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Abstract

As the size of software and system models grows, scalability issues in the current
generation of model management languages (e.g. transformation, validation) and their
supporting tooling become more prominent. With the growing popularity of MDE in larger
projects, the efficient management and processing of large models have become critical
considerations. To address this challenge, execution engines of model management
programs need to become more efficient in their use of system resources. Effective
resource management is essential not only for minimizing execution costs but also for
optimizing resource usage, particularly in scenarios where resources are billed based
on usage patterns. This thesis addresses this challenge by presenting an approach
to enhance the efficiency of model management programs, which play a pivotal role
in querying and manipulating models. This approach focuses on enabling execution
engines to load only the necessary parts of models, minimizing the overhead associated
with loading unnecessary model elements into memory. Through the utilization of
in-advance knowledge obtained from static analysis of model management programs,
execution engines can identify, load, and process only the model elements essential
for execution. Furthermore, the approach ensures that elements are disposed of from
memory when no longer needed, optimizing both memory utilization and processing time.
Experimental evaluations demonstrate that our approach empowers model management
programs to process larger models faster with a reduced memory footprint compared to
current state-of-the-art approaches.
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1 Introduction

Technology is crucial in shaping various aspects of human life in the modern era. A
key driver of this technological evolution is software, which profoundly influences how
individuals interact, work, and devise solutions. Software development is a complex
process of instructing computers to perform specific tasks in alignment with human
intentions. This involves the adept use of programming languages, frameworks, and
tools to translate complex ideas into executable code.

As software projects expand in scope and complexity, ensuring effective communi-
cation among developers becomes increasingly challenging. This growing complexity
underscores the importance of modelling, a fundamental technique that facilitates the
comprehensive design, analysis, and documentation of various aspects of software
systems.

Modelling operates at a higher level of abstraction, offering developers a powerful tool
to conceptualise the intricate structures and behaviours of software systems. Software
models can take the form of visual, textual, mathematical, or other representations.
With modelling, developers can create diagrams and representations that provide a
clear roadmap for the development process. These models help to ensure that all team
members share a common understanding of the system’s architecture, functionality, and
interactions. They serve as a visual language that bridges the gap between complex
technical details and the broader project goals.

This approach to software development simplifies problem-solving, reduces errors,
and enhances collaboration. It enables teams to spot potential issues early in the
development cycle, saving time and resources that might be wasted on correcting
problems later.

In the domain of software development, modern applications can be highly complex.
Attempting to create a comprehensive model that accounts for every single detail would
not only be impractical but could also hinder the development process by overloading
it with unnecessary information. Therefore, developers employ a thoughtful approach,
identifying the key components, interactions, and essential functionalities to achieve the
project’s goals. By concentrating their modelling efforts on these crucial elements, they
can create a more focused and useful representation of the system.

This selective modelling strategy not only refines the development process but also
enhances the clarity of the model itself. It allows teams to prioritise what truly matters,
making it easier to manage, analyse, and communicate about the system. It is akin to
zooming in on the critical details of a complex map rather than attempting to absorb the
entire landscape at once.
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Traditionally, models have held a crucial role in the documentation of systems. How-
ever, a paradigm shift known as Model-Driven Engineering (MDE) has emerged in
Computer Science. MDE transformed the software development process by making
models its central focus. This transition from code-centric approaches to model-centric
methodologies introduces a new level of precision and efficiency into software develop-
ment. Through these models, which comprehensively encapsulate a system’s structure
and behaviour, MDE greatly enhances the aspects of design, communication, and
collaboration within development teams. One of the core concepts in MDE is the use of
model transformation programs. These programs take input from one or more models
and produce output in the form of models or code. Model transformations enable the
automatic or semi-automatic generation of code, documentation, or other artefacts from
the models. This automation helps reduce manual errors and improve efficiency.

As software systems grow in complexity, the adoption of MDE becomes increasingly
attractive for its ability to handle intricacies through modularisation, clear separation
of concerns, and effective visualisation techniques. However, this shift toward MDE,
especially in large-scale projects, brings scalability challenges to the forefront. Storing,
loading, querying, and transforming extensive models can place considerable pressure
on existing tools and practices.

Given MDE’s rising popularity in larger projects, efficiently managing and processing
large models has become a critical concern. To address this, model management
programs, which are designed to query and manipulate models, are needed to execute
efficiently by their execution engine. These programs must be adept at handling the
demands of extensive models in terms of both memory utilisation and processing time.
Effective resource management becomes crucial, not only to reduce execution costs
but also to optimise resource usage, particularly when resources are charged based on
usage patterns.

Indeed, the expanding size of models presents a substantial challenge for existing
technologies and tools within the field of MDE, such as the Eclipse Modeling Framework
(EMF). These tools, while powerful, are now being pushed to their limits due to how
they interact with and manipulate models. In simple terms, as projects get larger and
more complex, it is becoming harder for existing tools to handle the size of the models
efficiently. This challenge calls for finding new ways to work with these large models
while making the best use of available resources.

Imagine a program designed to manage models, which involves tasks like loading
and processing a model. When it comes to loading a model stored as a file, the program
faces a specific challenge.

For file-based models (the models stored in the file(s)), since the model management
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program does not know beforehand which parts of the model it will need, it must load
the entire model into memory. This means all the model elements will occupy memory
space during the whole execution, even when some of them might not be needed at
all. This situation leads to unnecessary memory consumption, which is inefficient and
wasteful. Moreover, keeping necessary information in memory even after the program
no longer requires it makes this memory waste even worse.

Alternatively, suppose the model is stored in a database. In that case, the execution
engine of a model management program can retrieve specific parts of the model
progressively by issuing queries to the database as needed during execution. There are
two approaches to consider in this situation: greedily fetching all features in advance
or retrieving them lazily upon demand. However, both of these strategies have their
drawbacks.

The first approach involves fetching all attributes and references of a model element
(its properties) from the database upfront. While this prioritises faster execution times, it
often leads to inefficient memory usage because many of these fetched properties may
never be used by the execution engine, resulting in unnecessary memory wastage.

On the other hand, the lazy approach involves fetching properties on-demand, which
can save memory since only the required properties are retrieved. However, this strategy
often requires multiple roundtrips to the database, as each model element is fetched
when needed. While this conserves memory, the frequent roundtrips can negatively
impact performance, leading to slower execution times.

This thesis introduces an approach that aims to enable execution engines of model
management programs to load only parts of models that are required for their execution
and minimise the overhead of loading unnecessary parts in memory. In this work,
by using in-advance knowledge about the model management programs provided by
static analysis, execution engines are able to identify, load and process model elements
of interest only. In addition, instead of keeping elements in memory until the end of
execution, the elements will be disposed of from memory when they are no longer
needed by the model management program.

Therefore, this thesis proposes three main components for the Epsilon framework
(Introduced in Chapter 2), which improve the performance of execution engines. First,
we contribute to enhancing a static analyser to enhance our understanding of the
program under study. We introduce type inference and type-checking features to
Epsilon languages, making the static analyser a fundamental component upon which
the subsequent contributions are built. Also, this thesis centres on optimising memory
usage by addressing the overhead of loading unnecessary data. While partial loading of
file-based models has been explored [51], we direct our efforts toward the partial loading
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of large models stored in databases. Our innovative approach relies on insights from
the static analysis of model management programs, resulting in significant reductions in
both time and memory requirements.

Finally, the final part of our work focuses on enhancing the efficiency of model
validation for models serialised in the XMI format (introduced in Chapter 2). We introduce
a novel approach that uses static analysis to divide model validation constraints into
manageable sub-groups. Combined with existing XMI partial loading capabilities, our
approach enables the efficient validation of larger XMI-based models on a single
machine, with the potential for further improvements.

1.1 Research Contributions

The main contributions of this research revolve around optimisation and scalability.
These have been achieved through two key mechanisms: first, by selectively loading
essential information into memory and offering partial loading functionality, thereby
optimising memory usage within the execution engine. Second, by introducing par-
titioning, the execution engine efficiently manages memory during runtime, retaining
information while it is actively referenced by the program and releasing it when it is no
longer required. While this section provides a high-level abstract overview of the thesis
contributions, in-depth information, including the specific technologies utilised (such as
targeted frameworks, model formats, and database types), is extensively discussed in
the Background chapter (Chapter 2).

In the initial part of this thesis, our primary objective is to enhance the capabilities of
the static analyser. To achieve this, we incorporate features like type inference and type
checking, which allow us to gain a deeper understanding of the program’s behaviour
before execution. This not only helps us identify and report compile-time errors to
support developers but also lays the foundation for two essential functionalities: partial
loading and partitioning Furthermore, we introduce an algorithm that provides a strategy
for applying the static analyser in our research. We demonstrate how to effectively
use the valuable information obtained from the static analyser in a format that can be
interpreted by the execution engine.

Since partial loading sets the stage for partitioning, we begin with an exploration of
partial loading in Chapter 5, followed by a detailed discussion of partitioning in Chapter 6.

Utilising the insights obtained from the static analyser’s output, we devised a novel
method for selectively loading models from the graph-based database (Neo4j) as one of
the contributions of this thesis. Our approach includes the proposal of an algorithm for
efficiently storing models in a graph-based database, along with an algorithmic mapping
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of model elements to graph nodes and relations. Additionally, we introduced an algo-
rithm to automatically generate queries based on the static analyser’s output, initiating
the loading process by generating a number of queries. This approach represents
a balanced compromise between the traditional lazy loading and resource-intensive
greedy loading strategies. Our experimental results show that this approach, which con-
siders the program’s analysis, can significantly reduce the time and memory resources
required to execute model management programs when dealing with models stored in a
database.

In our final contribution, we centred our attention on the partitioning feature. We
introduced an algorithm for partitioning model validation programs and loading models
selectively based on the data necessary for executing specific parts of the program. To
validate the effectiveness of this approach, we implemented a prototype, enabling us to
gather results through a comparative analysis with other similar methods.

1.2 Thesis Structure

This thesis is structured as follows:

• Chapter 2: This chapter lays the foundations for our research by providing es-
sential background information on the concepts underpinning our study. It also
includes a comprehensive review of relevant works in the field.

• Chapter 3: This chapter provides an analysis of the problem and outlines the
research framework, including the hypothesis, objectives, and scope.

• Chapter 4: In this chapter, we delve into the world of static model management
analysis, using a practical example to illustrate its principles. This chapter also
discusses the enhancements made to the static analyser as a component of this
research.

• Chapter 5: This chapter represents the first contribution of this thesis. It explains
the process of storing a model within a graph database and the retrieval of
necessary information from the database. This approach optimises memory
usage, contributing significantly to the efficiency of model management.

• Chapter 6: This chapter presents the second contribution of this thesis. The key
strategy is to organise validation programs into groups of constraints and loading
models accordingly. By discarding unneeded information, this method ensures the
effective execution of various sections of validation programs.
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• Chapter 7: This chapter provides an overview of thesis contributions and suggests
future research directions.
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2 Background

This chapter presents the foundation for this research, including fundamental concepts
that are necessary to comprehend the thesis and a review of relevant literature. Sec-
tion 2.1 introduces key concepts of Model-Driven Engineering, including the notions of
model, metamodel, and abstraction layers. Section 2.2 explores the Eclipse Modeling
Framework. Section 2.3 introduces the model management tasks, and Section 2.4
provides an overview of the Epsilon framework, highlighting two languages within this
framework (EOL and EVL). Later in this chapter, Section 2.5 discusses various model
persistence formats, while Section 2.6 provides an overview of scalability challenges in
MDE and discusses related works focused on achieving scalable MDE solutions. Finally,
Section 2.7 summarizes the chapter.

2.1 Model-driven Engineering

Models play an essential role in the software development process. In software projects,
gaining a clear understanding of real-world problems is crucial for devising more effective
solutions. Consequently, the information models that illustrate the different information
elements in a specific business scenario and their interconnections were created [15].
However, this process gives rise to some challenges.

Developers in the Great Corporate Data Modeling Fiasco [15] of the 1980s and
1990s attempted to capture all the information used in an organization, but modelling the
whole of complex systems that contain all of the information and the relation between
them, made the modelling activity very complicated [15]. In addition, keeping the
models up to date was impossible because of the large number of models and their
sizes. Hence, the solution that they considered for this problem was modelling the part
of the software that is more important and ignoring the details. So, the definition of
models can be considered as a model is “an overview of fact which is shared between
members of teams to reach the same understanding from a concept and make the
software development process easier” [34]. In fact, models never show the entire reality.

Models are a part of the documentation and design phases in traditional software
engineering. However, they are considered the central artefacts in Model-Driven Soft-
ware Engineering (MDE). MDE is a methodology that elevates models to first-class
artefacts of the software development process to enhance productivity [28, 26], main-
tainability, consistency, and traceability [39]. The models are used for generating code
in a (semi)automatic way by programs, which are called model transformation programs.
Model transformation programs are known as the heart and soul of MDE [43].

Whereas models are defined as a level of the abstract of a phenomenon in the
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real world, a metamodel is at a higher abstraction level, representing the modelling
language [8]. It specifies the elements of models and the way they can relate to each
other. In other words, models are instances of their metamodels, and every model
should conform to its metamodel.

Figure 2.1 shows the hierarchy of model abstraction. A real world object such as
a book is shown in the M0 layer. The object is represented by a model as it is shown
at M1. In this example, a book is described by its title attribute. This model conforms
to a metamodel in M2 which outlines the concepts used at M1 (Class, Attribute and
Instance). Finally, at level M3, the meta-metamodel is shown, which establishes the
concepts utilized at M2. In this case, the entire set simplifies into a single Class concept,
as illustrated in the example. M3 represents the highest level required for metamodeling
in this context, as it would always include only the Class concept.

Book

title: MDE in practice

Class Attribute

M0
Real world Object

M1
Model

M2
Metamodel

instanceOf

instanceOf instanceOf

M3
Meta-metamodel

Class

instanceOf

instanceOfinstanceOf

Figure 2.1: Abstraction layers (Inspired from [8])
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2.2 Eclipse Modeling Framework

There are some tools which are used in MDE for different purposes. MagicDraw [36] is
a visual modelling tool for business analysis, software analysis, and programming. IBM
Rhapsody [25] is a group of products for modelling and design activities which enables
the user to manage the complexity of system development, and MATLAB Simulink [44] is
another tool that is a MATLAB-based graphical programming environment for modelling,
simulating and analysing dynamical systems.

Since all these tools operate with models, it is essential to establish a common struc-
ture for these artefacts to ensure smooth integration. Additionally, having standardized
facilities and Application Programming Interfaces (APIs) for interacting with models
becomes crucial for enhancing efficiency and reducing complexities in the development
process. A modelling framework provides precisely these functionalities, serving as a
unifying platform for various tools to work with models at a higher level of abstraction.

The Eclipse Modeling Framework (EMF) [21] is an example of such a modelling
framework. It is widely adopted in the field of Model-Driven Engineering (MDE) and
plays a vital role in the development of various software tools and applications. This
open-source ecosystem is purpose-built for domain-specific language engineering,
editor development, model validation, transformation, and beyond. Using the frame-
work’s efficient reflective API, developers can interact with EMF objects and generically
manipulate them.

The core of the Eclipse Modeling Framework is a modelling framework and code
generation facility for building tools and other applications based on a structured data
model. Key to this framework is Ecore, a metamodeling language that enables precise
definition and specification of domain-specific models.

EMF also includes persistence support with default XMI serialization. XMI (XML
Metadata Interchange) is an Object Management Group standard for model persistence.
XMI is a common format for importing or exporting models in UML1 [48] tools, as well
as, it is a native format for model persistence in EMF. XMI is a text-based file format that
employs XML to describe the structure, relations, attributes, and additional metadata of
model elements.

Figure 2.2 shows an abstract view of Ecore’s component hierarchy which is inspired
by Java. The main components that we need to know in this work are listed below:

• EObject is the root element of ecore which is implemented by all model elements
in EMF instances.

1The OMG’s Unified Modeling Language help to specify, visualize, and document models of software
systems, including their structure and design, in a way that meets all of these requirements
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• EClassifier is a generic concept representing all types of model elements. The
model element can be EClass or EDataType.

• EClass represents a class in the model and can have structural features (at-
tributes and references). EAttributes define the data properties of the class, while
EReferences define the associations or relationships between different classes.

• EDatatype reperesents data type that can be the type of EAttribute, EReference or
type of any other features and elements. Examples of EDataTypes include primitive
types (e.g., int, boolean) and user-defined data types (e.g., enumerations).

EObject

EModelElement

ENamedElementEFactory EAnnotation

EClassifier EEnumLiteral ETypedElement

EClass EDataType EStructuralFeature EOperation EParameter

EEnum EAttribute EReference

EPackage

Figure 2.2: Ecore’s components hierarchy [16]

2.3 Model Management

As discussed, models are the main artefacts in MDE which are used in the development
process. Model management refers to a set of activities and techniques that involve
creating, modifying, analyzing, and manipulating models to achieve specific goals
during the software development process. Model management operations are defined
at metamodel level of abstraction and are applied on models [42].

2.3.1 Model Transformation

Model transformation involves defining transformation rules or mappings that specify how
elements in the source model should be transformed into elements in the target model.
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The target model can be in the same abstraction level (model to model transformation)
or a different abstraction level (model to code transformation). A model to model
transformation program takes one or more models as input (source model) and produces
one or more models as output (target model). It is useful for converting models from
one modelling language to another.

Transformation can be performed automatically using transformation scripts that are
written in transformation languages. There are three kinds of transformation languages.

• Declarative Model Transformation Languages: They are programming lan-
guages in which (ideally) a program specifies what is to be done rather than how
to do it. The emphasis is on providing a high-level description of the problem
domain, making the code more abstract and concise. QVT (Query/View/Transfor-
mation)2 [38] is an example of declarative languages.

• Imperative Model Transformation Languages: This type of language program-
ming is where the programmer explicitly specifies the sequence of operations or
steps the computer must follow to achieve a particular outcome. In imperative
languages, the focus is on describing the detailed algorithm and control flow the
computer should execute to perform a task. Examples of imperative languages
include ETL (Epsilon Transformation Language) [31] and Henshin [23].

• Hybrid Model Transformation Languages: Hybrid languages provide users
with the advantage of higher-level constructs found in declarative languages while
retaining the flexibility inherent in the imperative style. ATL (Atlas Transformation
Language)3 [27] is considered as a hybrid language.

2.3.2 Model Validation

In MDE, model validation is the process of checking and ensuring that models adhere
to specific constraints, rules, or requirements. Model validation aims to identify potential
inconsistencies or errors in the model, ensuring that it accurately represents the intended
system or domain. Model validation also helps to maintain the models’ quality and
correctness, as they serve as the basis for generating code or other artefacts.

Metamodeling languages typically support only basic modelling constraints, such as
cardinality constraints that define the possible relationships between different modelling
elements. As a result, they may not capture all the complexities required in a complete
modelling language definition. For example, an instance of a model, which conforms

2A family of model transformation languages standardized by the Object Management Group (OMG)
3A language provided by the Eclipse Modeling Framework (EMF) for defining model-to-model transfor-

mations
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to a metamodel, cannot have its attribute values checked to ensure they fall within a
specific range using the metamodel structure alone.

To overcome this limitation, the model validation languages are often used in conjunc-
tion with metamodels. Object Constraint Language (OCL) [41] is a validation language
which provides a set of textual rules that models conforming to a specific metamodel
must adhere to. These rules are referred to as well-formedness rules, as they define
the set of valid, well-formed models that can be specified using that particular modelling
language.

By using OCL, additional constraints and rules beyond what the metamodel can
express directly can be imposed on the models, allowing for more precise and com-
prehensive specifications of the modelling language’s requirements. Epsilon Validation
Language (EVL) [33] is another validation language which is discussed in Section 2.4.2.

2.4 Epsilon

Epsilon [17] provides a collection of languages and tools designed to automate typical
model-based software engineering tasks. As it is shown in Figure 2.3, at the core of
Epsilon is the Epsilon Object Language (EOL) [30], a scripting language with the model
querying capabilities of OCL (Object Constraint Language). Building upon EOL, Epsilon
offers a range of task-specific languages that work seamlessly together (as shown
in Figure 2.3, most languages extend EOL). These languages cater to various tasks,
including code generation, model-to-model transformation, and model validation.

extends uses for matching

Model Merging
(EML)

extends

M2M
Transformation

(ETL)

extends

Pattern
Matching

(EPL)

preprocessed into
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generation
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(Flock)
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...
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Epsilon Object Langauge (EOL)

Epsilon Model Connectivity (EMC)

Eclipse Modeling
Framework (EMF)

Excel
Spreadsheets

PTC Integrity
Modeller

MATLAB
Simulink XML CSV

extends

Model
validation

(EVL)

Figure 2.3: Epsilon Architecture [17]

Other general-purpose languages like Java, as well as task-specific languages such
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as OCL or ATL, can be employed for performing tasks and manipulating models. How-
ever, what sets Epsilon apart in its architecture is the fact that all its languages extend
a core language, providing the advantage of an extensible framework. Any feature
implemented for the EOL language can be effortlessly extended to other languages with
minimal effort, making the entire system highly adaptable and easily expandable.

Also, Epsilon offers support for different modelling technologies (see Figure 2.3),
allowing interactions with models in a uniform manner. The Epsilon languages rely
on a model connectivity layer that provides a protective shield, isolating them from
the complexities of specific modelling technologies. This layer, regardless of the un-
derlying modelling technology used (e.g., EMF, Simulink [44], XML, UML [48], etc.),
provides a standardized approach to query, manipulate, and work with these models.
This uniformity simplifies the development process and ensures that the same set of
operations can be applied to models, regardless of their specific technology, enhancing
the flexibility and ease of use of the Epsilon framework.

The implementation of EMC for the specific technology is called driver. For instance,
EMF models are used by Epsilon languages using the EMF driver.

The execution engine within the Epsilon platform is responsible for running programs
written in Epsilon languages. The execution engine first parses the input program written
in an Epsilon language (e.g., EOL program). During this step, the engine analyses the
code’s syntax to understand its structure and validates it for correctness.

If the program involves working with models, the execution engine uses model
drivers to load the required models from various sources (e.g., files, databases) into
memory. Model drivers handle the loading and manipulation of models. Different loading
strategies are discussed in section 2.5.

Once the program is parsed and the input models are loaded, the execution en-
gine starts executing the program instructions step-by-step. It follows the control flow
specified in the code, executing statements and performing operations (e.g., querying,
modifying, transforming, or validating) as required. The execution engine interacts with
the loaded models and carries out these tasks based on the program’s logic.

As the program executes, it may generate output, such as transformed models,
validation results, or code generation artefacts. Once the program execution is complete,
the engine releases any resources and memory associated with the execution.

2.4.1 Epsilon Object Language

As mentioned above, EOL forms the core expression language within Epsilon, serv-
ing as the building block for task-specific languages designed for model validation,
model-to-text transformation, model-to-model transformation, and model migration tasks.
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Additionally, EOL can be employed as a standalone, multipurpose model management
language capable of automating various tasks that may not fit the predefined patterns
of the task-specific languages in Epsilon.

Listing 2.1 shows an example of querying the model in Figure 2.1. In line 1, all
instances of Book are retrieved from the model. In lines 2 - 3, the title of each Book is
printed.

Listing 2.1: EOL program to print title of book

1 var books = Book.allOfKind();

2 for (b in books) {

3 ("Title:" + b.title).println();

4 }

2.4.2 Epsilon Validation Language

Using a validation language like Epsilon Validation Language (EVL) [33], model devel-
opers can describe the additional constraints and execute the validation program on the
model. This process helps to ensure that the model adheres to the specified constraints
and is validated accordingly.

An EVL program consists of a series of constraints, each associated with a context.
This context plays a crucial role in specifying the type of instances on which the
constraints will be evaluated. Each context can include an optional guard, allowing
developers to narrow down the scope of constraints to a specific subset of instances
within its specified type. If the guard condition fails for a particular instance, the
constraints within that context would not be evaluated for that instance, optimizing the
validation process.

EVL constraints include a body (check) to enforce rules and requirements. Addi-
tionally, developers have the freedom to define a message for each constraint using
an ExecutableBlock, providing informative explanations when a constraint fails on a
particular element.

Listing 2.2 shows an example of an EVL program.

• In line 1, the keyword context is used to define the context of the constraint, which
is Book in this case.

• Line 2 introduces the name of the constraint, which is ValidTitle, defined using the
constraint keyword.

• Line 3 contains the check keyword, where the constraint logic is specified. It
checks that the title attribute of all instances of Book starts with an upper-case
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letter. The self keyword refers to the context of the constraint, which is Book in
this case, and self.title retrieves the title attribute of the Book instances.

• Line 4 provides a ”message” to inform the user about the reason for the constraint
failure, along with printing the title attribute to help the user identify and fix the
problem.

Listing 2.2: EVL program to validate title of book

1 context Book {

2 constraint ValidTitle {

3 check: self.title = self.title.firstToUpperCase()

4 message: self.title + " should start with an upper-case letter"

5 }

6 }

2.5 Model Persistence

Models need to be shared and maintained in a convenient way which makes it easy
to collaborate between developers. Model persistence refers to the saving process
of a model or how a model is stored. In the context of MDE, model persistence
involves preserving models in a storage medium, such as databases, files, or other
data repositories, so that they can be accessed, retrieved, and reused by different tools
and applications. There are two kinds of model persistence: file-based models and
repository-based models.

2.5.1 File-based Model

File-based models are defined as the models that are stored in a file, such as XMI
models. The XMI models are stored with .xmi extension and use XML tags to present
the data. Figure 2.4 shows the XMI representation of the model in Figure 2.1.

In line 1, the XMI file starts with an XML declaration that specifies the XML version
and encoding being used. The root element of the XMI file is usually named XMI and
serves as the container for the entire model representation. The XMI header contains
metadata and information about the XMI version, the modelling tool used, and other
optional information about the model. This model contains an instance of Book class
and its title attribute. In Figure 2.4, there is a tag in line 2 which represents an instance
of Book and the title attribute is represented as a property inside the Book tag. In XMI,
each model element is assigned a unique identifier, often referred to as a xmi:id. The
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xmi:id distinguishes one element from another within the XMI file. This allows different
parts of the model to reference each other without ambiguity.

Figure 2.4: XMI representation of model in Figure 2.1

Java SAX Parser

As it is mentioned, XMI is a default persistence in EMF. In EMF, when an XMI file needs
to be read and loaded into memory, it is processed by a default parser called Java SAX
Parser. The Java SAX (Simple API for XML) parser4 is used for parsing XMI files, which
is an event-based XML parser. This parser navigates through the XML file or stream
and triggers callback methods on a listener/handler object. These callback methods are
invoked when specific structural elements of the XML are encountered.

For instance, when the parser comes across the start of an XML document, it calls
the handler’s startDocument() method. Similarly, when it encounters the start of an XML
element, it invokes the startElement() method, and so on.

The responsibility of the handler is to extract the relevant information from these
XML elements, achieved by extending the appropriate callback methods. For example,
in the context of EMF’s SAX parser, the handler would create EObjects (representing
model elements) based on the extracted information.

The SAXXMIHandler is a crucial component that manages XML events and performs
the creation of model elements (EObjects). It populates the attributes and references
(EStructuralFeatures) of these EObjects and subsequently stores them in the XMI
Resource, effectively completing the process of parsing and loading the XMI-based
model.

Let’s consider the model in Figure 2.5 that conforms to the University metamodel
(Figure 2.6). We use Figure 2.7, which illustrates the XMI presentation of the University
model, to describe how EMF’s XMI parser works [51].

The EMF’s XMI parser (and in particular its SAXXMIHandler component) maintains
a stack of model elements (EObjects in EMF’s terminology) to keep track of its current
position in the XMI document. This is needed in order to determine what EObjects
to create next, as illustrated in the right part of Figure 2.7. When line 1 of the XMI

4https://docs.oracle.com/javase/tutorial/jaxp/sax/
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University

 name= "UoY"

Department

 name= "Computer Science"

departments

Module

 name= MDE

members

members

Lecturer

 first_name= Tom

 last_name= Brown

modules

WebPage

 url: users.cs.york.uk/tom

webPage

modules

Student

 first_name= Cathy

 last_name= Smith

modules

Lecture

 title=  Introduction

lectures

Figure 2.5: A model instance of University metamodel from [51]

University

 name: String

Department

 name: String

departments [*]

Module

 name: String

 id: String

modules [*]

members [*]

Person

 first_name: String

 last_name: String

modules
[*]

Student

 student_id: String

 final_grade: float

WebPage

 title: String

 url: String

webPage
[*]

students [*]

Lecturer

 staff_id: String

webPage [*]

Figure 2.6: University metamodel from [51]

file is read, the callback method startElement() is triggered, the <university> element
is handled and a new instance of University (with its name attribute set to UoY ) is
created. The new EObject is pushed into the object stack. When line 4 is read, the
parser processes the top of the stack (peekObject in EMF’s terminology) together with
the <departments> element and decides that an instance of Department should be
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Figure 2.7: EMF’s SAX parser loading [51]

created and added to the departments reference of the University model element.
The created instance of Department is also pushed into the object stack. The same

principle is applied when line 5 is read, the element <members> is handled, and an
instance of Staff is created, added to the members reference of the Department and
pushed into the stack. When an element tag ends (e.g. in line 8), the top element of the
object stack is popped. Once all XML elements have been processed, a tree structure
has been constructed in memory.

XMI Partial Parser

EMF’s SAX parser is responsible for loading the model into memory, making it available
for model management programs. it reads all the information upfront before executing
the program, which can lead to inefficiencies in terms of memory usage. To optimize
memory utilization, a more efficient method called partial loading is employed. Partial
parser of XMI models was introduced by Wei et al. [51]. Using the partial parser, instead
of loading the entire model into memory, only the essential parts of the model required
for executing the program are loaded.

As explained earlier, EMF’s built-in XMI parser maintains a stack of non-null EObjects
to identify the appropriate type of EObject to create when encountering a new XML
element and to determine its position in the containment hierarchy.

Wei et al. [51], identified that creating all EObjects solely to maintain a null-free stack
is not efficient in terms of time and memory consumption. To overcome this issue, they
introduced a placeholder cache that contains empty/placeholder EObjects for types that
are unnecessary for program execution. They introduced the SmartSAX parser which
supports partial loading of XMI models. When the SmartSAX parser encounters an XML
element that can be skipped, it retrieves the corresponding placeholder EObject from
the cache and places it in the object stack. Importantly, this process does not involve
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processing the actual XML element, resulting in reduced loading time and improved
memory consumption.

By adopting partial loading and utilizing the placeholder cache, EMF’s SAX parser
can optimize memory usage and efficiently handle XMI models without loading unnec-
essary data into memory.

Listing 2.3: EOL program to lecturer information

1 var lecturers = Lecturer.allOfKind();

2 for (l in lecturers) {

3 ("First name:" + l.first_name).println();

4 ("Last name:" + l.last_name).println();

5 "Web page:" + l.webPage.url).println();

6 ("Number of modules taught:" + l.modules.size()).println();

7 }

For instance, consider Listing 2.3 that goes through all instances of Lecturers and
prints their first name, last name, url of their webpage and number of modules that each
lecturer has taught. This program needs all Lecturer instances, and the features that
are needed from Lecturer class are first name, last name, the webPage reference with
the url attribute and the number of modules that each lecturer has taught. Hence, there
is no requirement for loading other parts of the model such as University and Student
instances.

Figure 2.8 illustrates a snapshot of the state of the partial parser at the point where
it has parsed the University XMI model up to line 7, with reference to the required
information for running the program.

Figure 2.8: SmartSax parser loading

When parsing starts, the SmartSAX parser populates the Placeholder Cache with
one placeholder EObject for each type of the full metamodel that is not included
in the program’s requirement as illustrated on the bottom-left corner of Figure 2.8.
Having populated the Placeholder Cache, the parser then handles the XML elements it
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encounters as follows:

• When the <university> element in line 1 is encountered, the parser checks the
required model elements, determines that instances of University do not need to
be loaded, and therefore fetches the placeholder instance of University from the
placeholder cache and pushes it to the object stack.

• When the <departments> element in line 4 is encountered, the parser determines
that the type of the object to be instantiated is Department. However, according
to the program, instances of Department do not need to be loaded either so the
parser fetches the placeholder instance of Department from the placeholder cache
and pushes it to the object stack.

• When the parser encounters the <members> element in line 5 it determines that
it needs to create a new instance of Lecturer (as Lecturer is part of the necessary
information for running the program). After creating the new instance, it populates
the values of its first name and last name attributes. Then it looks at the element
on the top of the stack (currently the placeholder instance of Department), detects
that it is a placeholder, and as such adds the populated instance of Lecturer to
the resource as a top-level element.

• When the <webPage> element in line 7 is encountered, the parser determines
that it needs to create an instance of WebPage and place it in the webpage
containment reference of the top element of the stack. It also populates the url
attribute of the new instance with the value of the respective attribute of the XML
element.

• When </webPage>is encountered in line 7, the top object of the stack is popped
(the current top element is now Tom)

• When </members> is encountered in line 8, the top object of the stack is popped
(the current top element is now Computer Science)

• When the <members> element is encountered in line 9, the parser determines
that it needs to create an instance of Student. Since the Student type is not part of
the required model elements, it fetches the Student placeholder object and puts it
at the top of the stack.

• When </members> is encountered in line 10, the top object of the stack is popped
(the current top element is again Computer Science)
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• When the <modules> element is encountered in line 11, the parser determines
that it needs to create an instance of Module and since it is declared that all
instances of Module need to be loaded, it creates a fresh object (but does not
populate any of its attributes/references as none of these need to be loaded
according to the program’s requirement). Since the top element in the stack is
a placeholder, it adds the new Module instance to the resource as a top-level
element and also pushes it to the stack.

• When the <webPage> element is encountered in line 12, the parser determines
that it maps to an instance of WebPage that should be placed under the webpage
containment reference of the top element of the stack (which is currently the MODE
module). Since the WebPage type of Lecturer is required, and its containment
reference (Student.webPage) is not of interest, the parser fetches the placeholder
WebPage object and pushes it to the stack.

• Each of the last three lines (13-15) cause the parser to pop the top element of
its stack, thus ending up with an empty stack. Since all required objects have
been loaded, the last step of the algorithm involves resolving non-containment
references (in this case, link Tom to the MODE module, through its modules
reference).

In [51], the authors conducted extensive benchmarking to demonstrate that the
partial loading algorithm exhibits linear scalability concerning the size of the model
part of interest. This scalability is evident in both loading time and memory usage. As
a result, using the partial parser for loading XMI models is more efficient than using
the default EMF parser when only a subset of the model is required for executing the
program.

2.5.2 Repository-based Model

Using XMI-based serialization in EMF is highly inefficient due to two main factors. First,
XMI files prioritize human readability over compactness, leading to reduced efficiency
in input/output (I/O) accesses. Second, fully parsing XMI files is necessary to obtain a
navigational model of their contents, resulting in increased memory usage when loading
and querying models (as discussed above).

Additionally, XMI-based implementations lack essential advanced features, such as
concurrent modifications and model versioning. These limitations can further impact the
overall performance and collaboration capabilities of EMF projects.
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To tackle the challenges posed by XMI-based serialization, a promising approach is
to adopt databases for storing, accessing, and manipulating models. Models that are
stored in a database such as NoSQL or Neo4j [40], are considered repository-based
models. A repository is considered a persistent solution that is remotely accessible by
tools and users. There are two main loading strategies for retrieving data (models in our
work scope) from repositories:

Lazy Loading. Lazy loading is the practice of delaying the load or initialization of
resources or objects until they’re actually needed to improve performance and save
system resources. For example, in Listing 2.3, using the lazy loading, in line 1, only
skeletons of Lecturer elements would be initially fetched from the database. Then in line
3, for each Lecturer, the program would need to go back to the database and fetch the
value of its first name attribute. It is the same for any other feature that is accessed by
the program. So, multiple round-trips to the repository to fetch the value of the attribute
or references of each model element are required.

Greedy Loading. Greedy loading is another strategy used in the context of data
retrieval and processing. In greedy loading, the system loads and retrieves all the data
and resources at once, upfront, instead of loading them on an as-needed basis.

When an operation or query requires specific data, greedy loading aims to fetch not
only the requested data but also all related or dependent data that might be needed
in the future. This approach ensures that the system has all the required data readily
available, potentially reducing the need for further queries or loading operations in the
immediate future, but occupying memory with unnecessary information.

For instance, considering Listing 2.3, When all instances of Lecturer are fetched
in line 1, all their attributes and references would be fetched too (including Lec-
turer.webPage or Lecturer.staff id). As Lecturer.staff id is not accessed by the EOL
program, fetching its value from the repository and maintaining it in memory is wasteful.

Model Repositories

There are some mature repositories which are used in MDE for storing or managing
models. The Eclipse Connected Data Objects (CDO) [10] project serves as a “distributed
shared model framework tailored for EMF models and meta models”. Acting as a model
repository, CDO offers a comprehensive persistence and access solution capable of
handling multiple models. Architecturally, CDO presents an API designed for EMF-
based applications, a repository server, and the flexibility to support various persistence
back-ends, although relational databases are commonly preferred in practice. As shown
in Figure 2.9, in CDO, the models can be stored in all kinds of major databases back-
ends like Object Database(ODB), NoSQL and Relational Database(RDB), and it can
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transform models in all of the supported back-end types.

Figure 2.9: CDO Architecture

Another feature of CDO is scalability, which is achieved by loading object on-demand
strategies and caching them in the application. Hence, it does not keep the objects
which are no longer referenced by the application, and they are collected from the
memory automatically. CDO supports lazy loading and greedy loading strategies for
retrieving data from database back-ends. By leveraging CDO, users gain access to
more advanced functionalities for interacting with data within models, including support
for transactions and distributed concurrent interactions with multiple models.

In more recent years, NoSQL database technologies have become increasingly
popular forms of persistence backends for large models. These include document
databases like MongoDB [37] and, more prominently, graph databases (given that most
models are graph-like in structure, and the close relation between the modelling and
graph transformation research community) such as Neo4J [40]. Moreover, Barmpis
and Kolovos [4] suggest that NoSQL databases would provide better scalability and
performance than relational databases due to the interconnected nature of models.
Morsa [19] and NeoEMF [14] are repositories that are supported by NoSQL database.

Morsa [19] is a persistent solution for storing and accessing large models based
on on-demand strategies, which is supported by the NoSQL database. Figure 2.10
illustrates an overview of Morsa’s architecture.

In Figure 2.10, the Morsa driver allows client applications to access models through
the modelling framework persistence interface. Further, Morsa loads models using
a load-on-demand mechanism, which has been designed to achieve scalability. This
mechanism reduces database queries, and it is aimed at managing memory usage
based on an object cache that holds loaded model objects. Cache policy is configured
to manage the object cache that decides which object must be unloaded when the
cache is overloaded.

Four cache policies are supported by Morsa such as First In-First Out (FIFO), Last

35



Figure 2.10: Morsa Architecture

In-First Out (LIFO), Less Recently Used (LRU), and Largest Partition First (LPF). The
choice of cache policy is currently made by the end-user.

CDO and Morsa adopt a client-server architecture for model persistence, necessi-
tating the integration of an additional API in the client code to ensure effective model
access. This architectural approach involves the establishment of a server, handling
new connections, and facilitating changes, introducing inherent complexities and over-
head [14].

Furthermore, in these approaches, the selection of the datastore is decoupled from
the intended model usage, disregarding specific requirements such as complex querying,
interactive editing, or intricate model-to-model transformations. While the persistence
layer may yield generic scalability improvements, it lacks tailored optimization to address
distinct modelling scenarios adequately [14].

NeoEMF is a modelling framework centred on a multi-database architecture, where
in each database is designed to deliver optimized performances tailored to the require-
ments of different modelling scenarios. This paradigm seeks to overcome the limitations
of generic persistence solutions and unlock the potential for bespoke and efficient data
storage strategies in diverse modelling contexts.

In 2014 [6], NeoEMF was initially developed on the foundation of Neo4j due to its ca-
pability to handle vast amounts of data in highly distributed environments. Subsequently,
in 2017 [14], it was extended into a multi-database model persistence framework,
offering support for models in key-value stores, wide-column databases, and graph
databases.

To implement key-value stores, NeoEMF utilizes the Maps provided by MapDB,
employing them as an efficient key-value storage solution. For wide column databases,
NeoEMF builds upon Apache HBase [2], a distributed, non-relational wide column
database that leverages Hadoop Distributed File System (HDFS) for data storage.

Regarding graph databases, NeoEMF relies on Blueprints [3], an interface designed
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to create a common API for various graph databases. Many databases, including
Neo4j, OrientDB, and Titan, have implemented Blueprints, making it an adaptable
choice for NeoEMF’s support of graph databases. NeoEMF relies on a lazy-loading
capability allowing very large model navigation in a reduced amount of memory, by
loading elements when they are accessed.

Neo4j. As mentioned earlier in this chapter, graph databases are extensively
utilized for storing models in MDE due to the graph-like structure of most models.
Consequently, models can be represented using graph structures, where elements in
the model correspond to nodes and relationships between them are represented as
edges. This simplifies the storage process within graph databases. By embracing graph
representations, MDE can leverage the efficiency of navigating complex relationships,
making it particularly advantageous for querying large models or dealing with complex
structures. The effective handling of graph-based queries by graph databases further
enhances the efficiency of common MDE tasks, such as querying specific elements,
their properties, and their relationships, thanks to the utilization of powerful graph
traversal algorithms. Overall, the manifold advantages offered by graph databases make
them a compelling choice for storing models in the context of MDE.

Neo4j is an open-source NoSQL database. It is a popular and widely used graph
database as it delivers features like Scalability and flexibility in data modelling and data
structure. It also uses Cypher [12], a declarative graph query language, to interact with
the database. Neo4j users use Cypher to construct expressive and efficient queries to
do any kind of create, read, update, or delete (CRUD) on their graph, and Cypher is the
primary interface for Neo4j.

If the Neo4j is used to store models, then accessing the model and retrieving model
elements from the Neo4J database is possible by using Cypher. Some of Cypher’s
features that are helpful and are used in our implementation are listed below:

• Graph pattern matching: Cypher allows users to specify patterns in the graph,
describing the nodes, relationships, and properties that they want to retrieve or
manipulate. These patterns are intuitive and resemble a visual representation of
the graph.

Listing 2.4 shows an example of Cypher code which retrieves all nodes in a
database. In Cypher, nodes are enclosed within parentheses, and they can be
assigned a variable if there is a need to reference them later. In Listing 2.4, the
variable b is used to access the retrieved node. However, it is also possible to
omit the use of a variable and simply represent the node as () when there is no
requirement to reference the node later on.
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Listing 2.4: Matching pattern in Cypher

1 MATCH(b)

• Node and relationship filtering: Cypher supports filtering nodes and relationships
based on their labels, properties, and relationship types, allowing users to narrow
down their search criteria. In Listing 2.5, only nodes with the Book label are
filtered, and they can be returned or accessed later by the b variable. As shown in
line 2, the title property of b nodes is returned.

Listing 2.5: Matching pattern in Cypher

1 MATCH(b: Book)

2 RETURN b.title

Table 2.1 shows the result of the query in Listing 2.5.

b.title

“Book 1”

“Book 2”

Table 2.1: Query results of Listing 2.5

• Create, update, and delete operations: Cypher not only allows for data retrieval
but also enables creating new nodes and relationships, updating existing data,
and deleting elements from the graph. Listing 2.6 shows an example of creating
two nodes and creating a relationship between them. In line 1, a node is created
for representing a Book, titled “MDEInPractice” and in line 2, a node is created
to represent an Author named “Marco Brambilla”. In line 3, variable b refers to
the “MDEInPractice” node, variable a refers to the “Marco Brambilla” node, and
WRITTEN BY relationship is created between two nodes.

Listing 2.6: Create nodes and relationship in Cypher

1 CREATE (b:Book {title: ‘MDEInPractice’})

2 CREATE (a:Author {name: ‘Marco Brambilla’})

3 CREATE (b)-[:WRITTEN_BY]->(a)

• Path traversal: One of the powerful features of Cypher is its ability to traverse
paths in the graph. It can find paths between nodes based on specific patterns and
criteria. In Listing 2.7, Cypher is able to follow the path from each Book labelled
node to Author node by :WRITTEN BY relationship and return the title of all books
in the graph with their author’s name.
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Listing 2.7: Travesing path in Cypher

1 MATCH (b:Book)-[:WRITTEN_BY]->(a:Author)

2 RETURN b.title, a.name

• Optional matching: Cypher provides the ability to perform optional matches,
allowing users to find patterns where certain elements may or may not exist. Using
MATCH is a strict condition, and if there are no matches in the database, the query
will fail to run and it does not return any result (it will be empty). With OPTIONAL
MATCH on the other hand, if there is no match, the absence of the pattern does
not affect the rest of the query, and it returns the results for the other parts of the
pattern.

For instance, in Listing 2.8, two nodes with Book label are created in the graph.
Book 1 is written by Author 1 and Book 2 is not associated with any author in the
database.

Listing 2.8: Creating nodes in graph

1 CREATE (:Book{title:‘Book 1’})-[:WRITTEN_BY]->(:Author{name:‘Author 1’})

2 CREATE (:Book {title: ‘Book 2’})

In Listing 2.9, if the query tries to match :WRITTEN BY pattern using the MATCH
keyword, the result of the query is as shown in Table 2.2. Since there is no
match for book 2, it does not appear in the result. But if the query is written by
OPTIONAL MATCH (as it is in Listing 2.10), the result includes book 2 and the
author is returned as NULL (see Table 2.3).

Listing 2.9: Match query in Cypher

1 MATCH (book:Book)-[:WRITTEN_BY]->(author:Author)

2 RETURN book.title, author.name

b.title a.name

“Book 1” “Author 1”

Table 2.2: Query results of Listing 2.9

Listing 2.10: Optional match query in Cypher

1 OPTIONAL MATCH (book:Book)-[:WRITTEN_BY]->(author:Author)

2 RETURN book.title, author.name

Table 2.4 presents a comparison of the tools reviewed in this study, focusing on their
loading strategies and memory management. In this table, a tick in the respective cell
indicates support for the feature, while a cross indicates a lack of support.
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b.title a.name

“Book 1” “Author 1”

“Book 2” NULL

Table 2.3: Query results of Listing 2.10

In the first row, the default parser for XMI files used in EMF is shown. This parser
is capable of handling XMI files, as indicated by the tick in the File-based column.
However, it lacks the capability to analyze which parts of the model are essential for the
program, resulting in a cross in the program analysis column. Additionally, this parser
uses a strategy of loading the entire model into memory upon execution and keeping it
until completion, thereby lacking support for partial loading and memory disposal.

The second row is a Partial parser of XMI models (tick in the file-based column).
This parser supports loading the model based on the demand that should be defined
by the user, therefore it supports partial loading but does not perform any analysis on
the program. Also, it keeps all information in the memory and does not supports the
memory disposal feature.

CDO supports models stored in the database and have no support for file-based
models. It supports partial loading by using a lazy loading strategy, and it does not
perform any program analysis in advance. CDO supports memory disposal using a
Java garbage collector but has no analysis or partitioning approach to ensure that data
is disposed of from memory.

Morsa is the same as CDO in supporting repository-based models and partial
loading, but the memory disposal is based on the cache policy. So it provided some
option for the user to specify the cache policy and dispose the memory based on that.

NeoEMF operates similarly to Morsa and CDO. It facilitates repository-based models
and partial loading through a lazy loading strategy, while lacking program analysis
capabilities. Memory disposal relies on a garbage collector. Although Daniel and
colleagues have proposed a method for manual memory management [13], there
is currently no automatic memory disposal algorithm or strategy based on program
analysis.

Therefore, our research aims to develop a solution that offers both partial loading
and automatic memory disposal based on program analysis, a feature lacking in existing
approaches.
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Table 2.4: Related work comparison

File-based Repo-based program analysis Partial loading Memory disposal

Java Sax parser ✓ × × × ×

Partial parser ✓ × × ✓ ×

CDO × ✓ × ✓ ✓

Morsa × ✓ × ✓ ✓

NeoEMF × ✓ × ✓ ✓

2.6 Scalability Challenges in Model Driven Engineering

Recent research has demonstrated that MDE has the ability to boost productivity [4,
5] and greatly improve crucial elements of the software development process, such
as maintainability, consistency, and traceability [28, 39, 26]. Consequently, numerous
industrial projects are now adopting MDE techniques and employing models that reduce
accidental complexity while closely aligning with the domain’s concepts [24, 54, 28].

With the growing adoption of MDE in larger and more intricate systems, the present
generation of modelling and model management technologies faces considerable chal-
lenges in accommodating collaborative development and efficient management of
models exceeding a few hundred of megabytes in size [32].

To address this issue, it is important to continue research efforts focused on achieving
scalability within the MDE technical landscape [32]. This pursuit is crucial to ensure
that MDE remains pertinent and capable of providing its well-established advantages in
terms of productivity, quality, and maintainability, which are widely acknowledged in the
field.

Scalability in the field of MDE relates to the ability of MDE approaches, techniques,
and tools to effectively handle the growing complexity and size of models and model-
driven systems as they evolve and expand.

In order to maintain efficiency and effectively manage the development process,
ensuring scalability becomes vital as projects and systems built using MDE increase in
size and intricacy. To achieve scalability in MDE, the following aspects are involved [32]:

• Constructing Large Models and Domain-Specific Languages: As software systems
become larger and more intricate, the corresponding models in MDE also grow
in size and complexity. To manage and manipulate these substantial models
efficiently, sophisticated infrastructure and optimized algorithms are necessary
to maintain acceptable performance. Scalable MDE tools should be capable of
handling complex models without compromising performance.

41



• Enabling Collaborative Modeling in Large Teams: In collaborative software de-
velopment environments, multiple developers may simultaneously work on differ-
ent parts of the model or even on the same elements. This demands efficient
mechanisms for version control, conflict resolution, and concurrent editing, which
become more challenging as the scale of the project and the number of contribu-
tors increases. Scalable MDE tools should support efficient model differencing,
versioning, and merging to manage these changes effectively.

• Advancing Model Querying and Transformations: Dealing with large models (of the
order of millions of model elements) requires model querying and transformation
tools to be at the cutting edge of technology. Transforming and validating complex
models may require significant computational resources, especially when dealing
with large-scale systems. Ensuring the correctness and consistency of models
becomes more computationally intensive as the project size grows. MDE tools
need to be optimized for processing large models swiftly and effectively. Scalability
becomes crucial to avoid bottlenecks and ensure timely execution.

• Efficient Storage, Indexing, and Retrieval of Large Models: Storing and persisting
extensive models that span multiple megabytes or even gigabytes in size requires
scalable storage solutions. Traditional storage systems might not be well-suited
for handling such large artefacts efficiently. Also, scalable MDE systems should
be designed to use system resources efficiently, minimizing memory consumption
and optimizing processing to avoid performance bottlenecks.

As the focus of this work is on the aspect of memory management, we have explored
various related work in optimization techniques to improve the scalability of MDE
systems. These optimization efforts primarily target the efficient utilization of system
resources, such as memory and processing power, to avoid performance bottlenecks
and enhance overall scalability.

• Memory Efficiency: One aspect of resource optimization involves minimizing
memory consumption in MDE tools. Large models can require substantial memory
to process and store, which can become a limiting factor in scalability. Researchers
have explored techniques and algorithms that reduce the memory footprint of mod-
els, allowing MDE systems to handle larger models without exhausting memory
resources. As discussed earlier in this chapter, repositories use greedy loading
and lazy loading techniques to make the loading process more efficient. Also, there
is some research regarding cache mechanisms to improve memory management.
Caching involves storing retrieved data that are likely to be used in the near future
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or keeping previously computed results to avoid redundant calculations. In [13],
Daniel et al. proposed PrefetchML, a domain-specific language that describes
prefetching and caching rules over models. PrefetchML is a suitable solution to
improve query execution time on top of scalable model persistence frameworks.
The rules to describe the event conditions to activate prefetching, the objects to
prefetch, and the customisation of the cache policy are defined by designers in
PrefetchML.

• Parallel Processing: To achieve scalability, MDE tools have explored the use of
parallel processing techniques. These techniques involve leveraging multi-core
processors and distributed computing environments to efficiently handle large-
scale modelling tasks. By dividing the workload among multiple processing units,
parallel processing can enhance performance and accelerate model processing.

In [49], an approach is proposed for parallelization of Eclipse OCL (Object Con-
straint Language) [41] constraints utilizing Communicating Sequential Processes
(CSP). In this work, expressions are executed in parallel, and their results are
combined through binary operations. The authors demonstrated the equivalence
of behaviour between the parallel and sequential representations of OCL CSP to
prove the correctness of their approach. Their implementation utilized CSP as an
intermediate representation, which was then transformed into C# code. However,
users were required to manually specify the expressions to be parallelized.

In [35], Madani et al. demonstrated how executing an EVL program concurrently
and in a distributed setting can result in a proportional decrease in execution time
with more machines and larger models. Their methodology involves breaking
down each EVL program into an ordered sequence of rule-element pairs. The EVL
distributed execution engine replicates the program execution environment across
multiple computers and assigns a subset of this sequence to each computer for
independent execution. The main limitation of this approach is that it requires all
workers to have a full copy of both the models and the program.

• Incremental Modeling and Validation: Scalable MDE approaches often adopt in-
cremental techniques to address the challenge of handling large models efficiently.
Instead of reprocessing the entire model when changes are made, incremental
techniques only process the parts of the model that are affected by the modifica-
tions. This targeted approach significantly improves performance during model
editing and validation.

Cabot and Teniente [9] developed an algorithm for incremental model valida-
tion that guarantees the generation of the most efficient expression to validate a
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specific constraint when the model undergoes changes (such as Create/Read-
/Update/Delete events). They approach the problem of model validation from a
conceptual standpoint and demonstrate that their solution automatically generates
the most optimal expression for incremental validation in response to a CRUD
event. This ensures that the least amount of work is required to execute the
constraint.

By exploring these scopes and incorporating the findings into MDE tools and tech-
niques, researchers aim to enhance the scalability of MDE approaches. These efforts
are vital to ensure that MDE can effectively handle the increasing complexity and size
of models and model-driven systems encountered in modern software development
projects.

2.7 Chapter Summary

This chapter covered the essential information needed to understand the work presented
in this thesis. It began by introducing fundamental concepts in MDE, including modelling
and metamodeling. The Eclipse Modeling Framework, a widely used framework in
MDE, was also discussed. Model management tasks such as model transformation
and model validation were presented, along with examples of languages used in these
tasks. Additionally, the Epsilon framework and some of its languages (EOL and EVL),
which formed the basis of the thesis implementation, were highlighted.

Since the thesis focused on model loading, different formats of model persistence
were explored, and demonstrations were provided on how programs interacted with
these models. The chapter concluded by discussing scalability challenges in MDE and
presenting related works in this field of research.
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3 Analysis and Hypothesis

This chapter provides an overview of the limitations of state-of-the-art tools in MDE,
which serves as the motivation behind the proposal of efficient management of large
models and represents the primary contributions of this thesis. After an in-depth
analysis of the literature and the identification of current challenges in Section 3.1, we
proceed to present the research hypothesis, objectives, and the scope of our research
in Section 3.2.

3.1 Analysis

In recent decades, several dedicated languages have been specifically designed to
address fundamental model management activities, including tasks like model validation,
transformation, and code generation. Unlike their general-purpose counterparts, such
as Java, these specialized languages, like OCL [41], ATL [27], and ETL [31], have
emerged as pivotal tools in the field.

These dedicated languages bring with them a wealth of advantages. They offer a
more streamlined and purpose-tailored syntax, making them inherently better suited for
the demands of model management. Furthermore, they provide unique opportunities
for in-depth analysis and optimization, which are increasingly essential in the dynamic
environment of software systems. As software systems evolve, they get more and more
complex. This increased complexity extends to the models that represent these systems.
Essentially, these models become larger and more complex, making them harder to
handle.

This rising complexity in models presents a significant challenge for the current
generation of tools used to manage them. These tools face considerable difficulties when
dealing with exceptionally large and complex models [32]. This mismatch between the
demands of complex software systems and the capabilities of existing tools emphasizes
the need for innovative solutions to manage and manipulate these complex model
structures effectively.

This issue with handling large models primarily arises from the way most contempo-
rary MDE tools interact with these models. These tools have certain limitations when it
comes to efficiently managing the growing size and complexity of the associated models.
It is imperative to understand the specific challenges posed by these tools in the context
of MDE and to explore innovative approaches that can address the scalability and
efficiency issues faced in this domain.

Consider a scenario where a model management program is responsible for loading
and processing a model. This encompasses various tasks, such as transformations and
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validations. The process’s intricacies depend on the type of model involved.
File-based models, like XMI files, using the SAX parser (the default EMF parser,

which is discussed in Section 2.5), require the program to read all the information from
the file before it can commence its operations. This upfront loading is a mandatory
step. The drawback here is that the execution engine does not discriminate about which
parts of the model the program will actually use. It loads the entire model into memory,
including information that might never be utilized during the program’s execution.

If the model is repository-based and stored in a database, the approach shifts;
instead of reading everything at once, the program can send multiple queries to the
database progressively, fetching only the specific model elements required during the
program’s execution. This on-demand retrieval approach can be more efficient than
loading the entire model upfront. However, it is important to note that multiple round
trips to the database can consume additional time.

Furthermore, it is crucial to take into account the memory footprint. Even if the
program no longer needs certain model elements, keeping them loaded in memory
can lead to inefficiencies and resource wastage. This can have adverse effects on
system performance, underlining the significance of optimizing memory usage in model
management.

As software and system models continue to expand, the limitations of existing model
management languages and tools have become increasingly evident. To effectively
address this challenge, it is crucial for the execution engines of model management
programs to optimize their use of system resources. In essence, as models grow in size
and complexity, it is crucial to enhance the performance of the model management tools
to meet the evolving demands of software and system development.

Our proposal centres on the integration of two main features, partial loading and par-
titioning, into execution engines to boost the efficiency of model management program
execution.

Partial loading revolves around equipping the execution engine with in-advance
knowledge about the program’s requirements. This knowledge empowers the engine
to load and process only the parts of the model which are necessary for the program’s
execution, thereby eliminating unnecessary data loading. This not only impacts loading
time, as less information needs to be loaded, but it also has a positive effect on memory
footprint by loading less data in the memory.

Partitioning focuses on keeping model elements in memory only as long as they
are actively required during the program’s execution. When these elements are no
longer in use or referenced by the program, they are promptly released, freeing up
memory resources. This approach maintains an efficient memory footprint, ensuring
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that only necessary model elements are maintained, ultimately resulting in a notable
enhancement in overall execution efficiency.

This thesis introduces an approach that aims to enable the execution engine of
model management programs to load only parts of models that are required for their
execution and minimise the overhead of loading unnecessary parts in memory. In
this work, by using in-advance knowledge about the model management programs
provided by static analysis, execution engines are able to identify, load and process
model elements of interest only. In addition, instead of keeping elements in memory
until the end of execution, the elements will be disposed from memory when they are no
longer needed by the model management program. In summary, our goal is to enhance
the efficiency of model management program execution by introducing partial loading
and partitioning capabilities to their execution engines.

3.2 Research Overview

In this section, we begin by introducing the research hypothesis in Section 3.2.2 and
outlining its objectives in Section 3.2.4. To further define the boundaries of our research,
Section 3.2.5 provides clarity on its scope.

3.2.1 Research Challenge

The main challenge of this research is to develop methods for optimising the execution
of model management programs in terms of execution time and memory footprint. This
optimisation should be achieved without the need to modify the existing program code
or impose the burden of rewriting it on users. Instead, the goal is to automatically detect
opportunities for enhancement within the program’s execution engine, including resource
management, and refine the behind-the-scenes loading and execution strategies.

3.2.2 Hypothesis

The hypothesis of this work is that static program analysis can substantially enhance
the performance and reduce the memory footprint of model management programs in
many scenarios.

3.2.3 Research Methodology

The research strategy adopted follows a typical software engineering process [46],
incorporating iterative cycles of analysis, design, implementation, and evaluation. Each
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phase plays a crucial role in advancing the research objectives and addressing the
identified challenges.

• Analysis: During the analysis phase, the focus is on understanding the problem
domain and identifying key challenges. The analysis involves conducting a thor-
ough literature review to examine existing research and gain insights into the main
challenges associated with managing large models in Model-Driven Engineering,
particularly in terms of loading large models. It entails examining how existing
MDE tools, such as the Eclipse Modeling Framework (EMF), handle complex
software projects and large-scale models. Furthermore, the analysis explores
the limitations of current model loading and processing approaches, especially
concerning memory utilization and execution efficiency when dealing with large
models stored in databases.

• Design and implementation: In the design phase, the focus is on creating
solutions, outlining system structures and translating them into executable code.
The goal is to turn the identified needs and obstacles into a clear design and
implement it effectively. This phase involves identifying the potential benefits of
selectively loading essential information into memory and implementing partial
loading functionality within model management programs to address scalability
challenges. Furthermore, novel algorithms or strategies are developed to manage
model disposal, aiming to improve memory consumption and execution time.
Finally, appropriate programming languages, frameworks, and technologies are
selected for implementing the proposed solution.

• Evaluation: During the evaluation phase, the focus shifts towards testing and
validating the implemented solution. This phase aims to assess the performance
of the solution in addressing the identified challenges. Evaluation criteria include
comparing the proposed approach with existing methods in terms of execution
time, memory consumption, and overall performance using the available sets of
large models.

3.2.4 Objectives

The general goal of this thesis is to evaluate the feasibility of reducing the execution time
and memory footprint of model management programs via in-advance static analysis,
particularly when dealing with large input models.

Given the broad scope of this aim, we break it down into the following specific
objectives:
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• Objective 1: Implementing a Static Analyser The first objective of this thesis is
to develop and implement a static analyser for Epsilon programs with enhanced
functionality compared to the existing static analyser. This analyser plays a crucial
role in providing in-advance knowledge about the program. Conducting static anal-
ysis before the execution, equips the engine with the essential information needed
to load only the necessary parts of the model, thereby enhancing efficiency.

• Objective 2: Providing the Partial Loading Facility for Repository-based
Models Partial loading of XMI models was already achieved by the researchers
in [51], and we need to investigate repository-based models. Therefore, this
objective is broken into some sub-objectives:

1. Investigate and identify a suitable repository capable of supporting the partial
loading facility for repository-based models

2. Develop and implement an algorithm to map models into the structure within
the database

3. Create and implement an algorithm that can automatically generate queries
based on the output of the static analyser, facilitating data retrieval for program
execution

4. Evaluate the performance of the partial loading approach for repository-based
models, comparing loading time and memory footprint with state-of-the-art
method using large models

5. Evaluating the correctness and reliability of our approach by conducting a
comparative analysis of program output between state-of-the-art method and
our approach

• Objective 3: Providing A Partitioning Facility for Validating File-based Models

1. Investigate and enhance the implementation of the partial parser for XMI
models

2. Develop and implement an algorithm utilizing the static analyser output to
partition the program.

3. Modify the execution engine to load models based on the partitions created
by the algorithm

4. Assess the approach by comparing loading time to the non-partitioning ap-
proach
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5. Verify the correctness of the approach by comparing the output of the val-
idation program using the default XMI parser, partial XMI parser, and the
partitioning approach

3.2.5 Scope

In this work, our focus is directed towards the Epsilon family of languages. Epsilon is a
well-established open-source Eclipse project that has attracted the attention of industrial
users and is frequently utilized in academic research projects [18]. Also, Epsilon has
a connection to the Automated Software Engineering research group at the University
of York, which leads the project’s development. This association grants us a deep
understanding of the platform, technical proficiency, and the ability to exert control over
the codebase.

Epsilon stands out as an extensible platform, and it is not restricted by specific im-
plementations or technologies, and it can seamlessly support a wide array of modelling
technologies. The modular framework of Epsilon empowers us to explore an extensive
range of modelling technologies, spanning from XML-based formats to spreadsheets,
CSV, JDBC databases, and even specialized tools like Simulink.

The research objectives are aligned with the defined research scope:
Chapter 4 is dedicated to achieving the first objective, while Chapter 5 aims to address
objective 2 and its five sub-objectives, building upon the infrastructure established in
Chapter 4. In Chapter 5, we demonstrate how the partial loading of models, especially
when they are stored in a database, can significantly enhance the efficiency of model
management program execution compared to alternative approaches.

Our primary focus in this approach is the EOL language of the Epsilon platform.
EOL serves as the core language of Epsilon, and extending these capabilities to other
languages, such as model transformation or validation, is a more straightforward and
less resource-intensive task.

Additionally, we specifically target the Neo4j database as the backend due to its
suitability for model storage, given its structural similarity of the graph to the model
structure. However, it is worth noting that the principles developed can be extended
to other backend systems. At the end of the chapter, we conduct experiments to
benchmark the performance of each of the developed implementations, fulfilling the fifth
sub-objective of the first objective.

Chapter 6 delves into addressing objective 3 and its five sub-objectives, where the
partitioning approach plays an important role in reducing loading time. Building upon
the foundations laid out in Chapter 4, we partition the program based on its specific
requirements.
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Our primary emphasis in implementing the partitioning facility is on the Epsilon
Validation Language (EVL), given the widespread application of model validation in
the domain of MDE. Since Epsilon is inherently an extensible framework, extending
our work to encompass other model tasks, such as model transformation, would be
a straightforward process. This is especially true for the ETL language, as the ETL
static analyser has been implemented5, and effective metamodel extraction code is also
available. Therefore, integrating these components to adapt the approach for ETL would
require minimal effort. Expanding our approach to cover more languages may need
extra effort to develop the required analysers. While using EOL’s static analyser can
help simplify this, we might need to adjust some language-specific statements to match
their particular concepts and needs.

Towards the end of the chapter, we conduct a series of experiments to evaluate
the performance of each of the developed implementations, thereby fulfilling the fifth
sub-objective of the second objective.

5https://github.com/epsilonlabs/static-analysis
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4 Static Model Management Program Analysis

The concept of a static analyser involves a software tool or system designed to evaluate
source code, program specifications, or similar software elements without actually
executing the code. Unlike dynamic analysis, which occurs during program execution,
static analysis takes place during compilation before the code is run.

Most of the time, a static analyser’s primary goal is to find possible issues, mistakes,
weaknesses, or places where the code could be improved. It does this by carefully
examining how the code is composed, its syntax, and its grammar. It searches for
mistakes in how the code is written, differences in the types of data used, and ways of
writing code that could make it hard to maintain or lead to security problems. Besides
finding issues, the information that a static analyser gathers can be useful for other
activities. For example, it can help determine what data the program needs to run, make
searches work better, or improve the whole program’s design. It also looks for parts of
the code that might not be required or used.

In this thesis, the role of the static analyser is also to analyse the program at compile-
time. Static analysis will provide in-advance knowledge about model management
programs. Indeed, static analysis yields valuable information while studying the program,
which can have more comprehensive applications such as partial loading of a model,
partitioning a program, or optimising queries.

In the context of partial model loading, providing information by the static analyser,
such as resolved expression types, holds the potential to enable the execution engines
to recognise, load, and process the parts of models that contain elements of interest.
Given that the focus of this study revolves around the Epsilon framework, this chapter
explores the static analysis of the Epsilon framework.

It is important to note that creating the static analyser for Epsilon is not considered a
novel contribution of this thesis. However, it serves as foundational work upon which
our research is built. Therefore, we contribute to enhancing the static analysis of
epsilon languages and improve the functionality by adding new features, as discussed
in Section 4.3. Other languages like ATL, Henshin, Viatra, and OCL also benefit from
having a static analyser, as discussed in Section 4.5.

In this chapter, we start by reviewing the abstract syntax tree (AST) concept and
discuss how the AST of the EOL language is structured in Section 4.1. Subsequently,
in Section 4.2, we explore the development process of the static analyser for Epsilon,
discussing the techniques employed to equip the static analyser, such as variable
and type resolution. Furthermore, within Section 4.3, we show the novel additions
incorporated into the static analysis as part of this thesis, including type inference

52



and type checking. The assessment of static analysis is presented in Section 4.4,
followed by a discussion on examples of static analysers developed for other languages
in Section 4.5. The practical application of the effective metamodel concept, which
originates from the static analyser, is outlined in Section 4.6. Lastly, a chapter summary
can be found in Section 4.7.

4.1 EOL Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a hierarchical data structure representing the syn-
tactic structure of source code [1]. It provides a structured, abstract representation of
the code’s syntax, making it easier to be analysed, manipulated, and processed by
programs or tools. ASTs are commonly used in compilers to convert source code into
an intermediate representation that can be further optimised and transformed. The
ASTs are a fundamental concept in compiler design, interpreter development, and other
language processing tasks.

An AST breaks down the source code into a tree-like structure composed of nodes.
Each node corresponds to a language construct, such as statements, expressions,
operators, keywords, variables, and literals. The tree structure of the AST reflects the
hierarchical relationships between different language constructs. Figure 4.1 shows
an example of AST for the simple equation of a = b + c. In this AST, the root node
represents the assignment operation (=). The left child of the root represents the variable
a, and the right child of the root represents the addition operation (+). The left child
of the addition node represents the variable b. The right child of the addition node
represents the variable c. This AST visually captures the hierarchical structure of the
mathematical expression. It shows how the numbers are combined with the operations
to create the overall expression.

=

a +

b c

Figure 4.1: Simple example of AST

While some details are abstracted from the AST, it retains all the essential information
needed to represent the code’s logic and structure accurately. This makes it suitable for
analysis, optimization, and transformation tasks. Different tasks may require different
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representations of the AST. For example, a type-checking phase might involve an
annotated AST, where nodes contain type information.

In this thesis, we need to be able to analyse Epsilon programs to get information
from the programs before their execution. A key element of our analysis involves the
exploration of the Abstract Syntax Tree (AST) of Epsilon programs. As EOL is the core
language of Epsilon and other languages are built on top of this language, our initial
focus is directed toward investigating the AST of the EOL language.

Epsilon offers a parser for EOL based on ANTLR [29]. This ANTLR parser generates
ASTs, where each node carries a textual representation and an identifier, which are uti-
lized by the EOL execution engine. Wei et al. [50] introduced an EMF-based metamodel
for EOL to enable static analysis on a more comprehensive scale. This metamodel
is employed to convert these ASTs into models that conform to the EOL metamodel,
facilitating the process of transforming ASTs into a more structured representation for
enhanced analysis.

Figure 4.2 presents a selection of fundamental components, outlining the essential
building blocks that collectively shape an EOL program. Given the complexity of EOL,
this presentation is restricted to introducing the foundational and innovative aspects of
the EOL metamodel and the EOL standard library.

ImportStatement

Imported: EolModule

operations *

EolModule

main: StatementBlock

Annotation

SimpleAnnotation

values: String[*]

ExecutableAnnotation

expression: Expression

Statement

annotations *

Operation

name: EString

context: EolType

parameters: Parameter[*]

returnType: EolType

statements *

StatementBlock

 body 

 main 

 * 

Figure 4.2: The structure the EOL metamodel from [17]

EOL programs are organized in EolModules. Each EolModule defines a body and a
number of Operations. The body is a block of statements that are evaluated when the
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module is executed. Each Operation defines the kind of objects on which it is applicable
(context), a name, a set of parameters and optionally a return type. EolModules can
also import other modules using import statements and access their operations. The
type resolution can be addressed through a resolution process after parsing the program
into the EOL model. For instance, consider the simple EOL program in Listing 4.1.

Listing 4.1: EOL program to define and asssign a variable

1 var book = Book.all.first();

This program includes an assignment that returns the first instance of the Book
from all instances present in the model and assigns it to the variable named book. The
metamodel depicting the structure is presented in Figure 4.3, while the corresponding
EOL model, computed from the AST, is visualized in Figure 4.4.

Author

name: EString

Book

name: EString

edition: EInt

author books

0..*1

Figure 4.3: Book metamodel

All resolved types in Figure 4.4 are of Any type (discussed below) as type resolution
has not been applied to the model yet.

4.2 Static Analysis of EOL langauge

Once the EOL model is created from the AST of an EOL program, resolution algorithms
are applied. These algorithms include variable resolution (e.g., resolving identifiers to
their definitions) and type resolution (e.g., primitive types and collection types). Together,
they lead to a type-resolved AST.

With these resolution algorithms in place, the stage is set for Epsilon’s static analysis,
as introduced in [50]6. By leveraging the type-resolved AST, the static analyser extracts
crucial details from the program. This information encompasses the types and properties
accessed by the program, forming a foundational basis for subsequent optimisation
activities.

4.2.1 Variable Resolution

The initial phase of static analysis for an EOL program involves the resolution of
identifiers to their definitions. In the context of EOL, these identifiers can belong

6https://github.com/epsilonlabs/haetae
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:EolModule

:StatementBlock

:AssignmentStatement

:NameExpression

name: "book"

:VariableDeclarationExpression

:AnyType

resolvedType

:FirstOperationcallExpression

:PropertyCallExpression

property: all

:NameExpression

name: first

target

:NameExpression

Book

target

:AnyType

resolvedType

:AnyType

resolvedType

Figure 4.4: EOL model of Listing 4.1

to two main categories:

• Declared Variables/Operation Parameters: This includes variables and parame-
ters that have been explicitly declared within the program. The variable resolver is
responsible for establishing connections between the declaration and subsequent
references of variables. For instance, in Listing 4.2, the variable resolver would
link the reference to variable name in line 2 to its declaration in line 1.

Listing 4.2: EOL program to define and assign a variable

1 var name: String;

2 name = "Tom";

• Undeclared Runtime Variables: EOL permits referencing variables provided by
the execution engine during runtime, even if they haven’t been declared in the
code by the developer. An example is the keyword self in an operation definition,
which refers to the model element or object on which the operation is invoked. In
the following example, the variable resolver would establish a link between the use
of self and the corresponding object on which printName() is invoked.

Listing 4.3: EOL program to print title of book

1 operation Any printName() {

2 self.println();
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It is important to emphasize that the types of model elements are not resolved during
the variable resolution phase. The variable resolver’s role is to establish relationships
between identifiers and their declarations or runtime contexts, paving the way for
subsequent stages of analysis.

4.2.2 Type Resolution

In EOL, several types are all subclasses of Type in the EOL metamodel. As shown in
Figure 4.5, in EOL, there are several built-in primitive types (Boolean, Integer, Real,
String) and collection types (Set, Bag, Sequence and OrderedSet). There is also a
Map type, Native type and the Any type. The Any type is the basis of all types in EOL,
including Collection types (inspired by the OclAny type of OCL).

PrimitiveType

Integer String BooleanAny Real

ModelElementType

model: String

type: String

Collection

Native

Implementation: String Map

Bag Set OrderedSet Sequence

Figure 4.5: EOL type system [17]

Another subclass of Type in the EOL metamodel is ModelElementType. This sub-
class includes specific typing details associated with models defined using different
technologies. The process of determining this typing information involves accessing the
respective models.

The EOL program includes a ModelDeclarationStatement designed for referencing
models within the source code. This statement plays a crucial role in facilitating access
to models during the design phase. The syntax of a model declaration statement is
according to Listing 4.4.

Listing 4.4: EOL program to print title of book

1 model book driver EMF {

2 nsuri = "http://book/1.0"

3 };
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A ModelDeclarationStatement defines the model’s name, the modelling technology
(driver) that the model conforms to, and a set of driver-specific parameters.

Within this statement, book is the local name for a model, while the model’s type
is also established through the model declaration statement (EMF in this case). The
Nsuri, which represents the namespace URI, serves as the unique identifier for the
metamodel in accordance with EMF terminology. This definition is essential for obtaining
the respective metamodel. For instance, consider the statement in Listing 4.5.

Listing 4.5: EOL program to print title of book

1 var book: Book;

At this point, we have knowledge that the variable book is of type ModelElementType
with its specific element name being Book. Also, by accessing models/metamodels, the
type resolver is able to resolve types with regard to models/metamodels. Hence, the
type of book variable is set to ModelElementType.

The type-resolved AST of Figure 4.4 is demonstrated in Figure 4.6 where the book
variable and return type of first operation is resolved as ModelElementType.

:EolModule

:StatementBlock

:AssignmentStatement

:NameExpression

name: "book"

:VariableDeclarationExpression

:ModelElementType

Model: book

Type: Book

resolvedType

:FirstOperationcallExpression

:PropertyCallExpression

property: all

:NameExpression

name: first

target

:NameExpression

Book

target

:ModelElementType

Model: book

Type: Book

resolvedType

resolvedType

var book

:ModelElementType

Model: book

Type: Book

Figure 4.6: Type-resolved AST of Figure 4.4
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4.3 Empowering EOL Static Analysis

As mentioned in the previous section, the initial version of the static analyser of Epsilon
offers essential features such as type resolution and variable resolution. These compo-
nents form the foundational infrastructure of the static analysis framework designed for
the Epsilon languages.

However, we contributed7 by encompassing enhancements of the static analyser
in two key aspects: type inference and the incorporation of a type checker. These
modifications lead to the generation of compile-time errors and warnings. It is important
to note that while the identification of compile-time errors is a by-product outcome, the
primary focus of our work is to enhance the analysis process. The ultimate objective is
to improve the accuracy of design-time information extracted from the program. This
project has been released and can be accessed through a public GitHub repository8.

4.3.1 Type Inference

Type resolution involves explicitly defining and confirming the data type of variables,
expressions, and values within a program. On the other hand, with type inference, the
compiler or interpreter deduces the data type of variables, expressions, and functions
based on their context and usage within the program. This mechanism reduces the need
for explicit type annotations, allowing developers to write more concise and expressive
code while still benefiting from the advantages of static typing.

To enhance the efficacy of static analysis for Epsilon programs, one step for inferring
types in an EOL program is the introduction of pseudo-types into the language. These
pseudo-types have been incorporated into the programming paradigm, taking inspiration
from the concepts within the Object Constraint Language (OCL) [41], for the purpose of
static analysis.

They are called pseudo-types as they cannot be instantiated. They are used to
determine the type of self in operation signatures. The exact type of these will be
determined at the end of compile-time static analysis. These Pseudo types (EolSelf,
EolSelfCollectionType, EolSelfExpressionType, EolContentType) have been integrated
into the EOL language, enriching its capabilities in the domain of static analysis. Usage
of these types is demonstrated in Table 4.1.

In EOL language, the operation is defined as below.

Listing 4.6: The syntax of operation signature in EOL

7This work was implemented in collaboration with another PhD student (Qurat ul ain Ali) in the context
of the Lowcomote Training Network, that funded this research.

8https://github.com/epsilonlabs/static-analysis
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Type Name Description
EolSelf Type of context

EolSelfCollectionType Collection type of context

EolSelfExpressionType Resolved type of expression parameter

EolSelfContentType Content type of collection

Table 4.1: Pseudo Types

1 operation target-type println() : return-type {

2 }

For instance, if we have a signature like operation String println(): String, it signifies
that this operation can be invoked on a String variable and will return a String as its
result.

The pseudotype EolSelf plays a crucial role within the operation signature, enabling
the propagation of the contextual type as the return type when the println() function is
invoked. For instance, in Listing 4.7, self is resolved according to the context type and
the return type is also set as context type. For instance, if we were to make the call
“abc”.println(), the resulting return type would be EolPrimitiveType.String.

Listing 4.7: Println operation

1 operation Any println() : EolSelf {

2 return self;

3 }

Hence, the utilization of EolSelf proves advantageous in the sense that if the static
analyser successfully resolves the type of the context in the println() call, it subsequently
gains the capability to infer the type of the operation’s return value.

EolSelfCollectionType is a pseudo type specially for EolCollectionTypes. It is used in
the operation’s signature as follows:

Listing 4.8: get() operation

1 operation Collection<Any> get():EolSelfCollectionType{

2 return self;

3 }

Whenever an operation with EolSelfCollectionType return type, such as get() in
Listing 4.8, is called with any collection type (Collection, Sequence, Bag, OrderedSet,
Set) as context type, the return type would be the same type of Collection. For ex-
ample, if this operation is called on Sequence<String>, the return type would also be
Sequence<String>. Hence, the static analyser resolved the return type according to
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the context type.
EolSelfContentType is also a pseudotype just for EolCollectionTypes. It is used in

the operation signature as follows:

Listing 4.9: getContent() operation

1 operation Collection<Any> getContentType():EolSelfContentType {

2 }

Whenever this operation is called with any collection type (Collection,Sequence,
Bag, OrderedSet, Set) as context type, the return type would be the content type of the
Collection. For example, if this operation is called on Sequence<String>, the return
type would also be EolPrimitiveType.String. For Bag<Integer> as context type, the
return type would be an EolPrimitiveType.Integer.

EolSelfExpressionType is also a pseudotype just for EolCollectionTypes. It is used in
operation signatures as follows:

Listing 4.10: collect operation

1 operation Collection<Any> collect(a: Any) : Collection<

EolSelfExpressionType>{

2 }

Whenever an operation is called with any collection type (Collection,Sequence, Bag,
OrderedSet, Set) as context type, the return type would be the type of content type of
the iterator expression. For example, if an operation is called as Listing 4.11, the return
type would also be EolPrimitiveType.Boolean because the expression which is the input
of collect operation (f<3) is Boolean.

Listing 4.11: Example of Collection<EolSelfExpressionType> as return type

1 var b: Sequence = Sequence {1,2,3};

2 var c = b.collect(f|f<3);

4.3.2 Type Checking

Once the types of variables, expressions, and statements are resolved or inferred, the
static analyser can check the type compatibility. It verifies whether the operations being
performed are valid for the determined types, helping to detect type-related errors before
running the program. Developers can catch errors early in development by performing
static analysis with type resolution and inference. This saves time and effort compared
to discovering such issues during runtime testing or in production.

This thesis uses the static analyser to extract crucial information about various model
elements (such as variables, functions, classes, etc.) and their properties from the
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program. The insights provided by the static analyser help determine which specific
parts of the model are required for executing the program. Hence, while the primary
purpose of using a static analyser might be to gather information about model elements,
warnings and errors that the analyser produces can be seen as valuable by-products.
These warnings and errors indicate potential issues or inconsistencies in the code.

Figure 4.7 depicts a snapshot of an EOL editor interface. Each line within the editor
corresponds to a statement purposely crafted to highlight errors and warnings generated
by the static analyser.

• Accessing model in compile time: In lines 1 to 3, there is a ModelDeclaration
statement which defines the name of a model and the namespace URI (nsuri)
for accessing the associated metamodel. The book model that conforms to book
metamodel is being queried in this code.

• Variable resolution: There are variable declarations in lines 5 - 8. As Book and
Author are the classes presented in the metamodel, the variable declarations are
valid, and the variables are initiated. However, an error arises in line 8, pointing out
the Library class’s absence in the metamodel. This results in the error message
as there is no type such as Library in the metamodel or no EOL type matched with
library type. Hence, the static analyser is successfully accessed to the metamodel
in compile-time and can recognise which types can be declared according to the
metamodel and which are unknown.

• Type compatibility assurance in assignment statements: In line 10, an error
is reported on the right side of an assignment statement. In the assignment
statement, the right side of the assignment should be the same as or a sub-
class of the type of the left side. In line 10, a property call, which is resolved as
Sequence<Book>, is assigned to the b variable, which is resolved as a EOLMod-
elElement. Therefore, a compatibility error here is detected by the static analyser.

• Inferring resolved types for property call expressions: Line 14 reports another
compatibility error. Static analysis is able to infer resolved types even when it is
an operation that is called on a property call. Both sides of the assignment are
Colelction type, but an error is shown to the developer as the type of content of
collections is different.

• Navigating the type hierarchy: In line 16, there is another assignment in which
its sides hold different types, but the static analyser produces a warning instead of
an error. The reason is variable n is of Any type, and all types are subclasses of
Any in the EOL type system (see Figure 4.5). Therefore, all types can be assigned
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to Any variable logically, but a warning is helpful as some information might be
missed in the assigned variable.

• Detecting type inconsistencies in the context of operations: Line 18 has an
operation call to printName operation. The produced error is complaining about
a mismatch in the context of the operation. The printName operation signature
in line 24 shows this operation only applies on String typed variables, but in
line 18, the call is invoked on the return type of Author.all.first, which is Author
(EOLModelElement).

• Uncovering parameter type mismatches: Line 20 demonstrates an operation
call that does not apply to a specific context but needs a parameter. The signature
of getNumberOfBooks on line 34 indicates that the expected parameter type
should be identical to an Author. Nevertheless, on line 20, the parameter b is of
type Book. This inconsistency generates an error, highlighting the mismatch in
parameter types.

• Mismatch in number of parameters: The getNumberOfBooks operation is
designed to accept a single parameter, yet it is called with two parameters in line
21.

• Detecting Missing Return Statement: Line 24 shows an error regarding the
missing statement for the printName operation.

• Type resolution for self variable: In lines 27 to 30, the getAuthor operation
is defined, which is applied on Book objects. In line 29, an error appears as
self refers to the context of operation (Book ), but it is assigned to the String type
variable, which is not allowed. It shows the static analyser correctly resolves the
type of self variable.

4.4 Eugenia - Test case

The developed static analyser was put to the test within the context of Eugenia [20],
a well-established tool constructed using the Epsilon platform. Eugenia serves the
purpose of producing GMF (Graphical Modeling Framework) editors from an Ecore
metamodel that has been annotated with additional information. One of the key com-
ponents of Eugenia is a substantial EOL transformation containing approximately 1.2K
lines of code. This transformation carries out the task of converting annotated metamod-
els into four distinct models that are crucial for the GMF framework’s operation. These
models are necessary for generating graphical editors.
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Figure 4.7: Type compatibility errors - Example

Eugenia simplifies the process by automatically generating three types of files
(with extensions .gmfgraph, .gmfmap, and .gmftool) that GMF requires. All of this is
accomplished from a single annotated Ecore metamodel. However, while Eugenia
proves highly useful, there are instances where warnings emerge. These warnings
specifically revolve around cases where a parent type is being provided for a required
type.

For a concrete example, consider the transformation named Ecore2GMF.eol from
Eugenia. This transformation is subjected to static analysis, and a snapshot of this
analysis is visible in Figure 4.8 on the left. Additionally, insight into one of the imported
modules is presented in the figure on the right side. This analysis aids in understanding
how the static analyser evaluates the correctness of Eugenia’s capabilities in transform-
ing metamodels into the necessary models for GMF’s graphical editor generation. As
shown in Figure 4.8, it becomes evident that the static analyser does not raise any errors
in Figure 3.8 concerning the validity of the accurate transformation. This observation
signifies that the analyser operates without producing any incorrect indications, which
we refer to as “false positives.” In other words, the absence of error notifications in the
correct transformation highlights the precision of the static analyser’s evaluations.
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Figure 4.8: Static analysis on Eugenia code

4.5 Related Work

Developing a static analyser to analyse the program and extract information about
the code during compile-time is not a novel concept. Some programming languages,
general-purpose ones like Java and domain-specific ones like ATL, get advantages from
utilizing static analysers. This section provides a brief overview of some of these tools.

AnATLyzer [11] is a tool for static analysis of ATL model transformations. It is an IDE
that provides type checking, quick fixes and problem explanations. AnATLyzer focuses
on three main points: it checks that the source metamodel is correctly typed concerning
the transformation, it ensures that the model generated through transformation conforms
to the target metamodel, and it identifies any conflicting or missing rules. This static
analyser is limited to ATL model transformations only.

In [7], Born et al. extended Henshin, a rule-based model transformation language
adapting graph transformation concepts and being based on the Eclipse Modeling
Framework (EMF). This extension computes all potential conflicts and dependencies
of a set of rules and reports them as critical pairs. Each essential pair consists of the
respective pair of rules, the kind of potential conflict or dependency found, and a minimal
instance model illustrating the conflict or dependence.

Another tool in [47] provides a static analysis facility for graph transformations. This
work is based on Constraint Satisfaction Programming (CSP). It also presents a type
checker for the Viatra2 framework. As this type-checker is based on CSP, it is not
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possible to find all the errors in a single run using static analysis.
The static analysis of OCL is presented in [52], a pseudo-type OCLSelf, is introduced

to infer the type of context for a few operations such as:

• OclAny::oclAsSet() – returns Set〈Self〉

• OclAny::oclType() : Class〈OclSelf〉

Willink [53] introduced safe navigation operators in OCL. This operator solves the
problem of declaring non-null objects and null-free collections. It enables OCL navigation
to be fully checked for null safety.

4.6 Effective Metamodel Computation: An Application of Static
Analysis

As mentioned earlier, we need to provide in-advance knowledge about the specific
parts of the model containing relevant model elements to the execution engine for the
purpose of partial model loading in this work, which includes understanding the essential
properties and attributes required for the program execution. This vital information can
be gained through the static analyser. In this section, we discuss how this information is
communicated to the execution engine and provide an explanation of the steps required
to extract this information from the program.

The model elements, along with their associated properties (attributes and refer-
ences), which are essential for the program’s execution, are presented in the form of a
specialized format called an effective metamodel.

The concept of effective metamodel was introduced by Wei et.al [51]. The effective
metamodel is a subset of the model’s original metamodel, consisting only of types and
properties likely9 to be accessed by the program.

The effective metamodel is constructed using Algorithm 4.1 (discussed in Sec-
tion 4.6.2), which uses the resolved types of expressions and contains only the types
necessary for executing the program from which it is extracted. In our prototype im-
plementation, effective metamodels are only computed for EMF-based models, but in
principle, this approach can also be applied to other metamodelling technologies.

4.6.1 The Structure of Effective Metamodel

As shown in Figure 4.9, an effective metamodel consists of an EffectiveMetamodel
class with name and nsuri attributes. The EffectiveMetamodel class is connected to an

9In some cases, the execution engine needs to load unnecessary model properties as well because of
a lack of information before the execution (discussed later in detail in section 4.6.2)
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EClass that has EStructuralFeatures. The EffectiveMetamodel class is connected to an
EClass by allOfKind, allOfType and types references.

EffectiveMetamodel

 name: String

 nsuri: String 

EClass

 name: String

EStructuralFeature

 name: String

allOfKind [*]

allOfType [*]

eStructuralFeatures [*]types [*]

features [*]

Figure 4.9: The structure of effective metamodel (adapted from [51])

The allOfKind and allOfType references specify the instances of types that the
execution engine should load. The difference between these two references is that
allOfKind is used when all instances of a class (including subclasses) should be loaded.
In contrast, allOfType reference means the execution engine should consider only the
elements that are direct instances of the class (without considering any of its subclasses).
The types reference is used for specifying class instances, which should be loaded only
when they appear in the references of model elements necessary for executing the
program.

For instance, let’s consider the EOL program shown in Listing 4.12. This program
prints the number of books written by each author, using the metamodel illustrated in
Figure 4.3.

Listing 4.12: EOL program to print the number of books written by each author

1 model book driver EMF {

2 nsuri = "HTTP://books/1.0"

3 }

4 for(author:Author in Author.allInstances()){

5 author.books.size().println();

6 }

For every class used in the program (such as Author ), an EClass is added in the
respective effective metamodel. The EClass contains collections of structural features
that reflect the attributes and references of the type accessed by the program (such as
books reference).

The process which extracts this effective metamodel from an EOL program is de-
scribed in Algorithms 4.1 and 4.2. This algorithm is easily extendable for other Epsilon
languages, but considering the motivating example, we will discuss the version that
works with the EOL program in this section.
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4.6.2 Effective Metamodel Computation

In Algorithms 4.1 and 4.2, the type resolved AST extracted by the static analyser is
visited. The resolved types for the Listing 4.12 is shown in Table 4.2.

Table 4.2: Resolved Types Calculated by the Static Analyser

Line number in Listing 4.12 Expression Resolved Type

1 model book driver EMF Model declaration

2 nsuri = ”http://books/1.0” Assignment statement (String)

4 author Model Element (Author)

4 author.allInstances() Operation call expression (Sequence<Author>)

5 author.books.size() Operation call expression (Integer)

5 author.books Property call expression (Sequence<Book>)

3 author Model element (Author)

With the resolved types calculated by the static analyser (as detailed in Table 4.2), the
algorithm assesses the statements and expressions within the program. In this process,
the algorithm identifies the elements that must be loaded to ensure the successful
execution of the program. Subsequently, it includes these elements within the effective
metamodel.

Algorithm 4.1 is interested in calls of all() and allInstances() operations and property
calls (such as Author.books) as they are the only way to navigate to model elements in
Epsilon programs. In lines 7-11, the all() and allInstances() operation calls are handled
by Algorithm 4.1 to add the respective EClasses to the effective metamodel. Suppose
the target of the operation call is a model element type. In that case, it will be added to
an allOfKind reference of the effective metamodel (line 11) and, if it already exists in the
effective metamodel under the allOfType or types references, the EClass is moved to
the allOfKind reference.

In lines 15-28, Algorithm 4.1 handles property calls to populate the effective meta-
model further. In Algorithm 4.2, if the accessed property is all (it is an alias for
allInstances()), then the target element type will be treated identically to the allOfKind
operation call (lines 2-3). When the target of property call is a model element if an
attribute of the model element is accessed, it is added to the effective metamodel as
an EAttribute (lines 8-9), or if it is a reference, then it is added as an EReference (lines
10-11). When a reference is accessed by the program, the instances of the target
EClass of the reference need to be loaded. If the reference is a containment reference,
then it will be added to types reference of the effective metamodel; otherwise, it will be
added to allOfKind reference.
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Algorithm 4.1 EOL Effective Metamodel Extraction Algorithm (1 of 2)
1: procedure COMPUTEEFFECTIVEMETAMODEL(e f f ectivemetamodel)
2: let EM = effective metamodel;
3: for all operation call expression do
4: if IsModelElement(operation.target) then
5: let EC = target.type;
6: if operation.name.equals(all or allOfKind or allInstances) then
7: if allOfType.contains(EC) or types.contains(EC) then
8: move EC under EM’s allOfKind reference;
9: else

10: allOfKind.add(EC);
11: else if operation.name.equals(allOfType) then
12: if not allOfKind.contains(EC) and not allOfType.contains(EC) then
13: allOfType.add(EC);
14: for all property call expression do
15: if IsModelElement(propertyCall.target) then
16: let EC = target.type
17: handlePropertyCallExpression(propertyCallExpression,EC)
18: else if IsCollection(propertyCall.target) then
19: if IsModelElement(collection.content) then
20: let EC = collection.content.type
21: handlePropertyCallExpression(PropertyCallExpression,EC)
22: else if IsAny(collection.content) then
23: for all EClasses in EM do
24: handlePropertyCallExpression(PropertyCallExpression,EClass)
25: else if IsAny(propertyCall.target) then
26: for all EClasses in EM do
27: handlePropertyCallExpression(PropertyCallExpression,EClass)
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Algorithm 4.2 EOL Effective Metamodel Extraction Algorithm (2 of 2)
1: procedure HANDLEPROPERTYCALLEXPRESSION(propertyCallExpression,EClass)
2: let EC = EClass
3: if the property.name.equals(all) then
4: if allOfType.contains(EC) or types.contains(EC) then
5: move EC under EM’s allOfKind reference;
6: else if not allOfKind.contains(EC) then
7: allOfKind.add(EC);
8: else if IsAttribute(property) then
9: EC.attributes.add(property)

10: else if IsReference(property) then
11: EC.references.add(property)
12: EReference ref = (EReference) property
13: let EType = ref.type
14: if IsContainment(ref) then
15: types.add(EType)
16: else
17: allOfKind.add(EType)

Figure 4.10 illustrates the effective metamodel extracted from the EOL program in
Listing 4.12. In Figure 4.10, the attributes of the EffectiveMetamodel class are filled
by the original metamodel, which are the name and the nsuri of the metamodel. All
instances of Author must be loaded for running the EOL program. The Author class is
added to EffectiveMetamodel under the allOfKind reference according to lines 7-11 of
Algorithm 4.1.

The books reference of Author is also required (line 5 of Listing 4.12). Hence, it
is added to Author as an EReference according to lines 10-11 in Algorithm 4.2. The
resolved type of books reference is equal to Book (see Table 4.2), so according to lines
14-17 in Algorithm 4.2, the Book EClass is added to effective metamodel using the
allOfKind reference.

When we compare the metamodel presented in Figure 4.10, displaying the effective
metamodel, with the initial metamodel depicted in Figure 4.3, a notable difference
emerges. Specifically, information that isn’t required for executing the program, like the
name attribute of the Book class, is intentionally excluded from the effective metamodel.
Therefore, adopting a loading model strategy to load the model based on an effective
metamodel instead of relying on the original metamodel ensures that the execution
engine does not unnecessarily consume memory resources to load information that is
not exercised by the program at runtime.
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:EffectiveMetamodel

 name: book

 nsuri: http://book/1.0/

:EClass

 name: Book

:EReference

 name: books
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 name: Author

allOfKind

Figure 4.10: Effective metamodel of the EOL program shown in Listing 4.12

Accommodating Untyped Variables and Expressions

Algorithm 4.1 visits the abstract syntax graph to consider all statements and expressions
in the code. Thus, constructing an effective metamodel relies on the ability of the static
analyser to precisely resolve their types. If in a property call expression, the resolved
type of the left-hand side is unknown (“Any” in terms of the Epsilon type-system), then
the name of the property is added to an unresolvedProperties set. After the effective
metamodel has been extracted, the unresolvedProperties set is used to augment the
effective metamodel with additional FeatureAccess elements for all the types of the
effective metamodel that have features matching properties in the set.

The algorithm’s decision to not assign the resolved type of the p variable as the value
on the right side of the assignment and setting it as ModelElement(Author ) prompts
an important question. This choice is motivated by the need to ensure reliable type
resolution for variables assigned in multiple locations within a program.

For instance, if the algorithm were to resolve the type of p as ModelElement(Author )
in line 1, a conflict would arise in line 4, where the edition attribute of t (which is Integer)
could no longer be feasibly assigned to the p variable. This conflict arises due to a
disparity with the EOL type system, which permits the assignment of any data type to
an undeclared type variable using the var keyword. Therefore, we keep the flexibility of
the EOL program by resolving the type of p variable as Any.

For example, in Listing 4.13, the name of the first Author of the input model is
printed. All instances of Author with name attribute and all instances of Book with
edition attribute are required for running this part of the program.

Listing 4.13: EOL Example Code

1 var p = Author.all().first();

71



2 var t = Book.all().first();

3 p.name.println("Name: ");

4 p = t.edition;

5 p.println("Book edition: ");

In the first line of Listing 4.13, the first item of all instances of Author in the model is
assigned to p variable. As the type of p is undefined, the resolved type of p is considered
as Any. Hence, the condition in line 22 of Algorithm 4.1 is not satisfied, and the name
attribute of Author is not added to the effective metamodel in the first iteration.

Algorithm 4.1 handles this situation by considering possible (instead of precise) types
for variables and expressions. In lines 1-2 of Listing 4.13, according to lines 9-16 of
Algorithm 4.1, Author and Book EClasses are added to the effective metamodel. Then,
the name attribute is accessed by the program, but as the resolved type of p is Any,
it adds the name attribute to all EClasses that are already in the effective metamodel.
Hence, according to lines 8-9 in Algorithm 4.2, name will be added to the effective
metamodel for the Author and Book EClasses and the execution engine will load the
name of all instances of Project and the Author of all instances of Book into memory.
For edition attribute, it is the same, but because according to metamodel, there is no
edition attribute for the Author EClass, it is only added to Book EClass.

:EffectiveMetamodel

 name: book

 nsuri: http://book/1.0

:EClass

 name: Book

:EAttribute

 name: name

:EClass

 name: Author

features

eStructuralFeatures

allOfKind

allOfKind

eStructuralFeatures

:EAttribute

 name: edition
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Figure 4.11: Extracted effective metamodel for Listing 4.13

As shown in Figure 4.11, the effective metamodel includes an attribute which is not
necessary for running the program (name of Book ), but because of lack of information
before the execution and to be on the safe side, the execution engine loads more
information from the model. Loading more information and running the program is
preferable to loading less information than required at runtime.

An important note to consider is that according to the algorithm, when a property
is resolved as Any type, it is added to all classes already present in the effective
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metamodel. Therefore, if an EClass is added to the effective metamodel later, the
property will not be added to the new class. To ensure all classes in the effective
metamodel are treated the same, after extracting the effective metamodel, the algorithm
is applied again to make sure that Any typed properties are added to all effective
metamodel’s classes. If the effective metamodel remains unchanged after applying the
algorithm, it is safe to proceed. If it changes, the algorithm should be reapplied until no
further changes occur. As the time consumption of extracting the effective metamodel is
negligible, repeating the algorithm will not have a noticeable impact on the efficiency of
our approach.

4.7 Chapter Summary

This chapter focused on the role of static analysis and its significance in this research.
We began by introducing the concept of Abstract Syntax Tree and proceeded to explore
the development of the EOL static analyser. Our contributions to enhancing the Epsilon
framework’s static analyser were highlighted, including the incorporation of new features.
The evaluation of static analysers and a survey of similar tools in other programming
languages were also discussed. Furthermore, we introduced the concept of the effective
metamodel structure and detailed an algorithm to extract it from the EOL program—a
practical application of the static analyser within this thesis.

It is worth noting that the static analyser has been extended to support other Epsilon
languages, such as EVL and ETL, which are publicly available on the GitHub reposi-
tory 10. Chapter 5 utilizes the EOL static analyser, and in Chapter 6, we employ the EVL
static analyser.

The subsequent chapter will further investigate one of the main contributions of our
research, providing a clear understanding of how we leverage the effective metamodel to
load information from a database-backed model repository for executing EOL programs.

10https://github.com/epsilonlabs/static-analysis
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5 Partial Loading of Repository-Based Models

This chapter describes the design and implementation of an approach for partially
loading repository-based models. As discussed in Chapter 2, the scalability issue
in the current generation of model repositories is prominent (see Section 2.6). This
thesis hypothesizes that adding a partial loading feature to the execution engine of
model management programs can substantially enhance both loading time and memory
consumption efficiency.

To test this hypothesis, we present an approach for partial loading of large models
that reside in graph database-based model repositories, as these have demonstrated
superior performance compared to repositories supported by relational or document
databases [5, 6, 14]. This approach leverages sophisticated static analysis of model
management programs and auto-generation of graph (Cypher) queries to load only
relevant model elements.

This work offers two main contributions. Firstly, a novel algorithm is presented,
focused on the translation of a program’s effective metamodel into a set of graph
queries. These queries are optimized to retrieve only the specific elements, relationships,
and properties that the program is expected to interact with during its runtime. This
optimization can greatly enhance the efficiency of query execution.

Secondly, this research effort includes the development of a prototype implementa-
tion of the mentioned algorithms. The prototype leverages the Eclipse Epsilon family
of model management languages and integrates with the Neo4j graph database. This
implementation serves as a practical demonstration of the proposed methods and
algorithms, showcasing their applicability.

In this chapter, we begin by using a motivating example in Section 5.1 to explain the
challenges in more detail. We then discuss our proposed approach in Section 5.2. In
Section 5.3, we present the implementation of our approach while also discussing its
limitations. Section 5.4 reports the results of evaluating our approach compared to the
current state of the art, discusses these results, addresses potential validity concerns,
and finally, Section 5.5 concludes the chapter.

5.1 Motivating Example

As a motivating example, consider a model that conforms to a contrived Project Schedul-
ing Language (PSL), the metamodel of which is shown in Figure 5.1. According to the
PSL metamodel, each Project has a title and a description, and it consists of Tasks
and Persons. Tasks can be completed through automated means (AutomaticTasks) or
manually (ManualTasks). All Tasks have a title, but only ManualTasks have a duration
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and a start time. Also, each ManualTask specifies the Effort that different Persons in
the project will contribute to it (as a percentage of their time).

tasks [*]
Project

 title: String

 description: String 

Effort

 percentage: Int

Task

 title: String

Person

 name: String

people [*]

efforts [*]person

AutomaticTask

ManualTask

 start: Int 

 duration: Int 

Figure 5.1: PSL Metamodel

Consider a model that conforms to the PSL language (see Figure 5.1), and on which
we would like to print the number of people who contribute to each ManualTask. This
program could be written in a language such as the Epsilon Object Language (EOL)
(introduced in Chapter 2) as shown in Listing 5.1.

Listing 5.1: EOL program to print number of people who contribute to each task

1 for(task:ManualTask in ManualTask.all()){

2 task.title.print();

3 task.efforts.person.asSet().size().println();

4 }

In Listing 5.1, line 1 defines the task variable, and it goes through all instances of
ManualTask. In lines 2-3, the title of each task and the number of people who contribute
to each task are printed.

The program only accesses the title attribute and efforts reference of ManualTask,
the person reference of Effort and no other properties of the PSL metamodel. To
run this program against a repository-based model (e.g., stored in a database-backed
repository such as CDO or NeoEMF), the EOL engine uses the respective driver to fetch
all instances of model element types and properties of model elements on demand.

Therefore, as mentioned before, without using in-advance static analysis of the EOL
program, there is no way to tell before executing the program which features of the
required model elements should be retrieved from the repository. In this situation, the
two alternatives at runtime are to greedily fetch all properties and attributes of model
elements retrieved from the database or to lazily, which fetches attributes and references
on demand. The former strategy favours execution time over memory consumption,
while the second strategy requires less memory but potentially multiple round-trips to
the repository, which can be detrimental to performance.
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Considering Listing 5.1 that uses the title attribute and efforts reference of Manu-
alTask, the person reference of Effort and no other attributes or references, the two
strategies are sub-optimal:

• Greedy: When all instances of ManualTask are fetched in line 1, all their attributes
and references would be fetched too (including ManualTask.duration). As Manu-
alTask.duration is not accessed by the EOL program, fetching its value from the
repository and maintaining it in memory is wasteful.

• Lazy: Figure 5.2 shows how the EOL execution engine would interact with the
graph database using the lazy strategy. Using this approach, in line 1, only
skeletons of ManualTask elements would be initially fetched from the database by
ids. Then, in line 2, for each ManualTask, the program would need to go back to
the database and fetch the value of its title attribute. It is the same for retrieving the
efforts reference of each ManualTask. So, multiple round-trips to the repository to
fetch the values of the attribute or references of each model element are required,
which can be time-consuming.

Return ids of all ManualTask instances  

Request all instances of ManualTask

Ask for title of specific object using its id

Return the title for that specific id

Id = 1

{1,2,3,…,1000}

Graph 
Database

EOL program

Task 1

Figure 5.2: Lazy loading interaction with database

5.2 Architecture

The overall goal of this approach is to reduce the loading time and memory footprint of
repository-based models consumed by model management programs through static
analysis of said programs. In our approach, a static analyser can determine which
features or all instances of which specific types (e.g., ManualTask) are likely11 to be
accessed by the program in advance.

This information can be used to fetch a subset of the model from the database in
one go (e.g., populate the efforts reference of each ManualTask in one go, but leave out

11In some cases, the execution engine needs to load unnecessary model properties as well because of
a lack of information before the execution (see Section 4.6.2).
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the start attribute which is not required). Our expectation is that this approach will be
more efficient in terms of memory and time compared to the greedy and lazy strategies
described in the Background chapter.

In terms of concrete technologies, we use Neo4J as a graph-based model reposi-
tory12 and model management programs written in languages of the Epsilon platform—
but the approach is also applicable to other similar technologies (e.g., OrientDB13 and
OCL [41], ATL [27] or Acceleo14).

Neo4j has been selected as the backend for this approach due to its widespread
popularity and its integration into state-of-the-art solutions like NeoEMF and CDO.
Additionally, Neo4j’s features, including scalability, performance, and the graph-based
structure that closely mirrors the structure found in models, make it a suitable choice for
storing and retrieving models efficiently.

Also, there are two primary reasons for choosing Epsilon. First, Epsilon is an
open-source project, making it accessible and conducive to collaboration. We have the
capability to construct a static analyser that integrates effectively with our approach,
ensuring its efficacy. Second, Epsilon’s inherent extendibility is advantageous. By
initially implementing our approach for the Epsilon Object Language (EOL), we establish
a foundation that readily facilitates future extensions to languages like EVL, ETL and
other task-specific languages.

A high-level overview of our approach is presented in Figure 5.3. The main com-
ponents of this approach are represented in grey colour, and they are labelled with
numbers 1 to 3.

5.2.1 Static Analysis

In the first step of our approach (see Figure 5.3), a model management program and
the metamodels of the models it consumes are provided as input to a static analyser.
The static analyser computes the abstract syntax tree of the program. Then, resolution
algorithms, including variable resolution and type resolution, are applied to derive a
type-resolved syntax tree [50]. Using the type-resolved syntax tree, the static analyser
can extract relevant information (i.e., types and properties accessed by the program) as
explained in Chapter 4.

The output of the static analyser is an effective metamodel for every model accessed
by the program. The effective metamodel is a subset of the model’s original metamodel,
which consists only of types and properties that are likely to be accessed by the

12https://neo4j.com
13https://orientdb.org/
14https://www.eclipse.org/acceleo/
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Figure 5.3: The proposed approach

program [50] (see Section 5.2.2).
While static analysis supports multiple models (and therefore produces multiple

effective metamodels), in the remainder of the chapter, we will only consider programs
operating on one model (and, therefore, one effective metamodel). To illustrate how
every step of the approach works, we use the motivating example from Section 5.1.

In the first step of our approach, the static analyser sets the resolved types of
expressions to types from the respective metamodels or to primitive types (e.g., String,
Integer). For example, in line 1 of Listing 5.1, the resolved type of task variable is equal
to ManualTask. In line 2, the property call is supposed to print the title of each task.
The title is an attribute of task, and the resolved type is String. Then, line 3 accesses
task.efforts.person and task.efforts is a property call where the target of this call is a
model element (ManualTask) and the feature which is called is efforts. In this case,
efforts is a reference of ManualTask of Effort type. Table 5.1 shows the resolved types
of expressions which are extracted from Listing 5.1 by the static analyser.

5.2.2 Effective Metamodel Computation

The second step of the approach is the extraction of the effective metamodel of the
model consumed by the program, which is based on the program’s type-resolved
abstract syntax tree. In Chapter 4, we introduced the concept of the effective metamodel
and presented the algorithm used to extract it. The effective metamodel contains only
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Table 5.1: Resolved Types Calculated by the Static Analyser

Line number in Listing 5.1 Expression Resolved Type

1 task Model Element (ManualTask)

1 ManualTask.allInstances() Operation call expression (Sequence<ManualTask>)

2 task.title Property call expression (String)

2 task Model Element (ManualTask)

3 task.efforts.person.size() Operation call expression (Integer)

3 task.efforts.person Property call expression (Sequence<Person>)

3 task.efforts Property call expression (Sequence<Effort>)

3 task Model Element (ManualTask)

attributes and references that are necessary for executing the program from which it is
extracted.

Figure 5.4 illustrates the effective metamodel extracted from the EOL program in our
motivating example (Listing 5.1).

:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: ManualTask :EClass

 name: Effort

:EClass

 name: Person

:EReference

 name: efforts

:EReference

 name: person
features

eS
tru

ct
ur

al
Fe

at
ur

es

allOfKind

types

eStructuralFeatures

types

:Attribute

 name: title

Figure 5.4: Effective metamodel of the EOL program shown in Listing 5.1

In Figure 5.4, the attributes of the EffectiveMetamodel class are filled by the original
metamodel, which is the name and the nsuri of the metamodel. For running the EOL
program, all instances of ManualTask must be loaded. The ManualTask class is added
to the EffectiveMetamodel under the allOfKind reference. The title attribute of task is
also added to the EffectiveMetamodel.

The efforts reference of ManualTask is also required (line 3 of Listing 5.1), hence, it
is added to ManualTask as an EReference. The resolved type of the efforts reference is

79



equal to Effort (see Table 5.1), so the Effort EClass is added to effective metamodel
using the types reference and the Person EClass is added to the effective metamodel
using the types reference.

5.2.3 Query Generation

Mapping EMF Models to Graph Databases

In this work, we are concerned with the efficient management of models that reside in
graph-based model repositories as these have been shown to outperform model reposi-
tories backed by relational/document databases [6, 14]. A state-of-the-art graph-based
model repository is NeoEMF, which enables the persistence of EMF-based models in
Neo4J graph databases (among others). Our first attempt was to implement our efficient
model loading approach on top of NeoEMF; however, the framework cannot support
partial model element loading without a significant amount of refactoring. Therefore, we
chose to implement a custom mapping of EMF models to Neo4J databases, which we
discuss in this section.

Figure 5.5 shows a model which conforms to the PSL metamodel in Figure 5.1. The
project named as “ACME” consists of three tasks: “Design” is a ManualTask which has
to be completed by Bob (40% effort) and Alice (60% effort); “Implementation” is also a
ManualTask equally split among Alice and Bob (50% each) and “Meeting organisation”,
which is an Automated Task.

In order to map EMF-based models such as this one to a Neo4J graph, we use the
mapping strategy illustrated in Figure 5.6. Using this strategy, every model element is
mapped to a Node in the graph, and the properties of the node are set to the values
of the attributes of the element. For example, in Figure 5.6, ACME is an instance of
Project in the model, which has a title attribute. Hence, a corresponding node is created
in the graph, and the title property of the node is set to ACME. For Design, which is an
instance of ManualTask, its duration and start attributes are copied to the respective
node.

In Neo4j graphs, nodes can have labels. In our approach, the label of each node
is set to the type of the respective model element and its super types. Thus, in
Figure 5.6, the label of ACME is set to Project and the labels of Design are set to Task
and ManualTask. As the labels of nodes are unordered, to understand which label
corresponds to the exact type of the node, we can load all labels of each node and, by
using the structure of the metamodel, find the exact type of node. However, it is more
efficient to connect each node to another node that has the name of its type, using an
instanceOf edge to capture the type of the node. In Figure 5.6, there is an Edge in
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:Project

 title = ACME

: ManualTask

 title = Design

 start = 1

 duration = 3 

:ManualTask

 title = Implementation

 start = 7

 duration = 6 

:AutomatedTask

 title = Meeting organisation

:Effort

 percentage = 60

:Effort

 percentage = 50

:Effort

 percentage = 50

:Person

 name = Alice

:Person

 name = Bob

:Effort

 percentage = 40

Figure 5.5: PSL model of the ACME project

the graph which connects the created node to the Project node to capture the type of
the node and an edge which connects the Design node to ManualTask. Algorithm 5.1
describes the mapping process in detail.

Model Loading

In the third step of our approach, we wish to generate queries in Neo4J’s Cypher query
language that will fetch (1) only the part of the model that conforms to the effective
metamodel extracted in step 1 and (2) do this as efficiently as possible (after statically
analysing the program and identifying the part of the model it is likely to access at
runtime in the form of an effective metamodel).

Cypher15 is a language for querying Neo4j databases. Hence, by generating Cypher
queries based on the effective metamodel, EOL’s execution engine will be able to load
the required parts of the model for running the program.

In Section 2.5.2, we discussed the subject of Cypher expressions. To facilitate a
clear understanding of these concepts, the expressions used for loading information in
our approach have been listed in Table 5.2 (with var representing variables). This table
serves as a reminder and reference for the discussed concepts.

The first column of Table 5.2 lists the Cypher expressions, the second column is

15https://neo4j.com/developer/cypher/
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:Project

 title = ACME

: ManualTask

 start = 1

 title = Design

 duration = 3 

:Person

 name = Bob

:Effort

 percentage = 40

 Node ID = 1  
 Label: Project 

 Node properties:  
  title: ACME 

task task

effort

person

instanceOf

instanceOf

instanceOf

instanceOf

effort

person

 Node ID = 3 
 Label: Effort 

 Node properties:  
  percentage: 40 

 Node ID = 4 
 Label: Person 

 Node properties: 
  name: Bob 

 Node ID = 5  
 Node properties : 

  name: Project 

 

 Node ID = 7  
 Node properties: 

  name: Effort 

 Node ID = 8 
 Node properties: 

  name: Person 

Map

Map

Map

Map

Node ID = 2 
 Label: Task, ManualTask 

 Node properties :
  title: Design, start: 1,  

duration: 3

 Node ID = 6 
 Node properties: 

  name: ManualTask

Figure 5.6: Mapping the model of Figure 5.5 into a Neo4J graph

Table 5.2: Cypher Expressions

Cypher expression Pattern Functionality

MATCH (var: label of node) loading all nodes with the same label

OPTIONAL MATCH (var:source node)- [var:edge ]->(var:target node) return the target node of matched edge

RETURN node.property return the specific property(ies) of the matched nodes

the pattern that each expression follows, and the third column is the functionality of the
expression. Using these three expressions, the queries of Listing 5.2 are generated
based on the effective metamodel in Figure 5.4.

Considering the effective metamodel in Figure 5.4, all instances of ManualTask are
required for running the program (EOL code in Listing 5.1). Hence, all nodes with the
ManualTask label should be loaded. The MATCH keyword matches all nodes with
the specified label in the graph. The generated query in line 1 of Listing 5.2 loads all
ManualTask nodes.

Listing 5.2: Generated Cypher Queries According to Effective Metamodel in Figure 5.4
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Algorithm 5.1 EMF Model to Graph Conversion Algorithm
1: let visitedElements = keep the EMF model elements with corresponding nodes
2: let source = Node, target = Node, newNode = Node
3: for all model elements of EMF model do
4: let ME = model element
5: if visitedElements.contains(a node corresponding to ME) then
6: source←node
7: else newNode = CreateNode(ME)
8: setNodeProperties(newNode,ME.attributes)
9: newNode.labels.add(ME.type.name)

10: for all supertypes of ME.type do
11: newNode.labels.add(supertype.name)
12: visitedElements.add(newNode)
13: source←newNode
14: for all ME.references do
15: if visitedEl.contains(reference.value) then
16: target←visitedElements.get(reference.value)
17: else newNode = CreateNode(reference.value)
18: setNodeProperties(newNode,reference.value.attributes)
19: visitedElements.add(newNode.labels)
20: target←newNode
21: Edge e = CreateEdge(source, target)
22: e.name = reference.name

1 MATCH (task:ManualTask)

2 RETURN ID(task), task.title

3 OPTIONAL MATCH (task:ManualTask)-[taskins:instanceOf]->(taskType)

4 RETURN taskType.name

5 OPTIONAL MATCH (task:ManualTask)-[effortRefTask:effort]->(effort:Effort),(effort)-[effortins:

instanceOf]->(effortType)

6 RETURN ID(effort), effortType.name

7 OPTIONAL MATCH (effort:Effort)-[personRefEffort:person]->(person:Person),(person)-[personins:

instanceOf]->(personType)

8 RETURN ID(person), personType.name

After matching all ManualTask nodes, the id of each task has to be loaded in order
to distinguish between different ManualTask instances. Line 2 shows the Return query
to fetch the id and the title attribute of ManualTask nodes from the database.

Beyond the ID, the exact type of ManualTask instances is also needed, which
is specified by the “instanceOf” edge. In the case of references, the MATCH and
OPTIONAL MATCH expressions are used to match the edges of the source node and
return the respective target nodes. Using MATCH is a strict condition, and if there are
no matches in the database, the query will not return any results. With OPTIONAL
MATCH on the other hand, if there is no match, the query will be run and “null” will be
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returned as a value of the edge that is not matched. Hence, OPTIONAL MATCH is a
better fit for matching the references of each node. The query for requesting the type of
ManualTask nodes is shown in line 3, and the name property of taskType is returned
using the RETURN expression in line 4.

One reference of ManualTask instances is required according to the effective meta-
model. The efforts reference is an edge between ManualTask and Effort nodes, and the
query in line 5 matches this reference. In lines 6-7, the instanceOf reference is matched
to find the type of the Effort node. According to the effective metamodel, attributes of
Effort are not required, so only the ids and types of Effort nodes are returned in line 6.

The person reference and the instanceOf reference of Effort are matched in line 7,
and the query that returns the id and type of Person is shown in line 8.

Query Optimisation

The goal of our approach is to reduce the number of database hits and load as much
information as possible in each access to the database to minimise the overall execution
time. The Neo4j documentation16 offers some recommendations to reduce the execution
time of Cypher queries. We have applied some of them to optimise the automated query
generation in our approach.

• Using Labels: Nodes are labelled by the type and super types of their correspond-
ing model element. These labels are then used by generated queries to efficiently
match nodes of different types.

• Avoid Cartesian Products: If two different node labels without any relationships
between them are matched in a Cypher query, it is considered as a disconnected
pattern. Generating a query for disconnected patterns will build Cartesian products
between two node types, which would not be efficient as it will return a number
of records that are not necessary for executing the program. For example, con-
sidering the PSL metamodel (Figure 5.1), there is no relationship between nodes
with AutomatedTask and Person labels. So, in Listing 5.3, Neo4j matches each
AutomatedTask node with all Person nodes. Suppose that the number of nodes
with AutomatedTask label is equal to m and the number of nodes with Person
label is equal to n. The number of returned records from the database will be
equal to n*m. However, if Listing 5.3 is separated into two MATCH clauses, then
the number of records will be (n+m), which is more efficient.

16https://neo4j.com/blog/tuning-cypher-queries/
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Listing 5.3: Query Generating Cartesian Products

1 MATCH (autoTask:AutomatedTask), (p: Person)

2 RETURN autoTask.title, p.name

Thus, we consider a trade-off between generating fewer queries and avoiding
Cartesian products. In our approach, MATCH clauses are generated for allOfKind
types in the effective metamodel. This is efficient as in each MATCH clause, the
label of each node will be matched and then all required properties and references
of a node in the effective metamodel will be returned. Considering the generated
queries in Listing 5.2, there are three MATCH clauses that are related so they
can be combined in one query for efficiency. The combined query is shown in
Listing 5.4.

Listing 5.4: Optimised queries of Listing 5.4

1 MATCH (task:ManualTask)

2 OPTIONAL MATCH (task)-[taskins:instanceOf]->(taskType),(task)-[effortRefTask:effort]->(

effort:Effort),(effort)-[effortins:instanceOf]->(effortType),(effort)-[

personRefEffort:person]->(person:Person), (person)-[personins:instanceOf]->(

personType)

3 RETURN ID(task), task.title, taskType.name, ID(effort), effortType.name,ID(person),

personType.name

• Reduce Cardinality: Since nodes are labelled by the type of their respective
model element and its super types, the results of some queries can overlap. For
example, in Listing 5.5, all nodes with Task and ManualTask labels are matched,
and the titles of matched nodes are returned. Considering the part of the graph
in Figure 5.7, the nodes returned in line 2 are “Design”, “Implementation” and
“Meeting organisation” nodes since they are labelled as Task. The titles of the
nodes that are returned in line 4 are “Design” and “Implementation” nodes which
are ManualTask-labelled nodes. The “Design” and “Implementation” nodes are
returned twice (in lines 2 and 4). This redundancy is because of querying two
classes (Task and ManualTask ) that have an inheritance relationship. Therefore, it
is more efficient to execute only the first query in lines 1-2, which covers all nodes
that are loaded by both MATCH clauses.

Listing 5.5: Queries with Overlap

1 MATCH (task:Task)

2 RETURN task.title

3 MATCH (manualTask:ManualTask)

4 RETURN manualTask.title
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 Node ID = 1  
 Label: Project 

 Node properties:  
  title: ACME 

task
Node ID = 2 

 Label: Task, ManualTask 
 Node properties :

  title: Design, start: 1,  
duration: 3 Node ID = 3 
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 Node properties :

  title: Implementation, 
 start: 7,  
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Node ID = 4 
 Label: Task,
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 Node properties :

  title: Meeting
organisation

task

task

Figure 5.7: A part of graph model

Algorithm 5.2 generates Cypher queries automatically based on the effective metamodel.

Algorithm 5.2 Cypher Queries Generation (1 of 2)
1: let EM = calculated effective metamodel
2: for all EClass in EM.allOfKind do
3: let matchString = ””;
4: let visitedClasses = Set of EClasses
5: let optionalMatch = Set<String>
6: let return = Set<String>
7: matchString←EClass.name
8: return.add(EClass.id)
9: return.add(EClass.getReference(instanceOf ).name)

10: Call HANDLEFEATURES (EClass)
11: let query =“”
12: query← “MATCH”+ query
13: for all item in match array do
14: query←item + ”,”
15: query← “OPT IONALMATCH”+ query
16: for all item in optionalMatch array do
17: query←item + ”,”
18: query← “RETURN”+ query
19: for all item in return array do
20: query←query + item + ”,”

There are three collections to record MATCH clauses, OPTIONAL MATCH clauses
and RETURN clauses in Algorithm 5.2. In lines 1-9, these three collections are filled,
and in lines 10-19, the query is generated by combining these clauses together using
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the appropriate Cypher expressions. One query for each EClass is generated where all
instances of that class are required by the program.

In line 2, the classes that are under the allOfKind reference in the effective metamodel
are considered by Algorithm 5.2. In line 7, the variable definition for the EClass is added
to matchString, and the ID of the matched node is added to the return collection (lines
7-8). In line 9, the HANDLEFEATURES procedure is called to handle the features of
the EClass. In Algorithm 5.3, which shows the HANDLEFEATURES procedure, each

Algorithm 5.3 Cypher Queries Generation (2 of 2)
1: procedure HANDLEFEATURES(EClass)
2: visitedClasses.add(EClass)
3: for all features in EClass.eStructuralFeatures do
4: if IsAttribute(feature) then
5: return.add(feature)
6: else if IsReference(feature) then
7: let type = reference.type
8: return.add(reference.target.id)
9: optionalMatchString← (EClass.name)− [re f erence.name]→ (type)

10: if not visitedClasses.contains(type) and not allOfKind.contains(type) then
11: handleFeatures(type)

attribute of the EClass is added to the return collection (in lines 4-5). To follow the
references of nodes in the graph, an OPTIONAL MATCH pattern is needed. So, in
lines 6-9, an OPTIONAL MATCH pattern is created and added to the optionalMatch
collection. The OPTIONAL MATCH pattern matches edges that have the same name
as the reference of the EClass and it connects the matched node to the target nodes (it
is kept in the type variable).

As discussed in Section 5.2.3, it is more efficient to generate one query and load all
relevant information in one go. So, in lines 10-11, the HANDLEFEATURES method is
called on type to follow the features of the target node. Thus, Algorithm 5.3 uses this
recursive method to load a sub-graph that consists of the nodes and their properties
and edges.

This recursive call returns when a cycle is found or when there are no further
references to follow. In line 2 of Algorithm 5.3, the visitedClasses is a collection to keep
track of visited classes. So if a type is visited once, it will not be visited again according
to the if condition in line 10 to avoid infinite loops.

After handling all features in Algorithm 5.3, the query is generated for the EClass,
and then the process is repeated for the next EClass under the effective metamodel’s
allOfKind reference. The result returned from the database after executing the generated
query is shown in Table 5.3.
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Table 5.3: Result for the Execution of Generated Query in Listing 5.4

ID(task) task.title taskType.name ID(effort) effortType.name ID(person) personType.name

2 ”Design” ”ManualTask” 10 ”Effort” 9 ”Person”

2 ”Design” ”ManualTask” 12 ”Effort” 7 ”Person”

6 ”Implementation” ”ManualTask” 13 ”Effort” 7 ”Person”

6 ”Implementation” ”ManualTask” 14 ”Effort” 9 ”Person”

After retrieving information from the database, this information is used by the execu-
tion engine to run the EOL program.

5.3 Implementation

In our initial efforts, we aimed to develop an efficient model-loading approach using
NeoEMF as the underlying framework. However, we faced a notable challenge: the
framework itself does not support the selective loading of specific element properties
from a model. This limitation would have required substantial refactoring efforts to
overcome.

Therefore, we implemented our approach by connecting directly to the Neo4J
database and using cypher queries to retrieve data from the database. Our hypothesis
was that loading the required attributes and references in one go (partial loading)
works better than loading all attributes and references in one go (greedy) because of
loading less information. This hypothesis also performs better than the lazy approach,
which only loads the necessary attributes and references with multiple round trips to
the database (because of fewer trips to the database). So, to evaluate this hypoth-
esis, we ran experiments using the Twitter dataset17, which is available as a large
standard dataset on the Neo4j website. In the experiment, we tried to load name and
screen name of all Twitter users using three loading approaches.

The first query, as shown in Listing 5.6, loads all Twitter Users from the database.
We required only name and screen name, but the greedy approach works regardless of
which attribute or references are required. Therefore, all users with all information will
be returned.

Listing 5.6: Retrieving data using greedy approach

1 "MATCH (u: User) RETURN u"

17https://github.com/neo4j-graph-examples/twitter-v2
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In the second query (Listing 5.7), the name and screen name attributes are loaded
using lazy loading. First, all users are returned by their id. Then, for each object, a
query is run to get the specific attribute of the object.

Listing 5.7: Retrieving data using lazy approach

1 "MATCH (u: User) RETURN u.identity As id";

2 For every object {

3 "MATCH (u: User) where u.identity =" + object.id + "RETURN a.name AS name");

4 "MATCH (u: User) where u.identity =" + object.id + RETURN screen_name AS scname");

5 }

The third query is using the partial approach. This query matches all users and
returns the two necessary attributes that are required in only one query.

Listing 5.8: Retrieving data using partial approach

1 "MATCH (u: User) RETURN a.name AS name, screen_name AS scname");

2 get("name");

3 get("scname");

The results depicted in Figure 5.8 validate the time-saving benefits of partial load-
ing. This advantage stems from a reduction in database queries and the amount of
information being loaded. Consequently, an effective approach involves minimizing
query numbers while maximizing the data loaded per transaction. The positive
outcomes of this experiment provide strong support for our initial hypothesis, reinforcing
our decision to adopt this strategy when working with Cypher and Neo4j.

Figure 5.8: Testing different approaches on Neo4J

5.3.1 Epsilon Implementation

In this approach, in terms of technical work, we consider a new type of model in Epsilon
as Neo4j model which extends the EMF model class in Epsilon and overrides the load()
function. Figure 5.9 illustrates the sequence of activities in load() function.
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:Neo4jModel :QueryHandler

Neo4j driver

:Neo4jJavaAPI

initiate a new connection

generate query (efMM)

queries[]

run(queries[])

query result

:EMFModel

created resource from query result

:Configuration:EffectiveMetamodelExtractor

Extract effective metamodel (EOL program)

efMM: Effective metamodel

setConnection (databaseSpecification)

setEffectiveMetamodel(efMM)

Figure 5.9: Sequence diagram of the implementation of load() function in Neo4j model

In the first step, the configuration class sends the EOL module to effectiveMetamod-
elExtractor to extract the effective metamodel and send it back to the configuration.
After that, the effective metamodel and database specification (includes information
such as the name of a database or database path), which is set by the user, is set for
Neo4jModel. We use the Neo4j Java API in order to connect to the Neo4j database
and retrieve the required data from the graph. Hence, the Neo4jModel class sends a
request to the API for creating a new connection. The Neo4j API returned a driver as a
result, which confirms that the connection is initiated. Then the effective metamodel,
which is set in the Neo4J model from the configuration, is sent to QueryHandler to
generate queries based on Algorithm 5.2 and Algorithm 5.3. The generated queries
are returned to Neo4jModel. Neo4jModel sends the queries to API, which is capable
of running them and sending the result to Neo4jModel in the forms of records. In the
last step, Neo4jModel create EObjects from records to make it compatible with EMF.
Neo4jModel creates a resource using the created EObjects, and the program will be
run using the EMF resource.

5.3.2 Limitations

There are two noteworthy limitations in our proposed approach. First, our approach is
limited to read-only input models of model management programs. Changing models
(updating, deleting or adding model elements) is not supported in our approach. Also,
our prototype implementation does not attempt dead code elimination, which means
that the extracted effective metamodel can contain types and features that may never
be accessed at runtime.
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5.4 Evaluation

In this section, we report on the results of experiments that measure the performance of
our approach against that of NeoEMF. We have chosen NeoEMF because it outperforms
other repositories [14]. NeoEMF follows the lazy loading strategy.

We evaluated our approach on a system using Java VM 14.0.1 with Intel(R) Core(TM)
i7, 16GB memory and CPU @ 2.80GHz running Mac OS X Catalina.

For our experiments, we have used the models proposed in the GraBaTs 2009 con-
test [45]. The models conform to an Ecore-based metamodel of the Java programming
language and have been reverse-engineered from open-source Java projects. There
are five XMI models, from Set0 to Set4, each one larger than its predecessor (from a
8.8MB XMI file with 70447 model elements representing 14 Java classes to a 646MB

file with 4961779 model elements representing 5984 Java classes). We produced Neo4j
graphs from the Grabats XMI files and saved them in Neo4j (version 4.4.3) embedded
databases.

For our experiments, we ran the EOL programs against Set0-Set4 graphs in the
database using our approach and NeoEMF. During these experiments, we measured
both the execution time and memory consumption. It is important to note that the
execution time considered in our measurements includes not only the time it takes for
the program to execute but also the loading time. Therefore, the total execution time
comprises the loading time and the time taken for the program to execute.

Two test cases were considered to evaluate our approach compared to NeoEMF
using the GraBaTs dataset. The first test case consists of five programs that utilize
20%, 40%, 60%, 80% and 100% of each model, as used in the work by Wei et al. [51].
The second test case involves a query known as the GraBaTs query. The results were
computed after five warm-up iterations and represent the average over 10 executions of
the program.

5.4.1 Experiment 1: Model percentage

We used five EOL programs for each model from [51], each utilizing specific percentages
(20%, 40%, 60%, 80%, and 100%) of the GraBaTs models, and evaluated their perfor-
mance. The results, depicted in Figure 5.10, consistently demonstrate the superiority
of our approach over NeoEMF across all models, irrespective of the percentage of the
model utilized by the program.

Notably, as illustrated by the slope of the line, our approach exhibits increasingly
pronounced advantages as the size of the model grows, showcasing its exceptional
efficiency in handling large models.
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Figure 5.10: Performance comparison of our approach and NeoEMF

In Set0, we observed a substantial improvement in execution time, ranging between
74-75%, and a notable enhancement in memory consumption, with improvements
ranging from 65-83%.

In Set 2, we observed a substantial improvement in execution time, ranging between
approximately 93-94%, indicating the remarkable efficiency of our approach compared
to the NeoEMF framework. Additionally, there was a notable improvement in memory
consumption, with enhancements ranging from approximately 69-85%.

In Set 3, we observed a significant improvement in execution time, ranging between
approximately 95-96%, underscoring the substantial efficiency gains achieved by our
approach compared to NeoEMF. Furthermore, there was a notable enhancement in
memory consumption, with improvements ranging from approximately 74-76%.

In Set 4, we observed a considerable improvement in execution time, ranging
between approximately 95%, demonstrating the significant performance improvements
realized by our approach over NeoEMF. Additionally, there was a notable enhancement
in memory consumption, with improvements ranging from approximately 73-85%.

The most significant improvement was recorded for running the program using the
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60% of Set 3, boasting a remarkable 96% improvement.

5.4.2 Experiment 2: Grabats query

We have also implemented a query in the Epsilon Object Language (EOL) inspired by
one of the Grabats test cases18. This query, shown in Listing 5.9, finds all classes that
declare public static methods whose return type is the containing class itself.

Listing 5.9: EOL implementation of Grabats query

1 model Core driver Neo4j {nsuri = "org.amma.dsl.jdt.core"};

2 model DOM driver Neo4j {nsuri = "org.amma.dsl.jdt.dom"};

3 model PrimitiveTypes driver Neo4j {nsuri = "org.amma.dsl.jdt.

primitiveTypes"};

4 var matches:Set;

5 matches.addAll(

6 TypeDeclaration.all.collect(td: TypeDeclaration|td.bodyDeclarations.

select(

7 md: MethodDeclaration|

8 md.modifiers.exists(mod: Modifier|mod.public==true)

9 and

10 md.modifiers.exists(mod: Modifier|mod.static==true)

11 and

12 md.returnType.checkName(td)

13 ))

14 .flatten()

15 .collect(names:MethodDeclaration|names.returnType.name.

fullyQualifiedName)

16 );

17 matches.size().println();

18

19 operation Type checkName(td : TypeDeclaration) : Boolean{

20 if (self.isTypeOf(SimpleType)){

21 var st : SimpleType;

22 st = self;

23 return (st.name.fullyQualifiedName == td.name.fullyQualifiedName);

24 }

25 else

26 return false;

27 }

For our experiments, we ran the EOL program against Set0-Set4 graphs in the
database using our approach and NeoEMF. During these experiments, we measured

18http://https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=
GraBaTs_2009_Case_Study
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both the execution time and memory consumption. The results are shown in Table 5.4.

Table 5.4: Experiment Results

Our Approach NeoEMF

Model Execution Time (s) Execution Memory (MB) Execution Time (s) Execution Memory (MB)

Set0 (70447 model elements) 8.1 108 5.7 319

Set1 (198466 model elements) 8.3 118 9.5 656.2

Set2 (2082841 model elements) 12.2 210 61.5 2537.5

Set3 (4852855 model elements) 37.3 232.8 114.6 3718

Set4 (4961779 model elements) 41.5 318.1 126.4 2987.2

For instance, for Set1, it takes 8.3 s and 118MB of memory to run the Grabats query
using our approach while for NeoEMF, the average time is equal to 9.5 s and the memory
consumption is 656.2MB which is about 5.5 times higher than our approach. The most
significant difference in memory usage is in Set3, where the memory footprint of our
approach is 93% lower than NeoEMF.

On average, using our approach, memory consumption is lower by 84%, and the
execution time is lower by 37% compared to NeoEMF.
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Figure 5.11: Execution time comparison of our approach and NeoEMF

The charts illustrated in Figures 5.11 and 5.12 show the linear behaviour of our
approach and NeoEMF. In Figure 5.11, in the Set0 model, as the model is not very large,
the overhead of effective metamodel extraction and loading data from the database
in our approach is not compensated at runtime and the execution time is better for
NeoEMF.
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Figure 5.12: Memory comparison of our approach and NeoEMF (logarithmic scale)

As the size of the model grows, the slope of the diagram is greater in NeoEMF
compared to our approach, which means our approach is more efficient in terms of
execution time. The highest percentage of time-saving is 74% for Set2.

In Figure 5.12, both approaches have linear behaviour, and our approach consumes
less memory compared to NeoEMF. From Set0 to Set4, as the size of the model
increased, the memory consumption grew in two approaches.

Regarding correctness, we validated all models by executing each program with two
approaches (our approach and NeoEMF) and verified that the output produced by all
execution pairs is equivalent. Table 5.5 shows the generated output of Grabats query
using our approach and NeoEMF. It is worth noting that the output remains consistent,
even as we optimize memory and time usage, signifying that these optimizations do not
alter the program’s behaviour.

Generated Output

Model Our approach NeoEMF

Set0 1 1

Set1 2 2

Set2 38 38

Set3 150 150

Set4 159 159

Table 5.5: Generated output of Grabats query with different loading approaches
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5.4.3 Discussion

In our approach, we pre-load all necessary information before executing the program,
allowing the execution engine to run the program using the data already available
in memory. In contrast, NeoEMF initially loads only object IDs before execution and
retrieves the required data while the program is running.

Therefore, in our approach, loading time tends to be the more time-consuming com-
ponent, but program execution is fast (due to the availability of all required information in
the memory). This contrasts with NeoEMF’s lazy loading approach, where the execution
of the program is the time-consuming part, as the required data are fetched during
program execution.

Figures 5.13 and 5.14 display 10 iterations of program execution using each model.
While the previous section discussed the total execution time, these figures provide

a more detailed breakdown of loading and execution times.
In Set0, the blue line demonstrates the loading time in our approach, which, as

expected, exceeds the execution time (depicted by the orange line). On the other
hand, the yellow line that shows the execution time in NeoEMF is longer compared to
the loading time (grey line). As the model is not very large, the overhead of effective
metamodel extraction and loading data from the database in our approach is not
compensated at runtime, resulting in better end-to-end execution time for NeoEMF.

In Set1, as the model size expands, we observe an increase in loading time in
our approach while the execution time remains relatively low. In contrast, NeoEMF
experiences a situation where execution time surpasses loading time. Consequently,
the overall execution time, which encompasses loading time and execution time, is
higher for NeoEMF due to the longer total execution time.

For Set2, Set3 and Set4, the situation remains the same. With larger model sizes,
the requirement for elements essential for program execution grows. Consequently,
NeoEMF requires an increased number of trips to the database, contributing to longer
execution times. In contrast, loading times in our approach also increase with the
growing model size, but as depicted in the charts, the rate of increase in loading time for
our approach is less steep compared to the execution time of NeoEMF.

5.4.4 Threats to Validity

We limit construct validity threats by considering big models from the widely used
GraBaTs 2009 contest [45] that conform to the Grabats metamodel. The results
reported in this chapter consider these test cases.

We limit internal validity threats by reporting results after executing 5 warm-up
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Figure 5.13: Ten iterations execution result
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Figure 5.14: Ten iterations execution result

iterations of the program, thus reducing the potential impact on memory and execution
time of starting and initialising the JVM.
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We reduce external validity threats by building our approach atop mature and robust
MDE technologies, including the Epsilon suite of model management programs and the
Neo4j graph database. As discussed in Section 5.2, extending our approach to support
other technologies is relatively straightforward with modest effort. However, more
experiments are required to establish the applicability and scalability of our approach in
domains and metamodels/models with characteristics different from those used in our
experimental evaluation.

5.5 Chapter Summary

In this chapter, we introduced the first contribution of this thesis: a method for partially
loading repository-based models. This method relies on insights gained from analyzing
model management programs statically.

We began by presenting an example in Section 5.1 to illustrate the idea, followed by
a detailed explanation of the method’s architecture using algorithms. We also discussed
how the method is implemented and acknowledged its limitations.

To validate the effectiveness of our approach, we conducted evaluation experiments
using large models from the Grabats test suite. The results demonstrate that our ap-
proach can notably reduce the time and memory required to run model management
programs on repository-based models. This efficiency is achieved when the program
only interacts with a specific subset of the model’s elements without altering the pro-
gram’s overall behaviour or its output. Consequently, our thesis hypothesis stands
validated, affirming that partial loading significantly impacts the performance of the
execution engine.
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6 Partitioning of XMI Models

When dealing with large file-based models, such as those serialized in XMI format,
issues related to scalability arise during the validation of these models. As explored
and demonstrated in the Background chapter, the default XMI parser in EMF loads the
entire model into memory, even parts of the model that remain unused by the program.
This inefficient process results in wasted memory and can lead to execution failures
when the model’s size exceeds the available heap memory, rendering it impossible to
run the program on a single machine.

Similar problems arise when attempting to execute constraints in parallel within a
distributed setting. In this scenario, all constraints are spread across multiple machines,
and each machine loads the entire model, regardless of which constraints they are
assigned to execute. This results in inefficient model loading and validation within the
execution engine, leading to longer model loading times and unnecessary memory
usage on each machine.

We introduced a partial parser for XMI models in Section 2.5, enabling model
management program execution engines to load only the necessary parts of the models,
thus accommodating larger models. However, the same problem may still arise if the
available heap memory is insufficient to allocate even the required model elements
for validation. Thus, our hypothesis suggests that in addition to partial loading, the
incorporation of partitioning functionality offers further enhancements. By dynamically
loading and unloading data during execution, partitioning contributes to the overall
improvement of the execution engine’s performance.

In this chapter, we introduce an approach to enhance the performance of execution
engines when handling the validation of large XMI models. By utilizing static analysis
and prior knowledge about the program, our proposed approach divides the constraints
into groups. The execution engine incorporates a partial XMI parser, allowing it to
selectively load the relevant parts of the model expected to be accessed by each group.
Moreover, the execution engine can discard model parts that are no longer referenced
by the program, freeing up memory for the ongoing execution. Applying the proposed
approach, execution engines of validation programs can handle large models more
efficiently. The use of static analysis allows for better resource allocation, thus reducing
unnecessary memory consumption for loading and validating models.

Section 6.1 provides an explanation of the challenges of interest through a motivating
example. In Section 6.2, the proposed approach is presented and discussed in detail.
The implementation of this approach is elaborated upon in Section 6.3, where we
also acknowledge the limitations associated with our approach. Section 6.4 reports
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on the results of the evaluation of this work, and finally, Section 6.5 summarises the
contributions of this chapter.

6.1 Motivating Example

Figure 6.1 shows the metamodel of a simplified component-connector language, which
is used as a motivating example in this chapter. The metamodel has a Component class
which has a name and consists of ports, which is shown by a containment reference
from Component to the Port class. Each Port has a name and a type. Also, it has
a reference to its Component. There are two types of Ports, InPort and OutPort that
are connected to each other by a Connector. The source of a Connector is always an
OutPort of a Component, and the target of Connector is an InPort.

Component

 name: EString

OutPort
Port

 name: String

 type: String

ports [*]

Connector

source target
component

incoming
[*]

outgoing
[*]

InPort

Figure 6.1: Component Language Metamodel

Component "X"

Component "Y"

OutPort

InPort

Figure 6.2: Sample model that conforms to the metamodel of Figure 6.1

Consider a model that conforms to the Component language (a Component diagram
is shown in Figure 6.2), which we would like to validate with additional constraints. In
this work, we have selected Epsilon’s EVL language due to specific reasons we have
addressed in Chapter 3. Nevertheless, it is worth noting that the proposed approach is
applicable to various other types of validation languages as well. Listing 6.1 contains
the constraints expressed in EVL.

Listing 6.1: EVL constraints to validate Component Language instances

1 context Component {
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2 constraint hasValidName {

3 check: self.name = self.name.ftuc()

4 message: self.name + " should start with an upper-case letter"

5 }

6 constraint hasUniqueName {

7 check: Component.all.select

8 (c:Component|c.name = self.name).size() == 1

9 message: "Duplicate component name" + self.name

10 }

11 }

12 context Connector {

13 constraint portTypesMatch {

14 check:self.source.type=self.target.type

15 message:"The types of the source and target ports don’t match"

16 }

17 }

The first constraint (hasValidName) checks that the name of each Component
should start with an upper case letter (using EVL’s ftuc()19 method), while the second
one (hasUniqueName) makes sure that Component names are globally unique. The
third constraint (portTypesMatch) checks that the types of two Ports connected by a
Connector are the same.

According to Listing 6.1, the information that is required for executing the hasValid-
Name constraint is the name attribute of all instances of Component in the model. The
hasUniqueName constraint also needs the same information. For running the Port-
TypeMatch constraint, the source and target references of all instances of Connector
are of interest and the type attribute of Port, too. It is worth noting that some parts
of the model, such as the name attribute or the component reference of Port, are not
accessed by any of these constraints.

To run these constraints, if the execution engine uses EMF’s default XMI parser, the
whole model will be loaded into memory (see Section 2.5). Hence, the memory will be
occupied by model elements or features not required for executing the program (such as
the name attribute or the component reference of Ports). Also, all loaded elements will
be kept in memory until the end of execution, which is not optimal. For example, after
running the second constraint (hasUniqueName), instances of the Component class
are no longer needed by the program; there is no need to keep these model elements
and their features in memory while executing the third constraint.

To improve efficiency, it is possible to identify groups of constraints that access the
same sub-sets of the model. For instance, the hasValidName and hasUniqueName

19first to upper case
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constraints in the example require the same information (the names of all Components in
the model). In our approach, by recognising this, the execution engine can execute these
constraints together without the need for additional loading and unloading overhead.
The necessary information, such as the name attribute of Component, can be loaded
into memory, the constraints can be executed, and the information can be unloaded
once it is no longer needed for the PortTypeMatch constraint. By selectively loading and
unloading the relevant information, the execution engine can reduce the loading time
and overall execution time.

The current execution engine of EVL programs is not aware of features of required
model elements that have to be fetched from the XMI model and loaded into memory.
Also, there is no hint for the execution engine to dispose of the parts of models from
memory that are no longer required by the program. Hence, a static analyser becomes
essential to analyse the EVL program in order to obtain advanced knowledge about
the program. This knowledge allows the execution engine to selectively load relevant
information and group the constraints based on this acquired understanding.

6.2 Architecture

The memory management and loading time when working with large XMI models can be
improved through the implementation of two key features in the EVL execution engine:
partial loading and partitioning. In our approach, we combine these capabilities to
enable the execution engine to load only specific subsets of the model that are required
for executing the program, resulting in a reduced memory footprint. Additionally, splitting
constraints into sub-groups (which is referred to as partitioning the constraints in this
chapter) allows for selective loading and unloading subsets of the model based on
the constraints being executed, further improving the overall efficiency of the program.
Together, these features can facilitate more efficient memory utilization and improved
performance in running the program.

In terms of concrete technologies, we use XMI as a file-based model format and
programs written in the EVL language of the Epsilon platform, but the approach can
be extended to other languages of Epsilon, and it is also applicable to other similar
technologies (e.g. OCL). A high-level overview of our approach is presented in Figure 6.3.
The main components of this approach are represented in grey and labelled with
numbers 1 to 3. The two first steps are the same as the partial loading of the repository-
based model approach (previous chapter), while the third step is different.
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Figure 6.3: The proposed approach

6.2.1 Static Analyser

In this work, we use a static analyser for Epsilon Validation programs20. The inputs of
the EVL static analyser are an EVL program (set of constraints) and the metamodels of
the models it consumes (first step of our approach in Figure 6.3).

In-advance knowledge about the program (i.e., types and properties accessed by
the program) is extracted by EVL static analyser using the abstract syntax tree. The
extracted information is in the form of an effective metamodel for every model the
constraints access. Detailed discussions regarding static analysis and the effective
metamodel concept can be found in Chapter 4.

Similarly to the previous chapter, it is worth noting that the EVL static analyzer
has the capability to handle multiple models, resulting in multiple effective metamodels.
However, for the remainder of this chapter, we will focus on programs with a single model,
thus having one effective metamodel. To illustrate how every step of the approach works,
we use the motivating example of Section 6.1.

In the first step of our approach, the static analyser sets the resolved types of
expressions to types from the respective metamodels, to primitive types (e.g., String,
Integer) or to collection types.

For example, in line 3 of Listing 1, the resolved type of the self variable is equal to
Component as the context of constraint is Component (Line 1). In line 3, the property

20https://github.com/epsilonlabs/static-analysis
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Table 6.1: Resolved Types Calculated by the Static Analyser

Line number in Listing 6.1 Expression Resolved Type

1 Component Model Element (Component)

3, 4, 9 self.name Property call expression (String)

3, 4, 9 self Model Element (Component)

3 self.name.ftuc() Operation call expression (String)

8 Component.all.select(c | c.name = self.name).size() Operation call expression (Integer)

8 Component.all.select(c | c.name = self.name) Operation call (Collection<Component>)

8 c.name Property call expression (String)

8 c Model Element (Component)

call checks the name of each Component. The name is an attribute of Component,
and the resolved type is String. The type of the self.name in line 3 (as a target of
ftuc() operation call) and in line 4 (as a property call) is resolved as String (as same as
property call in line 3).

In the following constraint (hasUniqueName), the target of the select operation call
is a property call which retrieves the name of all Components. In line 8, variable c is
resolved as model element (Component) as the target of the select operation is all
instances of Component. The type of self.name is resolved as String, as same as in the
hasValidName constraint.

In line 14, the types of self.source.type and self.target.type are resolved as String.
The type of the self variable is resolved to Connector, and the source and target are the
references of Connectors which are resolved as model elements (source is resolved
to OutPort and the target is InPort type) (see the metamodel in Figure 6.1). Table 6.1
shows the resolved types of expressions extracted from Listing 6.1 by the static analyser.

6.2.2 Effective Metamodel Computation

The extraction of the effective metamodel of constraints is the second step of the
approach. The concept of the effective metamodel and the algorithm constructing the
effective metamodel are discussed in Section 4.6. Figure 6.4 illustrates the effective
metamodel extracted from the EVL program in our motivating example (Listing 6.1).

In Figure 6.4, the attributes of the EffectiveMetamodel class are filled by the orig-
inal metamodel, which are the name and the nsuri of the metamodel. For running
the EVL program in Listing 6.1, all instances of Component and Connector must be
loaded. The Component and Connector classes are added to the EffectiveMetamodel
under the allOfKind references. The name attribute of Component is added to the
EffectiveMetamodel as well. The source and target references of Connector are also
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:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: Component

:EAttribute

 name: name

:EClass

 name: Connector

eStructuralFeatures

allOfKind

allOfKind

:EReference

 name: source

:EReference

 name: target

eStructuralFeatures

eStructuralFeatures

:EClass

 name: InPort

types

eStructuralFeatures

:EAttribute

 name: type

:EClass

 name: OutPort

eStructuralFeatures

types

features

Figure 6.4: The effective metamodel extracted from Listing 6.1

required (line 14 of Listing 6.1), hence, they are added to Connector as EReferences
using the EStructuralfeatures references.

The resolved type of source reference is equal to OutPort (see Table 6.1), so the
OutPort EClass is added to the effective metamodel using the types reference which is
the same for the target reference that is resolved to the InPort EClass. The last attribute
is the type attribute which is added to the InPort and OutPort EClasses.

6.2.3 Partial Parser

As EMF’s default XMI parser loads the entire model into memory, for partial loading,
a custom XMI parser is needed to load models based on the information provided
by an effective metamodel. For this purpose, we use the partial parser described in
Section 2.5 after fixing some bugs and making further improvements to its performance.
Therefore, in step 3 of Figure 6.3, the partial parser will load the model based on the
effective metamodel.

This parser scans the whole XMI file and checks the tags of elements with the
effective metamodel classes and features. If the element’s tag is represented in the
effective metamodel, then the element is loaded; otherwise, the parser ignores the
element, pushes a placeholder in the parser stack and moves on to the next element
in the file. For a more detailed explanation of the parser function, please refer to
Section 2.5.

Using a partial parser in the EVL execution engine saves time in the loading process
and saves memory [51] because less information is loaded compared to the default XMI
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parser. Considering the example in Listing 6.1, in step 3 of our approach, the partial
parser loads the XMI models based on the extracted effective metamodel (Figure 6.4).
All instances of Component with their name attribute, all instances of Connector with
their source and target references, and InPort and OutPort instances with their type
attribute are loaded. Other information, like the names of ports, is skipped by the parser.

However, by only using the partial parser, the necessary information for executing
all constraints is kept in memory until the end of execution. The execution engine
performance can be improved by keeping this information in memory only while it is
required and then disposing it. This feature can be supported by grouping the constraints,
loading the parts of the model required for executing the group and disposing of it after
group execution is finished.

6.2.4 Partitioning Handler

Loading all necessary information from the model upfront and running the program
would be efficient in terms of loading time as it would avoid the cost of re-parsing a model,
but it would keep elements and their property values in memory for longer than needed,
which is not efficient in terms of memory footprint. Hence, if the machine’s memory is
insufficient to accommodate all the necessary model elements, the execution engine will
be unable to load the model, resulting in a failure to execute the program. Partitioning
the constraints and loading information for each constraint separately can be a solution
for this issue. Although loading and unloading information for each constraint is not
considered optimal (discussed below), it serves as an intermediate step to introduce
our approach.

In this solution, instead of extracting an effective metamodel for the whole program
and loading information based on that in one go, an effective metamodel is extracted for
each constraint separately. After executing the constraint, all model elements will be
unloaded, and the memory becomes available to run the next constraint. In Listing 6.1,
there are three constraints to validate the model. Figure 6.5 shows three effective
metamodels that are extracted for each constraint.

To execute the EVL constraints provided in Listing 6.1 using the intermediate solution,
the EVL execution engine follows the procedure below:

• Loading Model Elements for hasValidName Constraint: The EVL execution engine
begins by loading model elements based on the effective metamodel (EfMeta-
model 1) associated with the hasValidName constraint, as illustrated in Figure 6.5.
This involves loading all instances of Component with their name attributes. The
constraint is then executed using these loaded model elements and properties.
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Figure 6.5: Effective metamodels of constraints in Listing 6.1

• Cache Clearing and Unloading: After the hasValidName constraint execution, the
cache is cleared, and all information related to this constraint is unloaded from the
memory.

• Repetition for hasUniqueName Constraint: The same process is repeated for the
second constraint, hasUniqueName. Again, all instances of Component with their
name attributes are loaded, and the constraint is executed. Once the constraint
execution is complete, all information related to this constraint is unloaded.

• Repetition for PortTypesMatch Constraints: The described process continues for
the third constraint and any subsequent constraints in a similar manner. Each
constraint is executed with the necessary model elements loaded, and after
execution, the information is cleared from memory.

In this solution, an execution plan serves as a roadmap for the execution engine,
helping it navigate the steps of the constraint validation and loading process in a way
that optimizes memory usage. This execution plan essentially outlines the specific
execution steps for a given task or program within the system. Figure 6.6 illustrates
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the execution plan in the intermediate solution. This execution plan consists of a cycle
for loading models based on the effective metamodel, executing the constraint, and
unloading information for each constraint.

Load model based on
constraint's effective

metamodel

Execute the
constraint Clean the memory End of execution

Extracting all effective
metamodels of

constraints

Figure 6.6: Overview of an execution plan in intermediate approach

Constraint Grouping

Partitioning the program based on constraints is efficient regarding memory footprint as
model elements are not kept in the memory for the entire execution. However, it is more
time-consuming as the model is loaded multiple times.

Figure 6.5 shows that the effective metamodels of hasValidName and hasUnique-
Name are identical (EfMetamodel 1 and EfMetamodel 2), and these two constraints
require the same data. Hence, disposing of the information from memory after running
hasValidName constraint and loading the same information again to execute hasUnique-
Name is sub-optimal.

By grouping the hasValidName and hasUniqueName constraints and associating
their effective metamodel with the group, the execution engine can identify that these
constraints can be executed using the same data. As a result, the execution engine
optimizes the process by avoiding the unnecessary unloading of information after
loading model elements for the hasValidName constraint. Instead, it loads the required
information based on the effective metamodel, executes both constraints and unloads
the information.

Therefore, adopting a strategy of grouping constraints based on their effective meta-
model, specifically when they require the same information or a subset of information
for execution, presents a promising approach to minimize loading time more than the
intermediate solution. By identifying these relationships and grouping the constraints
accordingly, the execution engine can optimize the loading process by reusing the al-
ready loaded information, thereby decreasing the overall loading time. In our approach,
the partitioning handler is a component in the execution engine which is responsible for
grouping the constraints.

Hence, the suggested execution plan in our approach is modified compared to the
intermediate solution, as demonstrated in Figure 6.7, where data unloading occurs
following the execution of a group of constraints instead of a single constraint.
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Figure 6.7: Overview of an execution plan in our approach

Algorithm 6.1 describes an algorithm to group the constraints. The strategy of this
algorithm is to make a group of constraints with the same effective metamodel, or the
constraints that their effective metamodels are a subset of each other.

Algorithm 6.1 Partitioning Algorithm
1: let Map<Constraint, EffectiveMetamodel> constraintSets
2: let Map<Set<Constraint>, EffectiveMetamodel> constraintgroups
3: for all constraint1 in constraintSets do
4: let gpEfModel = getEffectiveMetamodel(constraint1)
5: let group = New Set<Constraint>
6: for all constraint2 in constraintSets do
7: if isSubSet(gpEfModel, getEffectiveMetamodel(constraint2)) or isSubSet(

getEffectiveMetamodel(constraint2), gpEfModel) then
8: group.add(constraint2)
9: geEfModel = MergeMetamodel(gpEfModel, getEffectiveMeta-

model(constraint2))
10: constraintgroups.add(group, geEfModel)

In line 3 of Algorithm 6.1, the algorithm goes through all constraints and computes
their effective metamodels. In line 6, the algorithm searches in constraints to evaluate if
there are other constraints, the effective metamodel of which is a subset or a super-set
of this constraint. If it is found, the second constraint will be added to the same group as
the first one, and the super-set effective metamodel will be mapped to the group (lines 7
to 9).

For example, if a constraint accesses the target reference of Connector class, then
the effective metamodel is a subset of EfMetamodel 3 (as EfMetamodel 3 includes the
target reference of Connector class to execute the constraint), and it would be efficient
to put them in the same group.

Another possible case for grouping constraints is when the constraints’ effective
metamodels are not the same or superset/subset of each other but there is a significant
overlap between them (the elements that are required for running the constraints). In
this situation, grouping constraints becomes less straightforward.

On the one hand, grouping constraints saves time in the loading/unloading process,
but on the other hand, loading more information can increase the memory footprint of
the loaded model. For example, in Figure 7.1, there are two constraints that both require
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all instances of InPort class with the name attribute (they are shown by green colour).
Constraint 1 needs the incoming reference of InPort class, while Constraint 2 requires
the type attribute to be executed. In this scenario, the partitioning handler can take two
different strategies:

• Loading model elements for each constraint and executing the two constraints
separately. The execution engine loads the name attribute and incoming reference
of InPort class, executes the Constraint 1 and unloads the model elements. Then,
it loads the name and type attributes of InPort class again and executes Constraint
2.

• Grouping the two constraints, merging their effective metamodels and executing
the constraints in sequence (or in parallel). The execution engine loads the name
and type attributes and the incoming reference of InPort class and executes both
constraints.

Therefore, there is a trade-off between loading more information in one go, having
less memory available for execution and saving time, and loading elements separately
and spending more time on loading but making more space available in memory for
running the constraint. For example, in Figure 7.1, for executing Constraint 1, if the
number of InPort instances is large enough to occupy most of the memory, then it is
highly possible that loading an additional attribute (type attribute) would not be efficient
(execution needs the memory). If the number of elements occupies less memory, then
loading more data and running more constraints would be recommended.

The partitioning algorithm needs more information about the model to decide on
partitioning and automatically evaluate which strategy is the optimal option. This
information is not available in our approach, as the static analyser gains in-advance
knowledge about the program. It works on the metamodel abstraction level and has no
information about the model and its content. Therefore, the lack of this knowledge is to
be compensated by the user.

To address this limitation, we empower users to group the constraints themselves
using annotations in the EVL program. By leveraging the expertise and insights of the
user, the constraints can be grouped in a way that takes into account the specific charac-
teristics and dependencies of the model. This enables users to make informed decisions
about constraint grouping, leveraging their domain knowledge and understanding of the
model structure.

As shown in Listing 6.2, we consider a new annotation (@group) in EVL language.
Using this annotation, users can group constraints manually. In Listing 6.2, the @group
annotation is followed by an id . Constraints with the same group id are in the same
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Figure 6.8: Constraints with overlap

group. Therefore, constraint hasValidName and hasUniqueName are grouped as they
have the same id, and portTypeMatch is executed separately.

Listing 6.2: Groupig EVL constraints to validate Component Language instances

1 context Component {

2 @group gp1

3 constraint hasValidName {

4 check: self.name = self.name.ftuc()

5 message: self.name + " should start with

6 an upper-case letter"

7 }

8 @group gp1

9 constraint hasUniqueName {

10 check: Component.all.select

11 (c:Component|c.name = self.name).size() == 1

12 message: "Duplicate component name" + self.name

13 }

14 }

15 context Connector {

16 @group gp2

17 constraint PortTypesMatch {

18 check:self.source.type=self.target.type

19 message:"The types of the source and target ports don’t match"

20 }

21 }
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By allowing users to manually group constraints, we provide a flexible and cus-
tomisable approach that empowers users to optimize the performance of the constraint
execution process based on their knowledge and understanding of the model.

In summary, our approach possesses the capability to automatically group con-
straints when efficiency can be assured, especially in cases where effective metamodels
are subsets or exhibit similarities. However, in scenarios necessitating a trade-off be-
tween constraint grouping and considering more extensive model information, user
intervention is required.

6.3 Implementation

As mentioned in Chapter 2, in Epsilon’s architecture, there is the Epsilon Connectivity
Layer (EMC)21 which enables Epsilon programs (including EVL constraints) to interact
with models in different modelling technologies in a uniform manner by defining drivers
(e.g., EMF, CDO, NeoEMF).

Our frugal file-based model loading approach has been implemented in the form of
a new Epsilon driver called XMIN, which is an extension of the existing EMF driver and
provides facilities for Epsilon programs to load XMI-based models partially. The location
of the XMIN driver within the Epsilon architecture is depicted in Figure 6.9. In the XMIN
driver, the execution method of the EVL engine is overridden based on the proposed
execution plan, which is shown in Figure 6.7.

extends

Epsilon Validation Language (EVL)

accessing model through

Epsilon Object Language (EOL)

extends XMINEclipse Modelling Framework (EMF)

Epsilon Model Connectivity Layer
(EMC)

Figure 6.9: XMIN driver in Epsilon architecture

21https://www.eclipse.org/epsilon/doc/emc/
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6.3.1 Limitations

Our proposed approach has two notable limitations that should be highlighted. Firstly,
it is designed specifically for read-only input models in model management programs.
This means that our approach does not support any modifications to the models, such
as updates, deletions, or additions of model elements.

Secondly, from a technological perspective, this approach has been implemented
and evaluated only for EMF-based models. Extending it to support other model types is
part of our future work.

6.4 Evaluation

In this section, we report on the results of experiments that measure the performance of
different approaches discussed in Section 6.2. By evaluating and comparing partitioning
techniques, we aimed to provide insights into the advantages and time-saving potential
associated with the constraint grouping approach.

6.4.1 Memory Consumption

The memory efficiency benefits of loading large models partially are reported in [51].
Wei and colleagues highlight the advantages of employing an XMI partial parser for this
purpose.

In the context of benchmark experiments in their work, various models were used,
all derived from reverse-engineered Java code from the GraBaTs 2009 contest. These
models denoted as set0, set1, set2, set3, and set4, varied in size from 9.2MB to
676.9MB, and they were all stored in XMI format.

The experimental procedure began with counting the loading units within each model,
spanning from set0 to set4. Subsequently, Wei et al. crafted EOL programs aimed at
achieving loading unit coverage levels of 20%, 40%, 60%, 80%, and 100% for models
within the set0 to set4 range. Finally, set0 to set4 were loaded using the effective
metamodel derived from the EOL programs and the partial parser. The experiment
then recorded and compared the performance in terms of loading time and memory
consumption with the performance of the built-in EMF XMI parser applied to the same
models.

The benchmark results yielded valuable insights:

• Resource consumption (both in terms of time and memory) exhibited a linear
relationship with loading unit coverage when using the partial parser.
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Figure 6.10: Performance report of using a partial XMI parser [51]

• Notably, for set0, the partial parser demonstrated substantial improvements in
resource consumption, both in terms of time and memory. However, when aiming
for 100% coverage, the partial parser incurred slightly higher time and memory
usage due to upfront costs associated with effective metamodel extraction and rec-
onciliation. Additionally, during parsing, redundant comparisons with the effective
metamodel also contributed to increased time consumption.

• For set 1 to set 4, significant improvements were observed, with at least a 10%
reduction in loading time and a 20% decrease in memory usage up to 80%
coverage.

• The results are graphically presented in Figure 6.10 for all five data sets. It is note-
worthy that the relationship between time consumption and memory consumption
was not strictly proportional. This non-linearity was attributed to certain attributes
of EObjects containing substantial amounts of strings, which led to increased
memory consumption. This phenomenon was particularly pronounced in the case
of set0, set3, and set4.

6.4.2 Time performance

Given that Wei’s work has already demonstrated the memory efficiency of employing
a partial parser, our focus in this section is to assess the time efficiency of different
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approaches, including executing each constraint separately, and using the constraint
grouping approaches presented in Section 6.2.4.

We evaluated the approaches on a system using Java VM 11.0.10 with Intel(R)
Core(TM) i7, 16GB memory and CPU @2.80GB running Mac OS X Catalina.

For our experiments, we generated random large models using EMF (pseudo)
random instantiator22 developed by the AtlanMod Team23. The models conform to an
Ecore-based metamodel of the Component language (see Figure 6.1). We validated
five XMI models, from model1 to model5 (from a 212.9MB XMI file with 1 million model
elements to a 1.29GB file with 6 million model elements). The models are listed in
Table 6.2.

Table 6.2: Evaluated models

Model name Number of elements Size

model1 1,000,000 212.9MB

model2 3,000,000 563.6MB

model3 3,700,000 806.6MB

model4 5,000,000 1.05GB

model5 6,000,000 1.29GB

We assessed our work using four validation experiments. Figure 6.15 illustrates the
Component Language metamodel, and all constraints are used to validate the models
conform to this metamodel. The initial experiment utilizes a validation program compris-
ing three constraints with overlapping effective metamodels. The second experiment
involves a program with two constraints having non-overlapping effective metamodels.
The third experiment includes two programs, each with a mix of constraints where some
are grouped and some are not. Lastly, the fourth experiment featured a program with
ten constraints, with a mix of grouped and ungrouped constraints determined by both
an algorithm and a user.

Experiment 1: all constraints in the same group

We have implemented an EVL program to validate the model1 to model5 models. These
constraints are listed in Listing 6.3.

Listing 6.3: EVL constraints to validate Component instances in the models

22https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
23https://www.imt-atlantique.fr/fr
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1 model ccl driver XMIN {nsuri = "http://componentlanguage"};

2 context Component {

3 /* Component names must start with an upper-case letter */

4 constraint ValidName {

5 check: self.name = self.name.firstToUpperCase()

6 message: self.name + " should start with an upper-case letter"

7 }

8 /* Component names must be globally unique */

9 constraint UniqueName {

10 check: getComponentsByName().get(self.name).size() == 1

11 message: "Duplicate component name " + self.name

12 }

13 /* Components must be connected to at least one more component */

14 constraint IsConnected {

15 check: self.ports.exists(p:InPort|p.incoming.notEmpty()) or

16 self.ports.exists(p:OutPort|p.outgoing.notEmpty())

17 message: "Component " + self.name + " is disconnected"

18 }

19 }

To evaluate the constraints in Listing 6.3, we executed the program in two modes.
First, we measured the execution time when each constraint was executed separately.
In this mode, data was loaded according to the requirement of a single constraint and
unloaded before the execution of the next constraint. Second, the constraints were
executed as a group where they were grouped based on Algorithm 6.1.

In Listing 6.3, the ComponentIsConnected constraint required all instances of the
Component class with the name attribute and ports reference. The ComponentValid-
Name constraint required the name attribute of all instances of Component, which
overlaps with the ComponentIsConnected constraint. The ComponentUniqueName
constraint also required the same information as ComponentValidName. These con-
straints were grouped together as they required a subset of the same information to be
executed.

The results of the experiments are shown in Figure 6.11. The blue column represents
the execution time for model1 to model5 when the constraints are executed separately
on the models. The orange column represents the execution time when all constraints
are executed as a group. As is evident by the numbers, grouping has a positive impact
on execution time and boosts the execution engine performance. on average, the
grouped approach improves the performance by approximately 26.37%.

117



 -

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

1 M 3 M 3.7 M 5 M 6 M

Ex
ec

ut
io

n 
tim

e 
(m

s)

Number of model elements

Not grouped

Grouped

Figure 6.11: The execution time of Listing 6.3

Experiment 2: all constraints in different groups

In this test case, we aim to evaluate the effect of grouping when constraints do not have
an overlap, and they are not grouped by the algorithm, but the user chooses to group
them based on the availability of resources.

To illustrate the impact of grouping in this scenario, we consider two constraints
as shown in Listing 6.4: ComponentValidName, which requires the name attribute of
Components, and PortTypeMatch, which needs all instances of Connector with their
source and target references, along with all instances of Ports with the type attribute.
Since there is no overlap between their requirements, these constraints would not be
grouped together based on Algorithm 6.1. However, the user can choose to group them
together.

Listing 6.4: EVL constraints to validate Component and Connector instances of the
models

1 model ccl driver XMIN {nsuri = "http://componentlanguage"};

2 context Component {

3 /* Component names must start with an upper-case letter */

4 constraint ComponentValidName {

5 check: self.name = self.name.firstToUpperCase()

6 message: self.name + " should start with an upper-case letter"

7 }

8 }

9 context Connector {

10 /* If a connector connects two ports, their types must match */

11 constraint PortTypesMatch {

12 check: self.source.type = self.target.type
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13 message: "The types of the source and target ports don’t match"

14 }

15 }

The results of measuring execution time (in milliseconds) and memory consumption
(in GB) are depicted in Figure 6.12. As illustrated, the orange column, representing
the execution time when the constraints are not grouped, is higher than the blue one,
representing the execution time when they are grouped. Therefore, grouping can save
time. This is because all information is loaded in one go without the cost of unloading.
Grouping constraints significantly reduces execution time, especially as the dataset size
increases. For instance, at 6M, the grouped mode is approximately 10 times faster than
the non-grouped mode.

Grouped execution significantly reduced execution time by approximately 58.17%
to 90.23% as dataset size increased, demonstrating better scalability. However, it
required more memory, with usage increasing by 28.57% to 55.56% compared to the
non-grouped mode. As discussed in Section 6.2.4 and illustrated in Figure 6.12, the
trade-off between memory usage and execution time is evident. The orange line (non-
grouped) consistently shows lower memory usage than the blue line (grouped). While
grouping constraints demands more memory, the significant reduction in execution time
often justifies this cost, particularly for larger datasets. Therefore, grouped execution is
recommended for large datasets due to its substantial performance benefits. For smaller
datasets, the decision can depend on the availability of memory and the importance of
execution time efficiency.

In general, grouping constraints, when they are not a subset, depend on the available
memory. For example, if only 6 GB of memory is available for executing the constraints
on a model with 6 million elements, grouping them together would require approximately
7 GB (see Figure 6.12), causing the program to fail and rendering grouping inefficient.
Conversely, if sufficient memory is available, grouping can aid the execution engine in
validating the model faster.

Experiment 3: mixed constraints

1. Grouping three out of five constraints: This experiment evaluates the impact
of grouping on the execution time of a program with mixed constraints. In this
scenario, we consider a program (in Listing 6.5) with five constraints, three of
which are grouped according to Algorithm 6.1, while the remaining two are not.

As explained in Experiment 1, the constraints ComponentValidName, Componen-
tUniqueName, and ComponentIsConnected are grouped by Algorithm 6.1 due to
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Figure 6.12: The execution time and memory consumption of Listing 6.4

the overlap between their effective metamodels. The PortTypeMatch constraint
requires all instances of Connector with their source and target references, along
with all instances of Ports with the type attribute to be executed successfully. The
PortValidName constraint requires all instances of Port with their name attribute.
Since there is no subset relation between the PortTypeMatch and PortValidName
constraints, they are not grouped and are executed individually.

Listing 6.5: EVL constraints to validate Component Language instances

1 model ccl driver XMIN {nsuri = "http://componentlanguage"};

2 context Component {

3 /* Component names must start with an upper-case letter */

4 constraint ValidName {

5 check: self.name = self.name.firstToUpperCase()

6 message: self.name + " should start with an upper-case letter"

7 }

8 /* Component names must be globally unique */

9 constraint UniqueName {

10 check: getComponentsByName().get(self.name).size() == 1

11 message: "Duplicate component name " + self.name

12 }

13 /* Components must be connected to at least one more component */

14 constraint IsConnected {

15 check: self.ports.exists(p:InPort|p.incoming.notEmpty()) or

16 self.ports.exists(p:OutPort|p.outgoing.notEmpty())

17 message: "Component " + self.name + " is disconnected"

18 }
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19 }

20 context Connector {

21 /* If a connector connects two ports, their types must match */

22 constraint PortTypesMatch {

23 check: self.source.type = self.target.type

24 message: "The types of the source and target ports don’t

match"

25 }

26 }

27 context Port {

28 /* Port names must start with an lower-case letter */

29 constraint ValidName {

30 check: self.name.isDefined() implies self.name = self.name.

firstToLowerCase()

31 message: self.name + " should start with a lower-case letter"

32 }

33 }

34 @cached

35 operation getComponentsByName() {

36 return Component.all.mapBy(c|c.name);

37 }

We first run the program with no grouping, executing each constraint separately,
and then execute the program by grouping three constraints and not grouping the
other two.

As it is shown in Figure 6.13, the execution time is consistently lower when
constraints are grouped. The most significant reduction in time is observed in
the model with 6 million elements, with a decrease from 347 milliseconds to 303
milliseconds. Grouping constraints saves loading time for the grouped constraints,
leading to more efficient execution. The average percentage reduction in loading
time when constraints are grouped is approximately 10.07%.

2. Grouping two out of five constraints: To further investigate the impact of the
number of grouped constraints, we conducted a second experiment with a different
program containing five constraints. This time, only two constraints were grouped
based on the algorithm, while the other three were not. Listing 6.6 demonstrates
the constraints that are used for validation in this experiment.

Listing 6.6: EVL constraints to validate Component Language instances

1 model ccl driver XMIN {nsuri = "http://componentlanguage"};

2 context Connector {

3 /* If a connector connects two ports, their types must match */
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Figure 6.13: The execution time and memory consumption of Listing 6.5

4 constraint PortTypesMatch {

5 check: self.source.type = self.target.type

6 message: "The types of the source and target ports don’t

match"

7 }

8 /* The source and target ports of a connector must belong to

different components */

9 constraint DifferentComponents {

10 check: self.source.component <> self.target.component

11 message: "Cannot connect ports of the same component"

12 }

13 }

14 context Port {

15 /* Port names must start with an lower-case letter */

16 constraint ValidName {

17 check: self.name.isDefined() implies self.name = self.name.

firstToLowerCase()

18 message: self.name + " should start with a lower-case letter"

19 }

20 }

21 context OutPort {

22 /* The name of a port must be unique within its container

component */

23 constraint UniqueName {

24 check: self.component.ports.select(p : OutPort|p.name = self.

name).size() == 1

25 message: "Duplicate port name " + self.name

26 }
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27

28 /*Unnamed out ports are only allowed for components with one out

port*/

29 constraint NamedIfMultiple {

30 check: self.component.ports.select(p: OutPort|true).size() >

1 implies

31 self.name.isDefined()

32 message: "Unnamed out ports are only allowed for components

with one out port"

33 }

34 }

DifferentComponents constraint needs all instances of Connector with their source
and target references, along with all instances of Ports with the components
reference, while for PortTypeMatch, the type attribute of Port is needed instead of
components reference.

Constraint OutPortUniqueName and NamedIfMultiple are grouped as both of them
need all instances of OutPort with their components reference and name attribute
and all instances of Component with their ports reference.

Figure 6.14 illustrates a similar trend as observed in the first program: the grouped
condition consistently exhibits lower execution times across all models. The
most significant reduction occurs in the model with 6 million elements, where the
execution time decreases from 357 milliseconds to 216 milliseconds. On average,
grouping constraints results in a 24.25% reduction in loading time.
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Figure 6.14: The execution time and memory consumption of Listing 6.6
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The results indicate a more noticeable impact on time consumption compared to the
first program, which is attributed to the specific design of the model and the number of
elements of each class in the models.

The time saved through grouping constraints comes from the avoidance of loading
redundant information, resulting in reduced loading time. In the first program, loading
time was saved by fetching all instances of Components with their name attribute just
one time instead of three times (for each constraint seperately), thereby reducing loading
time is equal time needed for loading all instances of Component with a single attribute.
Conversely, in the second program, time was saved is equal to time needed for loading
all instances of OutPort with their components reference and name attribute, alongside
all instances of Component with their ports reference.

It’s essential to consider not only the size of properties but also the quantity of each
element, as both factors play a crucial role in this analysis.

Experiment 4: constraints in the three different modes

We have also implemented 10 constraints24 in the EVL language to validate these
models. These constraints are listed in Listing 6.7.

Listing 6.7: EVL constraints to validate Component Language instances

1 model ccl driver XMIN {nsuri = "http://componentlanguage"};

2

3 context Component {

4 /* Component names must start with an upper-case letter */

5 constraint ValidName {

6 check: self.name = self.name.firstToUpperCase()

7 message: self.name + " should start with an upper-case letter"

8 }

9 /* Component names must be globally unique */

10 constraint UniqueName {

11 check: getComponentsByName().get(self.name).size() == 1

12 message: "Duplicate component name " + self.name

13 }

14 /* Components must be connected to at least one more component */

15 constraint IsConnected {

16 check: self.ports.exists(p:InPort|p.incoming.notEmpty()) or

17 self.ports.exists(p:OutPort|p.outgoing.notEmpty())

18 message: "Component " + self.name + " is disconnected"

19 }

20 }

24https://eclipse.dev/epsilon/playground/?858b6314
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21 context Connector {

22 /* If a connector connects two ports, their types must match */

23 constraint PortTypesMatch {

24 check: self.source.type = self.target.type

25 message: "The types of the source and target ports don’t match"

26 }

27 /* The source and target ports of a connector must belong to different

components */

28 constraint DifferentComponents {

29 check: self.source.component <> self.target.component

30 message: "Cannot connect ports of the same component"

31 }

32 }

33 context Port {

34 /* Port names must start with an lower-case letter */

35 constraint ValidName {

36 check: self.name.isDefined() implies self.name = self.name.

firstToLowerCase()

37 message: self.name + " should start with a lower-case letter"

38 }

39 }

40 context InPort {

41 /* Either all input ports of a component are connected or none */

42 constraint IsConnected {

43 check: self.component.ports.exists(p : InPort|p.isConnected())

implies self.isConnected()

44 message: "Either all or no input ports must be connected"

45 }

46 /* The name of a port must be unique within its container component */

47 constraint UniqueName {

48 check: self.component.ports.select(p : InPort|p.name = self.name).

size() == 1

49 message: "Duplicate port name " + self.name

50 }

51 }

52 context OutPort {

53 /* The name of a port must be unique within its container component */

54 constraint UniqueName {

55 check: self.component.ports.select(p : OutPort|p.name = self.name)

.size() == 1

56 message: "Duplicate port name " + self.name

57 }

58

59 /*Unnamed out ports are only allowed for components with one out port*/

60 constraint NamedIfMultiple {
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61 check: self.component.ports.select(p: OutPort|true).size() > 1

implies

62 self.name.isDefined()

63 message: "Unnamed out ports are only allowed for components with

one out port"

64 }

65 }

66 operation InPort isConnected() : Boolean {

67 return self.incoming.notEmpty();

68 }

69 @cached

70 operation getComponentsByName() {

71 return Component.all.mapBy(c|c.name);

72 }

Every constraint is represented by a coloured dot with a number, and classes and
features of the metamodel required for its execution, are marked by the same colour.
For example, the ComponentValidName constraint requires all instances of Component
class and their name attribute. In Figure 6.15, ComponentValidName constraint is
represented by a dark blue dot (number 2). Hence, there is a dark blue dot in the
Component class compartment and its name attribute.

Within this structure, when multiple dots always appear together in the metamodel,
it means they are using the same information and can be grouped. In Figure 6.15,
ComponentValidName belongs to the same group as the ComponentIsConnected and
ComponentUniqueName constraints, as they require a subset of the same information
to be executed. By following the colour of these constraints (dark green (1), dark blue
(2) and red (3)), it is shown that they appear in Figure 6.15 next to each other. Therefore,
they are allocated to the same group according to Algorithm 6.1.

The execution time was measured for three partitioning modes. The modes are
mentioned below:

1. Partitioning the model based on constraints and running each constraint inde-
pendently (intermediate solution): In this mode, the model is partitioned based
on individual constraints, and each constraint is executed separately. By running
constraints independently, any dependencies or overlaps between constraints are
ignored.

2. Partitioning the model based on groups of constraints using our proposed al-
gorithm: In this mode, we use our algorithm to group the constraints based on
specific criteria (see Section 6.2.4). The algorithm determines which constraints
should be executed together as a group. By grouping constraints, we aim to
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Figure 6.15: The coverage of evaluated constraints

optimise the execution time by reducing the overhead of repeatedly loading the
same information. This approach considers the overlaps between constraints.

3. Partitioning the model based on groups of constraints specified by the user: In
this mode, the user defines how constraints should be grouped based on their
understanding of the model and the relationships between constraints.

To evaluate the execution time in each partitioning mode, we measured the time taken
to execute the constraints for each mode separately. By comparing the execution
times across the three modes, we can assess the efficiency and effectiveness of each
approach in terms of constraint execution time.

The results are shown in Figure 6.16. In this figure, the blue column represents
execution time in mode 1 for model1 to model5 where all constraints are executed
separately. The orange column represents the execution time in mode 2 for the XMI
models, the constraints are grouped based on Algorithm 6.1, and the grey column
demonstrates execution time when the user groups the constraints manually.

As demonstrated in Table 6.3, constraints are divided into seven groups in mode 2.
In the third mode of partitioning, two groups remain the same as in mode 2 (first

and second rows in Table 6.3), based on Algorithm 6.1. However, an additional group
is added by the user (third row of mode 3 in Table 6.3). The information needed for
executing the InPortUniqueName constraint is similar to that for the InPortIsConnected
constraint, with just one additional attribute needed for executing the former. Upon
examining our test models, it was realised that, for example, out of the 5 million elements,
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Figure 6.16: Execution time for different models

there are over 2 million instances of InPort. Considering this insight, unloading 2 million
elements and loading them again would likely be more time-consuming compared to
loading one more attribute.

To address this, in this experiment, we grouped the InPortUniqueName and In-
PortIsConnected constraints together to save loading time for the InPortUniqueName
constraint. By grouping these constraints, a part of the loading time for loading the
InPortUniqueName constraint’s required information is saved, as the necessary informa-
tion is already loaded while considering the additional attribute. This grouping strategy
takes advantage of the machine’s available memory and assumes that accommodating
one more attribute is feasible.

Indeed, comparing the three columns in Figure 6.16 underscores the significant
impact of constraint grouping on execution time. When comparing the orange col-
umn(mode 2) and blue columns (mode 1), it’s evident that the grouping of constraints
influences execution time. This comparison highlights the benefits of algorithmic group-
ing, as seen in the orange column.

Furthermore, comparing the grey column (mode 3) with the orange column (mode 2)
sheds light on the potential for further optimization through user input. The observed
improvements emphasize the value of incorporating user insights and preferences into
the constraint grouping process, resulting in even more pronounced enhancements in
execution time.

As a general observation in our experiment, considering the models and constraints
that we evaluated, grouping constraints can result in a time saving of approximately 10%
to 12% in the execution time of EVL constraints. Comparing the three columns for each
model in Figure 6.16 demonstrates that when constraints are grouped together, there is
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Table 6.3: Partitions in two modes

groups in mode 2 groups in mode 3

ComponentUniqueName ComponentUniqueName
ComponentValidName ComponentValidName

ComponentIsConnected ComponentIsConnected

outPortUniqueName outPortUniqueName
NamedMultiple NamedMultiple

InportIsConnected InportIsConnected
InportUniqueName InportUniqueName

DifferentComponents DifferentComponents

PortTypeMatch PortTypeMatch

PortValidName PortValidName

a significant improvement in the overall execution time. It shows how manual grouping
of constraints based on insights about the model and the trade-off between loading
elements versus loading additional attributes can lead to significant further time savings
in constraint execution. Also, the increasing differences between the columns as the
model gets larger demonstrate that our approach is capable of handling larger models
more efficiently. It highlights the scalability of our approach and indicates that larger
models benefit even more from the grouping of constraints. These findings validate our
hypothesis that partitioning has a notable impact on execution time, thereby enhancing
the performance of the execution engine.

To provide more detailed insights and justify the results, a subset of the obtained
result is presented in Table 6.4, specifically focusing on three out of ten constraints, both
before and after grouping.

Table 6.4: Loading time and execution time for model4 (in seconds)

Time in Mode 1 Time in Mode 2

Constraint Loading Execution Loading Execution

ComponentUniqueName 13,012 10,299
17,238 73,786ComponentIsConnected 17,338 58,141

ComponentValidName 14,107 7,466

In Table 6.4, it is shown that the execution engine, under the first mode of partitioning,
requires approximately 13 seconds to load the necessary model elements and properties
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for executing the ComponentUniqueName constraint. Similarly, it takes roughly 17
seconds to load the required information for the ComponentIsConnected constraint and
about 14 seconds for the ComponentValidName constraint.

In the second mode, the constraints are grouped based on Algorithm 6.1. The
ComponentIsConnected constraint required all instances of Component class with the
name attribute and ports reference. Furthermore, this constraint belongs to the same
group as the ComponentValidName and ComponentUniqueName constraints. These
constraints are in the same group as they require a subset of the same information
to be executed (See Figure 6.15). As shown in Table 6.4, the time for loading the
necessary information for all of these constraints is about 17 seconds (which is equal to
the loading time of ComponentIsConnected constraint). The loading time for the two
other constraints can be saved by grouping these constraints together, as they can now
reuse the information loaded for the ComponentIsConnected constraint.

Reviewing the execution time in both modes in Table 6.4, it is worth noting that
there is no execution time overhead observed when executing the constraints (the total
execution time of constraints in Mode 1 matches that of Mode 2). This implies that
the constraint execution time remains consistent regardless of the constraint grouping
method applied (only the model loading times differ).

Regarding the correctness of our approach, we conducted validation by executing
the EVL constraints using both the default EVL execution engine and our approach.
The aim was to ensure that the output generated by both execution methods is identical
in terms of the number of satisfied and unsatisfied constraints, regardless of whether
partial loading and partitioning were applied. This validation process ensures that our
approach does not introduce conflict or any inconsistencies in the constraint execution
process compared to the default execution engine. By establishing the equivalence
of the outputs, we can conclude that our approach for partial loading and partitioning
maintains the correctness of the constraint evaluation, producing results consistent with
the default execution engine.

6.4.3 Threats to validity

To address construct validity threats, we specifically consider large models generated by
a random generator that conform to the Component Language metamodel. The results
presented in this chapter are based on these test cases.

To mitigate internal validity threats, we ensure reliable and consistent results by
executing three warm-up iterations of the program before reporting the final results.
Additionally, we take an average of 10 executions to minimize any potential impact on
memory usage and execution time caused by JVM startup and initialization.
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To minimize external validity threats, we build our approach on top of mature and
robust Model-Driven Engineering (MDE) technologies, such as the Epsilon suite of
model management programs and the XMI format. These technologies provide a solid
foundation for our approach. We acknowledge that extending our approach to support
other technologies is relatively straightforward with reasonable effort, as discussed in
Section 6.2. However, further experiments are needed to determine the applicability and
scalability of our approach in domains and with metamodels/models and constraints
that have different characteristics from those used in our experimental evaluation. By
addressing these threats and taking measures to ensure reliability and generalizability,
we strive to provide a comprehensive evaluation of our approach in this work.

6.5 Chapter Summary

In this chapter, we introduced an approach for grouping EVL constraints through the
static analysis of EVL programs. We began by presenting a motivating example in
Section 6.1 and outlined the architecture of our approach in Section 6.2. Subsequently,
we provided an overview of the implementation and discussed the limitations of our
approach in Section 6.3.

Furthermore, we conducted evaluations utilizing five large randomly generated
models in Section 6.4. The results have shown that the act of grouping constraints can
lead to a reduction in both loading and overall execution times of EVL programs when
compared to a non-grouping approach. Importantly, this improvement in efficiency does
not have any adverse effects on program behaviour or output.
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7 Conclusions

In the final chapter, we evaluate the overarching aims, objectives, and achievements of
the thesis. Additionally, we emphasise the necessity for further research. Section 7.1
provides a brief summary of this thesis. Section 7.2 integrates the contributions of the
thesis along with its key insights. Section 7.3 suggests potential directions for future
complementary research.

7.1 Summary

The general aim of this thesis is to execute model management programs more efficiently.
The main focus of this work was on scalability issues when such programs deal with
very large models. The approach we presented provided partial loading and partitioning
features to the execution engine of EOL and EVL languages. The main idea is to
statically analyse the model management program and gain information about the
program in compile-time. Using this information, the execution engine is able to load
and process only the parts of the model that are required for executing the program
and save space in memory by skipping unnecessary parts. Also, instead of keeping all
information in memory for the whole execution, the execution engine can keep model
elements till they are needed by the program and dispose of them when they are no
longer referenced by the program.

In Chapter 1, we provided a concise introduction to the motivation behind this
thesis. Chapter 2 provided a comprehensive background for this research. It began by
introducing the fundamental concepts of Model-Driven Engineering, discussing various
levels of abstraction within this methodology. The chapter then delved into the Eclipse
Modeling Framework, a prominent framework in MDE, introducing its key components
such as EObject, EClassifier, EClass, and EDataType. The discussion extended to
various model management tasks, including model transformation and validation. The
Epsilon framework, serving as the foundation for this thesis, was introduced, along
with elaborating its two languages: EOL and EVL. Additionally, two types of model
persistence were discussed to familiarise the reader with the different model varieties
explored in the subsequent thesis chapters: file-based models and repository-based
models. The chapter explored related works in each model persistence category,
shedding light on the partial parsing of XMI, Morsa, CDO, and NEOEMF repositories.
We highlighted their loading techniques, lazy and greedy while emphasising their
limitations. The introduction of Neo4j, a widely-used database, and the Cypher language
for querying such databases further enriched the reader’s understanding. Towards
the end of the chapter, the research addressed the stability challenges within MDE,

132



referencing various efforts by researchers to enhance its scalability. Nevertheless, a
gap was identified, establishing the foundation for the motivation behind this work.

In Chapter 3, we elaborated on how the thesis would demonstrate its intended
contributions in practice. We initiated by offering a brief overview of the foundational
motivation driving this research and subsequently introduced the thesis hypothesis. The
objectives were presented concisely as bullet points and subdivided into sub-objectives
for more detail. Later, we outlined the scope. It was worth emphasising how each
section of this work aligns precisely with the defined objectives.

Chapter 4 serves as the foundation of our approach. The chapter started by in-
troducing the concepts of Abstract Syntax Trees and clarifying the composition of an
EOL program. Following this, the discussion explored the static analyser of the EOL
language, along with a review of previous efforts to implement a static analyser for
Epsilon using variable resolution and type resolution. We then detailed our contribu-
tions to the static analysis of Epsilon, highlighting the improvements we made to its
functionality, including features like type inference and the generation of compile-time
errors as a byproduct. Additionally, we presented our approach for evaluating this static
analyser, and we made note of similar analysers implemented for other languages. In
the latter part of the chapter, we introduced the concept of an effective metamodel, a
product of the static analyser’s output. We also presented an algorithm for extracting
the effective metamodel from the resolved-type Abstract Syntax Tree, a key component
in our approach.

The first contribution of this thesis was presented in Chapter 5. The primary focus
of this chapter revolved around the partial loading of models stored in a graph-based
database. At the beginning of this chapter, a motivating example was presented to aid
readers in understanding the underlying problem and recognising the necessity of the
approach outlined in this chapter to address it. Subsequently, the architecture of our
approach was presented, illustrating how partial loading can be accomplished when the
execution engine interacts with repository-based models. An algorithm was introduced
to map the model’s structure to a graph and store it in the database, utilising a graph-
based database due to its structural similarity with models and superior performance
compared to relational or document-based databases [5]. The proposed architecture
considered the static analysis, the effective metamodel of the program, as well as the
program serving as inputs to the execution engine. The execution engine employed a
query generator to create queries for model loading based on the effective metamodel.
Since Neo4j was the backend used in this approach, the queries were automatically
generated in the Cypher language. We designed and implemented an algorithm for
generating Cypher queries based on the effective metamodel. Additionally, we applied
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optimisation techniques to generate queries that are optimised. Consequently, only
the parts of the model necessary for program execution were loaded into memory.
This approach effectively eliminated the overhead associated with loading extraneous
information. The chapter concluded by providing insights into the implementation of this
approach. It presented a performance analysis of memory usage and execution time,
comparing our approach with the state-of-the-art method. We employed the GraBats
test case, and the results were quite significant. On average, our approach exhibited a
remarkable 84% reduction in memory consumption and a 37% decrease in execution
time when compared to NeoEMF.

Chapter 6 presented the second contribution within this thesis. The main emphasis
of this chapter was on partitioning large XMI models, a key strategy aimed at improving
the performance of model validation programs. The chapter initiated with a motivating
example that effectively clarified the problem and underscored the necessity of inte-
grating partial loading and partitioning when dealing with large models in the execution
engine.

Then, an approach was presented that used static analysis to analyse the validation
program and extract effective metamodels. Following this, by integrating a partial XMI
parser and a partitioning handler within the execution engine, we empowered the engine
to manage large XMI models efficiently. The partial parser of XMI was introduced
before. Hence, we refined the partial XMI parser by addressing and rectifying bugs. This
enhanced partial parser is now seamlessly integrated into the execution engine, allowing
us to load models based on the program’s effective metamodels. In the next part, we
designed and implemented a new algorithm to group the constraints in the validation
program. We elaborated on how this innovative approach can enhance performance
when compared to the alternatives of either loading all required information upfront or
loading information for each constraint individually. We extended the flexibility to users,
allowing them to make grouping decisions as they see fit and granting them control over
constraint execution. Following this, we provided a brief overview of the implementation
details. To conclude this chapter, we evaluated our approach and presented the results
obtained from the loading and validating of a large XMI model, ranging from 1 million to
6 million elements.

7.2 Thesis Contributions

The main aim of this thesis was to optimise and enhance the scalability of model
management programs. To achieve this, we have strengthened the capabilities of the
execution engine of EOL and EVL languages, specifically in handling large models more
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efficiently concerning memory usage and processing time. The contributions enabling
these improvements are as follows:

7.2.1 Static analysis

The main idea of this work was to provide in-advance information about the program
and load models based on the program’s requirements. Therefore, we enhance the
static analyser of Epsilon languages to analyse the program and provide information
about model elements, attributes and references that are necessary for executing the
program. It is helpful to gain a deeper understanding of the program’s behaviour during
the compilation phase. We enhanced the functionality of the static analyser using two
features:

1. Type Inference. We added the type inference ability to the static analyser to make
it able to infer types of expressions, statements and variables. In this way, the
analysis will be more accurate, and the execution engine can be more reliable
regarding the type resolution.

2. Type Checking. We added the type-checking feature to Epsilon static analyser,
which generates compile time errors and helps developers to write better quality
code.

Also, we used the static analyser output to keep all required information in the form
of effective metamodels:

• Effective Metamodel. We introduce an algorithm that provides a strategy for
applying the static analyser in our research. We demonstrate how to effectively
store the valuable information obtained from the static analyser in a format that
can be easily interpreted by the execution engine.

7.2.2 Partial Loading of Repository-based Models

As part of the contributions in this thesis, we have introduced a novel approach for
selectively loading models from the Neo4j database, drawing upon insights obtained
from the static analyser’s output.

1. Efficient Graph Query Generation. Another critical component of our approach
is the creation of an algorithm that translates a program’s effective metamodel
into a series of efficient graph queries. These queries are optimised to retrieve
only the elements, relationships, and properties that the program is likely to utilise
during runtime.
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2. Query Optimisation Techniques. To further enhance the performance, we have
applied query optimisation techniques. These optimisations result in queries that
can retrieve information from the database in a significantly reduced time.

3. Evaluation. We have rigorously evaluated our approach regarding both memory
footprint and execution time. This evaluation provides valuable insights into the
efficiency and practicality of our methodology.

4. Prototype Implementation. As a practical demonstration of these algorithms,
we have developed a prototype implementation using the Eclipse Epsilon family
of model management tools. This implementation is a tangible illustration of the
concepts and methods outlined in this research.

In summary, the contributions of this thesis encompass a comprehensive set of algo-
rithms and techniques aimed at selectively loading models from a repository-based
database. This approach represents a balanced compromise between traditional lazy
and greedy loading strategies. Based on our experimental results, it becomes evident
that this approach can significantly reduce the time and memory resources required to
execute model management programs, particularly when working with large models
stored in a database and when the program necessitates only a subset of the models
for execution.

7.2.3 Partitioning

In our final contribution, we directed our focus towards partitioning:

1. Algorithm for Model Partitioning. We introduced an algorithm crafted to partition
model validation programs efficiently. This algorithm allows for the selective loading
of models based on the specific data required for the execution of distinct parts of
the program. It streamlines the validation process by optimising memory usage
and enhancing the overall program’s efficiency.

2. Prototype Implementation. To validate the effectiveness of this approach, we
implemented a prototype. This prototype allows users to group validation con-
straints according to their specific requirements and preferences. This hands-on
implementation allows users to experience the benefits of partitioning firsthand
and tailor it to their unique needs.

To the best of our knowledge, there is no other existing work that performs static
program analysis to determine the essential data required for program execution and
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subsequently loads the model automatically based on this analysis, be it in a file-based
model or a repository-based model. This innovative approach appears to be unique in
its methodology and contributions.

7.3 Future Work

While this thesis has uncovered important aspects of model loading and the challenges
related to scalability in MDE, it is essential to recognise that there are still interesting
questions to explore, new areas to investigate, and emerging technologies that can
push the boundaries of this field. In the next section, we will point out areas that need
more research. This will serve as a roadmap for future researchers to build on what
we have learned, overcome existing limitations, and contribute to the ever-changing
landscape of scalability in MDE.

• Evaluate the Static Analyser with Additional Test Cases. Our evaluation
focused on the performance of the static analyser using the Eugenia test case.
This choice was made because of our confidence in the correctness of Eugenia’s
transformation programs. While this initial evaluation demonstrates the analyser’s
ability to assess Eugenia’s transformations accurately, it is essential to consider
a broader spectrum of test cases. Expanding the evaluation to include a variety
of test cases will provide a more comprehensive understanding of the static
analyser’s capabilities and its adaptability to different transformation scenarios.
This extended evaluation will offer a more robust assessment and contribute to a
more comprehensive analysis of the analyser’s effectiveness in MDE scenarios.

• Expand Database Compatibility. We have successfully implemented the partial
loading approach using Neo4J, a well-known graph-based database. Although
graph-based databases are generally recommended due to their performance
advantages in this context, it is worthwhile to explore the possibility of extending
support for other types of databases. Various tools are designed to work with
different database models, including document-based, relational, or key-value
databases, and they, too, can benefit from partial loading. For example, within
Epsilon, there is the JDBC [22] driver, which facilitates interactions with relational
databases. Investigating the compatibility and potential adaptations of this driver
to our partial loading approach could be an interesting effort. By broadening our
database compatibility, we open up the opportunity to apply partial loading benefits
to a wider range of database systems, thus enhancing the performance of tools
and optimising the utilisation of resources.
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• Integration with CDO and NeoEMF Repositories. In the initial stages of our
investigation, we considered implementing our approach on top of CDO and
NeoEMF repositories. However, we found that CDO and NeoEMF are structured
to provide access to model element properties in a particular manner. CDO offers
facilities for greedy access (requesting all properties) and lazy access (requesting
one property at a time from the database). Similarly, NeoEMF primarily supports
lazy loading. Unfortunately, neither of these repository systems inherently supports
our approach’s key feature, which involves requesting specific properties from the
database based on the program’s footprint (i.e., effective metamodel). The success
of our evaluation, as outlined in Section 5.4, in demonstrating the efficiency benefits
of partial model loading underscores the potential advantages of this approach. We
hope that our findings and the demonstrated benefits can motivate the developers
of repositories like NeoEMF and CDO to consider incorporating support for this
feature in future iterations. Such enhancements could lead to more flexible and
efficient usage of these repository systems in a broader range of scenarios.

• Automated Optimisation of Constraint Grouping Strategies. As discussed
in Section 6.2, the task of grouping constraints becomes complicated when the
effective metamodels of these constraints are not identical or do not exhibit a clear
superset/subset relationship, yet they share a significant overlap in terms of the
elements required for constraint execution.

One approach involves grouping constraints by considering common parts, which
reduces the time spent on loading and unloading uncommon elements. However,
this method incurs the cost of loading uncommon parts, making it time-consuming.
Alternatively, the other approach suggests not grouping constraints and loading
them separately by considering only the non-common parts. This approach priori-
tises efficiency in loading and unloading, but it comes at the expense of loading
and unloading the same information. A trade-off exists between two competing
factors: loading more information in a single operation, which leaves less memory
available for constraint execution but saves time, and loading elements separately,
which requires more loading time but makes more memory available for executing
constraints. For instance, consider the scenario depicted in Figure 7.1.

When executing Constraint 1, if the number of instances of InPort is significant
enough to occupy a substantial portion of memory, it may not be efficient to load
an additional attribute, such as the type attribute, as it could negatively impact
execution due to memory constraints. On the other hand, loading additional
data and executing more constraints could be recommended when the number
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Constraint 1

Constraint 2

:EAttribute

 name: type

:EAttribute

 name: name

:EReference

:EClass

 name: Inport

EStructuralFeatures

EStructuralFeatures

name: incoming

Figure 7.1: Constraints with overlap

of elements occupies a smaller portion of memory. This trade-off highlights the
importance of making informed decisions about loading strategies based on the
available memory and specific execution requirements.

The partitioning algorithm requires a deeper understanding of the model to make
informed decisions regarding partitioning strategies and automatically evaluate the
most optimal strategy. However, this level of information is currently unavailable
within our approach. The static analyser operates at the metamodel level and
lacks specific knowledge about the model and its contents. To address this gap,
the integration of a model analyser becomes essential. Such a tool can provide
the necessary insights and awareness for our proposed algorithm to make well-
informed decisions about grouping constraints. With access to detailed information
about the model’s structure and content, the model analyser may enable automatic
constraint grouping, enhancing the efficiency and effectiveness of our partitioning
approach.

• Optimising Parallel Constraint Execution on Distributed Systems. Looking
ahead, one potential avenue of research involves exploring the use of partial load-
ing and the strategic grouping of constraints within validation programs to enhance
parallel constraint execution on distributed systems. At present, challenges persist
when executing constraints in parallel. Constraints are distributed across multiple
machines, each loading the complete model, regardless of the specific constraints
they are assigned to execute. This approach results in inefficient interactions,
impacting both loading and model validation processes in the execution engine.
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Consequently, we face increased model loading times and unnecessary memory
consumption across all machines.

The concept of leveraging partial loading and grouping constraints offers the
promise of more efficient execution. Partial loading entails loading only the infor-
mation relevant to the constraints allocated to each machine, reducing loading
times and optimising overall execution. In addition, a strategic grouping of con-
straints can enhance efficiency further. The current inefficiencies in memory
utilisation can lead to wasted resources and execution failures when the model
size surpasses available heap memory, hindering the execution engine from load-
ing the model and running the program on a single machine. The future adoption
of these approaches could be a valuable direction for research, promising to
reduce execution time and maximise system performance in the context of parallel
constraint execution on distributed systems.

• Integration with Runtime Optimisation. Our current efforts have primarily
revolved around enhancing efficiency in the loading process and conserving
memory resources for model management programs. However, we see the
potential for further improvements by integrating these approaches with runtime
optimisation strategies.

For example, there exists valuable research in query optimisation and incremental
execution techniques that can significantly aid the execution engine in optimising
the execution process. These techniques aim to enhance the runtime performance
of programs and queries, ensuring they execute more efficiently and effectively. By
combining our work on loading efficiency and memory management with runtime
optimisation strategies, we can explore the synergies between these areas, poten-
tially achieving substantial advancements in the execution of model management
programs. This collaborative effort promises to deliver not only efficient loading
and memory management but also optimised runtime performance, contributing
to a holistic approach for improving the overall execution of model management
programs.
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