.2115. Panel layout as in figure 6.5.

of equatorial inertia-gravity waves (A.29), which is also geostrophic in the cross-stream direction,

allowing us to deduce that the along-stream Lorentz force is destabilising the system. Now, to

illustrate the dynamical balance and confirm the destabilising mechanism, we plot the terms of

(6.48) in figure 6.6. Indeed, by comparing figure 6.6 to figure A.2, we can deduce that the along-

stream Lorentz force is indeed destabilising the hydrodynamically stable system. It also follows

that the along-stream velocity is stabilising as it dampens the along-stream field generation.

Weak Magnetic Instability in the Hydrodynamically Stable Regime with K ≪ 1

To extend the previous subsection we categorise the dynamical balance of the weak magnetic field

limit (M ≪ 1) with K ≪ 1, where an unstable mode is present, as seen in the right panel of

figure 6.2. To isolate the unstable magnetic mode we assume that S ≪ 1, which is implied by

the weak magnetic field expansion (6.35). These assumptions allow us to deduce from equations

(6.38) and (6.39) that by ∼ KMv/S, u ∼ v/S. Then, as the cross-steam momentum equation is

in geostrophic balance, the along-stream Lorentz force can not be neglected, otherwise the system

would be hydrodynamic and stable. Thus, bx ∼ Fv/KM, since Su is small compared to the

Coriolis term; we can also deduce that C ≈ M2/S2 (with S2 ≪ M2), so that F ∼ K2M2/S2.

Hence, it follows from the along-stream induction equation that S ∼MK
4
3 , in whichC ∼ K−2/3

and F ∼ K−2/3, where both terms in F are of comparable order. The growth rate is consistent

with (6.35) in the large K limit, which also implies that S ≪ M. Hence, bx ∼ K−5/3v/M, u ∼

K−4/3v/M and by ∼ K−1/3v, so that equations (6.38) and (6.39) reduce to

− Fv = iKMbx, Fu =
K−1

M
(Y 2 − 1)v, Sbx = 2by + iKMu, Sby = iKMv, (6.49)
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Figure 6.7: The dynamical balance of (6.49) plotted for K = 0.01 and M = 0.01, illustrating
a magnetohydrodynamic equatorial instability in the hydrodynamically stable regime (K < 1)
with growth rate S = 2.21 × 10−5. The mode has central latitude C = 21.5443 ≈ K−2/3 and
lengthscale L̂ = 21.5443 ≈ K−2/3. Panel layout as in figure 6.5.

where we have evaluated the pressure gradient in terms of v via the thermodynamic and incom-

pressibility equations in (6.38). Equations (6.49) combine to give S = MK4/3, which is consis-

tent with the weak magnetic field expansion (6.35) with n = 0. Thus, in the hydrodynamically

stable regime with K ≪ 1 and M ≪ 1 we attain magnetostrophic balance in the along-stream

direction and geostrophic balance in the cross-stream direction, while retaining all terms within

the induction equations. In figure 6.7 we illustrate the dynamical balance (6.49). Figure 6.7 shows

that the instability can be considered to be an equatorial analogue of the stratified MRI, as seen in

Chapter 3, where weak magnetic field could destabilise the hydrodynamically stable regime with

K = O(1) or K ≪ 1.

Instability in the Large M limit with K = O(1)

Typically, large magnetic field usually renders a system stable due to the Lorentz forces dominating

the dynamics of the system and driving Alfvén waves. However, on the equatorial β-plane, large

magnetic field does not give stability, but instead further destabilises the unstable hydrodynamic

mode as well as the weak magnetic field instability (in the hydrodynamically stable regime), as

seen on the right panel of figure 6.2. Thus, to categorise this instability we suppose M ≫ 1 with

K = O(1) and S = O(1), so that C ≈ K2M2/S2, L̂ ≈
√
MS and F = K2M2/S2+O(M1/2),

from which equations (6.38) and (6.39) imply that by ∼ bx ∼ Mv and u ∼ v. Hence, equations

(6.38) and (6.39) reduce to

− K2M2

S2
v = iKMbx,

K2M2

S2
u = iKMby, Sbx = 2by + iKMu, Sby = iKMv, (6.50)

since F ≈ K2M2/S2. Equations (6.50) combine to give S2 = 1 as expected. Note that ifK ≫ 1,

the dynamical balance (6.50) remains the same, combining to give S2 = 1. Thus, in the limit of
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6.4 Dynamical Balances

Figure 6.8: The dynamical balance of (6.50) plotted for K = 1.0 and M = 10, illustrating a
magnetic instability in the large M limit with growth rate S = 0.9995. The mode has central
latitude C = 101.0985 ≈ K2M2/S2 and lengthscale L̂ = 3.1709 ≈ K1/2M1/2/S1/2. Panel
layout as in figure 6.5.

large magnetic field, the system becomes magnetostrophic in the horizontal directions. This is

in direct contrast to equatorial Alfvén waves (A.37), where the Lorentz forces balance and drive

horizontal accelerations. This is illustrated in Figure 6.8 for K = 1.0 and M = 10. Note that

increasing K, to K = 1.5 for example, does not significantly alter the balance; however, the

central latitude moves closer to the equator. Figure 6.8 confirms the balance (6.50) and shows that

the central latitude of the mode occurs far from the equator at C ≈ 101.

Owing to the large magnetic field, the central latitudeC occursO(M2) from the equator while

the lengthscale L̂ ∼ M1/2 (see equations (6.5) and (6.3)). Thus, as the lengthscale is of smaller

order than the central latitude, the mode is unaffected by the equator and must therefore occur on

an f -plane, where the mode is unstable for any non-zero value of shear. At first glance this conflicts

with the results of Chapter 3, where sufficiently strong magnetic field stabilises all modes on the

f -plane; however, the instability governed by (6.50) corresponds to a rapidly rotating instability

on the f -plane that is hidden by the chosen timescale 1/f0 in Chapter 3.

To confirm that the strong magnetic field instability governed by (6.50) corresponds to a

rapidly rotating instability on an f -plane, we suppose the shear, the magnetic field strength and

the Coriolis parameter are constant (as in chapter 3) so that governing equation (2.30) has solu-

tions of the form v ∝ exp(−ily). Thus, supposing U ′ = Λ0, f = f0 and B3(y) = B0 with

v ∝ exp(−ily), equation (2.30) reduces to the eigenvalue relation:

s4 + s2
(
l2N2

k2
+ 2k2v2A + f0Q0

)
+ k2v2A

(
l2N2

k2
− Λ0f0 + k2v2A

)
= 0. (6.51)

Note that to compare this system with that of Chapter 3, we approximate the wide Hermite modes

(with latitudinal lengthscale L ∼M1/2 ≫ 1) locally as a very weak v ∼ exp(ily) mode.
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The mode of interest has lengthscale proportional to M
1
2 ; it follows that the cross-steam

wavenumber l → 0 in the large field limit. Hence, the terms that include the cross-stream

wavenumbers in equation (6.51) may be neglected, where, upon recasting (6.51) in terms of the

nondimensional parameters (6.15), we obtain

S4 + S2
(
2K2M2 + 4f̂(f̂ − 1)

)
+K2M2

(
K2M2 − 4f̂

)
= 0, (6.52)

where we have also introduced f̂ = f0/Λ0. Thus, following the scalings of (6.50) we suppose

f̂ ∼M2 ≫ 1 with S2 = O(1), where, by considering the O(M4) terms of (6.52) we obtain

S2 =
K2M2

4f̂2

(
4f̂ −K2M2

)
. (6.53)

Equivalently, in dimensional terms, equation (6.53) becomes

s2 =
k2v2A
f20

(
Λ0f0 − k2v2A

)
. (6.54)

Recall that the Coriolis parameter f = βy was nondimensionalised by 2/Λ0 and that in the limit

of strong field, equation (6.50) implies 2f/Λ0 = F ∼ M2 = 4k2v2A/Λ
2
0, in which it follows that

f ≈ 2k2v2A/Λ0. Thus, in the limit of large field, we have shown that (6.50) describes a rapidly

rotating system on an f -plane, since substituting f0 = 2k2v2A/Λ0 into (6.54) gives the maximum

growth rate s2 = Λ2
0/4. Hence, by allowing the Coriolis parameter to vary in strength (due to

rotation speed or latitude), the instability governed by (6.50) is attainable on an f -plane. We can

also note that in the rapidly rotating limit with f0 ∼ k2v2A/Λ0, the f -plane system in Chapter

3 is magnetostrophic in the horizontal directions and retains all terms in the induction equation;

indeed, this directly corresponds to the balance (3.60) in section 3.4.

This analogy to the f -plane also allows us to conclude that the sheared cross-stream field

2by in (6.50) is responsible for the instability. We can conclude this from equations (6.36) and

(6.37), where, after supposing f0 ∼ k2v2A/Λ0 and neglecting Λ0by in the along-stream induction

equation, we obtain that s2 = −k4v4A/f20 . This dispersion relation describes the hydromagnetic-

inertial wave of Acheson & Hide (1973) with the cross-stream wavenumber being set to zero. We

can see that this is consistent, since taking (6.50) in the large M limit implies that the lengthscale

is O(M1/2), so that the cross-stream wavenumber scales with M−1/2.

Now, since the lengthscale of the mode is O(M
1
2 ) while the central latitude occurs at O(M2)

from the equator (see equation (6.5) and figure 6.3), we must consider the validity of this instability

in a planetary atmosphere. To do this, we note that the Coriolis parameter can be written as

f = 2Ω sin θ, where θ is the azimuthal coordinate and Ω is the angular velocity of the planet.

Thus, near the equator, where θ ≪ 1, we can expand f = 2Ω sin θ to give

f = 2Ω

(
θ − θ3

6
+ . . .

)
= βy

(
1− y2

6a2
+ . . .

)
, (6.55)

since β = 2Ω/a and y = aθ, where a is the planetary radius. Hence, in order to ensure that the

second order term of (6.55) is not comparable to the leading order term, we require that the latitude
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6.4 Dynamical Balances

y of the mode satisfies y ≪ a. However, (6.50) implies y ∼ Λ0M
2/2β and since β = 2Ω/a,

where Ω is the angular velocity of the planet, we can write the condition y ≪ a equivalently as

k2v2A ≪ Λ0Ω. Thus, the large field instability governed by (6.50) does not violate the equatorial

β-plane assumption provided that the vertical wavenumber is sufficiently small (limited by the

atmospheric layer and the Boussinesq approximation), or that Λ0 is sufficiently large (i.e., strong

equatorial shear), or the planet is rapidly rotating. However, one must recall that to obtain the

dispersion relation (6.54) from (6.52) we required that f0 ∼ k2v2A/Λ0, from which it follows that

the dispersion relation may break down if k becomes too small. This is reasonable as large vertical

scales may invalidate the magnetohydrostatic approximation and also be physically unattainable

in planetary atmospheres.

Note that it is quite likely that the large M instability is violating some assumptions; however,

one can just disregard this region of parameter space and remain well within the constraints listed

above. This also motivates the jet flow that we will consider in Section 6.5, which does not allow

the large M instability to occur.

Instability in the Small K limit with M = O(1)

We now address the small K limit with M = O(1), where we expect instability as shown in

figure 6.2; however, the growth rate S ≪ 1, owing to the stabilising effect of stratification when

the parameter K is small. These assumptions allow us to deduce from equations (6.38) and (6.39)

that S ∼ K
4
3 , which is consistent with (6.24). Thus, by ∼ u ∼ K

1
3 v and bx ∼ K

2
3 v, where, as

a result, C ≈ K2M2/S2 and the terms of F are comparable. Hence, equations (6.38) and (6.39)

reduce to

− Fv = iKMbx, Fu =
1

M
(Y 2 − 1)v, Sbx = 2by + iKMu, Sby = iKMv, (6.56)

where we have evaluated the pressure gradient in terms of v via the thermodynamic and incom-

pressibility equations in (6.38). Equations (6.56) combine to give S = K
4
3M. Hence, with

M = O(1) andK ≪ 1 the system is in magnetostrophic balance in the along-stream direction and

geostrophic balance in the cross-stream direction. The dynamical balance (6.56) is clearly similar

to the dynamical balance (6.49), where K ≪ 1 and M ≪ 1; this implies that finite magnetic field

strength with K ≪ 1 restricts the growth rate to O(MK
4
3 ).

Instability in the Large M limit with K ≪ 1

We now consider the large M limit with K ≪ 1, where S may be small or of order unity. Then

C = 1 +K2M2/S2, from which it follows that F = C1/4Y/
√
K + C ∼ max(C1/4/

√
K,C),

in which there are three cases to consider regarding the size of K in comparison to M. We find,

for all cases, that F must be O(C) as this is always larger or of comparable size to C1/4/
√
K.

First, we assume that 1 ≫ K4M3, in which we can deduce from equations (6.38) and (6.39) that
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S ∼ MK
4
3 , C ∼ K2M2/S2, F ∼ C, u ∼ K−4/3v/M, bx ∼ K−5/3v/M and by ∼ K−1/3v.

Equations (6.38) and (6.39) then reduce to

− Fv = iKMbx, Fu =
K−1

M
(Y 2 − 1)v, Sbx = 2by + iKMu, Sby = iKMv, (6.57)

where all terms in F are comparable and the pressure gradient has been evaluated in terms of v

via the thermodynamic and incompressibility equations in (6.38). Thus, when K4M3 ≪ 1 we

have a weak magnetic instability with growth rate S ∼ MK
4
3 ≪ 1, which is consistent with

equation (6.24). The along-stream momentum equation is in magnetostrophic balance, the cross-

stream momentum equation is in geostrophic balance, while the horizontal induction equations are

unchanged.

Next, we assume that K4M3 = O(1), from which we can deduce from equations (6.38) and

(6.39) that S ∼ MK
4
3 = O(1), u ∼ v, bx ∼ K

1
3 v and by ∼ K

1
3 v. Equations (6.38) and (6.39)

reduce to

− Fv = iKMbx, Fu =
K−1

M
(Y 2 − 1)v + iKMby Sbx = 2by + iKMu, Sby = iKMv,

(6.58)

where all terms in F are comparable. Thus, when K4M3 = O(1) we have a magnetic instability

with growth rate S ∼ M3/K4 = O(1). The along-stream momentum equation is in magne-

tostrophic balance while the cross-stream momentum equation and the horizontal induction equa-

tions are unchanged.

Finally, we assume that K4M3 ≫ 1, in which case we can deduce from equations (6.38) and

(6.39) that S ∼ 1, u ∼ v, bx ∼ KMv and by ∼ KMv. Equations (6.38) and (6.39) reduce to

− Fv = iKMbx, Fu = iKMby Sbx = 2by + iKMu, Sby = iKMv, (6.59)

where F ∼ C ≈ K2M2/S2. Thus when M3K4 ≫ 1 we have a magnetic instability with

a maximum growth rate S = 1. The horizontal momentum equations are in magnetostrophic

balance while the induction equations remain unchanged.

There is a clear similarity between the various dynamical balances of previous cases and

(6.57), (6.58) and (6.59). For example, (6.59) describes the dynamical balance of the large field

instability with K = O(1), given by (6.50). Similarly, (6.57) describes the large K dynamical

balance with M = O(1), given by (6.56), where, since M ≫ 1, the order of parameters differ by

a factor of M. Hence, by deriving (6.57), (6.58) and (6.59), we have shown that when K ≫ 1 and

M ≫ 1, there is clear modification in the dynamical balance as the size of K surpasses M−3/4. If

K4M3 ≫ 1 the system is unstable with maximum growth rate S ≈ 1. Then, if K4M3 ≪ 1, the

system is unstable with growth rate S ∼MK
4
3 .

Weak Magnetic Instability in the Hydrodynamic Regime of Neutral Stability

We now categorise the dynamic balance of the weak magnetic field limit (M ≪ 1) in the neutrally

stable hydrodynamic regime stable regime (K ∼ (2n + 1)), where an unstable mode is present,

216



6.5 Instabilities of Equatorial Jets (δ ̸= 0)

as seen in figure 6.2. To isolate the unstable mode, we assume that S ≪ 1, which is implied by

the weak magnetic field expansion (6.29). These assumptions allow us to deduce from equations

(6.38) and (6.39) that S ∼ M1/2, from which C ≈ 1 and F = 1 + Y/
√
K. Hence, by ∼

M1/2v, u ∼ v/S and bx ∼ v, where equations (6.38) and (6.39) reduce to

Su−
(

Y√
K

− 1

)
v = 0,

(
Y√
K

+ 1

)
u =

K−1

S
(Y 2 − 1)v, (6.60a)

Sbx = 2by + iKMu, Sby = iKMv, (6.60b)

where we have evaluated the pressure gradient in terms of v via equations (6.38c) and (6.38d).

Equations (6.60) denote the hydrodynamic balance (6.41) at leading order; however, the growth

rate in the hydrodynamically stable regime attains a similar destabilising mechanism to the balance

(6.42) provided K−1 ∼ (2n+ 1).

6.5 Instabilities of Equatorial Jets (δ ̸= 0)

We now consider the full flow profile (6.1) with δ > 0 on an equatorial β-plane in the presence of

uniform magnetic field of strength B0. The flow profile U(y) = Λ0y− δβy2/2 is an equatorial jet

centered at latitude y = Λ0/δβ, and contrast to the uniform shear flow (δ = 0), unstable modes

are restricted to the interval 0 < y < Λ0/δβ, which are the only latitudes where anti-cyclonic

shear (U ′f > 0) occurs.

To illustrate the jet profile and the magnetohydrodynamic necessary condition for instability

U ′f > 0, in figure 6.9 we plot Û = βU(y)/Λ2
0 = ŷ−δŷ2/2, −f̂ Q̂ = −fQ/Λ2

0 = ŷ(1−(1+δ)ŷ),

and Û ′f̂ = U ′f/Λ2
0 = ŷ(1− δŷ), against the nondimensional latitude ŷ = βy/Λ0 with δ = 0.25.

Figure 6.9 shows that the flow profile can be used as a model of a non-symmetric equatorial jet,

provided that we only get flow near the off-centre equatorial peak approximately correct; thus,

there is clear application to the equatorial jets typically found in the upper atmospheres of Jupiter

(Kaspi et al., 2018; Read, 2024) and Hot Jupiters (Showman et al., 2013; Heng & Showman,

2015). However, it is important to note that Jupiter’s prominent central equatorial jet is symmetric

about the equator, and thus it is more appropriate to model the immediately adjacent jets (so that

they are sufficiently close to the equator), which are illustrated in figure 1.2. It is also unlikely

that there are regions of fQ < 0 which are necessary for inertial instability to occur; however,

as we determined in Section 2.5, in the magnetohydrodynamic regime a necessary condition for

instability is that U ′f > 0 (which is less stringent than fQ < 0).

Figure 6.9 also shows that U ′f > 0 for 0 < ŷ < 4 (= 1/δ) only, restricting unstable modes to

this region. Thus, given the latitudinal decay of the modes, the structure of Û outside of this region

will presumably be somewhat unimportant. Hence, by considering Û in the region 0 < ŷ < 4, we

could model a northern flank of a westward equatorial jet (consistent with a westward jet centred

at or near the equator). Westward travelling jets have been recently observed on Hot Jupiters

(Armstrong et al., 2016; Dang et al., 2018), where numerical models suggest that strong magnetic
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Figure 6.9: The nondimensional flow profile Û (left), and the quantities −fQ/Λ2
0 and U ′fΛ2

0

(right), plotted against the nondimensional latitude ŷ with δ = 0.25.

fields are largely responsible for the atypical westward travelling jets (Rogers & Komacek, 2014;

Rogers, 2017; Hindle et al., 2019, 2021).

Note that figure 6.9 also shows that the hydrodynamic necessary condition for instability

fQ < 0 is only satisfied for 0 < ŷ < 0.8 (= 1/(1 + δ)), which is far more stringent than

magnetohydrodynamic condition U ′f > 0 (even close to the equator).

We have already derived the relevant eigenvalue relation (6.8) and corresponding central lat-

itude and lengthscale (6.5), which give eigenfunctions of the form Hn(Y ) exp(−Y 2/2). We can

once again consider the previous nondimensional parameters (6.15) used in the δ = 0 analysis.

This allows us to recast the eigenvalue relation (6.8) as:(
1 +

M2K2

S2

) 3
2
(
1− S2

(
1 + δ

(
1 +

M2K2

S2

)))
=

2n+ 1

K

(
1 + δ

(
1 +

M2K2

S2

)) 3
2

,

(6.61)

which reduces to (6.16) when δ = 0. The corresponding nondimensional central latitude C and

lengthscale L̂ are given by

C =
2β

Λ0
y0 =

(
1 +

M2K2

S2

)(
1 + δ

(
1 +

M2K2

S2

))−1

, (6.62a)

L̂2 =
4β2

Λ2
0

L2 =
1

K

(
1 +

M2K2

S2

) 1
2
(
1 + δ

(
1 +

M2K2

S2

))− 1
2

, (6.62b)

using the definition of the central latitude y0 and lengthscale L from (6.5).

6.5.1 Stability Bounds

First, we obtain the domain of instability by supposing S → 0+ in (6.61) to obtain the following

expression:

M2 =
K − (2n+ 1)δ

3
2

δK3
. (6.63)

Equation (6.63) implies that if M = 0, then K = (2n+ 1)δ
3
2 is the stability boundary for steady

modes. Given M ≪ 1, the vertical wavenumber K = (2n+ 1)δ
3
2 to O(M2) instead.
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6.5 Instabilities of Equatorial Jets (δ ̸= 0)

Figure 6.10: The maximum growth rate for δ = 0.25 in (M,K)-space. The maximum growth
rate is S = (1 + δ)−

1
2 = 0.8944 (s = 0.4472Λ0) and is found on the M = 0 axis as K → ∞.

We can differentiate (6.63) with respect to K to find the maximum M , Mmax say, for which

instability can occur. Indeed, upon setting the derivative to zero we find that Mmax occurs at

Kc = 3(2n+ 1)δ
3
2 /2. Hence, after substituting Kc into equation (6.63), we obtain

Mmax =
2

3
√
3(2n+ 1)δ2

occurring at Kc =
3(2n+ 1)δ

3
2

2
. (6.64)

We also find that equation (6.63) is satisfied in the large K limit if and only if K = 1/M
√
δ. That

is, for any K, instability is possible given sufficiently small M.

6.5.2 Growth Rate as a Function of Vertical Wavenumber and Field Strength

We now proceed by solving (6.61) numerically for the maximum growth rate, with δ = 0.25. To

solve (6.61) numerically, we square (6.63) and rearrange to form a 12th order polynomial for the

growth rate S, which yields 12 roots (some complex). The validity of the roots is then verified

by substitution into equation (6.61); roots that do not satisfy the equality (6.61) to a tolerance of

O(10−6) are neglected. The maximum real part of the valid root is plotted in figure 6.10. We plot

the stability boundary (6.63) as a solid red line in order to bound the unstable domain clearly. We

also provide plots of the nondimensional central latitude and lengthscale in (M,K)-space with

δ = 0.25, given by (6.62), in figure 6.11.

In contrast to the flow profile U(y) = Λy, strong magnetic field now stabilises the system.

Modes with small K have also been stabilised. Figure 6.10 shows that weak magnetic field allows

instability to occur in the hydrodynamically stable regime (K < (2n + 1)(1 + δ)3/2). Weak

magnetic field also increases the growth rate of the hydrodynamically unstable system (K >

(2n+1)(1+δ)3/2) so that the maximum growth rate at fixedK is found at non-zeroM. However,

the maximum growth rate S = (1 + δ)−1/2 occurs as K → 0 with M = 0, which implies that

weak magnetic field does not always increase the growth rate.
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Figure 6.11: The nondimensional central latitude (left) and lengthscale (right) of the most unstable
mode plotted in figure 6.10 with δ = 0.25 in (M,K)-space.

Figure 6.11 shows that modes are stabilised when the nondimensional central latitude C > 4.

This is due to the maximum of U ′f occurring at C = 4. To see this, we differentiate U ′f =

(Λ0 − δβy)βy with respect to y, implying that the maximum of U ′f occurs at y = Λ0/2δβ

which in nondimensional terms yields ŷ = 2βy/Λ0 = 1/δ = 4 when δ = 0.25. This latitude

corresponds to the centre of the anticyclonic region of the domain; that is, U ′f is positive for

0 < y < Λ0/2δβ. We can also recall that the growth rate squared is bounded by the maximum

of U ′f within the domain (see equation (2.45)). Thus, the latitude y = Λ0/2δβ (corresponding

to C = 4 for δ = 0.25) is the final latitude to be stabilised in the domain due to the effects of

magnetic field, stratification or both. This final latitude at which the modes are stabilised persists

regardless the value of the nondimensional lengthscale L̂. However, we note that the lengthscale

increases monotonically as the vertical wavenumber decreases.

6.5.3 Scale Selection

To determine the value of K,Kmax say, at which the maximum growth rate Smax occurs for each

value of M. First, we aim to describe the small M limit, where upon inspection of figure 6.10

we can see that the maximum growth rate (which is O(1)) occurs as K → ∞. Numerically, it is

possible to find a power relationship betweenM andKmax (close toA ∼M− 2
3 ); thus, we suppose

that M,MK ≪ 1 and S2 = (1 + αMβ)/(1 + δ) for some constants α, β ∈ R of order unity.

Under this formulation we may find the value of Kmax for small values of M. Indeed, equation

(6.61) reduces to

−K(αMβ + δM2K2) = (2n+ 1)(1 + δ)
3
2 , (6.65)

which allows us to deduce β = 2/3 since M2K2 ∼ Mβ and KMβ ∼ 1. Equating the terms of

(6.65) also allows us to find that α = −δM2−βK2 − (2n+ 1)(1 + δ)
3
2 /KM̃β, which yields the

following equation for the growth rate:

S2 =
1

1 + δ
− δM2K2

1 + δ
− (2n+ 1)(1 + δ)

1
2

K
+

3

2
(1 + δ)

1
2M2K, (6.66)
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6.5 Instabilities of Equatorial Jets (δ ̸= 0)

Figure 6.12: Comparison between the small M result (6.68) for Kmax and the numerically deter-
mined exact result plotted against M with δ = 0.25 (left panel) and δ = 0.5 (right panel). In each
case the values are overlayed over contours of the growth rate.

where we have also calculated a second order term (O(M4/3)) to increase the accuracy of the

expansion.

To determine Kmax, we set ∂KS2 = 0 starting from (6.66):

M2 =
2(2n+ 1)(1 + δ)

3
2

K2(4δK − 3(1 + δ)
3
2 )

≈ (2n+ 1)(1 + δ)
3
2

2δK3

(
1 +

3(1 + δ)
1
2

4δK

)
, (6.67)

where, upon neglecting higher order terms, we obtain

K3
max =

(2n+ 1)(1 + δ)
3
2

2δM2
. (6.68)

Thus, upon substituting (6.68) into (6.66) we obtain an approximation for the maximum growth

rate as a function of Kmax (or, equivalently M ) and δ only, given by

S2
max =

1

1 + δ
− 3

2
(2n+ 1)(1 + δ)

1
2

1

Kmax
+

3(2n+ 1)2(1 + δ)2

4δ

1

K2
max

, (6.69)

valid for sufficiently small M.

We now plot the value of the small M result given by Kmax in (6.68) with the numerically

determined Kmax against M to validate the accuracy of the approximation for various δ in figure

6.12. The plots have been overlayed over the instability domain so that Kmax can be seen to occur

where the growth rate is maximum for each M. Note that the colourbars and axes change for each

δ; this is owing to the way δ modifies the unstable domain and maximum growth rate. There is

also difficulty numerically determining Kmax for M < 0.01 since the maximum growth rate as

M → 0 occurs as K → ∞. The plots show that as δ increases, the approximation remains valid

for a smaller interval of M ; this is due to the expression for K3
max (6.69) becoming smaller as δ

increases for δ < 2, conflicting with the weak magnetic field assumption.

We now plot the smallM result for the maximum growth rate given by (6.69) against the exact

maximum growth rate at each M in figure 6.13 for δ = 0.25 and δ = 0.5. Indeed, equation (6.69)

only describes the most unstable mode for a comparatively small interval ofM as compared to the
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Figure 6.13: The small M result (6.69) for S2
max and the numerically determined exact value of S2

plotted against M with δ = 0.25 (left panel) and δ = 0.5 (right panel). Equation (6.69) has been
plotted with and without the O(M

4
3 ) term to illustrate the increase in accuracy.

interval in which the estimate for Kmax remains accurate. This is due to the maximum growth rate

occurring as M → 0 and K → ∞; this also creates difficulties comparing the growth rates when

M is small. We find that the accuracy of the expansion increases with δ; we may expect this as

increasing δ decreases the size of the unstable domain.

6.5.4 The Role of Weak Magnetic Field

In this subsection we focus on the effect of the weak magnetic field on the growth rate rather than

the scale selection. This is motivated by the varying role of magnetic field, as seen in figure 6.10.

We first consider the large K limit with M ≪ 1 of expression (6.61), yielding the following

expression for the growth rate at leading order:

S2 =
1− δK2M2

δ + 1
, (6.70)

provided M2K2 = O(1). We could alternatively derive this by truncating the expansion (6.66).

Equation (6.70) implies the system is unstable if δK2M2 < 1. Thus, for any K ≫ 1, instability

will occur with growth rate (6.70) given sufficiently small M . In the case where M2K2 ≪ 1, we

obtain the maximum growth rate of the hydrodynamic system (i.e., S2 = 1/(1 + δ)). Equation

(6.70) also implies that weak magnetic field reduces the growth rate of the system in the large K

limit.

We now consider the case when A = O(1) with M ≪ 1 and S = O(1) so that we isolate the

weak magnetic field effect on the unstable hydrodynamic mode (i.e., forK > (2n+1)(1+δ)3/2).

In this limit, equation (6.61) yields the following weak magnetic field expansion:

S2 ≈ K − (2n+ 1)(1 + δ)
3
2

K(1 + δ)
+
K2((2n+ 1)(1 + δ)

3
2 (3 + 2δ)− 2δK)

2(1 + δ)(K − (2n+ 1)(1 + δ)
3
2 )

M2. (6.71)

Hence, assuming we have hydrodynamic instability, so that the leading order term of (6.71) is

positive, it follows that the magnetic correction is positive if

(2n+ 1)(1 + δ)
3
2 (3 + 2δ) > 2δK. (6.72)
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6.5 Instabilities of Equatorial Jets (δ ̸= 0)

Thus, the magnetic field increases the growth rate of the hydrodynamically unstable regime given

sufficiently small K. For δ = 0.25 and n = 0, the condition (6.72) predicts that for K < 9.782

the second order term of (6.71) is positive.

We can also consider the Alfvénic mode in the limit of weak magnetic field by supposing

S ≪ 1 with K = O(1) and M ≪ 1, in which (6.61) yields

S2 =
(K

2
3 − (2n+ 1)

2
3 δ)K2

(2n+ 1)
2
3 (1 + δ)−K

2
3

M2 − 2(2n+ 1)
2
3K

16
3

3((2n+ 1)
2
3 (1 + δ)−K

2
3 )3

M4. (6.73)

Note that (6.73) only describes the growth rate when both the hydrodynamic mode is stable (i.e.,

K < (2n + 1)(1 + δ)3/2) and instability is possible (i.e., K > (2n + 1)δ3/2). The second order

correction in this case is always negative; however, it is only the sign of the leading order term that

determines whether the expansion describes the most unstable mode.

The weak magnetic field expansions (6.71) and (6.73) clearly both break down whenK−(2n+

1)(1+δ)
3
2 = O(M). To address this, we suppose that S2 = βM andK−(2n+1)(1+δ)

3
2 = αM,

where α is real and of order unity. Under these assumptions (6.61) yields

S2 =
α± |α|

√
1 + 6K4/α2

2(1 + δ)K
M, (6.74)

valid for A− (2n+ 1)(1 + δ)
3
2 = O(M). We take the positive mode to describe the growth rate

in both the hydrodynamically stable and unstable regimes; we will discuss this further below.

It remains to determine how the two roots of (6.74) link to (6.72) and (6.73). To do this, we

consider the large |α| limit of (6.74) and compare with the small |α| limits of (6.72) and (6.73).

Specifically, the positive root of (6.74) implies

S2

M
→ α+ |α|(1 + 3K4/α2 + · · · )

2(1 + δ)K
∼
{

α/K(1 + δ) α > 0,
3K3/2α(1 + δ) α < 0,

as |α| → ∞, (6.75)

while the negative root of (6.74) implies

S2

M
→ α− |α|(1 + 3K4/α2 + · · · )

2(1 + δ)K
∼
{

−3K3/2α(1 + δ) α > 0,
α/K(1 + δ) α < 0,

as |α| → ∞, (6.76)

Similarly, the hydrodynamic root (6.72) yields

S2

M
∼ α/K(1 + δ) as α→ 0, (6.77)

while the magnetic root (6.73) yields

S2

M
∼ (K

2
3 − (2n+ 1)

2
3 δ)K2

2αM/3(2n+ 1)
1
3 (1 + δ)

1
2

M =
3K3

2α(1 + δ)
as α→ 0, (6.78)

where we have substituted K − (2n + 1)(1 + δ)
3
2 = αM to evaluate (6.71) and (6.73). Thus,

(6.75) shows that the +ve root in (6.74) becomes the hydrodynamic root (6.72) as α → +∞ and

the magnetic root (6.73) as α → −∞ (or, the hydrodynamic root (6.72) becomes the magnetic

root (6.73) as K decreases through (2n+1)(1+ δ)
3
2 ). Likewise, (6.76) shows that the −ve root in
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Figure 6.14: The exact growth rate and magnetic expansion (6.73) against M, with n = 0 and
δ = 0.25 for K = 0.5 (left) and K = 1 (right).

(6.74) becomes the magnetic root (6.73) as α → +∞ and the hydrodynamic root (6.72) as α →
−∞ (or, the hydrodynamic root (6.72) becomes the magnetic root (6.73) as K increases through

(2n + 1)(1 + δ)
3
2 ). Hence, the roots exchange identity as K passes through (2n + 1)(1 + δ)

3
2 .

The hydrodynamic mode is thus not a single entity that can be tracked through parameter space,

and neither is the magnetic mode.

The validity of the weak magnetic field expansions (6.70), (6.72), (6.73) and (6.74) are con-

firmed by figures 6.14, 6.15 and 6.16, in which the expansions are plotted (where appropriate)

with n = 0 and δ = 0.25 alongside the exact growth rate against M for various values of K.

The hydrodynamic and the purely magnetic expansions (6.72) and (6.73) remain valid for larger

M as K moves away from the singular point K = (2n + 1)(1 + δ)3/2 (≈ 1.3875 for δ = 0.25

and n = 0). However, the hydrodynamic expansion (6.72) decays in accuracy once the magnetic

correction changes sign at K ≈ 9.8; given sufficiently large K, (6.70) becomes a more accurate

approximation for the growth rate. Interestingly, the expansion (6.70), valid for KM = O(1),

also describes the hydrodynamic mode at K = O(1) after the hydrodynamic expansion (6.72)

becomes invalid at sufficiently large M. Figure 6.16 shows the validity of the singular expansion

(6.74), where the positive root has been taken to describe the growth rate of the system. As ex-

pected, the hydrodynamic and magnetic expansions become invalid when K is sufficiently close

to (2n+ 1)(1 + δ)
3
2 .

6.6 Conclusions

In this chapter we have investigated the linear stability (on an equatorial β-plane where f = βy)

of a uniform shear flow U(y) = Λ0y as well as a jet profile U(y) = Λ0y − δβy2/2 in the pres-

ence of stable stratification and uniform vertical magnetic field. In section 6.2 we formulated this

problem for both cases (setting δ = 0 yields the uniform shear flow) and derived a parabolic

cylinder equation for the perturbed cross-stream velocity by introducing the nondimensional co-

ordinate Y = (y − y0)/L, where y0 is the central latitude and L is the nondimensional latitudinal
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6.6 Conclusions

Figure 6.15: The exact growth rate and magnetic expansion (6.72) against M, with n = 0 and
δ = 0.25 for K = 1.5 (left) and K = 10 (right). The large K (with M ≪ 1) expansion (6.70) has
also been included in the rightmost plot.

Figure 6.16: The exact growth rate and singular expansion (6.74) against M, with n = 0 and
δ = 0.25 for K = 1.39 (left), K = 1.4 (right). The hydrodynamic and magnetic expansions have
also been included to illustrate their invalidity when K is sufficiently close to (2n+ 1)(1 + δ)

3
2 .
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lengthscale. The parabolic cylinder equation can be solved analytically, yielding an eigenvalue

relation with corresponding eigenfunctions v ∝ Hn(Y ) exp(−Y 2/2). where the eigenvalue n is a

non-negative integer.

In section 6.3 we first discussed the system in the absence of shear, which reduced the sys-

tem to one stable mode, described entirely by one parameter which depended upon the vertical

wavenumber and magnetic field strength. The equatorial waves in the system are categorised

as inertial, magneto-inertial or Alfvén waves, depending upon the magnetic field strength. We

then continued our analysis by assuming non-zero shear, focusing on the unstable mode present

within the system. Indeed, upon the introduction of the nondimensional vertical wavenumber K

and magnetic field strength M, we derived an eigenvalue relation that described two modes in

(M,K)-space, one of which was always stable while the other was always unstable. We con-

toured the growth rate in (M,K)-space, finding that weak magnetic field generates instability in

the hydrodynamically stable regime (K < 2n + 1) and increases the growth rate of the hydro-

dynamically unstable modes. We also found that the unstable mode attains the maximum growth

rate as the vertical wavenumber or magnetic field strength becomes large (provided KM3 ≫ 1).

Upon considering the dynamical balances in Section 6.4, we find that the purely magnetic in-

stability is generated owing to the along-stream Lorentz force breaking the hydrodynamic balance

and counteracting the stabilising roles of the Coriolis force and stratification. These instabilities

can be considered to be equatorial analogues of the instability we classified as a “stratified” MRI

in Section 3.4 of Chapter 3. We also find that the growth rate of the hydrodynamic inertial in-

stability is increased by the role of vertical magnetic field as the second order correction from

the along-stream Lorentz force always dominates over the stabilising corrections of the Coriolis

parameter, cross-stream Lorentz force and pressure gradient. Lastly, we find that instability is

present in the strong field limit rather than Alfvénic wavelike behaviour (as one might expect)

since the mode traverses away from the equator. This is so that the increasing Lorentz force can

be balanced by the increasing Coriolis force generated by being at a higher latitude; this process

yields magnetostrophic balance in the horizontal directions at leading order. Recall that we take a

balance between the Coriolis, advection, and Lorentz force, to be magnetostrophic. Interestingly,

we find an analogous instability on a rapidly rotating f -plane in the limit of large magnetic field

provided f ∼ k2v2A/Λ0; the dynamical balance of the rapidly rotating instability on the f -plane

has already been discussed in Section 3.4 of Chapter 3.

In Section 6.5 we considered the jet profile U(y) = Λ0y− δβy2/2, so that anti-cyclonic shear

is present only if 0 < y < Λ0/δβ; this ensures unstable modes can occur only within this domain

and therefore forbids the strong magnetic instability of Section 6.3. Indeed, the maximum value

of M for which instability can occur is given by equation (6.64). We contoured the maximum

growth rate, where, in contrast to Section 6.3, weak magnetic field either increased the growth

rate of modes if K satisfied (6.72) and decreased the growth rate otherwise. Once again, we also

found the existence of purely magnetic instabilities in the hydrodynamically stable regime. We
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6.6 Conclusions

also determined the vertical scale chosen by the modes, given by equation (6.68), in the limit of

weak magnetic field.

For the uniform shear flow we find a clear application of the results of Section 6.3 in the flanks

of the strong equatorial jets present on Hot Jupiters. The results of Section 6.5 are applicable to

eastward traveling jets (close to the equator) in the northern hemisphere on Jupiter or Hot Jupiters.

Note that westward jets are required for the uniform shear flow so that anti-cyclonic shear is

present within the system. Interestingly, numerous hydrodynamic simulations and observations

suggest that Hot Jupiters exhibit eastward travelling jets; however, in recent years, there has also

been evidence for westward travelling jets. For example, Hindle et al. (2019) suggest that the jets

may be reversed given a sufficiently large magnetic field strength. In terms of our nondimensional

parameters, table 2.1 implies that M ranges from O(10−6) to O(1) on Hot Jupiters and ranges

from M = O(1) to M = O(104) in Jupiter’s upper atmosphere, so that all of the results of this

chapter may be applicable.

If we first consider the applicability of the results to Hot Jupiters, figure 6.2 suggests vanish-

ing vertical scales are always preferred in the absence of diffusion (regardless of magnetic field

strength). Interestingly, the strong field instabilities, which occur at large latitudes (since instabil-

ity is no longer possible at the equator), link to the large latitudinal lengthscales of the equatorial

jets that are inferred from observations and simulated in global numerical models (e.g., Rogers

& Komacek, 2014; Rogers, 2017). Thus, since instabilities (and therefore the development of

turbulence) are not able to occur close to the equator, it is possible for stable jets to form.

We now consider Section 6.5, where strong magnetic field instabilities can no longer occur

since anti-cyclonic shear is only present close to the equator. Owing to the values of M that can

be taken on Hot Jupiters, figure 6.10 suggests that instabilities can only occur with K > 1. This

implies vertical lengthscales of O(106m) or smaller. Since M ranges from O(10−6) to O(1) on

Hot Jupiters, the results regarding the limit of weak magnetic field may be important. Indeed, mag-

netic field may increase or decrease the growth rate in comparison to the hydrodynamic regime;

figure 6.11 also suggests that increasing M increases the central latitude and lengthscale of the

unstable mode. By assuming a jet width of 60◦ on Hot Jupiters, and equating this with the width

0 < y < 2Λ0/δβ (i.e., the two roots of U(y) = 0), the parameter values in table 2.1 suggest that

δ may range from O(10−1) to O(102) on Hot Jupiters. Thus, the results shown with δ = 0.25 are

physically viable. For large values of δ, figure 6.12 suggests that instability will only be able to

occur for small values of M ; indeed, the stability bound (6.63) implies instability can only occur

for M =Mmax < 2/3
√
3δ2 (for n = 0), yielding Mmax = O(10−5) for δ = O(102).

The results of Section 6.5 are also applicable to Jupiter’s upper atmosphere, provided we

consider the jets adjacent to Jupiters prominent central equatorial jet (since we are modelling an

off-centered equatorial jet), which are illustrated in figure 1.2. Estimating the value of δ as before,

table 2.1 suggest that δ may range from O(10−2) to O(10−3), yielding Mmax from O(103) to

O(105). Thus, for the large values of M possible in Jupiter’s upper atmosphere (for which figure

6.10 with δ = 0.25 implies stability), instability is still possible. However, owing to the large
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values of M and small δ, if these instabilities occur, they will likely be confined to the “tip” of

the unstable region illustrated in figure 6.10 (e.g., at M = 5, K = 0.2). Indeed, the stability

bound (6.63) implies that the instabilities will occur at K from O(10−3) to O(10−1) (calculated

numerically and depending on the value of M and δ). The instabilities would therefore be purely

magnetic (i.e., they occur in the hydrodynamically stable regime K < (2n + 1)(1 + δ)3/2) and

yield vertical lengthscales of order 106m or smaller.

In the following chapter we consider the role of kinematic viscosity ν, thermal diffusion κ and

magnetic diffusivity η on the stability of the jet profile U(y) = Λ0y − δβy2/2 on the equatorial

β-plane in the presence of stable stratification and uniform vertical magnetic field.
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Chapter 7

Diffusive scale selection on the
equatorial β-plane

7.1 Introduction

In this chapter we extend equatorial β-plane linear analysis of Chapter 6 by incorporating the ef-

fects of uniform kinematic viscosity ν, thermal diffusion κ and magnetic diffusivity η. However,

we restrict our attention to the jet profile U(y) = Λ0y− δβy2/2, which is more physically appro-

priate than the unbounded shear flow U(y) = Λ0y. The jet profile, which is illustrated in figure

6.9, prevents the occurrence of the strong magnetic instabilities (which violated the assumptions

of the equatorial β-plane approximation) since anti-cyclonic shear, which is required for instabil-

ity to occur, is now restricted to a bounded latitudinal domain. Figure 6.9 shows that the flow

profile can be used as a model of a non-symmetric equatorial jet so that there is clear application

to the equatorial jets found in the upper atmospheres of Jupiter (Kaspi et al., 2018; Read, 2024)

and Hot Jupiters (Showman et al., 2013; Heng & Showman, 2015). However, it is important to

note that Jupiter’s prominent central equatorial jet is symmetric about the equator, and thus it is

more appropriate to model the immediately adjacent jets (so that they are sufficiently close to the

equator).

Under this formulation we are able to derive a parabolic cylinder equation for the cross-stream

velocity v from the second order differential equation (2.30). We again introduce the nondimen-

sional variable Y = (y − y0)/L, where y is the latitude, y0 is the central latitude and L is the

latitudinal lengthscale. Thus, in Section 7.2, we solve the parabolic cylinder equation analytically,

and introduce our nondimensional parameters, many of which are used in Chapter 6.

Throughout this chapter we will consider a number of different constraints on the Prandtl num-

bers (e.g., Pr ̸= 1 and Pm = 1) in both the hydrodynamic and magnetohydrodynamic regimes.

To investigate each regime, we contour the maximum growth rate as a function of magnetic field

and vertical wavenumber and, by selecting the vertical wavenumber K that maximises the growth

rate S, contour both K and S as a function diffusive parameters.
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We expect diffusion to be a key element of the linear instability scale selection problem. In-

deed, in the ideal analysis of Section 6.5, we found that the most unstable mode has vanishing

vertical scales. For sufficiently strong magnetic field these were stabilised; however, diffusion

is likely to affect the scale selection of all unstable modes. We also note that many numerical

models run with anomalously large diffusion, and thus it is very interesting to understand if they

artificially suppress instabilities that might otherwise occur.

In Chapter 1 we have already discussed a number of diffusive hydrodynamic systems that are

relevant to this chapter. Dunkerton (1981) and Griffiths (2003a) considered the linear stability

of a zonal flow U(y) = Λ0y on an equatorial β-plane with uniform vertical stratification and

Pr = ν/κ = 1 under the hydrostatic approximation. Dunkerton (1981) derived the marginally

stable shear Λ0 = 2
√
5ν1/5(Nβ/4)2/5 and the vertical wavenumber at which it occurs. Griffiths

(2003a) extended this analysis by deriving an asymptotic expansion for the vertical wavenumber

that generates the maximum growth rate in terms of a diffusive parameter. Dunkerton (1982) also

considered the regime Pr ̸= 1, where several steady and oscillatory stability conditions were

derived. We will review and extend upon this analysis in Section 7.2 for Pr = 1 and Pr ̸= 1,

again deriving stability bounds and vertical wavenumbers that generate the maximum growth rate

(which are now also dependent on the jet width δ). We also contour the maximum growth rate as

function of ν and κ, linking to the GSF instability (Goldreich & Schubert, 1967; Fricke, 1968),

where strong thermal diffusion damps the stabilising effect of stratification, and allows instability

to occur at smaller vertical wavenumbers.

In the magnetohydrodynamic regime, we consider the cases Pr = Pm = 1, Pr ̸= 1 and

Pm = 1, Pr = 1 and Pm ̸= 1, Pr = Pm ̸= 1 and Pr ≪ Pm ≪ 1. The case Pr = Pm = 1

can be described by a transformation from the ideal system of Chapter 6, allowing us to eas-

ily investigate the limit of weak magnetic field from previously derived asymptotic expansions.

For more complex Prandtl number regimes we find multiple double diffusive instabilities, one of

which links to the hydrodynamic GSF instability even while magnetic field still has a significant

dynamical effect. In the case Pr = Pm ̸= 1, we find that increasing the magnitude of κ and η

does not stabilise magnetically modified inertial instabilities; instead, the magnitude of magnetic

field strength required for the same dynamical effect increases, resulting in stabilisation at larger

values of M. Finally, we consider Pr ̸= 1 and Pr ̸= 1, investigating the regimes Pr ≪ Pm≪ 1

(such that Pr = Pmp for p = 1.5 and p = 3) and Pr = 0.3 with Pm ≪ 1. The first Prandtl

number regime is found in many astrophysical bodies, including the Solar tachocline and Jupiter’s

interior (and, perhaps, Hot Jupiters); the second is the Prandtl number regime in Jupiter’s upper

atmosphere (see table 2.1), which could also apply to the upper atmospheres of Hot Jupiters. In

both cases, the most unstable modes are hydrodynamic, where increasing magnetic field strength

decreases the growth rate of the instabilities; these are categorised as magnetically modified in-

ertial instabilities. Purely magnetic instabilities also occur as well as magnetic instabilities that

occur at small vertical wavenumbers that would otherwise be stable in the ideal system owing to

thermal diffusion damping the stabilising role of the pressure gradient.
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7.2 Formulation

7.2 Formulation

We consider the flow profile

U(y) = Λ0y −
δ

2
βy2, (7.1)

with shear Λ0 > 0 and δ > 0. The flow profile is a jet centered in the northern hemisphere at

y = Λ0/δβ. The flow will be considered on an equatorial β-plane (f = βy) in the presence of

uniform vertical magnetic field B0. Given sufficiently large |y|, the flow profile (7.1) guarantees

cyclonic shear and therefore stability.

With this formulation, the magnetohydrostatic governing equation (2.27) will have coefficients

that depend on y; however, (2.27) may still be solved analytically in an analogous manner to

equation (6.8) by transforming (2.27) into a parabolic cylinder equation. Hence, we introduce the

nondimensional coordinate

Y =
y − y0
L

, (7.2)

where y0 and L are the central latitude and lengthscale of the mode, which are both at our disposal.

Specifically, we choose the following central latitude and lengthscale squared:

y0 =
Λ0

2β

(
1 +

k2v2A
(s+ ηk2)2

)/(
1 + δ

(
1 +

k2v2A
(s+ ηk2)2

))
, (7.3)

and

L2 =
N

kβ

(
(s+ ηk2)(s+ νk2) + k2v2A

(s+ κk2)(s+ ηk2)

) 1
2

/(
1 + δ

(
1 +

k2v2A
(s+ ηk2)2

)) 1
2

, (7.4)

where the choice of L2 ensures that we obtain the hydrodynamic lengthscale of Dunkerton (1981)

in the absence of field. Note that all parameters have been previously defined; however, in partic-

ular, recall that k is the vertical wavenumber.

Using the nondimensional coordinate (7.2) the boundary conditions (2.28) become

v(Y ) → 0 when y → ±∞. (7.5)

By recasting (2.27) into the normal form of a parabolic cylinder equation, we obtain

Nβ

k

(
(s+ ηk2)(s+ νk2) + k2v2A

(s+ κk2)(s+ ηk2)

) 1
2
(
1 + δ

(
1 +

k2v2A
(s+ ηk2)2

)) 3
2

(v′′ − Y 2v)+

Λ2
0

4

(
1 +

k2v2A
(s+ ηk2)2

)2

−
(
s+ νk2 +

k2v2A
s+ ηk2

)2(
1 + δ

(
1 +

k2v2A
(s+ ηk2)2

))
v = 0. (7.6)

With the boundary conditions (7.5), equation (7.6) has solutions proportional to exp(−Y 2/2) by

Bender & Orszag (1978). To ensure that the solutions decay as y → ±∞ we require that L2

has a positive real part since Y 2 ∝ L−2; to ensure this, we must restrict the values that s can

take, according to the definition of L2 in (7.4). Although it is possible to consider both waves and

instabilities, in this chapter, we will focus entirely on instabilities, where s has positive real part

with either zero or non-zero imaginary part (the latter in complex conjugate pairs). Now, if s is real
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and positive, then the interior of the square roots in (7.4) must be positive so that L2 has positive

real part (provided δ > 0). However, if s has an imaginary part it becomes significantly more

difficult to derive a condition. Thus, we consider the values of L2 on a case by case basis. Hence,

given L2 has positive real part, the boundary conditions (7.5) are satisfied as y → ±∞, and thus,

by Bender & Orszag (1978), equation (7.6) admits well-known eigenfunctions. The eigenfunctions

consist of Hermite polynomials Hn(Y ) multiplied by a Gaussian of the form exp(−Y 2/2), with

corresponding discrete and non-negative eigenvalues n, which satisfy the following relation for

the growth rate s:

Λ2
0

4

(
1 +

k2v2A
(s+ ηk2)2

)2

−
(
s+ νk2 +

k2v2A
s+ ηk2

)2(
1 + δ

(
1 +

k2v2A
(s+ ηk2)2

))
=

(2n+ 1)
Nβ

k

(
(s+ ηk2)(s+ νk2) + k2v2A

(s+ κk2)(s+ ηk2)

) 1
2
(
1 + δ

(
1 +

k2v2A
(s+ ηk2)2

)) 3
2

. (7.7)

In the absence of magnetic field and diffusion, equation (6.8) reduces to (1.2) of Dunkerton (1981)

with δ = 0, where the system is stable provided |k| > |kc| = 4Nβ(2n+1)/Λ2
0. Dunkerton (1981)

and Griffiths (2003a) consider (7.7) in the absence of magnetic field with δ = 0 and Pr = 1. We

note that the eigenfunctions take an even or odd form, which depends upon the eigenvalue n. For

example, the n = 0 (even) mode has v̂ = H0(Y ) exp (−Y 2/2) = exp (−Y 2/2), while the n = 1

(odd) mode has v̂ = H1(Y ) exp (−Y 2/2) = Y exp (−Y 2/2). The even and odd relationship

continues for all following n.

We once again use the nondimensional parameters found in Chapter 6, allowing us to easily

compare results to the ideal regime. Hence, we reintroduce the parameters (6.15):

K =
Λ2
0k

4Nβ
, and M =

8NβvA
Λ3
0

, (7.8)

with nondimensional growth rate S = 2s/Λ0, where 2/Λ0 is the timescale. Reiterating Chapter 6,

K is the nondimensional vertical wavenumber and M is a measure of the field strength. Note that

the parameter K can never be zero as we require k ̸= 0 for the system to be magnetohydrostatic

and Λ0 ̸= 0 by assumption.

To nondimensionalise the diffusive coefficients we require a quantity with some dimension

of length. This leaves us with a few non-obvious choices, such as the Rossby parameter β, the

vertical wavenumber or the Alfvén wave speed. Naturally, we do not want to nondimension-

alise using the vertical wavenumber as this would lead to complicated interpretations of param-

eters. If we choose the Alfvén wave speed we obtain the following nondimensional parameters:

{ν̃, κ̃, η̃} = Λ0{ν, κ, η}/2v2A. However, in this case, there is no smooth comparison to the hydro-

dynamic system. As a consequence of this choice of nondimensionalisation, instabilities can still

occur as K → ∞ even in the presence of vertical diffusion. This is reasonable mathematically as

our system is magnetohydrostatic and stably stratified; however, physically, modes do not exist on

infinitesimally small vertical lengthscales.
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7.3 Hydrodynamic Regime

Hence, we choose the following nondimensional diffusive parameters:

ν0 =
32N2β2ν

Λ5
0

, κ0 =
32N2β2κ

Λ5
0

and η0 =
32N2β2η

Λ5
0

. (7.9)

This choice allows us to maximise the growth rate over the vertical wavenumber K only since

we may argue that all other parameters are fixed as they can be inferred from observations. For

example, in the case of Hot Jupiters, we can estimate the angular velocity, buoyancy frequency, and

field strength together with the speed and lengthscale of equatorial jets, yielding a single numerical

value forM, ν0, κ0 and η0. Thus, for a given class of astrophysical objects, say Hot Jupiters, where

β,N,Λ0, vA, ν, κ and η are fixed (estimated from observations) we find the maximum growth rate

alongside its corresponding vertical wavenumber.

Recasting (7.7) in terms of the nondimensional parameters (7.8) and (7.9), we obtain(
1 +

M2K2

(S + η0K2)2

)2

−
(
S + ν0K

2 +
M2K2

S + η0K2

)2(
1 + δ

(
1 +

M2K2

(S + η0K2)2

))
=

(2n+ 1)

K

(
S + ν0K

2

S + κ0K2
+

M2K2

(S + κ0K2)(S + η0K2)

) 1
2
(
1 + δ

(
1 +

M2K2

(S + η0K2)2

)) 3
2

.

(7.10)

We also have the nondimensional central latitude and lengthscale, given by

2β

Λ0
y0 = ŷ0 =

(
1 +

M2K2

(S + η0K2)2

)/(
1 + δ

(
1 +

M2K2

(S + η0K2)2

))
, (7.11)

and

L̂ =
1√
K

(
S + ν0K

2

S + κ0K2
+

M2K2

(S + η0K2)(S + κ0K2)

) 1
4

/(
1 + δ

(
1 +

M2K2

(S + η0K2)2

)) 1
4

.

(7.12)

7.3 Hydrodynamic Regime

First we consider the hydrodynamic system and investigate under what conditions the system is

unstable, determine the vertical wavenumber at which the growth rate is maximum and consider

the effects of kinematic viscosity ν0 and thermal conductivity κ0. Setting M = 0 in equation

(7.10) gives the following equation for the growth rate:

K(1− (S + ν0K
2)2(1 + δ)) = (2n+ 1)

(
S + ν0K

2

S + κ0K2

) 1
2

(1 + δ)
3
2 . (7.13)

Equation (7.13) with δ = 0 and Pr = 1 is found in Dunkerton (1981), Griffiths (2003a) and

Griffiths (2003b). Griffiths (2003a) derived conditions for instability and the vertical wavenum-

ber that generates the maximum growth rate by introducing the nondimensional variable ϵ =

(2νN2β2/Λ5)1/3 = (ν0/16)
1/3. The system is unstable provided ϵ < 5−5/6 ≈ 0.26, while the

most unstable mode occurs at k ≈ Nβ/Λ2ϵ = (Nβ/2νΛ)1/3. Note that Griffiths (2003a,b)

also considered the nonlinear regime. Dunkerton (1982) considered the case Pr ̸= 1, deriving
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marginal stability criteria for both oscillatory and steady instabilities. We will derive this stability

criteria with δ ̸= 0 and form a basis for our magnetohydrodynamic results. In general, equation

(7.13) does not allow us to obtain an analytical expression for the growth rate and must be solved

numerically. However, in the case where the Prandtl number is unity we may obtain an analytical

expression for the growth rate.

7.3.1 Pr = 1

Assuming the Prandtl number is unity, equation (7.13) gives the following expression for the

growth rate:

S =

(
K − (2n+ 1)(1 + δ)

3
2

K(1 + δ)

) 1
2

− ν0K
2. (7.14)

Thus, by taking Pr = 1, we can see there has been a significant simplification of equation (7.13);

indeed, the other modes of (7.13) are only present given distinct magnitudes of ν0 and κ0. Equation

(7.14) may be obtained via a transformation from the inviscid system, transforming the inviscid

growth rate from S to S+ν0K2. Equation (7.14) implies thatK > (2n+1)(1+δ)3/2 is a necessary

condition for instability. Equation (7.14) implies that modes with large vertical wavenumbers

(K ≫ 1 ) are stabilised since the diffusive term becomes large. This is in contrast to the ideal case

where the most unstable mode is found at infinite vertical wavenumber and where stability occurs

only ifK < (2n+1)(1+δ)3/2. Indeed, we find that unstable modes with ν0 ̸= 0 become stable for

K < (2n+1)(1+δ)3/2 owing to the diffusive term dampening the instabilities (which is always the

case since ∂ν0S < 0 for allK, n and δ). Thus, with ν0 ̸= 0, instability (and therefore the maximum

growth rate) must occur in a finite and bounded region of K. This can be seen by setting S = 0 in

(7.14), where we find that the system is unstable if K − (2n+ 1)(1 + δ)3/2 − ν20K
5(1 + δ) > 0.

This is a quintic in K, where, for example, if n = 0, δ = 0.25 and ν0 = 0.05, then the system is

unstable if 3.7665 > K > 1.4153. However, in the absence of diffusion the system is unstable if

K > (2n+1)(1+ δ)3/2 (= 1.3975 with n = 0 and δ = 0.25). Thus, the introduction of diffusion

restricts instability to a finite region of K.

It is of interest to find the vertical wavenumber, Kmax say, for which the maximum growth

rate occurs at fixed δ and ν0. Thus, we differentiate equation (7.14) with respect to K and set the

derivative to zero, giving

∂S

∂K
=

1

2K2
max

(2n+ 1)(1 + δ)
1
2

(
Kmax − (2n+ 1)(1 + δ)

3
2

Kmax(1 + δ)

)− 1
2

− 2ν0Kmax = 0 (7.15)

Hence, after squaring (7.15), it follows that Kmax satisfies the following cubic polynomial in

K2
max :

16ν20K
6
max − 16ν20(2n+ 1)(1 + δ)3/2K4

max − (2n+ 1)2(1 + δ)2 = 0. (7.16)

The polynomial (7.16) does not allow us to derive a corresponding Smax = S(Kmax) for each

Kmax since the expression cannot be solved analytically for Kmax. However, provided ν0 ≪ 1
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7.3 Hydrodynamic Regime

(which is typically the case in planetary atmospheres) we may approximate K2
max, by expanding

in terms of ν0:

K2
max =

(2n+ 1)2/3(1 + δ)2/3

161/3
ν
−2/3
0 +

(2n+ 1)(1 + δ)3/2

3
+O(ν

2/3
0 ). (7.17)

On taking n = δ = 0, equation (7.17) is analogous to the power series in ϵ of the vertical

wavenumber as found in Griffiths (2003b). Thus, we extend the analysis of the uniform shear

layer to that of an equatorial jet, which amounts to a transformation of ν0 → (1 + δ)−1ν0, or

equivalently, ϵ→ (1 + δ)−1/3ϵ as in Griffiths (2003b).

Hence, provided ν0 ≪ 1, the dimensional vertical wavenumber that generates the maximum

growth rate satisfies

k2max ≈
(
(2n+ 1)(1 + δ)Nβ

2νΛ0

)2/3

+
16(2n+ 1)(1 + δ)3/2N2β2

3Λ2
0

+ · · · , (7.18)

which implies we may expect kmax = O(10−2m−1) for a typical Hot Jupiter. Griffiths (2003b)

notes that the leading order term, with n = δ = 0, of equation (7.18) allows us to conclude

that stratification and the β effect encourage smaller vertical scales, whereas diffusion and cross-

equatorial shear encourage larger vertical scales. It is also noted that kmax is relatively insensitive to

the magnitude of diffusion since Kmax ∝ ν−1/3. Equation (7.18) also implies that as the jet width

δ increases, the vertical lengthscale decreases and vice versa. We also find thatKmax ∝ (1+δ)1/3,

and thus is relatively insensitive to jet width.

Next, by substituting (7.17) into (7.14), we can also derive the corresponding maximum growth

rate Smax = S(Kmax) when ν0 ≪ 1, in terms of δ and ν0 only:

Smax ≈ 1

(1 + δ)1/2
− 4−2/3(2n+ 1)2/3

(
4−5/6 + (1 + δ)2/3

)
ν
1/3
0 . (7.19)

Thus, in the small ν0 limit, the maximum growth rate is O(ν
1/3
0 ) less than that of the ideal sys-

tem. Increasing δ increases the magnitude of the diffusive correction, and therefore decreases the

growth rate.

Next, we derive the marginal νm at arbitrary K and Λ, for which no instability may occur if

surpassed. We set S = 0 in equation (7.14):

ν2m =
K − (2n+ 1)(1 + δ)

3
2

K5(1 + δ)
. (7.20)

In a similar manner, we can derive the critical diffusion (in terms of n and δ only) for which no

instability may occur if ν0 > νc for any K at fixed δ. To do this, we simultaneously consider

equation (7.15) alongside(7.20), which allows us to find the critical value of K, Kc say, where the

final unstable mode occurs, given by

Kc =
5

4
(2n+ 1)(1 + δ)3/2. (7.21)
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Then, by substituting (7.21) into (7.20) for K, we obtain the absolute critical diffusion in terms of

δ and n only:

νc =
42

(2n+ 1)2
√

55(1 + δ)7
. (7.22)

We find for δ = n = 0, that νc = 0.2862, which is analogous to the results of Dunkerton

(1981) and Griffiths (2003a). With δ ̸= 0 and n = 0, we find that the critical diffusion decreases

for increasing jet width; for example, with δ = 0.25, the critical diffusion is νc = 0.1311 —

approximately half in comparison to the analogous case with δ = 0. We also note that since the

critical diffusion remains O(1) for any physically reasonable value of δ, then, by equations (7.17)

and (7.21) the vertical wavenumber K also remains O(1).

Now, we determine an estimate for the bounded region in K where instability is possible for

arbitrary ν0 and Λ. To do this, we consider the small ν and large K limits of equation (7.20). The

first trivially implies that K ≈ (2n+1)(1+ δ)3/2. We obtain second order terms by writing K as

a power series in ν we obtain the following lower bound in K:

K = (2n+ 1)(1 + δ)3/2 + (2n+ 1)5(1 + δ)17/2ν20 +O(ν40). (7.23)

Hence, as we would expect, weak diffusion increases the lower bound in K, where the correction

becomes larger for larger jet profiles. To find the upper bound in K, we consider the large K limit

of equation (7.20) which yields K ≈ v
−1/2
0 (1 + δ)−1/4. Then, once again, to find second order

terms, we write K as a power series in ν0, yielding the following upper bound in K:

K =
1

ν
1/2
0 (1 + δ)1/4

− (2n+ 1)(1 + δ)3/2

4
+O(ν

1/2
0 ). (7.24)

Thus, combining the lower bound (7.23) and upper bound (7.24), we obtain the following approx-

imate interval of unstable vertical wavenumbers K:

(2n+1)(1+δ)3/2+(2n+1)5(1+δ)17/2ν20 < K <
1

ν
1/2
0 (1 + δ)1/4

− (2n+ 1)(1 + δ)3/2

4
. (7.25)

Hence, with increasing ν0 and jet width δ, the interval of unstable vertical wavenumbers decreases.

Note that equation (7.25) is an approximation, since it is derived in the small ν0 limit; indeed,

equating the leading order terms of (7.25) yields a critical νc which is 55/2/16 ≈ 3.49 times larger

than (7.22). However, the parameter ν0 is typically small in planetary atmospheres, and thus (7.25)

will give an accurate interval of unstable vertical wavenumbers.

Figure 7.1 shows contours of the growth rate S in (K, ν0)-space for δ = 0.25, obtained by

solving (7.14). This illustrates the bounded region in K for which instability may occur, provided

ν0 < νc, alongside the maximum growth rate and where it occurs. We can see that both of

the bounds on K as well as the estimate for Kmax are reasonably accurate for all ν0 for which

instability can occur. Clearly, increasing ν0 decreases the growth rate monotonically; the value of

K that generates the maximum growth rate also decreases with increasing ν0 and reduces the size

of the interval of unstable vertical wavenumbers. Note that the critical diffusion given by (7.22) is

clearly accurate in this case (νc = 0.1311 for δ = 0.25 and n = 0).
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7.3 Hydrodynamic Regime

Figure 7.1: Pr = 1: The growth rate S contoured in (K, ν0)-space. The black stability boundary
is the approximate lower bound on K for which instability occurs, given by equation (7.23). The
magenta stability boundary is the approximate upper bound for which instability can occur, given
by equation (7.24). The solid red line is the approximate value of Kmax given by (7.17), while the
dashed line is the exact value of K that generates the maximum growth rate for each ν0.

7.3.2 Pr ̸= 1

It is possible to write equation (7.13) as a quintic in S, however it is desirable to mirror the

results of Dunkerton (1982) which considers (7.13) directly. We recast equation (7.13) here for

convenience:

K(1− (S + ν0K
2)2(1 + δ)) = (2n+ 1)

(
S + ν0K

2

S + κ0K2

) 1
2

(1 + δ)
3
2 . (7.26)

As noted by Dunkerton (1982), it is possible for oscillatory instabilities to occur in the system, the

stability criteria of which is rather cumbersome to derive.

Thus, we will consider steady stability criteria only; however, incidentally, since the steady

and oscillatory modes share a boundary, one of the steady stability conditions bound the unstable

oscillatory modes. To determine the boundary, we follow Dunkerton (1982), and set the imaginary

part of S = Sr+ iSi to zero with Sr ̸= 0 (i.e., an unstable steady mode transitions into an unstable

complex conjugate pair on the boundary) so that we can write S = Sr and recast (7.26):

2n+ 1

K

(
Sr + ν0K

2

Sr + κ0K2

) 1
2

(1 + δ)
1
2 + (Sr + ν0K

2)2 =
1

1 + δ
. (7.27)
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We then differentiate (7.27) with respect to K and Sr, set the derivatives to zero, and obtain

(2n+ 1)
Sr(ν0 − κ0)

(Sr + κ0K2)2

(
Sr + ν0K

2

Sr + κ0K2

)−1/2

(1 + δ)1/2

=
2n+ 1

K2

(
Sr + ν0K

2

Sr + κ0K2

)1/2

(1 + δ)1/2 − 4ν0K(Sr + ν0K
2) = 0, (7.28)

and

(2n+ 1)
K2(κ0 − ν0)

(Sr + κ0K2)2

(
Sr + ν0K

2

Sr + κ0K2

)−1/2

(1 + δ)1/2 + 4K(Sr + ν0K
2) = 0, (7.29)

respectively. Noticeably, the right hand term of (7.28) and (7.29) are equal after multiplying (7.29)

by −ν0. Thus, multiplying (7.29) by −ν0 and then subtracting from (7.28), yields

Sr(ν0 − κ0)

(Sr + κ0K2)2
− 1

K2

(
Sr + ν0K

2

Sr + κ0K2

)
+

K2(ν0 − κ0)

(Sr + κ0K2)2
= 0, (7.30)

where we have also multiplied by (Sr+ν0K
2)/(2n+1)(1+δ)1/2(Sr+κ0K

2). Then, after some

manipulation, we find that the growth rate Sr on the bound satisfies

Sr = K2(ν0 − 2κ0), (7.31)

which is analogous to the result of Dunkerton (1982), valid for Pr > 2. Thus, since Sr ̸= 0, equa-

tion (7.31) implies that ν0 > 2κ0 on the bound. We expect this since oscillatory instabilities do

not occur given sufficiently large κ0. Thus, the growth rate on the bound increases with increasing

K and ν0, while decreases for increasing κ0 (subject to the constraint Pr > 2).

Next, by substituting (7.31) into (7.29), we find that the vertical wavenumber K on the bound

satisfies

K =
5

2
√
2
(2n+ 1)(1 + δ)

3
2 . (7.32)

This is again analogous to the results of Dunkerton (1982); however, owing to the variable jet

width prescribed by the parameter δ, here we find that a larger vertical wavenumbers (smaller

vertical lengthscales) are required to stabilise the oscillatory instabilities. Finally, by substituting

(7.31) and (7.32) into (7.27) we obtain the following sufficient condition for steady stability:

κ0 < ν0 −
4

(2n+ 1)2
√
55(1 + δ)7

, (7.33)

valid for ν0 < 2κ0 and ν0 < 4/55/2(2n+1)2(1+δ)7/2.Note that this is also a necessary condition

for oscillatory instability, since (7.33) describes the boundary between the steady and oscillatory

modes. Together these imply the bound (7.33) is valid if 4/55/2(2n + 1)2(1 + δ)7/2 < ν0 <

8/55/2(2n+ 1)2(1 + δ)7/2.

It is also of interest to derive stability bounds for steady modes that do not coincide with

unstable oscillatory modes. To do this, we differentiate (7.26) with respect to K and then set

S = ∂S/∂K = 0, yielding the following expression for the vertical wavenumber on the steady

stability bound:

K4 =
1

5ν20(1 + δ)
. (7.34)
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7.3 Hydrodynamic Regime

Equation (7.34) implies that the vertical wavenumber required to stabilise the system increases

with decreasing ν0 and δ. We can substitute (7.34) into (7.26) with S = 0 in order to obtain the

following necessary condition for steady stability:

κ0 <
55/2

42
(2n+ 1)2(1 + δ)7/2ν20 . (7.35)

The stability bound (7.35) cannot be maximised with respect to ν0. However, this implies that for

any given ν0, instability is possible for sufficiently large κ0. Likewise, at any κ0 sufficiently large,

increasing the magnitude of ν0 will eventually stabilise the steady modes. Note that instability

may still occur given sufficiently small ν0 while (7.35) is satisfied since the condition is on a

single mode only (i.e., the steady mode that becomes oscillatory is still unstable). However, this

can be resolved by considering (7.33) and (7.35) to determine which of the bounds is appropriate.

Thus, by setting (7.33) equal to (7.35) we obtain a quadratic in ν0 with a single (double root)

solution, implying that (7.35) is necessary and sufficient condition for steady stability if

ν20 >
43

55(2n+ 1)4(1 + δ)7
. (7.36)

If (7.36) is not satisfied, then (7.33) is the appropriate necessary and sufficient condition for steady

stability.

Thus, provided (7.36) is satisfied, the condition (7.35) requires no additional assumption and

the stability bound is independent of the vertical wavenumber. Thus, given some astrophysical

body, the parameters ν0, κ0 and δ may be estimated so that (7.35) may imply that the system is

stable.

Owing to (7.35) being a condition on a single steady mode only, equation (7.36) also implies

it is possible for instability to occur regardless of the value of κ0 if ν0 is sufficiently small. Thus,

equation (7.36) also implies that instability occurs for any κ0 if

ν20 <
43

55(2n+ 1)4(1 + δ)7
. (7.37)

Interestingly, taking n = 0 and δ = 0.25 implies instability will occur for any κ0 if ν0 < 0.065536.

Thus, given anti-cyclonic shear, we expect instability in the upper atmospheres of Jupiter and Hot

Jupiters since table 2.1 suggests ν0 is at mostO(10−4). Note the solar tachocline exhibits cyclonic

latitudinal shear only at the equator.

We now solve (7.26) numerically for the maximum growth rate (and its corresponding fre-

quency) by selecting the vertical wavenumberK,Kmax say, which generates the maximum growth

rate Smax = S(Kmax) at each ν0 and κ0, with δ = 0.25. We do this by determining the growth

rate from (7.26) at each K, ν0 and κ0 (with δ = 0.25), and then select the K that generates the

maximum growth rate for each ν0 and κ0. Thus, in figure 7.2 we contour the maximum growth

rate S (and its corresponding frequency) in (ν0, κ0)-space for δ = 0.25. In figure 7.3 we contour

the Kmax that generates the maximum growth rate of figure 7.2 in (ν0, κ0)-space for δ = 0.25.

Note that the white regions of figure 7.2 indicate stability, so that the conditions (7.33) and (7.35)
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Figure 7.2: The maximum growth rate S (left) and corresponding frequency (right) in (ν0, κ0)-
space with δ = 0.25. The red stability boundary is given by equation (7.35). The black oscillatory
stability boundary is given by equation (7.33).

on κ0 indeed hold depending on (7.36), which corresponds to the region between the red and black

bounds.

Figure 7.2 shows that increasing ν0 always decreases the maximum growth rate. The maxi-

mum growth rates occur in the limit Pr ≪ 1, and thus, since this is typically the case in stellar and

planetary atmospheres, if instabilities occur, we may expect them to be steady. Interestingly, for

ν0 ≈ 0.1 to ν0 ≈ 0.2, increasing κ0 from zero stabilises the system and then generates instability

at larger κ0. This is owing to the oscillatory instabilities that can occur only for sufficiently weak

thermal diffusivity where buoyancy effects are still felt. Note that sufficiently large κ0 guarantees

instability at any value of ν0, and increases the maximum growth rate to that of the inviscid hydro-

dynamic regime S = (1 + δ)−1. Stability is also guaranteed at any value of κ0 given sufficiently

large ν0.

Figure 7.3 shows that increasing ν0 or κ0 decreases the value of Kmax. Modes with Pr ≪ 1

have the largest vertical wavenumbers, and correspond to the modes with the largest growth rate,

as shown in figure 7.2. The large κ0 limit also shows that instability may occur within the stable

regime of the inviscid system. That is, instability may now occur for K < Kcutoff = (2n+1)(1+

δ)3/2. For example, taking δ = 0.25, n = 0, ν0 = 1.5 and κ0 = 4 yields Kmax ≈ 1 < Kcutoff =

1.40. Thus, instability can occur at smaller values of K which are stable in the ideal regime

(K < Kcutoff). This is because the pressure gradient (whose strength increases with decreasing

K) is damped by an increasing rate of thermal diffusion. We can compare these instabilities to the

Goldreich–Schubert–Fricke (GSF) instability (Goldreich & Schubert, 1967; Fricke, 1968), where

thermal diffusion counteracts the stabilising effect of the pressure gradient and allows instability

to occur at smaller K (which would otherwise by stable in the absence of diffusion). We also

found an analogous instability in both the hydrodynamic and magnetohydrodynamic analysis of

Chapter 4.
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7.4 Magnetohydrodynamic Regime

Figure 7.3: The value of Kmax that generates the maximum growth rate Smax (as seen in figure
7.2) in (ν0, κ0)-space with δ = 0.25. The red stability boundary is given by equation (7.35). The
black oscillatory stability boundary is given by equation (7.33).

7.4 Magnetohydrodynamic Regime

We now investigate the magnetohydrodynamic regime, where we consider the cases Pr = Pm =

1, Pr ̸= 1 and Pm = 1, Pr = 1 and Pm ̸= 0 as well as Pr ̸= 0 and Pm ̸= 0 with Pr ≪
Pm≪ 1.

Note that in contrast to Chapter 4, where numerous stability criteria could be derived a priori,

there is little to be done here owing to the complexity of the equation for the growth rate (7.10).

However, with some restriction on the Prandtl numbers (e.g., Pr = 1, Pm ̸= 1), it is possible to

make analytical progress; in particular, by considering the asymptotic limits of various parameters.

7.4.1 Pr = 1 & Pm = 1

We first consider the simplest possible choice of Prandtl numbers, where both are unity. In this

case, we write κ0 and η0 as ν0 which allows us to recast equation (7.10) as

K

(
1 +

M2K2

(S + ν0K2)2

) 3
2
(
1− (S + ν0K

2)2
(
1 + δ

(
1 +

M2K2

(S + ν0K2)2

)))
=

(2n+ 1)

(
1 + δ

(
1 +

M2K2

(S + ν0K2)2

)) 3
2

. (7.38)

Equation (7.38) reduces to (6.61) in the absence of diffusion. However, we can also obtain equa-

tion (7.38) from (6.61) via the transformation of the growth rate SI = S + ν0K
2, where SI is

the growth rate of the ideal system. That is, for each point in (M,K)-space we may obtain the

growth rate when ν0 ̸= 0 by subtracting ν0K2 from the growth rate in the absence of diffusion.

This transformation allows us to use numerous results from the inviscid case such as the weak field

expansions (6.71), (6.73) and (6.74). The transformation also implies that weakly unstable modes

within the ideal instability domain, given by (6.61), will be stabilised as ν0 increases. Thus, the
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Figure 7.4: Pr = Pm = 1: The most unstable mode with δ = 0.25 in (M,K)-space for
ν0 = 0.05 (left), ν0 = 0.131 (centre) and ν0 = 1 (right). The system is stabilised at ν0 = 4.358.
The red line represents the ideal stability boundary M2 = (K − δ3/2)/δK3.

sufficient and necessary condition for stability in the ideal case (i.e., equation (6.63)) becomes a

sufficient condition only.

We proceed by solving equation (7.38) numerically, leading to figure 7.4 for the growth rate

in (M,K)-space with δ = 0.25 for ν0 = 0.05, 0.131 and 1. To do this, we square (7.38), solve

the resulting 10th degree polynomial in S, and verify the roots using (7.38). Note that all unstable

modes are steady instabilities. Figure 7.4 shows that even weak diffusion stabilises the modes with

large vertical wavenumber (K ≫ 1) as well as those in the weak field limit of the hydrodynam-

ically stable regime. This results in the maximum growth rate being found with K and M both

being of order unity. We can thus conclude that weak magnetic field increases the growth rate of

the hydrodynamically unstable regime as well as generating instability in the hydrodynamically

stable regime, provided it is sufficiently large. Increasing the magnitude of diffusion reduces the

growth rate of all modes, and reduces the maximumK for which instability can occur; in contrast,

the interval of magnetic field at which instability can occur is somewhat insensitive to increasing

ν0. All hydrodynamic instabilities are stabilised once ν0 > 0.131 for δ = 0.25 (to 3 significant

figures). Thus, all instabilities are purely magnetic for ν0 > 0.131. Increasing the magnitude

of diffusion further continues to reduce the instability domain until all modes are stabilised at

ν0 = 4.358.

Weak Field Expansions

Figure 7.4 shows that weak magnetic field induces instability within certain parameter regimes,

including the entire unstable domain for ν0 > 0.131 since this is hydrodynamically stable. Fol-

lowing the ideal analysis, we consider the weak field regime in order to categorise the behaviour of

the system. To investigate the small M regime, we can transform the ideal weak field expansions

(6.71), (6.73) and (6.74) by writing S as S + ν0K
2 or, alternatively, consider the small M regime

of equation (7.38). Indeed, in the weak field limit (M ≪ 1) with K = O(1) and S = O(1), the
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7.4 Magnetohydrodynamic Regime

transformation yields the hydrodynamic mode with a magnetic correction:

S =

(
K − (2n+ 1)(1 + δ)

3
2

K(1 + δ)

) 1
2

− ν0K
2+

K
5
2 ((2n+ 1)(1 + δ)

3
2 (3 + 2δ)− 2δK)

4(1 + δ)
1
2 (K − (2n+ 1)(1 + δ)

3
2 )

3
2

M2 +O(M4). (7.39)

Hence, if ν0K2 = O(1), hydrodynamic instability is governed by the leading order term of (7.39).

The magnetic correction of (7.39) acts in the same way as in the ideal case, increasing the growth

rate when (2n + 1)(1 + δ)3/2(3 + 2δ) > 2δK and reducing the growth rate otherwise. With

ν0K
2 = O(1), we may stabilise the hydrodynamic mode; however, in certain cases where (K −

(2n+1)(1+ δ)3/2)(K(1+ δ))−1 ∼ ν20K
4, instability may be possible given some small M (that

is sufficiently large), as seen in right panel of figure 7.4, owing to the positive contribution from

the second order term (provided (2n+ 1)(1 + δ)3/2(3 + 2δ) > 2δK).

In the weak field limit (M ≪ 1) with K = O(1) we also have an unstable Alfvénic mode,

provided ν0 is sufficiently small, given by

S =

(
K

2
3 − (2n+ 1)

2
3 δ

(2n+ 1)
2
3 (1 + δ)−K

2
3

) 1
2

KM − ν0K
2, (7.40)

which describes the most unstable mode provided K < (2n + 1)(1 + δ)
3
2 (provided it is not

stabilised by diffusion). These modes can be seen in the bottom left of the panels in figure 7.4

with ν0 = 0.05 and ν0 = 0.131.

The weak field expansions (7.39) and (7.40) may both break down when K − (2n + 1)(1 +

δ)
3
2 = O(M). To address this, we suppose that S2 = αM and K − (2n + 1)(1 + δ)

3
2 = αM,

where α is real and of order unity and substitute into (7.38) to derive the expression for the growth

rate:

S =

[
α± |α|(1 + 6K4)

1
2

2(1 + δ)K

] 1
2

M
1
2 − ν0K

2, (7.41)

valid for K − (2n + 1)(1 + δ)
3
2 = O(M). We require the positive sign to describe the unstable

mode.

To ensure the validity of the weak field expansions (7.39), (7.40) and (7.41), in figures 7.5, 7.6

and 7.7, we plot the expansions (where appropriate) with n = 0 and δ = 0.25 alongside the exact

growth rate againstM for various values ofK and ν0. The hydrodynamic and the purely magnetic

expansions (7.39) and (7.40) remain valid for larger M as K moves away from the singular point

K = (2n + 1)(1 + δ)3/2 (≈ 1.3875 for δ = 0.25 and n = 0). The expansions (7.39) and (7.40)

both decay in accuracy as ν0 increases since ν0K2 is becoming large. However, they still remain

accurate given ν0K2 sufficiently small; for example, if K is decreased (so that ν0K2 = O(1)

or smaller) in the final plot of figure 7.6 then (7.40) would once again describe the growth rate.

Figure 7.7 shows the validity of the singular expansion (6.74), in which the positive root has been

taken to describe the growth rate of the system. As expected, the hydrodynamic and magnetic

expansions are invalid when K is sufficiently close to (2n+ 1)(1 + δ)
3
2 .
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Figure 7.5: The exact growth rate and magnetic expansion (7.40) against M with n = 0, δ = 0.25

and K = 0.5 for ν0 = 0.131 (left) and ν0 = 0.30 (right).

Figure 7.6: The exact growth rate and magnetic expansion (7.39) against M for n = 0, δ = 0.25,

ν0 = 0.05 with K = 1.8 (left) and K = 3.0 (right).

Figure 7.7: The exact growth rate and singular expansion (7.41) against M with n = 0, δ = 0.25

and ν0 = 0.05 for K = 1.39 (left) and K = 1.4 (right). The hydrodynamic and magnetic
expansions have also been included to show their invalidity as we approachK = (2n+1)(1+δ)

3
2 ,

indicated by their inability to accurately describe the growth rate at any M.
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7.4 Magnetohydrodynamic Regime

7.4.2 Pr ̸= 1 & Pm = 1

In this section we consider the case Pr ̸= 1 and Pm = 1, which allows us to make useful

analogies to the hydrodynamic case described by (7.26) where Pr ̸= 1.

Writing η0 as ν0 in (7.10) yields the following equation for the growth rate S:

(
1 +

M2K2

(S + ν0K2)2

) 3
2
(
1− (S + ν0K

2)2
(
1 + δ

(
1 +

M2K2

(S + ν0K2)2

)))
=

(2n+ 1)

K

(
S + ν0K

2

S + κ0K2

) 1
2
(
1 + δ

(
1 +

M2K2

(S + ν0K2)2

)) 3
2

. (7.42)

It is difficult to make analytical progress from (7.42) in general; however, using numerical results

as motivation, it is possible to make progress in various limiting cases.

We first solve (7.42) numerically in order to contour the maximum growth rate in (M,K)-

space in figure 7.8 with δ = 0.25 and ν0 = η0 = 0.05 with κ0 = 0.01 (left panel) and κ0 = 10

(right panel). Figure 7.9 also illustrates the corresponding complex part of the maximum growth

rates (as shown in figure 7.8) in (M,K)-space. Note that the case with ν0 = 0.05 and κ0 = 10

has no oscillatory instabilities, while for the case with ν0 = 0.05 and κ0 = 0.01, oscillatory

instabilities occur at dispersed points in parameter space, at both small and large M.

Figure 7.8 shows that increasing κ0 increases the size of the instability domain (in M and K)

and the magnitude of the maximum growth rate. Note that the maximum growth rate occurs at

M = O(1) for Pr = 5 and at M = 0 for Pr = 5 × 10−3. We can see that with increasing κ0,

instability can now occur at larger and smaller vertical wavenumbers. Interestingly, the smaller

wavenumbers are stable in the ideal system (for M = 0 and M > 0), which is implied by the

condition for stability (6.63). We have already discussed the unstable modes forM = 0 in Section

7.3, linking them to the GSF instability. However, as magnetic field already allows instabilities to

occur for K < (2n + 1)(1 + δ)3/2, even relatively weak thermal diffusion allows instability to

occur for smaller K in comparison to the hydrodynamic system (even with significantly stronger

thermal diffusion). Thus, the instabilities which occur at small K for large κ0 are purely mag-

netic and enabled by thermal diffusion. Notably, instability may also occur at larger M since the

combination of the cross-stream pressure gradient and cross-stream Lorentz force (which are both

stabilising) is no longer sufficient to stabilise the system.

The Limit of Strong Thermal Diffusion

Motivated by the interesting consequences of strong thermal diffusion in figure 7.8, we investigate

the large κ0 limit of equation (7.42). Indeed, we must consider the asymptotic behaviour of the

growth rate S and vertical wavenumber K since they also vary with κ0, as seen in figure 7.8.

First, we address when the vertical wavenumber and growth rate are order unity. Thus, with

S = O(1),K = O(1) and κ0 ≫ 1, equation (7.42) reduces to

S =

(
1− δM2K2

1 + δ

) 1
2

− ν0K
2, (7.43)
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Figure 7.8: Pr ̸= 1, Pm = 1: The maximum growth rate in (M,K)-space for δ = 0.25 and
ν0 = 0.05 with κ0 = 0.01 (Pr = 5, left panel) and κ0 = 10 (Pr = 5 × 10−3, right panel). The
maximum growth rates are 0.512 and 0.708, respectively. The solid red line represents the ideal
stability boundary (6.63).

Figure 7.9: Pr ̸= 1, Pm = 1: The corresponding frequency of the maximum growth rate (illus-
trated in figure 7.8) in (M,K)-space for δ = 0.25, ν0 = 0.05 and κ0 = 0.01. The case with
ν0 = 0.05 and κ0 = 10 (right panel of figure 7.8) has no oscillatory instabilities. The solid red
line represents the ideal stability boundary (6.63).
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7.4 Magnetohydrodynamic Regime

Figure 7.10: Pr ̸= 1, Pm = 1: The maximum growth rate for δ = 0.25 in (M,K)-space with
κ0 = 10 and ν0 = η0 = 0.05 as numerically calculated from (7.10) (left) and (7.43) (right).
Equation (7.44) gives the red line where S = 0 is predicted to be zero. The solid black line is the
ideal stability bound (6.63).

which implies stability when

ν20 >
1− δM2K2

K4(1 + δ)
. (7.44)

Equation (7.44) is a cubic in K2 which allows us to calculate the maximum value of K for which

instability can occur, given by

K2 =
−δM2 +

√
δ2M4 + 8ν20(1 + δ)

4ν20(1 + δ)
. (7.45)

To illustrate the accuracy of the expansion (7.43) we contour the estimated growth rate along-

side the exact growth rate in (M,K)-space in figure 7.10 for δ = 0.25, ν0 = η0 = 0.05 and

κ0 = 10. The large κ0 stability boundary (7.44) is accurate even for κ = O(1) and smaller;

however, as κ0 decreases, the bound becomes a sufficient condition for stability only. The con-

tours suggest that (7.43) is accurate for K > 1.5 = O(1) and some smaller K provided M is

sufficiently large.

The approximation for the growth rate (7.43) increases in accuracy with increasing κ0; how-

ever, as figure 7.10 suggests, (7.43) can not address the small K regime. To do so, we consider

the asymptotic behaviour of the growth rate S and vertical wavenumber K in this regime by sup-

posing S ∼ κ−β
0 and K ∼ κ−γ

0 for some β, γ > 0 and of order unity with κ0 ≫ 1. We find via

dominant balance that β = 1 and γ = −1/2, so that equation (7.42) reduces to

S ≈ K4

(2n+ 1)2δ3
κ0. (7.46)

Equation (7.46) describes the small K regime when κ0 is large (i.e., the bottom of the left panel

in figure 7.10), predicting the growth rate scales with κ−1
0 (since K ∼ κ

−1/2
0 ).
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The Growth Rate in (ν0, κ0)-space

In this subsection we suppose that the magnetic field strengthM is prescribed (from observations)

which is a reasonable assumption when considering astrophysical bodies such as those given in

table 2.1. Indeed, for each ν0 and κ0, there is a vertical wavenumber, Kmax say, that generates

the maximum growth rate (e.g., in the left panel of figure 7.8 where ν0 = 0.05 and κ0 = 0.01,

the growth rate is maximum at M = 4.0 when K = Kmax). Therefore, for a given M , we will

be contouring the maximum growth rate, its frequency (if relevant), and Kmax in (ν0, κ0)-space

with δ = 0.25. To do this, we numerically determine the growth rate for each ν0, κ0 and K

for the given M and δ from equation (7.42); we then select the vertical wavenumber, Kmax say,

that maximises the growth rate at each ν0 and κ0. We will repeat this procedure and analysis in

following subsections for different Prandtl number constraints (e.g., Pr = 1 and Pm ̸= 1).

Figure 7.11 shows the maximum growth rate, its frequency, and Kmax in (ν0, κ0)-space for

δ = 0.25 with M = 0.40 (left panels) and M = 4.0 (right panels). In both cases, we can see that

increasing the magnitude of ν0 (and η0 since Pm = 1) decreases the growth rate, while increasing

the magnitude of κ0 increases the growth rate. Oscillatory instabilities occur with Pr > 1, for

sufficiently large ν0.

Comparing with the hydrodynamic case, illustrated in figures 7.2 and 7.3, we can see that

for M ̸= 0, the range of ν0 and κ0 for which instability can occur is much larger; indeed, the

ν0 (and η0) required to stabilise the system is much larger for any given κ0 (e.g., at κ0 = 1 the

hydrodynamic system requires ν0 ≈ 0.3 for stability, whereas, even for M = 0.40, ν0 ≈ 0.8 is

required). We also see that the instabilities occur at vertical wavenumbers that would otherwise be

stable in the ideal regime (i.e., instability occurs at K < 0.1 for either value of M ). Indeed, the

ideal bound for stabilityM2 < (K−δ3/2)/δK3 implies that instability occurs for 0.1251 < K <

4.9363 when M = 0.40 and for 0.1348 < K < 0.4188 when M = 4.0. Thus, the instabilities

are enabled by large κ0 since it reduces the stabilising role of the pressure gradient, and therefore

allows instability to occur at smaller vertical wavenumbers.

We now compare the system for the two different values of M in figure 7.11 (M = 0.40 and

M = 4.0). First, for M = 4.0, we see a much larger instability domain; however, the maximum

growth rate is significantly larger for M = 0.40. We might expect this, since increasing M while

remaining at Kmax in figure 7.8 implies that there will be both stronger Lorentz forces (due to

increasingM ) and pressure gradients (owing to decreasingK). This is in agreement with the value

of Kmax when M = 4.0, which is much smaller in comparison to the M = 0.40 case. Notably,

we also see a much larger domain for which oscillatory instability can occur for M = 4.0.

7.4.3 Pr = 1 & Pm ̸= 1

In this section we will consider the system with Pr = 1 and Pm ̸= 1. In certain parameter

regimes the results of this section will be applicable to Jupiter’s upper atmosphere, where we

expect large magnitudes of magnetic diffusivity. Indeed, estimating the magnitude of the diffusive
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7.4 Magnetohydrodynamic Regime

Figure 7.11: Pr ̸= 1, Pm = 1: The maximum growth rate Smax(Kmax) (top panels), corresponding
frequency (centre panels) and the value of Kmax (bottom panels) in (ν0, κ0)-space for M = 0.4

(left column) and M = 4.0 (right column) with δ = 0.25.
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parameters in Jupiter’s upper atmosphere using the values from table 2.1 yields Pr = 0.3 (≈ 1)

with Pm = O(10−16) and ν0 = O(10−8).

Thus, writing κ0 as ν0, equation (7.10) reduces to

(
1 +

M2K2

(S + η0K2)2

)2

−
(
S + ν0K

2 +
M2K2

S + η0K2

)2(
1 + δ

(
1 +

M2K2

(S + η0K2)2

))
=

(2n+ 1)

K

(
1 +

M2K2

(S + ν0K2)(S + η0K2)

) 1
2
(
1 + δ

(
1 +

M2K2

(S + η0K2)2

)) 3
2

. (7.47)

Once again we first contour the maximum growth rate in (M,K)-space in figures 7.12 and

7.14 for δ = 0.25. In figures 7.13 and 7.15 we also contour the corresponding frequencies of the

maximum growth rates (as shown in figures 7.12 and 7.14) in (M,K)-space.

In figure 7.12 we contour the maximum growth rate at fixed η0 = 0.05 for ν0 = 0.01 and

ν0 = 5. Increasing ν0 reduces the growth rate of the most unstable mode and stabilises both

the hydrodynamically unstable modes and the magnetically modified instabilities which occur

there, so that all unstable modes become purely magnetic. Increasing the magnitude of ν0 further

reduces the size of the unstable region (seen in the right panel); however, instability persists as

ν0 = κ0 → ∞, with the unstable modes occurring only in the small K limit. These modes

can be stabilised only with sufficiently strong magnetic diffusivity, where the required magnitude

of η0 decreases with increasing ν0. Figure 7.14 shows contours of the maximum growth rate at

fixed ν0 = κ0 = 0.05 for η0 = 0.5 and η0 = 2.5. With increasing η0, the growth rate of the

magnetic modes decreases, stabilising the purely magnetic modes. The hydrodynamic modes

are unaffected by increasing η0; however, instability can now occur for larger M (as seen about

(M,K) = (0.5, 2.5) in the right panel). The instabilities at larger M can now occur since the

effect of weak magnetic field on the hydrodynamically unstable modes is damped, for which

stronger magnetic field is required to have the same dynamical effect. Thus, in turn, stronger

magnetic field is required in order to stabilise the magnetically modified inertial instabilities. As

η0 increases, say toO(10−8) as expected in Jupiter’s upper atmosphere, the magnetically modified

instabilities may occur even for M = O(103); however, magnetic field has no dynamical effect

until M = O(10). This is interesting as table 2.1 suggests M = O(1)–O(102) in Jupiter’s upper

atmosphere. Finally, the purely magnetic instabilities (occurring for K that are hydrodynamically

stable) are stabilised for η0 > 4.86.

The Growth Rate in (ν0, η0)-space

In this subsection we once again suppose that the magnetic field strength M is prescribed (from

observations). Figure 7.16 shows the maximum growth rate, its frequency, and Kmax in (ν0, η0)-

space for δ = 0.25 with M = 0.40 and M = 4.0.

Clearly, for any fixed ν0 = κ0, the system is stabilised for sufficiently large η0, whereas,

for any fixed η0, instability will occur for sufficiently large κ0. This is of particular interest as it

implies magnetic instabilities can persist even in the presence of strong magnetic diffusivity (which
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7.4 Magnetohydrodynamic Regime

Figure 7.12: Pr = 1, Pm ̸= 1: The maximum growth rate for δ = 0.25 in (M,K)-space with
η0 = 0.05 for ν0 = κ0 = 0.01 (Pm = 0.2, left panel) and ν0 = κ0 = 5 (Pm = 100, right panel).
The solid red line is the ideal stability boundary (6.63).

Figure 7.13: Pr = 1, Pm ̸= 1: The corresponding frequency of the maximum growth rate
(illustrated in figure 7.12) in (M,K)-space for δ = 0.25, ν0 = 0.01 and η0 = 0.05. The case with
ν0 = 5.0 and η0 = 0.05 (right panel of figure 7.12) has no oscillatory instabilities. The solid red
line is the ideal stability boundary (6.63).
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Figure 7.14: Pr = 1, Pm ̸= 1: The maximum growth rate for δ = 0.25 in (M,K)-space with
ν0 = κ0 = 0.05 for η0 = 0.5 (Pm = 0.1, left panel) and η0 = 2.5 (Pm = 0.025, right panel).
The maximum growth rates are 0.6095 and 0.2982, respectively. Note that when η0 = 4.86 the
magnetic instabilities found at M > 1 are stabilised. The solid red line is the ideal stability
boundary (6.63).

Figure 7.15: Pr = 1, Pm ̸= 1: The corresponding frequency of the maximum growth rate
(illustrated in figure 7.14) for δ = 0.25 in (M,K)-space with ν0 = κ0 = 0.05 for η0 = 0.5

(Pm = 0.1, left panel) and η0 = 2.5 (Pm = 0.025, right panel). The solid red line is the ideal
stability boundary (6.63).
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7.4 Magnetohydrodynamic Regime

is the case in Jupiter’s upper atmosphere) provided there is sufficiently strong thermal diffusion.

Interestingly, we also see that at some fixed η0, increasing ν0 from zero initially gives oscillatory

instabilities, then stability, followed by steady stability given sufficiently large κ0. This is due to

increasing thermal diffusion first stabilising oscillatory modes (damping vertical oscillations) and

then generating steady instabilities (since increasing κ0 reduces the stabilising role of the pressure

gradient).

We now compare the system for the two different values of M in figure 7.16 (M = 0.40,

M = 4.0). First, for M = 4.0, we see a much larger instability domain; the maximum growth

rate is also significantly larger for M = 4.0. We might expect this, since increasing M allows

magnetic instabilities to persist even in the presence of strong magnetic diffusivity. The bulk of

the values of Kmax are similar in both cases, ranging from K = 0.15 to K = 0.35, implying a

preferred vertical scale. Looking back to figures 7.12 and 7.14 we can see that this is indeed the

case, with magnetic instabilities primarily occurring at K = O(10−1). We also see a much larger

domain for which oscillatory instability can occur for M = 4.0.

7.4.4 Pr = Pm ̸= 1

In the section we consider the case Pr = Pm ̸= 1. Since no simplification can be made, by

writing η0 as κ0, we recast equation (7.38) for convenience, yielding

(
1 +

M2K2

(S + κ0K2)2

)2

−
(
S + ν0K

2 +
M2K2

S + κ0K2

)2(
1 + δ

(
1 +

M2K2

(S + κ0K2)2

))
=

(2n+ 1)

K

(
S + ν0K

2

S + κ0K2
+

M2K2

(S + κ0K2)2

) 1
2
(
1 + δ

(
1 +

M2K2

(S + κ0K2)2

)) 3
2

. (7.48)

In figures 7.17 and 7.18 we contour the maximum growth rate in (M,K)-space for δ = 0.25.

In figure 7.17 we contour the maximum growth rate at fixed κ0 = η0 = 0.05 for ν0 = 0.01 and

ν0 = 10.

Figure 7.17 shows that increasing ν0 (with κ0 = η0 fixed) stabilises modes at large vertical

numbers, eventually stabilising all modes in the hydrodynamically unstable regime so that only

purely magnetic instabilities exist (as seen in the right panel of figure 7.17). The growth rate of

the remaining modes generally decreases; however, the growth rates of the magnetic modes that

remain (in the right panel) are largely unaffected since they occur at small vertical wavenumbers

(i.e., K = O(10−1)). Figure 7.18 shows that increasing κ0(= η0) (with ν0 fixed) reduces the

growth rate of purely magnetic modes, while increasing the growth rate of hydrodynamic insta-

bilities. Indeed, owing to increasing magnitudes of κ0 and η0, the most unstable mode occurs at

M = 0 (in the right panel) rather than at M ̸= 0 (in the left panel). In general, the unstable

domain illustrated in the right panel of figure 7.18 is somewhat more complex than previous cases,

however there are some similarities to the right panel of figure 7.14. Indeed, in both cases there

are purely magnetic instabilities for M > 1 and magnetically modified inertial instabilities for

M < 1. The unstable domain containing the magnetically modified inertial instabilities expands
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Figure 7.16: Pr = 1, Pm ̸= 1: The maximum growth rate Smax(Kmax) (top panels), correspond-
ing frequency (centre panels) and the value ofKmax (bottom panels) in (ν0, η0)-space forM = 0.4

(left column) and M = 4.0 (right column) with δ = 0.25. Note the distinct colourbars.
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7.4 Magnetohydrodynamic Regime

Figure 7.17: Pr = Pm ̸= 1: The maximum growth rate in (M,K)-space for δ = 0.25 with
κ0 = η0 = 0.05 and ν0 = 0.01 (Pr = Pm = 0.2, left panel) and ν0 = 10 (Pr = Pm = 200,
right panel). The maximum growth rates are 0.621 and 0.213, respectively. The solid red line is
the ideal stability boundary (6.63).

Figure 7.18: Pr = Pm ̸= 1: The maximum growth rate in (M,K)-space for δ = 0.25 with
ν0 = 0.05 and κ0 = 0.01 (Pr = Pm = 5, left panel) and κ0 = 2 (Pr = Pm = 0.025, right
panel). The maximum growth rates are 0.579 and 0.613, respectively. The solid red line is the
ideal stability boundary (6.63).

with increasing κ0 = η0 (with the purely magnetic instabilities being stabilised at κ0 = 4.61).

This is analogous to what was discussed regarding figure 7.14, where magnetic field of larger

magnitude is required for the same dynamic effect. However, since Pr = Pm the maximum

growth rate also increases (since κ0 is also increasing), tending toward 1/
√
1 + δ in the limit of

large κ0.

The Growth Rate in (ν0, κ0)-space

In this subsection we suppose M is prescribed (from observations) and, as before, we contour the

maximum growth rate and Kmax in (ν0, κ0)-space in figure 7.16 for δ = 0.25 with M = 0.30

(left panels) and M = 3.0 (right panels). There are no oscillatory instabilities under these Prandtl

number constraints.
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For any fixed κ0 = η0, the system is stabilised given sufficiently large ν0 (in particular for

large η0). However, for any fixed ν0, the effect of increasing κ0 = η0 is less clear. Indeed,

for M = 0.30, at any fixed ν0, instability will occur given sufficiently large κ0; owing to the

increasing magnitude of η0 the instabilities are hydrodynamic in nature even in the presence of

moderate magnetic field strength. In contrast, for M = 3.0, at any fixed ν0, stability is guaranteed

given sufficiently large κ0 = η0. The instabilities that occur for sufficiently small κ0 = η0 are

purely magnetic in nature and occur at vertical wavenumbers K ∼ O(10−1). The system at these

vertical wavenumbers would otherwise be stable in the ideal regime. Indeed, the ideal bound for

stability M2 < (K − δ3/2)/δK3 implies that instability occurs for 0.1299 < K < 0.5921 when

M = 3.0; figure 7.19 suggests instability can now occur at vertical wavenumbers K < 0.1299 for

M = 3.0. As previously discussed, instabilities may occur at smaller vertical wavenumbers since

thermal diffusion reduces the stabilising role of the pressure gradient.

We now compare the system for the two different values of M in figure 7.19 (M = 0.30,

M = 3.0). First, for M = 3.0, we see a much larger instability domain; however, the maximum

growth rate is significantly larger for M = 0.3, occurring in Pr = Pm ≪ 1 regime. The

maximum growth rates occur for Pr = Pm ≫ 1 for M = 4.0. This might be expected, since

unstable modes with M = 4.0 are purely magnetic (occurring in the hydrodynamically stable

regime) and will therefore prefer small magnitudes of η0. For M = 0.3 the most unstable modes

are hydrodynamic in nature and therefore are not affected by large η0. The values of Kmax in the

lower right of region of the unstable domain forM = 0.3 are similar to those forM = 3.0, ranging

from K = 0.15 to K = 0.35, implying a preferred vertical scale. Looking back to figures 7.17

and 7.18 we can see that this is indeed the case, with magnetic instabilities primarily occurring at

K = O(10−1).

7.4.5 Pr ̸= 1, Pm ̸= 1

In this section we consider equation (7.38) directly since Pr ̸= 1 and Pm ̸= 1. However, owing

to the complexity of the diffusive parameter space (i.e., ν0, κ0 and η0 may all vary independently

of one another) we will consider the two cases Pr ≪ Pm≪ 1 and Pr = 0.3 with Pm≪ 1. The

first Prandtl number regime is found in many astrophysical bodies, including the Solar tachocline

and Jupiter’s interior (and, perhaps, Hot Jupiters); the second is the Prandtl number regime in

Jupiter’s upper atmosphere (see table 2.1), which could also apply to the upper atmospheres of

Hot Jupiters. Recall that we argue that the flow profile U(y) = Λ0y − δβy2/2 can model the jets

adjacent to Jupiter’s prominent central equatorial jet (since the central jet is symmetric about the

equator).

Pr ≪ Pm≪ 1

To restrict the analysis we consider the case where the Prandtl numbers are small and follow the

scaling Pr = Pmp where p is some positive power. Formally, we suppose the Prandtl numbers
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7.4 Magnetohydrodynamic Regime

Figure 7.19: Pr = Pm ̸= 1: The maximum growth rate Smax(Kmax) (top panels) and the value of
Kmax (bottom panels) in (ν0, κ0)-space for M = 0.30 (left panels) and M = 3.0 (right panels)
with δ = 0.25. Note the distinct colourbars.

257



follow the scaling
ν0
η0

= ϵ and
ν0
κ0

= ϵp with p > 0, (7.49)

where ϵ = O(1) or smaller. This formulation reduces the system to a 4 parameter problem

(M,K, ν0 and δ) for the growth rate.

Under this formulation equation (7.38) only simplifies slightly; we therefore solve (7.38) nu-

merically and contour the growth rate in (M,K)-space in figures 7.20 and 7.21 with δ = 0.25 for

various values of p, ϵ and ν0.

In general, the figures show that increasing ν0 (= ϵη0 = ϵpκ0) at fixed ϵ and p reduces the

interval of K for which instability can occur, decreases the maximum growth rate, and stabilises

the system at sufficient magnitude. We also see that decreasing ϵ at fixed ν0 and p increases the

maximum growth rate of the system, which in every case occurs atM = 0, owing to the increasing

magnitude of κ0; however, the growth rate of the magnetic modes also increases significantly. This

is surprising as decreasing ϵ at fixed ν0 implies that the magnitude of η0 also increases, so that one

might expect the growth rate of magnetic modes to decrease. Presumably this damping is offset

by a more rapidly increasing magnitude of κ0 since κ0 = ν0/ϵ
p rather than η0 = ν0/ϵ.

Figures 7.20 and 7.21 show that instabilities may occur at vertical wavenumbers that would

otherwise be stable in the ideal regime owing to large κ0 reducing the stabilising effects of the

pressure gradient at small K. We also see instability occur at values of M that would otherwise

be stable in the ideal regime, once again owing to the increasing magnitude of κ0. We already

determined that instability can occur at larger M since stronger cross-stream Lorentz forces are

no longer alone sufficient to stabilise the system in the absence of the pressure gradient.

In terms of the effects of increasing the parameter p we must compare figure 7.20 to figure

7.21. We can see, by comparing each panel, that increasing p from 2 to 3 at fixed ν0 and ϵ allows

instability to occur at smaller vertical wavenumbers, while the maximum vertical wavenumber for

which instability can occur remains the same. We also see that the range of M at which instability

occurs also increases with increasing p, as well as the maximum growth rate of the system.

Application to Jupiter’s Upper Atmosphere

We now briefly consider the Prandtl number regime in Jupiter’s upper atmosphere. Using the

values from table 2.1 we obtain Pr = 0.3 and Pm = 10−16 with ν0 = 10−8. Table 2.1 also

implies that the parameter M = O(1)–O(102).

In figure 7.22 we contour the growth rate in (M,K)-space with δ = 0.25, ν0 = 10−8, κ0 =

3.33× 10−8 (so that Pr = 0.3) and η0 = 102. We are using a smaller value of η0 than suggested

by table 2.1 so that the instability domain is more easily illustrated.

Surprisingly, the instability domain is significantly different to all previous cases that we have

seen throughout this chapter. However, many concepts we have already discussed are relevant

here. Indeed, owing to the large magnitude of η0, larger magnitudes of magnetic field strength are

required to modify the hydrodynamic inertial instabilities significantly, in turn, delaying stabilisa-

tion. If we were instead to plot figure 7.22 with η0 = 10−6 (as table 2.1 suggests), then instability
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7.4 Magnetohydrodynamic Regime

Figure 7.20: Pr≪ Pm≪ 1: The maximum growth rate in (M,K)-space for p = 2 (Pr =

Pmp = ϵp) and δ = 0.25 with ν0 = 0.05 (left panels) and ν0 = 0.5 (right panels), ϵ = 0.1 (top
panels, Pr = 0.01, Pm = 0.1) and ϵ = 0.01 (bottom panels, Pr = 10−4. Pm = 0.1). The
maximum growth rates for the top row are 0.598 and 0.359. For the second row the maximum
growth rates are 0.766 and 0.665. The solid red line is the ideal stability boundary (6.63).
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Figure 7.21: Pr≪ Pm≪ 1: The maximum growth rate in (M,K)-space for p = 2 (Pr =

Pmp = ϵp) and δ = 0.25 with ν0 = 0.05 (left panels) and ν0 = 0.5 (right panels), ϵ = 0.1 (top
panels, Pr = 10−3, Pm = 0.1) and ϵ = 0.01 (bottom panels, Pr = 10−6. Pm = 0.1). The
maximum growth rates for the top row are 0.766 and 0.665. For the second row the maximum
growth rates are 0.871 and 0.854. The solid red line is the ideal stability boundary (6.63).
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7.5 Conclusions

Figure 7.22: Pr = 0.3, Pm = 10−10: The maximum growth rate (left panel) and its correspond-
ing frequency (right panel) in (M,K)-space for δ = 0.25 with ν0 = 10−8, κ0 = 3.33× 10−8 and
η0 = 102. The solid red line is the ideal stability boundary (6.63).

may still occur for M = O(103); indeed, the resulting unstable domain is much larger than that

illustrated in figure 7.22. Instability being able to occur atM = O(103) is crucial in application to

Jupiter’s upper atmosphere since table 2.1 implies M = O(1)–M(102) (depending on the value

of Λ0); thus, instabilities in Jupiter’s upper atmosphere, if they occur, may be categorised as mag-

netically modified inertial instabilities. There is also a large region in (M,K)-space for which

oscillatory instability may occur; this region becomes larger with increasing M ; it is therefore

possible that oscillatory instabilities occur in Jupiter’s upper atmosphere.

7.5 Conclusions

In this chapter we have extended the system and analysis of Chapter 6 into the diffusive regime.

We considered the linear stability of the jet profile U(y) = Λ0y−δβy2/2 on an equatorial β-plane

in the presence of uniform vertical magnetic field strength B0, kinematic viscosity ν, thermal con-

ductivity κ and magnetic diffusivity η. Although this flow profile is not the simplest possible

choice available to study the effects of diffusion on an equatorial β-plane, it confines any anti-

cyclonic shear to the region 0 < y < Λ0/δβ, where instability is confined to this region. This

also ensures the non-equatorial strong magnetic field instability of Chapter 6 cannot occur. This

formulation allowed for the derivation of a parabolic cylinder equation for the perturbed cross-

stream velocity by introducing the nondimensional coordinate Y = (y − y0)/L, where y0 is the

central latitude and L is the nondimensional latitudinal lengthscale. The parabolic cylinder equa-

tion can be solved analytically, yielding an eigenvalue relation with corresponding eigenfunctions

v ∝ Hn(Y ) exp(−Y 2/2). where the eigenvalue n is a non-negative integer. Note that we con-

sidered only n = 0 since this is the most unstable mode. We then introduced the nondimensional

growth rate S (with timescale 2/Λ0), vertical wavenumber K, magnetic field strength M , kine-

matic viscosity ν0, thermal diffusion κ0 and magnetic diffusivity η0. We argued that given some

astrophysical body, one could infer values for M, ν0, κ0, η0, and δ, reducing the system to a one
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parameter problem for the growth rate S. Thus, given these parameters, a vertical wavenumber K

is selected in order to maximise the growth rate S and imply a vertical scale of the instability.

It is important to note that the results of this chapter are very applicable to the upper atmo-

spheres of Jupiter and Hot Jupiters (as well as stellar interiors), which we will now discuss. Table

2.1 allows us to estimate the nondimensional parameters in the upper atmospheres of Jupiter and

Hot Jupiters. Table 2.1 yields ν0 = 10−8, κ0 = 3.33 × 10−8, η0 = 108 and M = O(1)–O(102)

in Jupiter’s upper atmosphere. Taking the same values for ν, κ and η in the upper atmospheres of

Hot Jupiters yields ν0 = 10−17–10−12, κ0 = 3.33 × 10−17–3.33 × 10−12, η0 = 10−1–104 and

M = O(10−8)–O(1); however, the values of ν0, κ0 and η0 may be significantly different in real-

ity, perhaps satisfying Pr ≪ Pm ≪ 1. The significant ranges in the estimated nondimensional

parameters for Hot Jupiters are due to their sensitivity to the shear Λ0 (powers of 5 in the diffusive

parameters and 3 in the magnetic parameter); indeed, the shear Λ0 may vary by multiple orders of

magnitudes on Hot Jupiters owing to their inferred extreme equatorial jets.

We first considered the hydrodynamic regime, in which the jet profile extends slightly upon

the studies of Dunkerton (1981, 1982) and Griffiths (2003a) where a flow profile with uniform

shear was considered. For Pr = 1, we drew links to Dunkerton (1981) and Griffiths (2003a),

focusing on how the jet width, governed by the parameter δ, affects the results. Exploiting the

small ν0 limit, which table 2.1 suggests is the parameter regime in the solar tachocline, and upper

atmosphere’s of Jupiter and Hot Jupiters, we derive a bound on the vertical wavenumber K (and

therefore vertical lengthscale). For Pr ̸= 1, we derived a steady and an oscillatory stability bound

on the system, which reduce to those found in Dunkerton (1982) with δ = 0. Combining these

bounds allowed us to derive a necessary and sufficient condition for stability. Finally, we found that

strong thermal diffusion allows instabilities to occur at vertical wavenumbers that would otherwise

be stable in the ideal regime. This is due to thermal diffusion reducing the stabilising role of the

pressure gradient (the strength of which increases with decreasing K). We discuss links to the

GSF instability (Goldreich & Schubert, 1967; Fricke, 1968).

In the magnetohydrodynamic regime we systematically analysed every variation of the Prandtl

number and magnetic Prandtl number being unity or non-unity. We first considered the case

Pr = Pm = 1 which links to both the hydrodynamic regime with Pr = 1 and the ideal system

of Chapter 6 via a simple transformation of the growth rate. This regime does not directly apply to

those in astrophysical bodies; however, we can infer numerous important results. First, owing to

the presumably small values of the nondimensional diffusive parameters in the upper atmospheres

of Jupiter and Hot Jupiters (excluding η0), the most unstable modes of the system will occur

close to the vertical wavenumber of the hydrodynamic regime, as predicted by (7.17), yielding

K = 315 andK = 6789 for Jupiter and Hot Jupiters, respectively. For Jupiter, this yields a vertical

lengthscale of O(102m), giving a lower bound on the vertical lengthscale of possible instabilities

in the upper atmosphere. For Hot Jupiters the corresponding vertical lengthscale is O(10km)

(although we obtain vertical lengthscales of O(102m) for smaller shears). It is reasonable to

expect vertical lengthscales numerous orders of magnitude larger in these atmospheres; however,
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7.5 Conclusions

on inspection of figure 7.4, it is clear that increasing the magnetic field strength decreases the

preferred vertical wavenumber (and therefore vertical lengthscale). Taking M = O(1)–O(102)

in Jupiter’s upper atmosphere yields vertical lengthscales of O(103km). Taking M = O(10−8)

in the upper atmospheres of Hot Jupiters again yields vertical lengthscales of O(10km); however,

taking M = O(10−2) yields vertical lengthscales of O(103km) (using the estimate (6.68) of

Chapter 6 for the vertical wavenumber in the limit of weak magnetic field). We also note that

increasing ν0 decreases the preferred vertical wavenumber and the maximum growth rate, where

the critical diffusion for stabilisation over all M and K is ν0 = 4.358.

As we have already noted numerical models run with anomalously large diffusion, and thus

it is very interesting to understand if they artificially suppress instabilities that might otherwise

occur. For simplicity, we take the critical diffusion ν0 = 4.358 (with Pr = Pm = 1) and com-

pare this to values found in numerical models. For example, Rogers & Komacek (2014) present

global magnetohydrodynamic simulations of Hot Jupiters, and take ν = κ = η = 5.0×106m2s−1

(although stronger magnetic diffusivity is also considered). Thus, by taking N ≈ 5 × 10−4s−1,

β = 4×10−13m−1s−1, Λ0 = 3×10−5s−1, we obtain ν0 ≈ 30. Hence, these instabilities are likely

to be artificially suppressed in planetary scale numerical simulations. This is an important finding,

since throughout this thesis, we have been identifying classes of instabilities that will not be re-

solved in large-scale models, but will have implications for modifying jet strengths, redistributing

momentum, and vertical mixing (due to overturning in cells).

The case Pr ̸= 1 and Pm = 1 allowed us to draw links to hydrodynamic analysis of section

7.3, where strong thermal diffusion allows instability to occur at small K that would otherwise

be stable in the ideal regime. We contoured the maximum growth rate in (M,K)-space, where

taking M = O(1)–O(102) in Jupiter’s upper atmosphere yields larger vertical lengthscales of

O(103km)–O(104km), or stability given sufficiently large M. With increasing κ0 allows insta-

bilities to occur at larger values of M (in contrast to the ideal regime or Pr = Pm = 1) since

the combination of the cross-stream pressure gradient and cross-stream Lorentz force (which are

both stabilising) are no longer sufficient to stabilise the system. This is in fact the reason why

instability can occur only at larger values of M given smaller values of K in the ideal regime.

Further, by contouring the maximum growth rate in (ν0, κ0)-space at fixed M , we can conclude

that the vertical wavenumber that generates the maximum growth rate decreases with increasing

M or increasing ν0 (or decreasing κ0).

In the case Pr = 1 and Pm ̸= 1, figure 7.14 shows the existence of purely magnetic insta-

bilities that persist in the large ν0 = κ0 limit provided η0 is sufficiently small; once again, these

may occur at values of M that would otherwise be stable in the ideal regime. This, along with the

previous case (Pr ̸= 1, Pm = 1), allows us to conclude that increasing magnitudes of κ0 allow

instability to occur at smaller vertical wavenumbers and larger values of M (both of which would

imply stability in the ideal regime). We also find that increasing η0 at fixed ν0 = κ0 stabilises

all purely magnetic instabilities; however, inertial instabilities modified by magnetic field can not

be stabilised. Instead, increasing magnetic diffusion can only damp the effect of magnetic field
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on the inertial modes; thus, larger magnetic field strength is required to modify the hydrodynamic

instability and, in turn, stabilise the instabilities. In terms of scale selection in Jupiter’s upper atmo-

sphere (and Hot Jupiters), where M = O(1)–O(102) and η0 is large, we may expect instabilities

(if they occur) to have vertical lengthscales significantly smaller than O(103km). The instabili-

ties are not purely magnetic as those are stabilised by large η0 and instead can be categorised as

magnetically modified inertial instabilities, which occur at larger vertical wavenumbers.

In the case Pr = Pm ̸= 1, we find instabilities analogous to those found in the hydrodynamic

analysis of section 7.3 for a finite range of κ0 = η0 with M ̸= 0; κ0 cannot be so small that the

stabilising role of the pressure gradient is not damped at smaller vertical wavenumbers, while η0
can not be so large as to stabilise instabilities at M ̸= 0. In the large ν0 limit, the most unstable

mode is purely magnetic (the system would be stable for the same ν0 hydrodynamically, as seen in

section 7.3); however, as ν0 increases, we require decreasing η0 for instability still to be possible.

Finally, we consider two cases with Pr ̸= Pm ̸= 1. The first considers the regime Pr ≪
Pm ≪ 1 such that Pm = ϵ and Pr = ϵp for p = 3/2 and p = 3 with ϵ ≪ 1, which is the case

in many astrophysical bodies, including the solar tachocline, stellar interiors and, perhaps, Hot

Jupiters. We also consider the case Pr = 0.3 and Pm≪ 1, which is applicable to Jupiter’s upper

atmosphere (as suggested by table 2.1), and perhaps the upper atmospheres of Hot Jupiters. In the

case Pr ≪ Pm ≪ 1, generally, the most unstable mode of the system is always hydrodynamic;

however, in certain cases, instabilities with similar growth rates may also occur with M ̸= 0.

Specifically, in the bottom left panel of figure 7.21 where Pr = 10−6, Pm = 0.1 (p = 3),

there are unstable modes with growth rates of comparable magnitude to the hydrodynamic mode,

even for M = O(1)–O(10). These unstable modes also occur at vertical wavenumbers that would

otherwise be stable in the ideal regime. Thus, purely magnetic instabilities may occur in stellar

interiors, where we expect M is larger than O(1), with vertical lengthscales of O(104km).

In the case Pr = 0.3 and Pm ≪ 1, which is the Prandtl number regime in Jupiter’s upper

atmosphere, we contour the growth rate in (M,K)-space in figure 7.22 for η0 = 102 (rather than

η0 = 108 for illustration purposes). Owing to the large η0, all purely magnetic instabilities (i.e.,

those that occur in the hydrodynamically stable regime) are stabilised, so that all instabilities may

be categorised as inertial or magnetically modified inertial instabilities. However, once again,

owing to large η0, the dynamical effect of magnetic field is damped in comparison to the ideal

regime. Thus, much larger magnetic field strength is required so that the modes may be categorised

as magnetically modified inertial instabilities, and, consequently, much larger M is required for

stabilisation. We estimate M = O(1)–O(102) in Jupiter’s upper atmosphere, so that instability

may occur at all magnetic field strengths (noting that η0 = 108 allows instability to occur for even

M = O(103)). The preferred vertical lengthscale is largely unaffected by increasing magnetic

field, and owing to the large η0 and small ν0, the vertical wavenumber takes values close to that

predicted by expression (6.68), yielding vertical lengthscales of O(103km); however, since this

estimate concerned the ideal regime, we may expect kinematic viscosity to increase the vertical

lengthscale by an order of magnitude or more.
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Chapter 8

Conclusions

In this chapter we will summarise the main results of the thesis and their application to the solar

tachocline as well as to the upper atmospheres of Jupiter and Hot Jupiters. We will also discuss

possible extensions and future work that builds upon the results of the thesis. We will not provide

a detailed conclusion since each chapter contains its own conclusion and discussion therein.

8.1 Summary

Inertial instabilities (which are planetary analogous of centrifugal instabilities) are well under-

stood in the terrestrial atmosphere (e.g., Dunkerton, 1981, 1982, 1983, 1993; Griffiths, 2003a,b,

2008a; Kloosterziel et al., 2007a; Kloosterziel & Carnevale, 2008; Kloosterziel et al., 2015) and it

is thus natural to investigate if they may be realised in stellar and planetary atmospheres, which, in

general are electrically conducting and can therefore host large-scale magnetic fields. It is already

well understood that magnetic field has a significant dynamical effect on electrically conducting

fluid flows; for example, even weak axial magnetic field allows instabilities to occur in accretion

discs (i.e., the MRI) which have centrifugally (inertially) stable flow profiles, and have been the

focus of many studies (e.g., Kuiper, 1941; Balbus & Hawley, 1991; Menou et al., 2004). How-

ever, we extended these studies by considering the (axisymmetric) linear and nonlinear evolution

of a number of parallel flows (dependent on latitude) in the presence of vertical magnetic field

in a planetary configuration, where background rotation (f -plane or equatorial β-plane), uniform

vertical density stratification, uniform diffusion, and the magnetohydrostatic (thin layer) approx-

imation are considered. The magnetohydrostatic approximation makes the analysis distinct from

previous studies, and allows us to investigate the large scale dynamics of stellar and planetary

atmospheres.

In Chapter 1 we introduced the astrophysical bodies relevant to this research, inertial instability

and its analogies with centrifugal instability and the magnetorotational instability.

In Chapter 2 we derived the equations of motions in Cartesian geometry, which were used

throughout the entire thesis. We linearised about the basic state u = U(y)ex and B = (0, 0, B3(y)),

deriving a second order ordinary differential equation (ODE) that forms the basis for all linear
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results in the thesis. A condition on the validity of the magnetohydrostatic approximation was

derived from the ODE since it does not extend trivially from the hydrostatic approximation. Fi-

nally, we derived a series of growth rate bounds and stability criteria for an ideal fluid; namely, we

showed that necessary conditions for linear hydrodynamic and magnetohydrodynamic instability

are that fQ < 0 and U ′f > 0, respectively.

In Chapter 3 we considered the ideal linear stability of the parallel flow U(y) = Λ0y, with

uniform latitudinal shear Λ0, on an f -plane in the presence of uniform vertical magnetic field

strength. With our interest primarily on the unstable modes, we derived stability criteria, the

maximum growth rate (and the corresponding values of magnetic field strength and aspect ratio at

which it occurs), and analogies to the magnetorotational instability of Balbus & Hawley (1991).

We also considered the dynamical balances of our system in numerous parameter regimes.

In Chapter 4 we extended the linear analysis of Chapter 3 by considering the effects of uniform

kinematic viscosity, thermal diffusion and magnetic diffusivity. In the hydrodynamic and magne-

tohydrodynamic regimes, we derived several sufficient and necessary conditions for stability, and

investigated the instability domain for various Prandtl and magnetic Prandtl numbers. We inves-

tigated regimes physically relevant to the solar tachocline, and the upper atmospheres of Jupiter

and Hot Jupiters. We found a number of double-diffusive instabilities, and discussed links to the

Goldreich-Schubert-Fricke (GSF) instability (Goldreich & Schubert, 1967; Fricke, 1968).

In Chapter 5 we considered the linear and nonlinear evolution of the hyperbolic shear layer

U(y) = U0 tanh(y/L) on an f -plane in the presence of a uniform vertical magnetic field and

uniform diffusion with Pr = Pm = 1. We focused on the nonlinear evolution and the resulting

change to the mean flow and vorticity. The regime Pr = Pm = 1 is not physically relevant in

astrophysical bodies; however, the regime illustrates several ideas and mechanisms. Indeed, we

investigate the significance of diffusion and magnetic field on the nonlinear evolution, the latitu-

dinal redistribution of momentum, and the evolution that we might expect in hydrodynamically

stable and unstable flows.

In Chapter 6 we investigated the ideal linear stability of the parallel flow U(y) = Λ0y with

uniform latitudinal shear Λ0 on an equatorial β-plane in the presence of a uniform vertical mag-

netic field. We derive a parabolic cylinder equation which can be solved analytically to yield an

eigenvalue relation. We discussed inertial and hydromagnetic waves and investigated the unsta-

ble domain, deriving asymptotic expansions that concern the weak and strong field limits. We

then considered the dynamical balances of equatorial magnetically modified inertial instabilities

and stratified equatorial magnetic instabilities analogous to the MRI. We then considered the jet

profile U(y) = Λ0y − δy2/2, for some constant δ, so that the shear is no longer uniform and un-

bounded; there are significant changes to the unstable domain since anti-cyclonic shear may now

only occur in some bounded latitudinal region.

Chapter 7 extended the linear analysis of the jet profile in Chapter 6 to the diffusive regime,

where the effects of kinematic viscosity, thermal diffusion and magnetic diffusivity were consid-

ered. We followed a similar systematic analysis to that of Chapter 4. The hydrodynamic regime
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8.2 Discussion of Results

is closely related to that studied by Dunkerton (1982) and Griffiths (2003a, 2008a). Once again, a

number of double-diffusive instabilities occur.

8.2 Discussion of Results

In the linear analysis of Chapters 3 and 6, we found that even weak magnetic field can mod-

ify inertial instabilities and generate purely magnetic instabilities in the inertially stable regime.

The effect of magnetic field on inertial instabilities crucially depends upon the magnitudes of the

along-stream Lorentz force, the cross-stream Lorentz force and the cross-stream pressure gradi-

ent; in both chapters we obtain a condition governing whether weak magnetic field increases or

decreases the growth rate. In chapter 3, instabilities can persist even with strong magnetic field

since the stabilising effect is offset by smaller vertical wavenumbers being chosen (however this is

limited by the aspect ratio and the depth of the atmosphere). Similarly, in Chapter 6, we find that

the equatorial instabilities of a uniform shear flow persist with strong magnetic field by travers-

ing to a higher latitude; however, for the equatorial jet profile, sufficiently strong magnetic field

stabilises all instabilities. Importantly, the analysis of both chapters showed that inertial insta-

bilities could still occur in the presence of magnetic field and therefore in stellar and planetary

atmospheres; purely magnetic instabilities were also possible. Indeed, we found that in the limit

of large vertical wavenumber (vanishing vertical scales) and weak magnetic field strength that the

purely magnetic instabilities were analogous to the magnetorotational instability (Balbus & Haw-

ley, 1991), where the two limits correspond to the “thin disc” and “weak field” assumptions of

Balbus & Hawley (1991). This is an interesting analogy and demonstrates the close links between

inertial instabilities of planetary and stellar atmospheres and centrifugal instabilities in accretion

discs.

In any hydrodynamic or magnetohydrodynamic study it is natural to consider the effects of

diffusion, which both makes the mathematical model more physically appropriate and provides

a basis to consider the nonlinear evolution of the system. One hydrodynamic instability that can

result owing to varying magnitudes of kinematic viscosity and thermal diffusion is the Goldre-

ich–Schubert–Fricke (GSF) instability (Goldreich & Schubert, 1967; Fricke, 1968). Strong ther-

mal diffusion allows inertial instabilities to occur (even in the presence of strong viscosity) since

it damps the stabilising role of the pressure gradient. This allows modes at vertical wavenumbers

that would otherwise be stable in the absence of diffusion (owing to strong pressure gradients)

to become unstable. However, in Chapters 4 and 7 with Pr < 1 and Pm = 1, we show that

magnetically modified inertial instabilities that share a similar mechanism to the GSF instability

occur on both the f -plane and equatorial β-plane owing to distinct magnitudes ν and κ. We also

find another double-diffusive instability owing to distinct magnitudes of thermal diffusion and

magnetic diffusivity. Indeed, with Pr = 1 and Pm > 1, the instability operates in much the

same way to that of the GSF instability, where strong thermal diffusion allows instability to oc-

cur at vertical wavenumbers that would otherwise be rendered stable owing to the strong pressure
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gradients. However, in this case, the instability is purely magnetic (rather than magnetically mod-

ified) and may even occur in hydrodynamically stable regimes (where magnetic field is crucial for

instability) provided the magnitude of magnetic diffusivity is not too large.

In Chapter 5 we investigated the nonlinear evolution of magnetically modified inertial insta-

bilities (which occur with Rossby number Λ > 1) by considering a localised shear layer U(y) ∼
tanh y on an f -plane in the presence of uniform vertical field and diffusion with Pr = Pm = 1.

The nonlinear evolution, as in the hydrodynamic case, redistributed vorticity (and therefore mo-

mentum) latitudinally in order to reduce the latitudinal shear of the mean flow and, in turn, sta-

bilise the flow. The key to stabilisation (and a nonlinear equilibrium) relies on the minimum

vorticity Q = f − U ′ of the system; indeed, if the vorticity Q is sufficiently less than f (i.e.,

Q = f − U ′ < f ) instability will occur. Note that this is equivalent to requiring sufficiently

positive shear U ′ for instability. These (equivalent) conditions are less stringent criteria than in

the hydrodynamic case, which requires Q to be sufficiently less than zero for instability to occur.

Thus, in the magnetohydrodynamic evolution the vorticity is redistributed to a greater extent in

order to increase the minimum vorticity, reduce the shear of the basic flow and therefore stabilise

the system. The most significant changes to the mean flow and vorticity occur at magnetic field

strengths of similar magnitude to that which generated the maximum growth rate of the linear

system. For weak and strong magnetic field there is comparable change to the mean flow as in

the hydrodynamic case. We also investigated the nonlinear evolution of the hydrodynamically

stable regime (Rossby number Λ < 1), where even weak magnetic field generated a very signifi-

cant change to the mean flow and vorticity, resulting in the formation of coinciding eastward and

westward jets.

8.3 Applications to Astrophysical Bodies

The results of this thesis are applicable to the solar tachocline, and the upper atmospheres of Jupiter

and Hot Jupiters. Table 2.1 gives the relevant parameters in each region of the astrophysical bodies.

8.3.1 Applications to the Solar Tachocline

We will first discuss applications to the solar tachocline, which plays a role in the transport of

energy, mass and magnetic field throughout the Sun (Gough, 2007, Chapter 1), and is thought to

be partly responsible for the solar dynamo. Observations imply that the angular velocity decreases

with increasing radius at latitudes larger than 30◦. Thus, there is no anti-cyclonic shear present

near the equator, implying that Chapters 3, 4 and 5 will be most relevant since they are concerned

with mid-latitudes. We also expect that the Rossby number Λ < 1 so that the mid-latitudes of the

solar tachocline are hydrodynamically stable.

The ideal analysis of Chapter 3 suggests purely magnetic instabilities analogous to the MRI

are possible in this region, where even the strong stratification may be overcome by small vertical

scales. However, strong magnetic field (103–105G, Gough, 2007) may render the regions stable
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8.3 Applications to Astrophysical Bodies

if the vertical wavenumber is not sufficiently small to yield a Lehnert number of order unity (or

smaller), limited by the maximum aspect ratio at which instability can occur. Strong thermal diffu-

sion may allow instabilities to occur even with large vertical lengthscales owing to the suppression

of the effects of stratification. This is the case in the solar tachocline, where Pr = O(10−6) and

Pm = O(10−1). Indeed, we found that this Prandtl number regime (i.e., Pr ≪ Pm ≪ 1, or

approximately Pr = O(10−6), Pm = 1) allows magnetic instabilities to persist.

We discussed the nonlinear evolution of hydrodynamically stable regimes (Λ < 1) at mid-

latitudes in Chapter 5 (albeit with Pr = Pm = 1). Table 2.1 suggests M = O(10) (a relatively

strong magnetic field), so that the system will either be stable or, if instabilities do occur, they will

drive only a moderate to small latitudinal redistribution of the vorticity (and therefore mean flow).

The nonlinear evolution tended to redistribute magnetic energy latitudinally also. In many cases

the nonlinear evolution of the instabilities gave rise to Alfvén waves.

8.3.2 Applications to Jupiter’s Upper Atmosphere

Jupiter exhibits rapid rotation and an approximately axisymmetric surface layer with retrograde

and prograde jets, which exhibit strong latitudinal shear and are thought to extend to 0.96Rj before

rapidly decaying to ≈ 1% of their surface amplitude (Kaspi et al., 2018), where Rj = 69911km

is the radius of Jupiter. The upper atmosphere is also strongly stratified and, owing to the large

scale magnetic field generated in the electrically conducting dynamo region, is weakly magnetised

(even with low levels of conductivity). Owing to the rapid rotation, we are once again concerned

with a Rossby number Λ < 1. However, in contrast to the solar tachocline, there is anti-cyclonic

shear close to the equator so that instabilities may still occur. Thus, we will discuss results related

to mid-latitudes (f -plane) and the equator (equatorial β-plane).

We first discuss instabilities that may occur at mid-latitudes. As the Rossby number Λ < 1

we expect these regions to be hydrodynamically stable; however, purely magnetic instabilities

may occur as shown in the ideal analysis of Chapter 3. As discussed in section 3.3.4 by tak-

ing an appropriate latitudinal lengthscale, vertical lengthscales of O(104m)–O(105m) (which are

physically reasonable) yield the maximum growth rate of the system, and may be considered to

be analogous to the MRI of Balbus & Hawley (1991). However, owing to strong magnetic dif-

fusivity, and relatively weak kinematic viscosity and thermal diffusion such that Pr = 0.30 and

Pm≪ 1, the instabilities can either be stabilised or modified. Assuming Pr = 1 is an appropriate

approximation, section 4.4.4 predicts that purely magnetic instabilities may persist with vertical

lengthscales an order of magnitude larger (i.e., O(105m)–O(106m)); the magnitude of thermal

diffusion is sufficient to nullify pressure gradients that would otherwise stabilise the flows at these

vertical lengthscales.

The nonlinear hydrodynamically stable (Λ < 1) analysis of Chapter 5 gives insight into the

evolution of these magnetorotational instabilities. Table 2.1 yields M ∼ O(10−1) or smaller,

which, as we discovered, resulting instabilities drive very significant latitudinal redistribution of

the vorticity. This led to a significant change to the mean flow, not only reducing the anti-cyclonic
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shear of the U(y) = U0 tanh(y/L) profile, but driving the shear to become cyclonic for y ∈
[−L,L] which is about the minimum of fQ, y = 0.

We now discuss equatorial instabilities that may occur in Jupiter’s upper atmosphere. We

restrict our discussion of the ideal system to the more physically appropriate jet profile U(y) =

Λ0y−δy2/2, which was investigated in section 6.5, and illustrated in 1.2. However, it is important

to note that Jupiter’s prominent central equatorial jet is symmetric about the equator, and thus it is

more appropriate to model the immediately adjacent jets (so that they are sufficiently close to the

equator). It is also unlikely that there are regions of fQ < 0 in the equatorial atmosphere owing

to the structure of the prominent central equatorial jet; however,as we determined in Section 2.5,

in the magnetohydrodynamic regime a necessary condition for instability is that U ′f > 0 (which

is less stringent than fQ < 0).

The most unstable mode occurred at large vertical wavenumber and weak magnetic field

strength (relating once again to the “thin disc” and weak field assumptions of Balbus & Hawley,

1991). However, the parameters given in table 2.1 suggest the equatorial magnetic field strength

parameter is M = O(1)–O(10), for which purely magnetic instabilities may only occur with

K ≈ O(10−1). This yields a more physically appropriate finite vertical lengthscale H ≈ O(105).

Further to this, upon considering the effects of diffusion (in chapter 7) it is clear that the maxi-

mum growth rate no longer occurs at large vertical wavenumbers; all instabilities now occur with

vertical lengthscales H = O(104)–O(105) even in the absence of diffusion. Owing to the large

values of η in Jupiter’s upper atmosphere, it is unlikely that the purely magnetic instabilities will

persist. However, the magnetic diffusivity does vary by multiple orders of magnitude in the upper

atmosphere alone (i.e., η decreases from 1.0Rj to 0.95Rj), perhaps sufficiently so that magnetic

instabilities may still occur. If, instead, the magnitude of magnetic diffusivity makes the effective

magnetic field strength negligible or weak, inertial or magnetically modified inertial instabilities

may occur provided fQ < 0. The thesis does not contain analysis of the nonlinear evolution of

the flow on the equatorial β-plane. However, if the instabilities are inertially driven we may pre-

sume from the results of Chapter 5 and Griffiths (2003a,b), that the vorticity will be redistributed

poleward so that fQ is no longer sufficiently negative to drive instability and, in turn, reducing

the anti-cyclonic shear present in the jet. Chapter 5 suggests the evolution of purely magnetic

instabilities is less clear, but redistributes vorticity to the same effect.

8.3.3 Applications to the Upper Atmospheres of Hot Jupiters

Observations of Hot Jupiters imply the existence of strong equatorial jets, some of which flow

close to the speed of sound (Showman et al., 2013; Heng & Showman, 2015). This has important

implications as flows on Hot Jupiters are therefore likely to be compressible; hence, modelling

these flows as Boussinesq (and thus incompressible) is not ideal. However, the system is still less

idealised than other studies (e.g., the shallow water models of Showman & Polvani, 2011).

The equatorial jets are inferred to reach mid-latitudes upwards of 30◦; it is therefore justifiable

to model the flanks of these jets with a uniform shear flow U(y) = Λ0y at mid-latitudes as is the
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8.4 Further Work

case in Chapters 3 and 4. Owing to the strong shear and slow rotation, the Rossby numbers on

Hot Jupiters lie in the range 1 < Λ < 5; we must therefore consider the inertially unstable regime

(i.e., Λ > 1) at mid-latitudes.

The ideal linear analysis of Chapter 3 suggests the most unstable modes at mid-latitudes may

be classified as strongly inertial in nature (given Λ > 2) or magnetically modified inertial insta-

bilities (given 1 < Λ < 2). The first yields vertical lengthscales H = O(105m) and maximum

growth rates sh ≈
√
Λ0 − f0, while the second yields vertical lengthscales H = O(104m) and

maximum growth rates sm ≈ Λ0/2. Assuming the diffusive parameters take similar values to

those in Jupiter’s upper atmosphere, we discuss the regime Pr = 1 and Pm ≪ 1. Chapter 4

suggests that in this regime the magnetically modified inertial instabilities will no longer occur

owing to large values of η and will instead become hydrodynamic (inertial) in nature. As a result,

the instabilities are predicted to occur with scales heights H = O(106m).

In terms of the nonlinear analysis, Chapter 5 suggests the instabilities, if they occur, depend

crucially on the parameter M, which is expected to be O(10−3) – O(1). Given the large Rossby

numbers, magnetic field weaker than M = O(1) yields an evolution similar to the hydrodynamic

system. That is, the latitudinal shear of the profile is reduced and the vorticity (and therefore

momentum) is redistributed latitudinally. However, given M = O(1), changes to the mean flow

and vorticity are much more significant since less anti-cyclonic shear is required for instability to

occur.

We may also consider equatorial jets that are more confined to the equatorial atmosphere. In

Chapters 6 and 7 the magnetic parameter M is expected to be O(10−4) – O(1), where the large

interval arises from the sensitivity of the parameter M to the latitudinal shear Λ0. We restrict our

discussion of the ideal system to the more physically appropriate jet profile U(y) = Λ0y− δy2/2,

which was investigated in section 6.5. In this system, the most unstable mode occurred at large

vertical wavenumber and weak magnetic field strength (relating once again to the “thin disc” and

weak field assumptions of Balbus & Hawley, 1991). However, M is not necessarily small, so

purely magnetic instabilities may occur with K ≈ O(10−1). This yields vertical lengthscales

H ≈ O(107m)–O(108m) which are not physically appropriate; thus, instabilities are restricted

by the atmospheric layer, implying they may no longer occur for K < O(1) and by extension for

M > 1. Taking the diffusive parameters for ν, κ and η from Jupiter, we once again expect that

instabilities, if they occur, are dominated by inertial modes. However, chapter 7 implies that given

sufficiently large κ or small η, then purely magnetic instabilities may occur as well as magnetically

modified inertial modes.

8.4 Further Work

There are many possible extensions of the results in this thesis. We first discuss specific extensions

highly relevant to the thesis, followed by more broad generalisations.
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First, it is possible to extend the linear and nonlinear analysis of the hyperbolic shear flow in

Chapter 5 by considering varying constraints on the Prandtl numbers (e.g., Pr ̸= Pm ̸= 1) rather

than restricting to the case Pr = Pm = 1. This will allow us to consider ratios of Pr and Pm

that are similar in magnitude to those found in astrophysical bodies, including the solar tachocline

and the upper atmospheres of Jupiter and Hot Jupiters (found in table 2.1).

In Chapter 6 and Chapter 7 we considered the linear stability analysis of an eastward jet on

an equatorial β-plane in the presence of uniform vertical magnetic field strength and uniform

diffusion. It would be natural to consider the nonlinear evolution of this flow, as we did for the

hyperbolic shear layer on the f -plane in Chapter 5. The analysis would be a natural extension to

hydrodynamic studies of the nonlinear evolution of inertial instability on a an equatorial β-plane

(Griffiths, 2003a,b). Physically, the analysis would be very applicable to the strong equatorial jets

of Hot Jupiters.

There are also more broad extensions of this work. For example, one could consider a Coriolis

parameter f, parallel flow U and vertical magnetic field B all arbitrarily dependent on the latitude

y. This would be a natural extension to the hydrodynamic investigation of inertial instability made

by Griffiths (2008a), who considered a Coriolis parameter and parallel flow both dependent on

latitude. For example, in the absence of diffusion, analytical progress may be made by exploiting

the tendency of the modes to prefer infinitesimally small scales (i.e., infinite vertical wavenumber).

We may also consider asymmetric perturbations about the basic state, extending the hydro-

dynamic analysis of Dunkerton (1983) and Griffiths (2008a). As a result, more complex field

geometry may also be important (we found that the along-stream magnetic field in the basic state

had no dynamical effect owing to the lack of field line curvature). It would also be natural to

consider a non-magnetohydrostatic system, relating to many studies of geophysical flows (Clark

& Haynes, 1996; Kloosterziel et al., 2007a,b). This will also give insight into the validity of

the traditional approximation close to the equator, which has been discussed in application to the

Earth’s ocean by Kloosterziel et al. (2017). Finally, one could consider more complex flows that

depend on height as well as latitude, yielding both latitudinal and vertical shear. Indeed, we have

already seen a number of examples in Chapter 1, when discussing the hydrodynamic “diffusive

destabilisation” in McIntyre (1970) and the magnetohydrodynamic stability results of Menou et al.

(2004).
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Appendix A

Derivations, Waves, and Other Results

A.1 The Analogies of Centrifugal and Inertial Instability

We initially derive the condition for instability in an inviscid and axisymmetric rotating flow, via a

parcel argument in cylindrical geometry, with radial coordinate R and azimuthal coordinate θ. We

consider a basic flow V (R) in the azimuthal direction, where the pressure P opposes centrifugal

effects, such that ∂R P = V 2/R. Then, since ∂θ = 0 in an axisymmetric system, the azimuthal

momentum equation gives that

Duθ
Dt

+
uθuR
R

= − 1

R

∂p̃

∂θ
= 0, (A.1)

where p̃ is the perturbed value of the pressure, uR is radial velocity and uθ is the azimuthal velocity.

Here, we note that equation (A.1) corresponds to the conservation of angular momentum as it

allows us to derive that

Duθ
Dt

+
uθuR
R

=
∂uθ
∂t

+
uR
R

(
R
∂uθ
dR

+ uθ

)
=

1

R

(
∂(Ruθ)

∂t
+ uR

∂(Ruθ)

dR

)
=

1

R

(
D(Ruθ)

Dt

)
= 0.

(A.2)

We must also consider the radial momentum equation

DuR
Dt

= − ∂p̃

∂R
+
Ṽ 2

R
, (A.3)

where Ṽ is the perturbed value of the azimuthal velocity. Thus, we consider a parcel that is

displaced from R0 to R0 + δR(t) such that it experiences a radial acceleration, while assuming

that the parcel pressure gradient remains unchanged under the perturbation, so that

∂p̃

∂R
(R0 + δR) =

dP

dR
(R0 + δR). (A.4)

The final term of (A.2) allows us to derive that (RṼ )|R0+δR = (RV )|R0 for angular momentum

to be conserved. Hence, using the expression for the conservation of angular momentum and

equation (A.4), it follows that (A.3) becomes

δR̈ = − V 2

R

∣∣∣∣
R0+δR

+
(RṼ )2

R3

∣∣∣∣∣
R0+δR

≈ 1

R3
0

(
(RV )2|R0 − (RV )2|R0+δR

)
, (A.5)
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where we have approximatedR0+δR asR0 in the denominator of both terms. Hence, by approx-

imating the azimuthal flow V (R) at R0 + δR, via a Taylor expansion, equation (A.5) becomes

δR̈ = − 1

R3
0

d(RV )2

dR

∣∣∣∣
R0

δR. (A.6)

Thus, we write (A.6) as

δR̈+Φ0δR = 0, (A.7)

where Φ0 is (1.1) evaluated at R = R0 (after using V (R) = RΩ(R)), so that

Φ0 =
1

R3
0

d(RV )2

dR

∣∣∣∣
R0

= Φ(R0). (A.8)

Thus, the condition for inviscid axisymmetric instability is that Φ0 < 0.We note that the condition

(A.7) is valid at any R0, thus, it can be written in terms of R, giving (1.1).

It is useful to show that fQ < 0 is the Cartesian equivalent of the condition (1.1) since we will

be considering planetary atmospheres under a Cartesian coordinate system. Hence, we derive the

condition on fQ for instability in an inviscid and axisymmetric rotating flow with along-stream

coordinate x and cross-stream coordinate y. We consider a basic flow U(y) in the along-stream

direction, where the pressure P satisfies ∂yP = −fU,where f(y) is the Coriolis parameter. Then,

since ∂x = 0 in an axisymmetric system, the along-stream momentum equation gives

Du

Dt
− fv = −∂p̃

∂x
= 0 =⇒ D

Dt

(
u−

∫ y

0
f(y)dy

)
= 0, (A.9)

where u is the along-stream velocity, v is the cross-stream velocity and p̃ is the perturbed value of

the pressure. Equation (A.9) corresponds to the conservation of angular momentum. The cross-

stream momentum equation implies that

Dv

Dt
= −∂p̃

∂y
− fũ, (A.10)

where ũ is the perturbed value of the along-stream velocity. Thus, we consider a parcel that

is displaced from y0 to y0 + δy(t) such that it experiences a cross-stream acceleration, while

assuming that the parcel pressure gradient remains unchanged under the perturbation, so that

∂p̃

∂y
(y0 + δy) =

dP

dy
(y0 + δy). (A.11)

Considering the along-stream momentum equation (A.9) under the displacement allows us to de-

rive that ũ|y0+δy ≈ U |y0 + f |y0δy for angular momentum to be conserved. Hence, using the

expression for the conservation of angular momentum and equation (A.11), it follows that (A.10)

becomes

δÿ = f |y0+δy (U |y0+δy − ũ|y0+δy) = f |y0+δy (U |y0+δy − U |y0 − f |y0δy) . (A.12)

Hence, by approximating the zonal flow U(y) and Coriolis parameter f(y) at y = y0 + δy, via

Taylor expansions, it follows that (A.12) becomes

δÿ ≈ f |y0

(
dU

dy

∣∣∣∣
y0

− f |y0

)
δy, (A.13)
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A.2 Energetics

Thus, we write (A.13) as

δÿ + (fQ)0δy = 0, (A.14)

where

(fQ)0 = f |y0
(
f − dU

dy

)∣∣∣∣
y0

. (A.15)

Thus, the condition for inviscid axisymmetric instability is that (fQ)0 < 0, which is valid at

any y0, so the condition (A.14) can be written in terms of y. Hence, the condition on fQ is the

Cartesian equivalent of the Rayleigh criterion (1.1).

A.2 Energetics

In this section we consider the evolution of energy of the system governed by the equations (2.14)

to (2.18). To do this, it is convenient to write the momentum equations (2.14) to (2.17) in vector

notation, given by

Du

Dt
+ f × u = −1

ρ̄
∇p− gρ

ρ̄
ez + ν∇2u+

1

ρ̄
j×B, (A.16)

where f = (0, 0, f), p is the gas pressure and j = µ−1
0 ∇ × B is the current. We have not

absorbed the magnetic pressure into the pressure gradient for convenience. Note that the system is

axisymmetric and magnetohydrostatic so that all x derivatives are zero and the vertical momentum

equation reduces to the magnetohydrostatic balance.

A.2.1 Kinetic and Potential Energy

We begin by deriving the rate of change of the kinetic and potential energy of the system. To do

this, we first consider the rate of change of kinetic energy, given by

∂

∂t

(
1

2
ρ̄|u|2

)
= ρ̄u · ∂u

∂t
= −u · ∇

(
p+

1

2
ρ̄|u|2

)
− gρw + µu · ∇2u+ u · j×B, (A.17)

where we have used equation (A.16). The rotational term f × u and u × (∇× u) (which results

from the advection term) vanish owing to the dot product with u. In order to determine the rate of

change of potential energy we must introduce a t derivative of a function of ρ. Thus, by making

use of (2.17), we obtain

Dρ

Dt
+ w

dρ0(z)

dz
= κ∇2ρ =⇒ gρw =

g2

N2ρ̄

D

Dt

(
ρ2

2

)
− g2κ

ρ̄N2
ρ∇2ρ, (A.18)

using (2.13). Hence, by substituting (A.18) into (A.17) we obtain

∂

∂t

(
1

2
ρ̄|u|2 + 1

2

g2

ρ̄N2
ρ2
)

= −∇ ·
([
p+

1

2

g2

N2
ρ2 +

1

2
ρ̄|u|2

]
u

)
+
g2κ

ρ̄N2
ρ∇2ρ+ µu · ∇2u+ u · j×B, (A.19)
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after making use of a vector identity and the incompressibility condition. Integrating over a fixed

volume V with a stationary rigid boundary S, where u · n = 0, yields

d

dt

∫
V

(
1

2
ρ̄|u|2 + 1

2

g2

ρ̄N2
ρ2
)
dV =

g2κ

ρ̄N2

∫
V
ρ∇2ρ dV

+ µ

∫
V
u · ∇2u dV +

∫
V
u · j×B dV. (A.20)

We can make useful analytical progress from (A.20) by noting that∫
V
u · ∇2u dV = −

∫
V
u · ∇ × ω dV =

∫
V
∇ · (u× ω)− |ω|2 dV = −

∫
V
|ω|2 dV, (A.21)

via standard vector identities, the divergence theorem, u · n = 0 and where ω = ∇ × u is the

vorticity. We can also write ρ∇2ρ = ∇2(ρ2/2)− |∇ρ|2, so that we can write∫
V
ρ∇2ρ dV =

∫
V
∇ · ∇

(
1

2
ρ2
)
− |∇ρ|2 dV = −

∫
V
|∇ρ|2 dV, (A.22)

by the divergence theorem and that n · ∇(ρ2/2) is zero on the surface S, since there is no heat

flux.

Hence, by making use of (A.21) and (A.22), (A.20) becomes

d

dt

∫
V

(
1

2
ρ̄|u|2 + 1

2

g2

ρ̄N2
ρ2
)
dV = −µ

∫
V
|ω|2 dV

− g2κ

ρ̄N2

∫
V
|∇ρ|2 dV +

∫
V
u · j×B dV. (A.23)

Equation (A.23) governs the rate of change of kinetic and magnetic energy in the system. The

three terms on the right hand side of (A.23) denote the dissipation through the flow vorticity, the

loss in potential energy due to thermal diffusion distributing the flow density, and the rate of gain

of kinetic energy due to the rate of working of the Lorentz force, respectively.

A.2.2 Magnetic Energy

We now proceed to determine the rate of change of magnetic energy in the system. Indeed, the

rate of energy of magnetic field in a fixed volume V is given by

d

dt

(
1

2µ0

∫
V
|B|2dV

)
=

1

µ0

∫
V
B · ∂B

∂t
dV = − 1

µ0

∫
V
B · ∇ ×E dV, (A.24)

where we have used Faraday’s Law. To make useful analytical progress we note that by a standard

vector identity, followed by Ampere’s law and then Ohm’s law (as well as a second vector identity),

we obtain

B · ∇ ×E = ∇ · (E×B) +E · ∇ ×B

= ∇ · (E×B) + µ0E · j = ∇ · (E×B) +
µ0
σ
|j|2 + µ0u · (j×B). (A.25)

Hence, by substituting (A.25) into (A.24) and using the divergence theorem, it follows that

d

dt

(
1

2µ0

∫
V
|B|2dV

)
= − 1

σ

∫
V
|j|2dV −

∫
V
u · (j×B) dV −

∫
S
P · dS, (A.26)
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A.3 Hydrodynamic Equatorial Waves

where P = (E × B)/µ0 is the Poynting vector. The three terms on the right hand side denote,

respectively, the dissipation through electric currents (Joule dissipation), the rate of loss of mag-

netic energy due to the rate of working of the Lorentz force, and the rate at which magnetic energy

flows out through the surface S.

A.2.3 Total Energy

Here we derive the rate of change of the total energy E in the system. Indeed, by combining the

expressions (A.23) and (A.26) for the rate of change of kinetic, potential and magnetic energies,

we obtain the rate of change of total energy, given by

dE

dt
=

d

dt

∫
V

(
1

2
ρ̄|u|2 + 1

2

g2

ρ̄N2
ρ2 +

1

2µ0
|B|2

)
dV = −µ

∫
V
|ω|2 dV

− g2κ

ρ̄N2

∫
V
|∇ρ|2 dV − 1

σ

∫
V
|j|2dV −

∫
S
P · dS. (A.27)

Thus, the magnetic energy lost owing to the rate of working of the Lorentz force in (A.26) is

balanced by the rate of kinetic energy gained from the working of the Lorentz force on the flow in

(A.23). Note that since the system is axisymmetric, the volume and surface integrals in equation

(A.27) can be equivalently written as surface and line integrals, respectively.

A.3 Hydrodynamic Equatorial Waves

In Chapter 6 we discussed the dynamical balances in various limits of the system, focusing on

the equatorial instabilities present. Here we discusses the dynamical balances of hydrodynamic

equatorial gravity and inertia-gravity waves.

A.3.1 Equatorial Gravity Waves

We now consider the dynamical balance of equatorial gravity waves, which occur in the small

K limit. Thus, assuming that K ≪ 1, it follows from (6.41) that u ∼ v and that the frequency

ω̂ = −iS ∼ 1/
√
K, so that (6.41) reduces to

Su− Y√
K
v = 0, Sv +

Y√
K
u =

K−1

S
(Y 2 − 1)v, (A.28)

since |Y |/
√
K ≫ 1. To illustrate the dynamical balance (A.28) we plot the terms of the horizontal

momentum equations in figure A.1 forK = 0.1. The equator, the central latitudeC (given in equa-

tion (6.5)) and latitude C = 1 (which is the minimum of the absolute vorticity fQ = βy(βy−Λ0)

in nondimensional form) are represented by a dashed line, dotted line and crosses respectively. We

shall retain this convention for all hydrodynamic and magnetohydrodynamic figures. It is impor-

tant to note that the central latitude of every hydrodynamic mode coincides with the minimum of

fQ (C = 1).
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Figure A.1: The dynamical balance of (A.28) plotted for K = 0.1, illustrating a hydrodynamic
equatorial gravity wave with frequency ω̂ = 3.0. The mode has central latitude C = 1 and length-
scale L̂ = 3.1623. Plot (a) shows the along-stream acceleration. Plot (b) shows the combination
of the advection and Coriolis terms. Plots (c), (d), and (e) show the cross-stream acceleration,
Coriolis force and pressure gradient.

A.3.2 Equatorial Inertia-gravity Waves

We next consider the dynamical balance of equatorial inertia-gravity waves, which occur when

K < 1 andK = O(1).We retain the hydrodynamic balance (6.41) with ω̂2 = −S2 = −1+1/K;

however, as K → 1− there is a special case as we approach neutral stability (S2 → 0−). Thus,

supposing S ≪ 1, it follows that (6.41) reduces to

Su− (Y − 1) v = 0, (Y + 1)u =
1

S
(Y 2 − 1)v, (A.29)

where u ∼ v/S. Hence, as we approach neutral stability, there is geostrophic balance in the cross-

stream direction as there is no longer any cross-stream acceleration. The two equations in (A.29)

are equivalent, so one must retain the second order term Sv along with the factors of K to yield

the balance (6.41) and the frequency squared ω̂2 = −S2 = 1/K−1 ≪ 1. To illustrate the neutral

stability limit as well as typical inertia-gravity waves we once again plot the horizontal momentum

equations in figure A.2 forK = 0.75, which illustrates the dynamical balance of typical equatorial

inertial waves with K = O(1). However, we can also compare figure A.2 to figure A.1, where it

is evident that as K increases, we approach geostrophic balance in the cross-stream direction, as

predicted by (A.29). The frequency of the wave also decreases as K increases.
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A.4 Magnetohydrodynamic Equatorial Waves

Figure A.2: The dynamical balance of (A.29) plotted for K = 0.75, illustrating a hydrodynamic
equatorial inertia-gravity wave with frequency ω̂ = 0.5774. The mode has central latitude C = 1

and lengthscale L̂ = 1.1547. Plot (a) shows the along-stream acceleration. Plot (b) shows the
combination of the advection and Coriolis terms. Plots (c), (d), and (e) show the cross-stream
acceleration, Coriolis force and pressure gradient.

A.4 Magnetohydrodynamic Equatorial Waves

In Chapter 6 we discussed the dynamical balances in various limits of the system, focusing on the

magnetohydrodynamic equatorial instabilities present. Here we discusses the dynamical balance

of equatorial magnetic, Alfvén, and magnetically modified inertia-gravity waves.

A.4.1 Magnetohydrodynamic Balances

We now consider the dynamical balances of the magnetohydrodynamic regime, where we shall

systematically categorise the various limiting cases as seen in figure 6.2. First, we will address

equatorial waves, including magnetic and magnetically modified waves. Secondly, we will address

the magnetically modified equatorial instabilities as well as purely magnetic instabilities in the

weak and strong magnetic field regimes.

A.4.2 Magnetically Modified Equatorial Inertia-gravity Waves

We first discuss magnetically modified equatorial waves, which occur in the hydrodynamically

stable regime (K < 1) with K = O(1) in the limit of weak magnetic field (M ≪ 1). To isolate

the hydrodynamic mode we assume that S = O(1), which is implied by the leading order term

of the hydrodynamic expansion (6.34). This yields C = 1 and L̂ = 1/
√
K at leading order.
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These assumptions allow us to deduce from equations (6.38) and (6.39) that u ∼ θ ∼ v and

by ∼ bx ∼Mv. Thus, equations (6.38) and (6.39) reduce to

Su−
(

Y√
K

− 1

)
v = 0, Sv +

(
Y√
K

+ 1

)
u =

K−1

S
(Y 2 − 1)v, (A.30a)

Sbx = 2by + iKMu, Sby = iKMv, (A.30b)

which represent the hydrodynamic dynamical balance (6.41). However, the weak magnetic field

expansion of the hydrodynamic mode (6.34) implies that weak field increases the frequency of

the hydrodynamically stable system. Hence, to categorise the stabilising mechanism of magnetic

field, we must include the second order terms in (A.30). Note that, if K → 0, the balance would

be that of equatorial gravity waves at leading order. We also note that the balance (A.30) describes

hydrodynamic unstable modes (K < 1) in the limit of weak magnetic field (M ≪ 1).

Now, to address the stabilising mechanism, we must evaluate the Lorentz forces, F, and the

correction to the pressure gradient in terms of v, using the leading order hydrodynamic frequency

squared ω̂2 = −S2 = −1 + 1/K, and the balance (6.41). First, it follows from the cross-stream

induction equation in (6.39) that the cross-stream Lorentz force iMKby = −M2K2v/S, which

is always stabilising as it always acts to increase the cross-stream acceleration when S2 < 0.

Similarly, we can deduce that the O(M2) contribution from the cross-stream pressure gradient

takes the same sign as the leading order term and therefore increases the frequency of the system.

The along-stream Lorentz force can be written as

iKMbx =
iKM

S
(2by + iKMu) = −K

2M2

S2

(
2 +

1

Y/
√
K + 1

(
(Y 2 − 1)/K − S2

))
v,

(A.31)

where, if we use the leading order expansion for the square of the hydrodynamic growth rate,

S2 = 1− 1/K, it follows that

iKMbx = −K
2M2

S2

(
1 +

Y√
K

)
v. (A.32)

Thus, the along-stream Lorentz force (A.32) acts against the term (Y/
√
K − 1)v (resulting from

the Coriolis and advection terms) when −
√
K < Y <

√
K and acts with the term otherwise.

Hence, to determine whether the sum of second order contributions from F, the Lorentz force,

and the pressure gradient increase or decrease the frequency we must combine the momentum

equations (including their second order corrections) to categorise the role of weak magnetic field.

Thus, we expand F as

F ≈ 1 +
Y√
K

+
K2M2

S2

(
1 +

Y

4
√
K

)
, (A.33)

where, by considering all O(M2) terms in the along-stream momentum equation in (6.38), we

obtain a second order correction to the along-stream acceleration, given by

Su−
(

Y√
K

− 1

)
v = − 3K2M2

4(1− 1/K)

Y√
K
v. (A.34)

280



A.4 Magnetohydrodynamic Equatorial Waves

Hence, we can substitute (A.34) into the cross-stream momentum equation via Fu and equate

O(M2) terms to obtain the correction to the cross-stream acceleration, namely

(Sv)correction = − 3K

2S3
. (A.35)

Thus, considering stable modes so that S2 < 0, it follows that the magnetic correction to the

hydrodynamic system (6.41) increases the frequency, since the combination of theM2 corrections

from F, the pressure gradient and cross-stream Lorentz force always act to increase the cross-

stream acceleration. We can also note that the correction (A.35) is valid in the hydrodynamically

unstable regime (S2 > 0); however, we will discuss the instability in a later subsection.

To confirm the dynamical balance and determine the role of each term, we plot the along-

stream momentum, cross-stream momentum and the component of the along-stream induction

equations in figure A.3 with K = 0.75 and M = 0.3 (so that the effect of magnetic field can be

seen). Once again, recall that the equator, the hydrodynamic central latitude and the minimum of

fQ are represented by a dashed line, a dotted line and a crossed line, respectively. In contrast to

the hydrodynamic case, we see that the central latitude of the mode no longer necessarily occurs

at the minimum of fQ (C = 1). In figure A.3 we see that the along-stream Lorentz force acts

against −(F − 2)v (the Coriolis and advection term) when −
√
K < Y <

√
K and acts with

−(F − 2)v otherwise, as predicted. We can also see that the cross-stream Lorentz force acts to

drive the cross-stream acceleration and therefore increasing the frequency. This is indeed the case,

which can be seen when comparing the hydrodynamic frequency ω̂ = 0.5774 to the frequency of

figure A.3 with M = 0.3, which is ω̂ = 0.775.

A.4.3 Magnetic Equatorial Waves

We now address the hydrodynamically unstable regime (K > 1), where the introduction of weak

magnetic field allows for the existence of a magnetic equatorial wave. To isolate the magnetic

mode we suppose S ≪ 1 with M ≪ 1 and K = O(1). These assumptions allows us to deduce

from equations (6.38) and (6.39) that u ∼ bx ∼ v/M and by ∼ v. The Coriolis term F, central

latitude C and lengthscale L̂ do not simplify in this case since S ∼ M, as implied by the weak

magnetic field expansion (6.35); note that we do not assume this at onset. In this limit equations

(6.38) and (6.39) reduce to

Su−(F − 2) v = iKMbx, Fu =
K−1C−1/2

S
(Y 2−1)v, Sbx = 2by+iKMu, Sby = iKMv,

(A.36)

where we have evaluated the pressure gradient in terms of v via the thermodynamic and incom-

pressibility equation in (6.38). The equations of (A.36) can be combined to give the growth rate

squared S2 = K8/3M2/(1 −K2/3) which is consistent with the weak magnetic field expansion

(6.35) with n = 0. Thus, in the hydrodynamically unstable regime with K = O(1) and M ≪ 1

we attain geostrophic balance in the cross-stream direction, while retaining all other terms. Thus,

to confirm the dynamical balance and determine the role of each term, we plot the along-stream

momentum, cross-stream momentum and the along-stream induction equations in figure A.4.

281



Figure A.3: The dynamical balance of (A.30) plotted for K = 0.75 and M = 0.3, illustrating
a magnetically modified equatorial wave in the hydrodynamically stable regime (K < 1) with
frequency ω̂ = 0.775. The mode has central latitude C = 0.8853 and lengthscale L̂ = 1.1201.

Plots (a), (b) and (c) show the along-stream acceleration, advection and Coriolis terms, and
Lorentz force. Plots (d), (e), (f) and (g) show the cross-stream acceleration, Coriolis force,
pressure gradient and Lorentz force. Plots (h), (i) and (j) show the along-stream field generation,
advection and tension terms.

Figure A.4: The dynamical balance of (A.36) plotted for K = 1.5 and M = 0.2, illustrating a
magnetohydrodynamic equatorial wave in the hydrodynamically unstable regime (K > 1) with
frequency ω̂ = 0.5101. The mode has central latitude C = 0.6541 and lengthscale L̂ = 0.7343.

Plots (a), (b) and (c) show the along-stream acceleration, advection and Coriolis terms, and
Lorentz force. Plots (d), (e), (f) and (g) show the cross-stream acceleration, Coriolis force,
pressure gradient and Lorentz force. Plots (h), (i) and (j) show the along-stream field generation,
advection and tension terms.
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A.4 Magnetohydrodynamic Equatorial Waves

Figure A.5: The dynamical balance of (A.37) plotted for K = 1.0 and M = 15, illustrating
an equatorial Alfvénic wave with frequency ω̂ = 15.2026. The mode has central latitude C =

0.0265 and lengthscale L̂ = 0.4034. Plots (a), (b) and (c) show the along-stream acceleration,
advection and Coriolis terms, and Lorentz force. Plots (d), (e), (f) and (g) show the cross-stream
acceleration, Coriolis force, pressure gradient and Lorentz force. Plots (h), (i) and (j) show the
along-stream field generation, advection and tension terms.

A.4.4 Equatorial Alfvén Waves

We now address the stable mode of the large M limit, where we expect Alfvénic behaviour. To

isolate the Alfvénic mode we suppose S2 → −∞ with M → ∞ and K = O(1). These assump-

tions allows us to deduce from equations (6.38) and (6.39) that S2 ∼ −M2, where, as a result, C

and F are small, with u ∼ bx ∼ by ∼ v and θ ∼ v/S. Hence, equations (6.38) and (6.39) reduce

to

Su = iKMbx, Sv = iKMby, Sbx = iKMu, Sby = iKMv, (A.37)

which combine to give S2 = −K2M2, which is consistent with Alfvén waves. To illustrate the

dynamical balance (A.37) we plot the along-stream momentum, cross-stream momentum and the

components of along-stream induction equations in figure A.5. Clearly, the momentum equations

are in Alfvénic balance, while the along-stream field is driven primarily by the magnetic stretching

generated by the along-stream velocity. The figure shows that the central latitude and the length-

scale of the mode are very small, which is consistent with (6.3), where the lengthscale and the

central latitude are O(M− 1
3 ) and O(M− 4

3 ), respectively. Hence, the Alfvénic mode is locked

around the equator where the perturbed along-stream velocity takes the form u ∝ Y exp(−Y 2).
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BOUSSINESQ, J. (1903). Théorie analytique de la chaleur: mise en harmonie avec la thermody-
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